and the second			
LOG NO:	AUG 0 5 1992	RÐ.	┦ ◀
ACTION:			7
			1
<u></u>			-

\bullet	CME

FILE NO:

REPORT ON GEOLOGY, GEOCHEMISTRY, AND GEOPHYSICS

OF THE

MAMMOTH PROJECT

Nelson Mining Division, B.C. NTS 82F/6 49°22'N Lat., 117°17W Long.

for

KATIE MINING CORP.

T. G. Hawkins, MSc. PGeol. T. Neale, BSc. FGAC

June 15, 1992

SUB-RECORDER RECEIVED	
JUL 1 7 1992	
M.R. # \$	
VANCOUVER, B.C.	i

i

SUMMARY

The Mammoth property, totalling 143 units, claims and reverted Grown Grants, is located approximately 15 km south of Nelson with good road access to the west from Highway 6. The main area of interest is at an elevation of 1200 m.

Historical survey, drilling and trenching work from 1917 to 1988 has produced results of up to 21.95 m of 0.627% Cu (1972). Gold grades were not determined at that time but recent surface sampling of copper bearing zones in the area has produced grades of up to 0.07 oz/T gold from 1.52% copper.

High grade gold values in veins cutting later intrusives of up to 0.94 oz/T have been obtained in quartz arsenopyrite stringers adjacent to the main zone mineralization.

Mineralization is hosted in altered coeval intrusives and Elise Volcanics of the Rossland Group. Later intrusives, possibly related to the Nelson batholith immediately to the west, crosscut these volcanics and overlying Hall Formation sediments.

Recent grid work by Katie Mining Corp. in 1991 has successfully demonstrated the usefulness of soil geochemistry high density magnetics and induced polarization surveys in delineating zones of interest.

A further program of ground work and confirmation of 1972 drilling is recommended at a cost of \$195,000.

Page

TABLE OF CONTENTS

	SUMMARY	i
1.0	INTRODUCTION	2
2.0	LOCATION, ACCESS, TITLE	3
3.0	HISTORY	6
4.0	REGIONAL GEOLOGY AND MINERAL OCCURRENCES 4.1 Geology 4.2 Structure	8 8 10
	4.3 Mineral Occurrences	11
5.0	1991 FIELD RESULTS 5.1 Geology 5.2 Geophysics	18 18 28
6.0	PROPOSED WORK PROGRAM, 1992	37
7.0	CONCLUSIONS	39
8.0	RECOMMENDATION	40
	CERTIFICATE - T.E. Gregory Hawkins REFERENCES	41 42

Appendix IList of Personnel and Statement of ExpendituresAppendix IIRock Samples Descriptions and ResultsAppendix IIISoil Geochemistry Results

List of Figures

1	General Location Map	1
2	Claim Map	4
3	Regional Geology and Mineral Occurrences	9
4	Geology and Rock Sampling	19
4a	Shaft Area Details	20
5	Soil Geochemistry (Au) 1:10,000	27
6	Soil Geochemistry (Ag) 1:10,000	29
7	Soil Geochemistry (Cu) 1:10,000	24
8	Soil Geochemistry (Zn) 1:10,000	26
9	Total Field Magnetics 1:10,000	30
10	Compilation Section L41+00N 1:5000	36
11	Compilation Section L42+00N 1:5000	34
12	Compilation Section L43+00N 1:5000	33

1.0 INTRODUCTION

This report represents the compilation of results of 1991 exploration carried out by Katie Mining Corp. and CME Consulting Ltd. from July 1 to October 31, 1991 on the Mammoth project. Exploration was completed at the request of Katie Mining Corp. for the purposes of filing an assessment report and completing a prospectus. Included in the report is a summary of previous exploration by former owners, a description of selected significant deposits or showings in the area, a synopsis of the results from current work and recommendations for followup.

2.0 LOCATION, ACCESS, TITLE

The Mammoth project is located between Hall and Barrett Creeks, immediately west of Highway 6, about 15 km south of Nelson and 5 km north of Ymir (Figs. 1, 2). It is centred at approximately 49°22'N latitude, 117°17'W longitude on NTS mapsheet 82F/6. It is located in the Nelson Mining Division of British Columbia.

Access to the property is via the paved Highway from Nelson or Ymir to Porto Rico, then by gravel road up Barrett Creek, and then by four-wheeldrive via a dirt road onto the property and up to Lost Lake. A gravel road along Hall Creek allows access to the northern edge of the property. Foot trails are the only means of access further onto the property from the north. Electricity and telephone services are available along Highway 6. The Burlington Northern Railway parallels Highway 6.

Topography on the property is generally very rugged, with a total elevation range of 1400 m between the Salmo River (820 m elevation) and Commonwealth Mountain (2220 m elevation). The old workings and main area of interest are on the crest of an easterly trending ridge at an elevation of about 1800 m. Lost Lake and the creek draining it are the main sources of water on the property. There are no known outstanding environmental concerns on the property.

The property comprises 6 grid claims, 2 fractional claims, 27 2-post claims, and 8 reverted crown Grants totalling 143 units, as summarized below and shown in Fig. 2.

<u>Claim Name</u>	Record No.	Units	Expiry Date	Recorded
Mammoth 10	303429	20	06/08/92	1991
Mammoth 11	303430	20	07/08/92	1991
Mammoth 12	303431	18	07/08/92	1991
Mammoth 13	303432	18	07/08/92	1991
Mammoth 14	303433	12	09/08/92	1991
Mammoth 15	303434	18	09/08/92	1991
Mammoth Fr	303674	1	21/08/92	1991
Mammoth 16	303675	1	21/08/92	1991
Mammoth 17	303676	1	21/08/92	1991
Monarch 1-6	5998-6008	6	25/10/92	1989
Mint 1-8	6173-80	8	01/05/92	19 9 0
Mint 9	6208	1	23/05/92	1990
Mint Fr	6209	1	23/05/92	1990
Mint 10-15	300415-20	6	03/06/92	1991
Gap 1-4	6165-68	4	18/04/92	1990
L14692-93	471-72	2	07/07/92	1977
L14695	473	1	07/07/92	1977
L14480	474	1	07/07/92	1977
L15034-36	475-77	3	07/07/92	1977
L14694	583	1	13/03/93	1978
	Total	143 un	its	

Expiry dates have not been updated to include the work included in this report. The claims are all owned by E.W. Denny, J.N. Denny, and H.J. Sanders, subject to an option agreement with Katie Mining Corp. The agreement calls for cash payments totalling \$150,000 over 5 years to earn a 100% interest in the claims, subject to a 2% NSR.

5

CME

3.0 HISTORY

The earliest recorded work on the present Mammoth property predates 1917, when a 12 m shaft and several open cuts were already in existence. During the period of 1917 to 1920, J. Fisher and partners drove a 28 m tunnel and crosscut and excavated one or more open cuts. A zone which assayed 1.5% Cu and 2.99 g/t Au over 8.2 m in an open cut was intersected by the tunnel at a depth of 15 m.

The Monarch claims area of the property was part of the Three Friends group, an Au-Ag-Cu target in 1894-1925, which was explored by several shafts, at least 4 adits, and numerous open cuts.

The next recorded exploration is not until 1967, when Welland Mining Ltd. diamond drilled 3 short holes. Welland completed another 15 diamond drill holes, blasted 10 trenches and reopened some old trenches, stripped 375 square metres (all apparently in 1968), and carried out a magnetics survey by 1971. The drilling is variously reported as totalling 1524 m or 1041 m. No drill logs, sections, or assay certificates are available. The only location map is contained in a later report (1972) and only shows nine of the holes. Twelve of the holes are reported to have been drilled on the Mammoth #2 Crown Grant (L14694) on a molybdenum target and five on a claim to the east of Mammoth #2 on a copper target. The following results are reported:

DDH	Interval (m)	Length (m)	<u>Cu %</u>	<u>Mo %</u>	Hole Location
1	1.37- 8.38	7.01		0.185)) immed. N of shaft,
	1.37-14.94	13.57	0.39)) in vicinity of main
2	3.66-10.36	6.70		0.687)	mineralized zone
	3.66-24.08	20.42	0.518)	•
5	78.94-85.04	6.10	0.412		30 m N of shaft
А	13.11-16.95	3.84	0.18	0.25	120 m N of shaft
11	0- 3.54	3.54		0.88	23 m N of shaft
	0-21.95	21.95	0.627		

In 1972 Welland and Pechiney Development Ltd. carried out 16 line-km of magnetics and a horizontal shootback EM test, geological mapping and rock sampling, and soil sampling (147 samples analyzed for Cu, Mo, Zn, Pb, Ag, Mn; of which 47 were also analyzed for Au). The soil geochemistry survey located a large area of anomalous Zn values southeast of the shaft where granodiorite intrudes argillite.

The claims were allowed to lapse and Eric and Jack Denny and Harry Sanders acquired the ground. Greenwich Resources Ltd. held an option on the property from 1980 to 1984. During this period, prospecting, geological mapping and rock sampling, a 26.1 line-km magnetometer survey, and soil and silt sampling were carried out. 1103 soil samples and 117 silt samples were collected and analyzed for Cu, Pb, Zn, Ni, Co, Ag, and Mo. Some of the soil, silt, and rock samples were later reanalyzed for Au in 1984.

In 1989 Euro Petroleum Corp. carried out a program of soil sampling on the Keno claims near the Fern Au-Ag veins. A total of 159 samples was analyzed for Au, Ag, Mo, As, and Cu. Two easterly trending quartz veins exposed in old workings were identifiable in the Cu and Ag soil geochemistry results, but not any of the other elements. Two rock samples collected from the veins assayed 5.31% Cu, 1.12 g/t Au, 84.5 g/t Ag; and 1.1% Cu, 5.4 g/t Au, 8 g/t Ag.

4.0 REGIONAL GEOLOGY AND MINERAL OCCURRENCES

The geology of the area has recently been investigated in some detail by the BCMEMPR Rossland project, which began in 1987 and was to be completed in 1991. The following description of regional geology is summarized from the results of this work (Hoy and Andrew, 1988, 1989).

4.1 Geology

The area between Nelson and Ymir is underlain mainly by clastic and volcanic rocks of the Lower Jurassic Rossland Group (Fig. 3). Rossland Group rocks are underlain by Ymir Group clastics, also of Lower Jurassic age, and both groups are intruded by numerous stocks of Middle to Late Jurassic Nelson Intrusions granodiorite.

The Ymir Group (unit 2) is estimated to be at least 1000 m thick. It includes a lower sequence of argillaceous quartzite, and grit, siltstone, argillite, and lesser impure limestone overlain by a fining-upward sequence of grit, siltstone, argillite, argillaceous quartzite, and finely laminated argillite, wacke, and minor limy siltstone. The upper portion of the Ymir Group is correlative with the Archibald Formation of the Rossland Group.

The base of the Rossland Group consists of at least 1000 m of finingupwards interbedded siltstones, sandstones, and argillites of the Archibald Formation (unit 3).

The Archibald Formation grades upwards into the Elise Formation which is exposed in eastern and western limbs of the Hall Creek syncline. In the eastern limb the Elise Formation includes a lower 1 km thick section of augitic mafic flow breccias and flows (unit 4) and an upper 2.5 km thick section of cyclical sequences of intermediate lapilli tuff to crystal tuff or fine tuff (unit 5). The tuffs commonly contain 5-20% plagioclase crystals as well as a few percent augite crystals. The upper Elise Formation is intruded by a number of comagmatic(?) feldspar porphyries such

as the Silver King hornblende quartz diorite porphyry (unit 7). In the western limb the Elise Formation lacks the intermediate pyroclastics of the upper section. It is made up of 1.5-2 km of coarse mafic pyroclastic breccias known as the Porto Rico tuffs, minor augite porphyry flows, and prominent sections of waterlain crystal and lapilli tuff (unit 4). A volcanic centre is believed to be located in the area of Cabin Peak, pyroclastics are coarsest. Elise Formation lithologies are typically interfingered and lensoidal, with frequent lateral and vertical facies changes. The geochemistry of Elise Formation volcanics indicates a shoshonitic composition, which implies a volcanic arc origin.

The Hall Formation (unit 6) overlies the Elise Formation in the core of the Hall Creek syncline, mainly conformably with local minor erosional unconformities. The Hall Formation is at least 1400 m thick and includes a lower coarsening-upwards, locally limy section of argillites, siltstones, grits, and conglomerates and an upper section of interlayered argillaceous siltstone, silty argillite, and argillite. Impure limestone occurs locally near the top of the exposed Hall Formation section.

South of the Kootenay River a body of pseudodiorite (unit 8), believed to be of metamorphic origin (Little, 1985), including small amounts of pyroxenite is exposed.

The Nelson intrusives (unit 9) are exposed in the Nelson Pluton and the Bonnington Stock, as well as numerous smaller bodies. The unit comprises mainly granodiorite to quartz monzonite, with lesser diorite porphyry.

Rossland Group rocks are also intruded by many Tertiary rhyolite and lamprophyre dykes, as well as Eocene Coryell alkalic intrusions.

4.2 Structure

Deformation of the Ymir Group and Archibald Formation is much more intense than the overlying Elise Formation and Hall Formation rocks.

Structures in the area include tight northerly trending folds and associated shears. Tightness of folding increases to the east. The early structures predate intrusion of Nelson intrusives. A later stage of deformation has superimposed small scale open folds on the north trending structures.

The Hall Creek syncline, a south-plunging, west-dipping tight overturned fold, is the main fold in the area. An overturned anticline occurs in Archibald Formation rocks west of the Hall Creek syncline.

The Silver King shear, a zone of intense shearing over 1 km wide, occurs in the core of the syncline northwest of the closure of the Hall Formation. Another zone of intense shearing occurs in the eastern limb of the Hall Creek syncline in the vicinity of Ymir. The Red Mountain fault dips to the north with normal displacement in the southern part of the map area, but is overturned, with an apparent reverse displacement to the north.

4.3 Mineral Occurrences

The Rossland Group is a well known and prolific producer of precious metals. The Rossland camp, located about 45 km southwest of the Mammoth project, has produced over 84 t Au and 105 t Ag, while production from deposits within about 14 km of the Mammoth property (Fig. 3) amounts to nearly 17 t Au and 190 t Ag, predominantly from the Ymir camp, located about 8 km southeast of the Mammoth project.

Mineral occurrences in the Rossland Group include Au-Ag-Cu and Au-Ag-Pb-Zn mesothermal veins, Cu-Mo porphyries, skarns, and conformable Au. Classification of the deposits is uncertain; in several cases there appears to be more than one genetic model (e.g. Silver King — vein vs conformable gold, Willa - porphyry with late stage skarn overprint) and some of the old vein showings may represent part of larger skarn, stockwork, or porphyry systems.

Vein deposits include Au-Ag-Cu veins in the Rossland camp and elsewhere throughout areas underlain by Elise Formation volcanics, and Au-Ag-Pb-Zn veins primarily in the Ymir camp in Ymir group sedimentary rocks and also in Archibald Formation sediments and in or near Nelson intrusives. Veins are commonly parallel to bedding or foliation, AC jointing, or extension joints. Veins in the Elise Formation are within or associated with large faults or shear zones and contain pyrite, pyrrhotite, chalcopyrite, and locally arsenopyrite and galena in a quartz and minor carbonate, chlorite, trace tourmaline and rare scheelite gangue. Three of the more important veins in the Nelson-Ymir area are the Yankee Girl, Ymir, and Silver King. Veins located near the Mammoth project include the Bear, Fern, Canadian Belle, Porto Rico, and Spotted Horse. The Whitewater vein occurs at the margin of the Bonnington Pluton.

Rossland Camp

Discontinuous veins up to 2 m wide of altered rock with minor lenses of quartz and calcite contain mainly pyrrhotite with chalcopyrite. They occur in a well defined fracture system trending 070° and dipping 60-70°N. The bulk of the production came from a central zone between two large northtrending lamprophyre dykes. The veins are mainly hosted by the Rossland Sill, which intrudes the upper Elise Formation, or the Rossland monzonite. A second set of veins, of lesser economic importance, occurs several hundred metres to the south. Significant molybdenum deposits also occur in the area, spatially associated with the Jurassic granodioritic Trail and Rainy Day Plutons.

1) Yankee Girl Au, Ag, Pb, Zn, Cd

At least 5 mineralized veins occur in one set of a conjugate system of faults cutting Ymir Group sediments and Nelson Intrusions granodiorite. The veins consist of quartz with pyrite, galena, and sphalerite and are up to 15 m wide, although the main productive vein averages 1.5 m in width. The veins strike about 065° and dip 55-70°S. Mineralized sections are primarily hosted by the intrusives. Production from 1907 to 1951 (intermittent) totals 370,616 t grading 10.3 g/t Au, 59.5 g/t Ag, 1.7% Pb, 1.7% Zn.

2) <u>Ymir</u> Au, Ag, Pb, Zn

Mineralization occurs in a shear zone oriented $065^{\circ}/60-70^{\circ}$ NW which cuts Ymir Group sediments and 1 m felsic dykes just below the Elise Formation contact and 1.25 km W of the Nelson Intrusions contact. The shear zone contains quartz with pyrite, galena, and sphalerite. Pyrite is also disseminated in the wallrocks. The main zone is 3-12 m wide, averaging 4 m, by 145 m long. It was mined to a depth of 150 m, below which the quartz content of the zone increased and sulphides decreased. An extensive oxidized zone to nearly 150 m contains some free gold. Production from 1895 to 1973 (intermittent) totals 327,646 t grading 10.4 g/t Au, 43.6 g/t Ag, 1.5% Pb, and 0.2% Zn.

3) Silver King Ag, Cu, Au, Pb, Zn

Three major shear-controlled vein systems oriented $125^{\circ}/70^{\circ}$ S, parallel to the Silver King shear, cut volcanics of the lower Elise Formation. Silver King porphyry intrudes Elise Formation rocks to the E and SE. The veins comprise quartz and lesser carbonate and siderite with pyrite, chalcopyrite, galena, minor sphalerite, stromeyerite, bornite, and tetrahedrite. The productive zones are about 8 m wide by 200 m by 90 m and are influenced by the intersection of easterly cross-fractures and the main shear zones. Production from 1889 to 1958 (intermittent) totals 202,049 t grading 0.04 g/t Au, 684 g/t Ag, 3.4% Cu, 0.01% combined Pb and Zn. Measured geological reserves in 6 zones, including the dumps, totalled 68,136 t averaging 7.3 g/t Ag, 1.75% Cu, and 0.9% Pb in 1983.

4) Whitewater Au, Ag, Pb, Zn, Mo

Quartz veins mineralized with pyrite, minor galena, sphalerite, and molybdenite occur near the contact of Nelson Intrusions granodiorite to quartz monzonite with lower Elise Formation volcanics cut by lamprophyre dykes. The veins occur mainly in Nelson Intrusions rocks. The Whitewater vein is a discontinuous vein up to 1.8 m wide, oriented 040°/60°S, with erratic gold values. Isolated lenses of epidote-chlorite-garnet altered hornfelsed volcanics as well as areas of biotite-pyrite alteration occur

near the contact. Molybdenite also occurs as isolated blebs in pegmatite veins. Production from 1890 to 1943 (intermittent) totals 40 t grading 28.8 g/t Au, 45.1 g/t Ag.

5) Bear Au, Ag, Cu

The workings expose a 10-25 cm wide quartz in a zone of fractured, sheared and crushed rock at the contact between Elise Formation augite porphyry and a porphyritic granite dyke. The vein contains free gold. Production from 1937 to 1942 (continuous) totals 114 t grading 36.6 g/t Au, 16.6 g/t Ag.

6) Fern Au, Ag, Cu

A vein up to 2.4 m wide consisting of quartz, crushed rock, and minor siderite contains pyrite, chalcopyrite, bornite, pyrrhotite, and gold. It is hosted by Elise Formation augite porphyry near an older granite porphyry dyke, and is variably oriented, averaging about $010^{\circ}/60^{\circ}W$. Production from 1896 to 1942 (intermittent) totals 11,277 t grading 17.4 g/t Au, 1.5 g/t Ag.

7) Canadian Belle Au, Ag, Cu

Quartz-filled faults and fractures up to 1.8 m wide, oriented easterly and northeasterly, are hosted by Hall Formation sediments close to the southern limit of the Silver King shear. Diorite porphyry and granite of the Nelson Intrusions locally intrude the Hall Formation rocks. The veins contain massive and disseminated arsenopyrite, pyrite, pyrrhotite, and chalcopyrite. Production in 1939 and 1940 totals 24 t grading 35 g/t Au, 11.7 g/t Ag, 0.1% Cu.

8) Porto Rico Au, Ag, Cu, Pb, Zn

A plagioclase-augite porphyry dyke of the Mammoth intrusions cuts Elise Formation lapilli tuff and pyroclastics. A quartz-filled fissure averaging 80 cm in width and oriented 045°/45° NW occurs in the dyke. It contains pyrite, gold, arsenopyrite, and very minor galena, sphalerite, and

chalcopyrite. Production from 1897 to 1960 (intermittent) totals 5740 t grading 31.1 g/t Au, 8.1 g/t Ag, and <0.01% combined Cu, Pb, and Zn.

9) Spotted Horse Au, Ag, W

An augite porphyry dyke intruding Elise Formation volcanics contains a shear zone oriented $110^{\circ}/55-60^{\circ}N$. The shear contains quartz and calcite stringers and is 90 to 120 cm wide. Likely a continuation of the Porto Rico structure. Production from 1901 to 1937 (intermittent) totals 47 t grading 35.1 g/t Au, 44.3 g/t Ag.

Porphyry occurrences in the area have a number of common features: fracture-controlled chalcopyrite-pyrite-magnetite mineralization occurring in intermediate intrusives and spatially related volcanics; propylitized zones; local potassic alteration and areas of potassium feldspar development; and minor associated Pb-Zn mineralization. The best-developed porphyry deposits in the Nelson-Ymir area are the Stewart and Bobbi. Further north is Northair's Willa or Aylwin Creek deposit with reserves of 414,343 t grading 0.92% Cu, 6.03 g/t Au (Mining Review, May/June 1991).

10) Stewart Mo, W, Au, Ag, Pb, Zn

Elise Formation volcanics and Hall Formation sediments are intruded by a multistage complex of Nelson Intrusions quartz monzonite porphyries and Coryell Intrusives biotite-augite, monzonite and related aplite, diabase, and lamprophyre dykes. Molybdenite, pyrite, and minor powellite occur disseminated and in veins and stockworks in intensely altered and brecciated Nelson Intrusions rocks and adjacent Elise Formation and Hall Formation rocks. Alteration includes silica flooding. potassium metasomatism, quartz stockworks, an argillic, sericitic, and propylitic Tungsten-bearing skarns and pyrite-pyrrhotite veins with Pb-Zn-Ag zones. values are known to occur around the margins of the complex. Gold occurs in trace amounts in the complex and as free gold with pyrite in quartz veins peripheral to the complex. Diamond drill indicated reserves in the Phase II breccia zone, as of 1981, total 204,000 t grading 0.37% MoS₂.

11) Bobbi Mo, W, Cu, F, Au, Pb, Zn

Elise Formation and Hall Formation rocks are intruded by Nelson Intrusions quartz monzonite to quartz diorite and Tertiary rhyolite. Molybdenite, scheelite, and minor chalcopyrite occur with sericite in quartz veins and fractures, with common accessory fluorite, in quartz monzonite.

There are three types of skarns in the Nelson-Ymir area -- Mo+W, Cu-Au, and Au-Cu. The only example of an Au-Cu skarn is the Second Relief, which produced over 3118 kg Au and 866 kg Ag from 1900 to 1959, placing it third behind Nickel Plate and Phoenix in the ranks of Au production from B.C. skarns. Another example of a gold skarn in Rossland Group rocks is Esperanza Exploration's Tillicum deposit with reserves varying between 50,000 t of 36.00 g/t Au and 1,450,000 t of 5.83 g/t Au depending on cutoff(?) (Mining Review, May/June 1991). Cu-Au skarns occur in the Hall Formation adjacent to the Nelson Batholith west of Nelson where pyrrhotite, chalcopyrite, magnetite, and bornite are contained in coarse-grained diopside-garnet-quartz-epidote skarns. The Mo+W skarns include Mammoth and Arrow Tungsten.

12) Second Relief Au, Ag, Cu, Pb, Zn, Mo

The area is underlain by Elise Formation lapilli tuff and augite porphyry and Archibald Formation sediments in a roof pendant within the granodiorite Bonnington Pluton. At least 8 subparallel zones of sheared quartz \pm magnetite, garnet, and epidote skarn contain erratic pyrite and/or pyrrhotite \pm magnetite, chalcopyrite, sphalerite, and local fine-grained gold. The zones are oriented about $150^{\circ}/83^{\circ}$ N, vary in width from 0.2 to 3.5 m, and occur 10 to 150 m apart within a region about 250 m wide. The main zone occurs on the hanging wall contact of a diorite porphyry dyke which cuts both volcanics and sediments. Production from 1900 to 1959 (intermittent) totals 207,023 t grading 15.1 g/t Au, 4.2 g/t Ag, <0.01% Cu, and minor Pb and Zn.

13) Mammoth Cu, Mo, Ag, Pb, Zn, Au, Ni

See section 5.1 for description of Mammoth mineralization.

Conformable gold deposits comprise zones of intense alteration associated with synvolcanic felsic intrusions (volcanics?) and aligned parallel to foliation. Shearing affected both the mineralized zones and their host Elise Formation rocks, leading Hoy and Andrew (EBC 1988) to conclude that the mineralization is most likely of syngenetic origin. Alternatively they may be porphyry Au deposits. Conformable gold deposits include Great Western, Shaft/Cat, Kena, and possibly Silver King.

14) Great Western Au, Cu

Mafic volcanics and possible subvolcanic felsic intrusions of the Elise Formation contain three zones of intense sericite-carbonate-quartz alteration 5-10 m wide by several hundred metres long. The alteration zones are mineralized with 2-10% pyrite and trace chalcopyrite, mainly in stringers and minor disseminations. They are elongate in the plane of regional foliation. Diamond drilling returned an intersection of 9.7 g/t Au over 7 m in 1987.

15) Kena Cu, Au

A pervasive quartz stockwork with disseminated pyrite, chalcopyrite, bornite, and malachite occurs in extensively sericitized, quartz-flooded Elise Formation volcanics and volcaniclastics. A 1990 diamond drill hole intersected 0.27% Cu, 0.2 g/t Au over 57 m.

5.0 1991 FIELD RESULTS

During the 1991 field program carried out intermittently from August 1 to October 11:

- i) 21 km of cut grid at 100 m x 25 m spacing plus 854 B horizon soil geochemistry samples were completed by Murray Contracting of Nelson.
- ii) 7 days of geology, prospecting and anomaly followup were completed.
- iii) 15 km of high density magnetometer surveying were completed along with 3 km of dipole-dipole induced polarized orientation surveys.

ii) and iii) above were completed by CME Consulting Ltd. and all results were compiled by CME Consulting Ltd.

5.1 Geology

The area of bedrock exposure that was briefly prospected and mapped during a four-day visit occurs along a spur ridge top and in the area of historical workings found between lines 3700N and 4400N and between stations 2800E and 3200E.

Intrusive sedimentary and volcanic crusts are noted as follows.

Intrusives

The main intrusive body is the medium to coarse grained granodiorite Nelson Batholith which outcrops extensively to the west and covers the western third of the current grid. It appears to be of limited interest in terms of mineralization other than of late stage metamorphism of existing copper-gold-molybdenum bearing occurrences.

A second more complex phase or phases of intrusive activity is possibly coeval with the Elise Formation mafic flows. This intrusive activity has

not previously been mapped or differentiated in detail, but a collection of various related intrusive types in the vicinity has revealed the existence of ultramafic pyroxenite to micro diorite and quartz diorite, diorite porphyry and micro syenite.

Although the interrelationships are not understood, this highly variable suite suggests multiphased intrusive activity which is necessary for generating porphyry style mineralization.

This suite is altered to varying degrees by chloritization of mafics, alteration of pyroxene to amphiboles, sericitization of feldspars, intense silicification and quartz epidote veining.

A final stage of quartz feldspar porphyry dykes believed to be Tertiary in age transect the entire property from north-northeast to south southwest.

Volcanics

The Elise Volcanics, formed in a northerly pinching sliver in the southwest portion of the area of interest between the westerly Nelson quartz granodiorite and the Hall Formation sediments. This sequence of steeply easterly dipping, layered volcanics varies from augite porphyry flows to massive fine-grained basalt and agglomerate. The augite porphyry and augite diorites may be of a cogmatic suite of intrusives and extrusive lithologies.

Alteration of the volcanic suite is generally similar to that of the intrusive rocks with varying degrees of clay and sericite alteration of feldspars, silicification and minor epidote. Chloritization of mafics is also ubiquitous.

Hall Formation sediments are characteristically graphitic argillites and slatey argillites with 1% or greater disseminated pyrite. These units generate high zinc in soil geochemistry anomalies which may be used for mapping the argillite lithologies in areas of cover.

Mineralization

Historically classified as a skarn occurrence, some of the mineralization occurs in calc silicate, particularly at the shaft area. Calc silicate development may be derived from a small inlayer of limestone in the sedimentary sequence or from metamorphism of the carbonate rich argillites of the Hall Formation.

The high grade molybdenum is hosted by an epidote and carbonate rich zone with minor feldspar and quartz.

The most abundant sulphide rich metavolcanic rocks are typically highly siliceous, hornfelsed augite porphyry and basalt(?) with 1-10% sulphides including pyrrhotite, pyrite, chalcopyrite, and minor molybdenum, sphalerite.

The primary reason for resampling Elise targets was to try and establish a relationship between copper and gold and and it is reasonable to say that in the area of the old workings, higher grade copper gave higher gold values up to 0.07 oz/T from 1.52% copper. The % copper to oz/T gold ratio varied from 22:1 to 38:1.

Other styles of mineralization included polymetallic, vertical dipping east-west(?) striking quartz-lead-zinc veins in the northeastern area of the grid which assayed 0.5% Pb, 0.80% Zn, 0.003 oz/T gold, 2.30 oz/T silver from grabs. This mineralization is believed to be unrelated to the copper-gold mineralization above.

Finally, high grade gold arsenic values were obtained in two narrow 1.0-5.0 cm quartz veins. Vertically dipping and striking east-west through medium-grained feldspar porphyry, they were discovered adjacent to gold arsenic soil anomalies located 200 metres east of the of the main showings. Assays included up to 0.940 oz/T gold and 2.4% arsenic.

Soil Geochemistry

854 B horizon soil samples were collected with a mattock at 25 metre intervals along all cut lines. The soils were analyzed geochemically for gold and by inductively coupled plasma (ICP) for thirty other elements.

Anomalies were indicated in copper, zinc, lead, gold, silver, arsenic, and molybdenum. The following background statistics, all in ppm except for Au (ppb), have been generated for each of the above elements:

		Mean	SD.	Threshold
Copper	(Cu)	49	26	101
Zinc	(Zn)	105	55	215
Lead	(Pb)	22	12	46
Gold	(Au)	3.9	2.6	9.1
Silver	(Ag)	0.6	0.5	1.6
Arsenic	(As)	11	10	31
Molybdenum	(Mo)	3	2	7

Of the anomalies that were noted, only the copper, gold, zinc and silver were considered significant.

Copper (Fig. 7)

A copper high indicated by > 75 ppm Cu in soils extending from L44N between 28E and 31E south to L37N between 26E and 29E coincides with known copper mineralization and follows a known regional strike. It is open to the south.

A second copper anomaly from L45N to L42N on the eastern extremities of the grid requires followup.

A third copper anomaly centred around L48N between 35E and 36E is a reflection of known east-west trending quartz carbonate veins that are anomalous in Pb, Zn, Ag and elevated in Cu and Au.

	2200 E	2400 E	2600 E	2800 E	3000 E	3200 E	3400 E	3600 E		LEGEND
	23 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3	5 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27 2 2 2 2 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 + 2 + 2 2 2 2 2 2 2	5 4 4 7 8 8 8 8	8 8 8 7 9 9 8 8 8	* % * * * * % % * * % * %	55882 <u>888</u> 2382		- Copper(ppm)
000 N	<u>} + + + ↓ + +</u>	+ + + + + +	-+-+-+-+++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + - + - +	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++		5000 N	-++++++- Grid line
	22 22 22 22 23 23 23 24 24 25 25 25 26 26 26 27 28 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28		2 2 2 2 2 2 4 4	4 4 4 7 4 7 4 4 7 8 8 8 8 8 8 8 8 8 8 8	2 2 4 8 8 4 4 9	8 8 9 8 8 8 9 8 8 8 9 8 8 8 8 9 8 8 8 8	* 5 			
900 N	 • • • • •	+ + + + + +	+ 6 + + + + + +	{ · · · · · · · · · · · · · · · · · · ·	* * * * * *	+++++++++++++++++++++++++++++++++++++++		₩ •₩•₩•₩•₩•₩•₩•₩•₩•₩•₩•₩•₩•₩•₩•₩•₩•₩•₩•	4900 N	Contours : 75, 126 ppm
	28 28 29 21 21 21 21 21		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1822831	58 58 5 58 58 58 58 58 58 58 58 58 58 58		67855878 7			
800 N		* * * * *		╃╌┼╍╡┥╡┥┥┥╡	* * * * * * *	+++++++++++++++++++++++++++++++++++++++	┝╌┽╺┽╺┽┥┥┥┥┥		4800 N	٨
	33 25 23 33 33 34 34 34 34 35 33 33 33 33 33 33 33 33 33 33 33 33	52 52 52 52 53	122252528	2 5 2 8 8 5 3 8 5 8 5 8 5 8 8 5 8 8 5 8 8 5 8 8 8 8	82 88 58 88 9 5 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	÷ = = = = = = = = = = = = = = = = = = =	នទននភភភភ	F # # & # # # # # # # # # # # # # # # #	\setminus	()
700 N	⊦ · · · ∤ · ·	* * * * * *	. * * * * * * * *	+ + + + + + + + + +	* * * * * * *	+ • • • + • × +	+ + + + + + + + + + + + + + + + + + + +		4700 N	
	22 23 29 12 13 23 29	31 23 23 23	38 J 48 33 33 34 58 38 38 38 38 38 38 38 38 38 38 38 38 38	33 28 49 49 49 49 49 49 49 49 49 49 49 49 49	5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ដ់ ÷ ខ ន ។ ខ ខ ខ ខ		\$\$.5.6.5.5.6.8.4 \$\$.5.6.6.8.4	اي	
800 N	⊦ + + + ∔ + +	+ + + + + +	- + + + + + + + +	+ + + + + + + + + +	· · · · · · · · · · · · · · · · · · · 	+ + + + + + + + + + + + + + + + + + + +	 	+++++++++++++++++++++++++++++++++++++++	4600 N	
	25 25 13 13 13 13 13 13	5 12 13 19 19 19 19 19 19 19 19 19 19 19 19 19	· 13 33 · 13 38 5 5		848884	88644668	₽, 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	* * * * * * * * * * * * * * * * * * *		, 66.33 A.S.
500 N	┠┼┼┼┼┼┼	+ + + + + +	╶┼╼┽╍┽╺╉╼┽╶┽╶┽	++++++++		 + + + + + + + + + + + + + + + + + + +			4500 N	GEO OSION
	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	53 53 53 53 53 53 53 53 53 53 53 53 53 5	1 X 8 X 4 8 8 8 4	38858F			88888888888	₽♀∓₽Ŝ₽₽₽₽₽		
400 N	. • • • • • •	+ + + + +		+++++++++++++++++++++++++++++++++++++++	<u> </u>	 + + + + + + +	+++ <u>/</u> ++++-	+++++++++++++++++++++++++++++++++++++++	4400 N	
	21 21 15 27 27 27 21	2 9 2 9 9 9 9 9 9 9 9 9	2 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8		* <u>=</u> = = = = = = = = = =	\$ 6 8 8 8 5 7	ត្រៃឡើកនេខន			
300 N	┝╌╃╶╃╶╋╌╋╶╉	* * * * * *		+++/////			יייין אין		4300 N	a San P
	22 24 24 24 24 24	5 9 9 9 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 2 2 2 2 2 2 3	N N S = = = = = = = = = = = = = = = = =		\$ ♀ 6 3 8 <i>6</i> ² 8 1	8 5 8 7 6 6 8 5 8	ននទដទេស ភ្លឹងនេះ		100 200 300 m
200 N	···	+ + + + + +				, , , , , , , , , , , , , , , , , , ,	 <u>.</u>		4200 N	
		5 4 6 9 5 8 7 6 9 7 8 7 6 9 7 8	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -			≑≈°≈° €€3,85€3	**********	8 8 8 6 6 6 6 6 5 5	4100 1	SED TO PRI
100 N	F	• • • • • •	• • • • • • • • •						4100 N	NTS 82F/6
000 1	53 - 54 - 1 53 - 58 - 1 53 - 58 - 1 58 - 1 5	5 5 8 7 7 8			<u><u> </u></u>	8 6 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		+ + + + + + + + + + + + + + + + + + +	4000 N	Г
550 N	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · ··· · · ·			\mathcal{I}		<u>, וו</u> וייש		4000 N	KATIE MINING CORP.
900 N	5 8 8 8 8 5 5 8 8 8 8 5	+ 5 3 6 4 6 8	ននេះ ដែនដូនខ		+++++++ ¥8∕8828≄!	8 = 14 + 8 9 = 8	╡ ╕ ╗ ┎ ╔ ╗ ┎ ╔ ╗ ┎ ╔ ╗ ┇ ┇	<u>+ + + + + + + + + + + + + + + + + + + </u>	3900 N	
000 M	11.			N O O O O			$\sum $			SOIL GEOCHEMISTRY-COPPER
800 N	2 - 5	+ + + + + + + + + + + + + + + + + + +				\$ F1 8 3 A 11 2 87	₿₿₽₽ ₽₿ }₽₽: / /	 	3800 N	MAMMOTH PROJECT
000 N	11									YMIR, B.C.
700 N	<u>} + + + + + + + +</u>	# # # # # # # # # # # # # # # # # # #	+≈≈≈,≈≈≈≈	₽□□2225248⊒	₽₽₽₽₽₽₽ 		₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	<u>+ + + + + + + +</u> 8 K K E E E E E E E K K	3700 N	Project No: P 10 A By: C.N.
700 M	1						1			Scale: 1:10000 Drawn: C. N. Drawing No: 7 Date: Dec. 1991.
	ш О	ш O	u O	u o	ш O	ы O	ш	ш o		
	5201	2401	260(2801	3001	3201	340	360		CME Consulting L

.

•

Zinc (Fig. 8)

A zinc trend high defined by > 160 ppm Zn lies between L41N and L37N and between stations 30E and 35E. This anomaly is believed to be derived from generally high Zn background pyritic, argillaceous sediments of the Hall Formation as the soil geochemistry roughly mirrors the area known to be underlain by these rocks. The highest of the Zn in soil numbers are in areas of Hall Fm outcrop. The anomaly is open to the south.

A second zinc anomaly in the eastern extremity of L45N to L43N and coincident with a copper anomaly requires followup.

A third zinc anomaly centred at L48N and between stations 35E and 36E is a direct reflection of east-west trending quartz carbonate veining that assayed up to 0.8% Zn.

Gold (Fig. 5)

Spot high gold anomalies defined by > 12 ppb Au are sporadic and widespread. The most significant highs occur as multi sample anomalies with coincident multi element highs as follows.

The first, at L44N 36E is a Cu-Zn-Ag + Au anomaly in an area of overburden, was not explained by any mineralization in rock. A check sample of soil returned moderately anomalous copper (108 ppm) and gold (40 ppb), plus 297 ppm arsenic.

The second anomaly, coincident in gold and arsenic, at L4ON 35+75E was found to be in an area of outcropping feldspar porphyries. Small arsenopyrite-bearing quartz stringers to 5 cm were found that assayed up to 2.4% As and 0.94 oz/T gold.

A third coincident gold-arsenic anomaly at 3000E, 3700N was followed up in an area of feldspar porphyry and heavily pyritized volcanics with minor east-west quartz veins, samples of which returned slightly anomalous gold to 30 ppb. Further followup is required.

