LOG NO;	THU 0 7 1992 RD.	
ACTION:		
FILE NO:	n de ferrit gegingennen de Menselske kan de ser se state hande en state beser en se se se se se se	•

GEOCHEMICAL SAMPLING

BARNATO PROPERTY

GREENWOOD MINING DIVISION

Latitude: 49[°] 35'N Longitude: 118° 54'W NTS: 82E/7W

Owner/Operator: Camnor Resources Ltd. 860 - 625 Howe St. Vancouver, B.C. V6C 2T6

Work Conducted: June 1, 1991 to May 15,1992 Reported By: David A. Visagie, B.Sc.

June 1992

GEOLOGICAL BRANCH ASSESSMENT REPORT

22.5

CMB92-420.10

SUB-RECORDER RECEIVED

JUL 0 2 1992

VANCOUVER, B.C.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	LOCATION, ACCESS, AND PHYSIOGRAPHY	1
3.0	PROPERTY DESCRIPTION	1
4.0	PROPERTY HISTORY	1
5.0	PROPERTY GEOLOGY	6
6.0	1991-2 WORK PROGRAM	7
7.0	CEOCHEMISTRY 7.1 Method 7.2 Results 7.2.1 Camnor Soil Results 7.2.2 Camnor Rock Chip Sample Results 7.2.3 Teck's Results	7 7 8 8 8 8 8
8.0	SUMMARY AND CONCLUSIONS	9
9.0	RECOMMENDATIONS	9
10.0	COST STATEMENT	10
11.0	STATEMENT OF QUALIFICATIONS	12

LIST OF FIGURES

Figure	1	Location Map	2
Figure	2	Claim Map	3
Figure	3	Regional Geology	5
Figure	4	Sample Location and Assay Results	n Folder

APPENDICES

Appendix	1	Sample Descriptions	14
Appendix	2	Assay Results	16

Distribution:

Camnor Resources - 1 Government - 2

1.0 INTRODUCTION

Between June 1, 1991 and May 14, 1992 intermittent work was completed on the Barnato property by both Camnor Resources Ltd. and Teck Exploration Ltd. The purpose of the work was to evaluate areas of known gold mineralization and to complete follow up sampling within areas of known gold in soil anomalies. As a result, a total of 55 rock chip and 17 soil samples were collected.

2.0 LOCATION, ACCESS, AND PHYSIOGRAPHY

The Barnato claims, centred at latitude 49°35'N, longitude 118°45'W occur on NTS map sheet 82E7W. Access to the property is by logging roads from either the main Kettle Valley road to the east or from Beaverdell to the west. The property has been extensively logged resulting in a network of four wheel drive roads providing access to many of the showings (Figure 1).

The claims straddle Lake Ridge which separates the Canyon Creek drainage system to the west from that of Crick Creek to the east. They occur primarily on east facing slopes and benches with elevations ranging from 880 to 1000 m.

Average annual precipitation consists of 24 cm of rain and 100 cm of snow, while the temperature averages 1° C in the winter and 15 C in the summer. The property is snow free from June to October.

3.0 PROPERTY DESCRIPTION

The property presently consists of the following:

CLAIM	RECORD NO	UNITS	DUE	DATE	
Mame	214259	1	Мау	22,	1993
Silver Dollar	214260	1	May	22,	1993
Rambler	214261	1	May	22,	1993
Hunter	214262	1	May	22,	1993
Barnato Fr.	214263	1	Мау	22,	1993
Hackla	214264	1	May	22,	1993
Anchor	214265	1	May	22,	1993
Denver	214266	1	May	22,	1993
Champion	214267	1	Мау	22,	1993
Utopia	214268	1	May	22,	1993
Monetor	214269	1	May	22,	1993
Yorkshire Lass	214270	1	Мау	22,	1993
Silver Bell	214271	1	May	22,	1993
Barnato	214272	1	May	22,	1994
OK	214273	1	May	22,	1993
Kaffir King	214274	1	May	22,	1993

CLAIM RECORD NO UNITS DUE DATE Kingston Fr. 214341 1 Oct. 22, 1993 Oct. 22, 1993 North Star 214342 1 Oct. 22, 1993 214343 1 Caledonia Oct. 22, 1993 Houston 214344 1 Oct. 22, 1993 214347 1 Boston Oct. 22, 1993 Ivanhoe 214348 1 1 Oct. 22, 1993 214349 Mona 1 Oct. 22, 1993 Kingston 214350 Oct. 22, 1993 Oct. 22, 1993 Mexico 214351 1 Boston 214352 1 Highland Mary Oct. 22, 1993 1 214354 Oct. 27, 1993 Coin Fr. 214506 1 July 17, 1993 Pan 1 215382 4

215383

Claim List Continued:

Camnor Resources Ltd. holds a 100% interest in the property and is the operator (Figure 3).

20

July 18, 1993

4.0 PROPERTY HISTORY

Pan 2

The Barnato property has been sporadically worked on for over a century with many of the claims being originally staked prior to 1878. Surface programs consisting of prospecting and trenching led to the discovery of gold in 1896. In 1938 subsequent development, centred on the Barnato crown grant, resulted in the shipping of two cars of hand sorted ore totalling 84.9 tons to Tacoma, Washington for smelting. The ore averaged 1.58 opt Au, 0.23 opt Ag and 10.17% As.

In 1938, Cominco optioned the property and completed an exploration program consisting of mapping, prospecting, test pitting and drilling. The results showed the veins in the vicinity of the main Barnato workings to diminish in thickness and grade with depth and to be erratic along strike.

During 1965 and 1966, Amcana Gold Mines conducted a program of road building, claim surveying, trenching and diamond drilling (four short holes). The work was again concentrated in the vicinity of the Barnato main workings.

In 1977, Camnor Resources Ltd. acquired the property from G. Bleiler. Since then it has completed several programs consisting of ground and air geophysics, soil and rock chip sampling, mapping, trenching, prospecting and limited diamond drilling (5 NQ holes totalling 302.9 m).

