LOG NO:	(SEP 1) 7, 14.	RD.	
ACTION.			
 			F

NORTH SLOPE MINERALS INC.

FILE NO:

COMPILATION REPORT

on a

1991 DIAMOND DRILL PROGRAM

on the

MT. WASHINGTON PROPERTY

Nanaimo, M.D.

N.T.S. 92F/14

Laurence Sookochoff, P.Eng. Sookochoff Consultants Inc. April 27, 1992

> GEOLOGICAL BRANCH ASSESSMENT REPORT

22,498

NORTH SLOPE MINERALS INC.

Compilation Report on a 1991 Diamond Drill Program on the MT. WASHINGTON PROPERTY

TABLE OF CONTENTS

· ·	page
Summary	
Introduction	2
Property	2
Location and Access	
Physiography	3
Historical Background	3
Regional Geology	
Property Geology	4
EM Conductor A Geology	5
Diamond Drill Hole (Noranda) NMX-89-25 and	
NMX-89-26 Results	6
Mineralization	
1991 Diamond Drill Program	6
1991 Drill Hole Data and Results	
DDH NSM 91-1	7
DDH NSM 91-2	
DDH NSM 91-3	
DDH NSM 91-4	
DDH NSM 91-5	
DDH NSM 91-6	
Recommendations	
Selected References	
Certificate	13

_Sookochoff Consultants Inc. ..

ILLUSTRATIONS

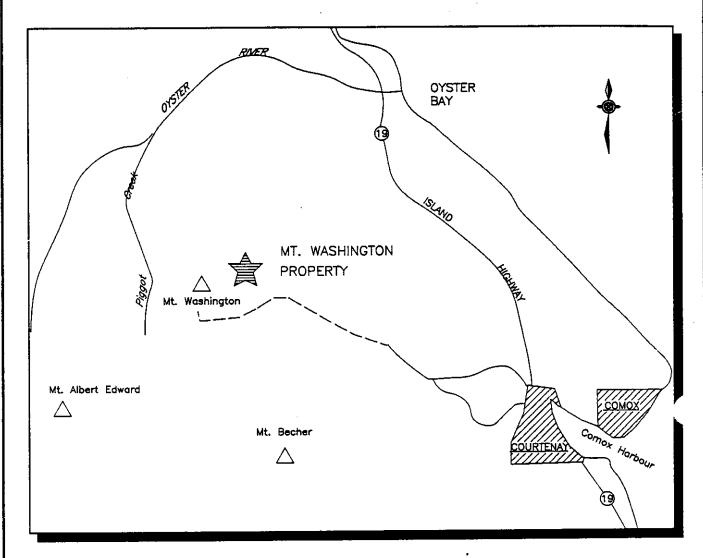
		after page
Figure 1	Property Location Map	1
Figure 2	Claim Location	2
Figure 3	Table of Formations of	
•	Vancouver Island (Muller)	3
Figure 4	Diamond Drill Hole Plan	6
Figure 5	Cross Section DDH NSM 91-1	Appendix III
Figure 6	Cross Section DDH NSM 91-2	Appendix III
Figure 7	Cross Section DDH NSM 91-3	Appendix III
Figure 8	Cross Section	
•	DDH NSM 91-1, 91-2, 91-3	Appendix III
Figure 9	Cross Section	
-	DDH NSM 91-4, 91-5	Appendix III
Figure 10	Cross Section DDH NSM 91-6	Appendix III

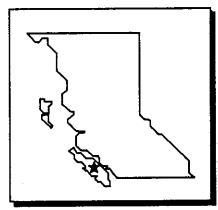
APPENDICES

I	Assay Certificates	
II	Diamond Drill Logs: NSM	91-1 to NSM 91-6
III	Diamond Drill Sections:	NSM 91-1 to NSM 91-6
IV	Claim Particulars	

NORTH SLOPE MINERALS INC.

Compilation Report
on a


1991 Diamond Drill Program
on the
MT. WASHINGTON PROPERTY


Summary

The Mt. Washington Property, comprised of 39 two-post claims, has been explored for the past 50 years which included a period of production in the 1960's when some 400,000 tons of ore were processed. Prior to North Slope Minerals Inc. acquiring an option on the property from Better Resources Ltd., Noranda completed an exploration program on the property in 1989 resulting in the delineation of anomalous zones and EM Conductors. EM Conductor A was tested with two diamond drill holes; the results reportedly returned a 4.0 metre section assaying 0.18 oz Au/ton and 4.06% Cu in NMX-89-25 and a 6.5 metre section of 0.006 oz Au/ton and 1.07% Cu in NMX-89-26, 90 metres distant. The NMX-89-25 section contained a 63 cm massive sulphide vein in a one metre section which assayed 20.76 g/T Au.

North Slope Minerals Inc. optioned the Mt. Washington property based on Noranda's drill results and proceeded to execute a diamond drill program as recommended by J.J. McDougall, P.Eng. in a report dated November 9, 1992 and which was the basis of a Statement of Material Facts dated June 19, 1991.

Five drill holes were completed on the EM Conductor A in order to test the depth extensions of the mineral zone intersections of the two Noranda drill holes. Three holes—NSM 91-1, NSM 91-2 & NSM 91-3 — drilled below Noranda's NMX-89-25 returned values of up to 29 ppb Au and 13,376 Cu in a section from NSM 91-3 which included a 55 cm vein of massive sulphides. NSM 91-1 and NSM 91-2 also intersected narrower massive sulphide zones at high angles to the core axis between 33 m to 34 m and between 33 m and 35 m respectively. A moderate degree of carbonate/quartz/sulphide veins of variable width and of a variable sulphide content occur at low angles to the core axis within a breccia zone.

*After Noranda 1989

SOOKOCHOFF CONSULTANTS INC.

NORTH SLOPE MINERALS INC. MT. WASHINGTON PROJECT

PROPERTY LOCATION MAI

SCALE: 1:250,000

DATE: Mor.'92

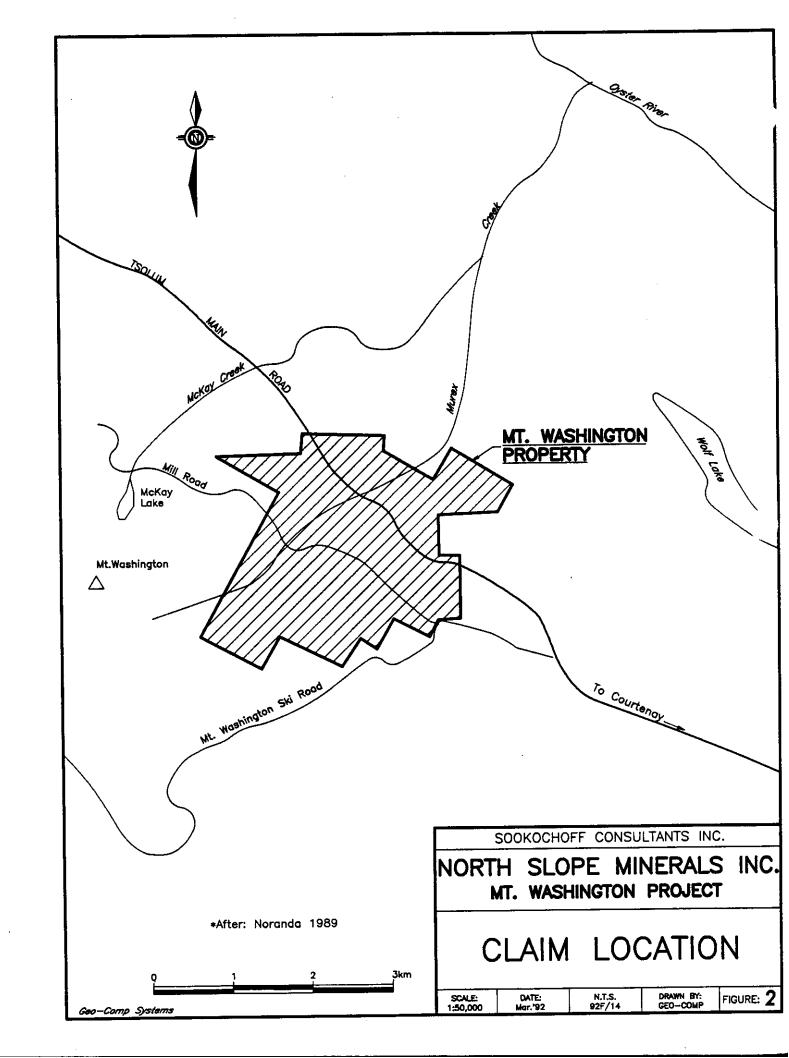
N.T.S. 92F/14

DRAWN BY: GEO-COMP

FIGURE:]

Two drill holes were completed below Noranda's drill hole NMX-89-26 section. Drill hole NSM 91-4 intersected a steeply dipping breccia zone from 38.6 m to 78.6 m with elevated gold and copper values of two metres of 1.6% Cu and 112 ppb Au and one metre of 0.92% Cu and 66 ppb Au. Diamond drill hole NSM 91-5 was terminated short of the breccia zone.

91-6, hole nsm which was spotted to test conductor C, intersected sandstone, with geophysical EM up to moderately graphitic argillite, intercalated and mineralized with sections of up to 30% sulphides. A central light to moderate shearing contains increased carbonate/quartz/sulphide veinlets. Selected samples of the core returned up to 53 ppb Au from an argillite containing pyrrhotite veinlets and up to 6,842 ppm Cu (0.68%) from a sandstone containing disseminations of pyrrhotite, pyrite and chalcopyrite.


Introduction

In November and December 1991 a six hole diamond drill hole program totalling 602 metres was completed on the Mt. Washington property which is owned by Better Resources Ltd. and were held under option by North Slope Minerals Inc. The 1991 exploration program was based on encouraging results from an extensive exploration program completed on the property in 1989 by Noranda Exploration Company, Limited, the results of which are set out in a report by D.Bull, L.Bradish and T.McIntyre dated December 1989.

The 1991 program was managed and supervised by Laurence Sookochoff, P.Eng. of Sookochoff Consultants Inc. The following report deals mainly with the results of that program with background information on the property summarized herein from information contained in the 1989 Noranda report.

Property

The property consists of 39 contiguously located two post mineral claims comprising an area of approximately 815 hectares. Particulars of the claims are contained in Appendix IV.

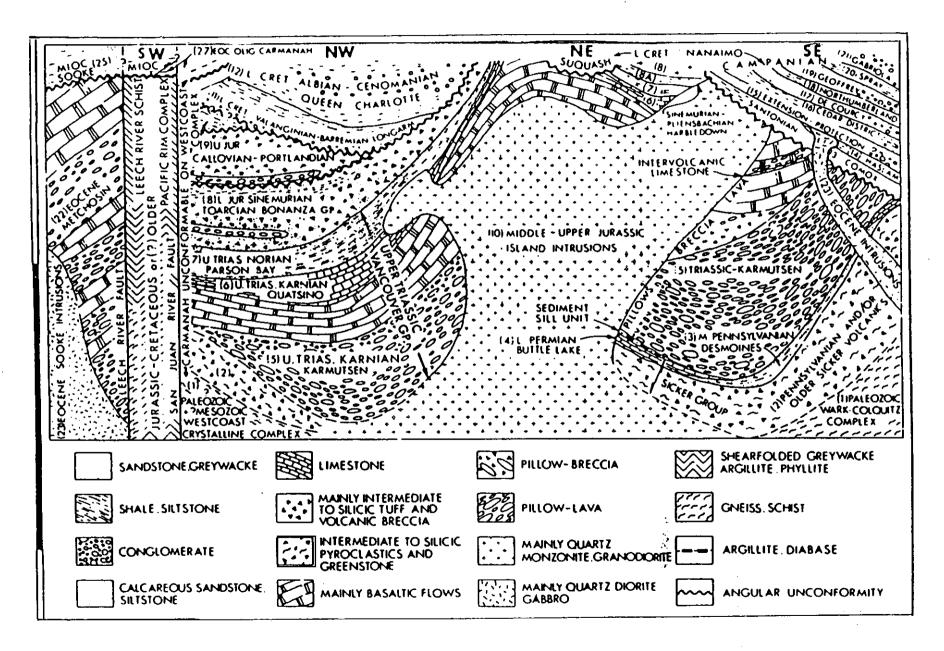
Location and Access

The Mt. Washington property is located on Vancouver Island 20 km west northwest of Courtenay, B.C. Access to the property is via the paved and gravelled Mt. Washington Ski Hill road which is maintained throughout the year.

Access to, or within two hundred metres of the 1991 drill sites was by poor secondary road. Trails leading to the five off-road drill sites were used for personnel access, whereas a helicopter was required for drill moves and supply provision.

Physiography

The Mt. Washington Property is on the southeast slopes of Mt. Washington where moderate to steep slopes prevail with elevations ranging from 460 metres to 1,400 metres amsl.