	2200 E 2400 E	2600 E	2800 E	3000 E	3200 E	3400 E	3600 E		LEGEND
5000 N	84 84 84 84 84 84 84 84 84 84	+ + + + + + 	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	<u> </u>	+ + + + + + + + + + + + + + + + + + +		5000 N	Zinc (ppm)
4900 N	<mark>-++++++++++++</mark>	79 89 75 75 89 89 7 7 89 82 75 75 89 89 7 7 80 80 7 80 80 80 7 80 80 80 7 80 80 7 80 80 7 80 80 7 80 80 80 80 80 7 80 80 80 80 80 80 80 80 80 80 80 80 80 8		++++++++++++++++++++++++++++++++++++++				4900 N	Contours : 160,269 ppm
4800 N	 -+-+-+ 8822344488888	111 115 115 115 115 115 115 115 115 115	++++++++ 88223283	++++++ 688889993933	, 8 ≤ 8 € 5 5 8 8 8 + + + + 	-+++++++		4800 N	
4700 N	<u> </u>	+ + + + + + + 1,8 3,8 8,8 8,5 8,5 8	++++++ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	++++++++ 2222222222	<u> + + + + ∕ + </u> 88485≵8#8	+++++++++++++++++++++++++++++++++++++++		4700 N	
4600 N	+ + + + + + + + + + + + + + + + + + +	88 82 93 93 93 93 93 93 93 93 93 93 93 93 93	++++++ 	+++++++ 5 5 8 5 2 6 8 5	≈≈≈≈≈≈≈≈≈≈≈ ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈	/ - + + + + + + + + + + + + + + + + + + +	+ 108 + 121 + 108	4600 N	
4500 N	<u> + + + + + + + + + +</u> 8 ⊖ 2 © 8 © 8 © 2 ⊡ 3 2 2	, , , , , , , , , , , , , , , , , , , 	+++++102	++++++ 2	2 2 2 2 8 2 0 0 8 2 0 0 8 2 0 0 8 2 0 0 8 2 0 0 0 8 2 0 0 0 0			4500 N	GOLOGICE
4400 N	9 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			+ + + + + + + + + + + + + + + + + + +			4400 N	A A A A A A A A A A A A A A A A A A A
4300 N	<u> + + + + + + + + + + + + + + + + + + +</u>	8 8 9 1 1 1 1 2 3 3 3 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	55 55 55		²	; Ξ ἐ (Ξ Ͽ ඛ Ξ ≌) • (•(+ +)) • •(4300 N	T.E. Gregory Hawkins
4200 N		++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	7 + + + + + + + + + + + + + + + + + + +				4200 N	100 200 200 200 A
4100 N	++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +					+++++++ 10 10 10 10 10 10 10 10 10 10 10 10 10	4100 N	N T S 82 F/6
4000 N	<u> -+++</u> ++++++ 25225255888		+ + + + + + + + + + + + + + + + + + +				+ + + + + + - + 38 + + + + + + 38 + + + + + + 38 +	4000 N	KATIE MINING CORP.
3900 N	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	+ + + + + + + + + + + + + + + + + + +					Ê,¶3,5,5,6,8,5,6,8 - - -++ -	3900 N	SOIL GEOCHEMISTRY - ZINC
3800 N	7 8 2 8 8 7 4 8 1 2 8 7 8 7 8 8 7 4 8 1 2 8 7 8 8 8 8 8 7 4 8 1 2 8 7 8 8 8 8 8 8 1 2 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		++++++++ §§\$\$ §§ § § § § § § § § § § § §					3800 N	MAMMOTH PROJECT
3700 N	-+++ ++++++++++++++++++++++++++++++++	+ + + + + + + + 8 5 7 8 8 8 8 9 9 9 9 9 9	++++++++ ăă22882				<u> </u>	3700 N	Project No: P 10 A By: C.N. Scale: 1:10000 Drawn: C.N. Drawing No: P Date: Dec.
	2200 E 2400 E	2600 E	2800 E	3000 E	3200 E	3400 E	3600 E		CME CME Consulting Ltd.
L								لـــــ	

•

...

• •

1

.

Silver (Fig. 6)

One large anomaly defined by > 1.1 ppm Ag encompasses anomalies 2 and 3 for copper and zinc and occurs between L5ON and L42N between 34E and the eastern extremities of the grid. The northern portion of the anomaly centres around L48N 36E in the vicinity of known east-west trending quartz carbonate veining that assayed up to 2.3 oz/T Ag. The southerly lobe of the anomaly centres around L44N 36E and is unexplained, requiring followup.

5.2 Geophysics

Magnetic and I.P./Resistivity surveys were carried out in September 1991 on the Mammoth Project near Salmo, B.C. for Katie Mining Corp. by CME Consulting Ltd.

The surveys were executed with the objective of detecting polymetallic sulphide systems and delineating lithological and structural features which control or influence said systems. These surveys were intended as tests to establish the efficacy of these techniques as part of the property assessment process and to help to establish parameters by which the claim group might be effectively explored.

The total field magnetic survey was carried out using a GSM19 magnetometer programmed to record at one second intervals, as the operator walked down the line (see accompanying specifications sheet).

The Induced Polarization/Resistivity measurements were carried out using a 6-channel BRGM Elrec-6 I.P. receiver and a Huntec 2.5 KVA transmitter/motor generator system. These measurements were taken in the Time Domain mode with a current cycle of +2 sec./01-2 sec./0. The I.P. receiver was programmed to Mode III (see accompanying specifications sheet). A dipole-dipole array was employed with an "a" spacing of 25 metres and "n" levels 1 through 6.

	น ม		ш	ш	ω	<u>ц</u>	ш —		
	2200	2600	2800	3000	3200	3400	3600		
				· · · · · · · · · · · · · · · · · · ·					O Silver (ppm)
5000 N	⊦ • • • • • • • • •	· · · 	• • • • • • • • • •	····				5000 N	-++++++- Grid line
	4.1.6.1.6.4.2.0.0	- N + N + N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
4900 N	┟╷╷┥<u></u>┥╷╷╎╷	• • • • • • • • • • • •	└ ํ ํ ํ ํ ํ ํ ํ ํ ํ ํ ํ ํ ํ ํ	<u>····</u>				4900 N	Contours : 1·1, 2·2 ppm
				مرقف من قد تف إفراد مرقف من قد تف أفراد		, , , , , , , , , , , , , , , , , , ,			
4800 N	┝┼┿┿╉┽┥┥╞┿╴	▶ • • • • • • • • • • • • • • • • • • •	<u> </u>	₩₩	· · · \ · · · ·			4800 N	
	449776448996						N		· /
4700 N	┠┼┼┼╉┿┿┾╋┿	• • • • • • • • • • • •	• • • • • • • • • •	* * * * * * * * *	+ + + + + \ +-	┟╺╴╍╢╢╸╸╸╕		4700 N	U
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.000			internation	5	
4600 N	┠╺╸╸╸	• • • • • • • • • • • •	• • • • • • • • •	* * * * * * * *	• • • • • • • • •	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot + \cdot \cdot \cdot + \cdot \cdot + \cdot + \cdot + $		4600 N	
4500 N	┠┽┼┽╉┼┽┼╋┽╴	• • • • • • • • • • • • •	╷╷╷╷	╸╸╸╸╻ ╺╴ ╸	• • • • • • • •			4500 N	and the second
	00000000000000000000000000000000000000			4					SELOG STA
4400 N		• • • • • • • • • • • • •		• • • • • • • • • •				4400 N	
	000000000000000000000000000000000000000							(300)	
4300 N		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •				4300 N	The state of the s
4000 11								4200 N	VO 100 200 000
4200 N	**			• w ~ + • • • • • •	- vo er a rora eo a	,		4200 1	
4100 N								4100 N	
100 %	 	, , , , , , , , , , , , , , , , , , ,				0+	1 · · · · · · · · · · ·		THE SUSTERS
4000 N			5666666666 +-+-+					4000 N	
	المنقدة من منقدة من منا	ນັກບໍ່ກັດດັ່ນໃຫ້ 4.4 ຜູ້ນຳ , , , , , ,	ەكەشەممەر،	លំ ឈំ ឃំ ឃំ ឃំ ហំ ឈំ ឈំ ឈំ ឃំ ,	ာနက်စီးစီးဝက်		4 6 V 6 6 6 9 6 7 4		KATIE MINING CORP.
3900 N			5 6 - 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	66666466 				3900 N	
	********	، د. د. ۲۰ ما ما ما ما ما م	، دە ت س س م م س م 			ပံငံပံကဲက်ဝဲဖံစံ၊			JUIL GEOCHEMIJIKT - JILVEK
3800 N				• • • • • • • • • • • • • • • • • • •	+			3800 N	MAMMOTH PROJECT
	နံက်င်နှစ်လံက်စ်ငံဆံ၊	ပိုဆိုက်နှံဆိုပ်ခဲ့ဆိုင်ဆိုင်၊							Y MIR; B.C.
3700 N	► = = = = = = = = = = = = = = = = = = =	• • • • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++			3700 N	Project No: P 10 A By: C.N. Scale: 1:10000 Drawn: C.N.
									Drawing No: 6 Date: Dec. 1991.
	о Б Е	е 20	ы 10 10 10 10 10 10 10 10 10 10 10 10 10	ы 0	900 E	ш 0	ш 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	22(- 260	28(JÕE	321	341			TOME Civie Consulting Ltd.

The total field magnetic survey was carried out over lines 41N through 50N from 2200E to 3500E. Further surveying was curtailed due to lack of cut and chained lines.

The I.P./Resistivity survey was carried out over 3 lines only. Lines 4100N, 4200N, and 4300N were selected.

The total chargeability M(+) and resistivity (calculated in ohm-metres) data are presented in pseudosection format plotted on a topo corrected ground line. Geochemical results, Ag, Au, Cu, and Zn were later added to this data presentation. The high density magnetic profile is presented with a horizontal ground line.

Results

In general, the survey results provide information beneficial to the assessment of the property in regard to the potential for polymetallic sulphide systems. As well, boundaries of the various lithologic units are defined and some optimism regarding continuity and increase in the sulphide content to the depths of penetration of the I.P. array is apparent.

There is a general increase in the chargeability effect from Line 4300W to Line 4100N. The resistivities display a similar pattern. An increase in magnetic activity is also coincident with these trends.

Resistivities on Line 43N are generally moderate, 2K-6K ohm-metres from 2600E to 3700E. A narrow, high resistivity feature from 2950-3000E indicates increase in silicification in this area. A decrease in resistivities at 3575E to 3900E indicates a lithologic change.

Chargeabilities

Line 4300N

A very subtle narrow surface anomaly occurs near station 2950E. A broader chargeability feature that persists to depth occurs from 3000E to 3075E. A subsurface subtle chargeability occurs between 3150E-3175E. A broad moderate feature is delineated from 3300E to 3375E. This feature may be faulted near 3375E and continue to 3425E. A final moderate chargeability feature, somewhat better at depth is found from 3500 to 3575E.

The magnetic profile indicates a homogeneous unit from 3150E to 3300E, a second more variable unit from 3300E to 3400E, and third from 3525E to 3700E.

Line 4200N

Resistivities: A moderate resistivity response is delineated from 2975E to 3025E with a possible fault near 3050E. Another narrow, deeper moderate resistivity feature is apparent from 3050-3075E. Another subtle deep feature is identified at 3125E-3150E. There is a moderate resistivity response from 3200-3225E, contact at 3300E, and moderate to low resistivities from 3300-3400E. This resistivity package plunges beneath more resistive surface unit from 3425E to 3700E.

Chargeabilities: Good M(+) feature from 2950 to 3025E. There is a possible fault near 3050E. There is a narrow M(+) feature which is much better at depth from 3050-3075E. Moderate M(+) feature from 3175E to 3700E.

There is a generally better M(+) response near surface except from 3200 to 3250E. Also M(+) response is coincident with plunging good resistivity response from 3425E to 3700E. Magnetic profile indicates increased level of activity relative to Line 4300N. Area of high mag gradient from 2925E to 3050E and from 3200E to 3400E.

Chargeabilities: Good M(+) feature from 2950 to 3025E. There is a possible fault near 3050E. There is a narrow M(+) feature which is much better at depth from 3050-3075E. Moderate M(+) feature from 3175E to 3700E.

There is a generally better M(+) response near surface except from 3200 to 3250E. Also M(+) response is coincident with plunging good resistivity response from 3425E to 3700E. Magnetic profile indicates increased level of activity relative to Line 4300N. Area of high mag gradient from 2925E to 3050E and from 3200E to 3400E.

Line 4100N

Resistivities: Moderate to low response from 2925E to 3600E at depth. Near surface local areas of higher resistance cap rock at 3075 to 3100E, 3250 to 3275E, and 3350 to 3425E. Contact with higher resistance rock type from 3600E to East.

Chargeabilities: [M(+)] Good response from 2925E to 3575E. Some local narrow features of very good M(+) response, 2950E to 2975E increasing good to depth 3025 to 3050E, 3125E to 3175E, near 3425E and from 3450E to 3475E.

Again, increased level of magnetic response from 2900 to 3600E.

The nature of the a = 25 m dipole-dipole response indicates the potential for increasing sulphides at depth and, as well, the targets delineated on the three lines surveyed are of sufficient size to respond to a larger "a" spacing. If further I.P. surveying is carried out on the property, larger "a" spacing (ie. 50 m) is suggested and an array such as pole-dipole or "real" section is recommended.

6.0 PROPOSED WORK PROGRAM, 1992

The success of the 1991 combined geophysics, geochemistry and geological prospecting in locating mineralization justifies the continued exploration of the property by those methods. An additional 14 km of linecutting and soil sampling grid extension to the south is required to complete the preliminary grid coverage from line 36+00N to line 29+00N and from station 22+00E to station 42+00E at 25 m station intervals. Geophysics coverage will require completion of the high density magnetic surveys from line 40N to line 29N inclusive for a total of 20.5 km. 31.0 km of dipole-dipole induced polarization coverage is also required.

Detailed prospecting and geology should be completed with particular reference to the intrusive rocks in and around the main showings area. This is best completed following completion of the grid surveys so that direct followup of anomalies can be effected.

Following Phase II above, preliminary drilling of 1,000 m is proposed on the main showing and anomalies generated by the survey extension.

The following cost estimate is proposed:

Phase II

i) Line cutting and soil sample collection

14 km @ \$600/km	\$ 8,400
Soil analysis 140 @ \$14	1,960
	\$ 10,360

ii) Geophysics

Magnetics	21 km @ \$2	120/km	2,520
Ι.Ρ.	31 days @ \$	1750/day	54,250
Processing		_	2,000

58,770

iii)	Geology and Prospecting 15 days @ \$400/day Costs 50/day		\$ 6,750
iv)	Consulting: 10 days @ \$600		6,000
v)	Report Preparation		5,000
			86,880
vi)	Administration (15%)		6,000
vii)	Contingency (10%)		9,300
		Phase II Total	\$102,180

Phase III

Drilling -	1000 feet	0	\$80/foot	80,000
Contingency	(10%)			8,000
Report				5,000
			Phase III Total	\$ 93,000

7.0 CONCLUSIONS

- 1) The main mineralization at the Mammoth property is distributed in highly silicified pyritized volcanics accompanied by a multiphased intrusive suite of coeval to intrusive stocks and dykes ranging from pyroxenite and diorite to microsyenite, and feldspar porphyry in contact with the Nelson batholith.
- 2) The previously reported copper-molybdenum mineralization is associated with semimassive to massive pyrrhotite and pyrite, which provides a notable magnetics, resistivity and chargeability signature.
- 3) Soil sampling has successfully been used to locate three kinds of mineralization in quartz-lead-zinc-silver veins, auriferous arsenopyrite veins and the copper-molybdenum mineralization.
- 4) Gold has been demonstrated to accompany the high grade copper values on the main zone area.
- 5) Continued grid extension and surveying by geochemical and geophysical means would assist in delineating areas of interest.
- 6) Drilling will ultimately be required to confirm the historical grades of copper demonstrated by drilling in 1972 by Welland Drilling Ltd.

8.0 RECOMMENDATION

An additional grid extension to give total coverage of the preliminary target area of 35 km is recommended to include soil sampling, high density magnetics and induced polarization surveys.

Confirmation drilling of the main showing and its extension is also recommended.

The cost for this recommended program is estimated to total \$190,000.

Respectfully submitted

Greg Hawkins, PGeol.

June 15, 1992 Vancouver, B.C.

CERTIFICATE

- I, T.E. Gregory Hawkins, do hereby certify:
- 1. That I am a Consulting Geologist with business offices at 2406-555 West Hastings St., Vancouver, B.C. V6B 4N5.
- 2. That I am a graduate in geology of The University of Alberta, Edmonton (BSc. 1973), and of McGill University, Montreal (MSc. 1979).
- 3. That I have practised within the geological profession for the past nineteen years.
- 4. That I am a Fellow of the Geological Association of Canada and a Professional Geologist registered in the Province of Alberta.
- 5. That the information contained herein is based on field work on the subject property, and a review of relevant literature.

Gregory Hawkins, PGeol.

Vancouver, B.C. June 12, 1992

REFERENCES

- Andrew, K. and T. Hoy 1988 Preliminary Geology and Mineral Occurrences in the Rossland Group between Nelson and Ymir, Southeastern B.C., (82F/6); BCMEMPR Open File 1988-1
- Carriere, G. 1989 Keno Area 1988 Geochem Program, Mammoth Group; for Euro Petroleum Corp.; June 10, 1989
- Crouteau, F.L. 1971 Summary of Report; for Welland Consolidated Mining Ltd. NPL; April 30, 1971
- Evans, D.S. 1980 Mammoth Evaluation and Recommendations; for Celcom Minerals Ltd.; Nov. 1980

Exploration in B.C. 1988 p.A41, 1989 pp.53-54, 1990 pp.63-65

- Hand, J.S. and D.S. Evans 1980 Property Evaluation Report on the Mammoth Property; for Celcom Minerals Limited; Dec. 1980
- Hand, J.S. 1982 Assessment Report, Mammoth Property (Mariposite Claims); for Greenwich Resources Inc.; Feb. 1982 AR 10416
- Hoy, T. and K. Andrew 1988 Preliminary Geology and Geochemistry of the Elise Formation, Rossland Group, Between Nelson and Ymir, Southeastern B.C. (82F/6); BCMEMPR Geological Fieldwork 1987, Paper 1988-1 pp.19-30
- -- 1989 The Rossland Group, Nelson Map Area, Southeastern B.C. (82F/6); BCMEMPR Geological Fieldwork 1988, Paper 1989-1 pp.33-42
- Hoy, T. and K. Andrew 1989 Geology of the Nelson Map Area, Southeastern B.C. (82F/6); BCMEMPR Open File 1989-11
- Hoy, T. and K.P.E. Andrew 1991 Geology of the Rossland Area, Southeastern B.C. (82F/4E); BCMEMPR Geological Fieldwork 1990, Paper 1991-1 pp.21-31

Little, M.W. 1985 Nelson, B.C. NTS 82F West Half; GSC Open File 1195

Mineral Exploration Review 1986 pp.55-57, 1987 pp.59-60, 1990

Minfile

- MMAR 1917 p.171, 1919 p.157, 1920 p.149, 1921 p.143, 1967 p.243, 1968 p.240, 1972 p.51
- Nicolet, J.P. 1972 Geological and Geochemical Survey on the Mammoth Leases and Grace Claims; for Welland Consolidated Mining Ltd. NPL; Nov. 20, 1972 AR 4035
- Sinden, G.W. and D.S. Evans 1984 Geochemical Report, Mammoth Property (Mariposite Claims); for Greenwich Resources Inc.; Dec. 1984
- Walcott, P.E. 1972 A Report on a Ground Magnetometer Survey, Nelson Area, B.C.; for Welland Consolidated Mining Ltd. NPL; Oct. 1972 AR 4034

APPENDIX I

List of Personnel and Statement of Expenditures

Personnel:		
T.G. Hawkins, PGeol. 15 days @ \$650	\$9,750	
K. Murray 5 days @ \$175	875	
D. Murray 25 days @ \$175	4,375	
J. Murray 25 days @ \$175	4,375	
J. Denny 15 days @ \$175	2,625	
T. Neale, BSc. 9.5 days @ \$350	3,325	
Z. Duchoslav, MaSc. 4.5 days @ \$350	1,575	
D. Morrison 6.5 days @ \$350	2,275	
J. Zackodnik 4.5 days @ \$175	787.50	
J. Vaness 4.5 days @ \$175	787.50	
C. Naas, BSc. 9.5 days @ \$267	2,536.50	
J. Lang 4.5 days @ \$175	787.50	\$34,074
Disbursements:		
Room and Board 30.5 mandays @ \$60	1,830	
Trucks 21 days @ 90 33 days @ 60	1,890 1,980	
Geophysics Equipment (Mag, IP) 4.5 days	3,240	
Мар	4,000	
Geochem Assays Report Costs (copying, drafting)	9,595 333 2,170	

LIST OF PERSONNEL AND STATEMENT OF EXPENDITURES

Administration

Miscellaneous (telephone, courier, shipping

Caterpillar road work

27,807

864

1,905

3,359

\$65,240

APPENDIX II

Rock Sample Descriptions and Results

Sample	Description	Cu ppm	Pb ppm	Zn ppm	Λu ppb	λg	Other ppm
91100901	Grab sample of heavily mineralized rubble outcrop from	13125		711	2340	18.9	
	SW corner of Trench no. 7 (Evans, Dec. 1984) in vicinity of high gold values reported previously. Highly sili- ceous/hornfelsed and dense augite porphyry with 8-10% sulphides in disseminations, 3% chalcopyrite, 5-7% pyrrhotite. Dark rust-brown weathering, grey/green on fresh surface.	(1.52%)	,		(0.070 g/t)	(0.57 g/t)	
91100902	Grab sample of heavily mineralized outcrop rubble from Trench no. 6 (Evans, Dec. 1984) at Line 41+00N, Station 29+00E, as at 901.	8692 (1.10%))		1460 (0.043 g/t)	13.8 (0.42 g/t)	~
91100903	Grab sample of heavily mineralized outcrop/rubble from SE corner of Trench no. 15 (Evans, Dec. 1984) in vicinity of previously reported high gold values. Trench 15 is characterized by mineralization similar to 901/902 with increased east-west veining and shearing accompanied by more intense carbonatization and carbonate veining to 2 cm. Control on chalcopyrite mineralization is, at least in part, east/west.	565			20	2.9	₩ 464
91100904	Chip sample along north side of Trench no. 9 (Evans,	1847			150	3.3	Mo 108
	Dec. 1984) immediately east of the shaft along 8.0 m. Material is variably mineralized in pyrrhotite, chalco- pyrite, molybdenum, trace sphalerite in hornfelsed and silicified grey-green mafic volcanic breccia. Mineral- ization control is variably E-W and N-S with more intense sulphides at the western end of the trench, directly adjacent to the shaft.	{0.19%)		(0.006 g/t)	(0.08 g/t)	
91100905	Chip sample along east side of shaft (west end of	7163			630	13.7	Mo 511
	Trench no. 9 above) along 3.0 m in heavily mineralized molybdenum locally to 2% and chalcopyrite locally to 3%. Very dark red-brown weathered surface with little or no leaching due to density and silicification.	(0.76%)		(0.020 g/t)	(0.36 g/t)	
91100906	Check soil sample taken from L40+00N, Station 3600E in the vicinity of gold/arsenic soil geochemical anomaly. No outcrop.	108			40		As 297

Sample	Description	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm		Othe: ppm	2	
91100907	Grab sample of old prospect pit rubble from site of very high Pb, Zn, and Ag soil geochemistry, L48+00N, 35+75E. Fine grained mafic volcanic host of E-W(?) trending quartz (90%), carbonate (5%), sulphides (2-3%) vein up to 10 cm. Quartz vein in sugary crystalline (Phase I) to amorphous white (Phase 2) with limeations of disseminated galena, sphalerite, pyrite in first phase quartz. Ochre- orange oxide after lead in vuggy leached portions to 3%.		4899 (0.50%)	8200 (0.80%)	80 (0.003 g/t)	77.0 (2.30 g/t)	Cd W 2	247, 16	Sb 4	18,
91101001	Chip sample along road outcrop; south side of road at 42+50N, 33+50E across 10.0 m. Outcrop comprises rust weathering N-S fractures and jointed friable meta pelitic sediments in contact with diorite dyke to the east. Sulphides increase towards contact and consist of pyrrhotite and pyrite.	125		336	20	0.4			-	
91101002	Heavily mineralized, dark rust red, "high grade" meta sediment from 1001 site above, near contact.	503			30	0.2	Мо	87		
91101003	Grab sample of rubble crop, L 40+00N, 35+50E at As-Au soil geochemical anomaly. E-W(?) quartz veins to 50 cm cross out feldspar porphyry intrusives and contain locally 5% arsenopyrite.			3 (0 g	1000 .940 //t)	2.7 (0.08 g/t)	As	897,	Bi 1	154
91101004	Grab sample of outcrop at L 38+75N, station 36+75E, deuterically(?) altered, medium grained feldspar porphyry, silica flooding and pyritization with fine disseminated pyrite to 2%.	53			20	0.4				
91101005	Grab sample, L 40+00N, 35+65E, as at 003.			(0.2	5600	0.6	As	2438	б, В.	i 57
91101006	Grab sample of 1.0 cm quartz vein at L 37+00N, 29+75E in vicinity of high As-Au soil geochemistry. Abundant very rusty meta volcanic in contact with intermediate intrusive dyke/ . Accompanying silicification, pyritization and quartz veining.	130		(0.2	30	0.4	00			
91101007	Grab sample of host meta volcanics at 006 with intense silicification and pyrite and pyrrhotite to 8.0%.	92			30	0.6				

APPENDIX III

.

Soil Geochemistry Results

.

iⁱ

i

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To: CME CONSULTING LTD. #2405-555 WEST HASTINGS STREET VANCOUVER, B.C.

Project: 10 A

Type of Analysis: ICP

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

 Certificate:
 91309

 Invoice:
 30039

 Date Entered:
 91-10-20

 File Name:
 CME91309.I

 Page No.:
 1

[
PRE	2				PPM	PP	i PPM	(PF	PM	РРМ	РРМ	РРМ	PPN	4	X F	PM	РРМ	РРМ	PPN	PPM	РРМ	PPM	PPM	РРМ	*	*	PPM	PPM	×	РРЖ	*	*	*	*	PPM	PPM P	PB		
F I)	¢	SAMP	PLE NA	жE	MO	α	r PE	3 2	<u>I</u> N	AG	NI	CO	M	N F	E	AS	U	AU	HG	SR	G	SB	81	v	4	Р	LA	CR	MG	ВА		AL	NA	\$1	, w	BE AU	A A		
A		ç	11009	01 02	6 10	13125 8692	8	71	11 12	18.9 13.8	82 31	123 50	449 328) 5.9) 3.3	13 14	82 36	5 5	ND ND	ND ND	60 49	5 3	8 7	3	18 19	0.89 0.70	0,11 0.11	3 3	29 34	0.11	7 4	0.10 0.09	0,45 0,44	0.04 0.05	0.01 0.01	62 43	1 2 1 1	340 460		
A		5	11009	03	20	565	15	1	31. .n	2.9	13	14 77	797	2.7	2	33 45	5	ND ND	ND ND	17	2	26	13	50 46	1,42	0.10	6	31 33	0.42	15 23	0.08	1.02	0.07	0.01	464 95	2	20 150		
A		· · · · · · · · · · · · · · · · · · ·	11009	05	511	7163	10	30	12	3.3 13.7	40 29	18	710	3.0	2	45 55	5	ND	ND	47	4	22	14	41	2.09	0.10	5	40	0.12	10	0.09	0.82	0.05	0.01	78	2	630	Karita Karita	
S		ç	11009	06	10	108	32	: 8	13	0.4	29	22	627	3.1	3 2	97	5	NÐ	ND	34	2	8	4	63	0.52	0.08	12	21	0.61	98	0,12	2.27	0.07	0.01	20	3	40		
Å		9	11009	07	7	182	4899	820)0 7 .c	77.0	18	18	629	2.4	5	48	5	ND	ND	163	247	48	12	15	3.04	0.11	13	22	0.71	60 34	0.01	0.45	0.09	0.01	216	2	80 20		
Â		ç	11010	02	87	503	3	10)7	0.4	59	20	538	, s.s ; 6.0	2	19	5	ND	ND	70	2	8	9	82	1.45	0.15	10	37	0.60	13	0.12	1.32	0.06	0.01	41	3	30		
A		g	11010	03	4	51	11	2	n	2.7	. 9	3	188	<u>.</u> 1.1	7. 8	97	5	17	NĐ	15	t	7	154	8	0.04	0.02	1	118	0.03	12	0.01	0.11	0.03	0.01		1 31	000	rise the entry	
A		9	11010	04		53	9	4	8	04	15	22	564	3.2	9	15	5	ND	ND	37		15	11	65 27	1.07	0.10	9	25	0.95	41	0.04	1.47	0.09	0.01	27	3 1 5	20 600		
		5	11010	06	4	130	4	5	i C	0.4	32	25	289	3.0	o ∡4⊥ 7	23	5	ND	ND	135		9	5/	72	1.65	0.24	7		0.28	50	0 10	1.73	0.26	0.01	27	3	30		
A		9	11010	07	- 18	92	5	9	n -	0.6	96	32	286	4.B	0	31	5	ND	ND	151	1	1	3	59	1.12	0.19	7	19	0.77	38	0.11	1,79	0.22	0.01	29	2	30		
		844 H.4			- Hole -							5.1891			Alteri			erte.	-		epuşkiş,	4 4 1 . 4	agend .		i in air											aikees is ^k	ania di	nese e	din e se

771

NOV 4 1991

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To: CME CONSULTING LTD. #2405-555 WEST HASTINGS STREET VANCOUVER, B.C.

Project: 10 A Type of Analysis: Assay 2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	91309 A
Invoice:	30039
Date Entered:	91-10-28
File Name:	CME91309.A
Page No.:	3

PRE FIX	SAMPLE NAME	oz/t Au	oz/t Ag	% Cu	% Pb	% Zn	
P P P P P P	91100901 91100902 91100904 91100905 91100907 91101003 91101005	0.070 0.043 0.006 0.020 0.003 0.940 0.200	0.57 0.42 0.08 0.36 2.30 0.08 0.01	1.52 1.10 0.19 0.76	0.50	0.80	
[CERTIFIED BY : 20.0000

SCOR ANALYMICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVED B.C. V6A 186 ... PHONE/604)253-3158 FAX (604)253-3716

GEOCHEMICAL ANALYSIS CERTIFICATE

	AN.	,
	4724	
8	11	
- 6.		

<u>Katie Mining Corp. PROJECT MAMMOTH-91</u> File # 91-198 Baker St., Nelson BC VIL 4H2 File # 91-4702

Page 1

	· · · ·	·· · .4	<u></u>					<u> </u>	<u> 1998 - 1999</u>	pî kode						- 197 - Y			s (1998),		A. S. 446		Q49.92				i gali		- <u>-</u>
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	PA ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba Ti ppm %	A B ppm	Na K X	K X	W ppm	Au* ppb
50+000 22+00F	2	23	23	62	.	14	5	220	3 38	7	5	NU	7	16	<u> </u>	2	2	6 1.	07	055	17	21	13	47 7/	5 2 5	0.2	10		
50+00N 22+25E	-	25	71	77	• • •	17	,	471	7 90		Ē			24		2	2	04	-07	477	10	21	-41	02 .24	2.2	.02	. 10		9
50,000 22+2JE		23	400	11		14	0	4477	3.09	ှ	2	NU	2	20	<u></u>	2	4	00	. 12	. 133	12	20	.40	75 .15	5 2.6	.01	-08	1	3.0
LOU+UUN 22+OUE		20	109	80	•4	15	8	11/6	1.01	े ?	2	ND	1	27	2.5	2	5	- 30	.15	.142	18	12	. 15	162 .09	3 1.9	.02	.07	1	1.2
L50+00N 22+75E	2	- 31	- 57	138	<u>्</u> र•>ः	17	- 55	3189	3.54	9	5	ND	2	25	.8	2	2	59	.21	.271	17	19	.32	185 . 16	5 4.1	' .02	.09	2	2.3
L50+00N 23+00E	2	17	31	59	-2	8	5	258	2.53	9	5	ND	1	13	1.4	2	2	57	.05	,060	10	15	. 17	61 .12	4 1.6	.01	.07	1	.9
L50+00N 23+25E	1	19	13	70	.1	21	7	271	3.51	6	5	ND	2	21	_2	2	2	60	. 15	115	19	31	-69	65 13	340	5 01	07	. 1	1.8
50+00N 23+50E	8	18	24	61	.2	15	8	490	3.66	7	5	ND	1	25	3	2	2	60	24	066	10	22	38	72 14	333	5 02	101	1	1.0
50+00N 23+75E	7	10	23	60	5	11	17	173	3 30	5	5	ND	1	16	ંર્ડ	2	2	10	12	0.00	15	17	30	75 11	7 2 0	01	.00		1.1
50+00N 2/+00E	l É	77	7.9	70		16	19	05.8	2.30	ģ	É	ND	1	17	• •	2	2	47	12	474	15	10	. 30	107 40	3 2.9	1 .01	.00		0.0
50,00N 24,00E	1	14	17	4		10	10	700	7 00	2	, r	ND	7	11		2	2	21	112	121	12	10		103	33.1	20. 1	.07	1	4.5
L30+00N 24+23E	2	10	17	04	.	15	1	372	3.88	0	2	ND	د	20		2	2	67	.15	.079	15	23	- 66	66 .17	4 2.5	5 .02	.08	1	7.0
L50+00N 24+50E	3	20	13	34	1	9	4	142	2.63	2	5	ND	1	10	.2	2	2	40	.07	.060	13	13	.21	44 .14	2 3.2	.02	.03	<u> </u>	1.7
L50+00N 24+75E	4	18	10	76	1	16	7	354	3.62	3	5	ND	3	32	.2	2	2	60	.28	.112	19	27	.70	59 .13	2 4.0	2 .01	.08	1	.9
L50+00N 25+00E	5	21	11	71	.2	16	8	557	3.63	2	5	ND	2	33	.2	2	2	61	.31	092	19	25	.62	79 15	2 3.6	7 .02	.07	1	1.9
L50+00N 25+25E	5	21	17	64	.4	13	6	407	2.98	4	5	ND	1	20	6	2	2	47	15	080	21	18	41	69 12	234	5 02	0.9	1	ó
150+00N 25+50F	1	18	12	20	1	8	Å	150	3 07	.	5	ND	रं	15	÷.	-	2	53	00	061	11	21	27	40 10	2 / 1	7 01	.00		• • •
		10				Ŭ	-	150	3.71		-	10	5			-	-		.07		••	21	.23		£ 4.1	.01	.03	4	1.2
150+00N 25+75E	3	20	18	58	.2	13	7	317	3.10	3	5	ND	1	22	.2	2	2	53	.15	.049	13	24	.39	60 .16	3 2.5	1 .02	.06	. des 1 1	.7
L50+00N 26+00E	3	24	11	76	:: .3 .	16	12	1754	3.24	4	8	ND	1	44	.3	2	2	53	.52	.071	33	27	.53	83 11	2 3.4	5_02	. 06	1	4.8
RE 150+00N 27+25E	1	51	55	127	5.	32	18	1759	4.54	5	5	ND	2	51	9	2	2	84	.52	171	12	62	.82	228 22	3 2 8	5 03	13	1	2 1
L50+00N 26+25E	2	29	10	74	1	18	12	1045	3.62	3	5	ND	1	47	2	2	2	68	54	077	15	35	- 66	87 13	227	5 N2	05	4	27
150+00N 26+50F	1	44	13	80	្រីត្	18	11	804	4 08	.	5	ND	2	32		2	5	72	26	105	12	37	40	75 10	2 7 0	, .ve	.03	- 1 -	2 7
	'			00		.0		004	4.00			NO	-	32			-	12	.20		16	31	.07	1.7 .17	2 3.0	J .02	.00	1. 	2.1
L50+00N 26+75E	1	58	9	74		24	15	644	4.11	2	5	ND	1	33	.2	2	2	79	.34	.074	14	53	.75	62 .18	2 3.6	5 .02	. 08	1	1.8
L50+00N 27+00E	1	58	8	84	.3	28	14	418	5.25	S 5	5	ND	4	41	2	2	2	- 99	.39	.085	9	65	1.17	62 28	2 3 5	4 .02	. 11	1	4 0
L50+DON 27+25E	i 1	57	54	134	<u></u> 5	33	19	1789	4.72	8	5	ND	2	53	ी रे	2	2	88	52	175	12	65	87	230 23	220	5 05	17	a da antes de la composición de la comp	2.9
150+00N 27+50E	ं रं	46	18	100	6	25	15	1282	4 57	28 2 1	5	ND	2	50	8 7 -	2	5	70	52	074	15	1.9	.01	157 20	2 2.7	02	- 10		17 6
150+00H 27+75E		50	22	97	8 Z	20	14	477	1 25				4	/7	\$\$. 1	5	2	70		010	22	40	.00	101 .20	2 2.0	4 .02	. 10		11.5
LJGFOON ZFFIJE		74	22	00		20	10	013	4.23		(NU	I	43		2	2	78	-41	.001	22	21	.83	89 .21	2 3.1	5 .02	.07	1	4.5
L50+00N 28+00E	4	45	26	118	.4	29	17	923	4.79	3	5	ND	2	47	.2	2	2	86	.45	.079	13	57	.88	148 .29	2 2.7	7 .02	.08	i 1	4.8
L50+00N 28+25E	3	47	17	- 87	.5	- 28	16	1136	3.67	3	6	ND	1	43	\$\$ \$ 50	2	2	. 65	.42	.088	19	51	.72	93 .16	2 2.6	7 .02	. 08	5 2	6.7
L50+ÓON 28+50E	8	56	15	85	.6	25	14	1130	3.77	6	5	ND	1	38	ी.उ	2	2	65	.42	.087	22	45	.63	85 .16	2 3.0	4 .02	. 07	2	2.6
L50+00N 28+75E	1	40	16	74	5	23	12	482	4.06	3	5	ND	1	38	8	2	2	65	33	052	21	46	.67	76 22	234	3 : 02	07	, i i	1 3
150+00N 29+00F	2	27	62	177	- - - - -	19	11	1284	4.72	ँ	5	ND	ंद	34	S A	2	5	77		107	14	78	75	1/3 24	230	/ 02	10		4 5
	-						••				-	NO	5	34		-	-	13			14	50	.,,		2 J.U	4 .06	10	·	0.5
L50+00N 29+25E	1	- 33	22	103	.2	20	12	985	3.82	7	5	ND	1	41	.7	2	2	64	.47	.076	18	43	.70	81 .20	2 3.2	8.03	. 10	1	3.9
L50+00N 29+50E	1	46	24	93	.8	20	12	1657	3.31	÷ 4	17.	NÐ	1	63	3.9	2	2	59	.79	109	54	45	.60	79 13	237	4 02	04	1	2.0
L50+00N 29+75E	1	40	32	120		20	12	891	3.56	88 s (5	ND	2	60	1 A	2	2	62	60	047	24	45	71	122 221	220	0 01			2.0
150+00N 30+00F	1	41	25	104	ँ	20	۰ <u>،</u>	472	3 08	1	7	ND ND	1		24	2	2	50	.07	112	/0	7,0	40	75 47	23.0	7 .U2 4 07	κυ. - Α		2.1
1501000 301000			27	76		14	7	712	7 00	200 7) 2007	/ F		. I.	20		2	2	20	.14	SI 14	40	40	.07	/2 13	23.2	D.U.S	.0/		2.9
LJUTUUN JUTZJE	'	20	21	()		. 10		272	2.9U	•	2	ND	2	20		2	2	02	.28	1042	10	42	.46	82 .21	2 2.8	5 .02	.06	1	4.5
L50+00N 30+50E	1	29	11	69	.2	14	7	241	3.21	6	5	ND	4	19	.2	· 2	2	54	.20	109	9	38	.45	48 .21	23.8	5.02		1	3.5
L50+00N 30+75E	1	18	14	48	4	12	6	584	2.88	2	5	ND	2	22	2	2	2	55	.21	065	8	35	37	56 20	2 2 2	0 02	07	1	22
STANDARD C/AU-S	1 10	62	41	132	7 7	70	31	1053	3.94	৾৴৴৾	18	7	30	52	18 0	16	21	57	48	001	30	58	89	176 00	3/ 1 0	2 04	01	17	/5 1
	<u>r</u>									21. 74 2		í			<u></u>				. 79	977.L	37			110 .07	, J+ 1.3	UC		13	47.1
		100	- 50	0 0044						7141 7					0E .0														

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL+HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples beginning 'RE' are duplicate samples.</u>

Dépt 27/91. DATE RECEIVED: SEP 24 1991 DATE REPORT MAILED:

SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Katie Mining Corp. PROJECT MAMMOTH-91 FILE # 91-4702

SAMPLE#	Мо ррл	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppri	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba Ti ppm %	BAL ppm X	Na %	K V Au* % ppm ppb
L50+00N 31+00E L50+00N 31+25E L50+00N 31+50E L50+00N 31+75E L50+00N 32+00E	2 2 1 2 2	33 32 32 43 40	24 23 23 34 48	69 104 89 151 180	.7 .7 1.1 1.8 .9	19 23 20 25 28	18 15 17 17 18	1109 688 2094 1327 1059	3.63 3.81 3.68 4.08 4.36	2 2 2 2 2 6	5 5 5 5 5	nd Nd Nd Nd Nd	3 2 1 1	32 31 30 37 43	.9 1.4 2.2 2.8 2.1	2 2 2 2 2 2	2 2 2 2 2 2 2	68 65 62 68 74	.32 .31 .28 .34 .45	075 074 067 072 104	22 20 23 25 16	52 48 41 55 70	.62 .72 .59 .72 .88	95 .19 81 .18 98 .1β 100 .17 83 .15	4 2.93 2 3.19 6 2.67 2 2.71 7 2.45	.03 .02 .02 .02 .02	.06 1 5.1 .07 1 6.1 .07 1 2.0 .07 1 4.6 .09 1 2.5
L50+00N 32+25E L50+00N 32+50E L50+00N 32+75E L50+00N 33+00E L50+00N 33+25E	3 2 1 1	48 53 39 34 55	39 27 18 27 39	151 148 149 93 98	2.1 1.1 .6 .3 1.2	28 43 32 22 38	20 22 17 18 24	1259 1595 953 1101 1545	4.00 4.48 4.94 3.96 3.93	11 5 4 4 14	7 5 5 5 5	ND ND ND ND	1 1 2 1 1	44 89 54 29 61	4.6 3.0 1.0 1.1 1.9	2 2 2 2 2	2 2 2 2 2	70 76 85 69 79	.38 .67 .51 .27 .68	096 125 082 134 082	29 32 11 8 15	60 75 86 58 91	.76 1.17 .90 .61 .96	122 .14 196 .18 163 .26 99 .21 100 .16	4 2.74 3 2.91 3 2.42 2 2.39 3 2.56	.02 .03 .03 .02 .02	.08 1 5.1 .10 1 3.1 .07 1 7.2 .06 1 2.8 .06 1 2.1
L50+00N 33+50E L50+00N 33+75E L50+00N 34+00E L50+00N 34+25E L50+00N 34+50E	2 1 1 1	41 48 35 58 110	27 19 18 16 9	112 126 97 203 96	1.7 .4 .1 1.0 .9	26 31 27 35 56	16 20 16 22 29	514 539 555 2546 978	4.28 5.47 5.05 4.97 5.26	2 7 6 9 6	5 5 5 5	nd Nd Nd Nd	1 2 1 1	35 43 36 51 64	.5 .3 .2 .4 .6	2 2 2 2 2 2	2 2 2 2 2	80 101 90 83 105	.35 .42 .35 .50 .60	.095 .099 .128 .218 .080	6 5 7 8	83 96 97 93 148	.67 .80 .78 .95 1.66	73 .24 77 .26 63 .26 200 .22 96 .24	2 3.24 2 3.01 2 2.50 2 3.06 2 3.03	.02 .02 .02 .03 .02	.06 1 6.3 .08 1 14.0 .06 1 3.2 .12 1 2.0 .11 1 11.0
L50+00N 34+75E L50+00N 35+00E L50+00N 35+25E L50+00N 35+50E L50+00N 35+75E	1 1 1 1	95 65 66 59 70	25 13 63 69 27	146 116 122 134 142	.8 1.1 1.8 .8 1.8	49 39 37 40 45	28 22 23 24 27	1332 749 1413 1375 1877	4.97 5.10 4.31 4.64 4.86	10 5 13 15 6	5 5 5 5 5	ND ND ND ND ND	1 2 1 1 2	65 41 51 52 43	1.2 .4 2.3 1.9 3.4	3 2 2 2 4	2 2 2 3	96 90 81 85 84	.69 .43 .55 .68 .50	.099 .127 .096 .106 .132	9 11 20 15 26	111 90 82 82 73	1.28 .97 .90 .97 .83	167 .22 100 .24 119 .17 120 .17 140 .18	2 2.88 2 3.72 5 2.80 2 3.04 4 3.40	.03 .03 .03 .03 .03	.10 1 4.4 .08 1 11.7 .08 1 7.1 .10 1 3.2 .09 1 1.8
L50+00N 36+00E L50+00N 36+25E L50+00N 36+50E L50+00N 36+75E L50+00N 37+00E	1 1 2 1	52 61 52 68 64	25 14 25 29 36	137 103 140 95 95	1.8 1.4 2.9 1.5 1.4	34 31 32 25 32	20 22 19 18 17	1762 1576 987 1309 1005	4.31 4.07 4.58 3.91 3.90	4 2 11 3 6	5 5 5 5 5	ND ND ND ND	1 1 1 1	37 42 49 39 42	1.4 2.2 1.6 2.1 2.4	2 2 5 2 2	2 2 2 2 2 2	78 75 76 74 71	.41 .36 .47 .34 .33	.115 .081 .146 .100 .102	14 25 16 24 27	60 60 64 57 56	.76 .72 .65 .54 .66	114 ,16 100 .16 138 .15 77 .13 84 .14	3 3.06 4 3.20 4 3.05 2 2.99 2 2.89	.02 .02 .02 .02 .02	.08 1 2.4 .07 1 2.6 .08 2 2.5 .07 1 1.9 .08 1 1.5
L49+00N 22+00E RE L50+00N 36+50E L49+00N 22+25E L49+00N 22+50E L49+00N 22+75E	1 2 1 7	29 51 19 20 22	47 26 23 25 29	73 140 49 77 86	.4 2.9 .1 .3 .1	17 31 6 35 22	10 19 4 12 15	593 962 304 413 999	3.00 4.64 3.02 3.99 4.27	10 9 5 6 11	5 9 5 5 5	ND ND ND ND	1 1 3 1	45 49 17 23 26	1.1 1.8 .4 .7 .3	2 4 2 2	2 2 2 2 2 2	54 76 54 78 74	.26 .49 .17 .20 .25	.103 ,147 .154 .070 ,087	10 16 6 14 15	24 62 13 40 26	.33 .65 .13 .62 .56	98 .11 135 .16 95 .18 78 .21 101 .16	2 1.56 3 3.07 2 2.08 5 2.67 2 2.78	.02 .02 .02 .02 .02	.08 1 1.0 .09 1 2.3 .05 1 2.0 .08 1 1.8 .07 1 1.6
L49+00N 23+00E L49+00N 23+25E L49+00N 23+50E L49+00N 23+75E L49+00N 24+00E	6 11 12 13 7	25 20 14 21 19	33 25 62 36 23	91 95 82 85 68	.2 .3 .4 .2	21 20 14 18 15	14 13 15 11 7	1275 742 1082 1092 344	3.13 4.37 2.75 2.37 3.25	19 16 11 8 9	5 5 8 8	ND ND ND ND	1 1 1 1	36 31 32 31 22	1.1 .3 3.0 1.9 .6	2 4 2 2 2	2 2 2 2 2	62 86 49 46 62	.47 .33 .43 .40 .17	.107 .078 .096 .113 .070	18 16 21 23 16	22 26 17 17 21	.56 .63 .43 .30 .43	120 .11 86 .17 71 .06 85 .06 75 .13	5 2.26 6 2.70 4 2.10 4 2.22 4 2.21	.02 .02 .02 .02 .02	.07 1 1.3 .08 1 5.8 .07 1 3.2 .06 1 2.5 .07 1 9.8
L49+00N 24+25E L49+00N 24+50E STANDARD C/AU-S	6 4 19	14 24 58	19 41 40	67 90 127	.1 .1 6.9	12 19 72	7 8 32	277 878 1059	3.20 3.07 3.91	6 13 43	8 5 17	ND ND 7	1 1 37	19 22 49	.2 1.1 18.9	2 2 16	2 2 20	56 49 57	. 15 .23 .48	.056 .131 .089	15 19 38	19 18 56	.42 .31 .86	69 .16 101 .12 171 .08	2 2.12 3 3.13 32 1.86	.02 .02 .07	.07 1 5.0 .05 1 1.1 .14 13 46.3

, `

.

