LOG NO:	001	21	1992	RD.
ACTION.				
6				
FILE NO:				

GEOLOGY, GEOPHYSICS & GEOCHEMISTRY REPORT

THE LUMBY PROPERTY

CLAIMS: OK HAZ 5

MINING DIVISION: VERNON

N.T.S.: 82L 7W

LATITUDE: 50° 18' 30" North

LONGITUDE: 118° 58' 30" West

OWNER: Zicton Gold Limited

OPERATOR: Zicton Gold Limited

CONSULTANT: Allen Geological Engineering Ltd.

AUTHORS: Douglas R. Halliwell, M.Sc.A., B.Sc., P.Geo., F.G.A.C.

> Alfred R. Allen, M.A.Sc., B.A.Sc., P.Eng.

DATE:

July 31, 1992

GEOLOGICAL BRANCH ASSESSMENT REPORT

CONTENTS

TITLE PAGE

Ρ	а	α	е

1.0	INTRODUCTION	1			
2.0	LOCATION AND ACCESS				
3.0	PROPERTY	1			
4.0	PHYSIOGRAPHY	2			
5.0	PREVIOUS WORK				
	5.1 Lumby Area 5.2 OK, HAZ 5 Claims	2 3			
6.0	THEORY	4			
7.0	GEOLOGY				
8.0	OBJECTIVES & METHODOLOGY				
	8.1 Geology 8.2 VLF-EM Geophysics 8.3 Soil Geochemistry	7 8 9			
9.0	RESULTS				
	9.1 Geology 9.2 VLF-EM Geophysics 9.3 Soil Geochemistry	11 12 14			
10.0	DISCUSSION				
11.0	RECOMMENDATIONS 16				
REFE	RENCES				

COST STATEMENTS. OK CLAIM HAZ 5 CLAIM

CERTIFICATES

,

CONSENT LETTER

MAPS

		Page
1.	Location. Zicton Gold Properties	1-2
2.	OK, HAZ 5 Mineral Claims and Adjoining Quinto Claims	2-3
3.	Topography and Mineral Claims	2-3
4.	Regional Geology	4-5
5.	Local Geology & Geophysical Anomalies	4-5
6.	OK-HAZ 5 Deafies Creek Grid & Adjacent Area Geology. Stripping & Drill Hole Sites	Map Holder
7.	OK-HAZ 5 Deafies Creek Grid Line 0+00 Profiles Geology, VLF-EM Geophysics, Soil Geochemistry	Map Holder
8.	OK-HAZ 5 Deafies Creek Grid VLF-EM Geophysics Raw Data In Phase & Quadrature Components Seattle Tx.	Map Holder
9.	OK-HAZ 5 Deafies Creek Grid VLF-EM Geophysics Contoured Data Fraser-Filtered In Phase Component Seattle Tx.	Map Holder
10.	OK-HAZ 5 Deafies Creek Grid VLF-EM Geophysics Raw Data In Phase & Quadrature Components Annapolis Tx.	Map Holder
11.	OK-HAZ 5 Deafies Creek Grid VLF-EM Geophysics Contoured Data Fraser-Filtered In Phase Component Annapolis Tx.	Map Holder

•

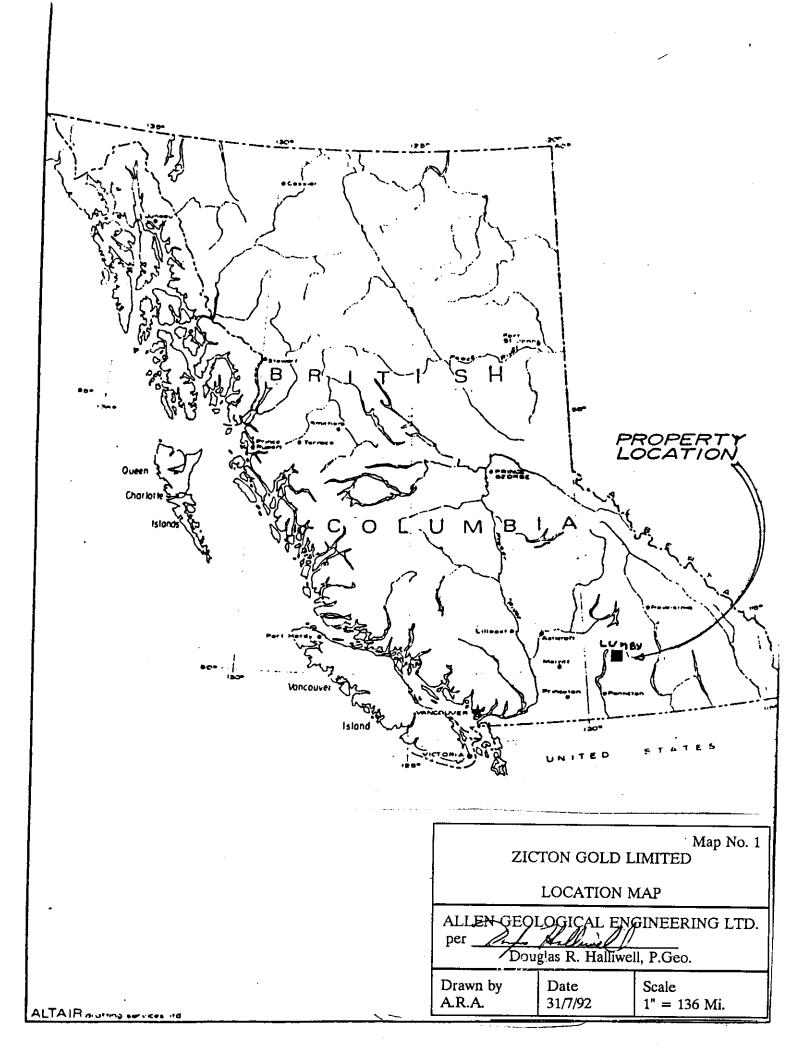
APPENDICES

I. Laboratory Ge	ochemistry Re	port. Rock	: Samples
------------------	---------------	------------	-----------

- II. VLF-EM Raw & Fraser-Filtered Data
- III. Geochemical Sampling Cards
- IV. Laboratory Geochemistry Report. Soil Samples

1.0 INTRODUCTION

The Deafies Creek area of the OK and HAZ 5 claims was selected for geological and prospecting since shallow precious and base metal mineralization has previously been discovered by stripping and surface rock sampling. Furthermore, a broad east-west AEM conductive zone has been detected on the adjacent Quinto property to the east and it is reasonable to assume that the conductor extends west onto the Zicton property. At the nearby Quinto Mine, such conductors are associated with east-west shears and precious and base metal mineralization. It is hoped that the 1992 geological mapping, VLF-EM geophysics and soil geochemistry can aid in locating sites for future trenching and drilling programs.


2.0 LOCATION AND ACCESS

The town of Lumby is located in the northern Okanagan region of South-Central British Columbia about 25 kilometres east of Vernon. The OK and HAZ 5 claims form a two-claim contiguous block of claims located 8.5 kilometres north of Lumby in the headwaters area of Deafies Creek. These two contiguous claims are located within Vernon Mining Division and, along with the BS-3 and HOL 1-4 claims east of Lumby, comprise the seven current claims of Zicton Gold Limited. Refer to Map 1.

The claims are accessed by two paved all-weather roads, one between Lumby and Shuswap Falls, and the other through Trinity Valley. Closer to the property, access is by all-weather gravel roads, including the Deafies Creek Road and a network of old and recent logging roads. Access and drainage patterns have recently been affected by current logging activities and, in June 1992, the roads were frequented by a fleet of three logging trucks (it wasn't possible to borrow a truck radio from the logging company to monitor the position of logging trucks). The property lies roughly between Kilometre 2 and Kilometre 5 on the east-west Deafies Creek Road and enjoys reasonable access by automobile. Improved access (through "washouts", etc.) can be afforded by truck, preferably with four-wheel drive vehicle. Future expansions of roads and human activity southeast of the claims and south of Deafies Creek may improve access to the claims.

3.0 PROPERTY

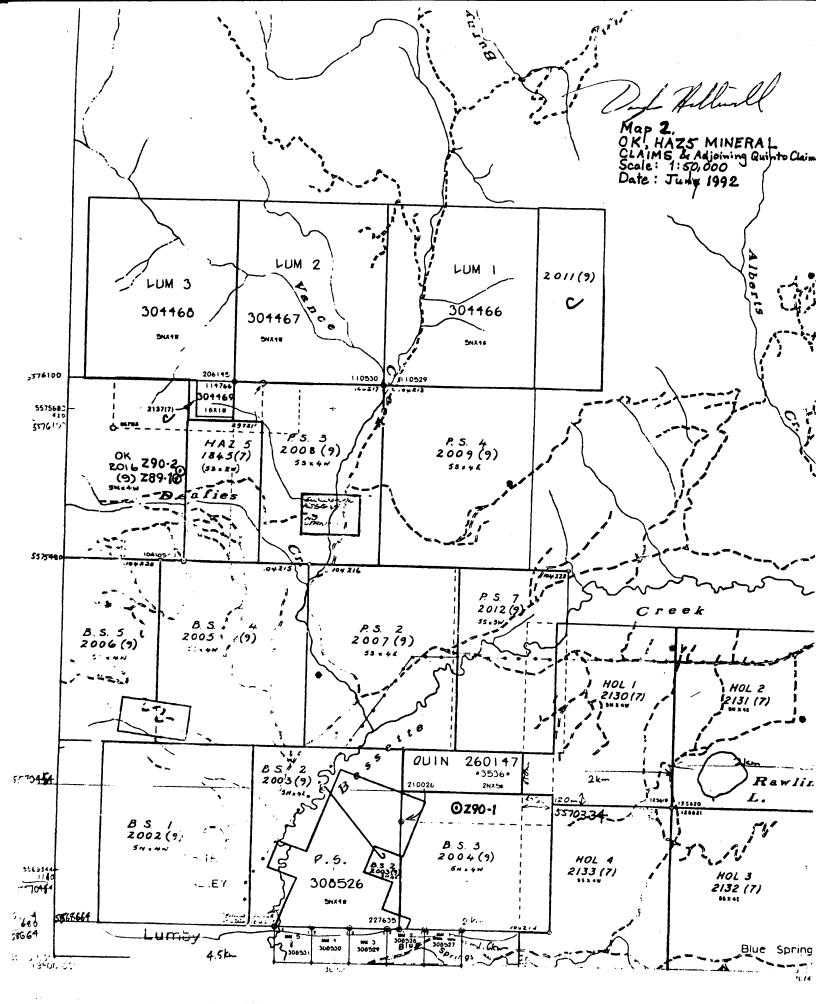
Zicton Gold Limited owns and operates the Lumby Property's northwest and southeast claim blocks, shown in Map 2. The northwest claim block, for which this assessment report is written, is comprised of the following contiguous claims, all of which are in good standing:

Claim	Record (Tenure) Nos.	No.	of Units	Due	Date	
OK HAZ 5	2016(259255) 1845(259221)		(5Nx4W) (5Sx2W)		20/92 11/92	_
Total		30	units			-

4.0 PHYSIOGRAPHY

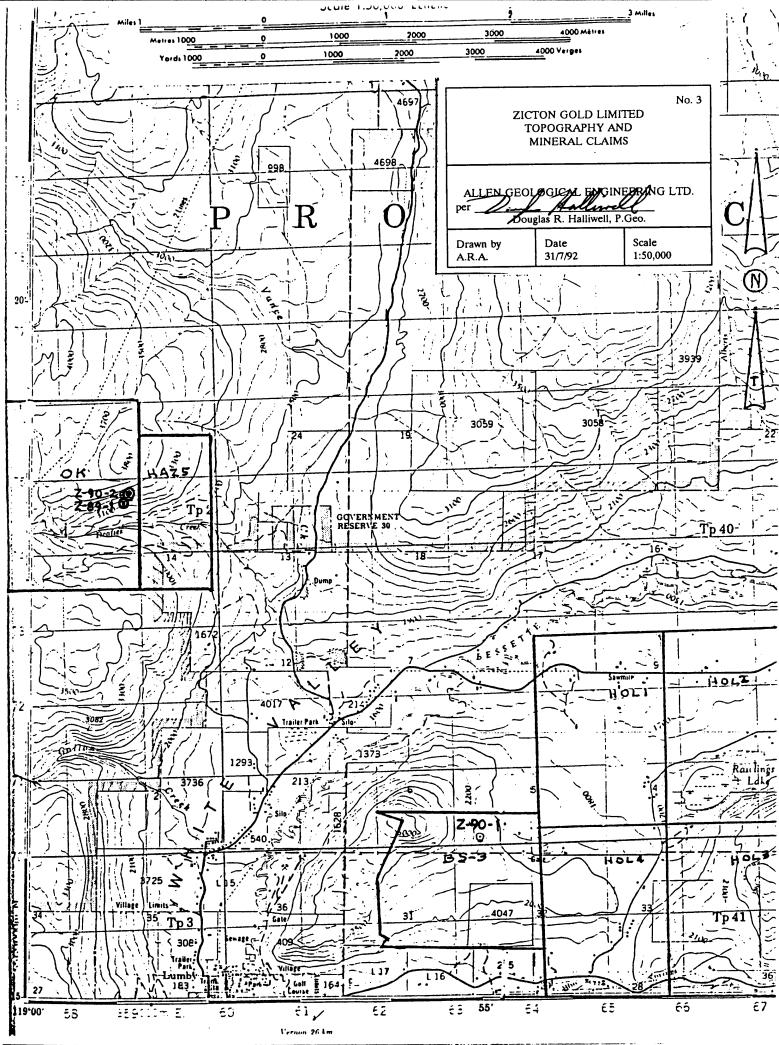
The village of Lumby is located 8.5 kilometres to the south in White Valley, at the southwest base of Saddle Mountain at an elevation of 500 metres above sea level. Saddle Mountain peaks at 945 metres elevation three kilometres northeast of Lumby.

The OK and HAZ 5 claim area is drained by the east to southeast flowing Deafies Creek. The topography includes a rounded 1158 metre summit located in the central eastern area of the OK claim and a 1219 metre ridge on the northwest corner of the claim. Deafies Creek flows east across the southern area of the OK and HAZ 5 claims at elevations between 1067 metres (in the southwest) and 762 metres (in the southeast). Refer to Map 3.


The two claims exclude any cultivated land and, prior to logging activities, were completely covered in mixed forest, mostly coniferous forest. There is a network of roads, buildings and human activity to the southeast of the claims south of Deafies Creek.

5.0 PREVIOUS WORK

5.1 Lumby Area


Gold and silver mineralized veins were first discovered on Saddle Mountain in the early 1900's by a Lumby school teacher (i.e. Teachers Zone). From 1960 to 1970, good grade silver, lead, zinc and copper ore was mined by open pit and shipped to the Trail Smelter. In 1971, F.K. Explorations Ltd. sold their 50 ton per day mill to Alberta Gypsum and conducted an exploration project designed to outline ore reserves.

Between 1974 and 1979, a 50 to 150 ton per day mill was built and operated by Coast Interior Ventures (N.P.L.). The Chaput logging family of Lumby operated the mill between 1979 and 1981. Production from 1975 to 1981 was estimated at between 30,000 and 40,000 tons. Concentrate was treated by Cominco at Trail. In 1980, the mill was increased to a capacity of 150 tons per day.

· · · · · · · · ·

.

Regional geochemical surveys carried out by the British Columbia Geological Survey and the Geological Survey of Canada in the late 1970's and 1980's reveal that stream sediments in the Vance Creek area yield regionally anomalous base and precious metal values, notably for Cu and Au. Three tightly clustered stream sediments from the Vance Creek area receive a rating of 3 to 6 on the 1:600,000 scale Cu-Pb-Zn-Ag Base Metal Anomaly Map. Two of these stream sediments also receive a 3 to 6 rating on the 1:600,000 scale Au-Sb-As-Ag Precious Metal Anomaly Map.

The property was acquired by Quinto Mining Corporation in 1983. Quinto has since staked additional mineral claims, conducted surface exploration, and carried out underground exploration and development over an enlargened area. The objective is to renew precious metals production in addition to commence mining of the industrial mineral, graphite. The mine vein system was discovered to contain excellent silver, lead, zinc and copper mineralization.

Airborne magnetic and electromagnetic surveys on the Quinto property were extended over the northwest corner of the BS-3 claim in Zicton Gold's southeast claim block, where anomalous zones were detected. The HOL 1-4 claims were staked in 1976 and were conveyed to Zicton Gold on August 6, 1987. The BS-3 claim was acquired in 1987 by Zicton Gold, in that year, receiving the following work: grid construction, geology, magnetic surveying and VLF-EM surveying.

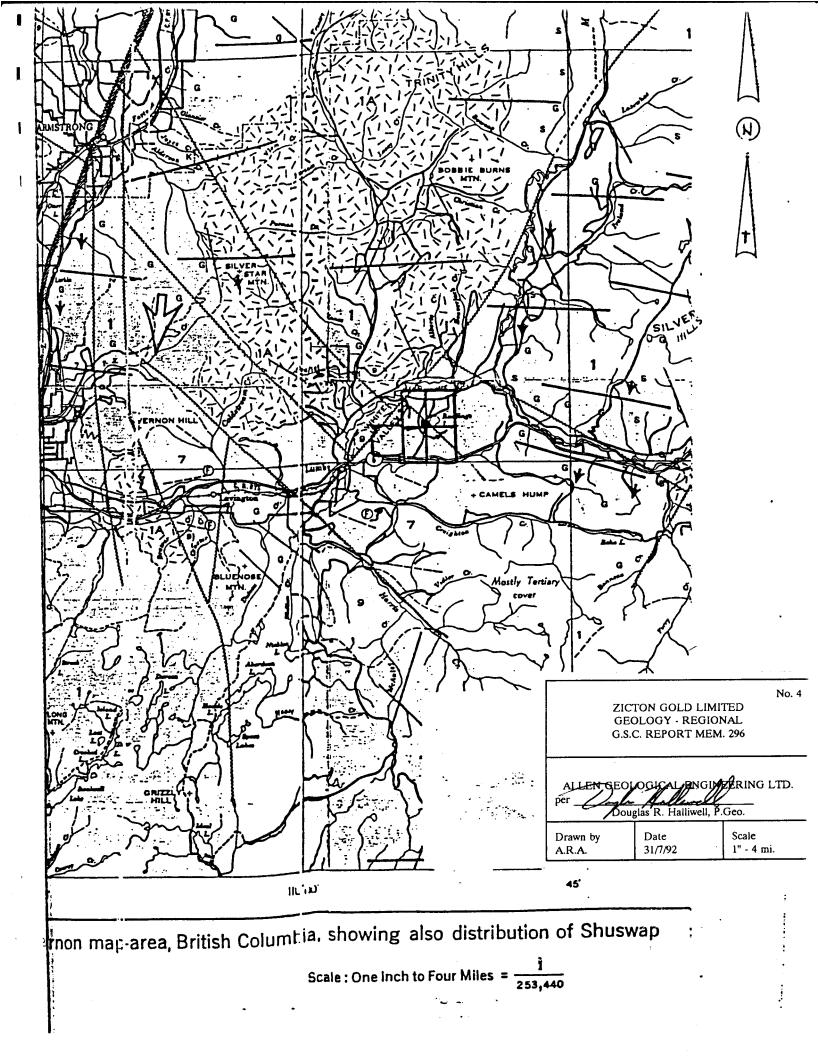
5.2 OK, HAZ 5 Claims

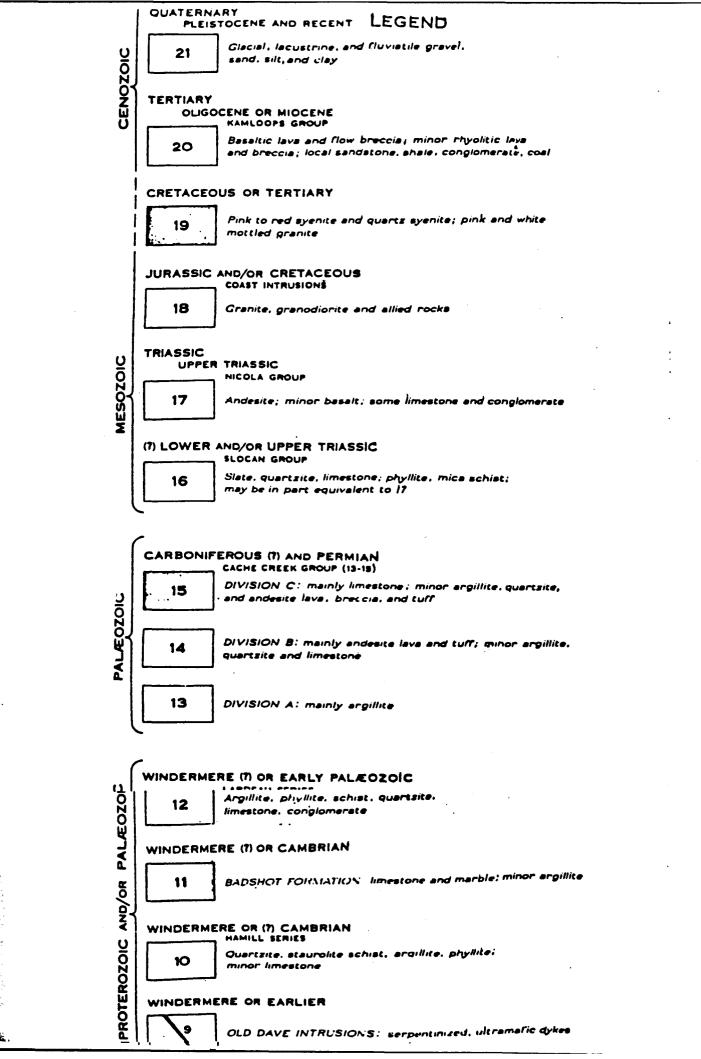
Zicton Gold Limited claims include the BS-3, HOL 1-4; located on the east boundary; and the OK, HAZ 5; located four kilometres to the northwest of the Quinto property.

