| LOG NO: | RD. |
| :---: | :---: |
| ACTION. |  |

FILE NO:

| Assesment Report on the |
| :---: |
|  |
| Greenwood Mining Division $\begin{gathered} \text { NTS } 82 \mathrm{E} / 2 \mathrm{E}, 2 \mathrm{~W} \\ \text { Lat. } 49^{\circ} 02^{\prime} 00^{\prime \prime} \mathrm{N} \\ \text { Long. } 118^{\circ} 45^{\prime} 00^{\prime \prime W} \end{gathered}$ |
| Owner: |
| Minnova, Inc., Dentonia Resources Ltd. and |
| Kettle River Resources Ltd. |

Operator:

22,529

## SUMMARY

The Tam A and Tam B Groups consist of 9 contiguous MGS mineral claims comprising a total of 98 claim units, located in the Greenwood Mining Division (NTS 82E/2E,2W) of south central B.C., approximately 6 km west of Greenwood.

The claims are underlain by a sequence of chert, ash tuff and crystal tuff, and andesitic volcanics of the Permo-Triassic Knob Hill Group. These are intruded by diorites of probable Jurassic/Cretaceous age, and are overlain by Tertiary volcaniclastics and flows, arkosic sediments, congomerate and argillite of the Kettle River Formation. The general trend of units is north-south and dips vary from west to east at moderate angles. The property lies at the eastern margin of the Toroda Creek graben and is dissected by a number of extensional faults related to Tertiary graben formation.

The northern end of the Tam A and Tam B Groups (Buck claim) is located approximately 1 km south-southwest of the Motherlode and Greyhound skarn deposits. The Greenwood camp is well known as a past producer of Cu and Au from skarn mineralization and from smaller tonnage structurally controlled vein deposits.

Drilling intersected a sequence of fine grained chert, ash tuffs, andesites, diorites, and interbedded conglomerate, sandstone, and siltstone similar to units seen on surface. These units are crosscut by several brittle fault zones, hydrothermal breccias, and mylonitic shear zones. Several zones anomalous for Au , and in some cases Cu , were intersected in silicified, chloritized, and clay altered diorites. These are probably correlatable with Au anomalies intersected in diorites in previous drilling in this part of the claim group.

## TABLE OF CONTENTS

Page:
SUMMARY ..... i
1.0 INTRODUCTION ..... 1
1.1 General ..... 1
1.2 Property Location and Access ..... 1
1.3 Topography, Vegetation and Climate ..... 1
1.4 Property and Ownership ..... 1
1.5 Property History ..... 2
1.6 Summary of Assessment Work, ..... 6March-April 1992
2.0 GEOLOGY ..... 8
2.1 Regional Geology and Structure ..... 8
2.2 Property Geology ..... 8
3.0 DIAMOND DRILL PROGRAM ..... 10
3.1 DDH TM-24 Results ..... 10
3.2 DDH TM-25 Results ..... 12
3.3 DDH TM-27 Results ..... 12
3.4 DDH TM-28 Results ..... 14
3.5 DDH TM-30 Results ..... 15
4.0 DISCUSSION AND CONCLUSIONS ..... 16
4.1 DDH TM-24 ..... 16
4.2 DDH TM-25 ..... 16
4.3 DDH TM-27 ..... 16
4.4 DDH TM-28 ..... 17
4.5 DDH TM-30 ..... 17
5.0 REFERENCES ..... 19
LIST OF FIGURES
After Page:
Figure 1: $\quad$ Tam A and B Group Location Map ..... 1
Figure 2: Tam A and B Group Claim Map ..... 1
Figure 3: $\quad$ Tam $A$ and $B$ Group Grid Location ..... 1
and Access Map
Figure 4: Tam A and B Group Drillhole Location Map ..... 10

## TABLE OF CONTENTS

## LIST OF TABLES

## Page:

| Table I: | Summary of Claim Status- Tam A Group | 1 |
| :--- | :--- | :--- |
| Table II: | Summary of Claim Status- Tam B Group | 2 |

## LIST OF APPENDICES

Appendix 1: Statement of Costs
Appendix II: Statement of Qualifications
Appendix III: Drill Logs

### 1.0 INTRODUCTION

### 1.1 General

This report describes the results of DDH TM-24, DDH TM-25, DDH TM27, DDH TM-28, and DDH TM-30, five "NQ" diameter diamond drill holes located on the Buck and Shanter claims of the Tam A and Tam B Groups. A total of 774.95 meters was drilled in these four holes. Drilling was carried out between March 22 and April 23, 1992 and these holes were part of a larger 7 hole drill program on the Buck and Shanter claims. The focus of the program was to assess the potential of the property for vein and disseminated $A u$ mineralization, in particular to test the extent of a Au anomaly intersected in 1991 drilling.

### 1.2 Property Location and Access

The Tam A and B Groups are situated within the Greenwood Mining Division at Latitude $49^{\circ} 02^{\prime} 00^{\prime \prime}$ North, and Longitude $118^{\circ} 45^{\prime} 00^{\prime \prime}$ West on NTS 82E/2E+2W (Figure 1 and 2). This is approximately 6 km to the west/southwest of the city of Greenwood, B.C. Access to the claims is via the Deadwood Road to the west of town. This road is kept in excellent repair as it is the road to the garbage dump. Approximately 2 km from town an old, well maintained logging road branches off from the Deadwood Road to the west-southwest. This road is followed for approximately 4 km until a fork is reached. From this junction the Tam A and B Groups may be accessed by taking the north or the south fork, leading to a network of old logging roads and skid trails (Figure 3). The southern part of the property may be accessed from the town of Midway via a network of ranch and logging roads that lead northerly from Highway 3 up Murray Gulch and Ingram Creek.

### 1.3 Topography, Vegetation, and Climate

Topographic relief is extreme in areas, generally ranging from 600



meters above sea level (A.S.L.) to approximately 1500 meters A.S.L. . The northern portions of the property have gentler relief. Vegetation consists predominantly of Lodgepole pine and Douglas fir. Areas near active drainages have dense alder. The southern portion of the property consists of rolling grassy hills with moderate forest cover. Climate is moderate with temperatures from $-15^{\circ} \mathrm{C}$ in winter to $30^{\circ} \mathrm{C}$ in summer.

### 1.4 Property and Ownership

The Tam A and Tam B Group of claims consist of 9 contiguous MGS mineral claims comprising a total of 98 claim units. Claim information is summarised in the following tables:

Table 1: Summary of Claim Status- Tam A Group

| CLAIM N | ME REC | NO. | NO. OF UNITS | EXP. DATE | NEW EXP. DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Buck | (214277) | 1613 | 8 | 06/28/94 | 06/28/95 |
| Min\#1 | (215479) | 5615 | 20 | 12/22/93 | 12/22/95 |
| Min\#2 | (215480) | 5616 | 16 | 12/21/93 | 12/21/95 |
| Min\#3 | (215481) | 5617 | 12 | 12/23/93 | 12/23/95 |
| Shanter | (214168) | 1176 | 16 | 07/07/93 | 06/28/95 |
| Tam | (214278) | 1616 | 6 | 06/28/93 | 06/28/95 |

Table 2: Summary of Claim Status- Tam B Group

| CLAIM NAME | REC. NO. |  | NO. OF UNITS |  | EXP. DATE |  | NEW EXP. DATE |
| :--- | ---: | ---: | ---: | :---: | :--- | :--- | :--- | :--- |
| Buck | $(214277)$ | 1613 |  | 8 |  | $06 / 28 / 94$ | $06 / 28 / 95$ |
| Shanter | $(214168)$ | 1176 |  | 16 |  | $07 / 07 / 93$ | $07 / 07 / 95$ |
| Tam | $(214278)$ | 1616 |  | 6 |  | $06 / 28 / 93$ | $06 / 28 / 95$ |
| Min\#3 | $(215481)$ | 5617 |  | 12 |  | $12 / 23 / 93$ | $12 / 23 / 95$ |
| Ingram2 | $(215200)$ | 5335 |  | 18 |  | $01 / 08 / 93$ | $01 / 08 / 95$ |
| Taxpayer (215201) | 5336 |  | 20 |  | $01 / 10 / 93$ | $01 / 10 / 95$ |  |
| Rainbow | $(214649)$ | 3404 |  | 20 | $01 / 14 / 93$ | $01 / 04 / 95$ |  |

### 1.5 Property History

The Greenwood area is known for its $\mathrm{Cu} / \mathrm{Au}$ skarn deposits within calcareous units of Triassic Brooklyn Formation, and for smaller tonnage precious metal vein deposits. Fairly extensive exploration has been undertaken near the claim area in the past, especially in the area of the Buck and Shanter claims. The first recorded work in the area is from the Buckhorn mine, east of the Buck claim. The discovery of the Motherlode skarn deposit (approximately 1 km north of the Buck claim) dates to the late 1800's.

Linda Lee (1990) summarized the history of work done on the claim group and in the immediate area, and part of this is reproduced here verbatim. Much of the work pertains to the Tam o'Shanter Crown Grant which is not contained in the Tam A or Tam B groupings. However, the Tam o'Shanter Crown Grant is located within the Shanter claim boundary and thus this information is a relevant part of the property history.
"... 1904 - Bengal Crown Grant issued, L2375 (BCDM Annual Report-1904)

1921 - Work was recorded on the Tam O'Shanter. 2 old shafts (from the turn of the century?) and a recent cross-cut tunnel and an inclined shaft are documented. Work in 1921 included 300 feet of drifting and a 75 foot raise. (BCDM Annual Report-1921)

1922 - Work continued on the Tam O'Shanter. 208 feet of tunnel is driven as well as a 25 foot raise. The 'lead' is soft gangue and crushed country rock containing lenses of galena, chalcopyrite, and gold and silver values, in a quartz gangue. 3 tons were shipped averaging $0.4 \mathrm{oz} / \mathrm{t} \mathrm{Au}$ and $0.66 \mathrm{oz} / \mathrm{t}$ Ag. (BCDM Annual Report-1922)

| 1964 | - Silver Dome Mines did extensive work on 10 claims in the Iva Lenore and Tam $0^{\prime}$ Shanter area. 10 miles of road were built, 13,000 feet of stripping and 6,118 feet of diamond drilling done. Line cutting, magnetometry and soil sampling were also done. Assessment Report 562 covers the soil and magnetometer surveys. There is no record of drilling or trenching although a later report shows the locations. |
| :---: | :---: |

1966-67 - Utah did a geophysical survey (IP, resistivity). Assessment Report 1067).

1966-67 - San Jacinto Exploration did an IP survey (see Assessment Report 881).

1969 - Consortium of companies including Silver Dome did aeromag survey (Assessment Report 1878).

1972 - Sun Oil did percussion drilling (Sun Oil, 1972).

1972 - Phelps Dodge did minor geological mapping and data compilation (Assessment Report 4125).

1973 - Mapletree Exploration had topo base of area surveyed and completed a geological mapping and percussion drilling program in the area (Dickinson and Simpson, 1973).

1973-74 - Mascot Mines drilled 27 percussion drill holes. Drill logs are available but no analytical results (Assessment Report 5023).

1975 - Oneida Resources acquired property.

1979

1981

1982

1983

1984 - H. Shear prepared a compilation of data on the Tam o'Shanter property for Bulkley Silver Resources (Shear, 1984) .

1984-85 - Geological mapping and interpretation was done in the Tam O'Shanter area for Kettle River Resources Ltd. by J. Fyles (Fyles, 1984-85).

1985-87 - Bulkley Silver Resources merged with several other companies to form Houston Metals. Houston Metals was rolled back to form Pacific Houston.

1987 - The property was examined by Echo Bay Mines and BP Selco. The 1979 drill core was relogged and a brief report was prepared (Fraser, 1987; Wong, 1987).

1988 - Pacific Houston had the present Tam grid established and an IP survey completed (Arnold, 1989a). Three diamond drill holes ( 2,645 feet) were drilled to test anomalies resulting from the above program (Arnold, 1989b)..."