Samples beginning 'RE' are duplicate samples.

Page 2

Page 3

•

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca P	La	Cr	Mg	Ba Ti	B A	. Na	κ	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	% ррп	ppm	ppm	ррп	ppm	bbw	ppm	ррп	ppm	X X	ppm	ррп	X	ppm 🕺 🏌	ppm	<u> </u>	<u>×</u>	ррп	ppb
L49+00N 24+75E	3	17	21	76	.2	10	7	541	3.15	5	ND	1	27	4	2	2	54	.21 .065	14	18	.38	106 .14	2 1.7	1.02	.08	1	74
149+00N 25+00E	10	16	23	81	2	12	12	1301	3 03	7	ND	1	24	7	2	5	52	21 080	10	17		82 14	331	5 03	08	1	20
1/0+00N 25+25E	2	21	27	67		16	8	202	3 40 6	Ś	ND	2	20	81°2	5	5	60	15 045	17	27		66 22	2 2 2 2	5 .02	.00		2.7
	1	02	15	54		19	9	212	7 74	ś			10	817	2	5	5/	10 145	21	20	.02	07 16	2 5 0	6 .02	.07		2.0
L49+00N 23+30E		72	10	50	÷.	10	07	212	J.20 2		NU	. 4	7/		2	2	24	.12 .103	21	20	.41	73 .10	2 2.0	5,02	.00	1	2.5
L49+00N 25+75E	1	32	10	27	49. -4 9.	14	4	202	4.21	2	NU	4	54		2	2	70	.51 \$108	14	40	.08	CU19	2 3.1	9 .03	.08	1	4.2
149+00N 26+00E	1	27	7	57	.3	13	6	254	3.87 5	5	ND	3	31	.5	2	2	76	.25 .098	11	36	.56	46 .19	2 3.5	2.03	.09	1	3.5
L49+00N 26+25E	1	29	12	52	.3	13	7	400	4.25 5	5	ND	1	35	5	2	2	81	.25 .065	12	34	.45	65 .22	2 2.4	7.03	.09	1	3.1
149+00N 26+50F	2	44	33	87	3	21	15	915	4.11 6	5	ND	1	62	1.3	2	2	82	.55 05/	13	46	78	107 .20	2 2.5	6 .03	12	1	50
149+00N 26+75F	2	42	17	68	ें र	21	12	719	3 92 7	5	ND	1	47	6	2	2	73	46 058	14	48	76	80 19	225	8 03	09	1	3 1
149+00N 27+00E	7	44	18	76	7	21	13	570	4 13	5	ND	i	42	1 0	2	2	80	36 055	13	40	72	74 23	328	5 03	11	1	17
			10	.0		51		510	Tell 2 (1979)	<u> </u>	NU		76		-	2	00			47			5 2.0		• • • •	. !	1.7
L49+00N 27+25E	1	49	11	57	.3	22	12	502	4.00 2	5	ND	1	51	.9	2	2	81	.46 .057	18	49	.69	83.24	2 2.5	6 .04	.11	1	3.2
L49+00N 27+50E	1	43	9	67	.5	23	13	650	3.96 3	10	ND	1	63	-8	2	2	- 75	.60 ,053	24	50	.80	114 .21	2 3.2	2 .03	.08	i 1	1.0
L49+00N 27+75E	2	43	23	89	.5	24	13	930	4.00	5	ND	1	63	.9	2	2	- 77	.70 .08	20	54	.72	116 .20	2 3.0	9.03	.11	<u> </u>	3.7
L49+00N 28+00E	3	46	43	110		29	15	1400	3.74 4	9	ND	1	82	4.1	2	2	78	.81 155	28	59	.82	111 .11	3 2.6	7.04	.12	1	3.3
L49+00N 28+25E	4	54	21	126	.6	33	18	1638	4.48 🦂	10	ND	1	64	.8	2	2	84	.61 .10	26	60	.91	141 .21	3 3.1	3.03	.11	1	1.7
1/0+00N 28+50E	27	78	14	07	6	75	14	1257	3 77 17	145	ND	1	0/.	1 0	2	2	7/	80 00	୍ଚ ୦ 25	<i>.</i> 0	71	80 16	3 3 3	8 04	00	1	20
1/0+00N 28+75E	20	30	22	95		19	17	729	7 47 4	. 102	10	1	90	84848	2	2	44	92 07	17	77	42	124 10	3 3.2	0 .04	10	1	72 6
L49700N 20773E	20	70	10	- 01	0	21	1/	130	7 00 1	40	RU		40		2	2	71	.02 .0/1	17 17	40	.02	02 20	32.1	0.04	.10	an the	52.5
L49+00N 29+00E	20	20	10	107		21	14	1705	7 45	10		-	07		2	2	74	.03 .00	/ 1/ 17	40	.09	110 11	2 3.0	2.03	.00	1	2.3
RE 149+00N 28+00E		40	37	107	33 - 13	20	10	1302	3.07		NU	1	63	88. S	2	2	10	./0 .10		20	. (7	400 01	2 2.0	5 .U5 7 0		1	3.0
L49+00N 29+25E	12	32	21	68	•?	17	12	710	3.83 (C	6 3	NU	2	24		2	2	75		CI 1	44	.03	122 .20	2 2.6	3,04	.09	1	4.9
L49+00N 29+50E	2	51	14	96	.7	32	16	612	4.40	6	ND	4	72	2.0	2	2	83	.73 .07	23	77	1.16	96 ,25	3 2.9	4.05	.12	1	12.7
L49+00N 29+75E	2	41	18	- 99	.8	28	15	1060	4.12	8	ND	1	- 73	1.4	2	2	75	.74 .07	25	61	.95	95 .19	2 2.9	8.03	.09	는 1	2.7
L49+00N 30+00E	1	34	27	95	.6	21	14	961	3.76	5	ND	1	58	1.5	2	2	66	.68 .07	Ê 21	48	.73	99 .19	4 2.6	5.03	.10	1	2.2
L49+DON 30+25E	1	30	16	83	.7	18	13	675	3.74	Š 5	ND	1	52	8	2	2	68	.53 .06	5 16	45	.68	87 .20	2 2.8	7.04	.09	<u>े</u> 1	4.5
L49+00N 30+50E	1	47	20	82	.8	21	13	968	3.61	5	ND	1	60	1.1	2	2	64	.62 .08	Z 26	51	.64	121 .20	3 3.4	9.03	.09	1	2.9
1/0+004 30+755		71	10	o/		20	11	1150	7 01	7	ыŋ		71		7	2	55	82 14) 	17		00 11	775	F 0/	00		
1 (0,000 31,000		41	17	04		20	1/	1705	7 /7		ND	-		6.J	2		22	-06 -11	7	43	.04	00 11		J .U4	.00	ः 🎝	2.2
1 L49+00N 31+00E		40	12	07	1.5	24	14	1202	2.4/	Ö	NU	1	00	2.0	2	2	60	.72 908	20	48	-11	92 .18	23.	Y .U3	.08	<u></u>	2.4
149+00N 31+25E	1 1	28	80	72	0.0	17	10	280	3.24	ן א	NU		49	84-W	2	2	00	.50 .06	4 14	42	.57	82 .21	3 2.0	8 .US	.08		2.4
L49+00N 31+50E	1	40	- 34	- 99	2.5	20	15	1052	5.84	<u> </u>	ND	1	51	1.4	2	2	70	.50 .06	29	49	- 68	102 .22	23.	4 .03	.08	<u>ः ् ।</u>	3.4
L49+00N 31+75E	2	30	21	91		20	15	959	J.00		ND	1	>>	1.4	2	2	66	.53 .06	8 21	49	.61	101 .20	5 2.2	.05	-09		1.2
L49+00N 32+00E	1	32	14	86	.7	22	11	428	3.88	5	ND	2	44	.6	2	2	72	.38 .05	0 9	61	.75	78 .24	2 2.5	6.03	.07	1	8.3
L49+00N 32+25E	2	24	22	97	1.2	14	10	1044	3.74	5 5	- ND	2	31	1.0	2	2	62	.26 08	🦉 13	39	.54	114 .22	2 2.0	6 .02	.10	1	3.0 I
L49+00N 32+50E	7	30	25	93	1.0	18	12	910	3.87	7 S	ND	1	45	1838	2	2	65	.37 08	🦉 i7	' <u>46</u>	.57	124 .19	3 2.	9 .02	.09	ં 1	1.4
149+00N 32+75F	1 4	47	33	120	ંંડ	26	16	1120	4.45	Ś	NO	i	76	***	2	2	81	.67 OR	1 11	75	.05	133 20	22	9 .07	.11	ાં	1.2
149+00N 33+00E	4	44	40	131	1.0	27	16	1462	3.69	5 16	ND	1	103	2.5	2	2	68	.88 .13	0 30	72	.91	116 .11	3 2.	8 .03	.11	1	1.9
	.									- -		-			-	_	-	@@			•-						
L49+00N 33+25E	4	51	40	137	7	30	17	1232	4.15	<u> </u>	ND	1	101	2.4	2	2	76	.91 10	6 25	91	.99	123 .15	32.	0 .02	.11	<u>1</u>	1.9
149+00N 33+50E	4	46	21	76	1.0	23	11	393	4.61	5_5	ND	1	- 66	<u>_1.40</u>	2	2	80	.52 .04	5 11	66	.74	103 .28	2 2.	.4 .03	.11	1	1.6
STANDARD C/AU-S	19	61	40	134	7.2	70	34	1054	3.98 4	21	7		52	18.8	16	<u> 19 </u>	56	.48 .09	<u>1: 35</u>	58	.88	178 .09	32 1.	.04	.15	11	46.5

Samples beginning 'RE' are duplicate samples.

Page 4

7

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Çd ppm	Sb ppn	8i ppm	V ppm	Ca X	P X p	La pm	Cr ppm	Mg X	Ba Ti ppm X	B AL ppm %	Na X	K X	W	Au* ppb
L49+00N 33+75E	2	76	24	92	.8	51	18	425	4.07	12	5	ND	2	61	1.4	2	2	74	.50 .0	59	10	187	1.62	103 .22	2 3.27	.02	.07	1	3.5
L49+00N 34+00E	2	51	53	149	1.6	30	18	1375	3.68	10	5	ND	1	109	4.0	2	2	69	.94 .0	78	19	82	.89	145 .14	4 2.60	.03	.07	1	1.9
L49+00N 34+25E	2	105	25	188	3.9	38	21	766	3.49	35	23	ND	1	- 73	5.4	3	2	73	.62 .0	84	21	134	1.07	85 .12	4 3.40	.02	.09	3	2.7
L49+00N 34+50E	3	74	27	104	2.2	28	15	1151	3.12	16	6	ND	1	95	5.3	2	2	60	.79 .0	98	25	62	.66	117 .10	4 2.50	.03	.07	1	1.4
L49+00N 34+75E	5	50	47	120	3.3	23	13	465	3.30	81	25	ND	1	106	4.7	2	2	70	1.04 .0	71	15	81	.47	93 .11	2 1.71	.02	.08	1	2.6
L49+00N 35+00E	4	71	26	204	1.7	36	17	697	4.09	75	28	ND	2	114	6.9	2	2	97	1.18 .0	67	13	146	.96	149 .24	2 2.50	.03	.11	3	2.2
L49+00N 35+25E	3	93	44	134	1.6	45	27	1597	4.73	147	46	ND	1	86	8.6	2	2	108	.87 0	99	38	231	.96	186 ,12	2 3.31	.02	.16	<u> </u>	2.9
L49+00N 35+50E	3	42	46	110	1.3	28	14	567	3.34	72	5	ND	1	60	2.5	2	2	61	.57 .0	48	9	66	.78	101 ,09	3 2.22	.02	.08	3	2.8
L49+00N 35+75E	2	95	39	201	3.0	36	19	801	3.99	67	5	ND	1	64	3.9	2	2	76	.54 .0	56	18	86	.79	125 .16	2 3.41	.02	.09	1	3.0
RE L49+00N 37+00E	3	113	26	117	Z.9	26	17	1205	3.43	22	13	ND	. 1	89	6.1	2	2	58	.79 .0	90	31	60	.55	106 .11	3 2.50	.02	.07	1	1.8
149+00N 36+00E	3	120	35	155	3.7	36	18	984	3.91	23	14	ND	1	87	10.1	2	2	73	.80 .0	57	25	69	.57	124 .19	2 2.62	.02	.08	່ 1	4.7
L49+00N 36+25E	3	90	29	145	2.5	33	19	1541	3.53	25	7	ND	1	96	6.0	2	2	64	.87 .0	91	31	61	.59	115 11	2 2.54	.02	.09	1	1.4
L49+00N 36+50E	3	81	42	170	2.8	31	18	1447	3.98	26	5	ND	1	69	4.9	2	2	72	.59 .0	73	42	58	.61	157 .16	2 2.69	.02	.08	1	1.4
L49+00N 36+75E	3	90	- 71	138	2.2	28	16	1535	3.12	16	5	ND	1	111	7.4	2	2	57	1.08 .0	96	55	50	.56	127 .10	3 2.47	.02	.08	1	1.5
149+00N 37+00E	5	120	22	123	2.9	27	18	1298	3.64	18	11	ND	1	95	6.5	2	2	61	.85 .0	Y >	55	60	.58	110 .11	2 2.67	.02	.07	1	1.2
L48+00N 22+00E	4	28	23	65		14	10	559	2.86	3	7	ND	1	24	.4	2	2	50	.17 ,1	32	14	19	.34	95 .08	2 2.79	.02	.08	1	1.1
L48+00N 22+25E	4	25	20	63	.5	16	7	277	3.23	88 7	6	ND	1	19	.6	3	2	54	.13 👯	12	15	21	.33	71 .10	2 2.44	.02	.09	1	-4
L48+00N 22+50E		26	28	54	1	13	1	365	3.26	6	5	ND	1	- 26	1.2	2	2	54	.15 .0	87	13	19	.36	74 .09	3 2.23	.02	.08	. 1	1.1
L48+00N 22+75E	4	24	14	45		10	4	122	2.22	2	5	ND	1	14	•	2	2	38	.08 .0	/U 77	15	14	.23	40 .08	3 2.84	.02	.06		1.0
140400N 23400E	3	10	20	44		. 7	4		2.31	Q	ر	NU	1	17		2	2	40	. 10 . 0	12	12	13		μη. CO	3 1.90	.02	.08	1	.,
L48+00N 23+25E	4	21	14	41	.5	10	- 4	108	1.82	11	6	ND	1	12	- 4	2	2	36	.06 .0	77	16	15	.23	47 .06	3 2.90	.01	.06	5 1	.8
L48+00N 23+50E	6	17	18	67	.4	13	8	442	3.79	15	5	ND	2	17	- 367	2	4	68	.13 0	55	11	22	.34	72 .13	4 2.69	.01	.08	1	1.6
L48+00N 23+75E	10	15	18	68	.2	12	9	402	3.68	42	7	ND	1	22	- Z	2	2	64	.20 .0	50	13	22	.36	79	2 2.53	.02	.06	1	1.7
L48+00N 24+00E	4	16	20	45		6	6	155	4.05	12	5	ND	5	16		2	5	81	.08 01	02	10	17	.22	63 .15	2 1.90	.01	.06	1	14.5
L48+UUN 24+25E	'	10	21	09	•	11	(349	3.00	11	y	ND	2	24		2	4	90	.19 .0	74	11	19	. 30	(1 .13	2 2.33	.01	.08		11.9
L48+00N 24+50E	4	17	16	108	1	13	9	485	3.55	23	5	ND	1	23	.5	2	2	63	.21 .0	71	14	19	.33	109 .15	2 4.19	.02	.06	1	2.9
L48+00N 24+75E	10	24	33	119) - 1	14	11	3251	2.28	20	22	ND	1	65	1.3	2	2	41	.97 .1	44	28	15	.28	136 .05	2 2.41	.02	.06	1	1.5
L48+00N 25+00E	6	18	25	115	.2	15	12	1766	2.80	24	14	ND	1	49	1-4	2	2	52	.66	01	19	20	.47	107 .08	5 2.22	.02	.07	1	1.3
L48+00N 25+25E	4	27	10	105	I 	17	15	1218	4.05	14	2 5	ND	1	29	• 5	2	2	/1 47	.40 .1	24) 152	14	29	. (9	123 .15	3 2.41	.02	.08	1	1.5
L40100N 20100E		21	12	74		15	У	024	3.35	16	,	NU	1	29		2	2	60	.30 50		10	23	.01	27 .14	4 2.60	.02	.00		2.0
L48+00N 25+75E	2	20	11	62	1	14	9	315	4.03	4	5	ND	3	32	.4	2	2	85	.24 .0	52	8	33	.60	45 .22	2 1.92	.02	.06	1	7.6
L48+00N 26+00E	4	22	42	67	[.3	. 8	6	900	1.89	10	9	ND	1	34	<u></u>	3	2	46	.32 👯	15 1	12	19	.24	151 .12	3 1.12	.02	.05	1	1.8
L48+00N 26+25E	?	19	17	60		14	8	413	2.95	8	5	ND	1			2	2	49	.44 👯	4	22	23	.41	64 .09	2 2.28	.01	.04	<u>_</u> 1	5.6
140+00N 20+50E	4	18	19	12		15	- 9	501	3.1/	0	10	· ND	1	56	- S 8 - S →	2	2	51	.41 30 E1 30		10	21	.36	129 .14	> 2.69	.01	.04 0F		1.0
LAGTUUN ZOTIDE	4	23	22	111		, іу	10	200	5.50		'	NU	•	21	•	2	2	27	.); IC.	140	10	29	. 74	100 . 19	4 6.04	.02	.05		1./
L48+00N 27+00E	7	23	29	72	.3	13	11	1178	2.40	8	14	ND	1	45	.8	2	2	47	.55 .0	94	22	22	.40	86 .08	4 2.33	.02	.05	1	1.4
L48+00N 27+25E	9	32	34	53	.4	15	9	777	2.01	8	22	ND	1	42	1.1	2	3	44	.60 门	04	24	28	.35	52 .06	5 2.26	.02	.05	2	1.1
STANDARD C/AU-S	20	61	40	130) 7.2	72	32	1088	3.91	44	20	7	39	52	19.0	18	21	58	.48 👯	090	38	57	.86	179 .09	34 1.87	.08	. 15	<u> </u>	51.2

Samples beginning 'RE' are duplicate samples.

ين بر

1

Υ.

Page 5

SAMPLE#	Mo ppn	Cu ppm	Pb ppm	Zn ppni p	lg Sm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppra	V ppm	Ca X	P %	La ppnt	Cr ppm	Mg %	Ba ppm	Ti X	B A ppm	l Na X X		K W % ppm	Au* ppb
L48+00N 27+50E	6	27	21	66	.1	17	11	640	3.24	10	8	ND	1	46	.9	2	2	61	.56	.061	12	35	.60	62	,16	3 2.8	2 .02	2 .0	5 1	7.8
L48+00N 27+75E		31	18	86	.2	19	13	513	3.90	12	12	ND	5	31	.9	2	2	88	.28	.082	15	43	.68	116	.23	63.3	0.05	i .1	1 1	5.4
L48+00N 28+00E		28	15	54	.3	13	10	597	3.12	. 8	5	ND	1	27	1.0	2	2	57	.25	.050	16	27	.36	66	.17	2 2.3	0.03	5.0	5 1	1.7
L48+00N 28+25E		22	31	55 . 51 .	2	14 15	6 7	170 209	4.54	13	58	ND ND	1	30 29	1.2	2	2	59 57	.31	.042	8 9	33 34	.34	105 91	.21	2 2.5	3.02 7.03	0. 2 5 .0	3.1 6.1	3.4 1.9
148+00M 28+75E		20	10	60	3	17	13	813	3 17	17	23	ND	1	48	A Second	2	2	63	55	051	14	7.8	57	85	15	225	1 03		5 1 1	71 0 4
L48+00N 29+00E		17	15	50	7	12	5	291	4.08	9	5	ND	3	28	11	2	2	78	.24	051	7	32	.26	121	26	321	0.00 0 07	0 . 0	5	21.9
L48+00N 29+25E		18	15	43	2	11	5	312	2.51	7	5	ND	1	29	4	2	2	57	.32	.059	6	31	.32	63	18	2 1.0	1 .02	2 .0	5 1	10.4
L48+00N 29+50E	18	3 29	17	69 2	8	12	25	1702	2.67	11	37	ND	1	79	2.3	2	2	44	.92	.096	22	25	.22	66	.04	2 1.4	6 .03	5.0	6 1	.9
L48+00N 29+75E	20	5 38	31	89 2	.0	15	17	1133	4.00	18	36	ND	1	54	2.8	2	2	72	.59	.087	24	35	.42	82	.08	2 2.5	6.02	2.0	6 1	30.5 +
L48+00N 30+00E	10	5 51	28	82 1	.8	16	14	3415	2.97	26	60	ND	1	48	3.5	2	2	51	.49	.098	34	40	.32	114	.12	2 2.8	1.0	2.0	6 1	4.4
L48+00N 30+25E	4	31	13	61	.5	18	9	336	2.63	9	18	ND	1	39	1.1	2	2	49	.38	.040	19	38	.60	69	. 14	2 2.1	3.0	2.0	15 🔆 1	2.4
L48+00N 30+50E		5 29	14	53	•6	14	8	315	3.60	1	10	ND]	46	1.0	2	2	-59	.51	.039	16	36	.44	67	.20	2 2.1	5.07	2.0	6 1	2.0
1 L46+00K 30+73E		> 29 37	14	50	.О я	16	0 8	311	2.10	200 0 .	10	RD ND	1	44	1.2	2	2	57 50	.50	057	1/	39	.49	02	17	22.6	6.0/ 7.01	2.0	5 1	3.6
		54	1-4		••	14	0	042	2.04		10	ND		47	8115) 2000	٤	4	50	36.	- 1-1-1	25	21	.32	71	• 10	5 2.0	.0	2.0	י יי	2.5
L48+00N 31+25E		1 26	8	62	.6	12	6	267	2.98	5	5	ND	1	25	.7	2	2	54	.24	.043	8	40	.35	90	. 18	4 2.2	0.0	3.0	i4 5. 1	3.8
L48+00N 31+50E		1 28	22	71	.6	16	10	696	2.96	6	5	ND	1	50	§121	2	2	54	.54	.054	11	41	.53	97	. 14	5 1.8	1.0	2.0	15 1	4.2
L48+00N 31+75E		1 27	24	00	• ¥ :	10 לכ	11	594	3.29	0	2	ND	1	41	1.0	2	2	57	.45	.060	14	41	.57	11	. 16	2 2.1	1.07	2.0	6 1	2.1
148+00N 32+00E	•	1 40	12	61 1	.1	19	9	332	2.00	500 fo	6	ND	1	36	1.4 R	2	5	- 04 56	-40 30	050	14	02 47	.50	61	10	220	3.0. 2.0). c 7 c	19 I 16 1	4.0
								552	2177		-		•			-	-	50			10		.05	01		E 6.7	2.0			1.4
L48+00N 32+50E		1 31	20	59	-7	16	9	515	3.12	<u> </u>	5	ND	1	36	.9	2	2	59	.30	.070	7	42	.46	92	.17	2 1.9	5.0	2.0)5 1	3.4
148+00N 32+75E		1 30	17	62	.6	18	10	464	5.54	9	5	ND	1	- 35	.8	2	2	62	.34	.069	.9	54	.58	73	2.17	6 2.2	1.0	2.0)5 1	9.5
148+00N 33+00E		1 41	20	. 04 · I 66 ··	7	21	14	1107	3.14		5	טא תא	1	40	1.0	2	2) C 6/	.20	002	17	55	.02	72	24 1 2 2018	<u> </u>	y . 0,	2.0	15 S.S. 1 15 S.S. 1	2.0
L48+00N 33+50E		1 39	24	109	.9	21	12	1265	3.56	9	5	ND	1	53	1.5	2	2	57	.52	114	16	51	.66	113	14	2 2.6	5 .0	2.0	1 17 1	2.0
148+00N 33+75E		2 54	14	76	1	22	13	1047	3.85	8	6	ND	1	50	1.4	2	2	65	.43	.056	20	60	-62	95	17	22.7	5 .0	2.1	18	2.3
L48+00N 34+00E		3 52	16	26	.8	12	4	213	1.64	2	25	ND	1	70	3.2	2	2	40	.64	044	17	25	.14	61	.21	2 3.0	5 .0	3.0)4 1	1.3
L48+00N 34+25E	1	1 41	25	53	.4	17	7	197	4.61	9	6	ND	2	23	1.2	2	2	84	.15	,035	8	52	.36	110	.32	2 1.9	3.0	2.0	6	1.1
RE L48+00N 33+	25E	1 40	20	65	.7	20	13	1142	3.43	5	5	ND	1	41	1.4	2	2	65	.35	.047	14	54	.61	96	. 19	2 2.2	0.0	3.0)6 📋 1	1.6
L48+00N 34+50E		7 36	5 19	97 7	.8	22	12	1410	4.08	10	7	ND	1	64	1.7	2	2	80	.52	,033	7	59	- 56	100	.24	2 2.0	0	3.0)7	4.6
L48+00N 34+75E		9 44	104	253	.6	23	19	4780	4.28	15	5	ND	1	42	5.3	2	2	72	.30	.084	8	56	.50	318	.15	2 1.0	6.0	2.0	9	3.4
L48+00N 35+00E	1	1 86	548	628 19	-9	33	23	1638	5.24	21	23	ND	1	80	10.7	3	2	78	.59	124	27	64	.73	207	11	3 2.3	7 .0	2.1	1 2	4.6
L48+00N 35+25E	-	6 159	700	1257 2	-9	49	17	378	3.90	<u>18</u>	75	ND	1	130	42.1	2	2	73	.94	:117	57	97	1.24	217	.15	2 2.9	.0	2.1	4	10.0
1 L40+UUN 35+50E		5 130 1 155) 252) 350	(1088)) 720 44		25	19	2511	5.18	15	45 45	ND	1	109	5164	2	2	122	.95	-098	59	117	1.46	223	. 18	22.	0.0	2.] 7.7	ls : 1 ∖o : 4	5 0
1 L40700N 337/3E		1 127	205	r (47)) 8	-0	41	20	2003	0.21		0)	ND	2	<i>כ</i> ז	22.0	2	4	122	.40	. (37	71	103	. 74	100	• 61	2.3*1	υ.υ	J	77	
L48+00N 36+00E		8 129	98	3 436	1	35	18	1789	4.19	16	38	ND	1	103	30.9	2	2	74	.82	.123	31	90	.87	174	14	5 2.0	.0	2.0	08 🗄 1	3.6
L48+00N 36+25E	1	0 80	148	3 468 🗄	.3	31	21	1808	4.07	15	29	ND	1	93	21.4	2	2	80	.82	,137	28	79	.81	150	.11	4 2.4	2.0	1.0)9 🔅 1	2.8
STANDARD C/AU-	S 1	9 59	37	7 129	.3	70	33	1043	3.93	43	23	7	39	52	18.6	16	20	57	.47	.086	39	57	.87	176	.09	32 1.9	01 .0	6.'	15 🗇 12	. 46.6

