LOG NO:	001 0 5 1992	RD.
ACTION.		
FILE NO:	<u>*************************************</u>	

	Assesment Report
]	on the
SIIB-RECORDER1992	Diamond Drilling Program
RECEIVED	on the
SEP 2 5 1992	am A and Tam B Groups
M.R. # \$	near Greenwood, B.C.
	eenwood Mining Division
	NTS 82E/2E,2W
	Lat. 49° 02′ 00"N
	Long. 118° 45′ 00"W

Owner:

Minnova, Inc., Dentonia Resources Ltd. and Kettle River Resources Ltd.

Operator:

SUMMARY

The Tam A and Tam B Groups consist of 9 contiguous MGS mineral claims comprising a total of 98 claim units, located in the Greenwood Mining Division (NTS 82E/2E,2W) of south central B.C., approximately 6 km west of Greenwood.

The claims are underlain by a sequence of chert, ash tuff and crystal tuff, and andesitic volcanics of the Permo-Triassic Knob Hill Group. These are intruded by diorites of probable Jurassic/Cretaceous age, and are overlain by Tertiary volcaniclastics and flows, arkosic sediments, congomerate and argillite of the Kettle River Formation. The general trend of units is north-south and dips vary from west to east at moderate angles. The property lies at the eastern margin of the Toroda Creek graben and is dissected by a number of extensional faults related to Tertiary graben formation.

The northern end of the Tam A and Tam B Groups (Buck claim) is located approximately 1 km south-southwest of the Motherlode and Greyhound skarn deposits. The Greenwood camp is well known as a past producer of Cu and Au from skarn mineralization and from smaller tonnage structurally controlled vein deposits.

Drilling intersected a sequence of fine grained chert, ash tuffs, andesites, diorites, and interbedded conglomerate, sandstone, and siltstone similar to units seen on surface. These units are crosscut by several brittle fault zones, hydrothermal breccias, and mylonitic shear zones. Several zones anomalous for Au, and in some cases Cu, were intersected in silicified, chloritized, and clay altered diorites. These are probably correlatable with Au anomalies intersected in diorites in previous drilling in this part of the claim group.

TABLE OF CONTENTS

-

.

			Page:
SUMM	ARY		i
1.0	INTR	ODUCTION	1
	1.1	General	1
	1.2	Property Location and Access	1
	1.3	Topography, Vegetation and Climate	1
	1.4	Property and Ownership	1
	1.5	Property History	2
	1.6	Summary of Assessment Work,	6
		March-April 1992	
2.0	GEOL	OGY	8
	2.1	Regional Geology and Structure	8
	2.2	Property Geology	8
3.0	DIAM	OND DRILL PROGRAM	10
	3.1	DDH TM-24 Results	10
	3.2	DDH TM-25 Results	12
	3.3	DDH TM-27 Results	12
	3.4	DDH TM-28 Results	14
	3.5	DDH TM-30 Results	15
4.0	DISC	USSION AND CONCLUSIONS	16
	4.1	DDH TM-24	16
	4.2	DDH TM-25	16
	4.3	DDH TM-27	16
	4.4	DDH TM-28	17
	4.5	DDH TM-30	17
5.0	REFE	RENCES	19
		LIST OF FIGURES	
		Afi	ter Page:
Figu	re 1:	Tam A and B Group Location Map	1 1
Figui		Tam A and B Group Claim Map	1
-	re 3:		1

	and	Ac	cess	5 1	Map				
Figure 4:	Tam	A	and	В	Group	Drillhole	Location	Мар	10

TABLE OF CONTENTS

LIST OF TABLES

Page:

Table I:	Summary	of	Claim	Status-	Tam	A	Group	1
Table II:	Summary	of	Claim	Status-	Tam	В	Group	2

LIST OF APPENDICES

Appendix	I:	Statement of C	osts
Appendix	II:	Statement of Q	ualifications
Appendix	III:	Drill Logs	

1.0 INTRODUCTION

1.1 General

This report describes the results of DDH TM-24, DDH TM-25, DDH TM-27, DDH TM-28, and DDH TM-30, five "NQ" diameter diamond drill holes located on the Buck and Shanter claims of the Tam A and Tam B Groups. A total of 774.95 meters was drilled in these four holes. Drilling was carried out between March 22 and April 23, 1992 and these holes were part of a larger 7 hole drill program on the Buck and Shanter claims. The focus of the program was to assess the potential of the property for vein and disseminated Au mineralization, in particular to test the extent of a Au anomaly intersected in 1991 drilling.

1.2 Property Location and Access

The Tam A and B Groups are situated within the Greenwood Mining Division at Latitude 49° 02' 00" North, and Longitude 118° 45' 00" West on NTS 82E/2E+2W (Figure 1 and 2). This is approximately 6 km to the west/southwest of the city of Greenwood, B.C.. Access to the claims is via the Deadwood Road to the west of town. This road is kept in excellent repair as it is the road to the garbage dump. Approximately 2 km from town an old, well maintained logging road branches off from the Deadwood Road to the west-southwest. This road is followed for approximately 4 km until a fork is reached. From this junction the Tam A and B Groups may be accessed by taking the north or the south fork, leading to a network of old logging roads and skid trails (Figure 3). The southern part of the property may be accessed from the town of Midway via a network of ranch and logging roads that lead northerly from Highway 3 up Murray Gulch and Ingram Creek.

1.3 Topography, Vegetation, and Climate

Topographic relief is extreme in areas, generally ranging from 600

meters above sea level (A.S.L.) to approximately 1500 meters A.S.L.. The northern portions of the property have gentler relief. Vegetation consists predominantly of Lodgepole pine and Douglas fir. Areas near active drainages have dense alder. The southern portion of the property consists of rolling grassy hills with moderate forest cover. Climate is moderate with temperatures from -15° C in winter to 30° C in summer.

1.4 Property and Ownership

The Tam A and Tam B Group of claims consist of 9 contiguous MGS mineral claims comprising a total of 98 claim units. Claim information is summarised in the following tables:

Table 1: Summary of Claim Status- Tam A Group

CLAIM NA	ME REC	<u>. NO. N</u>	O. OF UNITS	EXP. DATE	<u>NEW EXP. DATE</u>
Buck	(214277)	1613	8	06/28/94	06/28/95
Min#1	(215479)	5615	20	12/22/93	12/22/95
Min#2	(215480)	5616	16	12/21/93	12/21/95
Min#3	(215481)	5617	12	12/23/93	12/23/95
Shanter	(214168)	1176	16	07/07/93	06/28/95
Tam	(214278)	1616	6	06/28/93	06/28/95

Table 2: Summary of Claim Status- Tam B Group

CLAIM NAME REC	<u>. NO.</u>	NO. OF UNITS	<u>EXP. DATE</u>	NEW EXP. DATE
Buck (214277)	1613	8	06/28/94	06/28/95
Shanter (214168)	1176	16	07/07/93	07/07/95
Tam (214278)	1616	6	06/28/93	06/28/95
Min#3 (215481)	5617	12	12/23/93	12/23/95
Ingram2 (215200)	5335	18	01/08/93	01/08/95
Taxpayer(215201)	5336	20	01/10/93	01/10/95
Rainbow (214649)	3404	20	01/14/93	01/04/95

1.5 Property History

2

The Greenwood area is known for its Cu/Au skarn deposits within calcareous units of Triassic Brooklyn Formation, and for smaller tonnage precious metal vein deposits. Fairly extensive exploration has been undertaken near the claim area in the past, especially in the area of the Buck and Shanter claims. The first recorded work in the area is from the Buckhorn mine, east of the Buck claim. The discovery of the Motherlode skarn deposit (approximately 1 km north of the Buck claim) dates to the late 1800's.

Linda Lee (1990) summarized the history of work done on the claim group and in the immediate area, and part of this is reproduced here verbatim. Much of the work pertains to the Tam O'Shanter Crown Grant which is not contained in the Tam A or Tam B groupings. However, the Tam O'Shanter Crown Grant is located within the Shanter claim boundary and thus this information is a relevant part of the property history.

- "...1904 Bengal Crown Grant issued, L2375 (BCDM Annual Report-1904)
- 1921 Work was recorded on the Tam O'Shanter. 2 old shafts (from the turn of the century?) and a recent cross-cut tunnel and an inclined shaft are documented. Work in 1921 included 300 feet of drifting and a 75 foot raise. (BCDM Annual Report-1921)
- Work continued on the Tam O'Shanter. 208 feet of tunnel is driven as well as a 25 foot raise. The 'lead' is soft gangue and crushed country rock containing lenses of galena, chalcopyrite, and gold and silver values, in a quartz gangue.
 tons were shipped averaging 0.4 oz/t Au and 0.66 oz/t Ag. (BCDM Annual Report-1922)

- Silver Dome Mines did extensive work on 10 claims in the Iva Lenore and Tam O'Shanter area. 10 miles of road were built, 13,000 feet of stripping and 6,118 feet of diamond drilling done. Line cutting, magnetometry and soil sampling were also done. Assessment Report 562 covers the soil and magnetometer surveys. There is no record of drilling or trenching although a later report shows the locations.
- 1966-67 Utah did a geophysical survey (IP, resistivity). Assessment Report 1067).
- 1966-67 San Jacinto Exploration did an IP survey (see Assessment Report 881).
- 1969 Consortium of companies including Silver Dome did aeromag survey (Assessment Report 1878).
- 1972 Sun Oil did percussion drilling (Sun Oil, 1972).
- 1972 Phelps Dodge did minor geological mapping and data compilation (Assessment Report 4125).
- 1973 Mapletree Exploration had topo base of area surveyed and completed a geological mapping and percussion drilling program in the area (Dickinson and Simpson, 1973).
- 1973-74 Mascot Mines drilled 27 percussion drill holes.
 Drill logs are available but no analytical results (Assessment Report 5023).
- 1975 Oneida Resources acquired property.

4

- 1979 Oneida drilled 3 diamond drill holes (1560 feet).
 Target was porphyry Cu-Mo mineralization. Discovered new zone of intense hydrothermal alteration (Assessment Report 8795).
- 1981 G. Rayner completed detailed mapping around the Bengal Shaft area. Several old trenches elsewhere on the property were re-exposed using a backhoe (Rayner, 1982).
- 1982 Oneida Resources amalgamated with three other companies to form New Frontier Petroleum.
- 1983 200 feet of backhoe trenching was done near the Bengal Shaft and about 100 feet of trenching was done about 1.5 km north of this to test copper staining exposed by a redent logging road. New Frontier Petroleum went into receivership, giving the Receiver an interest in the property. The remaining interest was transferred to a subsidiary of New Frontier Petroleum, Bulkley Silver Resources Inc..
- H. Shear prepared a compilation of data on the Tam
 O'Shanter property for Bulkley Silver Resources
 (Shear, 1984).
- 1984-85 Geological mapping and interpretation was done in the Tam O'Shanter area for Kettle River Resources Ltd. by J. Fyles (Fyles, 1984-85).
- 1985-87 Bulkley Silver Resources merged with several other companies to form Houston Metals. Houston Metals was rolled back to form Pacific Houston.

- The property was examined by Echo Bay Mines and BP Selco. The 1979 drill core was relogged and a brief report was prepared (Fraser, 1987; Wong, 1987).
- Pacific Houston had the present Tam grid estab lished and an IP survey completed (Arnold, 1989a).
 Three diamond drill holes (2,645 feet) were
 drilled to test anomalies resulting from the above
 program (Arnold, 1989b)..."

In 1990 Minnova re-established the existing Tam grid and completed a program of geological mapping, rock and soil sampling, magnetometry and VLF-EM geophysics on the Tam 90 Group. This group includes several claims that are now included with the Tam A and Tam B groups (Min#1,Shanter,Buck). The Tam grid was extended in 1991 to the north, south, and east and a program of geological mapping, sampling, IP geophysics, and magnetometry was carried out. This was followed by a drill program that ran from October-December 1991 and which continued in the spring of 1992.

1.6 Summary of Assessment	Work, Marc	h-April, 1992
Diamond Drill Hole TM-24:	Location	0+43S, 8+00E
	Elevation	1313m A.S.L.
	Length	158.5m
	Azimuth	050°
	Dip	-45°
	Samples	54 for geochem
		6 for lithogeochem
	Started	March 24, 1992
	Completed	March 27, 1992
Diamond Drill Hole TM-25:	Location	2+09S, 4+90E
	Elevation	1440m A.S.L.
	Length	96.47m

	Azimuth Dip Samples Started Completed	March 27,1992
Diamond Drill Hole TM-27:	Location	0+28S, 6+65E
	Elevation	1360m A.S.L.
	Length	163.98m
	Azimuth	050°
	Dip	-50°
	Samples	60 for geochem
	Started	ľ
	Completed	April 2, 1992
Diamond Drill Hole TM-28:	Location	1+25N, 5+35E
	Elevation	1362m
	Length	180.44m
	Azimuth	230°
	Dip	-4 5°
	Samples	60 for geochem
	Started	April 2, 1992
	Completed	April 4, 1992
Diamond Drill Hole TM-30:	Location	0+75S, 8+77E
	Elevation	1305m
	Length	175.56m
	Azimuth	230°
	Dip	-45°
	Samples 50	for geochem
		April 13, 1992
	Completed	April 16, 1992

.

2.0 GEOLOGY

2.1 Regional Geology and Structure

Regional geology of the area consists of Late Palaeozoic and Mesozoic volcanic and sedimentary rocks metamorphosed to greenschist facies. These are intruded by Mesozoic plutons and unconformably overlain by Tertiary volcaniclastic and flow rocks.

Pre-Tertiary rocks are contained within north dipping thrust slices. These slices lie above high-grade metamorphic complexes which are exposed in northern Washington. Late Palaeozoic rocks consist of chert greenstone, diorite, and serpentinite of the Knob Hill Group, and dark grey argillite, limestone, and minor volcanic rocks (andesite) belonging to the Attwood Group. These rocks are unconformably overlain by Triassic Brooklyn Formation, a sequence of clastic sedimentary rocks, limestones, and submarine pyroclastic breccias and dioritic intrusions.

Early Tertiary tectonism included magmatic activity, horst and graben development, and thrusting. Tertiary rock distributions in the area are controlled by extensional faulting and three sets of faults are recognized in the area. From oldest to youngest these comprise gently east dipping faults at the base of the Tertiary, later west dipping listric normal faults causing rotation of Tertiary strata, and finally north to northeast trending steeply dipping faults.

The Tam A and B Groups are located along the eastern margin of the Toroda Creek graben flanking the Tenas Mary horst to the west. To the east of the horst is the Republic graben which extends south into the United States.

2.2 Property Geology

The most northerly part of the part of the claim group (Buck claim) is underlain by a dioritic intrusion of possible Jurassic or

Texturally this varies from fine grained Cretaceous age. microdiorite to coarse grained diorite, with local feldspar-crowded phases. Weak copper mineralization is common through much of the porphyry. To the south of the intrusion, geology consists primarily of a bedded sequence of Carboniferous to Permian cherty sediments, volcaniclastic rocks (ash to crystal tuff), and argillite, generally striking north/north-west and dipping 40-50 north-east. These are intruded locally by small sills and dykes of hornblende diorite. microdiorite, trachyte, and Past interpretation has grouped the microdiorite and trachyte with the Carboniferous Knob Hill Group; however, regional observations suggest the microdiorite may belong to the Jurassic/Cretaceous Nelson Plutonic Series.

In addition to the above units, a series of chert pebble conglomerate and sheared volcanic conglomerate occur on the property. The chert pebble conglomerate consists of fine chert pebbles 2-15mm in diameter within a sandy siliceous matrix. Volcanic conglomerate is a coarse collection of light to medium grey sandy material in a black siliceous matrix. Fyles (1990) suggests that these units belong to the Carboniferous or Permian Knob Hill Group while Little (1979) indicates they are of Triassic age, belonging to the Brooklyn Formation.

