LOG NO:	NOV 2 7 1992	RD.	
ACTION.	the Lice	nest	
FILE NO:			

LOG NO:	SEP 1 6 1772	RD.
ACTION.		
and the second	مېرىنى يېغىنى يېزىكى يېزىكى يېزىكى يېزىكى	
FILE NO:		

PROSPECTING ASSESSMENT REPORT

FOR

GOLD BAR CLAIMS

ON

NORTH MOYIE CREEK Lat. 49° 23'N Long. 116° 10'W NTS82F/8

> Owned by Gordon Johnstone 1202 - 2st. North Cranbrook, B.C. VIC 2B3 Ph. 604-426-2805.

> > Prepared by N. Gass

GASS AND ASSOCIATES EXPLORATION 2604 Exshaw Rd. N.W. Calgary Alberta T2M 4E5.

September, 1992.

TABLE OF CONTENTS

.

Title page1
Summary of cost apportioned2
Location map # 13
Claims map # 24
Introduction5
Location and Access5
History5
1992 work summary and cost statement5
Statement of work6
Geological/Prospecting Traverses7
Summary and conclusions8
Appendix A Assay Reports
Appendix B Qualifications
Appendix C Notice to Group
Pocket 1:2500 scale map of Gold Bar Claims # 3

Province of -Ministry of あるちともちに きりていき ていてきひ **British Columbia** Energy, Mimes and THEE PACE A CONSULT WITH Petroleum Resources TYPE OF REPORT/SURVEY(S) Prospecting/Geochemical ALTHOPIS NICK GASS SIGNATURES DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FILED PEDGERTY NAME SE GOLD BET # 1- G ... The ZINC/EAGLE GROUP CONMODITIES PRESENT Gold, lead, Zinc, Silver E C. MINERAL INVENTORY NUMBER SHIF KNOWN LATITUDE 49023 N. LONGITUDE 116° 10'W NAMMES and NUMBERS of all mineral tenures in good standing (when work way bolk, that form the ordinal). 32 units?, PHOENIX (Lot 1706), Mineral Lease M 120, Mining of Calify by Almin, Dease ML 12 to a my hypothesis Gold Bar # 1-6 • Owner is Gerden Jehnstone Frank Fairclough (3) NICK GASS MAILING ADDRESS 1200 - 2nd Ave S. Cranbrook B.C. VIC2B3 402 Brian Ave Chambrook B.C. VIC4B5 2604 EXSHAW Rd. N.W. Celgory Alta. T211 4E5 OPERATORISH (that is, Company Deving for the work) "Gordon Johnstone Frank Fairclough .21 13) Nich Gass MAILING ADDRESS As Above SUMMARY GEOLOGY Bithology, age, structure, alteration, mineralization, size, and attitude): The G Gold Bar claims are atented N-S. They are underlain by Proterozoic Middle Creston quartzites of siltites which have been folded + faulted by the Richmond L. fault immediately west of the property. A silicified "cap" is evident on the cliff above Shrimp L. Pyritized zones carry some base metal & traces of gold

Smull Carbonitite dykes related to more massive accurances to the south appear batten Snall grattz veins carry some PB. Zn. Cu., AU. REFERENCES TO PREVIOUS WORK A Small placer operation was attempted on the N. Moy'e Cr. on Gold Bar #1 perhaps 10 yrs. ago. In the 1950's a large Carbonatite dyke was drilled just S. of Shrimp Lion. With sub economic neturns of Lead & Zinc