Historical Background

The Mt. Washington area has been explored for the past 50 years by: the gold panners of the 1930's; by the MacKay Brothers, K.J. Springer and the Granby Consolidated Mining, Smelting & Power Company in the 1940's; by Noranda in the 1950's; by the Consolidated Mining and Smelting Company, the Mt. Washington Copper Company (400,000 tons of ore grading 1.16% copper were mined and processed) and Marietta Resources in the 1960's; Imperial Oil in the 1970's; and Better Resources and Noranda in the 1980's.

On the basis of Noranda's 1989 diamond drill results North Slope Minerals Inc. optioned the property from Better Resources and completed a six hole diamond drill program. This report is the subject of the diamond drill program.

Regional Geology

The Mt. Washington property area is within the Insular Belt, which is the westernmost major tectonic subdivision of the Canadian Cordillera. According to Muller (1977), the Insular Belt (Island Mountains) contains a middle Paleozoic and a Jurassic volcanic-plutonic complex, both apparently underlain by gneiss-migmatite terranes and overlain respectively by Permo-Pennsylvanian and Cretaceous clastic sediments. A thick shield of Upper Triassic basalt (Karmutsen Formation) overlain by carbonate-clastic sediments separates these two in space and time.

			TABLE OF	FOI	RMA	ATIONS OF VANCO	DUVER ISLA	ND	·			
		······································		SEQUE	NTIA	VL L	AYERED ROCKS			VPLEX	(ES O	F POORLY DEFINED AGE
<u> </u>	PERIO	STAGE	GROUP .	FORMATION	SYM-	MENCE PACKAGE IN III.	LITHOLOGY	NAME	SYM-		CAGE	LITHOLOGY
ပ္				late Tert.valcs of PartMcNeill	Tvs			¥-F-11		<u> </u>	7/2/	· · · · · · · · · · · · · · · · · · ·
Ö				SOOKE BAY	mpī sa		conglomerate, sandstone, shale					
70		EOCENE 10		CARMANAH	eoīc	1.200	sandstone, siltstone, coglomerate					
S		OLIGOCENE		ESCALANTE	eT E	300	conglomerate, sandstane	silicic	Tak			quartzdiorile, trondhje mite, agmatite, parphyry
Ü		early FOCENE		METCHOSIN	eīm	3,000	basaltic lava, pillow lavo, breccia, tuff	SOOKE INTRUSIONS-basic METCHOSIN SCHIST,GNEISS				gobbro. anarthosite, agmatite chlorite schist, gneissic amphibolite
		MAESTEICHTUN		GABRIOLA	uKGA	350	sandstone, conglomerate	LEECH RIVER FM.	<u>jķī</u>		38-41	phyllite, mica schist, greywacke, argitlite, chert
ł	1			SPRAY	uKs	100	shole, silts tone	!			1	
]	1		GEOFFREY	υKG	150	conglomerate, sandstone	,				
				NORTHUMBERLAND	υKn	250	silfstone, shale, sandstone	1	} }			
ŀ	u	CAMPANIAN	OMIANAN	DE COURCY	uKoc	350	cónglomerate, sandstone]
1	<			CEDAR DISTRICT UK EXTENSION-PROTECTION UK HASLAM UI		300	shale, siltstone, sandstone					
ì	<u> </u>		'			300	conglomerate, sandstone, shale, coal	1			<u> </u>	
U	1					200	shale, siltstone, sandstone					
- -] [SANTONIAN		COMOX	υKc	350	sandstone.conglomerate,shale,coal	,			·	[
N		CENOMANIAN ALBIAN	QUEEN	conglomerate unit	lKoc	900	conglomerate, greywacke	1				
0	اً ا	APTIAN 2	CHARLOTTE	siltstane shale unit	lKop	50	silistone, shale	1	ļ			
m S		BARREMIAN		LONGARM	IK,	250	greywacke.conglomerate, siltstone	,		ļ		!
₹	SS	TITHONIAN CALLOVIAN		Upper Jurassic	uJs	500	siltstone.orgillite.conglomerate	PACIFIC RIM COMPLEX	JK+			greywocke orgillite.chert(basic
	4/2	TOARCIAN?		volcanics	1Ja	1.500	bosaltic to chyolitic lava, tuff, breccio, minor orgillité, greywocke	ISLAND INTRUSIONS	Jg]		granodiorite, quartz diorite. Granite, quariz monzonile
ľ		PUENSBACHAN SINEMURIAN		HARBLEDOWN	ы		orgillite, greywacke, tuff	WESTCOAST silicic	PMns PMnb	264	63-197	quartz - leidspargneiss metaquartzile, marbie
		NORIAN		PARSON BAY	uli re	450	calcareous siltstone, greywacke, silty - limestone, minor canglamerate, breccia			1		hornblende-plogioclass gneiss- quartz diorite, agmatite, amphi- bolite
	SSIC	- 1	VANCOUVER	QUATSINO	vko	400	limestone					
ł	I≰L			KARMUTSEN	unyk	4.500	basalta lava, pillow lava, breccia, tulf	diabase sills	Plb	1		
	TR	LADINIAN	Į	sediment - sill unit	1 ds	750	metasilistone, diabase, limestone	limestone	Ls]		
Ų	ē .			BUTTLE LAKE	CPIL	300	limestone, chert	metavolcanic rocks	PMmv		ì	metavolcanic racks, minor meta- sediments; limestone, marble
Ō	N.E.	1	SICKER	ICKER sediments CP	CPss	600	metagreywacke, argillite, schist, marble				l	
0	PENN.				CPsv	2.000	basaltic la rhyalitic metavalcanic			1		
197	2 2	Τ'	Ţ				flows, tuff, agglomerate	TYEE INTRUSIONS	Pg	•390		metagranodiarite metaguartz dia- nte, metaguartz pot phyry
ă	DEV. or EARUER							COLQUITZ GNEISS WARK DIORITE GNEISS	Pnb	•390	\ 63−18 2	quartz feldspar gneiss hornblende plagipç lase gneiss quartz diorité, ariphibalité

The area is dominated by the Karmutsen Formation of the Vancouver Group which is intruded by the Island Intrusions. The Karmutsen, as described by Muller (1977) is:

"...composed of tholeiitic volcanic rocks, up to 6,000 m thick and underlying a large part of the Island. In Carlisle's (1974) standard section the formation is composed of a lower member, about 2,600 m thick, of pillow lava; a middle member, about 800 m thick, of pillow breccia and aquagene tuff; and an upper member, about 2,900 m thick, of massive flows with minor interbedded pillow lava, breccia and sedimentary layers. Except in contact zones with granitic intrusions the volcanics exhibit low-grade metamorphism up to prehnite-pumpellyite grade..."

In the Mt. Washington property area the Karmutsen is in part unconformably overlain by the Upper Cretaceous Nanaimo Group Haslam and Comox Formations. These formations are described in the 1989 Noranda report as consisting of fine to coarse grained detrital sedimentary rocks with the Benson Member, a pebble-cobble-boulder conglomerate, in some areas marking the unconformity between the Karmutsen Formation and the Nanaimo Group.

In further summarizing the geology as referenced to the Noranda report, intrusives of Cretaceous to Tertiary age intruded the Karmutsen Formation and Nanaimo Group rocks and in some cases caused the formation of breccias. These breccias, which can also occur in the Comox Formation sandstones, are sometimes accompanied by sulphide mineralization and as a result are the prime target of economic interest.

Property Geology

The geology of the property is reported in some detail in the Noranda report which is herein summarized.

The Karmutsen Formation consists of less than five metre thick flows of massive basalt which generally dip within 10° to 15° of horizontal. The Karmutsen is pervasively fractured, with fractures sometimes filled with quartz-carbonate and occasionally, minor pyrite, pyrrhotite, and very minor chalcopyrite. As the fracturing increases close to bodies of basaltic breccia, the boundary between highly fractured basalt and basaltic breccia is transitional.

The Comox Formation sediments are mostly composed of sandstones interbedded with minor mudstones and siltstones. Silicified and hornfelsed sandstones are in some localities mineralized with pyrrhotite, pyrite and minor chalcopyrite. The sulphides, which occur as disseminations and as fracture fillings, average 3% to 5% but could be as high as 20%. Noranda reports that the sulphide mineralized sandstones and the graphitic argillites and siltstones are moderately to weakly conductive whereas the sandstone, containing 10% to 20% pyrrhotite and pyrite, is very conductive.

Several breccia bodies are reported on the property: the basaltic breccia is comprised of mostly pebble to cobble size Karmutsen basalt fragments in a rusty, vuggy fine to coarse grained quartz rich matrix; the Comox breccia is composed of pebble to large cobble sized fragments of Comox sandstones, siltstones and argillites in a siliceous matrix; the intrusive breccia is comprised of small pebble to large cobble sized fragments of diorite in a fine grained siliceous matrix containing up to 10% biotite; the mixed lithology breccia contains pebble to large cobble sized basaltic, sedimentary and dioritic fragments in a siliceous, often biotite bearing matrix.

At EM Conductor A, which is the location of five of the six diamond drill holes of the 1991 drilling program, a sub-type breccia referred to as a fluidized milled breccia is reported. This breccia is distinct in the increased rounding and alteration of the fragments and the increase in matrix to fragment ratio. The breccia is reportedly in contact, or proximal, to sub-vertical diorite dykes which are post breccia and occurring within two to three metres of the contact which may exhibit a rapid transition to a non-fluidized breccia.

EM Conductor A Geology

The EM Conductor A area is underlain by the Karmutsen basalt which is unconformably overlain by Comox sandstones with several small sub-vertical dioritic dykes and sills. Two breccia bodies mark the contact between the basalt and the sandstones and are gradational over 10 to 25 metres.

One major fault, designated as fault zone A and coincident with EM Conductor A, strikes at 097° and dips at approximately 80° to the north. A grab sample from the fault zone reportedly returned assay results of >99,000 ppb Au and anomalous Cu and Ag values. The mineralization within the fault zone was reportedly the causitive source of the geochemical and the EM anomalies which were delineated in the 1989 exploration program. The fault zone and associated anomalies were subsequently tested by Noranda's diamond drill holes NMX-89-25 and NMX-89-26.

Sookochoff Consultants Inc._

Diamond Drill Hole NMX-89-25 and NMX-89-26 Results

In Noranda's 1989 report, it is reported that DDH NMX-89-25 intersected moderately fractured amygdaloidal basalt porphyritic pillow lavas with an inclusive 19.5 metre fault zone. The fault zone incorporates a 0.63 metre section of massive banded sulphide and a 0.14 metre quartz vein. A 4.0 metre section of the intersected zone returned an assay of 0.18 oz Au/ton and 4.06% Cu.

DDH NMX-89-26 reportedly intersected basalt flows and basalt fragment breccia. A 6.5 metre section of the breccia returned an assay of 0.006 oz Au/ton and 1.07% Cu.

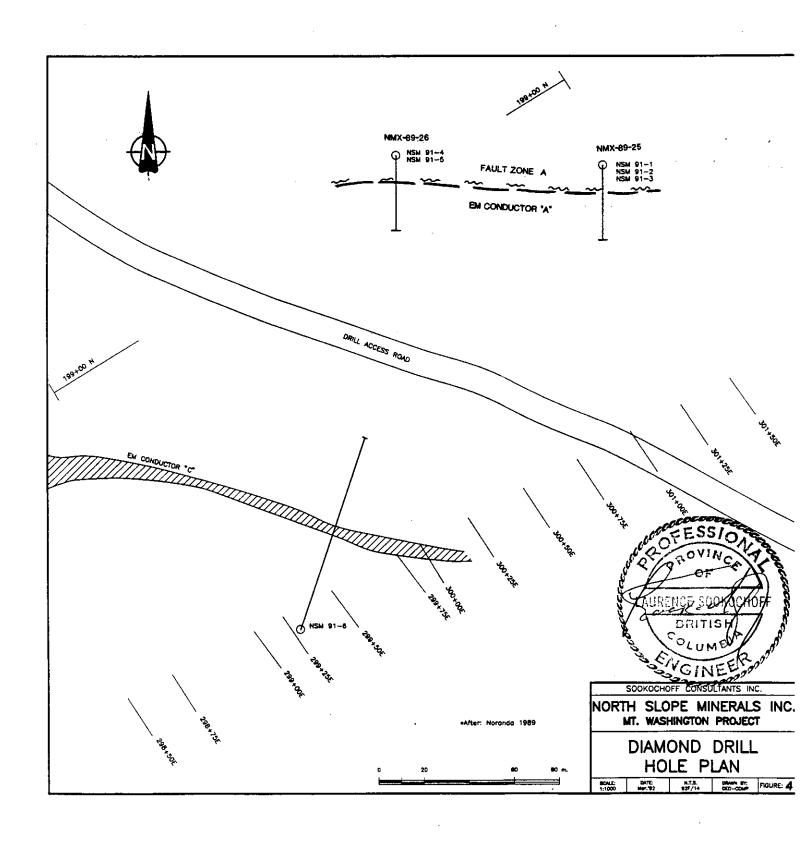
Mineralization

Mineralization within the various breccias is summarized from the 1989 Noranda report as follows:

In the Comox breccia, sulphide content is less than 1% and consists mostly of small blebs of pyrite, chalcopyrite and pyrrhotite generally restricted to the siliceous matrix.

