
on the

TAS 1 and 2 CLAIMS

Copper Mountain Area Similkameen Mining Division

92H-8W
(49018' N. Lat., $120^{\circ} 28^{\prime}$ W. Long.)
for

GRANT F. CROORER
Box 404
Keremeos, B.C.
VOX 1NO
(Owner and Operator)
by

GRANT F. GRBoper, OPGq-C A- Geob R A N CH Consułting gegigist NT REPORT

1

TABLE OF CONTENTS

Page
SUMMARY AND RECOMMENDATIONS 1
1.0 INTRODUCTION 3
1.1 General 3
1.2 Location and Access 3
1.3 Physiography 3
1.4 Property and Claim Status 3
1.5 Area and Property History 4
2.0 EXPLORATION PROCEDURE 8
3.0 GEOLOGY AND MINERALIZATION 10
3.1 Regional Geology 10
3.2 Claim Geology 11
3.3 Mineralization 14
4.0 GEOCHEMISTRY 16
4.1 Silt Geochemistry 16
5.0 GEOPHYSICS 17
5.1 Magnetometer Survey 17
5.2 VLF-EM Survey 18
6.0 CONCLUSIONS AND RECOMMENDATIONS 19
7.0 REFERENCES 21
8.0 CERTIFICATE OF QUALIFICATIONS 22

APPENDICES

```
Appendix I - Certificates of Analysis
Appendix II - Geophysical Equipment Specifications
Appendix III - VLF-EM and Magnetic Data
Appendix IV - Cost Statement
```


ILLUSTRATIONS

FIGUREpage

1. Location Map
2. Claim Map
3. Compilation Map
4. Area Geology
5. Geology \& Silt Geochemistry
follows page 2
follows page 3
follows page 4
follows page 106. Magnetometer Surveypocket
6. VLF-EM Profiles (Seattle) pocket

SUMMARY AND RECOMMENDATIONS

The Tas claims are located approximately 17 kilometers south of Princeton and 3 kilometers east of Copper Mountain in southern British Columbia. The property consists of 2 modified grid claims covering 40 units in the Similkameen Mining Division and is owned by Grant Crooker of P.O. Box 404, Keremeos. B.C., VOX 1 NO.

The Copper Mountain area has been the scene of copper exploration since the 1880 's and has been a significant producer of copper. Copper Mountain was operated as an underground mine by the Granby Consolidated Mining, Smelting and Power Company Limited during two periods of time, from 1926 to 1930 , amd from 1937 to 1957. During this time $34,775,101$ tons of ore were processed producing 613,139,846 tons of copper, 187,294 ounces of gold and 4,384,097 ounces of silver.

The camp lay dormant until 1966 when Granby resumed exploration at Copper Mountain and Newmont Mining Corporation initiated exploration at the Ingerbelle Property on the west side of the Similkameen River. In 1967 Newmont purchased Copper Mountain from Granby and by 1969 had outlined two ore bodies at Copper Mountain as well as the Ingerbelle orebody. The mine commenced production by open pit methods in 1972 and has been in continuous production since that time. At present approximately 23,000 tons of ore is being milled per day at a grade of 0.44% copper with recoverable values in gold.

The most important ore deposits at Copper Mountain and Ingerbelie are spatially and, it is believed genetically associated with late phases of the Copper Mountain intrusions, the most productive of which are the Lost Horse suite. The ore deposits, whether in volcanic or intrusive rocks are associated with zones of extensive and locally intense wallrock alteration which includes development of biotite, albite, epidote, pyroxene, actinolite, potash feldspar and scapolite.

Numerous faults cut intrusive and volcanic rocks at copper Mountain. It is believed these faults originated before the main period of mineralization and played an important part as ore controls, probably acting as avenues along which much of the ore bearing solutions moved.

A considerable amount of work has been carried out on the area covered by the Tas claims by previous operators. During the early 1970's two grids were established and geological mapping, prospecting, soil geochemical sampling and magnetometer and Induced Polarization surveying carried out.

These programs outlined a number of soil geochemical anomalies. Induced Polarization chargeability anomalies and sulphide showings. Minor amounts of chalcopyrite were found at several locations. The geological mapping indicated a large portion of the area is underlain by diorite of the Copper Mountain intrusive complex. This intrusive complex is a favourable environment for copper mineralization.

The present owner staked the Tas claims in May of 1991 and carried out silt sampling over all drainages on the property. A small grid was also established and geological mapping, prospecting and magnetometer and VLF-EM surveying were carried out over the grid.

The 1991-1992 program gave a number of positive results. The silt sampling program gave seven samples that were anomalous in copper (290 ppm). These samples all drain from the north-central portion of the Tas-1 claim.

The geological mapping on the four grid lines showed the area to be underlain by rocks of the Copper Mountain intrusions. The rocks are mainly diorite of the Copper Mountain stock, although several outcrops appear to belong to the Lost Horse Group.

The magnetometer survey indicated a number of magnetic higns and lows. The most significant of these appears to be an oval shaped magnetic high feature approximately 200 meters by 300 meters in size. This magnetic high may be caused by magnetic minerals such as magnetite or pyrrhotite, possibly occurring in a breccia pipe. Copper minerals such as chalcopyrite may occur with these magnetic minerals.

A number of north trending, weak to strong VLF-EM conductors were delineated, but no cause is apparent for most of them.

Recommendations are as follows:

1) The grid should be expanded over the property, initially in areas believed to be underlain by Copper Mountain intrusives or in areas with anomalous copper soil geochemical values from the 1970's surveys.
2) The expanded grid should be soil sampled, geologically mapped. prospected and geophysically surveyed by magnetometer and VLF-EM.

1.0 LNTRODUCTION

1.1 GENERAL

Work was carried out on the Tas claims from June 3, 1991 to May 23 , 1992 by Grant Crooker, geologist and Lee Mollison, field assistant.

This program consisted of silt sampling the major drainages, chain and compass surveying of new roads, establishing four grid lines and carrying out geological mapping, prospecting, magnetometer and VLF-EM surveying on the grid lines.

1.2 LOCA'IION AND ACCESS

He property (Figure i) is located approximately 17 kiiometers south of Princeton and 3 kilometers east of Copper Mountain in southern British Columbia. The property lies between $49^{\circ} 16^{\prime \prime} 4^{\prime \prime}$ and $49^{\circ} 18^{\prime} 55^{\prime}$ north latitude and $120^{\circ} 27^{\prime} 30^{\prime \prime}$ and $120^{\circ} 29^{\prime} 35^{\prime \prime}$ west longitude (NTS $92 \mathrm{H}-8 \mathrm{~W}$).

Access to the property is via the paved Copper Mountain road. turning south off Highway 3 at Princeton. From the Copper Mountain road one turns onto the Wolfe Creek logging road which is a good gravel road. Branches of the Wolfe Creek road give good access to all areas of the peoperty.

1.3 PHYSIOGRAYHY

The Tas claims lie within the Thompson Plateau. Elevation is quite nigh, varying from 1220 to 1830 meters above sea level. Topography is generally moderate to steep although it becomes gently rolling along the ridges.

