,

LOG NO;	<u> 7 1000</u>	RD.	7
ACTION:	1001 0 1 1945	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
FILE NO:			1

NTS 92L/8E Lat 50°18'N Long 126°04'W

SCIEN

GEOLOGICAL, GEOCHEMICAL and COMPILATION REPORT on the ADAM RIVER PROPERTY Nanaimo Mining Division, B.C. GEOLOGICAL BRANCH ASSESSMENT REPORT

WEST PRIDE INDUSTRIES CORP. 1650 - 701 West Georgia Street Vancouver, B.C. Tel: (604) 688-4850 Fax: (604) 688-5175

by

Peter D. Leriche, B.Sc., P.Geo.

RELIANCE GEOLOGICAL SERVICES INC. 241 East 1st Street North Vancouver, B.C. V7L 1B4 Tel: (604) 984-3663 Fax: (604) 988-4653

4 November 1991

Reliance Geological Services Inc. -

SUMMARY

At the request of West Pride Industries Corp, Reliance Geological Services carried out a program of data compilation, geological mapping, rock, silt and soil sampling on the Adam River Property, Sayward area, Vancouver Island, B.C.

The Adam River Property is located 50 kilometers northwest of Campbell River, B.C., and is accessible by logging roads. The property comprises 5 contiguous mineral claims totalling 80 units in the Nanaimo Mining Division.

The claims are underlain 80% by Upper Triassic Karmutsen basaltic volcanics consisting of interbedded porphyritic, amygdaloidal and fine grained flows. A 10 to 40 foot thick dark grey limestone horizon is interbedded with the volcanics. The northeast part of the claims is underlain by Jurassic granite-granodiorite. At least two large northerly trending faults cross the property. Smaller faults/shears are seen in creeks and in drill core.

Copper mineralization consists of chalcopyrite, bornite, chalcocite and minor native copper within vertical fractures and as disseminations and bunches within amygdaloidal basalts (Main Zone). Alteration within and near zones of mineralization consists of a strong to intense epidote-quartz-chlorite-sericite assemblage.

Previous work (mainly 1967-1973) has included geological mapping, soil sampling (1300 samples), silt sampling, an I.P. survey, blast trenching, and approximately 6000 ft of diamond drilling. Most trenching and all drilling was completed on the Main Zone.

Trenching (11) yielded results up to 2.70% Cu over 10 ft and drilling intersected intervals up to 2.96% Cu over 17 ft. Many of the drill logs and assay results were not available.

The 1991 exploration program of reconnaissance geological mapping and geochemical sampling was undertaken for the purpose of verifying work from previous fieldwork and evaluating the mineral potential of the whole property.

Drill core from holes not previously reported was examined and sampled.

Reliance Geological Services Inc. -

A compilation of data from all exploration programs has outlined the following target areas:

a) Main Zone:

Trenching has exposed a well mineralized zone stratigraphically below a limestone unit in amygdaloidal basalts which has a strike length in excess of 450 meters. Drilling has partially tested the zone over 150 meters of strike and 200 meters downdip. Copper mineralization was noted in drill core from almost all holes, and two holes, A-4 and A-6, intersected two well mineralized stratigraphic intervals. The best defined interval is 40 ft below a limestone interval. Some significant copper results from drill core include 1.75% over 12 ft (A-2), 2.96% over 17 ft (A-4), 1.70% over 12 ft (A-5), 2.11% over 17 ft (A-6), 1.5% over 15 ft (A-7) and 0.45% over 22 ft (A-11).

The writer has estimated approximately 2 million tons of geological reserves presently defined in the above interval within the Main Zone. The exact copper grade is yet to be determined. The zone(s) are open in all directions and the possibility of multiple mineralized horizons exists at depth.

Boyes Creek - North Creek:

Consists of two well mineralized (copper) areas in Boyes and North Creek. The North Creek area is overlain by a coincident soil and I.P. chargeability anomaly.

Adam River:

Consists of a coincident soil and I.P. chargeability anomaly overlying the inferred contact area between Karmutsen volcanic rocks and granodiorite. No outcrop has been located to date.

Northwest Area:

Silt samples (1991) were anomalous in creeks draining the Boyes 1 and 2 claims. Chalcopyrite and malachite were discovered in vertical fractures from 2 areas.

A ground exploration program is recommended to establish better defined drill targets in the Main Zone, and drill targets in other areas. The program should consist of re-logging and sampling all drill core, grid establishment, geological mapping, soil sampling, and magnetometer, VLF-EM, and induced polarization surveys.

TABLE OF CONTENTS

SUMMARY

1.	INTRODUCTION	1
2.	LOCATION, ACCESS, and PHYSIOGRAPHY	2
з.	PROPERTY STATUS	3
4.	AREA HISTORY	4
5.	REGIONAL GEOLOGY	5
6.	PREVIOUS WORK	7
7.	1991 EXPLORATION PROGRAM7.1 Methods and Procedures7.2 Property Geology7.2.1 Lithologies7.2.2 Structure7.2.3 Mineralization and Alteration7.3 Geochemistry7.3.1 Drill Core7.3.2 Rock Geochemistry7.3.3 Silt Geochemistry7.3.4 Soil Geochemistry	11 12 12 13 13 14 22 23 24
8.	DISCUSSION OF RESULTS	25
9.	CONCLUSIONS	27
10.	RECOMMENDATIONS	28
	REFERENCES	29 30

LIST OF FIGURES:

-

Figure 1:	GENERAL LOCAT	ION MAP	la
2:	CLAIM MAP		••• 2a
3:	REGIONAL GEOL	OGY MAP	••• 5a
4:	COMPILATION M	AP OF PREVIOUS WORK	in pocket
5:	1991 GEOLOGY:	SAMPLE LOCATIONS AND RESULTS	in pocket
6:	MAIN ZONE AREA AND DRILL HOL	A: GEOLOGY, TRENCH E LOCATIONS	in pocket
7:	CROSS SECTION	A-A ¹	26a
LIST OF APPEND	ICES:		
Appendix 7	A: 1991 ROCI DESCRIPT	K SAMPLE AND DRILL CO IONS	RE
Appendix 1	B: ANALYTIC	AL REPORTS AND TECHNI	QUES
Appendix (C: DRILL LOO	GS AND CROSS-SECTIONS	5

1. <u>INTRODUCTION</u>

This report was prepared at the request of West Pride Industries Corp to describe and evaluate the results of a geologicalgeochemical program carried out by Reliance Geological Services Inc on the Adam River Property claims in the Nanaimo Mining Division, Sayward area, Vancouver Island, B.C.

The field work was undertaken for the purpose of compiling and verifying work from previous exploration programs and evaluating the potential of the property to host a strata-bound disseminated copper deposit.

Field work was carried out from August 14 to August 16, 1991 by George King (geologist) and from October 5 to October 10, 1991 by Peter Leriche (geologist) and J. Fleishman (prospector).

This report is based on published and unpublished information and the maps, reports and field notes of the crew listed above.

- 1 -

2. LOCATION, ACCESS AND PHYSIOGRAPHY

The Adam River Property is situated in the Nanaimo Mining Division, Sayward area, approximately 50 kilometers northwest of Campbell River, or 22 kilometers by road northwest of Sayward, B.C. (Figures 1 and 2).

The claims are located on Map Sheet NTS 92L/8E, at latitude 50°18' North, longitude 126°04' West, and between UTM 5579000 m and 5572000 m North, and UTM 707000 m and 711000 m East.

Road access is via the Island Highway #19 north of Sayward junction to the Adam River logging road(s) turn-off at Keta Lake. A series of logging roads cross the subject claims.

The property is on moderate to steep terrain with slopes rising from about 850 ft (259 meters) to 3900 ft (1189 meters). The lower elevations have been logged at different times, and vegetation consists mainly of reforested fir. Mature growth forest at higher elevations consists of fir, cedar and hemlock.

Recommended work season is year-round.

- 2 -

3. **PROPERTY STATUS** (Figure 2)

The property consists of 5 contiguous mineral claims in the Nanaimo Mining Division. The claims are owned 100% by West Pride Industries Corp.

Details of the claims are as follows:

<u>Claim</u>		Record <u>Number</u>	<u>Units</u>	<u>Record Date</u>	Expiry Date
Boyes	1	303006	8	26 Jul 1991	26 Jul 1992
Boyes	2	303007	12	26 Jul 1991	26 Jul 1992
Boyes	3	303008	20	26 Jul 1991	26 Jul 1992
Boyes	4	303009	20	26 Jul 1991	26 Jul 1992
Boyes	5	303010	_20_	26 Jul 1991	26 Jul 1992
Total			80		

The total area covered by the claims is 2000 hectares, or 4940 acres.

The writer is not aware of any particular environmental, political, or regulatory problems that would adversely affect mineral exploration and development on the Adam River Property.

- 3 -

4. <u>AREA HISTORY</u>

The earliest work recorded in the area was carried out on the Lucky Jim claims in 1918. This property is located approximately 7 kilometers to the south of the Adam River Property, near the mouth of Compton Creek. The ore, classified as belonging to the contact-metamorphic type (Minister of Mines Annual Report 1918) is reported to have assayed 0.9 ounces in gold, 1.8 ounces in silver and 5.35% copper.

During the period from 1968 to 1972, the area was very active with several companies carrying out exploration programs in search of copper. Most of the assessment work reports date from this period.

Geochemical surveys were carried out over several claim groups in the area, but the samples were assayed for copper only. The activities came to a halt when the political climate in the Province changed in 1972.

- 4 -

5. <u>**REGIONAL GEOLOGY**</u> (Figure 3)

Very limited regional mapping has been done in the Sayward area. Figure 3 is taken from GSC O.F. 463, Geology of Vancouver Island, by J.E. Muller.

The Sayward - Adam River area is underlain by Triassic-Jurassic volcanics, limestones and clastic rocks, which are intruded by Jurassic granodiorite-granite.

Individual formations are discussed as follows:

<u>Triassic</u>

Vancouver Group

Karmutsen formation (mu TRk)

The most widespread formation in the area. On Vancouver Island, the Karmutsen formation consists of a thick (up to 6000 m) succession of tholeitic (basaltic) pillow lavas, massive flows and tuffs. Locally, the Karmutsen is a dark fine grained basalt flow with sections of fine grained gabbro-diorite, and porphyritic-amygdaloidal lavas. On the subject property, flows strike east-west and dip 20-30° northerly.

Quatsino Formation (u TR Q):

Overlies the Karmutsen formation and is a grey - dark grey limestone unit varying from 25 to 500 m in thickness.

When in close contact with intrusive rocks, the Quatsino formation is often metamorphosed to marble. Numerous base metal skarn occurrences and deposits on Vancouver Island are hosted within the limestone.

- 5 -

Parson Bay Formation (u TR PB)

Is usually stratigraphically above the Quatsino formation, but occasionally directly overlies the Karmutsen Formation. Consists of calcareous greywacke, calcareous black argillite and shaly limestone. The thickness is between 300 and 600 m.

<u>Jurassic</u>

Bonanza Group (IJB)

Consists mainly of porphyritic lavas, breccias and tuffs of basaltic and rhyolitic composition.

Island Intrusions (Jg)

Batholiths and stocks of granitoid rocks ranging in composition from quartz diorite to granite. They underlie approximately ½ of the Island's surface and intrude Sicker, Vancouver and Bonanza Group rocks.

Locally, the Island Intrusions are a medium to coarse grained granodiorite with phases of granite and pegmatite. Rocks in contact with the intrusions are often metamorphosed to amphibolites, marble and migmatites. Potassic alteration is common, especially in the more fractured areas of the body.

Figure 3 shows the Adam River property to be underlain dominantly by Karmutsen formation (about 70%). Rocks in the eastern claim area are a wedge of Quatsino and Parson Bay formations in fault contact with Karmutsen volcanics (west) and Island Intrusions (east). The northeast corner and east of the Adam River is underlain by granodiorite-granite (Island Intrusions). Three north-south trending faults cross the claims.

- 6 -

6. <u>PREVIOUS WORK</u> (Figure 4)

- 1965 Copper showings along Boyes Creek were discovered by William Boyes.
- 1966-67 Silver Standard Mines conducted a program of trenching, soil sampling and prospecting, mostly on the Boyes Creek showings. Copper assayed up to 26.26% over 1 foot and gold up to 0.78 oz/t over 2 feet.
- 1969 Bethlehem Copper Corp mapped and re-sampled the Boyes, North and South Creek showings (Assess. Report 1993).

The Boyes Creek showing consists of a sheeted braided fracture system (80/70S) in amydaloidal basalts, containing stringers, lenses and disseminations of chalcopyrite, bornite and subordinate chalcocite and native copper. Thirteen hand trenches exposed mineralization over a 1000 foot strike length with widths ranging from 1 to 15 ft. The average of 11 representative samples from trenches was approximately 3.25% Cu over 4 feet. Gold assayed up to 0.02 oz/t. Soils from two reconnaissance lines were anomalous in copper and indicated a 1,800-1,900 ft. easterly strike continuation of the Boyes Creek zone.

The North Creek zone is a broad fracture zone within basalts that was trenched (6 trenches) over a 30 meter length. Mineralization consists of veinlets, "small bunches" and disseminations of pyrite, chalcopyrite and bornite. Six samples, 1 from each trench, assayed up to 1.02% Cu over 12 feet, and 0.03 oz Au/t over 8 feet. Anomalous copper in soils from a single line north of the showing suggested a larger mineralized system.

- 7 -

The South Creek showing is a single exposure (el. 1750 - 1800 ft) at the base of a steep falls. Chalcopyrite and pyrite are disseminated within a pod of calcite-epidote breccia. A sample across 5 feet assayed 0.90% Cu and 0.02 oz Au/t.

1971 Conoco Silver Mines Ltd conducted soil geochemical and induced polarization geophysical surveys.

Fifty-three line miles of grid was established and 1300 soil samples were collected at 200 foot spacings and at 100 foot spacings over anomalous areas.

Samples were analyzed for copper and considered anomalous above 75 ppm.

Three main zones were defined. These are shown with 150 ppm contour in Figure 4. Zone 1 (most northerly) is an anomalous area approximately 500 by 300 meters. Zone 2 is a crescent shaped anomaly surrounding the main zone of mineralization and is approximately 1500 by 150 meters wide. Zone 3 is an east-west trending anomaly, approximately 600 by 250 meters on the north side of North Creek.

An induced polarization survey was conducted over the three zones of interest defined from the soil survey. Based on statistics, 10 to 14.9 m.s. was slightly anomalous, 15 to 19.9 m.s. was moderately anomalous, and >20 m.s. was highly anomalous (Figure 4). In general, it appears that chargeability anomalies correspond with the three zones of anomalous copper in soil.

- 8 -

The soil and geophysical surveys resulted in the discovery of the Saddle or "Main Zone" in which all the subsequent trenching and drilling was performed.

Late 1971 or early 1972

Conoco Silver Mines blasted and sampled eleven trenches on the Main Zone. Results are as follows:

Irench #	Interval <u>(ft)</u>	Copper _(%)
1	0-50	0.32%
2	0-10	0.58%
2	10-20	2.12%
2	20~25	1.53%
2	30-40	0.23%
3	0-10	1.91%
4	0-10	1.95%
4	10-20	1.31%
5	0-10	0.82%
6	0-10	0.22%
7	0-10	2.70%
9	0-10	0.43%
10	0-10	1.38%
11a	0-6	0.63%
11b	0- 6	0.54%
11c	0- 6	0.21%

Trench results were taken from a map, the source of which is unknown. The writer (1991) re-sampled trenches 1, 4 and 9, and results were 1.04, 1.38, and 0.95% copper respectively. Therefore, the previous results from trench sampling are considered accurate.

1972 Conoco completed 939 feet of X-Ray and 2883 feet of BQ diamond drilling.

Short X-Ray holes were drilled to test mineralization in trenches. BQ holes 1 to 6 were drilled to test the down dip continuation of the copper mineralization.

- 9 -

BQ holes 1 to 6 were drilled to test the down dip continuation of the copper mineralization. Mineralization was found to have а definite stratigraphic association with an amygdaloidal phase of a porphyritic andesite. The most prominent mineralized zone occurred 15 to 20 feet below an interbedded limestone unit. Two separate mineralized horizons were intersected in holes 2, 4, 5, 6.

Drill logs and copper assay values are summarized in this report (Section 7.3.1).

1973 Conoco completed at least 5 additional holes (7 to 11) of BQ diamond drilling totalling approximately 2,500 feet. The purpose of drilling was further testing of the down-dip of the mineralized horizon.

> Very little documentation was found relating to the 1973 program. The writer located, briefly examined and resampled split sections of core from holes 8, 9, 10 and 11. Results are summarized later in this report.

1983 Craven Resources prepared a geological-geochemical report on the Adam claim (part of subject property). The writer (Vermeen) documented the results of a regional silt sampling program he conducted in 1969. Silts from many of the streams draining the Adam River property area were highly anomalous in copper (see Figure 4). Eight silt samples from a stream 1500 meters northwest of the main zone yielded values ranging from 720 to 4200 ppm copper over a stream length of 1000 m.

- 10 -

1985 Craven Resources conducted a field program of prospecting, rock sampling and limited re-sampling of drill core. Results from drill core sampling are summarized later in this report.

7. <u>1991 EXPLORATION PROGRAM</u>

Done under Approval #NAN-91-589-92.