TYPE OF WORK IN THIS DIT	EX (IN	TENT OF WORK METRIC UNITS)			0	IN WHICH CLAIMS		AT	COST TIONED
GEOLOGICAL (scale, area)									
Ground	• • • • • • • • • •		1	•••••		• • • • • • • • • • • • • • • • • • • •		••••	
CEOPHYSICAt (line bilemeter)	••••••••••			* * * * * * * * *	• • • • • • • • • •	· · • • • • • • • • • • • • • • • • • •]	• • • • • • • • • • •
Ground	,							1	•
Magnetic								1	
Electromagnetic									
Induced Polarization							• • • • • • • • • • • • •		
Rediometric			[
Seismic				· · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			• • • • • • • • •
Other	<i></i>			••••		· · · · · • • • • • • • • • • • • • • •	•••••		••••
Airborne		••••••••••••••••••••••••••••••••••••••		 .	• • • • • • • • •	· • • • · · · • • • • • • • • • • • • •	• • • • • • • • • • • • •	· · ; ·	
GEOCHEMICAL Inumber of sam	ples energysed for	<u>a</u> a		OIL R	7 A	2151		11	150
Soil		3 X	• • • •	EOH. CA	ar m	$\mathcal{I}_{j} \mathcal{F}_{j} \mathcal{I}_{j} \mathcal{G}_{j} \mathcal{G}_{j}$	• • • • • • • • • • • • • •	6	02
Silt	•••••••••	· · · · · · · · · · · · · · · · · · ·	· • · ·	12 11 Z		6	• • • • • • • • • • • •	52	(5)
Rock	• • • • • • • • • •	0		600.0	ar	· · · · · · · · · · · · · · · · · · ·	•••••••	1. 1	$\mathcal{D} \mathcal{C} \cdots \mathcal{D}$
Other DBULLING (total meters sumbar	and boles should			• • • • • • • • • •					
DATEEING (total metrat; humpai	r of noies, sizer		ļ						
Lore Non cours				· · · · · · · · · · ·	•••••	· • • • • • • • • • • • • • • • • • • •		••••	••••
					•••••		• • • • • • • • • • • • • •		
Sampling/manying									
Petrographic									
Mineralogic]	• • • • • • • • •			· • · · · · • • • • • • •		• • • • • • • • •
Metallurgic						· · ,		\$.	••••
PROSPECTING (scale, area)	1:2500	IKm ²		• • • • • • • • • •	· • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	•••••	15	50
PREPARATORY/PHYSICAL									
Legal surveys (scale, area)					. <i>.</i> . .				
Topographic (scale, area)			[· · · · · · · · · · ·	••••		• • • • • • • • • • • • •		
Photogrammetric (scale, area)	••••••••••			· · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · ·		· · · · · · · · · · ·
Line/grld (kilometres)	alan 1.	- Call Ola	· · · ·	and and all	57.1	Courts of Fact	•••••••••	.5%	275
Hoed, local access (kilometres)	Clear de	antan	· · · ·			JUV 11 4. East		ند. ^م ا	00
Linderground (metres)		· · · · · · · · · · · · · · · · · · ·				· · · <i>,</i> · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • •		
Underground product	• • • • • • • • • • • •		1	••••••••••	•••••			1	-7.4
·	·	·					TOTAL COST	<u>r30</u>	30
FOR MINISTRY USE ONLY		NAME OF PAC ACCOUN	т	OFOIT	CREDIT	REMARKS:			
Value work done (from report)		· · · · · · · · · · · · · · · · · · ·							
Value of work approved	· · · · · · · · · · · ·	·······	••••			1			
Value claimed (from statement) .	•••••	· · · · · · · · · · · · · · · · · · ·	• • • •	· · · · · ·	• • •	1			
Value debited to PAC account	· • · • <i>•</i> · • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • •	• • • • • •	· • • • • • • • •	1			
Accepted ,, AC account	• • • • • • • • • • • • • • • • • • •	Rept. Na.	· · · · ·		• • • • • • •	Information Class	· · · · · · · · · · · ·		
		J		l	• • • • • • • • • • • • • • • • • • •				<u>. </u>

t

INTRODUCTION

During the 1992 field season an attempt was made to evaluate the Gold Bar claims by rock and soil sampling on Gold Bar #'s 3,4,5, and 6.

LOCATION AND ACCESS

The claims are located on NTS map 82F/8, lat. 49° 23'N, long. 116° 10'W approximately 2km S.S.E. of Richmond Lake.

The block consists of six claims and can be reached by travelling 12km south of Cranbrook on B.C. 3/95 to Lumberton. Turn west at Lumberton and travel west and south along the Moyie River road for 20km to the bridge on North Moyie Cr. From this junction travel west for 6km along North Moyie Cr. on a summer logging road to Gold Bar #'s 5 and 6. Alternately, travel 5km from the bridge to a steep, four wheel drive road on the south side of the Moyie Cr. Rd. and travel 2km south and west. From the end of the road it is a short 200m hike to the north where the cliff edge is the approximate south boundary of the Gold Bar claims.

HISTORY

About 200M south of Gold Bar # 6 a carbonitite dyke was drilled by a syndicate from Kimberley in the 1950's. The best reported assays were 1.4oz/t Ag, 4.58%Pb, 1.09% Zn, .34% WO₃ Two drill holes in 1990 and 1992 intersected a second carbonitite carrying up to 1 000ppb Au. In the mid 80's a small placer operation was carried out for two years on North Moyie Cr. in Gold Bar #1.

