			LOG NO: JUL 1 6 1992 RD.
· · · ·			ACTION:
GEOLOGICAL.	GEOCHEMICAL	AND	GEODATE CAL REPORT

FILE NO:

on the

a second a second s

TAS 1 and 2 CLAIMS

Copper Mountain Area Similkameen Mining Division

92H-8W (49°18' N. Lat., 120°28' W. Long.)

for

GRANT F. CROOKER Box 404 Keremeos, B.C. VOX 1NO (Owner and Operator)

by .

GRANT F. GREOGEL, OB G. C. A. QOB R A N C H Constitute Sest MENT REPORT

TABLE OF CONTENTS

			P	age
		SUMMARY AND RECOMMENDATIONS		1
	1.0	INTRODUCTION		3
		 1.1 General 1.2 Location and Access 1.3 Physiography 1.4 Property and Claim Status 1.5 Area and Property History 		3 3 3 4
	2.0	EXPLORATION PROCEDURE		8
	3.0	GEOLOGY AND MINERALIZATION	:	10
		3.1 Regional Geology 3.2 Claim Geology 3.3 Mineralization		10 11 1 4
1	4.0~	GEOCHEMISTRY	:	16
		4.1 Silt Geochemistry		16
÷	5.0	GEOPHYSICS	· · · · · ·	17
		5.1 Magnetometer Survey 5.2 VLF-EM Survey		17 18
	6.0	CONCLUSIONS AND RECOMMENDATIONS	:	19
	7.0	REFERENCES		21
	8.0	CERTIFICATE OF QUALIFICATIONS		22

APPENDICES

.

T.

, ...

Appendix I	— ·	Certificates of Analysis
Appendix I	I -	Geophysical Equipment Specifications
Appendix I	II -	VLF-EM and Magnetic Data
Appendix I	v -	Cost Statement

ILLUSTRATIONS

FIGUR	B	PAGE
1.	Location Map	follows page 2
2.	Claim Map	follows page 3
3.	Compilation Map	follows page 4
4.	Area Geology	follows page 10
5.	Geology & Silt Geochemistry	pocket
6.	Magnetometer Survey	pocket
7.	VLF-EM Profiles (Seattle)	pocket

-

.

SUMMARY AND RECOMMENDATIONS

The Tas claims are located approximately 17 kilometers south of Princeton and 3 kilometers east of Copper Mountain in southern British Columbia. The property consists of 2 modified grid claims covering 40 units in the Similkameen Mining Division and is owned by Grant Crooker of P.O. Box 404, Keremeos, B.C., VOX 1NO.

The Copper Mountain area has been the scene of copper exploration since the 1880's and has been a significant producer of copper. Copper Mountain was operated as an underground mine by the Granby Consolidated Mining, Smelting and Power Company Limited during two periods of time, from 1926 to 1930, amd from 1937 to 1957. During this time 34,775,101 tons of ore were processed producing 613,139,846 tons of copper, 187,294 ounces of gold and 4,384,097 ounces of silver.

The camp lay dormant until 1966 when Granby resumed exploration at Copper Mountain and Newmont Mining Corporation initiated exploration at the Ingerbelle Property on the west side of the Similkameen River. In 1967 Newmont purchased Copper Mountain from Granby and by 1969 had outlined two ore bodies at Copper Mountain as well as the Ingerbelle orebody. The mine commenced production by open pit methods in 1972 and has been in continuous production since that time. At present approximately 23,000 tons of ore is being milled per day at a grade of 0.44% copper with recoverable values in gold.

The most important ore deposits at Copper Mountain and Ingerbelle are spatially and, it is believed genetically associated with late phases of the Copper Mountain intrusions, the most productive of which are the Lost Horse suite. The ore deposits, whether in volcanic or intrusive rocks are associated with zones of extensive and locally intense wallrock alteration which includes development of biotite, albite, epidote, pyroxene, actinolite, potash feldspar and scapolite.

Numerous faults cut intrusive and volcanic rocks at Copper Mountain. It is believed these faults originated before the main period of mineralization and played an important part as ore controls, probably acting as avenues along which much of the ore bearing solutions moved.

A considerable amount of work has been carried out on the area covered by the Tas claims by previous operators. During the early 1970's two grids were established and geological mapping, prospecting, soil geochemical sampling and magnetometer and Induced Polarization surveying carried out.

in de

These programs outlined a number of soil geochemical anomalies, Induced Polarization chargeability anomalies and sulphide showings. Minor amounts of chalcopyrite were found at several locations. The geological mapping indicated a large portion of the area is underlain by diorite of the Copper Mountain intrusive complex. This intrusive complex is a favourable environment for copper mineralization.

The present owner staked the Tas claims in May of 1991 and carried out silt sampling over all drainages on the property. A small grid was also established and geological mapping, prospecting and magnetometer and vLF-EM surveying were carried out over the grid.

The 1991-1992 program gave a number of positive results. The silt sampling program gave seven samples that were anomalous in copper $(\geq 90 \text{ ppm})$. These samples all drain from the north-central portion of the Tas-1 claim.

The geological mapping on the four grid lines showed the area to be underlain by rocks of the Copper Mountain intrusions. The rocks are mainly diorite of the Copper Mountain stock, although several outcrops appear to belong to the Lost Horse Group.

The magnetometer survey indicated a number of magnetic highs and The most significant of these appears to be an oval shaped lows. magnetic high feature approximately 200 meters by 300 meters in This magnetic high may be caused by magnetic minerals such size. as magnetite or pyrrhotite, possibly occurring in a breccia pipe. Copper minerals such as chalcopyrite may occur with these magnetic minerals.

A number of north trending, weak to strong VLF-EM conductors were delineated, but no cause is apparent for most of them.

Recommendations are as follows:

1) The grid should be expanded over the property, initially in areas believed to be underlain by Copper Mountain intrusives or in areas with anomalous copper soil geochemical values from the 1970's surveys.

2) The expanded grid should be soil sampled, geologically mapped. prospected and geophysically surveyed by magnetometer and VLF-EM.

Respect Welly submitted,

Grant Crooker, B.Sc., P.Geo. Consulting Geologist

1.0 INTRODUCTION

1.1 GENERAL

Work was carried out on the Tas claims from June 3, 1991 to May 23, 1992 by Grant Crooker, geologist and Lee Mollison, field assistant.

This program consisted of silt sampling the major drainages, chain and compass surveying of new roads, establishing four grid lines and carrying out geological mapping, prospecting, magnetometer and VLF-EM surveying on the grid lines.

1.2 LOCATION AND ACCESS

The property (Figure 1) is located approximately 17 kilometers south of Princeton and 3 kilometers east of Copper Mountain in southern British Columbia. The property lies between 49° 16' 45" and 49° 18' 55' north latitude and 120° 27' 30" and 120° 29' 35" west longitude (NTS 92H-8W).

Access to the property is via the paved Copper Mountain road. turning south off Highway 3 at Princeton. From the Copper Mountain road one turns onto the Wolfe Creek logging road which is a good gravel road. Branches of the Wolfe Creek road give good access to all areas of the peoperty.

1.3 PHYSIOGRAPHY

The Tas claims lie within the Thompson Plateau. Elevation is quite high, varying from 1220 to 1830 meters above sea level. Topography is generally moderate to steep although it becomes gently rolling along the ridges.

Wolfe Creek flows in a northerly direction through the claims and has a good flow of water all year round. Several branches of Wolfe Creek drain the property from the east. Vegetation consists of mainly mature jack pine with some spruce in the wetter areas. Heavy deadfall is prevalent in many areas and a significant portion of the area has been logged.

1.4 PROPERTY AND CLAIM STATUS

The Tas claims (Figure 2) are owned by Grant Crooker of Keremeos, B.C.. The property consists of two modified grid claims covering 40 units located in the Similkameen Mining Division.

Same

3

Claim	Units	Mining Division	Tenure No.	Record Date	Expiry Date
Tas-l	20	Princeton	250128	05/24/91	05/24/95*
Tas-2	20	Princeton	250129	05/25/91	05/25/95*

*Upon acceptance of this report.

1.5 AREA AND PROPERTY HISTORY

f

The Tas claims are located approximately 3 kilometers southeast of Copper Mountain. Copper Mountain has had a long history of mining and has been a major producer of copper. Over 500,000 ounces of gold have also been produced.

Copper was apparently first discovered at Copper Mountain in 1884 by a trapper named Jameson. However little work was carried out in the area until Volcanic Brown located the Sunset claim in 1892. From 1892 until 1923 exploration was carried out in many areas of the Camp. During the latter stages of World War I a concentrator was built at Allenby and a railline was built from Princeton to Allenby and thence to Copper Mountain. However no copper was produced during this time.

