Assessment Report on Diamond Drilling on the Forks Two Group

Dome Mountain Project

Omineca Mining Division British Columbia

Mapsheet: 93L/10,15

Location: 54 degrees 45' North 126 degrees 39' West

NTS: 653400 E 6068600 N

Owner: Habsburg Resources Inc. 1075 N. Service Rd. W., Unit 6 Oakville, Ontario L6M 2G2

Operator: Timmins Nickel Inc. 205-155 University Ave. Toronto, Ontario M5H 3B7

Author: Hans Smit

Date: October 22, 1992

GEOLOGICAL BRANCH ASSESSMENT REPORT

SUMMARY:

In January and February 1992, seven NQ diamond drill holes totaling 546 metres were drilled on the Cope 1 claim on Dome Mountain. Drilling was targeted on the Boulder Shear, a structure which hosts an auriferous quartz vein currently being mined.

Drilling further defined the structure east of current reserves and outlined potential ore. The best intersection was 4.8 m grading 0.788 opt gold.

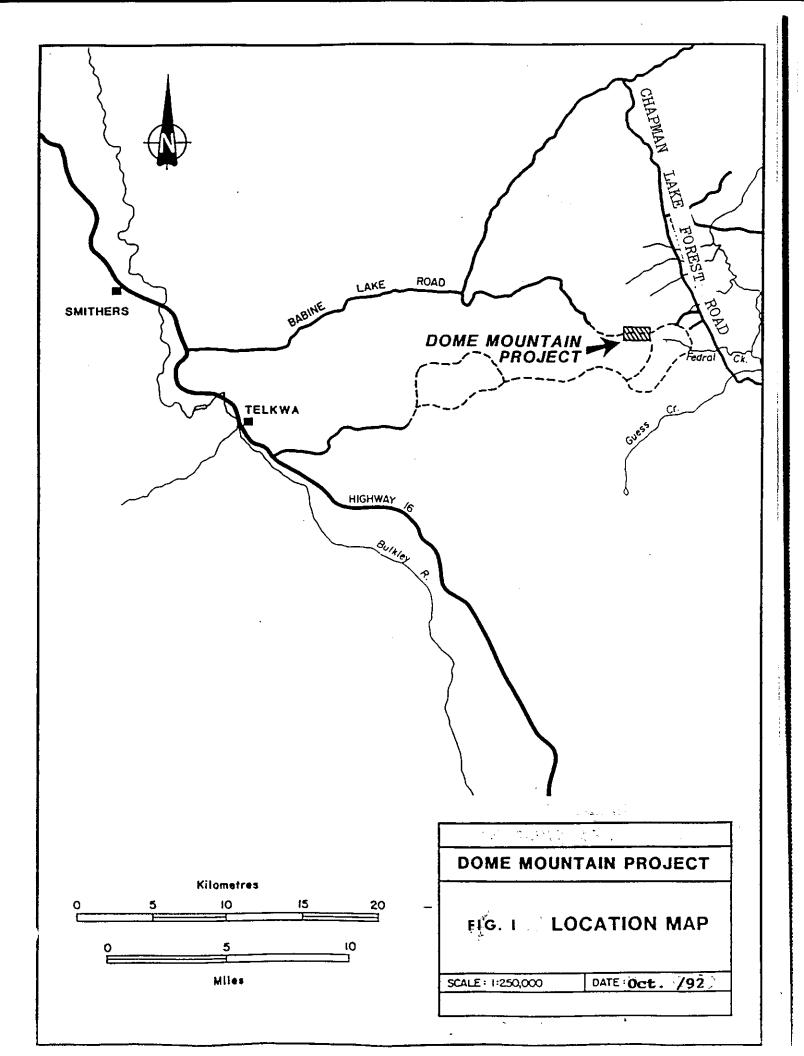

Further drilling and underground development are required to prove up the potential ore and to continue exploring the Boulder structure.

TABLE OF CONTENTS:

	<u>Page</u>
Introduction	3
Location and Access	3
Physiography and Vegetation	4
Claims and Ownership	6
Previous Work	7
Geology	7
Results from 1992 Drilling	7
Conclusions	12
Statement of Costs	13
References	14
Statement of Qualifications	15
FIGURES:	
Fig. 1 Location Map	2
Fig. 2 Claim Map	5
Fig. 3 Drill Plan	8
TABLES:	
Table 1 Claims	6
Table 2 Drill Hole Locations	10
Table 3 Intersections	. 11
APPENDICES:	

.

Appendix	A	Drill Logs	
Appendix	в	Analytical	Results

INTRODUCTION:

Timmins Nickel Inc. drilled 13 NQ diameter holes totaling 1045 metres (3430 ft) on the Dome Mountain Property in late January All drilling was targeted on the and early February of 1992. Boulder structure, east of current ore reserves. shear Seven of D92-1,2,3,4,6,7 and 13, totaling 546 metres (1790 ft) the holes. located on the Cope 1 claim. Costs of these holes was were applied for assessment credit to claims in the Forks Two Group.

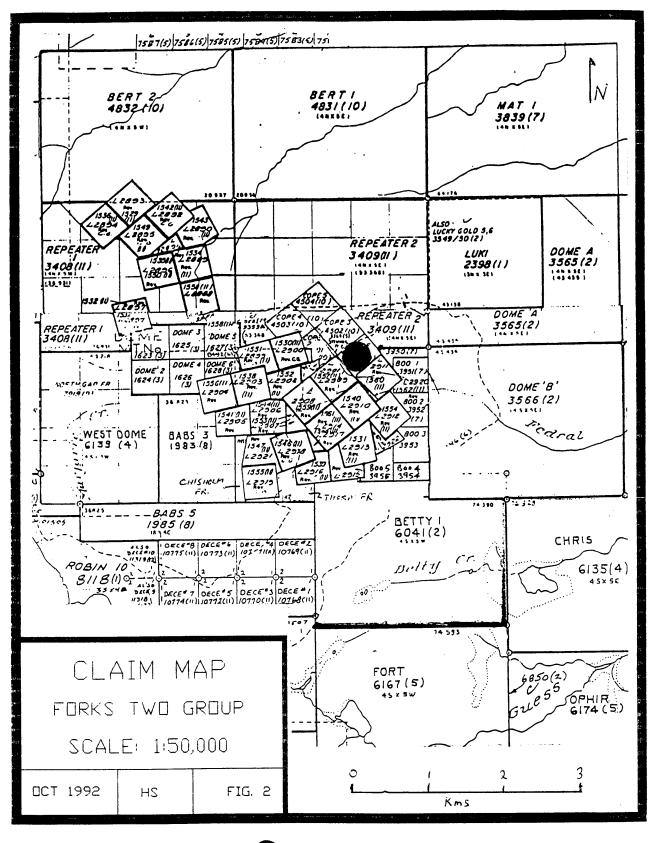
contracted to J.T. Thomas Diamond Drilling Drilling was of Drilling commenced on January 20 and was completed on Smithers. 2, with a break in drilling from January 26 to 31. February Hans supervised the drilling and logged all the core. Drill road Smit site preparation was contracted to Jack deCoteau Contracting and Chris Warren was hired to split core. Core samples of Smithers. prepared at the Min-En laboratory in Smithers and then sent were to their Vancouver laboratory for gold and silver assays. Vein analyzed by 31 element ICP in intercepts were addition to drill collar locations were surveyed A11 by A.A. assays. deBruyne Surveys of Smithers.

Drill core is stored in Smithers.

Total expenditures for the drill holes on the Cope 1 claim were \$38,000.00.

LOCATION AND ACCESS:

Dome Mountain is 31 km east of Smithers, British Columbia, at 54 45' north latitude and 126 degrees 39' west longitude, degrees shown on NTS maps 93L/10 and 15. and is The Chapman Forest Road provides good access all year from Smithers (60 km) Service eastern base of the mountain. A branch road Houston to the ог Road about 250 m south of the 69 km sign and Chapman leaves the the Dome Mountain Mine workings. provides access to Various subsidiary roads provide four-wheel drive access to other parts of the property.


The drill holes on the Cope 1 claim were drilled at 1300 to 1350 meter elevation in an area north of the lower mine portal.

PHYSIOGRAPHY AND VEGETATION:

Dome Mountain is a glacially rounded summit that reaches an elevation of 1735 m above sea level and marks the most southeasterly occurrence of alpine elevations in the Babine Range. The slopes of the mountain vary between gentle and steep, but cliffs are rare. The middle and lower slopes support stands of alpine fir, spruce, pine, and a few deciduous species.

Several creeks, including Fedral Creek and its main tributary Boulder Creek, run all year and provide sufficient water for drilling and mining purposes.

The area is generally free from snow from May to October.

🕥 Drill Area

- 5 -

CLAIMS AND OWNERSHIP:

The drill holes described in this report were on the Cope 1 claim which is part of the Forks Two Group. All claims in the Group are owned by Habsburg Resources Inc. (formerly Teeshin Resources Ltd.) of 1075 North Service Road West, Unit 16, Oakville, Ontario, L6M 2G2, subject to several agreements.

> TABLE 1 FORKS TWO GROUP CLAIMS

<u>Claim</u>	<u>Units</u>	<u>Title No.</u>
Babs 3	8	238150
Babs 5	6	238152
Betty 1	20	238748
Boo Fr.	1	238435
Boo 1	1	238436
Boo 2	1	238437
Boo 3	1	238438
Boo 4	1	238439
Boo 5	1	238440
Chisholm Fr.	1	302970
Cope 1	1	238538
Cope 3	1	238540
Cope 4	1	238541
Cope 5	1	238542
Dome B	20	238384
Dome 1	1	238090
Dome 2	1	238091
Dome 3	1	238092
Dome 4	1	238093
Dome 6	1	238095
Freda	1	238073
Josie	1	238059
New York	1	238081
No. 3	1	305642
No. 6	1	238068
Raven	1	238060
Snowdrop	1	238083
Telkwa	1	238061
Thorp fr.	1	303095
Tom Fr.	1	238075
Trail	1	238082
Trail Fr.	1	238074
Vancouver	1	238067
Victoria Fr.	1	238072
Wallace	1	238086
Wallace Fr.	1	238088

PREVIOUS WORK:

