LUG NO
 $\pi 0$. ARTION:

FHE NQ:
ASSESSMENT REPORT ON
GEOCHEMICAL WORK ON THE FOLLOWING CLAIM

MAXWELL SMART \#5268

located

65 KM NORTHWEST OF
STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 25 minutes latitude 130 degrees 40 minutes longitude
N.T.S. 104B/7E

PROJECT PERIOD: July 1 to Aug. 30, 1991

ON BEHALF OF
TEUTON RESOURCES CORP.
VANCOUVER, B.C.
M.R. \# \qquad \$ VANCOUVER, B.C.

REPORT BY
D. Cremonese, P. Eng. 509-675 W. Hastings Vancouver, B.C.

Date: June 27, 1992
GEOLOGICALBRANCH
ASSESSMENTREPORT

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
A. Property, Location, Access and Physiography 1
B. Status of Property 1
C. History 1
D. References 2
E. Summary of Work Done 4
2. TECHNICAL DATA AND INTERPRETATION 4
A. Regional Geology \& Mineralization 4
B. Property Geology 6
C. Geochemistry - Rock 6
a. Introduction 6
b. Treatment of Data 6
c. Sample Descriptions 7
d. Discussion 11
D. Geochemistry - Soils 12
a. Introduction 12
b. Treatment of Data 12
c. Discussion 12
E. Geochemistry - Stream Sediment Samples 13
a. Introduction 13
b. Treatment of Data 13
c. Discussion 14
F. Field Procedure and Laboratory Technique 15
G. Conclusions 16

APPENDICES

I Work Cost Statement
II Certificate
III Assay Certificates

ILLUSTRATIONS

Fig. 1 Location Map
Fig. 2 Claims Map
Fig. 3 Property Geology
Fig. $4 \quad 1991$ Geochem Surveys - Sample Location Map Pocket
Fig. 51991 Geochem Surveys - Cu Values (ppb) Map Pocket
Fig. 61991 Geochem Surveys - Au Values (ppb) Map Pocket

1. INTRODUCTION

A. Property, Location, Access and Physiography

The property is located about 65 km northwest of Stewart, British Columbia. Access is presently limited to helicopter, either from the base at Stewart (Vancouver Island Helicopters), from Bell II on Highway 37 (Northern Mtn. Helicopters), or from the Snippaker Creek airstrip about 20 km to the northwest. Scheduled 1993 completion of the access road into the Eskay Creek Mine in the Tom McKay Lakes area, 30 km NNE, will provide alternative access.

The Maxwell Smart claim covers much of the drainage of Cebuck Creek (also known as Barclay Creek), a northwest flowing tributary of the Unuk River. Elevations vary from approximately 250 meters at the legal corner post on Cebuck Creek to more than 1,250 meters atop the ridge in the southwest corner of the claim. Vegetation in the area is comprised of mountain hemlock and balsam with fairly dense underbrush at low elevations. Slopes range from moderate to precipitous, the latter especially along certain stream courses.

Climate features year round precipitation with abundant snowfall in the winter months.

B. Status of Property

Relevant claim information is summarized below:
Name Record No. No. of Units Record Date
Maxwell Smart 5268 April 1, 1986
Claim location is shown on Fig. 2 after N.T.S. map 104B/7E. The claim is owned by Teuton Resources Corp. of Vancouver, British Columbia.

C. History

Records indicate that the Max property was originally staked by Granduc Mines Ltd. in 1960. Anomalies discovered during an airborne magnetometer survey led to ground follow-up including further magnetometer surveys, geological mapping and prospecting. This resulted in the discovery of the Max skarn deposit containing massive magnetite, chalcopyrite, pyrrhotite and pyrite mineralization. The Max deposit was subsequently explored by $5,450 \mathrm{~m}$ of diamond drilling which reportedly outlined 10.8 million tons of material grading 45\% iron and 0.75\% copper.

In 1968, Granduc completed another regional airborne survey which included mapping the distribution of subsurface conductors in
the area of the Max property. A program of mapping, linecutting and detailed ground magnetometer work in 1975 confirmed results of earlier work and expanded previous coverage. No previously undetected mineralized outcrops were noted, but disseminated pyrite and/or pyrrhotite were described as common in rocks adjacent to the Barclay Creek fault. In 1977, magnetometer surveys were extended to cover the western and northern portions of the property and more detailed mapping was completed. A small hand trenching program in an area of iron-staining and disseminated pyrite just north of the present claim boundary reportedly provided values of $0.042 \mathrm{oz} /$ ton gold and $0.30 \mathrm{oz} /$ ton silver.

In 1989, the property was optioned by Teuton to Goodgold Resources Ltd. after which the latter commissioned a regional airborne geophysical survey which included the Maxwell Smart claim. Nominal line spacing was 100 m and the flight direction was westeast. This EM-Magnetometer survey disclosed several dyke-like magnetic highs oriented north-south to slightly NNE and NNW within an overall complex magnetic contour pattern. Analysis of the magnetic contours showed numerous NNE to NNW trending offsets, terminations and breaks. Apparent resistivities within the property area were generally very high except for two areas of low resisitivity coincident with conductive zones: the first of these was estimated at 250 m by 400 m in extent and encapsulating the Max deposit, the second, shaped like a boomerang cuts across the southeast corner of the claim block (cf. Fig. 3).

References

1. D. J. Alldrick, 1989. "Volcanic Centres in the Stewart Complex" in Geological Fieldwork, 1988, Paper 1989-1, British Columbia Ministry of Energy, Mines and Petroleum Resources, p. 233-240.
2. D. J. Alldrick, 1984. "Geological Setting of the Precious Metal Deposits in the Stewart Area", 1984, Paper 84-1, British Columbia Ministry of Energy, Mines and Petroleum Resources.
3. D. J. Alldrick, 1985. "Stratigraphy and Petrology of the Stewart Mining Camp (104B/1E)", Paper 1985-1, British Columbia Ministry of Energy, Mines and Petroleum Resources.
4. D. J. Alldrick, J. M. Britton, I. C. L. Webster, and C. W. P. Russell, 1989. "Geology and Mineral Deposits of the Unuk Area", Open File Map 1989-10, British Columbia Ministry of Energy, Mines and Petroleum Resources.
5. B. C. Ministry of Energy, Mines and Petroleum Resources:a: Revised Mineral Inventory Map 104B (MI) b : Revised Mineral Inventory Map 103P (MI).
6. B. C. Ministry of Energy Mines and Petroleum Resources and G. S. C., 1987. National Geochemical Reconnaissance Map 110, B.C. RGS 18/G.S.C. O.F 1645.
7. J. M. Britton, I. C. L. Webster, D. J. Alldrick, 1989. "Unuk Map Area", Paper 1989-1, p. 241- 250, British Columbia Ministry of Energy Mines and Petroleum Resources.
8. E. W. Grove, 1971. "Geology and Mineral Deposits of the Stewart area, B. C.", Bulletin 58, British Columbia Department of Mines and Petroleum Resources.
9. E. W. Grove, 1986. "Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area", Bulletin 63, British Columbia Ministry of Energy, Mines and Petroleum Resources.
10. J. Klein, R. O. Crosby, 1965. "Report on Airborne Geophysical Surveys on the Harmax Group of Mineral Claims, Unuk River Area", Northwestern British Columbia on behalf of Granduc Mines Ltd., A.R. 1835, British Columbia Ministry of Energy Mines and Petroleum Resources.
11. D. W. Mallo, 1988. "Assessment Report on the Maxwell Smart Claim Airborne Geophysical Program", British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report, July 25, 1989.
12. G. W. M. Norman, 1960. "Report of Geological and Geophysical Survey, Har \#1, Har \#7, Har \#24 and Har \#45 Groups", British Columbia Ministry of Energy Mines and Petroleum Resources A.R. 345 report for Granduc Mines Ltd.
13. G. W. M. Norman, 1960. "Report on Geological, Geophysical and Geochemical Survey, $\operatorname{Max} 1, \operatorname{Max} 89,93, \operatorname{Max} 121$ and Max 125 Groups", Skeena Mining Division for Granduc Mines Ltd. M.E.M.P.R.A.R. 346 .
14. E. Ostensoe, 1975. "Report on Geological Mapping and Magnetometer Survey on Max prospect, Unuk River Area, Skeena Mining Division", for Granduc Mines Ltd., M.E.M.P.R. A.R. 5496.
15. E. Ostensoe, 1978. "Report on Geological Mapping and Magnetometer Survey on Max prospect, Unuk River Area, Skeena Mining Division", for Granduc Mines Ltd., M.E.M.P.R. A.R. 6690.
16. B. Dewonck \& J. Hardy, 1989. "Summary Report on the Goodgold Resources Ltd. Del Norte Project and Max Project", Goodgold Resources Ltd. Prospectus, Aug. 17, 1990.