In 1923 The Granby Consolidated Mining, Smelting and Power Company Limited acquired the property and re-organized the concentrator and mine plants. Production did not begin until early in 1926 and continued until 1930. The mine was shut down until 1937 when production resumed and continued until 1957 when the mine was again closed. To the end of 1957 the concentrator treated 34,775,101 tons of ore producing 613,139,846 pounds of copper, 187,294 ounces of gold and 4,384,097 ounces of silver. Most of this production was from underground operations.

Little work was carried out in the area from 1957 to 1965. However in 1966, extensive trenching and drilling was carried out by The Granby Mining Company Limited at Copper Mountain, Newmont Mining Corporation of Canada Limited on the Ingerbelle property west of the Similkameen River and Cumont Mines Limited on its holdings in the vicinity of Copper Mountain.

In December 1967, Newmont purchased all of the Granby holdings in the Copper Mountain area and carried out large scale exloration on both properties. By the end of 1969, one large scale zone of low grade copper mineralization was outlined on the Ingerbelle property and two zones on Copper Mountain. In June 1970 Newmont gave official notice of its intention to put the properties into production.

The property entered production by open pit methods in 1972 and has been in continuous production since that time. The present owner

4

is Similco Mines Limited and production is in the order of 20,000 tons per day with a mill head grade of 0.44% copper and recoverable gold values. Efforts are currently underway to extend the mine life past the year 2000.

A considerable amount of work was carried out in the area covered by the Tas claims during the early 1970's. This work consisted of geological mapping, prospecting, geochemical soil sampling and geophysical surveying (magnetometer and Induced Polarization). Bulldozer trenching by previous operators is mentioned in the assessment reports from the early 1970's but no information is available on that work.

During 1971 Coin Canyon Mines Ltd. carried out soil geochemical sampling and magnetometer and Induced Polarization geophysical surveying on the "Y" claims. The work was carried out over the area indicated by grid A on figure 3. Approximately 149,000 feet of grid was blazed and surveyed. The baseline runs in a north northwesterly direction with 23 crosslines at right angles to the baseline. Lines are 500 feet apart with stations marked every 100 feet along the lines.

Soil samples were collected every 250 feet along the lines and the samples were analyzed for copper. The frequency distribution indicated background to be 50 ppm copper and values 75 ppm and greater were considered anomalous. Four general copper anomalies were outlined by the survey (Figure 3, Anomalies #1 to #4).

It should be pointed out at this time that most of the property is overlain by a mantle of glacial drift. Preto examined 26 drill noles from the Copper Mountain area and found the glacial drift to have an average thickness of 14.5 feet with a maximum of 33 feet. Clay layers several feet in thickness are often intercalated with various other types of drift.

Anomaly #1 is 2500 feet long by 1000 feet wide and values range from 70 ppm to 315 ppm copper. The Phelps Dodge geochemical survey also confirms this anomaly. Follow up prospecting found the anomaly coincidental with a swampy area and no outcrop was found in the area.

Anomaly #2 is a linear shaped anomaly 2000 feet long by 800 feet wide with values ranging from 70 ppm to 190 ppm copper. The western portion of the geochemical anomaly overlaps induced Polarization chargeability anomaly A. Old bulldozer trenches at the south end of the anomaly exposed outcrop of bedded andesite volcanics composed of massive fragmentals, crystal tuffs and tuffaceous argillites. A large portion of the volcanics have been silicified and chloritized. From 2% to 5% finely disseminated pyrrhotite and pyrite with trace amounts of chalcopyrite is found throughout this altered zone. Anomaly #3 is some 2500 feet long by 1500 feet wide with values ranging from 70 ppm to 275 ppm copper. Outcrop exposed along the baseline is altered diorite related to the Copper Mountain intrusives. The intrusive is only weakly mineralized with less than 1% pyrite.

Anomaly #4 is a large anomaly 5500 feet long and up to 3000 feet wide with values ranging from 70 ppm to 850 ppm copper. The southern portion of this anomaly is also outlined by the Phelps Dodge geochemical survey. Trace amounts of chalcopyrite along with 1% to 2% pyrite were found associated with chloritic and feldspathic alteration at the southeastern corner of the anomaly and west of the anomaly. A large portion of this anomaly appears to be underlain by diorite of the Copper Mountain intrusive complex.

Magnetometer and Induced Polarization surveys were also carried out over portions of the grid. The magnetometer survey was carried out over 16 line miles of the grid with readings taken every 100 feet on every second line (1000 feet spacing). A number of magnetic highs and lows were outlined and further information can be obtained from the pertinent assessment report.

The Induced Polarization survey was carried out over 6.7 line miles of the grid with the lines spaced 1000 feet apart. The survey was only carried out over the southern portion of the grid and not over the northern portions which are underlain by the Copper Mountain intrusions. Four areas (Figure 3, A, B, C, D) showed chargeability responses greater than 15 milliseconds.

Anomaly A is a broad anomaly showing peak responses of 36 and 35 milliseconds and overlaps the western section of geochemical anomaly #2. The apparent resistivity values range from 175 to 1000 ohms meters with the largest portion lying within the 400 to 600 ohm meter range.

Anomaly B is partially outlined by the 15 millisecond contour and was not closed off to the north and east. It occurs along the southern portion of geochemical anomaly #4 and appears to be striking in a northerly direction into the geochemical anomaly. Disseminated pyrite was observed in an outcrop west of the anomaly. A low to intermediate range of apparent resistivity values correlate with the chargeability anomaly.

Anomaly C is a small three station anomaly occurring west of geochemical anomaly #1. No further information is available on this anomaly.

Anomaly D is also a small anomaly occurring along the most southerly line surveyed and open to the south. This anomaly was confirmed by the limited amount of Induced Polarization survey carried out by Phelps Dodge. Resistivity values are in the order

6

of 500 to 1350 ohm meters. Bulldozer trenching has been carried out in this area by previous operators. The trenching exposed highly fractured, broken and bleached andesite. Approximately 1000 feet east of the anomaly two soil samples gave 340 and 440 ppm copper, and subsequent prospecting located an outcrop with finely disseminated chalcopyrite. An assay of this material gave 697 ppm copper.

During 1973 Phelps Dodge Canada Ltd. carried out geological mapping, prospecting, soil geochemical sampling and a limited amount of magnetometer and induced polarization surveying on the "Rb, Tas and Tat" claims. The soil smpling and geophysics was carried out over the area indicated by Grid B while the geological mapping was carried out over both Grid A and Grid B.

Approximately 19.5 miles of grid were cut and flagged on grid B. The baseline runs north-south and 16 crosslines were ran at right angles to the baseline. Lines are 400 feet apart with stations marked at 200 feet intervals.

Soil samples were collected at 200 feet intervals along the lines and analyzed for copper. The most highly anomalous values from the soil geochemical survey came from the area of anomaly #5 with values of 340 ppm and 414 ppm copper. This anomaly is about 1500 feet long by 1500 feet wide. Copper mineralization consisting of finely disseminated chalcopyrite (697 ppm copper) was found in this area.

Unly 1.3 miles of Induced Polarization survey was carried out over the grid. A small chargeability high was located at Anomaly D. This anomaly was found by both of the Induced Polarization surveys.

Geological mapping was carried out over both grids by Phelps Dodge. This mapping indicated an area 8000 feet long by 4500 feet wide is underlain by diorite of the Copper Mountain intrusions. A number of areas as shown on figure 3 show varying degrees of alteration and pyrite with minor amounts of chalcopyrite.

7

2.0 EXPLORATION PROCEDURE

Grid co-ordinate 10000N and 10000E was established where B Creek, a westerly flowing tributary of Wolfe Creek confluences Wolfe Creek. A baseline was then established 1000 meters north and south of this point. Lines 10000N through 10300N were then established off the baseline.

GRID PARAMETERS

-baseline direction N-S -survey lines perpendicular to baseline -survey line separation 100 meters -survey station spacing 25 meters, slope corrected -survey total - 11.7 kilometers -declination 21°

GEOCHEMICAL SURVEY PARAMETERS

-survey totals - 31 silt samples - 4 pan concentrate samples -all samples analyzed by 31 element ICP and Au -silt samples sieved to minus 20 mesh in the field

All samples were sent to Mineral-Environments Laboratories, 705 West Fifteenth Street, North Vancouver, B.C., V7M 1T2, for analysis. Laboratory technique for silt samples consists of preparing samples by drying at 95° C and sieving to minus 80 mesh.

A 31 element ICP analysis and gold analysis were carried out on all samples. The gold analysis consists of aqua-regia digestion, atomic adsorption finish. Sensitivity for gold is to 5 ppb.

The silt geochemical data was plotted on figure 5 at a scale of 1:5000.

GEOPHYSICAL SURVEY PARAMETERS

TOTAL FIELD MAGNETIC SURVEY

-survey line spacing 100 meters -survey station spacing 25 meters -survey total - 10.7 kilometers -instrument - Scintrex MP-2 magnetometer -measured total magnetic field in nanoteslas (gammas) -instrument accuracy ± 1 nanotesla Keadings were taken along the baseline to obtain standard readings for all baseline stations. All loops ran off the baseline were then corrected to these standard values by the straight line method. The operator faced north for all readings.