In the intrusive breccia, sulphides which rarely exceed 2% of the whole rock and consist of mostly pyrite with minor pyrrhotite and chalcopyrite occur within the matrix.

In the mixed lithology breccias, minor sulphides of pyrite, pyrrhotite and chalcopyrite that rarely exceed 2%, occur intersticially within the matrix.


In the fluidized "milled" breccia, the quartz-sulphide matrix increases with proximity to the diorite dyke.

1991 Diamond Drill Program

The purpose of the 1991 diamond drill program was to test the extensions of the mineral zone intersected by the Noranda drill holes NMX-89-25 & NMX-89-26.

The 1991 diamond drill program consisted of the completion of six BQ drill holes for a total of 602 metres. Three of the drill holes were spotted to test the depth extension of the NMX-89-25 mineral zone and two drill holes were spotted to test the depth extension of the NMX-89-26 mineral zone. The sixth drill hole was spotted to test EM Conductor C, an EM conductor delineated in Noranda's 1989 exploration program located 170 metres south of the EM Conductor A.

Sookochoff Consultants Inc.

The core was logged and selected sections split. One-half of the core was bagged and sent for assay with the matching one-half retained in the core box for future reference. In order to establish the significance of the prevalent pyrite and pyrrhotite in the core, most of the core from drill hole NSM 91-1 was assayed and checked for native gold. The pulps of selected sections were re-assayed by a second assayer.

The drill hole locations are indicated on the accompanying maps with drill logs and assays of split sections reported in Appendix II. The assayed sections are indicated on the individual sections of each drill hole (Appendix III) with the re-assay results and the native gold analysis documented in Appendix I.

1991 Drill Hole Data and Results

DDH NSM 91-1

Location:

301+58.5 E, 198+56.5 N

Elevation:

884 metres

Bearing:

180°

Dip:

-70°

Length:

70.7 metres

Purpose:

To test for the continuity of structure and mineral content dow-dip from Noranda drill hole

NMX-89-25.

Results:

Karmutsen volcanics and a volcanic breccia zone hosting carbonate-quartz veinlets commonly less than 2.0 cm wide, oriented from parallel to 60° to the core axis and with a variable sulphide content of up to 60%.

Two zones of mineralization were intersected. A section from 33 to 39 metres occurring within a shallowly dipping breccia zone, returned assays of up to 5,058 ppm Cu and a consistent .001 oz/t Au from the continuous sampled intervals of the section. The second mineralized zone from 54 to 63 metres, occurring in a steeply dipping breccia zone with sulphide bearing veinlets from 30° to 80° to core axis, returned copper values of up to 2,207 ppm with a consistent .001 oz/t Au in all the sampled sections.

DDH NSM 91-2

Location:

301+58.5 E, 198+56.5 N

Elevation:

884 metres

Bearing:

180°

Dip: Length:

107.3 metres

Purpose:

To test for the continuity of structure and

mineral content dow-dip from Noranda's drill

hole NMX-89-25.

Results:

Karmutsen volcanics and a volcanic breccia sone hosting carbonate-quartz veinlets commonly less than 2.0 cm wide, preferably oriented from 05° to 80° to the core axis and with a variable

sulphide content of up to 100%.

One zone of increased mineralization was intersected in the drill hole. A section from 32 to 36 metres, returned assays of up to 4,018 ppm Cu and 23 ppb Au and averaged 2,670 and 14 ppb Au. A steeply dipping zone of increased mineralization from 70-71 metres returned 958

ppm Cu and 3 ppb Au.

DDH NSM 91-3

Location:

301+58.5 E, 198+56.5 N

Elevation:

884 metres

Bearing:

180°

Dip:

-88.

Length:

152.4 metres

Purpose:

To test for the continuity of structure and mineral content dow-dip from Noranda's drill

hole NMX-89-25.

Results:

Karmutsen volcanics and a volcanic breccia zone hosting carbonate-quartz veinlets commonly less than 2.0 cm wide, oriented from parallel to 60° to the core axis and with a variable sulphide content of up to 60%.

Two zones of mineralization were intersected in the drill hole. A section from 30.5 to 34.5 metres occurring within a shallowly dipping breccia zone containing a 55 cm massive sulphide vein, returned assays of up to 13,376 ppm Cu and < 27 ppb Au. A one metre section at 104.5 metres containing a 10 cm steeply dipping zone of carb-qtz with negligible sulphides returned an assay of 836 ppm Cu and 16 ppb Au.

Sookochoff Consultants Inc.

DDH NSM 91-4

Location:

300+83 E, 199+14 N

Elevation:

908 metres

Bearing: Dip:

180 -75

Length:

91.4 metres

Purpose:

To test for the continuity of structure and mineral content dow-dip from Noranda's drill

hole NMX-89-26.

Results:

Karmutsen volcanics with carbonate-quartz than 2.0 cm wide, veinlets commonly less preferably oriented from 05° to 75° to the core axis and with a variable sulphide content of up to 100%.

veinlets within a steeply Sulphide bearing dipping zone were intersected. From 34.8 to 38.8 section containing an increased amount of carb/qtz and sulphides returned assay values of up to 18,795 ppm Cu and 179 ppb Au and averaged 10,150 ppm Cu and 65 ppb Au. The second zone at 77.5 metres was of a steeply dipping one meter (true width approx 15 cm) of intersected width carb/qtz vein with 10 % sulphides. The one meter section returned an assay of 8,675 ppm Cu and 14 ppb Au.

DDH NSM 91-5

Location:

300+83 E, 199+14 N

Elevation:

908 metres

Bearing: Dip:

180. -88.

Length:

35.7 metres

Purpose:

To test for the continuity of structure and mineral content dow-dip from Noranda's drill

hole NMX-89-26.

Results:

Karmutsen volcanics with carbonate-quartz

veinlets.

drill hole was terminated at 35.7 metres. No obvious mineral zones were intersected and thus

no samples were taken.

DDH NSM 91-6

Location:

299+28 E, 197+50 N

Elevation:

996 metres

Bearing

020°

Dip: Depth:

144.8 metres

Purpose:

To test geophysical EM conductor C.

Results:

drill hole intersected Comox sediments of sandstone with intercalated units of argillite. argillites are laminated to a variable degree, moderately graphitic and contain rare sections of up to 30% sulphides as bands. The sandstone is moderately to intensely silicified to 20% sulphides contains up and splashes. Carbonate-quartz disseminations averaging .15 cm wide to a rare stringers maximum of 1.5 cm and commonly contain a high degree of sulphides. Selected samples of the core, usually with a heavy sulphide content returned values of up to 6,842 ppm Cu and 71 ppb Au.

Conclusions

Based on the results of the 1991 NSM series of diamond the indications are that the controls to holes, increased mineralization on the EM Conductor A are twofold. A mineralized zone containing massive sulphides in addition to and sulphide bearing paralleling veinlets of sulphide carbonate/quartz veinlets, dips at approximately 15° to the west. A second mineral controlling structure is the steeply dipping brecciated fault zone A of EM Conductor A, which hosts veinlets of massive sulphides and carbonate/quartz veinlets with varying degrees of sulphides in addition to sulphides within the breccia matrix.

The significant Noranda results may be attributed to the shallowly dipping massive sulphide zone.

The three NSM diamond drill holes completed to test the down dip continuity of the Noranda NMX-89-25 drill hole mineralization could not duplicate the intersection of 4.06% Cu and 0.18 oz/T Au over four metres which included a one metre section with 60 cm of massive sulphide and which assayed 9.28% Cu and 3.39 g/T Au (20.76 g/T Au Metallic Screen Assay). The NSM assay results returned a maximum mineral value of 1.3% Cu and <29 ppb Au over one metre in the shallowly dipping zone of NSM 91-3 and which also contained 55 cm of massive sulphides. Native gold was detected to the extent of 0.04 mg in a one metre section of NSM 91-1 which assayed 0.001 oz/t Au. The section was from the shallowly dipping zone and up to a moderate amount of massive sulphide contained stringers. Sookochoff Consultants Inc.

The significant Noranda results may be attributed to the shallowly dipping massive sulphide zone.

The NSM 91-4 diamond drill hole completed to test the continuity of the Noranda NMX-89-26 drill intersection, which returned assay values of 6.5 metres of 0.006 oz /T Au and 1.07% Cu, intersected the down dip extension of the steeply dipping mineralized brecciated fault zone A. A four metre section (true width of 1.7 metres) of the zone returned an average assay value of 1.15% Cu and 65 ppb Au.

The results of the drilling on EM Conductor A indicate that the two delineated mineralized zones contain significant copper values that at current metal prices could not be economically extracted without the benefit of added gold or other mineral values.

The causitive source of EM Conductor C is indicated from the significant sulphide content with uneconomic mineral values and/or the graphite of the argillic units of the Comox Formation.

North Slope Minerals Inc. has caused the completion of the recommended program according to J.J. McDougall's report of November 9, 1990. The results do not justify additional exploration work on the property by North Slope Minerals Inc.

Recommendations

No additional exploration is recommended on EM Conductor A or EM Conductor C.

Respectfully submitted, SOOKOCHOFF CONSULTANTS INC.

SOVINO

GINE

wrence Sookochoff, P.Eng.

April 27, 1992 Vancouver, B.C.

SELECTED REFERENCES

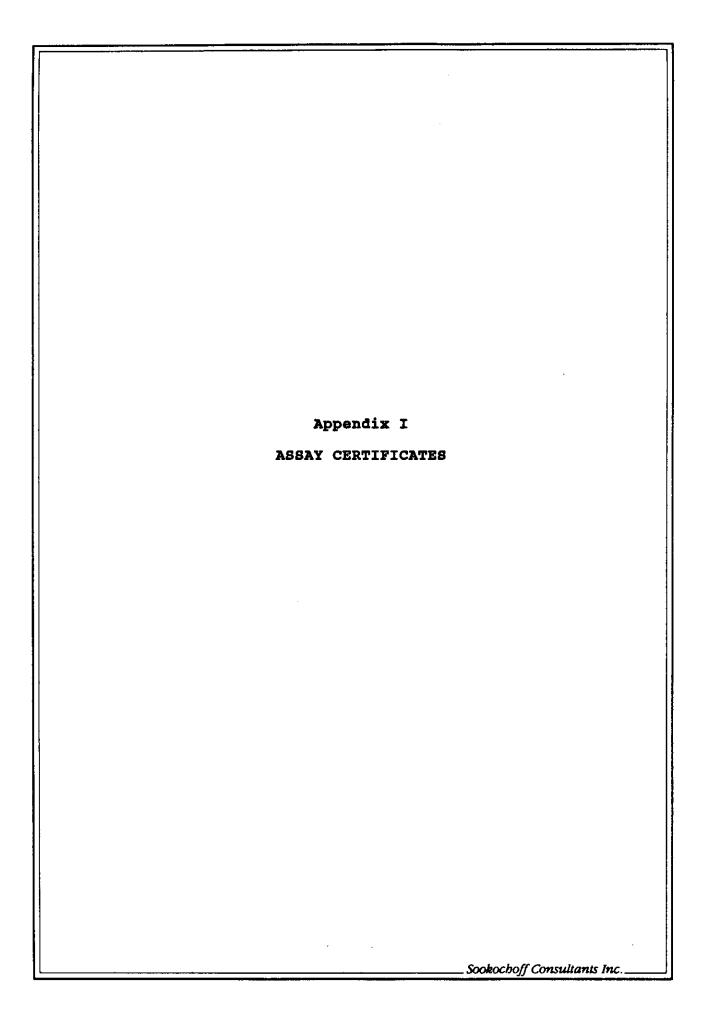
- BULL, R.B. et al Geological, Geophysical, Geochemical and Diamond Drill Report on the Murex Claim Group, for Noranda Exploration Company Ltd., December, 1989.
- CLAPP, C.H. Southern Vancouver Island, Part B, Canada Department of Mines Geological Survey Branch, Memoir No. 13.
- McDOUGALL, J.J. Progress Report on Murex Claims for North Slope Minerals Inc., November 9, 1990.
- MULLER, J.E. Geology of Vancouver Island, Open File 463, Geological Survey of Canada, 1977.

CERTIFICATE

I, Laurence Sookochoff, of the city of Vancouver, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geologist with offices at 1027-510 West Hastings Street, Vancouver, B.C. V6B 1L8

I further certify that:


- 1. I am a graduate of the University of British Columbia (1966) and hold a B.Sc. degree in Geology.
- 2. I have been practising my profession for the past twenty-six years.
- 3. I am registered with the Association of Professional Engineers of British Columbia.
- 4. Information for the accompanying report was obtained from sources as cited under Selected References and from the work performed and the supervision of the exploration program reported on herein.