E. Summary of Work Done.

The 1991 geochemical program on the property was undertaken by contractor Nicholson \& Associates under the supervision of the author. The project was part of a regional program on several properties in the general stewart area spanning the period from July 1 to August 30, 1991.

After a day of preparation in Stewart, crew, camp, equipment and supplies were mobilized on Aug. 9, 1991, by helicopter from the Bell II Northern Mtn. base on the Stewart-Cassiar Highway to the Granges field camp located north of the Unuk River about 10 km NNE of the property. The crew was then flow in and out of the Max property each day by a Hughes 500 helicopter stationed at the Granges camp. This method was judged to be more economical then setting up a camp on the claim proper (a thorough coverage of all of the claim area by foot from a central location was precluded by the precipitous topography).

Altogether 31 rock geochem, 141 soil geochem and 74 stream sediment samples were taken throughout the 9 days of work on the property. Two small soil geochem grids were also established to evaluate specific areas featuring interesting mineralization. The crew was flown out of the property on Aug. 17, 1991.

All samples taken during the 1991 assessment work program were analysed for gold by standard AA techniques, as well as for 30 elements by I.C.P. (Inductively Coupled Argon Plasma) at the EcoTech facility in Kamloops, B.C. Samples containing high values in silver or base metals were subjected to wet chemical assays; high golds were additionally tested by the metallics method to determine whether coarse gold was present.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology and Mineralization

The region is underlain by the Stewart Complex (Grove 1971, 1986), a northwest trending assemblage of volcanic and sedimentary rocks of late Paleozoic and Mesozoic age. It is bounded to the west by the Coast Plutonic Complex and to the east by the sedimentary Bowser Basin. The oldest units in the Stewart Complex are Upper Triassic epiclastic volcanics, marbles, sandstones and siltstones. These, in turn, are overlain by sedimentary and volcanic rocks of the Jurassic Hazelton Group. The Hazelton Group has been subdivided (Grove, 1986), into the Early Jurassic Unuk River Formation, the Middle Jurassic Betty Creek and Salmon River Formations, and the Upper Jurassic Nass Formation.

The Unuk River Formation consists predominantly of volcanic rocks and sediments which include lithic tuffs, pillow lavas with
carbonate lenses and some thin bedded siltstones. It forms an angular unconformity with the underlying Late Triassic Rocks. Betty Creek rocks are characterized by bright red and green volcaniclastic agglomerates with sporadic intercalated andesitic flows, pillow lavas, chert and some carbonate lenses. They unconformably overlie the Unuk River Formation. The Salmon River Formation is a thick assemblage of intensely folded colour banded siltstones and lithic wackes that form a conformable to disconformable contact with the underlying Betty Creek Formation. The Nass Formation of weakly deformed dark coloured argillites unconformably overlies the Salmon River Formation.

These volcanic and sedimentary successions were intruded by the Coast Plutonic Complex during the Cretaceous and Tertiary periods. A wide variety of intrusive phases are present including granodiorite, quartz monzonite, and diorite. Small satellite plugs from the main batholith can be important for localizing mineralization.

Major structural features of the Stewart Complex include the western boundary contact with the coast Intrusive Complex. The northern boundary is at the Iskut River where extensive deformation has thrust Paleozoic strata south across Middle Jurassic and older units. Younger faulting has also occurred around the Iskut. A line of Quaternary volcanic flows mark the southern limit of the complex and the Meziadin Hinge defines the eastern border.

The Stewart area has been mined actively since the early 1900's and is one of the most prolific mining districts in British Columbia (Grove, 1971). Grove (1986) classifies the mineralization in the stewart area into 3 categories: fissure veins and replacement veins, massive sulphide deposits and porphyry deposits.

More recent exploration and development activity has focused on vein and fissure vein gold mineralization in the northern part of the Stewart Complex in the Iskut River area where several new discoveries have been made, namely; the Skyline, Johnny Mountain Mine, the Delaware/Cominco Snip deposit (now in production), the various deposits under development by Newhawk/Granduc and Placer in the Sulphurets area, the Magna Ventures' Doc property and most importantly, the recent high-grade gold-silver-base metal discoveries at Eskay Creek by Calpine and Stikine Silver.

The E \& L Deposit is also situated in the area. This deposit was worked in the 1960's and early 1970's by trenching, drilling and 460 m of underground development and has proven reserves of 3.2 million tons of 0.8% nickel and 0.6% copper. Mineralization consisting of disseminated pyrrhotite, chalcopyrite with minor pentlandite, pyrite and bornite occurs in a small stock of altered coarse grained gabbro (Nickel Mountain Gabbro Formation).

B. Property Geology

Two main rock units underlie the property: to the east an Upper Triassic volcanosedimentary sequence consisting of brown, black and grey mixed sediments interbedded with medium to dark green, mafic to intermediate volcanic and volcaniclastic rocks, and to the west, a Jurassic age diorite (biotite-hornblende diorite, quartz diorite). The contact follows an irregular course along the northeast side of Cebuck Creek. A melanocratic olivine-pyroxene gabbro (Nickel Mountain Gabbro) outcrops in the southwest corner of the claim. In the northwest corner, government mapping has shown a small outcrop of limestone.

Alldrick (1989) lists the Max iron-copper deposit (cf. Fig. 3) within the "intrusive contact" mineralization category: "Massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarnaltered sedimentary rocks adjacent to a diorite stock. Garnet, epidote, actinolite and diposide characterize the skarn assemblage."

Grove (1986) places the Max deposit within the first metallogenic epoch (Upper Triassic) of the Stewart Complex. He says: "This is a massive magnetite-chalcopyrite occurrence on the north side of McQuillan Ridge in the Unuk River area. The Max deposit has not been studied in detail but ore appears to be confined to the anticlinal crest of a folded granular limestone sequence which has been partially intruded and weakly deformed by Late Triassic quartz diorite. Physically the Max deposit is a conformable, stratabound, massive oxide-sulphide deposit. The writer suggests that this has been formed by syngenetic sediment-ary-volcanogenic processes, rather than contact metamorphic processes."

Property geology is shown on Fig. 3 based on a compilation by Dewonck and Hardy (1989).