The total field magnetic data was plotted on figure 6 at a scale of 1:5000 and the data listed in Appendix III.

VLF-EM SURVBY

-survey line spacing 100 meters -survey station spacing 25 meters -survey totals - 9.7 kilometers -instrument - Geonics EM-16 -transmitting station - Seattle - 24.8 Hhz. -direction faced - southeasterly -in-phase (dip angle) and out-of-phase (quadrature) components measured in percent at each station.

The VLF-EM profiles were plotted on figure 7 at a scale of 1:5000 and the data listed in Appendix III.

3.0 GEOLOGY AND MINERALIZATION

3.1 REGIONAL GEOLOGY

e. ...

The Tas claims are located within the Intermontane Belt of southern British Columbia, immediately southwest of Copper Mountain (figure 4).

The oldest rocks in the area are Upper Triassic Nicola Group volcanic and sedimentary rocks. These rocks are composed mainly of basaltic andesite flows and pyroclastic rocks with greywacke and argillite.

The central portion of the area is underlain by intrusive rocks of the Copper Mountain intrusions. These intrusions consist of the Copper Mountain, Smelter Lake and Voigt stocks. The Copper Mountain stock covers approximately 6.5 square miles and is a concentrically differentiated intrusion, elliptical in plan, the long axis of which strikes north 60° west and is approximately 4 miles long. The Smelter Lake stock occupies less than 1 square mile while the Voigt stock occupies approximately 3.2 square miles.

The Lost Horse complex is also part of the Copper Mountain intrusions and consists of intrusive rocks ranging in composition from diorite to syenite and generally having a porphyritic texture. They are believed to be later phases of the Copper Mountain stock and occur as a complex of dykes, sills and irregular bodies.

The northeastern portion of the area is underlain by a body of Lower Cretaceous biotite-hornblende quartz monzonite called the Verde Creek quartz monzonite.

All of the above intrusive, volcanic and sedimentary rocks are cut and unconformably overlain by intrusive, volcanic and sedimentary rocks of the Middle Eocene Princeton Group.

A large number of faults occur in the map area, most in the Copper Mountain-Ingerbelle area. They have been divided into the eastwest faults, the "Mine breaks", northwest faults, northeast faults, and Boundary fault.

The east-west faults, which dip steeply north appear to be relatively old, and to have originated in pre-mineralization time. Later dilation in tertiary time is indicated, as some of the faults are followed by Tertiary dykes. These faults may have acted as channelways for mineralizing solutions as they are centrally located to some of the ore bodies at Copper Mountain and Ingerbelle.

The "Mine breaks" are a system of faults which trend slightly north of east with northerly dips of 60° and occur near the old Copper

ACASEAMA BYRICS B BYRICS BYRICS B BYRICS BYRICS BYRI	PIT 2 ORIOLE AREA
GENERALIZED GEOLOGY OF THE C	AMILE 2 Km 2 Km
MIDDLE EOCENE	GRANT F. CROOKER
ANDESTITIC VOICANIC BOCKS IOWER CRETACEOUS VERDE CRETACEOUS UPPER TRIASSIC COPPER MOUNTAIN INTRUSIONS IOIT HORE COMPLEX IOIT HORE COMPLEX IOIT HORE COMPLEX POSPHERT RECONCLUE IO ANCEDISTINIS AND POSPHERT RECCA	TAS CLAIMS AREA GEOLOGY N.T.S.92H-8W SIMILKAMEEN MD.BC
COPIE MOUNTAIN YOIGT AND IMELIES LANE HOLES METODIE MEMATINE MONEONIES BIOBIE BIOBIE	DRAWN BY GC DATE AY 92 DRAWING HT. SCALE : PROJECT : PIEURE HT. 4

Mountain mine area. Though unmineralized themselves they have been condidered to be ore controls by mine staff and are probably related to old structures as suggested by their relation to mineralization. These faults may be related to the east-west faults, although they are of slightly different attitude.

The main Copper Mountain fault is the most important structure of the northwest trending faults. The history of the Main fault is probably long and complex. It closely parallels the long axis of the Copper Mountain stock and the trend of the major regional faults in the Princeton area. In 1951 Fahrni stated that " one half of the known orebodies in the mines are grouped along the Main fault or its branches ".

The northeast trending faults consist of a number of major structures, as well as a number of smaller ones. Some of them occur in the area of the orebodies and the history of these faults is probably also long and complex. Several of these faults show appreciable post mineral movement.

The Boundary fault system consists of a major structure, the Boundary fault, and several similiar but smaller faults that are found in the western part of the map area. The Boundary fault strikes northerly and dips approximately 65° to the west. These faults are interpreted to be normal faults, and that the western block was dropped down.

3.2 CLAIM GEOLOGY

All rock units (Figure 5) which are believed to underlie the Tas claims are described below, although many of them have not been located as yet due to the limited amount of geological mapping that has been carried out. Outcrop is scarce over much of the property. The classification of the units is taken from Preto (1972) to provide continuity with known geological information on the Copper Mountain area.

The oldest rocks underlying the claims are Upper Triassic Wolfe Creek Formation of the Nicola Group. They are primarily volcanic in origin and deposition and have been divided into four units. These include massive andesite (Unit 2a), volcanic breccia and agglomerate (Unit 2c), and tuff and tuff breccia (Unit 2d). Unit 2e consists of undifferentiated material.

Unit 2a is generally a massive, fine to medium grained porphyritic pyroxene-hornblende-plagioclase andesite, in part agglomeratic. The rock is in places extensively saussuritized, with replacement of plagioclase phenocrysts by epidote and sericite, and strong replacement of pyroxene by a light green amphibole.

11

Kocks of unit 2c are coarse fragmental volcanic volcanic rocks that may be described as volcanic breccia and/or agglomerate. All rocks are dense, massive and, dark green or brownish in color. The fragments in the breccia vary from andesitic volcanic rocks to time grained tuff and, locally limestone. Fragments generally vary in size from 1 to 10 centimeters, although occasionally blocks of 25 centimeters or more occur. In the area of the Tas claims the rocks are irregularily distributed in the volcanic succession of unit 2 as relatively small lenses associated with tuff or massive andesite.

Unit 2d is mainly greenish grey and green crystal tuff and lithic crystal tuff and, locally volcanic siltstone. These rocks are generally well and thinly bedded and at several locations show graded bedding and poorly developed crossbedding. They are characterized by beds of very fine grained silt alternating with beds of slightly coarser, sand sized material consisting of mainly broken plagioclase and some pyroxene crystals. Most rocks are of andesitic composition and the amount of quartz present varies from. nil to a significant constituent.

The Upper Triassic Copper Mountain intrusions have intruded the Wolfe Creek Formation. The term Copper Mountain intrusions refer to four main bodies of intrusive rocks which are known as the Copper Mountain stock, Voigt stock, Smelter Lake stock and Lost Horse intrusions. Rocks of the Copper Mountain stock and Lost Horse intrusions underlie the Tas claims.

Two rock types of the Copper Mountain stock underlie the Claims, diorite (Unit 6) and microdiorite and latite porphyry dykes (Unit 10).

Unit 6 is a fine to medium grained, light to dark green, massive augite diorite. This unit has been found to outcrop from baseline 10000E to at least 11200E on lines 10000N to 10300N. The diorite forms the outer phase of the Copper Mountain stock.

Unit 10 consists of dykes that range in composition from andesite to acid basalt and range in texture from dark grey, fine grained, trachyoid, latite porphyry with phenocrysts of plagioclase and pyroxene to massive fine to medium grained pyroxene microdiorite. The dykes range in width from one meter to 100 meters, cut all Nicola volcanic rocks and generally trend north-northeast.

The Lost Horse intrusions have been divided into units 11 and 12. Unit 11 includes all rocks which do not form obvious dykes while unit 12 consists of well defined dykes up to 30 meters wide which cut unit 11 and rocks of the Nicola Group. Most rocks of the Lost Horse intrusions have a porphyritic texture and contain disseminated apatite crystals.

and with the action of the support attraction of the

Rocks of unit 11 are fine to medium grained, almost invariably porphyritic and range in composition from diorite to monzonite or syenite. They are light grey green in color and are composed of intermediate plagioclase, clinopyroxene and varying amounts of potash feldspar. A few scattered outcrops of what is believed to be unit 11 (monzonite?) were found along the baseline from 10350N to 10650N.

Unit 12 consists of latite and trachyte in approximately equal amounts and is invariably porphyritic. Texturally they range from latite or trachyte porphyry to porphyritic micromonzonite or microsyenite. They are mainly composed of plagioclase, pyroxene, biotite and potash feldspar.