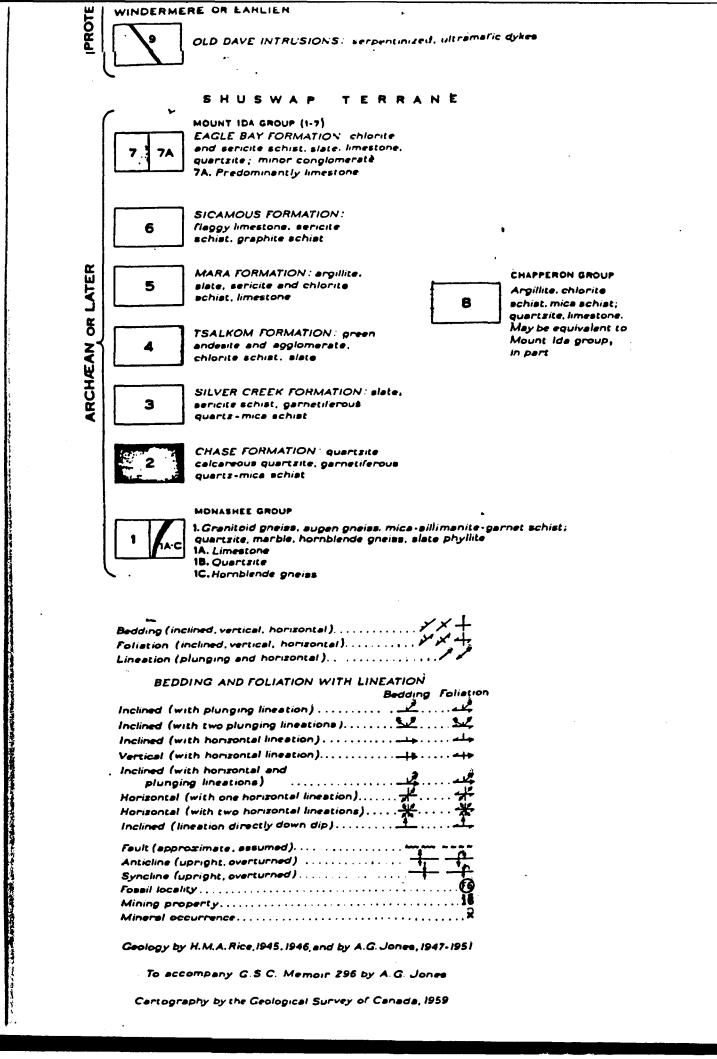
The HAZ 5 claim was staked by Sid Johnson on June 28-July 2, 1984 and recorded in Vernon on July 11, 1984. It was conveyed to Zedco Petroleums Ltd. on July 11, 1984.

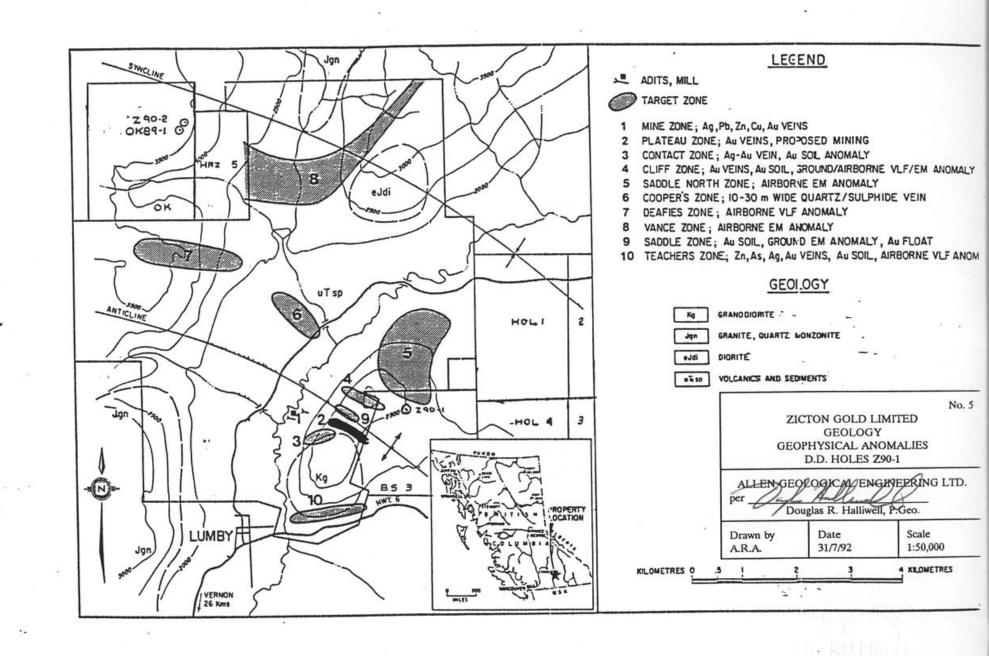
The OK claim was staked by John Hilton on September 14-16, 1985 and recorded in Vernon September 20, 1985. It was conveyed to Zedco Petroleums Ltd. on September 21, 1987.

The OK and HAZ 5 claims have since been conveyed to Zicton Gold Limited.


Previous claim owners had conducted exploratory work adjacent to the east boundary of the OK claim. A shear zone was investigated by stripping and an outcrop of vein quartz measuring three metres by one metre was sampled. The shear zone includes iron oxidized gouge and can be traced along strike for 20 to 25 metres. In 1989, trenching exposed a mineralized zone and Diamond Drill Hole Z89-1 drill-intersected quartz veinlets with pyrite and associated


disseminated sulphides within black argillites and (to a lesser extent) grey tuffs. In 1990, Diamond Drill Hole Z90-2 was collared just five metres higher in elevation, just downhill from the trench, and 49 metres from Hole Z89-1 at a bearing of N75°E from it. The angle hole (i.e. -65°) had a bearing of N5°E and a hole length of 61.6 metres. Hole Z90-2 intersected only traces of precious metal mineralization and traces of sulphides (pyrite, pyrrhotite, chalcopyrite) within quartz stringers and (black and grey) argillite. NQ core recovery was estimated at 90% overall.


Exploration during the 1991 field season consisted of geological mapping and prospecting throughout the claims, especially in the vicinity of the drilling and stripping. The metasediments (e.g. argillite) strike east-southeast and have shallow northeast and southwest dips, depending upon the location relative to the eastnortheast trending and plunging synclinal (synclinorial?) axis which traverses the claim block. Graphitic, siliceous, calcareous argillite was observed along the north-central OK claim boundary adjacent to the present-day LUM 3 claim. The lower shallow "trench" (actually, more of a stripping) in the east-central OK claim trends 075°-255° over a distance of 25 to 30 metres, subparallelling a wavy, undulating, 040° striking, subverticallydipping contact between argillite and granodiorite marked by shearing and quartz veining. Here, the quartz veins are gossanous, weakly calcareous, and bear trace, fracture-related pyrite and chalcopyrite; these contain up to 89 ppm Cu, 12 ppm Pb and 102 ppm The wallrock argillite is gossanous, calcareous, sheared, Zn. magnetic (presence occasionally brecciated and weakly of pyrrhotite). It contains fracture-related sulphides (<2-3% pyrite, <1-2% chalcopyrite, <1% pyrrhotite, trace bornite, trace covellite, trace malachite and possible trace native copper); this argillite returns values of up to 35 ppb Au, 853 ppm Cu, 30 ppm Pb, 164 ppm Zn and >15% Fe.


6.0 THEORY

Extensive field programs on the Quinto property to the southeast have determined that some of the sizeable, shallow precious metal deposits are located within large sheared (+/- graphitic) zones. Mineralization appears to be more likely to be detected by VLFelectromagnetic surveys than magnetic ones. The possible spatial correlation of positive geological and VLF-electromagnetic results in areas of shallow overburden would be useful in exposing new mineralization on surface and in designing future stripping, trenching and drilling programs. Supporting data could also be obtained by soil sampling after a small orientation soil sampling survey is carried out over areas of known mineralization to determine optimum soil sampling horizons, size of material to be

sampled, and elemental associations.

Budgetary restrictions limited exploration work during the June 1992 program to grid construction, geological mapping, VLF-EM geophysics and soil geochemical sampling within the newly created 5.0 line-kilometre 1992 Deafies Creek Grid. The grid is located in the vicinity of the previous drilling and stripping in the eastcentral OK claim and west-central HAZ 5 claim near their common claim boundary. This is within a portion of the broad (i.e. one kilometre wide) east-west belt of known precious and base metal mineralization and the suspected western strike-extension of an east-west airborne VLF-electromagnetic anomalous zone (i.e. Vance Zone) which covers much of the central portion of the claim block.

7.0 GEOLOGY

The regional geology is shown in Map 4 and the accompanying geological legend. The local geology, conductive zones and mineralized zones appear in Map 5.

Outcrops are minimal. None of the land is under cultivation. Mapping by the Geological Survey of Canada has, however, provided considerable geological detail over the area and is available in G.S.C. Open File 637 (Okulitch, 1987) and G.S.C. Memoir 296 (Jones, 1959).

The stratigraphy as per Jones (1959) is summarized as follows:

Shuswap_Terrane (Mt. Ida Group).

<u>Monashee Group (Archean or Later).</u> Granitoid and augen gneiss, mica-sillimanite-garnet schist, quartzite, marble, slate, phyllite, limestone.

<u>Sicamous Formation (Archean or Later).</u> Limestone, sericite schist, graphitic schist.

Eagle Bay Formation (Archean or Later). Chlorite schist, sericite schist, slate, limestone, quartzite. Minor conglomerate.

<u>Cache Creek Group (Carboniferous? & Permian).</u> Limestone. Minor argillite, quartzite, andesite lava, breccia and tuff.

<u>Nicola Group (Upper Triassic).</u> Andesite, limestone, conglomerate. Minor basalt.

<u>Coast Intrusions (Jurassic and/or Cretaceous).</u> Granite, granodiorite, allied rocks.

<u>Kamloops Group (Oligocene or Miocene).</u> Basaltic lava, breccia,

5

sandstone, shale, coal.

Faults in the Lumby area include four major north-striking faults, three northwest-striking ones, and one northeast one. One major anticline and one major syncline strike northwesterly across the Lumby area.

A diorite stock is partially exposed 1.6 kilometres north of Lumby. A granitic intrusive is located adjacent to the southwest corner of the BS-3 claim. Another granitic exposure occurs in the Harris Creek drainage area twelve kilometres south of Lumby. Each of the intrusives is adjacent to or penetrated by fault zones.

A mineralized shear zone in the north-central area of the OK claim strikes at 255° and is close to vertical. A large exposure of quartz is located at the east end of the shear zone. From this outcrop, the shear has been exposed by stripping and trenching for 26 metres westerly. Twenty-three to 24 metres of this shear quartz and massive sulphides have been exposed and sampled. This showing is composed of fine to coarse cubic pyrite, chalcopyrite, limonite, arsenopyrite and sphalerite. There is also a 0.3 metre zone of fragmented white quartz and pyrite, remarkably similar to those located in the Quinto Mine workings.

The most recent regional geological mapping of the Thompson-Shuswap- Okanagan area by Okulitch et al (1987) utilized surficial geological mapping by Fulton (1975), Neville (1981) and Nasmith (1962).

The Shuswap Complex Monashee Group (Jones, 1959) is no longer a geological unit in the G.S.C. Open File by Okulitch et al (1987).

The Carboniferous to Permian Thompson Assemblage has been distinguished by Monger (1975) from the Cache Creek Group (Jones, 1959) on lithologic and faunal grounds, and limestone pods of this unit (Unit CPTAc) are shown to underlie the area south of Highway 6 east of Lumby.

The Upper Triassic Slocan Assemblage rocks unconformably overlie the Thompson Assemblage rocks at Lavington (eight kilometres west of Lumby), in a fault-bounded block, to testify to a Permo-Triassic episode of uplift and deformation. The Sicamous Formation, found in the vicinity of Shuswap Lake (type locality) and shown to underlie most of the OK and HAZ 5 claims, consists of unfossiliferous graphitic and phyllitic limestone (uT_RSc), calcareous and argillaceous phyllite, sericitic schist, shale and tuff (uT_RSp) ; c = carbonate, p = pelite, cp = carbonate lens in Structures in this unit are developed at all scales. pelite. Bedding and subparallel foliation are ubiquitous. Fine laminar compositional layering and attenuated isoclinal folds are common. Late and latest structures present in the Sicamous Formation are,

for the most part, the same as in adjacent units. An eastsoutheast trending synclinal axis traverses the northeast corner of the OK and HAZ 5 claims, subparallelling the Silver Star Anticlinal Axis to the north in the vicinity of Vance Creek. Most of the pelitic and other sediments in the OK and HAZ 5 claims lie on the southwest limb of the syncline or synclinorium. The Silver Star Anticline trends east-southeast, plunging gently in that direction (Okulitch et al, 1987).

Early Jurassic diorite and Jurassic granite is exposed two kilometres east of the HAZ 5 claim, but no intrusives are shown within the OK and HAZ 5 claims (Okulitch et al, 1987).

No Tertiary Kamloops Group volcanic caprocks are known to occur within the OK and HAZ 5 claims (Okulitch et al, 1987).

No mineral occurrences are known to occur within the OK and HAZ 5 claims, but anomalously high Ag and Cu stream sediment values are shown in the Vance Creek and Deafies Creek areas (Okulitch et al, 1987).

8.0 OBJECTIVES & METHODOLOGY

8.1 Geology

The objective of the geological surveying of the Deafies Creek Grid and adjacent areas is to locate additional outcrops and possible mineralization within this high priority area along strike of known Deafies Creek mineralization in the vicinity of the two drill holes and the trenched/ stripped area along strike of the Quinto Vance airborne electromagnetic anomaly. Any mineralization encountered in areas of shallow overburden, with or without spatiallycoincident VLF-EM conductors and/or soil geochemistry anomalies, would warrant future stripping, trenching and diamond drilling programs. Analyses of mineralized and, to a lesser extent, barren rock samples for precious and base metals is warranted; much care being used to perform the gold analyses after suitable sample preparation on a large enough representative sample.

Composite sampling of outcrops on the Deafies Creek Grid and adjacent areas was carried out and the outcrops, subcrops or (rarely) float were sampled. Two or three fist-sized rocks weighing less than 10 pounds comprised samples that were collected. Lithology, colour, texture, structure, structural attitudes, mineralogy, alteration and mineralization were noted.

A total of 5.0 line-kilometres of grid geology at a scale of 1:2500 was carried out along the north-south crosslines and the east-west Base Line of the newly-created 1992 Deafies Creek Grid. Additional

1:20,000 scale geological mapping was carried out elsewhere on the OK and HAZ 5 claims.

Samples were sent to Chemex Labs in North Vancouver for sample preparation and precious and base metal analyses. The sample preparation method involved crushing the sample to better than 60% -10 mesh followed by sample splitting and carbon steel plate pulverization of a 400 gram sample to better than 90% -150 mesh. Use of a large 400 gram sample weight allowed for nugget or free gold effects and was essentially the same as the 1991 sample preparation. The analyses for gold was performed with a 10 gram sample, nitric acid- aqua regia digestion, fire assay with an atomic absorption finish and a lower detection limit of 5 ppb Au (all, as in 1991). Analyses for cobalt, copper, iron, lead, manganese, molybdenum, nickel, silver and zinc were performed (as in 1991) by induced coupling plasma (ICP) - Chemex' package "ICP-9" - following aqua regia digestion. Results were expressed in ppb, ppm and % (Fe only). The shipment of rocks was hand-delivered to Chemex on June 30, 1992. Instructions were given at that time to discard coarse rejects after 30 days and pulps after 90 days.

Outcrop, subcrop and float locations; sample numbers; structural attitudes and geochemical results were plotted on a 1:2500 scale geology map (Map 6) and on the Line 0+00 geological-geophysical-geochemical 1:2500 scale profile (Map 7).

8.2 VLF-EM Geophysics

The objective of the VLF-electromagnetic surveying is to follow east-west shear zones associated with precious and base metal mineralization from the (Quinto airborne electromagnetic) Vance Zone west onto the OK and HAZ 5 claims. The narrow Au-Ag-base metal exploration target demands a tight 60 metre (line-spacing) by 15 metre (station-spacing) grid. The possibilities of variations in strike directions of major east-west conductors and of crossstructures demand the use of both Seattle and Annapolis remote transmitters.

A total of 3.0 line-kilometres of two-station EM-16 surveying was carried out in June 1992 on the newly-created Deafies Creek Grid in the OK and HAZ 5 claims along north-south crosslines spaced 60 metres apart and at a station-spacing of 15 metres. The remote fixed transmitters at Seattle, Washington and Annapolis, Maryland were both used. These survey parameters are identical to those employed at the Saddle Mountain and Rawlings Lake Grids in 1987, 1991 and 1992. The coverage involves the central five of the seven 600 metre long lines, Lines 0+60W through 2+40E (inclusive) between 3+00N and 3+00S.

A very experienced geophysical operator, Mr. Ted Larose, carried out the VLF-EM surveying. Mr. Larose had previously carried out

and/or supervised the 1987 geophysical surveying of the Saddle Mountain Grid on the BS-3 claim.

The instrument was rented from the manufacturer/ distributor, Geonics Limited of Mississauga, Ontario. With the exception of the scheduled maintenance on Tuesdays (Annapolis) and Thursdays (Seattle), the signals from the remote fixed transmitters proved to be very strong and reliable throughout duration of the survey. Since Seattle is cardinal southwest from ther grid, its signal couples well with both north-south and east-west conductors. It is sensitive to conductors oriented in the northeast and southwest quadrants (i.e. crossfaults) as well as the predominant mineralization-related (?) conductive shear zones oriented in the northwest and southeast quadrants. Since portions of the major conductors trend east-southeast/ west-northwest, better coupling can sometimes be afforded by use of the Annapolis remote fixed transmitter located at 110° azimuth to the grid.

The raw in phase and quadrature data was plotted on 1:2500 scale maps for both Seattle (Map 8) and Annapolis (Map 10). Line 0+00 passing through Diamond Drill Hole 290-2 and the lower trench (stripping) had its VLF-EM raw data collated with geology and soil geochemical results; these appear on Map 7 of this report.

The in phase data was Fraser-filtered following data entry, using Lotus 1-2-3 software and simple mathematical formulae (as was done in 1991). The Fraser-filtered in phase data was contoured at +20 intervals (the auxiliary +10 contour was also used). The 1:2500 scale Fraser-filtered in phase component data maps for Seattle and Annapolis also accompany this report (Maps 9 and 11, respectively). Conductor axes were superposed on Maps 8 through 11, inclusive.

This survey represents the first-ever ground electromagnetic geophysical survey carried out on the OK and HAZ 5 claims.

8.3 Soil Geochemistry

In June 1992, 21 routine horizon B soil samples were collected along Line 0+00 at 15 metre intervals between 1+50N and 1+50S on the Deafies Creek Grid on the OK claim side of the OK- HAZ 5 claim boundary. One field duplicate was also collected at 1+50S to test precision, for a total of 22 routine and quality control samples.

Existing 1:250,000 and other scale surficial geology maps reveal that the sampling area contains mineral soil, basal till, drift and bedrock. It does not contain far-travelled alluvial and glaciofluvial deposits.

Orientation soil survey parameters had to be modified in the field.

Horizon A soils were not available in the 1992 survey area and this orientation survey was limited to horizon B soils only. Due to severe budget limitations, it was not possible to examine the effects of different size fractions (the standard -80 mesh fraction material was used for all samples). The exploration target and model (Chaput/Quinto Deposit) involves complex elemental associations (Au-Ag-Cu-Pb-Zn-Mo-Fe) and it is not well known which elements will be the best exploration pathfinder elements. Owing to the different mobilities of these elements, it is likely that a combination of two or more elements will prove to be the most Thanks to the relative low cost of current ICP multiuseful. element analyses, this multi-element survey parameter was not compromised.

Mineral-rich horizon B soils with relatively few exotic, fartravelled pebbles and cobbles were readily and ubiquitously available at depths of less than 60 centimetres, permitting manual sampling by spaded shovel.