,

SAMPLEF No Cu Pb Dat Dat <thdat< th=""> <thdat< th=""></thdat<></thdat<>				•											- 3	ana an					<u>.</u>				0.000			· · ·				-
pp x x x pp x x x pp x x x pp pp x <	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr 🗄	Cd	Sb	81	V	Ca	P	La	Cr	Mg	Ba Ti	8	AL	Na	ĸ	. W	Au*	
$ \begin{array}{c} 446 + CON & 36 + 50E \\ 446 + CON & 32 + 52 & 241 & 242 & 22 & 224 & 13 & 113 & 3.45 & 24 & 64 & 101 & 27 & 24 & 55 & 54 & 605 & 17 & 50 & 56 & 166 & 15 & 2 & 2.30 & .02 & .09 & 1 & 4.2 \\ 426 + CON & 32 + 52 & 24 & 40 & 27 & 27 & 10 & 136 & 126 & 136 & 126 & 157 & 126 & 27 & 76 & 173 & 24 & 56 & .01 & 155 & 28 & 2.46 & .62 & .09 & 1 & 2.4 \\ 426 + CON & 32 + 52 & 24 & 16 & 75 & 1.2 & 24 & 64 & .07 & 178 & 24 & 56 & .01 & 157 & 24 & 56 & .01 & 157 & 24 & 26 & .02 & .07 & .01 & 21 & .03 & .02 & .09 & 1 & 4.2 \\ 426 + CON & 52 + 52 & 51 & 51 & 77 & .01 & 78 & .01 & 78 & .01$		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	pom	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppm	*	ppm %	ppm	X	*	% '	ppm	ppb	
Lace-OM 36-50c 5 74 55 261 2.4 131 3.45 9 6 NO 1 67 150	····					10191																										
Lear-Oux 364-75E 6 92 44 302 23 29 16 16 16 15 12 2 16 15 12 2 16 15 12 2 16 15 12 2 16 15 12 2 16 15 17 15 2 16 17 15 2 16 17 16 17 16 15 17 18 2 10 11 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11 11 12 2 2 2 4 10 107 11 2 4 2 2 2 107 11 2 4 2 2 2 107 11 2 4 10 107 11 2 107 11 2 107 11 2 107 33 33<	L48+00N 36+50E	5	74	55	261	2.6	24	13	1131	3.45	9	6	ND	1	69	11.0	2	2	55	.54	085	17	50	.56	146 .15	2	2.30	.02	.09	1	4.2	
$ \begin{bmatrix} 2 & -0.0 & 37 & -0.0 & -0$	148+008 36+755	6	02	44	302	2 3	29	16	1436	4 24	×12:	5	ND	1	86	17.5	2	3	67	.76	143	24	54	-61	195 23	2	2.46	.02	.09	1	29	
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		4	95	14	77	1 5	21	Â	490	7.01	10	10:	ND	i.	67	5 7	2		60	57	047	27	50		100 24	2	3 03	02	20		3 0	
$ \begin{array}{c} 47400 \\ 17700 \\ 17700 \\ 22+50 \\ 3 \\ 19700 \\ 22+50 \\ 3 \\ 19700 \\ 22+50 \\ 3 \\ 19700 \\ 22+50 \\ 3 \\ 19700 \\ 22+50 \\ 19700 \\ 22+50 \\ 19700 \\ 22+50 \\ 19700 \\ 22+50 \\ 10700 \\ 2000 \\ 10700 \\ 2000 \\ 10700 \\ 2000 \\ 10700 \\ 2000 \\ 10700 \\ 10700 \\ 2000 \\ 10700 \\ 2000 \\ 10700 \\ 2000 \\ 10700 \\ 2000 \\ 10700 \\ 2000 \\ 1000 \\ 10700 \\ 2000 \\ 10700 \\ 2000 \\ 1000 \\ 10700 \\ 2000 \\ 1$	L40+00N 37+00E	0	00	10	15	1.1.1.2.°	21	°	400	2.01	() 7	10	NO	1	27	و د و		*		.)(440	2.3	472	.40	57 .4	2	2.03	.02	.00	2	3.9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L47+00N 22+00E	2	21	10	50	-4		4	285	3.23	<u>?</u>	2	ND	1	23		2		00	. 14	.110	11	17	.22	2/ 311	2	2.42	.02	.07	. 1	4.4	
$ \begin{array}{c} 47+00 & 22+50 \\ 47+00 & 22+75 \\ 47+00 & 22+75 \\ 47+00 & 22+75 \\ 47+00 & 22+75 \\ 47+00 & 22+75 \\ 47+00 & 22+75 \\ 47+00 & 22+75 \\ 47+00 & 22+05 \\ 47+00 & 22+75 \\ 47+00 & 22+05 \\ 47+00 $	L47+00N 22+25E	1	19	17	78	4	13	6	1147	3.08	4	5	ND	1	23	.3	2	2	50	.19	.071	10	21	.38	76 213	2	3.08	.01	.11	1	1.3	
$ \begin{array}{c} (\lambda_{7}-00) & 22+50c \\ \lambda_{7}-00) & 22+50c \\ \lambda_{7}-00) & 22+5c \\ \lambda_{7}-00) & 22+$. 1949					20400) 1														1,600,0007 30,00,6097							
$ \begin{array}{c} 1.7 + 0.00 \\ 1.7 + 0.00 \\ 2.7 + 0.00$	L47+00N 22+50E	3	18	28	66	.2	9	3	348	3.01	6	5	ND	1	17	4	2	4	61	.09	.074	11	18	.28	83 .22	2	2.62	.02	.07	- 1	1.2	
127-000 23-00 1 22 2 2 5 5 7 14 2 2.4 00 3 5.8 127-000 23-52E 3 3 35 5 7 14 2 2.4 0.0 3 5.8 127-000 23-55E 6 34 28 71 4 18 6 20 3.4 19 5 ND 2 18 4 2 3 58 11 356 20 24 .48 102 32.46 .02 .08 1 1 2.8 1 1 2.59 .6 5 ND 1 10 2.2 2 60 .07 702 16 2.2 3.97 .03 .11 1 2.8 .08 .11 10 13 .02 .06 1 .08 .11 10 .12 2.8 .01 16 12 2.4 .02 .01 13 .02 .02 .08 1 .02 .12 .13 .12 .13	147+00N 22+75E	ँ	52	17	40	· 7	11	4	140	1 86	14	5	ND	1	14	7	2	2	32	.11	107	28	13	.17	57 11	2	4.76	.02	. 05	1	6.0	
12.7000 23.925 3 3 13 13 13 14 19 5 N0 1 16 1.6 2 2 33 .11 13 25 2 3 .11 13 15 .26 75 .06 3 2.3 .00 .06 3 2.3 .01 .08 3 5.3 .11 13 .15 .26 75 .06 3 2.3 .00 .08 3 5.3 .11 13 .15 .28 .11 13 .15 .28 .11 13 .15 .16 1.6 2 2 2.4 .16 .10 .16 .10<	1/7/000 22:100	1	20	17	71	- - -	10	7	337	3 /3	11	5	ND	- i	27	•	2	2	50	17	107	18	27	55	76 14	2	2 64	02	00	. .	5 A	1
$ \begin{array}{c} L_{7} 0001 \ 23-526 \\ L_{7} 0001 \ 23-56 \\ L_{7} 0001 \ 23-56$	147+00N 23+00E	4	27	10			17	, ,	227	3.43					2.5		5	5	74	17	AED.	10	46	34	76 04	7	2 / 7	02		4	5.0	
$ \begin{bmatrix} 27 + 000 \\ 23 + 50E \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\$	L47+00N 23+25E	د	- 33	45	29	- 4	15	2	225	1.85	0	2	NU	1	10	1.0	4	2	20	- 13		10	12	.20	100 00	2	2.43	.02	.00	1	2.2	
$ \begin{array}{c} 147+000 & 23+75e \\ 147+000 & 24+00e \\ 147+13 & 64 & 24 & 17 & 23 & 64 & 17 & 22 & 37 & 9 & 5 & N0 & 1 & 12 & 2 & 2 & 2 & 44 & .14 & 100 & 18 & 17 & .33 & 62 & 10 & 3 & 2.46 & .02 & .08 & 1 & 1.7 \\ 157+000 & 24+50e \\ 25 & 25 & 25 & 31 & 89 & 3 & 13 & 6 & 728 & 2.7 & 12 & 5 & N0 & 1 & 18 & .2 & 2 & 2 & 60 & .07 & 072 & 16 & 20 & .31 & 49 & 16 & 2 & 3.31 & .02 & .06 & 1 & 3.4 \\ 147+000 & 24+50e \\ 22 & 20 & 28 & 75 & 3 & 14 & 7 & 483 & 5.4 & 8 & 5 & N0 & 1 & 22 & .7 & 2 & 2 & 61 & .15 & 161 & 12 & 23 & .45 & 63 & 11 & 2 & 2.48 & .02 & .09 & 1 & 3.0 \\ 147+000 & 24+50e \\ 12 & 20 & 28 & 75 & 3 & 14 & 7 & 483 & 5.4 & 8 & 5 & N0 & 1 & 22 & .7 & 2 & 2 & 61 & .15 & 161 & 12 & 23 & .45 & 63 & .11 & 2 & 2.48 & .02 & .06 & 1 & 9.5 \\ 147+000 & 25+00e \\ 147+000 & 25+50e \\ 62 & 24 & 55 & 89 & .3 & 15 & 15 & 2145 & 2.92 & 10 & 5 & N0 & 1 & 36 & .9 & 2 & 2 & 25 & .45 & 107 & 18 & 25 & .52 & .79 & 10 & 2 & 2.44 & .02 & .06 & 1 & .9 \\ 147+000 & 25+50e \\ 62 & 24 & 55 & 89 & .3 & 13 & .5 & 871 & 3.76 & .6 & 5 & ND & 1 & 36 & .9 & 2 & 2 & .25 & .45 & 107 & 18 & 25 & .52 & .79 & 10 & 2 & 2.44 & .02 & .06 & 1 & 2.6 \\ 147+000 & 25+50e \\ 62 & 20 & 78 & .4 & 16 & 12135 & 3.29 & 7 & 9 & ND & 1 & .45 & .5 & 2 & 26 & .45 & .089 & 19 & 29 & .65 & .72 & 11 & .42 & .63 & .02 & .06 & 1 & 2.6 \\ 147+000 & 25+50e \\ 147+000 & 25+50e \\ 42 & 41 & 0 & 73 & .2 & 15 & 11 & .688 & 3.30 & 7 & 10 & ND & 1 & .42 & .3 & .2 & .44 & .05 & .18 & 31 & .65 & .58 & 11 & .26 & .46 & .26 & .26 & .12 & .41 & .42 & .41 & .26 & .20 & .26 & 1 & 2.2 \\ 147+000 & 25+50e \\ 42 & 41 & 0 & 73 & .2 & 15 & 118 & .588 & .3.0 & 7 & 10 & ND & 1 & .42 & .3 & .2 & .2 & .46 & .43 & .66 & .57 & .14 & .26 & .44 & .21 & .14 & .26 & .44 & .21 & .14 & .26 & .26 & .26 & .14 & .26 & .26 & .26 & .26 & .17 & .75 & .22 & .27 & .26 & .18 & .31 & .65 & .58 & .24 & .2$	147+00N 23+50E	6	34	28	71	-4	18	6	220	3.14	19	- 5	ND	2	18	-4	2	3	58	.11	. 365	20	24	.48	102 .21	2	5.97	.05	.11	1	2.8	
$ \begin{array}{c} L_{7+00N} Z_{5}-Z_{5}E & 6 & 21 & 40 & 54 & 6 & 13 & 4 & 172 & 237 & 9 & 5 & ND & 1 & 120 & 6 & 2 & 2 & 44 & .14 & 100 & 18 & 17 & .33 & 62 & .10 & 3 & 2.46 & .02 & .08 & 1 & 1.7 \\ L_{7+00N} Z_{4+}OSE & 2 & 25 & 31 & 49 & .3 & 13 & 6 & 728 & 7.4 & 12 & 5 & ND & 1 & 18 & .2 & 2 & 2 & 2 & 2 & 2 & 11 & 20 & .6 & 1 & 3.8 \\ L_{7+00N} Z_{4+}OSE & 2 & 20 & 28 & 75 & 3 & 14 & 7 & .481 & 3.41 & 18 & 5 & ND & 1 & 120 & .6 & 2 & 2 & 2 & 2 & 11 & 20 & .6 & 1 & 3.6 \\ L_{7+00N} Z_{4+}OSE & 2 & 20 & 28 & 75 & 3 & 14 & 7 & .481 & 3.41 & 8 & 5 & ND & 1 & 30 & 9 & 2 & 2 & 2 & 63 & .13 & 12 & 23 & .45 & 63 & .11 & 2.288 & .02 & .06 & 1 & .8. \\ L_{7+00N} Z_{4+}OSE & 2 & 20 & 24 & 104 & .3 & 13 & 5 & 871 & 3.76 & 6 & 5 & ND & 1 & 30 & 9 & 2 & 2 & 2 & 43 & .30 & .118 & 9 & 16 & .34 & 100 & .13 & 2 & .152 & .02 & .06 & 1 & .9. \\ L_{7+00N} Z_{5+OSE} & 4 & 25 & 93 & .15 & 12145 & 2.92 & .10 & 5 & ND & 1 & 30 & 9 & 2 & 2 & 2 & 45 & .107 & 10 & .73 & .462 & .24 & .24 & .24 & .02 & .06 & 1 & .9. \\ L_{7+00N} Z_{5+OSE} & 6 & 21 & 14 & 90 & 3 & .14 & .11 & 1082 & .77 & 8 & 5 & ND & 1 & 30 & 9 & 2 & 2 & .24 & .107 & .16 & .18 & .57 & .27 & .60 & .76 & .75 & .21 & .24 & .02 & .06 & 1 & .2.6 \\ L_{7+00N} Z_{5+OSE} & 6 & 21 & .14 & .90 & .3 & .14 & .11 & .1082 & .77 & 8 & .5 & ND & 1 & .36 & .6 & .22 & .26 & .33 & .073 & .16 & .52 & .93 & .19 & .21 & .90 & .07 & 1 & .2.2 \\ L_{7+00N} Z_{5+OSE} & 6 & 27 & .11 & .93 & .4 & .17 & .13 & .46 & .6 & .5 & ND & .1 & .45 & .5 & .2 & .2 & .46 & .30 & .58 & .13 & .24 & .90 & .07 & 1 & .2.2 \\ L_{7+00N} Z_{5+OSE} & 6 & 27 & .11 & .93 & .4 & .17 & .13 & .46 & .6 & .5 & ND & .1 & .45 & .5 & .2 & .2 & .64 & .35 & .368 & .94 & .23 & .26.9 & .02 & .07 & 1 & .2.2 \\ L_{7+00N} Z_{5+OSE} & 6 & .27 & .10 & .73 & .46 & .40 & .6 & .5 & ND & .1 & .45 & .20 & .26 & .10 & .31 & .45 & .58 & .13 & .24 & .24 & .40 & .26 & .41 & .27 & .26 & .41 & .27 & .26 & .41 & .27 & .26 & .41 & .27 & .26 & .41 & .27 & .26 & .41 & .27 & .26 & .41 & .27 & .26 & .41 & .27 & .26 & .41 & .27 & .26 & .41 & .27 & .26 & .41 & .27 & .41 & .22$						in Herself.																										-
$ \begin{array}{c} 127+000 \\ 127+000 $	L47+00N 23+75E	6	21	40	54	.6	13	4	172	2.37	9	5	ND	1	20	.6	2	2	- 44	.14	100	18	17	.33	62 .10	3	2.46	.02	.08	1	1.7	
$\begin{array}{c} 17+000 & 24+25E \\ 147+000 & 24+25E \\ 120 & 36 & 81 & 1 \\ 120 & 16 & 17 & 768 & 1.4 \\ 147+000 & 24+75E \\ 120 & 36 & 81 & 1 \\ 120 & 36 & 81 & 1 \\ 111 & 4 & 278 & 2.49 & 8 \\ 220 & 36 & 81 & 1 \\ 111 & 4 & 278 & 2.49 & 8 \\ 220 & 36 & 81 & 1 \\ 111 & 4 & 278 & 2.49 & 8 \\ 220 & 36 & 81 & 1 \\ 111 & 4 & 278 & 2.49 & 8 \\ 220 & 24 & 104 & .3 \\ 13 & 5 & 871 & 3.76 & 6 \\ 6 & 24 & 55 & 89 & 3 \\ 15 & 12 & 215 & 2.92 & 10 \\ 147+000 & 25+25E \\ 6 & 24 & 55 & 89 & 3 \\ 15 & 12 & 215 & 2.92 & 10 \\ 147+000 & 25+25E \\ 6 & 24 & 55 & 89 & 3 \\ 11 & 102 & 3.77 & 8 & 5 \\ 11 & 102 & 3.77 & 8 & 5 \\ 11 & 102 & 3.77 & 8 & 5 \\ 120 & 33 & 411 & 1028 & 2.77 \\ 13 & 2 & 152 & 276 & 10 \\ 147+000 & 25+25E \\ 6 & 24 & 51 & 89 & 3.1 \\ 147+000 & 25+25E \\ 6 & 27 & 11 & 9.3 & 4 \\ 11 & 102 & 3.77 & 8 & 5 \\ 12 & 113 & 2.48 & 0.2 & 0.7 \\ 11 & 102 & 3.77 & 8 & 5 \\ 12 & 113 & 2.48 & 0.2 & 0.7 \\ 13 & 2 & 15 & 2 & 244 & 0.2 & 0.6 \\ 12 & 4 & 20 & 3 & 15 & 12 & 215 \\ 127+000 & 25+25E \\ 6 & 27 & 11 & 9.3 & 4 & 17 \\ 147+000 & 25+25E \\ 6 & 27 & 11 & 9.3 & 4 & 17 \\ 147+000 & 25+25E \\ 6 & 27 & 11 & 9.3 & 4 & 17 \\ 147+000 & 25+75E \\ 1 & 20 & 8 & 1.37 & 46 & 4.66 \\ 6 & 5 & ND & 1 & 42 & 3 \\ 147+000 & 25+75E \\ 4 & 24 & 10 & 73 & .2 & 15 \\ 11 & 858 & 3.30 & 7 & 10 \\ 147+000 & 25+75E \\ 4 & 24 & 10 & 73 & .2 & 15 \\ 11 & 858 & 3.30 & 7 & 10 \\ 147+000 & 25+75E \\ 4 & 24 & 10 & 73 & .2 & 15 \\ 147+000 & 25+75E \\ 4 & 24 & 10 & 73 & .2 & 15 \\ 147+000 & 25+75E \\ 4 & 24 & 10 & 73 & .2 & 15 \\ 147+000 & 25+75E \\ 4 & 24 & 10 & 73 & .2 & 15 \\ 147+000 & 27+75E \\ 2 & 27 & 14 & 64 & 4 & 16 & 7 & 310 & 3.38 & 6 & 5 \\ ND & 1 & 52 & 2 & 2 & 65 & .33 & 103 & 18 & 16 & 55 & 13 \\ 147+000 & 27+75E \\ 2 & 27 & 14 & 64 & 4 & 16 & 7 & 310 & 3.38 & 6 & 5 \\ ND & 1 & 36 & .2 & 2 & 2 & 63 & .337 & 088 & 10 & 35 & .47 & 85 & .24 & 2 & 1.44 & .02 & .06 & 1 & 7.7 \\ 147+000 & 27+75E \\ 2 & 27 & 14 & 62 & 2.44 & .41 & 16 & 7 & 310 & .38 & .5 & 2 & 2 & .51 & .373 & .66 & 6 & .47 & .22 & .20 & .06 & 1 & .2.47 \\ 147+000 & 27+75E \\ 2 & 24 & 52 & 25 & .47 & .18 & .11 & .1168 & .24 & .7 & .7 & .1 & .22.48 & .02$	147+00N 24+00E	4	17	13	64	2	11	5	259	3.60	6	5	ND	1	18	2	2	2	60	.07	.072	16	20	.31	49 16	2	3.31	.02	.06	1	3.8	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/7+001 2/+255		25	31	80	8년7월 -	13	ž	728	2 7/	12	5	ND		16	1.5	2	5	52	11	204	12	18	36	81 00	2	2 46	02	no	1	3 0	
$ \begin{bmatrix} 2 & 20 & 26 & 17 & 3 & 14 & 7 & 48 & 3 & 11 & 4 & 27 & 27 & 48 & 3 & 11 & 4 & 27 & 27 & 48 & 3 & 11 & 4 & 27 & 27 & 48 & 3 & 11 & 4 & 27 & 27 & 48 & 3 & 11 & 4 & 27 & 27 & 48 & 3 & 11 & 5 & 10 & 11 & 2 & 15 & 10 & 10 & 11 & 2 & 15 & 20 & 2 & 08 & 1 & 11 & 10 & 11 & 27 & 12 & 15 & 10 & 10 & 17 & 34 & 162 & 24 & 2 & 268 & 10 & 13 & 2 & 15 & 10 & 20 & 1 & 19 & 10 & 13 & 28 & 10 & 13 & 28 & 10 & 13 & 28 & 10 & 13 & 28 & 10 & 13 & 28 & 10 & 13 & 28 & 10 & 13 & 28 & 10 & 13 & 28 & 10 & 13 & 28 & 10 & 13 & 28 & 10 & 13 & 28 & 10 & 11 & 10 & 10 & 13 & 28 & 10 & 11 & 10 & 10 & 13 & 28 & 10 & 11 & 10 & 10 & 13 & 28 & 10 & 11 & 10 & 10 & 13 & 28 & 10 & 11 & 10 & 10 & 13 & 28 & 10 & 11 & 10 & 10 & 13 & 28 & 10 & 11 & 10 & 10 & 13 & 28 & 10 & 11 & 10 & 10 & 13 & 28 & 10 & 11 & 10 & 10 & 13 & 28 & 10 & 11 & 10 & 10 & 11 & 10 & 10 & 1$	147+00N 24+23E	2	20	21			1.1	2	120	2.14	16	2					5	5	24	40	37230	12	72		47 14	5	2.40	.02	07		0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L47+00N 24+50E	2	20	28	10		14		481	5.41	Ö	2	NU		22		4	2	01	- 12	NDI	12	23	- 42	05 .11	4	2.00	.02	.07	-	0.2	
$ \begin{array}{c} L47+00n \ 25+00e \\ L47+00n \ 25+75e \\ 6 \ 24 \ 104 \ .3 \ 13 \ 5 \ 871 \ 3.76 \ 6 \ 5 \ N0 \ 1 \ 29 \ .4 \ 2 \ 2 \ 66 \ .25 \ .103 \ 10 \ 17 \ .34 \ 162 \ .24 \ 2 \ 1.63 \ .02 \ .09 \ 1 \ 1.9 \\ L47+00n \ 25+75e \\ 6 \ 21 \ 14 \ 90 \ .3 \ 14 \ 11 \ 1082 \ 3.77 \ 8 \ 5 \ ND \ 1 \ 39 \ .9 \ 2 \ 2 \ 52 \ .45 \ .107 \ 18 \ 25 \ .52 \ .79 \ 10 \ 2 \ 2.48 \ .02 \ .07 \ 1 \ 6.0 \\ L47+00n \ 25+75e \\ 6 \ 21 \ 14 \ 90 \ .3 \ 14 \ 11 \ 1082 \ .377 \ 8 \ 5 \ ND \ 1 \ 36 \ .6 \ 2 \ 2 \ .68 \ .37 \ .072 \ 15 \ 27 \ .69 \ 76 \ .15 \ 2 \ .44 \ .02 \ .06 \ 1 \ .76 \\ L47+00n \ 25+75e \\ 6 \ 28 \ 20 \ 78 \ .4 \ 16 \ 12 \ 1135 \ .329 \ 7 \ 9 \ ND \ 1 \ .45 \ .5 \ 2 \ 2 \ .64 \ .52 \ .099 \ 19 \ 29 \ .65 \ .72 \ .11 \ 4 \ 2.65 \ .02 \ .06 \ 1 \ .26 \\ L47+00n \ 26+75e \\ L47+00n \ 26+75e \\ 4 \ 26 \ 27 \ 11 \ 93 \ .4 \ 17 \ 13 \ .76 \ .66 \ 5 \ ND \ 1 \ .45 \ .5 \ 2 \ 2 \ .64 \ .52 \ .099 \ 19 \ 29 \ .65 \ .72 \ .11 \ 4 \ .2.65 \ .02 \ .06 \ 1 \ .26 \\ .127+00n \ 26+75e \\ L47+00n \ 26+75e \\ 2 \ 29 \ .18 \ 24 \ .41 \ .11 \ .20 \ .20 \ .66 \ 1 \ .26 \ .20 \ .66 \ .26 $	L47+00N 24+75E	1	20	- 36	81	• •1	11	- 4	278	2.49	8	- 5	ND	1	30	.9	2	2	43	.30	,118	9	16	. 54	100 .15	2	1.52	.02	.08	3	9.5	
$ \begin{array}{c} L47+000 \ 25+00E \\ L47+000 \ 25+25E \\ L47+0$																														1 		
$ \begin{array}{c} 127 + 00u & 25 + 25e \\ 147 + 00u & 25 + 75e \\ 15 & 23 & 32 & 84 \\ 147 + 00u & 25 + 75e \\ 15 & 23 & 32 & 84 \\ 15 & 20 & 78 \\ 16 & 11 & 1082 & 3.77 \\ 18 & 11 & 1082 & 3.77 \\ 18 & 5 & ND \\ 1 & 36 & 6 \\ 18 & 5 \\ 100 & 26 + 75e \\ 18 & 20 & 78 \\ 14 & 10 & 11 & 1082 & 3.77 \\ 18 & 25 & 10 & 10 \\ 147 + 00u & 26 + 75e \\ 24 & 20 & 78 \\ 14 & 16 & 12 \\ 1135 & 3.29 \\ 17 & 10 & 10 \\ 147 + 00u & 26 + 75e \\ 147 + 00u & 26 + 75e \\ 18 & 31 & 1082 & 3.77 \\ 18 & 20 & 78 \\ 14 & 16 & 12 \\ 1135 & 3.29 \\ 17 & 10 & 10 \\ 14 & 10 & 103 \\ 18 & 31 & 38 \\ 16 & 39 \\ 10 & 10 & 10 \\ 14 & 26 & 30 \\ 16 & 10 & 10 \\ 18 & 31 & 38 \\ 16 & 58 \\ 18 & 31 & 56 \\ 18 & 31 & 56 \\ 18 & 31 & 56 \\ 18 & 51 & 16 \\ 18 & 58 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 18 & 51 & 25 \\ 28 & 20 \\ 18 & 51 & 25 \\ 28 & 20 \\ 18 & 51 & 25 \\ 28 & 20 \\ 18 & 51 & 25 \\ 28 & 20 \\ 18 & 51 & 25 \\ 28 & 20 \\ 18 & 51 & 25 \\ 28 & 20 \\ 18 & 51 & 22 \\ 28 & 51 \\ 18 & 51 & 25 \\ 28 & 20 \\ 18 & 51 & 22 \\ 28 & 51 \\ 18 & 51 & 25 \\ 28 & 20 \\ 18 & 51 & 22 \\ 28 & 51 \\ 18 & 51 & 25 \\ 28 & 20 \\ 18 & 51 & 22 \\ 28 & 51 \\ 18 & 51 & 28 \\ 18 & 51 & 22 \\ 28 & 51 \\ 18 & 51 & 28 \\ 10 & 35 \\ 47 & 85 \\ 24 & 21 \\ 18 & 41 & 26 \\ 83 & 87 \\ 12 & 22 \\ 28 \\ 18 & 30 \\ 13 & 5 \\ 28 & 27 \\ 14 & 22 \\ 28 \\ 18 & 30 \\ 13 & 5 \\ 28 & 27 \\ 11 & 42 \\ 28 \\ 10 & 35 \\ 47 & 85 \\ 24 & 21 \\ 18 & 41 & 26 \\ 28 & 10 \\ 38 & 10 \\ 38 & 10 \\ 18 & 41 \\ 57 & 64 \\ 28 & 13 \\ 18 & 41 \\ 57 & 64 \\ 28 & 13 \\ 18 & 41 \\ 28 \\ 28 & 20 \\ 15 & 50 \\ 18 & 41 \\ 28 & 57 \\ 28 & 28 \\ 10 & 35 \\ 48 & 39 \\ 28 & 20 \\ 15 & 30 \\ 18 & 31 \\ 13 & 42 \\ 28 & 10 \\ 18 & 41 \\ 28 & 57 \\ 48 & 30 \\ 18 & 31 \\ 13 & 42 \\ 28 & 57 \\ 18 & 41 \\ 48 & 10 \\ 18 & 41 \\ 48 & 10 \\ 18 & 41 \\ 48 & 10 \\ 18 & 41 \\ 48 & 10 \\ 18 & 41 \\ 48 & 40 \\ 18 & 11 \\ 18 & 41 \\ 48 & 40 \\ 18 & 11 \\ 18 & 41 \\ 48 & 40 \\ 18 & 11 \\ 18 & 41 \\ 48 & 40 \\ 18 & 11 \\ 18 & 41 \\ 48 & 40 \\ 18 & 11 \\ 18 & 41 \\ 48 & 40 \\$	L47+00N 25+00E	2	20	24	104	.3	13	5	871	3.76	6	5	ND	1	29	.4	2	2	66	.25	.103	10	17	.34	162 .24	2	1.63	.02	.09	1	1.9	
$ \begin{array}{c} 17+000 \ 25+50e \\ 147+000 \ 25+75e \\ 5 \ 23 \ 32 \ 84 \ .3 \ 14 \ 11 \ 1082 \ 3.77 \ 8 \ 5 \ ND \ 1 \ 36 \ .6 \ 2 \ 2 \ 68 \ .37 \ 072 \ 15 \ 27 \ .69 \ .76 \ .15 \ 2 \ 2.41 \ .02 \ .08 \ 1 \ 7.6 \\ 147+000 \ 25+75e \\ 5 \ 23 \ 32 \ .84 \ .3 \ 13 \ 8 \ .699 \ 3.40 \ 6 \ 5 \ ND \ 1 \ 34 \ .9 \ 2 \ 3 \ .68 \ .33 \ .073 \ 13 \ 26 \ .52 \ 93 \ .19 \ 3 \ .219 \ .02 \ .06 \ 1 \ 2.6 \\ 147+000 \ 26+50e \\ 6 \ 28 \ 20 \ 78 \ .4 \ 16 \ 12 \ 1135 \ 3.29 \ 7 \ 9 \ ND \ 1 \ 45 \ .5 \ 2 \ 2 \ .64 \ .52 \ .089 \ 19 \ .99 \ .9 \ .9 \ .9 \ .65 \ .7 \ .11 \ 42 \ .63 \ .02 \ .06 \ 1 \ 2.6 \\ 147+000 \ 26+50e \\ 4 \ 24 \ 10 \ .73 \ .2 \ .25 \ .02 \ .06 \ 1 \ .2.6 \\ 147+000 \ 26+50e \\ 4 \ 24 \ 10 \ .73 \ .2 \ .2 \ .2 \ .2 \ .2 \ .2 \ .2 \ .$	167+00N 25+25E	<u>مَ</u> ا	24	55	AO	े. र	15	12	2145	2 02	10	5	มก	1	30	0	2	2	52	-45	107	18	25	.52	79 10	2	2.48	. 02	.07	1	6.0	
$ \begin{array}{c} 17400 \\ 12700 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 2575 \\ 12700 \\ 12700 \\ 2575 \\ 12700 \\ 12700 \\ 2575 \\ 12700 \\ 12700 \\ 2575 \\ 12700 \\ 1200 \\ 12700 \\ 1200$	1/7+001 25+50E		21	1/	0,	7	16	11	1082	3 77	g	ś	ND	1	36	886- 2 8	2	2	48	37	072	15	27	60	76 15	2	2 41	02	08		7 6	- {
$ \begin{array}{c} L47+000 \\ L47+000 $	147400N 23430E		21	70	70	्ः दिः	47		1002	3.11			10		7/	• • • • • • • • • • • • • • • • • • • •	5		47	77	077	17	24	507	07 10	7	2 10	02	- 06	- i	2 4	
L47+00N 26+00E 6 28 20 78 .4 16 12 1135 5.29 7 9 ND 1 45 15 2 2 64 .52 108 19 29 .65 72 .11 4 2.65 .02 .06 1 2.2 L47+00N 26+25E 6 27 11 93 .4 17 13 764 .06 6 5 ND 2 40 .42 3 79 .41 .051 14 36 .80 64 .23 32 .66 .02 .06 1 7.7 1 .22 15 11 858 3.07 .08 19 10 71 0 ND 1 42 .33 2 2 64 .43 .061 17 35 .68 79 14 42 10 .06 1 4.2 2 65 .01 15 14 14 2 .66 .02 .06 1 2.4 14 14	L47+00N 25+75E	2	23	32	84	1994 - 1 99	15	8	803	5.40	ୁ	2	NU	1	34	ં્ર્ય્ય	4	2	0.0		.013	13	20	.52	22 .12	ڊ	2.19	.02	.00	-	2.0	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	L47+00N 26+00E	6	28	20	78	•4	16	12	1135	5.29	- See Le	9	ND	1	45		2	2	64	.52	.089	- 19	29	.65	72 .11	4	2.63	.02	.06	1	2.2	ł
$ \begin{array}{c} L47+000 \ 26+25E \\ L47+000 \ 26+50E \\ L47+000 \ 26+75E \\ 3 \ 29 \ 18 \ 66 \ .3 \ 18 \ 11 \ 551 \ 3.37 \ 4 \ 6 \ ND \ 1 \ 42 \ .3 \ 2 \ 2 \ 64 \ .43 \ 065 \ 18 \ 31 \ .65 \ 58 \ .13 \ 2 \ 2.54 \ .02 \ .06 \ 1 \ 4.4 \\ L47+000 \ 26+75E \\ 3 \ 29 \ 18 \ 66 \ .3 \ 18 \ 11 \ 551 \ 3.37 \ 4 \ 6 \ ND \ 1 \ 52 \ .6 \ 2 \ 2 \ 64 \ .58 \ 060 \ 17 \ 35 \ .68 \ 79 \ .14 \ 4 \ 2.11 \ .02 \ .06 \ 1 \ 4.4 \\ L47+00N \ 27+75E \\ 2 \ 27 \ 14 \ 64 \ .4 \ 10 \ 7 \ 310 \ 3.38 \ 6 \ 5 \ ND \ 1 \ 52 \ .2 \ 2 \ 2 \ 64 \ .58 \ 060 \ 17 \ 35 \ .68 \ 79 \ .14 \ 4 \ 2.11 \ .02 \ .06 \ 1 \ 4.4 \\ L47+00N \ 27+75E \\ 2 \ 27 \ 14 \ 64 \ .4 \ 16 \ 7 \ 310 \ 3.38 \ 6 \ 5 \ ND \ 1 \ 36 \ .4 \ 2 \ 2 \ 65 \ .10 \ .105 \ 18 \ 43 \ .87 \ 87 \ .12 \ 62 \ .47 \ .02 \ .06 \ 1 \ 3.4 \\ L47+00N \ 27+75E \\ 2 \ 43 \ 43 \ 92 \ .27 \ 14 \ 64 \ .4 \ 16 \ 7 \ 310 \ 3.38 \ 6 \ 5 \ ND \ 1 \ 36 \ .4 \ 2 \ 2 \ 63 \ .37 \ .088 \ 10 \ 35 \ .47 \ 85 \ .24 \ 2 \ 1.84 \ .02 \ .06 \ 1 \ 3.4 \\ L47+00N \ 27+75E \\ 2 \ 43 \ 43 \ 92 \ .26 \ 44 \ 1519 \ 3.4 \ 5 \ 5 \ ND \ 1 \ 36 \ .4 \ 2 \ 2 \ 65 \ .35 \ .138 \ 10 \ 35 \ .47 \ 85 \ .24 \ 2 \ 1.84 \ .02 \ .06 \ 1 \ 3.4 \\ L47+00N \ 27+75E \\ 2 \ 43 \ 43 \ 92 \ .6 \ 24 \ 14 \ 1519 \ 3.4 \ 5 \ 5 \ ND \ 1 \ 36 \ .4 \ 2 \ 2 \ 65 \ .35 \ .138 \ 16 \ 35 \ .47 \ 85 \ .24 \ 2 \ .48 \ .02 \ .06 \ 1 \ 3.4 \\ L47+00N \ 28+75E \\ 5 \ 38 \ 20 \ 73 \ .6 \ 27 \ 14 \ 22 \ .48 \ .02 \ .06 \ 1 \ 3.4 \\ L47+00N \ 28+75E \\ 5 \ 38 \ 20 \ 73 \ .6 \ 27 \ 14 \ 22 \ .48 \ .02 \ .06 \ 1 \ 3.4 \\ .47+00N \ 28+75E \ 5 \ 38 \ .03 \ .0 \ 35 \ .47 \ .0 \ .0 \ .0 \ .0 \ .0 \ .0 \ .0 \ .$																36656																
$ \begin{array}{c} L47+000 \ 264+50E \\ L47+000 \ 27+75E \\ L47+000 \ 28+75E \\ L47+$	L47+00N 26+25E	6	27	11	- 93	.4	17	13	746	4.06	. 6	5	ND	2	40	.4	2	- 3	-79	.41	.051	14	- 36	.80	64 .23	3	2.69	.02	.07	- 1	2.2	
L47+00N $22+75E$ 3 29 18 66 .3 18 11 551 3.37 4 6 ND 1 52 .6 2 2 64 .58 .060 17 35 .68 79 .14 4 2.11 .02 .06 1 4.4 L47+00N 27+02E 2 47 34 104 .4 21 15 1284 3.43 4 11 ND 1 73 1.0 2 2 64 105 18 43 .87 87 .12 6 2.47 .02 .06 1 2.2 L47+00N 27+25E 3 38 13 75 .4 19 16 985 3.5 ND 1 36 .4 2 2 63 .37 .088 10 35 .47 85 .24 2 .13 .17 2 .47 .2 .66 .37 .08 10 35 .47 .20 .07 1 .3.7 <t< td=""><td>147+00N 26+50E</td><td>4</td><td>24</td><td>10</td><td>73</td><td>2</td><td>15</td><td>11</td><td>858</td><td>3.30</td><td>7</td><td>10</td><td>ND</td><td>1</td><td>42</td><td>.3</td><td>2</td><td>2</td><td>64</td><td>.43</td><td>063</td><td>18</td><td>31</td><td>.65</td><td>58 13</td><td>2</td><td>2.54</td><td>.02</td><td>.06</td><td>1</td><td>7.7</td><td>Í</td></t<>	147+00N 26+50E	4	24	10	73	2	15	11	858	3.30	7	10	ND	1	42	.3	2	2	64	.43	063	18	31	.65	58 13	2	2.54	.02	.06	1	7.7	Í
$\begin{array}{c} L47+00N \ 27+00E \\ L47+00N \ 27+25E \\ L47+00N \ 27+25E \\ L47+00N \ 27+25E \\ L47+00N \ 27+25E \\ 2 \ 27 \ 14 \ 64 \ .4 \ 16 \ 7 \ 310 \ 3.38 \ 6 \ 5 \ ND \ 1 \ 36 \ .4 \ 2 \ 2 \ 63 \ .37 \ .088 \ 10 \ 35 \ .47 \ 85 \ .24 \ 2 \ .48 \ .02 \ .06 \ 1 \ 2.2 \\ L47+00N \ 27+5E \\ 2 \ 43 \ 43 \ 92 \ .6 \ 24 \ 14 \ 1519 \ 3.38 \ 6 \ 5 \ ND \ 1 \ 36 \ .4 \ 2 \ 2 \ 63 \ .37 \ .088 \ 10 \ 35 \ .47 \ 85 \ .24 \ 2 \ 1.84 \ .02 \ .06 \ 1 \ 3.4 \\ L47+00N \ 27+5E \\ 2 \ 43 \ 43 \ 92 \ .6 \ 24 \ 14 \ 1519 \ 3.34 \ 5 \ 5 \ ND \ 1 \ 36 \ .4 \ 2 \ 2 \ 63 \ .37 \ .088 \ 10 \ 35 \ .47 \ 85 \ .24 \ 2 \ 1.84 \ .02 \ .06 \ 1 \ 3.4 \\ L47+00N \ 27+75E \\ 2 \ 43 \ 43 \ 92 \ .6 \ 24 \ 14 \ 1519 \ 3.34 \ 5 \ 5 \ ND \ 1 \ 36 \ 1.2 \ 2 \ 2 \ 65 \ .35 \ 138 \ 16 \ 39 \ .62 \ 106 \ .21 \ 2 \ 2.47 \ .02 \ .06 \ 1 \ 3.4 \\ L47+00N \ 28+0E \\ 5 \ 29 \ 19 \ 63 \ .5 \ 19 \ 9 \ .498 \ 3.95 \ 3 \ 5 \ ND \ 1 \ 36 \ 1.2 \ 2 \ 2 \ 65 \ .35 \ 138 \ 16 \ 39 \ .62 \ 106 \ .21 \ 2 \ 2.47 \ .02 \ .06 \ 1 \ 3.7 \\ L47+00N \ 28+0E \\ 5 \ 38 \ 20 \ .7 \ 2 \ .6 \ 21 \ 14 \ 1266 \ 3.68 \ 6 \ 5 \ ND \ 1 \ 38 \ .5 \ 2 \ 2 \ .7 \ .4 \ .04 \ 13 \ 3 \ .44 \ .57 \ 64 \ .26 \ 3 \ 2.54 \ .02 \ .07 \ 1 \ 3.7 \\ L47+00N \ 28+0E \ 5 \ 38 \ 20 \ .7 \ .2 \ .0 \ .0 \ .1 \ .1 \ .1 \ .1 \ .1 \ .1$	147+00N 26+75E	र	20	18	66		18	11	551	3 37	4	6	ND	1	52	6	2	2	64	-58	060	17	35	-68	79 14	4	2.11	.02	. 06	1	4-4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	147+001 27+005	1 5	17	37	10/	1	21	15	128/	7 17		11	ND	1	77	1.0	5	2	70	1 00	105	18	43	. 87	87 12	Å	2 47	02	08	ાંગ	20	
L47+00N 27+50E 2 27 14 64 .4 16 7 310 3.38 6 5 ND 1 36 .4 2 2 63 .37 .088 10 35 .47 85 .24 2 1.84 .02 .06 1 3.4 L47+00N 27+57E 2 43 43 92 .6 24 14 1519 3.34 5 5 ND 1 36 1.2 2 2 65 .35 .138 16 39 .62 106 .21 2 2.47 .02 .07 1 3.7 L47+0N 28+00E 5 29 19 63 .5 19 9 498 3.95 3 5 ND 1 28 .7 2 3 71 .34 .041 13 44 .57 64 .26 3 2.54 .02 .07 1 2.1 L47+00N 28+50E 1 43 26 68 .7 20 11 570 3.88 10 8 ND 1 38 .5 2 2 70 .42 .078 18 41 .66 66 .17 2 2.91 .03 .07 1 56.5 L47+00N 28+50E 7 43 26 68 .7 20 11 570 3.88 10 8 ND 1 38 .5 2 2 .72 .45 .056 16 46 .61 60 .22 2 2.55 .02 .05 1 7.1 L47+00N 28+50E 1 47+00N 28+50E 7 43 26 68 .7 20 11 570 3.88 10 5 ND 1 36 1.0 2 2 65 .41 .042 12 34 .49 93 .24 2 1.79 .03 .05 1 7.0 L47+00N 29+50E 4 28 13 87 .6 20 11 599 3.92 5 5 ND 1 42 .2 2 2 .72 .51 .073 9 49 .68 84 .21 2 2.00 .03 .07 1 12.1 L47+00N 29+50E 4 28 13 87 .6 20 11 599 3.92 5 5 ND 1 42 .2 2 2 62 .33 .052 10 41 .54 63 .23 2 2.17 .02 .05 1 16.3 L47+00N 29+50E 4 35 15 73 .7 21 11 666 3.26 5 5 ND 1 33 .6 2 2 567 .37 .18 8 11 .54 63 .23 2 2.17 .02 .05 1 11.1 L47+00N 29+50E 4 38 15 64 .8 18 11 927 2.82 4 5 ND 1 33 .6 2 2 567 .37 .16 35 .47 67 .12 2 2.65 .02 .05 2 3.1 RE L47+00N 29+50E 4 38 15 64 .8 18 11 927 2.82 4 5 ND 1 33 .6 2 2 567 .37 .14 27 .77 2 .14 2 2.29 .02 .06 1 3.0 11.1 L47+00N 29+50E 4 38 15 64 .8 18 11 927 2.82 4 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 11.1 L47+00N 29+50E 4 38 15 64 .8 18 11 1927 2.82 4 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 .14 2 2.29 .02 .05 1 1.5.3 STANDARD C/AU-S 2 06 40 136 7.4 72 3138 3.95 43 18 7 39 53 19.0 20 17 62 .50 .099 39 60 .00 182 .10 35 1.90 .08 16 11 46.3	147+00N 27+00E	4	91		104		40	11	1204	3.43	7	''	10	4	5		5	5	70	1.00	004	10		.01	26 47	Š	2 40	.02	.00	1.4	2.7	
$ \begin{array}{c} L47+00N \ 27+50E \\ L47+00N \ 27+75E \\ L47+00N \ 28+75E \\ L47+0N \ 28+75E \\ L47+$	L47+00N 27+25E	3	20	12	()	•4	19	10	900	5.20	4	(ND	1	24	- 4	2	2	70	.00	-000	IA	40	.19	07 .14	2 ک	2.00	.02	.05	1	2.2	_ I
$ \begin{array}{c} L47+00N \ 27+56E \\ 2 \ 27 \ 14 \ 64 \ .4 \ 16 \ 7 \ 310 \ 3.38 \ 6 \ 5 \ ND \ 1 \ 36 \ .4 \ 2 \ 2 \ 63 \ .37 \ .088 \ 10 \ 35 \ .47 \ 85 \ .24 \ 2 \ 1.84 \ .02 \ .06 \ 1 \ 3.4 \\ L47+00N \ 27+75E \\ 2 \ 43 \ 43 \ 92 \ .6 \ 24 \ 14 \ 1519 \ 3.34 \ 5 \ 5 \ ND \ 1 \ 36 \ 1.2 \ 2 \ 2 \ 65 \ .35 \ .188 \ 10 \ 39 \ .62 \ 106 \ .21 \ 2 \ 2.47 \ .02 \ .07 \ 1 \ 3.7 \\ L47+00N \ 28+0E \\ 5 \ 38 \ 20 \ 73 \ .6 \ 21 \ 14 \ 1266 \ 3.68 \ 6 \ 5 \ ND \ 1 \ 38 \ .5 \ 2 \ 2 \ 70 \ .42 \ .078 \ 18 \ 41 \ .66 \ 66 \ .17 \ 2 \ 2.91 \ .03 \ .07 \ 1 \ 56.5 \\ -L47+00N \ 28+55E \\ 7 \ 43 \ 26 \ 68 \ .7 \ 20 \ 11 \ 570 \ 3.88 \ 10 \ 8 \ ND \ 1 \ 38 \ .5 \ 2 \ 2 \ 70 \ .42 \ .078 \ 18 \ 41 \ .66 \ 66 \ .17 \ 2 \ 2.91 \ .03 \ .07 \ 1 \ 56.5 \\ -L47+00N \ 28+55E \\ 7 \ 43 \ 26 \ 68 \ .7 \ 20 \ 11 \ 570 \ 3.88 \ 10 \ 8 \ ND \ 1 \ 38 \ .5 \ 2 \ 2 \ 70 \ .42 \ .078 \ 18 \ 41 \ .66 \ 66 \ .17 \ 2 \ 2.91 \ .03 \ .07 \ 1 \ 56.5 \\ -L47+00N \ 28+55E \\ 7 \ 43 \ 26 \ 68 \ .7 \ 20 \ 11 \ 570 \ 3.88 \ 10 \ 8 \ ND \ 1 \ 38 \ .5 \ 2 \ 2 \ 77 \ .45 \ .056 \ 16 \ 46 \ .61 \ 60 \ .222 \ 2 \ 2.55 \ .02 \ .05 \ 1 \ 7.1 \\ \ L47+00N \ 28+55E \\ 5 \ 24 \ 25 \ .62 \ .02 \ .05 \ 1 \ 7.1 \ \ .05 \$									-			_					_	_								_				11 I.I.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L47+00N 27+50E	2	27	14	64	4	16	7	310	3.38	6	5	ND	1	- 36	.4	2	2	63	.37	.088	10	35	.47	85 .24	2	1.84	- 02	.06	<u> </u>	5.4	
L47+00N 28+00E 5 29 19 63 .5 19 9 498 3.95 3 5 ND 1 28 .7 2 3 71 .34 041 13 44 .57 64 .26 3 2.54 .02 .07 1 2.1 L47+00N 28+25E 5 38 20 73 .6 21 14 1266 3.68 6 5 ND 1 38 .5 2 2 70 .42 078 18 41 .66 66 .17 2 2.91 .03 .07 1 56.5 -7 L47+00N 28+75E 5 24 52 64 .4 16 7 434 2.88 10 5 ND 1 36 1.0 2 2 65 .41 042 12 34 .49 93 .24 2 1.7.0 .03 .05 1 7.0 L47+00N 29+20E 4 26 25 67 .7 18 8 392 <td>L47+00N 27+75E</td> <td>2</td> <td>43</td> <td>43</td> <td>92</td> <td>.6</td> <td>24</td> <td>14</td> <td>1519</td> <td>3.34</td> <td>5</td> <td>5</td> <td>ND</td> <td>1</td> <td>36</td> <td>1.2</td> <td>2</td> <td>2</td> <td>65</td> <td>.35</td> <td>138</td> <td>16</td> <td>39</td> <td>.62</td> <td>106 21</td> <td>2</td> <td>2.47</td> <td>.02</td> <td>.07</td> <td>1</td> <td>3.7</td> <td></td>	L47+00N 27+75E	2	43	43	92	.6	24	14	1519	3.34	5	5	ND	1	36	1.2	2	2	65	.35	138	16	39	.62	106 21	2	2.47	.02	.07	1	3.7	
L47+00N 28+50E 5 38 20 73 .6 21 14 1266 3.68 6 5 ND 1 38 .5 2 2 70 .42 078 18 41 .66 66 .17 2 2.91 .03 .07 1 56.5 L47+00N 28+50E 7 43 26 68 .7 20 11 570 3.88 10 8 ND 1 38 .5 2 2 72 .45 056 16 46 .61 60 .22 2 2.55 .02 .05 1 7.1 L47+00N 28+75E 5 24 52 64 .4 16 7 434 2.88 10 5 ND 1 36 1.0 2 2 65 .41 .042 12 34 .49 93 .24 2 1.79 .03 .05 1 7.0 L47+00N 29+00E 4 28 13 87 .6 20 11 599 3.92 5 5 ND 1 42 .2 2 2 72 .51 .073 9 49 .68 84 .21 2 2.00 .03 .07 1 12.1 L47+00N 29+50E 4 26 25 67 .7 18 8 392 3.34 7 5 ND 1 27 .7 2 2 62 .33 .052 10 41 .54 63 .23 2 2.17 .02 .05 1 16.3 L47+00N 29+50E 4 35 15 73 .7 21 11 666 3.26 5 5 ND 1 30 .5 2 2 61 .34 .061 13 43 .58 59 .20 2 2.56 .03 .05 1 11.1 L47+00N 29+75E 4 38 15 64 .8 18 11 927 2.82 4 5 ND 1 33 .6 2 2 52 .37 .074 16 35 .47 67 .12 2 2.65 .02 .05 2 3.1 RE L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 L47+00N 30+00E 5 35 24 69 4 18 11 1186 2.47 7 5 ND 1 57 .8 2 2 47 .80 .114 19 39 .47 65 .08 3 2.32 .02 .05 1 5.3 STANDARD C/AU-S 20 64 40 136 7.4 72 32 1138 3.95 43 18 7 39 53 19.0 20 17 62 .50 .099 39 60 .90 182 .10 35 1.90 .08 .16 11 46.3	L47+00N 28+00E	5	29	19	63	5.5	19	9	498	3.95	- CC 3	5	ND	1	28	7	2	3	71	. 34	.041	13	44	.57	64 .26	3	2.54	.02	.07	101	2.1	1
L47+00N 28+50E 7 43 26 68 .7 20 11 570 3.88 10 8 ND 1 38 .5 2 2 72 .45 .056 16 46 .61 60 22 2 2.55 .02 .05 1 7.1 L47+00N 28+50E 5 24 52 64 .4 16 7 434 2.88 10 5 ND 1 36 1.0 2 2 65 .41 .042 12 34 .49 93 .24 2 1.70 .03 .05 1 7.0 L47+00N 29+00E 4 28 13 87 .6 20 11 599 3.92 5 5 ND 1 42 .2 2 2 72 .51 .073 9 49 .68 84 .21 2 .00 .03 .07 1 12.1 14 14.700N .03 .05 1 7.0 .05 1 14	147+00N 28+25E	5	38	20	73	6	21	14	1266	3 68	- 10 K	5	NO	1	38	ंद	2	2	70	.42	078	18	41	66	66 17	2	2.91	.03	.07	1	56.5	-
L47+00N 28+75E 5 24 52 64 .4 16 7 434 2.88 10 5 ND 1 36 1.0 2 2 65 .41 .042 12 34 .49 93 .24 2 1.79 .03 .05 1 7.0 L47+00N 29+00E 4 28 13 87 .6 20 11 599 3.92 5 5 ND 1 36 1.0 2 2 65 .41 .042 12 34 .49 93 .24 2 1.79 .03 .05 1 7.0 L47+00N 29+25E 4 26 25 67 .7 18 8 392 3.34 7 5 ND 1 27 .7 2 2 62 .33 .052 10 41 .54 63 23 2 2.17 .02 .05 1 16.3 L47+00N 29+50E 4 35 15 73 .7 21 11 66 3.26<	147+00N 28+50E	7	· /.z	24	49	7	20	11	570	7 98	ាក់	, i	ND		78	88 - 1	5	2	72	45	056	16	44	.00	60 22	5	2 55	02	05	1. T	7 1	·
L47+00N 28+75E 5 24 52 64 .4 16 7 434 2.88 10 5 ND 1 36 1.0 2 2 65 .41 .042 12 34 .49 93 .24 2 1.79 .03 .05 1 7.0 L47+00N 29+00E 4 28 13 87 .6 20 11 599 3.92 5 5 ND 1 42 .2 2 72 .51 .073 9 49 .68 84 .21 2 2.00 .03 .07 1 12.1 L47+00N 29+25E 4 26 25 67 .7 18 8 392 3.34 7 5 ND 1 27 .7 2 2 62 .33 .052 10 41 .54 63 .23 2 2.17 .02 .05 1 16.3 L47+00N 29+50E 4 38 15 64 .8 18 11 927 2.82 4	L47+00N 20+50E	1	40	20	00		20		510	5.00	- 505 1 V	0	NU	1	20		٤.	2	12	.45		10	40	.01	00	2 -	2.33	.02	.03			1
L47+00N 28+75E 5 24 52 64 .4 16 7 434 2.88 10 5 ND 1 36 1.0 2 2 65 .41 .042 12 34 .49 95 .24 2 1.79 .03 .05 1 7.0 L47+00N 29+00E 4 28 13 87 .6 20 11 599 3.92 5 5 ND 1 42 .2 2 72 .51 .073 9 49 .68 84 .21 2 2.00 .03 .07 1 12.1 L47+00N 29+25E 4 26 25 67 .7 18 8 392 3.34 7 5 ND 1 27 .7 2 2 62 .33 .052 10 41 .54 63 .23 2 2.17 .02 .05 1 16.3 L47+00N 29+50E 4 38 15 64 .8 18 11 927 2.82 4		_						-									_	~					~ /		~- 88.	· .					-	
L47+00N 29+00E 4 28 13 87 .6 20 11 599 3.92 5 5 ND 1 42 .2 2 72 .51 .073 9 49 .68 84 .21 2 2.00 .03 .07 1 12.1 L47+00N 29+25E 4 26 25 67 .7 18 8 392 3.34 7 5 ND 1 27 .7 2 2 62 .33 .052 10 41 .54 63 23 2 2.17 .02 .05 1 16.3 L47+00N 29+50E 4 35 15 73 .7 21 11 666 3.26 5 5 ND 1 30 .5 2 2 61 .34 .061 13 43 .58 59 .20 2 2.65 .02 .05 2 3.1 11.1 L47+00N 29+75E 4 38 15 .4 .8 <t< td=""><td>L47+00N 28+75E</td><td> ></td><td>- 24</td><td>52</td><td>- 64</td><td><u> 2</u> 64</td><td>16</td><td>1</td><td>434</td><td>2.88</td><td>10</td><td>5</td><td>ND</td><td>1</td><td>56</td><td>1.U</td><td>2</td><td>2</td><td>65</td><td>.41</td><td>-042</td><td>12</td><td>.54</td><td>.49</td><td>95 .24</td><td><u> </u></td><td>1.79</td><td>.03</td><td>.05</td><td>2.001</td><td>7.0</td><td>I</td></t<>	L47+00N 28+75E	>	- 24	52	- 64	<u> 2</u> 64	16	1	434	2.88	10	5	ND	1	56	1.U	2	2	65	.41	-042	12	.54	.49	95 .24	<u> </u>	1.79	.03	.05	2.001	7.0	I
L47+00N 29+25E 4 26 25 67 .7 18 8 392 3.34 7 5 ND 1 27 .7 2 2 62 .33 .052 10 41 .54 63 .23 2 2.17 .02 .05 1 16.3 L47+00N 29+50E 4 35 15 73 .7 21 11 666 3.26 5 5 ND 1 30 .5 2 2 61 .34 .061 13 43 .58 59 .20 2 2.56 .03 .05 1 11.1 L47+00N 29+75E 4 38 15 64 .8 18 11 927 2.82 4 5 ND 1 33 .6 2 2 52 .37 .074 16 35 .47 67 .12 2 2.65 .02 .05 2 3.1 L47+00N 25+50E 6 21 15 85 .1 <td< td=""><td>L47+00N 29+00E</td><td>4</td><td>28</td><td>13</td><td>87</td><td>.6</td><td>20</td><td>- 11</td><td>- 599</td><td>3.92</td><td>5</td><td>5</td><td> ND </td><td>1</td><td>42</td><td>,2</td><td>2</td><td>2</td><td>72</td><td>.51</td><td>,073</td><td>9</td><td>49</td><td>.68</td><td>84 .21</td><td>2</td><td>2.00</td><td>.03</td><td>.07</td><td>-198-1</td><td>12.1</td><td></td></td<>	L47+00N 29+00E	4	28	13	87	.6	20	- 11	- 599	3.92	5	5	 ND 	1	42	,2	2	2	72	.51	,073	9	49	.68	84 .21	2	2.00	.03	.07	-198 -1	12.1	
L47+00N 29+50E 4 35 15 73 .7 21 11 666 3.26 5 5 ND 1 30 .5 2 2 61 .34 .061 13 43 .58 59 .20 2 2.56 .03 .05 1 11.1 L47+00N 29+75E 4 38 15 64 .8 18 11 927 2.82 4 5 ND 1 33 .6 2 2 52 .37 .074 16 35 .47 67 .12 2 2.65 .02 .05 2 3.1 RE L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 .72 .14 2 2.29 .02 .06 1 3.0 L47+00N 30+00E 5 35 24 69 <	L47+00N 29+25E	4	26	25	67	.7	18	8	392	3.34	7	5	ND	1	27		2	2	62	.33	:052	10	41	.54	63 23	2	2.17	.02	.05	ା 1	16.3	
L47+00N 29+75E 4 38 15 64 .8 18 11 927 2.82 4 5 ND 1 33 .6 2 2 52 .37 .074 16 35 .47 67 12 2 2.65 .02 .05 2 3.1 RE L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 .36 .067 14 27 .67 72 14 2 2.29 .02 .06 1 3.0 L47+00N 30+00E 5 35 24 69 .4 18 11 1186 2.47 7 5 ND 1 57 .8 2 2 47 .80 .114 19 39 .47 65 .08 3 2.32 .02 .05 1 5.3 STANDARD C/AU-S 20 64 40 136 <	147+00N 29+50F	4	35	15	73	7	21	11	666	3.26	ं 5	5	ND	1	30	5	2	2	61	.34	061	13	43	.58	59 20	2	2.56	.03	.05	<u>े नि</u> भ	11.1	
RE L47+00N 25+50E 6 21 15 16 17 17 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 18 11 18 12 12 12 14 10 10 13 16 17 18 1 18 10 13 5 .6 2 2 67 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 L47+00N 30+00E 5 35 24 69 4 18 11 118 2.47 7 5 ND 1 57 .8 2 2 47 .80 114 19 39 .47 65 .08 3 2.32 .02 .05 1 5.3 STANDARD C/AU-S	1/7+000 20+755	1	27	15	<i>k).</i>	់់	18	11	027	2 82	1	Ē	10		32		2	2	52	37	074	16	35	47	67 32	5	2 65	02	05	2	31	ł
RE L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 L47+00N 30+00E 5 35 24 69 .4 18 11 1186 2.47 7 5 ND 1 57 .8 2 2 47 .80 .114 19 39 .47 65 .08 3 2.32 .02 .05 1 5.3 STANDARD C/AU-S 20 64 40 136 7.4 72 32 1138 3.95 43 18 7 39 53 19.0 20 17 62 .50 .099 39 60 .90 182 .10 35 1.90 .08 .16 11 46.3	LATTOUR 27TIJE	1 4	0, 0	15	04	•0	10		761	2.02	9.986.	ر	αD				-	2	26			10		. 41			2.05		,	· · · · · · · ·		1
RE L47+00N 25+50E 6 21 15 85 .1 14 10 1015 3.69 8 5 ND 1 35 .6 2 2 67 14 27 .67 72 .14 2 2.29 .02 .06 1 3.0 1 .15 .6 2 2 67 .14 27 .67 72 .14 2 2.29 .02 .06 1 .0 .1 .0 .0 .0		.									- 808540 2000 - 4	_					_	-			- M.		<u> </u>	/ 		š .		~~	A '		7 ^	
L47+00N 30+00E 5 35 24 69 .4 18 11 1186 2.47 7 5 ND 1 57 .8 2 2 47 .80 .114 19 39 .47 65 .08 3 2.32 .02 .05 1 5.3 STANDARD C/AU-S 20 64 40 136 7.4 72 32 1138 3.95 43 18 7 39 53 19.0 20 17 62 .50 .099 39 60 .90 182 .10 35 1.90 .08 .16 11 46.3	RE L47+00N 25+50E	6	21	15	85	- j. S 1 .	: 14	10	1015	3.69	8	5	ND	1	35	.6	2	2	67	.36	- 2067	14	- 27	.67	/2 0.14	្ត 2	2.29	.02	.06	1	5.0	
STANDARD C/AU-S 20 64 40 136 7.4 72 32 1138 3.95 43 18 7 39 53 19:0 20 17 62 .50 099 39 60 .90 182 10 35 1.90 .08 .16 11 46.3	L47+00N 30+00E	5	35	24	- 69	4	18	11	1186	2.47	7	5	ND	1	57	.8	2	2	47	.80	114	19	39	.47	65 .08	3	2.32	.02	.05	1	5.3	
	STANDARD CZAU-S	20	64	40	136	7.4	72	32	1138	3.95	43	18	7	39	53	19.0	20	17	62	.50	1099	39	60	.90	182 10	i 35	1.90	.08	. 16	<u> </u>	46.3	