The Upper Lower Cretaceous Verde Creek quartz monzonite (Unit 13) occurs along the eastern boundary of the Tas claims. It is usually medium grained, grey to pinkish grey and porphyritc. White plagioclase phenocrysts up to 5 millimeters long occur within a matrix of plagioclase, grey quartz and interstitial potash feldspar. Brown biotite forms up to 10% of the rock while lesser dark green or black hornblende is found in phases which contain less biotite.

Two types of post Lower Cretaceous dykes (Units 14 and 15) occur within the area. The Mine dykes (Unit 14) are a swarm of northerly trending, very steep to vertically dipping, buff to cream colored dykes of felsite, quartz porphyry and feldspar porphyry. The dykes range in composition from trachyte to rhyolite and vary in width from less than one meter to more than sixty meters. One rusty felsite dyke with 1 to 3 millimeter quartz eyes was mapped along the baseline from 10500N to 10600N.

Unit 15 consists of fine grained grey andesite dykes up to a few meters wide or larger dykes of grey plagioclase, hornblende or pyroxene andesite porphyry. These dykes cut the mine dykes and their texture and composition suggest they are related to the Tertiary rocks of the Princeton Group.

The youngest rocks in the area belong to the Lower Volcanic Formation of the Middle Eccene Princeton Group (Unit 17). This unit (17d) occurs as sparse, isolated, generally small dykes of fine grained, grey, flaggy andesite. The texture, composition and field relationships of these dykes strongly suggest that they are part of the Princeton Group.

13

3.3 MINERALIZATION

The copper deposits of the Copper Mountain area can be divided into four main subdivisions of copper deposits based on mineral composition, genesis and geographic position. The subdivisions are as follows: Group A - disseminations and stockworks mostly of chalcopyrite and pyrite in altered Nicola volcanic and/or Lost Horse intrusive rocks, Group B - hematite-chalcopyrite and magnetite-chalcopyrite replacements in rocks of the Voigt stock, Group C - bornite-chalcopyrite concentrations associated with pegmatite veins in rocks of the Copper Mountain stock, and Group D - magnetite breccias and replacements in Lost Horse intrusive rocks.

The Group A deposits, which are by far the most important in the Copper Mountain area, include the Ingerbelle and Copper mountain deposits, as well as several smaller occurrences. All deposits in this group are spatially and, it is believed genetically associated with the late phases of the Copper Mountain intrusions, the most productive of which are those of the Lost Horse suite. The sulphide deposits, whether in volcanic or intrusive rocks, are associated with zones of extensive and locally intense wallrock alteration which include development of biotite, albite, epidote, pyroxene, actinolite, potash feldspar and scaploite.

A great number of faults cut intrusive and volcanic rocks. It is believed the major faults and, to a lesser extent subsidiary structures parallel to them originated before the main period of mineralization and played an important part as ore controls, probably acting as avenues along which much of the ore-bearing solutions moved.

Pyrite and chalcopyrite are the dominant sulphide minerals, although bornite, pyrrhotite and magnetite occur sporadically.

The Group B deposits are distinctive both in mineralogy and association with diorite of the Voigt stock. Although the mineralization is locally of higher grade than the Group A deposits, no commercial concentrations of this group have been discovered. This mineralization is confined to narrow zones of shearing and brecciation, and is generally irregularly distributed and variable.

This type of mineralization varies from coarse hematite, magnetite, pyrite, red potash feldspar, calcite and epidote in brecciated and bleached pyroxene diorite of the Voight stock at the Frisco and No. 14 claims to magnetite-epidote veinlets with some chalcopyrite in massive, dioritic looking Nicola andesite and breccia at the Azurite and Copper Glance showings. Group C deposits are found at several locations within the Copper Mountain stock. Bornite, chalcopyrite and pyrite mineralization is always associated with or occurs in veins and dykes of red potash feldspar pegmatite. No orebodies have been developed in this type of mineralization and it is thought the potential of doing so is low.

Group D deposits are found at a number of locations in Lost Horse intrusive rocks. Magnetite breccias are usually brecciated monzonite or syenite porphyry that show a considerable degree of pink feldspar metasomatism and have been healed by interlacing veins of coarse magnetite. Copper sulphides are not found in any abundance with the magnetite breccias.

Only a limited amount of prospecting has been carried out on the Tas claims. Pyrite was noted at several locations (figure 5) asociated with the diorite (unit 6) of the Copper Mountain intrusions. Epidote occurs along fractures at 10000E & 10600N.

4.0 GEOCHEMISTRY

4.1 SILT GEOCHEMISTRY

Thirty-one silt samples (Figure 5) were collected at 250 to 350 meter intervals along the major drainages on the property. Four pan concentrate samples were also collected at the confluences of the major drainages. Thirty-one element 1CP and gold analyses were carried out on all samples.

Golà

Only three samples gave more than 5 ppb gold, and these were only 10 ppb. None of the samples were considered anomalous.

Copper

Copper values ranged from 47 to 148 ppm. Background was determined to be 81 ppm and values 90 ppm and greater were considered anomalous. The value of 81 ppm copper is much higher than normal for a background value.

Seven of the values were anomalous. Two of the anomalous samples came from "A" Creek and three of the samples from "B" Creek. Both of these creeks drain the northern portion of the Tas-1 claim. This area appears to be underlain by diorite of the Copper Mountain intrusives.

One anomalous sample came from a south draining branch of "C" Creek and one sample from the main branch of "C" Creek.

5.0 GEOPHYSICS

5.1 MAGNETOMETER SURVEY

A total field magnetic survey was carried out on lines 10000N to 10300N (Figure 6). The magnetic response was moderate to strong with values ranging from 56050 to 61622 nT. Less magnetic rocks generally underlie the western 300 meters and the eastern 600 meters of the grid with the central portion of the grid underlain by more magnetic rocks.

A number of prominent magnetic features were outlined by the survey. The most prominent magnetic high is an oval shaped feature centered at approximately 10200N & 10100E. This feature is some 200 meters by 300 meters in size and has the appearance of a pipe like structure. It may be caused by concentrations of magnetic minerals such as magnetite or pyrrhotite, possibly occurring in some type of a breccia pipe.

A number of narrow, linear, north-south trending magnetic nighs occur between 10900E & 11400E on all four grid lines. Several magnetic lows occur between the magnetic highs. These features may be caused by dykes or concentrations of magnetic minerals such as magnetite or pyrrhotite.

Two narrow, linear, northerly trending magnetic lows were delineated by the survey. The first trends from line 10300N & 11050E to line 10000N & 11025E, while the second trends from line 10300N & 11450E to line 10000N & 11525E. These narrow, linear magnetic lows may be defining fault zones.

يتلكن خال

5.2 VLF-EM SURVEY

The VLF-EM survey was carried out on lines 10000N to 10300N (Figure 7). The lines do not generally appear to have been influenced by topography.

A number of weak to moderate to strong VLF-EM conductors were outlined by the survey. They are northerly trending and exhibit short wavelengths. A number of the conductors are associated with magnetic features, indicating they are related to bedrock structures.

Six conductor systems were outlined by the survey. There is little outcrop exposure and no causes are evident for most of the conductors.

Conductor "D" is of moderate strength and occurs coincidentally with a magnetic low. It is probably represents a fault zone.

Conductor "F" is a moderate to strong conductor occurring along the eastern boundary of the claims and may represent the contact of the Verde Creek stock with the Nicola volcanic rocks.

·

6.0 CONCLUSIONS AND RECOMMENDATIONS

The 1991-1992 program gave a number of positive results. The silt sampling program gave seven samples that were anomalous in copper (\geq 90 ppm). These samples all drain from the north-central portion of the Tas-1 claim.

The geological mapping on the four grid lines showed the area to be underlain by rocks of the Copper Mountain intrusions. The rocks are mainly diorite of the Copper Mountain stock, although several outcrops appear to belong to the Lost Horse Group.

The magnetometer survey indicated a number of magnetic highs and lows. The most significant of these appears to be an oval shaped magnetic high feature approximately 200 meters by 300 meters in size. This magnetic high may be caused by magnetic minerals such as magnetite or pyrrhotite, possibly occurring in a breccia pipe. Copper minerals such as chalcopyrite may occur with these magnetic minerals.

A number of north trending, weak to strong VLF-EM conductors were delineated, but no cause is apparent for most of them.

Recommendations are as follows:

1) The grid should be expanded over the property, initially in areas believed to be underlain by Copper Mountain intrusives or in areas with anomalous copper soil geochemical values from the 1970's surveys.

2) The expanded grid should be soil sampled, geologically mapped, prospected and geophysically surveyed by magnetometer and VLF-EM.

Respecti submitted,

Grant Crooker, B.Sc., P.Geo., Consulting Geologist

h ...

7.0 REFERENCES

B.C.M.M., GEM 1973 p 133.

B.C.M.M., Minfile; 92H-SE-132.

Allen, A.R. (1971): Geophysical Magnetometer Survey, Ilse Claim Group for Aurus Mines Ltd. Assessment Report # 3088.