1992 WORK COMMITMENT

As follows:

-Two men one day cutting wind fall off road -Three men two days prospecting and taking samples -Two men three days prospecting and taking samples -32 soil samples in total - 90 1780 metres, - 140 1820 metres, - 90 1855 metres. -8 rock samples were taken.

EXPENSES -12 man days @ \$200/day----\$2 400.

-2 man days @ \$15/hr x 10hrs	300.
-4x4 truck 6days/\$30	300.
power saw 1 day @\$30	30.

TOTAL

3 030.

5

Province of British Columbia Ministry of Energy, Mines and Petroleum Reso MINERAL RESOURCES DIVISION – TITLES BRANCH	urces	DOCUMEN	T NoOFFICE USE	ONLY
Mineral Tenure Act				
Sections 25, 26 & 27				
STATEMENT OF WORK CASH PAYMEN	IT			
Indicate type of title MINERAL (Minerel or Placer)				
Mining Division FORT STEEL			RECORDING ST	
I, NICHOLAS 6ASS	Agent for 60RD	20N (Name)	JOHNSTO	ONE
2604 FXSHAW Rd. N.W.	1202-2	2 nd S (Addres	7. N.	
Calgary Alta	CRANI3R	юĸ	B,C.	
H03 - 282 - 6179 (Telephone) Valid subsisting FMC No (Postal Code)	426-280: (Telephone) Valid subsisting EM	5 IC No	VIC	3L 4 (Postal Code)
EMC Code	EMC Code		11	
STATE THAT: (NOTE: If only paying cash in lieu, turn to 1. I have done, or caused to be done, work on the \ldots	reverse and complete LD	ete colur <i>#</i> - / -	nns G to J a	Ind Q to T.)
Record No(s). 304 352, 304 353, 304 354, 3	304355, 304	-356	, 3043	5.7.
	7. 10	9057	10	., 197;
and was done in compliance with Section 50 of the Mind	Tai lenure Act and			
Section 19(3) of the Regulation YES V NO]			
I hereby request that the claims listed in Column G on the	is Statement of Wo	rk be Gro	ouped and i (confirm that
all claims listed are contiguous YES V NO				
FEE - \$10.00 should be already	recorded	4 23	id for	
		· /		
PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, recl under section 13 of the Regulations, including the r	amation, and constructio ap and cost statement,	n of roads must be gi	and trails. Deta ven on this stat	ils as required ement.
PROSPECTING: Details as required under section 9 of the Regulation only be claimed once by the same owner of the gro	s must be submitted in und, and only during the	a technical e first three	report. Prospec years of owner	ship.
GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details through 8 (as appropriate) of the Regulations.	nust be submitted in a t	echnical re	port conforming	to sections 5
PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum o and/or drilling work on this statement may be withdra work value on this statement.	30% of the approved values when from the owner's or a	ue of geolog operator's F	ical, geophysica AC account and	I, geochemical I added to the
TYPE OF WORK	VALUE	E OF WOR	ĸ]
(Specify Physical (include details), Prospecting, Geological, etc.)	Physical *Pr	ospecting	*Geological etc.	
Clearing access road	380			
Prospecting	1:	550		
Soil & rock sompling			1100	
TOTALS	A 371 + B /	557)+	C // //)=	D.3031)
PAC WITHDRAWAL Maximum 30% of Value in Box C Only			E -	E
from account(s) of	_		TOTAL	F (2) 31)
* Who was the Name <u>CORTAIN JOHINSTONE</u> operator (provided the financing)? CRANIBRODIC Phone: 426-2805	Transfer amou	nt in Box f	⁼ to reverse sid	de of form
				MT(112 Rev 85/03

.....

MTL 112 Rev. 89/03

l 1

Geological Prospecting Traverses

<u>Traverse # 1</u> was north east along the centre ridge, down the notch in the cliff face, along the base of the cliff south and west of Shrimp Lake and along the edge of the outcrops east of the inlet stream.