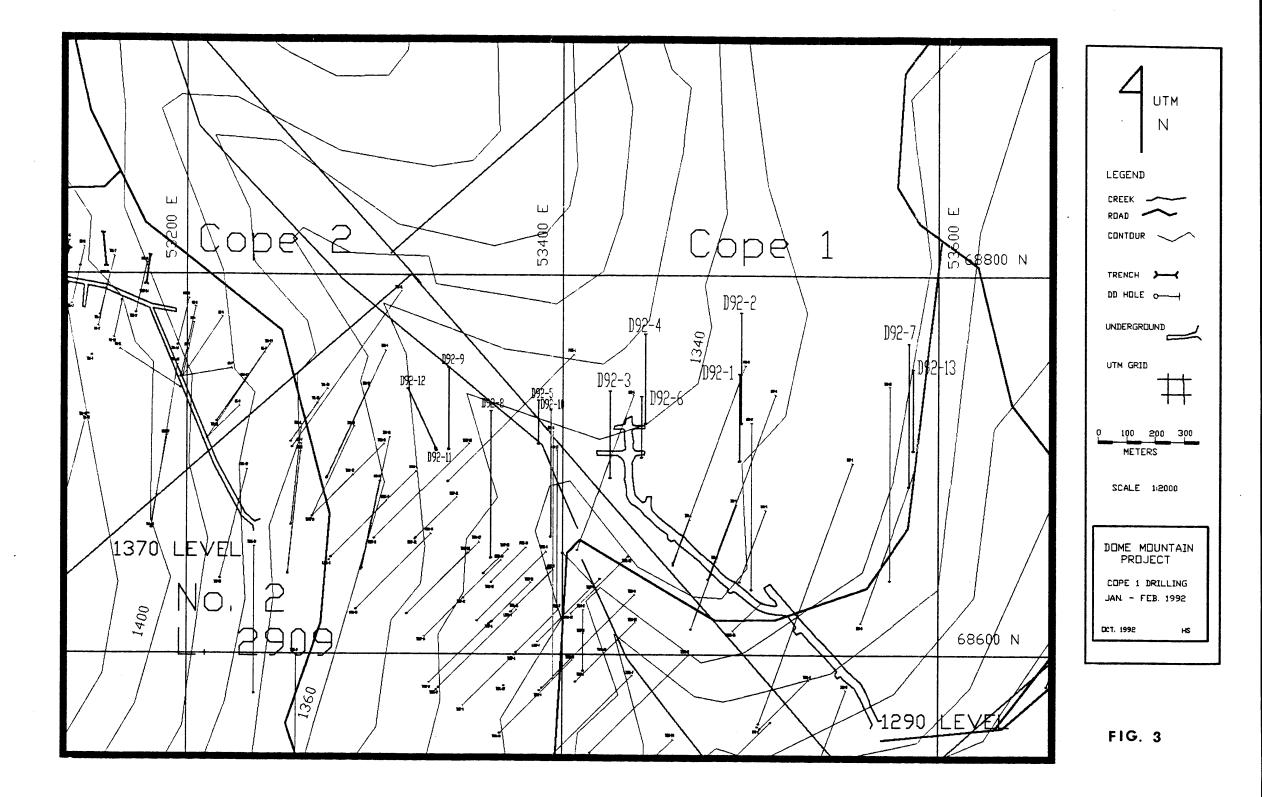
Timmins Nickel Inc. is currently mining the Boulder Vein on Dome Mountain. Mineral exploration work on the property includes over 20,000 m of diamond drilling, several adits and associated underground workings, as well as geological, geochemical and geophysical surveys.

GEOLOGY:

Dome Mountain lies on the Skeena Arch, near the southern edge of the Bowser Basin. The area is mainly underlain by island arc volcanic and sedimentary rocks of Early to Middle Jurassic age, cut by a few granitic to dioritic intrusions. The geology has been mapped by Tipper (1976) and by McIntyre, et al. (1987) and the geological setting has been described by Tipper and Richards (1976).

The rocks exposed on Dome Mountain are predominately basaltic and andesitic pyroclastics that range from tuffs to volcanic breccias. Lappilli tuffs appear to be the most common. Minor volcanic flows, generally amygdaloidal in character, are also present.

Sequences of sedimentary rocks, including locally fossiliferous volcaniclastic sandstones and graphitic siltstones, have been observed on the eastern and southern slopes of the mountain.


Quartz veins containing gold, silver, and base metals occur in both the volcanic and sedimentary rocks on Dome Mountain. The veins are structurally controlled and are associated with both ductile and brittle deformation. Alteration associated with the veins includes extensive zones of iron-magnesium carbonates and sericite, and local zones of silicification and albitization.

Minable reserves of 325,000 tons assaying 0.36 opt gold and 2.35 opt silver were reported to be present on the property before the 1992 drill program (<u>The Northern Miner</u>, 1 July 1991).

RESULTS FROM 1992 DRILLING:

Geology:

The 1992 drill holes intersected the same geological units as have been previously intersected on the property. In brief, there is an upper unit (Volc/Sed) of mixed volcanics (andesite to dacite volcaniclastics) and sediments (tuffaceous sediments, minor bedded graphitic siltstone/ sandstone). Rocks of this unit are green to grey in color, with rare sections of red to maroon lapilli tuffs.

Below this unit a distinctive unit (Amygdaloidal Flow) of massive Variable amounts of maroon to green basaltic flows occurs. calcite filled amygdules and one to three millimetre red and green phenocrysts characterize this unit. The rocks of this unit are very competent and highly calcareous. This unit is the best rock for ore known on the property. In the western part of host the Boulder this flow unit lies directly below the upper Vein. Volc/Sed unit and is underlain by a thin unit (Bedded Tuff) of bedded red crystal tuffs. These bedded tuffs are in turn well underlain by a lower unit (Lapilli Tuff) of maroon and lesser green to grey lapilli to crystal tuff to tuff breccia.

East of a fault projected to underlie Boulder Creek (Boulder Creek Fault), the Bedded Tuff unit is not present and the Lapilli Tuff unit both overlies and underlies the Amygdaloidal Flow unit. The upper Volc/Sed unit overlies the Lapilli Tuff and Amygdaloidal Flow units.

West of the fault, the units strike northward and dip moderately to the east. All units occur in the hangingwall of the Boulder structure. The footwall is always the Lapilli Tuff.

East of the Boulder Creek Fault, the units dip very shallowly to the east and Amygdaloidal Flows were intersected both in the footwall and hangingwall of the Boulder structure. Displacement of the flow rocks is consistent with right lateral displacement along the Boulder Shear Structure as observed west of the fault.

Assay Results:

Drilling on the Cope 1 was targeted on the Boulder Shear structure east of current ore reserves. All holes except D92-4 intersected quartz veining. Hole D92-3 had the best intersection (4.8 0.788 opt gold). This intersection. m grading and intersections in D92-1 and D92-6, were of the Boulder Vein. D92-3 also intersected narrow veins in the hangingwall and footwall of the Boulder Vein.

Holes D92-2 and D92-4 were still in overburden where they would have intersected the projection of the Boulder Vein. D92-2 intersected a footwall vein.

The two furthest east holes - D92-7 and D92-13 - both intersected quartz veins or stringers approximately on strike with the Boulder Vein. However, a sectional view of the holes shows a vein dipping much shallower than the Boulder, and therefore these intersections may not represent the Boulder Vein.

Drill hole locations are summarized in Table 2 and significant drill intersections are summarized in Table 3.

DRILL LOCATIONS DOME MOUNTAIN PROJECT

1992 DRILLING COPE 1 CLAIM

DRILL HOLE	AZIMUTH	DIP	LENGTH METRES	LOCATI EAST	ON NORTH	ELEV.
D92-1	360	-60	91.4	53493	68702	1337
D92-2	360	-45	82.3	53494	68722	1337
D92-3	360	-60	91.4	53425	68693	1338
D92-4	360	-45	67.1	53444	68721	1340
D92-6	360	-45	45.7	53442	68704	1339
D92-7	360	-45	106.7	53584	68689	1317
D92-13	360	-45	61.0	53587	68708	1316

.

DOME MOUNTAIN PROJECT

1992 DRILLING COPE 1 CLAIM SIGNIFICANT INTERSECTIONS

HOLE	FROM (M	TO IETRES)	WIDTH	Au oz/t	ROCK TYPE	STRUCTURE		
D92-1	36.3	37	0.7	0.738	qtz vn	Boulder		
D92-2	21.1	21.8	0.7	0.057	strs/altn/flt	FW?		
D92-3	26.7 26.9 30.5 31.6 34.2 50.2	26.9 30.5 31.6 34.2 35.3 51.1	0.2 3.6 1.1 2.6 1.1 0.9	0.216 0.003 2.863 0.034 0.497 0.097	qtz vn alt volc qtz vn alt volc qtz vn qtz vn qtz vn	HW Boulder Boulder FW		
32-4	no signific	ant inte	rsection					
D92-6	21.8	22.2	0.4	0.157	strs/shear	Boulder		
D92-7	38.1	38.8	0.7	1.215	qtz vn	East HW Vein?		
D92-13	38.6	39.0	0.4	0.074	qtz strs	East HW Vein?		

.

CONCLUSIONS:

.

The 1992 drilling on the Cope 1 claim further defined the location of the Boulder Vein east of current reserves. A potential ore zone was intersected by D92-3.

Further drilling and underground development is required to confirm the potential ore zone around D92-3 and to continue exploring the Boulder Shear Structure for additional ore zones.

STATEMENT OF COSTS:

.

The following costs were incurred during drilling on the Cope 1 claim in January and February of 1992:

Drill footage: 1790 ft x \$14.25/f	t	\$25,507.50
Road/drill pad construc D-8 cat 40 hr Hoe 10 hr Skidder 5 hrs	s x \$125 \$5000 s x \$120 \$1200	
	x 400 4000	\$ 6,500.00
Fuel		\$ 1,100.00
Drill supervision/plann 8 day	ing s x \$300	\$ 2,400.00
Core splitting 21 hr	s x \$10.00	\$ 210.00
Analysis prep 59 x Au+Ag assay 59 x ICP 14 x	\$13.00 \$767.00	\$ 1,057.50
Pick-up 5 days x \$50		\$ 250.00
Surveying		\$ 300.00
Supplies		\$ 150.00
Report/analysis 2 days x \$300		\$ 600.00
	TOTAL	<u>\$38,075.00</u>

.

REFERENCES:

- McIntyre, D.G., Brown, D., Desjardins, P. and Mallot, P. (1987): Babine Project (93L/10, 15), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1986, Paper 1987-1, pages 201-222.
- Tipper,H.W. (1976): Smithers map area, British Columbia, Geological Survey of Canada, Open File 351 (geological map).
- Tipper,H.W. and Richards,T.A. (1976): Jurassic stratigraphy and history of north-central British Columbia, Geological Survey of Canada, Bulletin 270, 73 pages.

STATEMENT OF QUALIFICATIONS:

I, Hans Q. Smit, of Telkwa, British Columbia, do hereby certify that:

I am a consulting geologist with a business address at Comp. 18 Site 15, RR 1, Telkwa, BC, VOJ 2XO.

I am a member of The Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I am a fellow of the Geological Association of Canada.

I am a graduate from the University of British Columbia with a B.Sc. Honours (Geology).

I have no interest in any of the companies owning or operating claims covered by this report.

I personally supervised the drill program described in this report and logged all the core from holes described in the report.

I am the author of this report.

Hans Q. Smu

Red 22/93

Date

MM

APPENDIX A

DRILL LOGS for DRILLING on the COPE 1 CLAIM DOME MOUNTAIN PROJECT

JANUARY - FEBRUARY 1992

HOLE N Locatio Latitui Elevat	DE		DIP	AZIMUTH	METRES	DIP	AZIMUTH	REMA	.RKS	92-1 SH			-
MET	RES	DESCRIPTION			SAMI	PLE				ASSA	rs _.		
FROM	то		N	O. SUL PH		ETRES TO	TOTAL	36	×	OZ/TON	OZ/TON	RON	
0	6.1	CASING											
6.1	16.8	VOLC /SED -INTER BERRETS GREEN-AREY XTL-LAPILLI TUFF (SOME POSSIBLE SEDIMETARY LAYORS) AND MARKOON LAPILLI TURFS, QUITE WARABLE UNIT: MODERATED TO LOCALLY MILMAY BROKEN CONST. MODERATED TO LOCALLY MILMAY BROKEN CONST. MODERATE (6.1-10.8) MEDIVM GREY XTZ-TUFF WITH 1070202 (6.1-10.8) MEDIVM GREY XTZ-TUFF WITH 1070202 (6.1-10.8) MEDIVM GREY XTZ-TUFF WITH 1070202 UP TO DAM FERD. PHENOS; MODERATE PATCAY BLACK SEPERKUNG / METTING I GRAPHITE? IN PACE LOOKS SEDIMETARY; MINOR GREY WARLES TO 1 CM.; 80 TO RECOVERY (10.8-12.8) ALTERED; BUFF: MOS TO INTENSE CLA GO TO RECOVERY ; RUSTI FRACTURES; IN PONT CORE IS MUSH (12.8-16.8) MORROOM ATUFF; ABUNDANT WAVELLI, MOSTLY TO ICH, ROCALY TO YEA; MATCH LIGHT GREEN-GREY AREAS (WEAK CHARTS SAR OWNARL) J LUDRS MUCH LIKE COMER LAP TUFF WIT EXCOUNT SOME AMY, LUCC TRACS; 100 YO RECOVERY REST OF NORF UMESS NOTES -LAT 2M GETS INCREASENELY FRIMTY E 11 FR 80 TO CAS.	8									6.1- 10.8 70% 10.8- 12.8- 15.8 70%	