Golden Seal Resources optioned the property in 1986 and completed a small percussion drill program totalling 202.4 m in four holes. Due to negative results Golden Seal terminated the option. Since then limited soil and rock chip sampling and mapping programs have been completed by Camnor Resources Ltd.

5.0 PROPERTY GEOLOGY

The Barnato property is primarily underlain by Late Paleozoic to Early Mesozoic andesitic volcanic and volcaniclastic rocks of the Wallace (Anarchist) Formation. These rocks locally consist of metamorphosed andesitic tuffs and flows, chert and volcanic derived sedimentary rocks. The Wallace Formation is in turn intruded by quartz diorite plugs and dykes associated with the West Kettle Pluton. The volcanic rocks trend approximately north-northwest.

Bedrock exposure on the claim is in excess of 15%. Trenching and pitting is widespread throughout the property. Mapping has shown two dominant rock types to exist on the property:

Quartz Diorite – Cranodiorite	 medium coarse grained, and in part porphyritic with variable mafic content. 	
Andesite	- fine grained, in part foliated. Variably silicified.	

Limestone has been observed to be interbedded within the andesites. Porphyritic dykes are observed to cross-cut all the units.

The andesitic rocks are generally intensely hornfelsed along the contact with the intrusive plugs.

Mineralization consisting of pyrite, pyrrhotite, minor magnetite, arsenopyrite and chalcopyrite with some gold, occurs in quartz veins, fracture fillings, and as disseminations within both quartz diorite and the andesitic volcanics. The mineralization appears to be in part localized along the contact between the intrusive and host rocks.

Additional information on the regional geology is provided by GSC Memoir 79 (Reincake 1910, 1915 and Geological Series and Geology No. 65 (Little, 1953, 1956).

6.0 1991-2 WORK PROGRAM

The purpose of Teck's 1991 work was to evaluate the property and its showings with the purpose of determining whether it should be optioned. In the course of their investigations Teck personnel collected 1 soil and 46 rock chip samples from various locations on the property. In 1992 Camnor completed limited soil and rock chip sampling in various areas for assessment purposes. As a result a total of 9 rock chip and 17 soil samples were collected. The soil samples were collected at 25 metre intervals along a 400 metre long chained line that was established through the centre of а previously outlined gold anomaly. The majority of rock chip samples taken by Camnor were from an area immediately adjacent to a shear zone that averaged .051 opt Au over a 5 metre exposed strike length. Between the two companies, Teck and Camnor, a total of 7.5 man-days of labour were spent on the property.

7.0 GEOCHEMISTRY

7.1 Method

Two to five kg representative rock chip samples were taken over measured lengths from trenches, pits and bedrock exposures, stored in plastic bags, sorted and sent for analysis. In addition, grab samples were taken from dumps and selected outcrops. Soil samples were taken from the "B" horizon using a mattock, stored in Kraft sample bags, dried then sent for analysis.

All samples collected by Teck were sent to Acme Labs while those taken by Camnor were sent to Vangeochem Labs. Both labs are located in Vancouver.

The following is an outline of the procedure used for the preparation and analysis of the samples at Vangeochem:

Soil samples are dried if necessary then sieved to -80 mesh by hand using a stainless steel sieve. Rock chip samples are dried (if necessary), crushed to pulp size and pulverized to approximately -140 mesh.

For the 30 element I.C.P. analysis, a 10 g sample is digested with 3 ml of 3:1:3 nitric acid to hydrochloric to water at 90° C for 1 1/2 hours. The sample is then diluted to 20 ml with demineralized water and analyzed. The leach is partial for Al, B, Ba, Ca, Cr, Fe, K, Mg, Ma, Na, Q, Sb, Ti, U, and W.

For gold determination by atomic absorption a 10.0 g sample that has been ignited overnight at 600°C is digested with hot dilute aqua regia and the clear solution obtained is extracted with Methyl Isobutyl Ketone (MIBK). Gold is determined in the MIBK extract by atomic absorption using a background detection (Detection limit: Vangeochem 5 ppb and Acme 1 ppb). Acme uses basically the same procedure. For gold fire assay a l assay ton sample is used.

7.2 Results

The sample locations and results for gold are plotted on Figure 5. The sample descriptions are listed in Appendix 1 while Appendix 2 lists the assay results. The sample descriptions for the Teck work are only partially complete.

7.2.1 Camnor Soil Results

A total of 17 soil samples were taken in the course of the program. The results show that erratic spot highs occur throughout the previously outlined anomaly. The values range from non-detected to 150 ppb Au. Although significant in soil gold values occur no distinct zone was outlined. Three rock chip samples of quartz vein outcrop located in a small pit at 1+75 N all returned negative values with the best sample being 23 ppb Au.

7.2.2 Camnor Rock Chip Sample Results

Eight rock chip samples were taken from the area located adjacent to a shear zone that averaged .051 opt Au over an exposed 5 metre strike length within granodiorite. The samples all returned low values with the best sample assaying 90 ppb Au.

7.2.3 Teck's Results

Teck's samples were taken from known zones of mineralization located throughout the property. In the vicinity of the Barnato showing sampling has shown arsenic bearing quartz veins to contain anomalous gold values with the best sample, a grab assaying .178 opt Au containing in excess of 1% As. Previous mapping and sampling has shown the veins to have limited strike length and width.

On the OK crown grant previous sampling and mapping have shown small pyrrhotite pods to contain weakly anomalous gold values. Sampling by Teck of these pods returned similar to previous values with all of the samples containing less than 100 ppb Au. A chip sample located in the north-east corner of the crown grant assayed .210 opt Au. The style of mineralization and its extent are presently not known by the author.