Sampling was carried out on the tight 15 metre station-spacing to permit detection of narrow alteration haloes known to accompany small gold-silver vein deposits by more than one sample site. The wider 25 to 50 metre sample station-spacing used by Quinto and other companies frequently yields enigmatic single-point anomalies which are difficult to interpret and use as supporting evidence to geology and geophysics for the purpose of follow-up trenching and drilling.

Sample and sample site descriptions were made on geochemical sampling cards designed by the author and the data was entered into a Microsoft Works database as per the cards. Sample number, sample location, sample date, sample status (routine versus quality control), overburden thickness, physiography, forest cover, drainage, slope, soil horizon, sample depth, sample colour and stain, sample composition, contamination and comments comprise the field component of the database. Geochemical results from Chemex Labs comprise the lab component of the database. Both components are in a common database file and can be cross-referenced and queried.

Abnormally dry 1992 Okanagan weather conditions resulted in almost completely dry soil samples and it was not necessary to dry sample sin the field. Following overnight drying at Chemex Labs in North Vancouver, the soil samples were sieved to -80 mesh and 10 gram samples were analyzed for Au by fire assay with an atomic absorption finish (lower detection limit of 5 ppb Au). Following aqua regia digestion, soil samples were analyzed for Al, Sb, As, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Ga, Fe; La, Pb, Mg, Mn, Hg, Mo, Ni, P, K, Sc, Ag, Na, Sr, Tl, Ti, W, U, V and Zn by ICP analyses (Chemex' "ICP-32 package"). The shipment of soils was handdelivered on June 30, 1992. Instructions were given at that time to discard coarse rejects after 30 days and pulps after 90 days.

Sample sites and geochemical results are plotted on Map 7, along with geological and geophysical data from Line 0+00 on the Deafies Creek Grid.

9.0 RESULTS

9.1 Geology

Geological mapping of the newly created Deafies Creek Grid and adjacent areas within the OK and HAZ 5 claims was carried out in the vicinity of the existing two trenches and two drill holes, as well as along strike of this known mineralization within the western strike extension of Quinto Mining's Vance (VLF-Electromagnetic Anomaly) Zone. A total of five rock samples were collected and sent to Chemex Labs in North Vancouver for sample preparation and analyses for base and precious metals. Results appear in Map 6.

The OK and HAZ 5 claims are underlain by Upper Triassic Slocan Group, Sicamous Formation (meta)pelite or "argillite" (uT_gSp); prior to Okulitch et al (1987), these rocks were assigned to the Cache Creek Group argillite. Andesite flows and tuff are known to occur, principally in the HAZ 5 claim. These are intruded by granitic to granodioritic rocks, notably in the OK claim in the west and in the north half of the Deafies Creek Grid. These are cut by east-west trending quartz veins and shear zones, best exposed in the strippings in the east-central OK claim near Drill Holes 289-1 and 290-2 almost due north of Kilometre 3 on the Deafies Creek Road. The stripping just north of Drill Hole 290-2, with base and precious metal mineralization in an east-west quartz vein subparallelling the sheared argillite-granodiorite contact, is the origin (Base Line 0+00) of the Deafies Creek Grid. Crosscutting relationships between the volcano-sedimentary sequence and the later acid intrusives can be seen along and near the power line in the western OK claim, near and "under" gravel roads.

Sicamous Formation metapelite (argillite) outcrops along the Deafies Creek Road between the power line and Kilometre 3, and south along the power line road. The argillite is black with ochre staining along limonitized fractures. It is fine-grained to very fine-grained and aphanitic in texture. The unit exhibits strong pervasive carbonatization; limonitization, hematization and bleaching (sericitization?, kaolinitization?). The limonite may be after primary pyrite. No mineralization is visible, generally, but Samples A-92-5 and A-92-6 contain 10 to 35 ppb Au, 1.5 ppm Ag, 42 to 97 ppm Cu, 3.28% to 3.71% Fe, 2 to 13 ppm Mo, 10 to 12 ppm Pb, and 96 to 311 ppm Zn. All values are somewhat elevated. Refer to Map 6.

The argillite is typically laminated (striking 286° to 317°, dipping 25° northeast to 25° southwest). The northeast dips come from the south limb of the east-west trending syncline whose axis is south of and subparallel to the Silver Star Anticline. The southwest dips are likely from the south limb of the next anticline to the south. The wavy, undulating, subvertically-dipping contact between argillite and granodiorite near Base Line 0+00 averages 0400 and is subparallel to the orientation of the quartz veins and shear zone.

Granodiorite of unknown age, not shown on maps of Okulitch et al (1987), is exposed in the northern and eastern portions of the Deafies Creek Grid (Line 0+60W between 2+25N and 2+55N, Line 2+40E at 1+05S). This intrusive has 10% dark minerals (mostly biotite), is medium- to coarse-grained, has a phaneritic texture and is massive in structure. It is weakly to moderately calcareous and, with the exception of hematization and limonitization along fractures, is fairly fresh. The unit is barren of mineralization. Three samples collected from this unit (Samples D-92-16,-17; A-92-7) contain less than 5 ppb Au, up to 0.5 ppm Ag, up to 101 ppm Cu, up to 6.13% Fe, up to 5 ppm Mo, up to 10 ppm Pb and up to 92 ppm Zn. Sample D-92-17 on Line 0+60W at 2+55N is more altered (kaolinitization, hematization), non-calcareous, finer-grained (andesitic subvolcanic?), lower in dark mineral content (5% only) and contains the maximum silver, copper, iron, lead and zinc values of the three samples. Refer again to Map 6.

The spatial correlation between the granodiorite-argillite contact in the vicinity of Base Line 0+00, VLF-EM conductors and ironpotassium soil geochemistry anomalies is dealt with in Section 10 (Discussion). Refer to Map 7.

9.2 VLF-EM Geophysics

VLF-EM profiling of Line 0+00 on the Deafies Creek Grid (Map 7) shows that, if the Annapolis station datum line were shifted (translated) from 0 to +20%, there would be several cross-overs of the in-phase component (several Fraser-filter contour anomalies **do** exist). Fraser-filter anomalies "peak" at 1+73S (+18), 1+28S (+20), 0+53S (+38), 0+82N (+20) and 1+42N (+33). The Seattle station data yields similar results with Fraser-filter anomaly "peaks" at 2+33S (+5), 0+68S (+36), 1+72N (+35) and 2+17N (+48). A subtle conductor at Base Line 0+00 is noticeable on both Annapolis and Seattle transmitters and may be the VLF-EM response to the shear zone and quartz vein exposed in the stripping.

The 3.0 line-kilometre survey (Maps 8-11) of the central five lines of the seven crossline Deafies Creek Grid (e.g. Lines 0+60W, 0+00, 0+60E, 1+20E and 1+80E) successfully detects four east-west trending conductors, Conductors A through D. These are tabled

below:

Conductor	N-S Loc.	E-W Loc.	Magnitude	Туре	Zone
A *	0+10S - 1+25S	0+90W - 2+10E	< +67	Shear- Sulphide	Vance Ck.
В	1+00N - 0+50S	0+30W - 2+10E	< +48	Shear	Vance Ck.
C*	2+00N - 1+20N	0+90W - 2+10E	< +38	Sulphide	Vance Ck.
D	2+75N - 2+00N	0+30E - 2+10E	< +50	Shear	Vance Ck.

• Conductors are "open" to the west and east. Minimum 300 metre strike length.

The magnitudes of east-west trending Deafies Creek conductors are moderately strong and include both shear zone and sulphide type conductors. From the symmetry and "half-widths" of VLF-EM profiles and Fraser-filter contours, the conductors are subvertical and have depths of 30 metres or less. Overburden is very thin and conductors are likely significant shear zone and sulphide bedrock conductors.

The conductors shift location slightly depending on the coupling and the remote fixed transmitter station. The conductors may bifurcate at some locations, and the conductors give the impression of being a network or stockwork of generally east-west oriented conductors.

Conductors A and C are "open" to both the east and west, at present. Extensions of the Deafies Creek Grid in both directions are required to determine their strike length (and possible, tonnage potential).

Conductor A, the best conductor, lies south of Diamond Drill Hole Z90-2. The hole was drilled on a northerly bearing (it actually had a final bearing of N5°E) to test the down-dip extension of the surface mineralization in the stripping near Base Line 0+00. This mineralization may be peripheral to a larger zone of mineralization located to the south. Using the collar of Hole Z90-2, another hole drilled with a southerly bearing might intersect mineralization narrowly missed by this drill hole.

The database suggests that Seattle transmitter yields **stronger** conductors while Annapolis transmitter yields **more** conductors. The

transmitters couple differently with conductors depending upon their orientation. The extra time and cost of using both transmitters appear to be well invested.

9.3 Soil Geochemistry

Twenty-one routine and one quality control samples collected at 15 metre intervals along Line 0+00 on the Deafies Creek Grid yield an eight station (120 metre wide) iron-potassium-copper-zinc anomaly between 0+60N and 0+45S (Samples 921007 through 921014, inclusive). Gold and silver values are at or below the lower detection limits of 5 ppb Au and 0.2 ppm Ag throughout the survey. Lead, arsenic and molybdenum values remain subdued even within the ironpotassium-copper-zinc anomaly to levels of 10 ppm Pb, 36 ppm As and 4 ppm Mo.

Querying the database, it is observed that copper values in excess of 150 ppm are observed on Line 0+00 between 0+60N and 0+60S in soils overlying both granodiorite and argillite. This thin veneer of brown B horizon soils sampled at depths between 20 and 30 centimetres is comprised of 20% to 30% coarse material, 60% to 80% fines and 0% to 10% organics. These contain less than 5 ppb Au, up to 0.2 ppm Ag, up to 36 ppm As, 162 to 172 ppm Cu, 5.35% to 5.44% Fe, 0.40% to 0.46% K, 1 to 3 ppm Mo, 4 to 6 ppm Pb and 156 to 170 ppm Zn.

Zinc values in excess of 200 ppm are observed on Line 0+00 between 1+50N and 0+60S in soils overlying both granodiorite and argillite. This thin veneer of brown B horizon soils sampled at depths between 20 and 30 centimetres is comprised of 20% to 30% coarse material, 60% to 70% fines and 10% organics. These contain less than 5 ppb Au, up to 0.2 ppm Ag, 10 to 32 ppm As, 46 to 118 ppm Cu, 3.02% to 4.67% Fe, 0.20% to 0.40% K, 1 to 4 ppm Mo, 4 to 10 ppm Pb and 218 to 318 ppm Zn.

No control reference sample exists to test accuracy in this small 22 sample survey. Samples 921020 and 921021 are field duplicates taken on Line 0+00 at 1+50N to test precision. Twenty-nine of 31 elements are in fairly good agreement; differences do exist for phosphorus (1190 ppm, 1300 ppm) and lead (10 ppm, 4 ppm), raising some concern about the precision of these induced coupling plasma lead analyses.

10.0 DISCUSSION

Previous geological mapping surveys have confirmed the existence of base and precious metal quartz vein- and shear- related mineralization with an east-west trend. Mineralization is related to gossans, carbonate-veinlets, silicification and fracture-related

pyrite, pyrrhotite, chalcopyrite and other sulphides within quartz veins and sheared (+/- graphitic) argillite.

Previous stripping, trenching and diamond drilling was not guided by systematic grid surveys. The discovery was largely the result of good luck. The 1992 geological, geophysical and geochemical grid surveys on the newly-created Deafies Creek Grid have improved understanding of the exploration potential of the Deafies Creek area, and guide future trenching and diamond drilling.

The geological surveying on the Grid proved to be disappointing; few outcrops and no new mineralization could be detected. Argillite outcrops sampled further west along the Deafies Creek and power line roads yield moderately elevated base and precious values.

Four moderately strong east-west trending VLF-EM geophysical conductors are present in the area of the sheared contact between argillite and granodiorite. Conductors are subvertically-dipping and relatively shallow bedrock shear and sulphide type conductors. Conductor A, the best VLF-EM conductor on the grid is south of the stripping near Base Line 0+00 and Diamond Drill Hole 290-2. The mineralized quartz vein exposed in the stripping near Base Line 0+00 was the target for the 1990 drill hole. It appears that the hole maybe should have been drilled on a southerly bearing rather than a northerly one and that the exposed mineralized quartz vein may be peripheral to a larger zone of mineralization to the south Refer to Maps 8 and 9 (Seattle that was missed by the drill. transmitter, raw and Fraser-filtered data), and Maps 10 and 11 (Annapolis transmitter, raw and Fraser-filtered data).

Map 7 reveals that an iron-potassium-copper-zinc soil geochemical anomaly exists on Line 0+00 between 0+60N and 0+60S (in the vicinity of the sheared argillite-granodiorite contact), while gold, silver, lead, arsenic and molybdenum values remain subdued. The anomaly is an eight-point (120 metre wide) anomaly, and could have been detected as a multi-point anomaly at a 25 metre (or even 50 metre) station-spacing. The orientation soil geochemical survey reveals that A horizon soils are not an available sample media, but mineral-rich B horizon soils are readily sampled by manual (shovel) The most valuable elements are gold, silver (both techniques. negative information, in this case), copper, lead, zinc, arsenic, molybdenum, iron and potassium. Potassium values are sensitive to proximity to gold mineralization (Kerrich, 1989). A 25 metre sampling interval along crosslines is a compromise between 50 metres (too "loose" sampling interval used by Quinto) and 15 metres (too "tight" sampling interval used in the 1992 Zicton orientation soil sampling surveys); it is probably the most cost-effective sampling interval for this area.

11.0 RECOMMENDATIONS

The author recommends western and eastern extensions of the Deafies Creek Grid with the same east-west baseline passing through the previous trenched area, a 60 metre line-spacing and a 15 metre station-spacing. VLF-EM Conductors A and C are both "open" both to the west and east, and require delineation. The 15 metre stationspacing is necessary for outcrop and conductor location control.The necessary western and eastern extensions should occur in stages and should "tie off" all sheared (+/- mineralized) contacts, moderate to strong VLF-EM conductors and B horizon soil anomalies.

Geological mapping (at a scale of 1:2500), magnetometer surveying (to aid in mapping the volcano-sedimentary and intrusive magnetic lithofacies and, possibly, detect magnetite destruction to limonite within shear zones), VLF-electromagnetic surveying (to detect shear zones and sulphide mineralization), and soil sampling are recommended.

A 25 metre soil sample station-spacing appears adequate to detect multi-point, multi-element anomalies, and more cost-effective than the "tighter" 15 metre spacing. This should be carried out in selected areas with sheared geologic contacts and/or VLF-EM conductors.

Stripping, trenching and (eventual) diamond drilling would follow favourable results on the Grid. Stripping and trenching to enlargen existing trenches would be warranted as early as the next field season.

Submitted by:

ALLEN GEOLOGICAL ENGINEERING LTD.

Per Douglas R.Halliwell, M.Sc.A., P.Geo.

An Ollen Alfred R Allen, M.A.Sc., P.Eng.

July 31, 1992.

REFERENCES

- Allen, A.R. The Lumby Property. Vernon M.D., Zedco Petroleums Ltd., July 1984.
- Allen, A.R. Magnetometer and Electromagnetic Surveys, Zicton Gold Ltd., July 1987. Assessment Report 16349.
- Allen, A.R. Magnetometer and Electromagnetic Surveys #2, Zicton Gold Ltd., June 1988. Assessment Report 17816.
- Allen, A.R. The Lumby Property, Vernon M.D., B.C., Zicton Gold Ltd., May 1987 (revised).
- Allen, A.R. The Lumby Property-Diamond Drilling Report, Zicton Gold Ltd., BS-3 Claim, August 1990. Assessment Report 20385.
- Halliwell, D.R. Geology & Prospecting Report, The Lumby Property, & Allen, A.R. OK and HAZ 5 Claims, July 1991. Assessment Report 21561.
- Jones, A.G. G.S.C. Memoir 296, Vernon Map Area.
- Kuran, D.L. Assessment Report, BS and PS Claim Groups, Vernon Mining Division, 1986.
- Kuran, D.L. Lumby Project, Lumby B.C., NTS 82L/7W, Phase III Exploration, Quinto Mining Corporation, May 1, 1987.
- Landsberg, N.R. Geology, Geophysics, Geochemistry, Trenching. November 24, 1983.

Okulitch, A.V. G.S.C. Open File 637. 5 Sheets. May 1987. et al.

- Schiller, P. Assessment Report on the P.S. and B.S. Claims & Bradley, M. Group, Lumby Project. Assessment Report 20727.
- Smith, P.A. Airborne Survey, Mag and EM, Quinto Mining Corp., Lumby Project, Dighem Surveys & Processing Inc. of Mississauga, Ontario, October 1986.
- White, G.E. Vector Pulse Electromagnetic Survey, Chap. 8 (BS-3 Claim, 1984.

COST STATEMENT

ZICTON GOLD LIMITED

June 1992

OK & HAZ 5 Claims

P.A.C. ACCOUNT	May 307 of SRA	ND TOTAL or REMAINING P.	.A.	C. ACCT.	=	\$0.0
GRAND TOTAL						\$5,285.9
					\$1,345.05	
	Office Rental	Pender Executive Centre	- e=	\$100.00		
	ractocopies Reproductions	Victoria,Mississauga,E Report Copies, Etc. Map Copies, Etc.	=	₽3.00 \$77 50		
	lelephone Photoscoiss	Victoria, Mississauga, El	=	\$24.24		
	Secretarial	Final Report Assembly	=	\$40.00		
		DraftingPens,Film,Etc.				
	Draftsman	1.0d.x\$175/d.x1.07	Ξ	\$187.25		
	<pre>Prep(Halliwell)</pre>	0.5d.x\$275/d.x1.07	=	\$147.13		
Administrative Work	Prep(A.R.Allen)	0.25d.x\$400/d.x1.07 0.5d.x\$275/d.x1.07	=	\$107.00		
Incl. Preparation,	D.R.Halliwell	0.5d.x\$250/d.x1.07 1.0d.x\$275/d.x1.07	=	\$294.25		
	Admin.(P.Allen)	0.5d.x\$250/d.x1.07	=	\$133.75		
REPORTING	A.R.Allen	0.5d.x \$400/d. x1.07	=	\$214.00		
	TOTAL	Spinviouin+1/0/UINLIV/			\$1,737.53	
	Field Assts.					
នេះស ករបកិ	D.Halliwall	0.625d.x\$275/d.x1.07	-	#73.03 \$183.90		
Incl.Assessment Work Recording	A.R.Allen P.Allen	0.5d.x\$400/d.x1.07 0.5d.x\$175/d.x1.07				
Ing) Accessed Will	Meals A D Allas			\$427.50		
Vancouver-Lumby	Matel			\$381.25		
TRAVEL EXPENSES	Vehicle			\$250.00		
	TOTAL			=	\$569.93	
	Analyses	22soilx\$18.24/soilx1.13				
8 Horizon Soils	Field Supplies	Bags, Shovel, Etc.	=	\$22.88		
SECCHEMICAL SURVEY	Field Assts.	0.5d.x\$175/d.x1.07	=	\$93.63		
RIENTATION SOLL	D.R.Halliwell	0.0d.x\$275/d.x1.07	=	\$0.00	77701/V	
	TOTAL		-	=	\$536.75	
and the A	Freight	AirCanada.Concord-Van.				
)ata Entry	Field Supplies			\$280.88 \$0.00		
Field Measurement +		1.5d.x\$175/d.x1.07				
VLF-IM GEUPHYS.SUKVEY Seattle & Annapolis Tx		0.25x3wks.x\$275/wk.x1.0 0.0d.x\$275/d.x1.07				
HELTH DEGRUND CURPEN	TOTAL	A GEN7.464	~7	=	\$328.79	
		FlagTape,Wireflags,Etc	,=		1755 TO	
	Field Assts.	0.75d.x\$175/d.x1.07	=	\$140.44		
	D.Halliwell	0.5d.x\$275/d.x1.07	Ξ	\$147.13		
	C Allan	- A A	-	8 0 00		
SRID CONSTRUCTION	A.R.Allen	0.0d.x\$400/d.x1.07	Ŧ	\$0.00		
	TOTAL			=	\$767.88	
	Analyses	4rx.x\$20.26/rk.x1.13				
		Topos, Photos, ClaimMaps				
		PlasticBags,Hammer,Etc.				
	Field Acste	0.75d.x\$275/d.x1.07 0.5d.x\$175/d.x1.07	-	\$220:07 \$97 47		
JY 10 / RECCE	P.Allen			\$93.63		
Grid > Recce			_			
	8.K.81160	U.30.X\$400/0.X1.0/	=	\$214.00		
GEOLOGY/PROSPECTING	A.R.Allen	0.5d.x\$400/d.x1.07	=	\$214.00		

Ţ

[,

Γ

Γ,

[]

Γ

Γ

GEOLOGY/PROSPECTING Srid > Recce		=======================================	June 29/92	
Srid > Recce	A.R.Allen	0.5d.x\$400/d.x1.07 =	\$214.00	
C: II / ALLEL	P.Allen	0.5d.x\$175/d.x1.07 =	\$93.63	
	D.Halliwell		\$147.13	
	Field Assts.	0.25d.x\$175/d.x1.07 =		
		PlasticBags, Hanner, Etc.=		
	Maps	Topos, Photos, ClaimMaps =		
	Analyses	1rk.x\$20.26/rk.x1.13 =	\$22.89	4515 73
GRID CONSTRUCTION	TOTAL A.R.Allen	0.0d.x\$400/d.x1.07 =		\$565.32
OUTH FONSINGFION	P.Allen	0.0d.x\$175/d.x1.07 =		
	D.Halliwell	0.0d.x\$275/d.x1.07 =		
	Field Assts.	0.5d.x\$175/d.x1.07 =		
		FlagTape,Wireflags,Etc.=		
	TOTAL		=	\$114.24
VLF-EM GEOPHYS.SURVEY	VLF-EM Rental	0.125x3wk.x\$275/wkx1.07=	\$110.34	
Seattle & Annapolis Tx		0.0d.x\$275/d.x1.07 =	\$0.00	
Field Measurement +	Field Asst.	0.5d.x\$175/d.x1.07 =		
Data Entry	Field Supplies		*****	
	Freight	AirCanada.Concord-Van. =		4004 EJ
ODIENTATION COT	TOTAL		=	\$221.56
ORIENTATION SOIL GEOCHEMICAL SURVEY	D.R.Halliwell Field Assts.	0.0d.x\$275/d.x1.07 = 0.0d.x\$175/d.x1.07 =		
B Horizon Soils		Bags,Shovel,Etc. =		
	Analyses	0soilsx\$18.24/soilx1.13=		
	TOTAL		=	\$0.00
TRAVEL EXPENSES	Vehicle	0.125x\$1000 =	\$125.00	
Vancouver-Lumby	Motel		\$190.63	
	Meals	0.125x\$1710 =	\$213.75	
Incl.Assessment Work	A.R.Allen	0.25d.x\$400/d.x1.07 =	\$107.00	
Recording	P.Alien	0.25d.x\$175/d.x1.07 =		
	D.Halliwell	0.375d.x\$275/d.x1.07 =		
	Field Assts.	2p.x0.25d.x\$175/d.x1.07=		
000071V0	TOTAL	A 653 AAAA/1 / AT	=	\$887.16
REPORTING	A.R.Allen		\$107.00 \$66.88	
Incl. Preparation,			\$147.13	
Administrative Work		0.125d.x\$400/d.x1.07 =		
	•		\$73.56	
	Draftsman		\$93.63	
	Office Supplies	DraftingPens,Film,Etc. =		
	Secretarial			
	Telephone	Victoria, Mississauga, Et=	\$24.24	
			\$5.00	
			\$18.75	
		Pender Executive Centre=		
	TOTAL		=	\$784.62
GRAND TOTAL				=

 $\left[\right]$

[

ſ

1.....