Wolfe Creek flows in a northerly direction through the claims and has a good flow of water all year round. Several branches of Wolfe Creek drain the property from the east. Vegetation consists of mainly mature jack pine with some spruce in the wetter areas. Heavy deadfall is prevalent in many areas and a significant portion of the area has been logged.

1.4 PROPERTY AND CLAIM STATUS

The Tas claims (Figure 2) are owned by Grant Crooker of Reremeos, B.C. The property consists of two modified grid claims covering 40 units located in the Similkameen Mining Division.

Claim	Units	Mining Division	Tenure No.	Kecord Date	Expiry Date
Tas-1	20	Princeton	250128	$05 / 24 / 91$	$05 / 24 / 95 *$
Tas-2	20	Princeton	250129	$05 / 25 / 91$	$05 / 25 / 90^{*}$

*Upon acceptance of this report.

1.5 AREA AND PRUYERTX HISTORY

The Tas claims are located approximately 3 kilometers southeast of Copper Mountain. Copper Mountain has had a long history of mining and has been a major producer of copper. Over 500,000 ounces of gold have also been produced.

Copper was apparently first discovered at Copper Mountain in 1884 by a trapper named Jameson. However little work was carried out in the area until Volcanic Brown located the Sunset claim in 1892. From 1892 until 1923 exploration was carried out in many areas of the Camp. During the latter stages of World War I a concentrator was built at Allenby and a railline was built from Princeton to Ailenby and thence to Copper Mountain. However no copper was produced during this time.

In 1923 The Graniby consolidared Mining, Smelting and Power Company Limited acquired the property and re-organized the concentrator and mine plants. Production did not begin until early in 1926 and continued until 1930. The mine was shut down until 1937 when production resumed and continued until 1957 when the mine was again closed. To the end of 1957 the concentrator reated 34.775.101 tons of ore producing 613,139.846 pounds of copper, 187,294 ounces of gold and 4.384.097 ounces of silver. Most of this production was from underground operations.

Little work was carried out in the area from 1957 to 1965. However in 1966, extensive trenching and drilling was carried out by the Granby Mining Company Limited at Copper Mountain, Newmont Mining corporation of canada Limited on the ingerbelle propercy west of the Similkameen River and Cumont Mines Limited on its holdings in the vicinity of Copper Mountain.

In December 1967, Newmont purcnased all of the Granby noldings in the Copper Mountain area and carried out large scale exloration on both properties. By the end of 1969, one large scale zone of low grade copper mineralization was outlined on the Ingerbelle property and two zones on Copper Mountain. In June 1970 Newmont gave official notice of its intention to put the properties into production.

The property entered production by open pit methods in 1972 and has been in continuous production since that time. The present owner

is Similco Mines himited and production is in the order of 20.000 cons per day with a mill head grade of 0.44\% copper and recoverabie gold values. Efforts are currently underway to extend the mine life past the year 2000.

A considerable amount of work was carried out in the area covered by the Tas claims during the early 1970 's. This work consisted of geological mapping, prospecting, geochemical soil sampling and geophysical surveying (magnetometer and Induced Polarization). Bulldozer trenching by previous operators is mentioned in the assessment reports from the early 1970's but no information is available on that work.

During 1971 Coin Canyon Mines Ltd. carried out soil geochemicai sampling and magnetometer and Induced Polarization geophysical surveying on the "Y" claims. The work was carried out over the area indicated by grid A on figure 3. Approximately 149,000 feet of grid was blazed and surveyed. The baseline runs in a north nortnwesterly direction with 23 crossiines at right angles to the baseline. Lines are 500 feet apart with stations marked every 100 feet along the lines.

Soil samples were collected every 250 feet along the lines and the samples were analyzed for copper. The frequency distribution indicated background to be 50 ppm copper and values 75 ppm and greater were considered anomalous. Four general copper anomalies were outlined by the survey (Figure 3, Anomalies \#1 to \#4).

It should be pointed out at this time that most of the property is overlain by a mantle of glacial drift. Preto examined 26 drili noles from the Copper Mountain area and found the glacial drift ro have an average thickness of 14.5 feet with a maximum of 33 feet. Clay layers several feet in thickness are of cen intercalated with various other types of drift.

Anomaly \#1 is 2500 feet long by 1000 feet wide and vaiues range from 70 ppm to 315 ppm copper. The Phelps Dodge geochemical survey aiso confirms this anomaly. Follow up prospecting found the anomaly coincidental with a swampy area and no outcrop was found in the area.

Anomaly \#2 is a linear shaped anomaly 2000 feet long by 800 feet wide with values ranging from 70 ppm to 190 ppm copper. Ine western portion of the geochemical anomaly overlaps induced Polarization chargeability anomaly A. Old bulldozer trenches at the south end of the anomaly exposed outcrop of bedded andesite voicanics composed of massive fragmentals, crystal tuffs and tuffaceous argillites. A large portion of the volcanics have been silicified and chioritized. From 2\% ro 5\% finely disseminated pyrrhotite and pyrite with trace amounts of chalcopyrite is found rnroughout this altered zone.

Anomaly \#3 is some 2500 feet long by 1500 feet wide with values ranging from 70 ppm to 275 ppm copper. Uutcrop exposed along the baseline is altered diorite related to the copper Mountain intrusives. The intrusive is oniy weakly minerailzed with less than 1\% pyrite.

Anomaly \#4 is a large anomaly 5500 feet long and up to 3000 feet wide with values ranging from 70 ppm to 850 ppm copper. Ine southern portion of this anomaly is also outlined by the pheips Dodge geocnemical survey. Trace amounts of chalcopyrite along with 1\% to 2% pyrite were found associated with chloritic and feldspatnic alteration at the soutneastern corner of the anomaiy and west of the anomaly. A large portion of this anomaiy appears to be underiain by diorite of the Copper Mountain intrusive complex.

Magnetometer and Induced Polarization surveys were also carried out over portions of the grid. The magnetomerer survey was carried out over 16 line miles of the grid with readings taken every 100 feet on every second line (1000 feet spacing). A number of magnetic highs and lows were outlined and further information can be obtained from the pertinent assessment report.

The Induced Polarization survey was carried out over 6.7 line miles of the grid with the lines spaced 1000 feet apart. The survey was only carried out over the southern portion of the grid and not over the nortnern portions which are underiain by the Copper Mountain intrusions. Four areas (Figure 3, A, B, C, D) showed chargeability responses greater than 15 milliseconds.

Anomaly A is a broad anomaly showing peak responses of 36 and 35 milliseconds and overlaps the western section of geocnemical anomaly \#2. The apparent resistivity vaiues range from 175 to 1000 onms meters with the largest portion lying within the 400 to 600 ohm meter range.

Anomaly B is partially outlined by the 15 millisecond contour and was not closed off to the north and east. It occurs along the southern portion of geochemical anomaly \#4 and appears to be striking in a northerly direction into the geochemical anomaly. Disseminated pyrite was observed in an outcrop west of the anomaiy. A low to intermediate range of apparent resistivity values correlate with the chargeability anomaiy.

Anomaly C is a small three station anomaly occurring west of geochemical anomaly \#1. No furcher information is available on this anomaly.