Ashton, A.S. (1970): Geophysical Report on a Ronka 16 Survey, llse and Sob Claim Group for Aurus Mines Ltd. Assessment Report # 2451.

Gutrath, G.C. (1971): Report om Geochemical Survey "Y" Claim Group, Copper Mountain Area, B.C., for Coin Canyon Mines Ltd. Assessment Report # 3188.

Gutrath, G.C. and Neilson, P.P. (1973): Geophysical Report of the Induced Polarization Survey on the Tas-Tat Claim Group on behalf of Phelps Dodge Corporation of Canada Limited. Assessment Report # 4526.

MacQuarrie, D.R. and Ager, C.A. (1975): Copper Project-Phase Three, Diamond Drilling for Aquitane Company of Canada Ltd. on the Cmag Claims and Sundry Crown Grants. Assessment Report # 5768.

Meyers, R.E. (1982): Report on Geological and Geochemical Surveys on the CMAG - 82 Group for Kidd Creek Mines Ltd. Assessment Report # 10956.

Morris, A. (1973): Summary Geological, Geochemical and Geophysical Report on the Tas and Tat Group of Claims for Phelps Dodge Corporation of Canada Limited. Assessment Report # 4380.

Morris, A. (1973): Geological Report Project 137 - Copper Mountain Area, for Phelps Dodge Corporation of Canada Limited. Assessment Report # 4806.

Neilson, P.P., (1971): Report on Induced Polarization and Ground Magnetometer Surveys, "Y" Claim Group for Coin Canyon Mines Ltd. Assessment Report # 3187.

Preto, V.A. (1972): Geology of Copper Mountain, British Columbia Department of Mines and Petroleum Resources Bulletin 59.

Read, W.S. (1968): Geochemical - Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Mineral Claims for Sinmax Mines Ltd. Assessment Report # 1785.

Read, W.S. (1970): Geochemical - Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Mineral Claims for Sinmax Mines Ltd. Assessment Report # 2892. Read, W.S. (1973): Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Claims for Sinmax Mines Ltd. Assessment Report # 4372.

Rice, H.M.A. (1947): Geology and Mineral Deposits of the Princeton Map-Area, B.C., Geological Survey of Canada, Memoir 243.

Tulley, D.W. (1973): Report on an Induced Polarization Survey on the Ilse Claims 1 - 12 and Sob Claims 1 - 8 for Aurus Mining Ltd. Assessment Report # 4376.

Wilson, E.M. (1969): Geophysical and Geochemical Report on Claims Ilse #1 - #12 for Aurus Mines Ltd. Assessment Report # 1904.

Wilson, E.M. (1969): Geophysical and Geochemical Report on Sob #1 - #8 for Aurus Mines Ltd. Assessment Report # 2032.

Wilsom, E.M. (1970): Geochemical on Claims Sob #3 - #8 for Aurus Mining Ltd. Assessment Report # 2558.

Ξ.

8.0 CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of Upper Bench Road, Keremeos, in the Province of British Columbia, hereby certify as follows:

- 1. That I graduated from the University of British Columbia in 1972 with a Bachelor of Science Degree in Geology.
- 2. That I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
- 3. That I am a member of the Canadian Institute of Mining and Metallurgy.
- 4. That I am a Fellow of the Geological Association of Canada.
- 5. That I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (No. 18,961).
- 6. That I am the owner of the Tas 1 and 2 mineral claims.

Dated this 14th day of 3414, 1192, at Keremeos, in the Province of British Columbia.

Grant Crocker, B.Sc., P.Geo., Consulting Geologist

APPENDIX I

CERTIFICATES OF ANALYSIS

¥.....

COMP:	GRANT	CROOKER
PROJ:	TAS CI	LAIMS

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 1V-1122-SD2

DATE: 91/09/28

ATTN: GRANT CROOKER/L.W.SALEKEN

(604)980-5814 OR (604)988-4524

• SOIL • (ACT:F31)

SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI CA PPM PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	N I PPM	P PPM	PB PPM F	SB PM	SR PPM I	TH PP m	T1 PPN	V PPM	ZN PPM	GA PPM	SN PPM	₩ PPM	CR A PPM	U-WET PPB
E00205420001 E00205420003 E00205420005 E00205420006 E00205420006 E00205420007	.5 .7 1.0 1.0 1.2	9950 13070 12870 14690 15740	2 1 1 4	8 6 4 3	25 31 28 29 36	.2 .1 .1 .1 .2	6 9250 7 11570 8 11770 9 13530 8 10420	.1 .1 .1 .1	8 9 9 8	70 84 69 70 107	21560 23420 24490 25770 22030	690 900 1040 880 670	11 14 13 13 20	4340 5310 5850 5140 4260	452 553 579 570 450	1 1 1 1	130 170 170 230 290	1 1 1 3	940 850 870 880 510	13 14 15 16 15	1 1 1 2	42 53 61 72 53	1 1 1 1	1063 1348 1400 1629 1368	70.6 80.5 85.0 98.2 74.5	82 85 80 67 140	1 1 1 1 1	1 1 1 1	22222	7 10 9 11 8	5 5 5 5 5
E00205420008 E00205420010 E00205420011 E00205420012 E00205420012 E00205420013	.9 .8 .9 .9	15000 14530 14370 10770 12340	1 1 1 1	44322	31 25 25 18 23	.1 .1 .1 .1	8 13550 9 15180 10 14340 6 12810 8 12810	.1 .1 .1 .1	10 12 11 7 9	76 72 80 61 58	27130 31890 33620 20080 26200	1060 1180 990 530 620	16 14 15 13 12	5830 6450 6080 3760 4870	583 650 588 380 448	1 1 1 1	850 200 690 710 1060	11111	930 990 840 630 750	20 17 22 15 18	1 1 1 1 1	70 75 63 47 50	11111	1664 1948 2036 1285 1700	100.5 122.6 130.9 73.7 102.9	81 72 82 59 62	1 1 1 1	1 1 1 1	2 2 2 1 2	11 13 20 6 15	5 5 10 5
E00205420014 E00205420015 E00205420016 E00205420017 E00205420017 E00205420018	1.0 .9 .6 .9	16690 13130 14530 13630 15570	1 1 1	22223	45 34 38 26 34	.3 .1 .1 .2 .3	8 11490 7 11620 8 12710 8 12660 7 12800	.1 .1 .1 .1	10 9 11 10 12	110 75 73 68 88	29750 23360 31110 28140 31350	760 820 1030 890 1160	17 13 15 13 17	4950 4790 5340 5630 6830	551 547 589 428 590	1 1 1	610 590 150 570 800	21112	920 1000 1020 1010 1150	16 15 14 16 21	2 1 1 1	56 56 65 65 65	11111	1549 1306 1573 1459 1516	92.8 79.1 104.7 99.4 102.9	68 51 56 53 70	1 1 1 1	1 1 1	22222	14 10 13 12 11	55555
E00205420019 E00205420020 E00205420021 E00205420023 E00205420023	.7 .8 .7 1.1	14970 12630 15900 13620 12200	1 7 1 3 1	3 2 3 1 2	37 28 37 35 24	.2 .1 .3 .1 .2	7 11660 7 11740 7 12830 6 12010 8 12240	.1 .1 .1 .1	11 11 11 9 10	81 83 82 63 58	29680 29390 29690 22780 28450	1110 1160 870 640 710	16 9 15 14 11	5470 5460 5660 5860 4820	516 577 749 551 694	1 1 1 1	570 560 750 560 160	ろうろいっ	1040 1090 1120 1240 1120	17 16 16 17 14	11111	60 66 65 48 58	1 1 1 1	1380 1394 1491 1196 1563	97.1 101.5 101.8 73.8 102.4	59 42 68 66 87	1 1 1 1 1 1 1 1	1 1 1 1	22222	14 14 15 11 10	5 5 10 5
E00205420025 E00205420026 E00205420027 E00205420028 E00205420028 E00205420029	1.0 1.1 .9 .9	13780 12910 11690 14380 14030	2 3 1 1	2 2 1 1 2	31 25 33 37 30	.2 .1 .1 .3 .1	6 13830 8 12210 6 10180 8 9410 7 11980	.1	10 9 9 9	70 59 74 123 83	25780 25330 25170 28790 25030	570 660 490 750 830	14 14 12 13	5250 4830 3610 4270 5070	541 484 985 402 546	11111	200 170 610 260 620	2 1 1 1 1	1110 1010 630 630 940	17 17 18 15 15	1 1 1 1	58 58 49 39 60	1 1 1 1	1365 1380 1221 1422 1344	88.0 88.6 87.1 100.5 88.4	71 80 50 75 79	1 1 1 1	1 1 1 1	2 1 2 2 2	13 10 12 15 11	55555
E00205420030 E00205420031 E00205420032 E00205420033 E00205420033	.9 .7 .7 .9	22670 22670 15670 13020 12830		1 2 1 1	42 53 40 37 33	.24.2.2	7 9910 8 10020 10 10010 8 8400 7 8830	.1 .1 .1 .1	9 11 11 9 12	60 128 148 64 94	24190 32770 35900 28660 34310	770 1110 770 660 710	9 22 13 10 11	4240 5970 4550 3340 4580	514 593 537 398 409	1 1 1	260 280 270 540 520	1 2 1 1 5	920 540 640 530 720	14 20 14 18 16	15111	41 42 41 35 33	1 1 1 1	1273 1545 1830 1447 1334	84.2 99.4 131.5 101.0 124.2	35 162 97 49 63	1 1 1 1	1 1 1	22222	11 13 15 14 22	5 5 10 5
																								<u></u>							
													-																		<u></u>
																														_	