C. Geochemistry - Rock

a. Introduction

Thirty-three reconnaissance rock geochem samples were collected by the crew during the 1991 program. Sample locations have been plotted on Fig. 4 and values for copper and gold on Fig. 5 and 6, respectively. All maps are at a scale of 1:5000; sample sites were plotted in the field on a base map prepared from a government topographic map. Sample locations were fixed according to field altimeter readings and by reference to air photos.
b. Treatment of Data

The rock geochem samples collected during the 1991 work
program comprise too small a set to utilize standard statistical methods for determining threshold and anomalous levels. In lieu of such treatment, the author has chosen a simple "rule of thumb" method based on reference to several rock geochem programs of similar character carried out in the Stewart area over the last ten years. For the purposes of this discussion, anomalous levels have thus been set as follows:

Element
Copper 200 ppm
Gold $\quad 100 \mathrm{ppb}$

Copper and gold values were chosen for illustration on Figs. 5 and 6 because of their economic importance. Where accompanying elements such as silver, arsenic, cobalt, nickel, iron, bismuth and molybdenum show elevated levels, these have been noted alongside the anomalous copper or gold values (as outlined below in the section entitled Sample Descriptions).
C. Sample Descriptions

Following are rock sample descriptions. Those samples containing anomalous levels of the elements listed above have ICP/assay values appended to the descriptions (with anomalous values underlined; values in opt or ${ }^{2}$ are in bold type).

61101 Max Vein - 80 cm wide; limonitically altered vein/shear in light green tuffaceous volcanic; slight sericite altered; trace - 1% disseminated pyrite, pyrrhotite heavily oxidized and vuggy; 1 m chip, south side of vein.

Gold - $\quad 100 \mathrm{ppb} \quad$ Copper - 415 ppm
Note also: Co-226 ppm
Same, 80 cm chip of vein.
Gold - 0.786 opt Copper - 1.473 ppm Note also: Co-694 ppm

611031 m chip, north side of vein.
Gold - 300 ppb Copper - 92 ppm
Note also: Co-227 ppm
61104 In same silicified volcano-sed; heavily oxidized, jarosite vein/shear; same as Max Vein, approx. 1.5 m wide; 5-15\% disseminated pyrite, pyrrhotite recessive; 1 m chip.

Gold - 0.050 opt Copper - 92 ppm
Note also: Co-1,834 ppm; Fe >15\%

61105 In silicified tuff/sed package; heavily oxidized and jarosite altered; same appearance as Max. 3\% disseminated pyrite; pyrrhotite(?) - too oxidized; vuggy, 1 2m wide; grab.

Gold - 0.148 opt Copper - 150 ppm
Note also: Co-144 ppm; As - 210 ppm; Fe >15\%
61106 Float (?); large boulder approx. $10 \mathrm{~m} \times 5 \mathrm{~m}$; massive magnetite 10 - 15% in dark green aphanitic meta-volc. Grab.

61107 Representatiave sample of blocky, mottled diorite with 1 -2% U.F.G. magnetite; trace pyrrhotite; kaolinite altered on surface.

Fault Zone - grey/green gouge in argillaceous siltstone, approx. 15 - 20\% anastomizing calcite microveins (1 2 mm); zone 1 - $4 \mathrm{~m} \times 30 \mathrm{~m}$; representataive grab.

Massive ($10 \mathrm{~cm}-1 \mathrm{~m}$) milky calcite vein, intruded along fault, in medium green tuff; brecciated and anastomizing calcite at contacts. Representative grab.

61110 In hornblende/feldspar andesite grades into intermediate green, aphanitic volcanic, 1.3 m wide; 1 - 5\% cubic pyrite; trace pyrrhotite; red soil on fractures; representative grab.

61111 Oxidized/shear zone in diorite with trace - 2\% disseminated pyrite; approx. $30-40 \mathrm{~cm}$ wide; 40 cm chip.

Gold - 315 ppb Copper - 490 ppm Note also: As-225 ppm

Representative sample of pyritiferous diorite, oxidized on fractures; < 10\% disseminated pyrite; trace chalcopyrite (?)

Float boulder; $10 \mathrm{~cm} \times 20 \mathrm{~cm}$ angular boulder; fine grained, light to medium green meta-sediment. Vuggy, open space quartz stringers; stringers and disseminations of fine grained pyrite (5-10\%).

Gold - $\quad 55 \mathrm{ppb} \quad$ Copper - 2.203 ppm Note also: As-1,450 ppm; Ag-5.8 ppm; Co-104 ppm Ni-880 ppm

Float boulder; $15 \mathrm{~cm} \times 30 \mathrm{~cm}$ angular boulder; fine grained medium green meta-sediment. Very rusty (jarositic) on weathered surface. Disseminations and
stringers of fine grained pyrite (10-20\%); trace malachite stain.

```
Gold - 120 ppb Copper - 2.72%
Note also: As-1,105 ppm; Ag-2.66 opt; Co-331 ppm
    Ni-1,672 ppm; Fe > 15%
```

61153 Select grab: approx. 20 cm wide mineralized fracture running at 250/80S; pods and blebs of milky white quartz (somewhat vuggy); semi-massive to massive chalcopyrite with considerable malachite stain. Mineralized fracture within silicified medium grained diorite.

```
Gold - }375\mathrm{ ppb Copper - 14.2 %
Note also: As-465 ppm; Ag-4.31 opt; Co-199 ppm
    Bi-300 ppm; Mo-98 ppm
```

Random grab; erratic pyritic fracture within medium grained diorite; generally trending at 160/vertical. Rusty (limonitic) on weathered surface. Some narrow stringers of quartz and calcite; $2-5 \%$ disseminated and fracture filled medium grained pyrite.

Gold - 45 ppb Copper - 1.569 ppm
Note also: $\mathrm{Fe}>15 \%$
612011 m chip across a rusty brownish red weathered pyrrhotiferous metased which contains trace chalcopyrite as fine grained disseminations.

```
Gold - 20 ppb Copper - 2,989 ppm
``` Note also: Co-140 ppm; \(\mathrm{Fe}>15 \%\)

61202 As per 61201.
Gold - \(\quad 30 \mathrm{ppb} \quad\) Copper - 3,539 ppm Note also: Co-146 ppm; \(\mathrm{Fe}>15 \%\)

61203 As per 61201.

> Gold - \(15 \mathrm{ppb} \quad\) Copper - \(1,070 \mathrm{ppm}\) Note also: \(\mathrm{Co}-341 \mathrm{ppm} ; \mathrm{Fe}>15 \%\)

High grade grab from Max trenches: rocks consisted of rusty orange brown weathered pyrrhotiferous metaseds which contain trace - \(2 \%\) chalcopyrite as fine to medium grained disseminations with malachite staining throughout.
```

Gold - 20 ppb Copper - 1,786 ppm
Note also: Co-158 ppm; Fe >15%

```

61355 Grab: strongly silica altered diorite with massive pyrite up to 5\%.

Gold - 5 ppb Copper - 330 ppm
\(61356 \quad 1.0 \mathrm{~m}\) chip: silica altered diorite with up to \(3 \%\) chalcopyrite and malachite staining on fractures.

Gold - \(50 \mathrm{ppb} \quad\) Copper - \(\quad \underline{2,188 \mathrm{ppm}}\)
Select grab: high grade sample of above.
Gold - \(\quad 215 \mathrm{ppb} \quad\) Copper - \(1.58 \%\)
Note also: Ag-14.4 ppm; As-485 ppm
61358
Float boulder: orange, rusty brownish red weathered metased which has an abundance of fine grained, finely disseminated pyrite throughout; minor quartz stringers occur along fractures as infillings.

Float: massive malachite in mineralized shear in contact rock; diorite seds.

Gold - 5 ppb Copper - 5,559 ppm
Grab: banded argillite with blebs; pyrrhotite and diorite fractures.

Gold - \(5 \mathrm{ppb} \quad\) Copper - \(\quad 213 \mathrm{ppm}\)
Local float: specular hematite and pyrite fractures in calcite siderite vein in altered intrusive.

Grab: silica alteration and quartz veining in diorite; disseminated pyrrhotite up to \(10 \%\) with massive pyrite in blebs.