Anomaly D is also a small anomaly occurring along the most southerly line surveyed and open to the south. This anomaly was confirmed by the limited amount of Induced polarization survey carried out by Phelps Dodge. Kesistivity values are in the order
of 500 to 1350 ohm meters. buildozer trenching has been carried our in this area by previous operators. The trenching exposed highly fracrured, broken and bleached andesite. Approximately lư0 feer east of the anomaly two soil samples gave 340 and 440 ppm copper, and subsequent prospecting locared an ourcrop with finely disseminated chalcopyrite. An assay of this marerial gave 697 ppm copper.
vuring 1973 Phelps Dodge Canada Ltd. carried out geologicai mapping, prospecting, soil geochemical sampling and a limired amount of magnetometer and induced polarization surveying on the " Rb , Tas and 'rat" claims. The soil smpling and geophysics was carried out over the area indicated by Grid B while the geological mapping was carried out over both Grid A and Grid B.

Approximately 19.5 miles of grid were cut and flagged on grid B. 'the baseline runs north-south and 16 crossiines were ran at right angles to the baseline. Lines are 400 feet apart with starions marked at 200 feet intervals.

Soil samples were collected at 200 feet intervals along the lines and analyzed for copper. The most nigniy anomalous values from the soil geochemical survey came from the area of anomaly 并5 with values of 340 ppm and 414 ppm copper. This anomaly is about 1500 feet long by 1500 feet wide. Copper mineralization consisting of finely disseminared chaicopyrite (697 ppm copper) was found in this area.

Unly 1.3 miles of Induced polarization survey was carried out over the grid. A small chargeability high was located at Anomaly D. This anomaly was found by both of the Induced polarization surveys.
Geological mapping was carried out over both grids by Phelps Dodge. 'lhis mapping indicated an area 8000 feet long by 4500 feet wide is underlain by dioxite of the Copper Mountain intrusions. A number of areas as shown on figure 3 show varying degrees of alteration and pyrite with minor amounts of chalcopyrite.

2.0 EXPPLORATION YROCEDURE

Grid co-ordinate $10000 N$ and 10000 E was established where B creek, a westerly flowing tributary of Wolfe Creek confluences Wolfe Creek. A baseline was then established 1000 meters north and souch of this point. Lines 10000 N chrough 10300 N were then established off the baseline.

GRID YARAMEITERS

-baseline direction $\mathrm{N}-\mathrm{S}$
-survey lines perpendicular to baseline
-survey line separation 100 meters
-survey starion spacing 25 merers, slope corrected
-survey total - 11.7 kilometers
-declination 21°

GEUCHEMICAL SURVEY PARAMETERS

```
-survey cotals - 31 silr samples
    -4 pan concentrate samples
-ali samples analyzed by 31 element ICP and Au
-silt samples sieved to minus }20\mathrm{ mesh in the field
```

All samples were sent to Mineral-Environments Laboratories, 705 West Fifteenth Street, North Vancouver, B.C., VTM 1r2, for analysis. Laboratory technique for silt samples consists of preparing samples by drying at $95^{\circ} \mathrm{C}$ and sieving to minus 80 mesh.

A 31 element ICY analysis and gold analysis were carried out on all samples. 'lhe gold analysis consists of aqua-regia digestion, atomic adsorprion finish. Sensitivity for gold is to 5 ppb.

The silt geochemical data was plotted on figure 5 at a scaie of 1:5000.

GEUPHYSICAL SURVEY PARAMETERS

TOTAL FIELD MAGNETIC SURVEY

```
-survey line spacing }100\mathrm{ meters
-survey station spacing 25 meters
-survey total - 10.7 kilometers
-instrument - Scintrex MP-2 magnetomerer
-measured total magnetic field in nanoteslas (gammas)
-instrumenc accuracy }\pm1\mathrm{ nanotesla
```

Keadings were taken along the baseline to obtain standard readings for all baseline stations. All loops ran off the baseline were then corrected to chese standard values by the straignt line method. The operator faced norch for all, readings.

The rotal field magnetic data was plotted on figure 6 at a scale of 1:5000 and the data listed in Appendix III.

VLF-EM SURVBY

-survey line spacing 100 meters
-survey station spacing 25 meters
-survey totals - 9.7 kilometers
-instrument - Geonics EM-16
-transmitting station - Seattle - 24.8 Hhz .
-direction faced - southeasterly
-in-phase (dip angle) and out-of-phase (quadrature) components measured in percent at each station.

The VLF-EM profiles were piotted on figure 7 at a scale of 1:5000 and the data listed in Appendix III.

3.0 GEOLUGY AND MINEKALIZATION

3.1 REGIUNAL GEULUGY

The Tas claims are located within the Intermontane Belt of southern British Columbia, immediately southwest of Copper Mountain (figure 4).

The oidest rocks in the area are Upper Triassic Nicola Group volcanic and sedimentary rocks. These rocks are composed mainiy of basaltic andesite flows and pyroclastic rocks with greywacke and argillite.

The central portion of the area is underlain by intrusive rociss of the Copper Mountain intrusions. These intrusions consist of the Copper Mountain, Smelter Lake and Voigt stocks. The Copper Mountain srock covers approximately 6.5 square miles and is a concentrically differentiated intrusion, elliptical in plan, the long axis of which strikes north 60° west and is approximarely 4 miles long. The smelter Lake stock occupies less than 1 square mile while the Voigt stock occupies approximately 3.2 square miles.

The Lost Horse complex is also part of the Copper Mountain intrusions and consists of intrusive rocks ranging in composition from diorite to syenite and generally having a porphyritic rexture. They are believed to be later phases of the Copper Mouncain scock and occur as a complex of dykes, sills and irregular bodies.

The northeastern portion of the area is underlain by a body of Lower Cretaceous biotite-hornblende quartz monzonite called the verde Creek quartz monzonite.

All of the above intrusive, volcanic and sedimentary rocks are cut and unconformably overiain by intrusive, volcanic and sedimentary rocks of the Middle Eocene Princeton Group.

A large number of faults occur in the map area, most in the Copper Mountain-Ingerbelle area. They have been divided into the eastwest faults, the "Mine breaks", northwest faults, northeast faulrs, and Boundary fault.

The east-west faults, which dip steeply north appear to be relativeiy old, and to have originated in pre-mineralization time. Later dilation in tertiary time is indicated, as some of the fauits are followed by Tertiary dykes. These faults may have acted as channelways for mineralizing solutions as they are centraily located to some of the ore bodies at Copper Mountain and Ingerbelle.

The "Mine breaks" are a system of faults which rrend siightly norch of east with northerly dips of 60° and occur near the old Copper

Mountain mine area. Ihough unmineralized themselves they have been condidered to be ore controls by mine staff and are probably related to old structures as suggested by their relation to mineralization. These faults may be related to the east-west faults, although they are of slightly different attitude.

- The main Copper Mountain fault is the most important strucrure of the northwest rrending faults. The history of the Main fault is probably long and complex. It closely parallels the long axis of the Copper Mountain stock and the trend of the major regional faults in the princeton area. In 1951 Fahrni stated that " one half of the known orebodies in the mines are grouped along the Main fault or its branches ".