Further to the south and to the west, the main Deadwood Ridge Fault and smaller cross faults separate these older rocks from Tertiary volcanics, arkosic sediments, sandstones, and quartz pebble conglomerates. The unconformity at the base of the Eocene is represented by sandstone, shale, and conglomerate of the Kettle River Formation. Overlying these sediments are thick andesite, trachyte, and phonolite lava flows of the Marron Formation. Finally, the lavas are intruded by the Tertiary Coryell Intrusions, ranging from syenite to diorite in composition.

9

3.0 DIAMOND DRILL PROGRAM

DDH TM-24, DDH TM-25, DDH TM-27, DDH TM-28, and DDH TM-30 were part of a larger, seven hole drill program that was carried out in March These holes were drilled to test for and April of 1992. disseminated and vein Au mineralization in an area that had several anomalous Au intersections in 1991 drilling. DDH TM-24 was located on the Tam 91 grid at coordinates 0+43S, 8+00E at an elevation of 1313 meters. It was intended to test a gold zone encountered in a drillhole located approximately 200 meters to the northwest. This area also has a coincident IP anomaly (+20mV/V) and Au soil anomaly (to 94 ppb Au). DDH TM-25 was located at 2+09S, 4+90E, 1440 meters A.S.L.. This hole tested a broad soil geochemistry anomaly that had values to 170 ppb Au. DDH TM-27 was located at 0+28S, 6+65E, 1360 meters A.S.L. and tested the strike extension of A11 mineralization intersected in drill holes 300 meters and 175 meters This area also had coincident magnetic and IP to the northwest. anomalies (chargeabilities to +20mV/V). DDH TM-28 was located at 1+25N, 5+35E, 1362 meters A.S.L.. This hole was intended to test an Au anomaly intersected in a previous drill hole located 100 meters to the northwest. Au soil anomalies occur to 110 ppb in DDH TM-30 was located at 0+75S, 8+77E, 1305 meters this area. This hole was intended to test the along-strike extension A.S.L.. of anomalous Au values intersected in DDH TM-24, located 75m to the northwest. DDH TM-30 was located in an area with coincident IP and Au soil geochemistry anomalies. The location of the holes with respect to the Tam 91 grid and to claim posts is shown on Figures The detailed drill logs with analytical results are 3 and 4. contained within Appendix III at the end of this report.

3.1 DDH TM-24 Results

DDH TM-24 collared in a diorite/hornblende diorite unit that varies texturally and compositionally throughout. It is fine to coarse

grained, light to dark green in colour, and hornblende/feldspar Alteration in this unit is variable and consists of phyric. silicification, chloritization, carbonitization, and local strong clay alteration with possible secondary leucoxene and albite. Sulphides occur as veinlets and disseminations from trace to 2%, locally to 5-10%. Pyrite is the main sulphide but trace amounts of chalcopyrite, pyrrhotite, and arsenopyrite occur. From 41.55-53.1m there is a shear zone occurring at 58° to the core axis. This contains well-comminuted fragments and has a texture typical of mylonite. Below the diorite, from 53.1-59.37m, is a fine grained, dark green, chloritized and silicified andesite flow. The bottom contact of this unit is sharp at 38° to the core axis and is parallel to banding seen within the andesitic unit itself. Below the contact is a narrow (0.75m) guartz vein with brecciated and resilicified vein fragments. This overlies a 2m wide zone of mylonite, which is followed by a zone of stockwork silicification with 20% pyrite, from 62.24-63.75m. The mylonite occurs again from 63.75-71.21m. From 71.21-108.5m is a unit of interbedded cherts and tuffs with fault and breccia zones throughout. The fault zones tend to be clay altered while the breccia zones are silicified. Crosscutting this unit is a dark grey to green, medium grained Below this, from 109.5-156.1m, the hole intersected a dyke. sequence of diorite intrusions that vary from fine to coarse grained, light grey to green in colour. Alteration is dominantly chloritization with lesser clays and silicification. Locally the interval is brecciated or sheared, with quartz-carbonate veining healing the breccias. Stockwork silicification occurs from 109.5-110.45m, 113.6-115.12m, and 151.49-156.1m. Mineralization is mainly pyrite which occurs as disseminations and along fractures to 2% and locally to 20% in the strongly silicified, stockworked, or brecciated areas. Patchy disseminated magnetite also occurs. From 156.1m to the end of the hole at 158.5m is an interbedded chert and cherty ash tuff unit which is fine to medium grained, grey-green in colour and chloritically altered. Pyrite occurs from trace to 2%, usually along fractures.

3.2 DDH TM-25 Results

DDH TM-25 collared in, and remained in interbedded tuffaceous sediments, sandstone, and quartz pebble conglomerate. The units are all well bedded, with bedding ranging from 32°-62° to core Fining sequences suggest that tops are up hole. axis. The tuffaceous sediments are fine grained, grey-green siltstones that have been chloritically altered. Sandstones are tuffaceous and chloritically altered, or white and quartz rich. The coarsest unit is a white quartz and chert pebble conglomerate that is locally This unit varies from matrix supported to clast oxidized. supported and fragments are white quartz grains, grey-green tuffaceous pebbles, and chert fragments. Fragments are generally subrounded to subangular and randomly oriented. Mineralization consists of pyrite which occurs mainly as veins and veinlets in the coarse grained, more permeable sandstone units. There is also some boxwork texture from 21.0-21.4m and 25.29-29.2m which is due to oxidation of disseminated cubic pyrite. From 46.4m to the end of the hole at 96.47m, the unit is highly broken up, brecciated, and rubbly and this is probably due to a number of small faults that are seen crosscutting the core at 90 to the core axis. The conglomeratic beds are generally strongly oxidized and Fe-stained. Pyrite content ranges from 2-20% throughout the hole but generally decreases in abundance after 62.4m. Manganese staining is seen on most fracture surfaces.

3.3 DDH TM-27 Results

DDH TM-27 collared in a brecciated fault zone and remained in it to 23.25m. The host rock is a medium grained leucocratic diorite. Brecciated diorite fragments are subrounded and range from submillimeter size to several centimeters. Structural fabric is oriented approximately 20° to the core axis and narrow fault gouge and shear zones are present. Alteration varies from clays and Feoxidation at the top of the interval, to strong silicification and chloritization at depth. Strongly silicified zones occur from 12.2-18.1m and a quartz vein oriented at 50° to core axis occurs

from 13.46-14.9m. Mineralization in this interval is dominantly pyrite, which occurs as veins and veinlets in silicified zones. Overall, the pyrite content is approximately 2-5% but it reaches 10-20% within silicified areas. Arsenopyrite and scorodite are seen in trace amounts in the interval from 12.2-17.07m. Below the brecciated diorite, from 23.25-88.4m, is a unit of green, fine to medium grained diorite. Several breccia zones in this interval are cemented by silica, carbonate, chlorite, and locally talc. Some of the silica cement is opaline and banded. Alteration of the silicification, carbonatization, consists of wallrock chloritization, and minor sericitization. Potassic alteration of feldspars occurs from 33.6-38.1m, and possible albitization occurs in a bleached zone from 40.3-44.17m. Mineralization occurs as disseminated pyrite throughout the interval to 10% and occasionally pyrite veinlets occur with carbonate veining. These veinlets occur at angles ranging from <10°-38° to core axis. Underlying this unit, from 88.4-100.82m, is a grey-green debris flow breccia unit. This is composed of rounded to angular quartz and diorite fragments ranging in size from mm-scale to several centimeters. Alteration consists of silicification, clays, chlorite, and carbonate. Pyrite occurs along stockwork veinlets and as fracture fillings to 3%. Trace amounts of chalcopyrite are seen. Below the debris flow breccia, from 100.82-160.7m is a diorite unit that varies from grey-green leucodiorite to dark green diorite. A brecciated interval ocurs from 145.51-146.9m. Alteration consists mainly of clays and silicification, with minor carbonatization of matrix and Sulphides in carbonate and talc veinlets crosscutting the unit. the interval consist of 1-5% pyrite, pyrrhotite, +/- chalcopyrite . that occur as disseminations, stockwork veinlets, and amorphous masses. From 115.3-115.45m is a small silicified interval with 10% pyrite and chalcopyrite veinlets and possibly some dissseminated gold. Below this diorite unit, from 160.7m to the end of the hole at 163.98m, is a fine grained grey-green cherty ash tuff unit. This unit is silicified, with chloritic fractures and trace to 5% pyrite throughout.

3.4 DDH TM-28 Results

DDH TM-28 collared in diorite and remained in this unit to 34.14m. The diorite varies from fine to medium grained and is light to dark Several sheared and brecciated zones occur green in colour. Silicification is associated with the throughout the interval. brecciation. Other alteration consists of clay alteration of feldspars, and talc along fractures. Pyrite occurs as fine veinlets, veins, and disseminations commonly associated with silicification. Overall, its abundance averages 2-3%. In places pyrite has been completely oxidized, giving the core a boxwork Beneath the diorite, from 34.14-57.6m, is a strongly texture. altered breccia unit. The fragments appear to be fine grained chilled margin fragments of diorite as seen in the overlying unit. Open space fractures are lined with drusy quartz, and the breccia is healed with silica. Clay alteration is common in the diorite Mineralization consists of pyrite to fragments. 5%, as disseminations and in oxidized veinlets. From 57.6-80.47m is a diorite unit similar to that seen higher up in the hole. From 75.7m onward the diorite enters a wide zone of shearing and faulting. A 5m wide fault zone at 75.7m is oriented at 64° to core Alteration consists of chloritization, clay alteration of axis. feldspars, and silicification of brecciated zones. Fine grained leucoxene is seen in a silicified zone from 59.13-70.9m, and minor fuchsite occurs on chloritic fractures at 77.62m. Sulphide concentration ranges from 2-20%, generally disseminated and along fractures. This is mainly pyrite, but 10% chalcopyrite occurs from From 80.47 to the end of hole at 180.44m is a unit 77.62-77.82m. of interbedded quartz conglomerate, sandstone, and siltstone. Conglomerate is composed of quartz, chert, and fine grained chloritic ash tuff fragments and is strongly fractured. Pyrite occurs along these fractures and as disseminations to 3% and is strongly oxidized. Sandstones are grey and quartz rich. Siltstones are finer grained, grey-green, and may have a volcanic origin. Bedding is approximately 64° to core axis. Alteration is generally weak throughout the interval and consists mainly of

oxidation of the trace-3% pyrite that occurs throughout.

3.5 DDH TM-30 Results

DDH TM-30 collared in a grey-green brecciated shear zone, oriented Alteration consists of chloritization, 70° to core axis. silicification, and possible albitization of fragments. Pyrite occurs with silicification, and in veinlets, to 1%. From 11.24-14.36m is a narrow interval of diorite, strongly altered to clay chlorite. is present, as and Leucoxene well as weak silicification. Pyrite occurs to 1-2% and increases where silicification is stronger. From 14.26-19.55m is a quartz vein/silicified breccia unit. Silicification is pervasive, and some breccia is cemented by opaline silica. Chlorite occurs along fractures. Pyrite occurs in zones of strong fracturing, from 5-10% as veinlets along these fractures. From 19.55-23.65m and 39.9-52.73m is a unit of diorite. A fault oriented at 28° to core axis occurs at 43.1m. Alteration consists mainly of chlorite and clays with local carbonate, silica, leucoxene, and hematite. Pyrite is the only sulphide present and occurs finely disseminated and as veinlets from trace-5%. Interbedded with the diorite intervals is a debris breccia from 23.65-39.9m. This is grey-green in colour, with angular fragments occurring in a fine grained matrix. The Alteration is predominantly interval is faulted throughout. argillic and chloritic with occasional zones of silicification and Pyrite usually occurs in trace quartz-carbonate stockworking. amounts; locally up to 5%. From 52.73-60.35m a second shear and breccia zone occurs. Fabrics are oriented 56°-60° to core axis. Clay gouge and rubble occur locally, suggesting fault zones at 56.17m, 57.6m, and 60.35m. Alteration consists of chloritization, albitization, and silicification. Mineralization occurs with quartz veining or silicification. Pyrite is the main sulphide but arsenopyrite and chalcopyrite also occur (to 5-10%) as fine disseminations, in veinlets, and in veins. A fault contact occurs at 60.35m and a unit of interbedded sediments lies beneath it. These sediments vary from fine grained grey-green siltstone or tuff

to grey-white quartz rich sandstone, to white quartz pebble of chloritization conglomerate. Alteration consists and silicification. The interval is strongly fractured and faulted Mineralization consists of 1-2% disseminated and throughout. veinlet pyrite, with local chalcopyrite. The bottom comtact of this unit (at 93.57m) is a fault and from 93.57m to the end of the hole at 175.56m is a feldspar and pyroxene phyric dyke. This unit is faulted and locally quartz-carbonate veined and brecciated. Alteration consists of strong chlorite, clays, and carbonate. In places the core is pitted where phenocrysts have been weathered out. This unit is barren of mineralization.

4.0 DISCUSSION AND CONCLUSIONS

4.1 DDH TM-24

Several geochemical anomalies were seen in this hole. These are correlatable with zones of stockwork and disseminated sulphides seen in the drill core. From 29.21-35.21m, Au averaged 0.65g/T. From 50.1-53.1m, Au averaged 0.65g/T; Cu 2360 ppm. These values occurred in an 11.5m wide shear zone with strong clay and chlorite alteration. talc and carbonate veinlets. and and pyrite chalcopyrite veinlets and stockworking. It is likely that this is related to the Au zone encountered 200m along strike in 1991 drilling.

4.2 DDH TM-25

No significant geochemical anomalies are seen in DDH TM-25, although pyrite occurred to 20% in places. The highest Au value over a 3m interval was 32 ppb. These sediments are similar to those seen in DDH TM-28; however, there is a larger proportion of coarse grained conglomerate to finer grained sandstones and siltstones in this hole. The sediments are similar to interbedded sediments seen on surface.

4.3 DDH TM-27

Several geochemically anomalous zones were intersected in DDH TM-

27. The best intersection was 12 meters averaging 1768 ppb Au from Just above this interval, from 115.3-115.45m, a 124.45-136.45m. narrow silicified interval assayed 134.2q/T Au. The high value was due to traces of visible Au. Other samples with Au values greater than 0.5g/T occurred at 100.82m-103.82m (1.4g/T), 114.2-114.6m (0.57g/T), 145.57-146.9m (0.64g/T), 149.9-152.9m (0.53g/T), and 156.25-160.7m (0.52g/T). All of these anomalous intersections occurred in diorite, generally in areas with strong clay alteration Visible mineralization silicification. is usually and/or It is likely that these associated with carbonate veinlets. intersections are related to the Au mineralization intersected in 1991 drilling to the northwest, and correlatable with anomalous Au intersections in diorites in TM-24.

4.4 DDH TM-28

Several intersections in DDH TM-28 were anomalous for Au and Cu. As in DDH TM-24 and DDH TM-28, anomalous intersections occurred in diorites that have been variably silicified and/or clay altered. The best Au values from this hole were 0.36g/T from 12.05-15.05m, 1.52g/T from 34.14-37.14m, 0.46g/T from 60.6-63.6m, 6.26g/T from 75.7-77.62m, and 1.38g/T (with 3341 ppm Cu) from 77.62-78.64m. The interbedded sediments seen at the base of this hole are similar to and correlatable with sediments seen in TM-25, although there is a higher proportion of finer grained sediments and siltstones in TM-28.