ROJ: TAS CLAIMS TIN: GRANT CROOKER	/L.W.SA	LEKEN							705 6	iest (: 15TH נ604 (ST., N 980-58	DRTH V 14 OP	ANCOU	/ER, B 288-45	.C. 1 24	V7M 1T	2										* soi	DA1	Έ: Υ	91/0
SAMPLE	AG	AL	AS	B	BA	BE	BI	CA	CD		CU	FE	K	LI	MG	MN I	MO NA	NI	P	PB	SB	SR 1	(H	ŤI	V	ZN	GA	SN	W	CR /	AU-V
NUMBER E00205420035	PPM .7	ррм 14960	<u>PPM</u> 4	<u>РРМ</u> 1	40	.1	<u>PPM</u> 6	PPM 8850	.1	<u>PPM</u> 11	209 109	9PM 31800	780	12	PPM P 190 3	<u>PM P</u> 97	PM PPM 1 260	PPM F 4 6	200 F	<u>РМ Р</u> 14	1 1	<u>PM PF</u> 35	214 F 1 12	ррм 249 1	PPM 03.0	<u>РРМ</u> 58	2	<u>PPN 1</u>	<u>PPM F</u> 3	2 <u>PM</u>	P
· ··· ···																·					<u></u> .										
																			_												
																						1									
																															
																														,	
																														· · ·	
					<u></u>																										
· · · · · · · · · · · · · · · · · · ·	1																														
	<u> </u>			. <u> </u>							<u></u>						<u> </u>	<u> </u>													
	1																														

•

MIN-EN LABS ---- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OP (604)988-4524

PROJ: TAS CLAIMS

COMP: GRANT CROOKER

ATTN: GRANT CROCKER / U SALEVEN

ROJ: CAS CLAIMS TTN: GRANT CROOKER	R/L.W.S/	ALEKEN							1	US W	ESI	(604)9	980-5	814 (DR (6	04)98	ак, 1 38-4	524	V/M	112							• PA	NNED	CON	CENT	I RATE	DATE:	91/09/ (ACT:F3
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PP N	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM	TI PPM	V PPM	ZN PPM	GA PPM	SN PPM	W PPM	CR /	AU-WE	T WT-GM
E00205470002 E00205470004 E00205470009 E00205470022	.8 .8 .8 1.0	9390 10130 12650 15010	22 4 1	6 1 1 1	17 17 22 28	.1 .1 .1	13 13 10 9	10590 12610 14310 15310	.1 .1 .1 .1	9 9 11 11	60 47 51 49	24100 27520 32000 33060	660 770 1030 890	13 10 13 13	4290 4390 5500 5580	370 408 527 563	1 1 1	120 140 180 180	1 1 1	1000 1030 1040 1060	10 12 13 13	1 1 1	50 62 74 89	1 1 1	1255 1651 1878 1798	86.9 106.8 124.3 125.8	75 69 67 55	3 2 3 3	3 1 1	2233	15 15 14 15		5 26.13 5 22.65 5 26.01 5 10.06
												. .					-											-					
									<u></u>																				-				
																															` .		
																														,			
<u></u>		<u> </u>												<u></u>																			
																			<u>.</u>														
					<u> </u>			<u>.</u>		-		<u></u>																					
																										·							
			<u>.</u>																														
																		•															

FILE NO: 1V-1122-SJ1

DATE: 91/09/28

_

APPENDIX II

GEOPHYSICAL EQUIPMENT SPECIFICATIONS

GEONICS LIMITED VLF EM 16

way the figure of the

VLF transmitting stations Source of Primary Field Transmitting Stations Used: Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two tuning units can be plugged in at one time. A switch selects either station. About 15-25 Hz. Operating Frequency Range: Parameters Measured: 1- The vertical in-phase component (tangent of the tilt angle of the polarization ellipsoid). 2- The vertical out-of-phase (quad -rature) component (the short axis of the polarization ellipsoid compared to the long axis). Method of Reading: In-phase from a mechanical inclinometer and quadrature from a calibrated dial. Nulling by audio tone In-phase ± 150%; quadrature ±40% Scale Range: Readability: ±1% Operating Temperature Range: -40 to 50° C. ON-OFF switch, battery testing Operating Controls: push button, station selector, switch, volume control, quadrature dial ±40%, inclinometer ± 150% 6 size AA alkaline cells ≈200 hrs. Power Supply: Dimensions: $42 \times 14 \times 9 \text{ cm} (16 \times 5.5 \times 3.5 \text{ in})$ Weight: 1.6 kg. (3.5 lbs) Monotonic speaker, carrying case, Instrument Supplied With: manual of operation, 3 station selector plug-in tuning units (additional frequencies are optional) set of batteries. Geonics Limited Manufacturer: 1745 Meyerside Drive/Unit 8 Mississauga, Ontatio L5T 1C5

MP-2 PROTON PRECESSION MAGNETOMETER

Resolution:	1 gamma
Total Field Accuracy:	± gamma over full operating range
Range:	20,000 to 100,000 gammas in 25 overlapping steps.
Internal Measuring Program:	A reading appears 1.5 seconds after depression of Operate Switch & remains displayed for 2.2 secs. Recycling feature permits automat- ic repetitive readings at 3.7 sec. intervals.
External Trigger:	External trigger input permits use of sampling intervals longer than 3.7 seconds.
Display:	5 digit LED readout displaying total magnetic field in gammas or normalized battery voltage.
Data Output:	Multiplied precession frequency and gate time outputs for base station recording using interfac- ing optionally available from Scintrex.
Gradient Tolerance:	Up to 5,000 gammas/meter.
Power Source:	8 size D cells ≈25,000 readings at 25° C under reasonable conditions.
Sensor:	Omnidirectional, shielded, noise- cancelling dual coil, optimized for high gradient tolerance.
Harness:	Complete for operation with staff or back pack sensor.
Operating Temperature Range:	-35 to +60° C.
Size:	Console, 8 x 16 x 25 cm; Sensor, 8 x 15 cm; Staff 30 x 66 cm;
Weights:	Console, 1.8 kg; Sensor, 1.3 kg; Staff, 0.6 kg;
Manufacturer:	Scintrex 222 Snidercroft Road Concord, Ontario

. . •

5

APPENDIX III

MAGNETOMETER AND VLF-EM DATA

Grant Cr	ooker Data 1	istina	Line &	Station	1 + = n	orthing	/easting
Area: Ta	s Claims			0000201	- = s	outhing	/westing
Grid: Ta	s Creek		File Na	ame: tas	s .xyz	•	•
Date: Ma	y, 1992 VI	F-EM and	d magnet	tometer	survey	S	
Instrume	nt Type: I	et ails	-		-		
Scintrex	MP-2: C	orrected	d total	field n	nagneti	c value	S
Geonics	EM-16: F	acing so	outheast	terly, S	Seattle		
Data Typ	es #1 Corr	ected to	otal fie	eld magr	netic v	alues	
	#2 VLF-	EM In-P	hase Val	lues. Se	eattle		
	#3 VLF-	EM Quad	rature N	Values,	Seattl	e	
* 1 / 1.7	N / O						
E/W Tino M	N/S Station	# 1	# 0	4 3	ж л	# 5	# . 6
1100 100	00 SCACION	# I.	# 2.	# Ј.	77 4 •	# J.	π Ο.
10000	00	56097	1.4	1			
10000	9070	56007	₹	2			
10000	9700	56207	7 E	<u>د</u> ۲		•	
10000	9729 9756	56311	ט ד	.э А			
10000	9775	56345	10	2			
10000	9800	56229	10 5	-1			
10000	9825	56100	8	1			
10000	9850	56277	Ğ	2			
10000	9875	56290	8	ĩ			
10000	9900	56155	7	1			
10000	9925	56221	7	2			
10000	9950	56079	11	3			
10000	9975	56050	12	3			
10000	10000	56269		2			
10000	10025	56359	5	2			
10000	10050	56473	10	3			
10000	10075	56533	11	7			
` 10000	10100	56493	5	9			
10000	10125	56857	3	10			
10000	10150	56931	-4	11			
10000	10175	57099	-1	10			
10000	10200	57114	-1	13			
10000	10225	56695	1	13			
10000	10250	56648	13	16			
10000	10275	56617	29	22			
10000	10300	56617	22	13			
10000	10325	56893	24	13			
10000	10350	56626	25	13			
10000	10375	56622	35	11			
10000	10400	56696	38	13			
10000	10425	56666	36	7			
10000	10450	56614	36	3			
10000	10475	56833	35	2			
10000	10500	56630	36	-1			
10000	10525	56576	37	2			
10000	10550	56585	28	4			
10000	10575	56586	24	4			
	3 C C O O	E E E O A	20	a			
10000	10000	56594	27	9			

4...