Along the southern Pan 1 claim boundary, near the western edge of the Houston crown grant, grab samples of a 1 metre wide quartz diorite hosted, gossanous, breccia zone assayed 1.106 and 1.303 opt Au. The source of the gold is not known. According to Teck the showing has limited size. In the immediate vicinity narrow shears and veinlets returned anomalous gold values with the best sample averaging .194 opt Au over 20 cm. A soil sample taken immediately adjacent to the breccia zone returned a value of 20.2 ppb Au.

Approximately 100 metres to the north of this showing occurs a heavily oxidized shear zone within quartz diorite on which a small pit has been located. A .9 metre sample taken across the shear assayed .102 opt Au while a grab sample of pyrrhotite/pyrite rich material taken from the dump assayed .238 opt Au.

Sampling elsewhere on the property by Teck failed to locate any other areas of interest.

8.0 SUMMARY AND CONCLUSIONS

The Barnato property occurring in south central British Columbia is road accessible. The property, a gold <u>+</u> silver prospect has been intermittently worked on since 1878. Mapping has shown it to be underlain by Late Paleozoic to Early Mesozoic volcanic flows, tuffs and volcanic derived sediments that have been intruded by quartz diorite to granodiorite plugs and dykes. Mineralization consisting of trace to massive pyrite, pyrrhotite and arsenopyrite occurs in both the volcanics and intrusives as fracture fillings, disseminations and within quartz veins generally in close proximity to the volcanic-intrusive contact.

Prospecting completed by Teck located an old showing near the southern boundary of the Pan 1. The showing consists of a small gossanous breccia zone within a quartz diorite host. With the exception of minor pyrite no sulphides were noted. Two grab samples taken from the breccia assayed 1.106 and 1.303 opt Au. Within the immediate vicinity rock chip sampling of narrow shear hosted quartz veins returned encouraging values with the best sample averaging .194 opt Au over 20 cm.

Approximately 100 metres to the north a small shear zone was sampled and returned encouraging values. A .9 metre wide sample taken across the shear assayed .194 opt Au while a grab sample of pyrite/pyrrhotite rich rock from a nearby dump assayed .238 opt Au.

Sampling in the vicinity of the Barnato workings showed narrow arsenopyrite bearing veins to contain anomalous gold values.

The Barnato property has several showings on it. The majority are shear hosted quartz veins and fractures in which variable amounts of pyrite, arsenopyrite and pyrrhotite occur.

9.0 RECOMMENDATIONS

It is recommended that additional prospecting, mapping and sampling be completed on the property with the purpose of locating and defining additional zones of interest.

10.0 COST STATEMENT

A	Camnor Re	source	es Ltd.					
1.	Labour D. Visagi May 12-14	e, Ser = 2.5	nior Geolog 5 man days	gist @ \$294/day	2	Total:	Ş	735.00
2.	Room & Board 2.5 man days @ \$75/day					Total:	Ş	187.50
3.	Truck rental Total: 2.5 days @ \$100/day (includes fuel etc.)					Ş	250.00	
4.	Misc. sup sample ba	plies gs, fe	elt pen, fl	lagging, ma	aps, etc.	Total:	Ş	30.00
5.	Assaying Samples Rock Soil	charge # 9 17	es Prep 3.00 1.00	ICP 6.50 6.50	Au Geocher 7.50 7.50	Total: m	\$	436.56
				\$408.00 x	7% GST \$40	36.56		
6.	Toll char Coquihall	ges a (\$]() each way))		Total:	Ş	20.00
7.	Report Includes drafting,	al <u>l</u> re etc.	eport charg	ges, xerox:	ing,	Total:	Ş	850.00
					Sub-	-total:	\$2	2509.06
8.	Managemen	it fee	(10%)			Total:	Ş	250.91
						TOTAL:	\$2	2759.97

- B Teck Corporation
- 1. Labour Total: \$1550.00 J. Poulter, Geologist June 29 @ \$275/day June 29 @ \$225/day C. Lormand, Geologist W. Morton, Consultant June 26,27 Aug. 13 @ \$350/day Total: \$ 375.00 2. Room & Board 5 man days @ \$75/day 3. Truck rental Total: \$ 292.86 Poulter/Lormand @ \$100/day Morton (total of all bills) Freighting Total: \$ 55.00 4. Shipping samples to Vancouver. 5. Supplies Total: \$ 50.00 bags, flagging, pens, mylar, etc. equipment costs pro-rated (packsack, rock hammer compasses) Telephone charges Total: S 29.96 6. Assaying Charges (Acme) Total: \$ 822.83 7. As Assay Sample 1 Prep ICP Au Assay Au Ceoc 3.25/1.00 \$4.50 \$9.00 \$5.00 \$7.50 156.00 216.00 279.00 85.00 22.50 Rock 4.8Soil 1 1.00 4.50 5.00 Total \$769.00 x 7% GST = 822.83Sub-total: \$ 3175.65 Management fee (10%) Total: \$ 317.57 8. TOTAL: \$3493.22
 - Teck Total: \$3493.22 Camnor Total: \$2759.97
 - GRAND TOTAL: \$6253.19

11.0 STATEMENT OF QUALIFICATIONS

I, D.A. Visagie of #860 - 625 Howe Street, Vancouver, B.C., hereby declare:

12

- 1. That I graduated from the University of British Columbia with a Bachelor of Science degree majoring in Geology in 1976.
- 2. That I have been steadily employed in the mining industry since then and have been employed by International Northair Mines Ltd. since January 1990 as the Senior Geologist.
- 3. That the work undertaken on the Barnato property was carried out in my presence and under my supervision.

Dated at Vancouver, B.C., June 19, 1992.

D.A. Visagie Senior Geologist NORTHAIR MINES LTD.

APPENDICES

Appendix 1 Sample Descriptions

Camnor Sample Description

Sample #	Assay (ppb)	Description
1	nd	- chip over 1 m, quartz diorite, minor quartz vein.
2	90	- grab, gossanous quartz diorite float.
3	nd	- quartz diorite, lm x lm area.
4	nd	- lm x lm chip of gossanous quartz diorite.
5	nd	- lm chip across narrow 10cm qv zone in quartz diorite.
6	nd	- 1m chip quartz diorite.
7	nd	- lm chip quartz diorite.
8	20	- lm chip quartz diorite.
9	nd	- lm chip across 1/2m shear zone.