4.5 DDH TM-30

Several intersections in DDH TM-30 were geochemically anomalous and assayed greater than 1.0g/T Au. From 56.17-57.6m, a zone of 5-10% pyrite in veinlets assayed 1580 ppb Au. From 58.3-58.7m, a zone of silicification with 40-50% pyrite, 5-10% arsenopyrite and trace chalcopyrite assayed 3300 Au. Below this, from 58.7-60.35m, 1290 ppb Au occurred in a strongly chloritized zone with 10% pyrite and arsenopyrite. These results all occur in a shear/breccia zone with quartz veining and silicification, and the highest Au results correspond with highest sulphide concentration. This is probably the along-strike extension of the Au zone encountered in TM-24, located 75 meters to the northwest.

5.0 REFERENCES

Church, B.N., 1986.

Geological Setting and Mineralization in the Mount Attwood -Phoenix area of the Greenwoood Mining Camp. BCDM Paper 1986-2.

Clayton, C.J., 1991.

Assessment Report on 1991 Drilling on the Tam 91 Group near Greenwood, B.C., Greenwood Mining Division.

Fyles, J.T., 1990.

Geology of the Greenwood-Grand Forks Area, British Columbia, NTS 82E/1,2. B.C. Geological Survey Branch Open File 1990-25.

Lee, L., 1990.

Geological, Geochemical, and Geophysical Assessment Report on the Tam 90 Group, Greenwood Mining Division.

APPENDIX I: STATEMENT OF COSTS

STATEMENT OF COSTS TAM GROUP A

Diamond Drilling:

Contractor Costs (Atlas	Drilling Ltd.):
423.00m @ \$48.45 /	metre\$20,494.35

<u>Personnel:</u>

Dave Heberlein (Senior Project Geologist):	
1 days @ \$250.00 / day\$	250.00
Cam Clayton (Project Geologist):	
13 days @ \$150 / day\$	1,950.00
Logan Kelly (Field Assistant):	
13 days @ \$110 / day\$	1,430.00

Logistics:

Meals and Accommodation: 26 mandays @ \$25.00 / day\$	650.00
Vehicle Rental:	
13 days @ \$50.00 / day\$	650.00
Travel Expenses:\$	285.21
Freight:\$	
Equipment (Sample Bags etc)\$	80.79

Analytical Costs (Minen Labs):

Trace geochem (Ag, As, Ba, Cu, Pb, Sb, Zn, Au)	
161 @ \$23.00\$	3,703.00
Assays (Au)	
12 @ \$8.50\$	102.00

Report Preparation:

Mary	McDowell	:		
	2 days @	135 /	day\$	270.00

TOTAL \$30,000.00

STATEMENT OF COSTS TAM GROUP B

Diamond Drilling:

Contractor Costs	(Atlas	Drilling Ltd.):
351.95m @ \$4	8.45 /	metre\$17,051.98

Personnel:

Dave Heberlein (Senior Project Geologist):	
2 days @ \$250.00 / day\$	500.00
Cam Clayton (Project Geologist):	
11 days @ \$150 / day\$	1,650.00
Logan Kelly (Field Assistant):	
11 days @ \$110 / day\$	1,210.00

Logistics:

Meals and Accommodation: 22 mandays @ \$25.00 / day\$	550 00
Vehicle Rental:	550.00
• • • • • • •	
11 days @ \$50.00 / day\$	
Travel Expenses:\$	388.23
Freight:\$	138.00
Equipment (Sample Bags etc)\$	80.79

Analytical Costs (Minen Labs):

Trace geochem (Ag, As, Ba, Cu, Pb, Sb, Zn, Au)	
101 @ \$23.00\$	2,323.00
Assays (Au)	
8 @ \$8.50\$	68.00

Reclamation:

Logan Kelly: 2 days @ \$110 / day\$ Grass Seed:\$	220.00 480.00
Report Preparation:	
Mary McDowell: 2 days @ 135 / day Drafting and Copying	\$ 270.00 \$ 220.00
TOTAL \$2	25,700.00

APPENDIX II : STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, David Heberlein of 12221 Makinson Street, Maple Ridge, B.C. certify that:

- 1. I graduated from the University of Southampton, England with a B.Sc (Honours) Degree in Geology in 1980.
- 2. I graduated from the University of British Columbia with an M.Sc Degree in Geology in 1985.
- 3. I have practised my profession continuously since my graduation.
- 4. I am a Fellow of the Geological Association of Canada (F5050).
- 5. I am currently employed by Minnova Inc. as a Senior Project Geologist.
- 6. Work described in this report was carried out under my direct supervision.

Date: 09-25-1992

Allertes Signature:

STATEMENT OF QUALIFICATIONS

I, Mary McDowell of 466 Hillcrest Street, West Vancouver, British Columbia hereby certify that:

- I am a graduate of the University of British Columbia, 1. Vancouver, B.C. with a Bachelor of Science degree in Geology.
- I have practised my profession since graduation in 1991. 2.
- I am a contract geologist currently employed by Minnova, 3. Inc.
- I have worked on the Tam A and B Group of claims and have 4. seen the drill core described in this report.

Signature:

Date: September 25, 1992 Mary Midowell

APPENDIX III- DRILL LOGS

	MINNOVA INC. DRILL HOLE RECORD		IMPERIAL UNITS: METRIC UNITS: X
PLOTTING COORDS GRID: NORTH: EAST: ELEV:	43.005 800.00E 1313.00	ALTERNATE COORDS GRID: NORTH: 0+ 0S EAST: 0+ 0E ELEV: 1313.00	COLLAR DIP: -45° 0' 0" LENGTH OF THE HOLE: 158.50m START DEPTH: 0.00m FINAL DEPTH: 158.50m
COLLAR SURVEY: NO JLTISHOT SURVEY: NO	PULSE EM SURVET	/: NO): NO	CONTRACTOR: ATLAS DRILLING CASING: CORE STORAGE: GREENWOOD
	NORTH: EAST: ELEV: COLLAR GRID AZIMUTH: COLLAR SURVEY: NO	DRILL HOLE RECORD PLOTTING COORDS GRID: NORTH: 43.00S EAST: 800.00E ELEV: 1313.00 COLLAR GRID AZIMUTH: 50° 0' 0" COLL COLLAR SURVEY: NO PULSE EM SURVEY TISHOT SURVEY: NO PLUGGED	DRILL HOLE RECORD PLOTTING COORDS GRID: NORTH: 43.00S EAST: 800.00E ELEV: 1313.00 COLLAR GRID AZIMUTH: 50° 0' 0" COLLAR SURVEY: NO TISHOT SURVEY: NO PLUGGED: NO DRILL HOLE RECORD ALTERNATE COORDS GRID: NORTH: 0+ 0S EAST: 0+ 0E ELEV: 1313.00 COLLAR SURVEY: NO PLUGGED: NO

PURPOSE: TEST GOLD ZONE IN 91-16, 200 METRES ALONG STRIKE TO SOUTHEAST

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
65.80	•	-45 0'	ACID	OK		-	•	•	•	•	·····
106.38	-	-50* 0'	ACID	OK		-	-	-	-	•	
149.65	-	-47* 0'	ACID	OK		-	-	-	-	-	
158.50	-	-46" 0"	ACID	OK		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
•	-	-	-	-		-	-	•	•	•	
-	-	-	-	-		-	•	•	-	•	
•	-	-	•	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	•	-	-	-		-	-	-	•	-	
-	-	-	•	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	-	-	•	-	
-	•	-	-	-			•	•	-	-	
•	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		•	•	•	•	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	•	•		-	•	•	-	-	
•	-	-	-	-		-	-	-	-	-	
-	-	-	•	-		-	-	•	•	-	
-	-	-	-	-		-	-	-	•	-	
-	-	•	-	-			•	-	-	-	
-	-	•	-	-		•	•	-	-	•	
-	•	-	-	-		- 1	•	•	-	-	
-	-	-	-	-		-	-	•	-	-	
-	-	-	-	-			•	•	-	•	

HOLE	NUMBER:	TM-24
------	---------	-------

MINNOVA INC. DRILL HOLE RECORD

DATE: 16-September-1992

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 26.21	«DIOR/HBDR»	Colour: var. drk. to light green and beige Grain Size: var. v.f.gr. to m.gr. The interval consists of a diorite/hornblende diorite unit that varies compositionally and texturally throughout.		Alteration varies throughout from silicification and chlorite alteration to strong clay alteration with possible leucoxene and albite alteration	Sulphides vary in content from trace amounts to 5-10% in areas. This is primarily pyrite, but occasional trace amounts to 1% Cp are present. Sulphides occur as veinlets and dissem inations. In areas the core is weakly magnetic reflecting the presence of	Recoveries: 1.52-2.44: 100% 2.44-4.57: 98% 4.57-6.1: 100% 6.1-7.95: 102% 7.95-9.14: 50% 9.14-10.67: 108% 10.67-11.89: 80%
		1.52-12.69 -the unit is generally dark green, fine grained to very fine grianed without any obvious internal structural fabric		1.52-12.69 -alteration is predominantly silica and chlorite. Occasional quartz carbonate veinlets cut across the interval	pyrhotite, not magnetite 1.52-12.69 -pyrite occurs in trace amounts to 3% (+ As Py with scorodite) as fine grained disseminations and veinlets. Many fractures are rusty reflecting	11.89-14.02: 100X 14.02-17.07: 100X 17.07-20.12: 100X 20.12-23.16: 90X 23.16-26.21: 110X 26.21-29.26: 110X
		12.69-16.00 -the unit is coarser grained and lighter green to beige. Feldspar phenocrysts are up to 2 mm in size and randomly oriented. Upper contact @	38	12.69-16.00 -feldspars are str. altered to clays and leucoxene may be present. Some epidote is present in this interval. Chlorite veinlets are oriented at 18 deg to c.a.	oxidation of pyrite 12.69-14.8 -pyrite is absent, but from 14.8-16.0 a number of pyritic veinlets occur with chlorite vnlts at an angle of 18 deg. to c.a.	29.26-32.31: 100% 32.31-35.36: 110% 35.36-38.4: 124% 38.4-39.6: 100% 39.6-41.45: 108% 41.45-44.5: 100% 44.5-45.72: 100%, rubbly core
		13.6-13.77 -brecciated, strongly clay altered zone a	40	ib deg to c.a.		45.72-47.55: 113% broken 47.55-50.6: 118%
		16.00-23.81 -a finer grained dark green hornblende diorite unit. The upper contact appears gradational not sharp. Clay gouge at 20.0. At 21.82 is a 1 cm wide banded quartz vein oriented @ Immediately adjacent to this is a 1 cm wide py vein that parallels the qtz vn.	50	16.00-19.03 -a 1-2% calcite vein stockwork is present and the unit is silicified, chloritized with 5% carbonate alt'n of matrix 19.3-20.12	16.00-23.81 -trace to 1% dissem. and vnlt pyrite. At 21.82 is a 1 cm py vein.	
		23.81-26.21 -a medium grained slight greyish green, strongly altered diorite		-chlorite vnlts and clay gouge 23.81-26.21 -feldspars are strongly altered to cla minerals. Carbonate alteration of matrix is pervasive (10%). Winor quartz carbonate veinlets occur	23.81-26.81 -pyrite occurs in trace amounts to 2% dissem.	
26.21 to 53.10	«DIOR»	Colour: green to lt. grey green Grain Size: m.gr. to f.gr. This interval may be a different phase of the overlying unit. It consists primarily of a green to light grey green feldspar phyric diorite. Grain size varies from m.gr. to f.gr. The		Alteration varies from str. chlorite and clay alteration to silicification and str. bleaching. Carbonate is pervasive through the matrix.	Sulphide content through this material ranges from trace amounts up to 5% locally as vnlts and f.gr. dissem. Chalcopyrite occurs only in trace	It is difficult to tell what the original protolith is in the areas that are bleached, however, the gradual transition to these zones suggests the

HOLE	NUMBER:	TM-24
------	---------	-------

MINNOVA INC. DRILL HOLE RECORD

DATE: 16-September-1992

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
	4	<pre>interval is strongly bleached in areas. The upper 40 cm of the interval consists of quartz carbonate fracturing. The dominant orientation is @ 26.21-31.20 -intrusive textures are readily seen, after which alteration overprints textures 32.96 -a weak fabric is seen in the core oriented @ 33.65 -a 5 cm wide breccia occurs at right angles to c.a. This is bounded on either side by banded qtz. veining</pre>	40 40	Chlorite forms stockwork veinlets. Bleaching may be carused by albite. Occasional banded quartz veins occur through the interval 26.64-31.20 -clay and chlorite alt'n are dominant with minor silcification and carbonation 29.74 -a 5 cm wide banded qtz vn. occurs with at least 2 pulses evident. The vn. is oriented at 42 deg to c.a. 29.74-35.26 -clay and carbonate alteration are dominant	amounts as does pyrrhotite. 34.2-34.28 «5% py, tr cp»	rock type is diorite
		 35.9-36.14 -enother brecciated interval. Stockwork fracturing occurs from 36.14-37.88 41.55-49.57 the interval appears strongly sheared a This appears to have happened at high pressures imparting what appears to be a mylonitic texture to the core. Shearing fragments appear very well comminuted 50.1-53.1 the core is characterized by the shear/mylonitic fabric previously described. In places the fabric is a only the bottom contact is strongly fractured/sheared a stockwork 	58 10 38	35.36-41.55 -alteration is primarily silica, chlorite and carbonate (10%). The interval is strongly bleached in areas 41.55-49.57 -very str. chlorite, clay and silica alteration occurs [49.57-50.1] «stkwrk sil» -complete overprinting by silica [50.1-53.1] «Talc, carb vnlts» -the dominant alteration is clay, chlorite and bleaching, with minor talc and carbonate veinlets associated with fabric	36.14-37.88 -pyrite and pyrrhotite occur to approx. 5% as a stockwork system associated with carbonate and chlorite veinlets 41.55-49.57 -sulphide content increases to 5% to 10%. This is primarily pyrite, with trace amounts of cp and pyrrhotite [48.32-48.42] «8% py, tr. cp» [51.87] «py, cp vn» -this is a small (1 cm) py vein with minor cp at 40 deg to c.a. [52.7] «py, cp vn» -another small (1 cm) py vein with minor cp at 34 deg. to c.a. [52.7-53.1] «2-3% cpy stkwrk» -chalcopyrite occurs as stockwork vnlts near contact with underlying unit	

ROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
53.10 TO 59.37	«SIL AND»	Colour: drk. green Grain Size: f.gr. This interval consists of a fine grained to aphanitic dark green chloritized and silicified andesite flow. Minor interbeds of greyish green tuffaceous material are seen. Flow banding is seen locally a In areas chlorite filled vesicles, unstrained are visible. These are up to 2 mm in diameter. Minor bands of quartz carbonate vnlts occur through the interval with the most common orientation from 28-30 deg to c.a. These are commonly associated with small pyrite veinlets 54.3-54.57 -is a 2 cm wide quartz vein with banded selvages oriented a 57.4-57.91 -core very broken, may be faulted The bottom contact of this interval has a slightly sheared fabric and is a sharp contact a	38 14 38	Alteration through the interval is dominantly silicification overprinting a strong chlorite alteration. Small quartz carbonate veinlets cross cut the interval and carbonate alteration of the matrix is minor. On some fracture surfaces a light manganese staining is visible. Chlorite occurs as veinlets along fractures and within the matrix.	Sulphide content ranges from trace amounts to 1% locally. Pyrite is the only visible sulphide occuring as disseminations and minor veinlets 54.3-54.57 -minor pyritic selvages are associated with 2 cm wide quartz vein	Recoveries: 53.65-56.69: 112% 56.69-57.91: 100%, broken core 57.91-59.74: 100% 59.74-61.57: 100% 61.57-62.79: 100% 62.79-64.62: 100% 64.62-65.84: 100% 65.84-68.88: 100% 68.88-71.93: 100% 71.93-74.10: 100% 74.10-75.59: 100% 74.10-75.59: 100% 77.27-78.03: 100% 78.03-81.08: 100% 81.08-84.13: 100% 84.13-86.56: 100%
59.37 TO 60.12	«QTZ VN BX/ SIL»	Colour: grey/white Grain Size: f.gr. A fine grained massive locally brecciate qtz vn with a sharp upper contact a Brecciated fragments are subrounded varying in size from mm scale to 1 cm in dimension. 60.00 5 cm chlorite, carb, py vn occurs a	38 38	Intra-breccia spaces have been qtz-carb healed. This secondary silica and carb crosses bx fragments where these have been fractured. Chlorite vnlts and fracture fillings are also common, impartingf a greyish green colour to the interval	Py occurs only in tr. amounts along fractures and generally assoc. with chloritic areas.	
60.12 TO 62.24	«NYLONITE/S HEAR BX»	Colour: light grey green Grain Size: variable The top contact with the overlying qtz vn. bx unit is sharp a The interval is light greyish green, brecciate and comminuted with a flowlike convoluted texture. Fragments and subrounded to angular with a pre- ferred elongation along the shear fabric. Frag- ment size ranges from mm scale to several cm. The fragments are qtz, similar to previous	48	Chlorite alteration is dominant occur- ing, through matrix and as veinlets along shear fabric. This has been overprinted by silicification. Minor carbonate occurs along fractures	Py occurs in tr amounts to 1%, generally associate with the qtz frags within this shearing, along fracs within the frags. At 61.12 .5 cm pyrite vein occurs oriented 2 38 deg to c.a.	