- TORONTO

- TORONTO

NGRIDGES

NAME OF PROPERTY DOME

HOLE NO. _

D92-1 SHEE

SHEET NO. 2.75

METRES	DESCRIPTION			SAMP	LE		ASSAYS				
FROM TO		NO.	SULPH	FROM	TO	TOTAL	2	2 02	9-UN	A9	Reis
16.8 18.	MOD, LUCALLY INTENSE QTZ-CARE-MARI; BURE COLORED WITH GREEN MARINOSITE SPECKS MOS.	G120J	Tr	16.8	17.8	1.0		0.		0.11	16.8-
18.6 33.	VOLC (SED MIKED GREY-GREEN TURES, SONG POSSIBLE SEDS AND MARROOM LAPILLI TURE AS BEFORD. AGAIN LAPILLI TURE LOOKS LIKE CONTRA LAP. UNIT EXCONT FOR CONTRAINED SOME ANY. CLASS, MINOR CREE THRU-OUT. (18.6-22.3) MARROOM CAPILLI TURE: 60 % DECREASING TO 10 MARROOM CAPILLI TURE: 60 % DECREASING TO 10 % LAPILLI FREES IN MEDIUM TO FINT MATHIX: MOD MIT AROUND A Q.S CH GT2- (MB SIR FROM 19.1 TO 19.9M (CARB-QT2-MAR) (22.3-25.0) GREY TO GREEN-GREY, LAPILLI TURE: SOME TURE RAKE WITH UP TO SCH CLASTS, AND SOME TUREACEOUS SEDMENT (?); GREADINGK (GRAMITT?) COMMON IN MATRIX OF CORES TURE (GRAMITT?) COMMON IN MATRIX OF CORES TURE TO 672-GREEN USING TO GREENT (?); GREADINGK (GRAMITT?) COMMON IN MATRIX OF CORES TURE TO 672-GREEN USING TO 50 CORE 22.8M; SITERAM ABOVE - 4% FINE PY IN STR.	202	1%	22,3	27.8	5.5		6.4	722	0:15	186 - 22.3 22.3 80%

NAME OF PROPERTY	M	E
------------------	---	---

HOLE NO. _______ SHEET NO. ______ SHEET NO. ______ 3.75

METRES					SAMP	LE								
FROM	то	DESCRIPTION	NO. SULPH METTRES					ļ	ASSAYS					
18.6	33.5			IDES	FROM	T0	TOTAL		2	OZ/TON	OZ, TON	RON		
		(25.0-32.6) MARROON LAPILLI TURF; MOSTZY LICA										25.0 -		
		CLASTS TUFAIL TO MOS FOLG 60 TO 80 TO C.A.												
		(32.6-33.2) GREY WEAK CARCE TEXTLE										332		
		FINE GRAIN ; COL? IN FAREFURES										70%		
		(33.2-33.5) MARROON, MUD. CRACKLE TO CARS IN FRACTURES												
	012	ALTONOT VALCANUS			• • • • • • • • • •									
33.5	36.3													
		GREY TO BUFF. MOD. INCREASING TO i- SERIE MERK MARI THE CARTE										33.5- 35.3		
i		(33.5-35.3 m) MOD ALT "; 1% CLAIC PY;	61203	1%	33.S	34.\$	0.9		i	0.034	0.07	30%		
		MOD. CARB IN FRACTURES MAD IRRELUZAR STUS. CORE BROKEN, WERK CLAY, ESP. IN FRACTIRES.	204	1%	34. ‡	35.3	0.9			0.005	0.05	35.3 -		
		(35.3 - 36.3) INTENSE ALTE, BUFF COLORED'S	205	57	35.3	36.3	1.0			0.025	0.20			
		5% PT IN IRREGULAR STRS, PATCHES AND DISCONTINUEL INCREASING SIL FLOODING, PATCHES TO 36.3		0.0	• • • •									
36.3	37.0	QUARTZ VEIN (0.7m)												
		MOTTLED WHITE AND GREY WTZ WITH 15 % 149										36-3-		
		1% GAL, MINOR-CMY; Sx IN PATCHES ME IRICELOUR	206	15%	36.3	37.0	0.7			0.738	2,35			
		BANDS; PY MED TO COARSE SAMM; WINTER CONTACT IKREALLAR PLOU LIOCA.; LOUGH										8t %		
		CONTACT IS A SUIP & UD' YO C.A.												
		1												
		•					- -							
i	l !]	aa jampin provinsi ka			•	1			ł		

		OND DRILL RECORD		IOLE N		92-	Dome 1	Sні	EET NO.	4	£-5	
METRES		DESCRIPTION			SAMP	LE				ASSAYS	;	
ROM	TO		NO.	% SULPH	FROM	METRES	TOTAL	2	1	OZ/TON	02/TON	RA
37.0	43. 3	ALTERED VOLCANICS INTENSE QTZ-CARB ATTZ; BUFF; WEAK TO MOD. MARI THRU-OUT; CARB COMMON IN FRACTIZES AND PATCIFES: ITO 2% 17, DISSEMAND IN PARCE STRS. VARIABLY FORIATED (MOD. OUTRAL) CLARIOUS L'S, MOST COMMO-LY = 50° TOC.A. (37.0-37.3) 10% QTZ-PY STRS UP TO ICM WINE (40.2-42.1) WEAKLY TO MODOR ATELY BRETCHARDS, NO CLAST MOVEMONT: CARBIN FRACTURES, 80% RECOVERY (42.1-42.55) QSTR ZONE (0.45M) 30% UP TO YCM OSTRS TO PY, MINUR LAZ C 45 TO 70° TO C.A. (42.55-43.3) INTENSE GTZ-CARE MARI, INTENSE FOZE (- = 55° YOC.A	61207 208 209 210 211 212	2 % 1 % 1 % 1 % 5 %	37.0 38.0 39.0 40.0 41.1 42.1	38.0 39.0 40.0 41.1 42.1 42.1	1.0 1.0 1.0 1.0			0.039 0.018	0.44 0.08 0.03 0.14 0.06 1.59	37.0 45
3.3	80.8 [°]	AMYGDALOIDAL MAKROON WITH DATCHES OF GARDIDIDE DO										
	7	PERVACINE EPIDOTE, DISTINCTIVE FUN UNITO VARIABLE CALCITE FILLED ANGG. TO ICM COMMONLY 270 YAM, ABAT ROD : GREEN PARMOS TO YMM; ABAT CALCITE IN AMY, CATCITOS AND FRACTURES; CORE CHNERALLY IN 10 TO 30CM PIEZES. ; HARD, FRIKLY COMPOSENT ROCCE; MINCK BROKEN PRESAS. (43.3-43.4) WEAK QT2-CARO COLL; GREEN								<i>t</i>		43.3 80-

					Xaar
NAME	OF	PROP	ERT	Y	DOME

HOLE NO. 392-SHEET NO. 5.FS

MET	RES ·	DESCRIPTION			SAMP	.E			ASSAYS		·
FROM	то	DESCRIPTION	NO.	% SULPH		ETRES			OZ/TON	OZ/TON	
43.3	80.8	AMYGDALDIAAL (CONT.) (47.9-48.7) MOD QTZ: (AND, WEAK MANI; AROUND A HOM QSTR @ 60° TO C.A.; MOD, Lecarly INTENSE FOR PARALLEZ STR; 5 % 10 107 IN STR; 100 2%. IN W.R. (79.8-80.8) BROKEN CORE; FAULT, FOL [®] C 45° TO C.A C END OF INTERVAL; MINOR CARB ALT [®] C FALLT BUT NO SCANFERMER ALT [®] ; ONLY 4- 30 CM OF MOD. FOL [®]	4 ال ا	2 %	FROM 47,9	<u>10</u> 48.7	0 - E		0.004		RQD
80.8	91.4	VOLCANLC DARK GREY - GREEN; FINE GRAIN, MASSIVE; 10 % OF TO IMM FORD PHEMOS; 5% 2 /MM ANTODAR GREEN MARICS; FLOW OR POSSIBLY D XTZ-TING SIMILAR ROCK HAS BEEN NOTED IN FW OR BOULDER BEFORE; HARD COMPETENT CONE; MINOR CARB IN FRACT WES AND IRREGULAR STRS; MINOR CARB TO FRACT WESS AND IRREGULAR STRS; NOR CARB TO FRACT WESS AND IRREGULAR STRS;									80 - 8 - 91.4 95%
	91.4	Е.О.Н,			r -						

LATITUD ELEVATIO STARTED METR	$\begin{array}{c} \underline{b} \ \underline{f} \\ \underline{b} \ \underline{f} \\ $				5 A M	P L E		REMÀ	RKS	HANS	<u> </u>	<u></u>
FROM	то 7, /	CASING	N		FROM	TO	TOTAL		3	OZ/TON	OZ/TON	RRD
9.1	12.2	LAPILLI TUFF (UPPER UNITS?) MARROON; ABNT UP TO 3cm, MOSTEY LICM FRAGS; SOME FRAGS LOOK LIKE AMYG, SO COULD BE IN UNIT UNIT; ALIGNMONT, STRETCHME & 607075 TOC.A. 60% Recoubery; 100 % HEREAFTER MLESS NOTED.										9,1- 13.2 70%
12.2	12.9	ALT /STR ZONE MOD QTZ- CARB' AZTE AROUND A 10 cm QSTR C 12.6m; STD C 45° TO C.A; WHITE QTZ TO GAEY QTZ PY IN FRACTURES ' TL3% PY IN HEART ' MINOR MY IN W W.R. FOLZ MARALLEZ 40 STZ; 3 cm OF VERY DARK (GRAPHITIC), KOCK IN HW, 2cm of GOULT AND G FW.		215 1%	12.2	/2,9	0.7			0.009	0.04	- כ.כו 2. 1 60 %
12.9	20.3	LAPILLI TUFF MARROON', ABAT FRAIS AS ABOUF, OUT FRAG SIZE LARLER, ESP IN BOTTOM HARF OF WIT WITSOLF IT BECOME ALMOST A TWFF BRXX (Some classs TO 10 cm); Some AMYD. Frow LOOKING CLASSS AS ABOVE ; NO GREYISH MORE FEZSIC CLASTS SO COULD BE UPPER UPLC/SED UNIT OR LAP TUFF ABOVE THE AMY From ; Some PATCHY GREEN ALT 1	,								•	12.9- 20.3 80%