The rock is light green to medium grey Middle Creston fine grained quartzite and siltstone in beds from 5cm up to 2m thick. On top of the ridge the creston is too silicified to obtain any accurate attitude. Down the notch the beds strike 035° and dip 85°NW. Six samples were taken from a variety of small quartz veins which carried considerable pyrite altered to haematite. The best assay was from sample 825 which gave 655ppb Au. Several small (5cm) rusty weathering carbonitite dykes intrude sub parallel to bedding. Just west of the lake the west limb of an anticlinal, plunging 20°NE, is interrupted by a fault striking 037°E. West of this fault the Creston strikes 040° and dips 35°NW. West of this structure a smaller anticline strikes 038° and plunges 26°NE on average. The quartzites on the west flank of this fold strike 046° and dip 76°NW. Further south a distinct foliation strikes 023° and dips 74°SE.

<u>Traverse # 2</u> was across the east slope of the centre ridge around the west end of Shrimp Lake and up the west side of the inlet stream. Again the surface exposure of Creston along the side of the ridge was too silicified to obtain an attitude. Around the end of the cliff the quartzite beds strike 040° and dip 75°NW. No further outcrop was encountered until the east flank of the west ridge was reached. Here the beds are interbedded purple and green quartzite typical of the upper middle Creston. Beds strike 037° dip 60°NW. Foliation strikes 025° dip 71°SE. A very hard, solid 1.5M bull quartz vein strikes north. dips 65°E and carries considerable haematized pyrite. A second vein of bull quartz appears to strike north but the attitude was really indeterminate.

<u>Traverse # 3</u> was down Nancies Creek around the east end of Shrimp Lake, down Shrimp Lake Creek west to the east facing slope of the west ridge, and south along the Richmond Lake fault. A strong foliation in the initial outcrops struck 026° dipping 75°SE. The stream was panned in four spots. No trace of gold was recovered. An outcrop in the stream NE of Shrimp Lake revealed thinly bedded Creston siltite striking 035° dipping 80°NW. No outcrop was encountered through the mature timber north of the lake until the steep slope of the west ridge was encountered. The Rock is easily identified as Creston but is so disturbed it was impossible to obtain an attitude. A number of small (5cm) quartz veins carry secondary feldspar. The fault itself is visible on the cliff face but appears very tightly sealed.

<u>Traverse # 4</u> was along the scree slope below the East Ridge, essentially looking for mineralized float. A fair amount of small

quartz veining was observed and several large (1M+) quartz boulders were encountered but nothing of any significance. Strike and dip of the Creston near the southern limit of the claims was 043° at 75°NW.

<u>Traverse # 5</u> was along the East Ridge. The rock here is mostly pale green quartzite of the middle middle Creston. Strike is 038° dip 72°NW. There are a considerable number of small (2-10cm) barren quartz veins and two large 1.5M bull quartz veins. Again, one is seen to strike approximately north the other roughly east-west.

<u>Traverse # 6</u> was undertaken along the west ridge to assess the advisability os staking more land to the west. The Creston strikes 045° and dips 72°NW. Foliation is at 030° dipping 80°SE. A contact between Creston and Kitchener was encountered some 300M to the west. Nothing of any significance was encountered so no further staking was undertaken.

<u>Soil Sample Traverses</u> were undertaken separately. They essentially lie along <u>Traverse # 3</u>. At the 1855M elevation samples 0,25,50,62,75,100, 125,150, and 175 were taken. At the 1820M elevation samples were taken every 25M from 0 to 350. Similarly at the 1780M level samples were taken every 25M from 0 to 200M.

The location of all samples are plotted on Map # 3 in the pocket of the report. The assays are included as Appendix A.

SUMMARY AND CONCLUSION

The large carbonitite dykes of the zinc claims to the south appear to pinch out by the time they reach the cliff above Shrimp Lake. In any event, the very small dykes present do not appear to be mineralized.

The most significant gold assay was from a small quartz vein on the cliff face. Sample 825 carried 655ppb Au. Sample 822 carried 20 ppb Au. In addition soil samples 1780-150 and 175 and 1855-62 carried 10ppb, 63ppb and 22ppb Au respectively.

Small amounts of base metals were encountered in several samples. Rock sample 83573 on Shrimp Lake Creek carried 120ppm Pb and 83574 near the SE corner of Shrimp Lake carried 165ppm Pb and 253ppm Zn. Sample 826 near the SW corner of Shrimp Lake carried 130ppm Pb and 103 ppm Zn. Only one soil sample showed significant base metal: # 1855-62 carried 133ppm Zn.