In 1990 Minnova re-established the existing Tam grid and completed a program of geological mapping, rock and soil sampling, magnetometry and VLF-EM geophysics on the Tam 90 Group. This group includes several claims that are now included with the Tam $A$ and Tam B groups (Min\#1,Shanter, Buck). The Tam grid was extended in 1991 to the north, south, and east and a program of geological mapping, sampling, IP geophysics, and magnetometry was carried out. This was followed by a drill program that ran from October-December 1991 and which continued in the spring of 1992.

| 1.6 Summary of Assessment Work, March-April, 1992 |  |  |
| :--- | :--- | :--- |
| Diamond Drill Hole TM-24: | Location $0+43 \mathrm{~S}, 8+00 \mathrm{E}$ |  |
|  | Elevation 1313 m A.S.L. |  |
|  | Length | 158.5 m |
|  | Azimuth | $050^{\circ}$ |
|  | Dip | $-45^{\circ}$ |
|  | Samples | 54 for geochem |
|  |  | 6 for lithogeochem |
|  | Started | March 24,1992 |

Diamond Drill Hole TM-25: Location 2+09S, 4+90E
Elevation 1440 m A.S.L.
Length 96.47 m
Azimuth $270^{\circ}$ Dip -50 •Samples 32 for geochemStarted March 27,1992
Completed March 30, 1992
Diamond Drill Hole TM-27: Location 0+28S, 6+65E
Elevation 1360 m A.S.L.
Length 163.98m
Azimuth ..... $050^{\circ}$
Dip ..... $-50^{\circ}$
Samples 60 for geochem
Started March 31,1992
Completed April 2, 1992
Diamond Drill Hole TM-28: Location 1+25N, 5+35E
Elevation ..... 1362m
Length 180.44 m
Azimuth ..... $230^{\circ}$
Dip ..... $-45^{\circ}$
Samples 60 for geochem
Started April 2, 1992
Completed April ..... 4, 1992
Diamond Drill Hole TM-30: Location $0+75 S, 8+77 E$
Elevation ..... 1305m
Length ..... 175.56 m
Azimuth ..... $230^{\circ}$
Dip ..... $-45^{\circ}$
Samples 50 for geochem
Started ..... April 13, 1992
Completed ..... April 16, 1992

### 2.0 GEOLOGY

### 2.1 Regional Geology and structure

Regional geology of the area consists of Late Palaeozoic and Mesozoic volcanic and sedimentary rocks metamorphosed to greenschist facies. These are intruded by Mesozoic plutons and unconformably overlain by Tertiary volcaniclastic and flow rocks.

Pre-Tertiary rocks are contained within north dipping thrust slices. These slices lie above high-grade metamorphic complexes which are exposed in northern Washington. Late Palaeozoic rocks consist of chert greenstone, diorite, and serpentinite of the Knob Hill Group, and dark grey argillite, limestone, and minor volcanic rocks (andesite) belonging to the Attwood Group. These rocks are unconformably overlain by Triassic Brooklyn Formation, a sequence of clastic sedimentary rocks, limestones, and submarine pyroclastic breccias and dioritic intrusions.

Early Tertiary tectonism included magmatic activity, horst and graben development, and thrusting. Tertiary rock distributions in the area are controlled by extensional faulting and three sets of faults are recognized in the area. From oldest to youngest these comprise gently east dipping faults at the base of the Tertiary, later west dipping listric normal faults causing rotation of Tertiary strata, and finally north to northeast trending steeply dipping faults.

The Tam A and B Groups are located along the eastern margin of the Toroda Creek graben flanking the Tenas Mary horst to the west. To the east of the horst is the Republic graben which extends south into the United States.

### 2.2 Property Geology

The most northerly part of the part of the claim group (Buck claim) is underlain by a dioritic intrusion of possible Jurassic or

Cretaceous age. Texturally this varies from fine grained microdiorite to coarse grained diorite, with local feldspar-crowded phases. Weak copper mineralization is common through much of the porphyry. To the south of the intrusion, geology consists primarily of a bedded sequence of Carboniferous to Permian cherty sediments, volcaniclastic rocks (ash to crystal tuff), and argillite, generally striking north/north-west and dipping 40-50 north-east. These are intruded locally by small sills and dykes of microdiorite, trachyte, and hornblende diorite. Past interpretation has grouped the microdiorite and trachyte with the Carboniferous Knob Hill Group; however, regional observations suggest the microdiorite may belong to the Jurassic/Cretaceous Nelson Plutonic Series.

In addition to the above units, a series of chert pebble conglomerate and sheared volcanic conglomerate occur on the property. The chert pebble conglomerate consists of fine chert pebbles $2-15 \mathrm{~mm}$ in diameter within a sandy siliceous matrix. Volcanic conglomerate is a coarse collection of light to medium grey sandy material in a black siliceous matrix. Fyles (1990) suggests that these units belong to the Carboniferous or Permian Knob Hill Group while Little (1979) indicates they are of Triassic age, belonging to the Brooklyn Formation.

Further to the south and to the west, the main Deadwood Ridge Fault and smaller cross faults separate these older rocks from Tertiary volcanics, arkosic sediments, sandstones, and quartz pebble conglomerates. The unconformity at the base of the Eocene is represented by sandstone, shale, and conglomerate of the Kettle River Formation. Overlying these sediments are thick andesite, trachyte, and phonolite lava flows of the Marron Formation. Finally, the lavas are intruded by the Tertiary Coryell Intrusions, ranging from syenite to diorite in composition.

### 3.0 DIAMOND DRILL PROGRAM

DDH TM-24, DDH TM-25, DDH TM-27, DDH TM-28, and DDH TM-30 were part of a larger, seven hole drill program that was carried out in March and April of 1992. These holes were drilled to test for disseminated and vein Au mineralization in an area that had several anomalous Au intersections in 1991 drilling. DDH TM-24 was located on the Tam 91 grid at coordinates $0+43 \mathrm{~S}, 8+00 \mathrm{E}$ at an elevation of 1313 meters. It was intended to test a gold zone encountered in a drillhole located approximately 200 meters to the northwest. This area also has a coincident IP anomaly ( $+20 \mathrm{mV} / \mathrm{V}$ ) and Au soil anomaly (to 94 ppb Au ). DDH TM-25 was located at $2+09 \mathrm{~S}, 4+90 \mathrm{E}, 1440$ meters A.S.L.. This hole tested a broad soil geochemistry anomaly that had values to 170 ppb Au. DDH TM-27 was located at $0+28 \mathrm{~S}, 6+65 \mathrm{E}$, 1360 meters A.S.L. and tested the strike extension of Au mineralization intersected in drill holes 300 meters and 175 meters to the northwest. This area also had coincident magnetic and IP anomalies (chargeabilities to $+20 \mathrm{mV} / \mathrm{V}$ ). DDH TM-28 was located at $1+25 N$, $5+35 E$, 1362 meters A.S.L. . This hole was intended to test an Au anomaly intersected in a previous drill hole located 100 meters to the northwest. Au soil anomalies occur to 110 ppb in this area. DDH TM-30 was located at $0+75 \mathrm{~S}, 8+77 \mathrm{E}$, 1305 meters A.S.L. This hole was intended to test the along-strike extension of anomalous Au values intersected in DDH TM-24, located 75 m to the northwest. DDH TM-30 was located in an area with coincident IP and Au soil geochemistry anomalies. The location of the holes with respect to the Tam 91 grid and to claim posts is shown on Figures 3 and 4. The detailed drill logs with analytical results are contained within Appendix III at the end of this report.

### 3.1 DDH TM-24 Results

DDH TM-24 collared in a diorite/hornblende diorite unit that varies texturally and compositionally throughout. It is fine to coarse

grained, light to dark green in colour, and hornblende/feldspar phyric. Alteration in this unit is variable and consists of silicification, chloritization, carbonitization, and local strong clay alteration with possible secondary leucoxene and albite. Sulphides occur as veinlets and disseminations from trace to 2\%, locally to 5-10\%. Pyrite is the main sulphide but trace amounts of chalcopyrite, pyrrhotite, and arsenopyrite occur. From 41.55-53.1m there is a shear zone occurring at $58^{\circ}$ to the core axis. This contains well-comminuted fragments and has a texture typical of mylonite. Below the diorite, from 53.1-59.37m, is a fine grained, dark green, chloritized and silicified andesite flow. The bottom contact of this unit is sharp at $38^{\circ}$ to the core axis and is parallel to banding seen within the andesitic unit itself. Below the contact is a narrow ( 0.75 m ) quartz vein with brecciated and resilicified vein fragments. This overlies a 2 m wide zone of mylonite, which is followed by a zone of stockwork silicification with 20\% pyrite, from 62.24-63.75m. The mylonite occurs again from 63.75-71.21m. From 71.21-108.5m is a unit of interbedded cherts and tuffs with fault and breccia zones throughout. The fault zones tend to be clay altered while the breccia zones are silicified. Crosscutting this unit is a dark grey to green, medium grained dyke. Below this, from 109.5-156.1m, the hole intersected a sequence of diorite intrusions that vary from fine to coarse grained, light grey to green in colour. Alteration is dominantly chloritization with lesser clays and silicification. Locally the interval is brecciated or sheared, with quartz-carbonate veining healing the breccias. Stockwork silicification occurs from 109.5110.45m, 113.6-115.12m, and 151.49-156.1m. Mineralization is mainly pyrite which occurs as disseminations and along fractures to 2\% and locally to $20 \%$ in the strongly silicified, stockworked, or brecciated areas. Patchy disseminated magnetite also occurs. From 156.1 m to the end of the hole at 158.5 m is an interbedded chert and cherty ash tuff unit which is fine to medium grained, grey-green in colour and chloritically altered. Pyrite occurs from trace to 2\%, usually along fractures.

### 3.2 DDH TM-25 Results

DDH TM-25 collared in, and remained in interbedded tuffaceous sediments, sandstone, and quartz pebble conglomerate. The units are all well bedded, with bedding ranging from $32^{\circ}-62^{\circ}$ to core axis. Fining sequences suggest that tops are up hole. The tuffaceous sediments are fine grained, grey-green siltstones that have been chloritically altered. Sandstones are tuffaceous and chloritically altered, or white and quartz rich. The coarsest unit is a white quartz and chert pebble conglomerate that is locally oxidized. This unit varies from matrix supported to clast supported and fragments are white quartz grains, grey-green tuffaceous pebbles, and chert fragments. Fragments are generally subrounded to subangular and randomly oriented. Mineralization consists of pyrite which occurs mainly as veins and veinlets in the coarse grained, more permeable sandstone units. There is also some boxwork texture from 21.0-21.4m and 25.29-29.2m which is due to oxidation of disseminated cubic pyrite. From 46.4 m to the end of the hole at 96.47 m , the unit is highly broken up, brecciated, and rubbly and this is probably due to a number of small faults that are seen crosscutting the core at 90 to the core axis. The conglomeratic beds are generally strongly oxidized and Fe-stained. Pyrite content ranges from 2-20\% throughout the hole but generally decreases in abundance after 62.4 m . Manganese staining is seen on most fracture surfaces.

### 3.3 DDH TM-27 Results

DDH TM-27 collared in a brecciated fault zone and remained in it to 23.25 m . The host rock is a medium grained leucocratic diorite. Brecciated diorite fragments are subrounded and range from submillimeter size to several centimeters. Structural fabric is oriented approximately $20^{\circ}$ to the core axis and narrow fault gouge and shear zones are present. Alteration varies from clays and Feoxidation at the top of the interval, to strong silicification and chloritization at depth. Strongly silicified zones occur from 12.2-18.1m and a quartz vein oriented at $50^{\circ}$ to core axis occurs
from 13.46-14.9m. Mineralization in this interval is dominantly pyrite, which occurs as veins and veinlets in silicified zones. Overall, the pyrite content is approximately 2-5\% but it reaches 10-20\% within silicified areas. Arsenopyrite and scorodite are seen in trace amounts in the interval from 12.2-17.07m. Below the brecciated diorite, from $23.25-88.4 \mathrm{~m}$, is a unit of green, fine to medium grained diorite. Several breccia zones in this interval are cemented by silica, carbonate, chlorite, and locally talc. Some of the silica cement is opaline and banded. Alteration of the wallrock consists of silicification, carbonatization, chloritization, and minor sericitization. Potassic alteration of feldspars occurs from 33.6-38.1m, and possible albitization occurs in a bleached zone from 40.3-44.17m. Mineralization occurs as disseminated pyrite throughout the interval to $10 \%$ and occasionally pyrite veinlets occur with carbonate veining. These veinlets occur at angles ranging from $<10^{\circ}-38^{\circ}$ to core axis. Underlying this unit, from 88.4-100.82m, is a grey-green debris flow breccia unit. This is composed of rounded to angular quartz and diorite fragments ranging in size from mm-scale to several centimeters. Alteration consists of silicification, clays, chlorite, and carbonate. Pyrite occurs along stockwork veinlets and as fracture fillings to $3 \%$. Trace amounts of chalcopyrite are seen. Below the debris flow breccia, from 100.82-160.7m is a diorite unit that varies from grey-green leucodiorite to dark green diorite. A brecciated interval ocurs from 145.51-146.9m. Alteration consists mainly of clays and silicification, with minor carbonatization of matrix and carbonate and talc veinlets crosscutting the unit. Sulphides in the interval consist of $1-5 \%$ pyrite, pyrrhotite, $+/-$ chalcopyrite that occur as disseminations, stockwork veinlets, and amorphous masses. From 115.3-115.45m is a small silicified interval with 10\% pyrite and chalcopyrite veinlets and possibly some dissseminated gold. Below this diorite unit, from 160.7 m to the end of the hole at 163.98 m , is a fine grained grey-green cherty ash tuff unit. This unit is silicified, with chloritic fractures and trace to 5\% pyrite throughout.