61357

61358
Grab: strongly carbonate altered rock with some silica alteration; disseminated chalcopyrite and some weak malachite stain.
\[
\text { Gold - } \quad 5 \mathrm{ppb} \quad \text { Copper - } \quad 1,705 \mathrm{ppm}
\]

Author's Note: Specific locations for the following four samples were lost during transit from the property; accordingly they have not been entered on Figs. 4-6. However, they are all believed to be from the southern portion of the GS Grid area.

61359 Grab: float: massive specular hematite with some chalcopyrite (< 3\%).
Gold - 5 ppb Copper - \(1,484 \mathrm{ppm}\) Note also: Co-355 ppm

61360 Disseminated pyrrhotite, 3-5\% in diorite.
Gold - 10 ppb Copper - 1,502 ppm
61361 Quartz veining in strongly carbonate altered diorite; massive pyrite.

Gold - 490 ppb Copper - 408 ppm
61362 Bedded pyrrhotite with some pyrite in strongly silica altered rock.
d. Discussion

The 1991 reconnaissance rock geochem survey outlined a number of interesting targets. In the northwest corner of the claim, on the north side of Cebuck Creek, highly anomalous gold values were returned from vein structures in a tuffaceous volcanic (cf. sample \#'s 61101-61105). The best result was from \#61102 which returned 0.786 opt gold over a 0.8 m width. Elevated cobalt values accompany the high golds.

Southeast, a group of 4 samples (\#'s 61201-61204) taken in close proximity to the Max iron-copper deposit (cf. Fig. 4, circle marked "MAX", 200 m NE of Granduc Drill Camp.) returned values running from 1070 ppm to 3539 ppm Cu associated with elevated cobalt levels (140-341 ppm) and iron contents all greater than 15\%.

In the center of the GS grid near the eastern boundary of the property, anomalous copper values were obtained from three samples (\#'s 61355-57) taken from a small zone of chalcopyrite bearing mineralization hosted in fractures in diorite. Several samples taken from surrounding dioritic rock within a few hundred meters also returned anomalous copper values. For the most part accompanying gold values were low, except for samples 61111 and 61361 which returned 315 ppb and 490 ppb , respectively.

Near the southern boundary of the claim, about 100 m up a westflowing tributary of Cebuck Creek, a grab sample from a narrow mineralized fracture in diorite (\#61153) returned 14.2\% Cu and 4.31 opt silver accompanied by anomalous values in gold, arsenic, cobalt, bismuth and molybdenum.

Proceeding further clockwise around the property, in the southwest quadrant, samples 61151-52 from two meta-sediment float boulders registered anomalous values in copper, silver, arsenic, cobalt and nickel. These may be related to the Nickel Mountain Gabbro which outcrops in the southwest corner of the claim (cf. Fig. 3). A float boulder sampled on the next stream course to the
north, sample \#61351, returned a copper value of \(5,559 \mathrm{ppm}\).
D. Geochemistry--Soils
a. Introduction:

Soil samples were taken at several locations throughout the property in an attempt to identify prospective areas for \(\mathrm{Cu}-\mathrm{Au}\) mineralization. Small grids were set up in the northwest corner (Pad Grid--following up auriferous vein occurrences) and near the mid-point of the eastern claim boundary (GS grid--following up on the GS showing--Cu mineralized fractures in diorite). Three reconnnaisance soil lines were put in upslope from the Max ironcopper deposit to test for similar skarn-type mineralization. A few random soils were also taken from the southwest corner of the property. Altogether 121 soil geochem samples were collected.
b. Treatment of Data

Soil geochem values for copper and gold are presented in this report on Figs. \(5 \& 6\), respectively. Both figures are at a scale of 1:5000; values for the Pad and GS grids are in inset maps at a scale of 1:2000.

The reconnaissance nature of the sample set and its small size preclude standard statistical analysis to determine threshold and anomalous levels. In lieu of such treatment, the author has chosen a simple "rule of thumb" method based on reference to several soil geochem programs of similar character carried out in the Stewart area over the last ten years. For the purposes of this discussion, anomalous levels have thus been set as follows:

Copper Gold

\section*{Anomalous Above}
\[
\begin{array}{r}
100 \mathrm{ppm} \\
50 \mathrm{ppb}
\end{array}
\]

\section*{c. Discussion}

Copper and gold values for the Pad Grid are, with one or two exceptions, below the threshold level. Regrettably, almost all of the soil samples in the grid were taken uphill from the local rock samples that returned anomalous to highly anomalous gold values (cf. rock samples \#'s 61101-05). Significantly, the only soil sample close to these rock anomalies, \(0+00 \mathrm{E}, 0+20 \mathrm{~S}\), registered subanomalous copper and gold values of 93 ppm and 45 ppb , respectively, with a cobalt high of 53 ppm.

The three reconnaissance soil lines put in above the Max skarn deposit, samples MXBGSO2-43, revealed several interesting
anomalies. Two samples from the upper portion of the westernmost line, just east of the Max deposit, returned copper values of 500 and 164 ppm . Four of the southernmost samples from this line returned copper values in excess of 100 ppm . For the most part, gold values were flat with only one sample, MXBGS08 reaching 50 ppb gold. The middle line, uphill from the Max deposit, featured attenuated copper values with only one sample exceeding 100 ppm and no anomalous golds.

The eastern soil line had the most intriguing values. Samples MXBGS24 \& 25 returned highly anomalous copper values of 264 and 545 ppm , respectively, accompanied by gold highs of 530 and 45 ppb , respectively. Cobalt, iron and molybdenum values were also elevated, suggesting skarn or contact mineralization. Three consecutive \(100+\mathrm{Cu}\) values were recorded from the southernmost portion of this line, gold values, however, were low.

On the GS soil grid, three consecutive samples from the base line, west to east, returned anomalous copper values of 308,132 and 171 ppm copper. Copper values throughout the rest of the grid were relatively featureless. Gold values, in conformance with the observed rock geochem values from the same area, were rather low; only one sample, from the \(N E\) corner of the grid, returned a value better than 50 ppb gold.

The four recon soil samples taken in the southwest claim quadrant did not return significant metal values.

\section*{E. Geochemistry - Stream Sediment Samples}
a. Introduction

Sixty-nine stream sediment samples were taken from the watershed of Cebuck Creek. Sample locations are marked as dark circles on Figure 4, drawn at a scale of 1:5000 (Map Pocket). Geochemical sample sites were plotted on a base map prepared on a scale of 1:5000. Locations were fixed according to field altimeter readings and reference to airphotos.

An additional five heavy sediment samples, marked as open circles on Fig. 4, were also taken. Unfortunately these were mistakenly analysed either as soil or silt samples, severely discounting their informational value.
b. Treatment of data

Based on reference to a number of silt geochemical sampling programs conducted in the region over the past ten years, values in excess of 140 ppm can be safely considered anomalous for copper
(the south Unuk River area, in general, has a high copper background); by the same token, values in excess of 45 ppb gold, are considered anomalous.

Stream sediment copper values are presented in Fig. 5, gold values in Fig. 6.

\section*{c. Discussion}

The Max skarn deposit is situated in a very steep portion of the property, overlooking a particularly precipitous section of Cebuck Creek. For this reason the crew was unable to test streams draining the deposit, something which would have been useful in establishing benchmark levels for other watercourses on the property.

A value of 322 ppm copper was obtained from sample KMS-04 on the first westerly flowing side-creek south of the Max deposit. This coincides, more or less, with the trace of the dioritemetasediment contact as seen on Fig. 3 and may indicate an area of enhanced copper content. Anomalous copper stream sediment values of 148 , 156 and 212 ppm copper from the two streams to the south also lie in close proximity to this contact.