Large bull quartz veins across the area appear to be devoid of mineralization. The smaller veins exposed on the cliff face above Shrimp Lake that do carry small amounts of mineralization are believed to be the pinch out ends of more deep seated veining connected to the folding and faulting east of the Richmond Lake fault. Since the source of these veins as well as the carbonitite dyke is in all probability a large magnetic anomaly 2.3km to the south east, values might be expected to improve in these directions. The Gold Bar Claims will be grouped with the zinc claims to the south and east and further soil and rock sampling as well as a geomagnetic survey will be carried out. If the Winkey drill can be fixed then one or more diamond drill holes will be attempted.

	110		ABOR.	ATOR	IES	LED Koki	ane 10	6: e Ei 4 1	52 E G EP1	. 80 EOCI 578 10th	ISTI IEM LIOI Ne S	NGS LCA 019	6T. L.A.	VAN VAI PJ SE BC	COU I COJ VIC	VER 8 C ECT 2N1	B,C. ERT KO(Subs	t IPI 2	6A 1 CATI FIL: 59: 5	R6 2 2 1.L2	92- Pight)	РНОМ -179	B(60	74)2	53-3	158	FA.	X (60	/~ 25		716 A L	JUL-1
SAMPLE#	No	Cu	Pb ppm	Zn	Ag pon	Ni	Co	Min. ppm	Fe %	As	U	AU	Th	Sr	Cd DOM	Sb pom	Bi	V	Ca X	o X	La	Cr	Mg	80	۲ļ	B	AL X	Na X	K	9	Au#	0-1
00820 - Zinc 1 RE 00822 GB 1 -00821 - Zinc 2 00823 G R 2 00823 G R 2 00825 G R 1 00825 G R 1 00825 G R 1 00826 G R 1 00827 G R 1 00827 G R 1	1 4 3 4 1 2 4 1 1 18	6701 7 41 8 691 11 7 12 14 57	5 12 2 13 2 2 2 14 130 43	37 8 1 8 13 5 12 17 103 131	141.111.114.75	6 10 11 10 5 9 11 20 31 70	3 61 1 59 4 14 8 181 336 31	647 177 58 206 94 106 106 124 267	3.17 1.16 .36 1.13 .98 .81 .96 2.77 5.41 4.01	2 100 2 85 2 3 4 10 41	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ND ND ND ND ND ND ND ND ND ND ND 7	7 2 1 2 5 4 4 3 1 38	31 12 1 11 13 6 8 4 28 54	22222 222215	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 1 1 1 3 2 1 1 1 58	2.26 .47 .02 .45 .39 .28 .12 .07 1.81 .48	.031 .004 .002 .004 .145 .007 .006 .005 .002 .091	2 11 2 10 3 2 6 7 3 37	14 40 13 39 9 12 41 12 20 58	2.37 .26 .05 .25 .39 .36 .07 .05 1.09 .89	13 16 1 15 26 21 9 8 13 180	.01 .01 .01 .01 .01 .01 .01 .01 .01	23222 224234	1.16 .14 .04 .14 .46 .38 .12 .16 .09 1.90	.03 .01 .01 .01 .01 .02 .02 .03 .02 .07	.02 .08 .01 .08 .03 .07 .02 .02 .02 .15	91212 1121	3 20 1 16 3 655 6 543	992 13:47 FROM AC
GOL BAL) EIVE	ICP THIS ASSA - SA DI	- ,50 i Leac ay Rec Mple Jul 7	0 GRAU H 15 1 Dimment Type: 1992	H SAN PARTI DED FI ROCK DZ	PLE IS AL FOI OR ROO TE I	S DIG R MW CK AH RUP A REPO	ESTED FE SR D CORI NALYS	WITH CA P E SAN IS BY	I 3HL : LA CI PLES ACID ED :	S-1-2 R MG I IF OU LEAC	HCL-I BA TI PB ZI H/AA I	HNO3-I B W J N AS S FROM	H20 A AND L > 1%, 10 GH	T 95 INITE AG > SAMP BIO	DEG. D FOR 30 P LE.	CFOR MAK PM&A Sample (BX.	OWE AND AU > es be	HOUR AL. 1 1000 F	WID I WI DE PPB	S DILL TECTIO E' are .D.TOT	JTED 1 DR LII e dupi	TO 10 MIT B Licat	ML W Y ICP e sam 3, J.(DITH M IS 3 Dles. WANG;	ATER. PPM.	IFLED	B.C.	ASSAY	ERS	S	ME ANALYTICAL