OPONTO

NAME OF PROPERTY DOME

SHEET NO. 2074

METT	RES ·				SAMP	LE			2	ASSAYS		
FROM	то	DESCRIPTION	NO.	SULPH		METRES		1.	1 :	OZ/TON	DZ TON	RQD
20.3	21. (ALTERED VOL CANICS INTENSE OTZ- CARB ATD TUFF; LAPILLI BARERY VISIBLE; BUFF COLORED; LEAR INCREASING TO MOD. FOZ = @ 45 TO 60° TO C.A; TRACE INCREASING TO 4 % DISSEM. PY	G 1216	1DES	20.3	21.1	0.8				0.05	20.3-21.1
21.(21.8	STRINGER /ALT - /FAULT 20NE MIXED DAKK GREY - ALT - VOLC · WHITE OF 2 AND GOUGE · VOLC IS i- QT2-CARE - G (?) ALT 2. (OMARISES SO % OF ITERNAL; GOUGE 20%; 30% QT2 IN VP TO 8CM STXS I ABOT BALX CENTER BY LATER OT 2 AND IN IN REGULAR STXS IN YOLC; 3% PY IN GT2 AND IN IN REGULAR STXS IN YOLC; APPEAR TO BE E 40°; VERY BROKEN CORE; 90% RECOVERY.	2/7	3%	21.(2/.8				6,057	0.08	21.1- 21.8 0%
21.8	22.6	ALTERED VOZCANICS -INTERSE DE CREASING JUMOD QTZ- CAR'S ALTE TURF IST 20 CM IS DARK GREY, LAPILLI NOT VERY VISIBLE (CRAPITITE?). AFTER CORE IS CIGHT GREY / BUFF, LAPILLI VISIBLE; 2%, DECREASING TO TRACE DESEMPY	218	1%	21.8	22.6	0.8			9.003	0.04	21.8- 22.6 80%
22.6	70.0	LAPILLI TUFF -MAROON; ABUNDANT FRAGS; MOSTRY Elem BUT UP TO YEM; FRAGS MOSTRY FINE GRAIN MITHORY TO GREY-MIRROW VOLE, SOME LOOK LIKE THE MY FLOW UNIT; TIPIS UNIT LOOKS LIKE PREVIOUS LAP. TURFS IN UPPER PART OF HOLE; MINOR (ARB. STRS; CLAST ERONGATION FRIGHMIONT E 40 TO 55° TO C.A.; MINOR PRICAT ERECU ATT: CONPETENT, WEAKLY EROKON SOLE					*					22.6- 55.5 807- 90 /0

NAME OF PROPERTY DOME

HOLE NO. 092-2

_____ SHEET NO.______ 3.7 4

MET	RES .							 		. <u></u>	4	
FROM	то	DESCRIPTION		- CI11 Pr	SAMP					ASSAYS	•	
	-74	Laguer of the state	NO.	% SULPH	FROM	METRES_	TOTAL	1	3	OZ/TON	OZ. TON	
22.6	70.0	LAPILLI TURE (CONT.) (22.6-25.2) GREEN; JEAK QTZ-CARB-THE ATE; VALY MINOR PATCHY DAKK GREY BY FRACTURES (GRAMMITE ?)										
		35:57; 3cm FRULT GOUGE & 30°70 C.A. ; Some DEFINITE Frow FRARS. DEOUE; MOD. IRREGULAR CARE STRS FOR I.CM BEZOW. (40.6-41.2) BARREN WHITE DIZ-CARE STRS @ LOW! HILL L'S TO C.A. HEEN CONTS ANDERK TO BE TENSION -TYPE! WEAR CARE-COL ALTO; FRW FRAGS >1 CM SINCE 35.5M; Some ISMORE XIZ- TURF I LITHIC FRAAS (43.2-44.9) BARREN GIZ-CARE STRS, WEAR ALTO AS BEFORE.										
		(44.9.47.8) ABUNDANT IRREGULAR CAPESSALS AND PATCINES; MINOR OFFY TO CARD MIATRIX 4 cm of Gover E 47.2M C 4/2 50° TO C.A. (55.5-57.9) PATCHY WEAK TO MODERATE GTZ-CAPS 4- CHIL 4/2 MARI ALTS MOD CAPES = GTZ-CAPS UP TO 4 CM WIDE E ZOW : HIGH C'S HO C.A. CARB ABAT IN FRACTLASS (LUTR MINON STAND GTZ) : JOCM OF 2- WITE (MICH STAND ALTS MACHD 57.0 M : OUTHMIL BUITE BING (JRE; TRACE TO MINOL DISSEMI PY T (57.9-65.5) A FEN DEFINITE MITTALS IN MOSTLY 105.5.70.0 RED-MALOON; 1010 30% CLASTS IN MOSTLY	61219	×1%	56.9	57.8	0.9			0.001		55.5- 57.9 30% 7.9- 70.0 80%

NAME OF PROPERTY DOME

HOLE NO.

D92-2

SHEET NO.

4	.<	4	
 	• •		

MEIT	ES -	DESCRIPTION			SAMP	LE		T	LET NO.	ASSAYS		
FROM	то		NO.	3 SULPH		METRES			T		r	
7.0.0	82.3	AMYGDALOIDAL FLOW DISTINCT MAROON FLOWS; VARIARLE CALLITE AMYGD; ABNT RED (1-GROEN) PITEMOS;	•	IDES	FROM	<u> </u>	TOTAL		*	OZ/TON	OZ.TON	RQA
		UEAK PERUASIVE EPIDOTE IS COMMON, GIVING A GREEN TINGE TO SCIE; 30 cm of From BRAY AT TOP OF INTERVAL (70.0-72.8) FLOW; COMPETENT CORE (72.8-73.9) WEAKLY GEDDED NIT TUFF										70.0 73.1 90?
		(73.1-76.8) Increasing Broken code ; WRAR ERID . WEAR . RRELURE I PAR . AND CONS STRS (76.8-78.0) INTENSE CLAY, CORE MOSTY MUSA; NO BLEACHING (78.0-82.3) LOED CONFERENT Froms; MERUPSINE W-EPID.										73.1- 76.9 76.8 76.0 76.0 76.0 76.0 76.0
	82.3	E.O.H.										95

HOLE N Locatio Latitud Elevati	0. <u>) 92</u> N <u>(</u> E <u>6</u> ON <u>(</u>	ERTY DOME -3 LENGTH 91.4 (300') BOULDER - EAST 8693.236 DEPARTURE 53425.111 337.786 AZIMUTH 360 DIP -60 1 21/92 FINISHED JAN 22/92	ETRES	DIP		METRES			REMA	RKS	92-3 sH		
MET	RES	DESCRIPTION		l		SAMI	PLE		1		ASSAN	(s	
FROM	то			NO		FROM	ETRES TO	TOTAL	- 76	×	OZ/TON	OZ/TON	RAD
0	9.1	CASING											1015
9.1	26.7	LAPILLI TUFF MAROON', ABAT FRAGS, CICM TO 4CM. FRA RED TO MARON - GREY, FIND CRAIN VOLC, SUME POSS MMY. FLOW CLASTS * XTZ MATRIX ; 60 % RECOVER TO 12.1 M, THEN 100 % ; WEARLY TO MODERATELY COLE; MINOR CARB ON FRACT : IN IRREGULAR ST PATCIFES (26.2 - 26.7) WEAK GRADING TO MOD GTZ- CARB ALT RECOVER	s 1136 E nry nronce nrs /	a.	20 Tr	26.2	26.7	0.5			0.003		9.1- 19.0 6.75 19.0- 26.7 80%
26.7	26.9	QSTR (0.2m) 10 cm TRUE WIDTH @ 4. 20° TO C.A. ; WE QTZ WITH A BOND OF ABNT PY DOWN CENTER; E COLE; CLAY SLIP ON BOTH SIDES	nt E Sala Kon	2	21 4%	26.7	26.9	0.2			6.216	0.52	26.7_ 26.9 6 %
10409400425 - 1040410 - 366-1168	30.5	ALTERED VOLCANIC MEDIUM OREY-GREEN LAPILU STILL UISIBLE; M CARB STRS: MOD CARB-SIL TO 29.1m; THEN i- GTZ-CARB ALT: ABAT CARB & GTZ STRS (BA HIGHLY IKROZULAR FOR SHOWING MICRO-UCIDAN HOCM; TK INCREASING TO 2% DISSON FY; BROKEN CORE	t LAS) , 2:	23 77	29.	29.1 129.8	1.1 1.1 0.7 0.7	F	-	0.005 0.004 6.001 0.003	0.03 0.04	90% 29.1- 30.5

	Dome	
HOLE NO	092-3	s

SHEET NO. 2 .F.5

METT	ES ·	DESCRIPTION	Γ		SAMP	.E			ASSA	's	
FROM	то		NO.	Z SULPH	FROM	ETRES TO	TOTAL	;]	2 0Z/TO		Rad
30.5	31.6	QUARTZ VEIN (d. 1M) WHITE QTZ WITH 30 % Sx, PY, CPY, SPH, GAL, SX IN IRREGULAR PArches AND IN FRACTURES THRU-OUT, PY FINE TO MEDIUM GAMM OTTHER SX FINE 4 RAW, LAST 1/3 OF VEIN HAS IBUNDANT SERLICITE AND CLAY, VERY BROKEN CORE; ONLY 80 % RECOVERY IN RUN! MOST SEENS TO BE LOST IN THE VEIN PART UPPER CONTACT APPEARS TO NAME BEEN C +1. TO TO C.A.			30.5 31.0					1 24.21 5 11.75	30.5- 31.6 0%
31.6	34.2	ALT - ISTR ZONE INTENSE QTZ-CARB-SERIC ALT - VOLC WITH 20% IRREGURAN QTZ STRLS CONTAMINE PY-SPH. +LEAR +LCPY. MINOR MARI : IRREGULAR FOR - MOST COMMINIE Q LOW & (2 15 to 20°) YOC. A. 210 LOCALLY 8% PY DISSEM 'N VOLC : MOD BROKEN CORE: HIGHTY BREA C. 32.50 DIME LOST QUARTZ VEIN (1.1M)	229	1 1	31.6 32 .5 33.4	3 3,4	0-7		0.0		31.6. 34.2 70%
		WHITE QTZ TO ABAT SE (30%); PY >SPH> CPY>GAL ; SE FINE EROM, Some MENTED (7)			34.2 34.8	1			1		34.2- 35.3 50%

LANGRIDGES - TORONTO - 366-116

		OND DKILL RECORD			OF PROPE			ME				
MET	RES				10. <u> </u>	92-	3	Sн	EET NO	<u>3.</u>	-5	
FROM	то То	DESCRIPTION			SAMP					ASSAYS		
35.3	36.6	ALTERED VOLCANIC CHL (MOD)	NO.	% SULPH	FROM	TO	TOTAL	•	3	OZ/TON		Red
		GREV-GREEN; INTENSE QTZ-CARB-SERICI INTENSE FOZ -, IRREGUZAR BUT MOST COMMONY @ 4/-20	61233	21%	35.3	35.9	0.6				1.05 0.01	35.3- 36.6
		TO C.A., Some et? Froodma in 1st 30 cm; MICKO-FOUDS IN FORCE, MINOR CARE STRS. MOD BROKEN CORE; LI'LOPY; ABRUPT DROP IN ALTE @ 36.6M	2.34	<1%	35.9	36.6	0.7			0.003	0.07	50%
36.6	48.8	AMYADALOID AL FLOW MAROON', VARIABLE CALLITS FILLED MY. , LED HAND PALE to DAKIK GREEN MATTONS TO DMM common THRU-OUT', Cc COMMON IN ANY PATCHES AND FRACTURES, FAIRLY COMPETENT CORE (36.6-37.6) INTENSE GRADING TO WEAK FOLS! IRRELUAR BUT & HIGH L'S TO C.A. ' MITOR MICRO-FULDING IN UPPER PART D'SEEMS YO BE DERNAT CHANGE FROM LOW & FOLS AS TEONF TO INTERO-FULDING IN UPPER PART D'SEEMS YO BE MICRO-FULDING IN UPPER PART D'SEEMS YO BE DERNAT CHANGE FROM LOW & FOLS AS TEONF TO INTERO FOLDING IN UPPER LOW & FOLS AS TEONF TO INTERO FOLDING IN UPPER COM I DE A BROMEN ZONE OF CIAY / SERIC. & CH COME LINE -MINOR PATCH/ ALTE (48:0-48.8) VERY BROKEN, SOME WHAT PITED CORE										36.6 - 4 8.0 90 % 48.0- 48.0- 48.0- 48.8 0 %
48.8	50.2	ALTERED AMY.							·			
		MOD QT2- CARB-SEDII, W-MARI, BUFF TO ZIGHT GUBY- GREENI ORIGINAL TEXTURE STILL VISIBLE, PERUASIVE CARB IN MATRIX, TRACE GRADING TO ITO PY	235	.1%	49.2	<i>50.</i> 2	1.0			0.002	1	48.8- 50.2 80 %
												.