Teck Sample Description

Sample #	<u>Assay (oz/t)</u>	Description
91-1	.001	- grab over 20'x20' rubbly hill, possibly andesite dyke.
91-2	.004	- grab over 25'x25' rubbly hill. Oxidized guartz diorite.
91-3	.002	- grab over 50'x50' area with intense fracturing and quartz vein stockwork at 350° and 080° in clay altered quartz diorite.
91-4	.008	- grab over 10'x10' area in fractured oxidized quartz diorite.
91-5	1.106	- grab from rubbly breccia zone. Width <3'.
91-6	.060	- grab over 20'x20' area in "crowded porphyry". Fracturing at 345°.
91-7	.003	- grab from dump from shaft. Structure at 310 in oxidized guartz diorite.
91-8	.013	- grab from heavily oxidized dump at shaft. Repeat of earlier .415 oz/t sample. Structure 310° in guartz diorite.
91-9	.005	- grab from pit beside road. Repeat of .003 oz/t sample. Fractured, oxidized guartz diorite at 050° and 070°.
91-10	.001	- grab over 100'x100' rubbly outcrop oxidized quartz diorite. Clay altered and heavily fractured.
91-11	.001	- chip sample over 5.5' in trench in quartz diorite with structures at 030°, 360° and 320°.
91-12	.012	- chip sample over 12' in same trench as

		91-11, west wall.
91-13	.008	- chip sample over 13' in same trench as
		91-11, west wall.
91-14	.040	- chip sample over 5'. Trench or shallow
		shaft on Pan 1 claim line. East wall,
		north end. Hb.gtz.dio.
91-15	.102	- chip sample over 3' beside 91-14.
) <u>1</u> 10	• - • •	Includes a heavily oxidized 12" shear
		zone.
91_16	007	- chin sample over 3' beside 91-15.
91-17	007	- chip sample over 4' beside 91-16.
91 - 17	220	- grab of purrhotite/purite rich dump
91-17Dump	• 2 3 0	= grab or pyrinocice/pyrice rich dump
01 10	010	abin gample over 4! Trench 90-1 Dan
91-18	.010	- chip sample over 4 . Hench 90-1, Pan
		1. Original sampling was along 1° wide E-
		W structure.
91-19	.059	- chip sample over 3'. Same trench as 91-
		18 across a quartzy oxidized shear.
91-20	.024	- grab sample from 20'x20' rubbly guartz
		diorite outcrop. Fracturing at 050, dip
		80° NW. Same rock as in trench at 91-11.
91-21	.002	- grab of pyrrhotite/pyrite rich dump
		from shaft on skarn zone at 330°. Wallace
		formation.
91-22	.001	- grab, select solid sulphide
		pyrrhotite/pyrite/arseno? from 3'-5' wide
		skarn zone in Wallace.
91-23	.003	- grab, select solid sulphide same zone
		as 91-22.
91-4B	.194	- 20 cm AsPy vein 3m east of old 91-4.
		Strike NS, dip 60°E. Chip.
91-4C	.003	- breccia on road. Possibly rusty
52 20	••••	Wallace, Grab.
91-5B	1.303	- resample of rusty, rubbly breccia. The
51 <u>50</u>	1.000	only sample to return Mo values. Unknown
		width. Grab.
91 - 5C	030	- rusty country rock rubble from area
91-90	•030	around 5B No fresh outgrop Grab Ouartz
		diorito
	000	victure.
91-5D	.003	- fusty form shear zone at N/O E. Grab.
91-6B	.008	- resample of country fock around old 91-
		6. Grab over 10m x 15m area. Rusty quartz
01.65		alorite.
91-6C	•0/8	- sample of 20cm shear. NS strike, dip
		45 E. Patchy AsPy in shear. Chip.
91-6D	20.2	- soil sample between shear zone 91-6C
		and breccia at 91-5B. Red brown soil.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: THE NORTHAIR GROUP ADDRESS: 860 - 625 Howe St. : Vancouver, BC : V6C 2T6

Assay Results

VANGEOCHEM LAB LIMITE

PROJECT#: NONE GIVEN SAMPLES ARRIVED: MAY 19 1992 REPORT COMPLETED: MAY 21 1992 ANALYSED FOR: Au (FA/AAS) ICP

Appendix 2

.

DATE: MAY 21 1992

REPORT#: 920041 GA JOB#: 920041

INVOICE#: 920041 NA TOTAL SAMPLES: 17 SAMPLE TYPE: 17 SOIL REJECTS: DISCARDED

SAMPLES FROM: MR. DAVE VISAGIE COPY SENT TO: THE NORTHAIR GROUP

PREPARED FOR: MR. DAVE VISAGIE

ANALYSED BY: Raymond Chan

Λ, SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DAVE VISAGIE @ 689-5041.