Γ

-

[,

ſ

MAN-DAYS OF APPLIED ASSESSMENT WORK

T.

ſ

L

D.R. Halliwell June 29/92 ×

Activity =======	OK Claim =======	HAZ 5 Claim	Total
Geology/Prospecting	2.25	1.75	4
Grid Construction	1.25	0.5	1.75
VLF-EM Geophysics/DataEntry	1.5	0.5	2
Soil Seochemistry/DataEntry	0.5	0	0.5
Travel	1.625	1.375	3
Reporting/Drafting/Prep.Work	3.25	1.975	5,125
TOTAL	10.375		16.375

FIELD PERSONNEL (Zicton Properties)

Name	Dates		
====	22222		
Alfred Allen	June 17-24		
Paul Allen	June 17-24		
Douglas Halliwell	June 16-30		
Ted Larose	June 16-29		
Rapon Penacoba	June 16-29		

CERTIFICATE

1155 Lillooet Road North Vancouver, B.C. V7J 3H7.

July 31, 1992

I, Douglas R. Halliwell, certify that:

I am a graduate of McGill University and hold the following degrees therefrom:

B.Sc., Geological Sciences, 1976. M.Sc.A., Mineral Exploration, 1980.

I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I am a Fellow of the Geological Association of Canada.

I am a Member of the Canadian Institute of Mining and Metallurgy and the Association of Exploration Geochemists.

I have practiced my profession since graduation.

I hold no interest in the property or securities of Zicton Gold Limited or affiliates thereof, nor do I expect to receive any, directly or indirectly.

The report on the Lumby Property, Vernon Mining Division, B.C. is based on examination of the property by the writer on June 16, 1992 - June 30, 1992 and familiarity with the property since March 1991.

Douglas 9. Halliwell, M.Sc.A., B.Sc., P.Geo., F.G.A.C.

CERTIFICATE

525 Clyde Avenue West Vancouver, B.C.

July 31, 1992.

I, Alfred R. Allen, certify that:

I am a graduate of the University of British Columbia and hold the following degrees therefrom:

B.A.Sc., Geological Engineering, 1939. M.A.Sc., Geological Engineering, 1941.

I am a Life Member of the Association of Professional Engineers of the Province of British Columbia.

I have practiced my profession since graduation.

I hold no interest in the property or securities of Zicton Gold Limited or affiliates thereof, nor do I expect to receive any, directly or indirectly.

The report on the Lumby Property, Vernon Mining Division, B.C. is based on examination of the property by the writer on June 17, 1992 - June 24, 1992 and on familiarity with the property since 1984.

Lipzon Mus Lien M.A.Sc., B.A.Sc., P.Eng.

CONSENT LETTER

July 1992

The British Columbia Securities Commission Vancouver, B.C.

Dear Sirs:

Re: Zicton Gold Limited

I hereby consent to the use of my report of July 31, 1992 on the Lumby Property, Vernon Mining Division, B.C. in any prospectus or statement of material facts or other material to be filed with the British Columbia Securities Commission, or the Vancouver Stock Exchange, by Zicton Gold Limited.

Yours truly,

ALLEN GEOLOGICAL ENGINEERING LTD.

Per:

Allen P. Eng. Alfred R. Al

Zictonrfr/Allen

Appendix I

Laboratory Geochemistry Report. Rock Samples

Ansiytical Chemists * Geochemists * Registered Asseyers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: ALLEN GEOLOGICAL ENGINEERING LIMITED

827 W. PENDER ST. VANCOUVER, BC V6C 3G8

Project : ZICTON GOLD Comments: CC: DOUGLAS HALLIWELL Page Number :1 Total Pages :1 Certificate Date:09-JUL-92 Invoice No. :19216931 P.O. Number : Account :MD

...

					..	.		CERTI	FICATE	OF AN	ALYSI	5	A921693	51	
enere	PREP CODE	ла ррб Гл+1л	hg Jym	Co pym	Cu ppm	70 2	Nin. 1958	lio 1998	sti ppm	Pb ppm	In ppn	Au FA os/T			
A-92-01	275 274	< 5	< 0.5	< 1	11	0.50	60	1	24	4	4		1		
7-63-63	378 374		0.6	4	13	2.07	555	< 1	4	4	64		1	ł	1
A-92-03	275 274			1 3	17	2.90	800	1 2		4	H				
2-92-04 2-92-05	275 274 275 274	15	0.5 1.5	3	20 97	2.71 3.71	405 415	2	10 40	2	56 314			İ	
A-92-06	275 274	10	1.5	3	42	3.20	210	2	9	10	96				+
1-92-07	275 274	< 5	< 0.5	7	6	3.87	1210	< 1	9	< 2	80			ł	
D-92-01	275 274	1.5	1.0		100	5.22	825	<1	41	10	120				
D-92-02	275 274	< 5	< 0.5		67	3.95	1040	<1	36	10	94	+		1	ł
D-92-03	275 274	< \$	0.5	5	51	4.02	675	< 1	10	10	60				
D-92-04	275 274	< 5	0.5	20	140	3.09	410		67	4	82				
D-92-05	275 274	< 5	< 0.5	12	28	5.23	1350	< 1	15	2	92		i	1	
D-92-06	275 274	< 5	< 0.5	4	36	2.67	945	< 1			40			F	
D-92-07	275 274	< 5	< 0.5	5	33	3.05	725 350		9	4	42				
D-92-08		95	1.9			ļ			L				ļ		
D-92-09	275 274	< 5	< 0.5	11	97	5.29	950	< 1	44	4	76				
D-92-10	275 274	4670	3.0	45	12	11.30	2590	<1	14	26	42				
D-92-11	275 274	>10000	0.0	35	11	14.00	190	< 1	11	66 >10000	20 >10000	0.410			
D-92-12	275 274	>10000	92.5		9	>15.00	335 745		12	282	478	0.310			1
D-92-13		90	2.0												
D-92-14	275 274	< 5	< 0.5	11	79	6.09	980	< 1	96	4					ļ
D-92-15	275 274	< 5	0.5	9 23	43	3.44	715 1290		10	11 2	62 92				1
D-92-16 D-92-17	275 274	< 5	< 0.5	20	101	6.13	1075		13	10	72				
2-92-01	275 274	< 5	< 0.5	19	89	5.88	1025	1	67	4	84				
3-92-92	275 274	< 5	0.5	•	19	2.86	035	<1	,	•	40				
3-92-93	275 274	< 5	0.5	7	55	3.27	635	< 1	12	10	34				
R-92-04	275 274	< 5	0.5	20	99	3.44	560	< 1	30	4	86				
															·
			1						l l						
															1
												1			
		ŀ	1						F						1
													4		1
								ŀ					1		1
		1											1		1
		1	1												1
			1 1												
		1										_			
												1.1		Ana	
														+ VIA	

CERTIFICATION:

Appendix II

VLF-EM Raw & Fraser-Filtered Data

-

LINE 0+60W Seonics EM-16 Operator: T. Larose DEAFIES CREEK GRID. EM-16 SURVEY. ANNAPOLIS Tx Date: June 28/92 Facing remote Tx. Fraser-Filtering -----Station Terrain InPhase Guad. Sum(Stat.+7.5) Diff.(Alt.Ent.)=Result -----****** -300 Main Road -285 2ndGrowth, Up -270 -255 Timber.Deadfall -240 Deadfall -225 -210 N Edge Timber -195 2nd6rowth -4 -180 -6 -165 -6 Ą -150-5 -135 Cat Road -4 -120 2ndGrowth -2 -105 -90 Thick 2ndGrowth -4 -6 -75 -11 -50 Road -1 -9 -45 2ndGrowth Ű. -30 Old road -2 -15 DDH 10m E -100 Old stripping -4 -27 15 2ndGrowth -4 -20 -4 60 Timberline -6 75 Timber Deadfall Q -19 -22 105 Deadfall -1 135 Timber.45drgUp 150 Timber -23 -33 -19 -1 195 Talus 45drg Ċ -5 Q, 225 Bedrock -2 240 Timber.Steep -4 255 Bedrock.Steep -4 270 Flat Timber 285 E Slope 300 Flat

		CREEK GRID. EM-: emote Tx.	16 SURVEY	•	ANNAPOLIS Tx	Operator: T. Larose Date: June 27/92
	1				Fraser-Filter	ing
		Terrain =======	InPhase		Sum(Stat.+7.5) Diff.(Alt.Ent.)=Resul
	-315	Coen Bush	18	2	38	10
		Upslope	20			9
		Shallow Slope	23			7
	-270		25			3
	-255		27			1
	-240		28			5
	-225		27			11
		Upslope			60	13
		Bush			67	16
	-190	Road At 1+73S			73	18
		Thick Bush			83	-13
	-150				91	-18
	-135				70	20
	-120				73	9
	-105		48		90	-10
	-90		42			0
	-75				80	22
		Road (S Edge)			82	38
	-45		42		102	-12
	-30		60		120	-45
		DDH At 0+225.			90	-7
		Stripping		12		1
		Upslope		4		-20
		2ndGrowth		4		-31
	45	ANDON ON LIT		4	63	-26
		Open	25			-1
		2ndGrowth	20	4	37	20
	90	23003 OM CI	17	2		
	105		27	4	57	15
		Timberline	30	4	57 59	4, 1.4
		Timber.Upslope.		4		14
		Deadfall	32	-6	61 73	33 23
	165		41	-8	73 94	-7
		Timber	41 53	-7	74 96	-2
	195	: .#VE!	43	-8	76	-2
	210		43	-6	87 94	-31
		Deadfall	44 50	-0 -4		
		Timber	30 35	-	85 47	-20
,	255	ITUCL		-4	63 55	-12
		CE Class	28	3	55	-12
		SE Slope	27	6	51	
	285 700		24	4	43	
	300		19	2		

[.

 \int

ſ

-

5

 \int_{I}

.

4

LINE 0+60E Geonics EM-16 DEAFIES CREEK GRID. EM-16 SURVEY. ANNAPOLIS Tx Facing remote Tx. Fraser-Filtering -----Station Terrain InPhase Quad. Sum(Stat.-7.5) -----222332 22232 300 Downslope 34 16 -4 285 Timber 18 -2 33 270 15 0 33 255 18 -5 58 240 40 -10 83 225 43 -14 89 210 46 -15 78 195 32 -16 75 180 Flat 43 -8 79 165

120

75

45

-30

-60

-90

-105

-135

-150

-165

-255

-270

-285

-300

-195 Bush

-180 Road at 1+725

-210 CatRoadToShow.

-225 Open Bush

-240 Downslope

-25 36 -5 68 150 Timberline 32 -4 57 -23 135 Flat 25 -4 43 -10 18 -6 34 -7 105 StartDownToRoad -2 33 -8 16 90 SlopeDownToRd. 17 27 6 10 104 25 37 60 Old Road 15 .8 37 48 22 8 62 20 30 SteepSlopeToRd. 4 85 -2 40 15 Road 2m. 5 45 6 82 -11 0 Downslope. 37 4 83 -23 -15 Thick Bush 46 10 71 -22 25 0 60 45 -45 Road 35 -9 93 -4 58 12 105 -23 -75 Road 47 -4 89 -7 42 0 82 0 40 -4 82 -2 -120 Bush 42 -4 82 -6

-6

-6

-10

-6

-9

-3

-4

0

-3

0

1

2

80

76

71

65

54

50

52

51

50

48

43

40

40

36

35

30

24

26

26

25

25

23

20

Operator: T. Larose

Diff.(Alt.Ent.)=Result

Date: June 27/92

-1

25

50

31

-5

-14

1

-7

-22

-9

-11

-17

-15

-2

1

-2

-3

-7

-

	0E CREEK GRID. EM-1 emote Tx.	16 SURVEY		Geonics EM-16 ANNAPOLIS Tx	Operator: T. Larose Date: June 27/92
.			•	Fraser-Filtering	
Station	lerrain	InPhase	Uuad.	Sum(Stat.+7.5)	Diff.(Alt.Ent.)=Result
-300	Rd.SteepBankToS	22	1	42	8
	2ndSrowth	- <u>22</u> 20			5 7
	Bush.Upslope.	24			0
	Possible o/c.	26			2
	Bush.Upslope	27			- 18
	Flat	23			21
-210		32		68	 14
-195	StartUpslope	36			9
-180	Upslope 40drg	40	-10	82	4
-165	Steep Slope	42	-7	85	5
-150	Old road	43	-6	86	13
-135	Steep Slope	43	-3	90	20
-120	45drg Slope	47	0	99	24
-105		52	-5	110	10
-91)	2nd Growth	58	-10	123	-23
-75	45drg Slope	65	-12	120	-43
-60	Flat	55	-10	100	-27
-45	Startüpslope	45	-8	77	14
	Old road	32	2	73	-6
-15	Steep Slope	-41	8	91	-65
0	31d Road	50	-8	67	~53
15	Steep Slope	17	-4	26	-5
30	Read at 0+25N	9	4	14	20
45	2nd Growth	5	5	21	15
60	Shallow Slope	16	8	34	5
75	FlatteningOut	18	2	36	2
90		18	-1	39 .	6
105	Open Bush	21	-4	28	16
120		17		45	16
135		28	-7	54	23
150		26	-10	61	18
165	Timberline	35		77	-15
	Flat Timber	42	16	79	-22
	Timber	37	-14	62	4
	Deadfall	25	-16	57	-10
	Timber	32	-12	66	-50
	Upslope	34	4	47	-36
255		13	-2	16	10
270		2	1	11	
285		8	2	26	
300		18	4		

[

Γ

 $\left[\right]$

ſ

ſ

Γ

T i

1....

ſ

.

*

a. 13 LINE 1+80E DEAFIES CREEK GRID. EM-16 SURVEY. Facing remote Tx.

ſ

ſ

÷

ł

Ţ

Seonics EM-16 Operator: T. Larose ANNAPOLIS Tx Date: June 28/92 .

Facing r	emote ix.			_	
at 51	*		. .	Fraser-Filtering	
	Terrain	InPhase		Sum(Stat7.5)	
======	=====		=====		
700	e.				_
	SentleSlope	14	0	32	-8
	Flat Timber	18	2	31	-16
	Flat	13	0	24	-17
255		11	0	15	-6
240		4	0	7	11
	Timberline.Flat		0	9	10
	2ndGrowth.Flat	6	-2	13	19
	Downslope	12	0	19	56
	GentleSlope	7	0	37	48
	Flat. 2ndGrowth		-10	75	-3
150		45	-11	85	-19
135		40	-7	72	-13
120		32	-6	66	-19
105	SlopingToRd.	34	-3	59	-19
90		25	-2	47	-14
75		22	-2	40	-16
60		19	-4	33	-19
45		15	3	24	0
30		9	4	14	28
15	Old road	5	2	24	36
	Thick bush	19	- 6	42	27
-15		23	4	50	1
	Old road	37	10	69	-5
-45		32	5	61	31
-60		29	3	64	67
-75		35	-2	92	66
	SteepSlope	57	-5	131	23
	Old road	74	-5		
				158	-33
	SteepSlope	84	-4	154	-54
	Open bush Old road	70	-4	125	-40
		55	-2	100	-15
	Downslope	45	-2	85	5
-180		40	-8	85	-4
-195		45	-6	90	-26
-210		45	-8	81	-30
-225		36	0	64	-18
-240		28	-12	51	-5
-255		23	-8	46	1
-270		23	-8	46	
-285		23	-4	47	
-300	Main road	24	-6		

LINE 0+6 DEAFIES (Facing r	CREEK GRID. EM-	16 SURVEY		Seonics EM-16 SEATTLE TX	Operator: T. Larose Date: June 28/92
Station		InPhase		Fraser-Filtering Sum(Stat.+7.5)	 Diff.(Alt.Ent.)=Result =======
-300	Refer to	-5	2	-17	-7
	Annapolis Tx	-12	-2		3
	Terrain Notes	-14	-4		-3
-255		-10	0		-6
-240		-13	0		-1
-225		-14	0		0
-210		-15	Ő		-5
-195		-13	Õ		-6
-180		-16	2		-4
-165		-17	3		-6
-150		-18	3		-9
-135		-19	4	-41	-3
-120		-22	4	-46	6
-105		-24	-5	-44	2
-90		-20	4	-40	-4
-75		-20	4	-42	-2
-60		-22	2	-44	1
-45		-22	3	-44	-4
-30		-22	2	-43	-9
-15		-21	3	-48	1
0		-27	2	-52	8
15		-25	0	-47	-1
30		-22	2	-44	-13
45		-22	3	-48	-19
60		-26	2	-57	-17
75		-31	5	-67	· -5
90		-36	4	-74	3
105		-38	2		-15
120		-34	0	-71	-27
135		-37	-4	-87	1
150		-50	-9	-98	35
165		-48	-6	-86	38
180		-38	-2		18
195		-25	-2		4
210		-23	0	-45	0
225		-22	-4		1
240		-22	7		8
255		-23	, 10		13
270		-20	-6	-37	

ан. До

 $\left[\right]$

Γ.

{

[

ſ

1

-

LINE 0+0 DEAFIES (Facing r	CREEK GRID. EM-	16 SURVEY		Geonics EM-16 SEATTLE TX	Operator: T. Larose Date: June 27/92		
Station		InPhase		Fraser-Filtering Sum(Stat.+7.5)	Diff.(Alt.Ent.)=Result		
-315	Refer to	-12	3	-23	-3		
	Annapolis Tx	-11			-1		
	Terrain Notes	-14			-1		
-270		-12			-3		
-255		-14			-1		
-240		-13			5		
-225		-16			-4		
-210		-12			-18		
-195		-12			-9		
-180		-20			-5		
-165		-22			-16		
-150		-19			-9		
-135		-28			5		
-120		-29			3		
-105		-27		-52	4		
-90		-25			25		
-75		-28			36		
-60		-20			14		
-45		-8			-23		
-30		-4			-41		
-15		-10			-22		
10		-25			-1		
15		-20			-2		
30		-27			-13		
45		-29			-13 -28		
50		-30			-28		
75		-39					
70 90		-37			-20		
105		-48			-17		
		-58	4		-8		
120 135					-17		
		-56	8	-115	-27		
150		-59	6	-131	9		
165		-72	6	-142	35		
180		-70		-122	5		
195		-52	8	-107	7		
210		-55	5		48		
225		-62	2	-100	32		
240		-38	0	-69	-6		
255		-31	-6	-68	-9		
270		-37	-12	-75			
285		-38	-16	-77			
200		-39	-14				

Γ

[. .

; ; [

, ;

.