7.1 <u>Methods and Procedures</u>

A field program of geological mapping, rock, drill core, silt and soil sampling was carried out on the Adam River Property during August and October, 1991.

Geological mapping was performed along roads and selected traverse lines over approximately 20% of the property at a scale of 1:10 000 (Figure 5) and 1:1000 (Figure 6). Control was established using existing roads, topographic features, compass, hipchain and altimeter.

A total of 26 rock samples and 21 drill core samples were collected and analyzed for gold (fire assay/AA) and multielement ICP by International Plasma Laboratory Ltd. Results over 10 000 ppm copper were re-analyzed for copper by copper assay techniques. See Appendix A for rock sample descriptions and Appendix B for analytical reports and technique. Detailed drill logs and cross-sections are shown in Appendix C.

Twenty-two silt samples were collected from active and dry stream drainages (Figure 5). Sand and silt size material was placed in Hubco sand-bags and sent to International Plasma Laboratory Ltd for gold and multi-element ICP analysis (Appendix B).

Eighteen contour soil samples (Figure 5) (el. 1100 and 1400 ft) were taken at 50 meter station spacings. All samples were

collected with a grub hoe from the B horizon (approximate depth 30 cm), placed into marked Kraft paper bags and sent to International Plasma Laboratories Ltd for gold and multi-element ICP analysis.

7.2 <u>Property Geology</u> (Figures 5, 6)

7.2.1 <u>Lithologies</u>

Karmutsen volcanics (Unit 2) cover at least 80% of the property area. All volcanic rocks are andesite-basalt in composition and occur as massively bedded fine grained, porphyritic and amygdaloidal flows of Triassic age. A gabbro unit in the north part of the property is a coarse grained interval in the volcanics. Phenocrysts are usually euhedral plagioclase. Amygdules are commonly infilled with epidote and quartz. Flows have a strike of 100-120° and dip 30° north.

Limestone (Unit 4) consists of a dark grey to black crystalline limestone, 10 to 40 ft. thick, which is interbedded with volcanic rocks. In the Main Zone area limestone appears to have acted as an impermeable cap to ascending mineralizing copper rich fluids.

Granodiorite - Granite (Unit 1): Jurassic granodioritegranite is exposed in the northeast corner of the property. Contact relationships with volcanic rocks are unknown. Minerals include 40 - 45% combined hornblendebiotite, 40% combined feldspars, 15% quartz and 1 to 2% magnetite. Disseminated pyrite locally constitutes up to 4%. Exposures in the Adam River and along the Adam River main logging road contain numerous quartz-epidote \pm K-spar veinlets. Several steeply dipping shear zones were noted in 70° and 120° directions.

- 12 -

7.2.2 <u>Structure</u>

Faulting and fracturing has played an important part in the transportation and localization of copper mineralization.

On a regional scale, two large NNE and NNW trending faults are inferred. The main zone area is wedged between the two faults. The NNW fault appears as a well defined lineament at the base of slope. Muller (1977) has postulated a fault along the Adam River.

Many streams are along fault or fracture zones. The extent of displacement, if any, is not known. Fracture zones along Boyes Creek control quartz veining and associated copper gold mineralization.

In drill core there is strong evidence of quartz healed fracturing and local brecciation.

7.2.3 <u>Mineralization and Alteration</u>

Mineralization consists of chalcopyrite, bornite, minor chalcocite and native copper within Karmutsen volcanic rocks. There are two types of mineralization on the property:

- Steep to vertical fractures infilled with chalcopyrite, malachite and quartz (example: Boyes Creek Zone and north part of property).
- ii) Disseminations and bunches of chalcopyrite bornite within amygdaloidal basalts (example: Main Zone).

All work since 1969 has been directed towards Type 2 mineralization as it has greater potential for economic tonnage.

- 13 -

Diamond drill logs from the Main Zone show that copper sulphide mineralization is finely disseminated within all phases of basalt-andesite. No mineralization was noted above the interbedded limestone, indicating the limestone may have acted as an impermeable barrier to ascending solutions.

Copper sulphides are seen in greater density within amygdaloidal zones of the flows. Chalcopyrite, bornite, minor chalcocite and native copper occur as fine disseminations, in bunches and within open amygdules. Figure 7 (cross-section) clearly shows a stratigraphic zone of mineralization (15 ft. wide) 20 to 40 ft. below the limestone, in amygdaloidal flows. Logs from holes A.4 and A.6 show two well mineralized stratigraphic zones.

Alteration within and near zones of mineralization consists of a strong to intense epidote-quartz-chloritesericite assemblage. Amygdules are infilled with quartz, epidote and copper sulphides. The groundmass is pervasively altered in varying degrees to chlorite and epidote with local areas of sericite and silicification.

7.3 <u>Geochemistry</u>

7.3.1 <u>Drill Core</u>

Part of the 1991 program entailed sampling of drill core from previous programs. Core boxes are rotting, but most footage markers are legible. No drill logs or assays were available from holes A.8, A.9, A.10 or A.11. The writer briefly examined core from these holes and re-sampled previously split mineralized intervals. Available drill logs and cross-sections are shown in

- 14 -

Appendix C. A summary of drilling, all known analytical results and year of sampling is presented as follows:

SUMMARY OF DIAMOND DRILLING

All drill hole locations are shown on Figure 6.

X-Ray Drill Holes

DDH X.1 Azimuth --, Dip - 90°, Length 198 ft.

Hole within grey - dark grey, fine grained basaltic andesite with zones of amygdaloidal and porphyritic basalt. Local zones of chloritic-sericitic alteration. Few guartz infilled shear and breccia zones.

Chalcopyrite and/or bornite noted at intervals (ft): 4" to 24, 40 to 49, 59 to 102.

Interval 4 to 14 assayed 0.15% Cu.

DDH X.2 Azimuth 210°, Dip -60°, Length 144 ft.

Within interbedded dark grey-black fine grained basaltic andesite, porphyritic and amygdaloidal basalt. Alteration consisting of quartz-sericite and propylitic is locally intense. Scattered chalcopyrite/bornite noted at intervals: 4 to 43 and 71 to 77. No assays available.

DDH X.3 Azimuth approx. 320, Dip ?, Length 30 ft.

Hole did not reach bedrock.

DDH X.4 Azimuth 220°, Dip -60°, Length 181 ft.

Similar geology and alteration to X.2. Malachite stain from 1 to 7 feet. Select sample (1991) assayed 2.37% Cu. Footage markers were illegible.

- 15 -

DDH X.5 Azimuth 200° , Dip -60° , Length 150 ft.

Similar geology and alteration to X.2. "Good" disseminated chalcopyrite and bornite in narrow bands of intense epidote-sericite alteration from 27 to 54 ft. No assays available.

DDH X.6 Azimuth 050°, Dip -65°, Length 150 ft.

Similar geology and alteration to X.2. Limy amygdaloidal andesite from 1 to 10 feet. Blebs of chalcopyrite/bornite in intervals 1 to 10, 25 to 47, 55 to 80. No assays available.

DDH X.7 Azimuth 020°, Dip -55°, Length 116 ft.

Similar geology and alteration to X.2. Bornite in amygdules from 1 to 4 feet. No assays available.

BQ Drill Holes

DDH A.1 Azimuth --, Dip -90°, Length 627 ft.

Within interbedded dark grey - black, fine grained basaltic andesite, porphyritic and amygdaloidal andesite. Sericite, chlorite, epidote alteration throughout. Local siliceous and quartz stringer zones. Chalcopyrite and bornite noted at intervals 27 to 36, 47 to 110, 125 to 143, 377 to 461, 560 to 627.

		<u>Ana</u>	<u>lytical</u>	Results	2		
Sample	Year	Interval	(ft)	Width	Cu	Cu	
<u>No</u>	Sampled	<u>From</u>	To	<u>(ft)</u>	<u> </u>	(mqq)	<u>Comments</u>
5201	1972	28.5	37	8.5	.20		
18712	1985	51	53	2		190	
5202-							35 ft.avg.
5208	1972	47	82	35	0.08		0.08% -
GR-008	1991	66	68	2		365	
18713	1985	77	7 9	2		420	
18719	1985	367	370	3		182	
18711	1985	395	397	2		742	

- 16 -

DDH A.2, Azimuth 030°, Dip -60°, Length 488 ft.

Similar geology and alteration to A.1. Bornite and chalcopyrite as blebs, disseminated and within quartz stringers noted throughout hole.

			<u>Analytical</u>	<u>Results</u>	5		
Sample	Year	Inter	val (ft)	Width	Cu	Cu	
<u>No</u>	Sampled	From	<u>To</u>	<u>(ft)</u>	<u></u>	(ppm)	<u>Comments</u>
5212	1972	17	19	2	3.30		True thick-
							ness 1.5 ft.
5213	1972	24	28	4	0.60		
5214-19	5 1972	37	49	12	1.75		True thick-
							ness 8 ft.
5216	1972	64	69	5	0.22		
5217-20) 1972	69	92	23	0.14		
18715	1985	90	92	2		645	
5221-22	2 1972	116	128	12	0.10		
18716	1985	117	119	2		1142	
AH2 136-	-						
143	1991	136	143	7		428	
18717	1985	138	141	3		276	
18714	1985	331	333	2		379	

. . . .

DDH A.3, Azimuth --, Dip -90°, Length 295 ft.

Same as A.1. Disseminated bornite in interval 76-93 ft. No assays reported.

DDH A.4, Azimuth 360°, Dip -60°, Length 907 ft.

Black fine grained argillaceous limestone from 43 to 98 ft. Remainder of hole is dark grey, interbedded fine basalt, porphyritic andesite and amygdaloidal andesite. Sericite, chlorite, epidote and local quartz alteration. Bornite and chalcopyrite noted in intervals 119-136, 153-170, 189-198, 658-680, 688-758.

- 17 -

		Ana	alytical	Results	<u>s</u>	
Sample	Year	Interval	(ft)	Width	Cu	Cu
<u>No</u>	Sampled	From	<u>To</u>	<u>(ft)</u>	<u> </u>	<u>(ppm) Comments</u>
5227- 28	1972	119	136	17	2.96	True thick- ness 12 ft. Poor core
GR-005 GR-004	1991 1991	131.5 153.3	133.5 156.6	2 3.3	4.73	5621
31	1972	153	170	17	0.73	True thick-
18705	1985	158- 169 193	159 170 194	1 1 1))	5729 Composite Sample
5232 18707	1972 1985	190 271-	196 272	6 1	0.54	
		670	600	10)	2110 Composite
18706 5233-	1985	238	240	2)	748
36	1972	659	676	17	0.55	True thick- ness 12 ft.
DDH A.5	Azimuth	360°, Dij	p −45°,]	Length 2	86 ft.	
	Similar bornite	geology in inter	and alt vals 18–	eration -55, 154	to A.: , 171-	1. Chalcopyrite/ 201, 201-286.
		Ana	alytical	Results	5	
Sample	Year	Interval	(ft)	Width	Cu	Cu
<u>No</u> 5243-	Sampled	From	To	<u>(ft)</u>	00	(ppm) Comments
44	1972	27	39	12	1.70	True thick- ness 6 ft.
5237-						True thick-
42	1972	171	200	29	0.31	ness 15 ft.
18708	1985	181 188	182 189	1 1)	Composite 3034 Sample
GR010	1991	185	185	2		4346

- 18 -

DDH A.6 Azimuth 025°, Dip -60°, Length 280 ft.

Similar geology and alteration to A.1. Chalcopyrite/ bornite in intervals 27-53, 93-120, 136-138.

Sample <u>No</u> 5245-	Year <u>Sampled</u>	An Interval <u>From</u>	alytical l (ft) <u>To</u>	Results Width <u>(ft)</u>	Cu {&	Cu (ppm)	<u>Comments</u>
47	1972	27	44	17	2.11		True thick- ness 9 ft.
GR011	1991	30	32	2	3.78		
5248	1972	51	53	2	1.14		
5249- 52	1972	97	119	22	0.46		
18709	1985	98 108	99 109	1 1)	2710	

DDH A.7, Azimuth 180°, Dip -60°, Length 485 ft.

No drill log from 0 to 314 ft. Limestone from 314 to 360. From 360 to end of hole is in dark grey fine grained andesite and amygdaloidal andesite. Chalcopyrite and bornite noted from 370 to 485 (end of hole).

The only assay given (1973) was 1.5% over 15 ft. from approximately 370 to 385 ft.

DDH A.8, Azimuth 180°, Dip -60°, Length approx. 550 ft.

No drill logs available. Split mineralized interval (507-528) is in dark grey amygdaloidal and porphyritic basalt. Local silicification. Amygdules infilled with quartz, epidote and chalcopyrite-bornite.

- 19 -

			А	nalytical	Results	•		
Sam	ple	Year	Interv	al (ft)	Width	Cu	Cu	
<u>Nc</u>	<u> </u>	Sampled	From	To	<u>(ft)</u>	<u>_</u> &	(ppm)	Comments
AH8	507-	-						
	510	1991	507	510	3		392)	
GROO)2	1991	510	512	2		2828)	
AH8	512-	-)	
	517	1991	512	517	5		276)	
AH8	517-	-)	
	519	1991	517	519	2		3884)	1690 ppm
GRO)3	1991	519	521	2		909)	(.17%) Cu
AH8	521-	-					j	over 20 ft.
	527	1991	521	527	6		1850)	
Sam	ole A	AH8 517-5	19 assag	yed 215 pp	b gold		-	

DDH A.9, Azimuth $180^{\circ}(?)$, Dip $-60^{\circ}(?)$, Length, approx. 510 ft.

No drill logs available. Split, mineralized interval (461-483 ft.) is in dark green-grey porphyritic and amygdaloidal basalt. Local zones of bornite up to 7%.

		Ana	lytical	Results			
Sample	Year	Interval	(ft)	Width	Cu	Cu	
<u>No</u>	Sampled	From	To	<u>(ft)</u>	<u> </u>	<u>(ppm)</u>	<u>Comments</u>
AH 9							
461-466	1991	461	466	5		1731)	
GR001	1991	466	468	2		3532)	
AH 9)	
468-473	1991	468	473	5		212)	1588 ppm
AH 9)	(.16%)
473-478	1991	473	478	5		252)	over 22 ft.
AH 9)	
478-483	1991	478	483	5		2212)	

DDH A.10, Azimuth $180^{\circ}(?)$, Dip $-60^{\circ}(?)$, Length, approx. 450 ft.

A drillpad and core were found at the helicopter pad. Hole markings on core boxes are illegible. The core is assumed to be from hole A.10.

From about 319 to 359 ft. is dark grey fine grained limestone. A split mineralized interval (399 t 419) is within a porphyritic amygdaloidal basalt with white plagioclase phenocrysts. Amygdules are infilled with epidote, quartz and bornite.

- 20 -

Reliance Geological Services Inc. -

Sample <u>No</u>	Year <u>Sampled</u>	Ana Interval From	lytical (ft) <u>To</u>	Results Width <u>(ft)</u>	Cu ಕ	Cu (ppm)	<u>Comments</u>
399-404	1991	399	404	5		671)
AH10)
404-409	1991	404	409	5		568)
AH10) 1994 ppm
409-414	1991	409	414	5	+115	4088) (19%) Cu
					ppb Ai	ı) over 20'
AH10)
414-419	1991	414	419	5		2561)

DDH A.11 Azimuth 180°(?) Dip - 60°(?), Length: 508 ft.

0-341 ft. Fine grained basalt and amygdaloidal basalt flows. Local chlorite-epidote-K-spar alteration zones and calcite-quartz veinlets.

341-391 - Dark grey fine grained limestone. Upper contact is abrupt and lower contact is broken and altered.

391-430 - Dark green basalt flow. Local quartz-K-spar veinlets and pyrite up to 5%. Near mineralized interval (430-452), amygdules become larger and are infilled with epidote.

430-452 - Mineralized zone. Bornite, chalcopyrite and minor native Cu infill amygdules and are finely disseminated within basalt. Copper sulphides more prominent (up to 7%) in areas with more vesicles.

452 - 508 - Basalt similar to 0-341 ft. Finely disseminated pyrite and possible chalcopyrite.