TO KOKANEE EXPL

4

opendix A

P.002/002

44

10-03-1332 11:41

Kokanee Explorations Ltd. PROJECT KOO FILE # 92-1744

ADIE AMALTEROL				R	(0)(1	inee	3 E	крт	orat	:10)	ns i	LCa.		KOJE	CT	XUC	, F	114	S# 92	-17	44	2			1	age	3 2	ACIN		1 644,
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn	Ag PPM	Ni ppm	Co	Nn ppar	Fe	As	U ppni	Au ppm	Th ppen	Sr ppn	bo) mag	Sb ppm	B1 ppm	V Ppm	Ca P X X	La ppm	Cr	Mg X	Ba ppm	fi X	Ppm B	Al X	Na X	K Z P		*1. do
1780-0 1780-25 1780-50 1780-75 1780-100	1 1 1 1	12 10 18 12 16	12 16 15 18 25	72 50 56 41 53	- ANEN	12 12 8 7 7	717743	277 860 397 110 215	3.19 2.85 4.58 3.94 3.41	84954	55575	ND ND ND ND	53781	9765	14483	22322	22322	22 19 39 29 35	.08 .134 .12 051 .03 061 .02 033 .15 043	15 19 8 11 8	12 10 11 10 8	.66 .57 .12 .15 .10	47 53 56 46 66	.07 .06 .19 .14	32344	2.46 1.54 5.70 5.98 1.75	.02 .01 .02 .02 .02	.04 .05 .04 .03 .04	22111	41321
1780-125 1780-150 1780-175 1780-200 1820-0	11117	8 6 8 6 10	8 18 12 13	43 36 44 35 54		6 7 8 7 9	54456	427 68 111 114 321	2.07 2.65 2.89 2.59 2.27	4354.93	55555	ND ND ND ND	34452	43747	7,1,9,9,9	22222	22222	20 29 25 19 21	.02 026 ,02 020 .05 023 .01 031 .17 025	17 28 22 26 17	9 9 8 10	.20 .40 .56 .43 .66	46 39 71 36 60	.08 .08 .08 .05	32333	2.44 1.06 1.49 1.22 2.24	.01 .01 .01 .01 .01	.03 .04 .05 .04 .05	2	40344
1820-50 1820-75 1820-100 1820-125 1820-150	1 1 1 1	2 4 13 14 7	7 4 14 15 9	38 34 49 40 36		9 9 6 6 8	55334	69 102 94 222 157	2.09 2.23 3.33 3.31 2.94	22352	5 5 5 5 5	ND ND ND ND	65534	2 3 10 5 3	126555	22222	22222	13 12 32 29 23	.01 .017 .02 026 .10 026 .03 029 .01 022	25 26 8 12 25	10 6 16 7 8	.72 .61 .10 .13 .46	45 25 39 42 41	02 02 13 17 08	22332	.87 .44 .55 .53 .26	.01 .01 .03 .02 .01	.04 .03 .04 .04 .05		26212
1820-175 1820-200 1820-225 1820-250 1820-250 1820-275	1 1 1 1	8 11 11 8 6	9 12 12 9 9	48 36 57 36 41		9 6 9 7 13	53749	181 144 270 95 251	2.76 2.37 2.39 2.47 2.33	2 5 3 2 2	5 5 5 6	nd Nd Nd Nd	4 3 1 3 1	5 4 6 4 10	8675N	22232	22222	22 23 20 18 16	.04 .029 .02 031 .04 .052 .02 .034 .10 042	23 16 19 19 20	8 12 13 10 11	.44 .15 .40 .38 1.15	64 37 48 46 239	.08 .09 .06 .07 .05	22442	.51 .47 .40 .94 .27	.01 .02 .02 .01 .01	.05 .03 .06 .03 .07	12121	1 2 2 2 3
1820-300 1820-325 1820-350 1855-0 1855-25	1 1 1 1	8 12 4 11 12	12 17 3 18 28	42 52 21 38 78	1	7 10 3 6 8	4 5 2 4 15	102 140 30 92 289	2.62 2.90 .68 2.44 2.89	46227	5 5 5 5 5	nd Nd Nd Nd	32453	6 12 4 5 14	857244	22232	22222	23 27 16 23 27	.03 .031 .09 .039 .02 .009 .03 .055 .19 .065	26 12 35 16 9	9 10 4 9 8	.58 .52 .07 .36 .16	42 107 21 35 104	.07 .13 .04 .10 .11	43244	.50 .90 .52 .32 .18	.01 .02 .01 .02 .03	.04 00 00 00 .05 00 00 .05 000	11131	21135
RE 1820-350 1855-50 1855-62 1855-75 1855-100	1 1 1 1	4 16 14 17 17	4 30 32 19 13	20 22 23 25 25		3 10 15 10 8	2 14 54 16	33 408 917 2235 797	.68 4.13 3.76 2.28 3.18	N 2 2 2 2	5 7 13 6 5		43313	4 7 19 11 8	-3 -8 -5 -5 -4	2 3 2 2 2	22222	16 32 24 26 42	.02 .011 .05 .073 .33 .090 .09 .064 .06 .060	34 14 14 14	4 12 14 11	.07 .37 .63 .35 .17	22 57 92 103 76	.04 .09 .08 .08	25511	.54 .82 .38 .73 .50	.02 .02 .02 .02	.02 .04 .05 .06 .05	1 (2	11222
1855-125 1855-150 1855-175 STANDARD C/AU-S	1 1	11 10 8 60	8 9 11 39	51 43 44 134	21 21 11 7.2	8 8 72	5 8 5 31	372 502 227	2.46 2.43 3.03 3.86	CAMA	5 5 20	ND ND ND 7	1 3 4 39	8 5 53 16	5429	2 2 15	2 2 20	31 24 26 59	.06 .047 .03 .037 .02 .031 .48 .091	21 24 26 39	10 9 10 57	.39 .39 .54 .89	55 46 38 179	.09 .09 .08	2 1 3 1 3 1 34 1	.26 .73 .48 .91	.01 .01 .01 .07	.06 .04 .04 .15		7228