HOLE NUMBER: TM-24

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

JLE NUME						
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		interval described. The bottom contact is sharp oriented @	20			
62.24 10 63.75	«STKWRK SIL »	Colour: grey/white Grain Size: f.gr. This is a zone of grey-white, fine grained stkwrk silicification stkwrk fracturing is approx. 70% The bottom contact is sharp oriented @	62	The interval has been completely silicified. Fractures have been filled by silica	Pyrite occurs along stkwrk fracturing up to 20% 62.24-63.75 «20% stkwrk py»	
63.75 TO 71.21	≪MYLONIZED ANDESITE≫	Colour: grey green Grain Size: variable This is a strongly sheared or mylonitized andesitic unit of variable grain size ranging from mm scale to cm scale. Various orientations to the fabric are seen, with the dominant orientation at 20 deg to the core axis. Generally however, the fabric is highly convoluted. The bottom contact for this interval is not dis- tinctive or well defined		Chlorite alteration is strong through the interval. This occurs as linings along structural fabric and as linings along structural fabric and as replace- ment of fragments. Silicification over- prints the chlorite alteration	Sulphide content is low through this interval, occuring only in trace amts. to 2%. The only sulphide visible is pyrite. 66.0-66.04 5 cm wide pyrite vein oriented at 40 deg to c.a.	
71.21 TO 89.20	«INTERBED C	Colour: buff to light grey green				
T0 89.21	HT & TUFF>	Grain Size: f.gr. to v.f.gr. This interval consists of very broken up core with no distinct contacts visible due to broken nature of the core. The cherty units are generally v.f.gr., massive and buff grey in colour. One possible bedding orientation is a Those cherty units are generally weakly fractured (20%). Tuffaceous intervals are fine grained with occasional 1 mm size volcanic clasts. A number of possible fault zones and breccia zones are seen through the interval.	22	The dominant alteration through the interval is chlorite occuring along fractures. Minor carbonate veinlets are seen occasionally within fault zones clay gouge is common while bx zones are generally silicified	Only trace amounts of pyrite are seen through this interval as disseminations and veinlets	
		73.7-74.1 -a sheared and gouged zone a 74.6-75.8 -a sheared zone	10	73.7-74.1 -silicification in fault zone		

HOLE NUMBER: TM-24

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

DATE: 16-Septem. -1992

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		75.3-76.0 -a silicified bx zone		75.3-76.0 -silicification of bx		
		78.0-78.6 -a brecciated zone				
		81.98-82.84 -a small interval of m.gr. andesitic flow. Fabric is oriented a	38	81.7-81.98 -strong clay alteration 81.98-87.0 -minor talc is seen along fracture		
		88.39-88.50 -a fault zone with clay gouge		-minor tale is seen along fracture surfaces		
		The bottom contact for this interval is sharp a	24	Occasional quartz veinlets seen in the interval have open cavities with euhedral crystal growth of qtz crystals		
				88.8-89.0 -a zone of silicification or qtz vein strongly fractured	88.8-89.0 -pyrite occurs to 10% as fracture fillings and veinlets	
2.20 TO	«TERT DYKE»	Colour: drk. grey green Grain Size: m.gr. This is a dark grey green biotite - hornbiende		Alteration throughout the unit is		
		m.gr. tertiary dyke. Phenocrysts are generally subhedral to anhedral with occasional euhedral crystals		primarily weak carbonate alteration of feldspar phenocrysts		
		89.2-90.2 -a bleached margin of the dyke		89.2-90.2 -the dyke is strongly bleached predom. clay alteration		
		Fractures hosting chlorite veinlets occur every 2-5 cm oriented generally 38 deg. to c.a.		89.2-91.9 -2-5% stkwrk carbonate vnlts. These die out abruptly after 91.9. Chlorite vnlts are abundant throughout (5%) occuring along fractures at semi- regular intervals (2-5 cm)		
		103.0-105.46 -qtz carb. vns oriented Ə	48	103.0-105.46 -qtz carb. vn increasing again to 5%. These vnlts have a greater periodicity (3-5 cm) and a more common orientation than those in the upper portion of the interval		
				105.2-105.46		

HOLE NUMBER: TM-24

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

						DRTE: 10-Septe1992		
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS		
				-strongly bleached clay altered intru- sive margin				
05.46 TO 08.50	«CHERTY ASH TUFF»	Colour: grey green Grain Size: v.f.gr. This is a grey green, v.f.gr. cherty ash tuff unit 107.82-108.5 -the unit is moderately brecciated and fragmented		Chloritic alteration is present through out in minor amounts, within matrix and as very small veinlets 107.82-108.5 -the chlorite content increases within brecciated fragments	Pyrite occurs only in trace amounts as veinlets 108.4-108.5 -a 1 cm wide pyritic qtz carbonate vein oriented a 12 deg to c.a.			
08.50 TO 09.50	«DIORITE IN TRUSION»	Colour: green Grain Size: f.gr. to m.gr. This is a green, fm.gr. diorite intrusion. Feldspars are 1-2 mm in length, subhedral and randomly oriented.	•	The interval has been strongly chloritically altered. As well fsp are altered to what may be leucoxene small patches of talc occur along fractures	Three very small pyrite vnlts occur from 108.89-109.07			
09.50 TO 10.45	≪STKWRK SIL ICIFICATION ≫	Colour: grey white Grain Size: f.gr. The upper 20 cm of this interval is characterized by a number of open space fractures oriented B The remainder of the interval is typical 70% stkwrk fracturing subsequently healed by silica	32	Complete silicification of interval	Overall sulphide (py) content is 5% occuring as vnlts within the fractures 110.1-110.3 -pyrite content increases to 10%			
10.45 10 13.60	*010R*	Colour: green Grain Size: fm.gr. 110.45-111.80 -is a fine grained and green diorite intrusion. Feldspar phenocrysts are less than 1 mm in length and subhedral 111.80-112.47 -a small segment of cherty ash tuff 112.47-113.60 -the diorite is more leucocratic with fsp phenocrysts up to 2 mm, subhedral to anhedral		110.45-111.80 -str. chlorite alteration occurs. A buff beige mineral which may be leucoxene is also present 112.47-113.60 -the diorite is more silicified, chlorite alteratin is still dominant.	110.45-111.80 -py occurs to 3% finely disseminated throughout 112.47-113.60 -py is disseminated in trace amounts to 2%			
		The lower contact is a	18	The buff beige mineral that may be leucoxene is also present 2-5%				

HOLE NUMBER: TM-24

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

			,		DATE: 16-Septer-1992		
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS	
113.60 TO 15.12	«STKWRK SIL /CHT»	Colour: grey white Grain Size: f.gr. This is similar to the interval 109.5-110.45. The upper 30 cm is characterized by open space fracs. The bottom contact is sharp @	20	Stockwork fracturing and subsequent silica healing is dominant	Pyrite is present to 10% throughout as veinlets associated with fracturing		
15.12 TO 43.60	«LEUCO-DIOR ITE»	Colour: light grey green Grain Size: m. to c.gr Generally this is a light grey green m. to c.gr. leucodiorite. Feldspars comprise roughly 80% of matrix. Grain size varies throughout. Occasional shear zones occur throughout imparting a shear fabric to the core. A number of brecciated zones occur through the interval and these are cemented by silica and fluorite. 122.14-122.85 -a brecciated zone that has qtz and fluorite veins cementing the breccia 122.85-143.6 -the diorite becomes altered in a patchy pattern with 5 mm dark green to black patches comprising 15-20% of the matrix 122.85-143.6 -the diorite becomes altered in a patchy pattern in a patchy pattern with 5 mm dark green to black patches comprising 15-20% of the matrix 128.2-129.35 -week shear fabric @ 129.5-130.5 -a silicified brecciated interval 137.5-137.80 -2 cm wide white qtz vn oriented @ At the bottom contact a strong shearing fabric	40	Chiorite and clay alteration is dominant throughout. Banded and massive white, clear and cream coloured qtz veins are seen through the interval. Commonly chiorite vnlts occur with these vnlts Open space fluorite veins are seen locally with euhedral fluorite crystals growing into open spaces Large areas of patchy magnetite similar to that seen in hole TM-16 119.5-119.75 -a number of small banded qtz veins {122.14-122.85} «qtz, fluorite vns» {122.85-135.0} «<20% chl patch. alt'n» {135.0-143.6} «<20% Mt patch. alt'n» {128.35-128.97} «sil»	Pyrite occurs finely disseminated throughout in trace amounts. In some areas the pyrite ocntent is up to 20%. Locally 2 mm euhedral pyrite cubes are seen. 128.35-128.97 -pyrite occurs to 1% along fractures [130.5-132.89] «<20% py» -pyrite occurs along weak fabric in core		
		develops and becomes strongly convoluted					

HOLE NUMBER: TM-24

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

MINNOWS INC. DRILL RECORD

FRON	ROL TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
143.60 TO 151.49	«SIL, FLUOR ITE,FLT BX»			Silica veining is the dominant alt'n throughout the interval. At least two pulses are seen, indicated by some banded textures. In areas vuggy, qtz lined cavities area seen. Elsewhere similar cavities are seen to be later filled by silica. Fluorite lined cavities are seen locally. This fluorite is a translucent purple colour. Chlorite is common along some fracture surfaces. [143.6-151.49] «sil» [145.9-146.45] «2-3% fluorite»	Pyrite averages 10-15% throughout occuring as veinlets and fracture fillings d143.6-151.49 «10-15% ру»	147.2-148.3 -broken core 149.3-150.57 -broken core
151.49 το 156.10	«SILIC. DIO RITE»	Colour: grey, green white Grain Size: f.gr to m.gr. This is quite likely a strongly silicified f. to m.gr. Intense silicification has destroyed most primary textures, but locally what appear to be relict fsp grains. Stkwrk fracturing is as high as 30% and generally these areas are the most silicified.		Silicification is pervasive throughout associated with areas of high fracture density. Chlorite is common along fractures giving a greenish colour to the core.	Pyrite ranges from trace amounts to 15-20% occuring as veinlets and fracture fillings. [151.49-156.1] «5-10% py»	
156.10 TO 158.50	«INTERBED. CHT/CHT. AS H TUFF»	Colour: grey green Grain Size: f.g. to m.gr. The interval consists of interbedded granular chert/silicification and fine grained light green ash tuff Chert intervals are medium grained granular with 5-10% fracturing lined by chlorite		Chlorite is common along fractures within the chert units and dominant within the fine grained ash tuff units	Pyrite occurs in trace to2% concen- trations. This is generally assoc. with fractures and commonly with chlorite	

HOLE NUMBER: TM-24

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

DATE: 16-Sept/ -1992

Sample	From	То	Length	ASSAYS Ag	As	Ba	Cu	Fe	Mo	OCHEMIC Pb	Sb	Zn	Au	g/tAu	s
	(m)	(ጠ)	(m)	ppm	ppm	ppm	ppm	ppm	ppm			ppn	ppb	g/t	ppm
BCD44426 BCD44427	1.52 4.52	4.52 7.52	3.00 3.00	0.1	11	31	118 124	4980	1 1	18 15	1 1	43 86	100 123		
BCD44428 BCD44429	7.52 10.52	10.52 12.69	3.00 2.17	0.1	1 1	77 23	81 34	6083 6346	1	1 1	1	83 63	23 16		
BCD44431	16.00	19.00	3.00	0.1	1	63	128	7329	1	11	1	48	81		1
BCD44432 BCD44433	19.00 22.00	22.00 23.81	3.00 1.81	0.1	1	45 26	109 139	7150 6779	1	14 6	1	58 48	148 97		
BCD44434 BCD44436	23.81 29.21	26.21	2.40	0.1	1	106 52	91 123	7786 7800	1	14 25	1	83 84	107 696	0.87	0.0
BCD44436 BCD44437	32.21	35.21	3.00	0.1	1	45	136	8349	i	16	2	67	416	0.44	0.0
8CD44438	35.21 38.21	38.21	3.00	0.1	6	94	89	5593	1	10 15	1 2	47 57	148 64		
BCD44439 BCD44440	41.21	41.21 44.21	3.00 3.00	0.1	22 9	155 49	57 71	6489 6917	1	18	1	58	46		
BCD44441 BCD44442	44.21 47.21	47.21 49.57	3.00 2.36	0.1	10 11	10 23	90 171	8221 7068	1	15 15	2 3	67 47	113 130		
BCD44443	49.57	50.10	0.53	0.1	7	195	65	4023	1	15	2	27	46		
BCD44444 BCD44445	50.10 53.10	53.10 56.10	3.00 3.00	1.7 0.4	13 1	37 23	2360 133	6858 7976	1	31 1	3 1	93 65	540 106	0.65	0.0
BCD44446 BCD44447	56.10 59.37	59.37 60.12	3.27 0.75	0.2	1 3	23 21	78 42	7712 3162	1 3	315 20	1 3	357 33	41 49		
BCD44448	60.12	62.24	2.12	0.1	1	48	210	6523	1	19	3	35	236		
8CD44449 8CD44450	62.24 63.75	63.75 66.75	1.51 3.00	4.2	21 1	7 35	269 105	3112 6631	12 1	51 28	26 5	23 54	158 150		
BCD44452 BCD44453	69.75 71.21	71.21 74.21	1.46	0.9	1 14	29 32	46 61	5949 4560	1	18 55	4	59 91	20 42		
BCD44455	77.21	80.21	3.00	0.2	143	10	28	5665	1	5	5	64	33		
BCD44456 BCD44457	80.21 83.21	83.21 86.21	3.00	1.3	118 57	14 86	33 117	6451 6714	1	84 13	1	245 47	43 53		i
BCD44458 BCD44459	86.21 89.20	89.20 92.20	2.99	0.1	55	47 128	114 37	6583 4551	1	15 17	5	48 65	157 18		
BCD44461				0.6	•						2				
BCD44462		98.20 101.20	3.00	1.1	1	186 217	26 23	4209 4574	1	12 12	1	62 65	16 13		į
	101.20	105.46	3.00 1.26	0.9	5 15	172 60	18 15	4490 4085	1	20 25	1	66 61	13 12		
BCD44465	105.46		3.04	0.1	40	79	70	5928	1	19	3	34	53		
BCD44467		110.45	1.00 0.95	0.1	42 45	31 12	185 69	8875 2179	1 7	19 403	3 61	59 1207	197 59		i
8CD44468	110.45	113.60	3.15	0.4	41	40	129	6374	1	138	6	399	72		