- 21 -

Analytical Results							
Sample	Year	Interval	(ft) Width		Cu	Cu	A
<u>No</u>	Sampled	From	<u>To</u>	<u>(ft)</u>	<u> </u>	(ppm)	<u>Comments</u>
AHII 430-433	1991	430	433	3		4835)	4536 ppm
433-436	1991	433	436	3	1.45	14400)	including
436-439	1991	436	439	3		5901)	(.84%) over 9 ft.
439-442 AH11	1991	439	442	3		, 1958)	0,01 2 10.
442-445 AH11	1991	442	445	3		359)	
445-448 AH11	1991	445	448	3		3053)	
448-452 AH11	1991	448	452	4		1244)	
452-454	1991	452	454	2		409	
7.3.2	<u>Rock Ge</u>	ochemistr	y (Figu	ıres 5, 6)	i		
	The fol	The following samples, collected in 1991, are considered					considered
	signifi	cant. Fu	ull des	scription	s for	all sa	amples are
	given i	given in Appendix A.					
Sample <u>No.</u>	Sample <u>Type</u>	Width <u>(cm)</u>	Cu (pr	1 Cu 0m) <u></u> %	<u>De</u>	scripti	on
BOYES							
GR006	Select	-	>20	0000 3.91	7 Tr Am wi ma	ench 7, ygdaloi .th lachite	main zone. dal basalt intense stain.
BOYES					о п		
GR009	Float	-	>2(000 5.4	Am Wi bo na	ench nea ygdaloi th 3% di rnite tive co	dal basalt sseminated and trace pper.
BOYES GR012	Select	-	>20	0000 4.59	9 Tr Ba ma di ch	ench ne salt wi lachite sseminat alcopyr	ar DDH A.4. th intense stain and ed bornite- ite.
			- 2	2 -			

- Reliance Geological Services Inc. –

Sample <u>No.</u>	Sample <u>Type</u>	Width (cm)	Cu (ppm) _	Cu %	Description
AR91-PR1	Chip	150	9466	-	Trench 9, main zone. Amygdaloidal basalt with 3% fine grained disseminated bornite- chalcopyrite.
AR91-PR2	Chip	200	14949	1.38	Trench 4, main zone. Same as PR1 with 4% chalcopyrite- bornite.
AR91-PR3	Select	-	10207	1.04	Trench 1, main zone. Dark grey porphyritic b a s a l t w i t h disseminated bornite- chalcopyrite up to 6%.
AR91-PR5	Select	-	>20000	3.10	Boyes Creek. Two quartz lenses in shear zone with pyrite-chalcopyrite along fractures.
AR91-JR1	Float	-	4276	-	Boyes 2 claim. Dark green-maroon basalt with strong malachite stain and minor chalcopyrite.
AR91-JR3	Select	-	2231	-	Boyes 1 claim. Chalcopyrite and malachite in vertical fractures within fine grained basalt.
AR91-JR8	Select	-	7589	-	Boyes 1 claim. Same as JR3.
7.3.3	<u>Silt Ge</u>	ochemistry	(Figure 5)	I	
	Copper	is the or	ly element	which	yielded significant

Copper is the only element which yielded significant results. Based on a visual examination of the data, 200 ppm copper or greater is considered anomalous.

- 23 -

- Reliance Geological Services Inc. -----

Silts from two creeks on the Boyes 1 claim (draining the Boyes 2 claim area) yielded results of 216, 223, 279 and 400 ppm copper.

Two silts from a small east flowing creek below the main zone analyzed 223 and 253 ppm copper.

Three samples from Boyes and South creek (near copper showings) gave geochemical results of 261, 396 and 1188 ppm copper.

Silts from a northeast trending stream on the Boyes 2 claim yielded 8 results ranging from 720 to 4200 ppm copper from 1969 sampling. Three samples collected in 1991 in the same stream (81, 154, 173 ppm Cu) did not confirm previous results.

7.3.4 <u>Soil Geochemistry</u> (Figure 5)

Eighteen contour samples were collected on two lines: 300 and 500 meters east of the main zone area.

An anomalous threshold level of 75 ppm copper was established in 1971 based on the collection of 1300 samples on the property.

Sixteen soil samples are anomalous, 15 of which are above 150 ppm. Six samples were above 400 ppm, with a high result of 905 ppm.

One spot gold anomaly assayed 90 ppb Au.

- 24 -

8. DISCUSSION OF RESULTS

The target on the Adam River Property is a disseminated (possibly strata-bound) copper deposit within Karmutsen volcanic rocks. Evidence suggests that mineralizing fluids were channelled through faults/shear zones and copper sulphides were deposited as disseminations and bunches within basaltic volcanic rocks. Amygdaloidal intervals were more receptive and contain a higher density of bornite and chalcopyrite. The possible source of copper is from the underlying Island Intrusive rocks.

Another possible model is that the copper was derived from Karmutsen volcanic rocks and was deposited predominantly in strata-bound intervals. Strata-bound, "manto style" copper deposits in mafic volcanic rocks are common in Chile.

The writer favours the first model.

Previous work and the 1991 program defined 4 target areas for follow-up work.

<u>Main Zone</u>

Trenching has exposed an east-west trending mineralized zone, stratigraphically below a 40 ft. thick limestone unit, which has a strike in excess of 450 meters (from Trench 1 to 10). All trenches are well mineralized with many rock samples assaying above 1.0% copper. The highest result from 1991 sampling was 4.59% Cu from a select sample.

Diamond drilling (1972-73) has partially tested the zone over 150 meters strike length and 200 meters down dip. Many of the drill logs and assay results are not available. Copper mineralization was noted in drill core from numerous intervals, that has not been split or sampled. Finely disseminated bornite and

- 25 -

chalcocite in basaltic rocks would be easy to miss on first pass logging.

Drilling has confirmed continuity of the mineralization that was seen in trenches. At least two well mineralized zones exist as seen in holes 2, 4, 5, 6. The copper grade from significant intersections is inconsistent. For example, cross-section $A-A^1$ (Figure 7) shows a mineralized zone 20 to 40 ft. below a limestone unit that was intersected in holes A-6, A-7 and A-11. Core from A-6 assayed 2.11% over 15 ft., A-7 (110 meters downdip), assayed 1.5% over 15 ft. and A-11 (200 meters down-dip) assayed 0.45% over 22 ft.

There is significant tonnage potential in the main zone. Using a strike length of 1500 ft, down dip length of 1000 ft and an average width of 15 ft to the main mineralized stratigraphic horizon, there would be approximately 2 million tons of geological reserves. The zone(s) are open in all directions and the possibility of multiple mineralized horizons exists at depth. Further diamond drilling is necessary to determine grade, extent and continuity.

Boyes Creek - North Creek

Work in 1967-69 established two well mineralized (copper) areas along fracture zones in Boyes and North Creeks. The North Creek zone is within a broad coincident soil geochemical and I.P. chargeability anomaly.

<u>Adam River</u>

An area between the Main Zone and the Adam River is underlain by a coincident soil geochemical and I.P. chargeability anomaly. No known outcrop exists. The area has never been followed up. The anomalies overlie an inferred contact between Island Intrusive and Karmutsen volcanic rocks.

- 26 -

WEST PRIDE INDUSTRIES CORP.

ADAM RIVER PROJECT

NANAIMO MINING DIVISION, BRITISH COLUMBIA NTS: 92 L/8E

CROSS SECTION A-A'

DATE: JANUARY 1992

Figure: 7

Other Areas

Silt samples were anomalous in copper from creeks on the Boyes 1 claim. These creeks drain the Boyes 2 claim area. Chalcopyrite and malachite were discovered in vertical fractures within Karmutsen volcanics.

9. <u>CONCLUSIONS</u>

The writer concludes that the Adam River property has good potential to host an economic copper deposit for the following reasons:

- the geological environment (faulted volcanic rocks in contact with intrusive rocks) is favourable;
- the Main Zone area has significant tonnage potential with possible economic grade of copper;
- at least three other target areas exist which have not been adequately tested.

- 27 -
10. <u>RECOMMENDATIONS</u>

<u>Phase 1</u>

Before further diamond drilling takes place, it is recommended that a ground phase program be implemented to establish better drill targets.

- Establish a grid to cover the Main Zone, Boyes-North Creek and the Adam River target areas. Line spacings should be 100 meters and station spacings 50 meters.
- 2. Geologically map and rock sample in detail over the grid. Controlled traverses should also be run over the Boyes 1 and 2 claims.
- 3. Soil sample the grid at 50 meter stations. Perform contour soil sampling on the Boyes 1 and 2 claims.
- 4. Run a magnetometer and VLF-EM survey over the grid.
- 5. Run an induced polarization survey over the grid. Suggested line spacing would be 200 meters with tighter spacing (100 meters) over areas of high chargeability.

<u>Phase 2</u>

Phase 2 would consist of building access roads, trenching and diamond drilling of targets established from Phase 1.

- 28 -

REFERENCES

- Cochrane, D.R. 1971. Geophysical Report on an Induced Polarization Survey of Portions of the Boyes Creek -Adams River Copper Prospect for Conoco Silver Mines Ltd. Ass. Rpt. 3403.
- Ikona, C.K., 1985. Assessment Report on the Adam Claim for Craven Resources Inc. Ass. Rpt. 14284.
- Matysek, P.F., Gravel, J.L., Jackaman, W. 1989. B.C. Regional Geochemical Survey 92L/102I. GSC Open File 2040.
- Mottershead, B., 1971. Geochemical Report on the Sayward Property for Conoco Silver Mines Ltd. Ass. Rpt. 3235
- Muller, J.E., 1977. Geology of Vancouver Island, GSC Open File 463.
- Sharp, W.M., 1969. Geological Report on the Boyes Copper Prospect for Bethlehem Copper Corp. Ass. Rpt. 1993.
- Stokes, R.B., 1973. Summary and Conclusions on the Sayward Copper Prospect for Conoco Silver Mines Inc.
- Vermeen, H. 1983. Report on the Adam Claim for Craven Resources Inc.
- Vincent, J.S., 1972. Progress Report and Evaluation on the Sayward Copper Prospect for Conoco Silver Mines Ltd.
- Vincent, J.S., 1971. Geological Report on the Boyes Copper Prospect for Conoco Silver Mines Ltd.

- 29 -

Itemized Cost Statement

r

Project Preparation	\$	200
Mobilization & demobilization: (includes food & acc, \$ 190 transportation, \$ 290 wages) \$ <u>500</u>	\$	980
Field Crew: Project Geologist \$ 325/day x 6 days \$ 1,950 Prospector \$ 250/day x 6 days \$ 1,599	\$	3,450
Field Costs:Food & Accomm.\$ 70/day x 12 days \$ 840Communications\$ 20/day x 6 days \$ 120Supplies & eqpt\$ 25/day x 6 days \$ 150Vehicle:\$ 110/day x 6 days \$660	Ş	1,770
Assays & Analysis:22 silt samples @ \$14/sample35 rock samples @ \$17/sample9 Copper Assay @ \$ 6/sample\$ 5418 soil samples @ \$14/sample\$ 252	\$	1,209
Report:Drafting and map preparation\$ 200Report writing and editing\$ 975Word processing, copying, binding\$ 275	\$	1,375
Administration, incl. Overheads & Profit	\$_	1,080
Sub-total	\$	10,064
Plus 7% G.S.T.	\$_	704
TOTAL	\$	10,768

CERTIFICATE

I, PETER D. LERICHE, of 3125 West 12th Avenue, Vancouver, B.C., V6K 2R6, do hereby state that:

- 1. I am a graduate of McMaster University, Hamilton, Ontario, with a Bachelor of Science Degree in Geology, 1980.
- 2. I am registered as a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a Fellow in good standing with the Geological Association of Canada.
- 4. I have actively pursued my career as a geologist for twelve years in British Columbia, Ontario, the Yukon and Northwest Territories, Montana, Oregon, Alaska, Arizona, Nevada and California.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out under my direction, and on published and unpublished literature. I visited the subject property from October 5 to 10, 1991.
- 6. I have no interest, direct or indirect, in the subject claims or the securities of West Pride Industries Corp.
- 7. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

Dated at North Vancouver, B.C., this 12th day of November 1991.

RELIANCE GEOLOGICAL SERVICES INC.

Peter D. Leriche co. B. Gc., P. Geo.

D. LERICHE

Reliance Geological Services Inc. -

APPENDIX A

ROCK SAMPLE AND DRILL CORE DESCRIPTIONS

- Reliance Geological Services Inc. -

ROCK SAMPLE DESCRIPTIONS

SAMPLE NO.	DESCRIPTION WI	DTH (cm)
AR91-JR1	Float sample from dark-green-maroon mottled basalt. Malachite stain and minor disseminated chalcopyrite. Moderate propylitic and hematitic alteration.	-
AR91–JR2	Select sample from rusty amygdaloidal basalt. Quartz-calcite infilling vesicles. Weak propylitic alteration.	
AR91-JR3	Select sample from chalcopyrite within fractures in fine grained basalt.	-
AR91-JR4	Chip sample from basalt with strong chlorite-epidote alteration.	200
AR91-JR5	Select sample from medium grained granite. Weak to moderate K-spar altera- tion and quartz veinlets. Minor pyrite.	-
AR91-JR6	Select sample from medium grained mafic granite with K-spar-chlorite alteration. 1 to 2% disseminated pyrite.	-
AR91-JR7	Chip sample from medium grained magnetic granite with moderate K-spar alteration. 1-2% disseminated pyrite.	300
AR91-JR8	Select sample from fracture zone with basalt. Chalcopyrite and malachite along vertical fractures.	-
AR91-PR1	Chip sample from Trench 9 in main zone. Medium grey amygdaloidal basalt with quartz-chlorite infilled amygdules. Disseminated fine grained bornite and chalcopyrite averaging 3%.	150
AR91 PR2	Chip sample from Trench 4 in main zone. Amygdaloidal basalt with quartz-epidote infillings. Disseminated chalcopyrite- bornite (4%) with malachite staining.	200
AR91 PR3	Select sample from Trench 1 in main zone. Dark grey porphyritic basalt flow with up to 6% disseminated bornite and chalcopyrite.	-
	-i-	

- Reliance Geological Services Inc. -

ROCK SAMPLE DESCRIPTIONS

SAMPLE NO. DESCRIPTION

WIDTH (cm)

40

AR91-PR4 Select sample from Boyes Creek showing area. From footwall amygdaloidal basalt adjacent to fracture zone in creek. 2-3% chalcopyrite, bornite, pyrite in amygdules, fractures, and as disseminations.

AR91-PR5 Select sample from Boyes Creek showing area. Sample from 2 quartz lenses (5 cm wide) within shear zone, 105/vertical, parallel to Boyes Creek. Pyrite, chalcopyrite along fractures.

AR91-PR6 Chip sample across rusty shear zone 120/vertical, in propylitically altered granite. Quartz-epidote veinlets in shear. Disseminated pyrite (0.5%) and trace chalcopyrite.

BOYES Select sample from light grey GR006 amygdaloidal basalt in Trench 7, main zone. Intense malachite staining on weathered surfaces.

BOYES Float sample from Trench 5 meters GR009 north of DDH A.1. Vesicular, amygdaloidal basalt with calcite infillings. 3% disseminated bornite and trace native copper. Malachite stain.

BOYES Select sample from trench adjacent to GR012 DDH A.4 in main zone. Oxidized basalt with intense malachite staining. Disseminated bornitechalcopyrite.

-ii-

Reliance Geological Services Inc. -

SAMPLE NO.	DESCRIPTION	WIDTH (ft)
BOYES-GR007	Sample of X-ray drill core from hole X-4. Intensely weathered basalt, brownish-grey in colour, with malachite staining. Sample from one meter interval. Footages not legible.	3
BOYES-GR008	Sample of BQ core from hole DDH A-1, 66' to 68' interval. Sample of basaltic material with a dark grey matrix, ~10% plagioclase phenocrysts, and 5-10% calcite filled amygdules. Moderate pervasive silicification. Contains a trace to one per cent finely disseminated native copper, chalcopyrite, and bornite.	2
AH2 136-143	Porphyritic-amygdaloidal basalt with quartz-epidote infilled amygdules. Minor disseminated chalcopyrite and bornite.	7
BOYES GR-004	Sample of BQ drill core from DDH A-4 Interval from between 153.3 and 156.6 feet. Sample is amygdaloidal basalt with a very fine grained, dark grey matrix. Locally plagioclase porphyritic with up to 10% intensely saussuritized plagioclase phenocrysts. Moderate pervasive propylitic alteration. Up to 1% finely disseminated bornite.	3.3
BOYES GR-005	Sample of BQ drill core from DDH A-4. From (?) 131.5 to 133.5 interval. (Footage blocks barely legible). Sample comprises basaltic andesite with a dark grey matrix. Contains less than 10% calcite filled amygdules. Spotty propylitic alteration. Contains <1% finely disseminated bornite.	2
	-iii-	

------ Reliance Geological Services Inc. --

DESCRIPTION SAMPLE NO. WIDTH (ft) BOYES GR-010 Sample of BQ drill core taken from 2 the 185 to 187 foot interval in DDH A-5. Andesitic basalt with grey to light grey-green matrix. Amygdaloidal, with 5-10% calcite filled amygdules. Weak, spotty epidotization. Trace very finely disseminated bornite. Sample of BQ drill core taken from 2 BOYES GR-011 30' to 32' interval in DDH A-6. Basalt with dark grey matrix. Weak pervasive silicification. Trace finely disseminated native copper and bornite. AH8 507-510 Dark grey-green basalt with 0.5% 3 disseminated chalcopyrite-bornite. BOYES GR-002 Sample of drill core from (?) A-8. 2 510-512. Andesitic to Footage basaltic with fine grained, greygreen matrix. Mildly porphyritic. 1-2% blebs and disseminations of native copper. Pervasive, moderate to intense porphyritic alteration. Moderate pervasive silicification. AH8 512-517 As AH8 507-510 with trace sulphides. 5 AH8 517-519 Plagioclase-hornblende amygdaloidal 2 basalt porphyry. Amygdules infilled quartz and epidote. with 2-3% disseminated bornite. Moderate silicification. BOYES GR-003 Sample of drill core from (?) A-8. Footage 2 from 519-521. Andesitic basalt, with fine grained grey-green matrix. Intense chloritization occurs in part of this interval. Also intense, fracture controlled and pervasive propylitic, silicic and K-spar alteration, with the latter forming distinct selvages. 1-2% finely disseminated chalcopyrite and trace native copper. -iv-