5. I am a Director of, and own 10,000 shares of North Slope Minerals Inc.

Laurence sookechoff, P.Eng.

DRITISH

April 27, 1992 Vancouver, B.C.

GEOCHEMICAL ANALYSIS CERTIFICATE

North Slope Minerals Inc. PROJECT MUREX File # 91-5436 1027 - 510 W. Hastings St. Vancouver BC V6B 1L8 Submitted by: L. SOOKOCHOFF

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Hn	Fe	As	υ	Αu	Th	Sr	Cd	Sp	Βi	٧	Ca	P	La	Cr	Mg	Ba	Ţi	8	ΑL	Na	K	. V	Τl	H
	bbu	bbu	bbm	ppm	ppm	ppm	ppm	ppm	X	ppm	ppm	ррп	ppm	bbu	ppm	ppm	ppm	ppm	*	X	ppm	ppm	*	ppm	X	ppm	*	<u> </u>	X	ppm	bbu	pp
76116	1	730	14	60	.3	80	55	382	9.23	2	5	ND	4	68	.2	2	2	124	2.65	-037	2	153	1.98	121	. 26	,	5.24	. 38	2.50	56984653 558874	4	
76117	1	659	5	44	.1	94	64	326		Ž	5	ND	3	55	.2	- 2	ž		1.77		2	158		109	.25		4.58		2.49		•	
76118	2	5058	8	146	2.7	171	115	364	17.29	5	5	ND	ō	16	1.3	5	- Ā		1.11	-, -, -	5	122		63	.20		2.57		1.91		5	
76119	1	742	5	45	.3	72	45		7,77	3	5	ND	3	70	.2	- 2	ż		2.16			138		71	.21		4.57		1.48		5	
76120	1	267	3	24	.1	70	17		3.02	2	5	ND	2	140	.2	2	2		3.71		2		.79		. 14		5.82	.68	.28	50 and a 100	ž	
76121	1	494	5	36	: 45	87	37	2/.2	7.43	2	5	ND	2	108	.2	2	2	80	2.43	072	2	111	1 /7	57		•	, 00	E 2	4 52	90.0000	•	
E B 76125	8		14	79	.3	56	26	387	7.47	E.	- 5	ND	2	67	7	2	2		2.61			111 162		56	, 23		4.88		1.56			
76122	1	654	Ŕ	50	1	64	29		8.56			ND	2	75		7	2		2.86			147			. 27	_	4.49		1.57		3	
76123	i	1780	4	46	7	87	49	202		20	ć	ND	2	83	.2	3				.033	2				.30		6.01		2.63		٩	
76124	i	217	7	38	- 1	59	15	235		20	,	ND	1	120		2	2			-, -,	2		1.27		.18		4.97	.49			~	
70124	•	£ 17	7	30	• • •	37	13	237	4.21	E	,	MU	'	120	2	2	2	"	3.69	.034	٤	101	1.42	33	.22	~	5.89	.60	.95		2	
76125	8	580	10	82	. 5	58	27	395	7.67	7	5	ND	2	68	2	2	2	137	2.63	.033	2	167	2.12	57	.27	2	4.55	.33	1.63	3	2	
76126	2	146	6	27	1.1	41	11	264	2.66	3	5	ND	1	106	.2	2	2		3.62		2	67	.88	25	.23		4.57	.56			2	
76127	16	831	6	80	.7	78	32	467	7.40	- 4	5	ND	1	48	.3	2	2		2.67		2	124			.26		3.36	.26	.15		Ž	
76128	3	420	3	40	. 1	66	21	215	4.97	2	5	ND	1	94	.2	2	2		2.94		2	114		42	.21		5.43	.61	.79		Ž	
76129	2	734	6	22	.3	79	49	145	4.81	2	5	ND	1	91	2	2	2		3.52		2		.31	9	.23		4,47	.46	.03	6	2	
76130	3	628	4	27	.1	82	42	198	4.67	2	5	ND	1	88	2	2	3	44	2.96	.027	2	83	.83	15	.24	2	4.17	.38	.26	6	2	
76131	3	242	9	25	.3	56	22	168	3.10	5	5	ND	1	101	. 2	2	2		4.05		2	61	73	27	.28		5.54	.52	.32		5	
76132	3	534	4	19	. 1	70	33	179		2	5	ND	1	89	. 2	2	2		3.49		2	55	.45	10	.23		4.42	.46	.06		5	
76133	1	121	5	27	. 1	53	11		2.76	11	5	ND	1	133	. 2	2	2		3.37		Ž		1.07		,14		5.08	.66	.25		2	
76134	1	2207	5	60	.8	104	79	295	11.21	61	5	ND	1	73	.4	2	3		2.63		Ž	116		43	.17		4.03		1.05	8	Ž	
TANDARD C	18	60	37	135	6.7	69	٦1	1050	4.00	40	18	7	37	51	19.0	14	19	24	/. ₽	.090	35	59	.91	183	00	72	1.92	.06	.16	12	,	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE Samples beginning 'RE' are duplicate samples.

852 E. HASTINGS ST. VANCIAVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

North Slope Minerals Inc. PROJECT MUREX FILE # 91-5436 1027 - 510 W. Hastings St, Vancouver BC V68 1L8 Attns L. SOOKOCHOFF

SAMPLE#	SAMPLE wt. gm	AU-100 oz/t	NATIVE Au mg	AVG oz/t	
В 76116	1150	.001	ND	.001	
В 76117	1100	.001	ND	.001	
В 76118	1200	.001	ND	.001	
В 76119	1250	.001	ND	.001	
В 76120	1300	.001	ND	.001	
в 76121	1200	.001	ND	.001	
В 76122	1500	.001	ND	.001	
B 76123	1450	.001	.04	.001	
В 76124	1400	.001	ND	.001	
В 76125	1450	.001	ND	.001	
В 76126	1150	.001	ND	.001	
В 76127	1300	.001	ND	.001	
B 76128	1200	.001	ND	.001	
B 76129	1550	.001	ND	.001	
B 76130	1300	.001	ND	.001	
B 76131	1000	.001	ND	.001	
B 76132	1200	.001	ND	.001	
В 76133	850	.001	ND	.001	
B 76134	1100	.001	ND	.001	

⁻¹⁰⁰ MESH AU BY FIRE ASSAY FROM 1 A.T. SAMPLE.

DATE RECEIVED: NOV 12 1991 DATE REPORT MAI

DATE REPORT MAILED: No/14/9/.

⁻ SAMPLE TYPE: CORE

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-068l Telex 04-352667

A STATE OF THE STATE OF THE STATE OF

 $\mathcal{S}_{i}(\mathcal{A}_{i}) = \mathcal{S}_{i}(\mathcal{A}_{i}) + \mathcal{S}_{i$

Geochemical Lab Report

			,	A DIVISION OF IN	CHCAPE INSPEC	TION & TESTING!	SERVICES DATE PRINTED:	5-DFC-Q1		
	REPORT: V91-	01810.0 (COM	PLETE)				PROJECT: MUREX	J VIC 71	PAGE 1	***
	SAMPLE NUMBER	ELEMENT UNITS	Au PPB		· ·					
	P4 76118 P4 76119 P4 76123		24 8 17							
-	P4 76124		5							
								····		
·										
·										
							· · · · · · · · · · · · · · · · · · ·			

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 PAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

North Slope Minerals Inc. PROJECT MUREX File # 91-5478 1027 - 510 W. Hastings St. Vancouver BC V6B 1L8

		4			
	A	Æ	Λ.	١.	÷,
ä	a.			ı.	
Н		: [ı	Ā,	
E	_	. 1	L		٠.
		٠, •		•	٠.

SAMPLE#	Mo	Cu	Pb ppm	Zn ppm	Ag:	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	\$r ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ва	Ti %	B ppm	Al %	Na X	K X) V Ppm	T1 ppm	Hg
в 76135	,	663	10	33		66	46	253	9.21	2		ND	1	63			,	117	2 05	.033	2	146	1 86	33	.11	2.5	.40	.38	.31	· 4	,	
B 76136	;	807	5	30	2	50	42		10.10	2	5	ND	i	42	.2	2	2	116		.032	5	144		23	.11	25		.31	.31		5	7
в 76137	\ i	4018	6	47	4	50	88		17.96	2	5	ND	i	13	.2	2	ž	124		.028	2	168		14	.08	2 4		.07	. 19	4	3	ī
RE B 76139	1	1582	6	42	. 2	58	65	491	16.15	2	5	ND	1	15	.2	2	2	148	.43	.030	Z	184		14	.08	2 5	.00	.10	.19	3	ž	i
в 76138	1	2160	5	45	.2	32	48	546	14.92	2	5	ND	1	14	.2	2	2	158	.45	.032	2	203	2.79	18	.12	2 4	.87	.08	.24	4	3	1
в 76139	١,	1634	7	43	.1	60	67	498	16.70	2	5	ND	1	15	.2	2	2	151	.43	.031	2	185	2.65	14	.08	2 5	. 12	.10	.20	4	2	1
B 76140	1	3449	2	44	.2	74	94	451	17.69	17	5	ND	1	28	.2	3	2	131	.83	.030	2	164	2.11	24	.08	24	.36	.14	.27	5	2	i
в 76141	6	958	2	67	.3	74	39	447	9.11	21	5	ND	1	48	.2	2	2	106	2.20	.027	2	138	1.79	39	.24	23	.51	.24	.62	1	2	1
8 76142	4	520	3	31	.2	44	27	248	5.06	2	5	ND	1	71	.2	2	2	56	1.74	.028	2	66	1.11	27	.19	2 2	.92	.30	.27	1	2	1
STANDARD C	18	58	36	132	7.2	69	31	1024	3,99	43	18	7	36	52	18.6	16	18	56	.49	.090	35	57	.88	179	.09	32 1	.87	.06	. 15	11	2	2

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-KNO3-820 AT 95 DEG. C FOR ONE HOUR AND IS DILLYTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: CORE

DATE RECEIVED: NOV 15 1991 DATE REPORT MAILED:

ACME ANALYTICAL LABORATORIES LTD. 852 E. BASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

North Slope Minerals Inc. PROJECT MUREX FILE # 91-5478R

SAMPLE#	Au* ppb
B 76135 B 76136 B 76137 B 76138	4 6 23 10 12
B 76140 B 76141 B 76142 RE 76135 STD AU-F	

- SAMPLE TYPE: CORE PULP AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: NOV 28 1991

DATE REPORT MAILED: Dec 2/91.

ACMÉ ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

North Slope Minerals Inc. PROJECT MUREX File # 91-5546 1027 - 510 W. Hastings St. Vancouver BC V6B 1L8 Submitted by: L. SOOKOCHOFF Page 1

mongood, militi	lange (Marie Carlos Control Co	· · · · · · · ·					<u> </u>					- 1 - 2	<u> </u>					<u></u>						145, 25 -	1 - 259								0.000000		<u> </u>
	SAMPLE#	Мо	Cu	Pb	Žn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Са	P	Le	Cr	Mg	Ba	Τí	В	AL	Na	K	¥	Τl	Hg ,	Au*	
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	x	ppm	ppm	ppm	ppm	ppm	pom	ppm	ppm	ppm	*	*	ppm	ppm	%	ppm	X	ppm	*	X	*	ppm:	ppm t	max	ppb	
	8 76143	1	890	5	47	.1	53	44	302	8.58	8	5	ND	1	42	.8	2	2	149	1.02	.027	2	179	2.21	48	.20	2	5.43	.31	.83	1	2	1	10	
	В 76144	1	931	2	42	1.1	57	42	289	8.79	.9	5	ND	1	48	1.5	2	2	129	1.05	.029	2	177	2.06	22	.10	2	5.70	.36	.28	3	4	1	6	
	B 76146	1	1531	9	69	. 1	33	81	636	14.77	8	5	ND	1	6	1.2	2	2	135	. 17	.024	2	178	1.97	19	.08	2	4.61	.03	.25	3.1 €	2	1	27	
	B 76147	3	836	2	49	.4	41	31		5.59		•	ND	1	57	. 9	2				.024					.22		2.09	-		200000000	2	1	16	
	B 76148	3	579	2	36	.5	38	23	181	4.16	9	5	ND	1	95	.8	2	2	78	2.24	.030	2	84	.77	9	.27	6	3.39	.31	.10	2	4	1	5	
	RE B 76147	3	874				40			5.50			ND			.5					.023					.22		2.12			220000770	2	1	13	
•	STANDARD C/AU-R	20	60	44	139	7.4	73	_33	1111	3.95	41	24	8	40	52	17.0	17	20	61	.49	.098	40	59	.90	182	.09	35	1,91	.06	.16		2	1.	480	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: CORE

DATE RECEIVED: NOV 21 1991 DATE REPORT MAILED: NOV 29/91.