HOLE NUMBER: TM-24

ASSAY SHEET

Sample	From (m)	[o (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	fe ppm	Mo ppm	РЬ ррт	Sb ppm	Zn ppm	Au ppb	g/tAu g/t	s ppm	
	113.60	115.12	1.52	0.6	36 47	39	48	2893	7	30	5	49	32	-		
BCD44470	115.12	118.12	3.00	0.1	41	29	222	8766	1	11	٤	55	102			1
BCD44471	118.12	122.14	4.02	0.1	57	64	181	8327	1	3	2	63	73		1	
BCD44472	122.14	122.85	0.71	1.1	26	20	77	5040	1	1	5	55	56			
BCD44474	125.85	128.85	3.00	0.6	90	11	57	6981	1	63	4	415	186			
BCD44475	128.85	131.85	3.00	0.4	108	12	105	6292	1	1	5	43	132			
BCD44476	131.85	134.85	3.00	0.6	139	27	25	5999	1	1	5	24	175			
BCD44477	134.85	137.85	3.00	0.5	169	39	13	5609	1	1	4	26	79		1	1
CD44478	137.85	140.85	3.00	0.7	198	43	16	6255	1	1	5	36	259			
BCD44479	140.85	143.60	2.75	0.9	431	12	84	6923	1	1	13	51	123			
BCD44480	143.60	146.60	3.00	2.1	56	55	31	3641	7	40	9	118	41			
BCD44481	146.60	149.60	3.00	1.2	52	50	43	2840	4	38	9	72	31			
BCD44482	149.60	151.49	1.89	1	85	34	52	4993	5	39	10	93	65		1	
BCD44483	151.49	154.49	3.00	1.1	72	28	75	3547	4	43	9	113	48			
3CD44484	154.49	156.10	1.61	1	53	45	238	4362	2	30	15	37	26			
CD44485	156.10	158.50	2.40	2.4	57	51	103	3343	4	145	11	361	97			

HOLE NUMBER: TM-24

ASSAY SHEET

HOLE NUMB	ER: TM		GEOCHEM. SHEE															DATE: 16-Septe	.r -1992					
Sample	From (m)	To (m)	Length (m)	NA20 X	MGO X	AL203 X	\$102 %	P205 %	к20 %	CAO X	1102 X	CR PPM	MNO X	FE203 X	RB PPM	SR PPM	Y PPM	ZR PPM	NB PPM	BA PPM	L01 X	SUM X		
BCD44430 BCD44435 BCD44451 BCD44454 BCD44454	12.69 26.21 66.75 74.21 92.20	29.21	3.31 3.00 3.00 3.00 3.00 3.00																					
BCD44473	122.85	125.85	3.00																					

GEOCHEM. SHEET

HOLE NUMBER: TM-25					MINNOVA INC. Drill Hole Record		IMPERIAL UNITS:	METRI	C UNITS: X
PROJECT NAME: T. PROJECT NUMBER: 6 CLAIM NUMBER: LOCATION:		PLOTTING COORD	S GRID: NORTH: EAST: ELEV:	209.00S 490.00E 1440.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV:	0+ 0S 0+ 0E 1440.00	LENGTH O S	COLLAR DIP: F THE HOLE: TART DEPTH: INAL DEPTH:	
DATE STARTED: DATE COMPLETED: DATE LOGGED:	March 27, 1992 March 30, 1992 March 31, 1992	COLLAR GRID COLLAR SURVEY: NO MULTISHOT SURVEY: NO RQD LOG: NO	AZIMUTH:	270* 0' 0"	COLLAR ASTRONOMIC AZIMUTH: PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ	270• 0' 0"	CONTRACTOR: ATLAS DRIL CASING: CORE STORAGE: GREENWOOD	LING	

PURPOSE: TEST 1.4 KM LINEAR AU SOIL ANOMALY IN AREA OF HIGHEST VALUES, HOLE LOST AT 96.47 M

DIRECTIONAL DATA:

epth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
0.00	-	-45* 0'	ACID	OK		-	-	•	-	-	
•	-	-	-	•		•	-	-	-	-	
-	-	-	-	-		-	•	-	-	•	
•	-	-	-	•		•	-	•	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	•	-			-	-	-	-	
•	-	•	-	-		1 -	•	-	•	-	
•	-	-	-	•			•	-	-	-	
-	•	-	•	-			-	•	-	•	
-		-					•	-	-	•	
-		-	-	-			-	•	-		
-	-	-	-				-	-	-		
-			-				-	_	_	-	
-	-	-	-			-	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		- I	-	•	-	-	
-	-	•	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		•	-	-	-	-	
-	-	-	-	•			-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
•	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	•	•	
•	-	-	-	-		-	-	•	-	-	
•	-	-	-	•		•	-	-	-	-	
-	-	-	-	•		- 1	-	-	-	-	

HOLE NUMBER: TM-25

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

DATE: 16-September-1992

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 0.61	«CASING»					
0.61 TO 1.52	«Broken Cor e»					
1.52 T0 %.47	«INTERBED T UFF SEDS, S NDSTONE, OT Z, PEBBLE C ONGLOM.	Colour: grey green to white Grain Size: variable This interval consists of interbedded f.gr. grey green tuffaceous siltstone and tuffaceous sand- stone, white m.gr. qtz rich sandstones, and white and oxidized qtz/cht pebble conglom. All units are well bedded, and fining sequence suggest tops are up hole. Quartz rich sandstones have rounded qtz grains up to 1 mm. These are clast supported and cemented by siliceous matrix. Qtz-cht pebble conglomerate varies from matrix supported to clast supported. Pebble grains range from white qtz grains to grey green tuffaceous pebbles, to chert frags. These are generally subrounded to subangular and randomly oriented. 12.58 -bedding 19.61 -bedding/contact 30.00 -bedding	38 60 32	Volcaniclastic units are chloritic, weathered out conglomerate units are generally strongly oxidized. Small pyritic open space filling qtz vein- lets cross cut the core at irregular intervals. 7.37-8.82 -oxidation 8.82-9.24 -hematite -minor hematite vnlts 16.6-17.9 -oxidation 18.32-19.1 -oxidation 21.0-21.4 -oxidation -oxidation give rise to a boxwork texture in this interval 21.7-25.29 -str. oxidation Manganese staining is seen on most fracture surfaces 33.1-42.6 -str. oxidation of qtz/cht pebble	Coarser grained sandstone units generally have pyrite contents of 5-10%. These are strongly oxidized. Pyrite veinlets are common through these more permeable units 7.37-8.82: 5% py 16.6-17.9: 2% py 18.32-19.1: 2% py 18.32-19.1: 2% py 21.0-21.4 -20% py -this occurs as veins and veinlets flooding the interval 21.7-25.29 -10-20% boxwork texture oxidized py veins, the core is very broken and rubbly 25.29-29.2 -5-10% boxwork texture oxidized py vnlts. 33.1-42.6 -10% oxidized pyrite	
		33.1-42.6		conglomerate	42.6-62.4 -2-3% pyrite	

HOLE NUMBER: TM-25

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

DATE: 16-September-1992

				DRILE HOLE RECORD		UNIC: 10-September-1992
ROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-is an interval of qtz-cht pebble conglomerate. The upper 70 cm is strongly fractured and crosscut by pyrite vnlts that have been weathered out creating boxwork textures and open spaces				
		42.2 -bedding Ə	50			
		46.40-46.84 -the core is strongly broken with minor gouge indicating a small fault zone				
		48.17 -the core is strongly gouged a approx.	90			
		50.60-50.90 -core is strongly broken and may be a fault zone				
		55.30-56.1 •strongly broken core				
		54.80 -bedding a	58			
		64.32-67.2 -core is broken, rubbly				
		69.9 -bedding A	56			
		68.5-68.6 -fault gouge	90			
		74.65-66.1 -core is weakly brecciated				
		66.7 -small fault				
		77.9-78.0 -fault gouge				
		80.16 -broken core, possible fault 82.05				
- 1		-bedding @	62		I	

HOLE NUMBER: TM-25

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

HOLE NUMB	ER: TM-25			MINNOV, . DRILL HOLE SECORD		DATE: 16-September - 1992	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS	
		86.48-86.7 -fault gouge 87.28-87.48 -fault gouge 91.73-91.87 -fault gouge					
	E.O.H.	92.47 -bedding Ə	54				

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

																·····
Sample	from (m)	To (m)	Length (m)	ASSAYS Ag ppm	As ppm	Ba ppm	Cu ppm	Fe ppm	GE Mo ppm	OCHEMIC Pb ppm	Sb ppm	Zn ppm	Au ppb	g/tAu g/t	s ppm	COMMENTS
BCD44486 BCD44487 BCD44488 BCD44489 BCD44489	1.52 4.52 7.52 10.52 13.52	4.52 7.52 10.52 13.52 16.52	3.00 3.00 3.00 3.00 3.00	0.1 0.1 0.3 0.1 0.1	15 16 23 36 17	154 71 69 72 99	42 43 45 56 40	4006 5120 3480 4485 4488	1 1 2 1 1	20 19 22 20 21	3 4 5 4 5	55 69 56 72 74	11 29 21 15 28			
BCD44491 BCD44492 BCD44493 BCD44494 BCD44495	16.52 19.52 22.52 25.52 28.52	19.52 22.52 25.52 28.52 31.52	3.00 3.00 3.00 3.00 3.00	0.1 0.1 0.1 0.1 0.1	28 100 53 44 33	50 83 210 127 129	39 63 27 40 46	3753 4986 3144 3949 4789	2 5 12 5 2	16 15 10 18 21	4 4 4 5	60 50 50 55 68	15 32 16 21 15			
BCD44496 BCD44497 BCD44498 BCD44499 BCD44500	31.52 34.52 37.52 40.52 43.52	34.52 37.52 40.52 43.52 46.52	3.00 3.00 3.00 3.00 3.00	0.1 0.1 0.1 0.1 0.1	101 63 23 10 18	356 315 151 272 218	45 51 37 41 30	5619 3039 4497 3740 3856	19 4 3 2 1	19 16 17 17 17	5 5 3 4	48 39 72 54 63	18 27 9 11 20			
BCD44501 BCD44502 BCD44503 BCD44504 BCD44505	46.52 49.52 52.52 55.52 58.52	49.52 52.52 55.52 58.52 61.52	3.00 3.00 3.00 3.00 3.00	0.3 0.1 0.1 0.1 0.1	12 13 19 10 12	129 170 251 141 154	35 39 42 45 37	3856 3354 4239 4386 3525	3 1 2 1 4	19 17 19 18 16	4 4 4 3	69 76 72 78 64	10 10 12 8 9			
BCD44506 BCD44507 BCD44508 BCD44509 BCD44510	61.52 64.52 67.52 70.52 73.52	64.52 67.52 70.52 73.52 76.52		0.1 0.2 0.1 0.1 0.1	11 17 15 17 14	412 139 430 341 152	36 26 35 31 31	3570 2481 3655 3545 3192	1 3 2 3 2	20 14 18 16 18	3 4 5 4	77 56 67 84 56	29 7 12 7 5			
BCD44511 BCD44512 BCD44513 BCD44514 BCD44514	76.52 79.52 82.52 85.52 88.52	79.52 82.52 85.52 88.52 91.52	3.00 3.00 3.00	0.1 0.2 0.1 0.1 0.1	20 16 18 25 28	135 476 239 309 249	43 35 57 48 42	2768 2622 3983 3752 4037	4 1 2 1	15 16 17 20 18	5 4 5 4	61 64 87 78 86	7 4 6 5			
BCD44516 BCD44517		94.52 96.47	3.00 1.95	0.1 0.2	24 23	244 163	44 37	3094 2507	3 1	17 13	4	64 46	14 31			

HOLE NUMBER: TH-25

ASSAY SHEET

HOLE NUMBER: TM-27	,			MINNOVA INC. Drill Hole Record	IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: T PROJECT NUMBER: 6 CLAIM NUMBER: LOCATION:		PLOTTING COORDS GRID: NORTH: EAST: ELEV: COLLAR GRID AZIMUTH:	28.00S 665.00E 1360.00	ALTERNATE COORDS GRID: TAM91 GRID NORTH: 0+ 0S EAST: 0+ 0E ELEV: 1360.00 COLLAR ASTRONOMIC AZIMUTH: 50° 0' 0"	COLLAR DIP: -50° 0' 0" LENGTH OF THE HOLE: 163.98m START DEPTH: 0.00m FINAL DEPTH: 163.98m
DATE STARTED: Date completed: Date logged:	March 31, 1992 April 2, 1992 April 3, 1992	COLLAR SURVEY: NO MULTISHOT SURVEY: NO RQD LOG: NO		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ	CONTRACTOR: ATLAS DRILLING CASING: CORE STORAGE: GREENWOOD

PURPOSE :

DIRECTIONAL DATA:

)epth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
64.60 162.15	-	-51° 0' -50° 0'	ACID ACID	OK OK		-	-	-	-	:	
-	-	-30 0.	ACID	-		-	-	-	-	-	
-	-		-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-		-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	•	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	•	-	-		-	-	-	-	-	

HOLE NUMBER: TM-27

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

MINNOVA INC. DRILL HOLE RECORD

DATE: 16-September-1992

rom To	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
.00	«CASING»					
T0 .52						
1.52 TO 3.25	«BX FLT ZON E»	Colour: grey green Grain Size: variable This interval consists of extremely broken and rubbly core for the first 12.20 m after which it is more competent and silicified. A number of small fault gouges cut the interval as do some qtz veins. Pyrite veins and vnlts occur commonly with the qtz veins and silicified areas. The host rock for this zone appears to be a diorite, m.gr. and leucocratic Brecciated fragments are subrounded ranging in size from mm scale to several centimetres. Structural fabric is a	20	Alteration varies from strong clay alteration and oxidation near the top of the interval to strong silica and chlorite alteration with oxidation along fractures and of pyrite veins. Chlorite occurs as fracture fillings and vnlts. Talc occurs in vnlts in trace ams. Fuchsite is seen in trace amounts	Pyrite is the dominant sulphide seen through the interval occurring as veins and vnlts within siliceous zones and qtz veins. Arsenopyrite is seen in tr amounts and serodite (arsenic oxide)	3.96-4.08: 20% core recovery This zone is probably related to structural control of hole TM91-20A
		1.52-12.20 -the core is extremely broken and rubbly. Intact core consists of fractured qtz veins, altered diorite and shear zones 12.20-17.07 -is a silicified breccia zone. This zone contains qtz frags to several cm in dimension 13.46-14.90 -is a qtz vein a -the vein is fractured with a number of oxidized voids	50	 1.52-12.20 intact core varies from qtz vns, silicified shear zones and strongly clay altered diorite. Oxidation is common. 12.20-17.07 is strongly silicification (60%) and chlorite alteration. Silicification is pervasive while chlorite generally occurs as veinlets. 13.46-14.90 open voids are oxidized and contain chlorite 	 1.52-12.20 pyrite content is 2-5% overall, but within qtz vn. intervals reaches 10-15% as stockwork vnlts along fractures. 12.20-17.07 pyrite occurs as veinlets and open space fillings in trace to 2% concentrations. Arsenopyrite is seen in trace amounts 13.46-14.90 py vnlts and open space fillings occur to 5% within a qtz vein 	
		17.07-18.1 -is a slightly brecciated but quite well preserved m.gr. light green diorite 18.1-19.75 -is a strong chlorite altered zone with occasional qtz vn frags in it.		17.07-18.1 -strong silicification	17.07-18.1 -2-5% disseminated pyrite	
		19.75-21.85 -a strongly fractured qtz vn/py vn zone 20.5-20.7 -a 4 cm wide pyrite vein @ 20.77-20.9	20	19.75-21.85 -20% chlorite along fractures	19.75-21.85 -20% vein pyrite	