The northeast trending faults consist of a number of major structures, as well as a number of smaller ones. Some of rnem occur in the area of the orebodies and the history of these faults is probably also long and complex. Several of these faults show appreciable post mineral movement.

The Boundary fault system consists of a major structure, the Boundary fault, and several similiar but smaller faults that are found in the western part of the map area. the Boundary fault strikes northerly and dips approximately 65° to the west. These faults are interpreted to be normal faults, and that the western block was dropped down.

3.2 CleAIM GEOLOGY

All rock units (Figure 5) which are believed to underlie the Tas claims are described below, although many of them have not been located as yet due to the limited amount of geological mapping that has been carried out. Ouccrop is scarce over much of the property. The classification of the units is taken from Preto (19.2) to provide continuity witn known geological information on the copper Mountain area.

The oldest rocks underlying the claims are Upper Triassic Wolife Creek Formation of the Nicola Group. They are primarily volcanic in origin and deposition and have been divided into tour units. These include massive andesite (Unit 2a), volcanic breccia and agglomerate (Unit 2c), and tuff and tuff breccia (Unit 2d). Unit ze consists of undifferentiated material.

Unit 2a is generally a massive, tine to medium grained porphyritic pyroxene-hornblende-plagioclase andesite, in part agglomeratic. The rock is in places extensively saussuritized, with replacement of plagioclase phenocrysts by epidote and sericite, and strong repiacement of pyroxene by a light green amphibole.

Kocks of unit $2 c$ are coarse fragmental volcanic volcanic rocks rnat may be described as volcanic breccia andior agglomerate. All rocks are dense, massive and, dark green or brownish in color. The fragments in the breccia vary from andesitic volcanic rocks to tine grained ruff and, localiy limescone. Fragments generally vary in size from 1 to 10 centimeters, although occasionally blocks of 25 centimeters or more occur. In the area of the Tas claims the rocks are irregularily distributed in the volcanic succession of unic 2 as relatively small lenses associaced with tuff or massive andesice.

Unit 2d is mainly greenish grey and green crystal tuff and lithic crystal tuff and, locally volcanic siltstone. These rocks are generally well and thinly bedded and at several locations show graded bedding and poorly developed crossbedding. they are characterized by beds of very fine grained silt aiternating with beds of sligntly coarser, sand sized material consisting of mainiy broken plagioclase and some pyroxene crystals. Mose rocks are of andesitic composition and the amount of quartz present varies from. nil to a significant constituent.

The Upper Triassic Copper Mountain intrusions nave intruded the Wolfe creek Formation. The term Copper Mountain intrusions reter to four main bodies of intrusive rocks which are known as the Copper Mountain stock, Voigt stock, Smelter Lake stock and Lost Horse intrusions. Kocks of the Copper Mountain stock and Lost Horse intrusions underlie the Tas claims.

Two rock types of the Copper Mountain stock underlie rne ciaims, diorite (Unit 6) and microdiorite and latite porphyry dykes (Unit 10).

Unit 6 is a fine to medium grained, light to dark green, massive augite diorite. Inis unit has been found to outcrop from baseline 10000 E to at least 11200 E on lines 10000 N to 10300 N . The diorite forms the outer phase of the Copper Mountain stock.

Unit 10 consists of dykes that range in composition from andesite to acid basalt and range in texture from dark grey, fine grained, trachyoid, latite porphyry with phenocrysts of plagiociase and pyroxene to massive fine to medium grained pyroxene microdiorite. The dykes range in width from one meter to 100 meters, cur ail Nicola volcanic rocks and generaily trend north-northeast.

The Lost Horse intrusions have been divided into units 11 and 12. Unit 11 includes all rocks which do not form obvious dykes while unit 12 consists of well defined dykes up to 30 meters wide which cur unit 11 and rocks of the Nicola Group. Most rocks of the Lost Horse intrusions have a porphyritic texture and contain disseminated aparite crystals.

Rocks of unit 11 are fine to medium grained, almost invariably porphyritic and range in composition from diorite to monzonite or syenite. They are light grey green in color and are composed of intermediate plagiociase, clinopyroxene and varying amounts of potash feldspar. A few scattered outcrops of what is believed to be unit 11 (monzonite?) were found along the baseline from 10350N ro 10650 N .

Unit 12 consists of latite and trachyte in approximately equal amounts and is invariably porphyritic. Texturally they range from latite or crachyte porphyry to porphyritic micromonzonite or microsyenite. They are mainly composed of piagioclase, pyroxene, biotite and potash feldspar.

The Upper Lower Cretaceous Verde Creek quartz monzonite (Unir 13) occurs along the eastern boundary of the Tas claims. It is usuaily medium grained, grey to pinkish grey and porphyritc. White piagioclase phenocrysts up to 5 millimeters long occur within a matrix of plagioclase, grey quartz and interstitial porash feldspar. Brown biotite forms up to 10% of the rock while lesser dark green or black hornblende is found in phases which contain less biotite.

Two types of post Lower Cretaceous dykes (Units 14 and 15) occur within the area. The Mine dykes (Unit 14) are a swarm of northerly trending, very steep to vertically dipping, buff to cream colored dykes of felsite, quartz porphyry and feldspar porphyry. The dykes range in composition from trachyte to rhyolite and vary in width from less than one merer to more than sixty meters. Une rusty felsite dyke with 1 to 3 millimeter quartz eyes was mapped along the baseiine from 10500 N to 10600 N .

Unit 15 consists of fine grained grey andesite dykes up to a few meters wide or larger dykes of grey plagioclase, hornblende or pyroxene andesite porphyry. These dykes cut the mine dykes and cheir texture and composition suggest they are related to the Tertiary rocks of the princeton Group.

The youngest rocks in the area belong to the Lower voicanic Formation of the Middle Eocene Princeton Group (Unit 17). This unit (17d) occurs as sparse, isolated, generally small dykes of fine grained, grey, flaggy andesite. The texture, composition and field relationships of these dykes strongly suggest that they are part of the Princeton Group.

3.3 MINERALIZATION

The copper deposits of the copper Mountain area can be divided inco four main subdivisions of copper deposits based on mineral composition, genesis and geographic position. The subdivisions are as follows: Group A - disseminations and stockworks mostly of chalcopyrite and pyrite in altered Nicola volcanic and/or Lost Horse intrusive rocks, Group B - hematite-chalcopyrite and magnetite-chalcopyrite replacements in rocks of the voigt stock, Group C - bornite-chalcopyrite concentrations associared with pegmatice veins in rocks of the Copper Mountain stock, and Group D - magnetite breccias and replacements in Lost Horse intrusive rocks.

The Group A deposits, which are by far the most important in the Copper Mountain area, include the Ingerbelle and Copper mountain deposits, as well as several smaller occurrences. All deposits in this group are spatially and, it is believed genetically associated with the late phases of the Copper Mountain intrusions, the most productive of which are those of the Lost Horse suite. The sulphide deposits, whether in volcanic or intrusive rocks, are associated with zones of extensive and locally intense wallrock aiteration which include development of biotite, albite, epidote, pyroxene, actinolite, potash feldspar and scaploite.