Reliance Geological Services Inc. ——

SAMPLE NO.	DESCRIPTION	WIDTH (ft)
AH8 521-527	As AH8 507-510 with 3% disseminated chalcopyrite-bornite.	6
AH9 461-466	Dark grey-green porphyritic, amygdaloid basalt. Local zones of bornite, chalcopyrite up to 5%.	al 5
BOYES GR001	Sample of split drill core from (?) A-9 (easternmost 1973 drill hole). Taken from interval of 466' to 468'. Comprises andesitic material with a grey-green matrix, locally amygdaloidal with minor plagioclase. Pervasive weak to moderate silicification. Contains 1-4% disseminated chalcopyrite and 0.5- 2% disseminated bornite ± native copper.	2
AH9 468-473	As AH9 461-466 with less than 0.5% sulphides.	5
AH9 473-478	As AH9 461-466 with less than 0.5% sulphides.	5
AH9-478-483	As AH9 461-466 with 4% combined bornite-chalcopyrite.	5
AH10 399-404	Dark grey-green porphyritic, amygdaloid basalt. Epidote and quartz infilled amygdules. Disseminated bornite 0.5%.	al 5
AH10 404-409	Same as AH10 399-404.	5
AH10 409-414	Same as AH10 399-404 with 3% bornite and possible chalcocite.	5
AH10 414-419	Same as AH10 414-419 with 2% disseminated bornite and chalcopyrite.	5
AH11 430-433	Amygdaloidal basalt with epidote, quartz and copper sulphides infilling amygdules. Approx. 4% bornite, chalcopyrite and native copper.	3

-v-

SAMPLE NO.	DESCRIPTION	WIDTH (ft)
AH11 433-436	Same as AH11 430-433 with 5% bornite and chalcopyrite.	3
AH11 436-439	Same as AH11 430-433.	3
AH11 439-442	Same as AH11 430-433. Chalcopyrite- bornite finely disseminated.	3
AH11 442-445	Same as AH11 430-433 with less than 0.5% sulphides.	3
AH11 445-448	Same as AH11 430-433.	3
AH11 448-452	Same as AH11 430-433.	4
AH11 452-454	Same as AH11 430-433. Sample from unsplit core with approx. 1% chalcopyrite.	2

- Reliance Geological Services Inc. -

APPENDIX B

ANALYTICAL REPORTS AND TECHNIQUES

Report: 9100341 R	Reliance Geologi	Project: Boyes #728						Pa	ige 1 o	of 1	Section 1 of 2						
Sample Name	Туре	Au	Ag	Cu	РЬ	Zn	As	Sb	Hg	Мо	τı	Bi	Cd	Со	Ni	W	Ba
		ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Boyes GR 001	Rock	10	1.4	3532	<2	108	<5	6	<3	3	<10	<2	0.5	44	76	<5	36
Boyes GR 002	Rock	15	1.7	2828	<2	76	5	5	<3	2	<10	<2	0.6	38	63	<5	<2
Boyes GR 003	Rock	5	0.3	909	<2	102	<5	<5	3	5	<10	<2	0.1	48	77	<5	<2
Boyes GR 004	Rock	20	0.7	5621	<2	83	5	<5	<3	2	<10	<2	0.1	41	68	<5	<2
Boyes GR 005	Rock	10	9.0	>20000	8	95	<5	6	<3	3	<10	<2	1.0	39	59	7	<2
Boyes GR 006	Rock	15	7.5	>20000	<2	107	<5	<5	<3	4	<10	<2	0.8	36	70	6	10
Boyes GR 007	Rock	5	3.9	>20000	<2	105	<5	<5	<3	2	<10	<2	0.8	40	74	<5	9
Boves GR 008	Rock	5	<0.1	365	<2	55	<5	7	<3	2	<10	<2	<0.1	40	70	<5	4
Boves GR 009	Rock	10	7.8	>20000	9	102	5	7	<3	2	<10	<2	0.8	38	67	7	2
Boyes GR 010	Rock	10	0.3	4346	<2	109	6	7	<3	2	<10	<2	0.1	43	80	<5	<2
Boyes GR 011	Rock	10	9.3	>20000	<2	119	<5	7	<3	5	<10	<2	0.6	48	76	<5	36
Boyes GR D12	Rock	15	10.4	>20000	<2	121	<5	<5	<3	3	<10	<2	0.9	50	75	<5	11

.

Minimum Detection	5	0.1	1	2	1	5	5	3	1	10	2	0.1	1	1	5	2
Maximum Detection	10000	100.0	20000	20000	20000	10000	1000	10000	1000	1000	10000	10000.0	10000	10000	1000	10000
Method	FA/AAS	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
= Not Analysed	ReC = ReCheck in progress	ins =	Insuffi	cient S	Sample											

· .

: 3

Report: 9100341 R	R Reliance Geological Services Ltd.					Proj	ect: Bo	yes #72	8		Page 1 of 1				Section 2 of 2		
Sample Name	Cr	V	Mn	La	Sr	Zr	Sc	⊺1	A1	Ca	Fe	Mg	К	Na	Р		
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	%	%		
Boyes GR 001	151	145	890	3	19	32	6	0.68	3.03	1.44	>5.00	3.27	0.01	0.06	0.09		
Boyes GR 002	169	112	603	2	41	30	5	0.67	2.55	2.08	3.66	2.05	0.01	0.04	0.06		
Boyes GR 003	138	129	699	<2	32	18	5	0.54	3.60	1.50	>5.00	4.15	0.01	0.05	0.04		
Boyes GR 004	137	154	548	3	25	31	5	0.72	2.46	1.86	>5.00	2.51	0.01	0.06	0.08		
Boyes GR 005	204	225	627	2	24	29	13	0.52	3.88	1.64	>5.00	5.51	0.02	0.04	0.14		
Boyes GR 006	193	192	1072	3	31	5	18	0.01	4.86	3.91	>5.00	3.68	0.15	0.02	0.14		
Boyes GR 007	214	237	1300	4	33	6	19	0.08	>5.00	3.28	>5.00	3.94	0.15	0.03	0.12		
Boyes GR 008	150	165	556	<2	59	22	7	0.60	>5.00	2.26	>5.00	4.18	0.07	0.22	0.04		
Boyes GR 009	214	256	980	3	21	13	21	0.40	3.83	3.36	>5.00	3.29	0.03	0.04	0.18		
Boyes GR 010	168	160	801	3	26	35	7	0.71	3.18	1.33	>5.00	3.48	0.03	0.07	0.09		
Boyes GR 011	182	239	935	3	77	18	20	0.53	>5.00	2.17	>5.00	5.81	0.25	0.07	0.14		
Boyes GR 012	211	237	1631	4	9	5	19	0.02	>5.00	0.30	>5.00	4.30	0.15	0.02	0.16		

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2 1 1 1 2 1 Minimum Detection 1 10.00 ICP 5.00 ICP 1.00 5.00 10.00 10.00 5.00 5.00 10000 10000 10000 10000 10000 10000 10000 Maximum Detection ICP Method -- = Not Analysed ReC = ReCheck in progress ins = Insufficient Sample

.

· •

Report: 9100458 R	Reliance Geologi	cal Servi	ces Ltd.		Pro	oject: 7	49				Page	e 1 of	2	Secti	on 1 o	F 2	
Sample Name	Туре	Au ppb	Au ppb	Ag ppm	Cu ppm	Cu %	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm
AR91 JL 01 AR91 JL 02 AR91 JL 03 AR91 JL 04 AR91 JL 05	Silt Silt Silt Silt Silt		10 10 10 35 <5	<0.1 0.2 0.5 0.1 <0.1	175 216 223 139 129		<2 <2 <2 <2 <2 <2	109 106 109 118 120	15 10 11 45 10	5 <5 10 8	<3 <3 <3 <3 <3	2 2 2 2 2 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.3 0.5 0.5 0.4 0.4	49 65 66 48 48	57 62 65 79 79
AR91 JL 06 AR91 JL 07 AR91 PL 01 AR91 PL 02 AR91 PL 03	Silt Silt Silt Silt Silt		15 <5 <5 <5 <5	<0.1 <0.1 <0.1 <0.1 <0.1	135 133 188 173 154		<2 <2 <2 <2 <2 <2 <2 <2	135 134 125 99 98	7 10 12 12 6	7 10 10 6 7	<3 <3 <3 <3 <3	2 2 1 1 1	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	0.3 0.6 0.7 0.5 0.9	56 51 50 60 84	83 82 67 59 56
AR91 PL 04 AR91 PL 05 AR91 PL 06 AR91 PL 07 AR91 PL 08	Silt Silt Silt Silt Silt	 	<5 <5 <5 <5 35	<0.1 <0.1 <0.1 <0.1 0.4	81 223 253 396 1188		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	74 100 141 115 137	5 6 10 11 10	<5 7 8 7 7	<3 4 <3 <3 <3	1 1 2 2 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.7 0.4 1.7 0.5 0.7	158 47 49 58 67	51 83 100 65 71
AR91 PL 09 AR91 PL 10 AR91 PL 11 AR91 PL 12 AR91 PL 13	Silt Silt Silt Silt Silt	 	<5 <5 <5 <5 45	0.1 <0.1 <0.1 <0.1 <0.1	104 261 174 84 178		<2 <2 <2 <2 <2 <2 <2 <2	150 127 163 64 92	<5 13 12 10 10	<5 7 7 5 <5	<3 <3 <3 <3 <3 <3	2 1 2 3 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	0.6 0.5 1.2 0.3 1.0	252 55 56 30 75	72 67 97 16 75
AR91 PL 14 AR91 PL 15 AR91 JS 01 AR91 JS 02 AR91 JS 03	Silt Silt Soil Soil Soil		10 <5 <5 <5 15	<0.1 <0.1 <0.1 0.2 <0.1	279 400 230 164 46		<2 <2 <2 <2 <2 <2	158 106 53 57 23	8 20 <5 13	<5 <5 5 13 <5	<3 <3 <3 3 <3	3 2 4 2 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	0.9 1.1 1.2 <0.1 0.8	83 85 28 33 30	84 71 45 54 25
AR91 JS 04 AR91 JS 05 AR91 JS 06 AR91 JS 08 AR91 JS 09	Soil Soil Soil Soil Soil		<5 <5 <5 <5 <5	0.3 <0.1 0.3 <0.1 <0.1	404 318 621 407 185		√2 5 √2 √2 √2 √2	104 28 30 74 45	5 13 9 12 8	13 <5 <5 8 <5	<3 <3 <3 <3 <3	1 1 2 1 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	0.4 0.6 0.2 0.9 0.9	49 16 30 43 34	80 27 26 59 42
AR91 JS 10 AR91 JS 11 AR91 JS 12 AR91 JS 13 AR91 JS 14	Soil Soil Soil Soil Soil	 	<5 <5 5 <5 90	<0.1 <0.1 <0.1 <0.1 <0.1 0.2	62 85 276 204 252	 	<2 <2 <2 <2 <2 <2	51 31 104 79 105	10 9 52 6 <5	<5 <5 32 <5 <5	<3 <3 11 <3 <3	2 3 <1 3 3	<10 <10 32 <10 <10	<2 <2 <2 <2 <2	0.5 0.1 2.7 1.2 0.9	34 27 71 41 50	42 34 63 55 55
AR91 JS 15 AR91 JS 16 AR91 JS 17 AR91 JS 18	Soil Soil Soil Soil	 	10 15 <5 <5	0.1 <0.1 <0.1 <0.1	905 637 297 290		<2 <2 <2 <2	112 64 61 53	<5 <5 <5 7	8 6 <5 6	<3 <3 <3 <3	1 1 2 2	<10 <10 <10 <10	<2 <2 <2 <2	0.2 0.3 0.9 <0.1	48 46 41 48	89 62 42 57
Minimum Detection Maximum Detection Method = Not Analysed	ReC = ReCheck in	5 10000 FA/AAS progress	5 10000 GeoSp ins = In	0.1 100.0 ICP nsuffic	1 20000 ICP ient Sa	0.01 100.00 Assay mple	2 20000 ICP	1 20000 ICP	5 10000 ICP	5 1000 ICP	3 10000 ICP	1 1000 ICP	10 1000 ICP	2 10000 1 ICP	0.1 0000.0 ICP	1 10000 ICP	1 10000 ICP

•

: •

Report: 9100458 R	Reliance Geol	ogical	Service	s Ltd.		Pro	ject: 7	49				Page	1 of 2	Sec	ction 2	of 2	
Sample Name	W ppm	Ba ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A1 %	Ca %	Fe %	Mg Z	K Z	Na %	р %
AR91 JL 01 AR91 JL 02 AR91 JL 03 AR91 JL 04 AR91 JL 05	<5 <5 <5 <5 <5	12 23 21 2 2	49 70 76 75 63	245 238 251 244 239	1418 2125 1955 1058 1079	3 2 3 3 3	36 56 61 33 29	23 16 19 29 26	10 11 12 14 14	0.60 0.55 0.58 0.65 0.62	3.92 4.71 4.49 >5.00 >5.00	2.18 1.43 1.53 3.53 3.27	>5.00 >5.00 >5.00 >5.00 >5.00	1.90 1.88 2.25 2.84 2.88	0.02 0.04 0.06 0.02 0.02	0.06 0.06 0.06 0.04 0.04	0.04 0.05 0.05 0.05 0.05 0.04
AR91 JL 06 AR91 JL 07 AR91 PL 01 AR91 PL 02 AR91 PL 03	<5 <5 <5 <5 <5	6 4 10 27 29	78 67 53 42 43	256 239 233 248 274	1696 1347 1222 1786 3455	3 2 4 2 2	39 36 41 40 30	25 26 26 26 21	15 14 11 11 11	0.67 0.64 0.63 0.67 0.68	>5.00 >5.00 4.27 4.25 4.43	3.40 3.22 2.21 1.88 2.01	>5.00 >5.00 >5.00 >5.00 >5.00	2.99 2.89 2.41 1.86 1.64	0.02 0.01 0.03 0.02 0.02	0.04 0.04 0.09 0.05 0.04	0.04 0.04 0.05 0.04 0.04
AR91 PL 04 AR91 PL 05 AR91 PL 06 AR91 PL 07 AR91 PL 08	<5 <5 <5 <5 <5	5 27 21 13 21	34 71 66 47 47	314 235 221 245 233	6469 1124 1145 1106 1821	2 3 2 2 2	19 65 58 76 108	25 30 28 30 26	9 12 10 10 10	0.65 0.72 0.71 0.75 0.70	3.54 >5.00 >5.00 4.72 >5.00	1.64 2.39 2.07 2.16 2.42	>5.00 >5.00 >5.00 >5.00 >5.00	1.71 2.37 2.43 2.62 2.79	0.03 0.03 0.03 0.04 0.06	0.04 0.05 0.07 0.06 0.06	0.04 0.03 0.03 0.05 0.05
AR91 PL 09 AR91 PL 10 AR91 PL 11 AR91 PL 12 AR91 PL 13	<5 <5 <5 <5 <5	37 19 34 42 15	47 39 78 23 125	283 235 228 231 261	>10000 1410 2941 1130 2245	2 2 3 9 2	23 117 65 74 55	18 28 23 4 20	11 12 14 6 11	0.70 0.68 0.60 0.22 0.68	4.99 4.94 >5.00 3.00 >5.00	1.57 2.31 2.29 1.50 1.46	>5.00 >5.00 >5.00 >5.00 >5.00	1.42 2.72 1.88 1.34 2.89	0.02 0.04 0.03 0.08 0.04	0.03 0.06 0.06 0.11 0.04	0.04 0.04 0.04 0.16 0.04
AR91 PL 14 AR91 PL 15 AR91 JS 01 AR91 JS 02 AR91 JS 03	<5 <5 <5 <5 <5 <5	23 53 8 <2 6	113 81 145 123 84	254 274 374 172 596	2978 2941 217 447 186	2 3 2 6 2	47 60 44 45 18	13 21 14 27 19	15 16 10 20 4	0.62 0.64 0.78 0.38 >1.00	4.39 >5.00 4.41 >5.00 2.14	1.22 1.45 0.46 1.30 0.71	>5.00 >5.00 >5.00 >5.00 >5.00	3.01 2.20 0.52 0.34 0.48	0.05 0.04 0.03 0.03 0.03	0.03 0.05 0.02 0.02 0.02	0.05 0.05 0.02 0.03 0.01
AR91 JS 04 AR91 JS 05 AR91 JS 06 AR91 JS 08 AR91 JS 09	<5 <5 <5 <5 <5	28 26 16 34 22	96 47 73 100 79	214 161 148 286 320	1901 185 880 1049 404	5 4 3 5 2	60 27 29 42 30	18 13 21 31 31	13 3 7 12 10	0.50 0.42 0.41 0.78 0.87	>5.00 2.47 >5.00 >5.00 >5.00	1.56 0.34 0.41 1.34 1.10	>5.00 4.64 >5.00 >5.00 >5.00	0.71 0.62 0.46 1.07 0.88	0.03 0.06 0.05 0.03 0.02	0.02 0.02 0.02 0.02 0.02 0.02	0.03 0.04 0.06 0.04 0.03
AR91 JS 10 AR91 JS 11 AR91 JS 12 AR91 JS 13 AR91 JS 14	<5 <5 <5 <5 <5	11 <2 13 9 36	114 107 89 92 83	424 352 224 407 358	369 206 1410 644 4519	<2 2 3 5	40 19 33 28 36	29 36 19 22 8	7 8 12 10 14	>1.00 0.89 0.59 0.95 0.48	>5.00 >5.00 >5.00 4.94 >5.00	1.07 0.74 1.09 1.48 1.79	>5.00 >5.00 >5.00 >5.00 >5.00	0.86 0.60 0.82 1.37 1.20	0.03 0.02 0.02 0.02 0.03	0.02 0.02 0.02 0.02 0.02 0.02	0.04 0.03 0.03 0.03 0.03 0.06
AR91 JS 15 AR91 JS 16 AR91 JS 17 AR91 JS 18	<5 <5 <5 <5	36 16 24 47	107 77 91 69	173 159 261 151	858 787 1388 628	6 4 3 2	51 47 37 83	18 16 18 15	17 11 7 6	0.50 0.47 0.74 0.45	>5.00 >5.00 >5.00 >5.00	1.18 1.17 0.50 1.03	>5.00 >5.00 >5.00 >5.00	1.12 1.57 0.87 1.11	0.03 0.03 0.03 0.04	0.02 0.03 0.02 0.04	0.05 0.06 0.05 0.04
Minimum Detection Maximum Detection Method = Not Analysed	5 1000 ICP ReC = ReCheck	2 10000 ICP in prog	1 10000 ICP gress i	2 10000 ICP ns = In	1 10000 ICP sufficio	2 10000 ICP ent Sam	1 10000 ICP ple	1 10000 ICP	1 10000 ICP	0.01 1.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	0.01 5.00 ICP