	D+60E ES CREEK GRID. EM-16 SURVEY. g remote Tx			Seonics EM-16 SEATTLE TX	Operator: T. Larose Date: June 27/92		
ation	Terrain	InPhase		Fraser-Filtering Sum(Stat7.5)	Diff.(Alt.Ent.)=Resul		
700	Refer to	-38	-4	-75	12		
	Annapolis Tx	-37			1		
	Terrain Notes	-35			-23		
255		-28			-19		
240		-43	-10		1		
225		-43	13		7		
210		-47	10		0		
195		-38	10		4 ·		
180		-45	13		13		
165		-40	12		18		
150		-39	10	-72	19		
135		-33	7		9		
120		-28	8	-53	0		
105		-25	6	-52	-3		
9 0		-27	1	-53	-1		
75		-26	-2		-6		
60		-29	-5		-9		
45		-25	0	-61	9		
30		-36	-2		25		
15		-27	4	-52	26		
0		-25	1	-38	3		
-15		-13	0	-26	-24		
-30		-13	4	-35	-16		
-45		-22	2	-50	4		
-60		-28	9	-51	7		
-75		-23	4	-46	2		
-90		-23	2	-44	-2		
-105		-21	6	-44	3		
-120		-23	4	-46	8		
-135		-23	2	-41	1		
-150		-18	2	-38	0		
-165		-20	4	-40	. 4		
-180		-20	0	-38	3		
-195		-18	2	-36	2		
-210		-18	4	-35	0		
-225		-17	2	-34	1		
-240		-17	2	-35	6		
-255		-18	0	-22	7		
-270		-15	2	-29			
-285		-14	0	-26			
-300		-12	2				

-

, ;

ſ

LINE 1+20E DEAFIES CREEK GRID. EN-16 SURVEY. Facing remote Tx					Seonics EM-16 SEATTLE TX	Operator: T. Larose Date: June 27/92	
Station	Terrain	InPhase			Fraser-Filtering Sum(Stat.+7.5)	Diff.(Alt.Ent.)=Result	
-300	Refer to	-20		0	-46	7	
	Annapolis Tx	-26		0	-46	6	
	Terrain Notes	-20		0	-39	-2	
-255		-19		1	-40	-4	
-240		-21		Û	-42	-10	
-225		-21		2	-44	-10	
-210		-23		1	-52	-1	
-195		-29		2	-54	-2	
-180		-25		0	-53	-3	
-165		-28		0	-56	-1	
-150		-28		1	-56	-11	
-135		-28		Û	-57	-21	
-120		-29		Û	-67	-15	
-105		-38		2	-78	9	
-90		-40		5	-82	35	
-75		-42		10	-69	15	
-60		-27		14	-47	-12	
-45		-20		10	-54	5	
-30		-34		6	-59	13	
-15		-25		0	-49	7	
0		-24		-2	-46	8	
15		-22		-4	-42	4	
20		-20		-3	-38	-2	
45		-18		-2	-38	0	
60		-20		-2	-40	3	
75		-20		1	-38	-3	
90		-18		2	-37	-7	
105		-19		4	-41	-4	
120		-22		4	-44	0	
135		-22		6	-45	11	
150		-23		4	-44	13	
165		-21		10	-34	0	
180		-13		16	-31	-15	
195		-18		11		-39	
210		-16		8	-46	-17	
225		-30		4	-73	40	
240		-43		-1	-63	20	
255		-20		-2		-14	
270		-13		-4	-33		

[

.

.

-

.

100

.

`

LINE 1+80E DEAFIES CREEK GRID. EM-16 SURVEY. Facing remote Tx				Geonics EM-16 SEATTLE TX	
Station	Terrain	Fraser-Filterin errain InPhase Quad. Sum(Stat7.5)			Diff.(Alt.Ent.)=Result
300	Refer to	-28	-7	-59	-9
	Annapolis Tx			-60	-13
	Terrain Notes			-68	-4
255) -73	9
240				-72	28
225				-64	35
210				-44	15
195				2 -29	-8
180				-29	
165		-19		-37	2
150		-19			3
135		-18			0
120		-17	2	-34	-4
105		-17	ŝ	-35	-5
90		-18	2	-38	-5
75		-20	1	-40	-3
60		-20	(-43	2
45		-23		-43	-8
30		-20	(-41	-14
15		-21	(-51	3
0		-30	C	-55	14
-15		-25		-48	19
-30		-23			1
-45		-18	(-30	-43
-6 0		-12	2	-40	-42
-75		-28	4	-73	8
-90		-45	<i>E</i>	-82	26
-105		-37	5	-65	12
-120		-28	4	-56	6
-135		-28	3	-53	2
-150		-25	Q	-50	-5
-165		-25	, 2	-51	-6
-180		-26	4	-55	3
-195		-29			13
-210		-28			12
-225		-24			2
-240		-20			-7
-255		-20		_	-13
-270		-22			
-285		-25	-7	-55	

-

Appendix III

Geochemical Sampling Cards

GEOCHEMICAL SAMPLING CARDS (For Soil, Lake, Stream & Biogeochem Samples)

For 80-Field Sampling Cards Fields 1 - 3 : Project Number E.G. "1 2 3" \overline{A} \overline{C} \overline{R} = Athabasca Cree River "T D M" = Thelon Dubawnt Mackenzie Field 4 - 9 : Sample Number e.g. "81" = 1981 $\underline{4}, \underline{5} =$ Year e.g. "0" = John Doe, "1" = Jim Smith <u>6</u> = Sampler 7, 8, 9 = Sample Number e.g. "001" = 1st sample, etc. Location: Fields 10 - 11 : U.T.M. Zone (lake, stream) or Grid (soil, biogeochem) e.g. lake " $\frac{10}{1}$ $\frac{11}{3}$ " (all of Dubawnt (Mackenzie) Area is in Zone 13) e.g. soil " A A" Grid A Field 12 - 17% U.T.M. Easting (lake, stream) or E-W Grid Location (soil, biogeochem) e.g. lake " $\frac{12}{4}$ $\frac{13}{4}$ $\frac{14}{1}$ $\frac{15}{5}$ $\frac{16}{0}$ $\frac{17}{0}$ " (Easting in metres E) e.g. soil " 2 5 + 5 0 E ") e.g. soil " 1 0 2 0 0 W ") E-W Grid Location in metres E or W Fields 18 - 24 : U.T.M. Northing (lake, stream) or N-S Grid Location (soil, biogeochem) e.g. lake " $\frac{18}{6}$ $\frac{19}{4}$ $\frac{20}{2}$ $\frac{21}{7}$ $\frac{22}{5}$ $\frac{23}{0}$ $\frac{24}{0}$ " (Northing in metres N) e.g. soil " 0 1 0 + 0 0 N ") (N-S Grid Location in metres e.g. soil " 1 5 0 + 7 5 S ") N or S)

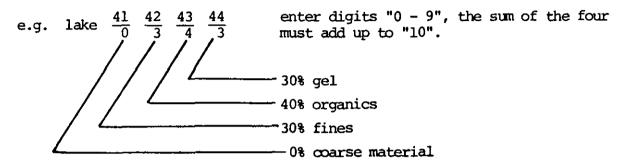
Field 25 : Sample Type

e.g.	"A" =	soil
-	"B" =	lake
	"C" =	stream
	"D" =	biogeochem (tree)
	"E" =	frost boil centres

Fields 26 - 29 : Rock Type or Most Probable Rock Type

Use Franklin Slashing Code (Retain first letter and eliminate letters from right to left in the following order: A, E, I, O, U, W, H, Y, DOUBLE LETTERS, T, N, S, R, L, D, C, M, F, G, P, K, B, V, X, J, Q, Z.)

e.g.	"	<u>26</u> S	<u>27</u> N	28 D	<u>29</u> " S	=	SANDSTONE					
	11	с	G	L	М "	=	CONGLOMERATE					
	11	A	R	G	т "	=	ARGILLITE					
	**	G	N	S	S "	=	GNEISS					
	11	G	R	N	т "	=	GRANITE	NOTE:	LETTER "O" = \emptyset			
Field	30	2 =	Appı	roxi	mate T	hickne	ess of Overburden					
e.g.	"0) ¹⁴	=	TH	IN (<	(3m.)						
	"1	'n	=	ME	MEDIUM $(3 - 10m)$							
	"2	91	=	TH	ICK (> 10m)					
Field	<u>31</u>	:	Fore	est (Cover							
e.g.	"0	11	=	NO	TREES							
	"1	++	=	OP	EN CRO	VN FOR	REST					
	"2	"	=	CL	OSED CI	ROWN B	OREST					
Field	32	:	Phys	siog	raphy							
e.g.	"0	11	Ŧ	PL	AIN							
	"1	11	=	MUS	SKEG, S	WAMPI	AND					
	"2	11	=	PE	NEPLANI	E, PLA	TEAU					


"3" = HILLY, UNDULATING

"4" = MOUNTAINOUS, YOUTHFUL (PRECIPITOUS) Fields 33 - 35 : Depth - Lakes (m.); Soil, Stream (cm.). e.g. lake $\frac{33}{10} \frac{34}{20} \cdot \frac{35}{5}$ e.g. soil "0 6 . 1 " Fields 36 - 38 : Area or Width - Lake Area (km²); Stream Width (m.). e.g. lake $\frac{36}{0} \frac{37}{1} \cdot \frac{38}{5}$ e.g. stream 0 0.3 Field 39 : Drainage or Flow Rate e.g. soils "O" = POOR: "1" = MODERATE: "2" = GOOD e.g. biogeochem e.g. lakes "O" = INFILLING: "1" = PARTLY OPEN (inlet or outlet); "2" = OPEN (inlet (s) and outlet (s)). e.g. streams (flow rate) "0" ZERO: "1" = SLOW; "2" = MODERATE; "3" = FAST = "4" = TORRENTIAL Field 40 : Colour (of sediment or soil sample) "0" e.g. Ξ BLACK "1" = GREY "2" = BROWN "3" = TAN "4" = PINK "5" RED = "6" = YELLOW "7" = GREEN

etc.

Fields 41 - 44 : Composition or Texture (for soils and sediments)

- 41 COARSE MATERIAL (sand, gravel, etc.)
- 42 FINES (clay, silt)
- 43 ORGANICS
- 44 GEL (gyttja lakes only)

Field 45 : Precipitate or Stain (sediment samples only)

Fields 46 - 48: Slope or Drainage Direction (azimuth in degrees, rounded to nearest 10°)

e.g. "090", "230"

Fields 49 - 50: Slope (in degrees, rounded to nearest 10°)

e.g. "30", "10", "00"

Field 51 : Method of Geochemical Dispersion

e.g. "0" = UNKNOWN

"1" = HYDROMORPHIC (related to drainage slopes, spring lines, swamps)

"2" = MECHANICAL (related to boulder fields or other geomorphological deposits

Fields 52 - 57 : Free Space (for Additional Information)

Fields 58 - 61 : Intermediate Station Location											
e.g. "+50W" "+25N"											
Fields <u>62</u> - <u>65</u> : Intermediate Station Radioactivity											
e.g. "0075" = 75 c/s "0150" = 150 c/s											
Field <u>66</u> : Stream Class (stream samples only)											
<pre>e.g. "0" = SPRING "1" = PRIMARY (smallest stream; nearest source) "2" = SECONDARY "3" = TERTIARY "4" = QUATERNARY (largest stream or river; nearest mouth)</pre>											
Field 67 : Size of Suspended Matter (water samples only).											
e.g. "0" = LIGHT "1" = HEAVY											
Field <u>68</u> : Water Colour (water samples only)											
e.g. "0" = COLOURLESS, CLEAR											
"1" = BROWN, CLEAR											
"2" = WHITE, CLOUDY											
"3" = BROWN, CLOUDY											
Field 69 : Soil Horizon or Tree Type (soil or biogeochem only)											
e.g. soil "B" = B HORIZON "A" = ARCTIC BROWN AL HORIZON											
"0" = LH (HUMUS) HORIZON "G" = GLEI HORIZON											
"1" = AH (ORGANIC-RICH) HORIZON "R" = REDUCED HORIZON "2" = AE (LEACHED) HORIZON											
2 = AE (LEACHED) HORIZON											
e.g. tree "A" = PINE											
"B" = SPRUCE											
"C" = BALSAM											
"D" = FIR											
"E" = POPLAR											
etc.											

-

Fields <u>70</u> - <u>73</u> : Radioactivity (soils only)

e.g. $\frac{70}{0} \frac{71}{2} \frac{72}{5} \frac{73}{0} = 250$ cps (Total Count, Fast Count over open hole) Field 74 - 77 : Date Collected DAY MONTH e.g. $\frac{74}{1} \frac{75}{5} \frac{76}{0} \frac{77}{6} =$ June 15 Field 78 : Master Code (lake, stream samples only) e.g. "0" = NO WATER COLLECTED "1" = WATER COLLECTED Field 79 : Contamination e.g. "0" = NONE"1" = POSSIBLE "2" = PROBABLE "3" = DEFINITE Field 80 : Sample Status e.g. "0" = REGULAR SAMPLE "1" = REFERENCE CONTROL SAMPLE "2" = BLIND DUPLICATE SAMPLE

(etc.)

Γ

Ĺ

-

-

• ---

	PROJSAMP.NO.GRI	DEASTCO.	NORTHCO.TYROCK	OBFOPHSD	AREADRCOCGFGORGEPPDRAIS	ODIBLINT.SINT.RADISTSIWAHOM	O.DAYMACO	ISS
1	ZSM 920000 SM	F	0+005 A GRNT	1 1 3 20	317201 0 1) 1 B 6	23 0	1
2	ZSM 920001 SM	D	0+005 A PLLT	2 1 3 15	2 2 7 1 0 0 270 1	51 B6	23 0	0
3	ZSM 920002 SM	D	0+155 A PLLT	1 2 2 25	2 3 4 3 0 0 250 10)1 86	23 0	0
4	ZSM 920003 SM	D	0+305 A PLLT	1 2 2 25	2 3 5 2 0 0 250 10		23 0	0
5	ZSM 920004 SM	9	0+455 A 6RNT					0
5	ZSM 920005 SM	Ð	0+605 A GRNT				2 3 0	0
7	ZSM 920006 SM	D	0+905 A GRN1					0
8	ZSM 920007 SM	Ð	1+055 A PLLT				23 0	0
9	ZSM 920008 SM	D	1+205 A PLLT				23 <u>1</u>	0
10	ZSM 920009 SM	D	1+358 A GRNT	123			23 0	0
11	ZSM 920010 SM	Ð	1+505 A GRNT	12320	2 3 5 2 0 0 180 2	51 86	23 0	0
12	ZSM 920011 SM	D	1+65S A GRNT	21315	2 3 5 2 0 0 180 2	51 B6	23 0	0
13	ZSM 920012 SM	D	1+805 A GRN7	11315	2 4 4 2 0 0 180 20)1 B6	23 0	0
14	ZSM 920013 SM	D	1+955 A GRNT	1 0 3 20	2 4 4 2 0 0 150 10) 1 B 6	23 0	0
15	ZSM 920014 SM	D	2+105 A GRNT	20320	2 5 4 1 0 0 180 1	51 B6	23 0	0
16	ZSM 920015 SM	D	2+255 A GRNT	2 1 3 15	2 3 5 2 0 0 180 20)1 B6	23 0	0
17	ZSM 920016 SM	D	2+405 A LMST	01315	2 4 4 2 0 0 190 2)1 86	23 0	0
18	ZSM 920017 SM	Ð	2+555 A LMST	0 1 3 20	24420018030) 1 B 6	23 0	0
19	ZSM 920018 SM	D	2+705 A LMST	1 1 3 20	2 4 4 2 0 0 180 2	51 B6	23 0	0
20	ZSM 920019 SM	Ð	2+855 A GRNT	2 2 3	2 4 4 2 0 0 180 20) 1 B 6	23 0	0
21	ZSM 920020 - SM	D	3+005 A GRNT	1 1 3 25	2 3 6 1 0 0 180 2	51 B6	23 0	0
22	ZSM 920021 SM	D	3+158 A GRNT	1 2 3 25	23610018020)i B6	23 0	0
23	ZSM 920022 SM	Ð	3+309 A PLLT	1 2 3 30	2 3 5 2 0 0 180 1	51 B6	23 0	0
24	ZSM 920023 SM	D	3+455 A PLLT	2 2 2 30	2 3 5 2 0 0 180 1	51 B6	23 0	0
25	ZSM 920024 SM	Ð			2 2 6 2 0 0 180 1	51 B6	23 0	0
26	ZSM 920025 SM	D	3+755 A PLLT	2 1 2 20	24430018020)1 B6	23 0	0
27	ZSM 920026 SM	D			3 3 5 2 0 0 180 2	51 B6	23 0	0
28	ISM 920027 SM	D		2 1 2 25)1 B6	23 0	0
29	ZSM 920028 SM	D	4+20S A PLLI	2 1 2 30	2 4 4 2 0 0 180 20)1 86	23 0	0
30	25M 920029 SM	D		2 1 2 30		51 B6	23 0	0
31	ZSM 920030 SM	Ð		2 1 2 25			23 0	0
32	ZSM 920031 SM	D		2 1 2 15)i B6	23 0	0
33	ZSM 920032 SM	D		2 1 2 35				
34	ZSM 920033 SM	D		2 1 2 30			23 0	
35	ZSM 920034 SM	D		21230				0
36	2SM 920035 SM	D		2 1 2 25	2 3 5 2 0 0 180 20)1 B 6	23 0	Q
37	ZSM 920036 SM	D	5+405 A PLLT		2 3 4 3 0 0 180 2			
38	ZSM 920037 SM	D		2 0 3 30				
39	ZSM 920038 SM	D		20330	2 4 4 2 0 0 180 2			
40	ZSM 920039 SM	D		2 0 3 40	2 3 5 2 0 0 180 3			
4 <u>1</u>	ZSM 920040 SM	D		2 0 3 30	2 3 4 3 0 0 180 3			
42	ZSM 920041 SM	D		02325	3 4 5 1 0 1 45 1			
43	ZSM 920042 SM	D		02325	3 4 5 1 0 1 45 1		25 0	
44	ZSM 920043 SM	F		2 1 3 20	317201 0 10		25 0	
45	ZDC 921000 DC			01325	2 2 7 1 0 0 180 10			
46	ZDC 921001 DC	0+00E			2 2 7 1 0 0 180 10			
47	ZDC 921002 DC			01325	2172001808			
48	ZDC 921003 DC	0+00E		01325	2 2 7 1 0 0 185 2			
49	ZDC 921004 DC			01325	1 3 6 1 0 0 180 10			
50 5 (ZDC 921005 DC	0+00E			2 4 5 1 0 0 180 20			
51 52	ZDC 921006 DC			01325				
52 53	ZDC 921007 DC		0+455 A ARGT					
30	IDC 921008 DC	UTVUE	0+305 A ARGT	0 0 3 60	2361001800	1 B 2	760	V

	PROJSAMP.NO.GRDEASTCO	NORTHCO.TYROCK	OBFOPHSD	AREADRCOCGFGORGEPPDRAISLODIBLINT.SINT.RA	DISTSIWAHOMO.DAYMACOSS
54	IDC 921009 DC 0+00E	0+155 A ARGT	0 0 3 30	2 3 6 1 0 0 180 14 1	B 27 6 0 0
55	ZDC 921010 DC 0+00E	0+00N A ARET	0 1 3 30	2 3 7 0 0 0 180 12 1	B 27 6 1 0
56	ZDC 921011 DC 0+00E	0+15N A GRDR	0 1 3 30	2 2 7 1 0 0 170 8 1	B 27 6 0 0
57	ZDC 921012 DC 0+00E	0+30N A GRDR	0 1 3 20	2 3 6 1 0 0 160 20 1	B 27 6 0 0
58	ZDC 921013 DC 0+00E	0+45N A GRDR	0 1 3 25	2 2 7 1 0 0 180 12 1	827600
59	ZDC 921014 DC 0+00E	0+50N A GRDR	0 0 3 40	2 2 8 0 0 0 170 15 1	B 27 6 0 0
60	ZDC 921015 DC 0+00E	0+75N A SRDR	0 1 3 30	2 2 7 1 0 0 180 12 1	B 27 6 0 0
61	ZDC 921016 DC 0+00E	0+90N A GRDR	0 1 3 30	2 2 7 1 0 0 170 16 1	B 27 6 0 0
62	ZBC 921017 DC 0+00E	1+05N A GRDR	0 1 3 30	2 2 7 1 0 0 150 15 1	B 27 6 0 0
63	ZDC 921018 DC 0+00E	1+20N A GRDR	0 2 3 30	2 2 7 1 0 0 170 20 1	B 27600
54	ZDC 921019 DC 0+00E	1+35N A GRDR	02325	2 2 7 1 0 0 175 25 0	B 27 6 0 0
65	ZDC 921020 DC 0+00E	1+50N A GRDR	0 2 3 30	2 2 7 1 0 0 150 16 0	B 27 6 0 2
66	ZDC 921021 DC 0+00E	1+50N A GRDR	02330	2 2 7 1 0 0 150 16 0	B 27 6 0 2

[

.