A great number of faults cut incrusive and volcanic rocks. if is believed the major faults and, to a lesser extent subsidiary structures parallel to them originated before the main period of mineralization and played an important part as ore controls, probably acting as avenues along which much of the ore-bearing solutions moved.

Pyrite and chalcopyrite are the dominant sulphide minerals, althougn bornite, pyrrhotite and magnetite occur sporadically.

The Group B aeposits are distinctive both in mineralogy and association with diorite of the Voigt stock. Alrnougn tne mineralization is locally of higher grade than the Group A deposits, no commercial concentrations of this group have been discovered. This mineralization is confined to narrow zones of shearing and brecciation, and is generally irregularly distributed and variable.

This rype of mineralization varies from coarse hematite, magnerite, pyrice, red potash feldspar, calcite and epidote in brecciated and bleached pyroxene diorite of the Voight stock at the frisco and No. 14 claims to magnetite-epidote veinlets with some chalcopyrite in massive, dioritic looking Nicola andesite and breccia at the Azurite and Copper Glance showings.

Group C deposits are found at several locations within the copper Mountain stock. Bornite, chalcopyrite and pyrite mineralization is always associated wich or occurs in veins and dykes of red potash feldspar pegmatite. No orebodies have been developed in this cype of mineralization and it is thought the potential of doing so is low.

Group D deposits are found at a number of locations in Lost Horse intrusive rocks. Magnetire breccias are usually brecciared monzonite or syenite porphyry that show a considerable degree ot pink feldspar metasomatism and have been healed by interlacing veins of coarse magnetite. Copper sulphides are not found in any abundance with the magnetite breccias.

Only a limited amount of prospecting has been carried out on the Tas claims. Yyrite was noted at several locations (figure b) asociated with the diorite (unit 6) of the Copper Mountain intrusions. Epidote occurs along fractures at $10000 \mathrm{E} \& 10600 \mathrm{~N}$.

4.0 GEOCHEMILSTRY

4.1 SlLT GBOCHEMLSTRY

Thirty-one silt samples (Figure 5) were collected at 250 ro 350 meter intervals along the major drainages on the property. Four pan concentrate samples were also collected at the confluences of the major drainages. Thirty-one element lCP and gold analyses were carried out on all samples.

Gold
Only three samples gave more than 5 ppb gold, and these were only 10 ppb . None of the samples were considered anomalous.

Copper

Copper values ranged from 47 to 148 ppm. Background was determinea to be 81 ppm and vaiues 90 ppm and greater were considered anomalous. The value of 81 ppm copper is much higher than normad for a background value.

Seven of the values were anomalous. Two of the anomalous samples came from "A" Creek and three of the samples from "B" Creek. Both of these creeks drain the northern portion of the Tas-1 ciaim. This area appears to be underlain by diorite of the Copper Mountain intrusives.

One anomalous sample came from a south draining branch of "c" creek and one sample from the main branch of "C" Creek.

5.0 GEOYHYSLCS

5.1 MAGNETOMETER SURVEY

A total field magnetic survey was carried out on lines 10000 N to 10300N (Figure 6). The magnetic response was moderate to strong with values ranging from 56050 to 61622 nT . Less magnetic rocks generally underlie the western 300 meters and the eastern 600 meters of the grid with the central portion of the grid underiain by more magneric rocks.

A number of prominent magnetic features were outlined by the survey. The most prominent magnetic high is an oval shaped fearure centered at approximately 10200N \& 10100E. This feature is some 200 meters by 300 meters in size and has the appearance of a pipe like structure. It may be caused by concentrations of magnetic minerals sucn as magnetite or pyrrhotite, possibly occurring in some type of a breccia pipe.

A number of narrow, linear, north-south trending magnetic nigns occur between 10900E \& ll400E on all four grid lines. Several magnetic lows occur between the magnetic highs. These features may be caused by dykes or concentrations of magnetic minerals such as magnetite or pyrrhotite.

Two narrow, linear, northerly trending magnetic lows were delineated by the survey. The first trends from line 10300N \& 11050 E to line 10000 N \& 11025 E , while the second trends from line 10300 N \& 11450 E to line 10000 N \& 11525E. These narrow, linear magnetic lows may be defining fault zones.
5.2 VLF-EM SURVEY

The VLF-EM survey was carried out on Lines 10000 N to 10300 N (Figure 7). The lines do not generally appear to have been influenced by topography.

A number of weak to moderate to strong VLF-EM conductors were outilined by the survey. They are northerly trending and exhibit short wavelengths. A number of the conductors are associated with magnetic features, indicating they are related to bedrock structures.

Six conductor systems were ourlined by the survey. There is lirtle outcrop exposure and no causes are evident for most of the conductors.
conductor "D" is of moderate strength and occurs coincidentally with a magnetic low. It is probably represents a fault zone.

Conductor " F " is a moderate to strong conductor occurring along the eastern boundary of the claims and may represent the contact of the verde creek stock with the Nicoia volcanic rocks.

6.0 CUNCLUSIONS AND RECUMMENDATIONS

The 1991-1992 program gave a number of positive results. The silt sampling program gave seven samples that were anomalous in copper (290 ppm). These samples all drain from the north-central portion of the Tas-1 claim.

The geological mapping on the tour grid lines showed the area to be underlain by rocks of the Copper Mountain intrusions. The rocks are mainly diorite of the copper Mountain stock, although several outcrops appear to belong to the Lost Horse Group.

The magnetometer survey indicated a number of magneric nigns and lows. The most significant of these appears to be an oval shaped magnetic nigh feature approximately 200 meters by 300 meters in size. Tnis magnetic high may be caused by magnetic minerals such as magnetite or pyrrhorite, possibly occurring in a breccia pipe. Copper minerais such as chalcopyrite may occur with these magnetic minerals.

A number of north trending, weak to strong VLF-EM conductors were delineared, but no cause is apparent for most of them.

Recommendations are as follows:

1) The grid should be expanded over the property, initially in areas believed to be underlain by Copper Mountain intrusives or in areas with anomalous copper soil geochemical values from the 1970's surveys.
2) The expanded grid snould be soil sampled, geologically mapped, prospected and geophysically surveyed by magnetometer and VLF-EM.

7.0 REFERENCES

B.C.M.M., GEM 1973 p 133.
B.C.M.M., Mintile; $92 \mathrm{H}-\mathrm{SE}-132$.

Allen, A.R. (19\%1): Geophysical Magnetometer Survey, Iise Claim Group for Aurus Mines Ltd. Assessment Report \# 3088.

Asnton, A.S. (1970): Geophysical Keport on a Ronka 16 Survey, lise and Sob Claim Group for Aurus Mines Led. Assessment Report \# 2451.

Gutrath, G.C. (1971): Report om Geochemical Survey "y" Claim Group, Copper Mountain Area, B.C., for Coin Canyon Mines Led. Assessment Keport \# 3188.

Gutrath, G.C. and Neilson, P.P. (1973): Geophysical Report of the Induced Polarization Survey on the Tas-Tat Claim Group on behalf of Phelps Dodge Corporation of Canada Limited. Assessment Report \# 4526.

MacQuarrie, D.R. and Ager, C.A. (1975): Copper Project-Pnase Three, Diamond Drilling for Aquitane Company of Canada ltd. on the Cmag Claims and Sundry Crown Grants. Assessment Report \# 5768.