Report: 9100458 R	Reliance Geo	logical Servio	ces Ltd.		Pr	oject: 7	49				Page	e 2 of	2	Secti	on 1 o	f 2	
Sample Name	Туре	Au ppb	Au ppb	Ag ppm	Cu ppm	Cu %	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	וד ppm	8i ppm	Cd ppm	Co ppm	Ni ppm
AR91 JS 19	Soil		5	0.2	201		<2	61	24	<5	4	2	<10	<2	1.3	43	42
AR91 JR 01	Rock	10		0.7	4276		~2	181	11	84	<3	1	<10	<2	0.3	45	103
AR91 JR 02	Rock	15		0 1	346		-2	34	12	24	-3	1	<10	-2	0 4	37	35
APQ1 .1P 03	Rock	15		0.5	2231		-2	37	-5	16	-3	, 1	-10	-2	~0.1	22	71
AR91 JR 04	Rock	<5		<0.1	29		3	35	9	10	<3	2	<10	<2	<0.1	38	55
AR91 JR 05	Rock	<5		<0.1	81		<2	62	16	12	5	4	<10	<2	0.5	21	14
AR91 JR 06	Rock	5		0.1	85		2	54	11	6	<3	4	<10	<2	0.5	18	11
AR91 JR 07	Rock	10		0.1	108		<2	60	14	ģ	<3	4	<10	<2	0.4	20	14
AP91 .1P 08	Pock	55		1 2	7589		-2	45	12	5	-3	1	~10	-2	0.5	26	41
AR91 PR 01	Rock	5		3.2	9466		<2	84	9	<5	3	3	<10	<2	1.2	54	88
AR91 PR 02	Rock	5		1.5	14949	1.38	<2	66	12	10	5	1	<10	<2	1.0	45	72
AR91 PR 03	Rock	20		2.2	10207	1.04	<2	42	8	6	<3	1	<10	<2	0.4	29	41
AR91 PR 04	Rock	5		0.1	325		<2	65	13	<5	<3	2	<10	<2	0.8	60	61
AR91 PR 05	Rock	5		2.0	>20000	3, 10	<2	96	9	8	<3	2	<10	2	1.7	22	22
AR91 PR 06	Rock	10		0.1	465		<2	82	29	11	<3	6	<10	<2	<0.1	23	12
AH 2 0136-0143	Core	<5		<0.1	428		<2	65	10	9	3	2	<10	<2	0.3	40	64
AH 8 0507-0510	Core	<5		<0.1	392		<2	90	20	10	6	2	<10	<2	1.0	57	90
AH 8 0512-0517	Core	5		<0.1	276		<2	85	17	12	<3	1	<10	<2	0.5	48	90
AH 8 0517-0519	Core	215		1.9	3884		<2	70	5	8	<3	2	<10	<2	0.7	41	68
AH 8 0521-0527	Core	15		1.1	1850		<2	104	14	12	5	1	<10	<2	0.7	47	76
AH 9 0461-0466	Core	10		0.4	1731		<2	109	10	12	4	3	<10	<2	0.8	52	86
AH 9 0468-0473	Core	5		0.1	212		<2	87	7	8	<3	2	<10	<2	0.4	44	76
AH 9 0473-0478	Core	5		0.1	252		<2	89	<5	8	<3	3	<10	<2	0.3	55	80
AH 9 0478-0483	Core	10		0.6	2212		<2	81	6	9	<3	2	<10	<2	0.2	43	73
AH10 0399-0404	Core	<5		0.2	671	-	<2	73	11	11	<3	4	<10	<2	0.2	48	85
AH10 0404-0409	Core	<5		0.3	568		<2	64	6	7	<3	3	<10	<2	0.1	40	72
AH10 0409-0414	Core	115		0.9	4088		<2	82	9	8	<3	2	<10	<2	0.6	45	80
AH10 0414-0419	Core	20		0.4	2651		<2	82	10	11	<3	1	<10	<2	0.3	43	68
AH11 0430-0433	Core	5		1.0	4835		<2	64	14	10	<3	4	<10	<2	0.7	48	74
AH11 0433-0436	Core	25		2.3	14400	1.45	<2	88	5	<5	<3	2	<10	<2	0.6	41	65
AH11 0436-0439	Core	50		1.4	5901		<2	78	5	7	<3	2	<10	<2	0.4	42	69
AH11 0439-0442	Core	5	**	0.6	1958		<2	93	6	7	<3	1	<10	<2	0.5	47	71
AH11 0442-0445	Core	<5		0.1	359		<2	88	11	10	<3	1	<10	<2	0.2	48	83
AH11 0445-0448	Core	<5		0.9	3053		<2	67	7	9	<3	1	<10	<2	0.9	46	74
AH11 0448-0452	Core	5		0.4	1244		<2	86	7	9	<3	2	<10	<2	0.3	48	83
AH11 0452-0454	Core	<5		<0.1	409		<2	75	9	8	<3	1	<10	<2	0.3	46	77
Minimum Detection		5	5	0.1	1	0.01	2	1	5	5	3	1	10	2	0.1	1	1
Maximum Detection		10000	10000	100.0	20000	100.00	20000	20000	10000	1000	10000	1000	1000	10000 1	0000.0	10000	10000
Method		FA/AAS	GeoSp	ICP	ICP	Assay	ICP	TCP	TCb	TCP	ICP						
= Not Analysed	ReC = ReCheck	in progress	ins ≖ I	nsuffic	cient Sa	mple											

•

TITRATIONAL PLASMA LABORATORY LTD

Report: 9100458 R	Reliance	Geolo	gical	Service	s Ltd.		Proj	ect: 7	49				Page	2 of 2	Sec	ction 2	of 2	
Sample Name		W ppm	Ba ppm	Cr ppm	V ppmr	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A1 %	Ca %	Fe %	Mg %	К %	Na %	P %
AR91 JS 19		<5	4	101	289	501	6	21	23	11	0.77	>5.00	0.59	>5.00	0.50	0.03	0.02	0.05
AR91 JR 01		<5	4	57	163	994	3	56	25	3	0.62	4.39	2.17	>5.00	3.06	0.04	0.28	0.07
AR91 JR 02		<5	<2	137	189	614	<2	134	30	8	0,68	2.61	2.44	4.07	1.36	0.01	0.01	0.02
AR91 JR 03		<5	<2	131	89	224	<2	223	2	2	0.13	>5.00	4.79	3.04	1.52	0.05	0.71	0.03
AR91 JR 04		<5	<2	159	135	341	2	91	32	6	0.76	2.65	2.95	3.14	1.41	0.01	0.01	0.05
AR91 JR 05		<5	22	78	116	644	13	97	6	8	0.31	3.00	2.21	4.30	1.47	0.12	0.07	0.09
AR91 JR 06		<5	41	74	126	438	13	37	5	6	0.30	1.99	1.43	3.84	1.06	0.17	0.12	0.10
AR91 JR 07		<5	25	85	134	566	15	35	7	7	0.30	2.75	2.11	4.26	1.36	0.13	0.09	0.12
AR91 JR 08		<5	<2	47	229	276	3	133	8	5	0.39	2.34	2.12	>5.00	1.09	0.05	0.23	0.09
AR91 PR 01		<5	<2	249	282	1407	3	31	16	22	0.53	4.69	3.41	>5.00	5.89	0.04	0.06	0.08
AR91 PR 02		<5	<2	203	167	568	3	51	37	7	0.96	2.62	2.18	4.94	2.32	0.01	0.04	0.11
ARYI PR US		<5	3	10	127	503	2	42	20	4	0.00	2.17	1.85	3,87	2.14	0.01	0.08	0.08
AR91 PR 04		<0	<2	40	229	207	د د	23	10	2	0.77	2.50	0.25	>0.00	2.00	0.03	0.08	0.09
AR91 PR 06		<5 <5	<2	66	113	785	18	70	13	12	0.28	>5.00	4,68	>5.00	1.60	0.02	0.02	0.20
AH 2 0136-0143		<5	5	132	110	457	<2	42	24	5	0.67	3.18	2.64	4.45	3.33	0.03	0.05	0.04
AH 8 0507-0510		<5	5	164	183	775	<2	32	26	7	0.66	>5.00	1.54	>5.00	5.95	0.05	0.10	0.05
AH 8 0512-0517		<5	20	158	176	761	3	43	28	4	0.79	3.64	1.79	4.82	3.11	0.06	0.14	0.07
AH 8 0517-0519		<5	4	131	127	576	2	31	31	4	0.71	2.64	1.81	4.05	2.29	0.03	0.09	0.07
AH 8 0521-0527		<5	<2	134	177	791	3	33	39	4	0.80	3.00	1.67	>5.00	2.87	0.01	0.07	0.08
AH 9 0461-0466		<5	<2	156	158	1036	3	22	31	6	0.70	3.68	1.53	>5.00	4.04	0.02	0.08	0.08
AH 9 0468-0473		<5	3	122	149	874	2	26	28	5	0.69	3.11	1.4/	4.85	3.29	0.02	0.10	0.07
AH 9 0473-0478		<5	25	141	149	917	<2	29	26	5	0.65	3.59	1.55	>5.00	4.50	0.09	0.05	0.05
AH 9 0478-0483		<5	35	147	164	785	2	3/	30		0.73	3.20	1.49	>5.00	3.71	0.08	0.09	0.07
AHTU U399-U4U4		<5	<2	188	153	281	3	51	31	4	0.80	3.17	1.05	>5.00	3.09	0.01	0.07	0.07
AH10 0404-0409		<5	<2	166	120	481	3	54	25	3	0.70	2.60	1.61	3.90	2.46	0.02	0.06	0.06
AHIU 0409-0414		<d< td=""><td><2</td><td>06</td><td>140</td><td>591</td><td>2</td><td>30</td><td>23</td><td>2</td><td>0.00</td><td>2.79</td><td>1.57</td><td>4.00 SS 00</td><td>2.01</td><td>0.01</td><td>0.00</td><td>0.08</td></d<>	<2	06	140	591	2	30	23	2	0.00	2.79	1.57	4.00 SS 00	2.01	0.01	0.00	0.08
AHIU U414-U419		<0 .c	2	140	120	402	2	34	31	د ۸	0.72	2.00	1.42	/ 82	2.57	0.02	0.07	0.00
ADIT 0430-0433		<0 26	<2	124	120	490	2	26	26	4	0.67	2.00	1 21	A 7A	2 23	0.01	0.07	0.00
ANTI 0455-0430		<5	٩٢	124	120	421	5	20	20	J	0.07	2.1	1.21	4.74	2.25	0.01	0.00	0.05
AH11 0436-0439		<5	<2	131	145	563	3	36	30	4	0.78	2.56	1.54	4.68	2.59	0.01	0.07	0.08
AH11 0439-0442		<5	<2	148	168	638	4	29	38	5	0.91	2.80	1.78	4.94	2.72	0.02	0.09	0.08
AH11 0442-0445		<5	46	117	164	846	4	48	28	4	0.75	3.38	1.4/	>5.00	3.25	0.05	0.11	0.0/
AH11 0445-0448		<5	<2	152	149	549	3	21	34	4	0.89	2.63	1.63	4.91	2.66	0.02	0.07	0.03
AH11 0448-0452		<5	<2	157	160	676	3	19	31	4	0.79	2.96	1.50	>5.00	3.14	0.01	0.07	0.09
AH11 0452-0454		<5	4	134	157	632	3	36	28	4	0.78	2.88	1.52	4.42	2.94	0.03	0.07	0.07
Minimum Detection		5	2	1	2	1	2	1	1	1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Maximum Detection	1	000	10000	10000	10000	10000	10000	10000	10000	10000	1.00	5.00	10.00	5.00	10.00	10.00	5.00	5.00
Method		ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
= Not Analysed	ReC = ReCh	eck i	in prog	jress i	ns = In	sufficio	ent Samp	le										

.

Report: 9100346 R	Reliance Geological	Services	Ltd.	Project: Boyes	Page	1 of	1
Sample Name	Туре	iPL	Cu				
		Job	%				
Boyes GR 005	Rock	9100341	4.73				
Boyes GR 006	Rock	9100341	3.97				
Boyes GR 007	Rock	9100341	2.37				
Boyes GR 009	Rock	9100341	5.49				
Boyes GR 011	Rock	9100341	3.78				
Boyes GR 012	Rock	9100341	4.59				

L

1

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Method of Gold analysis by Fire Assay / AAS

- (a) 20.0 to 30.0 grams of sample is mixed with a combination of fluxes in a fusion pot. The sample is then fused at high temperature to form a lead "button".
- (b) The precious metals are extracted by cupellation. Any Silver is dissolved by nitric acid and decanted. The gold bead is then dissolved in boiling concentrated aqua regia solution heated by a hot water bath.
- (c) The gold in solution is determined with an Atomic Absorption Spectrometer. The gold value, in parts per billion, is calculated by comparision with a set of known gold standards.

QUALITY CONTROL

Every fusion of 24 pots contains 22 samples, one internal standard or blank, and a random reweigh of one of the samples. Samples with anomalous gold values greater than 500 ppb are automatically checked by Fire Assay/AA methods. Samples with gold values greater than 10000 ppb are automatically checked by Fire Assay/Gravimetric methods.