SIGNED BY ... D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

North Slope Minerals Inc. PROJECT MUREX File # 91-5546 1027 - 510 W. Hastings St. Vancouver BC V6B 1L8 Submitted by: L. SOOKOCHOFF Page 2

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Νí	Co	Mn	Fe	As	U	Αυ	Th	\$r	Cd	Sb	Вi	٧	Ca	. P	La	Cr	Mg	Ba	Ti	В	Αl	Na	K 🦠	W. T	τι	Hg 5	AMPLE /	Au-100 NATIVE AV	G.
	pom	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm.	ppm	ppm	ppm	ppm	$bb\underline{u}$	ppm	ppm	ppm	%	%	ppm	ppm	X	ppm	X	ppm	×	*	% pp	пр	om p	XXXIII W	it.gm	oz/t Au mg oz	/t
p 761/5	1	17776	2	7.2	2.5	135	202	380 /.		16	5	1.	1		,	2	,	28	07	ስበል	2	Sn	76	16	Ŋζ	2	1 01	N2	26	ें 1	2	1	2030	003 ND 0	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. -100 MESH AU BY FIRE ASSAY FROM 1 A.T.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: CORE

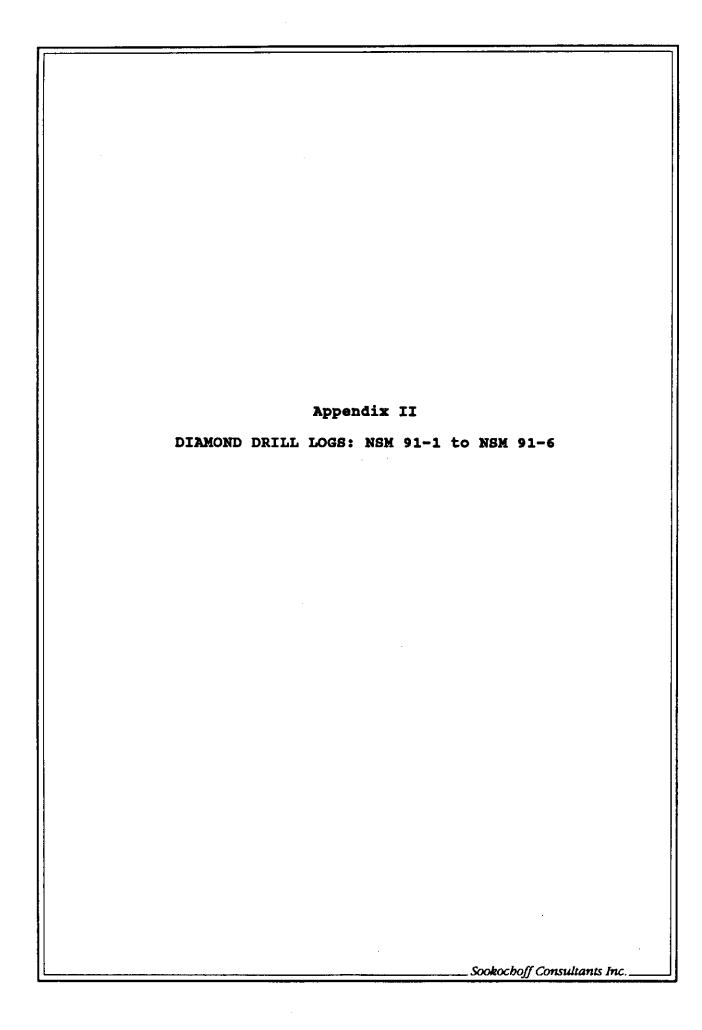
Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

Geochemica Lab Repor

REPORT: V91-	-01852.0 (COM	PLETE)		in loss				NIE PRINIED POJECT: MURI			PASE 1
SAMPLE NUMBER	ELEMENT UNITS	Au PP8	Ag PPM	Cu PPH	Pb PPM	Zn PPM	Ho PPH	Ni PPH	Co PPH	Cd PPM	Bi PPH
02 76150 02 108301 02 108302 02 108303 02 108304	Titled Village	46 179 14 24	6.4 10.3 3.7 1.5 -0.2	14953 18795 7918 4415 456	10 4 9 9	367 447 222 153 35	10	124 56 54 81 54	120 59 48 55 29	1.0 1.6 1.0 1.0	93 28 16 10
63 168305 62 168306 62 168307 62 168308 63 168308		5 36 33 5	10.2 -0.2 -0.2 -0.2	150 1093 1849 732 529	5 12 13 10 7	- C.	100	50 65 673 75	16 89 24 4 4 4	1.0 1.0 4.0 4.0	5 5 5 5
51 172:10 61 1453:1 92 1654:2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4.1	2594 9240 8575		93 .84 311	4A, 9	82 22 22	: .05 95	MANAGE STATE	6 10 14
	10 of	DOLL IN DILEMBER		one one one one		7.88 7.33 7.59			18 10 10 10 10 10 10 10 10 10 10 10 10 10	TOSTER ICANA TO	
	Å	MATERIANNE PASCE IL CO MI D		1232 8777 6711	22222 24222 24222 24222			1-K		ROBERTAL CR	
	T HE CALL III	No. WWITTE		1003 1003 1004 1005	100000 100000 100000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			35	072 TS07 II	
	- E			2.本語母 2.本語母 2.本語母 2.本語母 2.本語母	20 建型有效型 其外與可用 含用或型型					0.01	
				Į.							

85

1R6


GEOCHEMICAL ANALYSIS CERTIFICATE

North Slope Minerals Inc. PROJECT MUREX File # 91-5791 1027 - 510 W. Hastings St. Vancouver BC V6B 1LB Submitted by: L. SOOKOCHOFF

97	2.5	t * .			
. 1				8	
. 4	8		٠.		
	n.	•			
٠.	ы	-	Æ.	×.	
		100	m,	8	
8.	- 15	60 B	199		
3 J		52 B			
	نط	6.	_	**	
000		35	_	e.	

SAMPLE#	Мо			Zn	-	Ni		Mn		As		Au			Cd	Sb	Вi	٧	Ca	P	Ļa	Cr	Mg	Ba	Ţį	8	Al	Nа	K	W	Τl	Hg	Au*	
· · · · · · · · · · · · · · · · · · ·	ppm	bbu	ppm	ppm	ppm	bbui	ррm	ppm	*	ppm	ppn	ppm	bbu	ppm.	ррm	ppm	ppm	ppn	%	X	. ppn	bbu	7.	bbw	χ	bbu	χ,	٧.	. %	ppm	ppm	bbu	ppb	_
91-6-20	1	999	7	39	.2	12	53	207	9.42	2	5	ND	2	5	.2	2	9	26	.09	.013	3	14	.56	9	.01	2	1.09	.04	. 03	2	,	1	25	
91-6-62	1	314	16	174	.1	114	86	100	20.83	9	5	ND	2	10	.ē	2	ż	18	.05	.009		15			.01	2			. 10	_	2	í	53	
91-6-84	1	292	2	20	.2	38	36	116	7.64	38	5	NO	1	13	.6	2	2	41	1.58	.044	3	45	.48	35	.01	2	.97			- 7	Ž	1	24	
91-6-151	9	1104	9	29	.7	98	91	33	24.12	3	5	ND	3	2	.2	3	3	14	.06	.009	2	. 6	.11	26	.01	9	.54	.01	. 19	ì	5	i	22	
91-6-174	10	499	20	31	.5	146	84	29	29.94	22	5	ND	3	3	.2	5	2	12	.06	.016	2	8	.20	17	.01	2	.67			_	2	1	37	
91-6-189	2	126	7	36	.2	10	17	157	3.10	14	5	ND	1	64	.3	2	2	32	.77	.050	2	. 12	1.13	59	.07	6	1.88	. 18	.09	3	2	1	25	
91-6-215	4	1699	18	31	.2	241	118	76	21.63	2	5	ND	2	7	.4	2	22	27	.14	. 034	4	28	.35	24	.01	4	1.03	.04	.20	1	2	1	32	
91-6-254	1	6842	4	447	8.3	114	131	792	15.19	6	5	ND	1	63	2.9	2	28	182	4.41	1.139	4	98	.84	24	.06	2	4.93	. 19	.02	1	2	1	57	
91-6-259	1	339	670	141	13.4	59	43	776	7.61	2	5	ND	1	67	1.1	2	2	313	3.48	.025	2	146	1.13	97	.21	2	9.07	.53	.01	6	6	1	36	
RE 91-6-174	۶	467	28	31	.8	141	79	46	27.95	23	5	ND	3	5	.2	2	2	16	. 12	.015	2	12	.21	21	.01	2	. 79	.03	. 15	1	2	1	39	
91-6-265	1	219	2	102	.1	65	39	1001	9.77	2	5	ND	1	48	.9	2	2	260	1.50	.041	2	154	1.25	18	.19	2	6.88	.50	.02	1	2	1	37	
91-6-267	1	140	8	120	.1	112	55	1222	14.02	3	5	ND	1	6	.7	4	2	291	.28	.069	2	172	1.42	9	.12	5	6.23	.03	.02	3	5	2	42	
91-6-286	5	787	29	94	.8	99	60	819	10.10	4	5	ND	1	33	.6	2	12	241	1.49	.045	2	137	1.23	43	.19	2	5.81	.31	.05	1	2	2	25	
91-6-304	1	99	2	100	.1	132	64	684	13.73	2	5	NO	2	10	.2	2	2	244	. 16	.037	11	183	.85	22	.18	2	5.87	.04	.08	- 1	5	1	19	
91-6-344	1	2179	10	98	1.5	52	46	651	7.80	S	5	ND	1	43	.6	2	12	97	3.81	.213	Z	57	.72	13	.12	2	5.77	. 15	.04	1	2	1	36	
91-6-368	1	3681	2	85	1.5	78	79	295	15.53	11	5	ND	1	60	1.8	5	20	178	3.43	. 110	2	115	1.07	19	.11	7	6.23	. 25	.10	5	2	2	71	
91-6-453	1	3822	5	122	2.4	151	84	175	6.00	11	5	ND	1	38	1.0	2	21	40	1.69	.013	2	54	.40	22	.09	3	2.38	.23	.05	1	2	1	21	
91-6-471	1	86	2	34	. 2	35				2	5	ND	1	46	. 2	2	2	43	1.05	. 031	2	88	1.01	75	. 17	2	1.85	.27	.11	. 1	2	1	41	
STANDARD C/AU-R	19	58	42	137	7.4	74	32	1110	4.00	42	20	7	39	52	18.6	16	20	59	.49	.093	39	55	.90	187	.10	34	1.92	.06	.16	- 11	2	2	480	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY 1CP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: CORE

Abbreviations used in the diamond drill logs.

alt'n ank assoc brec Ca carb carb/qtz chl'n COM сру diss ep fg hem hvy irreg 1t mat mod occ po porph рy qtz sil'd str sulph tex. sw var Vn vnlets

alteration ankerite associated breccia core axis carbonate carbonate/quartz chloritization commonly chalcopyrite disseminated epidote fine grained hematite heavy irregular light matrix moderate occasional pyrrhotite porphyry pyrite quartz silicifed stringer sulphides texture stockwork variable vein veinlets with

DIAMOND DRILL RECORD

North Slope Minerals Inc. Mt. Washington Project

DIAMOND DRILL HOLE NSM 91-1

Page: 1 of 1

Location: 301+58.5 E Start: November 03, 1991

198+56.5 N

Bearing: 180° Finish: November 07, 1991

Dip: -70° Elev: 884 metres

Length: 70.7 metres Logged by: L. Sookochoff, P.Eng.

Purpose: To test for the continuity of structure and mineral content down-dip from NMX-89-25.

Depth (m) From: To:

Description

0 1.5 Casing

1.5 70.7 KARMUTSEN BASALT: Dark green to blackish green; aphanitic to fine grained and varying from obvious to obscure porphyritic (POR) w/ euhedral disoriented 1t gray to milky fels phenos < 4mm.

Intervals of fragment supported obscure monolithic breccia (BR) in an aphanitic black groundmass.

Alteration: Generally lt to mod propylitic; chloritic w/ occ to mod str carb and rare patches ep. Locally lt to mod silicic.

Mineralization: Sulphides of predominantly po w/ assoc occ (<10% of sulphides) to no cpy and py occurring as disseminations, as variable slashes on fracture planes and locally as random and commonly directional stringers and rarely as massive sulphide veins and veinlets.