Meyers, R.E. (1982): Report on Geological and Geocnemical Surveys on the cmag - 82 Group for Kidd Creek Mines Ltd. Assessment Report \# 10956.

Morris, A. (1973): Summary Geological, Geocnemical and Geopnysical Report on the l'as and Tat Group of Claims for phelps vodge Corporation of Canada Limited. Assessment Report \# 4380.

Morris, A. (1973): Geological Report Yroject 137 - Copper Mountain Area, for Phelps Dodge Corporation of Canada Limited. Assessment Keport \# 4806.

Neilson, P.P., (1971): Report on Induced Polarization and Ground Magnetometer Surveys, "Y" Claim Group for Coin Canyon Mines Lrd. Assessment Report \# 3187.

Preto, V.A. (1972): Geology of Copper Mountain, British Columbia Department of Mines and Petroleum Resources Bulletin 59.

Kead, W.S. (1968): Geochemical - Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Mineral Claims for Sinmax Mines Ltd. Assessment Report \# 1785.

Read, W.S. (1970): Geochemical - Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Mineral Claims for Sinmax Mines Ltd. Assessment Report \# 2892.

Read, W.S. (1973): Geopnysical Report, Azurite Group, Cas 1-32 and Adjoining Claims for Sinmax Mines Led. Assessment Report \# 4372.

Kice, H.M.A. (1947): Geology and Mineral Deposits of the yrinceton Map-Area, B.C., Geological Survey of́ Canada, Memoir 243.

Tulley, v.W. (1973): Report on an Induced Polarization Survey on the Ilse Claims 1 - 12 and Sob Claims 1 - 8 for Aurus Mining Ltd. Assessment Keport \# $43 \% 6$.

Wilson, E.M. (1969): Geophysical and Geochemical Report on Claims Ilse \#1 - \#12 for Aurus Mines Ltd. Assessment keport \# 1904.

Wilson, E.M. (1969): Geophysical and Geochemical Report on Sod \#l - \#8 for Aurus Mines Ltd. Assessment Report \# 2032.

Wilsom, E.M. (1970): Geocnemical on Claims Sob \#3 - \#8 for Aurus Mining Led. Assessment Report \# 2558.

8.0 CERTIFICATE OF QUALIFICATIUNS

I, Grant F. Crooker, of Upper Bench Road, Keremeos, in the Province of Bricish Columbia, nereby certify as follows:

1. That I graduated from the University of British Columbia in 1972 with a Bachelor of Science vegree in Geology.
2. That I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
3. That I am a member of the canadian Institute of Mining and Metallurgy.
4. That 1 am a Fellow of the Geological Association of Canada.
5. That I am a Protessional Geoscientist registered with the Association of Professional Engineers and Geoscientists of the Yrovince of British Columbia (No. 18, 961).
6..... That I am the owner of the Tas 1 and 2 mineral claims.
vated this 14 th day of J, $J y, 17 \% 2$, at Keremeos, in the Province of British Columbia.

APPENDIX I

CERTIFICATES OF ANALYSIS

MIN-EN ILABS —— ICP REPORT
705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1 T2
(604)980-5814 OR (604)988-4524

FILE NO: 1V-1122-S.J3 DATE: 91/09/28

* SOIL * (ACT:F31

APPENDIX II

```
GEONICS LIMITED
    VLF EM }1
```

Source of Primary Field	VLF transmitting stations
Transmitting Stations Used:	Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two tuning units can be plugged in at one time. A switch selects either station.
Operating Frequency Range:	About $15-25 \mathrm{~Hz}$.
Parameters Measured:	1- The vertical in-phase component (tangent of the tilt angle of the polarization ellipsoid). 2- The vertical out-of-phase (quad -rature) component (the short axis of the polarization ellipsoid compared to the long axis).
Method of Reading:	In-phase from a mechanical inclinometer and quadrature from a calibrated dial. Nulling by audio tone
Scale Range:	In-phase \pm 150\%; quadrature $\pm 40 \%$
Readability :	$\pm 1 \%$
Operating Temperature Range:	-40 to $50^{\circ} \mathrm{C}$.
Operating Controls:	ON-OFF switch, battery testing push button, station selector, switch, volume control, quadrature dial $\pm 40 \%$, inclinometer \pm 150\%
Power Supply:	6 size AA alkaline cells $\approx 200 \mathrm{hrs}$.
Dimensions:	$42 \times 14 \times 9 \mathrm{~cm}(16 \times 5.5 \times 3.5 \mathrm{in})$
Weight:	1.6 kg . (3.5 lbs)
Instrument Supplied With:	Monotonic speaker, carrying case, manual of operation, 3 station selector plug-in tuning units (additional frequencies are optional) set of batteries.
Manufacturer:	```Geonics Limited 1745 Meyerside Drive/Unit 8. Mississauga, Ontatio L5T 1C5```

Resolution:	1 gamma
Total Field Accuracy:	\pm gamma over full operating range
Range:	20,000 to 100,000 gammas in 25 overlapping steps.
Internal Measuring Program:	A reading appears 1.5 seconds after depression of Operate Switch \& remains displayed for 2.2 secs. Recycling feature permits automatic repetitive readings at 3.7 sec . intervals.
External Trigger:	External trigger input permits use of sampling intervals longer than 3.7 seconds.
Display:	5 digit LED readout displaying total magnetic field in gammas or normalized battery voltage.
Data Output:	Multiplied precession frequency and gate time outputs for base station recording using interfacing optionally available from Scintrex.
Gradient Tolerance:	Up to 5,000 gammas/meter.
Power Source:	8 size D cells $\approx 25,000$ readings at 25° C under reasonable conditions.
Sensor:	Omnidirectional, shielded, noisecancelling dual coil, optimized for high gradient tolerance.
Harness:	Complete for operation with staff or back pack sensor.
Operating Temperature Range:	-35 to $+60^{\circ} \mathrm{C}$.
Size:	Console, $8 \times 16 \times 25 \mathrm{~cm} ;$ Sensor, $8 \times 15 \mathrm{~cm} ;$ Staff $30 \times 66 \mathrm{~cm} ;$
Weights:	Console, $1.8 \mathrm{~kg} ;$ Sensor, 1.3 kg ; Staff, 0.6 kg ;
Manufacturer:	Scintrex 222 Snidercroft Road Concord, Ontario

APPENDIX III

MAGNETOMETER AND VLF-EM DATA

Grant Crooker Data Listing Area: Tas Claims Grid: Tas Creek Date: May, 1992 Instrument Type: Scintrex MP-2: Geonics EM-16: Data Types \#1 Corrected total field magnetic values \#2 VLF-EM In-Phase Values. Seattle \#3 VLF-EM Quadrature Values, Seattle