÷

-

ZSM = Zicton Saddle Mountain ZDC = Zicton Deafies Creek

-

```
COMMENTS
     Control Reference Sample.
1
2
3
     Cobbles of meta-andesite tuff, granodiorite.
4
5
     Broken shovel.
     Missing station 0+75S.
ó
7
3
     Near outcrop.
9
     Road.
10
     Near outcrop.
11
12
13
14
     Road.
15
     Road.
16
     In bushes.
17
19
    Near putcrop, Sample D-92-7.
19
20
21
22
23
24
25
26
27
28
29
30
31.
32
    Road.
33 Blacker, moist, soft.
34
    Blacker, moist, soft.
35
   Blacker, moist, soft.
36
37
    Biotite flakes.
38
37
    Moist, soft.
40
41 Clearing above road. Biotite flakes. END.
42
    Outcrop under fallen tree. Field Duplicate.
43
   Outcrop under fallen tree. Field Duplicate.
44
     Biotite Flakes. Control Reference.
45
46
47
49
49
50
51
    Near drill hole.
52
     Near drill hole.
53
```

ì.

Ļ

\$

-

COMMENTS 55 Near stripping.

59 Moist sample on slope. 60

62 63 Tree line for old growth.

54 65 Field duplicate.

54

56 57 58

51

66 Field duplicate.

*

 $\left[\right]$

[

-

Γ

5

.

.

	çpbAu	ppmAg	%A1	ppmAs	ppmBa	ppmBe	00	n Bi
i	₹5	(0.2	3.25	22	190	<0.5		
2	(5	<0 .2	2.96	24	230	<0.5		
3	<5	<0 .2	3.48	24	310	<0.5	⟨2	
4	⟨5	<0.2	3.84	28	330	<0.5	<2	
5	<5	<0.2	2.34	24	270	<0.5	(2	
6	<5	0.2	3.18	24	300	<0.5	⟨2	
7	<5	<0.2	3.45	25	270	<0.5	<2	
8	<5	(0.2	4.13	48	360	<0.5	<2	
9	(5	<0.2	3.73	38	260	<0.5	<2	
10	15	<0.2	3.62	46	280	<0.5	<2	
11	<5	<0.2	3.38	52	240	<0.5	<2	
12	<5	<0.2	2.97	38	220	<0,5		
13	₹5	0.4	3.11	42	180	<0.5		2
14	10	ं.4	2.95	54	190	<0.5	<2	
15	15	0.4	2.08	110	120	<0.5	<2	
16	5	0.2	1.66	106	180	<0.5	⟨2	
17	140	1.4	2.27	470	190	<0,5	<2	
18	990	1.2	2.42	544	150	<0.5	<2	
19	395	0.6	2.17	426	180	<0.5	<2	
20	95	9.4	2.08	336	200	(0.5	⟨2	
21	55	0.6	2.22	142	140	0,5	(2	
22	15	0.6	2.39	36	80	<0.5	⟨2	
23	10	0.6	2.02	48	150	<0.5	<2	
24	35	ψ .4	1.76	42	200	(0.5	<2	
25	20	0.2	1.93	30	140	0.5	⟨2	
26	70	0,4	2.14	3Z	190	<0.5	⟨2	
27	115	0.8	2.53	36	190	0.5	<2	
28	140	0.8	1.91	34	200	<0 . 5	<2	
29	135	0 . 2	2.18	42	190	<0.5	<2	
30	75	(0.2	1.68	40	180	0.5	<2	
31	55	<0.2	1.61	18	200	<0.5		2
32	460	0.2	2.06	18	140	<0.5	<2	
33	75	0.2	1.63	20	150	<0.5	<2	
4	95	0.2	1.75	56	180	<0.5	<2	
35	245	0.2	1.71	100	160	<0.5	<2	
38	705	0.2	2.4	136	190	<0 . 5	<2	
37	400	0.4	2.75	116	190	<0.5	⟨2	
38	190	0.4	2.31	80	170	<0.5	<2	
39	495	0.8	1.93	64	140	<0.5	<2	
40	240	1	2.25	80	160	<0.5	<2	
41	275	1	1.88	102	160	<0,5	<2	
42	45	<0.2	3.75	28	160	<0,5	<2	
43	10	0.2	3.77	24	170	<0.5	<2	
44	<5	<0.2	2.87	26	180	(0.5	⟨2	
45	<5	<0.2	2.39	24	160	<0.5	<2	
46	<5	<0.2	2.96	12	250	<0,5	<2	
47	<5	0.4	2.86	16	140	<0.5	⟨2	
48	<5	(0.2	2.54	14	170	<0.5	<2	
49	5	<0.2	2.02	18	90	<0.5	<2	
50	<5	<0.2	2.89	18	220	<0.5	⟨2	
51	<5	<0.2	3.11	10	220	<0.5	<2	
52	₹5	0.2	2.74	18	90		<2	
53	<5	<0.2	2.45	20	70	<0.5	<2	

ZSM = Zicton Saddle Mountain ZDC = Zicton Deafies Creek

.....

an N

1

-

T

...

-

8

	ppbAu	pp #Ag	%A1	ppaAs	ppmBa	ppmBe	ppmBi
54	<5	0.2	3.08	18	150	<0.5	<2
55	<5	<0.2	3.27	24	190	<0.5	<2
56	<5	0.2	2.91	36	130	(0.5	<2
57	<5	0.2	3.05	16	230	<0.5	<2
58	<5	<0.2	2.99	28	170	<0.5	<2
59	<5	<0.2	2.32	36	70	<0.5	⟨2
60	<5	<0.2	2.45	14	320	<0,5	<2
61	<5	<0.2	1.68	16	90	<0.5	<2
52	<5	<0.2	2.14	12	.4 0	<0.5	<2
63	<5	<0 ,2	2.4	10	240	<0.5	<2
54	<5	<0.2	2.82	10	180	<0.5	<2
65	<5	<0.Z	2.33	22	150	(0.5	<2
66	<5	<0.2	2.39	32	160	<0.5	<2

ZSM = Zicton Saddle Mountain ZDC = Zicton Deafies Creek

. .

ſ

-

,----

	%Ca	nonCd	ppmCo	oomCr	ດດສະເມ	%Fe	ppmGa
ŧ		(0.5	13		52		
1 2		<0.5	22		107		
3		(0.5	22				
4		(0.5	27		111		10
5		(0.5	16	72	59		
6		<0.5	18	68	61		10
7		<0.5	22	115	97		10
8		<0.5	42	186	162		10
9.		(0.5	30	166	151		10
10		(0.5	30	151	137		10
11		<0.5	25	122	122		
12	9. <u>3</u> 8	<0.5	23		104		
13	0.49	<0.5	20	81	108		
14	0.61	<0.5	20	79	108	4,42	10
15	0.94	<0.5	21	42	104	4.99	10
16	1.09	<0.5	16	18	101	3,53	10
17	0.51	<0.5	· 28	17	149	5.66	10
18	0.7	<0.5	41	22	177	7.27	10
19	0.85	<0.5	33	23	127	5.03	10
20	0.89	<0.5	25	33	127	4,42	10
21	0.7	<0.5	22	64	128	4.88	10
22	0.77	<0.5	24	81	137	5.57	10
23	0.86	<0.5	22	43	122	5.19	10
24	1,33	<0.5	17	33	92	3.85	10
25	0.99	<0 . 5	17	49	117	4.52	10
26	1.09	<0.5	20	48	126	4.62	10
27	0.75	8,5	21	52	170	5.24	10
28	0.99	4	19	33	128	4.75	10
29	0.27		22	71	105	5.23	10
20		<0.5	28	51	116		10
31	i.07		19	39	105		10
32		<0.5	15	39	114	5,03	10
32	1.57		18	36	127		10
34		<0.5	20	35	111	4.27	10
35	0.99		22	49	125		
36		(0.5	25	115	105		
37		<0.5	28	167	129		10
38		<0.5	26	120			10
39	1,25	1	22	72	280	5.2	10
40	1.21	0.5	26	106	225		10
41	1.17	3	26	77	321	5.79	10
42 47	0.43		20	77	82	4.9	10
43 44	0.43		19	75	80		10
45	0.35 0.34		16	55 20	47		10
46			15 + a	28	68	3.82	10
46 47	0.36 0.34		14 17	29 30	46	3.64	10
47 48	0.34		13 14	30 31	102		10
49	0.34		14 13	31 75	52	3.61 7 D4	10
4 7 50	0.34		15 15	35 27	101		10
50 51	0.43		17	27 28	77 61	3.78	10
52	0.33		17	28 41	165		10
53	0.56		17	41 38	165		10 10
00	v. 00	1010	10	50	194	0.0/	10

ZSM = Zicton Saddle Mountain ZDC = Zicton Deafies Creek

. .

ŗ

.

[

-

-

	%Ca	pp@Cd	ppmCo	ppmCr	pp∎Cu	%Fe	ррюба
54	0.53	<0.5	18	37	147	4.95	10
55	0.48	<0.5	19	35	141	4.78	10
56	0.44	<0.5	21	37	165	5.38	10
57	0.52	<0.5	21	32	113	4,42	10
58	0.59	<0.5	21	35	150	5.07	10
59	0.59	<0.5	20	38	172	5.35	10
6¢	0.44	(0.5	17	28	56	3.35	10
61	0.29	<0,3	12	34	75	3.53	10
62	0.27	⟨≬.5	14	28	71	3.81	10
63	0.26	<0,5	14	24	34	3.02	10
64	0.3	(0.5	16	30	85	3.9	10
65	0.27	<0.5	18	27	118	4.67	10
66	0.29	<0.5	18	27	110	4.61	10

Γ

-

 $\overline{}$

[

1

-

	00	Hg	X K	ppmLa	%Mg	ppaMn	ppeMo	ZNa
1	$\langle 1 \rangle$	2	0.15	10		545		
2		4	0.61		1.66	890		
3	<1		0.59		1.71	990		0.01
4	$\langle 1$		0.69		2.28	1095		<0.01
5	<1		्.44		1.24	635	1	
5	$\cdot \langle 1 \rangle$		0.26		1.11	1135		
7	$\langle 1$		0.37		1.67	810		
8	<1		0,49	10	2.78	1830		0.01
9		2	0.67	10	2.27	1155	<1	0.01
10		1	0.7	10	2.29	1245		<0.01
11	$\langle 1$		0.71	10	1.98	1350	<1	0.01
12		1	0.5	10	1.53	1485	1	
13	$\langle 1$		0.4	10	1,44	1220	$\langle 1 \rangle$	0.01
14		i	0.5	10	1,47	1210	<u>1</u>	0.01
15	$\langle 1 \rangle$		0.26	10	1	12 9 0	<1	0.01
16	$\langle 1 \rangle$		0.2	10	0.51	1395	1	0.01
17	$\langle 1 \rangle$		0.17	20	0.52	1925	1	0.01
:8	$\langle 1 \rangle$		0.15	20	0.73		$\langle 1 \rangle$	0.01
19	$\langle 1 \rangle$		0.26	10	0.63	1945	1	
20	$\langle 1 \rangle$		0.28	10	0.82	1505	2	0.01
21	$\langle 1 \rangle$		0.22	10	1.1	1260		0.01
22	<1		0.12	10	1.77		<1	<0.01
23	$\langle 1 \rangle$		0.18	10	1.03	1210		0.01
24	$\langle 1 \rangle$		0.24	10	0.81	1330		0.01
25	<1		0.18	10	1.14	1180		
26	$\langle 1 \rangle$		0.24	10	1.05	1300		0.01
27	$\langle 1$		0.26	20	1.02	1 47 0		0.01
28	<1		0.27		े.69	1305	i	
29	1		0.43	10	1.27	1030	1	0.01
30	<1		0.32	10	0.92	1035		
31	(1		0.25	10	0.8	885	2	
32	$\langle 1 \rangle$		0.37		0.93	760		
33		1	0.25	10	0.83	820		
34	<1		0.23	10	0.72	1005		0.01
35	<1		0.34		1.04	1050		0.01
56	(1		0.43		1.43	1240		0.01
				<10 (10	1.8			0.01
	<1	•		<10				0.01
39 40	74	1	0.27		1			0.01
40 41	$\langle 1 \\ \langle 1 \rangle$		0.3	10		1235		<0.01
41 42	$\langle 1 \rangle$		0.31	10		1305		0.01
43	11	1	0.25 0.24		1.41	630		0.01
	$\langle \underline{1} \rangle$	L	0.17		1.06	630 555		0.01 0.01
45	<1		0.3					
46 46	(1			<10		575	1	
40 47	77	2	0.27		0.8			0.01
48				10		365 365		0.02
40 49			0.28		0.94			<0.01
4 7 50	<1	3	0.28		0.74			0.02
51	14			<10				0.02
52	<1	7	0.46		1.52			0.01
53	••	1	0,4			625		<0.01
		•		- ·			-	

ZSM = Zicton Saddle Mountain ZDC = Zicton Deafies Creek

ALC: NO

	pps	Hg	% K	ppmla	%Mg	ppaMn	opmMo	XNa
54	$\langle 1 \rangle$		0.41	10	1.39	570	1	0.01
55	$\langle 1 \rangle$		0.45	10	1.34	575	1	0.02
56	$\langle 1 \rangle$		0.45	10	1.51	650	1	0.01
57	<1		0.4	10	1.12	705	1	0.02
53	$\langle 1 \rangle$		0.49	10	1.26	650	1	0.01
59		2	0.42	10	1.43	665	3	0.01
60	$\langle 1 \rangle$		0.27	<10	0,81	765	1	0.02
61	$\langle 1 \rangle$		0.29	10	0.9	370	2	<0.01
62		1	0.29	<10	0.93	46 0	2	0.01
53	<1		0,24	<10	0.73	575	2	0.01
54	$\langle 1 \rangle$		0.33	10	0.95	455	1	0.01
65	$\langle 1 \rangle$		0.2	10	0.82	410	3	0.01
66	<1		0.21	10	0.8	460	4	0.01

: 1

5

.

Γ

		 			⁻ -	6-	471
,	ppmNi	pp#P	ppmPb		ppeSc	ppmSr	XT1
í	34	1020	10		7	44	0.13
2	62	820	10	6	13	50	0.14
3	55	870	8	2	11	50	0.16
4	53		<2	6	12	60	0.16
5	39	1360		<2	8	53	0.11
6	38	2710	32	4	8	81	0.1
7	52	1260		〈2	13	45	0.14
8	71	780	18	4	21	52	0.12
9	73	760	10	2	17	43	0.15
10	63	890	8	2	18	41	0.14
11	54	1210	16	4	14	60	0.14
12	47	970	26	4	10	61	0.12
13	48	1000	44	4	10	63	0.12
14	44	1050		<2	10	64	0.11
15	31	1490	28	4	5	80	0.05
16	28	1220	16	2	3	154	0.03
17	23	1600	56	2	4	98	0.05
18	48	2230	80	6	4	111	0.04
19	35	1690	40	6	4	133	0.05
20	44	1460	54	4	4	101	0.05
21	57	1200	38	4	5	82.	0.04
22	53	1390	60	6	5	98	0.02
23	38	:550	30	2	4	130	0.03
24	33	1680	32	2	3	188	0.03
25	37	1560	24	2	4	129	0.02
26	42	1560	32	2	5	128	0.04
27	46	1530	94	2	6	95	0.04
28	32	1710	82	4	4	150	0.03
29	48	1540	34	4	8	125	0.05
30	55	1740	18	2	5	163	0.03
31	40	1460	12	2	4	177	0.03
32	35	1290		4	5	79	0.05
33	49	1560	20	4	4	157	0.03
34	43	1510	16	2	4	151	0.04
35	45	1630	14	4	5	113	0.05
36	75	1280	16	4	9	98	0.07
30 37	89	1030	26	4	12	80	0.08
38 38	79	1180	12	2	9	85	0.06
39	60	1320	22	2	6	118	0.04
40	78	1210	26	5	9	110	0.05
41	51	1530	26	4	, 7	134	0.05
42	47	1040	16	2	9	10 4 52	
43	45	1070	10		7 9		0.15
40 44	40 34			2		52	0.15
		900 550	14	2	7	44	0.13
45 47	31	550	6	2	5	43	0.11
46	40	1390	8	4	5	56	0.11
47 40	36	500	6	<2	7	44	0.12
48	33	460	8	2	5	35	0.12
49	33	570	6	2	6	39	0.1
50 54	31	870	2	<2	6	57	0.11
51	37	650	4	<2	6	52	0.12
52	33	570	6	4	10	58	0.15
53	34	1010	6	4	10	60	0.12

-

Γ.

Γ

-

	ppeNi	ppm₽	ppaPb	ppmSb	ppmSc	ppmSr	7.T i
54	35	650	10	4	9	66	0.15
55	38	810	4	4	9	61	0.15
56	37	710	4	4	9	49	0.14
57	39	960	10	4	7	67	0.13
58	42	78 0	4	4	8	67	0.13
59	35	1210	ó	2	9	52	0.11
4¢	41	2120	8	2	4	66	0.09
61	28	500	<2	2	5	29	0.09
62	32	700	4	2	5	37	0.09
63	31	1130	- 8	<2	4	46	0.09
64	34	680	8	4	7	49	0.12
65	47	1190	10	<2	5	41	0.08
66	47	1300	4	2	5	44	0.08

藏

l

ſ

_

-

-

.....

.....

	ppmT]	ppaU	ppmV	ppaW	ppmZn
1	<10	<10	72	10	92
2	<10	<10	129	10	128
3	<10	<10	121	10	114
4	(10	<10	131	20	128
S	<10	(10	80	10	132
Ŀ	<10	<10	77	10	194
7	<10	<10	124	10	108
3	(10	(10	213	20	128
9	<10	10	168	20	104
10	<10	<10	172	20	124
11	<10	(10	138	10	132
12	<10	<10	100	10	142
13	<10	<10	96	10	134
14	(10	<10	94	10	134
15	<10	<10	58	10	104
15	<10	<10	26	10	86
17	<10	<10	28	10	156
18	<10	<10	43	10	136
19	<10	(10	39	10	118
20	<10	<10	44	10	174
21	<10	<10	47	10	130
22	<10	<10	65	20	122
23	<10	<10	43	10	106
24	<10	<10	33	10	122
25	<10	(10	50	10	96
26	<10	<10	51	10	154
27	<10	<10	56	10	388
28	<10	(10	37	10	276
29	(10	(10	76	10	142
20	<10	<10	51	10	106
31	(10	(10	42	10	108
32	<10	(10	49	10	56
33	<10	<10	42	10	142
34	<10	<10	41	10	150
35	<10	<10	57	10	136
36	<10	<10	83	10	126
37	<10	<10	108	10	142
38	<10	<10	89	10	132
39	<10	<10	57	10	138
40	<10	<10	90	10	150
41	<10	<10	68	10	180
42	<10	<10	92	10	142
43	<10	<10	92	10	142
44	<10	<10	73	10	94
45	<10	<10	62 <		150
46	(10	(10	55	10	220
47	<10	(10	61	10	142
48	<10	<10	52 <		152
49	<10	<10		10	146
50	<10	(10	67	10	180
51	<10	(10	69	10	218
52	<10	(10	100	10	156
53	(10	(10	95	10	168
			10	10	100

ZSM = Zicton Saddle Mountain ZDC = Zicton Deafies Creek

ан Д

	ppmT]	ppmU	ppmV	ppaW	ppmZn
54	<10	<10	91	10	170
55	<10	<10	89	10	178
56	<10	<10	99	10	170
57	<10	<10	80	<10	220
58	<10	(10	86	10	198
59	· <10	<10	97	10	170
60	<10	<10	54	<10	318
61	<10	$\langle 10 \rangle$	63	< <u>10</u>	128
62	<10	$\langle 10 \rangle$	63	<10	142
63	<10	<10	51	<10	252
64	<10	<10	70 ·	<10	145
65	<10	<10	59	<10	242
66.	<10	<10	50 ·	<10	248

 $\left[\right]$

_

ZSM = Zicton Saddle Mountain ZDC = Zicton Deafies Creek

Appendix IV

Laboratory Geochemistry Report. Soil Samples

-

Analytical Chemists * Geochemists * Registered Assayers

212 Brookebank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

ZSM = Zicton Saddle Mountain ZDC = Zicton Deafies Creek

To: ALLEN GEOLOGICAL ENGINEERING LIMITED

CERTIFICATE OF ANALYSIS

827 W. PENDER ST. VANCOUVER, BC V6C 3G8

Project : ZICTON GOLD Comments: CC: DOUGLAS HALLIWELL

Page Number :1-A Total Pages :2 Certificate Date: 07-JUL-92 Invoice No. :19216930 P.O. Number Account :MD