The northernmost side-creek draining the GS Grid area shows a number of very strong copper highs (284, 331 and 546 ppm). Since the soil grid values to the south are relatively flat, source for these anomalies may arise from the northern slope of the creek. The bottom portion of the southernmost side-creek in this area also shows two consecutive samples with copper highs of 215 and 150 ppm .
, Two small creeks in the extreme southeast corner of the claim returned copper silt anomalies of 282 and 283 ppm.

Silt sampling along the course of a southeasterly flowing stream about 400 m south of the Granduc drill camp showed anomalous copper values for most of its length (highs to 331 ppm). Some malachite stained float was found in this area, otherwise little is known. Further work should be carried out to discover the source of these anomalies. The streams just to the north also show modestly anomalous silt samples in the 150 ppm range.

Gold stream sediment values are uniformly low throughout the area surveyed with the exception of some isolated threshold values of \(45-50 \mathrm{ppb}\) obtained from the eastern edge of the property, and one modestly anomalous value of 95 ppb (MXKMS-23) from the upper portion of a stream in the northeast quadrant of the claim.

\section*{F. Field Procedure and Laboratory Technique}

Rock samples were taken in the field with a prospector's pick and collected in a standard plastic sample bag. Grab samples were taken to ascertain character of mineralization at any specific locality. These samples consisted generally of three to ten representative pieces with total sample weight ranging between 0.5 to 2.0 kg . Chip samples were taken across the strike of mineralized structures and generally weighed about 1.0 to 2.0 kg .

Soil samples were taken in the field by digging with a mattock to the "C" soil horizon (poorly developed for the most part), with samples running approximately 300 to 500 grams of material. This was then placed into a standard Kraft Bag. The bags were then marked and allowed to dry before shipping.

Silt samples were taken from the active portions of the stream channels. Samples were carefully placed in standard Kraft Bags and allowed to dry before shipping.

All samples were analyzed at the Eco-Tech facility in Kamloops, B.C. Rock samples were first crushed to minus 10 mesh using jaw and cone crushers. Then 250 grams of the minus 10 mesh material was pulverized to minus 140 mesh using a ring pulverizer. For the gold analysis a 10.0 gram portion of the minus 140 mesh material was used. After concentrating the gold through standard fire assay methods, the resulting bead was then dissolved in aqua regia for 2 hrs at 95 deg . C. The resulting solution was then analysed by atomic absorption. The analytical results were then compared to prepared standards for the determination of the absolute amounts. For the determination of the remaining trace and major elements Inductively Coupled Argon Plasma (ICP) was used. In this procedure a 1.00 gram portion of the minus 140 mesh material is digested with aqua regia for 2 hours at 95 deg . C and made up to a volume of 20 mls prior to the actual analysis in the plasma. Again the absolute amounts were determined by comparing the analytical results to those of prepared standards.

Specific samples were subjected to further analysis where values obtained exceeded certain threshold levels. High golds were fire-assayed using conventional methods followed by parting and weighing of beads. Metallics assays were used in certain cases to test for the presence of coarse golds. Wet chemistry methods and AA were used for follow-up analysis of base metals and silver (where values were too high for quantitative measurement by ICP).

Analysis of the soil and silt samples at the laboratory followed the same procedure as for the rocks, with the exception that sample preparation techniques were different (standard soil and silt sample preparation methods were used).

\section*{G. Conclusions}

The 1991 work program on the Maxwell Smart claim outlined a number of areas deserving follow-up exploration. In the northwest portion of the property, three samples from vein occurrences returned anomalous to highly anomalous values in gold. This area deserves careful follow-up prospecting, trenching and geological mapping. If possible, the Pad soil grid should be extended to the west and south to more fully reflect these occurrences.

The soil geochem lines emplaced northeast of the Max ironcopper deposit disclosed a number of copper anomalies and one very high gold anomaly of 530 ppb . These anomalies should be checked for source. It may be advisable to extend the geochemical surveys along the entire projected length of the diorite-metasediment contact (if topography allows) to join with the silt geochem copper anomalies noted in tributaries draining west into Cebuck Creek in the eastern half of the property. The silt geochem high of 95 ppb in the northeastern quadrant of the claim warrants cursory followup.

Follow-up prospecting and geochemical sampling is also warranted in the southwestern portion of the claim to check for sources of the copper silt anomalies within the southeast flowing tributary in this area as well as the Ni-Cu float boulders from the stream immediately to the south.

Respectfully submitted,

D. Cremonese, P.Eng. June 27, 1992

\section*{APPENDIX I -- WORK COST STATEMENT}

Field Personnel--Period July 1 to Aug. 30, 1991:
B. Game, Senior Geologist 10 days \& \(\$ 294 /\) day

2,940
J. Nicholson, Geologist 10 days @ \(\$ 267.50 /\) day 2,675
K. May, Geologist 10 days @ \(\$ 214 /\) day
M. Boulding, Geological Technician 10 days @ \(\$ 214 /\) day 2,140
\(\begin{array}{ll}\text { D. Cremonese, P. Eng. } & \\ 1 \text { day a } \$ 375 / \text { day } & 375\end{array}\)
Helicopter -- Northern Mtn. (Bell II/Granges Camp bases)
Crew drop-offs/pick-ups, mob/demob, Aug. 9-17 10.9 hrs @ \(\$ 782.57 / \mathrm{hr}\).

Room \& board
\[
32 \text { man-days @ } \$ 48 / m a n-d a y \text { (field costs) } 1,536
\]
\[
9 \text { man-days } \$ 70 / \text { day (town costs) } 630
\]

Mob/demob (Van. -Stwt-Van) : Personnel/Equip./Samples
(prorated with other projects where applicable) \(\quad 2,701\)
Field Supplies/Radios/Consumables, etc. 1,316
Expediting 443
Contractor's Truck Rental Charges 581
Assays--Eco-Tech Labs, Kamloops, B.C.
Geochem Au, I.C.P. and rock sample preparation 31 @ \(\$ 17.12 /\) sample531

Geochem Au, I.C.P. and soil sample preparation 121 @ \(\$ 14.18 /\) sample
Geochem Au, I.C.P. and silt sample preparation
74 @ \(\$ 14.18 /\) sample 1,049
\(\mathrm{Au} / \mathrm{Ag} / \mathrm{Cu}\) Assays, Metallics, Etc. 57
Report Costs
Report and map preparation, compilation and research D. Cremonese, P.Eng., 3 days a \(\$ 375 /\) day

1,125
Draughting -- RPM Computer 289
Word Processor - \(6 \mathrm{hrs}\). @ \(\$ 25 / \mathrm{hr}\). 150
Copies, report, jackets, maps, etc. TOTAL............ \(\frac{60}{30,984}\)
Amount Claimed Per 4 Statements of Exploration
(Max \#1 Group, \#2 Group, \#3 Group \& \#4 Group) ...\$ 30,350

\section*{APPENDIX II - CERTIFICATE}

I, Dino M. Cremonese, do hereby certify that:
1. I am a mineral property consultant with an office at Suite 509-675 W. Hastings, Vancouver, B.C.
2. I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, \#13876.
4. I have practiced my profession since 1979.
5. This report is based upon work carried out on the Maxwell Smart mineral claim, Skeena Mining Division in August of 1991. Reference to field notes and maps made by geologists Brian Game, J. Nicholson, Kevin May is acknowledged. I have full confidence in the abilities of all samplers used in the 1991 geochemical program and am satisfied that all samples were taken properly and with care.
6. I am a principal of Teuton Resources Corp., owner of the Maxwell Smart claim: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 27 th day of June, 1992.