E/W
Line* line 10000 $\begin{array}{ll}10000 & 9675 \\ 10000 & 9700 \\ 10000 & 9725\end{array}$ $10000 \quad 9725$ $10000 \quad 9750$ $10000 \quad 9800$ $10000 \quad 9825$ 100009850 $10000 \quad 9875$ $10000 \quad 9900$ $\begin{array}{ll}100000 & 9925 \\ 10000 & 9950\end{array}$ $10000 \quad 9975$ $10000 \quad 10000$ $\begin{array}{ll}10000 & 10025 \\ 10000 & 10050\end{array}$ 1000010075 $10000 \quad 10100$ 1000010125 1000010150 $10000 \quad 10175$ 10000 10000 $10000 \quad 10250$ 1000010275 1000010300 1000010325 10000 10000 10000 10000 10000 10000 $10000 \quad 10500$ $10000 \quad 10525$ 1000010550 1000010575 10000 10000 10000

N/S

Station

$\# 1$.	\#	2.	\#
56087	14	1	
56289	9	2	
56311	5	5	
56242	7	4	
56345	10	2	
56229	5	-1	
56100	8	1	
55277	9	2	
56290	8	1	
56155	7	1	
56221	7	2	
56079	11	3	
56050	12	3	
56269	8	2	
56359	5	2	
56473	10	3	
56533	11	7	
56493	5	9	
56857	3	10	
56931	-4	11	
57099	-1	10	
57114	-1	13	
56695	1	13	
56648	13	16	
56617	29	22	
56617	22	13	
56893	24	13	
56626	25	13	
56622	35	11	
56696	38	13	
56666	36	7	
56614	36	3	
56833	35	2	
56630	36	-1	
56576	37	2	
56585	28	4	
56586	24	4	
56594	29	9	
56561	20	11	
56667	16	12	

10000	10675	56670	20	13
10000	10700	56844	25	11
10000	10725	57020	22°	10
10000	10750	57179	26	10
10000	10775	57332	20	8
10000	10800	57419	26	9
10000	10825	57312	29	8
10000	10850	56917	24	5
10000	10875	57289	24	6
10000	10900	57219	27	9
10000	10925	57358	21	2
10000	10950	580\%6	24	6
10000	10975	57584	27	6
10000	11000	57121	19	4
10000	11025	57214	11	2
10000	11050	58299	15	4
10000	11075	58396	19	5
10000	11100	58001	10	0
10000	11125	57767	14	-1
10000	11150	58251	20	3
10000	11175	57545	23	1
10000	11200	57306	23	-3
10000	11225	57877	26	-3
10000	11250	57842	38	2
10000	11275	57141	19	0
10000	11300	58001	16	2
10000	11325	57604	16	6
10 ÛÔ	11350	57278	16	4
10000	11375	57097	18	3
10000	11400	574000	21	3
10000	11425	57655	22	1
10000	11450	57151	23	2
10000	11475	57050	20	0
10000	1150̂	b6986	13	0
10000	11520	56948	10	2
10000	11560	56972	13	3
10000	11575	56945	7	1
10000	11600	56951	4	1
10000	11625	57045	3	0
10000	11650	勺70b8	2	-2
10000	11675	56867	2	-2
10000	11,00	b7079	3	-2
10000	11725	57020	2	-3
10000	11750	57002	1	-2
10000	11775	56570	0	-3
10000	11800	57129	3	-3
10000	11825	56574	3	-3
10000	11850	57020	4	-6
10000	11875	56963	1	-6
10000	11500	56926	6	-6
10000	11925	56993	8	-6
10000	11950	57066	14	-6
10000	11975	57003	11	-8
10000	12000	56961	-1	-6

10000	12025	56758	-4	-6
10000	12050	56678	8	0
10000	12070	5666 b	10	2
10000	12100	56737	12	2
line 10100				
10100	9675	56325	1	3
10100	9700	56395	6	4
10100	9725	56722	9	4
10100	9750	56213	10	3
10100	9775	56232	8	3
10100	9800	56216	4	4
10100	9825	56336	6	6
10100	9850	56327	8	6
10100	9875	56473	9	4
10100	9900	56570	6	3
10100	9925	56778	4	2
10100	G550	56809	3	1
10100	9975	56994	4	2
10100	10000	56293	1	2
10100	100025	57011	3	0
10100	10050	57247	3	-2
10100	10075	57620	7	-6
10100	10100	58239	-9	-8
10100	10125	58062	15	-11
10100	10150	57740	6	-10
10100	10175	57483	2	-6
10100	10200	56933	-7	0
10100	10225	56659	-15	2
10100	10250	56783	-10	4
10100	10275	57023	-3	6
10100	10300	56935	0	7
10100	10325	57038	2	6
10100	10350	57075	9	6
10100	10375	56727	15	6
10100	10400	56680	20	8
10100	10425	56725	21	8
lûuo	10450	56563	22	4
10100	10475	56679	23	4
lulũo	10500	56635	20	0
10100	10525	56444	19	-1
10100	10550	56661	21	1
10100	10575	56737	19	2
loluo	10600	56527	18	4
Loluó	10625	56631	14	4
lujuo	10650	56557	9	8
10100	10675	56858	2	7
10100	10700	56539	2	10
10100	10725	56552	6	10
10000	10750	56495	7	5
10ヘ0̇ó	10775	56873	10	11
10100	10800	56917	14	iơ
10100	10825	56905	19	8
10100	10850	56636	13	8
10100	10875	56548	22	9

10100	10500	56702	18	8
10100	10925	56977	20	7
10100	10550	57212	19°	5
10100	10575	57116	21	6
10100	110゙úo	57510	25	6
10100	11025	58486	29	8
10100	11050	56754	23	6
10100	11075	57505	13	4
10100	1̇iưo	50326	12	2
10100	1iiくら	5734	11	0
10100	11150	58126	18	2
10100	11175	57952	20	3
10100	11200	57487	24	2
10100	11225	57083	14	0
10100	11250	57773	14	－2
10100	11275	58270	21	0
10100	11300	58203	28	3
10100	11325	58871	$2 \dot{1}$	2
10100	11350	57533	10	0
iuloú	11375	56940	7	1
10100	11400	56891	7	4
10100	11425	57058	9	1
10100	11450	56929	12	1
10100	11475	57048	17	2
10100	11500	56929	23	1
Lúlũ	11525	56850	27	3
10100	11550	56581	30	3
10100	11575	56976	21	2
10100	11600	56782	10	1
10100	11625	56816	8	5
10100	11650	56876	2	3
10100	11675	57045	5	5
Luluo	11700	50973	4	5
10100	11725	56943	4	3
10100	11750	57049	0	-1
10100	11775	56927	1	0
10100	11800	57171	－7	－4
10100	11825	56955	－9	－5
1010	11850	56962	-13	－5
10100	$1 i 875$	56898	－11	－5
Luluo	11500	56893	－6	－7
juiús	11925	． 56918	－3	－6
10100	11550	56751	－2	－7
10100	11975	56861	1	－7
10100	12000	57277	5	－5
10100	12025	56802	－3	-7
10100	12050	56734	-10	－8
10100	12075	56967	－1i	－5
10100	12100	56797	－4	－4
line 10200				
10200	9675	56355	6	－2
10200	9700	56336	10	－3
10200	9725	56448	13	1
10200	9750	56641	10	-1