Samples beginning 'RE' are duplicate samples.

÷.

Page 7

•

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bî ppm	V ppm	Ca %	P %	La. ppm	Cr ppm	Mg %	Ba Ti ppm %	B ppm	Al X	Na %	K X	.µ ppm	Au* ppb
L47+00N 30+25E	4	56	15	96	.5	23	11	727	2.65	37	5	ND	1	70	1.1	2	2	58	1.24	,098	22	68	.64	73 ,08	4	2.47	.03	.05	1	6.6
L47+00N 30+50E	2	39	31	67	÷ 5.	15	8	487	2.42	14	5	ND	1	38	1.3	2	2	43	.62	.073	13	30	.35	73 .14	3	4.22	.03	.05	2	1.9
L47+00N 30+75E	3	40	12	66	.8	18	12	562	3.42	. 6	5	ND		43	1.2	2	2	62	.56	.041	13	39	.54	76 .15	3	2.22	.03	.05	2	4.7
L47+00N 31+00E	5	41	18	58	•6	19		4//	5.54	<u>]/</u>	2	ND]	30	88 14	2	2	64	.31	.051	16	44	.55	71 .16	3	2.31	.03	.07	÷ 1	5.3
L47+00N 31+25E	3	49	26	89	••	21	11	725	2.87	رد	(ND	1	>>	.9	2	2	63	.88	.073	18	59	- 63	70 .12	2	2.59	.03	.06	1	2.3
L47+00N 31+50E	5	31	18	45	.4	14	7	157	4.86	8	5	ND	1	36	.7	2	2	90	.34	.022	5	50	.39	74 .32	2	1.66	.02	.04	2	7.5
L47+00N 31+75E	3	29	14	50	.8	16	7	358	3.50	- 16	5	ND	1	34	.8	2	2	73	.32	,028	7	46	.45	81 ,21	4	1.42	.02	.06	2	3.6
147+00N 32+00E	4	28	18	43	- 5	16	7	249	3.53	6	5	ND	1	32		2	2	73	.27	,027	6	44	.53	66 .22	2	1.79	.02	.05	2	6.4
1 L47+00N 32+25E		25	20	44	-5	16	87	226	5.00	2 Z	5	ND	1	- 59	4	2	2	65	.43	.052	7	50	.63	66 .15	2	1.44	.03	.05	2	22.0
1 L47+UUN 32+SUE	2	27	22	28	••	10	1	209	4.51	٥	2	ND	1	40	.	2	2	76	.43	.030	0	55	.>>	97 .22	Z	2.65	.02	.05	2	3.8
147+00N 32+75E	1	38	12	48	.4	21	10	285	3.76	2	7	ND	3	43	.4	2	2	78	.44	.052	11	65	.90	56 .19	2	2.11	.02	.05	2	39.6 -
L47+00N 33+00E	1	30	15	82	· -3	17	9	372	3.86	6	5	ND	2	25		2	2	65	.20	.091	7	50	.54	56 .19	3	5.04	.02	.06	1	2.4
L47+00N 33+25E		40	17	12	(-	25	15	625	4.02	2	2	ND	1	42	••	2	2	81	.37	.087	4	80	.82	69 .19	<u> </u>	2.50	.02	.08	<u>1</u>	2.8
1 47+00N 33+30E		21	17	24	1 0	14	0	202	3.30		2	ND	2	31		2	2	0/	.20	.045	0	45	.41	04 19 100 7/	<u> </u>	2.08	.02	.05	1	4.9
C41+000 23+135		20	20			10	0	232	4.14	9	10	NU	2	44		2	2	74	.55	,009	2	20	.40	109 .24		1.04	.02	.00	· 1	3.5
L47+00N 34+00E	1	31	27	67	1.3	19	10	417	4.07	4	5	ND	1	47	.8	2	2	87	.37	,070	5	62	.56	94 .25	2	1.56	.03	.06	1	6.3
L47+00N 34+25E	2	61	25	54	3.8	19	12	563	3.52	5	5	ND	1	46	1.7	2	2	63	.36	.060	17	49	.41	84 .17	4	2.57	.03	.06	2	3.7
L47+00N 34+50E	2	54	52	77	1.9	28	16	1251	3.47	7	5	ND	1	62	1.7	2	2	70	.49	.065	20	70	.80	96 .14	3	2.30	.02	.06	् 1	.7
L47+00N 34+75E	2	59	33	77	1.4	25	- 17	1131	3.91	2	7	ND	1	42	1.3	3	2	75	.32	.054	18	63	.66	74 .19	2	2.88	.03	.06	1	1.5
L47+00N 35+00E		71	47	94	1.7	26	16	1095	5.44		2	ND	1	48	6.4	2	2	66	.57	.064	24	50	.61	y5 .14	8 5	2.55	.02	.06		.8
L47+00N 35+25E	1	76	36	95	2.2	26	15	953	3.56	5	5	ND	1	47	1.9	3	2	64	.33	,063	22	52	.61	94 .14	2	2.37	.03	.06	1	.9
L47+00N 35+50E	1	50	24	102	1.3	27	14	590	4.02	6	5	ND	1	47	.9	2	2	79	.36	.076	11	65	.76	112 .19	2	2.24	.02	.07	. 1	1.1
L47+00N 35+75E	1	57	22	91	1.5	25	16	1234	3.68	5	5	ND	1	43	1.0	2	2	69	.30	.084	12	54	.64	107 .17	3	2.28	.02	.06	20 E	.9
1 L47+00N 36+00E	2	48	20	83	1.5	18	10	634	3.80	4	5	ND	1	30	-5	2	2	69	.20	.100	. 9	42	.39	85 .22	2	2.68	.03	.05	1	1.4
L47+UUN 36+25E	1	62	16	98	2.U	28	15	930	4.08		5	ND	1	42	-8	2	2	72	.31	.085	15	56	.66	98 . 15	3	3.02	.02	.07	1	1.6
L47+00N 36+50E	1	62	10	78	1.0	27	13	435	4.12	5	5	ND	1	44	.8	2	2	75	.31	.069	15	59	.66	95 .19	2	2.80	.02	.07	1	10.9
L47+00N 36+75E	1	38	12	92	.5	30	14	554	4.43	3	5	ND	1	50	- 4	2	2	85	.43	,074	6	91	.86	90 .20	2	2.02	.02	.09	1	3.2
L47+00N 37+00E	1	32	19	88	.6	23	12	341	5.15	6	5	ND	1	45	.7	2	2	83	.40	,168	5	76	.61	126 .19	2	2.40	.02	.06	1	1.9
146+00N 22+00E		28		130	د.	12	8	1316	4.21	10	2	ND	3	26	.6	2	3	70	117	174	7	17	.28	110 .21	<u> </u>	4.56	.04	.09	1	.7
RE L47+00N 33+00	נן ז	29	21	80		17	Ŷ	370	3.77	0	2	ND	4	24	.8	5	2	62	. 19	,094	8	47	.51	57 .19	2	5.01	.02	.05	1 1	2.4
L46+00N 22+25E	1	28	20	70	.2	17	7	268	3.91	8	5	ND	4	24	.3	2	2	62	.13	.133	14	21	.43	72 .16	2	5.35	.02	.06	1	2.2
L46+00N 22+50E	1	22	23	60	- 3	10	4	289	2.91	4	5	: ND	1	14	.3	3	2	51	.07	,102	6	14	.18	70 .15	§ 3	2.60	.02	.04	<u> 1</u>	1.5
L46+00N 22+75E	1	22	20	31	.2	6	3	83	3.08	3	5	ND	2	8	.2	4	2	54	.04	.075	8	13	- 14	48 19	2	3.74	.02	.05	1	.4
L46+00N 23+00E		16	13	47	् 13	6	3	82	5.18	6	5	ND	1	19		4	4	53	.14	<u>124</u>	6	14	.12	47 11	2	3.00	.02	.03	1	.4
140+UUN 23+25E		12	46	67	•2		4	551	1.82	2	5	ND	1	50	2000 C	ک	2	47	.17	.087	11	10	. 15	109 .10	2	1.66	.03	.07	1 	9.9
L46+00N 23+50E	1	14	25	60	.1	8	4	174	2.98	5	5	ND	1	32	.2	3	2	53	.18	,064	10	12	.22	60 .12	3	1.86	.02	.07	1	1.2
L46+00N 23+75E	1	31	93	107	.3	11	6	1232	1.57	5	5	ND	1	42	2.0	3	2	27	.38	,093	10	10	.10	250 .06	2	1.18	.02	.08	0.01	.3
STANDARD C/AU-S	19	64	39	134	7.4	75	31	1059	4.04	41	24	8	41	53	18.5	16	19	59	.51	.080	39	59	.93	181 08	34	1.91	.07	. 13	- 11	46.3

مند ا

Page 8

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe % F	As pm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	sb ppm	Bi ppm	V ppm	Ca %	La La	Cr ppm	Mg X	8a ppm	Ti %	B ppm	Al %	Na %	K X	W ppm	Au* ppb
L46+00N 24+00E L46+00N 24+25E L46+00N 24+50E L46+00N 24+75E L46+00N 25+00E	1 1 3 2 1	19 25 23 17 24	23 31 14 26 32	72 117 79 63 133	.4 .4 .5 .4	9 18 17 13 13	5 14 7 4 11	605 1409 586 231 2388	3.68 2.54 3.89 2.94 2.90	7 94 97	5 9 5 27	ND ND ND ND	1 1 2 1 1	18 26 21 24 49	.6 .8 .3 .3 1.2	2 2 2 2 2	3 2 2 2 2 2	55 44 63 52 48	.13 .13 .29 .31 .17 .19 .20 .04 .58 .11	2 10 0 18 7 15 3 16 5 33	17 20 21 20 23	.26 .38 .57 .46 .44	83 100 72 72 140	.20 .09 .21 .21 .21	3 1 4 4 5 2 3 2 2 2	.76 .49 .86 .11 .58	.01 .01 .02 .02 .02	.09 .08 .09 .09 .09	1 1 1 1	3.1 6.4 6.9 5.5 5.1
L46+00N 25+25E L46+00N 25+50E L46+00N 25+75E L46+00N 26+00E L46+00N 26+25E	1 3 1 1	25 18 31 35 46	44 29 92 42 41	113 93 107 113 72	.5 .4 .5 .3 .5	11 11 16 17 16	7 10 16 15 19	2554 1069 2137 1752 1247	2.98 3.11 3.06 3.35 2.61	7 6 4 6 7	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	29 34 41 42 33	1.0 .7 1.2 .8 1.3	2 2 2 2 2	2 3 2 2 2	51 57 57 59 43	.27 .04 .38 .05 .38 .14 .48 .11 .26 .12	7 15 2 20 5 15 6 12 5 13	15 21 30 36 26	.33 .46 .73 .71 .40	156 102 114 92 99	.21 .20 .20 .13 .09	2 1 3 2 3 2 3 2 4 2	.60 .10 .37 .46 .14	.02 .02 .02 .02 .02	.09 .09 .09 .08 .07	1 1 1 1	3.7 2.1 2.0 1.4 1.1
L46+00N 26+50E L46+00N 26+75E L46+00N 27+00E RE L46+00N 28+25E L46+00N 27+25E	2 2 1 10 2	27 36 37 52 32	20 20 26 14 11	62 59 56 102 76	.3 .5 .4 .7 .4	13 13 15 31 16	7 7 16 8	324 392 354 930 571	3.40 3.46 3.24 4.09 3.81	4 6 5 12 4	5 5 14 5	nd Nd Nd Nd	1 1 1 1	25 24 27 55 36	.6 .7 .4 .5 .4	2 2 2 2 2	2 2 2 2 2 2	64 63 60 83 71	.21 .06 .20 .11 .26 .08 .78 .06 .39 .09	7 9 3 10 8 13 5 16 9 10	33 30 38 76 39	.51 .40 .53 1.06 .58	53 64 56 70 97	.21 .23 .20 .22 .22	3 2 2 2 3 2 6 3 3 2	.24 .13 .37 .04 .41	.02 .02 .02 .03 .02	.07 .07 .10 .09 .09	1 1 1	1.4 5.1 1.1 7.3 17.0
L46+00N 27+50E L46+00N 27+75E L46+00N 28+00E L46+00N 28+25E L46+00N 28+50E	3 3 9 9 3	30 32 44 48 48	22 61 27 18 70	71 148 86 96 167	.6 .4 .6 .9	13 38 24 30 23	10 16 13 15 15	951 2209 533 876 1514	3.45 4.07 4.04 3.79 4.74	3 10 9 11 54	5 5 10 5	ND ND ND ND	1 1 1 1	33 54 45 52 42	.6 1.1 .8 .5 1.4	2 2 2 3	4 2 2 2 2	65 76 80 78 85	.31 .07 .77 .07 .54 .04 .74 .06 .52 .18	4 11 0 10 6 10 0 15 4 8	32 89 56 72 55	.53 1.05 .97 1.00 .56	77 252 79 65 248	,20 .23 .25 .20 .15	2 2 3 2 2 2 3 2 4 2	.57 .24 .41 .83 .12	.02 .03 .02 .03 .02	.07 .10 .08 .08 .17	1 1 1 1	1.3 2.7 6.6 3.9 6.6
L46+00N 28+75E L46+00N 29+00E L46+00N 29+25E L46+00N 29+50E L46+00N 29+75E	3 4 3 3 1	46 58 73 33 15	16 19 41 15 27	96 116 130 75 36	.4 .7 .6 .5	23 32 33 20 6	12 16 15 9 2	925 1015 1063 373 119	3.46 4.12 3.41 3.39 1.91	51 45 40 15 7	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	33 49 55 31 14	.5 .4 1.3 .3 .6	2 2 2 2 2	2 2 2 2 2 2	64 82 69 64 43	.43 .09 .77 .07 1.07 .09 .40 .05 .11 .05	7 9 0 14 2 17 1 10 5 8	57 81 96 54 19	.72 1.04 .95 .58 .12	73 70 71 69 45	.18 .22 .16 .22 .23	2 2 3 2 3 2 2 1	.08 .83 .43 .24 .25	.02 .03 .03 .03 .02	.09 .09 .09 .07 .05	1 1 1 1	17.8 2.7 6.7 1.1 .4
L46+00N 30+00E L46+00N 30+25E L46+00N 30+50E L46+00N 30+75E L46+00N 31+00E	2 2 3 5	22 26 35 29 43	21 19 19 16 30	75 64 67 69 73	.7 .4 .4 .5 .5	15 15 19 17 19	6 7 10 10 12	322 898 612 890 1080	4.36 3.08 3.42 3.10 2.82	6 5 6 5 11	5 5 5 5 5	nd Nd Nd Nd	3 1 1 1 1	22 25 38 32 45	.4 .2 .4 .5 .8	2 2 2 2 2 2	3 2 2 2 2	76 56 63 55 53	.23 .09 .29 .11 .46 .07 .37 .07 .75 .07	0 9 1 9 6 11 1 13 7 19	45 41 59 46 49	-44 .44 .68 .52 .58	71 67 82 82 72	.28 .21 .22 .21 .21 .12	2 2 2 2 3 2 2 2 2 2 2 2 2 2	.52 .16 .19 .04 .21	.02 .02 .03 .03 .02	.08 .06 .09 .07 .07	1	2.8 2.2 2.4 3.0 2.8
L46+00N 31+25E L46+00N 31+50E L46+00N 31+75E L46+00N 32+00E L46+00N 32+25E	5 6 17 6 5	47 36 31 54 56	17 21 8 33 23	70 66 66 73 74	.7 .6 .4 .6 .7	20 19 7 20 21	12 10 2 11 10	805 604 642 866 552	3.05 3.34 .29 2.68 3.03	9 10 4 20 22	5 7 5 5	nd Nd Nd Nd	1 1 1 1	39 44 144 49 60	.8 .7 1.0 1.1 1.0	2 2 2 2 2 2 2	2 2 2 2 2 2	54 61 19 50 51	.64 .07 .73 .07 4.43 .11 1.06 .10 1.28 .07	5 14 4 13 2 5 5 17 6 17	48 52 10 49 57	.58 .59 .09 .56 .60	66 77 51 53 61	.12 .23 .01 .08 .12	4 2 5 2 7 4 2 3 2	2.06 2.27 .58 2.01 2.02	.02 .07 .01 .02 .02	.07 .14 .02 .08 .09	1 5 1	2.1 1.6 1.2 1.5 3.3
L46+00N 32+50E L46+00N 32+75E STANDARD C/AU-S	16 6 18	65 56 58	14 13 37	46 52 136	.6 .5 6.9	18 18 72	11 7 31	766 230 1131	3.70 3.37 4.06	13 14 40	5 5 16	ND ND 6	1 1 36	43 23 51	.4 .5 18.5	2 2 14	2 2 17	72 57 55	.80 .07 .27 .06 .49 .09	9 19 2 17 2 38	47 49 59	.41 .49 .88	48 46 181	,13 ,19 ,09	2 2 2 3 31	2.84 5.98 1.92	.02 .02 .06	.07 .06 .15	1 1 13	4.9 3.4 45.0

en la Ale

Page 9

SAMPLE#	Mo mqq	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Мn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	Р %	La ppm	Cr ppm	· Mg X	Ba ppm	Ti %	B ppm	Al X	Na X	K X	N bbw	Au* ppb
L46+00N 33+00E L46+00N 33+25E L46+00N 33+50E L46+00N 33+75E L46+00N 34+00E	17 8 7 5 6	9 57 64 45 42	5 9 9 13 13	51 62 71 61 46	.1 .5 .8 .6 .6	4 25 23 20 16	1 11 15 13 7	107 381 680 459 183	.31 2.48 3.77 3.91 3.95	3 12 27 10 8	5 6 8 5 5	nd Nd Nd Nd	1 1 1 2	171 60 45 44 41	.7 .7 .7 .5 1.1	2 2 2 2 2	2 2 2 2 2	22 53 65 71 64	3.46 1.03 .65 .55 .51	050 074 066 054 040	2 14 16 14 14	6 66 69 63 53	.12 .75 .64 .65 .38	30 50 56 63 61	.01 .10 .16 .20 .21	5 22. 23. 22. 21.	.27 .23 .27 .36 .91	.01 .02 .02 .02 .02	.01 .09 .08 .07 .05	3 2 1 1	3.3 6.1 .6 4.3 2.7
L46+00N 34+25E L46+00N 34+50E L46+00N 34+75E L46+00N 35+00E L46+00N 35+25E	1 1 1 1 1	21 21 22 29 34	12 16 11 27 63	38 55 55 108 121	1.1 .5 1.3 1.3 1.5	12 13 16 21 17	6 8 10 12	205 406 294 558 1641	3.38 4.02 3.63 3.85 3.45	2 5 2 5 9	5 5 5 5 5	nd Nd Nd Nd	1 2 1 2 1	28 25 33 24 29	.3 .6 .5 .4 2.1	2 2 2 2 2	2 2 2 2 2	62 77 63 65 57	.22 .22 .29 .22 .22	.054 .175 .091 .100 .104	5 7 5 6 8	48 52 52 62 52	.33 .34 .47 .56 .46	63 94 78 86 144	.20 .21 .21 .21 .21 .17	2 1. 2 1. 2 1. 2 2. 2 1.	.97 .75 .60 .22 .82	.02 .02 .02 .02 .02	.04 .06 .05 .07 .08	1 1 1	4.2 4.4 1.1 2.6 1.3
L46+00N 35+50E L46+00N 35+75E L46+00N 36+00E RE L45+00N 22+00E L46+00N 36+25E	1 1 1 1 1	91 47 32 20 54	8 23 14 20 17	61 99 76 88 73	.7 1.2 1.1 .2 2.0	39 25 15 13 19	20 14 12 7 14	658 743 499 508 798	4.67 3.80 4.55 3.81 3.26	3 3 2 4 2	5 5 5 5 5	ND ND ND ND	2 2 3 3 1	57 34 19 13 36	.7 .7 .8 .2 1.1	2 2 2 2 2	2 2 2 2 2 2	86 66 70 56 58	.56 .29 .14 .10 .25	. 121 . 138 . 091 . 130 . 100	10 6 11 8 20	118 78 48 19 43	1.21 .66 .35 .27 .40	99 144 93 101 116	.17 .21 .28 .20 .17	2 2 2 2 2 3 3 3 2 1	.93 .56 .51 .76 .94	.02 .02 .02 .02 .02	.22 .08 .07 .08 .08	1 1 1 1	5.6 5.3 6.5 3.4 1.8
L46+00N 36+50E L46+00N 36+75E L46+00N 37+00E L45+00N 22+00E L45+00N 22+25E	3 3 4 2 5	67 80 46 21 42	17 16 13 19 21	56 49 118 88 106	2.5 2.4 .6 .2 .4	20 17 23 13 22	16 9 12 7 9	1274 409 365 499 986	3.44 2.94 5.01 3.80 3.41	3 4 12 2 3	5 5 5 6	nd Nd Nd Nd	1 1 2 4 1	32 34 36 14 45	.9 1.3 1.1 .5 1.2	2 2 2 2 2	2 2 2 2 2	61 56 111 58 59	.29 .34 .29 .11 .49	.093 .051 .033 .123 .161	15 16 6 9 39	54 38 101 21 25	.48 .35 .56 .27 .56	70 81 99 102 165	.16 .18 .31 .21 .07	2 2 2 2 2 1 2 3 3 3	.35 .04 .59 .70 .90	.02 .02 .02 .02 .02	.07 .06 .07 .09 .11	1 1 1	2.5 4.6 9.4 4.8 .4
L45+00N 22+50E L45+00N 22+75E L45+00N 23+00E L45+00N 23+25E L45+00N 23+50E	3 3 3 2 2	25 16 22 14 13	43 20 13 9 18	94 93 98 63 64	.2 .2 .6 .1 .1	15 18 18 12 10	14 9 9 4 5	2605 887 412 171 480	2.95 2.91 4.79 2.49 3.25	8 2 2 5 2	5 5 5 5 5	ND ND ND ND	1 1 2 4 2	34 14 17 12 12	.9 .4 .3 .2 .2	2 2 2 2 2	2 2 2 2 4	49 45 63 40 43	.48 .13 .10 .09 .10	.113 .105 .085 .095 .148	21 11 16 10 8	16 17 23 16 14	.38 .31 .53 .31 .21	127 76 61 38 66	.08 .18 .19 .12 .13	23 44 23 25 22	.01 .41 .78 .52 .77	.02 .02 .02 .01 .01	.09 .07 .11 .04 .09	1 1 2 1	.6 .2 2.4 1.1 .2
L45+00N 23+75E L45+00N 24+00E L45+00N 24+25E L45+00N 24+25E L45+00N 24+50E L45+00N 24+75E	3 3 1 2 1	45 38 18 15 21	27 20 16 24 22	57 50 54 64 75	.4 .3 .1 .1 .1	12 10 8 10 11	5 4 5 6	220 197 439 330 908	2.80 2.80 3.64 4.86 3.38	2 2 2 6 7	5 5 5 5 5	ND ND ND ND	1 2 2 2 1	10 9 14 9 22	.7 .4 .5 .2 .5	2 2 2 2 2	3 3 3 3 2	43 42 48 57 50	.07 .06 .11 .05 .10	.104 .109 .152 .106 .159	12 10 9 10 9	15 12 14 17 16	.27 .20 .17 .21 .32	59 60 76 59 54	.11 .13 .17 .23 .14	2 2 2 3 2 3 2 2 2 2 2 3	.82 .43 .91 .81 .36	.01 .01 .02 .02 .01	.06 .06 .05 .08 .09	1 1 1 1	6.2 .3 .2 .2 .2
L45+00N 25+00E L45+00N 25+25E L45+00N 25+50E L45+00N 25+75E L45+00N 26+00E	2 2 1 1 2	26 25 38 17 31	24 13 19 20 14	83 65 74 37 22	.1 .1 .3 .1 .2	14 14 19 5 7	7 7 10 2 3	1164 249 287 112 96	3.81 4.16 4.17 4.40 3.61	7 6 5 3 15	5 5 5 5 5	ND ND ND ND	1 1 3 4 6	15 16 23 12 8	.7 .4 .6 .4 .4	2 2 2 2 2	2 2 2 2 2	59 67 69 63 58	.08 .08 .13 .06 .07	.213 .166 .114 .106 .230	11 12 12 8 5	20 25 29 22 16	.39 .55 .90 .14 .13	88 49 98 41 28	.16 .12 .24 .20 .24	23 22 33 24 24 24	.29 .96 .19 .47 .71	.02 .01 .02 .01 .02	- 10 - 12 - 14 - 04 - 03	1 1 1 1	.9 .2 .2 .2 .2
L45+00N 26+25E L45+00N 26+50E STANDARD C/AU-S	1 1 19	30 13 58	13 17 39	35 36 132	.2 .1 7.1	10 7 70	4 3 31	114 146 1058	3.02 3.28 3.93	2 8 42	5 5 20	ND ND 6	3 3 39	18 12 52	.5 .7 18.9	2 2 14	2 2 20	54 47 56	. 14 . 07 . 48	.097 .168 .086	11 8 39	25 19 57	.28 .17 .88	59 33 175	.14 .20 .09	2 2 2 3 32 1	.68 .12 .90	.02 .02 .06	.07 .06 .15	1 1 11	1.5 .2 45.2

<u>.</u>.,

Page 10

٢

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	Al %	Na %	К %	V ppm	Au* ppb
L45+00N 26+75E	1	17	27	40	.3	10	3	228	2.48	3	5	ND	2	15	.2	2	2	54	.10	.066	11	26	.24	59	.26	3	2.26	.02	.06	1	4.1
L45+00N 27+00E	2	68	17	73	-4	17	6	224	3.92	5	5	ND	3	26	÷2	2	2	70	.21	139	11	44	.49	57	.24	4	4.32	.02	.09	1	3.5
L45+00N 27+25E		61	55	130	6.	26	11	2182	4.08,	4	2	ND	1	39		2	4	71	.41	.286	10	55	.72	130	. 21	4	2.62	.02	.10	1	31.9
L45+00N 27+50E	2	54 48	10	102	.5	21	9	427	5.60 4.43	8	5	ND ND	2	23	.2 .2	2	3	69	.28	. 507	10	42 48	.60	62 49	.10	24	2.98 3.54	.02	.08	1	1.8
L45+00N 28+00E	1	54	56	127	.5	21	18	2184	3.34	13	5	ND	1	41	1.0	2	3	62	.49	,223	8	44	.55	185	.24	3	2.10	.04	. 16	1	27.3
L45+00N 28+25E	1	48	17	122	.5	76	24	965	4.46	13	5	ND	1	31	5	2	3	92	.47	.081	9	189	1.50	126	.24	3	2.88	.03	.18	(1. 1)	54.2 -
145+00N 28+50E	1	42	13	138	.4	115	31	1200	5.06	5	5	ND	1	28	,2	2	2	103	.60	.081	4	303	2.69	194	,25	4	3.22	.02	1.12	1	7.4
L45+00N 28+75E L45+00N 29+00E	5	48 17	16 14	124	.6	30 11	15 3	1224	3.72	10	5	ND ND	1	41 19	.5	2	2	71 53	.74	.098	12 8	71 34	.90 .28	85 38	.22	9	2.68 3.20	.02 .02	.11	1	3.5 7.3
RE 145+00N 30+25E	4	62	37	114	4	30	16	1112	3 45	76	5	ND	1	53		2	2	**	1 07	094	15	70	88	61	12	2	2 4 2	63	10	1	177
L45+00N 29+25E	2	22	19	34	.s	10	3	132	3.45	័ទ័	5	ND	ż	12	2	2	4	54	.11	152		32	.20	46	.27	3	2.93	.02	.05	1	2.1
L45+00N 29+50E	1	41	13	46	.5	22	9	383	2.85	5	5	ND	2	37	3	2	4	54	.63	184	15	75	.75	48	. 19	3	2.31	.03	.10	1	7.6
L45+00N 29+75E	1	23	13	56	-4	14	6	351	3.39	4	5	ND	2	27	2	2	3	59	.30	, 187	7	47	.40	49	.23	3	2.47	.02	.06	<u>1</u>	2.2
L45+00N 30+00E	3	82	24	134	.3	41	18	853	3.80	69	5	ND	1	47	•2	2	3	71	.71	.063	10	98	.95	69	.22	4	2.56	.03	.10	1	28.4
L45+00N 30+25E	4	63	34	114	.5	30	16	1134	3.42	78	5	ND	1	53	.7	2	2	66	1.08	,093	15	79	.87	62	.12	4	2.40	.02	.10	1	22.1
L45+00N 30+50E	7	86	22	95	5	33	16	760	3.12	38	5	ND	1	47	.5	2	2	61	.89	.110	18	63	.79	63	.11	4	2.56	.02	.09	1	5.0
L45+UUN 30+75E	4	41	10	78	1 7	10	15	591	3,30	10	2	ND	1	43	· • •	2	.5	59	•/1	107	15	51	.61	71	.20	2	2.05	.02	.08	1	2.8
L45+00N 31+25E	4	53	13	108	.4	30	17	637	4.05	12	5	ND	i	36	:2	2	2	77	.48	.092	11	64	.87	87	.24	3	2.71	.02	.10	1	8.1
L45+00N 31+50E	5	70	17	100	.6	34	19	1012	3.72	25	5	ND	1	48	.5	2	2	72	.80	.091	15	65	.93	63	. 18	4	2.44	.02	.09		10.5
L45+00N 31+75E	4	48	15	86	.5	33	20	654	3.68	17	5	ND	1	44	.2	2	3	70	.58	.070	11	67	.84	58	.22	2	2.31	.02	.08	2	5.6
L45+00N 32+00E	4	45	14	101	-4	35	18	645	4.11	20	5	ND	1	49	.2	2	- 3	73	.64	,118	8	68	.90	105	.24	3	2.45	.02	.09	- sign 1	1.9
L45+00N 32+25E	2	40	31	148		26	15	1771	4.36	13	5	ND	1	58	.8	2	2	74	.72	.259	9	65	.88	355	.21	4	2.08	.02	.15	1	5.3
L45+00N 32+50E	2	57	29	133	•••	21	12	810	5.74	14	5	ND	1	46	.	2	2	66	.50	-090	8	62	.58	172	.22	2	1.65	.02	.09	1	9.5
L45+00N 32+75E	1	31	18	127	.7	17	9	1078	3.33	5	5	ND	1	40	.7	2	2	56	.51	.143	7	48	.41	193	.20	2	1.77	.02	.08	1	2.1
L45+00N 33+00E	2	48	24	77	.6	25	15	931	3.33	5	5	ND	1	53	.5	2	2	63	.71	.095	13	- 77	.76	67	.13	2	2.30	.02	.07	1	1.1
L45+00N 33+25E		41	36	78	-8	24	12	797	3.74	8	5	ND	1	40		2	2	66	.43	120	9	84	.70	105	18	3	1.79	.02	.08]	1.7
145+00N 33+75E	2	53	15	72	-8	29	13	625	3.54 3.56	4	5 5	ND ND	1	43	.1.1	2	2	66 66	.98	,099 ,054	13	75	.82	77	.11	3 3	2.39	.02	.08	- 2 3. (sei[1	7.1
145+00N 34+00E	2	56	16	58	1.2	28	13	500	1 22	0000 000 -4	5	ND	1	50	5	2	2	77	61	0/0	٥	103	72	02	25	2	1 05	02	08	1	14 4
L45+00N 34+25E	1	60	16	78	1.3	31	16	686	4.25	5	5	ND	1	58	6	2	2	75	.63	070	10	91	.80	111	23	2	2.14	.02	.00) .8° 1	7.5
145+00N 34+50E	2	71	16	126	7	37	18	1147	4.25	32	5	ND	1	53	1.0	2	2	74	.67	130	11	91	.79	90	811	2	2.50	.02	.08	1	7.0
L45+00N 34+75E	3	70	38	163	.6	38	17	1214	3.70	29	5	ND	1	71	2.4	2	2	69	1.15	146	12	91	.85	94	,10	3	2.32	.02	.09	- j. i	.3
L45+00N 35+00E	4	71	29	211	.9	49	17	959	4.15	23	5	ND	1	72	4.0	2	2	81	1.18	.091	10	103	.90	75	.18	4	2.21	.02	.09	2	20.5
L45+00N 35+25E	9	71	17	113	2.8	29	16	1141	3.68	13	5	ND	1	59	2.1	2	2	76	.85	.062	18	73	.60	63	,20	3	2.19	.02	.08	i , 1	2.8
L45+00N 35+50E	6	55	25	79	.8	24	7	199	4.73	34	5	ND	_1	40	2.1	2	3	95	.35	.042	6	78	.54	88	.27	_3	2.16	.02	.09	1 1	5.1
STANDARD C/AU-S	18	57	- 58	134	6.9	: /1	<u>53</u>	1059	4.02	41	<u>: 19</u>	8	36	53	18.4	16	19	55	.50	091		59	.88	180	.09	32	1.91	.05	. 15	11	55.5

3

Samples beginning 'RE' are duplicate samples.