D. Cremonese, P.Eng.

\section*{APPENDIX III}

ASSAY CERTIFICATES

\author{
 10081 enat trine cuman imf. runconss, s.c. v2c 233 pmone - 604-573-5700 PN - 604-573-4557
}

THUTOM nesouncte cont. - ETK 91-689
602 - 675 mest matimge staxis
vancouvis, b.c.
v63 142

\section*{pravect: wax}

22 nock entolise received aucuar 22, 1991

wat mots:

tRUTOM REsounces corp. - ITR 91-690
602 - 675 wett matimas sthers
vancouvia, e.c.
v68 142
prourct: max
12 ROCK SANPLES RECEIVED aucust 22, 1991

e. Micmoleon a nesociata 606-675 weat mastimas steset vancouvis, s.e.

10041 East Trans Canada Hwy. Kamioops. BC. V2C 2J3 (604) 573-5700 Fax 573-4557

AUGUST 30,1991

CERTIFICATE OF ASSAY ETK 91-689A

```

TEUTON RESOURCES CORP.
602 - 675 WEST HASTINGS STREET
VANCOUVER, B.C.
V6B 1N2

```

SAMPLE IDENTIFICATION: 12 ROCK samples received AUGUST 22 , 1991
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ET* & Description & \[
\begin{array}{r}
A u \\
(g / t)
\end{array}
\] & \[
\begin{array}{r}
\mathrm{Au} \\
(0 \mathrm{Z} / \mathrm{t})
\end{array}
\] & \[
\begin{array}{r}
A g \\
(g / t)
\end{array}
\] & \[
\begin{array}{r}
\mathrm{Ag} \\
(\mathrm{Oz} / \mathrm{t})
\end{array}
\] & \[
\begin{aligned}
& C U \\
& (8)
\end{aligned}
\] \\
\hline 2- & 61152 & - & - & 91.2 & 2.66 & 2.72 \\
\hline 3- & 61153 & - & - & 147.8 & 4.31 & 14.2 \\
\hline 6- MXRMR & 61102 & 26.95* & . 786 & - & - & \\
\hline 8- MXKMR & 61104 & 1.73 & . 050 & - & & \\
\hline 9- MXRMR & 61105 & 5.08* & . 148 & - & - & - \\
\hline
\end{tabular}

NOTE: SAMPLE SCREENED AND METALLIC ASSAYED

FRANK J. PEZZOTTI, A.SC.T.
B.C. Certified Assayer

SC91/TEUTON4

\title{
ECD-TECH LABORATORIES LTI \\ ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy. Kamboops. B.C. V2C 213 (604) 873-6700 Fax 573 -
}

AUGUST 30,1991

CERTIFICATE OF ASSAY ETK 91-689A

```

TEUTON RESOURCES CORP.
602 - 675 WEST HASTINGS STREET
VANCOUVER, B.C.
v6B 1N2

```

SAMPLE IDENTIFICATION: 12 ROCK samples received AUGUST 22 , 1991
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ET* & Description & \[
\begin{array}{r}
A u \\
(g / t)
\end{array}
\] & \[
\begin{array}{r}
\mathrm{Au} \\
(0 z / t)
\end{array}
\] & \[
\begin{array}{r}
A g \\
(g / t)
\end{array}
\] & \[
\begin{array}{r}
\mathrm{Ag} \\
(0 z / t)
\end{array}
\] & \[
\begin{gathered}
\mathrm{CU} \\
(8)
\end{gathered}
\] \\
\hline 2- & 61152 & - & - & 91.2 & 2.66 & 2.72 \\
\hline 3- & 61153 & - & - & 147.8 & 4.31 & 14.2 \\
\hline 6- MXKMR & 61102 & 26.95* & . 786 & - & - & \\
\hline 8- MXKMR & 61104 & 1.73 & . 050 & - & - & - \\
\hline 9- MXKMR & 61105 & 5.08* & . 148 & - & - & - \\
\hline
\end{tabular}

NOTE: SAMPLE SCREENED AND METATLIC ASSAYED

SC9 1/TEUTON4

\begin{tabular}{|c|}
\hline \multicolumn{35}{|c|}{trutiom resounces sti 91-694 nocose 29, 189} \\
\hline \(\dagger\) & pescra & Irsi & & \(\mathrm{AU}_{\text {(ppo) }}\) & & AL(0) & 4 & - & m & -1 & CA(t) & © & co & a & Co & re(1) & (1) & & m(0) & \(\cdots\) & & M(0) & * & " & \% & 85 & * & & (1) & 0 & V & * & \% & ** \\
\hline 27. & 0+258 & O+ & 238 & 40 & . 6 & 6 4.68 & < & - & 45 & <5 & . 13 & \(\leqslant 1\) & 26 & 46 & 46 & 6.90 & . 03 & <10 & . 46 & 306 & 1 & . 02 & 13 & 560 & 12 & 5 & \(<20\) & 10 & . 38 & \(<10\) & 119 & \(<10\) & 10 & 76 \\
\hline 29. & O+2S8 & \(0+\) & Sob & 35 & . 4 & 16.07 & < 5 & 12 & 60 & < & . 36 & <1 & 21 & 50 & 7 & 0.03 & . 03 & \(<20\) & . 39 & 253 & 2 & . 01 & 14 & 650 & 4 & 5 & \(<20\) & 16 & . 22 & \(<10\) & 98 & \(<10\) & 10 & 78 \\
\hline 29- & O+SCE & \(0+\) & 258 & 35 & 1.0 & 4.43 & <5 & 10 & 40 & < & . 16 & \(<1\) & 16 & 44 & 71 & 7.55 & . 02 & <10 & . 39 & 472 & 3 & . 01 & 17 & 910 & 6 & 5 & \(<20\) & 13 & . 22 & \(<10\) & 104 & \(<20\) & 3 & 108 \\
\hline \(30-\) & O+S08 & \(0 \cdot\) & S08 & 23 & . 6 & 64.37 & < & 10 & 40 & <3 & . 13 & <1 & 10 & so & 62 & 2.43 & . 02 & < 20 & . 31 & 245 & 3 & . 01 & 14 & 740 & 10 & 10 & \(<20\) & 12 & .31 & <10 & 141 & \(<10\) & 5 & 97 \\
\hline 31 - & atsos & \(0+\) & 758 & 45 & 2.0 & 3.66 & <s & - & so & <s & . 26 & <1 & 16 & 36 & 63 & 3.68 & . 02 & <10 & . 64 & 262 & 2 & . 02 & 13 & 450 & 6 & 10 & <20 & 15 & . 22 & \(<10\) & 119 & \(<10\) & 4 & 66 \\
\hline 32 - & \(0+388\) & \(0+\) & 258 & 20 & 1.4 & 6.76 & < 5 & 10 & 35 & < 5 & . 15 & 1 & 15 & 42 & 38 & 5.60 & . 04 & \(<10\) & . 45 & 245 & 2 & . 03 & 15 & 620 & 10 & 5 & \(<20\) & 13 & . 25 & \(<10\) & 70 & \(<10\) & 7 & 109 \\
\hline 33 - & \(0+758\) & \(0+\) & sos & 35 & . 1 & 7.45 & <s & 10 & 35 & < & . 10 & 1 & 13 & 39 & 33 & 7.08 & . 03 & <10 & . 35 & 191 & 2 & . 02 & 10 & 540 & 6 & < & \(<20\) & 10 & . 19 & \(\leqslant 10\) & 66 & \(<10\) & 2 & \({ }^{6} 6\) \\
\hline 34 - & 073s & \(0+\) & 758 & 20 & 1.4 & . 5.22 & < 5 & 12 & 45 & < & . 15 & <1 & 16 & 39 & 43 & 7.10 & . 02 & \(<10\) & . 47 & 297 & 1 & . 02 & , & 540 & 10 & 5 & \(<20\) & 13 & . 20 & \(<10\) & 106 & \(<10\) & 8 & 0 \\
\hline 35. & 0-758 & 1+ & 000 & 20 & . 2 & 6.03 & < & 12 & 60 & <s & . 12 & <1 & 10 & 39 & 73 & 1.43 & . 03 & \(<10\) & . 39 & 290 & 2 & . 01 & 14 & 110 & 14 & s & \(<20\) & 14 & .19 & 810 & 92 & \(<10\) & s & 90 \\
\hline 36 - & 1+008 & 0 & 258 & 15 & - & 3.20 & 5 & 14 & 35 & < & . 19 & <1 & 14 & 33 & 37 & 6.75 & . 02 & \(<10\) & . 48 & 206 & 2 & . 02 & 20 & 500 & 16 & 5 & \(<20\) & 20 & . 20 & \(\leqslant 10\) & 9 & \(<10\) & 1 & 104 \\
\hline 37 - & 1+008 & \(0+\) & 508 & 45 & . 6 & 3.63 & <s & 10 & 35 & <s & . 12 & 1 & 16 & 48 & 53 & 5.92 & . 02 & \(\leqslant 10\) & . 53 & 263 & 2 & . 01 & 21 & 630 & \(\bullet\) & 5 & \(<20\) & 11 & . 14 & \(<10\) & 81 & \(\leqslant 10\) & 3 & 114 \\
\hline 38. & \({ }^{1+008}\) & ot & 758 & 45 & . 6 & 4.01 & 5 & 12 & 15 & < & . 22 & \(<1\) & 23 & 40 & 120 & 5.10 & . 03 & \(\leqslant 10\) & 1.06 & 709 & 2 & . 02 & 27 & 490 & \(\bullet\) & 10 & \(<20\) & \({ }^{19}\) & .13 & \(<10\) & 8 & \(\leqslant 10\) & 3 & 111 \\
\hline 39 - & 1+008 & 2+ & 008 & 30 & 1.0 & 4.11 & 20 & 16 & 30 & s & . 22 & \(\leqslant 1\) & 17 & 34 & 38 & 4.97 & <. 02 & \(\leqslant 10\) & . 43 & 202 & - & 4.01 & \({ }^{3}\) & 600 & 16 & 10 & 820 & 15 & . 14 & \(<10\) & 22 & 40 & 6 & 11 \\
\hline
\end{tabular}