HOLE NUMBER: TM-27

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

NUMBER:	TM-27

DATE: 16-September-1992

E NUM	BER: TM-27			DRILL HOLE RECORD		DATE: 10-September - 1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		-fault gouge 21.85-23.25 -sheared fabric อ 22.45-23.25 -gouge zone	20	21.85-23.25 -strong clay alteration and trace fuchsite		
23.25 TO 88.40	«DIORITE»	Colour: green Grain Size: f.gr. m.gr. This is a strongly altered interval which in areas looks possibly andesitic but overally appears dioritic. Textures range from fine grained phases to medium grained. Fsp are subhedral and randomly oriented. A number of breccia zones occur through the interval. Stockwork fracturing occurs through the interval		Silica carbonate alteration occurs through the interval. Carbonate occurs to about 10% through the matrix, as does silica stockwork qtz carbonate vnlts occur along stockwork fractures Chlorite alteration in the form of vnlts and replacement is abundant (20%)	Disseminated pyrite occurs through the interval to 10% and locally as high as 20% Occasional pyrite vns occur with carbonate veining	
		23.25-28.2 -the unit is strongly bleached 25.91-26.6 -a brecciated interval sealed by silica carbonate		23.25-28.2 -strong silicification		
		and chlorite. The bx is tight 27.25-27.6 -is a brecciated and veined interval oriented @ The bx is sealed by talc, chlorite carbonate	10			
		28.24-28.84 -a brecciated zone cemented by silica, carbonate and possibly sericite		28.24-28.84 -possible sericite with silica and carbonate 29.5		
				-minor epidote occurs 33.6-38.1 -feldspars are altered, a pinkish colour, possibly K fsp.	35.0 -a 1 cm wide pyrite vn with carbonate oriented @ 30 deg to c.a.	
		44.5-47.0 -the core begins to develop a shear fabric a -fine grained sulphides line this fabric	38	40.3-44.17 -the core is strongly bleached with clay, silica and possible albite alteration	35.47 -1 cm wide pyrite and carbonate vn oriented at 22 deg to c.a. 44.5-47.0	

HOLE NUMBER: TM-27

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

MINNOVA INC. DRILL HOLE RECORD

DATE: 16-September-1992

From To	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		45.0 -quartz vein a	30		-f.gr. sulphides along structural fabric	
		48.9-52.0 -is a qtz carbonate tight bx zone chlorite carbonate and silica fill spaces between brecciated fragments 55.30-55.68				
		-is a fault breccia 55.68-88.40 -diorite is chilled to a f.gr. to aphanitic interval 67.35 -2 cm wide qtz vein a 76.22-78.17 -silicified bx zone. Fragments are angular and rotated	32	55.68-88.40 -primarily clay, chlorite + carbonate -chlorite occurs along stockwork frac- tures 76.22-78.17 -banded and opaline silica cement the bx	55.68-86.48 -trace py, occasional vnlts occur at low angles to c.a. (<10 deg) and these generally have chloritic vein selvages assoc. with them.	
		81.08-84.5 -silicified bx 86.48-88.40 -silicified bx -shear fabric developed @	40	81.08-84.5 -banded and opaline silica cement the bx, occasional qtz lined cavities are seen 86.48-88.40 -banded and opaline silica cement bx	86.48-88.40 -2% pyrite as vnlts.	
88.40 TO 00.82	«DEBRIX FLO W BX»	Colour: grey green Grain Size: variable This is a grey green debris flow breccia unit. Fragments in the interval range in size from mm scale to several cm and are either rounded or angular. Frags and qtz and diorite. The weak structural fabric developed is a	38	Silicification, clay, chlorite and carb alteration occurs through the interval. Diorite frags are either silicified or chloritized. A number of open spaced fractures occur through the interval and these are lined with fine grained euhedral qtz grains	Pyrite occurs to 3% throughout as stockwork veinlets and fractures fillings. Trace amounts of chalcopyrite are seen with pyrite locally Pyrite occurs to 10% locally	

HOLE NUMBER: TM-27

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

MINNOVA INC. DRILL HOLE RECORD

DATE: 16-September-1992

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
100.82 TO 140.50	«LEUCO DIOR ITE»	Colour: grey green Grain Size: m.gr. This interval consists of a grey green medium grained leucodiorite. Feldspars are subhedral in shape, comprising 60-70% of matrix. Some small finer grained intervals occur throughout. Some small open space fractures occur through		Alteration is generally clay and silica with minor carbonate alteration of matrix Occasional qtz carbonate vnlts are seen through the core. Some talc vnlts are present	Sulphides average 3-5% throughout as disseminations. Stockwork vnlts and as large 2-3 cm amorphous masses. These are generally associated with areas of silicification. Trace to 1% Cp occurs with py 115.3-115.45 -a small silicified interval with 10% py, cp vnlts and with what may be visible gold	100.82-117.50 -sulphide content is approx. 5-10% with tr - 2% Cp.
140.50 TO 160.70	«F.GR. DIOR ITE»	Colour: dark green Grain Size: f.gr. This is a dark green, f.gr. diorite. Localised areas are medium grained with euhedral randomly oriented feldspar phenocrysts		Alteration of the f.gr. unit consists of strong silicification. The medium grained intervals are strongly altered to clay minerals	114.2-114.6 -15% py, 3% cp Pyrite and pyrrhotite are the only sulphides seen through the interval. These usually occur associated with carbonate vnlts and are seen only in the fine grained intervals.	
		145.51-146.90 -is a slightly altered, slightly brecciated interval, buff grey in colour		140.5-145.51 -strong silicification 145.51-146.90 -strong clay altered	140.5-145.51 -2% pyrite, pyrrhotite 146.9-156.25 -tr to 2% py, pyrrhotite	
		148.68 -1 cm wide qtz carbonate pyrite vn occurs oriented Ə	60	146.90-156.25 -str. silicification, minor carbonate 156.25-160.7		
		156.25-160.7 -a buff coloured, m.gr. clay altered intrusive interval		-str. clay alteration		
		Bottom contact is distinct @	22			

HOLE NUMBER: TH-27

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

HOLE NUM	BER: TM-27			MINNOVA INC. Drill Hole Record		DATE: 16-September-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
160.70 TO 163.98	«CHTY ASH T UFF»	Colour: grey green Grain Size: v.f.gr. to aphanitic Grey green aphanitic to v.f.gr. cherty ash tuff Conchoidal fracture seen in areas		This interval is silicified and from 161.3-161.6 is a talc carbonate vein interval, chlorite occurs along fractures	Pyrite occurs as vnlts in trace amounts to 5% locally	
	E.O.H.	161.3-161.6 -a brecciated talc-carbonate veined interval @	20	163.14-163.58 -a stkwrk silicified zone	163.14-163.59 -2-5% stkwrk pyrite	

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

Sample	From (m)	To (m)	Length (m)	ASSAYS Ag ppm	As ppm	Ba ppm	Cu ppm	fe ppm	GE Mo ppm	OCHEMI Pb ppm	CAL Sb ppm	Zn ppm	Au ppb	g/tAu g/t	S ppm	
BCD44518 BCD44519 BCD44520 BCD44521 BCD44522	1.52 4.52 7.52 10.52	4.52 7.52 10.52 13.46 13.90	3.00 3.00 3.00 2.94 0.44	0.1 0.1 0.1 0.1 0.1 0.1	25 40 16 18 36	81 58 120 186 44	58 47 233 58 60	4444 3934 4057 4256 3173	1 1 1 1 3	24 21 22 19 15	4 3 4 5 3	53 55 84 43 20	24 11 28 17 148	97 C	bbu	
BCD44523 BCD44524 BCD44525 BCD44525 BCD44526 BCD44527	13.90 16.90 19.75 21.85	16.90 19.75 21.85 23.25 26.25	3.00 2.85 2.10 1.40 3.00	0.1 0.1 0.9 0.8 0.6	15 10 98 64 61	40 38 24 38 45	48 139 319 35 31	4030 6677 5493 4804 5313	1 1 1 1 1	25 16 25 12 13	5 4 7 3 4	48 136 97 89 42	84 188 74 220 294			
BCD44528 BCD44529 BCD44530 BCD44531 BCD44532	29.25 32.25 35.25	29.25 32.25 35.25 38.25 41.25	3.00 3.00 3.00 3.00 3.00	0.1 0.1 0.1 0.1 0.2	35 1 6 17 10	37 23 37 274 44	29 27 28 38 30	5216 6228 6506 7861 5797	1 1 1 1	1 11 15 15 8	1 1 2 1	48 49 50 50 49	61 34 31 52 59			
8CD44533 8CD44534 8CD44535 8CD44536 8CD44537	44.25 47.25 50.25	44.25 47.25 50.25 53.25 56.25	3.00 3.00 3.00 3.00 3.00	0.1 0.1 0.2 0.1	24 31 43 21 34	95 174 99 65 70	41 50 44 33 74	6852 7475 6871 6195 6467	1 1 1 1	11 1 29 21 11	3 1 3 4 8	40 82 174 109 70	404 347 89 84 55			
BCD44538 BCD44539 BCD44540 BCD44541 BCD44542	59.25 62.25 65.25	59.25 62.25 65.25 68.25 71.25	3.00 3.00 3.00 3.00 3.00	0.1 0.1 0.1 0.1 0.1	28 33 25 31 35	41 79 168 184 67	48 70 59 43 30	4903 5212 4466 5016 4483	1 1 5 1 1	27 30 26 47 28	9 8 8 7	40 36 24 91 27	63 35 61 34 39			
BCD44543 BCD44544 BCD44545 BCD44546 BCD44546 BCD44547		74.25 76.22 78.19 81.08 84.50	3.00 1.97 1.97 2.89 3.42	0.1 0.1 0.8 0.2 0.1	28 22 27 25 39	79 38 41 46 143	54 111 81 49 85	4651 4578 3138 4128 5483	1 5 3 1	30 27 19 24 24	6 7 8 8	32 39 25 28 55	21 24 21 29 107			
BCD44548 BCD44549 BCD44550 BCD44551 BCD44552	84.50 86.48 88.40 91.40 94.40	86.48 88.40 91.40 94.40 97.40	1.98 1.92 3.00 3.00 3.00	0.1 6.6 0.4 0.4 0.5	40 66 31 34 23	214 42 24 39 40	64 184 153 343 142	6814 7266 3667 4717 3513	1 2 4 18	23 444 19 38 17	8 12 1 5 10 7	56 1549 23 75 20	35 614 169 219 60			
8CD44553 8CD44554 8CD44555		103.82	3.42 3.00 3.00	1.7 0.1 0.4	39 78 44	51 46 60	355 525 560	6399 8588 7815	3 1 3	47 66 131	11 14 12	77 180 302	256 1510 309	1.4 0.38	0.0 0.0	

HOLE NUMBER: TM-27

ASSAY SHEET

ASSAY SHEET

DATE: 16-September-1992

Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe ppm	Мо ррп	Pb ppm	Sb ppm	Zn ppm	Au ppb	g/tAu g/t	S ppm
BCD44556 BCD44557		109.82 112.82		1.8 2.8	50 43	47 45	628 575	8963 8333	1 14	421 46	10 1 11	1390 113	240 152		
BCD44558 BCD44559 BCD44560 BCD44561 BCD44562 BCD44563	112.82 114.20 114.60 115.30 115.45	114.20 114.60 115.30 115.45 118.45	1.38 0.40 0.70 0.15 3.00 3.00	0.1 0.1 0.3 0.1 0.1	112 240 65 45 24	57 71 51 42 73	630 1261 567 581 513	8385 11855 6952 756 9 7757	1 36 26 6 2	22 17 19 43 24	9 26 12 13 9	27 31 27 108 27	146 471 178 216 132	0.57 134.2	0.0 3.9
BCD44564 BCD44565 BCD44566 BCD44567	121.45 124.45 127.45	124.45 127.45 130.45	3.00 3.00 3.00 3.00	0.2 0.8 1.6 0.8	45 55 33 11	44 48 42 28	566 957 1196 1007	7201 7092 6724 5541	1 1 1 1	24 21 94 28	2 2 2 1	36 36 350 47	216 505 1700 2090	0.63 2.34 2.82	0.0 0.0 0.0
BCD44568 BCD44569 BCD44570 BCD44571 BCD44572	136.45 140.50 143.50	140.50 143.50 145.51	3.00 4.05 3.00 2.01 1.39	0.7 0.1 2.3 2.8 0.1	25 1 1 1	28 82 27 26 394	539 282 139 96 80	5486 9534 10389 8290 8697	1 1 1 1	22 20 3 1 14	2 1 1 1 1	30 85 47 47 100	920 333 346 168 624	1.28 0.64	0.0 0.0
BCD44573 BCD44574 BCD44575 BCD44576 BCD44577	149.90 152.90 156.25	152.90 156.25 160.70	3.00 3.00 3.35 4.45 3.28	2.2 2.7 1.9 0.1 0.1	1 1 1 4	22 24 13 93 151	51 116 105 111 132	8235 9762 7959 7826 5341	1 1 1 1	4 25 4 38 56	1 1 1 1	53 123 45 186 242	145 403 289 454 263	0.53 0.52	0.0 0.0

ASSAY SHEET

HOLE NUMBER: TM-28					MINNOVA INC. Ill Hole Record		IMPERIAL UNITS:	METRIC U	NITS: X
PROJECT NAME: T. PROJECT NUMBER: 6 CLAIM NUMBER: LOCATION:		PLOTTING COOR	RDS GRID: NORTH: EAST: ELEV:	125.00N 535.00E 1362.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV:	TAM91 GRID 0+ 0N 0+ 0E 1362.00	LENGTH OF 1 Star		
		COLLAR GRID	AZIMUTH:	230° 0' 0"	COLLAR ASTRONOMIC AZIMUTH: 2	230° 0' 0"			
DATE STARTED: DATE COMPLETED: DATE LOGGED:	April 2, 1992 April 4, 1992 April 5, 1992	COLLAR SURVEY: NO MULTISHOT SURVEY: NO ROD LOG: NO			PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ		CONTRACTOR: ATLAS DRILLIN CASING: CORE STORAGE: GREENWOOD	IG	

PURPOSE :

DIRECTIONAL DATA:

epth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
84.13	•	-47* 01		OK		-	-	-	-	-	
80.44	-	-48* 0*	ACID	OK		-	-	•	•	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	•	-		-	-	-	-	-	
-	-	•	-	-			-	-	-	-	
	-	-		-					-	-	
-	-	-	-	-			-	-	-	-	
_	-	-	-	-		-	-	-	-	-	
	-	-	-	-		1 -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	•	•	-	-			-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			•	-	-	•	
-	-	-	•	-			-	-	-	-	
-	-	:	-	-			-	-	-	-	
-	•	-	-	-			-	-	-	-	

HOLE NUMBER: TM-28

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

MINNOVA INC. DRILL HOLE RECORD

DATE: 16-September-1992

						DATE: 10-September 1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 3.05	«CASING»					
3.05 TO 18.46	«F.GR. DIOR ITE»	Colour: dark green Grain Size: f.gr. This is a fine grained, dark green diorite. The core is strongly broken, rubbly and oxidized along fracture surfaces. Approximately 10-15% v.f. stkwrk fractures occur through the intervals. These are generally lined by fine pyrite. Frequent small (<1 cm) wide pyrite veins and qtz veins cross the interval		The interval is strongly silicified throughout. Fracture surfaces are strongly oxidized.	Pyrite is the only sulphide seen through the interval. This occurs as fine vnlts along fractures, dissem- inations and larger (<1 cm) veins. The larger veins tend to be weathered with boxwork texture [3.05-18.46] «10-15% py»	·
18.46 TO 34.14	«DIORITE»	Colour: light green Grain Size: m.gr. The diorite through this interval is light grey greenish. with m.gr. subhedral to euhedral fsp phenocrysts that have been strongly altered to clay minerals. Several sheared and brecciated zones occur through the interval as do several zones of silicification associated with the brecciated intervals.		Diorite is strongly altered to clay minerals through the interval. 18.46-34.14 «str. clay alt'n» Several small zones of intense silic- ification are seen through the interval Minor talc is seen along some fractures The upper 50 cm of the interval is stkwrk fractured and silicified.	Overall pyrite content averages 2-3% generally as vnlts and veins commonly with silicification. Pyrite veins are strongly oxidized with boxwork textures	
		19.5 -clay fault gouge 22.10-22.3 -shear 2 -this small shear has small qtz veins along fabric with chlorite laminae	42	20.0-20.1 -stkwrk silicification 20.47-20.9 -stkwrk silicification 23.9-24.55	20.0-20.1 -5% py 20.47-20.9 -5% py 23.44-23.5	
				-stkwrk silicification and brecciation -some oxidized open spaces show drusy qtz linings	-boxwork pyrite vein, oxidized, a 90 deg to c.a. 24.75-25.47 «20% py stkwrk» -py is strongly oxidized 29.76-29.80 -f.gr. pyrite vein at 48 deg to c.a.	