METRES

366-1168

LANGRIDGES - TORONTO

PROPERTY	DOME

D92-3 HOLE NO.

SHEET NO. 4. F5

	MET	RES .	•	1		<u> </u>			· · · · · ·	• •	•		
	FROM	то	DESCRIPTION		SUL PH	SAMP	METTRES				ASSAYS	^	
Γ	50.2	51.1	QUARTZ VEIN (0.9M)	<u> </u>	IDES	FROM	TO	TOTAL	2	*	OZ/TON	OZ, TON	RAD
	JV		WHITE QTZ WITH 5% SX (PY > SPA > GAZ> SPY).										
			ABAT W.R. FRAS IN UPPER ZOCA, Sx In Small	61236	5%	50.2	51.1	0.9			0.097	0.61	50.2- 51.1
			PODS, Disservines and in narrow Bands										
			SUBPARALLEZ CONTRET : UPPER CONTACT @				·						20 %
			35 TO C.A., LOWER CONTACT BROKEN BUT										
	·		APPEARS to HANT BEEN Q 4/ 45 TO C.D;										
			CORE QUITE BROKEN, 90% RECOVERY										
	51.1	53,0	ALTERED AMY.	••••••			• • • • • •	···· • • • • • • • • • • • • • • • • •	- • •••				
			BUFF to GREY- EREEN, MOD. CARB 1- BTZ 1-SERIE										_
			+1. CHL ALTD ; MI-OK CHEL PATCODS ; ILIGINAL	237	21%	51.1	52.1	1.0			0.002		_ · ·
			TEXTURE STILL VISIBLE ! 10 cm minuse ALT = AT	-		-	,						53.6
·			FIRST 5 2% PY, THEN TRACE MY; MINUR CET2-SX STES	238	<1%	52,1	53.0	0.9			0.014	0.04	70%
_													
5	3.0	64.3	AMYGOALOIDAL FLOWS			••••••		••					
			GRENFIAROON; DEFINETLY ANITE TO SS.8; THEN IN									•	53-0-
			PLACES LOOKS LIKE AMY BUT NO AMY (STILL HAS RED AND GREEN PHENIS; DEFINITE FLOW ROCK), AND										64.3
			IN OTHER PLACES IT IS A MOTTLED NON- DESCRIPT										70%
			FINE GRAIN VOLCANIC; CLAY COMMON IN FRACTURE;		[
			CORE BROKEN IN PLACES; IRRECULAR COMB										
ŝ			PATCHES (WEAR) TO SEDA ; PCLAY 58.2-58.8M									F	
6	4.2	91,4	VOLCANIC						•				
			GREY/MARION, FINE GRAINED I IN PLACES CAN SEE CLASTS BUT GENERALIT IN DISTINCT CARB IN FRACT,					1					64.3-
			CLASTS BUT GUNERALLY IN DISTINCIAL (ARO IN FRACT) MINOR STRS MINOR CLAY IN FRACTURES										65.6
			(143-156) BRAKEN CORE; MOD CLAY										
			(68.9-67.2) BLEMCHED, MOD CLAY TO 2-2011										5.6 - 71.4
1			CLAT ROUMES										800
·			· · · · · · · · · · · · · · · · · · ·	_ 1	I	1	I		1	1	1	1	f ^ ``/

NAME OF PROPERTY DOME HOLE NO. ______ 92-3 SHEET NO. 5 of 5 METRES DESCRIPTION SAMPLE FROM то ASSAYS A 9 02/TON % SULPH NO. METRE 64.3 91.4 VOLCANICS (cont.) IDES FROM TO TOTAL 3 OZ/TON (76.1-78.0) FAULT ZONE · CORE IS INTERSE CIAY ALTE; SO % RECOMEY (78.0-78.4) WHITE CARK- QTZ STR @ 20" 70 0.001 0.03 61239 -78.0 78.4 0.4 C.A.; To OFFSIKOOT ~ PARALLER C.A.; I loca STR TO VET WIDTE , NO ALTS OF W.R. ; BACKEN (83.0-90.0) CORE MED GEER-GROI, STILL A FIND URAIN VOLC; LIAM FORD Itomos mo timi arom specus (MAFICS) sometimes usuale; Sometimies can see securit clasts. (90.0 - 91.4) REEILMAKOON ALA., COLOK CHAMLE BY ALDISEM CLAY SLIP @ 35° TO C.A. 91.4 E.O. H.

HOLE N LOCATIC LATITUD ELEVATI	N _BO NE _68 ON _13 D _JR			METRES S A M F				ED BY	$\frac{2-4}{M}$ sh	<u>ک ک</u> ۲ ⁵ A 9	MT
0	9.1	CASING	 IDES	FROM	то	TOTAL		35	OZ/ TON	OZ/TON	RQD
9.1	11.2	ALTERED VOLLANIC GREY: MOB DECREGASING TO WERE QT2-CARB MIC: MINOR GREEN MARI. + SESLIC. IN 1ST HAVE OF INTERNAL; ICM QSTREE SPH, PY @ 10.1M @ 20° TO C.A.; ONLY 75 % RECONSERY IN INTERME, THUNGH CORE NOT VORY BROKEN -> PROBABLY MOSTEY LOST & BEGIN OF CORE		9,1					0.015 0.001	0.04 0.01	9,1- 11.2 70%
1.2	28.8						•				11.2- 28.8 8070 90%
28.8	67.1	AMYGDALOIDAL FLOWS TYPILAL MARDON FLOWS WITH MARIABLE CC FILLED AMYG ; RED : GREEN PHENDOS' (C IN PATCHES AND STRS (WEAK TO LOCALLY MOD.). PATCHES/INTERUMS OF MOD PORVISILE EPIDE COMMEN									28.8- 33.5 80%

NAME OF PROPERTY DOME

HOLE NO. 092-4 SHEET NO. 2. F 2

METRES														
FROM	то	DESCRIPTION			SAMPLE					ASSAYS				
28.8	67.1	AMYGDALOIDAL (CONT.)	NO.	% SULPH	FROM	METRES	TOTAL	2	2	OZ/TON	OZ/TON	Rab		
-0.0	0,.,	(28.8-29.6) From Tol BRAC	•									33.5.		
		(33.5-39.6) MUSTRY BEDDED AT TURF!										39.6		
		BUDDING @ 10 TO 20" TO C.A. ; ABAT CALENTS										40 %		
		IN FRACT AND IRREACLAR STRSI CLAY IN FRACT (USAR OVER FRL) . MOD. BROKEN CORE										39.6-		
		(41.8-42.0) MOD. CLAY; BROKON CORE										67.1		
		(44.5-52.7) MOD. PERMASCHE ERIS										80 10		
		RESULTS IN GREEN COLOR TO 60% OF CORE.										90 %		
		(57.7-67.1) LOOD COMPETENT CORE; CTPID												
		PATCHTS COMMON; From FOR @ 64.3m @ 45° TO E.A.												
	67.1	E. O. 14,												

	o. \underline{b}^{c}	IMR*PDDS		митн	MEIRES	DIP A	ZIMUTH			12-6 sH	EET NO.	1.12	
LOCATIO	-	SONDER EAST						REMA	RKS				
LATITUD	DE6	764.068 DEPARTURE 53441.753											
ELEVATI		338.502 AZIMUTH 360 DIP										1	
STARTE	D	~ 23/92 FINISHED JAN 23/92		ll				LOGGE	D BY	2 MAY	<u>SM</u>	<u> </u>	
METRES		DESCRIPTION			SAMF	,Γ£				A S S A	(S ₀ ,		
FROM	то				NO. SULPH METRES			36	36				
0	7.6	CASING.					TOTAL			<u> </u>		//	
7.6	17.9	LAPILLI TUFF MAROON, ABUNDANT CLASTS, MOSTLY LICM BUT COMMONLY 210 YCM; UPPOK PAAT IS MOLE 4KEY-ISROWN AND RESEMBLUS VOLCISED UNIT BUT PROBABLY JUST WEATHERING; SOME AMG-FLOW CLASTS, VERY BROAD CORE TO IS M, MOD BROKON TO 17.9M; TO KRECOVERY TO 11.3 M, THEN 20% TO 15M.										7.6 - 15.0 0 % 15.0- 17.9 60%	
LANGRIDGES - TORONTO - 386-1168	21.8	ALTERED VOLLANIC VARIABLE WEAK TO INTENSE (MOD CUENDIC) QTZ-CARB ALT: BUFF TO GREY TO MARDON; WEAK QTZ-CARB STRS & MILLOR MY UP TO KEAY EVARIOUS (S TO C.A.; LI'L DISSOM PY; OIL ASSIMM WEAK TO MOD FOR = E 45 TO 60 "TO C.A.; MOD. BRUKON CORE (21.5-21.8) 3% DISSON PY	510 511	<1%	17.9 18.9 19.9 209	19.9 20.9	1.0			0,001 0.004 0.001 0.001	0-03	21.8	

NAME OF PROPERTY____

DOME HOLE NO. ______ 92-6

SHEET NO. 2072

METRES														
FROM	то	DESCRIPTION							ASSAYS AG ALL AG 2 2 OZ/TON OZ/TON RGO					
210	22.2	STRINGE ISHBAR ZONE.	NO.	IDES	FROM	VETTRES	TOTAL	2	2	OZ/TON	02, 100	RWO		
21.8		20cm of INTENSILY SITE AND VOLIANCE, FOR E IRREGULAR @ ITLAN L'S TO C. R. ; dollowers By BCM of WHITE QTZ WITH 25% Sx(PTZSPH) GAL > CPY) Q 4/2 TO "TOC. R. , THEN 10 CM OF INTENSE OTZ-CARE-SER. M ATT & VOLC TO 15% DTZ-CAEB-SX AS IRREGULAR STAS AND PATCHES	1753	10%	21.8	27.2	0.4				0.93	21.8- 22.2		
	• • •	and a second						.						
22.2	45-7	AMYGDALOIDAL FLOWS MAXOON TO LOCATLY GROTILS & DUE TO WYAR POLUASILE UTID; ABUNDANT CE TO 30 M, MOD. THOMEATOR! GROTING CE TO 30 M, MOD. THOMEATOR! GROTING CONPETENT CONT WITH 2005 OF MOD. FRACTUMENT (22.2-23.9) GROTI, WORK UT2-CARE-CITE (29.4-29.9) GROTI, WORK UT2-CARE-CITE (29.4-29.9) GROTI, WORK CARE-CAR DUPE AROUND & ZON RAMEON USTRE CARE-CAR DUPE (42.7-43.4) BODDOD XTE TUFF; BODDUG C +/- 45' TO C.A.	514	Tr	27,2	22.7	0.5			0,002	0.03	22.7- 45.7 90%		
	45.7	E. O. 14.												