17

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

SAMPLE # Au ppb 0+00 0+25 nd 0+50 130 0+75 nd 1+00 1+25 nd 1+25 1 30	REPORT NUMBER: 920041 GA	JOB NUNBER: 920041	THE NORTHAIR GROUP	PAGE 1 OF 1
ppb nd 0+25 nd 0+50 130 0+75 nd 1+00 nd 1+25 nd 1+50 30	SAMPLE #	Au		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ppb		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0+00	nd		
0+50 130 0+75 nd 1+00 nd 1+25 nd 1+50 30	0+25	nd		
0+75 nd . 1+00 nd . 1+25 nd . 1+50 30	0+50	130		
1+00 nd 1+25 nd 1+50 30	0+75	nd .		
1+25 nd 1+50 30	1+00	nd		
1+25 nd 1+50 30		_		
1+50 30	1+25	nd		
	1+50	30		
1+75 150	1+75	150		
2+00 nd ·	2+00	nd	•	
2+25 nd	2+25	nd		
2+50 nd	2+50	nd		
2+75 nd	2+75	nd		
3+00 nd	3+00	nd		•
3+25 nd	3+25	nd		
3+50 20	3+50	20		
9.475	9 7 F	9.0		
3 ⁺ / ³	3713	20		
4+00 20	4+00	20		

DETECTION LIMIT nd = none detected VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: THE NORTHAIR GROUP ADDRESS: 860 - 625 Howe St. : Vancouver, BC : V6C 2T6

PROJECT#: NONE GIVEN SAMPLES ARRIVED: MAY 19 1992 REPORT COMPLETED: MAY 21 1992 ANALYSED FOR: Au (FA/AAS) ICP DATE: MAY 21 1992

REPORT#: 920040 GA JOB#: 920040

INVOICE#: 920040 NA TOTAL SAMPLES: 8 SAMPLE TYPE: 8 ROCK CHIPS REJECTS: SAVED

SAMPLES FROM: MR. DAVE VISAGIE COPY SENT TO: THE NORTHAIR GROUP

PREPARED FOR: MR. DAVE VISAGIE

ANALYSED BY: Raymond Chan

SIGNED: And C

GENERAL REMARK: RESULTS FAXED TO MR. DAVE VISAGIE @ 689-5041.

VANGEOCHEM LAB LIMITED VG

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

·

REPORT NUMBER: 920040 GA	JOB NUMBER: \$20040	THE NORTHAIR GROUP	PAGE 1 OF 1
SAMPLE #	Au		
	ppb		
1	nd		
2	90		
3	nd		
4	nd		
5	nd		
ff	хđ		
1	nu		
8	20		
9	nd		

19

•

DETECTION LIMIT 5 -- = not analysed is = insufficient sample nd = none detected

VANGEOCHEM .AB LIMITED

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT 4: 920041 PA

<0.1

Sample Name

0+00

0+25

0+50

0+75

1+00

1+25

1+50

1+75

2+00

2+25

2+50

2+75

3+00

3+25

3+50

3+75

			Α.	5 gra n si	ample is	digeste Th	d with S Nis leach	ml of 3 is part:	:1:2 HCL ial for (to HNO ₃ Al, Ba,	a to H₂O Ca, Cr,	at 95 °C Fe, K, M	; for 90 i Ig, Mn, Na	ainutes a, P, Sn	and is d , Sr and	iluted to W.	10 11	with wat	er.	•	ANALY	ST: _	R	ml	Ľ
THE	NORTHAI	R GROUP				PROJEC	T: None	Given			DATE	IN: MAY	19 1992	DATE	OUT: NA	Y 21 1992	A I	TENTION:	MR. DAVE	E VISAGI	Ξ			PAGE 1 (OF 1
Ag	A]	As	₹Au	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Ng	Ma	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	¥	Zn
ppe	ĩ	ppa	քքն	ppa	pp∎	X	pps	op a	ppe	ppe	z	X.	ĩ	ppe	pp s	X	ppm	z	ppa	ppe	ppm	pp a	ppm	ppe	pp∎
0.1	2.28	50	<5	87	9	0.05	0.8	8	11	11	1.64	0.60	0.12	376	14	0.03	14	0.18	<2	<2	15	9	<5	<3	96
0.1	3.21	30	<5	43	(3	0.61	<0.1	8	10	15	1.58	0.57	0.17	160	18	0.04	8	0.05	<2	<2	10	29	<5	<3	63
0.3	2.89	27	130	115	<3	0.21	<0.1	10	15	18	2.16	0.61	0.27	298	17	0.03	14	0.12	<2	<2	10	22	<5	<3	74
0.1	2.55	86	<5	66	4	0.61	(0.1	13	23	43	3.56	0.71	0.66	543	19	0.05	16	0.04	2	<2	2	44	<5	<3	76
<0.1	2.53	30	<5	66	<3	0.27	0.1	11	18	26	2.34	0.51	0.35	341	16	0.03	14	0.10	<2	<2	9	23	<5	<3	63
0.5	3.17	62	<5	91	<3	0.18	<0.1	13	17	36	2.63	0.68	0.37	259	18	0.05	19	0.19	<2	<2	9	22	<5	<3	83
0.1	1.48	58	30	56	<3	0.42	(0.1	12	25	24	2.71	0.70	0.60	306	12	0.04	15	0.07	2	<2	<2	61	<5	<3	50
0.1	1.62	146	150	48	<3	0.34	<0.1	14	24	58	2.96	0.63	0.47	358	14	0.03	22	0.07	6	<2	<2	40	<5	<3	57
0.3	2.83	49	<5	105	<3	0.15	<0.1	15	21	41	2.90	0.65	0.39	355	18	0.04	24	0.12	<2	<2	11	19	<5	<3	85
0.4	3.32	27	<5	112	<3	0.25	<0.1	22	33	67	3.94	0.85	0.66	615	23	0.05	31	0.10	2	<2	7	42	<5	<3	94
0.3	2.71	22	<5	194	(3	0.18	0.2	14	26	40	2.70	0.59	0.54	317	19	0.05	19	0.08	<2	<2	5	29	<5	<3	76
0.3	2.95	21	<5	83	(3	0.19	0.2	12	24	34	3.00	0.70	0.54	379	19	0.04	17	0.13	<2	<2	7	38	<5	<3	76
0.2	2.79	29	<5	110	3	0.31	0.9	16	25	52	3.32	0.75	0.57	463	18	0.03	20	0.07	<2	<2	10	53	<5	<3	87
0.3	3.73	37	<5	106	<3	0.16	<0.1	34	25	90	4.21	0.79	0.47	659	25	0.06	28	0.13	<2	<2	13	29	₹5	<3	92
0.2	2.66	16	20	115	<3	0.18	<0.1	19	25	49	3.14	0.71	0.53	355	19	0.03	23	0.09	<2	<2	<2	31	<5	<3	73
0.2	2.62	23	20	109	<3	0.20	0.1	14	25	40	3.05	0.64	0.63	346	17	0.03	19	0.09	<2	<2	6	34	<5	<3	75
0.4	4 07	52	20	00	2	0.21	70.1	16	10	44	2 21	0.74	0 40	600	24	0.04	14	0.14	19	12	10	27	(5	<3	90