A9216930

·		T																				
Shiple	PREP CODE	Ап ррв 72+22	Ag ppm	A1 %	As 1990	Ba P pa	Be ppn	bi ppm	Ca %	Cd ppm	Co ppa	Cr ppa	Cu ppm	Fe K	Ga ppm	Hg ppa	X %	La ppa	Mg Si	1 75		
	201 202	< 5	< 0.2	3.25	22	190	< 0.5	< 2	0.33	< 0.5	13	53	52	3.64	10	< 1	0.15	10	1.02	54		
M-920001	201 202	< 5	< 0.2	2.96	24	230	< 0.5	< 2	0.43	< 0.5	22	116	107	5.05	10	1	0.61	10	1.66	83		
M-920002	201 202	< 5	< 0.2	3.40	24	310	< 0.5	< 2	0.50	< 0.5	22	117	95	4.92	10	< 1	0.59	< 10	1.71			
M-920003	201 202		< 0.2	3.84	28	330	< 0.5	< 2	0.50	< 0.5	27	127	111	5.50	10	< 1	0.69	< 10	2,28	10		
M~920004	201 202	< 5	< 0.2	2.84	24	270	< 0.5	< 2	0.28	< 0.5	16	72	59	3.56	10	< 1	0.44	< 10	1.24	63		
-920005	201 202	< 5	0.2	3.18	24	300	• 0.5	< 2	0.62	< 0.5	18	68	61	3.85	10	< 1	0.26	10	1.11	11		
H-920006	201 202		4 0.2	3.45	26	270	< 0.5	< 2	0.39	< 0.5	22	115	97	4.29	10	< 1	0.37	< 10	1.67			
H-920007	201 202		< 0.2	4.13	40	360	< 0.5	< 2	0.67	< 0.5	42	186	162	5.95	10	< 1	0.49	10	2.78	10		
M-9 20008	201 202		< 0.2	3.73	38	260	< 0.5	< 2	0.57	< 0.5	30	166	151	5.51	10	2	0.67	10	2.27	- 11		
- 920009	201 202	15	4 0.2	3.62	46	200	< 0.5	< 2	0.49	< 0.5	30	151	137	5.64	10	1	0.70	10	2.29	12		
-920010	201 202	• 5	< 0.2	3.38	52	240	< 0.5	< 2	0.60	< 0.5	26	122	122	5.24	10	< 1	0.71	10	1.98	13		
H-920011	201 202		< 0.2	2.97	38	220	< 0.5	< 2	0.58	< 0.5	23	86	104	4.58	10	1	0.50	10	1.53	14		
H-92 0012	201 202	_	0.4	3.11	42	180	< 0.5	2	0.49	< 0.5	20	81	108	4.55	10	< 1	0.40	10	1.44	12		
H-920013	201 202		0.4	2.95	54	190	< 0.5	< 2	0.61	< 0.5	20	79	108	4.42	10	1	0.50	10	1,47	12		
8-920014	201 202	15	0.4	2.08	110	120	< 0.5	< 2	0.84	< 0.5	21	42	104	4.99	10	< 1	0.26	10	1.00	12		
-920015	201 202	5	0.2	1.66	106	180	< 0.5	< 2	1.09	< 0.5	16	14	101	3.53	10	< 1	0.20	10	0.31	13		
-920016	201 202	140	1.4	2.27	470	190	< 0.5	< 2	0.61	< 0.5	28	17	149	5.66	10	< 1	0.17	20	0.52	19		
-920017	201 202	990	1.2	2.42	644	150	0.5	• 2	0.70	< 0.5	41	22	177	7.27	10	61	0.15	20	0.73	23		
E-920018	201 202	395	0.6	2.17	426	180	< 0.5	< 2	0.85	< 0.5	33	23	127	5.03	10	< 1	0.26	10	0.63	19		
-920019	201 202	95	0.4	2.08	336	200	< 0.5	< 2	0.89	< 0.5	25	33	127	4.42	10	< 1	0.28	10	0,82	15		
-920020	201 202	\$5	0.6	2.22	142	140	0.5	• 2	0.70	. 0.5	22	64	128	4.88	10	< 1	0.22	10	1.10	12		
E-920021	201 202	15	0.6	2.39	36	80	€ 0.5	< 2	0.77	< 0.5	24	#1	137	6.57	10	< 1	0.12	10	1.77	12(
r-920022	201 202	10	0.6	2.02	48	150	< 0.5	< 2	0.86	< 0.5	22	43	122	5.19	10	< 1	0.18	10	1.03	12:		
1-920023	201 202	35	0.4	1.76	42	200	< 0.5	< 2	1.33	< 0.5	17	33	92	3.85	10	< 1	0.24	10	0.81	133		
z-920024	201 202	20	0.2	1.93	30	140	0.5	< 2	0.99	< 0.5	17	49	117	4.52	10	< 1	0.18	10	1,14	11		
-920025	201 202	70	0.4	2.14	32	190	< 0.5	< 2	1.09	< 0.5	20	48	126	4.62	10	< 1	0.24	10	1.05	13		
E-920026	201 202	115	0.8	2.53	36	190	0.5	< 2	0.76	8.5	21	52	170	5.24	10	< 1	0.26	20	1.02	- 14		
-920027	201 202	140	0.0	1.91	34	200	< 0.5	€ 2	0.99	4.0	19	33	128	4.75	10	< 1	0.27	30	0.69	- 13(
-920028	201 202	135	0.2	2.18	42	190	< 0.5	< 2	0.87	< 0.5	22	71	105	5.23	10	< 1	0.43	10	1.27	101		
-920029	201 202	75	q 0.2	1.66	40	180	0.5	< 2	0.99	< 0.5	28	51	116	5.14	10	< 1	0.32	10	0.92	103		
-920030	201 202	55	4 0.2	1.61	18		< 0.5	2	1.07	< 0.5	19	39	105	4.29	10	< 1	0.25	10	0.40			
-920031	201 202	460	0.2	2.06	10		< 0.5	< 2	0.55	< 0.5	15	39	114	5.03	10	< 1	0.37	20	0.93	70		
-920032	201 202	75	0.2	1.63	20		< 0.5	< 2	1.57	< 0.5	18	36	127	4.63	10	1	0.26	10	0.83			
-920033	201 202	95	0.2	1.75	56		< 0.5	< 2		€ 0.5	20	35	111	4.27	10	< 1	0.23	10	0.72	10(
-920034	201 202	245	0.2	1.91	100	160	< 0.5	< 2	0.99	< 0.5	22	49	125	5.12	10	< 1	0.34	10	1.04	10		
-920035	201 202	705	0.2	2.40	138		< 0.5	< 2	0.80	< 0.5	25	115	105	5.63	10	< 1	0.43	∉ 10	1.43	124		
r-920036	201 202	400	0.4	2.75	116		< 0.5	< 2	0.80	< 0.5	28	167	129	6.28	10	< 1	0.46	< 10	1.80	134		
-920037	201 202	190	0.4	2.31	80		< 0.5	< 2	0.91	< 0.5	26	120	145	5.66	10	< 1	0.33	đ 10	1.37	127		
M-920038	201 202	495	0.8	1.93	64		< 0.5	< 2	1.25	1.0	22	72	280	5.20	10	1	0.27	10	1.00	104		
z-920039	201 202	240	1.0	2.25	80	160	< 0.5	< 2	1.21	0.5	26	106	225	6.21	10	< 1	0.30	10	1.36	123		

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	ALLEN GEOLOGICAL ENGINEERING LIMITED

CERTIFICATE OF ANALYSIS

827 W. PENDER ST. VANCOUVER, BC V6C 3G8

Project : ZICTON GOLD Comments: CC: DOUGLAS HALLIWELL

Page Number :1-8 Total Pages :2 Certificate Date: 07-JUL-92 Invoice No. :19216930 P.O. Number : Account :MD

...

A9216930

							=+	··		CENTIFICATE OF ANALTSIS A9210930									
endte	PREP CODE	lio Dom	Ha 1;	ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppa	Tİ X	71 ppm	U 1990a	V DDM	W DDe	En ppm				
LEN-920000	201 202		0.02	34	1020	10	< 2	7	44	0.13	< 10	< 10	72	10	92				
LEM-920001	201 202		0.01	62	820	10	6	13	50	0.14	< 10	< 10	129	10	126				
LENI-920002 LENI-920003	201 202		0.01	55	870		2	11	50	0.16	< 10	< 10	121	10	114				
Lan-920004	201 202		< 0.01 0.02	53 39	2190 1360	< 2 8	< 2	12 8	60 53	0.16 0.11	< 10 < 10	< 10 < 10	131 80	20 10	128 132				
LENI-920005	201 202		0.02	38	2710	32	4	•	01	0.10	< 10	< 10	77	10	194	······································			
LEN-\$20006	201 202		0.01	62	1260	14	• 2	13	45	0.14	< 10	< 10	124	10	108				
Leni – 920007 Leni – 920008	201 202		0.01	71	780	14	•	21	52	0.12	< 10	< 10	213	20	128				
LENI-920009	201 202 201 202		0.01 < 0.01	73 63	760 890	10	2	17 10	43 41	0.15 0.14	< 10	< 10	168 172	20	104				
		ļ									< 10	< 10		20	124				
LENE-920010 LENE-920011	201 202		0.01 0.01	54 47	1210 970	16 26	4	14 10	€0 61	0.14 0.12	< 10 < 10	< 10 < 10	138 100	10 10	132 142				
LEN-920012	201 202		0.01		1000	44	- 1	10	63	0.12	< 10	< 10	36	10	134				
LEN-920013	201 202	i ī	0.01	44	1050	34	< 2	10	64	0.11	< 10	< 10	94	10	134				
Lang-920014	201 202	< 1	0.01	31	1490	28	4	4	80	0.05	< 10	< 10	58	10	104				
Leni-920015	201 202		0.01	28	1220	16	2	3	154	0.03	< 10	< 10	26	10	86				
Les - 920016	201 202		0.01	33	1600	56	2	4	98	0.05	< 10	< 10	28	10	156				
38-920017	201 202		0.01	44	2230	80	6	4	111	0.04	< 10	< 10	43	10	136				
LEN-920018 LEN-920019	201 202 201 202		0.01 0.01	35 44	1690 1460	40 54	6	4	133 101	0.05 0.05	< 10 < 10	< 10 < 10	39 44	10 10	118 174				
LEN -920020	201 202	1	0.01	67	1200	38	4	5	82	0.04	< 10	< 10	49	10	130	······································			
-920021	201 202	< 1 ·	< 0.01	53	1390	60	6	5	98	0.02	< 10	< 10	65	20	122				
191-92 0022	201 202		0.01	38	1550	30	2	4	130	0.03	< 10	< 10	43	10	106				
LEN-920023	201 202		0.01	33	1680	32	2	3	188	0.03	< 10	< 10	33	10	122				
Lini-920024	201 202		< 0.01	37	1560	24	2	4	129	0.02	< 10	< 10	50	10	96				
LAN-920025	201 202		0.01	42	1560	32	2	5	128	0.04	< 10	< 10	51	10	154				
LENI-920026	201 202		0.01	46	1530	94	2	6	95	0.04	< 10	< 10	56	10	388				
L MI-920027 L MI-920028	201 202 201 202		0.01 0.01	32 48	1710 1540	82 34	4	4	150 125	0.03 0.05	< 10 < 10	< 10 < 10	37 76	10 10	276 142				
LEN-920029	201 202		0.01	55	1740	18	2	8 5	163	0.03	< 10	< 10	51	10	106				
-920030	201 202	2	0.01	40	1460	12	2	4	177	0.03	< 10	< 10	42	10	108				
486-920031	201 202		0.01	35	1290	- 8		5	79	0.05	< 10	< 10	49	10	96				
IM-920032	201 202	2	0.01	49	1560	20		4	157	0.03	< 10	< 10	42	10	142				
LAN-920033	201 202		0.01	43	1510	16	2	4	151	0.04	< 10	< 10	41	10	150				
191 - 9 20034	201 202	1	0.01	45	1630	14	4	5	113	0.05	< 10	< 10	57	10	136				
m -920035	201 202		0.01	75	1280	16	4	9	98	0.07	< 10	< 10	83	10	126				
LEN-920036	201 202		0.01	89	1030	26	4	12	80	0.08	< 10	< 10	108	10	142				
1920037 1920038	201 202		0.01 0.01	79 60	1180 1320	12 22	2	9	85	0.06	< 10	< 10	89	10	132				
LEM-920039	201 202			78	1320	26	2	9	118 117	0.04 0.05	< 10 < 10	< 10 < 10	57 90	10 10	138 150				
								·											
													C	Ertific		thai Otha			

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	ALLEN GEOLOGICAL	ENGINEERING LIMITED
-----	------------------	---------------------

827 W. PENDER ST. VANCOUVER, BC V6C 3G8

Project : ZICTON GOLD Comments: CC: DOUGLAS HALLIWELL Page Number :2-A Total Pages :2 Certificate Date: 07-JUL-92 Invoice No. :19216930 P.O. Number : Account :MD

**

च्द

CERTIFICATION:

			.					$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
engle	1	PREP CODE		Ап ррб РА+АА	λg ppn	A1 %	As Dom	Ba ppu														ile. Dpei
LINI-920040		202		1.0	1.88	102	160	< 0.5	• 2	1.17	3.0	26	77	321	5.79	10	< 1	0.31	10	1.00	1305	
LMI-920041		202		< 0.2	3.75	20	160												10	1.41	630	
LSH-920042 LSH-920043		202		0.2	3.77	24											_				630	
EDC-921000		202		< 0.2 < 0.2	2.87 2.39	26 24	160												_		555 505	
DC-921001	201	202	< 5	< 0.2	2.96	12	250	< 0.5	< 2	0.36	< 0.5	14	20	46	1 64	10		A 27	< 10	0.00	575	
DC-921002	201	202	< 5	0.4	2.86	16															335	
DC-921003		202		< 0.2	2.54	14	170	< 0.5	2		< 0.5										365	
DC-921004		202		< 0.2	2.02	18			< 2		< 0.5	13	35	101		10	3				390	
DC-921005	201	202	< 5	< 0.2	2.89	18	220	< 0.5	< 2	0.43	< 0.5	15	27	77	3.78	10	< 1	0.28	10	0.95	635	
DC-921006		202		< 0.2	3.11	10															525	
DC-921007 DC-921000		202	< 5	0.2 < 0.2	2.74	18															550	
DC-921009		202		0.2	3.08	20 18															625	
DC-921010	201	202	< 5	< 0.2	3.27	24															570 575	
DC-921011	201	202	< 5	0.2	2.91	36	130	< 0.5	< 2	0.44	< 0.5	21	37	165	5.38	10	< 1	0.45	10	1.51	650	
DC-921012		202	< 5	0.2	3.05	16	230	< 0.5	< 2	0.52	< 0.5	21	32	113			< 1				705	
DC-921013		202		< 0.2	2.89	28			< 2	0.59	< 0.5	21		150	5.07		< 1	0.49	10		650	
BC-921014		202		< 0.2	2.32	36			< 2			20	38	172	5.35	10	2	0.42	10	1.43	665	
DC-921015	201	202	• 5	< 0.2	2.45	14	320	< 0.5	< 2	0.44	< 0.5	17	28	56	3.35	10	< 1	0.27	e 10	0.81	765	
BC-921016		202	< 5	< 0.2	1.68	16															370	
DC-921017		202		< 0.2	2.14	12															460	
DC-92101# DC-921019		202 202		< 0.2 < 0.2	2.40	10 10		< 0.5		0.30	< 0.5		30	34 85	3.90	10	_	0.24			575 455	
DC-921020		202		< 0.2	2.33	22		< 0.5	< 2 < 2		< 0.5	16 18	27	116	4.67	10	< 1 < 1	0.20	10 10	0.95 0.82	410	
BC-921021	201	202	< 5	< 0.2	2.39	32	160	< 0.5	< 2	0.28	< 0.5	18	27	110	4.61	10	< 1	0.21	10	0.80	460	
																	<u>) (</u>	0	20	4		

Analytical Chemists * Geochemists * Registered Assayers

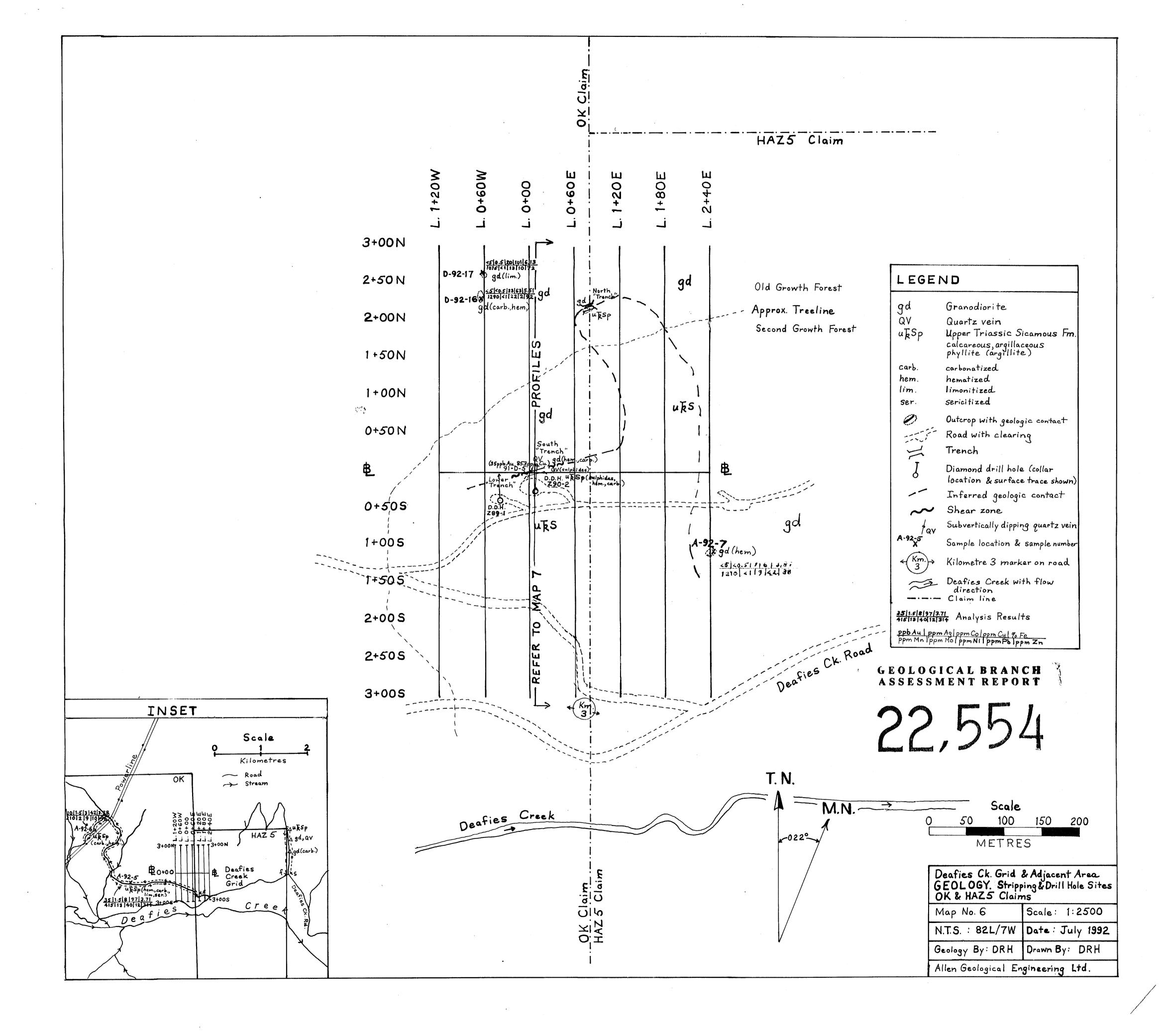
212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