### 3.4 DDH TM-28 Results

DDH TM-28 collared in diorite and remained in this unit to 34.14 m . The diorite varies from fine to medium grained and is light to dark green in colour. Several sheared and brecciated zones occur throughout the interval. Silicification is associated with the brecciation. Other alteration consists of clay alteration of feldspars, and talc along fractures. Pyrite occurs as fine veinlets, veins, and disseminations commonly associated with silicification. Overall, its abundance averages 2-3\%. In places pyrite has been completely oxidized, giving the core a boxwork texture. Beneath the diorite, from 34.14-57.6m, is a strongly altered breccia unit. The fragments appear to be fine grained chilled margin fragments of diorite as seen in the overlying unit. Open space fractures are lined with drusy quartz, and the breccia is healed with silica. Clay alteration is common in the diorite fragments. Mineralization consists of pyrite to 5\%, as disseminations and in oxidized veinlets. From 57.6-80.47m is a diorite unit similar to that seen higher up in the hole. From 75.7 m onward the diorite enters a wide zone of shearing and faulting. A 5 m wide fault zone at 75.7 m is oriented at $64^{\circ}$ to core axis. Alteration consists of chloritization, clay alteration of feldspars, and silicification of brecciated zones. Fine grained leucoxene is seen in a silicified zone from 59.13-70.9m, and minor fuchsite occurs on chloritic fractures at 77.62m. Sulphide concentration ranges from 2-20\%, generally disseminated and along fractures. This is mainly pyrite, but $10 \%$ chalcopyrite occurs from 77.62-77.82m. From 80.47 to the end of hole at 180.44 m is a unit of interbedded quartz conglomerate, sandstone, and siltstone. Conglomerate is composed of quartz, chert, and fine grained chloritic ash tuff fragments and is strongly fractured. Pyrite occurs along these fractures and as disseminations to $3 \%$ and is strongly oxidized. Sandstones are grey and quartz rich. Siltstones are finer grained, grey-green, and may have a volcanic origin. Bedding is approximately $64^{\circ}$ to core axis. Alteration is generally weak throughout the interval and consists mainly of
oxidation of the trace-3\% pyrite that occurs throughout.

### 3.5 DDH TM-30 Results

DDH TM-30 collared in a grey-green brecciated shear zone, oriented $70^{\circ}$ to core axis. Alteration consists of chloritization, silicification, and possible albitization of fragments. Pyrite occurs with silicification, and in veinlets, to 1\%. From 11.2414.36 m is a narrow interval of diorite, strongly altered to clay and chlorite. Leucoxene is present, as well as weak silicification. Pyrite occurs to $1-2 \%$ and increases where silicification is stronger. From $14.26-19.55 \mathrm{~m}$ is a quartz vein/silicified breccia unit. Silicification is pervasive, and some breccia is cemented by opaline silica. Chlorite occurs along fractures. Pyrite occurs in zones of strong fracturing, from 5-10\% as veinlets along these fractures. From 19.55-23.65m and 39.952.73 m is a unit of diorite. A fault oriented at $28^{\circ}$ to core axis occurs at 43.1m. Alteration consists mainly of chlorite and clays with local carbonate, silica, leucoxene, and hematite. Pyrite is the only sulphide present and occurs finely disseminated and as veinlets from trace-5\%. Interbedded with the diorite intervals is a debris breccia from 23.65-39.9m. This is grey-green in colour, with angular fragments occurring in a fine grained matrix. The interval is faulted throughout. Alteration is predominantly argillic and chloritic with occasional zones of silicification and quartz-carbonate stockworking. Pyrite usually occurs in trace amounts; locally up to 5\%. From 52.73-60.35m a second shear and breccia zone occurs. Fabrics are oriented $56^{\circ}-60^{\circ}$ to core axis. clay gouge and rubble occur locally, suggesting fault zones at $56.17 \mathrm{~m}, 57.6 \mathrm{~m}$, and 60.35 m . Alteration consists of chloritization, albitization, and silicification. Mineralization occurs with quartz veining or silicification. Pyrite is the main sulphide but arsenopyrite and chalcopyrite also occur (to 5-10\%) as fine disseminations, in veinlets, and in veins. A fault contact occurs at 60.35 m and a unit of interbedded sediments lies beneath it. These sediments vary from fine grained grey-green siltstone or tuff
to grey-white quartz rich sandstone, to white quartz pebble conglomerate. Alteration consists of chloritization and silicification. The interval is strongly fractured and faulted throughout. Mineralization consists of $1-2 \%$ disseminated and veinlet pyrite, with local chalcopyrite. The bottom comtact of this unit (at 93.57 m ) is a fault and from 93.57 m to the end of the hole at 175.56 m is a feldspar and pyroxene phyric dyke. This unit is faulted and locally quartz-carbonate veined and brecciated. Alteration consists of strong chlorite, clays, and carbonate. In places the core is pitted where phenocrysts have been weathered out. This unit is barren of mineralization.

### 4.0 DISCUSSION AND CONCLUSIONS

### 4.1 DDH TM-24

Several geochemical anomalies were seen in this hole. These are correlatable with zones of stockwork and disseminated sulphides seen in the drill core. From 29.21-35.21m, Au averaged $0.65 \mathrm{~g} / \mathrm{T}$. From 50.1-53.1m, Au averaged $0.65 \mathrm{~g} / \mathrm{T}$; Cu 2360 ppm . These values occurred in an 11.5 m wide shear zone with strong clay and chlorite alteration, talc and carbonate veinlets, and pyrite and chalcopyrite veinlets and stockworking. It is likely that this is related to the $A u$ zone encountered 200 m along strike in 1991 drilling.

### 4.2 DDH TM-25

No significant geochemical anomalies are seen in DDH TM-25, although pyrite occurred to $20 \%$ in places. The highest Au value over a 3m interval was 32 ppb. These sediments are similar to those seen in DDH TM-28; however, there is a larger proportion of coarse grained conglomerate to finer grained sandstones and siltstones in this hole. The sediments are similar to interbedded sediments seen on surface.

### 4.3 DDH TM-27

Several geochemically anomalous zones were intersected in DDH TM-
27. The best intersection was 12 meters averaging 1768 ppb Au from $124.45-136.45 \mathrm{~m}$. Just above this interval, from $115.3-115.45 \mathrm{~m}$, a narrow silicified interval assayed $134.2 \mathrm{~g} / \mathrm{T}$ Au. The high value was due to traces of visible Au. Other samples with Au values greater than $0.5 \mathrm{~g} / \mathrm{T}$ occurred at $100.82 \mathrm{~m}-103.82 \mathrm{~m}(1.4 \mathrm{~g} / \mathrm{T}), 114.2-114.6 \mathrm{~m}$ $(0.57 \mathrm{~g} / \mathrm{T}), 145.57-146.9 \mathrm{~m}(0.64 \mathrm{~g} / \mathrm{T}), 149.9-152.9 \mathrm{~m}(0.53 \mathrm{~g} / \mathrm{T})$, and 156.25-160.7m ( $0.52 \mathrm{~g} / \mathrm{T}$ ). All of these anomalous intersections occurred in diorite, generally in areas with strong clay alteration and/or silicification. Visible mineralization is usually associated with carbonate veinlets. It is likely that these intersections are related to the Au mineralization intersected in 1991 drilling to the northwest, and correlatable with anomalous Au intersections in diorites in TM-24.

### 4.4 DDH TM-28

Several intersections in $D D H$ TM-28 were anomalous for $A u$ and $C u$. As in DDH TM-24 and DDH TM-28, anomalous intersections occurred in diorites that have been variably silicified and/or clay altered. The best $A u$ values from this hole were $0.36 \mathrm{~g} / \mathrm{T}$ from $12.05-15.05 \mathrm{~m}$, $1.52 \mathrm{~g} / \mathrm{T}$ from $34.14-37.14 \mathrm{~m}, 0.46 \mathrm{~g} / \mathrm{T}$ from $60.6-63.6 \mathrm{~m}, 6.26 \mathrm{~g} / \mathrm{T}$ from 75.7-77.62m, and 1.38g/T (with 3341 ppm Cu ) from 77.62-78.64m. The interbedded sediments seen at the base of this hole are similar to and correlatable with sediments seen in $T M-25$, although there is a higher proportion of finer grained sediments and siltstones in TM28.

### 4.5 DDH TM-30

Several intersections in DDH TM-30 were geochemically anomalous and assayed greater than $1.0 \mathrm{~g} / \mathrm{T}$ Au. From 56.17-57.6m, a zone of 5-10\% pyrite in veinlets assayed 1580 ppb Au. From 58.3-58.7m, a zone of silicification with 40-50\% pyrite, 5-10\% arsenopyrite and trace chalcopyrite assayed 3300 Au . Below this, from 58.7-60.35m, 1290 ppb Au occurred in a strongly chloritized zone with $10 \%$ pyrite and arsenopyrite. These results all occur in a shear/breccia zone with quartz veining and silicification, and the highest Au results
correspond with highest sulphide concentration. This is probably the along-strike extension of the $A u$ zone encountered in TM-24, located 75 meters to the northwest.

### 5.0 REFERENCES

Church, B.N., 1986.
Geological Setting and Mineralization in the Mount Attwood Phoenix area of the Greenwoood Mining Camp. BCDM Paper 1986-2.

Clayton, C.J., 1991.
Assessment Report on 1991 Driliing on the Tam 91 Group near Greenwood, B.C., Greenwood Mining Division.

Fyles, J.T., 1990.
Geology of the Greenwood-Grand Forks Area, British Columbia, NTS 82E/1,2. B.C. Geological Survey Branch Open File 199025.

Lee, L., 1990.
Geological, Geochemical, and Geophysical Assessment Report on the Tam 90 Group, Greenwood Mining Division.

## APPENDIX I: BTATEMENT OF COSTS

## STATEMENT OF COSTS <br> TAM GROUP A

## Diamond Drilling:

Contractor Costs (Atlas Drilling Ltd.): 423.00 m @ $\$ 48.45$ / metre. ..... $\$ 20,494.35$
Personnel:
Dave Heberlein (Senior Project Geologist):
1 days @ $\$ 250.00$ / day............................ 250.00
Cam Clayton (Project Geologist):
13 days e $\$ 150$ / day ..... \$ 1,950.00
Logan Kelly (Field Assistant):
13 days @ $\$ 110 /$ day ..... \$ 1,430.00
Logistics:
Meals and Accommodation:
26 mandays @ $\$ 25.00 /$ day ..... 650.00
Vehicle Rental:
13 days @ $\$ 50.00$ / day ..... 650.00
Travel Expenses: ..... 285.21
Freight: ..... 134.65
Equipment (Sample Bags etc) ..... 80.79
Analytical Costs (Minen Labs):
Trace geochem (Ag, As, $\mathrm{Ba}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Sb}, \mathrm{Zn}, \mathrm{Au}$ )
161 @ $\$ 23.00$ ..... $\$ 3,703.00$
Assays (Au)
12 @ $\$ 8.50$ ..... 102.00
Report Preparation:
Mary McDowell:
2 days @ 135 / day ..... 270.00

## STATEMENT OF COSTS TAM GROUP B

## Diamond Drilling:

Contractor Costs (Atlas Drilling Ltd.): 351.95 m @ $\$ 48.45$ / metre ..... \$17,051.98
Personnel:
Dave Heberlein (Senior Project Geologist): 2 days @ $\$ 250.00 /$ day ..... 500.00
Cam Clayton (Project Geologist):
11 days @ $\$ 150 /$ day ..... $\$ 1,650.00$
Logan Kelly (Field Assistant):
11 days @ $\$ 110 /$ day. ..... \$ 1,210.00
Logistics:
Meals and Accommodation:
22 mandays @ $\$ 25.00$ / day ..... 550.00
Vehicle Rental:
11 days @ $\$ 50.00$ / day ..... 550.00
Travel Expenses: ..... 388.23
Freight: ..... 138.00
Equipment (Sample Bags etc) ..... 80.79
Analytical Costs (Minen Labs):
Trace geochem (Ag, As, $\mathrm{Ba}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Sb}, \mathrm{Zn}, \mathrm{Au}$ )
101 @ $\$ 23.00$ ..... $\$ 2,323.00$
Assays (Au)
8 @ $\$ 8.50$ ..... $\$ \quad 68.00$
Reclamation:
Logan Kelly:
2 days @ \$110 / day ..... 220.00
Grass Seed: ..... 480.00
Report Preparation:
Mary McDowell: 2 days @ 135 / day ..... 270.00
Drafting and Copying ..... 220.00

APPENDIX II : BTATEMENT OF QUALIFTCATIONS

## STATEMENT OF QUALIFICATIONS

I, David Heberlein of 12221 Makinson Street, Maple Ridge, B.C. certify that:

1. I graduated from the University of Southampton, England with a B.SC (Honours) Degree in Geology in 1980.
2. I graduated from the University of British Columbia with an M.Sc Degree in Geology in 1985.
3. I have practised my profession continuously since my graduation.
4. I am a Fellow of the Geological Association of Canada (F5050).
5. I am currently employed by Minnova Inc. as a Senior Project Geologist.
6. Work described in this report was carried out under my direct supervision.