HOLE N Locatic Latitue Elevati	DN DE <u>68</u> 10N 13			ZIMUTH	METRES	DIP	AZIMUTH	REMA	RKS		 SMIT
MET	1	DESCRIPTION		<u></u>	SAM	PLE				ASSA	
6	то 6.1	6 VERBURDEN	NO.	SUL PI	H FROM	ETRES TO	TOTAL	3	z		RQD
6.1		ANDESITIC LAPILLI TURF MED. GREEN- GREY MINDRE MARON - GILGY · LARILLI THE WITH ABUNDANT FRAGS, LICM TO SCAT, OCCASSIONALL ARGER; CLASTS AND MATRIX HAVE ABUT LIMM FEID. PHENIS DITHES IS UPPER VOLC/SED UNIT; FRAGESMANNA TO ROUNDOD; MED TO DARK GACY TO FOLD PHY-OS (HEASTONAY) FINCE GRAMED GREEN WITH FEW PRENOS · CARB IN FORTHES AND MINK IRKE GULAR STRS MIN PRACTICED MISTLY & MOD C'S 'S C.A. MOD TO WE PRACTICED CORE , 60% LECOUNTY TO 12.1M, THEM 100% RETORDED									6.1- 12.1 50% 12.1- 24.4 8070 93%
24.4	25.9``	VOL CANIC SED IMENTS SEDIMENTARY BEDS UP TO ISCM THICK; SUME WITH TURF CLASTS; SOME FINE GROW VOLC. SEDIMONTS; BEDDIME ET: 45° TO C.A.; GHEEN TO MALCON-GROY TO 25.0; THEN MUSPLY ELE ACKED; (25.0 - 25.9) BLEACHED; WEAK MUNOASMA TO INTENSE (FOL LAST YOCH) OFL CARE SCOLIC MIT : WEAK MORE LAST YOCH; COST BOCH	7515	<1%	2 <i>5</i> . s	26.0	0.5			0.004	·24·4- 25.9 60%

NAME OF PROPERTY	NAME	OF	PROPERTY_	Dome
------------------	------	----	-----------	------

HOLE NO. D92-7 SHEET NO

SHEET NO. 20FS

MET	RES · .		1									
FROM	то	DESCRIPTION		1	SAMP					ASSAYS		
000	35.7		NO.	SULPH	FROM	METRES TO	TOTAL		*	OZ/TON	OZ JON	RRD
25.9	50.1	·	ŀ						1			
		MAROON WITH PATCAY GROOM TO BLEACHED ZONES.										25.9-
		V. WEAR CARB + SOR +1. CAR ANTO IN LATER A										35.7
		ABUNDAT LI ON CLASTS' MINOR UP TO YOUR						1				70%
		ABUNDAT LI an class's more UP to 4 an ecosis. CLASTS MOSTLY OF FINE LEANN MARCON VOLS SONE SHAP										
		I The start of grand to start -	1									
		Foz = g unst subment @ + 45° to r. p. sanna.	 .									
		Some contracts UISIBB @ some L.										
		134.2-35.7) only 1020 % class in Fing										
		GRAIN MALCON MANDIX					Į					
35.7	38./	ALTORED VOLCANIC TUFF										
		BULL LOZORON; MOD INCREMENTE TO INTENSE									• •	••
		BY 36.1- ALT : SIL- CAND-SERIC + WEAK MARI.	1									
		IT 4 1 NISSPM. PY CLASTS STILL UISIALE,										
		OCCASSIONER der = E YDro 55' roca.										
		(36.1-36.7) IRRETURE OSTAST 5% PY	17516	2%	35.7	365	08					35.7.
		(36.1-36.7) Trace contact and a								0.000	0.17	0.5.1
		CLOW L'S TO C.A. LARLEST REPEARS TO		3%		37.3				0.028	0.07	38.1
		BE the Ben THICK AT THE WIDDST.	218	2%	373	38.1	0.8			0.08		~/
201	266										0.06	00 18
38.1	38.8						• •	· ·			· • •	• •• ••••
8011		WHITE QTZ WITH ABUNDANT GREY - SERICTI- CRAPH?										2.4
5		IN FRACTURES; MININ IABONATE; VERY BROKEN LODIE.										
2		A VI 15 1. RECENDENT C AND A C AND A C										38.1-
		CLAY-SERIC. VOLLANICS; 370 5% DISS. PY FPY	_	-01	_							38.8
		IN FARCTURES FILL 38 6 M. THEN CAT	519	5%	38.1	38.8	0.7			1,215	1.88	4.9
3		CLAY-SERIC. VOLLANICS, SIGE FIELDS OF HOLDESE CLAY-SERIC. VOLLANICS, 370 5% DISS. PY FRY IN FRACTURES FILL 28 6 M. THEN GOT 20 cm OF MORE CONFERENT QT2 IN 6% PY IN LARGE PATCHES, STILL SOME SERIC-GROON? FRACTURES, SOME MOTTLED GREY OF IN FRACTURES.						7				1%
		LARGE PATCITES , STILL SOME SERIC - GROON? -						1				
		FRACTURES SOME MOTTLED GREY OF IN FRACTING										
1 1	ł	LARGE PATCITUS STILL SOME SERIC - GRAPH? IN RARGE VILLES SOME MOTTLED GREY OF IN FRACTING CONTACTS BROKEN BUT UPPER APPEARS SO HAVE BERNE LOW L' TO C.A. ; LOWER & T- 30 TO C.A.										
				1	I	i				1	<u> </u>	

NAME OF PROPERTY___ D92-7

HOLE NO. ___

DOME SHEET NO. 3.FS

• •

METT	ES .	DESCRIPTION			SAMP	ĻĒ			ASSAVE		
FROM	то		NO.	1 SULPH		IETRES			ASSAYS	Ag	
38.8	76.0	LAPILLI TUFF		IDES	FROM	TO	TOTAL	2	02/TON	OZ, TÓN	RQD
		MAROON; ABUNDANT LICM : RAREZY TO 4CM									
	2.	CLASTS MOSTRY MATRIX SUPPORTD AMOUNT		ļ							-
		AMY -LOOKING CLASTS INCREASES DOWN HOLD.							•		202
		MOSTLY FINE GRAIN JOLC, MANOON TO LESSON GROY-									38-8-
		GROEN FRAAS; SOMETIMOS SNOWS AUGUMENT @ 45 to 60 TO C.A MINOR IRREGULAR (MAB STRS/									45.6
		PATCHES THRU-OUT; WEAKLY TO MODER ATTERY									70%
		BROKEN CORE									70%
		(38.8-39.2) MTENSE QTZ-CARB AND;				·					
		2% DISS MY ; BUFF	17570	1%	38.8	39.5	0.7		0.005	0.03	
		(39.2 - 40.0) WEAK AND GREY-GREEN									
		(42.8-43.0) INTENSE CLAY; BLOKEN COLE									
		(43.0 - 43.6) WEAK CLAY, MOTTED BLEACHINE.									
		(45.0-48.8) MED GREEN-GREY, (464424									45.0-
		BROKEN CORD ; 60 % RECOVERY ; CLAT on									18.8
		FRACTURES GROUND CORD E 44.8 , MINDA (AND FLOODING									0%
		(62.8-63.1) MOD. CLAY UCLY BROKON CORE									488-
		(68.7 - 76.0)									67.8 70 TO
		INCREASE IN AMY-FROM CLASSES, Sant LATACK									80 %
		THAN IOCM. MATRIX BECOMING MORE BRICK- KOD ONORALL, SONT WORK BEDROOME 74.5.760	-				1				62.8 -
											63.1
											63.1-
1											76.0 80 7090

NAME OF PROPERTY DOME

HOLE NO. D92-7

SHEET NO. 40F5

MET	RES .	DESCRIPTION			SAMF	LE			ASSAYS		
FROM	то	DESCRIPTION	NO.	% SULPH	FROM	METRES	TOTAL	1 2	OZ/TON	OZ/TON	RQD
76 -0	88.8	AMYGDALOIDAL FLOWS MAROON WITH SOME AREAS WATH PATCAY GREEN DUE TO PAENVASINE EPIDOTE; VARIABLE CC AMYG; RED AND BLACK PHONO'S THRU-OUT. CC COMMON IN PATCHOS AND FRACTCROSS GOOD (OMPATENT CORE : FROM TOP SIELE COMMON TO 77.5m, STRATIC RAPANCE CONTACT EN MORE TLAGS (87.3 - 87.5) BEDDED XTZ TURE; BEDDING @ 40° TO 50° TO C.A. (88.6-88.8) CLAY IN FRACTURES; NO ELGALHIM	•								76.0- 88.8 90%
888	8 9. 6	FAULT ZONE INTENSE CLAY; LORE MUSH · STILL MENDON' 40% RELOVERY; NO PY, NO BLEPCHING	 · .						i.		88.8- 89.6 07.
89.6	93.0	LAPILLI TUFF Makoon TO MAROON - 6264 · ABUNDANT MOSTLY & ICM FRAAS · BBUNDANT L2MM FEED PARSOS N MATRIX AND FRAES (RUCH MORE THAN SEEN IN LAPILLI TUALS HIGHER IN 14020) ; NO DEVENITE MATY. CLASTS (89.6-90.5) BROKON CORE, MINOR CLAY ON FRACTURES (91.7-93.0) WEAK CLAY · LOKE SOMEENANT BROKEN ; LOWER CONTACT OF UNIT IS NOT DISTINCT									896- 90.5 2.70 90.5- 91.7 907, 91.7 907, 91.7- 93.0 5070

ANGRIDGES - TORONTO - 366-1

TORONTO

NAME OF PROPERTY DOME

HOLE NO. _ D92-7____ SHEET NO. 5055

NO. 2 SULPN METTRES 2 2 02/TON 02/TON ROD 106.7 VOLCANIC DARK GREY, FINE GREWING' LING FELD PRIENOS CONTON'S BUT NOT AS ABUNDONT OR AS PROMINENT AS ABOUE UNIT. MOSTLY LOOKS 106.	METRES	DESCRIPTION			SAMP	LE			ASSAYS		
1.0 106. (VOLCANIC DARK GREY, FINE GRAPH'S; LIMM FELD ANENOS COMMUNICATION FOR ABUNDANT OR AS PROMINENT AS ABOUND UNITO MOSTRY LOOKS LIKE A LAPILLI TURE TO THAT BANK MATTICS; CLASTS CONTRACT, INDESTINCT, SOME POSSIBL FLOW KOCK WITH LO.SAM BLACK MATRICS; MINOR UP TO ICM CARD STRS @ VARIOUS L'S to C.A.) NO VISIBLE ARTS NOTE: THIS WIT SOTH @ EUN OF OTHER INDES: NARE COMPETENT TO WEAKLY FRANCINGS CORES. INDEX CONTENT TO WEAKLY FRANCINGS CORES. INDEX MULTE USTR @ HGH L to C.A.S BORROW, NO VISIBLE ALTS	RON TO		NO.						07/70#	07/708	100
UP TO ICM CMER STRS E VARIOUS 25 NO C.A.) NO VISIBLE ART NOTE: THIS WIT SERVE OF OTHOR INARD COMPETENT TO WEAKLY FRANCINGS CORES. 100.7m) GCM WHITE OSTR & HGHL NO C.A.S BARRON, NO VISIBLE ACT	13.0 106.7	DARK GREY, FINE GROWING, LIMM FELD ANENOS COMMON, BUT NOT AS ABUNDONT OR AS PROMINENT AS ABOUT UNITO MOSTRY LOOKS LIKE ALAPILLI TUFF TO TUFF BARY BUT (IDETS CENTRALLY INDUSTINCT: SOME POSSIBLE	-	IDES	FROM	TO	TOTAL		02/100	02,700	43.0 106.7 90%
		UP TO ICM CMAB CTORS & VMRIOUS L'S HO C.A.) NO VISIBLE AZTA NOTE: THIS WIT SEEN & EUD OF OTHOR IKOZES- INARD COMPETENT TO WEAKLY FARACTUROSS CORET. 100.7m) 6CM WHITE OSTR @ HGHLHOCA.C									
	106.7										