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Method of ICP Multi-element Analyses

- (a) 0.50 grams of sample is digested with diluted aqua regia solution by heating in a hot water bath for 90 minutes, then cooled, bulked up to a fixed volume with demineralized water, and thoroughly mixed.
- (b) The specific elements are determined using an Inductively Coupled Argon Plasma spectrophotometer. All elements are corrected for inter-element interference. All data are subsequently stored onto computer diskette.
- * Aqua regia leaching is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

QUALITY CONTROL

The machine is calibrated using six known standards and a blank. Another blank, which was digested with the samples, and a standard are tested before any samples to confirm the calibration. A maximum of 20 samples are analysed, and then a standard, also digested with the samples, is run. A known standard with characteristics best matching the samples is chosen and tested. Another 20 samples are analysed, with the last one being a random reweigh of one of the samples. The standard used at the beginning is rerun. This procedure is repeated for all of the samples. APPENDIX C

DRILL LOGS AND CROSS-SECTIONS

EA	st	CONOCO SILVER MINES LID. 4647 Kingsway, Burnaby 1, B	N.P.L. .C.		HOLE	NO		1.1.	(34	ッ.		
EL CONTRA	EVATION	ين المريحة المحاصية المريحة ال			COMM	NENCED _					- <u> </u>	
AZ	IMUTH	DIAMOND DRILL RECOR	C		COMP	LETED						
· 016	°	90°.			PURP	OSE OF H		Est S.	RFACE	MI	VERALIZAT	ION.
LE	VEL									zalyin hi 71		
FROM	то	DESCRIPTION	From	CORES To	AMPLES Width	No.	ASS Cu %	AYS Mo %	WID ASS	TH &	Сомме	NTS
3	12	9xccu - 9new portyritie & anygolaloidal anderite							1			
		Las anygolulas a patches & gts, spiel. swicht & oklovile.							1			
		phenocrys 15 S- feldispan + pyrox.										
		grades amysdaloidal -> porphyritie .										
12	18	becoming finer grained parphyriting to only occ.							1			
		patches of scricilia alta.										
18	27	grades to f. g. basallà an Desilé. Return to										
		parphyvitic texture @ 27'								 	and the second	
27	36	gon- au anya, de glichte prohivite andesita	28.5	37		5201	.20				a state a	
		9/2 - epil. anygolulas & plagioclose + pyrer. phenoxyst.		ļ .	L					ĺ		
		in & f.g. silicous grown mass. But + some										
		dison 2 throughout.										
36	47	gy-black f.g. basalte and will to occ anyos.										
	ļ	filled to black dest.	l.,					L	ļ			
47	80	9m-94 anyg. 4 porph. and with 4 silvified	47	52	5	5202	.22		1.10			
	 	zones interspensed = dk su ablantically	52	57	5	03	•/2		60			
	L	alt? bands (eg. 62'-67') Scattered to + and	57	62	5	04	.04		.20			
	ļ	in silicon zones, py + minor m in chloritic	62	67	5	05	.02		.10	ļ		
		bands, Minta decreases generally in lept-	67	72	5	06	. 05	· 	.25	ļ		
_ 80	110	It. gra alte any + pape. anderite interspersed	72	77	5	07	.06		.30	ļ		······
	ļ	to f.g. alk gy-black basaltie andesite.	22	82	5	08	.05	ļ	.25		350	0.08
	ļ	minor in alt - sections.			<u> .</u>				<u>12.70</u>		.	
	ļ	5 x Easing @ 86'- 45°, 97'-30°, 98'-45°	i 		_	ļ	1		·	 -	. <u> </u>	
110	125-	ilk qy - black f.g. bajaltie andesite.	ļ					ļ			.[<u></u>
		CONT				l		•	S. A.S.		1	
								·				
								•				
												19 A.
								<i>t.</i>				

A second se

n sat ayanga **a**ntaran tara ●

EAS	т	CONOCO SILVER MINES LTD. 4647 Kingsway, Burnaby 1, B	N.P.L.		HOLE	NO		<i>A . J.</i>			· · · · · · · · · · · · · · · · · · ·
ELE	VATION _				COMM	ENCED_					
AZI		DIAMOND DRILL RECOR	D		COMP	LETED					
DIP					PURPO	DSE OF H	OLE				
LEV	'EL										
		DESCRIPTION		CORES	AMPLES		ASS	AYS	WIE	TH &	COMMENTS
FROM	TO		From	10	Width	NO.	Cu %	N10 %	A3		·····
125	143	It. gru-qy alter zone, slightly anyq. + pouple.		<u> </u>							
		and site Sericità alts throughout.								·	
		Numerous glà voiris + stringers, and the	<u> </u>	<u> </u>							
		133-135 pors, relat to gto but some dissense.									
143	337	Dk gon-qy f. g. basall Grain sie varies					·				
	,	Seconing Elishtly prohyritic at Times.									
		Occ at filled vuss + any go. + 95 chlarte									
		hands SI colonito - servito alto throwshout.									
		S/ (2021-30° 2081-45° 2411-60°				•					
		255' 45' 330' = 20'	1								
		Silin	1	1						1	•
327	30	Saugus + chieren gone 0-1-5/5	1	1						1	
23/	256	DR 34-01ack med. Sr. Very evening rearinged	1		1		1			1	
2,54	2-7-	Fresh basall?	1	1			1			1	
226	3/7	Driceous gradalisand zone Basatt becomes		+	+						······
		porphyritie & amygoaloidal in 913 - calor.					<u> </u>			1	
		epid: alt		+					· •.	+	
		SKEAny (2 35-6.5 - 60°.	<u> </u>	+	+						·
		360-364 strong shear zone @ 60°.			<u> </u>		<u> </u>				
		tontanter 4' of soft calife gouge.									Int water.
372	461	Gra-gy alt anys. andesite, Zones of miteurle			<u> </u>		 			+	
		915- epid. alt - occur as pervosive bands					.				
		apparently hydrottermed. They anow i alts	<u> </u>			ļ					
		+ forming acal concentrations . eg 404-407				L	I				
		cont. good epop + the Min can throughout.	1				<u> </u>				
		Some 200 min apparent. is to +21-con +21-461-bn.									
		CONT.									
								•			an a
											1997 - 1997 -
									~		
											1

- į

-	NORTH	
	·	CONOCO SILVER MINES LTD. N.P.L.
	EAST	4647 Kingsway, Burnaby 1, B.C.
	ELEVATION	• • • • •
	AZIMUTH	DIAMOND DRILL RECORD
	DIP	

the terms to be a second

i.

PROJECT			
HOLE NO.	. /	· · ·	
COMMENCED			
COMPLETED			
PURPOSE OF HOLE			

•

. .

.

LEV	/EL										
		DESCRIPTION	l	CORE S	AMPLES		ASS	AYS	WIDT	Н&	COMMENTS
FROM	TO		From	To	Width	No.	Cu %	Mo %	ASS	AY	COMIMENTS
		Bounte appears to Javour silvicous alteration zones.		•							
		(421-441 danily consistent but scuttered by)									
461	489	Pore Daminanity f.s. dk. sn. 44 baseltie nock.									
		Slight epidera all- 2. 479-484 porhyrite									
		zone to scattered bu.									
489	530	Lt gn-qy anyq. baself or anderite . anysi.									
		of atty. epil. a black chert. 2000 of greenish	ļ							·	
		epidote alt = . Streaks & Lematite + mings									
		around some anygs. Minor cpy scattered	Į			•					
		Krougsont cons. in 913 rich zones. anyss.	ļ								
		became widespread + 530' & rock gradually	ļ				ļ				
		neverto to baself.	ļ								
530	560.	7. g. dk gy-61. baseltie rock. occ. sl. pape					[
560	627	Gon- gy amy g. Anderite interspersed to f.g.	 								
		94. baseltie and coite. Streaks + bands of	ļ				<u> </u>				
		epil. alt = + southered game	ļ						×	·	
			· · · ·								
		·	 	 			.				
							ļ				
			┨────								
· · · · · · · · · · · · · · · · · · ·			 								
					<u> </u>						· .
·	ļ	· 					l				<u> ``</u> `
			1	<u> </u>		L		1	H		

• • •

El El	0RTH AST LEVATION	CONO 46	DCO SILVER MINES LTD. 1 647 Kingsway, Burnaby 1, B.	N.P.L. C.		PROJE Hole Comm	ECT NO IENCED	A	. 2 .	(BC	e/		
A	ZIMUTH	0.30	DIAMOND DRILL RECORD)		COMP	LETED						
01	IP	60°.				PURP	OSE OF HO	DLE			·····		
LE	EVEL			. <u></u>			<u></u>	****					-
	1	DESCRIPTION			CORES	AMPLES	No	ASS	AYS	WIDTH	<u>&</u>	COMM	ENTS
FRUM	10			From	10	wioth	NO.	2 2	10 76	ASSA			
/	128	Gray king alt and sale w	angedale -	//	17	4	5212	3.3		6.60	[Ŷ.	
		& calcula varying from green - 6	ene 5 black	24	28	4		•6		2.40		<u>+</u>	
	+	Matrix extremely lining. Phenox.	2) calute +									1	
		plagiclass.										;	
		17-19 'Y. Leavy oney. 24-28 9000											
28	37	7. 9. 97 - black baselte anderite	Darchops	挈	43			F\$6		-	 ;	·····	
		porphysitic texture nr. 37'									Ľ		
37	49	Dt 94-ga f. g. delaitually alt?	wanyss.	37	43	16	14	1.86		11.16	/	2/1 0/	1.75/
		of 513-chlor. + calite-chlor som	e sericitization.	43	49	6	15	1.64		9.84		7-5	/
		Good f. g. dinsen ? tomate (alm	or remilike)									<u>.</u>	
·····		non arror. in silvini bande.											
49	61	DK. 94 - 68 basaltie matt. Sly	LL ovokyritization										
		+ Firmite tanda	7 7 7 3	-									
61	65-	alteration decomes nors interse in	patcher of	64	69	5-	16	.22		1.10			
		9th - exidence + silviciation.											
		A at 625 in cts some specs	throughout.							i.		•	
65	88	Gu - em basalt in rasumo alte	vers 5 alts	69	74	5-	17	•11		.55			
		traveros cilciclutation Of a - a in	2	74	79	5	18	.09		.45			
		throughout occur Elizie men		79	86	7	19	.16		1.12			
		(69-75 fairly f. 5 Bate Of 5.)	L	86	9.2	6	20	.20		1.20		75'0	· 48 %
	1	blacks of Scattere Househa to sin	Varina care		· · ·				7				
		sund chic the	- J-J										
84	92	Lt an interest about and in	ence lit										
Q	+	of a sil a clearte "as a " - ?	aring mar.							 -			
	1	La Las	ans en -										·
		ot choj,	CONT.		l	l	!		l	¥i_		· · · · · · · · · · · · · · · · · · ·	
											· · · , •	· · · · ·	· · ·
												•	
									•				

. .

	NORTH			CONOCO SU VI
	FAST			
.	ELEVATION			4647 Kingsv
	AZIMUTH	030°		DIAMOND
	DIP	60°	· · · · · · · · · · · · · · · · · · ·	

.

1

CONOCO SILVER MINES LTD. N.P.L. 4647 Kingsway, Burnaby 1, B.C.

DIAMOND DRILL RECORD

ROJECT		
OLE NO.	9.2. (B.Q).	

01	•	60°			PURPO	OSE OF H	DLE				
LE	VEL		1	CORES	AMPLES		ASS	AYS	WID	6 B H	
FROM	ТО	DESCRIPTION	From	To	Width	No.	Cu %	Mo %	ASS	AY	COMMENTS
92	116	DK. 92 f. 9. baselty anderite Occ. patches									
		a esil servicte altre.									
	1	0									
116	128	Lt an sil, alt = 2me - proheritie to eyes	116	122		2/	.14				
		A at - equility - chlarite . Some perietie	122	128		22	.06				
	1	+ chevitie band. Divien? In blets									
	1	Stuffered .									
128	157	alto bands i de sa cheorite servicte									
FPV	1 cer	alt: + and miligie alt. Christe alt									
		zone now allow bay Ding.									
		136 - 141 scattered my humits rely to such .									
157	183	Grade deaseasing a to - chear - exil.									
		alter Ose and Silvice zone.									and and a second se
183	236	Parel, f. c. 34, 61. basaltie andesite									
		Osc dan Do a patchy 9to - eroid. alty							- 4 <u>5</u> -		
		218-236 - Equinal 9 to filled Especie zones			1 A.				-		ter de la companya de
	1	cutting @ ~ 45" to 3-12" & 9/5									
236	488	Fic med or posettie andcaite Very									
		clips alteration									
		287-288 this sto rem munic almost along									
		core in son . Stearing @ 338' @ 20-40° in /'	I								
	1	a chlor precisited source + provide	1								
	1	390-395 some banded chloritie alter								ren er e	
		Mild. chev. alt = krongrout but med. f. s. baselt.									
	1	423 to + on this 15 van ~ 11 to cove.								1.	

480 -482 breccia gone @ 45°

DIP LEVEL ROM TO 5 /5 5 /8 75 25 25 48 25 48 25 48 25 76 76 93.	90°. DESCRIPTION Overburden Grey lining altered and deiter in numerons annysdules of calcile raying from green-blue-black some feld phenocrypts Green - gy annygdaloidal + porphe and opito patchy cherrite alt = appearing. Sheen - gy porphyritis undente Renocrypts Sheen - gy porphyritis undente Iterstillel pyrx. Sheen - gy porphyritis undente Iterstillel pyrx. Sheen - gy porphyritis undente Iterstillel pyrx. Sheen - gy porphyritis donalthe Tarture dente alter Scattered py. Gradually becomes find praised. For alt ga - black doselter and esite - muior.	From	PURPC	No.	DLE Cu %	AYS Mo %	WIDTI ASSA	
LEVEL ROM TO 75 78 75 78 75 25 25 48 25 48 76 76 93.	DESCRIPTION Overbunden. Grey ling altered and and and in munarous anyschules of calcult raying from green-blue-black some feld. phenocryphi- Green - gy - any any adalouidal + propher and asito patchy cherrite alt = apreasing. Green - gy poor phyritic undente Remocryph of clear - gy poor phyritic undente green of clear - gy program of a provente for the strates of clear - gy for phyritic course for a framed. Scattered py. Gradually becomes find framed. it. alt gn - black baseltic and esite - muior.		XAMPLES	No.	ASS. Cu %	AYS Mo %		
ROM TO 75 5 78 78 25 48 25 48 48 76 76 93.	DESCRIPTION Overburden. Grey ling altered and deite in munarons amysdules of calcill raying from green-blue-black some feld. phenocryph- Green - gy ling amygdaloidal + porphe and coild patchy devide alt = appearing. Green - gy porphyritic undente Phenocryph- Speen - gy porphyritic undente Phenocryphyritic unde	From	AMPLES Width	No.	A55. Cu %			
	Overburden. Grey ling altered and coite is numerous anysolules of calcile raying from green-blue-black some feld. phenocryphi- Green - gy - Cing anygodalovidal + prophe and coite patchy cherrite alt = apreasing. Green - gy poophyritic undente Phenocryph- of cherrite of a conte phenocryph- of cherrity of prophyritic undente phenocryph- of cherrity of coarse boalt interstitial pyrox. Scherity of the coarse boalt interstitial pyrox. Oce. bands of 14 gn epilote - service alteration. Scattered py. Gradually becomes fina framed. it. cherrity of the coarse for the provide alteration. Scattered py. Gradually becomes fina framed. it. alt gn - black baseltie and esite - muior.							
5 18 18 18 25 48 25 48 48 76 76 93.	Grey ling altered anderst is numerous amysdules of calcile raying from green-blue-black some feld. phenocryphi- Green - sy ling amysdaloidal + porph: andersto patchy devide alt = appearing. Green - gy porphyritic underite Phenocryph of statt-shaped plagrochere is interstitial pyrys. Selectified (coarse doralt is taking) Oce. bands of 14 gen existing alteration Scattered py. Gradually becomes fine granied. 'T. c. alt gen black baseltie anderite in milor.							
18 25 25 48 48 76 76 93.	annysdules of calcill raying from green-blue-black some feld. phenocryph- Green - sy - ling annygdaloidal + porph: and coilo patchy chearite alt = appearing. Green - gy porphyritic undente Phenocryph- of platt-staped plapicclose is interstilial pyrox. Sel chearing D. (coarse doraltic texture.) Oce. bands of 14 gn expirite alteration Scattered py. Gradually becomes find granied. it. chearing dorally becomes find prained. it. alt gn - black baseltic and esite in mison.							
25 48 25 48 48 76 76 93.	Some feld phenocryphi Green - gy - diny anygodaloidal + porphis and coilto patchy charita alt = appearing. Green - gy porphyritic undente Phenocryphi of electronic plagiochere is interstitial pyrox. of cheritiged plagiochere is interstitial pyrox. of cheritiged (coarse boraltic texture) Oce. bands of 14 gn epilote - sericite alteration. Scattered py. Gradually becomes fina granied. it. old gn - black baseltic and esite - muior. Figure alt -							
25 48 25 48 48 76 76 93.	Green - gy - ling anygolaloidel + porphe and coite patchy chevite alt = appearing. Green - gy porphyritic undenite Remocryph- of platt-shaped plapicclose is interstitiel pyrox. Sel. chevitiged. (coarse dosaltie take.) Occ. bands of 14 gn epilote - service alteration. Scattered py. Gradually becomes this granied. '7.5. alt gn - black doselte and esite - muior.							
25 48 48 76 76 93.	patchy cherrite alt = appearing. Streen - gy porphyritic undente Phenocrypt Splatt-staped plagiochese is interstitial pyrox. Sel. cherritiged. (coarse boaltrie Texture.) Oce. bands of 14 gn epilote-service alteration. Scattered py. Gradually becomes quia granied. it. alt gn-black baseltie andesite in muior. Finisite alter							
25 48 48 7G 76 93.	Spreen - 94 porphyritia undente Renocrysto Spreen - 94 porphyritia undente Renocrysto Sel cheritiged plapicchose is interstitiel pyrex. Sel cheritiged (coarse dosaltie tatus) Oce. bands of 14 gen epilote - service alteration Scattered py. Gradually becomes this granied it. che gen black baselte andesite is muior. Formite alter							
48 76 76 93.	5 platte-shaped plapicchese is interstitud pyrox. Sel cheartinged. (coarse dosaltie texture.) Oce. bands of 14 gen exister alteration. Scattered py. Gradually becomes this granied. i7.5. alt gene black baseltie and esite in muior. Finisite alter							
48 7G 76 93.	Scheritiged. (coarse boraltie Tasture.) Occ. bands of 14 gen exister - sericite alteration. Scattered py. Gradually becomes find granied. i7.5. alt gen-black baseltie andesite - muior.							
48 7G 76 93.	Occ. bands of 14 gen existen - service alteration. Scattered py. Gradually becomes this granied. it.g. alt gradeal baseltie and esite in miler.							
48 76 76 93.	Scattered py. Gradually becomes find granied. 7.5. alt grade baseltic andesite - muior.							
48 76 76 93.	7.5. all gr-black dagelter andesite - miler.	X	 1					 •
76 93.	Squite alta							
76 93.								
	alts bands of lt pn - gy silicons exilote							
	alty ange + anote is some dissen? In and	•						
	It on cherite said alt = somes showing						N	
	flow structure. 76-86 month silicous,							
	Strap 82,000 @ 104' @ 15".							
93 132	alto bands a on-pupple f.g. sl. porph:							
	situitied with and de an cheavile - coul							
	althe some 7. 5. nort grades to boraltic ander to							
	Patery epilote alteration beginning @ 120'							
132 140	Grades to porch & anderile is glick - epidera-							
	Finite alteration.							· · · · ·
	CONT							