HOLE NUMBER: TM-28

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

MINNOVA INC. DRILL HOLE RECORD

DATE: 16-September-1992

LE NUMBER: IM-20			DRILL HOLE RECORD		DATE: 10-September 1992
FROM ROCK TO TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
34.14 (BX ALT'N Z TO 57.60	Colour: var, grey green to white, buff Grain size: variable This zone is brecciated to a certain degree through the entire interval. Brecciated frags appear to be, in general, f.gr. chilled margin frags seen at the end of the previous interval. Open spaces fractures are common with f.gr. drusy quartz linings. Small sub-intervals are granular possibly clay altered diorite. These are stkurk fractured with chlorite lining fractures Lower contact is oriented @	38	Alteration varies widely throughout. Silicification is predominant, particularly as cement for the brecciated zones. Clay alteration is common in what may be large frags of diorite. Localized areas of str. oxid. reflect increases in pyrite content.	Pyrite occurs only in amounts commonly around 5% throughout. Minor oxidized py vnlts. are seen throughout 40.45-42.26 -5-10% disseminated and boxwork oxidized pyrite vnlts.	
57.60 * 010R1TE * 80.47	Colour: green Grain Size: m.gr. This is a light to dark green diorite. Fsp pheno- crysts are generally of the order of 1-2 mm although some short, fine grained intervals are seen. From 57.6-59.13 the diorite is mod. bleached. Winor 1 cm wide qtz carbonate vnlts cut the core at, at irregular intervals 61.55 - a 5 cm wide qtz carbonate cemented bx occurs a 75.70 - the hole begins entering a wide zone of shearing and faulting 75.7-75.97 -shear and brecciated fabric a [75.7-80.47] «Flt Zone» The brecciated frags range in size from 1 mm to 3 cm 75.7-77.62 -1-3 cm wide qtz veins cut the interval 77.62-78.64 - a qtz vein similar to that seen near the end of hole TM91-20A. The core is broken and rubbly through this interval	10 38 64 64	57.6-59.13 -fsp are strongly altered to clays and matrix is strongly chloritized 59.13-70.9 -the core is silicified through this interval, f.gr. Leucoxene is seen in concentrations of 2-3% 70.9-75.7 -weak to mod. clay alt'n 75.7-80.47 chloritic alteration of fault gouge and brecciated zones is dominant 477.62-78.64 wchl frac, minor fuchsite *	57.6-75.7 -pyrite occurs disseminated in concen. of 2-5%. 75.0-75.7 -small laminae of v.f.gr. sulphide occurs from 5-10%. These occur along fractures 75.70-77.62 -pyrite occurs in concentrations of 5-7% generally associated with qtz veins and along fractures [75.7-77.62] « 5-75 py, tr cp» -chalcopyrite occurs in tr. amounts [77.62-77.82] «10% cp» [77.62-77.82] «10% cp» -from 77.67-77.82: chalcopyrite occurs along fractures with minor	Core recovery from 77.62-78.64: 60%

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

MINNOVA INC. DRILL HOLE RECORD

DM	ROCK		ANGLE		MINERALIZATION	REMARKS
TO	TYPE	TEXTURE AND STRUCTURE				KEMAKAS
		The vein itself is highly fractured with chlorite chalcopyrite and pyrite along these fractures 78.64-80.47			pyrite 77.82-78.64 -pyrite is seen from 10-20%, again along fractures. Trace amounts of chalcopyrite are seen	
		-diorite again, cut by two gouge zones				
		79.0-79.38 «gouge» 79.7-80.10 «gouge»				
80.47 TO 188.44	«INTERBED QTZ-CONGLOM SST, SLTST»	Colour: white, grey, grey-green Grain Size: var. c.gr. to f.gr. These sediments are similar to those described in hole TM-25 Conglomerate intervals are white in colour varying from clast supported to matrix supported. Clasts are quartz, chert, and f.gr. chloritic ash tuff. As with hole TM-25 the conglomerate units are fractured more than the finer grained units, and these fractures are oxidized. Sandstone units are grey in colour, quartz rich and clast supported. Fine grained siltstone units are grey green in colour and may be volcanic in origin. In comparison to hole TM-25, this interval has a larger proportion of finer grained sandstones and siltstones with respect to conglomerate units whereas hole TM-25 had a roughly 50:50 proportion between conglomerate and sandstones and siltstones 80.47-134.72		Alteration is not strong through the interval. It consists of weak oxidation of pyrite along fractures primarily in the conglomerate units. This oxidation is not nearly as strong as seen in TM-25	Pyrite occurs in trace amounts to 3% as veinlets cutting all units, or as disseminations associated with more permeable conglomerate units	
		-beds are highly contorted, fragmented due to faulting 103.22-105.5 «breccia»		103.22-105.5) «strong oxid'n»	4103.22-105.54 «5-10% ру»	
		112.45-114.45 «breccia»		Timere with weight on a line		
		146.0 -bedding a	64			
		165.3-174.9 -a wide interval of grey white qtz pebble conglom.			165.3-174.9 -5% diss. pyrite	

HOLE NUMBER: TM-28

DRILL HOLE RECORD

LOGGED BY: C. CLAYTON

ASSAY SHEET

DATE: 16-September-1992

Sample	From (m)	To (m)	Length (m)	ASSAYS Ag ppm	As ppm	Ba ppm	Cu ppm	Fe ppm	GE Mo ppm	OCHEMIC Pb ppm	CAL Sb ppm	Zn ppm	Au ppb	g/tAu g/t	S ppm
BCD44578 BCD44579 BCD44580 BCD44581 BCD44582	3.05 6.05 9.05 12.05 15.05	6.05 9.05 12.05 15.05 18.46	3.00 3.00 3.00 3.00 3.41	2.2 3 2.8 1.6 1.5	1 1 1 1	87 152 22 28 33	128 242 325 209 149	7104 7520 8649 9046 7718	1 1 1 1 1	4 3 2 5 4	1 1 1 1	46 36 40 40 45	63 71 82 299 101	0.36	0.0
BCD44583 BCD44584 BCD44585 BCD44586 BCD44587		21.46 24.46 27.46 30.46 34.14	3.00 3.00 3.00 3.00 3.68	0.1 0.1 0.1 0.1 0.1	21 20 5 10 1	10 58 267 35 34	169 251 392 304 256	6186 8759 8891 9551 9148	1 1 7 1 1	16 9 1 1	1 1 1 1	44 89 68 76 76	118 57 76 95 147		
BCD44588 BCD44589 BCD44590 BCD44591 BCD44592		37.14 40.14 43.14 46.14 49.14	3.00 3.00 3.00 3.00 3.00	0.2 0.3 1.8 0.6 0.6	21 20 44 18 17	27 34 36 34 37	396 276 252 254 293	6716 3760 2720 1375 1721	1 3 12 5 5	1 4 12 6 5	1 1 2 1 1	57 36 34 15 17	1645 54 78 40 68	1.52	0.0
BCD44593 BCD44594 BCD44595 BCD44596 BCD44597	49.14 52.14 55.14 57.60 60.60	52.14 55.14 57.60 60.60 63.60	3.00 3.00 2.46 3.00 3.00	1.1 1.5 0.5 0.1 0.1	31 34 15 1 1	34 34 35 37 68	475 682 251 280 134	2967 3220 1699 6280 6143	9 4 3 1 1	10 7 5 1 1	1 2 1 1 1	26 18 19 53 38	91 246 70 143 464	0.22 0.46	0.0 0.0
BCD44598 BCD44599 BCD44600 BCD44601 BCD44602	63.60 66.60 69.60 72.60 75.70	66.60 69.60 72.60 75.70 77.62	3.00 3.00 3.00 3.10 1.92	0.1 0.1 0.2 2.1	1 1 23 175	141 70 320 33 115	188 193 204 224 869	5821 6555 5894 6514 5044	1 1 1 1	1 1 1 1	1 1 1 1	45 41 31 60 68	80 128 161 126 6800	6.26	0.1
BCD44603 BCD44604 BCD44605 BCD44606 BCD44607	77.62 78.64 80.47 83.47 86.47	78.64 80.47 83.47 86.47 89.47	1.02 1.83 3.00 3.00 3.00	7.4 0.1 0.1 0.1 0.1	399 19 39 32 19	8 109 48 155 211	3341 121 159 114 70	5213 5234 3751 3540 4792	9 1 1 1	13 1 2 1 1	10 1 2 1 1	110 85 38 30 47	1760 80 105 82 111	1.38	0.
BCD44608 BCD44609 BCD44610 BCD44611 BCD44612		92.47 95.47 98.47 101.47 104.47	3.00 3.00 3.00 3.00 3.00	0.1 0.6 0.1 0.1 0.1	18 28 15 13 10	42 1 118 51 58	64 3 66 44 46	4570 44 4094 4272 3981	1 1 1 1	1 2 1 1	1 2 1 1 1	34 3 30 30 30	96 57 36 31 155		
BCD44613 BCD44614 BCD44615	107.47	110.47	3.00 3.00 3.00	0.5 0.1 0.1	26 34 22	67 231 210	78 151 141	3683 4759 4857	1 2 1	1 1 1	1 1 1	25 26 27	89 56 39		

HOLE NUMBER: TM-28

ASSAY SHEET

Sample	from (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe ppm	Mo ppm	Pb ppm	Sb ppm	Zn ppm	Au ppb	g/tAu g/t	S ppm	
BCD44616 BCD44617			3.00 3.00	0.1 0.1	17 30	227 123	67 75	4721 4650	1 1	1 1	1	34 37	29 96			
	122.47 125.47 128.47	125.47 128.47 131.47	3.00 3.00 3.00 3.00 3.00	0.1 0.1 0.1 0.1 0.1	28 28 29 32 36	50 110 68 88 92	130 145 224 235 107	4933 5138 4575 4948 5343	1 1 1 1	1 1 1 1 1	1 1 1 1	32 30 27 24 35	70 57 61 95 69			
BCD44623 BCD44624 BCD44625 BCD44626 BCD44627	137.47 140.47 143.47	140.47 143.47 146.47	3.00 3.00 3.00 3.00 3.00 3.00	0.1 0.1 0.1 0.1 0.1	26 25 28 21 33	66 69 50 53 87	130 106 194 131 123	5104 4996 5024 4790 4829	1 1 1 1	1 1 1 1	1 1 1 1	38 58 33 36 32	38 39 140 119 60			
	152.47 155.47 158.47	155.47 158.47 161.47	3.00 3.00 3.00 3.00 3.00	0.1 0.1 0.1 0.1 0.1	25 29 33 52 55	68 97 279 889 406	97 212 153 56 100	3041 4360 4196 3708 4225	2 1 1 1	2 1 1 2 5	1 1 1 1	23 26 26 32 37	85 131 74 29 34			
BCD44633 BCD44634 BCD44635 BCD44636 BCD44637	167.47 170.47 173.47	170.47 173.47 176.47	3.00 3.00 3.00 3.00 3.97	0.1 0.1 0.1 0.1 0.1	39 23 22 37 37	423 320 755 553 829	129 66 51 80 44	2940 1742 1726 3129 3576	2 3 2 1	7 4 6 4 3	2 1 1 2 2	23 15 17 21 39	64 22 18 35 22			

HOLE NUMBER: TM-28

ASSAY SHEET

HOLE NUMBER: TH-30	0			MINNOVA INC. Drill Hole Record		IMPERIAL UNITS: ME	TRIC UNITS: X
PROJECT NAME: 1 PROJECT NUMBER: 6 CLAIM NUMBER: LOCATION: (561	PLOTTING COORDS GRID NORTH EAST ELEV	75.00S 877.00E 1305.00	EAST: ELEV:	0+ 0N 0+ 0E 1305.00	COLLAR DI Length of the Hol Start Dept Final Dept	H: 0.00m
DATE STARTED: DATE COMPLETED: DATE LOGGED:	April 13, 1992 April 16, 1992 April 16, 1992	COLLAR GRID AZIMUTH Collar Survey: No Multishot Survey: No Rgd Log: No	230* 0' 0"	COLLAR ASTRONOMIC AZIMUTH: PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ	230* 0' 0"	CONTRACTOR: ATLAS CASING: CORE STORAGE: GREENWOOD	

PURPOSE:

DIRECTIONAL DATA:

epth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Conments
78.03	-	-45* 01	ACID	ОК		-	-	•	-	•	
75.60	-	-46° 0'	ACID	OK		-	-	-	-	•	
•	-	-	-	•		-	-	-	-	•	
•	-	-	-	•		-	-	-	-	-	
-	•	-	-	-		-	•	-	-	-	
•	-	-	-	•		-	•	-	•	•	
•	•	-	-	•		-	-	-	•		
•	•	-	-	:				-			
-		-					•	-	-	•	
	•	-		-		-	•	-	-	•	
•	-			-		-	-	-	•		
•	-	-	-	-		-	-	•	-	-	
•	-	-	-	•			•	-	•	-	
-	-	•	-	-		-	-	-	•	•	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	•	
•	-	-	-	•		-	-	•	•	•	
-	-	•	-	•		-	-	-	•	-	
-	-	-	-	-		•	-	-	-	•	
•	•	-	-	•		-	-	-	-	-	
•	•	-	-	-		-	•	-	-	•	
•	-	-	-	-			-	•	•	•	
-	-	-	-	•		-	-	-	-		
•	•	-	-	-				-	-	•	
-	•	-	-	•				-	-	:	
•	•	-	-	-			-	-	-		