Date: $\frac{89-25-1992}{}$

Signature:

STATEMENT OF QUALIFICATIONS
I, Mary McDowell of 466 Hillcrest Street, West Vancouver, British Columbia hereby certify that:

1. I am a graduate of the University of British Columbia, Vancouver, B.C. with a Bachelor of Science degree in Geology.
2. I have practised my profession since graduation in 1991.
3. I am a contract geologist currently employed by Minnova, Inc.
4. I have worked on the Tam A and B Group of claims and have seen the drill core described in this report.

Date: Apptimiel 25,1992
Signature:
Mary midouell


PURPOSE: TEST GOLD 2ONE in 91-16, 200 metres alowg strike to southeast
directional data:

| Depth (m) | Astronomic Azimuth | $\underset{\text { Dip }}{\text { degrees }}$ | Type of Test | FLAG | Corments | Depth <br> (m) | Astronomic Azimuth | Dip degrees | Type of Test | flag | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 65.80 | - | -45.0' | ACID | OK |  | - | $\bullet$ | - | - | - |  |
| 106.38 | - | $-50^{\circ} 01$ | ACID | OK |  | - | - | - | - | - |  |
| 149.65 | - | -47* 01 | ACID | OK |  | - | - | - | - | - |  |
| 158.50 | - | -46. $0^{\circ}$ | ACID | OK |  | - | - | - | - | - |  |
| - | - |  | - |  |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | . | - | - |  | - | - | - | $\cdot$ |  |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | $\bullet$ | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - |  |  |
| $\cdot$ | - | $\bullet$ | - | - |  | - | - | $\bullet$ | - | - |  |
| - | - | - | - | - |  | - | , | - | - | - |  |
| - | - | - | - | - |  | - | $:$ | - | $\square$ | $\cdots$ |  |
| . | - | - | - | . |  | - | - | - | - | - |  |
| - |  | - | - | - |  | - | - | - | - | , |  |




| $\begin{array}{r} \text { FROH } \\ \mathrm{TO} \end{array}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture amo structure | $\begin{array}{\|l\|} \hline \text { AMGLE } \\ \text { TO CA } \end{array}$ | alteration | MINERALIZATION | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 53.10 \\ \text { T0 } \\ 59.37 \end{gathered}$ | «SIL And* | Colour: drk. green <br> Grain Size: f.gr. <br> This interval consists of a fine grained to aphanitic dark green chloritized and silicified andesite flow. Minor interbeds of greyish green tuffaceous material are seen. Flow banding is seen locally <br> In areas chlorite filled vesicles, unstrained are visible. These are up to 2 mm in diameter. Minor bands of quartz carbonate milts occur through the interval with the most common orientation from 28-30 deg to c.a. These are commonly associated with small pyrite veinlets <br> 54.3-54.57 <br> -is a 2 cm wide quartz vein with banded selvages oriented a <br> 57.4-57.91 <br> -core very broken, may be faulted <br> The bottom contact of this interval has a slightly sheared fabric and is a sharp contact a | 38 <br> 14 <br> 38 | Alteration through the interval is dominantly silicification overprinting strong chlorite alteration. Small quartz carbonate veinlets cross cut the interval and carbonate alteration of the matrix is minor. <br> On some fracture surfaces a light manganese staining is visible. chlorite occurs as veinlets along fractures and within the matrix. | Sulphide content ranges from trace amounts to 1\% locally. Pyrite is the only visible sulphide occuring as disseminations and minor veinlets <br> 54.3-54.57 <br> -minor pyritic selvages are associated with 2 cm wide quartz vein | Recoveries: <br> 53.65-56.69: 112\% <br> 56.69-57.91: 100\%, broken core <br> 57.91-59.74: 100\% <br> 59.74-61.57: 100\% <br> 61.57-62.79: 100\% <br> 62.79-64.62: 100\% <br> 64.62-65.84: 100\% <br> 65.84-68.88: 100\% <br> 68.88-71.93: 100\% <br> 71.93-74.10: 100\% <br> 74.10-75.59: 100\% <br> 75.59-77.27: 100\% <br> 77.27-78.03: 100\% <br> 78.03-81.08: 100\% <br> 81.08-84.13: 100\% <br> 84.13-86.56: 100\% |
| $\begin{array}{r} 59.37 \\ 10 \\ 60.12 \end{array}$ | $\begin{aligned} & \text { +aI2 VN BX/ } \\ & \text { SIL." } \end{aligned}$ | Colour: grey/white <br> Grain Size: f.gr. <br> A fine grained massive locally brecciate qtz vn with a sharp upper contact a <br> Brecciated fragnents are subrounded varying in size from min scale to 1 cm in dimension. <br> 60.00 <br> -.5 cm chlorite, carb, py vn occurs a | 38 | Intra-breccia spaces have been qtz-carb healed. This secondary silica and carb crosses bx fragments where these have been fractured. <br> Chlorite ml ts and fracture fillings are also common, impartingf a greyish green colour to the interval | Py occurs only in tr. amounts along fractures and generally assoc. with chloritic areas. |  |
| $\begin{array}{r} 60.12 \\ 10 \\ 62.24 \end{array}$ | *AYLONITE/S <br> hear BX* | colour: light grey green Grain Size: variable <br> The top contact with the overlying qtz vn . bx unit is sharp 2 <br> The interval is light greyish green, brecciate and comminuted with a flowlike convoluted texture. Fragments and subrounded to angular with a preferred elongation along the shear fabric. Fragment size ranges from mmscale to several cm . The fragments are qtz, similar to previous | 48 | Chlorite alteration is dominant occuring, through matrix and as veintets along shear fabric. This has been overprinted by silicification. Minor carbonate occurs along fractures | Py occurs in tr amounts to 1\%, generally associate with the qtz frags within this shearing, along fracs within the frags. At 61.12 .5 cm pyrite vein occurs oriented $\geqslant 38$ deg to c.a. |  |


| HOLE EUMBER: TM-: |  | $\begin{aligned} & \text { MINNOV VC. } \\ & \text { DRILL HO CORD } \end{aligned}$ |  |  |  | DATE: 16-Septer | 992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\begin{aligned} & \text { ANGLE } \\ & \text { TO CA } \end{aligned}$ | alteration | MINERALIZATION | REMARKS |  |
|  |  | interval described. The bottom contact is sharp oriented a | 20 |  |  |  |  |
| $\begin{aligned} & 62.24 \\ & 10 \\ & 63.75 \end{aligned}$ | «STKURK SIL | Colour: grey/white <br> Grain Size: f.gr. <br> This is a zone of grey-white, fine grained stkwrk silicification stkurk fracturing is approx. 70\% The bottom contact is sharp oriented a | 62 | The interval has been completely silicified. Fractures have been filled by silica | Pyrite occurs along stkwrk fracturing up to 20\% <br> 162.24-63.75\| «20\% stkwrk py |  |  |
| $\begin{array}{r} 63.75 \\ 10 \\ 71.21 \end{array}$ | *AYLONIZED ANDESITE* | Colour: grey green <br> Grain size: variable <br> This is a strongly sheared or mylonitized andesitic unit of variable grain size ranging from mom scale to cm scale. Various orientations to the fabric are seen, with the dominant orientation at 20 deg to the core axis. Generally however, the fabric is highly convoluted. <br> The bottom contact for this interval is not distinctive or well defined |  | Chlorite alteration is strong through the interval. This occurs as linings along structural fabric and as linings along structural fabric and as replacement of fragments. silicification overprints the chlorite alteration | Sulphide content is low through this interval, occuring only in trace amts. to $2 \%$. The only sulphide visible is pyrite. <br> 66.0-66.04 <br> -.5 cm wide pyrite vein oriented at 40 deg to c.a. |  |  |
| $\begin{array}{r} 71.21 \\ \text { T0 } \\ 89.20 \end{array}$ | *INTERBED C | Colour: buff to light grey green |  |  |  |  |  |
| $\begin{array}{r} 10 \\ 89.21 \end{array}$ | HT \& TUFF* | Grain size: f.gr. to v.f.gr. <br> This interval consists of very broken up core with no distinct contacts visible due to broken nature of the core. <br> The cherty units are generally v.f.gr., massive and buff grey in colour. One possible bedding orientation is a <br> Those cherty units are generally weakly fractured (20\%). Tuffaceous intervals are fine grained with occasional 1 mm size volcanic clasts. A number of possible fault zones and breccia zones are seen through the interval. <br> 73.7-74.1 <br> -a sheared and gouged zone a <br> 74.6-75.8 <br> -a sheared zone | 22 10 | The dominant alteration through the interval is chlorite occuring along fractures. Minor carbonate veinlets are seen occasionally within fault zones clay gouge is common while bx zones are generally silicified <br> 73.7-74.1 <br> -silicification in fault zone | Only trace amounts of pyrite are seen through this interval as disseminations and veinlets |  |  |



| hole nlmber: th |  | $\begin{gathered} \text { MRILL HL } \\ \text { DECORD } \\ \text { RECOR } \end{gathered}$ |  |  |  | DATE: 16-Septe | -1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { TROM }}{\text { TO }}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture ano structure | $\left.\begin{array}{\|l\|} \hline \text { AMGLE } \\ \text { TO CA } \end{array} \right\rvert\,$ | alteration | mineralization | remarks |  |
|  |  |  |  | -strongly bleached clay altered intrusive margin |  |  |  |
| $\begin{aligned} & 105.46 \\ & 108.50 \\ & 108.50 \end{aligned}$ | «CHERTY ASH TUFF* | Colour: grey green <br> Grain size: v.f.gr. <br> This is a grey green, v.f.gr. cherty ash tuff unit <br> 107.82-108.5 <br> -the unit is moderately brecciated and fragmented |  | Chloritic alteration is present through out in minor amounts, within matrix and as very small veinlets <br> 107.82-108.5 <br> - the chlorite content increases within brecciated fragments | Pyrite occurs onty in trace amounts as veinlets <br> 108.4-108.5 <br> -a 1 cm wide pyritic qtz carbonate vein oriented 212 deg to c.a. |  |  |
| $\begin{aligned} & 108.50 \\ & 109 \\ & 109.50 \end{aligned}$ | *DIORITE IN TRUSION* | Colour: green <br> Grain size: f.gr. to m.gr. <br> This is a green, f.-m.gr. diorite intrusion. Feldspars are $1-2 \mathrm{~mm}$ in length, subhedral and randomly oriented. |  | The interval has been strongly chloritically altered. As well fsp are altered to what may be leucoxene small patches of talc occur along fractures | Three very small pyrite vnlts occur from 108.89-109.07 |  |  |
| $\begin{aligned} & 109.50 \\ & 10 \\ & 110.45 \end{aligned}$ | *SIKURK SIL icification - | Colour: grey white <br> Grain size: f.gr. <br> The upper 20 cm of this interval is characterized by a number of open space fractures oriented $a$ The remainder of the interval is typical 70x stkurk fracturing subsequently healed by silica | 32 | Complete silicification of interval | Overall sulphide (py) content is 5\% occuring as vilts within the fractures $110.9-110.3$ <br> -pyrite content increases to $10 \%$ |  |  |
| $\begin{aligned} & 110.45 \\ & 10 \\ & 113.60 \end{aligned}$ | *108* | Colour: green <br> Grain size: f.-m.gr. $110.45-111.80$ <br> -is a fine grained and green diorite intrusion. Feldspar phenocrysts are less than 1 men in length and subhedral <br> 111.80-112.47 <br> -a small segment of cherty ash tuff <br> 112.47-113.60 <br> -the diorite is more leucocratic with fsp phenocrysts up to 2 mm , subhedral to anhedral <br> The lower contact is a | 18 | 110.45-111.80 <br> -str. chlorite alteration occurs. A buff beige mineral which may be leucoxene is also present <br> 112.47-113.60 <br> -the diorite is more silicified, chlorite alteratin is still dominant. The buff beige mineral that may be leucoxene is also present 2-5\% | 110.45-111.80 <br> -py occurs to 3X finely disseminated throughout <br> 112.47-113.60 <br> -py is disseminated in trace amounts to 2\% |  |  |