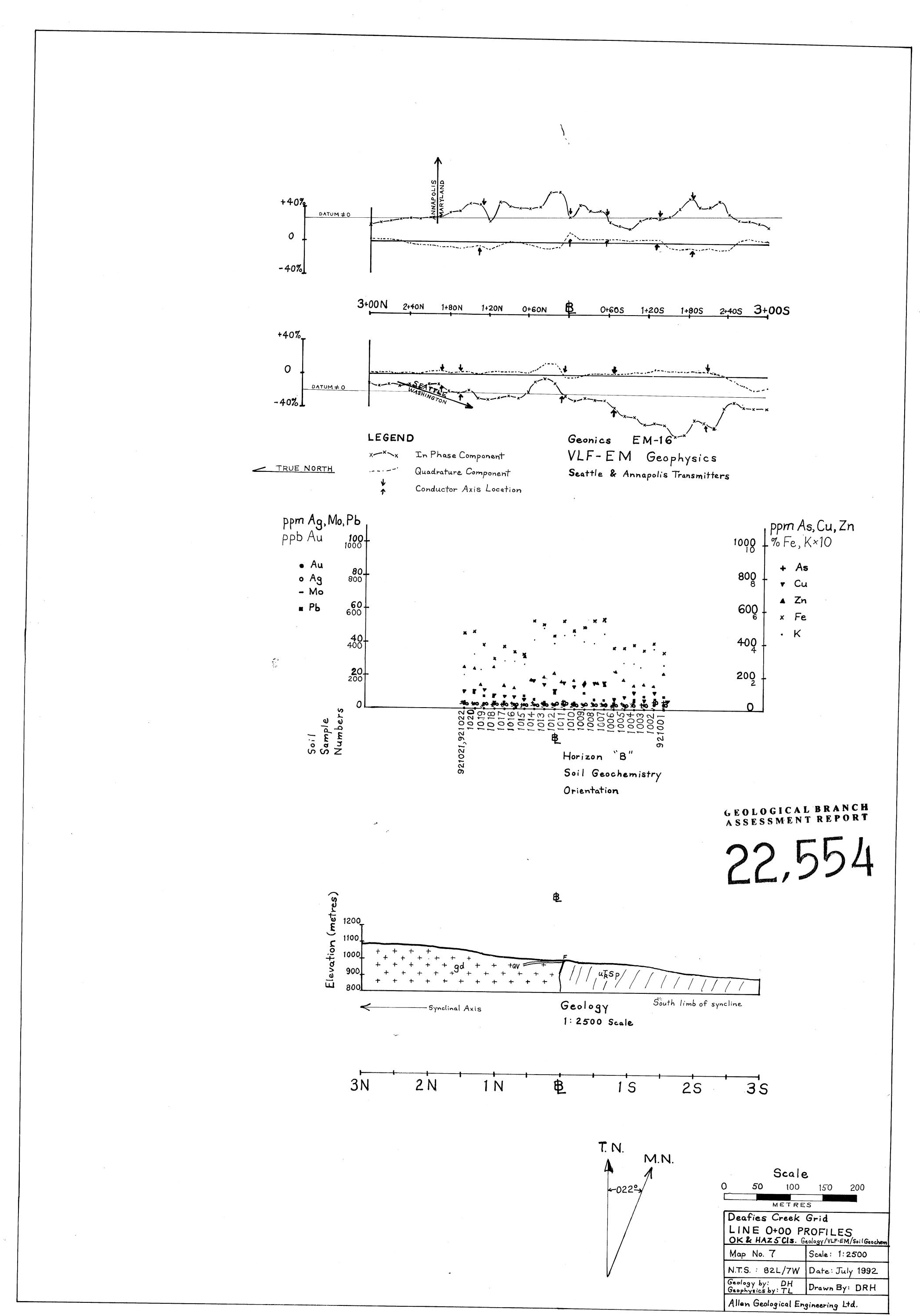
To: ALLEN GEOLOGICAL ENGINEERING LIMITED

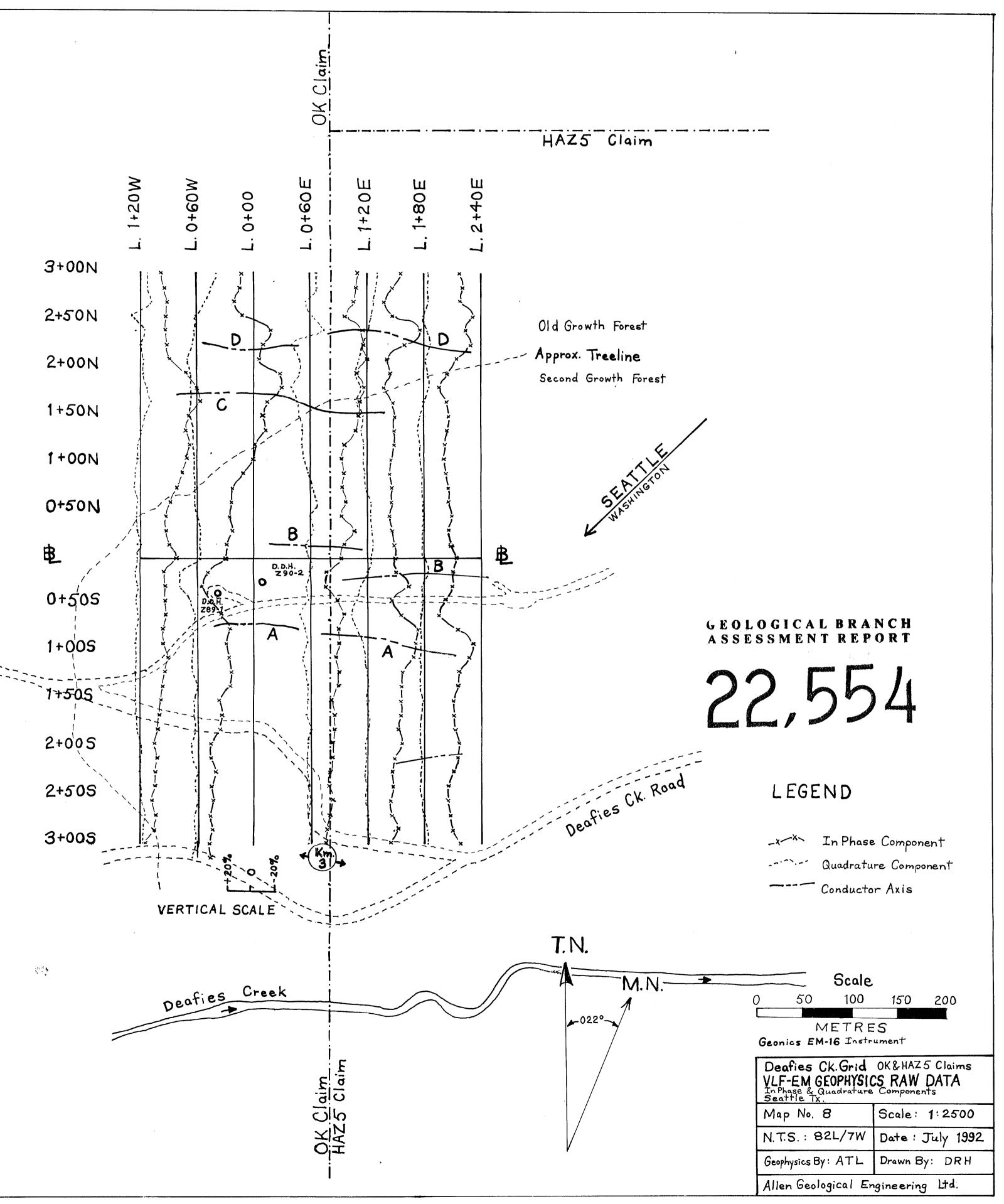
827 W. PENDER ST. VANCOUVER, BC V6C 3G8

ZICTON GOLD Project :

Page Number :2-B Total Pages :2 Certificate Date: 07-JUL-92 Invoice No. :19216930 :19216930 P.O. Number 1 Account : MD

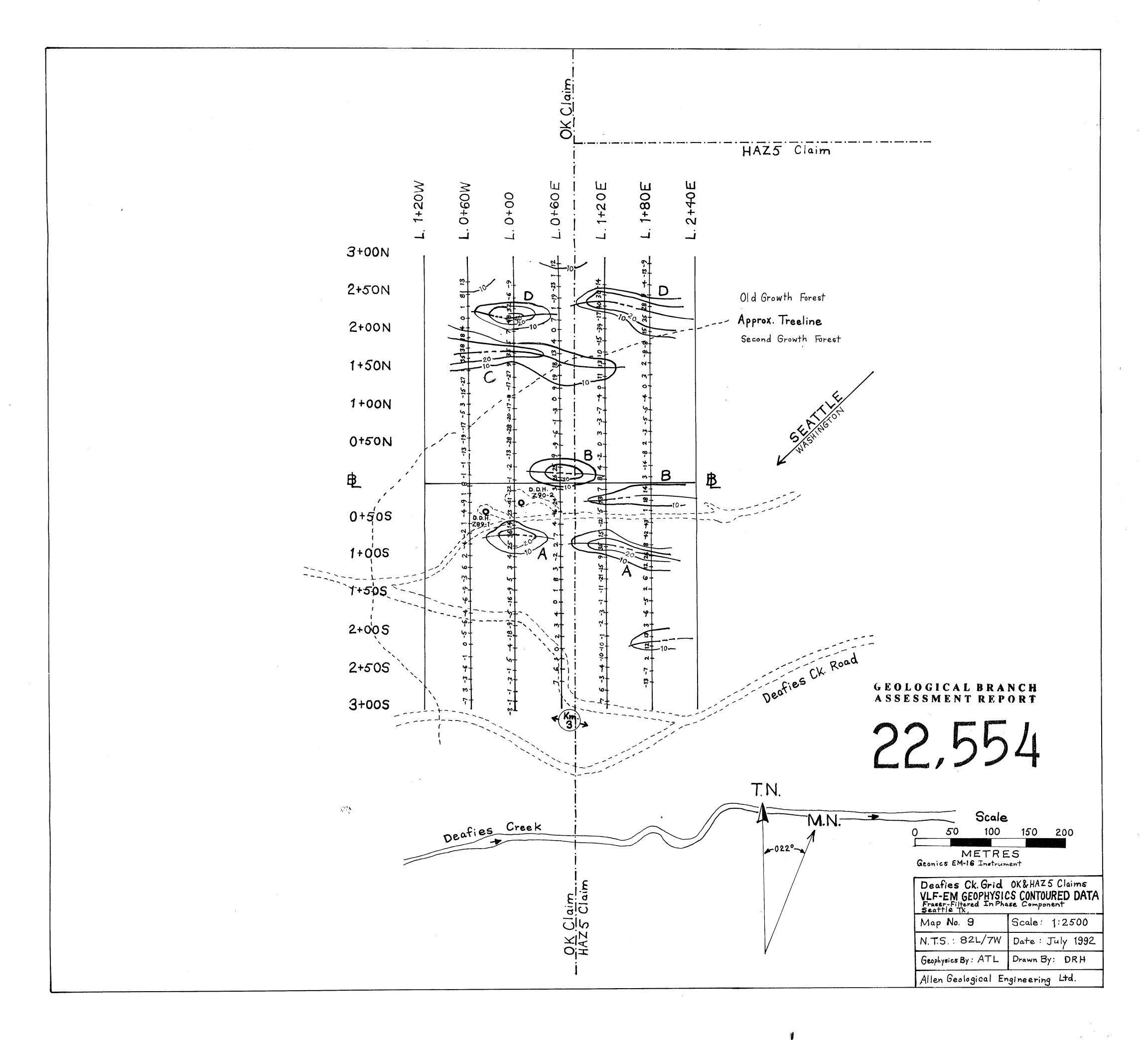

Comments: CC: DOUGLAS HALLIWELL **CERTIFICATE OF ANALYSIS**

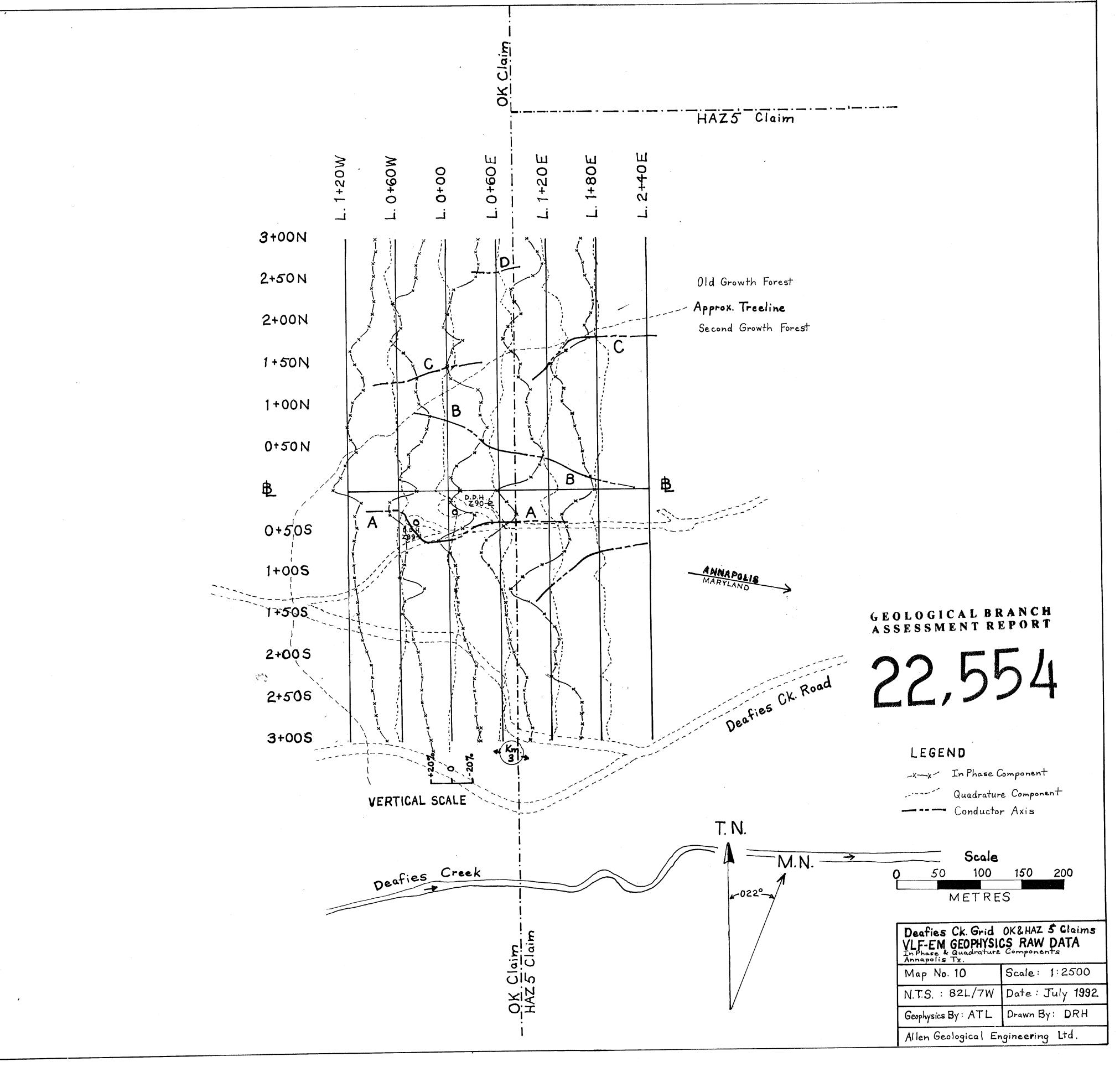

A9216930


**

EMPLE	PREP		No	Ma X	Mi	P	Pb	ß	BC	Sr	Ti	71	U	V	W	2n	
			ppm		ppm.		79	ppa	<u></u>	pp	<u> </u>	778	ppm	ppm	ppm	ppm	
M-920040	201 2		11	0.01	61	1530	26	4	7	134	0.05	< 10	< 10	68	10	180	
M-920041	201 2		< 1	0.01	47	1040	16	2	9	52	0.15	< 10	< 10	92	10	142	
M-920042	201 2		< 1	0.01	45	1070	12	2	9	52	0.15	< 10	< 10	92	10	142	
M-920043 DC-921000	201 2		1	0.01	34	800	14	2	7	44	0.13	< 10	< 10	73	10	94	
	201 2	U 4		0.01	31	550	6	2	5	43	0.11	< 10	< 10	62	< 10	150	
DC-921001	201 2		1	0.01	40	1390		4	5	56	0.11	< 10	< 10	55	10	220	····· ································
BC-921002	201 2		< 1	0.02	36	500	6	< 2	7	44	0.12	< 10	< 10	61	10	142	
DC-921003	201 2		1	0.01	33	460	8	2	5	35	0.12	< 10	< 10	62	< 10	152	
DC-921004	201 2		2		33	570	6	2	6	39	0.10	< 10	< 10	70	< 10	146	
DC-921005	201 2	02	< 1	0.02	31	870	2	< 2	6	57	0.11	< 10	< 10	67	10	180	
C-921006	201 2		1	0.02	37	650	4	< 2	6	52	0.12	< 10	< 10	69	10	218	
DC-921007	201 2		2	0.01	33	570	6	4	10	58	0.15	< 10	< 10	100	10	156	
DC-921008	201 2			< 0.01	34	1010	6	4	10	60	0.12	< 10	< 10	95	10	168	
DC-921009	201 2		1	0.01	35	650	10	4	9	66	0.15	< 10	< 10	91	10	170	
DC-921010	201 2	02	1	0.02	38	#10	4	4	9	61	0.15	< 10	< 10	89	10	178	
DC-921011	201 20		1	0.01	37	710	4	4	9	49	0.14	< 10	< 10	99	10	170	
DC-921012	201 20		1	0.02	39	960	10	4	7	67	0.13	< 10	< 10	80	< 10	220	
DC-921013	201 20		1	0.01	42	980	4	4		67	0.13	< 10	< 10	86	10	198	
DC-921014	201 20		3	0.01	35	1210	<u> </u>	2	9	52	0.11	< 10	< 10	97	10	170	
DC-921015	.201 20	×		0.02	41	2120	•	4	4	66	0.09	< 10	< 10	54	< 10	318	
DC-921016	201 20			< 0.01	28	500	< 2	2	5	29	0.09	< 10	< 10	63	< 10	128	
DC-921017	201 20		2	0.01	32	700	4	2	5	37	0.09	< 10	< 10	63	< 10	142	
DC-921018	201 20		2	0.01	31	1130		< 2	4	46	0.09	< 10	< 10	51	< 10	252	
DC-921019 DC-921020	201 20		1	0.01	34 47	680	8	4	7	49	0.12	< 10	< 10	70	< 10	166	
DC-921020	201 20	02	3	0.01	47	1190	10	< 2	5	41	0.08	< 10	< 10	59	< 10	242	
DC-921021	201 20	D2	4	0.01	47	1300	4	2	5	44	0.08	< 10	< 10	60	< 10	248	
																	,
																	thai Otho
																	\mathcal{N}

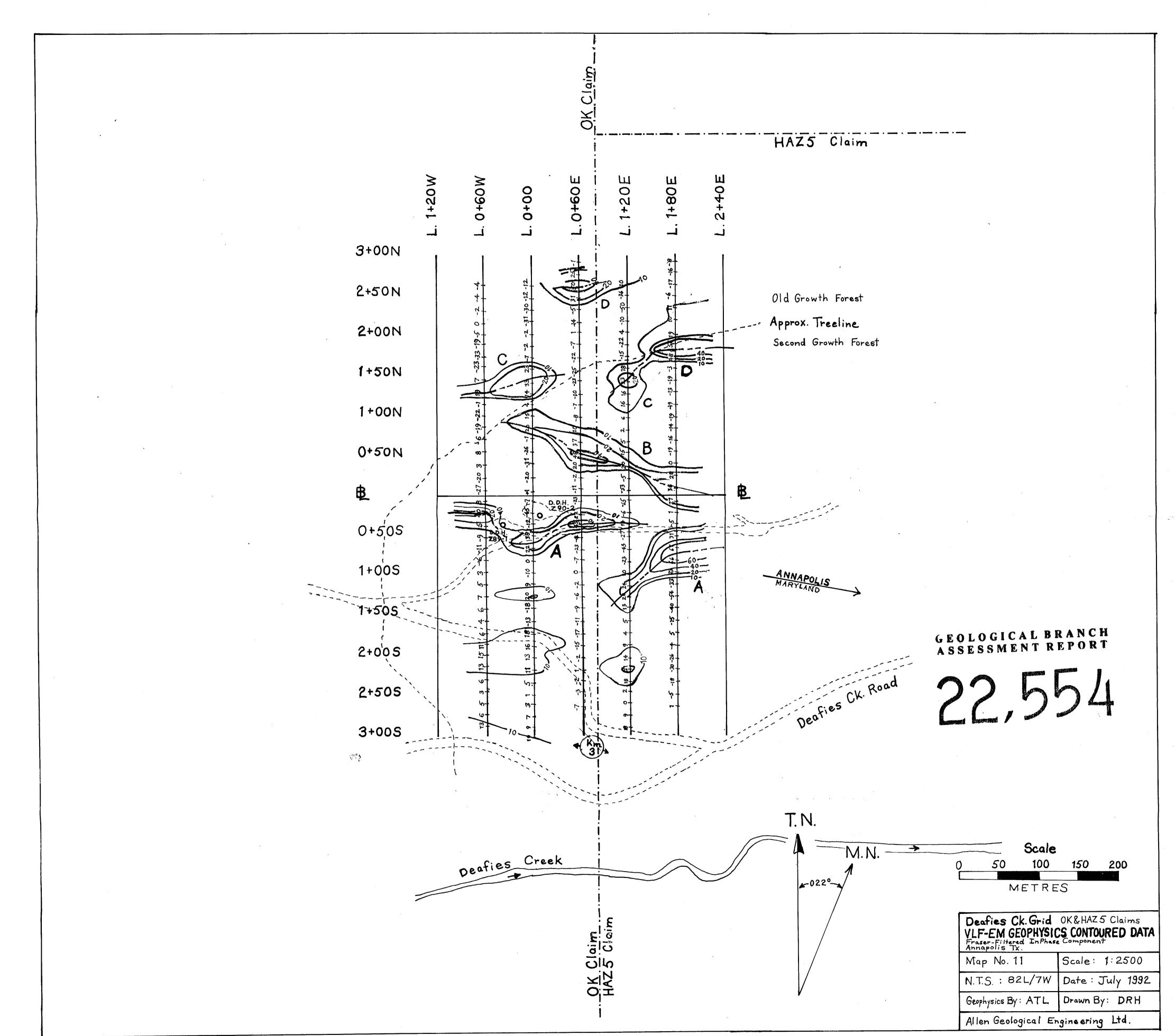
CERTIFICATION:




.

.

~~~




·



,

,



,