 \mathbf{r}_{i}

Page 11

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca P X X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 Al ppm %	Na %	K X	. W	Au* ppb
L45+00N 35+75E L45+00N 36+00E L45+00N 36+25E L45+00N 36+50E L45+00N 36+75E	7 8 3 2 2	78 70 119 52 68	25 33 22 18 27	77 254 672 133 124	3.1 1.3 1.9 .9 1.4	20 35 61 27 32	7 16 19 15 19	294 1200 1007 714 895	3.54 3.60 4.02 4.22 4.39	13 24 56 37 56	5 5 5 5 5	ND ND ND ND	1 1 1 1	46 69 63 46 63	4.9 5.1 11.2 2.3 2.2	2 2 2 2 2 2	2 2 2 2 2	66 67 80 80 84	.58 .057 .97 .105 .85 .085 .43 .064 .62 .085	16 16 14 10 18	50 68 94 87 96	.34 .77 .99 .75 .83	58 81 74 72 80	.18 .10 .13 .18 .14	2 2.16 2 2.70 2 2.78 2 2.16 2 2.63	.03 .03 .02 .02 .02	.05 .07 .07 .07 .07	1 1 1	3.7 18.7 5.5 3.2 7.9
L45+00N 37+00E L44+00N 22+00E L44+00N 22+25E L44+00N 22+50E L44+00N 22+75E	1 1 4 1 2	45 44 29 25 20	14 63 39 42 20	88 138 128 126 123	1.7 .3 .4 .3 .3	28 59 26 16 16	16 19 16 10 11	1242 1728 1878 554 947	4.13 4.12 3.41 3.95 3.38	13 12 8 18 9	5 5 5 5 5	ND ND ND ND	1 1 1 1	69 66 36 18 23	1.2 1.7 1.3 1.2 .6	2 2 2 2 2	2 2 2 2 2	83 75 56 61 51	.68 .066 .65 .130 .43 .092 .17 .078 .27 .075	24 31 22 12 14	100 41 31 21 20	.77 1.33 .62 .41 .39	86 221 150 146 145	.15 .20 .12 .16 .15	2 2.28 5 3.44 3 3.25 3 2.69 3 2.91	.02 .04 .02 .02 .02	.07 .13 .09 .09 .09	1 1 1 1 1 1	40.0- 5.5 4.1 2.6 3.5
L44+00N 23+00E L44+00N 23+25E L44+00N 23+50E L44+00N 23+75E RE L44+00N 24+75E	3 2 2 1 2	23 20 23 23 27	22 17 15 25 41	89 97 84 82 80	.3 .4 .2 .2	16 16 13 15 14	11 9 6 7 9	960 732 319 374 381	3.28 3.24 3.69 3.93 3.42	10 6 8 10 11	5 5 5 5 5	nd Nd Nd Nd	1 1 2 1 1	16 18 13 16 13	.6 .5 1.0 .9 .6	2 2 2 2 2 2	2 2 2 2 2 2	48 56 62 54 47	.14 .131 .16 .084 .11 .113 .10 .113 .09 .124	17 15 12 13 15	19 20 17 20 19	.37 .42 .32 .41 .38	70 73 58 66 77	.09 .13 .20 .14 .11	4 4.29 2 3.24 2 4.21 3 3.19 2 3.26	.01 .02 .02 .02 .01	.10 .08 .08 .11 .08	1 1 1 1 1 1	5.0 2.5 1.4 1.4 2.4
L44+00N 24+00E L44+00N 24+25E L44+00N 24+50E L44+00N 24+75E L44+00N 25+00E	1 1 1 2 2	16 22 20 23 26	47 23 36 49 25	109 102 90 81 86	.1 .2 .3 .4	11 16 15 15 16	8 9 8 9 13	3716 843 906 423 1345	3.17 3.32 3.60 3.48 3.25	7 8 10 15 9	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	26 19 14 13 24	.6 .9 .9 .6 1.1	2 2 2 2 2	2 2 2 3 2	56 54 53 46 53	.19 .079 .15 .151 .10 .129 .09 .123 .16 .136	11 16 11 14 14	17 17 19 20 20	.31 .40 .36 .39 .37	211 97 78 76 95	.12 .16 .15 .12 .12	2 1.90 3 4.33 2 2.64 2 3.21 3 2.70	.02 .02 .02 .02 .02	.08 .07 .09 .09 .08	1 1 1 1 1 1 1 1 1	2.0 4.4 1.7 3.3 5.9
L44+00N 25+25E L44+00N 25+50E L44+00N 25+75E L44+00N 26+00E L44+00N 26+25E	1 2 1 2	22 26 42 46 30	14 20 15 20 23	103 83 95 70 50	.2 .2 .1 .2	15 14 20 16 13	8 7 10 8 6	714 307 368 189 107	3.12 3.89 5.36 4.03 3.96	9 10 16 5 8	5 7 5 5 12	ND ND ND ND	1 2 5 2 4	18 19 23 19 10	.9 .5 .2 .2 .4	2 2 2 2 2	2 2 2 3	51 66 81 81 71	.14 .133 .14 .116 .15 .087 .11 .115 .07 .134	10 10 11 10 7	20 21 37 26 17	.37 .52 .79 .54 .22	75 73 53 70 59	. 15 . 17 . 22 . 21 . 26	2 3.79 3 2.88 2 3.49 2 3.29 2 3.70	.02 .02 .01 .02 .02	.08 .09 .12 .08 .06	1 4 1 3 3 2	75.1 _ 7.6 3.3 2.5 1.3
L44+00N 26+50E L44+00N 26+75E L44+00N 27+00E L44+00N 27+25E L44+00N 27+50E	1 3 5 3 1	33 49 24 39 32	26 15 14 16 24	69 73 94 77 66	.4 .5 .3	13 20 14 17 23	6 10 8 8 9	468 295 253 331 211	3.36 3.98 3.38 3.79 5.00	9 9 11 9 8	5 5 5 5 5	ND ND ND ND	1 4 3 3 3	18 21 20 17 19	.5 .6 .3 .8 .3	2 2 2 2 2 2	2 2 2 3	59 63 59 65 100	.12 .164 .13 .121 .15 .068 .12 .091 .16 .100	11 16 10 12 6	20 33 24 27 60	.33 .65 .49 .45 .56	79 59 63 67 50	.12 .15 .13 .19 .27	2 3.08 2 4.38 2 3.64 2 3.83 2 2.58	.02 .01 .02 .02 .02	.06 .09 .07 .08 .10) 1) 1] 1] 1] 1	1.8 3.0 48.4 21.9 13.5
L44+00N 27+75E L44+00N 28+00E L44+00N 28+25E L44+00N 28+50E L44+00N 28+75E	2 3 5 2 1	27 26 116 169 64	16 21 24 11 17	60 76 133 121 119	.3 .7 .3 .5	13 16 36 57 55	5 7 55 28 16	227 317 3144 834 652	3.27 4.12 4.44 5.26 4.29	6 14 16 7 11	5 5 5 5 5	ND ND ND ND	3 2 1 1 3	15 18 25 16 28	.3 .2 1.1 .6 .7	2 2 2 2 2 2	2 2 2 2 2	63 73 74 127 86	.12 .108 .17 .067 .33 .163 .31 .100 .32 .067	8 9 9 8 10	27 35 57 135 98	.33 .42 .54 1.24 1.09	79 51 87 84 90	.20 .19 .10 .23 .23	2 3.08 2 2.33 3 2.53 2 3.40 2 3.76	.02 .02 .02 .03 .03	.06 .08 .17 .26 .13) 1 1 7 4	3.8 18.0 11.4 4.7 11.3
L44+00N 29+00E L44+00N 29+25E STANDARD C/AU-S	1 3 19	45 162 60	21 83 40	61 128 133	.4 .4 7.0	24 30 72	8 28 33	233 1632 1034	3.42 2.70 3.97	11 14 43	5 5 19	ND ND 7	4 1 41	18 27 52	.6 2.3 17.3	2 3 16	2 2 19	65 58 56	.18 .063 .44 .122 .47 .086	7 6 39	50 20 58	.57 .38 .84	49 119 178	.19 .08 .08	2 3.72 3 1.87 33 1.90	.02 .02 .07	.06 .08 .13	5 1 5 17 5 12	2.6 4.3 46.4

Г

Katie Mining Corp. PROJECT MAMMOTH-91 FILE # 91-4702

Page 12

4

SAMPLE#	Mo Cu Pb Za ppm ppm ppm ppm	n Ag Nî Co Mi n ppm ppm ppm pp	n Fe As. U Au Th S m. Xippmippmippmippmipp	r Col Sb Bi V Ca P La m ppm ppm ppm ppm % % ppm p	Cr Mg Ba Tỉ B Al Na K W Au* pm Xippm X X Xippm pob
L44+00N 29+50E	4 62 17 14	3 .1 36 20 111	93.69 30 5 ND 1 3	6 ,7 2 2 76 .38 ,083 6	61 .77 130 .17 3 2.27 .03 .12 11 3.0
L44+00N 29+75E	3 112 21 13	3	23.70 24 5 ND 1 3	3 .7 2 2 84 .44 .105 9	63 .76 86 .16 2 2.57 .03 .13 2 2.2
L44+00N 30+00E	4 146 9 13	3 .2 47 36 88	74.83 23 6 ND 1 2	1 .9 2 2 134 .34 .072 6	46 .91 148 25 2 2.70 .03 .16 🔅 1 27.1
144+00N 30+25E	3 194 43 11	3 .6 63 48 100	43.55 22 5 ND 1 2	3 .9 2 2 87 .24 .093 12	42 .54 100 15 2 2.25 .03 .10 1 4.7
L44+00N 30+50E	3 39 16 6) 5 18 9 22	73.84 7 5 ND 1 2	8 .8 2 2 73 .24 .069 8	42 .48 66 .22 2 2.06 .03 .06 1 12.8
1/(+00N 30+75E	5 0/ 17 10	A 48 77 176	0 7 86 18 5 ND 1 3	6 0 2 2 71 /0 112 13	58 73 107 14 2 2 66 03 10 4 10 4
		4 25 10 32	5 / 12 5 5 10 2 3		50 52 68 23 2 2 33 0/ 00 1 2 /
1// 00N 31-00E	7 41 14 0	+ .5 23 10 32		A 2 2 00 .01 000 10 A 2 2 77 /7 090 10	40 7/ 50 15 0 2 50 0 0 0 0 1 7
L44+00N 31+23C		0 20 20 20 20 20	1 3 60 J ND 1 4		
L44+00N 31+50E	3 23 32 8	4 .7 27 10 00			04 .09 09 13 2 2.04 .05 .09 1 04.7
[44+00N 31+75E	1 55 14 5	7 .4 21 10 30	193,50 2 5 NO 1 .	0 .2 Z Z /1 .39 .U32 8	00 .03 03 .18 2 1.92 .03 .07 1 21.5
144+00N 32+00F	1 42 15 5	9 .6 23 17 50	93.14 24 5 ND 1 4	3 .8 2 2 65 .43 .074 12	58 .66 75 .11 2 2.11 .02 .06 1 3.0
1///+00W 32+25E	1 40 43 8	4 7 22 15 116	7287 3 5 ND 1	9 1 1 2 2 65 50 098 12	47 .58 114 08 2 2.04 .03 .08 1 8.4
	1 40 40 0	2 1 8 30 1/ 58	15 / 1 / 2 5 ND 1	1 1 2 2 80 51 112 0	76 86 210 10 2 2 62 06 11 1 6 1
L44+00N 32+76E	1 1 44 20 7	L 1.0 J0 14 J0		5 8 2 2 07 40 071 7	01 07 1/3 17 2 2 1/ 0/ 11 1 1 5
144+00N 32+13E	1 44 37 7	0 .7 J4 10 7J	134.27 5 ND 1		
L44+00N 33+00E	1 05 27 14	2 .7 37 21 100	54.30 Y 5 NU 2	01 (1.0 Z Z 90.01 .210 1Z	01 .92 231 .10 2 2.90 .04 .14 1 0.J
L44+00N 33+25E	1 53 19 11	1 .8 31 15 75	94.28 3 5 ND 1	9 1.0 2 2 86 .61 .147 8	76 .80 133 .15 2 2.92 .03 .09 1 4.9
L44+00N 33+50E	2 55 16 10	4 .8 32 15 56	44.56 12 5 ND 2	7 .8 2 2 93 .55 .076 9	89 .75 85 .20 2 2.81 .03 .09 1 5.5
144+00N 33+75E	3 82 11 11	1 5 43 21 71	34.59 28 5 ND 1	i9 1.0 2 2 99 .61 .070 8 1	24 1.16 72 18 2 2.56 .03 .08 2 3.1
144+00N 34+00F	3 73 11 9	2 7 38 16 38	30 4 82 10 5 ND 1	6 1 3 2 2 106 56 087 7 1	22 .91 66 21 2 2.09 .03 .08 1 12.3
144+00R 34+25E		1 5 33 12 30	18 4 03 10 5 ND 1	5 0 2 2 RR 44 060 6	97 76 55 16 2 1 89 02 08 1 4 6
	4 00 15 0				77 110 37 110 E 1137 102 100 1 410
144+00N 34+50F	2 72 14 7	6 8 35 14 34	54.30 4 5 ND 1	5 2 2 101 59 089 5 1	17 .86 75 21 2 2.25 .03 .08 1 10.3
144+00N 34+75E	1 6 20 7	Λ O 28 12 74	18 4 48 2 5 ND 1	54 6 2 2 96 47 107 6	95 70 71 22 2 1 94 03 08 1 4 7
144+00N 34+19E	1 76 26 0	8 1 7 36 16 7	8/ / 77 / 6 5 ND 3	(3 1 3 2 2 105 56 138 8 1	
1/(+00H 35+00E	1 1 1 20 9	0 1.7 JO 10 40	1 / 20 27 5 ND 1		00 50 97 10 3 3 1/ 07 08 1 3 7
L44+00N 33+23E		1 3.7 ZJ 11 33	DI 4.27 DI J NU I		90 . 37 d3 . 10 2 2. 14 . 03 . 00 . 1 2. 1
L44+00N 33+30E	1 41 10 14	4 1.2 27 14 143	ו עא כ ס כס.כ כי	43 1.Y Z Z 01.30 105 D	0 .00 00 .13 2 1.70 .03 .00 1 4.0
144+00N 35+75E	2 79 51 42	5 1.0 66 17 94	47 4.14 39 5 ND 1	78 7.9 2 2 88 .99 .086 10 1	146 .87 69 .12 2 2.17 .02 .09 1 1.2
144+00N 36+00F	4 283 73 69	3 26 3 75 19 99	21 4 47 59 5 NO 1	79 14 4 2 2 98 99 086 80 1	141 1.02 81 11 2 2.70 .03 .13 1 12.8
144+00N 36+25E	2 71 27 24	8 1 8 35 16 74	44 3 87 25 6 ND 1	58 5 7 2 2 80 68 088 13	86 80 105 14 2 1 95 02 08 2 86 5 -
L/4+00N 36+50E	2 64 28 10	7 7 32 17 7	30 3 00 74 5 ND 1	71 2 4 2 2 87 05 082 0	84 81 80 12 2 2 01 02 10 1 49 4
1//2008 304302	5 54 20 10	1 9 24 15 53	28 / 18 17 5 NO 1	A C C C C C C C C C C C C C C C C C C C	64 61 60 12 2 2.01 .02 10 1 47.4
144+00N 30+73E	3 30 22 0		JO 4.10 116 J NU 1	40 .7 2 2 07 .33 .000) (00 .01 14 .20 2 2.20 .02 .07 1 3.7
1//+001 37+005	1 72 10 13	5 4 38 20 184	41 / 66 / 5 ND 1	45 6 2 2 104 39 064 8	80 07 102 21 2 7 // 07 12 1 7 6
L44+00N 37+00E		J .6 JO 20 100	00 / // E E ND /		00 .73 102 1218 2 J.44 .03 .12 81 J.0
L43+00N 22+00E		4 .2 29 19 6	20 4.04 0 0 NU D	2 .9 2 2 97 .40 .000 33	48 1.38 1/0 22% 2 4.38 .04 .13 1 1.8
RE L44+UUN 36+25E	2 69 23 24	7 1.0 36 17 B	12 4.28 28 5 ND 1	03 5.4 2 2 87 .71 .095 15	92 .90 119 .14 2 2.22 .02 .09 5 1/2.8
L43+00N 22+25E	2 21 34 9	1 4 16 8 79	90 4.11 12 5 ND 5	21 1.0 5 2 82 .17 .096 10	25 .37 94 .18 3 2.43 .02 .10 1 14.7
L43+00N 22+50E	1 16 20 7	76 .1 17 7 5	34 4.09 2 5 ND 3	22 .3 2 2 85 .20 .083 10	24 .44 76 .14 2 2.49 .02 .08 1 7.5
143+00N 22+75E	1 15 36 8	35 .1 14 6 8	03 3.82 7 5 ND 3	20 .2 3 2 70 .17 .095 8	19 .30 105 .16 2 2.86 .02 .09 1 3.1
L43+00N 23+00F	1 19 39 9	9 2 26 10 10	30 4.01 6 5 ND 5	20 .5 2 2 78 .15 .117 10	32 .53 99 .16 3 2.95 .02 .10 1 3.7
STANDARD C/ALL-S	17 57 38 1	7 6 9 67 30 9	31 3.93 38 17 7 39	48 17.4 16 19 55 46 085 36	56 .84 171 .07 33 1.86 .06 .13 11 46.6

24 ₁

Page 13

						100000									,											·····							
	SAMPLE#	Mo	Cu	Рb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P.	La	Cr	Mg	Ba	πi	В	AL	Na	K	8 0 -	Au*	
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm p	opm p	, mqx	ppm	ppm j	ppm	ppm	*	*	mqq	ppm	ž	pom	% p	mqx	X	X	%	moc	ppb	
	· · · · · · · · · · · · · · · · · · ·	<u> </u>				11.00		•••			0.00			·····		132 28					38048				<u> </u>		<u>.</u>						
	L43+00N 23+25E	2	27	- 14	80	.4	14	8	579	3.31	2	5	ND	2	11	.2	2	2	52	.09	.093	12	19	.24	97	.22	3	5.12	.02	.06	3	4.0	
	L43+00N 23+50E	3	21	26	115	.3	20	8	525	4.84	7	5	ND	2	17	.2	2	2	78	.12	.087	14	28	.46	109	.25	4	4.08	.02	.10	2	36	
	L43+00N 23+75E	3	25	30	113	.7	24	13	1132	4.01	3	9	ND	1	25	3	2	2	59	18	068	15	29	48	121	10	3	3 86	02	10	្រា	3.8	
	143+00N 24+00E	1	16	24	on	. .	10	5	6.62	X 9 X		ç	ND	1	12	5	2	2	45	00	070	6	14	14	01	000	5	2.00	07	07		2.0	
	143+00N 24+25E		20	15	02		12	5	770	3 66	5 J.	ś	ND	1	44	200 	5	5	67	.00	000	0	17	- 10	71	223	5	2.00	.03	.07	4 J	3.4	
	E45,000 E4,25C		20	1.7	72	1.000	14	2	(17	5.00	- eideide	2	ND	1	11	••••	4	د	γr	•07		0	17	• 4 1	04	¥ 24	2	4.20	.02	.02		2.0	
	1/7.000 0/.500		4.0	21	70		~	,	0(0			-					-	-				_					-					_	
	143+00N 24+50E		18	24	19	8 : <u>6</u> :	8	4	849	2.55	2	2	ND	1	15	5	2	5	48	•11	.062	1	13	.16	69	<u>17</u>	3	1.54	.03	.05	1	.8	
	L43+00N 24+75E	2	- 30	17	/8	.Z	15	6	522	3.37	- 2	5	ND	1	16	.3	2	2	58	.10	.222	17	20	.39	89	-12	3	4.02	.02	.09	1	1.2	
	L43+00N 25+00E	2	18	25	85	.2	11	5	326	4.44	5	5	ND	1	18	ି 3	2	2	89	.11	.076	11	20	.24	106	,26	3	2.14	.02	.08	1	.5	
	L43+00N 25+25E	2	23	28	83	.1 .	12	5	397	4.11	7	5	ND	1	15	.2	2	2	67	.11	118	10	23	.31	83	.20	3	3.70	.02	.08	2	1.1	
	L43+00N 25+50E	5	44	22	72	.5	14	- 7	195	4.89	8	6	ND	1	13	.3	2	2	70	.07	139	16	24	.38	95	25	3	3.73	.02	.09	1	2.3	
						berti					<u>)</u>																			ŝ			
	L43+00N 25+75E	3	31	15	82	.2	15	9	514	3.93	6	5	ND	1	16	.2	2	2	62	-11	.240	16	24	.44	61	20	4	5.01	.02	- 10	7	7.0	
	143+00N 26+00F	2	26	45	108	5	12	6	669	2 59	7	5	ND	2	20	1.5	2	2	47	13	116	12	10	31	178	10	ż	1 50	03	11	1	7 5	
	143+00N 26+25E	1 2	26	28	115		16	ŏ	710	1. 26	ंद	5	ND	1	25	1.2	2	5	72	17	101	12	24	59	24	222	ž	7 70	.03	- 10		3.3	
		1 5	21	20	100		47	10	593	1.24	84	÷	10		47	10 N	5		74		100	14	20		00		,	3.37	.02	-00		3.7	
	143700N 26730E	4	21	21	100	1.5		10	202	4.20	1	2	ND				2	2	입	• • •	. 180	14	23	.44	84	.23	4	4.07	.02	.10	4	1.8	
	L43+00N 20+73E	2	24	25	50	1.5	14	0	202	4.08	10	1	ND	1	24		2	2	75	•15	.125	12	25	. 39	11	- 44	ذ	4.07	.02	. 10 :		1.4	
											38- <u>-</u>	_					_	_															
	L43+00N 27+00E	1 2	- 17	17	86	-3	11	4	306	3.73	5	5	ND	1	18	.4	2	2	66	.13	.102	11	19	.32	73	21	3	3.41	.02	.09 ;	§ 1	.6	
	L43+00N 27+25E	3	41	18	78	.4]	13	7	577	4.30	- 4	5	ND	1	16	.2	2	2	69	.12	.186	10	24	.29	99	.24	2	3.77	.02	.08	2	5.6	
	RE L43+00N 28+50E	2	46	9	88	.3	45	13	477	4.41	3	5	ND	1	17	.2	2	2	77	.19	.112	8	103	.86	86	.26	3	3.99	.03	.10	1	2.3	
	L43+00N 27+50E	3	39	15	94	.4	16	12	726	4.52	8	5	ND	1	13	.2	2	4	62	.10	.188	13	28	.38	71	.23	3	4.46	.02	.09	2	2.7	
	L43+00N 27+75E	1	63	5	177	. 1	146	34	1317	6.74	- 🔍 3 1	5	ND	1	21	.2	2	2	151	.41	.080	5	368 2	2.38	105	31	2	4.55	.03	.43	1	4.1	
																				- · ·		-				57.8	-						
	L43+00N 28+00E	16	83	13	172	3	64	39	3092	5.59	39	5	ND	1	23	6	2	2	91	.26	111	15	120	90	112	12	5	4 16	02	13	0	10 7	
	143+00N 28+25F	1 2	81	ō	147	2	126	32	1084	6 86	៍ក៏	5	ND	1	21	8 Z.	5	5	1/2	31	076	1	262	1 0/	01	10	ž	1.02	.01	10	1	1 0	
	143+00N 28+50E	1 5	20	12	01	17	120	1/.	1004	1 / 2	<u>``</u>	5	ND	1	17		5	5	91	- 10	107	0	110	07	73	- 30	2	4.02	.04	. 10	4	1.0	
	1/7+00H 20+30L	5	77	17	71		40	19	470	4.40	18 fi						2	<u></u>	01	. 17	. 107	ç	110	. 72	01	.20	2	4.00	.02	• • • •		1.4	
	1/7/000 20-00F		23	13	40	<u>्</u> र्न्	10	2	277	4.10	2 4	°,	ND		14	<u>_</u>	,	~	00	•11	121	ŝ	27	.34	\overline{n}	.24	5	4.99	.02	.00		1.6	
	L43+00N 29+00E	1 1	60	15	22	د.	22	У	240	4.30	18	2	ND	1	\mathcal{M}	-6	4	2	81	.18	.161	5	84	.49	42	.20	2	2.80	.01	.07	1	.5	
						2019					0.2	_				198.08	_	_													98 G.		
	L43+00N 29+25E	2	- 76	14	11	•2	-32	12	330	4.85	1	5	. ND	1	35	Z	2	2	98	.32	.167	12	79	.98	60	.24	2	3.49	.02	.11	2	5.5	
	L43+00N 29+50E	1	106	- 7	128	- 5	- 34	20	371	7.31	<u>11</u>	5	ND	1	13	.6	2	2	197	.17	.103	6	70 '	1.16	150	.38	2	4.89	.03	.26	1	27.6	
	L43+00N 29+75E	2	- 33	17	- 53	- 3	12	4	151	4.40	- 4	5	ND	1	17	.2	2	2	78	.14	.165	9	38	.32	52	19	2	4.15	.02	.07	2	5.3	
•	L43+00N 30+00E	1	- 31	18	- 56	.3	17	6	311	3.40	2	6	ND	1	27	.2	2	2	62	.24	.122	11	42	.48	65	.23	2	2.37	.02	.09	1	1.0	
	L43+00N 30+25E	4	144	51	113	.4	24	28	2378	4.07	23	5	ND	1	29	1.1	2	2	67	.27	.224	12	33	.55	121	13	3	2.78	.02	.13	ं उ	2.1	
											- Sieże											•				833	-						
	L43+00N 30+50E	7	123	17	116	3	36	17	748	4.78	37	5	ND	1	37	5	2	2	85	35	108	11	50	77	03	21	4	3 25	02	13	4	2	
	143+00N 30+75F	28	262	17	173	- 7	63	100	2065	5 05	78	5	ND	i	44	1 1	2	5	86	50	172	22	20	70	17/	12	7	3 05	.02	. 15	37.	7 9	
	1/3+00N 31+00E	16	40	2/	120	7	20	10	0.05	5 00		1	ND	4	77		5	5	00	- 27	8445	4/	47	.10	407	816 877	3	3.03	- 02	.07	82.	3.0	
	1/3.000 31.00E	10	47	24	120		27	17	7000	7.07	*	2	NU		32	*	4	4	72	. 27		14	42	.02	FUT	123	4	3.20	.04	. 15	?	100.0	
	L43+00N 31+25E		07	21	132	- - -	22	10	1008	3.21	1	2	ND	1	38	ा - २	5	2	- 54	.27	.1/2	11	25	.35	154	- 10	2	2.41	.02	.07	<u> </u>	4.6	
	L43+00N 31+50E	1	- 59	32	151	.,6	19	9	2214	5.84	8	5	ND	1	39	.8	2	2	59	.24	.299	11	29	.43	179	<u>, 17</u>	- 4	2.69	.03	. 18	<u>_</u>	3.5	
		1																													<u> 823</u>		
	L43+00N 31+75E	1	60	22	84	- 5	13	6	545	4.24	23	5	ND	1	19	.7	2	2	69	.11	135	11	26	.37	90	14	2	2.69	.02	.09	8 f .	2.8	
	L43+00N 32+00E	7	51	17	394	.3	43	16	1812	4.15	28	5	ND	1	34	2.9	2	2	97	.38	.093	10	64	.64	108	14	2	2.55	.02	.07	2	2.8	
	STANDARD C/AU-S	21	61	41	142	7.6	74	32	1129	4.03	-44	21	7	39	52	18.7	18	21	59	40	096	41	59	90	183	09	34	1.97	06	.13	11	53.1	
		_1										<u> </u>																				~~ 1	

Page 14

																											•	ACI	IL ANALT	TICAL	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sг	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba Ti	B	Al	Na	K	¥	Au*	1)
	ppin	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	bbw	ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppm	X	<u> </u>	ppm	ppm	X	ppm 🔗 🌾	ppm	- %	%	X _	ppm	ppb	
143+00N 32+25F	2	34	19	113	2000 100	27	14	663	4 15	10	5	ND	1	3/	2	2	2	40	71	107	0	50	41	7/ 0.45	2	1 00	07	0.0			1
143+00H 32+50E	נ ד	54	22	30	5	32	14	605	7.15	10	2		4	J4 /E	-5	2	2	07 07	- 21	- 192	10 10	27 04	+04	14 12	2	1.00	.03	.08	1	6.5	11
1/3+00N 32+30E	. 7	114	51	205		17	2/	1077	4.03	47	2			- 42 B			5	02	. 29	1000	10	81	1.00	01 10	2	2.33	.04	.09	1	12.1	
L43+00N 32+73E		110	21	470		41	24	1933	5.00	01	2	NU		22	2.1	2	2	09	.90	.120	20	47	.20	85 .04	5	2.80	.05	.06	Z	4.0	
L43+00N 33+00E	07	94 57	12	172	1.0	40	12	388	5.07	20	2	ND	1	- 20 🖉	1.1	2	2	102	.36	.053	11	68	.63	51 .16	2	3.04	.03	.06	1	2.2	
L43+00N 33+25E	3	57	18	141	-8	55	17	489	4.65	10	2	ND	1	50 §	.6	2	2	97	.53	.063	7	84	.93	99 .21	- 3	2.59	.04	.09	2	3.9	
			-								_			- <u>-</u>		_															
L43+00N 33+50E	6	48	. 9	165	1.1	23	12	1048	4.38	6	5	ND	1	25	1.0	2	3	91	.26	.167	8	49	.38	85 .13	- 3	2.90	.02	.07	1	2.0	
L43+DON 33+75E	8	136	40	514	- 5	117	22	1379	3.65	196	5	ND	1	82 1	0.5	2	2	69	1.46	,128	10	62	.46	46 .06	2	1.89	.03	.07	1	38.4 -	╼╁╵
L43+00N 34+00E	j 14	71	26	563	6	90	18	1037	3.65	79	5	ND	1	63 🖇	7.0	2	2	83	.88	106	8	61	.55	47 .06	2	1.75	.03	.05	i 1.	2.6	1
L43+DON 34+25E	9	53	13	280	.6	49	16	604	4.11	11	5	ND	1	48	1.8	2	2	101	.53	.060	6	84	.67	73 .16	2	1.72	.02	.05	1	2.9	
L43+00N 34+50E	2	50	10	114	1.2	31	16	546	4.64	8	5	ND	2	51 🗋	1.1	2	2	96	.42	2114	6	108	.76	113 .23	2	1.80	.03	.09	1	42.4 .	4!
										. 1991.				ŝ						1000 0000 1 1000 0000 1									t égy -		
L43+00N 34+75E	5	62	- 14	165	.9	37	16	612	4.29	7	5	ND	1	64	1.7	2	2	88	.65	.058	6	103	.76	114 .20	2	1.82	.03	.08	1	44.7 -	-{
L43+00N 35+00E	1	78	27	169	1.0	42	19	658	4.63	ୁ 7	5	ND	1	71	1.5	2	2	90	.85	.148	6	121	1.25	121 .15	2	2.20	.03	.14	1	18.0	
L43+00N 35+25E	5	93	16	428	1.2	48	20	959	4.67	51	5	ND	1	60	6.9	2	2	92	.76	.080	15	109	1.14	69 .17	3	2.69	.02	.10	1	8.5	
L43+00N 35+50E	4	51	27	219	1.1	34	18	1539	4.10	31	5	ND	1	49	2.2	2	2	81	.61	.121	8	88	.82	143 .14	5	2.01	.02	.08	1	14.3	
L43+00N 35+75E	3	39	12	132	2.2	19	14	672	3.55	8	5	ND	1	41 🗄	1.2	2	2	73	.35	.080	10	64	.49	90 .18	2	1.72	.02	.07	1	3.2	- [!
																												•			11
RE L43+00N 37+00E	4	56	12	73	.6	35	18	614	5.04	15	5	ND	1	50	.2	2	2	94	.44	.071	9	96	.98	78 .19	4	2.17	.02	.11	1	5.6	11
L43+00N 36+00E	3	37	13	114	1.5	20	11	379	4.38	14	5	ND	1	31	8	2	ž	70	.23	226	7	68	.55	83 16	2	2.59	02	.08	. i	1 0	11
L43+00N 36+25E	2	92	40	174	1.2	48	24	1554	4.67	121	Ŝ	ND	1	74	4.2	2	2	90	.83	115	12	101	1.48	141 15	2	2.38	.03	.20	1	11 6	
L43+00N 36+50E	4	103	20	122	.8	48	25	1075	4.64	273	ŝ	ND	1	75	1.9	2	2	90	.00	8113	13	105	1 33	104 10	2	2 74	03	16	1	22 1	1
L43+00N 36+75E	6	68	10	92	.3	38	22	743	5.24	68	5	ND	1	57 8	6	2	2	99	.69	083	. õ	108	1.06	97 21	Ā	2.44	.02	11	1	37	
		-			17 H.	+ -				8 S. S. S.	-		•			-	-					100				E 1 4 4					
L43+00N 37+00E	3	54	9	68		32	18	586	4.89	15	5	ND	1	49	2	2	2	91	42	040	8	96	04	72 10	,	2 00	02	11	1	77	
L42+00N 22+00E	5	33	67	159	2	13	14	4198	4 12	1	5	ND	1	45	12	5	2	88	30	134	21	25	- 20	262 22	2	2.07	.02		1	1.5	
L42+00N 22+25E	6	32	22	95	- 4	29	16	4137	4.23	8	5	ND	1	55	ं ह	5	2	85		220	30	35	76	225 24	2	2 6/	.03	.07	2	5 5	11
142+00N 22+50F	Š	22	25	84	7	ő	13	1070	3 66	7	Ŕ	ND	ż	28		بر ت	2	62	- 79	100	35	2/	.10	11/ 27	2	7 50	.05	.00	4 0		
142+00N 22+75F	1 2	18	31	111	1	12	10	1601	3 86	2	Š	ND	1	27	·	2	2	۵ <u>۲</u>	.20	122	12	21	- 23	101 20	7	2.27	.02	.07	200	.7	- !
	- ۱	10	5.			12	10	1071	5.00		,	RD		1	81 - 6 1) 81 - 83 - 83	4	۴.	01	. 24	* I CC	14	41	134	171 .20	2	2.04	-02	.00		2.4	
142+00N 23+00F	2	10	23	on	2	15	10	012	3 67	5	5	MD	7	2/	•	2	2	42	2/	004	11	24	19	110 20	7	7 70	02	00	F	44 7	- 17
142+00N 23+25E	2	<u>41</u>	12	7/.	1	10	12	537	3.07		5		7	24	· • 5 ·	2	2	70	. 24	110	10	20	.40	76 47	2	3.30	.02	.09		7/	
142+00N 23+50E	5	2/	22	75		15	13	1120	4 00	7	5	10		20	• 🖅	2	2	70	.23	047	17	20	-13	- 72 S. 10	4	3.07	.02		11	1.4	- 11
1/2+001 23+755		32	42	176	• • •	20	12	1710	7 400	17	5		- '	24 0	· .	2	2	10	.34	400Z	- 17	20	.21	90 10		2.39		.07	21	2.0	1
142+00N 23+732		26	27	102		10	12	507	1. 1/	1	2			21	2. 4	4	2	63	.32	4247	20	21	.20	243 .10	4	3.21	.05	.12		3.3	1
142+00N 24+002	ر _ا	64	23	104		17	1.5	273	4.14		2	NU		41		2	2	· 03	.40	- 166	12	32	-01	140 .14	2	2.0/	.02	.09	11	34.2	1
162+001 26+255	5	10	10	82		17	12	1700	2 74	17	7/	10	1	117	<u>.</u>	3	2	17	4 00		77	20	20	470 00	-	2 72	~~	•		7.0	
1/2+00N 247230	7	19	47	02	- 88 - 9 -	10	14	412	2.10	22014) 2330a	34	NU	<u></u>	117	2.2	4	2	4/	1.80		23	20	. 29	132 .05	2	2.32	.02	.06	- 4	3.9	
1/2+00N 24730C	2	10	21	20	- 194 4 - 1995 - 4 9	10	1/	012 11/E	4.70	9	2	NU		43		2	2	80	.42	.029	12	- 52	.45	244 .21	4	1.96	.02	.09	8	2.8	
1/2+000 24+755	1 2	20	104	10/		17	14	1142	7 74		2	NU	1	2/	. -?	2	2	07	. 20	.082		32	.00	120 .20	2	3.31	-02	, 10	4	2.4	- [!
1/2+00N 23700E	5	21	100	104	ः २ २ २०१४	472	1/	3001	3.31	0	0	ND	1	00	3.U	2	2	21	.01	.201	17	- 24	.40	206 .19	3	3.61	.03	.12	20 5 .	2.6	
LAZTUUN ZOTZOE	4	20	20	142	्राष्ट्र	15	10	1031	3.84		2	ND	2	20	.0	2	2	55	.17	.209	9	20	.34	157 .21	2	5.49	.02	.09	1 - 1	1.6	
1/2/000 25/500	_			~7				2407			-			.		-	-				. .					•					
L42+00N 25+50E	1 2	51	22	95	5	20	51	2107	2.55	8	5	ND	1	26	2.9	2	2	38	.23	<u>, 135</u>	31	16	.25	138 .10	3	2.74	.02	.08	1	1.1	
L42+UUN 25+75E	3	22	18	102		15	11	800	4.30	12	5	ND	3	14	.5	2	2	59	.08	.178	14	21	.42	80 .22	_2	3.48	.02	.10	1	.7	
STANDARD C/AU-S	19	- 59	41	154	7.4	- 74	- 31	1054	4.00	43	19	7	38	52 (18.5	14	19	55	.49	.090	- 38	58	.90	175 .09	34	1.88	.06	. 15	11	46.1	