| HOLE MLMBER: ${ }^{\prime \prime}$ |  |  |  | $\begin{array}{ll} \text { MIN' } & \text { INC. } \\ \text { DRILL } & \text { RECORD } \end{array}$ |  | DATE: 16-Septe. .r-1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\left(\left.\begin{array}{c} \text { ANGLE } \\ \text { TO CA } \end{array} \right\rvert\,\right.$ | alteration | MINERALIZATION | REMARKS |
| $\begin{array}{r} 113.60 \\ 10 \\ 115.12 \end{array}$ | *STKURK SIL /CHT" | Colour: grey white <br> Grain Size: f.gr. <br> This is similar to the interval 109.5-110.45. The upper 30 cm is characterized by open space fracs. <br> The bottom contact is sharp a | 20 | Stockwork fracturing and subsequent silica healing is dominant | Pyrite is present to $10 \%$ throughout as veinlets associated with fracturing |  |
| $\begin{array}{r} 115.12 \\ 10 \\ 143.60 \end{array}$ | «LEUCO-DIOR ITEn | Colour: light grey green <br> Grain Size: m. to c.gr <br> Generally this is a light grey green m. to c.gr. leucodiorite. Feldspars comprise roughly $80 \%$ of matrix. Grain size varies throughout. Occasional shear zones occur throughout imparting a shear fabric to the core. A number of brecciated zones occur through the interval and these are cemented by silica and fluorite. <br> 122.14-122.85 <br> -a brecciated zone that has qtz and fluorite veins cementing the breccia <br> 122.85-143.6 <br> - the diorite becomes altered in a patchy pattern with 5 Im dark green to black patches comprising 15-20x of the matrix <br> 122.85-143.6 <br> - the diorite becomes altered in a patchy pattern in a patchy pattern with 5 mom dark green to black petches comprising 15-20\% of the matrix <br> 128.2-129.35 <br> - weak shear fabric a <br> 129.5-130.5 <br> -a silicified brecciated interval <br> 137.5-137.80 <br> -2 cm wide white atz m oriented a <br> At the bottom contact a strong shearing fabric develops and becomes strongly convoluted | 40 | Chlorite and clay alteration is dominant throughout. Banded and massive white, clear and crean coloured qtz veins are seen through the interval. Commonly chlorite vilts occur with these vits <br> Open space fluorite veins are seen locally with euhedral fluorite crystals growing into open spaces <br> Large areas of patchy magnetite similar to that seen in hole TM-16 <br> 119.5-119.75 <br> -a nunber of small banded qtz veins <br> 122.14-122.85 *qtz, fluorite wns* <br> \|122.85-135.0才 «<20\% chl patch. alt'n* <br>  <br> \|128.35-128.97 ksil" | Pyrite occurs finely disseminated throughout in trace amounts. In some areas the pyrite ocntent is up to 20\%. Locally 2 mm euhedral pyrite cubes are seen. <br> 128.35-128.97 <br> -pyrite occurs to $\mathbf{1 x}$ along fractures \{130.5-132.89\| «<20\% py" <br> -pyrite occurs along weak fabric in core |  |


| Hole mumber : TM - |  | $\text { DRILL }_{\text {MINNW. }}^{\substack{\text { INC. } \\ \text { RECORD }}}$ |  |  |  | OATE: 16-Sept | -1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|c} \text { FRON } \\ \text { TO } \end{array}$ | $\bar{i}_{\mathrm{RYPE}}$ | texture and structure | $\begin{array}{\|c\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}$ | alteration | mineralization | REMARKS |  |
| $\begin{aligned} & 143.60 \\ & 10 \\ & 151.49 \end{aligned}$ | *SIL, FLUOR ITE,FLT BX* | Colour: grey, green white <br> Grain size: variable <br> This is a grey green white strongly brecciated fault zone. silicification is pervasive throughout and locally areas of vuggy, drusy fluorite cavities occurs through the interval. <br> breceiated fragnents vary in size from mim scale to cm scale. Secondary and tertiary silica envelope these fragments cementing them together. Local areas of intense silicification similar to distinct zones in core described previously but not fault related are stockwork fractured to $70 \%$. |  | Silica veining is the dominant alt'n throughout the interval. At least two pulses are seen, indicated by some banded textures. In areas vuggy, qtz lined cavities area seen. Elsewhere similar cavities are seen to be later filled by silica. <br> Fluorite lined cavities are seen locally. This fluorite is a translucent purple colour. Chlorite is common along some fracture surfaces. \{143.6-151.49 ${ }^{\text {asilm }}$ <br> \{145.9-146.45\} *2-3\% fluorite" | Pyrite averages $10-15 \%$ throughout occuring as veinlets and fracture fillings $\{143.6-151.49\} \times 10-15 \% \mathrm{py}$ | 147.2-148.3 -broken core <br> 149.3-150.57 -broken core |  |
| $\begin{aligned} & 151.49 \\ & 156.10 \\ & 70 \end{aligned}$ | *SILIC. DIO RITE. | Colour: grey, green white <br> Grain size: $4 . g r$ to m.gr. <br> This is quite likely a strongly silicified f. to m.gr. Intense silicificication has destroyed most primary textures, but locally what appear to be relict fsp grains. Stkurk fracturing is as high as $30 x$ and generally these areas are the most silicified. |  | Silicification is pervasive throughout associated with areas of high fracture density. Chlorite is common along fractures giving a greenish colour to the core. | Pyrite ranges from trace amounts to 15-20\% occuring as veinlets and fracture fillings. $\text { \{151.49-156.1\} *5-10x py }$ |  |  |
| $\begin{aligned} & 156.10 \\ & 158 \\ & 158.50 \end{aligned}$ | ${ }^{*}$ IITERBED. CHT/CHT. AS h TUFF* | colour: grey green <br> Grain size: f.g. to m.gr. <br> The interval consists of interbedded gramular chert/silicification and fine grained light green ash tuff <br> Chert intervals are medium grained granular with 5-10\% frecturing lined by ehlorite |  | Chlorite is common along fractures within the chert units and dominant within the fine grained ash tuff units | Pyrite occurs in trace ro2X concentrations. This is generally assoc. with fractures and commonly with chlorite |  |  |


| HOLE NUMB | ER: TM-> |  |  |  | ASSAY Sheet |  |  |  |  |  |  |  |  |  |  | DATE: 16-Sept | $\frac{-1992}{\text { comments }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample | From (m) | $\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$ | Length <br> (m) | $\begin{array}{r} \text { ASSAYS } \\ \text { Ag } \\ \text { ppm } \end{array}$ | $\begin{array}{r} \text { As } \\ \text { ppm } \end{array}$ | $\begin{gathered} \text { Ba } \\ \text { ppm } \end{gathered}$ | $\underset{\text { pprm }}{\text { Cu }}$ | $\begin{array}{r} \mathrm{Fe} \\ \mathrm{ppom} \end{array}$ | $\begin{gathered} \text { Mo } \\ \text { ppon } \end{gathered}$ | $\begin{gathered} \text { CHEMI } \\ \text { Pb } \\ \text { PPD } \end{gathered}$ | $\begin{gathered} \text { Sb } \\ \text { ppm } \end{gathered}$ | $\begin{array}{r} 2 n \\ \text { ppm } \end{array}$ | $\begin{aligned} & \text { Au } \\ & \text { ppb } \end{aligned}$ | $\begin{gathered} g / t A u \\ g / t \end{gathered}$ | ppm | - |  |
| BCD44426 | 1.52 | 4.52 | 3.00 | 0.1 | 11 |  | 118 |  | 1 | 18 | 1 | 43 | 100 |  |  |  |  |
| BCD44427 | 4.52 | 7.52 | 3.00 | 0.1 | 1 | 31 | 124 | 4980 | 1 | 15 | 1 | 86 | 123 |  |  |  |  |
| BCD44428 | 7.52 | 10.52 | 3.00 | 0.1 | 1 | 77 | 81 | 6083 | 1 | 1 | 1 | 83 | 23 |  |  |  |  |
| BCD44429 | 10.52 | 12.69 | 2.17 | 0.1 | 1 | 23 | 34 | 6346 | 1 | 1 | 1 | 63 | 16 |  |  |  |  |
| BCD44431 | 16.00 | 19.00 | 3.00 | 0.1 | 1 | 63 | 128 | 7329 | 1 | 11 | 1 | 48 | 81 |  |  |  |  |
| BCO44432 | 19.00 | 22.00 | 3.00 | 0.1 | 1 | 45 | 109 | 7150 | 1 | 14 | 1 | 58 | 148 |  |  |  |  |
| 8C044433 | 22.00 | 23.81 | 1.81 | 0.1 | 1 | 26 | 139 | 6779 | 1 | 6 | 1 | 48 | 97 |  |  |  |  |
| BCD44434 | 23.81 | 26.21 | 2.40 | 0.1 | 1 | 106 | 91 | 7786 | 1 | 14 | 1 | 83 | 107 |  |  |  |  |
| BCD44436 | 29.21 | 32.21 | 3.00 | 0.1 | 1 | 52 | 123 | 7800 | 1 | 25 | 1 | 84 | 696 | 0.87 | 0.0 |  |  |
| BCD44437 | 32.21 | 35.21 | 3.00 | 0.1 | 1 | 45 | 136 | 8349 | 1 | 16 | 2 | 67 | 416 | 0.44 | 0.0 |  |  |
| 8C044438 | 35.21 | 38.21 | 3.00 | 0.1 | 6 | 94 | 89 | 5593 | 1 | 10 | , | 47 | 148 |  |  |  |  |
| BCD44439 | 38.21 | 41.21 | 3.00 | 0.1 | 22 | 155 | 57 | 6489 | 1 | 15 | 2 | 57 | 64 |  |  |  |  |
| BCD44440 | 41.21 | 44.21 | 3.00 | 0.1 | 9 | 49 | 71 | 6917 | 1 | 18 | 1 | 58 | 46 |  |  |  |  |
| BCO44441 | 44.21 | 47.21 | 3.00 | 0.1 | 10 | 10 | 90 | 8221 | 1 | 15 | 2 | 67 | 113 |  |  |  |  |
| BCD44442 | 47.21 | 49.57 | 2.36 | 0.1 | 11 | 23 | 171 | 7068 | 1 | 15 | 3 | 47 | 130 |  |  |  |  |
| BCO44443 | 49.57 | 50.10 | 0.53 | 0.1 | 7 | 195 | 65 | 4023 | 1 | 15 | 2 | 27 | 46 |  |  |  |  |
| 8 CD 44444 | 50.10 | 53.10 | 3.00 | 1.7 | 13 | 37 | 2360 | 6858 | 1 | 31 | 3 | 93 | 540 | 0.65 | 0.0 |  |  |
| BCD44445 | 53.10 | 56.10 | 3.00 | 0.4 | 1 | 23 | 133 | 7976 | 1 | 1 | 1 | 65 | 106 |  |  |  |  |
| BCD44446 | 56.10 | 59.37 | 3.27 | 0.2 | 1 | 23 | 78 | 7712 | 1 | 315 | 1 | 357 | 41 |  |  |  |  |
| BCD44447 | 59.37 | 60.12 | 0.75 | 0.2 | 3 | 21 | 42 | 3162 | 3 | 20 | 3 | 33 | 49 |  |  |  |  |
| BCD44448 | 60.12 | 62.24 | 2.12 | 0.1 | 1 | 48 | 210 | 6523 | 1 | 19 | 3 | 35 | 236 |  |  |  |  |
| BCD44449 | 62.24 | 63.75 | 1.51 | 4.2 | 21 | 7 | 269 | 3112 | 12 | 51 | 26 | 23 | 158 |  |  |  |  |
| BCD44450 | 63.75 | 66.75 | 3.00 | 0.1 | 1 | 35 | 105 | 6631 | 1 | 28 | 5 | 54 | 150 |  |  |  |  |
| BCD44452 | 69.75 | 71.21 | 1.46 | 0.9 | 1 | 29 | 46 | 5949 | 1 | 18 | 4 | 59 | 20 |  |  |  |  |
| BCD44453 | 71.21 | 74.21 | 3.00 | 0.4 | 14 | 32 | 61 | 4560 | 1 | 55 | 6 | 91 | 42 |  |  |  |  |
| BCD44455 | 77.21 | 80.21 | 3.00 | 0.2 | 143 | 10 | 28 | 5665 | , | 5 | 5 | 64 | 33 |  |  |  |  |
| BCO44456 | 80.21 | 83.21 | 3.00 | 1.3 | 118 | 14 | 33 | 6451 | , | 84 | 1 | 245 | 43 |  |  |  |  |
| BCD44457 | 83.21 | 86.21 | 3.00 | 0.1 | 57 | 86 | 117 | 6714 | 1 | 13 | 8 | 47 | 53 |  |  |  |  |
| BCD44458 | 86.21 | 89.20 | 2.99 | 0.1 | 55 | 47 | 114 | 6583 | 1 | 15 | 5 | 48 | 157 |  |  |  |  |
| 8 CD44459 | 89.20 | 92.20 | 3.00 | 0.6 | 6 | 128 | 37 | 4551 | 1 | 17 | 2 | 65 | 18 |  |  |  |  |
| BCD44461 | 95.20 | 98.20 | 3.00 | 1.1 | 1 | 186 | 26 | 4209 | 1 | 12 | 1 | 62 | 16 |  |  |  |  |
| BCD44462 | 98.20 | 101.20 | 3.00 | 0.9 | 1 | 217 | 23 | 4574 | 1 | 12 | 1 | 65 | 13 |  |  |  |  |
| BCO44463 | 101.20 | 104.20 | 3.00 | 0.9 | 5 | 172 | 18 | 4490 | 1 | 20 | 1 | 66 | 13 |  |  |  |  |
| BCD44464 | 104.20 | 105.46 | 1.26 | 0.4 | 15 | 60 | 15 | 4085 | 1 | 25 | 2 | 61 | 12 |  |  |  |  |
| BCD44465 | 105.46 | 108.50 | 3.04 | 0.1 | 40 | 79 | 70 | 5928 | 1 | 19 | 3 | 34 | 53 |  |  |  |  |
| BCD44466 | 108.50 | 109.50 | 1.00 | 0.1 | 42 | 31 | 185 | 8875 | 7 | 19 | 3 | 59 | 197 |  |  |  |  |
| $8 C D 44467$ $8 C D 4468$ | 109.50 110.45 | 110.45 113.60 | 0.95 3.15 | 1.2 0.4 | 45 | 12 40 | 69 129 | 2179 6374 | 7 | 403 138 | 61 | 1207 399 | 59 72 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| HOLE NUMB | ER: TM-2 | assay sheet |  |  |  |  |  |  |  |  |  |  |  |  |  | DATE: 16-Septe | 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample | From (m) | 10 <br> (m) | Length (m) | $\begin{gathered} \text { Ag } \\ \text { ppmin } \end{gathered}$ | $\begin{array}{r} \text { As } \\ \text { ppm } \end{array}$ | $\begin{gathered} \text { Ba } \\ \text { ppom } \end{gathered}$ | $\underset{\mathrm{ppm}}{\mathrm{cu}}$ | fe ppom | Mo ppm | $\begin{gathered} \text { Pb } \\ \text { ppm } \end{gathered}$ | $\begin{gathered} \text { sb } \\ \text { ppm } \end{gathered}$ | $\begin{array}{r} 2 n \\ p p m \end{array}$ | $\left.\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered} \right\rvert\,$ | $\begin{array}{r} \text { g/tau } \\ g / t \end{array}$ | $\underset{\text { pom }}{\mathbf{s}}$ |  |  |
| BCD44469 | 113.60 | 115.12 | 1.52 | 0.6 | 36 47 | 39 | 48 222 | 2893 8766 | 7 1 | 30 11 | 5 | 49 55 | 32 102 |  |  |  |  |
| BCO44470 | 115.12 | 118.12 | 3.00 | 0.1 | 47 | 29 | 222 | 8766 | 1 | 11 | 2 | 55 | 102 |  |  |  |  |
| BCD44471 | 118.12 | 122.14 122.85 | 4.02 | 0.1 | 57 | 64 20 | 181 | 8327 5040 | 1 | 3 | 2 | 63 | 73 56 |  |  |  |  |
| BCO44474 | 125.85 | 128.85 | 3.00 | 0.6 | 90 | 11 | 57 | 6981 | 1 | 63 | 4 | 415 | 186 |  |  |  |  |
| BCD44475 | 128.85 | 131.85 | 3.00 | 0.4 | 108 | 12 | 105 | 6292 | 1 | 1 | 5 | 43 | 132 |  |  |  |  |
| BCD44476 | 131.85 | 134.85 | 3.00 | 0.6 | 139 | 27 | 25 | 5999 | 1 | 1 | 5 | 24 | 175 |  |  |  |  |
| BC044477 | 134.85 | 137.85 | 3.00 | 0.5 | 169 | 39 | 13 | 5609 | 1 | 1 | 4 | 26 | 79 |  |  |  |  |
| BCD44478 | 137.85 | 140.85 | 3.00 | 0.7 | 198 | 43 | 16 | 6255 | 1 | 1 | 5 | 36 | 259 |  |  |  |  |
| BCD44479 | 140.85 | 143.60 | 2.75 | 0.9 | 431 | 12 | 84 | 6923 | 1 | 1 | 13 | 51 | 123 |  |  |  |  |
| BCO44480 | 143.60 | 146.60 | 3.00 | 2.9 | 56 | 55 | 31 | 3641 | 7 | 40 | 9 | 118 | 41 |  |  |  |  |
| BCO44481 | 146.60 | 149.60 | 3.00 | 1.2 | 52 | 50 | 43 | 2840 | 4 | 38 | 9 | 72 | 31 |  |  |  |  |
| BCO44482 | 149.60 | 151.49 | 1.89 | , | 85 | 34 | 52 | 4993 | 5 | 39 | 10 | 93 | 65 |  |  |  |  |
| 8 CO 44483 | 151.49 | 154.49 | 3.00 | 1.1 | 72 | 28 | 75 | 3547 | 4 | 43 | 9 | 113 | 48 |  |  |  |  |
| BC044484 | 154.49 | 156.10 | 1.61 | 1 | 53 | 45 | 238 | 4362 | 2 | 30 | 15 | 37 | 26 |  |  |  |  |
| BCD44485 | 156.10 | 158.50 | 2.40 | 2.4 | 57 | 51 | 103 | 3343 | 4 | 145 | 11 | 361 | 97 |  |  |  |  |