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

TOTAL P.003

Appendix A

Page 2

£ £	BORATORIES III	852 E HF GEOCI <u>Exploration</u> 104 - 135 - 10th	ASTINGS ST. A HEMICAL ANAL S. Ltd. PROJI Ave S., Cranbrook B	OUVER B.C. V YSIS CERTIFI CT. KOO File CVIC 201 Submittee	6A 1R6 PHONE CATE # 92-1744 by c.t. Pights	(604)253÷3158 Page 1	253-1716 Δ\Δ
SAMPLE#	. No Cu Pb Zr ppm ppm ppm ppm	Ag Ni Co Mn pom ppm ppm ppm	Fe As U Au T X ppm ppm ppm ppm pp	h Sr Cd Sb 81 neppm ppneppneppnep	V Ca P La Cr Hy xm X X ppm ppm 3	Ba TC B AL Na ppn X ppm X X	K 9 Au* X Ppn ppb
St tre 2 00817 00818 Trench) RE 00819 00819 00819 00819 00819 00819 0083572 P. , 19 D 83572 D 83573 D 83574	6 899 4836 1354 2 1606 5097 7122 2 560 2764 682 2 560 2754 60 2 360 30517 477 1 8 120 15 4 67 165 25	2 2 6 27 45 564 3 2 3 6 61 136 6941 1 3 2 8 11 11 310 2 5 12 9 291 3 4 5 8 3 82 1 2 35 62 134 1 6 13 311	3.05 95 12 ND 1.13 44 5 ND 4.27 35 5 ND 4.25 31 5 ND 1.59 94 5 ND 4.41 29 5 ND 2.18 13 5 ND	3 5 14.1 4 9 4 1 20 28 4 2 26 18 2 5 1.3 4 7 1 1 5 1.0 2 4 2 1 3 2.6 678 14 3 2 .2 4 2 1 3 .8 2 2	18 .06 010 2 7 .04 16 .33 025 8 22 .80 19 .10 .006 2 7 .12 10 .007 2 7 .11 3 .01 .002 2 9 .01 9 .03 .007 3 14 .66 12 .04 .005 2 .40 .05	1 01 2 .28 .02 79 14 3 2.39 .04 14 .05 3 .43 .01 11 05 2 .42 .01 4 01 4 .05 .01 13 .01 2 .65 .02 9 01 2 .19 .01	.03 1 25 .14 7 9 .10 2 9 .10 7 9 .02 105 guarts FC .02 15 Namework
DATE RECEIVED:	500 GRAM SANPLE I LEACH IS PARTIAL FO Y RECOMMENDED FOR RO MPLE TYPE: P1 ROCK P <u>bles beginning 'RE' a</u> JUL 2 1992 DATE	S DIGESTED WITH 3ML : R MN FE SR CA P LA C CK AND DORE SAMPLES 2 SOIL AU* ANALY: re duplicate samples REPORT MAILED:	3-1-2 HCL-HN03-H20 R MG BA TI B W AND IF OU PB ZN AS > 1% SIS BY ACID LEACH/A - $\int My 9/92$.	AT 95 DEG. C FOR ONE LIMITED FOR NA K AND AG > 30 PPN & AU > A FRON 10 GM SAMPLE. SIGNED BY	HOUR AND IS DILUTED TO AL. AU DETECTION LINE 1000 PPB	TO ML WITH WATER, T BY ICP IS 3 PPM. EONG, J.WANG; CERTIFIE	ED B.C. ASSAYERS
Я.							
							App
							Appen
							Appendix
							Appendix 1