< - Less Than Minimum) -	Greater	Than Max	i aua	is – Ins	ufficie	nt Sampl	e ns	- No Sam	ple	¥Au Ana	lysis Do	ne By Fi	re Assay	Concentr	ation /	AAS Fin	ish.								
Maximum Detection	50.0	10.00	2000	10000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
Ninimum Detection	0.1	0.01	3	5	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
4+00	0.4	4.07	62	20	98	3	0.21	<0.1	16	18	44	3.21	0.74	0.49	600	24	0.04	16	0.14	<2	<2	10	27	<5	<3	90

VANGEOCHEM _AB LIMITED

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO, to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

				A	.5 gram s	sample is	s digest T	ed with : his leac	5 ml of 3 h is part	:1:2 HC ial for	L to HNO Al, Ba,	3 to H2O Ca, Cr,	at 95 °(Fe, K, 1) for 90 Ig, Mn, M	minutes Na, P, Sn	and is (, Sr and	diluted 1 W.	to 10 ml	with wat	ter.		ANAL	YST: .	R	M	2
REPORT 8: 920040 PA	THE	NORTHAI	IR GROUP				PROJE	CT: None	6i ven			DATE	IN: MAY	19 1992	DATE	OUT: M	AY 21 19	92 A1	TENTION	MR. DAV	E VISAGI	ε			PAGE 1	OF 1
Sample Name	Ag	A1	As	+Au	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Ng	Ħn	Ko	Na	Ni	P	Pb	Sb	Sn	Sr	U	ų	Zn
	pp∎	ĩ	ppe	ppb	ppe	ppe	2	op n	pp∎	pps	ppe	ĩ	z	X	ppa	00 .	7.	ppa	۲	ppe	ppe	ppe	ppm	ppm	ppa	ppe
1	0.2	1.12	33	<5	49	<3	0.77	0.9	8	18	30	1.72	0.60	0.44	339	11	0.17	1	0.10	<2	<2	10	50	<5	<3	22
2	0.1	1.46	19	90	57	<3	0.52	<0.1	8	26	50	3.16	0.70	0.68	246	14	0.15	2	0.10	<2	<2	5	65	<5	<3	19
3	0.1	2.21	21	<5	138	<3	1.35	<0.1	12	20	20	3.04	0.80	0.80	502	15	0.30	< 1	0.09	<2	<2	9	126	<5	<3	29
4	0.1	2.13	23	<5	169	<3	0.77	(0.1	15	33	15	4.15	0.81	1.18	779	18	0.14	6	0.10	<2	<2	5	50	<5	<3	51
5	0.1	1.98	3	<5	65	<3	0.77	0.5	12	17	9	3.51	0.63	0.86	734	16	0.11	7	0.10	<2	<2	2	66	<5	<3	42
7	0.1	2.72	14	<5	352	<3	1,14	(0.1	16	22	12	4.46	1.13	1.27	865	19	0.23	(1	0.11	<2	<2	10	66	⟨5	<3	56
8	0.1	1.62	<3	20	59	(3	1.17	0.1	10	23	11	2.76	0.60	0.62	433	14	0.12	4	0.10	<2	4	<2	99	<5	<3	27
9	0.1	1.23	3	<5	22	(3	0.50	<0.1	15	53	121	3.29	0.55	0.80	221	17	0.07	17	0.07	3	<2	5	23	<5	<3	19
Minimum Detection	0.1	0.01	3	5	i	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Naximum Detection	50.0	10.00	2000	10000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - 6	ireater '	Than Maxi	1 ดมส	is - In	sufficie	nt Sampl	e ns	- No Sam	ple	+Au Ana	lysis Do	ne By Fi	e Assay	Concentr	ation /	AAS Fin	ish.								

21

ACHE	ANAT	vrt	CAL I	LABC	RAT	DRIE	s li	D .	ŧ	352 I	5. HJ	lsti	NG S	ST.	VAP	ידיר	ÆR	B.C.	v	6 a 1	R6	J	PHON	E(604)25	i 3 -3	158	FA	X(6r	25	;3-1:	716
											GEO	CHE	AIC:	AL/1	AL	ay (Cer'	rir	ICA	te												•
	•					<u>J.</u> W	<u>. M</u>	urt	on 8	<u>As</u>	soc	iat	85	PRO	JEC	<u>T B</u>	AR	F	ile	#	91-	297:	3	Page	: 1							
									156	7 MCN	aughto	n Ros	d, Ke	louna	BC	/nz 25	2 S	iuon i t	ted t	у: J .	M . M .	IRTON										
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba 🎆	TI.	8	AL	Na	K	V	Au**	As
	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	*	ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppm	ppm	X		ppm	ppm	*	ppm 🛞		ppm	*	<u>×</u>	X		oz/t	<u>×</u>
91-4B	3	244	7	13	1.2	31	212	151	9.59	48880	5	6	1	35	.2	8	24	36	.60	.049	3	1	.32	20 🗸	08	2	1.28	.05	.10		. 194	4.63
91-4C	1	111	4	16	.2	2	3	139	5.43	109	5	ND	1	30	.2	2	2	66	.22	,060	4	9	.82	38 🔍	10	2	1.28	.05	.09		.003	-
91-5B	109	305	6	23	7.8	6	16	286	9.35	1446	5	55	1	19	.2	2	66	83	.13	.068	63	13	.95	23 🎆	08	2	1.40	.03	.06 🖇	<u>1</u>	.303	.17
91-5C	5	118	- 4	15		9	9	154	3.02	69	5	2	1	38		2	5	63	.68	1092	7	10	.59	47 🐲	18	2	1.14	.09	.13 🖁		.030	-
91-5D	1	138	3	6	.6	2	1	93	10.54	154	5	ND	1	34	.2	2	3	139	.14	.055	2	7	.35	88	61	2	.93	.05	.16		.003	-
91-68	1	77	2	23	.3	7	9	268	2.96	309	5	ND	1	48	.2	2	2	46	.54	.072	5	13	.72	40 🖌	14	3	1.41	.09	.24		.008	-
91-6C	1	338	3	15		7	143	174	8.37	38156	5	ND	1	45	.2	5	11	49	.09	.043	3	1	.62	70 🔍	09	2	1.31	.08	.17 🔮		.078	3.59