Breccia zones evident @:

30.0 - 32.0

32.0 - 34.0 Skarned

40.0 - 41.0 Skarned

59.0 - 60.0

DIAMOND DRILL RECORD

North Slope Minerals Inc. Mt. Washington Project DIAMOND DRILL HOLE NSM 91-1

Page: 2 of 2

Conspicuous sulphide and/or carb/qtz veinlets with sulphides:

Depth (m)	Width (cm)	Sulphides (%)	Angle to core axis
33.4	30.0	70	75
33.7	2.0	40	75
38.2	8.0 (18 c	m zone) 60	50
55.5	2.0	20	03
56.2	2.0	40	50
60.0 - 61.0	variable	10	30-80
62.0	18.0	60	70

Sampled Sections

Depti	n (m)		Sample	oz/t	ppm
From:	To	: Description	No.	Au.	Cu
		Occ po str's	B76116	.001	730
		Occ po str's in skarny	B76117	.001	659
33.0	34.0	30 cm mas sulph	B76118	.001	5058
34.0	35.0	Rare < 1.5 cm po vnlets	B76119	.001	742
35.0	36.0	Occ po str	B76120	.001	267
36.0	37.0	Rare po str	B76121	.001	494
37.0	38.0	8 cm carb/qtz, po & cpy	B76122	.001	654
38.0		Occ to mod po str	B76123	.001	1780
39.0	40.0	Mod po on fr.	B76124	.001	217
40.0	41.0	Rare var str po	B76125	.001	580
54.0	55.0	Lt skarny	B76126	.001	146
55.0	56.0	Occ str & vnlets po	B76127	.001	831
56.0	57.0	Occ str & vnlets po	B76128	.001	420
57.0	58.0	10% sulph in remobilized zone	B76129	.001	734
58.0	59.0	Sil'd; occ po blebs	B76130	.001	628
59.0		Relatively barren of sulph	B76131	.001	242
60.0	61.0	Sil'd w loc hvy diss po & vnlt	B76132	.001	534
61.0		Fels porph; no sulph	B76133		121
62.0		30cm-40% sulph	B76134	.001	2207

End of Drill Hole NSM 91-1 @ 70.7 metres.

__Sookochoff Consultants Inc._

DIAMOND DRILL RECORD

North Slope Minerals Inc. Mt. Washington Project

DIAMOND DRILL HOLE NSM 91-2

Page: 1 of 2

Location: 301+58.5 B Start: November 08, 1991

198+56.5 N

Bearing: 180° Finish: November 13, 1991

Dip: -84° Elev: 884 metres

Length: 107.3 metres Logged by: L. Sookochoff, P.Eng.

Purpose: To test for the continuity of structure and mineral content down-dip from NMX-89-25.

Depth (m) From: To:

Description

0 1.5 Casing

1.5 70.7 Same as NSM 91-1

KARMUTSEN BASALT: Dark green to blackish green; aphanitic to fine grained and varying from obvious to obscure porphyritic (POR) w/ euhedral disoriented lt gray to milky fels phenos < 4mm.

Intervals of fragment supported obscure monolithic breccia (BR) in an aphanitic black groundmass.

Alteration: Generally lt to mod propylitic; chloritic w/ occ to mod str carb and rare patches ep. Locally lt to mod silicic.

Mineralization: Sulphides of predominantly po w/ assoc occ (<10% of sulphides) to no cpy and py occurring as disseminations, as variable slashes on fracture planes and locally as random and commonly directional stringers and rarely as massive sulphide veins and veinlets.

Breccia zones evident @:

29.2 - 31.0

34.0 - 41.0

51.0 - 68.0

68.0 - 72.0 Skarned

96.0 - 101.0

North Slope Minerals Inc. Mt. Washington Project DIAMOND DRILL HOLE NSM 91-2

Page: 2 of 2

Conspicuous sulphide and/or carb/qtz veins with sulphides

Depth	Width	Sulphides	Angle to
<u>(m)</u>	(cm)	(%)	core axis
9.7	0.6	0 (adj	py) 40
10.4	0.2		py) 40
14.6-15.2	<2.0 Vnlets	loc sul	40
20.6	30.0	10	40 € 75
23.6	2.0	100	80
28.2	1.0	10	85
30.3	5.0 Brec	40	80
32.4	10.0 Brec	70	80
34.1	10.0 Brec	40	45
35.8	10.0 Brec	80	-
44.2	1.5	50	10
52.3	0.5	100	45
57.9	18.0 Brec	30	45
71.8	8.0	5	30
73.6	3.0	5	05
79.2	6.0	20	05
88.1	1.0	80	65
92.6	0.2	05	75
98.5	0.3	100	45
100.3	5.0 (Zone)	15	25
102.4	1.0 (vnlet		05
103.3	0.1	100	45
06.3-107.3	(mod to hvy st		40

Sampled sections

_	th (m) n: To:	Description	Sample No.	ppb Au	ppm Cu
30.0	31.0	5 cm mas sul vn & po py on fr	B76135	4	663
31.0	32.0	Rare sul diss on fr	B76136	6	807
32.0	33.0	10 cm 70% po w cpy & loc str	B76137	23	4018
33.0	34.0	Rare sul	B76138	10	1582
34.0	35.0	10 cm 80% po w cpy; 2 cm qtz	B76139	12	1634
35.0		Rare sul	B76140	11	3449
74.0	75.0	Carb/qtz vnlets 11 c\a;py ptch	B76141	3	958
106.3	107.3	Mod-hvy sul on occ fr planes	B76142	5	520

End of Drill Hole NSM 91-2 @ 107.3 metres.

Sookochoff Consultants Inc.

North Slope Minerals Inc. Mt. Washington Project

DIAMOND DRILL HOLE NSM 91-3

Page: 1 of 2

Location: 301+58.5 E Start: November 13, 1991

198+56.5 N

Bearing: 180' Finish: November 21, 1991

Dip: -88° Elev: 884 metres

Length: 152.4 metres Logged by: L. Sookochoff, P.Eng.

Purpose: To test for the continuity of structure and mineral content down-dip from NMX-89-25.

Depth (m) From: To:

Description

0 1.5 Casing

1.5 70.7 Same as NSM 91-2

Karmutsen Basalt: Dark green to blackish green; aphanitic to fine grained and varying from obvious to obscure porphyritic (POR) w/ euhedral disoriented lt gray to milky fels phenos < 4mm.

Intervals of fragment supported obscure monolithic breccia (BR) in an aphanitic black groundmass.

Alteration: Generally lt to mod propylitic; chloritic w/ occ to mod str carb and rare patches ep. Locally lt to mod silicic.

Mineralization: Sulphides of predominantly po w/ assoc occ (<10% of sulphides) to no cpy and py occurring as disseminations, as variable slashes on fracture planes and locally as random and commonly directional stringers and rarely as massive sulphide veins and veinlets.

Breccia zones evident @:

54.2 - 57.0

81.4 - 82.9 @ 45*

90.2 - 90.9 @ 60*

104.5 - 112.5

124.7 - 127.7

136.9 - 152.4 Porphyry & breccia

. Sookochoff Consultants Inc..

North Slope Minerals Inc. Mt. Washington Project DIAMOND DRILL HOLE NSM 91-3

Page: 2 of 2

Conspicuous sulphide and/or carb/qtz veins with sulphides:

Depth	Width	Sulphides	Angle to
<u>(m)</u>	(cm)	(%)	core axis
12.2	0.3	5	45
14.6	0.2	5	05
26.2	0.5	5	30
31.1	1.0	10	75
32.7	55.0	100	80
34.1	3 . 0	15	75
35.0	2.5	100	75
35.5	2.5 £ 5.0	100	82
36.0	2.5	50	50
42.7	10.0	30	45
48.8	2.0	100	25
57.3	3.0	50	20
69.8	3<2.0	100	10 € 30
74.2	2.0	50	35
81.2	12.0 (zone)	3	35
99.7	0.2	100	40
103.3	0.2	50	45
104.5	10.0	0	35
112.2	3.0	50	25
130.5	2.0	100	15
141.0	0.4	20	30
142.0	15.0	0	15

Sampled sections:

Depth (m) From: To:	Description	Sample No.	ppb Au	ppm Cu
30.5 31.5	Blebs, ptches & str sulph	B76143	10	890
	Blebs py(2), po(7), cpy(1)	B76144	6	931
	55 cm mas sulph: po(9),cpy(1)	B76145	<29	13376
	Occ vn po @ 70° - 80°	B76146	27	1531
	Diss, blebs & str sulph	B76147	16	836
	Diss, blebs & str sulph	B76148	5	579

End of Drill Hole NSM 91-3 @ 152.4 metres.

Sookochoff Consultants Inc.

North Slope Minerals Inc. Mt. Washington Project

DIAMOND DRILL HOLE NSM 91-4

Page: 1 of 2

Location: 300+83 E Start: November 25, 1991

199+14 N

Bearing: 180° Finish: November 29, 1991

Dip: -75' Elev: 908 metres

Length: 91.4 metres Logged by: L. Sookochoff, P.Eng.

Purpose: To test for the continuity of structure and mineral content down-dip from NMX-89-26.

Depth (m) From: To:

Description

- 0 3 Casing
- 3 158 Same as NSM 91-1

KARMUTSEN BASALT: Dark green to blackish green; aphanitic to fine grained and varying from obvious to obscure porphyritic; (POR) w/ euhedral disoriented lt gray to milky fels phenos < 4mm.

Intervals of fragment supported obscure monolithic breccia (BR) in an aphanitic black groundmass.

Alteration: Generally lt to mod propylitic; chloritic w/ occ to mod str carb and rare patches ep. Locally lt to mod silicic.

Mineralization: Sulphides of predominantly po W/ assoc occ (<10% of sulphides) to no cpy and py occurring as disseminations, as variable slashes on fracture planes and locally as random and commonly directional stringers and rarely as massive sulphide veins and veinlets.

- 3.6 4.3 Siliceous zone @ 10°/ca; lt blebs sulph; lt brec'n.
- 31.7 38.8 Siliceous zone @ 45°/ca w loc ms, qtz & breccia & pinkish skarny sections.
- 44.2 44.5 Bleached (5) zone w 1 cm car-qtz 40% cpy & chl.
- 46.0 47.2 Breccia: lt bleaching; occ str po.
- 48.5 48.8 Dioritic texture.
- 53.0 55.6 Zone of hvy po.
- 61.6 72.1 Loc dioritic & breccia @ 25° & 45°/ca.
- 72.1 77.6 Occ str po @ 40° & random.
- 77.6 78.6 Car-qtz zone @ 05°/ca w 10% irreg ptches po(9)-cpy(1).
- 83.8 85.8 Breccia.

North slope Minerals Inc. Mt. Washington Project DIAMOND DRILL HOLE NSM 91-4

Page: 2 of 2

Conspicuous sulphide and/or carb/qtz veins with sulphides:

Depth	Width	Sulphi	des	Angle to
<u>(m)</u>	(cm)	<u>(%)</u>		core axis
15.6	0.3	100	ро9-сру	60
23.8	0.4	3		75
26.2	0.2	5		15
31.7	0.3	75		45
39.2	0.2	100		10
41.1	0.6	5		15
52.4	0.3	100	po8-cpy2	30
53.0-55.6	< 0.6 vnlets	<30	05-40	
59.0	0.2	50		40
61.0	0.6	20	po8-cpy2	55
77.6-78.6	100.0	10	po9-cpy1	L 05

Sampled sections:

Depti From:	h (m) To:	Description	Sample No.	ppb Au	ppm Cu
32.8	33.8	Sulph str 11/ca & @10°	108306	36	1093
33.8		HW of carb/qtz zone; skarny	108305	<5	150
		Carb/qtz zone w <5% sulph @15*	B76150	46	14953
		Carb/qtz zone w <5% sulph @15*		179	18795
		30% carb/qtz w brec frags @15°		14	7918
		20% carb/qtz w str po/cpy	108303	24	4415
38.8		FW of zone; rare str sulph	108304	<5	456
53.0	54.0	30% sulph in vn @ <05°	108307	14	1849
		Str's <0.8 cm	108308	<5	732
55.0	56.0	20% ms zone	108309	<5	529
67.5	68.5	Rare vnlets, mod ptches sul	108310	32	2604
68.5		0.3 m qtz w 20% sulph	108311	66	9240
77.5	78.5	Carb/qtz vn @ 05°/ca	108312	14	8675

End of Drill Hole NSM 91-4 @ 91.4 metres.

_Sookochoff Consultants Inc. _

North Slope Minerals Inc. Mt. Washington Project

DIAMOND DRILL HOLE NSM 91-5

Page: 1 of 1

Location: 300+83 E Start: November 30, 1991

199+14 N

Bearing: 180° Finish: December 03, 1991

Dip: -88° Elev: 908 metres

Length: 35.7 metres Logged by: L. Sookochoff, P.Eng.

Purpose: To test for the continuity of structure and mineral content down-dip from NMX-89-26.

Depth (m) From: To:

Description

- 0 3 Casing
- 3 158 Same as NSM 91-4.

KARMUTSEN BASALT: Dark green to blackish green; aphanitic to fine grained and varying from obvious to obscure porphyritic; (POR) w/ euhedral disoriented lt gray to milky fels phenos < 4mm. Intervals of fragment supported obscure monolithic breccia (BR) in an aphanitic black groundmass.

Alteration: Generally 1t to mod propylitic; chloritic w/ occ to mod str carb and rare patches ep. Locally 1t to mod silicic.