	•			
10000	10675	56670	····20···	13
10000	10700	56844	25	11
10000	10725	57020	22	10
10000	10750	57179	26	10
10000	10775	57332	20	8
10000	10800	57419	26	9
10000	10825	57312	29	8
10000	10850	56617	24	5
10000	10075	57340	24	5
10000	10075	57203	24	0
10000	10900	5/219	21	7
10000	10925	5/358	21	2
10000	10950	58076	24	6
10000	10975	57984	27	6
10000	11000	57121	19	4
10000	11025	57214	11	2
10000	11050	58299	15	4
10000	11075	58396	19	- 5
16666	11100	58661	10	ň
10000	11135	56001 67767	14	_ 1
TUUUU	CPTTT CPTTT	5//0/	14	-T
10000	11150	58251	20	3
10000	11175	57545	23	1
10000	11200	57306	23	-3
10000	11225	57877	26	-3
10000	11250	57842	38	2
10000	11275	57141	19	ฉ
10000	11300	58001	16	2
10000	11205	57604	14	2
10000	11262	576V4 67470	10 10	o ∡
10000	11330	5/2/8	TD	4
10000	11375	57097	18	3
10000	11400	57400	21	3
10000	11425	57655	22	1
10000	11450	57151	25	2
10000	11475	57050	20	Ô
10000	11500	56486	12	ñ
10000	11636	ELCAU	10	2
10000	11540	90940 Eccaso	10	4
T0000	11550	569/2	- 13	3
10000	11575	56945	7	1
10000	11600	56951	4	1
10000	11625	57045	3	Û
10000	11650	57058	2	-2
10000	11675	56867	2	-2
10000	11200	57070	2	_0
10000	11705	57079 67000	5	
T0000		57020	4	
10000	11/50	5/002	1	-2
10000	11775	56970	0	-3
10000	11860	57129	3	-3
10000	11825	56974	3	-3
10000	11850	57020	4	-6
10000	11875	56963	1	-6
10000	11900	56926	Ē	-6
10000	11936	56520	0	_4
10000	110E0	30333 E3066	0 1 4	-0
10000	TTA20	5/066	14	-6
T0000	119/5	57003	11	8
10000	12000	56561	-1	-6

) 6. - 6. a

10000	10005	56750	·	-6		
10000	12025	56756	-4	-0		
10000	12050	56666	10 1	2		
10000	12075	50005	10	4		
10000	12100	56757	12	2		
	00	56335	1	3		
10100	9700	56205	т с.			
10100	9700	56777	0	4		
10100	9720	560122	9			
10100	9750	56213	- TO	3		
10100	3//3	56016	5	3		
10100	9800	20210 56226	4	4		
10100	9820 6456	56335	6	6		
10100	900V	5617)	•	6		-
10100	9875	304/3 54570	. 9			
10100	9900	56570	6	3	-	
10100	9920 COEO	56778	4	1		
10100	9950	56809	3	1		
	2775	20334	4	2		
10100	10000	56293	Ť	2		
TOTOO	10025	210TT	3	0		
10100	10050	5/24/	<u>د</u>			
TOTOD	±00/5	5/620	1	-6		
10100	TOTOD	58239	9	-8		
10100	10125	58062	12	-11		
10100	10150	57740	6	~10		
10100	101/5	5/483	4			
10100	10200	56933	-/	0		
TOTOO	10225	56505	-12	2		
10100	10250	56/83	-10	4		
10100	102/5	57023	-3	0		
10100	10300	55935	0			
10100	10325	5/038	2	Ď		
10100	10350	5/0/5	9	6		
TOTOO	103/5	56727	15	6		
10100	10400	56680	20	8		
10100	10425	50/25	21	8		
10100	10450	56563	22	4		
TOTOO	104/5	56679	23	4		
10100	10500	56639	20	0		
TOTOO	10525	56444	19	-1		
10100	10550	20001	21	1		
10100	105/5	56/3/	19	2		
10100	10600	56627	18	4		
TOTOO	10625	56631	14	4		
10100	10630 10675	5655/ 56850	<u>у</u>	8 -		
70700 TOTOO	TO0/2	55858 52556	2			
10100	10700 10700	56539 56553	2	10		
LOTOO	10/25	56552 544 5	6	TÕ		
10000	10/50	56495	1 1 1	7		
10000	T0//5	568/3	TO	17		
10100	10800	5691/	14	τŭ		
10100	TAGEV	50305 56626	12 TA	8		
10100	1000U	00000 E2240	5 L C	ð		
TOTOO	TA812	56548	22	9		