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 SOIL AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

DATE RECEIVED: JUL 30 1991 DATE REPORT MAILED: Que 5/91 SIGNED BY ...

SIGNED BY ALL DILLONG, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd pom	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Tí X	8 ppr	AL X	Na	1 K 6 7		
1-60	2	18	11	72	.2	12	9	546	2.19	33	5	ND	3	17	.2	2	2	33	.16	.090	6	14	.22	71	.14	3	2.86	.02	2.06	5	20.
																													,		
			•																												

ACME ANALYTICAL LABORATORIES LTD.

24

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

ASSAY CERTIFICATE

J.W. Murton & Associates PROJECT BAR FILE # 91-2180 1567 McNaughton Road, Kelowna BC V1Z 2S2

SAMPLE#	Au**
	oz/t
BAR 91-1	.001
BAR 91-2	.004
BAR 91-3	.002
BAR 91-4	.008
BAR 91-5	1.106
BAD 91-6	060
DAR 91-0 PAD 01-7	.000
DAR 91-7 PAD 01 0	.003
DAR 91-8	.013
BAR 91-9	.005
BAR 91-10	.001
BAR 91-11	- 001
BAR 91-12	.012
RAP 91-13	008
RAD Q1_1/	040
DAR 91-14 BAD 01 15	100
BAR 91-15	.102
BAR 91-16	.007
BAR 91-17	.007
BAR $91-17$ dump	238
BAR 91-18	010
BAR 91-19	059
BAR 91-20	.024
BAR 91-21	.002
BAR 91-22	.001
BAR 91-23	.003
STANDARD AU-1	.095
AU** BY FIRE ASSAY FROM 1 A.T. - SAMPLE TYPE: ROCK DATE RECEIVED: JUL 2 1991 DATE REPO SIGNED BY	ort MAILED: July 4/91 J.WANG; CERTIFIED B.C. ASSAYERS
SIGNED BY	U J.WANG; CERTIFIED B.C. ASSAYERS

ACMB	AN.	. 4	CAL	LABC	RAT	ORIE	s Li	D.		852 1	:. W	STI	NGS	ST.			/ER	B.C.	v	6 a 1	R6		PHO	IE (6	04)2	53-	3158	FA	ī	×4)2	53-1	716
AA											GEO	Che	MIC	AL/	A 88	AY (CER	tif:	ICA	te.											A /	
						J.N	. M	<u>urt</u>	on (i As	80C	iat	88]	PRO	JEC	тB	<u>AR</u>	F.	ile	#	91-	297	3	Pa	ge	1						.
	•								150	57 McN	aughto	n Roa	d, Ke	louna	BC \	/1Z 2S	;2 \$	Submit	ted l	y: J	.W. M	IRTON			7							
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Tf	B	AL	Na	ĸ	U	Au**	As
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	X	ppm	ppm	X	ppm	*	ppm	*	X	X	ppm	oz/t	X
91-4B	3	244	7	13	1.2	31	212	151	9.59	48880	5	6	1	35	2	8	24	35	60	040	٦	1	32	20	08	2	1 28	05	10		10/	4 43
91-4C	1	111	4	16		2	3	139	5.43	109	5	ND	i	30	.2	2	2	66	.22	.060	4	ģ	.82	38	10	2	1.28	.05	.09		.003	05
91-5B	109	305	6	23	7.8	6	16	286	9.35	1446	5	55	1	19	.2	2	66	83	.13	.068	63	13	.95	23	.08	2	1.40	.03	.06		1.303	.17
91-5C	5	118	4	15	.4	9	9	154	3.02	69	5	2	1	38	.2	2	5	63	.68	.092	7	10	.59	47	. 18	2	1.14	.09	.13		.030	-
91-5D	1	138	3	6		2	1	93	10.54	154	5	ND	1	34	.2	2	3	139	.14	.055	2	7	.35	88	.41	2	.93	.05	.16		.003	-
91-6R	1	77	2	22		7	0	248	2 04	700	E	ND		49		,	2	14	E /	077	F	17	73	40		7	1 / 1	00	24		008	
91-6C	1	338	3	15	.7	7	143	174	8.37	38156	5	ND	i	45	.2	5	11	49	.09	.043	3	1	.62	70	.09	2	1.31	.08	.17		.078	3.59

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 SOIL AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

 \sim S

AMALYTICAL					i	.	. M1	urto	on	f A	380	ciat	tes	PR	OJE	CT P	BAR	FI	LE	# 9)1-2	973	5]	Page	2	4	4
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zri ppir	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	8a ppm	Ti X	8 ppm	Al X	Na X	K X P	W AL	u* pb
-60	2	18	11	72	.2	12	9	546	2.19	33	5	ND	3	17	.2	2	2	33	.16	.090	6	14	.22	71	.14	3	2.86	.02	.06	1 20.	.2
																												•			