Appendix B

QUALIFICATIONS

14.1 The writer, N. Gass, obtained his B.Sc. in geology from Dalhousie University, Halifax, N.S. in 1955 and his M.Sc. in geology from the same institution in 1957.

14.2 Experience

With the families

۲,

- 1955 Detailed mapping & prospecting American Smelting and Refining Ltd., Newfoundland.
- 1956 Regional mapping and detailed study of Pegmatites of the Winnipeg River, Manitoba Department of Mines.
- 1957-62 Surface and subsurface exploration, mapping, wellsite and special projects in Saskatchewan, Alberta, & British Columbia. Chevron Standard Oil Co. Ltd.
- 1963 Wellsite consultant, Chevron Standard.
- 1964 Developed House Mt. Oil field for Chevron Standard.
- 1971 Uranium and base metal exploration in Saskatchewan for V. Zay Smith and Associates, Calgary.
- 1976 Uranium exploration northern Saskatchewan for Rio Alto Exploration Ltd.
- 1979 Drilling program on fossil placer, Gay's River, N.S., Calgary syndicate.
- 1980 Drilling program Nelson, B.C. for Dekalb Mining.
- 1981 Geological mapping and geophysical survey, La France Creek, B.C., Dekalb Mining.
- 1982 Lithium, tantalium, gemanium prospecting and reconnaissance survey, Winnipeg River, Manitoba, Dekalb Mining.
- 1983-92 Base metals, gold/silver prospecting, Crambrook, B.C.

25

	Appe	ndixC
Province of British Columbia Ministry of Energy, Mines and Petroleum R MINERAL RESOURCES DIVISION - TITLES BRAI	Resources NCH	DOCUMENT NOOFFICE USE ONLY
Mineral Tenure Act SECTION 28		GOVERNMENT AGENT CRANBROOK
NOTICE TO GROUP		AUG 10 1992 AMT. # 10,00 TRANS. # 2.
(Mineral or Pi	lacer)*	RECORDING STAMP
1, FRANK FAIRCLOUGH (Name) 402 BRIAR AVE. N.W (Address)	Agent for	(Name) (Name) AND ST. N. (Address)
<u>(RAN B ROOK</u> , B,C. 426-2796 (Telephone) VIC 485 (Postal Code) Valid subsisting FMC No. 108031	(Telephone) Valid subsisting FN	IBROOK, BC. VIC 324 (Postal Code) IC No. 113279
FMC Code	FMC Code	

A cop	y of the mine	ral/placer titles	s reference	map (X) or a	legal	survey	approved	by the S	Surveyor C	Seneral 🔲 i	s attached.
(checl	<pre>c appropriate</pre>	box)									
			· · · · ·	· · · · · · · · · · · · · · · · · · ·							

Name of Claim	No. of Units	Title Number	Name of Claim	No. of Units	Title Number
GOLD BAR 1	/	304352			
GOLD BAR 2	1	304353			
GOLD BAR 3	1	304 354			
GOLD BAR 4	1	304355			
GOLD BAR 5	1	304356			
GOLD BAR 6	1	304357	· · · · · · · · · · · · · · · · · · ·		
ZINC 5	20	211098			

Notice to Group approved (Yes/No)

(Signature of Gold Commissioner)

Total number of units 26

(Signature of Applicant)

(Date)

i

*NOTE: Mineral claim(s) and lease(s) cannot be grouped with placer claim(s) and lease(s)

Recycled Paper