| HOLE NuMB | R T | geochem. Shee. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | DATE: 16-Septe .r-1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample | from (m) | $\begin{gathered} \mathrm{TO}_{0} \\ (\mathrm{~m}) \end{gathered}$ | Length (m) | $\underset{x}{\text { MA2O }}$ | ${ }_{\mathrm{MGO}}^{\%}$ | $\underset{X}{A L 203}$ | $\stackrel{\mathrm{SIO}}{x}$ | $\stackrel{P 205}{\%}$ | $\begin{array}{r} \mathrm{k} 20 \\ \% \end{array}$ | $\begin{gathered} \mathrm{CAO} \\ \chi \end{gathered}$ | $\underset{x}{102}$ | $\begin{gathered} \text { CR } \\ \text { PPM } \end{gathered}$ | ${ }^{\text {MNO }}$ | $\underset{X}{\mathrm{FE} 203}$ | $\begin{aligned} & \mathrm{Rg} \\ & \hline \mathrm{RPM} \end{aligned}$ | $\begin{gathered} \text { SR } \\ \text { PPP } \end{gathered}$ | $\begin{array}{r} \mathrm{Y} \\ \hline \end{array}$ | $\begin{gathered} \text { 2R } \\ \text { PPM } \end{gathered}$ | $\begin{aligned} & \text { ME } \\ & \text { PPM } \end{aligned}$ | $\begin{gathered} \text { BA } \\ \text { PPM } \end{gathered}$ | ${ }_{x}^{201}$ | $\underset{\approx}{\operatorname{SuM}}$ |  |
| BCD44430 | 12.69 | 16.00 | 3.31 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| всD44435 | 26.21 | 29.21 | 3.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BCD44451 | 66.75 | 69.75 | 3.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $8 C 044454$ $8 \subset 044400$ | 74.21 92.20 | 77.21 95.20 | 3.00 3.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BC044473 | 122.85 | 125.85 | 3.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


purpose: test 1.4 KM linear au soil anomaly in area of highest values, hole lost at 96.47 M
directional data:

| Depth (m) | Astrononic Azimuth | Dip degrees | Type of Test | flag | Comments | Depth ( m ) | Astronomic Azimuth | Dip degrees | Type of Test | flag | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | - | -45*01 | ACID | OK |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | $-$ | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - |  | - |  |
| - | - | - | - | - |  | - | - |  | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | $\cdot$ |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | $\bullet$ |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | $\bullet$ | $\bullet$ |  | - | - | - | $\bullet$ | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | $\bullet$ |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - |  |  | - | - | - |  | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |




| HOLE NUM | ER: TM-25 | $\begin{gathered} \text { MILINOVI }_{1} \\ \text { ORIL HOLE } n \in \operatorname{CORD} \\ \hline \end{gathered}$ |  |  |  | DATE: 16-Septembe. 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\begin{array}{\|c\|c\|} \hline \text { AGGLE } \\ \text { TO CA } \end{array}$ | ALTERATION | mineralization | REMARKS |
|  | E.O.H. | 86.48-86. 7 <br> -fault gouge <br> 87.28-87.48 <br> -fault gouge <br> 91.73-91.87 <br> -fault gouge <br> 92.47 <br> -bedding 2 | 54 |  |  |  |




PURPOSE:
directional data

| Depth (m) | Astronomic Azimuth | $\begin{aligned} & \text { Dip } \\ & \text { degrees } \end{aligned}$ | Type of Test | flag | Comments | Depth (m) | Astronomic Azimuth | Dip degrees | Type of Test | FLAG | Corments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64.60 | - | $-51 \cdot 01$ | ACID | OK |  | - | - | - | $\bullet$ | - |  |
| 162.15 | - | $-50^{\circ} 0^{1}$ | ACID | OK |  | - | - | - | $\bullet$ | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | $\square$ | $\square$ | $\stackrel{-}{-}$ | - |  |
| . | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | $\cdot$ | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - |  |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - |  |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | $-$ | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - |  |  | $\stackrel{-}{-}$ | $\stackrel{-}{-}$ | - | - |  |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - |  |  | - | - | - | - | - |  |
| - | - | - | - |  |  | - | - | - | - |  |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - |  |  |
| - | - | - | - | - |  | - | - | - | - | - |  |



| hole num | ER: TM-27 | minnova inc. DRILL HOLE RECORD |  |  |  | DATE: 16-September-1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { FROM } \\ \text { TO } \end{array}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\left.\begin{aligned} & \text { ANGLE } \\ & \text { TO CA } \end{aligned} \right\rvert\,$ | alteration | mineralization | remarks |
|  |  | -fault gouge <br> 21.85-23.25 <br> -sheared fabric a <br> 22.45-23.25 <br> -gouge zone | 20 | 21.85-23.25 <br> -strong clay alteration and trace fuchsite |  |  |
| $\begin{array}{r} 23.25 \\ 10 \\ 88.40 \end{array}$ | «DIORITE" | Colour: green <br> Grain size: f.gr. m.gr. <br> This is a strongly altered interval which in areas looks possibly andesitic but overally appears dioritic. Textures range from fine grained phases to medium grained. Fsp are subhedral and randomly oriented. A number of breccia zones occur through the interval. Stockwork fracturing occurs through the interval <br> 23.25-28.2 <br> - the unit is strongly bleached <br> 25.91-26.6 <br> -a brecciated interval sealed by silica carbonate and chlorite. The bx is tight <br> 27.25-27.6 <br> -is a breceiated and veined interval oriented a The bx is sealed by talc, chlorite carbonate <br> 28.24-28.84 <br> -a brecciated zone cemented by silica, carbonate and possibly sericite <br> 44.5-47.0 <br> -the core begins to develop a shear fabric a <br> -fine grained sulphides line this fabric | 10 | Silica carbonate alteration occurs through the interval. Carbonate occurs to about 10\% through the matrix, as does silica stockwork qtz carbonate vnl ts occur along stockwork fractures Chlorite alteration in the form of vnl ts and replacement is abundant (20\%) <br> 23.25-28.2 <br> -strong silicification <br> 28.24-28.84 <br> -possible sericite with silica and carbonate <br> 29.5 <br> -minor epidote occurs <br> 33.6-38.1 <br> -feldspars are altered, a pinkish colour, possibly K fsp. <br> 40.3-44.17 <br> - the core is strongly bleached with clay, silica and possible albite alteration | Disseminated pyrite occurs through the interval to $10 \%$ and localty as high as $20 \%$ Occasional pyrite vns occur with carbonate veining <br> 35.0 <br> -a 1 cm wide pyrite vn with carbonate oriented a 30 deg to c.a. <br> 35.47 <br> -1 cm wide pyrite and carbonate m oriented at 22 deg to c.a. <br> 44.5-47.0 |  |

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline HOLE NU \& ER: TM-27 \& \multicolumn{4}{|c|}{minnova inc. DRILL HOLE RECORD} \& DATE: 16-September-1992 \\
\hline \[
\begin{array}{r}
\text { FROM } \\
\text { TO }
\end{array}
\] \& \[
\begin{aligned}
\& \text { ROCX } \\
\& \text { TYPE }
\end{aligned}
\] \& texture and structure \& \begin{tabular}{l}
ANGLE \\
TO CA
\end{tabular} \& alteration \& mimeralization \& remarks \\
\hline \& \& \begin{tabular}{l}
45.0 \\
-quartz vein a \\
48.9-52.0 \\
-is a qtz carbonate tight bx zone chlorite carbonate and silica fill spaces between brecciated fragments \\
55.30-55.68 \\
-is a fault breccia \\
55.68-88.40 \\
-diorite is chilled to a f.gr. to aphanitic \\
interval \\
67.35 \\
-2 cm wide qtz vein a \\
76.22-78.17 \\
-silicified bx zone. Fragments are angular and rotated \\
81.08-84.5 \\
-silicified bx \\
86.48-88.40 \\
-silicified bx \\
-shear fabric developed a
\end{tabular} \& 30