ACME ANI **FICAL LABORATORIES LTD.** 852 E. HASTINGS ST. . NOUVER B.C. **V6A 1R6** FAX(604)253-1716 PHONE (604) 253-3158 GEOCHEMICAL ANALYSIS CERTIFICATE Teck Exploration (BC) PROJECT 1389-1 File # 91-2161 Page 1 960 - 175 - 2nd Ave, Kamloops BC V2C 5W1 Submitted by: JEAN PAUTLER SAMPLE# Мо Cu Pb Zn Ag NÍ Со Mn Fe As U Au Th Sr Cd Sb Bi ۷ Ca Ρ Mg 8a TÌ B AL Na ĸ La Cr Au** ppm ppm ppm ppm % % % X X X % ppm X ppm ppm ppm ppm ppm ppb BM-1 217 20.48 .02 16 663 16 52 2.6 51 49 496 3 17 50 .54 .237 25 1.13 15 .04 2 2.27 . 19 6 ND 361 .6 3 1 95 4 9 BM-2 12 247 43 31 21 199 4.40 .57 .070 25 .05 .4 7 5 ND 1 35 .5 2 3 35 6 .61 48 .13 2.89 .24 2 28 7 193 19 51 .7 33 BM-3 -39 111 5.00 21 5 ND 1 10 .4 2 2 26 .15 .024 2 22 .30 25 .07 7 .48 .02 .04 25 1 BM-4 7 273 7 54 .3 21 17 184 3.52 - 3 5 ND 2 29 .2 2 2 42 .37 .052 27 .63 45 .12 5.84 .03 .17 6 2 BM-5 23 58 5 165 .5 22 209 53 .73 30 3.84 .02 .05 5 3.18 11 5 ND 4 15 1.0 2 2 .13 .033 7 43 .08 1 15 BM-6 15 725 14 37 5.5 28 15 451 3.48 25 .7 2 72 18 .37 .026 30 .68 27 .03 6 1.10 .01 .07 2 43 5 ND 1 24 2 1 125 6 37 .9 10 18 2 38 .05 2 1.32 .05 BM-7 140 5.64 8726 5 4 3 25 .2 3 24 .27 .061 3 6 .59 .16 1 5252 12 323 2 26 70 5.37 .01 .14 BM-8 1.5 16 102 14.27 4491 18 2 1 3 .2 3 2 7 .26 .013 2 2 . 15 6 .01 8 2245 .07 BM-9 3 147 32 .32 .059 31 4 1.44 .15 1 5751 3 1.2 5 8 219 4.53 72 5 2 33 .3 2 4 5 .81 .06 4 2 46 3 185 41 1.3 78 20.59 99999 5 2 .38 17 :02 4.89 .02 BM-10 16 7 28 7 2 12 .2 88 36 20 .12 .037 4 . 13 1 6103 1.5 CHIPOF BM-11) WALL 95 5 2 31 .07 2 1.77 .03 70 3 6 36 .5 6 11 543 4.36 68 ND 1 72 .2 2 55 3.56 .091 8 6 1.18 .11 BM-12 FRAM THE 55 2 1129 8 342 -14 2.5 10 42 469 26.46 253 5 2 3 5 1.3 2 25 54 .16 .045 3 4 .94 7 .09 12 2.32 .01 .04 4 .02 .05 CG-1 2 17 11 44 .3 6 7 742 2.65 154 5 ND 7 71 .5 2 4 16 .93 .278 27 .09 43 .01 2.66 1 26 ADIT .02 23 CG-2 27 104 14 1069 9 22 .09 55 .01 .89 .05 1 11 .5 12 5.71 11 ND 12 28 .2 3 2 36 . 15 .026 6 2 1 CG-3 2 7 4 9 .3 9 73 .57 883 2 .2 2 15 2 .02 .002 4 .01 10 .01 2 .10 .01 .03 32 2 5 ND 5 6 1 CG-5 3 23 23 64 .2 12 6 231 1.33 5 18 35 2 2 21 .31 .083 48 18 .25 118 .08 4 .79 .05 .20 8 23 ND .2 CM-JP-2 1 46 5 98 .4 31 9 766 2.67 18 5 ND 3 184 .5 2 2 68 4.86 .053 23 38 .97 40 .01 9.83 .01 .04 7 1 CM-JP-3 2 1.36 24 162 3 65 10 13 478 5 78 .85 .083 3 7 33 121 .09 .07 1 .4 3.15 32 ND 1 38 .6 2 2 .66 1 CM-JP-4 2 132 6 19 .4 21 7 154 2.00 14 5 ND 2 38 .2 2 2 35 .85 .108 9 16 .36 22 .14 2 1.11 .07 .05 1 60 OK - 1 9 7 11 23 167 .3 9 103 5 .2 2 3 16 .42 .039 3 10 .10 8 .08 2.34 .03 .02 6 1.54 4 ND 1 19 OK-2 13 5 48 .80 2 .78 .12 .08 13 15 161 4 .3 50 16 77 2.00 9 ND 4 42 .3 2 2 .143 13 35 .28 16 .18 .23 OK-3 30 838 11 38 .8 28 134 197 19.11 2 5 ND 1 8 .2 2 8 31 .48 .036 2 2 .04 8 .02 8 .01 .01 47 62 OK - 4 13 85 11 10 1.2 9 2 55 5 5 .05 .007 2 6 .07 7 .02 3 .14 .01 .01 1 7164 .79 7 4 .3 2 234 6 1 .04 .01 5. 43 OK-5 7 33 9 .22 5 .07 2 .72 13 1631 1.2 29 78 324 13.66 4 5 ND 1 20 .7 2 14 19 1.31 .039 3 .51 .097 .15 12 465 STANDARD C/AU-R 20 59 43 134 7.5 75 33 1111 3.99 43 40 53 18.1 15 21 60 39 59 .89 180 .09 35 1.94 .07 16 6

> ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 ROCK P2 MOSS MAT AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE.

DATE RECEIVED: JUL 1 1991 DATE REPORT MAILEI

DATE REPORT MAILED: July 9/91

SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

✓ ASSAY RECOMMENDED

27