TE1 < - Lese tinn
c. Mictollom a nesociatia 606-675 wast motimas etrert
vncouvsi, B.c

\section*{mution nesourcis cont. - itr 91-6es \\ 602 - 675 weet mastince strett}
vaucouvsk, b.c.
v6 1 m 2
pranycti max
46 soil sanples riceivid august 23, 1991 cOPY

TB: < - Lase twn
nicbolion a ascociatis
606-675 mest watimas atmert
vancouviz, s.c.
\begin{tabular}{|c|}
\hline \multicolumn{34}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
SCO-TMCR LNOORTOAIES LTD. \\
 \\
wncoops, s.c. vzc 231 \\
wCust 30, 1991 \\
pax - 604-573-4557
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{19}{|l|}{} & \multicolumn{15}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
proucti emaner MAX \\
36 SOIL BANPLES RECEIVED AUGUST 23, 1991
\end{tabular}}} \\
\hline 208 1 & \\
\hline T & descal & T104 & \(\lambda U\) (ppb) & & N(0) & \({ }^{8}\) & - & 8 & \({ }^{31}\) & (1) & CD & co & CR & ct & r3(1) & \(x(0)\) & 4 & (0) & \(\cdots\) & mo & (0) & M & P & P & s3 & sM & 8k & TI(\({ }^{\text {(}}\) & 0 & \(v\) & * & Y & 111 \\
\hline 1 1- & 10+ 008 & O+ 008 & 40 & . 4 & 2.74 & 230 & - & 30 & <s & . 71 & <1 & 12 & <1 & 308 & 7.34 & <. 01 & 10 & 1.05 & 007 & 4 & <. 01 & < & 1350 & 16 & 5 & \(<20\) & 6 & . 10 & 10 & 62 & \(<10\) & \(\leqslant 1\) & 39 \\
\hline 2 - & \(10+008\) & O+ 258 & 15 & 8.2 & 2.92 & 35 & 6 & 30 & <s & . 10 & \(\leqslant 1\) & 12 & \(\bullet\) & 4 & 4.50 & <. 01 & \(<10\) & . 32 & 230 & <1 & . 01 & <1 & 490 & 24 & < & \(<20\) & 13 & . 19 & 10 & 09 & <10 & 5 & 49 \\
\hline \(3-\) & 10+ 008 & of 501 & 20 & . & 2.53 & 35 & 6 & 20 & <s & . 06 & <1 & 10 & 17 & 29 & 6.32 & . 01 & 10 & . 30 & 162 & 5 & . 02 & <1 & 100 & 20 & < & <20 & , & . 18 & \(<20\) & 1 & \(<10\) & 4 & 4, \\
\hline \(4-\) & 104 008 & O+ 750 & 15 & . 2 & 3.93 & 45 & 6 & 30 & < & . 18 & <1 & 16 & 24 & 6 & 6.36 & <. 01 & 10 & . 79 & 466 & 2 & . 01 & 4 & 700 & 32 & 5 & \(<20\) & 14 & . 13 & \(<10\) & \({ }^{6}\) & \(<10\) & 3 & 37 \\
\hline 3 - & 10+ 008 & 2+ 008 & 20 & . 4 & 3.64 & 33 & 6 & 25 & <s & . 17 & \(\leqslant 1\) & 16 & 29 & 62 & 5.12 & . 01 & \(<10\) & 1.06 & 402 & 1 & . 01 & , & 740 & 26 & 5 & \(<20\) & 14 & . 10 & \(<10\) & 6 & \(<20\) & 1 & 36 \\
\hline \(6-\) & 10+ Sos & O+ 001 & 15 & . 4 & 2.29 & 23 & - & so & <s & . 23 & <1 & 14 & 7 & 132 & 5.37 & . 02 & 10 & . 32 & 116 & 2 & . 01 & 3 & 1060 & 10 & <s & <20 & 43 & . 14 & <10 & 111 & \(<10\) & 2 & 110 \\
\hline \(7-\) & 10+ 308 & 0+ 2311 & 15 & . 4 & 4.12 & 40 & - & 25 & <s & . 13 & 41 & 17 & 1 & 35 & 5.36 & . 02 & 10 & . 63 & [13 & 4 & . 03 & 2 & 190 & 30 & < & \(<20\) & 11 & . 12 & 110 & 52 & \(<10\) & 6 & 61 \\
\hline - & 10+ S0E & O+ 50 m & 25 & 8.2 & 3.23 & 35 & 6 & 25 & <s & . 16 & 41 & 13 & 21 & 32 & 6.02 & <.01 & 10 & . 65 & 251 & 2 & . 02 & , & 170 & 30 & < & \(<20\) & 12 & . 24 & \(<10\) & 97 & \(<10\) & ! & 43 \\
\hline ,- & 10+ 508 & O+ 738 & 15 & . 6 & 3.86 & 35 & \({ }^{\circ}\) & 30 & cs & . 19 & < & 16 & 34 & 12 & 7.31 & <. 01 & 10 & . 92 & 353 & 2 & . 01 & 3 & 690 & 36 & <s & 420 & 19 & . 24 & \(<30\) & 00 & \(<10\) & 4 & 50 \\
\hline \(10-\) & 10+ sas & 1+ 000 & 15 & . 4 & 3.60 & 40 & - & 30 & <s & . 29 & <1 & 16 & 20 & 56 & 5.62 & . 01 & 10 & 1.03 & 430 & 3 & . 02 & 6 & 310 & 28 & 5 & \(<20\) & 23 & . 15 & 10 & 73 & \(<20\) & 3 & 36 \\
\hline 12. & I1+ 008 & 0. 000 & 23 & <. 2 & 3.90 & 10 & 6 & 15 & < & . 33 & <1 & 29 & 15 & 171 & 4.98 & . 05 & 10 & 1.09 & 2678 & <1 & . 02 & 11 & 1140 & 26 & 10 & \(<20\) & 37 & . 09 & \(<10\) & \({ }^{19}\) & \(<10\) & 3 & \({ }^{66}\) \\
\hline \(12-\) & 214 008 & O+ 25x & 10 & 2 & 3.99 & 0 & 6 & 35 & < 3 & . 16 & \(<1\) & 21 & 28 & 31 & 5.36 & <. 01 & 10 & . 09 & 564 & 1 & . 01 & 3 & 680 & 30 & 5 & \(<20\) & 17 & . 12 & \(<10\) & 79 & \(<10\) & 4 & 12 \\