MINNOVA INC. DRILL HOLE RECORD

DATE: 16-September-1992

F.D.OM	BOCK		-			· · · · · · · · · · · · · · · · · · ·
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 2.44	«CASING»					
2.44 TO 11.24	«BX, SHEAR ZONE»	Colour: grey green Grain Size: variable This interval consists of a grey green brecciated and sheared zone. A fine shear fabric formed is oriented @ Fragments in the interval are variably siliceous and albitic. Grain Size varies from v.f.gr. to several cm. Fragment shape varies from rounded to angular elongate oriented along fabric. Round to subround fragments appear strained/sheared with an anti-clockwise shearing motion	70	The predominant alteration through this interval is a wispy chloritic alt- ertion along structural fabric. Some brecciated frags are chloritized, others silicified and possibly albitized. Occasional qtz veins up to 2 cm wide occur oriented at 52 deg to c.a. The bottom 10 cm at the contact is silicified	Sulphide content through the interval si not more than 1%. Pyrite is the only identifiable sulphide. This generally occurs with altered primarily silicified fragments as well as in veinlets	
11.24 TO 14.36	«ALT DIORIT E»	Colour: «light green» Grain Size: m.gr. to f.gr. This is a strongly altered interval of m. to f.gr. diorite. Altered euhedral to subhedral fsp are randomly oriented comprising 60-70% of the matrix Occasional small (<1 cm) pyrite/qtz vnlts with chlorite altered HW selvages occur oriented @ [13.43-13.57] «Quartz Vein» -this is a grey white strongly fractured (50-60%) qtz vein	40 42	The upper 30 cm of the interval has been strongly altered to clay and chlorite. A soft pinkish coloured alteration mineral is present as well (unidentified) 11.54-14.36 -clay and chlorite alteration is still dominant but this is overprinted by weak silicification Leucoxene is also present through the interval	Pyrite content is only in trace amounts to 1-2%. In areas where silica veining occurs the content increases to 10% generally occurring along fractures [13.43-13.57] «10% py»	
14.36 TO 19.55	*QTZ VEIN S ILICF'D BX*	Colour: white grey Grain Size: f.gr to m.gr. This is similar to the qtz vein in previous interval but also similar to zones of silicif- ication described in previous holes (TM-16,19). Sections of the interval strongly fractured (50-60%) while others are massive, structureless. A small brecciated zone near the base of this interval and this is cemented by milky white opaline silica. The bottom contact is oriented @	30	Alteration through the interval is silicification and in areas that are strongly fractured chlorite occurs along fractures 16.5 -2 cm wide chlorite vein oriented at 28 deg to c.a. \$14.36-17.0\$ <5% chlorite vnlts>	Pyrite occurs associated only with zones of strong fracturing as vnits along these fractures generally from 5-10% 14.36-17.01 «5-10% ру»	

HOLE NUMBER: TH-30

•

MINNOVA INC. DRILL HOLE RECORD

DATE: 16-September-1992

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
19.55 TO 23.65	«ALTERED DI ORITE»	Colour: grey green Grain Size: m.gr. to c.gr. Similar to the diorite described from 11.24-14.36 but coarser grained. Fsp are euhedral, altered to clay and chlorite. A weak structural fabric is formed a	40	Chlorite and clay alteration is dominant throughout. This is weakly overprinted locally by silicification Leucoxene is present in trace amounts carbonate alteration of matrix occurs to 5%	Pyrite is present only in trace amounts with one small zone of 5-10% py from 20.36-20.7. Pyrite occurs as fine disseminations, vnlts and amorphous masses up to 6 cm in dimension. Pyrite is oxidized	
23.65 TO 39.90	«DEBRIS BX/ ALT. ZONE»	Colour: grey green Grain Size: variable Similar to debris breccia seen in hole TM-24. This is a grey green brecciated interval. Some sections contain angular frags in a f.gr. grey green matrix Other sections are frag. supported. Most frags are clay or chlorite altered. Stockwork qtz carbonate vnits occur through the interval. Small intervals of fault gouge occur through the interval as do small intervals of silici- fication. 30.91-31.09 -broken core suggesting fault zone 31.7-32.00 -broken core suggesting fault zone 34.86-35.05 -clay fault gouge 36.8-36.9 -clay fault gouge Possible orientation of fault @	32	Alteration is predominantly clay and chlorite with occasional zones of silicification. Occasional stkwrk qtz carb vnlts crosscut the interval 26.9-27.02 «Sil» 27.9-28.04 «Sil» 28.6-29.54 «Sil» 30.3-30.43 -small milky white qtz vnlts at 10 deg to c.a. with hematite cores 433.4-33.80 «Silicif'd Bx» 435.9-39.49 «Silicif'n»	Pyrite content rarely exceeds 2% and more commonly occurs only in trace amounts where core is silicified. Pyrite occurs up to 5% as vnlts along stkwrk fractures	
39.90 TO 52.73	«DIORITE»	Colour: dark to light green Grain Size: f.gr. to m.gr. This diorite contains a greater proportion of mafic minerals to felsics in comparison with diorite seen from 19.55-23.65 39.9-41.0 -the diorite is leucocratic and m.gr. with randomly oriented fsp grains		39.9-43.7 -alteration is primarily clay, chlorite end carbonate. Chlorite occurs as vnlts		

	BER: IM-30					
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		40.55-41.0 -core is broken and rubbly suggesting a fault zone 41.0-43.7 -the unit is very f.gr. appearing chilled		43.05-43.1 -a zone of hematite alteration or vein oriented at 60 deg to c.a.		
		42.5-42.57 «Calcite Vein» -the vein is 2 cm wide true width oriented a -brecciated frags occur in the vein which is vuggy having euhedral calcite crystals growing into open cavities	10			
		43.1-43.59 -clay fault gouge a 43.6-49.76 -diorite becomes dark green, fine grained	28	43.6-49.76 -chlorite alteration is common with silicification overprinting this		
		49.76-52.73 -the diorite becomes leucocratic and medium grained again		49.76-52.73 -chlorite, clay and carbonate alter'n becomes dominant again		
52.73 TO 60.35	«SHEAR BX VN ZONE»	Colour: grey to black Grain Size: variable This interval consists of a sequence of brecciated segments, sheared segments and veined segments some within brecciated zones		Alteration varies throughout from silicification in the form of stkurk vnlts and massive vns to chloritic alteration and possible albite alteration and veining	Sulphides occur throughout as f.gr. disseminations vnlts and vns assoc. with qtz vns or silica introduction. Arsenopyrite and pyrite are most common with minor cp	
		52.73-53.57 -a v.f.gr. to aphanitic stkwrk fractured altered segment. Alt'n may be albite. Stkwrk fracturing with silica infilling to 40%		52.73-53.57 -30-40% stkwrk silica vns and possible albite alteration	52.73-53.57 -5% stkwrk and disseminated pyrite	
		53.57-54.5 -shear fabric oriented a -this zone containing vein pyrite along fabric	56	53.57-54.5 -silicification and chloritic alt'n	53.57-54.5 -30% py as veins along shear fabric with minor arsenopyrite	
		54.5-56.17 -a strongly silicified f.gr. dyke		54.5-56.17 -strong silicification	54.5-56.17 -5-10% f.gr. disseminated py	
		56.17 -clay fault gouge		56.17-57.6 -chlorite laminae	56.17-57.6 -5-10% vein pyrite	

IOLE NUM	BER: TM-30			MINNOVA INC. Drill Hole Record		DATE: 16-September-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		56.17-57.6 -a brecciated zone containing brecciated frags of a possible albite-qtz vein, fabric @ The core is broken and rubbly from 57.6-57.91 suggesting a fault zone 58.3-58.7 -a silica/sulphide vein @ approximately 60.05-60.35 -core is broken and rubbly suggesting fault zone at end of this interval	60	58.3-58.7 -silicification	58.3-58.7 -40-50% sulphide, primarily pyrite with 5-10% arsenopyrite and trace chalcopyrite	57.91-60.05 -60% core recovery 60.05-60.96 -50% core recovery
60.35 T0 93.57	SILTSTONE,	Colour: white, grey, grey-green These sediments vary from v.f.gr. grey-green chloritic siltstone or tuff, to grey qtz rich sandstone to white qtz pebble conglomerate. The entire interval is strongly faulted and fractured throughout and both upper and lower contacts are faulted. These are similar to sediments inter- sected in hole TM-28 with the conglomerate units unoxidized 63.70 -fault 64.92-72.5 -broken, rubbly core most likely fault zone 73.46 -fault 74.60 -fault 85.50 -fault 86.56-87.48 -fault 86.56-87.48 -fault 92.96-93.57 -fault gouge		60.35-61.2 -strongly silicified (40%) Alteration of f.gr. units consists of chlorite. Conglomerate units have some secondary silica introduction	60.35-61.2 -2-3% dissem. pyrite, tr cp Pyrite to 2% and trace amounts of chalcopyrite occur as whits and disseminations throughout the interval most commonly associated with conglom. units	Extremely poor core recovery throughou 60.96-62.48: 95X 62.48-63.70: 100X 63.7-64.92: 50X 64.92-65.83: 33X 65.83-66.14: 100X 66.14-67.06: 29X 67.06-68.28: 30X 68.28-69.19: 0X 69.19-69.49: 100X 69.49-70.10: 50X 70.71-71.02: 100X 71.02-71.93: 55X 71.93-72.39: 100X Remainder of interval is moderate to good recovery

.

	BER: TM-30			DRILL HOLE RECORD		DATE: 16-September-1992	
TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS	
		TEXTURE AND STRUCTURE Colour: buff beige to dark green Grain Size: m.gr. This dyke is similar to the Tertiary dyke described in hole TM-24. 93.57-105.77 -dyke is buff to beige coloured 105.77- -dyke is dark grey green Compositionally the dyke is fsp and pyroxene phyric with aphanitic matrix. Pyroxene are altered to chlorite fsp to clays and carbonate. 93.57-107.59 -core is strongly pitted indicating weathering out of minerals. Strong faulting occurs through the upper 20-25 m 93.57-94.00 -fault 96.32-96.5 -fault 98.2 -fault 101.04 -fault 102.61-104.6 -fault 105.77-106.38 -fault 107.59 -fault 107.59 -fault 107.9 -fault 121.31-121.92 -fault			MINERAL IZATION	REMARKS	
		122.83 - fault 123.5-123.75 - fault 128.26 - fault 130.53-134.5					

MINNOVA INC.

.

HOLE NUME	IER: TM-30		DATE: 16-September-1992			
FROM TO	ROCK Type			ALTERATION	MINERALIZATION	REMARKS
		-fault zone 140.9-141.12 -fault 151.25-151.57 -breccia 151.57-161.7 -a finer grained, chill zone and is strongly bleached and clay altered. A number of qtz carbonate veins cut the intervals 152.0 -fault 161.7-165.5 -an inclusion of qtz pebble conglomerate 165.5-175.56 -a number of banded qtz carbonate vns cut the interval 173.9 -fault zone	40	156.7-157.18 -a strongly oxidized zone 157.8-158.9 -a strongly oxidized zone		
	E.O.H.					

.

.

HOLE NUMBER: TH-30

•

ASSAY SHEET

DATE: 16-September-1992

HOLE NUMB	ER: (M-3	0									A	9941 SH	561			
Sample	From (a)	To (m)	Length (m)	ASSAYS Ag ppm	As ppm	Ba ppm	Cu ppn	fe ppm	GE Mo ppm	OCHENIC Pb ppm	AL Sb ppm	Zn ppm	Au ppb	g/tAu g/t	S ppm	COMMENTS
BCD41653 BCD41654 BCD41655 BCD41655 BCD41656 BCD41657	2.44 5.44 8.44 11.24 14.36	5.44 8.44 11.24 14.36 17.36	3.00 3.00 2.80 3.12 3.00	0.1 0.1 0.1 0.1 0.1	28 59 46 1 36	74 33 26 171 53	238 110 169 73 89	6023 5398 5954 6921 3585	1 1 1 5	12 3 97 25 14	3 1 1 1 5	126 49 354 181 60	180 305 209 23 93			
8CD41658 8CD41659 8CD41660 8CD41661 8CD41662	17.36 19.55 22.55 23.65 26.65	19.55 22.55 23.65 26.65 29.65	2.19 3.00 1.10 3.00 3.00	0.1 0.1 0.1 0.1 0.1	18 32 5 14 11	51 126 82 74 21	31 130 35 38 94	1394 8395 6092 4653 6332	11 1 1 1	5 20 1 7 20	2 4 1 1 1	22 188 76 90 181	21 270 27 15 19			
BCD41663 BCD41664 BCD41665 BCD41666 BCD41667	29.65 32.65 35.65 39.90 42.90	32.65 35.65 39.90 42.90 45.90	3.00 3.00 4.25 3.00 3.00	0.1 0.3 0.1 0.1 2.5	15 25 21 12 1	38 281 62 56 77	63 54 106 124 66	7946 4428 5792 7245 7031	1 4 1 1 1	1 102 1 1 1	1 3 1 1 1	104 369 56 76 61	71 40 45 83 149			
8CD41668 8CD41669 8CD41670 8CD41671 8CD41672	45.90 48.90 51.90 52.73 56.17	48.90 51.90 52.73 56.17 57.60	3.00 3.00 0.83 3.44 1.43	2.5 0.1 0.1 0.1 0.6	1 4 11 80 396	64 73 33 70 38	81 79 165 552 341	8376 7458 8757 7295 8049	1 1 1 1	1 1 48 3	1 1 1 1	74 71 80 210 68	42 95 130 660 1580			
8CD41673 8CD41674 8CD41675 8CD41675 8CD41676 8CD41677	57.60 58.30 58.70 60.35 63.35	58.30 58.70 60.35 63.35 66.35	0.70 0.40 1.65 3.00 3.00	0.1 0.1 0.1 0.1 0.1	1 1519 3833 97 59	29 9 10 63 75	92 1931 573 81 60	6573 12767 10143 5192 5148	1 1 1 1	1 4 1 1 1	1 10 1 1 1	105 57 127 105 98	43 3300 1290 54 16			
BCD41678 BCD41679 BCD41680 BCD41681 BCD41682	66.35 69.35 72.35 75.35 78.35	69.35 72.35 75.35 78.35 81.35	3.00 3.00 3.00 3.00 3.00	0.1 0.1 0.1 0.1 0.1	35 54 44 43 42	85 97 70 61 25	149 203 115 128 124	5546 5242 4482 4709 3631	1 5 3 1 1	1 40 23 7 7	2 5 3 4	100 136 129 95 46	27 37 24 23 25			
8CD41683 BCD41684 8CD41685 BCD41686 BCD41687	81.35 84.35 87.35 90.35 93.57	84.35 87.35 90.35 93.57 96.57	3.00 3.00 3.00 3.22 3.00	0.1 0.1 0.2 0.1	61 92 42 38 18	82 76 71 69 81	89 100 124 36 31	4904 4864 4768 2887 7889	1 3 1 5 1	7	2 3 4 4 2	103 113 84 81 283	57 50 26 16 5			
8CD 4 1688 8CD 4 1689 8CD 4 1690	96.57 99.57 102.57		3.00 3.00 3.00	0.1 0.2 0.1	15 16 1	110 109 510	30 30 32	3934 3456 5218	1 1 1		1 1 1	76 70 127	3 7 8			

HOLE	NUMBER :	TM-30
------	----------	-------

.

۰. ۱

ASSAY SHEET

DATE: 16-September-1992

HOLE NUMB	CK: 18-3										A3	SAT SHE	E I			UNIE: 10-September-1992
Sample	From (m)	To (m)	Length (m)	Ag	As ppm	Ba ppm	Cu ppm	Fe ppm	Mo ppm	Pb ppm	Sb ppm	2n ppm	Au ppb	g/tAu g/t	s ppm	
BCD41691	105.57	108.57	3.00	0.1	6	384	25	6126	1		1	227	6			
80041692	111.57	114.57	3.00	0.1	1	119	26	5258	1		1	125	10			
3CD41693	117.57	120.57	3.00	0.2	3	68	25	4243	1		1	84	4			1
BCD41694	123.57	126.57	3.00	1.4	1	155	28	4129	1		1	70	2			
3CD41695	129.57	132.57	3.00	1.6	1	180	28	4681	1		1	74	5			1
30041696	135.57	138.57	3.00	1.7	1	209	28	4780	1		1	75	6			
SCD41697	141.57	144.57	3.00	1.4	1	163	28	4784	1		1	72	z			
ICD41698	147.57	150.57	3.00	1.7	1	232	27	4766	1		1	73	4			1
CD41699	153.57	156.57	3.00	0.2	3	743	21	4062	1		1	78	2			1
CD41700			3.00	0.1	20	357	34	4414	1	46	1	189	1			1
CD41701			3.00	0.1	1	1353	29	4509	1	7	1	79	1			1
3CD41702			3.00	0.5	1	491	29	4345	1	2	1	73	z			1 1