- 1

Page 15

ACHE AHAL

SAMPLE#	Mo pom	Cu DOM	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P Y	La	Cr	Mg	Ba Ti	B AL	Na	ĸ	¥	Au*
L42+00N 26+00E L42+00N 26+25E L42+00N 26+50E L42+00N 26+75E L42+00N 27+00E	2 4 9 5 2	32 20 24 42 21	20 45 36 36 26	65 93 114 154 83	.3 .1 .3 .4 .2	15 16 12 17 9	8 10 8 19 6	287 682 700 1372 473	3.72 3.38 3.41 3.45 3.88	6 18 4 7 4	5 5 5 5 5	ND ND ND ND ND	3 3 3 5 2	16 15 19 26 26	.7 .8 .7 1.9 .9	2 2 3 2 2	2 5 2 2 2	64 39 51 57 69	.11 .0 .10 .1 .13 .0 .18 .1 .20 .0	193 19 185 89 162	14 14 14 7 17 7	31 21 16 22 17	.54 .43 .27 .35 .29	49 .13 80 .15 106 .19 164 .18 101 .20	2 3.51 3 3.96 7 3.90 2 5.05 5 2.17	.01 .02 .02 .02 .02	.07 .09 .07 .09 .08	рря 1 1 1 1	2.2 1.6 .8 1.3 1.2
L42+00N 27+25E L42+00N 27+50E RE L42+00N 28+50E L42+00N 27+75E L42+00N 28+00E	1 1 1 1	51 47 47 130 83	31 25 17 16 12	89 61 65 125 145	-8 -6 -8 -4	20 17 21 51 74	8 7 8 23 33	311 247 244 504 963	3.84 4.07 3.43 5.40 3.68	6 10 3 13 2	5 5 5 5 5	nd Nd Nd Nd	4 3 3 1	17 11 22 15 26	1.1 .7 .8 .5	2 2 2 2 2 2	2 2 2 2 2 2	68 66 64 114 64	.17 .0 .11 .0 .17 .0 .23 .0 .76 .0	198 182 182 171 137	8 8 5 6 2	37 33 45 93 92	.44 .37 .50 1.31 1.30	66 .17 52 .19 52 .21 67 .19 42 .15	2 3.81 2 3.69 2 3.78 6 4.17 4 2.15	.02 .02 .02 .03 .04	.09 .08 .06 .21 .11	1 1 1 1	3.6 4.1 1.4 1.7 1.7
L42+00N 28+25E L42+00N 28+50E L42+00N 28+75E L42+00N 29+00E L42+00N 29+25E	2 1 2 15	64 45 122 81 84	20 23 13 17 23	96 66 103 77 80	.5 .5 .4 .3	47 22 52 29 32	13 8 20 11 11	303 249 432 416 370	4.50 3.46 4.43 3.77 4.70	6 2 2 6 9	5 5 5 5 5	nd Nd Nd Nd	1 2 5 2 2	14 22 18 25 20	-6 .7 .9 .5 .4	2 2 2 2 2 2	2 2 2 2 2	84 63 89 76 78	.17 .0 .18 .0 .19 .0 .24 .0 .24 .0	193 177 185 186 151	5 5 9 6	93 46 49 54 41	.70 .53 .81 .65 .31	63 .22 52 .21 72 .20 56 .16 63 .19	4 3.31 5 3.73 8 4.00 2 2.91 2 2.06	.03 .02 .02 .02 .02	.08 .07 .11 .09 .07	1 1 1 1 9	.6 1.4 4.8 23.2 2.9
L42+00N 29+50E L42+00N 29+75E L42+00N 30+00E L42+00N 30+25E L42+00N 30+50E	14 2 1 4	111 149 59 131 51	23 22 20 14 19	65 102 55 81 66	.6 .6 .2 .9 .9	22 44 18 23 19	8 27 8 13 8	221 1326 231 331 264	4.40 6.56 5.05 5.29 4.51	6 18 9 11 21	5 5 5 5 5	nd Nd Nd Nd	4 2 4 4 4	22 20 19 14 22	.6 .5 .5 .7 .8	2 2 3 7	2 2 2 2 2 2	84 135 96 109 86	.22 .0 .26 .1 .14 .0 .13 .0 .18 .1)81 106)80)80 47	9 5 8 6 10	48 43 41 49 41	.56 .88 .54 .62 .53	47 .20 80 .20 43 .25 55 .19 54 .19	2 2.92 2 2.36 4 3.95 2 2.99 3 3.23	.02 .02 .02 .02 .02	.10 .09 .08 .05 .08	4 1 1 2 6	11.0 2.1 1.2 5.2 35.9 -
L42+00N 30+75E L42+00N 31+00E L42+00N 31+25E L42+00N 31+50E L42+00N 31+75E	1 2 4 5	46 48 43 97 81	18 41 26 13 25	76 71 72 72 134	.4 .4 .2 .6 .5	22 19 18 27 32	9 9 8 13	298 444 254 216 664	3.73 4.17 4.50 3.90 3.62	5 16 10 6 7	5 5 5 5	ND ND ND ND	2 2 3 3 1	26 22 19 17 37	.5 .9 .4 .9 1.2	2 2 4 3 2	2 2 2 2 2	69 66 77 89 85	.21 .1 .12 .1 .12 .0 .12 .0 .32 .0	121 180 091 070 064	10 14 10 11 10	47 39 36 52 59	.66 .58 .58 .55 .78	55 .15 58 .14 57 .18 43 .14 68 .10	2 3.36 3 4.31 2 3.26 3 4.18 2 2.65	.02 .02 .02 .01 .02	.08 .10 .11 .06 .08	1 1 1 6 2	8.1 3.3 7.9 3.5 5.5
L42+00N 32+00E L42+00N 32+25E L42+00N 32+50E L42+00N 32+75E L42+00N 33+00E	4 8 6 8 4	59 61 137 48 35	44 17 16 17 23	149 165 103 139 110	.3 .3 .6 .4 1.1	30 40 21 26 18	16 12 6 5 5	1148 386 158 139 309	3.73 4.17 4.65 3.86 3.67	8 21 5 9 9	5 5 5 5 5	nd Nd Nd Nd	1 1 2 3	36 23 16 16 17	1.3 .5 1.1 1.4 1.2	2 2 4 3 6	2 2 2 2 2 2	73 87 92 71 78	.33 (.22 (.13 (.13 (.13 ()72)69)57)48)88	8 9 6 5 4	59 45 45 33 40	.78 .53 .30 .21 .28	79 .11 57 .12 42 .16 43 .13 56 .16	2 2.39 2 3.92 2 4.78 4 4.79 2 3.27	.02 .02 .02 .02 .02	.10 .04 .03 .03 .05	3 1 1 1	4.8 3.6 3.9 3.0 3.6
L42+00N 33+25E L42+00N 33+50E L42+00N 33+75E L42+00N 34+00E L42+00N 34+25E	9 3 2 1 1	47 26 41 57 67	22 22 35 18 12	209 89 130 96 76	.8 .6 .5 .4 .4	38 13 21 30 35	9 4 10 13 15	386 182 1294 601 373	5.03 3.11 3.49 4.17 4.30	10 4 12 12 13	5 5 5 5	ND ND ND ND	4 3 1 1 1	23 10 34 47 47	1.3 1.3 1.1 1.0 1.0	2 4 2 2	5 2 2 2 2	121 57 69 86 93	.15 .0 .07 .0 .26 . .40 . .36 .0	091 077 105 121 061	6 6 5 7	48 23 52 87 97	.37 .12 .54 .89 1.01	58 .15 46 .16 85 .11 53 .16 55 .19	2 4.32 2 4.97 2 2.25 5 2.44 4 2.54	.02 .02 .02 .02 .02	.05 .04 .09 .10 .09		8.0 1.7 4.6 13.6 24.1
L42+00N 34+50E L42+00N 34+75E STANDARD C/AU-S	2 1 19	53 47 63	32 29 43	90 58 131	.3 .2 7.0	25 28 72	10 11 33	520 268 1039	3.99 3.95 3.93	10 16 41	5 5 18	ND ND 8	1 1 39	37 45 53	1.5 1.7 17.9	4 3 16	2 3 17	79 77 57	.28 .0 .32 .0 .47 .0	096 072 087	6 5 39	69 86 58	.62 .78 .87	76 ,16 55 ,15 178 ,08	3 3.03 2 1.86 34 1.92	.02 .02 .07	.08 .08 .16	1 1 13	25.6 15.7 46.3

. 4

÷.

		·····												130	87.69								00000000		<u> </u>	·······		
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr 😸	Cd	Sb	Bi	V	Ca 🔬	္ရွိ La	Ĉr	Mg	Ba 🛛 🏹 İ	8 AL	Na	K	23 0 , 1	\u*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	7	ppm	ppm	ppm	ppm	bbu	ppn	ppm	ppm	ppn	X 💮	ppn	ppm	X	ppm 💦 🌾	ppm %	%	X :	bbw: I	opb
142+00N 35+00F	2	25	13	52	3	8	5	150	3 40	5	5	ND	2	27	2	2	2	60	11 30	⊗ 7: 9	22	10	50 15	2 1 89	02	05		7 4
142+00N 35+25E	2	33	17	97	5	17	õ	615	3 07	14	5	ND	5	້ຳ	7	2	2	93	20 38	ິ ຊິ 7	66	- 17	JY 1J 75 1R	2 1.00	.02	- 05	<u> </u>	(.) (
142+00N 35+50E	6	40	21	126	1.1	18	ý	376	5.04	80	5	ND	1	25	1	2	5	118	17 10	7. 9	44	- 36	59 17	23.04	.02	.00	<u> </u>	5.5 (4
L42+00N 35+75E	4	64	46	196	1.8	28	15	648	4.46	51	5	ND	1	33	1 4	2	2	03	24 13	i a	58	48	52 14	2 3 44	02	- 00-		1.0 57
L42+00N 36+00E	5	40	28	144	2.1	21	11	546	4.60	171	5	ND	ż	31	1.2	2	2	96	20 11	2 8	38	.37	74 14	2 2 54	.02	06		2_1 Z Z
										ોલ્સ	-		-			-	-							2 2124				
L42+00N 36+25E	7	. 95	16	140	.8	30	19	872	5.15	97	7	ND	1	41	.8	2	2	74	.17 .16	4 8	31	.34	68 .12	3 4.62	.02	.06	÷1,	4.9
L42+00N 36+50E	6	210) 30	144	.8	37	22	758	5.30	119	5	ND	1	51	1.8	4	2	69	.42 .22	2 8	33	.30	98 .06	2 2.96	.02	.05	3	8.3
L42+00N 36+75E	5	89	14	70	7	19	8	195	4.43	89	5	ND	1	33	.4	2	2	82	.18 .10	6 8	41	.35	41 .11	3 3.48	.02	.05	2	5.7
L42+00N 37+00E	5	58	12	- 77	4	16	8	170	4.56	185	5	ND	1	21	1.3	2	2	71	.12 15	09	40	.28	50 .16	3 4.05	.02	. 05	4	5.8
L41+00N 22+00E	6	23	17	74	4	14	13	1076	3.51	10	5	ND	1	50	- 8	2	2	63	.50 .07	3 20	30	.43	95 ,15	3 2.11	.02	.06	3	3.2
	_				고만님						_					_	_			÷.								
L41+00N 22+25E	5	26	18		5	18	15	920	3.65	<u> </u>	5	ND	1	57	9	2	2	68	.49 .07	8 36	35	.61	86 .14	2 2.31	.02	.07	2	4.6
L41+UUN 22+5UE	4	22	54	87		22	16	1451	5.90	<u> </u>	2	ND	1	୍ର ୨୨ ୍ର	1.0	2	2	77	.54 .05	5 42	40	.76	158 .21	2 2.51	.02	.08	3	4.9
141+00N 22+75E	נ ד	22	12	77		17	14	7/1	4.17	÷ \$	2	ND	4	24 S	3	4	4	78	.20 .04	U 33	42	.80	111 .29	2 2.25	.02	.09	10	5.7
141+00N 23+00E	5	21	12	81		15	12	244 230	4.20	17	5	טא חוו	1	40		2	2	76	.39 00	ີ່ ວິ ດີ ວາ	40	.02	121 .20	2 2.30	.02	.08	23 1	3.5
	, , , , , , , , , , , , , , , , , , ,		- /	01		12	16	0.00	-			au		40		2	2	14		.	20	.47	110 .17	3 1.77	.02	.07	20 I	1.0
141+00N 23+50E	4	31	38	123	1	21	14	1589	3.93	5	6	ND	1	51 🖗	•	2	2	88	47 08	S T 17	36	72	156 18	2 2 80	02	08	13 1	4.2
L41+00N 23+75E	4	19	24	108	<u></u>	16	11	1107	4.18	- 4	7	ND	ż	27	Ś	2	2	69	.25 06		32	.50	143 .23	2 2.64	.02	.08	7	5.8
L41+00N 24+00E	3	41	13	71	.1	20	18	1073	3.34	2	Ś	ND	- ī	53	1.1	2	2	63	.54 .08	6 32	39	.59	126 11	2 2.95	.02	.06	3	4.1
L41+00N 24+25E	΄ 3	33	50	96	1	24	14	1019	3.72	6	5	ND	1	83	1.3	2	2	61	.88 11	4 20	38	.57	172 .14	2 2.68	.02	.07	4	5.9
L41+00N 24+50E	3	16	19	68	.3	14	9	314	3.24	- 4	5	ND	1	52 🐰	.6	2	2	58	.58 .04	6 17	31	.44	134 .14	3 1.83	.02	.05	6	1.7
	_													200 200 200						8								
L41+00N 24+75E	5	24	31	79	1 _	14	13	1157	3.24	ુંટ્ર	8	ND	1	40 👷	1.0	2	2	62	.45 .04	9 2'	32	.51	115 ,19	2 2.93	.03	.07	5	3.0
L41+00N 25+00E	4	22	34	- 79	.3	15	14	954	3.32	5	5	ND	1	38	1.1	2	2	51	.39 .06	8 2	23	.38	123 ,16	4 3.32	.02	.06	4	2.5
L41+00N 25+25E	2	21	19	84		14	47	585	3.50	<u>0</u>	2	ND		20	<u></u>	2	2	57	.18 [1]	5	28	.38	85 .21	2 4.07	.02	.07	3	5.0
141+00N 25+50E	2	20	24	121	3.89.9	24	13	377	4.20	# !	2	ND	2	20 (i) 10 (ii)	• 0	<u>,</u>	2	85	.32 .05	0 14	65	.67	81 .22	2 3.33	.03	.10	5	5.4
LATTOON ZJTTJE	۲	42	24	141		24	15	474	4.52		2	NU	2	IA U	••	4	2	бy	. 10 . 10		43	.02	78 .23	2 4.85	.02	•11	٤	2.0
141+00N 26+00F	1	34	46	162	2	21	17	3475	3 50	2	5	. ND	2	26	1 1	2	2	54	10 1/	8 1 1	27	61	204 20	23/8	02	12		77
RE L41+00N 25+75E	2	40	23	118	4	22	14	510	4.17	13	ś	ND	5	18	3.7	5	5	67	15 17		42		75 22	2 3.40	.02	- 16	T T	J.J J /
L41+00N 26+25E	2	65	16	113	.2	25	13	447	3.68	4	5	ND	3	16	2.	2	2	63	.22 2		48	.61	71 21	2 5.04	.02	.12	2 1	2.4 8 0
L41+00N 26+50E	10	17	12	98	.1	12	10	766	4.11	5	5	ND	2	32	2	2	2	70	.26 .00	4 1	30	.59	112 22	2 2.64	.02	.09	2	3.1
L41+00N 26+75E	2	38	24	81	1	30	11	329	4.85	7	5	ND	3	18	.3	2	2	98	.28 .08	9	145	.56	55 .24	2 2.12	.03	.12	1	1.9
1																										¥.		
L41+00N 27+00E	2	53	27	96	୍ . 1	23	13	852	4.83	8	5	NÐ	1	17	.2	2	2	91	.22 1	5 1	53	.56	68 .23	2 2.43	.03	.13	1	2.9
L41+00N 27+25E	1	54	8	122	- S. I	34	19	1526	4.45	5	5	ND	1	25	.2	2	2	89	.36 .07	7	' 96	.80	106 23	4 2.19	.04	.13	2	7.7
L41+00N 27+50E	4	134	18	126	.4	45	25	777	4.65	17	5	ND	1	28	.8	3	3	97	.64 .0		7 111	1.17	55 .19	3 3.30	.05	.17	3	5.6
1 L41+00N 27+75E]	95	19	196	3	51	27	774	4.40	10	5	ND	1	23	.7	2	3	69	.70 13	1	116	1.02	117 .23	2 3.63	.04	-11	3	6.3
LATHON 28HOUE	1	75	11	127	4	56	20	704	4.10	14	5	ND	3	22	.4	2	2	74	.41 📶	3 1	5 114	1.00	79 .20	2 3.58	.03	.12	2	3.1
1/14000 201255	<u>,</u>	00	47	130	2000 2000	07	7/	71/	/ 75		F			.		~	~		W	<u>.</u>				~ ~				
1 4 1 TUUN 20+22E		20	د ا م	140	۲.J	02	24	1202	4.30	47	2	NU	1	21	84	2	2	84	·	2	142	1.10	82 .22	2 3.72	.04	.13	្រៀ	1.5
STANDARD C/ALL-S	20	07 50	ץ 7 ג	110	7 /	104	21	1042	2.44	() () () ()	20	טא יל	1	20 2	0.0) 16	- 24	110	.44		2/5	1.09	YY .24	2 2.54	.05	.15	2	2.0
1 31 MUARU U/AU"3	1 20	0	16	1.34	4		26	1004	4.01	229 43		· · ·	ər	21.4	10.7	12	2 I	20	.47 §U)	ୁର କ	> 3Y	- •¥1	110 308	22 1.98	• UQ	. 12	- 1 4 4	J.O

' ~

يلي د ي

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm g	Ag opm	Ni ppm	Co ppm	Mn ppm	Fe / % Pi	is xni i	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca X	P %	La ppm	Сг ррм	Mg X	Ba Ti ppm %	B Al ppm %	Na %	K X	Ppm (Au* ppb
L41+00N 28+75E L41+00N 29+00E L41+00N 29+25E L41+00N 29+50E L41+00N 29+75E	2 4 5 2 3	120 146 152 461 243	25 15 12 14 15	119 93 193 153 126	.5 .8 .6 .5 .7	36 26 46 78 38	19 11 33 37 18	832 344 781 912 640	4.06 3.68 3.57 6.68 4.75	20 14 54 7	5 5 5 5 5	ND ND ND ND ND	3 3 1 2 1	22 32 33 29 28	-2 -2 -2 -6 -2	2 2 2 2 2 2	2 3 3 3 4	76 62 62 119 81	.26 .38 .46 .49 .30	. 165 . 136 . 150 . 106 . 143	8 9 14 9 8	43 54 58 66 54	.62 .62 .62 1.16 .72	95 .28 71 .25 71 .18 45 .26 67 .24	2 4.07 2 3.21 2 4.18 4 3.22 2 3.41	.03 .03 .02 .03 .02	.13 .08 .08 .08 .08	1 (14 2 1 1(1 1	5.3 1.3 0.1 7.4 3.0
L41+00N 30+00E L41+00N 30+25E L41+00N 30+50E L41+00N 30+75E L41+00N 31+00E	6 3 5 2 1	77 155 129 73 41	17 25 98 27 55	95 97 126 125 85	.4 .6 2.6 .8 .2	24 27 29 18 19	11 15 21 9 9	447 685 1568 661 685	4.07 5.07 2.93 4.24 3.26	11 8 30 8 10	5 5 5 5 5	ND ND ND ND	1 2 1 1	30 35 42 22 36	.6 .3 1.8 .3 .8	2 2 2 2 2 2	3 2 2 2 2	73 89 59 61 61	.32 .37 .27 .16 .28	. 116 . 178 . 146 . 229 . 095	10 10 13 9 9	44 63 35 31 49	.65 .75 .40 .48 .58	77 .24 80 .24 126 .14 75 .13 82 .22	2 2.66 2 3.18 2 2.68 2 3.31 2 2.23	.03 .03 .02 .02 .02	.09 .11 .09 .10 .10	1 1 1 1	2.8 4.9 4.7 2.8 3.2
L41+00N 31+25E L41+00N 31+50E L41+00N 31+75E L41+00N 32+00E L41+00N 32+25E	6 10 11 8 8	30 57 65 40 52	25 29 49 25 14	80 390 1233 391 293	.7 .5 .6 .4 .5	12 49 110 34 38	3 12 22 15 13	242 770 2810 983 780	3.49 4.86 4.02 4.00 4.06	12 18 40 28	5 5 5 5 5	ND ND ND ND	2 1 1 1	13 25 61 34 28	.6 1.2 17.2 1.8 1.5	2 2 2 2 2 2	2 3 2 2 2	100 112 63 68 71	.13 .25 1.19 .40 .37	. 143 . 165 . 253 . 070 . 141	8 8 14 10 8	34 41 40 57 41	. 15 .34 .50 .62 .44	63 .25 123 .22 136 .07 84 .25 93 .21	2 2.58 2 3.33 4 2.90 2 2.90 2 4.49	.02 .02 .02 .03 .02	.05 .07 .08 .08 .05	1 1 1 1 3 1	0.7 4.3 4.4 4.1 1.5
L41+00N 32+50E L41+00N 32+75E L41+00N 33+00E L41+00N 33+25E L41+00N 33+50E	10 9 15 13 6	59 81 54 46 36	22 11 12 12 30	159 192 306 255 183	.4 .6 .6 .6	35 40 55 48 33	11 15 12 9 7	603 410 301 369 306	4.23 4.57 5.30 4.73 3.79	11 6 17 13 7	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	34 29 30 24 35	1.3 1.3 1.7 1.4 1.3	2 2 2 2 2 2	3 3 2 2 2	87 112 102 102 80	.48 .34 .37 .24 .30	.076 .057 .113 .118 .050	10 10 6 8	47 53 47 40 50	.50 .49 .43 .31 .43	73 .20 100 .23 57 .15 59 .21 64 .27	2 3.01 2 3.54 2 3.79 2 2.80 2 2.23	.02 .02 .02 .02 .02	.05 .05 .03 .04 .06	1 1 1 1	2.4 2.3 4.2 2.0 2.8
L41+00N 33+75E L41+00N 34+00E L41+00N 34+25E L41+00N 34+50E L41+00N 34+75E	6 3 3 3 3	62 40 43 50 4 3	15 15 19 12 18	196 87 86 188 166	.4 .5 .5 1.6	41 23 21 32 26	8 9 8 12 10	210 338 306 333 472	4.13 4.76 4.43 4.43 4.62	6 8 21 13 21	5 5 5 5 5	ND ND ND ND ND	1 2 2 1 3	37 36 22 44 31	.9 .3 .2 .4 .3	2 2 2 2 2 2	3 3 3 2 3	78 90 75 92 81	.30 .27 .17 .33 .22	.069 .088 .164 .074 .150	9 9 7 7 6	62 71 59 82 65	.59 .58 .47 .72 .56	62 ,28 56 ,33 48 ,25 62 ,28 88 ,28	2 2.62 2 2.49 2 3.93 2 3.27 2 4.62	.03 .02 .02 .03 .02	.05 .07 .07 .09 .07	1 1 1 1	4.4 5.8 2.7 5.5 3.7
L41+00N 35+00E L41+00N 35+25E L41+00N 35+50E L41+00N 35+75E L41+00N 36+00E	2 2 2 2 1	82 25 55 46 48	14 18 16 19 14	127 32 81 125 72	.3 .3 .2 .7 .2	45 8 31 28 28	15 3 12 17 11	433 195 403 902 441	4.97 2.21 4.81 4.43 4.39	13 7 9 41 12	5 5 5 5 5	ND ND ND ND ND	2 2 3 1	43 9 40 51 39	.2 .2 .2 .2 .2	2 2 2 2 2	2 3 3 2 2	92 36 88 81 81	.31 .06 .29 .30 .27	.126 .248 .139 .237 .166	7 8 10 9 8	99 15 78 68 73	1.09 .11 .86 .73 .77	58 .28 24 .24 60 .27 72 .23 52 .23	2 3.93 2 6.14 2 3.58 2 3.82 2 2.86	.02 .03 .02 .02 .02	.10 .03 .11 .08 .10	1 1 11 12 1	4.9 1.0 7.6 5.4 3.7
L41+00N 36+25E L41+00N 36+50E RE L41+00N 35+50E L41+00N 36+75E L41+00N 37+00E	1 2 2 1 2	40 43 55 72 61	30 11 17 12 14	87 77 82 84 100	.5 .4 .2 .3 .4	24 27 31 39 34	9 12 12 16 14	366 379 402 454 419	4.52 4.75 4.87 4.72 4.53 1	19 48 10 27 03	5 5 5 5 5	ND ND ND ND ND	2 3 2 4 3	30 37 41 46 29	.2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	79 87 89 91 78	.22 .30 .29 .38 .24	.180 .092 .138 .108 .182	9 10 10 12 10	56 75 78 88 64	.67 .78 .87 1.21 .96	72 .24 50 .27 61 .27 71 ,30 75 .26	2 3.46 2 3.60 2 3.59 2 3.72 2 4.64	.02 .02 .02 .02 .02	.10 .09 .11 .14 .12	1 1 1 1 1	7.0 4.6 0.6 5.1 4.3
L40+00N 22+00E L40+00N 22+25E STANDARD C/AU-S	2 1 20	30 11 63	10 21 40	64 31 136	.2 .2 7.3	23 6 72	9 2 32	379 311 1137	4.46 1.91 3.92	6 3 43	5 5 19	ND ND 8	6 1 39	26 19 52	.2 .2 18.7	2 2 16	2 3 19	89 50 58	.28 .16 .50	.167 .035 .099	18 8 39	40 21 60	.73 .14 .90	65 ,23 56 ,23 183 ,10	2 4.59 2 1.24 32 1.87	.02 .02 .06	.08 .05 .16	1 2 1 13 4	2.1 3.0 6.6

	· · · · · · · · · · · · · · · · · · ·																										•	AC	HE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba Ti ppm X	B ppm	Al %	Na %	K %	W ppm	Au* ppb
L40+00N 22+50E RE L40+00N 23+75E L40+00N 22+75E	1 9 2	40 17 28 19	20 11 14 13	61 68 72	2 2 5	25 15 20 17	8 7 9 8	529 443 463	4.41 4.18 4.43	6 5 8	5 5 5	ND ND ND	4 4 3 7	20 35 20	2222	2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	81 74 80 71	.27 .41 .25	.087 .059 .078	9 9 10	62 33 42	.49 .42 .45	83 ,20 106 .21 71 .23	3 3 3	2.87 2.34 2.44	.03 .02 .02	.08 .06 .08	2 1 3	7.4 3.0 1.5
L40+00N 23+25E	3	27	12	104	.2	22	13	409 997	4.18	8	7	ND	3	35	.5	2	2	81	.50 .54	.075	15	40 40	.48 .60	103 .17	3 4	1.65	.02	.09 .10	1	10.0 5.6
L40+00N 23+50E L40+00N 23+75E L40+00N 24+00E L40+00N 24+25E L40+00N 24+50E	10 10 5 9 7	29 21 21 33 43	13 14 12 11 25	73 71 46 63 68	.3 .1 .2 .3 .5	18 16 11 18 21	12 8 4 11 13	1157 487 130 535 1177	3.42 4.44 3.68 4.36 2.95	3 8 3 2 6	5 5 7 8	nd Nd Nd Nd Nd	1 3 5 2 2	42 38 19 45 50	.2 .2 .2 .3 1.2	2 2 2 2 2	2 2 2 2 2	67 80 62 70 58	.55 .44 .18 .54 .66	.062 .058 .035 .049 .099	20 11 7 20 26	34 34 23 43 47	.52 .45 .20 .52 .59	77 .14 115 .22 101 .22 87 .18 86 .09	3 4 2 4 5	2.62 2.51 4.52 2.75 2.41	.03 .03 .02 .03 .03	.07 .08 .05 .09 .08	1 1 1 5	4.3 3.3 2.1 2.3 4.9
L40+00N 24+75E L40+00N 25+00E L40+00N 25+25E L40+00N 25+50E L40+00N 25+75E	9 6 14 13 17	42 62 85 89 79	17 18 25 9 33	69 69 82 85 108	.4 .6 .2 .4	21 29 36 40 31	13 17 21 19 19	714 861 1004 630 1902	3.62 3.81 4.09 4.35 3.89	6 5 7 6 9	9 7 10 7 24	ND ND ND ND	2 2 2 2 1	42 32 35 46 69	.4 .3 .8 .3 1.3	2 2 2 2 2 2	2 2 2 2 2	66 69 80 89 73	.54 .43 .45 .64 .93	.061 .071 .109 .083 .105	21 20 18 17 22	48 64 76 103 78	.60 .66 .74 .92 .75	88 .17 78 .15 115 .18 85 .19 107 .12	3 3 3 3 3 3	2.31 2.82 2.98 2.93 2.82	.03 .03 .03 .05 .03	.08 .08 .09 .15 .11	2 2 3 1	3.5 3.2 10.2 4.4 .5
L40+00N 26+00E L40+00N 26+25E L40+00N 26+50E L40+00N 26+75E L40+00N 27+00E	10 5 1 1	59 56 88 88 110	15 8 7 7 8	130 110 131 109 121	.1 .2 .1 .6	31 38 55 54 61	18 19 22 21 24	1430 1183 836 546 803	4.75 4.41 5.01 4.63 4.52	6 3 7 7 4	6 5 5 5 5	ND ND ND ND	2 2 3 3 4	39 30 24 23 42	.4 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	81 80 98 93 99	.52 .43 .51 .45 .81	.104 .057 .147 .154 .074	12 11 6 7 10	77 85 136 133 146	.92 .85 1.19 1.09 1.24	194 .18 149 .21 92 .22 71 .21 79 .23	3 4 2 3 2	2.91 3.21 3.04 3.51 2.92	.03 .03 .04 .04 .05	.12 .13 .15 .15 .15	1 1 1 1	6.7 3.1 3.1 3.6 5.6
L40+00N 27+25E L40+00N 27+50E L40+00N 27+75E L40+00N 28+00E L40+00N 28+25E	1 1 1 1 4	139 115 164 113 77	13 7 2 7 10	138 123 131 113 114	.1 .3 .1 .1	123 71 129 93 62	35 28 39 24 21	964 808 728 615 851	5.92 5.49 5.78 4.62 4.05	5 5 4 7 7	5 5 5 5 5	ND ND ND ND ND	3 3 3 3 3	32 25 27 20 31	1.1 .3 .4 .4 .2	2 2 2 2 2	2 2 2 2 2	119 112 123 92 81	.89 .57 .62 .42 .47	.097 .112 .103 .132 .099	5 7 5 7 11	278 231 310 199 106	2.22 1.37 2.08 1.10 .99	158 .25 104 .24 124 .25 84 .21 67 .21	2 3 3 4 2	3.60 3.50 4.27 3.35 3.05	.08 .06 .06 .04 .03	.31 .18 .26 .15 .11	1 1 1 1	4.7 6.4 3.1 3.7 3.8
L40+00N 28+50E L40+00N 28+75E L40+00N 29+00E L40+00N 29+25E L40+00N 29+50E	9 2 2 2 2	126 112 (220) 187 175	37 11 7 6 16	123 109 98 154 129	.5 .1 .2 .1 .4	50 30 71 54 71	19 36 33 38 32	1615 979 525 1294 1564	2.98 3.85 4.99 6.49 5.01	29 11 5 7 14	5 5 5 5 5	ND ND ND ND ND	1 2 3 2 2	65 22 26 19 34	2.1 .8 .6 .2 1.0	2 2 2 2 2	2 2 2 2 2	61 60 96 158 110	1.48 .34 .45 .36 .77	.103 .157 .060 .090 .092	22 10 10 6 13	84 30 62 63 53	.67 .43 .74 .99 .91	75 .12 91 .18 53 .25 101 .28 86 .16	4 2 3 2 2	3.31 3.17 3.25 2.56 2.74	.04 .03 .04 .02 .03	.10 .08 .10 .07 .10	1 1 2 1	2.4 5.8 1.4 1.3 3.4
L40+00N 29+75E L40+00N 30+00E L40+00N 30+25E L40+00N 30+50E L40+00N 30+75E	4 1 5 1 3	73 59 72 46 61	9 10 27 18 39	101 110 267 136 112	.4 .1 .2 .1 .2	28 28 41 21 20	18 15 17 11 13	944 490 1137 677 554	3.55 3.80 3.59 3.82 4.03	7 10 34 18 22	5 5 5 5	nd Nd Nd Nd	1 3 1 2 3	32 32 47 30 19	.6 .2 2.4 .8 .7	2 2 3 2	2 2 2 2 2	72 75 72 68 63	-46 .39 .64 .32 .14	.064 .113 .099 .087 .198	14 10 16 9 12	46 57 55 52 34	.71 .78 .79 .60 .45	76 ,18 81 ,20 73 ,14 67 ,18 74 ,20	3 2 2 3 3	2.77 2.91 2.66 2.74 3.63	.03 .03 .03 .02 .02	.08 .08 .09 .10 .09		2.4 3.6 5.7 18.1 49.7
L40+00N 31+00E L40+00N 31+25E STANDARD C/AU-S	12 10 19	86 87 61	13 17 36	337 416 132	.2 .3 7.1	70 61 69	18 15 33	711 1045 1060	6.07 6.08 3.92	29 31 40	5 5 23	ND ND 7	2 2 41	43 31 51	1.1 1.2 18.6	4 5 17	2 2 19	79 83 57	.43 .29 .48	. 140 . 192 . 084	7 7 40	62 40 57	.41 .36 .85	58 .14 170 .13 172 .09	4 3 32	4.32 3.55 1.86	.05 .02 .06	.05 .06 .15	1 9 13	5.2 10.8 50.9

			- 1					· · · · ·								-1			_ 3			-									
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	B1 ppm	V ppm	Ca X	Р Х	La ppm	Cr ppm	Mg X	Ba Ti ppm %	в ppm	AL X	Na X	к Х	Ppin Ppin	Au* ppb	
L40+00N 31+50E L40+00N 31+75E L40+00N 32+00E L40+00N 32+25E L40+00N 32+50E	2 1 2 3 2	46 49 53 61 56	39 112 59 13 16	152 124 192 289 245	.3 .4 .8 .7 .4	29 24 31 38 35	15 16 15 12 17	1264 1224 2080 360 775	3.54 3.01 4.23 4.02 4.33	12 41 11 12 17	5 5 5 5 6	ND ND ND ND	1 1 1 2 1	37 28 40 23 31	2.0 2.6 2.1 1.4 2.1	2 2 2 2 2	4 2 2 2 2	62 50 79 73 79	.28 .20 .34 .20 .33	. 125 . 150 . 108 . 107 . 069	8 10 7 8 9	65 48 70 58 80	.60 .59 .62 .66 .83	95 .10 74 .08 120 .13 60 .17 72 .16	2 2 2 2 4 2 2 4 2 2	20 244 2.29 2.74 2.69	.02 .02 .03 .02 .02	.07 .10 .10 .07 .06	1 1 1 2 1	12.5 7.6 8.7 3.6 2.4	
L40+00N 32+75E RE L40+00N 34+00E L40+00N 33+00E L40+00N 33+25E L40+00N 33+50E	5 6 7 5 2	82 255 98 92 64	12 9 7 29 26	295 389 447 449 168	.8 1.3 .8 .7 .7	42 53 61 58 35	26 77 23 22 16	2200 1209 744 1524 805	4.32 4.34 4.42 3.95 3.18	9 10 12 9 7	5 5 5 5 5	ND ND ND ND	1 1 1 1	39 25 38 50 61	2.1 2.7 2.9 8.1 2.8	2 2 2 2 2	2 2 2 2 2	81 77 74 74 69	.44 .22 .43 .55 .59	.086 .127 .137 .093 .092	10 21 9 13 11	72 56 71 63 75	.81 .44 .65 .69 .81	109 .12 86 .12 99 .11 117 .11 99 .09	2 3 2 4 2 4 2 2 2 2	5.06 5.55 5.22 2.58 2.08	.02 .02 .02 .03 .03	.07 .05 .06 .05 .06	1 1 1 1	4.0 5.6 6.4 3.5 5.2	
L40+00N 33+75E L40+00N 34+00E L40+00N 34+25E L40+00N 34+50E L40+00N 34+75E	4 6 5 13 1	105 257 74 164 53	12 12 30 28 13	229 386 412 417 283	.7 1.4 .7 1.1 .9	45 51 47 80 38	29 78 44 25 17	670 1198 2608 464 1720	3.78 4.26 4.60 7.26 4.65	9 8 43 35 25	5 5 5 5 5	ND ND ND ND	1 1 4 1	30 25 64 32 40	3.7 2.4 5.7 2.8 .9	2 2 2 2 2 2	3 2 2 2 2	68 72 75 76 84	.27 .21 .66 .23 .30	.109 .126 .106 .211 .110	11 21 10 10 5	55 51 57 43 65	.36 .42 .63 .42 .68	103 .10 86 .12 120 .10 52 .12 129 .16	2 4 2 4 2 1 2 1 2 1 2 1	4.02 4.63 2.98 8.65 3.59	.02 .02 .03 .01 .02	.04 .05 .06 .07 .07	1	5.5 8.5 2.6 6.7 4.8	
L40+00N 35+00E L40+00N 35+25E L40+00N 35+50E L40+00N 35+75E L40+00N 36+00E	1 1 1 1 1	41 47 51 52 50	38 21 19 26 16	98 78 95 101 87	-6 -6 -4 -4 -5	24 26 18 22 31	11 11 16 13 17	1011 270 2102 967 784	5.05 4.44 3.43 3.45 4.15	19 9 130 139 252	5 5 5 5 5	ND ND ND ND	2 3 1 1	27 29 28 24 51	.8 7 .8 .8 4	2 2 2 2 2 2	2 2 3 2 2	91 90 54 52 75	.16 .18 .20 .17 .64	.081 .082 .116 .179 .060	6 8 12 11	56 64 32 38 62	.65 .70 .45 .60 .82	73 .17 67 .21 75 .10 75 .06 100 .14	2 2 2 2 3 2 2 2	2.48 2.83 2.77 3.41 3.19	.02 .02 .02 .02 .02	.08 .07 .08 .10 .08	1 1 1 1 1	4.0 12.2 89.4 56.7 32.2	
L40+00N 36+25E L40+00N 36+50E L40+00N 36+75E L40+00N 37+00E L39+00N 22+00E	1 1 1 1	75 57 48 57 25	20 22 19 11 30	101 125 123 141 59	5 4 7 7 3	44 35 29 30 15	21 20 15 13 8	900 1382 1040 398 461	5.01 4.28 4.66 4.11 4.14	22 66 19 15 10	5 5 5 8	ND ND ND ND	1 1 5 1	50 45 35 27 24	.7 1.0 .8 .8 .3	2 2 2 2 2	2 2 2 2 2	96 80 86 82 85	.48 .49 .25 .14 .15	.084 .072 .128 .104 .062	9 14 8 8 7	96 79 72 59 30	1.27 .91 .79 .78 .45	148 .17 95 .15 91 .19 56 .20 68 .20	2 2 2 2 2 2	3.15 3.12 2.72 3.83 1.96	.02 .02 .02 .02 .02	.12 .08 .08 .08 .07	1111	8.8 8.7 4.6 20.9 4.0	
L39+00N 22+25E L39+00N 22+50E L39+00N 22+75E L39+00N 23+00E L39+00N 23+25E	1 3 2 1 2	27 28 26 26 39	10 19 42 27 19	53 52 75 67 121	4 4 5 4	18 15 16 19 21	9 11 7 9 12	390 329 626 804 1311	3.81 3.70 3.18 3.13 3.82	5 6 6 5 7	7 5 5 5 5	ND ND ND ND	2 3 1 1 1	26 19 22 27 33	.2 .2 .4 .2 .5	2 2 2 2 2	2 2 2 2 2	79 74 62 76 73	.23 .16 .20 .28 .30	.106 .045 .065 .040 .033	11 15 10 7 12	31 29 31 50 37	.61 .38 .23 .32 .48	52 .14 55 .19 115 .18 104 .19 153 .18	2222	2.62 2.91 1.92 1.25 1.70	.02 .02 .03 .03 .03	.06 .06 .06 .07 .06	2 3 1 2	11.7 7.4 4.3 4.5 5.8	
L39+00N 23+50E L39+00N 23+75E L39+00N 24+00E L39+00N 24+25E L39+00N 24+25E L39+00N 24+50E	1 4 7 5 8	45 47 50 37 41	28 29 12 6 27	101 56 70 55 53	.4 .6 .6 .4	26 21 23 18 20	15 13 16 11	1272 805 1488 463 899	3.04 3.02 3.32 3.26 3.44	7 6 4 3 9	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	42 50 58 33 42	.6 .9 1.1 .3 .4	2 2 2 2 2	2 2 2 2 2	59 59 64 63 66	.48 .60 .60 .35 .48	.069 .057 .076 .042 .046	14 15 22 11 16	44 39 40 40 44	.52 .42 .56 .42 .57	250 . 10 88 .09 94 .09 66 .14 86 .13) 2 2 2 2 2 2 2 3 2	1.60 1.78 2.40 2.42 1.92	.02 .02 .02 .03 .03	.07 .07 .06 .05 .07	1 2 1 1 2	14.6 2.3 3.1 2.9 3.1	
L39+00N 24+75E L39+00N 25+00E STANDARD C/AU-S	7 - 9 15	47 55 63	14 13 40	, 72 ; 58 ; 129	2.5 3.5 7.4	24 21 73	15 15 33	859 1178 1014	4.02 2.82 3.93	4 4 42	6 5 16	ND ND 8	1 1 39	42 44 53	.3 .5 18.3	2 2 16	2 2 17	72 52 57	.45 .48 .48	.075 .065 .082	14 22 39	56 45 58	.63 .43 .88	123 .16 71 .08 174 .08	5 2 3 2 3 33	2.20 2.26 1.88	.03 .02 .06	.07 .05 .13	2 5 13	32.3 2.9 47.2	