\hline 13. & 11+ 002 & O+ 501 & 13 & . 4 & 3.40 & 40 & 6 & 20 & <s & . 07 & <1 & 10 & 13 & 40 & 6.56 & . 01 & 20 & . 24 & 226 & 4 & . 02 & <1 & 600 & 36 & < 5 & \(<20\) & 5 & . 10 & \(<10\) & 40 & \(<10\) & 6 & 52 \\
\hline 14. & 12+ 008 & O+ 751 & 30 & . 2 & 2.59 & 30 & 6 & 20 & <s & . 07 & <1 & \(\stackrel{1}{ }\) & 5 & 27 & 4.83 & . 02 & 10 & . 34 & 253 & 3 & . 02 & < 1 & -30 & 24 & < & \(<20\) & 6 & . 10 & \(<10\) & 49 & \(<10\) & 2 & 4 \\
\hline 15- & \(10+008\) & O+ 258 & 23 & - & 5.57 & 90 & - & 15 & < & . 14 & <1 & 12 & 21 & 71 & 7.62 & <. 01 & 10 & . 62 & 167 & 3 & . 01 & <1 & 1040 & 36 & 3 & \(<20\) & \(\bullet\) & . 17 & \(<10\) & \({ }^{1}\) & 410 & 7 & 39 \\
\hline 26- & \(10+008\) & O+ 508 & 20 & - & 5.87 & 40 & - & 30 & cs & . 36 & <1 & 22 & 23 & 8 & 4.73 & <. 01 & 10 & . 54 & 182 & 1 & . 01 & 4 & 1540 & 32 & < & \(<20\) & 34 & . 08 & \(<10\) & 18 & <10 & 2 & 31 \\
\hline 17. & 10+ 008 & O+ 758 & 10 & 8.2 & 3.34 & 40 & 6 & 35 & < & . 30 & <1 & 22 & 14 & \({ }^{3}\) & 3.42 & . 02 & 10 & 1.35 & 012 & <1 & . 01 & 6 & 1000 & 26 & 5 & \(<20\) & 29 & . 12 & \(<10\) & 90 & <10 & 3 & 17 \\
\hline 10- & 10+ 008 & 1+ 008 & 15 & <. 2 & 3.21 & 35 & 6 & 30 & <s & . 32 & <1 & 29 & 14 & 200 & 4.81 & . 02 & 10 & 1.41 & 1199 & <1 & . 02 & 6 & 960 & 24 & 5 & <20 & 23 & . 14 & \(<10\) & \({ }^{1}\) & \(<10\) & 5 & -0 \\
\hline 19- & 10+ 508 & O+258 & 25 & <. 2 & 3.02 & 30 & 6 & 30 & <s & . 20 & <1 & 16 & 17 & 10 & 5.20 & . 01 & 10 & . 09 & 122 & 1 & . 01 & ¢ & 560 & 30 & 5 & \(<20\) & 19 & . 14 & \(<10\) & 67 & <10 & 5 & 37 \\
\hline \(20-\) & 10+ soz & O+ 508 & 10 & <.2 & 3.02 & 35 & \(\bullet\) & 30 & <5 & . 24 & <1 & 19 & 14 & 6 & 3.37 & . 02 & 10 & 1.19 & 462 & 2 & . 01 & 6 & 340 & 20 & 5 & \(<20\) & 23 & . 21 & \(<10\) & \({ }^{6} 6\) & \(\leqslant 10\) & 7 & \({ }^{3}\) \\
\hline 21. & 10+ 508 & O+ 758 & 20 & < 2 & 3.24 & 40 & 6 & 30 & <s & . 24 & \(<1\) & 16 & 15 & 57 & 3.41 & . 01 & 10 & . 88 & 408 & 2 & . 02 & 3 & 670 & 30 & 5 & \(<20\) & 20 & . 10 & 810 & 06 & \(<10\) & 3 & 63 \\
\hline 22. & 10+ 508 & 1+ 008 & 15 & 8.2 & 3.03 & 30 & 6 & 30 & cs & . 20 & <1 & 19 & 22 & so & 6.25 & . 01 & 10 & 1.08 & 467 & 2 & . 02 & 5 & 300 & 26 & 5 & \(<20\) & 21 & . 23 & 10 & 103 & \(<10\) & s & 64 \\
\hline \(23-\) & 114 005 & O+ 253 & 20 & <. 2 & 2.76 & 33 & - & 30 & < & . 13 & <1 & 16 & 17 & 4 & 5.93 & . 02 & 10 & . 76 & 313 & 2 & . 01 & 1 & 360 & 26 & 5 & \(<20\) & 14 & . 25 & \(<10\) & 114 & <10 & - & 49 \\
\hline 26. & 31+ 098 & O+ 508 & 20 & <. 2 & 3.71 & 35 & - & 15 & <s & . 00 & <1 & \(\bullet\) & 13 & 42 & 5.61 & . 02 & 20 & . 28 & 236 & 4 & . 03 & <1 & 610 & 36 & < & \(<20\) & 4 & . 14 & 10 & 33 & <10 & 10 & 52 \\
\hline 25- & 13+ 008 & O+ 758 & 30 & \(\leqslant .2\) & 3.19 & 35 & - & 15 & <s & . 07 & \(<1\) & \({ }^{*}\) & 6 & 41 & 7.09 & . 03 & 30 & . 20 & 365 & 5 & . 03 & 41 & 560 & 36 & < & \(<20\) & 2 & . 15 & \(<10\) & 36 & <10 & , & 60 \\
\hline 26- & \(14+30\) 晨 & O+ 001 & 10 & 4.2 & 3.71 & 40 & - & 30 & <s & . 04 & \(\leqslant 1\) & 11 & 34 & 4 & 6.94 & <. 01 & 20 & . 31 & 217 & 10 & . 02 & <1 & 460 & 31 & s & \(<20\) & - & . 21 & 810 & - 9 & * 10 & 7 & 41 \\
\hline
\end{tabular}

\section*{Tri < - Lesis tinn}

MICBOLEOM \& ABEOCIATT:
606-675 meet mactimat strest
vancouvia, D.c.
B.c. cortilied Aosayos

```

10041 cuat trums canca mery.
wocops, B.C. v2C 2J3
PHONE - 604-573-5700
PAX - 604-573-4557

```


\section*{91-69 \\ 602-675 west matimas strex \\ vancouvis, s.c. \\ \(v 63\) 1wa}
pranct: mux
6 Silit sanples reciivid aucust 23, 299

TB: <- Lese twin
c. niciolson t necociatze cos-675 mist wetimas striet
vancouvia, b.c.


```