· · · · · ·

÷

	EAST	CONOCO SILVER MINES LTD. 4647 Kingsway, Burnaby 1, B DIAMOND DRILL RECOR	N.P.L.		HOLE	NO NO ENCED	·····	A.3	. (4	3 <i>Q.)</i>		
		90 •.			PURPOSE OF HOLE							
	LEVEL											
		DESCRIPTION	ļ	CORES	AMPLES		ASS	AYS	WID	TH &	COMMENTS	
ROM	TO		From	10	Width	NO.	Cu%	M0 %	AS			
10	295	Priedonmanthe greenst - gy to Black or puple										
		f.c. Casaltu ander te		<u> </u>								
		Deather baints of grz-calorite + carbonde	<u> </u>	<u> </u>						<u> </u>		
		art Jone Farrellzallion Horoughout										
		Stightly prophyrite from 226 - 250.					[<u> </u>		
										<u>† </u>		
					1				•	1 .		
										1	• .	
										<u> </u>		
			<u> </u>		1					+		
					+					<u> </u>		
				<u> </u>	+	<u> </u>				1		
				<u> </u>						1		
							ļ					
			1						N.			
		· · · · · · · · · · · · · · · · · · ·	1	1						1		
			1									
			1				1					
			1									
			1		1							

NORTH 101 EAST 1104 75 AZIMUTH NORTH 1104			CONOCO SILVER MINES LTD. N.P.L. 4647 Kingsway, Burnaby 1, B.C. DIAMOND DRILL RECORD			PROJECT								
LEV	/EL			<u></u>										
		DESCRIPTIO	N	Erom	CORES	AMPLES	No	ASS Cu %	AYS			COMMENTS		
RUM	10			Fiom	10	WIUIN	NU.	<u>CU /0</u>	1110 75					
0	43	over onvoer.	Piet in	╢										
#3	<u> </u>	Hin bedaled, Bedan	q well depir by	<u> </u>						· · · · · · · · · · · · · · · · · · ·				
		aspillaceous bands i	35° to 40° to care.		· ·				ļ					
98	114	Gra-82 ling alt? a	Desite anyes of											
		cale ite varying from	en -blue to black.											
		mating abo v. ling.	asundant py									:		
		Herougrout SI. oncare) noch () 111', more											
		roughe . Tall ran C	> 113.5.											
114	119	Dt en prot + am	10, andesite											
		/inig anyo, + fract	te fairs, but Sterwise											
		timical unaltered an	Dente mehrore.											
119	136	Sn-dk. 34 mak: +	anno andesite	119	127	8	5227	2.70		21.60		127-136		
		fields on shencing 5	anlyss of 61. calcite	127	136	-9;	5228	3.20		28.80		only 5'4"?		
		+ patches of why and	5010	-			ł					cove. Pros		
		Strong eps in first	" harping to the.			17.				52.40		lono~ 130'		
		Porite is almost veri.	like (fine pranie)									17 ft of 2.9 1		
		+ also litre bleks.												
		124-125 char or baseltie	text. almost daspen											
		129' - 1 for a orror. alm	or barren.				1			1				
136	153	Gun. coarse ponot. + an	a andesite andui	1			1		1					
		to F. on bacalta and	to a chen				1			1	1			
		Starright alt - 1/41 - 150) a	~ back to coarce	-	1	1	1		1	1				
		ouph & come and call		1				1		1	1			
			CONTO				1	1						
	·			_ A		-	••	n	•		•			
											·			

N	ORTH				PROJ	ЕСТ												
• 2 E/	AST	CONOCO SILVER MINES LID.	CONOCO SILVER MINES LID. N.P.L.			HOLE NO												
•		4647 Kingsway, Burnaby 1, B	4647 Kingsway, Burnaby 1, B.C.					COMMENCED										
A.	71MUTH	DIAMOND DRILL RECOR	DIAMOND DRILL RECORD			COMPLETED												
					PURPOSE OF HOLE													
	EVEL																	
		DESCRIPTION		CORES	SAMPLES	1 11	ASS	AYS	WIDT	H &	Сом	MENTS						
FROM	TO		From	10	Width	NO.	LU%	M0 %	A00	<u> </u>	<u> </u>	<u></u>						
	170	alternating sands of at gun anderite in	153	158	5	5229	-37		1.73			<u></u>						
·····		patchy apid alter and let from	158	163	3	5230	1.19		3.75									
		silicon bands a gts-epicote alteration	165	170	3	5231	.62		3.10		1							
		in dissen the					ļ		╂}									
170	189	Gradge to dk-gy-black f.g. boselie				+	 		 		<u> </u>							
		anderite:		ļ			ļ											
189	198	alternation dands of dk arm nitense chloritie	190	196	6	5232	.54		3.24		177 C	.84%						
		alteration (to flow texture), and It and						··· 7	14.49									
		sto - enil alta (varino sil. content-).																
		But is made Eilieous & Here bands.																
		(30 - 196 5 6 pomite:										•						
198	210	Proloning the alk in ables alt - mat -																
		The area in a cill parale some to patchy									<u> </u>							
		eniel service alter Sertered and																
		n' Eluisone zone																
210	241	alternation for a sin of sil parch							•.		1							
	1-10	and city of an other said bands																
		End Pakes attes & kues & sta	1				1											
		Numerus the bands a standing alta																
	+	2 miles in and (2) 58°-60° (2) 215-220	1	1	-													
	-	4 227 - 228	1	-														
	-	See the O Guid a	1															
		Der 24 in the inter of the office of the second	1		+	1	1	1			1							
		286 - ATTO is presion aning grante chear - Epil		+		-			1		1	<u> </u>						
		alt= is scattered py		+		+	1	1	1		1							
	1	CON -	1	1	1	1			<u> </u>	J								

the the test of te

•	RTH ST EVATION	CONOCO SILVER MINES LTD. 4647 Kingsway, Burnaby 1, B	CONOCO SILVER MINES LTD. N.P.L. 4647 Kingsway, Burnaby 1, B.C.				PROJECT									
,	митн	DIAMOND DBILL RECORD														
040					OLIDDA		015				· · ·					
	VF1				runru	Jac Ur H	016									
				CORES	AMPLES		ASS	AYS	WID	TH &	00111151170					
FROM	TO	DESCRIPTION	From	To	Width	No.	Cu %	Mo %	AS	SAY	COMMENTS					
46	331	Pred. gn-gy-61. f.g. bosaltie andcoile							1							
		Scattered patteres of 95- april alte Occ.														
		poorpra zones (phenox A yeld + purper) ore.														
		cover 5)- patiency expire alts or anyras.														
		Shearing @ 278 - 30° 286 - 45° /3° freecial														
		2 306 - 50° 326 - 45° (3° breccia.).														
3/	639:	Dk en f.g. pagaltie and is some of							1							
		cher. alter + 9/2 - chlorite Green 1344-45														
		Occ. El. anno + prote Epiel estates or							1							
		annage. a 35t4.														
		Shewing @ 336 ~ 47".														
		313 - 315 - shi make their venit thatte														
		a croid. + sto-engiel alte														
		387 - 4° SIT + SIT cheor. Greenie Jone									1997 - S. 1997 -					
		473-75 sto chlor breenin zone .														
-394	646	Plack the bedded 15. Beddy (350							1							
		to are. por chear. shear @ to contact.														
		Py abour bedding. Bottom contact clean!														
646	652	Dit en- 52 any anderite ander							1							
		scattered willed a 1/5 + adlarite														
		2" sty rein @ 65% + this are @ ~ 30"														
652	658	you hay f.s. dk m. baselts anderite														
		mild chloritie + servicitie alto							1		· · · · · · · · · · · · · · · · · · ·					
		CONTO														

.`

	NORTH	
. · .	- FAST	
•	ELEVATION	
•	AZIMUTH	
	DIP	

L

CONOCO SILVER MINES LTD. N.P.L. 4647 Kingsway, Burnaby 1, B.C.

DIAMOND DRILL RECORD

PROJECT		
HOLE NO	 	
COMMENCED	 	_
COMPLETED	 	
PURPOSE OF HOLE	 	

a sta

۳.

. . .

LE	VEL		[CORES	AMPLES	<u></u>	ASS	AYS	WID	TH &	COMMENTS
FROM	TO	DESCRIPTION	From	To	Width	No.	Cu %	Mo %	AS	SAY	CUNIMEN (S
658	680	En alte andrate is tracial sesting 315-epil	659	663		5233	0.41		h		
		chilled annua ht an dands of motive	663	468		5234	0.74-		117	0.55	
		a Dotigation + Eiligidiation to accompany my	668	673		5235	0.18				
		traite Rhade & An an feathered throughout	673	676		5234	7.04		V		
		Ki com du Q GGA +675' anosavis veini -/ike									
		Show in Flow ter Two & Consola									
680	688	Fine the sr often boaltie math in									
		mild so inter alon									
688	7.58	Pred f. c. amer basalt angle &									
	100	at - evil , bands & smuite att.									
		Some f.g. sections speckled in mox.									
	Ì	Scattered on the is bands of nitensely									
		cilis matt.									
758	285	7. S. ok. sn. bogethie matt, anys, wild									
		scatter of.									
289	814	F. C. dk. En 61. bankt. in occ. bandi)							×.		
		epid. alt. Sperk's porroy tay 1-									
814	828	as sove but in Sto spiril. anys. Occ. care.							l		
		Son & games . 1' trick .									
828	839	7.5. m. annes boalt - 5 service bands									
835.	875	7. c. Sasaltin to amyo. a staterial +									
	907.	12 gr. bander of 915 excel alter (intense).									
		ampre, var a size + conch									

i.
	NORTH ELEVATION _ AZIMUTH DIP LEVEL	CONOCO SILVER MINES LTD 4647 Kingsway, Burnaby 1, DIAMOND DRILL RECOR	. N.P.L. B.C. RD		PROJ HOLE Comm Comp Purp	ECT NO MENCED PLETED OSE OF H	DLE	A.:	5(±	3¢]	
•		DESCRIPTION	1	CORES	AMPLES	AMPLES A			WIDT	Hâ	COMMENTS
FROM	TO		From	To	Width	_No.	Cu %	Mo %	ASS	AY	
0	18	overbuide	- 		ļ				[]		
18	39	Lt qy very alt andesite Textuse									
		of typical & andesite but matrix and	27	33	6	5243	1.72		10.32		
		amygdules are soft calcite. anyos are	33	39	6	5244	1.68	L	10.08		12'@ 1.7%.
		white - en - black and occus in varying									
		concentrations. Some f.s. matt. is baseltie									
		Terrine, Good the from 27-39. + bu @ 35-38.	1								ι. N
39	55	Shades to an adlactually alto K. coasse								•	
	-	anno y propi a Desite P									
		Cutions' salt + pepper' texture a black pyrox.									
		a chlorite + white calite societs.									
		Matrix and annugs, still pred. linin.									
		Phenon of en Yeldson									
		The evanied borner bares bets. 39'+ +3'									
		6 * man a 45'									
55	71	Gradually grades to f.S. mati Sections							`¥ . ,		
		g coasse anys. + porph: lining alty as						ļ	<u> </u>		
		Oatrove but pred finer.	-								
	105	Greenish, Y.g. anys. + porph: alt - butter									
·		anderite any F. + plende. Show local		ļ				ļ			·····
		concentrations otherwise you'ly scattered.	1		·						
		Ban Ds of 14 pm - buff servicite alt = + mild									
		epil - Service althe Hroughout						ļ			×
		Gradually marearing speckled pyvox. Text.		ļ							
·		in anyos of gtz + chlorite.					[
		OI OI S SNT?									

CONTO

5

i.

2 4 - 12 - 12

1 .

L

i

i.

.

1.15.12

, . · · ·

NO NO EL AZ	NORTH P CONOCO SILVER MINES LTD. N.P.L. H ELEVATION 4647 Kingsway, Burnaby 1, B.C. AZIMUTH DIAMOND DRILL RECORD						PROJECT A. 5. (B.Q.) HOLE NO A. 5. (B.Q.) COMMENCED COMPLETED								
Dif	° <u></u>				PURP	OSE OF H	DLE								
LE	VEL		[CORES	AMPLES		ASS	AYS	WID	rh &					
FROM	то	DESCRIPTION	From	To	Width	No.	Cu %	M0 %	ASS	AY	COMMENTS				
105	171	7. g. dt gn-bl. basalt- Speckled pyrox.		ļ	ļ										
		texture. Scattered the sta venis along			l										
		Gractures oftensise little or no alt													
		Veni a chie br. @ 154.							L						
171	201	Lt pl-sy anyo, + pape stz-epil. alt-	171	176	5	5237	. 20		1.00						
		ane physical of plan + anyons filled	176	181	5	5238	.40	<u> </u>	2.00		· · · · · · · · · · · · · · · · · · ·				
		Two coid + other Some the proof intense	181	186	5	5239	.40		2.00						
		als-chlorite + chlor - a.D. alt.	186	191	5	5240	.40		2.00		1				
		Dissem ? the throughout Varily	191	196	5	5241	·32		1.60						
		congritent- acc. Stronger near pls bands	196	200	4	5242	,08		.32		29' @ · 31%.				
		Lagt 5' lege anys: m.g. porphy.						25	8.92						
		Souchled to prove + chlorite.													
201	254	alts bands of alk on ablor-epil, alts													
	286	and su-su A purple alt? amus. + pavoks													
		zones. Numerous 015 dilled amises @ 218'-220'													
		Gy-preple zones because quice granic + 1888													
		annug + parphe is dept. Chear-goid. alter				<u> </u>									
		zoles show virtually us texture ofter than													
		being a of find missture.							I						
		Some scattered and													
							1								
											#-				

States and the second s

NORTH		CONOCO SILVER MINES LTD. N.P.L.
EAST		4647 Kingsway, Burnaby 1, B.C.
ELEVATION		
AZIMUTH	025	DIAMOND DRILL RECORD
DIP	60°.	

L

L

i.

í

1

PROJECT		
HOLE NO.	A.G.	
	······································	
PURPOSE OF HOLE		

LE	VEL			CORE S	AMPLES		ASS	AYS	WIDTH &		COMMENTS
FROM	TO	DESCRIPTION	From	To	Width	No.	Cu %	Mo %	ASSAY		
0	15	o/ burden									
15	27	Gy- 51. Juning alt? audesite mostly fig. but									
		some anyon + porphe zones. 7.9. matt. has									
	1	appearance à basall- but quite liny.									
27	44	Greenisz - owell ling anyo, + prople alto	27	32	5	5245	1.94		9.70		
	1	anderite Green coloration prop. due to	32	37	5	5246	2.08	·	10.40	·	15 / 2 11/
·····		cherite, Gn-61, calite in any 495, planox.	39	44	5	5247	2.32	ļ	11.60		
·- <u></u>		5) feld Bornice Kroughout in blacks			15		6.34				
		4 V. F. g. Lormin's pupple bands com usually									
		at marini à ba dands			ļ						
	1	(37-393 lk on f.g. section is anys of 61.			· .	ļ		ļ			
		Calinta . No ba) .				ļ					
44	53	Paqually same as above, pors. more poupli	51	53	2	5248	1.14		2.28		
		+ gradually becoming less ling more	 								
		Filicous. Minor an Hroughout, 500		ļ	ļ		Į	ļ			
-		br. From 5-55.		ļ					N		<u></u>
53	72	Gy-sy-buff prots + any alt & anderite.	Į				 	ļ			
		V. even coarse texture anyo, filled to gtz.				ļ	 				
		+ buff servite Clear - servicite althe throughout.		ļ	<u> </u>	ļ	L	ļ			
• • • • • • • • • • • • • • • • • • • •		Latt - 82aped plenor, & plag.		ļ		ļ		<u> </u>			
		63-69 contains ser. Bands of intense chlor-		ļ	ļ	ļ		ļ	4		
		epil. alty				ļ	_	ļ			
72	93	Pred. OK Sy speckled Dagaltie anderite	ļ					ļ			
		some sericitization in bands & some gones				ļ	ļ				
		a porphe + annys. tert.			·			<u> </u>			L
		0 ' ' ''									

1-1

<u>,</u> ,

	NORTH EAST ELEVATION AZIMUTH DIP LEVEL	CONOCO SILVER MINES LTD. 4647 Kingsway, Burnaby 1, E DIAMOND DRILL RECOR	N.P.L. 3.C.		PROJ HOLE COMM COMP	ECT E NO MENCED PLETED POSE OF H	OLE		A.G.			
6804		DESCRIPTION		CORES	AMPLES	1 11-	ASS	AYS	WIDT	H &	COMMEN	TS
<u> </u>	/20	Su-qui any and site one porphe pands	Prom 97	102	Wiath	NO.	.38	M0 %	1.90	<u></u>		
		of interse of 5- apid. chlor, alts.	102	107	5	5250	.56		2.80			
		Epidete in anyo. + En. Venis throughout	107	112	5	5251	.50		2.50			
		Good dissen 2 for bless throughout-	114	119	5	5252	.39		1.95		92'0	.47%
		strongest sections appear to be rell to										
		epidote. 112-114 f.s. banen sect = minimal alt=	Į		ļ							
120	136	"Pred. dd -gy-61. f.g. speckled basell-										
		128 - 130 the count is the anna eight alt										· · · · · · · · · · · · · · · · · · ·
		Zone. No Cu.										
	138	at m- sy anys. stringin, alt = your 5										
		Jairly 500 action - Sur.										