DLE NO	N <u> </u>	72-13 LENGTH 61.0.4 (200) BOUINTE - EAST	DIP	AZIMUTH	METRES	DIP	AZIMUTH		RKS 4	<u>92-/3</u> sh			
EVATIO	ом <u>13</u>	707 880 DEPARTURE <u>535 86.538</u> 16.354 AZIMUTH <u>360</u> DIP <u>-45</u> 73 1/92 FINISHED <u>FEB</u> 2/92	· · · · · · · · · · · · · · · · · · ·	-					LOGGE	:0 BY	40~5	SM	17
METR	ES	DESCRIPTION			<i>a</i> /	SAM			-	, 	ASSA	Y SAG	
FROM	то				NO. SUL	S FROM	1ETRES TO	TOTAL	- 75	ž	OZ/TON	OZ/TON	RQ!
6.1	6.1	GREEN TO GREET WITH SOME PATCHY MAN MAROON ; GREED FRANDELTS; FRAGS MOSTLY PATCHY BLEACHING DUE TO CARED ALTE CON THRU-OUT: MAR, MINDA CLAY DID FRADETURES PATCHY BANRON GT2-CARB T' CAR STRS /A ONLAIL COME COOKS VERY PATCHY /MUTTLED 80% RECOMMY TO 9.1m, THON 100% (12.7-13.7) MOD PERMOSING CANS, W (CHE ISLEACHED.											6,1– 14.5 707,
14.5	18.0	VOLLANIC SETS S GREDN TO BUFF. BEDDING @ 45 "TOSS" FINE GRAIN SEDS TO LAFILLI TUFF/CONFRE BOLM BEDS ! PATCHY BLEACHING, ESP AROUND DUF TO LARB T/- CLAY MIT? (WEAK OVERAT DUF TO LARB T/- OT2 t/- PY STRS @ LOW 1	STOC.	же <i>з</i> ок 9.									14.5 18.0
18.0	22.8	ALTERED LAPILLI TUFF MOTTED / ATTENY BLEACHED BUFF AND LESS MAROON LAPILLI TUFF WITH MOSEY LICM MAROON CAPILLI TUFF WITH MOSEY LICM MOD FOL CO'L GO TO C.A.; MOD CARBAN COMMON ON FRACTURES; BROKEN COLF COM MINOR LO.SCM QT2-CARB SYRS CO ± 20 TO	, C.A.	A7	ios Tr	21.3	22	2.1 8.			6.004	0.06	18.0 27-8 60)

NAME OF PROPERTY UOME HOLE NO. 092-13 SHI

DOME

HEET NO. 2 of	<u> </u>
---------------	----------

METRES	DESCRIPTION			SAMP	LE			ASSAYS		
FROM TO		NO.	SULPH		METRES			T	<u></u>	12.
-	LAPILLI TUFF PATCINI MAROON TO GREEN TO 31.0M, THEN MAROON. VARINOSLE MOUNTS OF LITO PARELY YOUN CLASTS IN A FINE GRAIN MOTILE; MINOR MARIS TO STON FRAFERING (29.7-30.9) PATCAY SCEDCHING , MON. (ARG-SEL. MINOR MARI; CLAY'ON FRAFET SOMETIMES MENASINE (WEAR); ICM OSTR'C 30° TO T.P. (PART & MITH MINOR SCEPACHED (30.9.37.2) MARON WITH MINOR SCEPACHED PATCATOS CLAY COMMON OF FRAFERENCES AND IN 1.0 TO 10.0 ZONES OF MID TO INTERSE LIAY (MISTRY MARON); CLAY'ON CORT.	•	IDES	FROM 7	ТО	TOTAL	 7	02.TON	02 TON	RUD 22.8- 35.7 607 30.0 20 20 20 20 20 20 20 20 20 20 20 20 20
37.2 38.0	90% RECONSILY ALTERED VOLCANIC INTERED VOLCANIC INTERE UTZ-IANETIC SER. BUFF TO ELEY COLORED; MINOR CLAY OF FORETURES; WERK FOL = C 45 TO 60° TO C.A. MINOR DISSER PY; ICM &STRE STATE BY 38.2M DCM OF ICM &STRE STATE OF BY 38.2M DCM OF LABY (GRAPTITO?) ALT = IN M.C. O LAST SCM			37.2 37.9			· · ·	0.003 0.005		
38.6 39.	QIZ STR ZONE (0.4m) TWO LIG (M (TRUE WIDTH) STRS AND ALT & W.R. BETWEEN; GRAMMITTE IN FRACTURES, MINOR STY COLITES AND ALONG CONTACTS; 3%. MY IN STRJ 2% IN W.R. STRS @ 30 to 40 to C.R.;	109	3%	38.6	37,0	0.4	··· ··	0.074	0.21	386- 37.0 60 7

TORONIO

LANGRIDGES

NAME OF PROPERTY DOME HOLE NO. _______ D92-13_____ SH

_____ SHEET NO._____ 30F3

MET		DESCRIPTION			SAMP	LE			ASSAYS	
FROM	то		NO.	SULPH		METRES		 	T	
39,0	39.6	ALTERED VOLCANIC INTENSE DE CREMILLA FOMENCE CORREDUCT SOR; 1%, DOCREASING TO TRACE DOSS. FY; BLOCKY CORE	110	1DES	59.0	39.6	0 -0		02. TON	RQD 39.0- 39.5 507
37.6	61.0	LAPILLI TUFF SKEEM WITH PATCHY MALOON TO SSEM, THEN MAROON · ABENDANT CI TO SSEM CLASSE THENOUT · CLASTS OF FOR CAMPIN VOLC · MINOR POSSIBLY AMYE. CLASTS · CC COMMON IN FRACTURES · VERY MINOR LICH CARD TH OTH STRIS · MINOR ZONES OF DAME ANAL (CITE) IN FRACTURES ; UNFOUN IF THIS IS LOWER LAF. TUFF OF PART OF UNFOR IN TT TILL SS.8; THEN PROBABLY LOWER : NO DISTINCT CONSIGNING - OFRECTORS (S7.1-S8.5) BLOKEN CONS, CLAY - FRECTORS (S9.5-61.0) MATRIX BRICK HOD/MADON' FEN CLASTS; LORICE LICE TUFF JUST ABOVE AMYE. FROMS.								39.6 57.1 70 20 7 80 7 57.1- 58.5 10 % 58.5. 61.0
	61.0	E. D. H.								60%

APPENDIX B

(

í

ŧ,

ANALYTICAL RESULTS for DRILLING on the COPE 1 CLAIM DOME MOUNTAIN PROJECT

JANUARY - FEBRUARY 1992

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET JORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

Company: TIMMINS NICKEL Project: DOME MTN. Attn: G.GIBSON

4

2S-0005-RA1

Copy 1. TIMMINS NICKEL, SMITHERS, B.C.

He hereby certify the following Assay of 5 MUCK samples submitted JAN-23-92 by H.SMIT.

	Sample Number	*AU-FIRE g/tonne	*AU-FIRE oz/ton	AG g/tonne	AG oz/ton	
	61201	.60	.018	3.9	. 11	
1	61202	.76	.022	5.1	.15	
092 J	61203	1.18	.034	2.5	.07	
V	61204	.17	.005	1.8	.05	
- (61205	.85	.025	7.0	.20	
	<u> </u>					

*AU - 1 ASSAY TON.

Certified by_

	COMP: TIMMINS PROJ: DOME MTN ATTN: G.GIBSON	-										WEST 1	15TH S	LABE	DRTH \	VANCOL	JVER,	B.C.		T2									0	DATE:	0005-RJ1 92/01/27 ACT:F31)
	SAMPLE NUMBER 61205	AG PPM	AL PPM	AS PPM	B PPM 1	BA PPM 25	BE PPM	BI PPM 2	CA PPM 17580	CD PPM 208.8	CO PPM	CU PPM	FE PPN	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM 160	NI PPM 24	P PPM 680	PB PPM	SB PPN 38	SR PPM	TH PPM 1	TI PPM 24	V PPN 12 4	ZN PPM	GA PPM	SN PPM P	W CR PM PPM 11 64
12-7	01205	5.0	1100	-203	•	23		-		200.0	.0	470	40010		•	10/0	2102			24	000	2,2	50		•	24	1214		2	•	11 04
					<u>,</u>		•																-								
														<u>.</u>																	
																															_
				<u> </u>					<u> </u>																				- 		
		<u></u>			A																										
																	.														
						·																									
					•																										
					<u></u>											<u>.</u>					. <u>.</u>										
															<u>·</u>					• •											

1

• EN LABORATORIES (DIVISION OF ASSAYERS CORP.)

> SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

¹⁰⁵ WEST 15TH STREET .ORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

Company: TIMMINS NICKEL Project: DOME MTN. Attn: G.GIBSON 2S-0006-RA1

Date: JAN-27-92

Copy 1. TIMMINS NICKEL, SMITHERS, B.C.

He hereby certify the following Assay of 22 CORE samples submitted JAN-24-92 by HANS SMIT.

	Sample Number	¥AU-FIRE g/tonne	¥AU−FIRE oz/ton	AG g/tonne	AG oz/ton	
. 1	61206	25.31	.738	80.7	2.35	
I	61207	1.33	.039	15.0	.44	
. \	61208	.63	.018	2.7	.08	
Ŋ	61209	.04	.001	1.0	.03	
x)	61210	. 98	.029	4.7	.14	
\$ /	61211	.10	.003	1.9	.06	
	61212	6.46	.188	54.6	1.59	
- [61213	.25	.007	3.4	.10	
	61214	.15	.004	0.8	.02	
1	61215	.31	.009	1.2	.04	
N 1 S	61216	.13	.004	 1.6	.05	
$\left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)$	61217	1.97	.057	3.0	.09	
01	61218	.09	.003	1.2	.04	
~ (61219	.05	.001	0.9	.03	
(61220	.11	.003	0.9	.03	
5-2	61221	7.42	.216	17.7	.52	
a)	61222	. 16	.005	1.1	.03	
۶ ۲	61223	.12	.004	1.2	.04	
- /	61224	.01	.001	0.1	.01	
	61225	.10	.003	0.6	.02	
	61226	 59.00	1.721	830.0	24.21	
L	61227	130.80	3.815	403.0	11.75	

*AU - 1 ASSAY TON.

Certified by_

MIN-EN LABORATORIES

0

, .__.

OMP: TIMMINS ROJ: DOME MT ITN: G.GIBSO	N.								705	WEST	r 15th	LAB ST., N)980-58	ORTH V 14 OR	ANCOL	IVER , 988-4	876¥ 524	2 N-1 T									* (ORE	\TE: ' (92/01 ACT:F
SAMPLE NUMBER 62106	AG PPM 74.7	PPM 1910	3214	В РРМ 11	BA PPM 20	BE PPM 1.8	BI PPM 60	CA PPM 11410	CD PPM 141.2	CO PPM 26	CU PPM 1281	PPM 80810	750	1	3130	PPM 725	MO PPM 6	<u>PPM</u> 80	NI P PPM PPM 1 120	2889	SB PPM 363 3	SR PPM 24	PPM	PPM	V PPM 7.6	ZN PPM 8172	GA PPM F		W C <u>PN PF</u> 13 19
r62115 62117 62121	1.6 2.6 19.6	19380 6290 4080	3214 55 10482 590 10891	1 2 1	20 46 38 38 4	1.2 .9 .5 2.0	1 4 2 1 15 2	46840 13840 23270	4.0 .1 83.9 906.1	26 20 13 9	250	41360 34920 37320 151600	1650 1940 1320	1	31720 5550 10780	2842	1	150 270 150	40 460 3 450 3 120 1 10	51	3 20 42 3768	81 26 36 21	1 1 1 1	43 4 14 1 17 1 4	7.5	8172 696 2979 3791 42248	1 1 1	1	4 8 7 11 14 30 34 12
62126 62127	197.4			1					109.9			139260		1		2376	1		1 250	2907	895	29	1			6507	1	1	8 9
										•			·,										<u></u>						•
								<u></u>																					
																									<u> </u>				
					•		·				<u> </u>	 																	
				•																									
, ,											····	*****										i L							
			·																			2							

1

ENVIRONMEN LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE:

75 WEST 15TH STREET)RTH VANCOUVER, B.C. CANADA V7M 1T2 , ¿LEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2N0 TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

2S-0007-RA1

TIMMINS NICKEL Company: Project: DOME MTN. G.GIBSON Attn:

Date: JAN-27-92

Copy 1. TIMMINS NICKEL, SMITHERS, B.C.

He hereby certify the following Assay of 14 CORE samples submitted JAN-24-92 by HANS SMIT.