Mineralization: Sulphides of predominantly po W/
assoc occ (<10% of sulphides) to no cpy and py
occurring as disseminations, as variable slashes on
fracture planes and locally as random and commonly
directional stringers and rarely as massive sulphide
veins and veinlets.

15.1 15.2 Po w gtz; irreg contact.

24.7 26.8 Loc hvy py on fr @ 50°.

Conspicuous sulphide and/or carb-qtz veins with sulphides:

Depth (m)	Width (cm)	Sulphides (%)	Angle to core axis
8.5	0.2	40 po6-py4	
14.9	0.1	40 po8-cpy	

No samples from NSM 91-5.

End of Drill Hole NSM 91-5 @ 35.7 metres.

Sookochoff Consultants Inc.

North Slope Minerals Inc. Mt. Washington Project

DIAMOND DRILL HOLE NSM 91-6

Page: 1 of 2

Location: 299+28 E Start: December 09, 1991

197+50 N

Bearing: 020° Finish: December 16, 1991

Dip: -50° Elev: 996 metres

Length: 144.8 metres Logged by: L. Sookochoff, P.Eng.

Purpose: To test geophysical EM conductor C

Depth (m)

Description

From: To:

0 1.5 Casing

- 1.5 144.8 COMOX SEDIMENTS: Fine to medium grained sandstone; gray to brownish gray; cemented w clay, carbonates and silica. Rare interbedded argillite.
 - Alteration: Sandstones are silicified and hornfelsed to biotite grade; argillites are lightly to moderately graphitic.
 - Mineralization: Sulphides of predominantly po w/ assoc occ (<10% of sulphides) to no cpy and py occurring as disseminations, as variable slashes on fracture planes and locally as random and commonly directional stringers and occasionally as massive sulphide veins and veinlets.

Argillite sections:

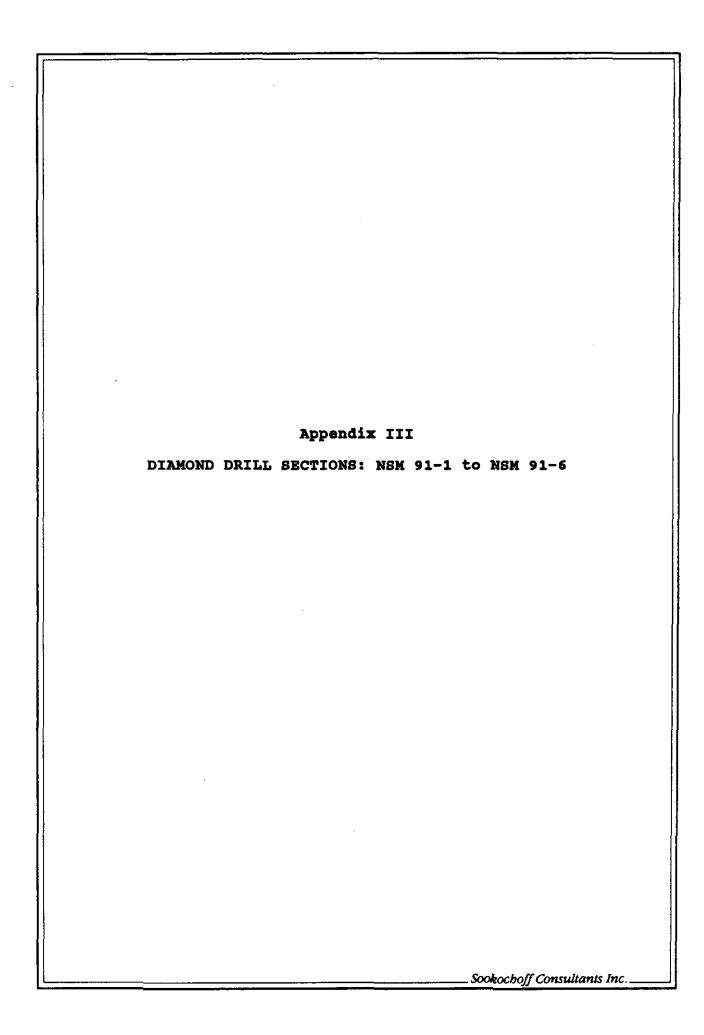
- 16.8 22.9 Bedding @ 40°.
- 45.7 46.2 Moderate bands po @ 45'.
- 52.1 55.2 Bedding @ 45' w <5% po.
- 64.3 79.5 Intercalated beds.
- 79.5 80.1 Silty.
- 80.1 87.2 Intercalated beds.
- 90.8 99.7 Massive; upper contact @ 75°.
- 99.7 105.8 Local beds.
- 105.8 110.6 Bedding @ 45°.

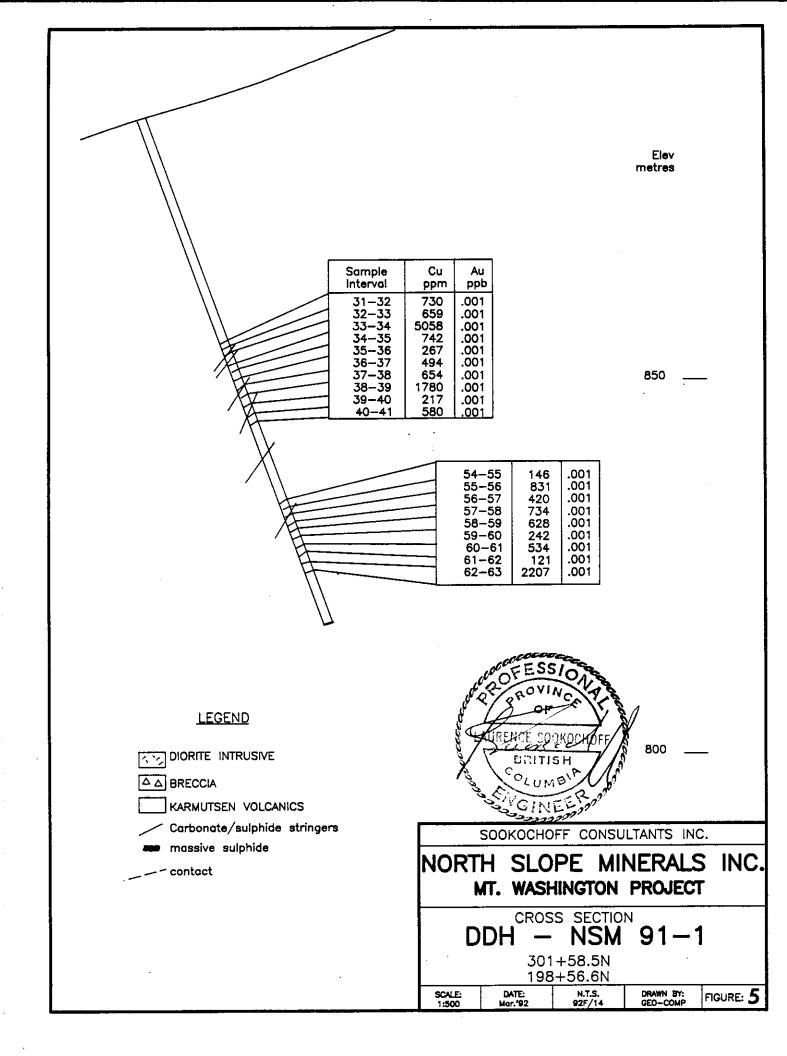
North Slope Minerals Inc. Mt. Washington Project

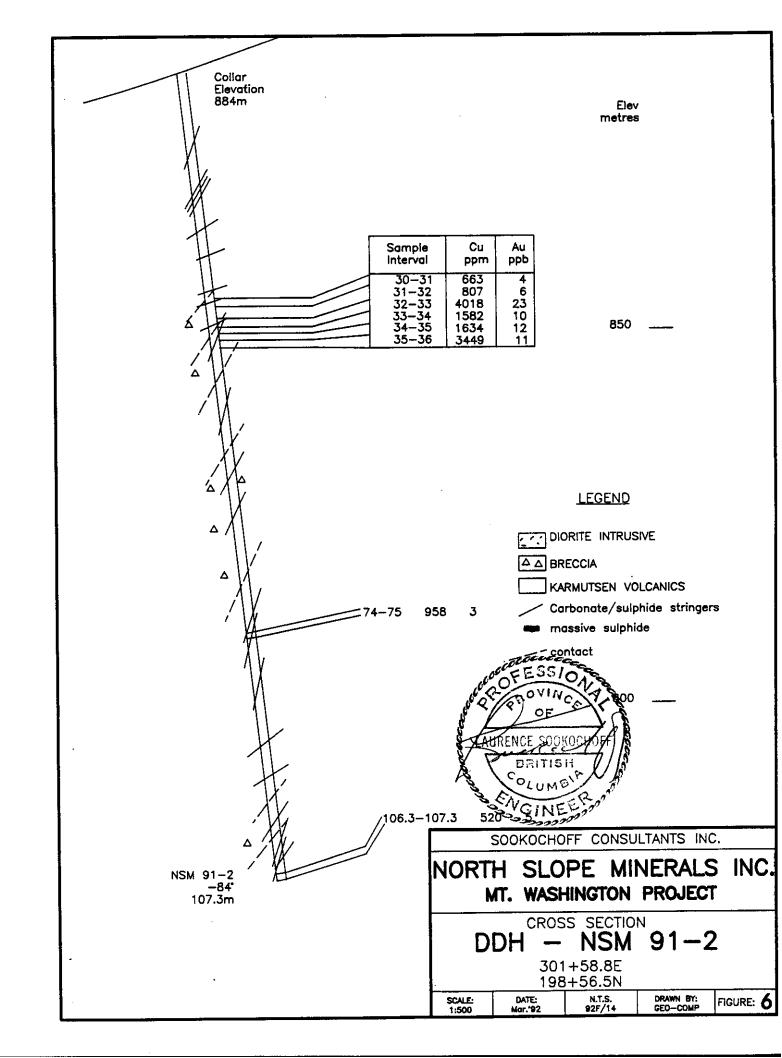
Diamond Drill Hole: NSM 91-6

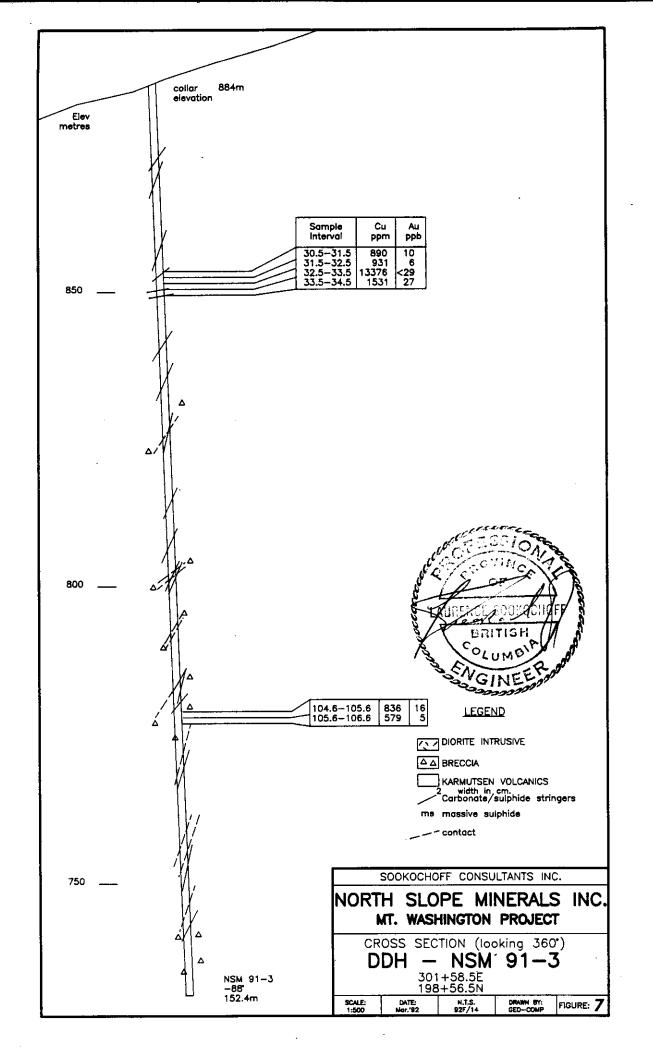
Page: 2 of 2

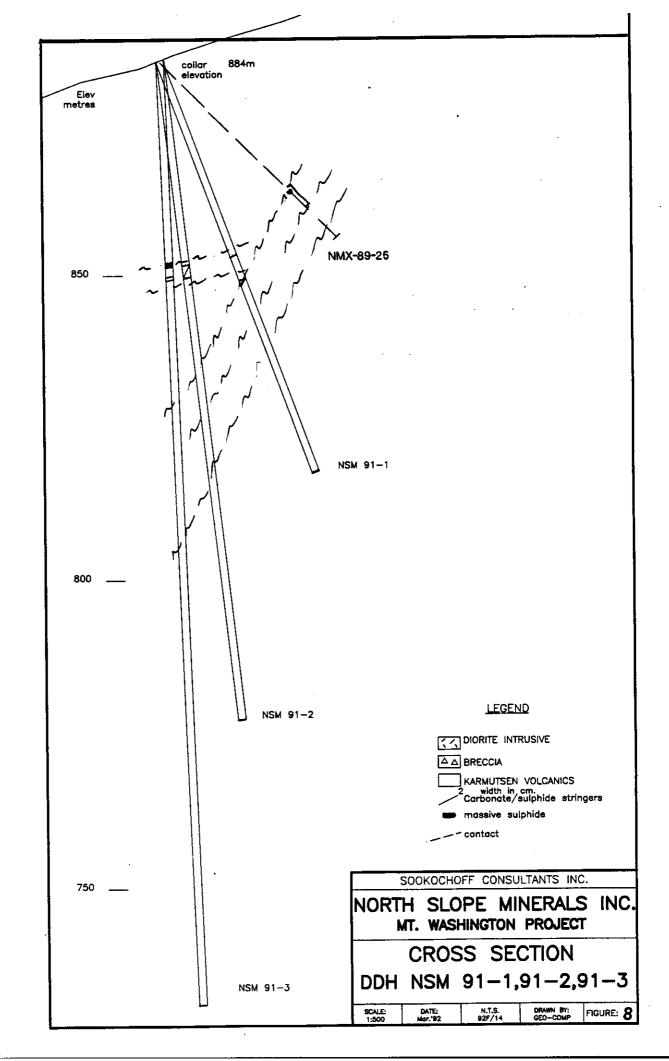
Conspicuous sulphide and/or carb/qts veins with sulphides:

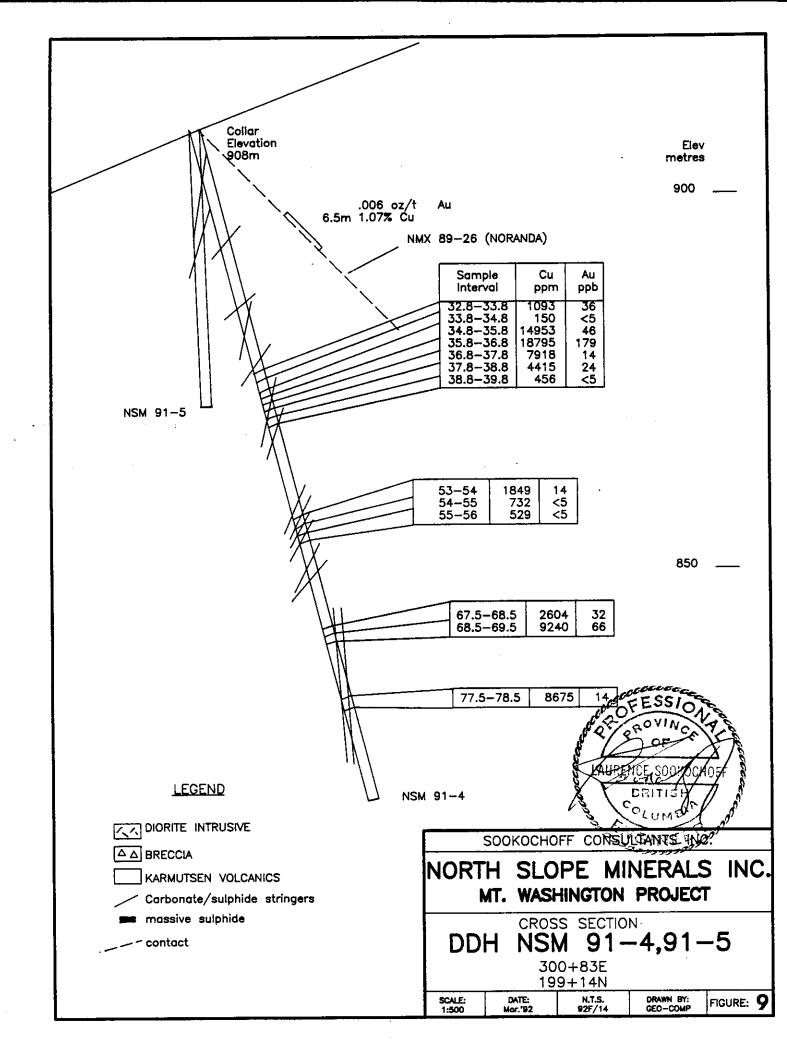

Depth	Width	Sulphides	Angle to
<u>(m)</u>	(cm)	(%)	core axis
25.6	0.1	40	20
52.1	0.5	100 po9-cpy1	. 15
53.6	0.3	100	10
59.9	0.1	5	30
63.1	0.1	50	15
66.1	0.1	5	10
70.7	1.0	40	10
75.6	-	100	20
77.4	0.1	100	15
87.2	1.5	100	15
102.1	0.1	100	15
104.5	0.2	100	30
136.8-138.4	5< 0.1	30	20-30

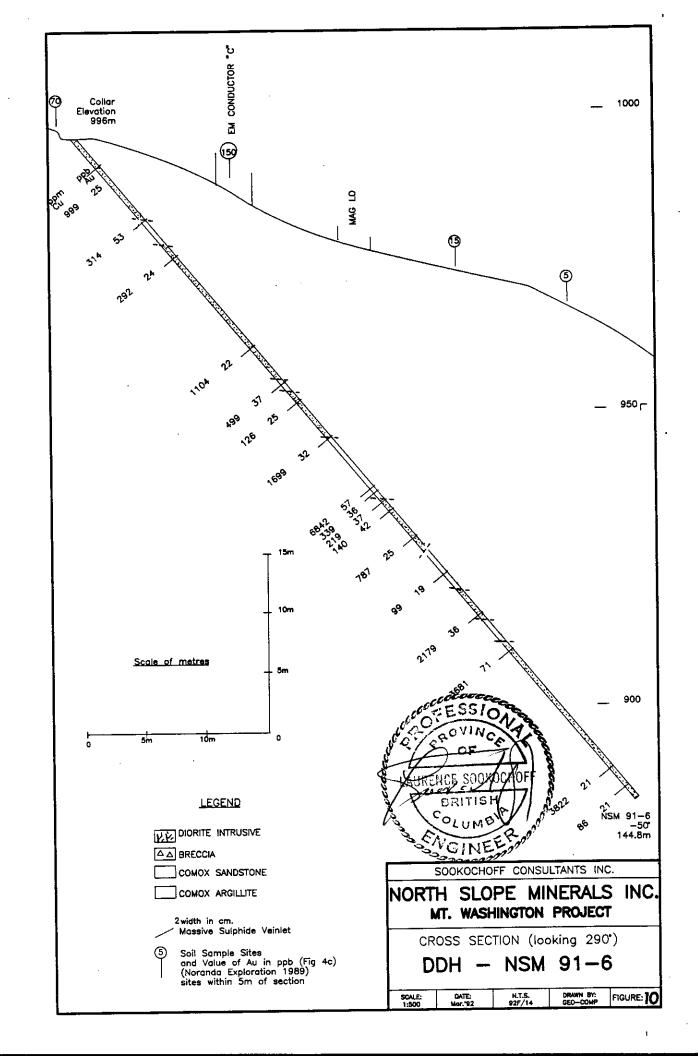

Sampled sections: (Selected samples are < 15cm of core length).

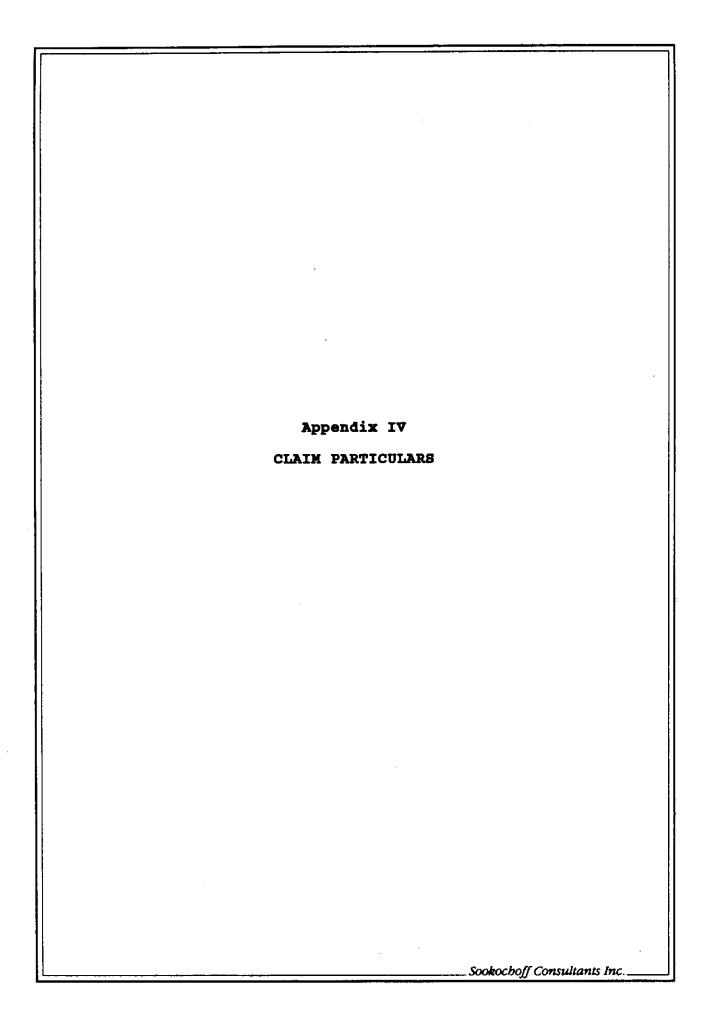

Depth	(m)	Description	Sample No.	ppb A u	ppm Cu
6.1		Ss; diss sulphides	91-6-20	25	999
18.9		Arg w/ <2mm po vnlets @ 35°	91-6-62	53	314
25.6		Ss; lt gray; f g	91-6-84	24	292
46.0		Arg @ 45°;30% sulph	91-6-151	22	1104
53.0		Arg; 45° lam; graph'c;			
		15% sulphides	91-6-174	37	499
57.6		Ss; sulph blebs; hvy alt	91-6-189	25	126
65.5		Ss; +30% bnd'd sulph; frag	91-6-215	32	1699
77.4		Ss; diss po, py, cpy	91-6-254	57	6842
78.9		Ss; diss po	91-6-259	36	339
80.8		Ss; <5% diss sulph	91-6-265	37	219
81.4		Ss; sil'd; fragmented;			
		lt diss py; lt ser	91-6-267	42	140
87.2		Ss; pelitic; str sulph	91-6-286	25	787
95.6		Pelitic; chloritic	91-6-304	19	99
104.9		Ss; pelitic; chloritic;			
		fragmented	91-6-344	36	2179
112.2		Ss; sil'd; 20% splashes &			
		str sulph	91-6-368	71	3681
138.1		Ss; sil'd; mod sulph	91-6-453	21	3822
143.6		Ss;sil'd; chloritic	91-6-471	41	86


End of Drill Hole NSM 91-6 @ 144.8 metres.


Sookochoff Consultants Inc.







CLAIM	RECORD NO.	EXPIRY DATE
Fox 1	002401	June 11, 1998
Fox 2	002402	June 11, 1998
Fox 3	002403	June 11, 1998
HKR 1	002404	June 11, 1998
HKR 2	002405	June 11, 1998
HKR 3	002406	June 11, 1998
HKR 4	002407	June 11, 1998
HKR 5	002408	June 11, 1998
HKR 6	002409	June 11, 1998
HKR 7	002410	June 11, 1998
Mike 6	002399	June 11, 1998
Mike 7	002400	June 11, 1998
Mink 1	001580	September 27, 1998
Mink 2	001581	September 27, 1998
Mink 3	001582	September 27, 1998
Mink 4	001583	September 27, 1998
Mink 5	001584	September 27, 1998
Mink 6	001585	September 27, 1998
Mink 7	001586	September 27, 1998
Mink 8	001587	September 27, 1998
MWC 101	037196	September 13, 1998
MWC 102	037197	September 13, 1998
MWC 103	037198	September 13, 1998
MWC 104	037199	September 13, 1998
MWC 105	037200	September 13, 1998
MWC 106	037201	September 13, 1998
MWC 115	037210	September 13, 1998
MWC 116	037211	September 13, 1998
MWC 117	037212	September 13, 1998
MWC 143	037078	September 13, 1998
MWC 144	037079	September 13, 1998
MWC 147	037082	September 13, 1998
MWC 148	037083	September 13, 1998
MWC 151	037227	September 13, 1998
MWC 152	037228	September 13, 1998
MWC 153	037229	September 13, 1998
MWC 294	037131	September 13, 1998
Stoat 1	001576	September 27, 1998
Stoat 2	001572	September 27, 1998