10200	9775	56643	6	2
10200	9800	56510	8	3
10200	9825	56666	1 i	0
10200	9850	56683	15	1
10200	9875	56750	15	2
10200	9900	56755	11	2
10200	9925	56844	10	2
10200	9950	56918	8	2
10200	9975	57060	5	1
10200	10000	57135	0	1
10200	10025	57356	-4	1
10200	10050	57471	-6	1
10200	10075	57789	-5	2
10200	10100	58803	-8	-1
10200	10125	58689	-8	-6
10200	10150	58116	-8	-8
10200	10175	57575	-7	-9
10200	10200	57244	-13	-4
10200	10225	57175	-11	0
10200	10250	57249	-8	3
10200	10275	57268	-7	2
10200	10300	57116	-11	0
10200	i0325	57399	$-1 i$	-1
10200	10350	57303	-8	-3
10200	10375	57073	-2	-4
10200	10400	57228	8	-5
10200	10425	57109	15	-4
10200	10450	57110	17	-6
10200	10475	56901	18	-8
10200	10500	56714	16	-6
10200	10525	56508	12	-3
10200	10550	56671	7	-2
10200	10575	56646	5	-5
10200	10600	56482	11	0
10200	10625	56418	0	7
10200	10650	56505	-5	9
10200	10675	56630	0	9
10200	10700	56528	8	7
10200	10725	56913	7	4
10000	10750	56781	8	6
10000	10775	56961	11	6
10200	10800	57239	11	4
10200	10825	56909	21	8
10200	10850	56658	16	6
10200	10875	56656	20	7
10200	10500	57465	19	6
10200	10925	57413	17	4
10200	10950	50935	12	3
10200	10975	57205	17	3
10200	11000	57702	17	4
10200	11025	56990	13	3
10200	11050	57748	3	4
10200	11075	58006	15	4
10200	-11100	57268	15	3

10300	10000	56979	19	0
10300	10025	57166	21	0
10300	10050	57668	19	0
10300	10075	58682	9	-1
10300	10100	56703	1	-4
10300	10125	56374	0	-5
10300	10150	57285	-8	-8
10300	10175	57141	-9	-12
10300	10200	57260	-9	-11
10300	10225	57302	-4	-9
10300	10250	57389	1	-5
10300	10275	57314	8	-1
10300	10300	57372	-1	1
10300	10325	57352	-2	1
10300	10350	57361	-1	3
10300	10375	57284	-1	2
10300	10400	57260	-5	2
10300	10425	57184	-4	0
10300	10450	57153	-3	-2
10300	10475	57060	0	-5
10300	10500	57060	4	-5
10300	10525	57057	7	-6
10300	10550	57033	6	-8
10300	10575	57285	7	-4
10300	10600	57402	8	-3
10300	10625	57468	8	-4
10300	10650	57164	9	-2
10300	10675	57395	6	1
10300	10700	57523	12	3
10300	10725	57500	17	3
10300	10750	57451	22	2
10000	10775	57332	25	1
10300	10800	57581	19	-2
10300	10825	57200	16	-2
10300	10850	57319	16	-3
10300	10875	57462	11	-1
10300	10900	57500	14	-4
10300	10925	57512	8	-3
10300	10950	57410	5	-3
10300	10975	57457	6	-4
10300	11000	57289	9	-2
10300	11025	57064	12	-1
10300	11050	56920	12	-2
10300	11075	56967	9	-4
10300	11100	57208	10	-3
10300	11125	57247	15	-2
10300	11150	57277	16	-3
10300	11175	57390	23	-4
10300	11200	57193	18	-3
10300	11225	57622	13	-4
10300	11250	57558	11	-5
10300	11275	58742	16	-3
10300	11300	57900	15	-2
10300	11325	57262	12	-2
10			-1	

10300	11350	57010	10	0
10300	11375	57020	7	2
10300	11400	57098	8	3
10300	11425	56811	12	3
10300	11450	56796	14	4
10300	11475	56670	16	1
10300	11500	56783	19	1
10300	11525	56805	23	3
10300	11550	56800	19	4
10300	11575	56824	12	3
10300	11600	56807	13	7
10300	11625	56958	7	6
10300	11650	56906	1	5
10300	11675	57048	4	7
10300	11700	57034	3	4
10300	11725	56999	3	5
10300	11750	56952	0	1
10300	11775	56868	-3	-
10300	11800	56906	-4	-2
10300	11825	56888	-4	-5
10300	11850	56828	-3	-5
10300	11875	56880	0	-6
10300	11900	56920	5	-8
10300	11925	57000	7	-9
10300	11950	56819	10	-7
10300	11975	56981	13	-6
10300	12000	56893	-9	-8
10300	12025	56985	-17	-4
10300	12050	57067	-22	-3
10300	12075	57114	-24	-4
10300	12100	57141	-22	-1
tie 10000				
10000	10000	56269		
10000	10025	56256		
10000	10050	56668		
10000	10075	56842		
10000	10100	56923		
10000	10125	56930		
10000	10150	57028		
10000	10175	57247		
10000	10200	57135		
10000	10225	57202		
10000	10250	57406		
10000	10275	57367		
10000	10300	56979		
10000	10325	56843		
10000	10350	56852		
10000	10375	56828		
10000	10400	56883		
10000	10425	56885		
10000	10450	58355		
10000	10475	57523		
10000	10500	58343		
10000	10525	58070		

10000	10550	61622
10000	10575	59655
10000	10600	60232
10000	10625	58823
10000	10650	57559
10000	10675	57244
10000	10700	56936
10000	10725	57045
10000	10750	57407
10000	10775	57321
10000	10800	57381
10000	10825	57898
10000	10850	57541
10000	10875	57212
10000	10900	57095
10000	10925	57083
10000	10550	57493
10000	10575	57607
10000	11000	57488

APPENDIX IV

COST STATEMENT

COST STATEMENT

SALARIES

- Grant Crooker, Geologist June 3, 6, 14, 15, sept. 12-14, 1991 Jan. 29. 31. May 12-17, 20-23. 1992 19 days $\$ 400.00 /$ day S 7.600.0
- Lee Mollison, Field Assistant May 13-15. 1992 3 days (S 200.00/day 600.00

MEALS AND ACCOMODATION

- Grant crooker - 13 days $560.00 /$ day
- Lee Mollison - 3 days $\$ 60.00 /$ day
180.00

TRANSPORTATION

- Vehicle Rencal (Ford $3 / 4$ ton 4x4) June 3, 6, 14. Sept. 12-14. 1991 May 12-15. 20-22. 1992 13 days $\$ 60.00 /$ day
- Gasoline

EQUIPMENT RENTAL

- Magnetometer - Scintrex MP-2

May 13-15, 19, 29, 1992
5 days \$ $25.00 /$ day

- VLF-EM - Geonics EM-16

May 13-15, 20, 21, 1992
5 days $\$ 25.00 /$ day
FREIEHT 34.81
SUFPLIES

- Hipchain thread, flagging, geochem bags, etc. 58.25

GEOCHEYICAL ANALYSIS

-4 pan concentrates, 31 element ICP. Au,
(\$ $12.84 / \mathrm{sample}$ 51.36
-31 silt samples, 31 element ICP. Au (6) S 12.84/sample 398.04

PREPARATIUN OF REYURT

- Secretarial. reproduction, telephone, office overhead etc.
600.00