32
32

40 \& \begin{tabular}{l}
55.68-88.40 <br>
-primarily clay, chlorite + carbonate -chlorite occurs along stockwork fractures <br>
76.22-78.17 <br>
-banded and opaline silica cement the bx <br>
81.08-84.5 <br>
-banded and opaline silica cement the bx, occasional qtz lined cavities are seen <br>
86.48-88.40 <br>
-banded and opaline silica cement bx

 \& 

-f.gr. sulphides along structural fabric <br>
55.68-86.48 <br>
-trace py, occasional mits occur at low angles to c.a. (<10 deg) and these generally have chloritic vein selvages assoc. with them.

$$
86.48-88.40
$$ <br>

-2\% pyrite as mits.
\end{tabular} \& <br>

\hline \[
$$
\begin{array}{r}
88.40 \\
\text { T0 } \\
100.82
\end{array}
$$

\] \& | © |
| :--- |
| 4 BX" | \& | Colour: grey green |
| :--- |
| Grain size: variable |
| This is a grey green debris flow breccia unit. Fragments in the interval range in size from mom scale to several cm and are either rounded or angular. Frags and qtz and diorite. The weak structural fabric developed is a | \& 38 \& | Silicification, clay, chlorite and carb alteration occurs through the interval. Diorite frags are either silicified or chloritized. |
| :--- |
| A number of open spaced fractures occur through the interval and these are lined with fine grained euhedral qtz grains | \& Pyrite occurs to $3 \%$ throughout as stockwork veinlets and fractures fillings. Trace amounts of chalcopyrite are seen with pyrite locally Pyrite occurs to 10\% locally \& <br>

\hline
\end{tabular}



| HOLE NUME | ER: TM-27 |  | minnova inc. DRILL HOLE RECORD |  |  | DATE: 16-September-1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | TExTURE AND STRUCTURE | $\left.\begin{array}{\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array} \right\rvert\,$ | alteration | mineralization | REMARKS |
| $\begin{aligned} & 160.70 \\ & 100 \\ & 163.98 \end{aligned}$ | eCHTY ASH T UFF» | Colour: grey green <br> Grain Size: v.f.gr. to aphanitic <br> Grey green aphanitic to v.f.gr. cherty ash tuff Conchoidal fracture seen in areas <br> 161.3-161.6 <br> -a brecciated talc-carbonate veined interval a | 20 | This interval is silicified and from 161.3-161.6 is a tale carbonate vein interval, chlorite occurs along fractures <br> 163.14-163.58 <br> -a stkurk silicified zone | Pyrite occurs as vnits in trace amounts to 5\% locally $\begin{aligned} & 163.14-163.59 \\ & -2-5 \% \text { stkwrk pyrite } \end{aligned}$ |  |





| HOLE MUM | ER: TM-28 | MINNOVA INC.DRILL HOLE RECORD |  |  |  | DATE: 16-September-1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\begin{aligned} & \text { ANGLE } \\ & \text { TO CA } \end{aligned}$ | alteration | mineralization | REMARKS |
| $\begin{aligned} & 0.00 \\ & \text { ro } \\ & 3.05 \end{aligned}$ | «CASING* |  |  |  |  |  |
| $\begin{array}{r} 3.05 \\ \text { TO } \\ 18.46 \end{array}$ | $\begin{aligned} & \text { «F.GR. DIOR } \\ & \text { ITE". } \end{aligned}$ | colour: dark green <br> Grain size: f.gr. <br> This is a fine grained, dark green diorite. The core is strongly broken, rubbly and oxidized along fracture surfaces. Approximately $10-15 \%$ v.f. stkwrk fractures occur through the intervals. These are generally lined by fine pyrite. <br> Frequent small ( $<1 \mathrm{~cm}$ ) wide pyrite veins and qtz veins cross the interval |  | The interval is strongly silicified throughout. Fracture surfaces are strongly oxidized. | Pyrite is the only sulphide seen through the interval. This occurs as fine vilts along fractures, disseminations and larger ( $<1 \mathrm{~cm}$ ) veins. The larger veins tend to be weathered with boxwork texture 43.05-18.46\| «10-15\% pym |  |
| $\begin{array}{r} 18.46 \\ \mathrm{TO} \\ 34.14 \end{array}$ | «DIORITE* | Colour: light green <br> Grain Size: m.gr. <br> The diorite through this interval is light grey greenish. with m.gr. subhedral to euhedral fsp phenocrysts that have been strongly altered to clay minerals. Several sheared and brecciated zones occur through the interval as do several zones of silicification associated with the brecciated intervals. <br> 19.5 <br> -clay fault gouge <br> 22.10-22.3 <br> -shear 2 <br> -this small shear has small qtz veins along fabric with chlorite laminae | 42 | Diorite is strongly altered to clay minerals through the interval. <br>  <br> Several small zones of intense silicification are seen through the interval Minor talc is seen along some fractures The upper 50 cm of the interval is stkwrk fractured and silicified. <br> 20.0-20.1 <br> -stkwrk silicification <br> 20.47-20.9 <br> -stkurk silicification <br> 23.9-24.55 <br> -stkwrk silicification and brecciation <br> -some oxidized open spaces show drusy qtz linings | Overall pyrite content averages 2-3\% generally as vnlts and veins commonly with silicification. Pyrite veins are strongly oxidized with boxwork textures $\begin{aligned} & 20.0-20.1 \\ & -5 x \mathrm{py} \\ & 20.47-20.9 \\ & -5 x \mathrm{py} \end{aligned}$ <br> 23.44-23.5 <br> -boxwork pyrite vein, oxidized, a 90 deg to c.a. <br> 124.75-25.47 * *20\% py stkwrk* <br> -py is strongly oxidized <br> 29.76-29.80 <br> -f.gr. pyrite vein at 48 deg to c.a. |  |


| HOLE NUM | ER: TM-28 |  |  | minnova inc. DRILL HOLE RECORD |  | DATE: 16-September-1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { FROM } \\ \text { TO } \end{array}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\begin{array}{\|c\|} \text { ANGLE } \\ \text { TO CA } \end{array}$ | alteration | mineralization | REMARKS |
| $\begin{array}{r} 34.14 \\ 90 \\ 57.60 \end{array}$ | $\begin{aligned} & \text { «8X ALT 'N } Z \\ & \text { ONE» } \end{aligned}$ | Colour: var, grey green to white, buff Grain size: variable <br> This zone is brecciated to a certain degree through the entire interval. Brecciated frags appear to be, in general, f.gr. chilled margin frags seen at the end of the previous interval. Open spaces fractures are common with f.gr. drusy quartz linings. Small sub-intervals are granular possibly clay altered diorite. These are stkwrk fractured with chlorite lining fractures <br> Lower contact is oriented a | 38 | Alteration varies widely throughout. Silicification is predominant, particularly as cement for the brecciated zones. Clay alteration is common in what may be large frags of diorite. Localized areas of str. oxid. reflect increases in pyrite content. | Pyrite occurs only in amounts commonly around 5\% throughout. Minor oxidized py vilts. are seen throughout $40.45-42.26$ <br> $-5.10 \%$ disseminated and boxwork oxidized pyrite vits. |  |
| $\begin{array}{r} 57.60 \\ \text { TO } \\ 80.47 \end{array}$ | 《DIORITE" | Colour: green <br> Grain Size: m.gr. <br> This is a light to dark green diorite. Fsp phenoerysts are generally of the order of $9-2 \mathrm{~mm}$ although some short, fine grained intervals are seen. From 57.6-59.13 the diorite is mod. <br> bleached. <br> Minor 1 cm wide qtz carbonate vnl ts cut the core at, at irregular intervals <br> 61.55 <br> -a 5 cm wide qtz carbonate cemented bx occurs a 75.70 <br> -the hole begins entering a wide zone of shearing and faulting <br> 75.7-75.97 <br> -shear and brecciated fabric a $\{75.7-80.47 \mid \text { aflt Zone» }$ <br> The brecciated frags range in size from 1 mm to 3 cm <br> 75.7-77.62 <br> $-1-3 \mathrm{~cm}$ wide qtz veins cut the interval <br> 77.62-78.64 <br> -a qtz vein similar to that seen near the end of hole tM91-20A. The core is broken and rubbly through this interval | 10 38 | 57.6-59.13 <br> -fsp are strongly altered to clays and matrix is strongly chloritized <br> 59.13-70.9 <br> -the core is silicified through this interval, f.gr. leucoxene is seen in concentrations of 2-3\% <br> 70.9-75.7 <br> -weak to mod. clay alt'n <br> 75.7-80.47 <br> chloritic alteration of fault gouge and brecciated zones is dominant <br> \{77.62-78.64\| «chl frac, minor fuchsite | 57.6-75.7 <br> -pyrite occurs disseminated in concen. of 2-5\%. $75.0-75.7$ <br> -small laminae of v.f.gr. sulphide occurs from 5-10\%. These occur along fractures <br> 75.70-77.62 <br> -pyrite occurs in concentrations of 5-7\% generally associated with qtz veins and along fractures <br> 175.7-77.62 $<$ «5-75 py, tr cp) -chalcopyrite occurs in tr. amounts $\begin{aligned} & \{77.62-77.82 \mid \text { «10\% ср» } \\ & \{77.82-78.64 \mid \text { «10-20x pm } \end{aligned}$ <br> -from 77.67-77.82: chalcopyrite occurs along fractures with minor | Core recovery from 77.62-78.64: 60\% |


| HOLE NUM | ER: TM-28 | MINHOVA INC. DRILL HOLE RECORD |  |  |  | DATE: 16-September-1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { FROM } \\ & \text { TO } \end{aligned}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPEE } \end{aligned}$ | texture and structure | $\begin{aligned} & \text { ANGLE } \\ & \text { TO CA } \end{aligned}$ | alteration | MINERALIZATION | REMARKS |
|  |  | The vein itself is highty fractured with chlorite chalcopyrite and pyrite along these fractures <br> 78.64-80.47 <br> -diorite again, cut by two gouge zones $\left\{\begin{array}{l} 79.0-79.38 \mid \text { «gouge" } \\ 79.7-80.10 \\ \text { agouge" } \end{array}\right.$ |  |  | pyrite <br> 77.82-78.64 <br> -pyrite is seen from $10-20 \%$, again along fractures. Trace amounts of chalcopyrite are seen |  |
| $\begin{array}{r} 80.47 \\ \text { T0 } \\ 188.44 \end{array}$ | «INTERBED atz-CONGLOM SSt, SLTST" | Colour: white, grey, grey-green Grain Size: var. c.gr. to f.gr. These sediments are similar to those described in hole TM-25 <br> Conglomerate intervals are white in colour varying from clast supported to matrix supported. Clasts are quartz, chert, and f.gr. chloritic ash tuff. As with hole TM-25 the conglomerate units are fractured more than the finer grained units, and these fractures are oxidized. <br> Sandstone units are grey in colour, quartz rich and clast supported. Fine grained siltstone units are grey green in colour and may be volcanic in origin. <br> In comparison to hole TM-25, this interval has a larger proportion of finer grained sandstones and siltstones with respect to conglomerate units whereas hole TM-25 had a roughly 50:50 proportion between conglomerate and sandstones and siltstones <br> 80.47-134.72 <br> -beds are highly contorted, fragmented due to faulting <br> \103.22-105.5 «бгессіа» <br> \{112.45-114.45 ${ }^{\text {\| }}$ «breccia» <br> 146.0 <br> -beoding a <br> 165.3-174.9 <br> -a wide interval of grey white qtz pebble conglom. | 64 | Alteration is not strong through the interval. It consists of weak oxidation of pyrite along fractures primarily in the conglomerate units. This oxidation is not nearly as strong as seen in TM- 25 <br> \|103.22-105.5 $\$$ «strong oxid'n" | Pyrite occurs in trace amounts to 3\% as veinlets cutting all units, or as disseminations associated with more permeable conglomerate units <br>  <br> 165.3-174.9 <br> -5\% diss. pyrite |  |