Sample Number	*AU-FIRE g/tonne	¥AU-FIRE oz∕ton	AG g/tonne	AG oz/ton	· · · · · · · · · · · · · · · · · · ·
<i>(</i> % 1228	1.01	.029	3.4	.10	
61229	1.12	.033	1.8	.05	
61230	1.36	.040	14.5	.42	
61231	16.92	.494	110.0	3.21	
o 61232	17.14	.500	172.4	5.03	
61233	2.07	.060	35.9	1.05	
61234	.07	.003	0.4	.01	
61235	.05	.002	2.5	.07	
61236	3.32	.097	20.8	.61	
61237	.07	.002	1.0	•03	
. 61238	.48	.014	1.5	.04	
61239	.02	.001	0.9	.03	
- 61240	.53	.015	1.4	.04	
61241	.03	.001	0.5	.01	

*AU - 1 ASSAY TON,

Certified by_

SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	PPN	CO PPM	PPM	I PPN	I PPN	PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM	SB PPM	SR PPM I	TH PPM	TI PPM	V PPM	PP	N GA M PPM	PPM	PPM P
61231 61232 61236 61240	100.3 170.6 25.4	2170	15724 10853 229	20 1 1 1	6	1.7 1.3 .7 1.0	83 45 19 3	6000 18750 20060 31940	3764.7 1079.9 986.9 262.1	24 14 15 18	8884 3614 2808 430	79200 67750 36820 36430) 310) 90) 880) 2790	1 1 1 1	2910	690 2309 3166 3257	26 12 14 3	40 60 60 260	7 1 52 51	340 150 300 680	2677 6255 2293 50	200 536 90 5	37 85 39 68	1 1 1 1	9 9 17 46	9.8 12.2 20.9 34.0	22100 6790 5480 1391	0 1 0 1 0 1 5 1	2	313 49 1 14
				<u></u>																										
				· · · · · · · · · · · · · · · · · · ·				- <u></u>																						
									<u></u>																					
<u>,</u>																														
																			<u></u>											
																														<u></u>
																<u></u>														
				•											<u></u>	<u></u>				····-			·							
																		-												

. ----

EN CATORIES LABORATORIES (DMISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET ORTH VANCOUVER, B.C. CANADA V7M 1T2 . ELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

2S-0008-RA1

Company: **TIMMINS NICKEL** Project: DOME MTN. Attn: **G.GIBSON** Date: JAN-31-91

Copy 1. TINNINS NICKEL, SMITHERS, B.C.

He hereby certify the following Assay of 23 CORE samples submitted JAN-26-92 by HANS SMIT.

Sample Number	*AU-FIRE g/tonne	*AU-FIRE oz/ton	AG g/tonne	AG oz/ton	
61242	.02	.001	0.3	.01	
61243	1.23	.036	6.5	.19	
61244	4.20	.123	40.2	1.17	
61245	.28	.008	2.1	.06	
61246	.05	.001	1.2	.04	
61247	.03	.001	0.8	.02	
61248	44.90	1.310	154.0	4.49	
61249	3.03	.088	23.5	.69	
61250	174.49	5.089	216.2	6.31	
17501	1.55	.045	33.0	.96	
17502	.46	.013	1.7	.05	
17503	.21	.006	2.0	.06	
17504	23.30	.680	106.2	3.10	
17505	1.88	.055	11.0	.32	
17506	.07	.002	2.4	.07	
17507	 • 99	.029	4.2	.12	
17508	.28	.008	3.7	.11	
(17509	.01	.001	1.1	.03	
17510	.13	.004	0.1	.01	
17511	.02	.001	1.1	.03	
)17512	.01	.001	0.5	.01	
17513	5.39	.157	31.9	.93	
17514	.06	.002	0.9	.03	
-					

*AU - 1 ASSAY TON.

2

Ť.

Certified by____

MIN-EN LABORATORIES

0

.

COMP: TIMMINS I PROJ: DOME MTN ATTN: G.GIBSON											r 15th	ST., N	ORTH V	ANCOU	PRE	.c. v		2										E NO: DAI	1E: 9	1/01
SAMPLE	AG	AL	AS	В	BA	BE	BI	CA		CO	CU	FE	ĸ	LI	MG	MN	MO	NA	NI	Р	PB	SB	SR	TH	TI	v	ŻN	GA S	SN	W C
NUMBER 61248 61250 17501	PPM 144.9 203.9 39.0 102.1	PPM 3110 1000 3650		36	29 12 35	PPM 2.3 2.3 1.1 1.8	85 81	PPM 15410 4700 38810	PPM 1246.1 1964.9 103.6 1237.6	PPM 23 24 9	PPM 6387 12412 721	PPM 61610 105320 29370 86230 70220	PPM 1220 220 1590	PPM 13 5 2	PPM 5940 3 1480 15540 3 8650 1 16430 3	PPM 5310 531 5052	PPM 12 18 4	120 40 90	22 1 10	PPM 480 310 2 300	PPM 1 1178 2 23038 2 1476 2 2874 4	PPM F	PPM P	PM P	PM F	2 2 5	PPN	PPM PF	<u>9 PP</u> 5 5 8 1	<u>M PP</u> 1 12 6 10 9 14
17504 17513	32.5	2950 7290	298	20 8	43 74	1.4	25	28340	216.8	26	4721	70220	1360	6	16430 3	1878 1340	3	60 180	45 43	480	767 1	118	57	1	10 33	5.87 5.91	0251	1	2 1 1	3 13 1 8
																														
																·														
			. <u> </u>									·															-			
					•																									
				• .	•																									
																						<u> </u>								

SPECIÁLISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET ORTH VANCOUVER, B.C. CANADA V7M 1T2 , ELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

<u>Assay Certificate</u>

2S-0009-RA1

Company: TIMMINS NICKEL Project: DOME MTN. Attn: G.GIBSON 1 - 1

Date: JAN-31-92

Copy 1. TIMMINS NICKEL, SMITHERS, B.C.

He hereby certify the following Assay of 24 CORE samples submitted JAN-28-92 by HANS SMIT.

ş	Sample Number	¥AU-FIRE g/tonne	*AU-FIRE oz/ton	AG g/tonne	AG oz/ton	
N	(17515 17516	14 .27	.004 .008	11.0 5.7	.32	
ż,	17517	.96	.028	2.5	.07	
\$ 1 \$	17518	.61	.018			
ا د.	17519	41.65	1.215	64.5	1.88	
(17520	 .16	.005	1.0	.03	
	17521	.09	.003	0.6	.02	
	17522	.60	.018	1.3	.04	
	17523	.18	.005	1.1	.03	
	17524	.12	.004	2.0	.06	
ļ	17525	 . 46	.013	 9.7	.28	
	17526	8.45		65.1	1.90	
	17527	.10	.003	1.2	.04	
	17528	.85	.025	3.5	.10	
	17529	.06	.002	0.8	.02	
	17530	.06	.002	1.2	.04	
	17531	40.55	1.183	257.6	7.51	
	17532	4.09	.119	67.0	1.95	
	17533	.13	.004	1.8	.05	
	17534	2.04	.060	4.9	.14	
	17535	.38	.011	2.7	.08	
	17536	9,20	.268	72.0	2.10	
	17537	.17	.005	2.0	.06	
	17538	.45	.013	1.3	.04	
	17539	2.67	.078	2.8	.08	

*AU - 1 ASSAY TON.

Certified by

COMP: TIMMINS NICKEL

AG

AL AS

55.7 1110 4587

221.0 1270 488 58.0 680 285 67.3 1710 225

FILE NO: 2S-0009-RJ1 DATE: 92/02/03

1 7 7.4 22627 1 1 11 134 1 5 17.0 26167 1 1 14 108 1 4 10.7 25202 1 1 10 77

1

۷

5 7.8 754

• CORE * (ACT:F31)

1 6 120

ZN GA SN W CR

PPM PPM PPM PPM PPM

PROJ: DOME MTN. ATTN: G.GIBSON

SAMPLE

NUMBER

17519

17531

17532

17536

タコーフ

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 В BA 8E 81 CA CD CO CU FE ĸ LI MG MN MO NA NI P PB SB PPM
 .3
 59
 19080
 412.9

 .1
 369
 22120
 533.3

 .2
 38
 22510
 507.7

 .1
 132
 13920
 20.8
 8 9 10 8
 3
 180
 1094
 43

 44
 180
 2864
 919

 32
 150
 786
 440

 20
 230
 1205
 273
 19 15 1173 59490 540 7060 1808 30 1 1 13 27 16956 119820 610 12 4021 42450 370 13 1740 36880 880 1 10360 1660 1 10770 1631 1 5350 1469 10 10 20 1 1 20 1

.

SR TH TI

1

and the second

EN / RO LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

5 WEST 15TH STREET JRTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

2S-0019-RA1

Date: FEB-14-92

Copy 1. TIMMINS NICKEL, SMITHERS, B.C.

Company: TIMMINS NICKEL Project: DOME MTN. Attn: G.GIBSON

He hereby certify the following Assay of 23 CORE samples submitted FEB-12-92 by HANS SMIT.

	Sample Number		¥AU−FIRE g/tonne	*AU-FIRE oz/ton	AG g/tonne	. AG oz/ton	
	$ \begin{array}{c} \hline 101 \\ 102 \\ 103 \\ 104 \\ \overline{105} \end{array} $	Internet of the second second	30.95 	.903 -043 .014 .035 .004	262.0 19:7 7.0 39.5 2.2	7.64 .57 .20 1.15 .06	n se
EX-530 -	106 107 108 109 110		.07 .11 .16 2.54 .18	.002 .003 .005 .074 .005	0.8 0.8 2.0 7.2 1.2	.02 .02 .06 .21 .04	
	41038 41039 41040 41041 41042		5.28 3.64 37.00 .39 .12	.154 .106 1.079 .011 .004	43.7 33.7 170.5 2.1 1.1	1.27 .98 4.97 .06 .03	
	41043 41044 41045 41046 41047		.06 .44 .07 45 .04	.002 .013 .002 .013 .013 .001	0.7 2.8 0.7 4.2 0.6	.02 .08 .02 .12 .02	
	41048 41049 41050	Richigan in the second second	.04 .02 .12	.001 .001 .004	0.7 0.6 0.3	.02 .02 .01	and in the lates of the state of the state of the states of the state of the state of the state of the state of

Certified by

MIN-EN LABORATORIES

ROJ: DOME MT TTN: G.GIBSO									70	5 WES		ST.,					V7H	112									* 0			92/02 ACT:1
SAMPLE NUMBER	AG PPM	AL PPN	AS PPM	B PPM	PPM	PPM			CD PPM	PPM	CU PPM	FE PPM	PPM	PPN	PPM	PPM	MO PPM			PPN		PPM	PPM	TH PPM F	PPM		PPM	GA PPM	PPM P	W (PPM PS
101 109 41038 41039 41040	263.2 6.9 43.4 39.2 175.0	2900 1140	2125	5 1 1 1	20 24 15 31 24	.3 .1 .3 .2 .4	8 64 27	21890 10770 10080 17040 7990	1063.4 96.6 9.9 60.3 19.5	10 10 13	11320 354 2350 2394 5107	66850 46920 41300 47770 114960	1260 460 1260	1	9360 4440 3750 7300 2300	5623	15 2 3 4	20 70 10 50 40	38 5 2 13 1	330 370 100 150 70	8298 189 558 420 4205	1886 23 157 335 822	51 19 15 27 11	1 1 1 1	9 6 5 10 6	22.4 7.4 5.2 14.7 7.3	46042 5716 473 2632 907	1 1 1 1	1	40 1 9 10 6 1 10 1 8 19
																													•	
<u></u>																												•		<u>.</u>
		<u>.</u>																												
	·																						<u> </u>						<u> </u>	
	ļ									<u>.</u>																				

.