i L

			•	
10100	10900	56702	18	8
10100	10925	56977	20	. 7 :
10100	10450	57212	197	5
10100	10975	57116	21	6
10100	11000	57510	21	5
10100	11000	57510	25	0
10100	11025	20400	29	° c
10100	11050	55754 ETEAE	23	0
10100	TTO12	5/505	13	
10100	TITOO	56326	12	2
TOTOO	11152	5/322	11	U
10100	11150	58126	18	2
10100	111/5	5/952	20	E C
10100	11200	57487	24	2
10100	11225	57083	14	0
10100	11250	57773	14	-2
10100	11275	58270	21	Û
10100	11300	58203	28	3
10100	11325	58871	22	2
10100	11350	57533	10	Ù
10100	11375	56940	7	1
10100	114ÚŬ	56891	7	4
10100	11425	57058	9	1
10100	11 4 50	56929	12	ì
10100	11475	57048	17	2
10100	11500	56929	23	1
10100	11525	56850	27	3
10100	11550	56981	30	3
10100	11575	56976	21	2
10100	11600	56782	10	$\overline{1}$
10100	11625	56816	ž.	5
10100	11650	56876	• •	3
10100	11676	57045	5	5
10100	11766	57045	A	
16166	11755	56515	*± ./	2
10100	113EA	00 743 27444	44 	ر ن
10100	11700	5/049	U ↓	-1
TOTOO	11//5	56927	1 ~	U 1
TOTOO	11800	5/1/1	-/	-4
10100	11825	56955	-9	-5
10100	11850	56962	-13	-5
10100	11875	56898	-11	-5
10100	11900	56893	-6	-7
LÚLÚÚ	11925	-56918	- 3	-6
LŬLŬŬ	11950	56751	-2	-7
10100	11975	56861	1	-7
ίθιο	1200 <u>0</u>	57277	5	-5
10100	12025	56802	- 3	-7
10100	12050	56734	-10	-8
10100	12075	56967	-11	5
10100	12100	56797	-4	-4
line 102	200		74	-
10200	9675	56355	6	- 2
10200	9700	56235	10	- 3
10200	9728	56448	13	1
10200	9750	56641	10	-1
~~~~~		00041	<b>.</b>	-

.

10200	6775	56643	6		
10200	9775 9800	56510	e e	2	
10200	9805	56666	11.	ů.	
10200	9025	56683	15	1	
10200	5875	56750	15	2	
10200	6600	56755	11	2	
10200	9925	56844	10	<u>~</u>	
10200	9950	56418	ž.	2	
10200	9975	57060	5	1	
10200	10000	57135	õ	1	
10200	10025	57356	-4	1	
10200	10050	57471	-6	1	
10200	10075	57789	-5	2	
10200	10100	58803	-8	-1	
10200	10125	58689	-8	~6	
10200	10150	58116	-8	~8	
10200	10175	57575	-7	-9	
10200	10200	57244	-13	-4	
10200	10225	57175	-11	õ	
10200	10250	57249	-8	3	
10200	10275	57268	-7	2	
10200	10300	57116	-11	Ō	
10200	10325	57399	-ii	-1	
10200	10350	57303	-8	3	
10200	10375	57073	-2	-4	
10200	10400	57228	8	~5	
10200	10425	57109	15	-4	
10200	10450	57110	17	~6	
10200	10475	56901	18	-8	
10200	10500	56714	16	~6	
10200	10525	56508	12	-3	
10200	10550	56671	7	-2	
10200	10575	56646	5	-5	
10200	10600	56482	11	Û	
10200	10625	564i8	Ú	7	
10200	10650	56505	-5	y	
10200	10675	56630	Ú	9 -	
10200	10700	56928	8	7	
10200	10725	56913	7	4	
10000	10750	56781	8	6	
10000	10775	56961	11	6	
- 10200	10800	57239	11	4	
10200	10825	56909	21	8	
10200	10850	56658	16	6	
10200	10875	56656	20	7	
10200	10900	57465	19	6	
10200	10925	57413	17	4	
10200	10950	56935	12	3	
10200	10975	57205	17	£	
10200	11000	57702	17	4	
10200	11025	56990	13	3	
10200	11050	57748	3	4	
··· 10200 ····	11075	58006	15	4	
10200	- <b>11100</b> -	57268	15	3	

+ .

.

	10200	11125	58304	20	4
	10200	11160	50004	20	2
	10200	11130	57066	23	
	10200	111/0	57200	20 -	· 4
	10200	11200	5/169	21	2
	10200	11225	5///8	20	L
	10200	11250	57430	20	1
	10200	11275	5720 <del>9</del>	28	E
	10200	11300	57942	20	Û
	10200	11325	57355	-8	-2
	10200	11350	57065	6	1
	10200	11375	56933	6	2
:	10200	11400	56862	7	2
	10200	11425	56866	11	3
	10200	11450	56887	13	2
	10200	11475	56972	17	2
	10200	11500	56995	17	ō
	10200	11505	56650		ŷ
	10200	11550	56900	24	2 A
	10200	11550	56000	24 1 0	
	10200	112/2	200/4 5/0/7	τo	
	10200	11600	5696/	Ь	5
	10200	11625	56779	1	4
	10200	11650	56888	2	1
	10200	11675	56959	2	5
	10200	11700	56979	1	2
	10200	11725	56842	i	1
	10200	11750	56899	2	2
	10200	11775	57052	-5	-3
	10200	11800	56958	-7	-4
	10200	11825	57029	-6	5
	10200	11850	57020	-5	-6
	10200	11075	57434	- 3	-7
	10200	44000	5/454	-3	-10
	10200	11900	20001	0	-10
	10200	11925	56950	3	-9
	10200	11950	57004	5	-9
	10200	11975	56973	5	-7
	10200	12000	56775	-3	-8
	10200	12025	57035	-13	-4
	10200	12050	56825	-25	-6
	10200	12075	56867	-24	-4
	10200	12100	56985	-22	- 3
	line 10300	0			-
	10300	9675	56291	5	- 1
	10300	4700	56232		Ō
	10300	9700	56535	9 1 1	-1
	10300	9720	50005	13	-1
	10300	9/50	56/82	9	-2
	10300	9775	56901	11	-2
	10300	9800	56785	11	0
	10300	9825	567 <b>46</b>	10	1
	10300	9850	56740	13	1
	10300	9875	56804	13	1
	10300	<b>9</b> 900	56874	15	3
	10300	9925	56960	15	2
	10300	9950	56942	16	4
	10300	9975	56929	17	
	10300		J V J & J	±,	4

				•
10300	10000	56979	19	0
10300	10025	57166	21	0
10300	10050	57668	19	0
10300	10075	58682	9	-1
10300	10100	56703	1	-4
10300	10125	56374	Ú	-5
10300	10150	57285	-8	-8
10300	10175	57141	-9	-12
10300	10200	57260	ú	-11
10300	10200	57200	_1	
10300	10225	57302		
10300	10250	5/389	<u>۲</u>	-5
10300	102/5	5/314	8	-1
10300	10300	5/3/2	-1	1
10300	10325	57352	-2	1
10300	10350	57361	-1	3
10300	10375	57284	-1	2
10300	10400	57260	-5	2
10300	10425	57184	-4	0
10300	10450	57153	-3	-2
10300	10475	57060	0	
10200	10500	57060	×	_F
10300	10500	57060	4	-5
10300	T0272	5/05/	1	-6 
10300	10550	57033	6	~8
10300	10575	57285	7	-4
10300	10600	57402	8	-3
10300	10625	57468	8	-4
10300	10650	57164	ÿ	-2
10300	-10675	57395	6	1
10300	10700	57523	12	ž
10300	10705	57500	17	2
10300	10725	57500	17	3
10300	10/50	5/451	22	2
10000	10775	57332	25	1
10300	10800	57581	19	-2
10300	10825	57200	16	-2
10300	10850	57319	16	-3
10300	10875	57462	11	-1
10300	10900	57500	14	-4
10300	10900	57510	2	- 3
10300	10925	57312	5	_3
10300	10920	57410	5	-3
10300	109/5	5/45/	6	-4
10300	11000	57289	9	-2
10300	11025	57064	12	-1
10300	11050	56920	12	-2
10300	11075	56967	9	-4
10300	11100	57208	10	-3
10300	11125	57247	15	-2
10200	11150	57277	16	
10300	11150	57277	10	-3
10300	111/5	57390	23	-4
10300	11200	57193	18	-3
10300	11225	57622	13	-4
10300	11250	57558	11	-5
10300	11275	58742	16	-3
10300	11300	57900	15	-2
10300	11325	57262	12	-2
20000	~~~~~	~		

10300	11350	57010	10	0
10300	11375	57020	7	2
10300	11400	57098	8 -	3
10300	11425	56811	12	3
10300	11450	56796	14	4
10300	11475	56670	16	1
10300	11500	56783	19	1
10300	11525	56805	23	3
10300	11550	56800	19	4
10300	11575	56824	12	3
10300	11600	56807	$13^{}$	7
10300	11625	56958	7	6
10300	11650	56906	1	5
10300	11675	57048	4	7
10300	11700	57034	3	4
10300	11725	56999	3	5
10300	11750	56952	Ō	1
10300	11775	56868	-3	-3
10300	11800	56906	-4	-2
10300	11825	56888	-4	′ <b>−</b> 5
10300	11850	56828	-3	-5
10300	11875	56880	0	-6
10300	11900	56920	5	-8
10300	11925	57000	7	-9
10300	11950	56819	10	-7
10300	11975	56981	13	-б
10300	12000	56893	-9	-8
10300	12025	56985	-17	-4
10300	12050	57067	-22	-3
10300	12075	57114	-24	-4
10300	12100	57141	-22	-1
t <b>ie</b> 10000				
10000	10000	56269		
10000	10025	56256		
10000	10050	56668		
10000	10075	56842		
10000	10100	56923		
10000	10125	56930		
10000	10150	57028		
10000	10175	57247		
10000	10200	57135		
10000	10225	57202		
10000	10250	57406		
10000	10275	57367		
10000	10300	56979		
10000	10325	56843		
10000	10350	56852		
10000	10375	56828		
10000	10400	56883		
10000	10425	56885		
10000	10450	58355		
10000	10475	57523		
10000	10500	58343		
10000	10525	58070		

,		
10000	10550	61622
10000	10575	59655
10000	10600	60232
10000	10625	58823
10000	10650	57559
10000	10675	57244
10000	10700	56936
10000	10725	57045
10000	107 <b>50</b>	57407
10000	10775	57321
10000	10800	57381
10000	10825	57898
10000	10850	57541
10000	10875	57212
10000	10900	57095
10000	10925	57083
10000	10950	57493
10000	10975	57607
10000	11000	57488

-

## APPENDIX IV

## COST STATEMENT

 $\hat{\mathbf{k}}_{1} < \mathbf{k}$ 

## COST STATEMENT

Ŝ

Ą

7.600.00

600.00

780.00

180.00

780.00

313.00

34.81

1

## SALARIES - Grant Crooker, Geologist June 3, 6, 14, 15, Sept. 12-14, 1991 Jan. 29, 31, May 12-17, 20-23, 1992 19 days @ \$ 400.00/day - Lee Mollison, Field Assistant May 13-15, 1992 3 days @ \$ 200.00/day MEALS AND ACCOMODATION - Grant Crooker - 13 days @ \$ 60.00/day - Lee Mollison - 3 days @ \$ 60.00/day TRANSPORTATION - Vehicle Rental (Ford 3/4 ton 4x4) June 3, 6, 14, Sept. 12-14, 1991 May 12-15. 20-22. 1992 13 days @ \$ 60.00/day - Gasoline

## EQUIPMENT RENTAL

-	Magnetometer - Scintrex MP-2	
	May 13-15, 19, 29, 1992	
	5 days @ \$ 25.00/day	125.00

- VLF-EM - Geonics EM-16	
May 13-15, 20, 21, 1992	
5 days @ \$ 25.00/day	125.00

## FREIGHT

## SUPPLIES

i ....

- Hipchain thread, flagging, geochem bags, etc.	98.25
GEOCHEMICAL ANALYSIS	
-4 pan concentrates, 31 element ICP. Au, @ \$ 12.84/sample	51.36
-31 silt samples, 31 element ICP, Au @ \$ 12.84/sample	398.04

## DRAUGHTING

## PREPARATION OF REPORT

- Secretarial, reproduction, telephone, office overhead etc.

<u>600.00</u> Total \$ 11,985.46

Ś.



X