| hole numb | ER: TM-2 |  |  | ASSAY Sheet |  |  |  |  |  |  |  |  |  |  |  | DATE: 16-September-1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample | $\begin{gathered} \text { From } \\ (\mathrm{m}) \end{gathered}$ | To <br> (m) | Length (m) | $\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$ | $\begin{array}{r} \text { As } \\ \text { ppm } \end{array}$ | $\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$ | $\begin{gathered} \mathrm{Cu} \\ \mathrm{pppm} \end{gathered}$ | $\begin{array}{r} \mathrm{Fe} \\ \mathrm{ppmm} \end{array}$ | $\begin{gathered} \text { Mo } \\ \text { ppm } \end{gathered}$ | $\begin{array}{r} \mathrm{Pb} \\ \mathrm{Pppm} \end{array}$ | $\begin{gathered} \text { Sb } \\ \text { ppm } \end{gathered}$ | $\begin{gathered} \mathrm{Zn} \\ \mathrm{ppm} \end{gathered}$ | $\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$ | $\begin{array}{r} g / t A u \\ g / t \end{array}$ | $\underset{\text { ppm }}{\mathbf{S}}$ |  |
| BCD44616 | 113.47 | 116.47 119.47 | 3.00 | 0.1 | 17 | 227 | 67 | 4721 | 1 | 1 | 1 | 34 | 29 |  |  |  |
| BCD44617 | 116.47 | 119.47 | 3.00 | 0.1 | 30 | 123 | 75 | 4650 | 1 | 1 | 1 | 37 | 96 |  |  |  |
| BCD44618 | 119.47 | 122.47 | 3.00 | 0.1 | 28 | 50 | 130 | 4933 | 1 | 1 | 1 | 32 | 70 |  |  |  |
| BCD44619 | 122.47 | 125.47 | 3.00 | 0.1 | 28 | 190 | 145 | 5138 | 1 | 1 | 1 | 30 | 57 |  |  |  |
| BCD44620 | 125.47 | 128.47 | 3.00 | 0.1 | 29 | 68 | 224 | 4575 | 1 | 1 | 1 | 27 | 61 |  |  |  |
| BCD44621 | 128.47 | 131.47 | 3.00 | 0.1 | 32 | 88 | 235 | 4948 | 1 | , | 1 | 24 | 95 |  |  |  |
| BCD44622 | 131.47 | 134.47 | 3.00 | 0.1 | 36 | 92 | 107 | 5343 | 1 | 1 | 1 | 35 | 69 |  |  |  |
| BCD44623 | 134.47 | 137.47 | 3.00 | 0.1 | 26 | 66 | 130 | 5104 | 1 | 1 | 1 | 38 | 38 |  |  |  |
| BCD44624 | 137.47 | 140.47 | 3.00 | 0.1 | 25 | 69 | 106 | 4996 | 1 |  | 1 | 58 | 39 |  |  |  |
| BCD44625 | 140.47 | 143.47 | 3.00 | 0.1 | 28 | 50 | 194 | 5024 | 1 | 1 | 1 | 33 | 140 |  |  |  |
| BCD44626 | 143.47 | 146.47 | 3.00 | 0.1 | 21 | 53 | 131 | 4790 | 1 | 1 | 1 | 36 | 119 |  |  |  |
| BCD44627 | 146.47 | 149.47 | 3.00 | 0.1 | 33 | 87 | 123 | 4829 | 1 | 1 | 1 | 32 | 60 |  |  |  |
| BCO44628 | 149.47 | 152.47 | 3.00 | 0.1 | 25 | 68 | 97 | 3041 | 2 | 2 | 1 | 23 | 85 |  |  |  |
| BCD44629 | 152.47 | 155.47 | 3.00 | 0.1 | 29 | 97 | 212 | 4360 | 1 | 1 | 1 | 26 | 131 |  |  |  |
| BCD44630 | 155.47 | 158.47 | 3.00 | 0.1 | 33 | 279 | 153 | 4196 | 1 | 1 | 1 | 26 | 74 |  |  |  |
| BCD44631 | 158.47 | 161.47 | 3.00 | 0.1 | 52 | 889 | 56 | 3708 | 1 | 2 | 1 | 32 | 29 |  |  |  |
| BCD44632 | 161.47 | 164.47 | 3.00 | 0.1 | 55 | 406 | 100 | 4225 | 1 | 5 | 1 | 37 | 34 |  |  |  |
| BCO44633 | 164.47 | 167.47 | 3.00 | 0.1 | 39 | 423 | 129 | 2940 | 2 | 7 | 2 | 23 | 64 |  |  |  |
| BCO44634 | 167.47 | 170.47 | 3.00 | 0.1 | 23 | 320 | 66 | 1742 | 3 | 4 | 1 | 15 | 22 |  |  |  |
| BCO44635 | 170.47 | 173.47 | 3.00 | 0.1 | 22 | 755 | 51 | 1726 | 2 | 6 | 1 | 17 | 18 |  |  |  |
| BCD44636 | 173.47 | 176.47 | 3.00 | 0.1 | 37 | 553 | 80 | 3129 | 2 | 4 | 2 | 21 | 35 |  |  |  |
| 8CD44637 | 176.47 | 180.44 | 3.97 | 0.1 | 37 | 829 | 44 | 3576 | 1 | 3 | 2 | 39 | 22 |  |  |  |



PURPOSE:

DIRECTIONAL DATA:

| Depth (m) | Astronomic Azimuth | Dip degrees | Type of Test | flag | Comments | Depth (m) | Astronomic Azimuth | Dip degrees | Type of Test | flag | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78.03 | - | -45* 01 | ACID | OK |  | - | - | - | - | - |  |
| 175.60 | - | -46* $0^{\prime}$ | AcID | OK |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | $\bullet$ | - |  | - | - | - | - | - |  |
| $\cdot$ | $\cdot$ | - | - | - |  | - | - | - | - | $\bullet$ |  |
| - | $\stackrel{-}{-}$ | - | - | - |  | $\bullet$ | $\bullet$ | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - |  | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - |  |  | - | - |  | , | - |  |
| - | - | - | - |  |  | - | - | - | $\cdot$ | - |  |
| - | - | $\square$ | $:$ | - |  | - | - | $:$ | - | $:$ |  |
| . | - | - | - | . |  | - | - | - | - | $\bullet$ |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - |  |  |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - |  |  |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | - | - | - | - |  | - | - | - | - | - |  |
| - | : | - | $:$ | $:$ |  | - | - | - | - | - |  |



| HOLE NUM | ER: TM-30 | minnova inc. DRILL HOLE RECORD |  |  |  | DATE: 16-September-1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\begin{array}{\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}$ | alteration | MINERALIZATION | REMARKS |
| $\begin{array}{r} 19.55 \\ 10 \\ 23.65 \end{array}$ | *ALTERED DI ORITE* | colour: grey green <br> Grain Size: m.gr. to c.gr. <br> Similar to the diorite described from 11.24-14.36 but coarser grained. Fsp are euhedral, altered to clay and chlorite. A weak structural fabric is formed a | 40 | Chlorite and clay alteration is dominant throughout. This is weakly overprinted locally by silicification <br> Leucoxene is present in trace amounts carbonate alteration of matrix occurs to $5 \%$ | Pyrite is present only in trace amounts with one small zone of 5-10\% py from 20.36-20.7. Pyrite occurs as fine disseminations, vnlts and emorphous masses up to 6 cm in dimension. Pyrite is oxidized |  |
| $\begin{array}{r} 23.65 \\ 10 \\ 39.90 \end{array}$ | *DEBRIS BX/ <br> ALT. 2ONE* | Colour: grey green <br> Grain size: variable <br> Similar to debris breccia seen in hole TM-24. This is a grey green brecciated interval. Some sections contain angular frags in a f.gr. grey green matrix Other sections are frag. supported. Most frags are clay or chlorite altered. Stockwork qtz carbonate vilts oceur through the interval. <br> Small intervals of fault gouge occur through the interval as do small intervals of silicification. <br> 30.91-31.09 <br> -broken core suggesting fault zone <br> 31.7-32.00 <br> -broken core suggesting fault zone <br> 34.86-35.05 <br> -clay fault gouge <br> 36.8-36.9 <br> -clay fault gouge <br> Possible orientation of fault a | 32 | Alteration is predominantly clay and chlorite with occasional zones of silicification. Occesional stkwrk qtz carb vits crosscut the interval $\left\{\begin{array}{l} 26.9-27.02 \mid \\ 27.9-28.04 \\ \text { 28.6-29.54il* } \end{array}\right.$ 30.3-30.43 <br> -small milky white qtz vilts at 10 deg to c.a. with hematite cores <br> \{33.4-33.80\| $\alpha$ Silicifld Bx* <br> \{35.9-39.49 ${ }^{\text {\| }}$ «ilicif!n* | Pyrite content rarely exceeds 2\% and more commonly occurs only in trace mounts where core is silicified. Pyrite occurs up to $5 \times$ as vilts along stkurk fractures |  |
| $\begin{aligned} & 39.90 \\ & 520 \\ & 5.73 \end{aligned}$ | * IORITE* | Colour: dark to light green <br> Grain Size: f.gr. to m.gr. <br> This diorite contains a greater proportion of mafic minerals to felsics in comparison with diorite seen from 19.55-23.65 <br> 39.9-41.0 <br> -the diorite is leucocratic and m.gr. with randomly oriented fsp grains |  | 39.9-43.7 <br> -alteration is primarily clay, chlorite and carbonate. Chlorite occurs as mits | 39.9-52.73 <br> -pyrite occurs from 3-5x as wilts and disseminations |  |


| $\begin{array}{r} \text { FROM } \\ \text { TO } \end{array}$ | ROCK TYPE | texture and structure | $\begin{aligned} & \text { ANGLE } \\ & \text { TO CA } \end{aligned}$ | ALTERAtion | MIMERALIZATIOW | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 40.55-41.0 <br> -core is broken and rubbly suggesting a fault zone <br> 41.0-43.7 <br> -the unit is very f.gr. appearing chilled <br> \{42.5-42.57 ${ }^{\text {aCalcite Veinw }}$ <br> -the vein is 2 cm wide true width oriented a <br> -brecciated frags occur in the vein which is vuggy having euhedral calcite crystals growing into open cavities <br> 43.1-43.59 <br> -clay fault gouge a <br> 43.6-49.76 <br> -diorite becomes dark green, fine grained <br> 49.76-52.73 <br> -the diorite becomes leucocratic and medium grained again | 10 | 43.05-43.1 <br> -a zone of hematite alteration or vein oriented at 60 deg to c.a. <br> 43.6-49.76 <br> -chlorite alteration is common with silicification overprinting this <br> 49.76-52.73 <br> -chlorite, clay and carbonate alter'n becomes dominant again |  |  |
| $\begin{array}{r} 52.73 \\ 10 \\ 60.35 \end{array}$ | *SHEAR BX VW ZONE* | Colour: grey to black <br> Grain Size: variable <br> This interval consists of a sequence of brecciated segments, sheared segments and veined segments some within brecciated zones <br> 52.73-53.57 <br> -a v.f.gr. to aphanitic stkwrk fractured altered segment. Alt'n may be albite. Stkwrk fracturing with silica infilling to $40 \%$ <br> 53.57-54.5 <br> -shear fabric oriented a <br> -this zone containing vein pyrite along fabric <br> 54.5-56.17 <br> -a strongly silicified f.gr. dyke <br> 56.17 <br> -cley fault gouge | 56 | Alteration varies throughout from silicification in the form of stikurk mits and massive vns to chloritic alteration and possible albite alteration and veining <br> 52.73-53.57 <br> -30-40\% stkwrk silica vns and possible albite alteration <br> 53.57-54.5 <br> -silicification and chloritic alt'n <br> 54.5-56. 17 <br> -strong silicification <br> 56.17-57.6 <br> -chlorite laminae | Sulphides occur throughout as f.gr. disseminations vilts and vis assoc. with qtz ms or silica introduction. Arsenopyrite and pyrite are most common with minor cp <br> 52.73-53.57 <br> -5\% stkwrk and disseminated pyrite <br> 53.57-54.5 <br> -30\% py as veins along shear fabric with minor arsenopyrite <br> 54.5-56.17 <br> -5-10\% f.gr. disseminated py <br> 56.17-57.6 <br> -5-10\% vein pyrite |  |




| HOLE NU | ER: TM -30 | mimhova inc. DRILL HOLE RECORD |  |  |  | DATE: 16-Septenter-1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$ | $\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$ | texture and structure | $\left\|\begin{array}{l\|l\|} \text { ANGLELE } \\ \text { TO CA } \end{array}\right\|$ | alteration | mineralization | REmARKS |
|  | Е.О.н. | $\begin{aligned} & \text {-fault zone } \\ & 140.9-141.12 \\ & \text {-fault } \\ & \text { 151.25-151.57 } \\ & \text {-breccis } \end{aligned}$ <br> 151.57-161.7 <br> -a finer grained, chill zone and is strongly bleached and clay altered. A number of qtz carbonate veins cut the intervals <br> 152.0 <br> - fault <br> 161.7-165.5 <br> -an inclusion of qutz pebble conglomerate <br> 165.5-175.56 <br> -a number of banded qtz carbonate ms cut the interval <br> 173.9 <br> -fault zone | 40 | 156.7-157.18 <br> - - strongly oxidized zone <br> 157.8-158.9 <br> -a strongly oxidized zone |  |  |