138	200	alts. Bands & dk on ohlow - eard alt=	
		growing flow text and the gu-sy angue	
		+ por of . 9th - soid alt 2 points.	
		These sones gradually because fine granied	
		sy - engle bands of purple jagger + lse	
		rues olz.	
		Grades to bapetic mall. @ 200'.	
200	280	Pred. f.g. dk 54-61. bagaltie anderite in	
		oce, pones of Exil alt " . local concentrations	
·····		a chiel anness you se pourte gones	
		Calty becomes wilcher scattered in dapt.	

•

· · · · .

i.

1 . 1 . 1

ι....

NO ELI AZI DIP	RTH ST EVATION _ IMUTH P	CONOCO SILVER MINES LTD. N.P.L. 4647 Kingsway, Burnaby 1, B.C. DIAMOND DRILL RECORD				PROJECT									
LEV	VEL														
FROM	TO	DESCRIPTION	From	CORES	AMPLES	No	ASS	SAYS	WID	TH &	COMMENTS				
155	190	the day 11 hout Onit - al all	FIUM	10	Width	NO.	1 00 70	10.76	A3						
	- 18	Finite alt - Numerous 973 + baccoia filled													
							1	1							
		Straning @ 176' @ 2 300		1			1								
		187-188' @~20-20"	1				1								
		· /9/ ' @ 2 40°					1		1						
		195' @ 15-20°.					1								
		Se					1			1					
							1	1	1	†					
							1			1					
			1				1								
			1				1	1							
							1				· · ·				
								1							
			1				1		~~						
								1							
							1								
								1							
			1				1		1						
								1							
								1							
							1								
							1	1							

ELE AZI DIP	WATION _ MUTH /FI	<u> ろ、み</u> DIAMOND DRILL RECORD	C		COMM Comp Purpi	LETED LETED DSE OF HO)LE						
		DESCRIPTION	Ecom	CORE S	AMPLES	No	ASS	AYS Mo %	WIDTH	H &	COMMENTS		
2	10	E Al Analte Devite such (D) is such	11011	- 10	- Wildtin						· · · · · · · · · · · · · · · · · · ·		
ح		Agentic and the permit of price											
4 2	28-	alts sands of the f. o. basaltie and erite											
		× anys, bands showing interse 9 15											
		Servicite alt-											
		Be scattered throws Lout blacks commonly be?											
		in gts - enil and as but ust exclusively.											
28%	43	alter. Somos of alk on . allow - epil. alt=											
		I cood flow texture and It go - 54											
		anys + porphe bands of notese ato									• .		
		chiel, alter Scatter D any.											
43	66	Gradational zone, alt - svadually											
		becomes les interse until als scattered											
		g/= - exil amyrs.											
66	71	DK 5n - 61. f.s. bosalt shew. alt-=							÷.				
71	77	Lt gn. chlor - epil alts zone to patokes											
		a gli + siluigied breccie Monor to + -											
		Carroe I gts pones.											
27	84	DK 94-61. f. S. Speckled boralt.		ļ									
84	90	L+ gn chlor - epid - ser. alt - gone . scattered sto bands	I										
		minia bu + cpy.						ļ					
90	107	Gradually dureaning 5/5-cyil alt - one se parpt:	Į		ļ	ļ							
107	144	7.5. 5y-61. Sabaltie and cite, minimal alt-				ļ		ļ					
					<u> </u>								
								•					
									· .				

EL	EVATION _	4647 Kingsway, Burnaby 1,	B.C.		COMN	ENCED _							
AZ	IMUTH	220 DIAMOND DRILL RECO	RD		COMP	LETED							
Dii	۹	60°			PURPOSE OF HOLE Ten 2 TR. 7.								
LE	VEL			CORES	SAMPLES		ASS	AYS	wid	тна [
OM	TO	DESCRIPTION	From	To	Width	No.	Cu %	Mo %	AS	SAY	COMMENTS		
1	7	Grey - bult ling anyo. and coile a baselt 5							 				
		anygs. of black calcite Badly oxidized blocky		ļ	·				ļ				
		core markite stanin over tor first 4'								ļ]	· · · · · · · · · · · · · · · · · · ·		
		but no vijišle bu or cpy.		<u> </u>				ļ		ļļ.			
7	19	Dt- an extremely paphysitic andesite.								ļļ			
	Ĺ	Family silicous, teldspar phenoarys 6 +	 	ļ						ļļ			
		slight of low pyrox. Grades To quice prave		· .				ļ					
		material.		· · ·					 	II			
19_	28	Gradatural from above to this granie		<u> </u>									
		basaltie and coite, Occ. bands of servicitie alt								₽	·····		
28	53	7. g. dk pun - gy basaltic andesite, mill seriitigate	<u></u>										
53	61	Lt gra intensely alt of 9/3 epil chlar-sericit	-	ļ					 	ļ			
	ļ	zone to bands of pure g15. Good divier											
		On + cyc, throughout.		ļ				ļ	ļ	ļļ	· · · · · · · · · · · · · · · · · · ·		
61	64	Mildly alt = pophyritic and with		· · ·			 	_	<u> </u>				
64	86	alternating bands of dk pring 15-chlor, alts					 	· · ·	1 ¹¹ 1	₽	·		
		+ lt gr - gy pl3-ep service alts		· · · · ·				<u>↓ ·</u>	 				
		Sattered on in sil gones. Oce. patch as of g 13.						ļ	<u> </u>	├ ─── ┃			
86	115	Pred for programple boration andesite				· · ·	Į			₽			
		to occ. Emale zones of 9 13- goil- chlorite alt=				ļ		<u> </u>	<u> </u>				
		Oce. 513 filled amyss. and oce. Sl. porphis					Į	ļ	 	·			
115	124	51. prophi baselt. phenox. Splog. + occepatities of epil.					<u> </u>		<u> </u>				
124	188	Med. gr. alk gy - 61. speckled baselt, even text, no alter			+	i		<u> </u>	<u> </u>				
158	181	Dt gy - 51 baselt to min chear alt - + oce.				 	 			∦			
	<u> </u>	this gts rent.		l		L	<u> </u>	L					

jan Berning Berning State (State State Berning State State

e ¹ , EA	ST EVATION _		4647 Kingsway, Burnaby 1, B	.C.		COMMENCED									
AZ	INUTH	200 *	DIAMOND DRILL RECORD	D		COMP	LETED								
DIP	·	60*				PURP	DSE OF H	OLE	Ten	TR.	*8.				
LE	VEL			-			*/*****		and any film where		Π				
ROM	TO	DESCRIPT	0 N	From	CORES To	AMPLES Width	No.	ASS Cu %	AYS Mo%	WID AS	TH & A	COMMENTS			
1	6	Dt. com-61. (mis an	us, andeite												
		Gue stain @ surface	. St. alta alta									•			
6	27	Gon-que anyq. + porp	anderite . Varying												
		exiDote - service altre	any 95. 9 9/2 - goid.		ļ	· .									
		Jan by wieldy scattered	Phanocrysh") play.			·									
		in variable concentration	5. Some fections suite												
		fig. baseltin Qt. v	en C 13' in the												
27	54	alta baras g fig.	andesite, dk gan, sl.												
		pople and alt any	g. and coits in g13-epil.												
		amys. + epid-service al	E												
		Norrow Gands & interse	apid-service alt -												
		Contoni good Some			+							Anne			
		50	40 4/3 - 45 + 5 - 463												
		to and car and	Jerrons - 700 Willopres			1									
54	84	alternate dk. cma s/3 - 4	lar-eine alter anis		1					<;					
		and lt En- En Sil an	ma : prop = zones to												
		munter 6 0	<i>//// 3</i>								·				
84	110	alternating zones of yamily	F. p. basaltin mall. 5												
		varyn; alt and for	mily intense ablan-apil.				-								
		alt - 2000. (93 2 - 94 5. 5	ile silicons / raviable		L	ļ									
		amys + porphs textue			ļ										
110	124	Predominantly & fs. dk	gy boaltre anderte			ļ		ř	ļ	 					
		acc. bands g chere	alt.							<u> </u>	 	· · · · · · · · · · · · · · · · · · ·			
	I	<i>U</i>			l	1			l	L					

_ NOR	RTH	CONOCO SILVER MINES LTD.	N.P.L.		PROJE	CT	+5	-		·	
ELE	ST	4647 Kingsway, Burnaby 1, B	3.C.		COMM	ENCED		· · · · · · · · · · · · · · · · · · ·			
AZII		DIAMOND DRILL RECOR	D		COMP	LETED					
DIP	,				PURPO	SE OF H	DLE				•
LEV	VEL					······				~ 1	
FROM	TO	DESCRIPTION	From	To	Width	No.	A55 Cu %	Mo %	ASSAY	COMMEN	rs
124	131	Fair chlaite - goilote alte and derelyoment									
/31	150	7. g. dk. gy- bl. begaltie . Even testare									
		149!									
		······································									
						•					
					<u></u>				×.		
					-						
		······									
		· · · · · · · · · · · · · · · · · · ·									
			<u> </u>								
	L			L	L			I		<u>H</u>	

- 8³⁰

*****••

NC EA	ORTH	CONOCO SILVER MINES LTD. 4647 Kingsway, Burnaby 1, B	CONOCO SILVER MINES LTD. N.P.L. 4647 Kingsway, Burnaby 1, B.C.				PROJECT								
AZ	ZIMUTH	DIAMOND DRILL RECOR	DIAMOND DRILL RECORD			COMPLETED									
DI	P	90°.				DSE OF H									
LE	VEL					<u></u>									
		DESCRIPTION	ON CORES		CORE SAMPLES		ASS C4	AYS	WIDTH &	COMMENTS					
FROM	10			10	width		15			-					
4*	24	Greenisk-grey alt anyg. + porph. anderste Ag-gie.	4	24			.05			50-102 illustralit					
- <u></u> .		angolules Veldspar pleno crysh sourt f. g. basance	21	24			.06			Syricz matrice					
		sections Droten Dorme + Copp. Fust 6 guite	27		†					D . 1/5 + accome					
	10	Fring - nest widely scattered.		 	1					anila Start					
24	40	Grey subies feldere prophyry. Chronie-chiose			1					Seens the					
	+	anyos. + streaks & chloridic all's Occosionally		<u> </u>						Sevelopment - S					
	16	anygdatoidat.		<u> </u>						Seld aleron					
	47	alternating sames & qe. gin calourisally all -		1	+					tox to wild					
		niceral and 49. second porph. & angg.		† ·						consisting time					
49	55	And Could Writery scattered . + +					1			antice then					
		the grand datalia and asite to mind	[+		1			active to coice					
	59	chuo au :	· · · · · · · · · · · · · · · · · · ·	1						alt= + 1/2 . el					
		Sa the statistic units - porph. and the	j	1	+		1			complete silies					
	102	alteration towns & Do At an posilit		1						Drock & max					
		and states to are alted and + arreads		1		<u> </u>	1		~	mmi/m .					
	1	ance cost many several 2-3" dands	 	1		<u> </u>	1								
		I sto usually accompanied for intense				1	1								
		Service alt=													
102	115	Pred. f.g. dagalter anderete to minimal alts	1				1								
		some phenocriment of Velal. + patches of service.													
115	143	7. a. dk gy- 61. baselin andesite to only st.													
		chlar - servite alt: Steaming @ 129'- 450													
143	155	Pred. 913. filled skeared + brecciated gone ting													
		@ ~ 15-20°. Some unbroken baselt-					1								

ببسردت والدا

.

.

	NORTH		
ંંડ્ડ	EAST		
	ELEVATION		
	AŻIMUTH	050	
	DIP	65 •	

Ĺ

1

CONOCO SILVER MINES LTD. N.P.L. 4647 Kingsway, Burnaby 1, B.C.

DIAMOND DRILL RECORD

PROJECT									
HOLE NO	4.6.								
COMMENCED									
COMPLETED			<u>.</u>						
PURPOSE OF HOLE		· .							

LE	VEL									
	1	DESCRIPTION		CORES	AMPLES		ASS	AYS	WIDTH &	COMMENTS
FROM	TO		From	To ·	Width	No.	Cu %	Mo %	ASSAY	
	10'	Gy-purple / in'y anys andrite anyso of								
		wh-black calcite, matrix f.g. ling,								
		Some manor, Steldspay amuga, grade								
		to caid-sensite filling and new to								
10	19	Service Que alt of an abral array to on the								
		Pristand and the stand of the s								
	200	Server auf-2	<u> </u>	<u> </u>						
	-25	DE 54-DI. Spickled Bodollin andere								
25	#7	Gn-sy alt I amys, and site anyos				· · · · · · · · · · · · · · · · · · ·	 			
·		filled 5 515-cpil, are porphi goves,	.		 		ļ			
	 	St. epil. alt troughout. Some .	 	ļ			ļ			
		blebs n'anyss.	 	ļ			 			
47	55	7.5. dk gy-bl. basaltre an Desile Mild					 			
		chlaritic alt=		<u> </u>	1					·
55	80.	altig bands of it en - gy amyo + parphs								
		mes to strong sto-exil alt and							•	
	1	alt an - angle chenitically alt of hande						·		
	1	Santa Dille for D	1					-		
En	112	E la + ett and Call - I for			1		1			
	112	grand a grand and a complete and the complete	1	1			1	1		
	1	Scatterer anion - equit and = + 913 Row quice		1			1	1		
		anyes. Scattere py.		+			1			
	1/20	4.5. oth gy-Ol. bosallic anderde Mina								
		cpiel. alth.								
·					+					
· ····		CowT.		<u> </u>	1	l	I	L		P

ELEVATION AZIMUTH LEVEL		CONOCO SILVER MINES LTD. N.P.L. CONOCO SILVER MINES LTD. N.P.L. HOLE NO. 4647 Kingsway, Burnaby 1, B.C. COMMENCED DIAMOND DRILL RECORD OMPLETED PURPOSE OF							<u>х с</u> сео ео ог ноlе							
	DESCRIPTION		ļ	CORES	AMPLES	****	ASSAYS		WIDTH &		COMMENTS					
FROM TO			From	To	Width	No.	Cu %	Mo %	AS	AY						
<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	5. anderste is an	-yg. + porphe It. gn.							ļ							
epilotz	alt = zones.	· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>	 									
_132 150 DK 94	- 5% rolatively	- matri greekle			<u> </u>											
bonlt.	te and soute.							ļ								
	·····						I		┨							
						<u> </u>			<u> </u>		<u> </u>					
	······································								<u> </u>							
• • • • • • • • • • • • • • • • • • •			1			<u> </u>					* 					
			1				1		<u> </u>							
			1		<u> </u>	<u> </u>		1	<u> </u>		•					
			1		1		1	1								
			1		1			1	1	<u> </u>						
P			1		1				1	1		AP-0				
			1					1	1							
			1				1		·							
			1													
		· · · · · · · · · · · · · · · · · · ·														
	· · · · · · · · · · · · · · · · · · ·								L	· ·		, , , , , , , , , , , , , , , , , , , 				
			-		·			ļ			and the second sec					
			-				 	ļ		ļ						
											· · ·					
								••••••								

N	ORTH	CONOCO SILVER MINES LTD. 4647 Kingsway Burnaby 1 B	N.P.L.		PROJI Hole	ND			+. 7	7.		
E	LEVATION _				COWN	ENCED .						
A	ZIMUTH	020° DIAMOND DRILL RECOR	D		COMP	LETED _						
. D)IP	55 *			PURP	DSE OF H	OLE					
L	EVEL											
		DESCRIPTION		CORES	SAMPLES	·····	ASS	AYS	WIDT	8 H	COMME	NTS
FROM	TO		From	To	Width	No.	<u>Cu%</u>	Mo %	ASS			
	4	Reddus 2 - bry Imy amyg. and site.		ļ			 			{		
		anyo g wh. + 6%. colite . In manyo	ļ		+		!					
		bur wicksprend		· ·			ļ					
¥	11	Dk gn anye anderite Calcite anyos	ļ						l			
		gradually replaced by 95-goid. Fairly										
		prode Mild sprinter alt= Hroughout-										-
11	23	Gn - 94 porple anderite speet/ed in prox.				•					1.5	
••••		Latt staged delapors. Mild chearite - squite							•			•
•		alt n								1		
	42	Ma alt a suble a Daile a barlet	1	1				1				
	72	Mig. or pe epitales and and a contact	1					1				
		anderse , Oce. pript = + anyo. Oce. Dans		+	1	·						
		of Finicia alta		+		[
42	57	Ik gr f. Souckled Baselli andrate		+								
	_	Oce. Sl. prophe.		+								
		alty. bands of alt yn allow-grid. alter	1									
		and It gr. any + pouphing gtz epil					· .	<u> </u>	×	· · ·		
		alter. No sig. mil-	<u> </u>					l				
94_	116	Ga - pupple f.g. and with is occ. bands of	<u> ·</u>	·			<u> </u>	<u> </u>				
·		Epid - scricta alte × patches of 9 tz.	_	ļ		ļ	1	ļ				
		, , , , , , , , , , , , , , , , , , , ,										
			<u> </u>									
							<u> </u>	1				
		and the second		•.				•	:		 4.171 	
										•		alan yang sang sang sang sang sang sang sang s
											•	
							•	د. في ا				
									•		·	
								•		1 . .		
									ني. د م	1		11. 1

And Address of the Ad

s,

I