Page 20

SAMPLE#	Mo Cu ppn ppn	Pb Zn ppm ppm p	Ag Ni Co pom ppom ppom	Mn ppm	Fe As % ppm	U ppm p	Au T xpm pp	h Sr mppm	Cd ppm p	sb l xpm pj	Bi V pm.ppm	Ca %	р % р	La Cr pm ppn	Mg 1 X	Ba ppm	Ti Xipi	BAL om %	Na %	K k X ppr	Au*	
L39+00N 25+25E L39+00N 25+50E L39+00N 25+75E L39+00N 26+00E L39+00N 26+25E	16 38 18 55 11 81 4 53 1 81	35 59 24 72 20 89 10 82 17 89	.6 19 15 .5 27 17 .5 39 21 .6 32 18 .4 41 19	953 1050 807 1024 807	2.54 5 3.82 5 3.96 6 3.67 4 3.44 7	7 6 8 5 5	ND ND ND ND ND	1 55 1 47 1 51 1 36 1 29	-8 -8 -9 -3 -7	2 2 2 2 2 2	2 46 2 68 2 76 2 68 3 65	.65 . .57 . .74 . .53 .	086 073 079 065 100	20 47 13 70 10 101 9 75 10 95	.45 .62 .91 .63 .74	51 92 67 94 78	.08 .12 .11 .15 .12	4 1.95 2 2.00 3 2.21 4 2.10 2 2.59	.02 .02 .03 .03 .03	.05 1 .08 1 .10 1 .09 1 .13 1	15.2 5.7 5.4 2.3 1.5	
L39+00N 26+50E L39+00N 26+75E L39+00N 27+00E L39+00N 27+25E L39+00N 27+50E	1 81 2 88 1 91 1 107 1 171	13 106 19 93 15 103 12 130 19 123	.4 44 22 .9 44 20 .5 51 21 .6 54 23 .7 90 33	1048 786 973 874 1499	4.14 7 3.94 8 4.31 9 4.68 9 4.78 8	5 5 5 5	ND ND ND ND ND	1 28 1 32 1 29 1 19 1 46	-6 1.0 -7 -5 -9	2 2 2 2 2	4 78 2 79 4 80 3 82 3 100	.47. .51. .62. .44. 1.13.	076 078 068 225 102	11 105 10 103 6 143 5 167 6 276	.84 .80 .92 1.09 51.39	96 53 74 78 88	.19 .13 .21 .20 .11	2 2.65 3 2.42 3 2.46 3 2.75 3 2.48	.03 .03 .04 .04 .05	.14 .12 .12 .14 .24	3.5 3.1 3.2 2.5 3.4	
L39+00N 27+75E L39+00N 28+00E L39+00N 28+25E L39+00N 28+50E RE L39+00N 29+75E	1 163 4 74 6 71 3 71 1 56	17 106 12 124 18 111 20 118 16 115	.0 115 34 .3 63 21 .6 55 20 .4 52 20 .3 30 19	1233 996 1086 1058 951	4.54 6 4.12 5 3.95 9 4.08 10 4.26 17	5 5 5 5	ND ND ND ND ND	1 46 1 28 2 29 1 28 1 28	.9 .8 .3 .4 .2	2 2 2 2 2 2	2 98 3 74 3 71 3 72 2 90	.98 .42 .39 .40 .42	075 137 127 210 067	8 337 11 93 11 87 11 87 6 87 9 56	1.41 1.01 287 285 583	101 101 87 101 94	.13 .21 .22 .20 .21	2 2.64 2 3.20 5 3.27 2 2.84 3 2.58	.04 .03 .03 .03 .02	.17 .11 .09 .11 .11	20.7 .5 2.1 3.4 3.0	
L39+00N 28+75E L39+00N 29+00E L39+00N 29+25E L39+00N 29+50E L39+00N 29+75E	1 114 1 153 1 93 1 86 1 56	12 169 16 117 17 91 20 138 13 114	.4 52 34 .5 138 31 .5 38 27 .3 38 23 .3 30 19	1375 1571 521 973 937	4.58 11 4.05 16 5.64 9 6.76 16 4.26 18	5 5 5 5 5	nd Nd Nd Nd	1 31 1 36 1 23 1 24 1 28	.4 .7 .2 .3 .2	2 2 2 2 2	3 78 2 73 3 145 3 124 4 90	.52 .97 .52 .40 .42	130 073 047 160 069	7 59 9 66 8 59 5 54 8 59	2 .76 5 .80 5 1.16 5 .90 5 .83	129 76 93 139 94	.20 .13 .29 .20 .21	3 2.45 2 2.31 2 2.81 3 1.88 2 2.55	.02 .02 .03 .03 .02	.08 .08 .14 .09 .10	1.2 7.3 2.2 4.8 4.2	
L39+00N 30+00E L39+00N 30+25E L39+00N 30+50E L39+00N 30+75E L39+00N 31+00E	1 66 1 54 9 65 5 46 6 65	12 124 14 140 17 303 18 170 15 645	.3 32 16 .5 30 13 1.2 41 13 .6 29 16 .8 77 22	540 477 487 1825 729	4.39 20 3.92 43 3.98 46 3.38 15 4.40 88	5 5 5 5 5	ND ND ND ND	2 30 1 35 2 21 1 26 1 36	.3 .3 1.0 1.4 3.6	2 2 2 2 2	2 78 2 70 3 63 2 56 2 64	.37 .50 .23 .29 .54	.110 .128 .113 .140 .104	9 60 10 53 12 49 9 4 10 40) .82 5 .82 5 .56 1 .50 3 .48	71 59 76 83 62	-21 -18 -18 -13 -13	2 2.73 2 2.66 2 2.96 3 2.48 2 3.46	.02 .02 .02 .02 .02	.07 .07 .07 .07 .07	4.0 4.6 5.2 7.2 1.6	
L39+00N 31+25E L39+00N 31+50E L39+00N 31+75E L39+00N 32+00E L39+00N 32+25E	18 141 2 44 2 47 2 62 3 62	32 590 26 338 23 192 22 260 2 16 260	1.3 89 37 .4 34 17 .5 29 18 .6 38 20 .6 35 15	1404 1403 1052 660 599	10.85 31 3.77 29 3.94 92 4.74 24 4.08 16	5 5 5 5 5	ND ND ND ND ND	2 27 1 40 1 27 1 34 1 26	3.1 1.7 1.2 1.2 .7	5 2 2 2 2	3 127 2 60 3 63 2 59 4 73	.17 .44 .24 .50 .24	.581 .133 .109 .545 .197	8 50 7 50 10 50 10 4 6 7	0 .23 0 .67 8 .69 5 .53 9 .77	130 122 74 82 59	.07 .13 .18 .14 .19	2 4.74 2 2.27 3 2.63 3 4.30 2 3.02	.01 .02 .02 .02 .01	.05 .06 .06 .07 .07	2 1.7 11.5 4.4 25.4 5.5	
L39+00N 32+50E L39+00N 32+75E L39+00N 33+00E L39+00N 33+25E L39+00N 33+50E	4 133 1 82 5 103 3 88 3 72	13 325 12 617 2 12 617 3 28 466 3 25 363 5 55 344	1.0 60 29 .5 60 20 .9 59 25 1.0 52 25 .6 46 25	522 838 1108 1115 1107	4.70 40 4.36 20 4.23 26 3.60 17 3.22 17	5 5 5 5 5	nd Nd Nd Nd Nd	1 25 1 39 1 31 1 41 1 71	.8 2.4 3.7 5.3 8.1	2 2 2 2 2 2	3 64 4 79 2 62 2 58 2 54	.24 .41 .33 .48 .85	. 167 .091 .217 .140 .217	13 6 7 10 9 6 16 6 15 5	4 .63 9 1.05 6 .69 4 .57 0 .48	43 89 75 71 94	.12 .20 .09 .06 .04	2 4.94 2 2.71 2 3.49 2 2.71 2 2.49	.01 .02 .01 .01 .01	.06 .07 .06 .05 .05	1 9.4 2 5.9 1 11.0 1 .9 1 9.3	
L39+00N 33+75E L39+00N 34+00E STANDARD C/AU-S	2 60 3 83 17 58	5 23 457 5 15 302 3 41 133	.6 51 28 1.1 46 24 7.0 71 34	1279 1176 1049	4.02 16 3.76 12 4.00 43	5 5 17	ND ND 8	1 50 1 44 36 54	3.8 5.3 18.5	2 2 15	2 57 2 61 17 55	.59 .54 .48	.145 .127 .091	10 5 14 6 38 5	8.65 6.64 8.88	106 88 179	.09 .07 .09	4 2.88 4 2.69 31 1.90	.02 .02 .06	.08 .06 .15 1	1 3.5 1 4.8 3 47.2	

Page 21

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppra	V ppm	Ca X	р Хр	La pm	Cr ppm	Mg X	Ba Ti ppm %	B ppm	Al X	Na X	K X	W ppm	Au*
L39+00N 34+25E L39+00N 34+50E L39+00N 34+75E L39+00N 35+00E L39+00N 35+25E	3 1 1 1 1	79 50 49 66 57	40 29 34 6 10	287 161 208 78 64	.9 .4 .5 .4 .8	46 27 29 32 27	23 13 19 13 15	1099 635 1671 678 409	3.76 4.17 5.07 3.95 4.46	21 17 20 8 7	5 5 5 5 5	ND ND ND ND ND	1 1 1 2 2	52 39 38 37 31	5.2 2.2 1.4 .7 .9	2 2 2 2 2	2 2 2 2 2	64 67 100 77 77	.63 .09 .41 .11 .38 .20 .28 .13 .21 .07	8 3 8 6 9	14 10 6 8 13	78 71 79 81 69	.80 .65 .90 .92 .69	79 .09 107 .13 155 .15 59 .14 76 .23	3 2. 2 2. 2 2. 2 2. 2 2. 2 3.	.80 .54 .89 .74 .09	.02 .02 .03 .02 .02	.07 .07 .10 .09 .07	1 1 1 1 2	9.3 84.8 m 5.0 6.7 6.5
L39+00N 35+50E RE L39+00N 36+50E L39+00N 35+75E L39+00N 36+00E L39+00N 36+25E	1 1 1 1	59 55 50 52 45	11 11 25 17 13	71 81 82 81 71	1.5 1.1 .8 1.0 .9	27 33 30 27 26	15 18 16 15 12	711 896 948 824 452	4.03 4.18 4.11 3.97 3.67	8 12 7 10 10	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	38 47 48 39 34	1.0 .6 1.2 .7 .4	2 2 2 2 2	2 2 2 2 2	71 77 74 71 66	.28 .07 .42 .07 .44 .08 .33 .07 .30 .09	1 7 8 0 9	14 12 9 14 11	72 71 79 63 56	.63 .98 .86 .76 .72	77 .18 91 .16 80 .14 80 .16 79 .16	2 2. 2 2. 3 2. 5 2. 2 2.	.52 .61 .40 .82 .46	.02 .02 .02 .02 .02	.10 .09 .09 .10 .09	1 1 2 1	3.0 3.5 3.2 8.1 12.2
L39+00N 36+50E L39+00N 36+75E L39+00N 37+00E L38+00N 22+00E L38+00N 22+25E	1 1 1 8 4	52 49 46 25 17	12 8 36 25 13	76 216 117 88 73	1.0 .7 .4 .4	31 31 27 13 13	16 14 16 11 7	847 599 735 1116 409	3.93 3.81 4.04 3.20 4.58	9 49 87 10 5	5 5 5 11 5	ND ND ND ND	1 1 1 2	45 47 46 38 19	.5 1.6 1.5 1.0 .2	2 2 3 2 3	2 2 2 2 2	73 64 77 58 75	.40 .07 .61 .11 .63 .07 .50 .05 .15 .07	3 2 1 9 2	11 10 14 16 10	67 61 72 25 26	.92 .76 .77 .42 .38	87 .16 78 .14 51 .18 77 .14 69 .19	2 2 4 3 2 3 2 2 5 2	.45 .21 .50 .32 .06	.02 .02 .02 .02 .02	.09 .07 .07 .06 .06	1 2 1 1	4.7 2.9 7.1 1.8 6.5
L38+00N 22+50E L38+00N 22+75E L38+00N 23+00E L38+00N 23+25E L38+00N 23+50E	2 1 1 1 1	33 21 21 35 21	12 10 4 34 21	81 48 57 81 65	.4 .3 .2 .4 .4	18 11 20 26 14	10 6 7 12 7	380 183 262 497 1025	4.15 3.34 4.02 3.74 3.38	6 6 3 9 5	5 5 5 5 5	ND ND ND ND	3 4 4 1 1	31 15 19 23 24	.4 .2 .2 .8 .3	2 3 2 3 2	2 2 2 2 2	80 56 82 83 68	.28 .06 .13 .11 .24 .06 .30 .04 .29 .06	9 8 0 8 1	11 8 8 7 8	39 25 43 64 31	.68 .30 .54 .59 .39	62 .21 48 .20 43 .20 65 .17 87 .16	2 2 2 4 2 2 3 1 2 1	.56 .11 .13 .76 .57	.02 .02 .02 .03 .02	.07 .04 .06 .10 .06	1 2 2 1 2	2.5 5.7 8.9 5.1 27.1
L38+00N 23+75E L38+00N 24+00E L38+00N 24+25E L38+00N 24+25E L38+00N 24+50E L38+00N 24+75E	4 5 5 11 7	29 37 50 31 16	20 12 30 11 8	82 79 98 72 48	.3 .3 .4 .4 .3	24 19 26 17 13	15 14 15 12 5	1308 987 1191 872 233	3.85 3.51 3.42 3.61 4.21	9 7 8 5 7	5 5 5 5 5	ND ND ND ND	1 1 1 2	25 37 60 49 41	.5 .8 1.0 .6 .5	2 2 2 2 2	2 2 2 2 2	66 61 64 69 86	.27 .06 .44 .06 .83 .08 .52 .05 .45 .02	6 2 8 6 3	13 15 17 17 10	48 39 51 38 38	.53 .50 .61 .47 .32	94 .19 127 .19 111 .11 87 .19 83 .20	32 22 32 22 31	.36 .17 .38 .30 .37	.02 .02 .02 .03 .02	.07 .06 .07 .07 .05	2 1 1 2 3	4.3 2.7 5.5 37.7 15.9
L38+00N 25+00E L38+00N 25+25E L38+00N 25+50E L38+00N 25+75E L38+00N 26+00E	18 19 4 1 1	35 45 49 45 57	14 9 12 13 12	64 60 79 105 83	.7 .6 .5 .3 .4	19 21 30 30 35	9 15 17 16 17	466 884 1128 1619 579	3.88 3.27 3.67 3.77 4.19	2 3 8 6 7	5 9 5 5 5	nd Nd Nd Nd Nd	2 1 1 2	31 33 41 35 29	.4 .8 .5 .4	2 2 2 2 2	2 2 2 2 2 2	69 61 67 70 77	.34 .03 .41 .05 .55 .09 .50 .08 .50 .05	6 3 8 0 5	18 26 13 8 9	44 51 77 71 94	.48 .47 .64 .62 .67	73 .22 62 .14 91 .14 184 .20 101 .21	2 2 2 2 2 2 2 2 2 2 4 2	.28 .59 .29 .00 .19	.02 .02 .03 .03 .04	.06 .07 .07 .08 .08	2 2 1 2 1	6.4 7.8 3.7 4.3 3.0
L38+00N 26+25E L38+00N 26+50E L38+00N 26+75E L38+00N 27+00E L38+00N 27+25E	1 1 1 1	95 108 83 102 64	6 12 14 17 24	88 87 91 90 130	.3 .3 .4 .3 .2	59 62 54 68 44	25 25 23 28 20	958 870 803 1224 1488	5.23 4.31 4.33 4.69 3.81	11 8 9 10 9	5 5 5 5 5	ND ND ND ND	1 2 1 1	33 30 30 31 32	.6 .6 .8 .8 .9	2 2 2 3	2 2 2 2 2	100 84 80 90 67	.80 .00 .66 .12 .63 .07 .71 .07 .51 .14	10 13 16 11	5 6 7 7 7	168 179 151 195 106	1.10 1.09 .91 1.13 .78	124 .20 107 .15 103 .18 94 .17 200 .15	2 2 3 2 3 2 4 2 2 2	.57 .61 .87 .72 .37	.05 .05 .04 .05 .03	. 18 . 16 . 13 . 17 . 12	1 1 2 1 1	15.7 5.7 4.4 4.2 3.9
L38+00N 27+50E L38+00N 27+75E STANDARD C/AU-S	2 2 18	94 130 57	13 11 38	103 94 125	.6 1.0 6.8	49 68 68	21 24 28	1038 1195 999	3.76 3.93 3.98	8 4 37	5 5 19	ND ND 7	1 1 36	47 53 48	1.1 1.7 17.6	2 2 16	2 2 19	75 86 54	.87 .00 1.14 .07 .46 .08	6 3 4	11 11 36	121 203 56	.83 .94 .90	83 .15 77 .14 171 .08	2 2 3 2 33 1	.45 .54 .85	.03 .03 .06	.09 .09 .14	1 1 11	83.6 4.1 46.5

Page 22

SAMPLE#	Mo) (n pi	Cu pm p	Pb pm	Zn ppm	Ag mag	i K maq	Co mag	Mn pom	Fe %	As DOM 1	U I mac	Au	Th com r	Sr xxm	Cd	Sb	Bi	V	Ca %	P	La	Cr	Mg	Ba DOM	T j V	8	Al ¥	Na V	ĸ	W	Au*	
L38+00N 28+00E L38+00N 28+25E L38+00N 28+50E L38+00N 28+75E L38+00N 28+75E L38+00N 29+00E	2	2 17 1 10 1 20 1 10 1 10	20 00 80 41 11	19 21 17 33 19	144 154 119 92 93	.5 .3 4 .5 1	43 39 85 50 45	25 24 22 19 29	986 1430 594 756 949	4.03 4.29 4.11 3.51 4.39	4 9 13 12 12	5 5 5 5 5 5	ND ND ND ND ND ND	1 1 1 1 1 1	39 41 45 46 37	.6 .5 .7 .9 .4	2 2 2 2 2 2	3 4 3 3 2	91 87 84 74 102	.53 .67 .82 .91 .78	.071 .157 .041 .053 .087	8 7 9 10 11	79 67 117 79 54	.80 .80 .74 .71 .94	90 105 66 55 80	- 19 - 19 - 22 - 18 - 13	2 5 2 2 2	2.25 2.39 2.35 2.01 2.34	.03 .03 .03 .02 .02	.13 .14 .08 .08 .10	1 1 1 1 1	13.5 78.5 6.6 160.0 2.7	
L38+00N 29+25E L38+00N 29+50E L38+00N 29+75E L38+00N 30+00E L38+00N 30+25E		1 1 1 1 1 2	10 81 58 42 44	39 16 19 27 17	112 118 105 219 177	3 4 2 4 5	44 33 29 30 29	27 29 17 12 12	1312 1348 739 478 366	4.16 5.34 4.00 3.58 3.63	15 16 15 14 33	5 5 5 5 5	ND ND ND ND	1 1 1 1	42 36 39 34 27	1.5 .5 .3 .9 .4	2 2 2 2 2 2	2 2 3 3 3	85 108 76 66 60	88 61 47 .39 .31	.103 .084 .068 .143 .088	14 12 10 8 10	45 52 63 57 47	.79 1.00 .84 .69 .61	99 102 75 74 82	.11 .20 .19 .16 .19	2 3 2 4 2	2.40 2.36 2.38 2.47 3.21	.02 .02 .02 .02 .02	.08 .06 .07 .07 .08	1 1 1 2 1	6.1 5.9 4.8 4.4 4.1	
L38+00N 30+50E L38+00N 30+75E L38+00N 31+00E RE L38+00N 32+25E L38+00N 31+25E	14 5 22	4 5 2 2 1	58 42 67 56 60	42 13 13 27 57	320 75 264 272 533	.9 .4 .5 .6 1.4	48 25 43 33 59	25 12 14 13 43	558 304 406 355 2348	5.67 4.18 3.99 3.88 9.94	54 27 13 34 42	5 5 5 5 5	ND ND ND ND	1 1 1 1	59 37 29 32 25	3.0 .2 .4 3.5 3.3	2 2 2 9	2 3 4 3 2	99 84 73 62 109	.93 .42 .24 .37 .13	.134 .033 .101 .052 .592	11 7 7 10 7	52 75 80 59 42	.45 .79 .79 .55 .24	85 61 65 73 93	.09 .23 .21 .21 .21 .09	3 2 2 2 2	3.17 2.09 3.04 3.06 5.83	.02 .02 .02 .02 .02	.05 .06 .07 .05 .06	1 2 1 3	3.5 3.4 2.8 6.7 5.0	
L38+00N 31+50E L38+00N 31+75E L38+00N 32+00E L38+00N 32+25E L38+00N 32+50E		4 2 7 2 4 1	56 59 91 55 08	37 19 14 26 22	399 171 323 270 593	.4 .5 .7 .6 .5	37 33 38 32 57	17 19 20 13 34	1646 1078 497 352 1472	4.12 3.92 4.81 3.87 4.75	46 126 26 32 26	5 5 5 5 5	ND ND ND ND	1 1 1 1	33 40 25 32 59	4.7 1.5 2.3 3.7 6.2	2 2 2 2 2 2	2 3 3 2 2 2	64 68 64 62 56	.34 .45 .25 .36 .70	.132 .056 .077 .050 .220	8 14 9 10 8	51 80 61 58 65	.53 .86 .57 .54 .65	112 57 73 72 101	.16 .17 .19 .21 .08	2 2 2 2 2 2 2	3.27 2.62 3.87 3.00 2.80	.02 .02 .01 .02 .02	.06 .06 .05 .05 .06	2 1 2 1 2	3.3 9.6 3.0 4.8 3.5	
L38+00N 32+75E L38+00N 33+00E L38+00N 33+25E L38+00N 33+50E L38+00N 33+75E		1 1 1 1	76 60 66 70 73	29 33 14 22 15	468 348 187 136 110	.7 .5 .7 .7 .5	46 38 38 37 36	24 19 18 18 18	903 901 548 728 576	3.99 3.69 4.14 3.93 3.89	14 11 6 7 7	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	48 51 49 56 57	2.7 4.1 1.7 1.5 .9	2 2 2 2 2	2 2 3 3 2	63 65 76 74 76	.52 .56 .48 .56 .54	.203 .089 .080 .079 .081	7 6 7 8 8	85 94 109 116 114	.78 .84 .98 .96 .92	102 150 73 66 67	.12 .17 .22 .17 .13	6 2 2 2 6	2.66 1.92 2.32 2.10 2.02	.02 .02 .02 .02 .02	.08 .07 .08 .08 .09	2 1 1 1	5.7 2.2 5.4 9.1 11.7	
L38+00N 34+00E L38+00N 34+25E L38+00N 34+50E L38+00N 34+75E L38+00N 35+00E		1 1 1 1	76 80 70 43 41	36 21 15 10 16	128 245 231 89 122	.5 1.0 .9 .6 .8	40 43 39 27 26	18 21 18 14 15	627 1129 748 538 898	4.14 4.46 4.44 4.06 4.00	8 8 13 6 7	5 5 5 5 5	ND ND ND ND	1 1 1 1	53 57 36 42 30	1.4 1.9 1.3 .4 .5	2 2 2 2 2	2 3 3 2 2	80 86 102 80 74	.47 .47 .30 .39 .23	.108 .207 .072 .071 .132	8 8 7 7	115 108 85 76 67	1.05 1.07 1.02 .75 .65	72 160 97 85 91	.18 .22 .21 .22 .22	2 2 4 3	2.21 2.45 3.01 2.07 2.06	.02 .02 .02 .02 .02	.11 .10 .10 .08 .09	1 1 1 1	4.6 5.5 3.9 2.4 4.1	
L38+00N 35+25E L38+00N 35+50E L38+00N 35+75E L38+00N 36+00E L38+00N 36+25E		1 1 1 1	49 48 55 60 64	14 32 42 15 13	84 78 95 93 75	1.4 1.2 1.2 1.1 .9	26 25 25 28 27	13 13 15 16 15	935 720 1183 1016 602	3.90 3.72 3.46 3.86 3.79	7 7 14 7 8	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	39 37 32 42 34	.5 .5 1.1 .7 .3	2 2 2 2 2	2 2 2 2 3	70 70 62 72 73	.31 .29 .21 .36 .27	.096 .086 .219 .102 .087	12 11 12 12 11	67 61 54 59 61	.62 .64 .57 .76 .78	89 80 90 91 64	.18 .20 .20 .13 .19	3 3 2 2 2 2	1.95 2.15 2.33 2.43 2.63	.02 .02 .02 .02 .02	.08 .09 .10 .10 .11	111	2.1 8.7 2.3 2.9 9.5	
L38+00N 36+50E L38+00N 36+75E STANDARD C/AU-S	1	1 2 7	64 60 62	10 23 41	123 308 132	.8 .6 7.2	31 37 71	15 16 32	724 928 1048	4.02 3.54 3.97	12 40 44	5 5 19	ND ND 7	1 1 39	35 53 52	.2 4.7 18.9	2 2 15	3 2 18	75 71 59	.29 .70 .49	.322 .091 .091	7 11 40	71 59 58	.81 .81 .87	107 74 177	.20 .11 .09	3 3 33	2.26 2.62 1.89	.02 .02 .06	.09 .07 .15	1 1 13	3.0 4.3 45.9	

Page 23

SAMPLE#	Мо Си ррпп ррп	i Pb ippm p	Zn Ag xpm ppm	Ni Co ppm ppm) Mn ippmi	fe %	As ppm p	opm p	Au opm	Th ppm p	Sr xpm	Cd ppm p	sb (spon pe	Bi pm p	V pm	Ca %	р Х	La xpm p	Cr xpm	Mg X	8a ppm	Ti % p	B pm	Al X	Na %	K X	M ppm	Au* ppb	
L38+00N, 37+00E L37+00N 22+00E L37+00N 22+25E L37+00N 22+50E L37+00N 22+75E	2 75 3 36 4 32 2 23 2 35	17 4 20 1 22 19 12	58 .6 04 .4 82 .5 53 .7 80 .4	55 22 18 13 16 11 12 6 14 8	2 1036 1189 541 5231 3 337	4.93 4.43 3.73 3.79 4.01	58 9 9 2 3	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 3 3 3	65 34 33 30 28	3.5 .5 1.0 .4 .4	2 2 2 2 2 2	2 1 2 2 2 2	14 87 73 82 73	.73 . .37 . .44 . .25 . .28 .	081 128 056 046 067	10 10 15 11 9	86 1 34 33 23 32	.31 .55 .50 .33 .38	118 104 70 71 100	.14 .11 .17 .18 .20	2 3 3 1 3 2 2 1 2 2	.25 .75 .54 .49 .50	.04 .02 .03 .02 .03	. 10 . 07 . 07 . 05 . 06	1 2 2 1 1	4.0 3.0 3.0 20.5 10.0	
L37+00N 23+00E L37+00N 23+25E RE L37+00N 24+25E L37+00N 23+50E L37+00N 23+75E	4 39 3 27 1 37 4 29 1 36	9 19 20 19 19 19 19 12	57 .6 61 .6 72 .7 62 .5 75 .6	12 41 13 8 17 11 10 6 17 11	947 291 604 444 541	2.65 3.77 3.83 3.93 3.91	6 4 5 4 4	5 5 5 5 5	nd Nd Nd Nd Nd	1 3 1 2 1	35 24 27 21 26	.7 .6 .8 1.1 .8	2 3 2 3 2	2 2 2 2 2	57 73 73 66 81	.31 . .22 . .29 . .17 . .34 .	057 063 167 072 055	16 9 13 7 8	32 33 36 25 45	. 18 . 35 . 46 . 28 . 38	84 59 84 97 72	. 13 . 20 . 15 . 22 . 20	2 1 3 2 2 2 2 1 2 2	.75 .02 .87 .76 .11	.02 .03 .03 .02 .03	.05 .06 .07 .06 .06	2 1 1 1 2	2.0 4.1 22.6 5.0 5.2	
L37+00N 24+00E L37+00N 24+25E L37+00N 24+50E L37+00N 24+55E L37+00N 25+00E	1 29 1 36 2 38 8 69 9 42	26 5 15 5 10 9 15 28	96 .7 74 .8 75 .5 39 .8 61 .5	19 10 18 11 19 10 14 10 15 7	975 619 1201 648 7750	3.99 3.88 3.68 3.04 2.16	8 5 2 3 23	5 5 5 24	ND ND ND ND ND	2 2 1 1 1	32 27 40 34 62	.9 .8 .7 1.2 .8	2 2 3 2	2 2 2 2	84 74 79 69 61	.38 .29 .44 .41 .88	121 164 045 036 098	10 13 11 19 23	41 36 45 28 58	.49 .46 .50 .15 .31	113 87 101 57 57	.14 .15 .19 .20 .08	3 1 3 2 2 2 3 1 4 2	2.91 2.14 2.82 2.57	.03 .03 .04 .03 .03	.08 .07 .07 .05 .06	1 1 1 2 13	209.0	
L37+00N 25+25E L37+00N 25+50E L37+00N 25+75E L37+00N 26+00E L37+00N 26+25E	4 26 5 61 2 65 2 98 1 107	24 13 15 34 21	41 .4 66 .6 80 1.2 79 .9 108 .8	10 5 33 15 25 20 29 2 46 2	5 136 5 519 0 1541 1493 1 1053	3.62 4.19 3.45 3.29 3.93	5 4 6 9 5	5 6 5 5 5	ND ND ND ND	3 2 1 1 1	23 41 36 53 59	.3 .5 1.1 1.3 1.3	2 2 2 2 2	2 2 2 2 2	83 92 75 74 94 1	.21 . .61 . .45 . .87 . .38 .	027 043 057 093 085	7 12 18 28 11	28 85 60 69 143	.19 .82 .52 .59 .84	92 64 79 77 72	.22 .20 .14 .10 .12	2 2 2 2 2 2 2 2 3 2	2.24 2.83 2.25 2.30 2.44	.02 .04 .03 .04 .06	.05 .08 .08 .09 .13	3 2 1 1 1	4.4 3.8 3.9 2.5 6.5	
L37+00N 26+50E L37+00N 26+75E L37+00N 27+00E L37+00N 27+25E L37+00N 27+50E	1 104 1 65 2 79 2 100 2 104	31 16 28 35 16	97 .7 105 .6 104 .7 108 .7 192 .7	47 22 31 10 37 19 37 10 39 20	2 1135 5 906 9 1039 3 748 9 979	3.97 4.08 3.70 3.56 4.08	7 8 6 8 41	5 5 5 5 5	ND ND ND ND	1 1 1 1	47 39 53 60 59	.8 1.0 1.3 1.3 .9	2 2 2 2 2 2	2 2 2 2 2	91 1 84 77 1 81 1 81	.04 .59 .06 .22 .99	087 066 104 086 085	11 11 11 14 9	153 82 91 87 77	.80 .70 .74 .73 .79	78 86 92 76 94	.12 .15 .11 .11 .11	4 2 3 2 4 2 4 2 3 2	2.56 2.27 2.42 2.38 2.45	.06 .04 .04 .04 .04	. 14 . 12 . 16 . 12 . 11	1 1 1	8.5 7.9 2.4 4.7 5.9	
L37+00N 27+75E L37+00N 28+00E L37+00N 28+25E L37+00N 28+50E L37+00N 28+75E	2 63 2 130 1 77 1 83 1 88	5 18) 9 7 13 5 12 3 18	91 .7 87 .4 85 .5 95 .4 104 .5	26 14 40 19 32 14 33 19 33 14	4 528 5 795 6 606 5 514 6 750	3.58 2.91 3.60 3.53 3.43	10 8 12 17 20	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	59 56 48 51 48	1.0 .7 .7 .5 1.0	2 2 2 2 2	2 2 2 2 2 2	77 1 68 1 74 79 75	.26 .21 .67 .71 .92	068 095 077 108 124	10 11 12 14 12	61 78 69 73 63	.57 .71 .78 .83 .75	55 45 61 61 61	.14 .08 .15 .14 .10	4 2 3 2 5 2 3 2 3 2	2.03 2.00 2.51 2.53 2.40	.03 .04 .03 .03 .03	.08 .10 .10 .10 .10 .11	1 3 1 2 1	3.1 8.0 5.6 9.1 82.7	
L37+00N 29+00E L37+00N 29+25E L37+00N 29+50E L37+00N 29+75E L37+00N 30+00E	1 113 1 70 1 70 3 8 2 60	3 22 ² 5 15 ² 1 34 ² 1 34 ² 2 3 2	129 .6 113 .7 136 .6 194 .4 237 .5	41 2 29 14 29 14 50 34 31 14	1 1089 5 726 3 1082 8 2197 5 1124	4.17 3.77 3.99 5.81 3.82	19 16 26 142 44	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	45 51 48 51 50	.8 1.0 1.2 2.0 2.7	2 2 2 2 2	2 2 2 2 2 2	96 83 79 63 72	.75 .72 .58 .52 .60	112 055 085 221 153	15 10 10 7 10	47 53 66 40 59	.95 .75 .79 .50 .61	78 137 84 148 127	.12 .18 .17 .10 .14	3 2 5 2 5 2 5 2 5 2 5 2	2.94 2.46 2.58 2.46 2.48	.04 .03 .03 .02 .03	.14 .09 .08 .09 .10	1 1 1	9.0 8.5 8.3 63.2— 176.0—	
L37+00N 30+25E L37+00N 30+50E STANDARD C/AU-S	4 84 3 59 18 51	3 12 2 9 12 2 3 37 2	272 .9 222 .7 127 6.8	43 2 37 1 66 3	0 1258 7 560 0 1002	3.81 3.98 3.94	26 32 37	5 5 19	ND ND 8	1 2 36	71 48 47 1	4.0 1.3 7.4	2 2 16	2 2 18	78 1 83 57	.08 .54 .46	107 086 086	20 12 37	87 73 56	.91 .84 .85	81 81 170	.12 .18 .07	52 53 331	2.60 3.14 1.90	.03 .03 .06	.07 .07 .13	1 1 13	14.2 14.7 46.6	

Page 24

.

مد ۱۰۰

		· · · · -								·····																	•	ACHE AN	LADITY U
SAMPLE#	Mo	Cu	РЬ	Zn	Ag	Ní	Co	Mn	Fe	As	U	Au	ኘከ	Sr	Cd	Sb	Bi	V	Ca P	La	Cr	Mg	Ba	Tî	B A	L N	la	K I	Au*
	ppii	- ppii	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppm	X 🔆 X	ppm	ppm	x	ppm	%	ppm	x	*	Х ррг	∎ ppb
L37+00N 30+75E	1	32	16	105	.5	26	13	707	3 26	44	5	ND	2	31	2	2	2	57	32 105	0	55	42	115	42		7 0		0(
L37+00N 31+00E	2	51	71	185	4	29	16	2336	3 14	75	5	ND	1	52	2 1	2	2	51		10	22	.02	112	. 10	2 3.3), C 1 (2	.00	1 7.6
L37+00N 31+25E	6	69	20	551	1.4	50	25	1115	4 92	28	5	ND	1	30	2 3	2	2	47	27 19/		54	.17	110	47	2 2.4	1.0	2	.08	21.4
L37+00N 31+50E	4	63	24	297	7	37	21	806	4 55	86	5	10	1	20	2 2	2	2	50	/7 117	17	20	.03	11	- 1-7	3 7.1	7.0	11	.08	1.7
L37+00N 31+75E	4	67	36	288	•	35	22	1014	4 05	8.4	5	ND	1	40	15	2	2	50	07 000	1.1	10	10.	01	14	24.1	3 .0	2	.00	1.5
		•••						1014	1.05	- <u>1</u>		110	•	01		2	2	24	.7.1 .077	11	75	. 20	70	- UY	3 3.3	υ	2	.00	1 3.5
L37+00N 32+00E	12	77	25	477	.9	47	27	1375	6.65	36	5	ND	1	40	44	2	2	51	30 150	7	50	61	141	60		о г	11	04	• •
L37+00N 32+25E	5	106	16	337	7	59	24	764	4.99	31	5	ND	2	45	2.5	3	2	73	45 135	6	101	1 03	8/	15	2 2 9	7 .u	יי כו	.00	1.9
L37+00N 32+50E	1	71	12	269	.3	40	17	533	4.06	11	ŝ	ND	1	47	1.5	2	2	70	46 111	6	104	08	- 66	047) 45	2 3.0	0.U 7.0	11	06	1.2.9
L37+00N 32+75E	1	76	15	212	.5	40	20	739	3.88	10	5	ND	1	56	2.0	2	2	60	58 003	ŏ	106	.,0	85		2 2.1	2.L 0.r	// \2	.00	1 73 7
L37+00N 33+00E	1	78	28	176	.7	39	18	772	3.80	7	5	ND	1	44	1.5	2	2	68	42 122	Ŕ	100	1 00	56	11	2 2.2	0,0 8,0) <u>7</u> \1	10	1 12.3-
											-		•			-	-			Ŭ	107	1.00			~ ~ ~ ~	ы.,		. 10	14.0
L37+00N 33+25E	1	79	17	168	.8	40	18	591	3.91	7	5	ND	1	40	1.2	2	2	68	35 137	7	110	1 03	47	10	224	3 (11	10	1 77
L37+00N 33+50E	2	80	22	221	.7	46	20	697	4.35	6	5	ND	1	51	1.8	2	2	76	50 105		137	1 16	56	12	7 2 4		12	10	1 11 4
L37+00N 33+75E	2	93	19	170	1.3	42	17	618	4.49	5	5	ND	i	47	1.8	2	2	78	30 153	6	110	1 05	72	ः । ५ ा र	2 2 7	на 11 г	12	17	1 11.0
L37+00N 34+00E	2	81	31	157	1.0	39	19	732	4.24	7	5	ND	1	55	1.7	2	2	76	50 107	11	113	1 01	68	17	224	1 .C	12	11	1 0
L37+00N 34+25E	1	67	12	139	.9	34	18	826	4.38	4	5	ND	1	66	. 1 1	2	2	80	60 161	÷ ';	103	01	120	14	2 2.0		12	1/ 3	1 .7
										19	-		•			-	-	00		Ť	.05	.,,	120	• •	2 2		12	• 14 (b) (b) (b)	1 0.7
L37+00N 34+50E	1	58	12	176	.8	33	18	1213	4.20	4	5	ND	1	53	1.7	2	2	73	49 202	7	88	88	133	17	226		12	17	5 7 /
L37+00N 34+75E	2	47	11	240	1.5	29	15	752	4.33	8	ŝ	ND	1	28	1.2	2	2	104	24 148	Ś	77	1 02	116	14	240	i x i x	12	08	1 2.4
L37+00N 35+00E	1	58	10	228	1.1	33	16	1239	4.87	10	5	ND	1	32	1.1	2	2	106	.26 180	6	74	1.12	217	10	2 4 7		12	08	1 2.0
L37+00N 35+25E	1	55	21	135	2.1	31	18	1112	4.29	8	5	ND	1	34	1.1	2	2	79	26 122	ŏ	68	88	126	18	2 2 8	3 1	11	10	1 7 1
L37+00N 35+50E	2	65	10	93	2.5	30	14	844	3.84	6	5	ND	1	44	2.1	2	Ž	63	.33 .094	14	59		108	13	2 2 5	7 (12	10	1 4 1
															45 Ar	-	-		1000	(.			100					. 10	1 7.1
L37+00N 35+75E	1	61	8	81	1.1	26	11	522	3.60	2	5	ND	1	35	1.2	2	2	63	24 083	13	56	72	85	15	227	5 (כר	11 5	1 9 0
L37+00N 36+00E	1	61	7	72	1.2	25	15	721	3.54	7	5	ND	1	38	1.1	2	2	63	34 051	16	53	65	77	15	2 2 2		14	10	1 2 5
L37+00N 36+25E	1	62	16	125		35	19	1079	4.67	13	5	ND	1	45	1.2	2	2	83	39 100	8	78	1 03	101	17	225		12	17	1 6 8
RE L37+00N 35+50E	2	67	8	91	2.3	30	14	811	3.69	5	5	ND	1	41	2.0	2	2	59	33 090	14	57	- 65	0A	11	2 2 /	1 (12	00	1 6 1
L37+00N 36+50E	2	47	16	100	.6	21	13	1287	3.16	19	5	ND	1	50	1.9	2	2	55	71 089	18	44	52	77	់រក់	2 2 9	4	12	08	1 3 0
										. '			-			-	-									•••••			i J.7
L37+00N 36+75E	1	50	6	147	.2	28	15	597	4.43	14	5	ND	1	35	1.0	2	2	86	.29 .095	6	82	.97	88	15	225	1 (11	08	1 4 2
L37+00N 37+00E	1	55	9	294	4	37	19	1056	5.05	17	5	ND	1	39	1.8	2	2	133	.47 108	5	98	1.75	155	16	232	8 6	12	10	1 0
STANDARD C/AU-S	19	63	38	131	7.5	69	33	1051	3.94	41	19	7	39	52	18.7	16	20	55	47 089	30	58	80	178	60	3210	12 1	15	16 1	1 46 0