LOG NO:	OCT 2 9 1992	RD.
ACTION.		
		·
FILE NO:	······································	

ľ

DRILL REPORT

ON THE

MOUSE MOUNTAIN PROPERTY

NTS 93G/1 and 93B/16

Latitude 53° 02' Longitude 122° 19'

Claims: Mouse, Mouse 2, Lyn 1, Excel 5, QM 1, QM 2, Excel 2, Excel 3, MTN, MTN #2, Beaver 1, Beaver 2, MM 1, MM 2, MM 3

Cariboo Mining Division

	ECORDER FIVED
OCT 2	2 0 1992
M.R. # VANCOI	\$ IVER, B.C.

by

Paul Donkersloot

TECK EXPLORATION LTD. #350 - 272 Victoria Street Kamloops, B.C. V2C 2A2

July 15, 1992

A S S E

S S C

ME

Z 🏲

30

BRA REP

ORT

SUMMARY

The Mouse Mountain Property, optioned from Quesnel Mines Limited in December of 1990, is located 15 kilometres east-northeast of Quesnel B.C. between the Quesnel River and Cottonwood River. It includes 219 claim units and is readily accessible via the Quesnel-Barkerville highway that crosses through the centre of the property.

Most of the previous exploration work has been focused on copper-gold showings found in the immediate vicinity of Mouse Mountain, located in what is now the centre of the property. A carload of hand sorted ore was produced from copper-gold-silver showing in 1956. An attempt was made by Euclid Mining corporation to leach low grade copper mineralization from this area in 1967. Other work consisted of percussion drilling (Bethlehem Copper, 1970, Dupont of Canada Limited, 1970), soil sampling (Hudson's Bay Oil and Gas Company, 1974, First Nuclear Corporation, 1981-1984, Placer Dome Inc., 1989), trenching (Quesnel Mines Ltd., 1986) and VLF-EM, Magnetometer and I.P. surveys (Quesnel Mines Ltd., 1986, Placer Dome Inc., 1989). Minor low grade copper mineralization was found in the Mouse Mountain area in volcanic rocks surrounding alkalic stocks.

Teck Exploration Ltd. conducted 150 line kilometres of magnetometer/VLF-EM surveys and 9.5 line kilometres of I.P. surveys in 1991. Several 200 to 600 metre diameter magnetic highs were found in an area extending from Mouse Mountain to the southwestern property boundary. Chargeability anomalies were located on the southern and western edges of Mouse Mountain. In October of 1991 a 915 metre drill program conducted in the Mouse Mountain area failed to intersect any mineralizion of significant size and grade.

The claims are situated in the central part of a narrow northwesterly trending assemblage of Upper Triassic and Lower Jurassic island arc volcanics and associated sedimentary facies known as the Quesnel belt. The western boundary of the central Quesnel belt, which is located close to the Mouse Mountain property, is often obscured by overburden and Tertiary volcanics. This boundary is thought to be marked by a high angle extension of the Pinchi fault, a major strike slip to the northwest. The eastern boundary is marked by the Eureka thrust. The most important mineral occurrences in the area, usually consisting of copper with associated gold, are found within or adjacent to alkalic stocks that intrude the central Quesnel belt. The two most important deposits in the area are the Mt. Polley copper-gold deposit and the QR gold deposit (with associated copper).

The majority of the outcrop on the property is found in the Mouse Mountain area in the centre of the property. Most of the property is underlain by a northwesterly trending assemblage of

basaltic rocks and heterolithic felsic breccias. Stocks ranging in composition from syenite to monzodiorite-diorite cut the intrusive and volcanic breccias at two locations in the Mouse Mountain area.

Disseminated pyrite, chalcopyrite and bornite is found at some locations in potassically or propylitically altered siliceous breccias near intrusive contacts. The four main showings in the area are found in a northwesterly trending linear zone along the eastern edge of Mouse Mountain. Chloritic alteration is pervasive throughout most the Mouse Mountain area. Pyritic zones are found along the northern, southern and eastern margins of Mouse Mountain. Potassic alteration occurs along the top of Mouse Mountain and extends towards its eastern edge. Southeast of Mouse Mountain propylitically altered basalts with a pervasive chlorite and calcite overprinting are thought to be similar to the unit that hosts gold mineralization at the QR deposit.

In June of 1992 seven holes totalling 951 metres were drilled in the Mouse Mountain area. The only significant mineralization was returned from holes drilled underneath the "valentine zone". A 24.3 metre interval containing 0.3% copper and 230 ppb gold and a 45 metre intersection containing 0.2% copper and 107 ppb gold were intersected.

The Mouse Mountain area has been adequately tested. The extent of the mineralization found is not large and chances of finding a large body of porphyry style mineralization in this area are small. Several prominent magnetic highs are found between the Mouse Mountain area and altered intrusive rocks found in the southwestern corner of the property. Follow-up I.P. surveys and soil geochemistry surveys could help delineate drill targets in this area.

TABLE OF CONTENTS

PAGE

INTRODUCTION	1
LOCATION AND ACCESS	1
PHYSIOGRAPHY	1
CLAIM STATUS AND OWNERSHIP	1
EXPLORATION HISTORY	2
GEOLOGY	5
Regional Geology	
Property Geology	
Mineralization and Alteration	
DIAMOND DRILLING	15
CONCLUSIONS AND RECOMMENDATIONS	16
REFERENCES	17
STATEMENT OF COSTS	19
WRITER'S CERTIFICATE	20

LIST OF FIGURES

Figure 1	Location Map Following page 1
Figure 2	Aeromagnetic Map Following page 4
Figure 3	Claim Map Following page 2
Figure 4	Regional Geology Following page 5
Figure 5	Property Geology (in pocket)
Figure 6	Geology Map of Mouse Mountain Area (in pocket)
Figure 7	Valentine Zone Sample Location Map Following page 10
Figure 8	Compilation of 1989 Results
Figure 9	Valentine Zone Drill Section (in pocket)

LIST OF TABLES

PAGES

Table 1	Claim Status	2
Table 2	Significant results	12

APPENDICES

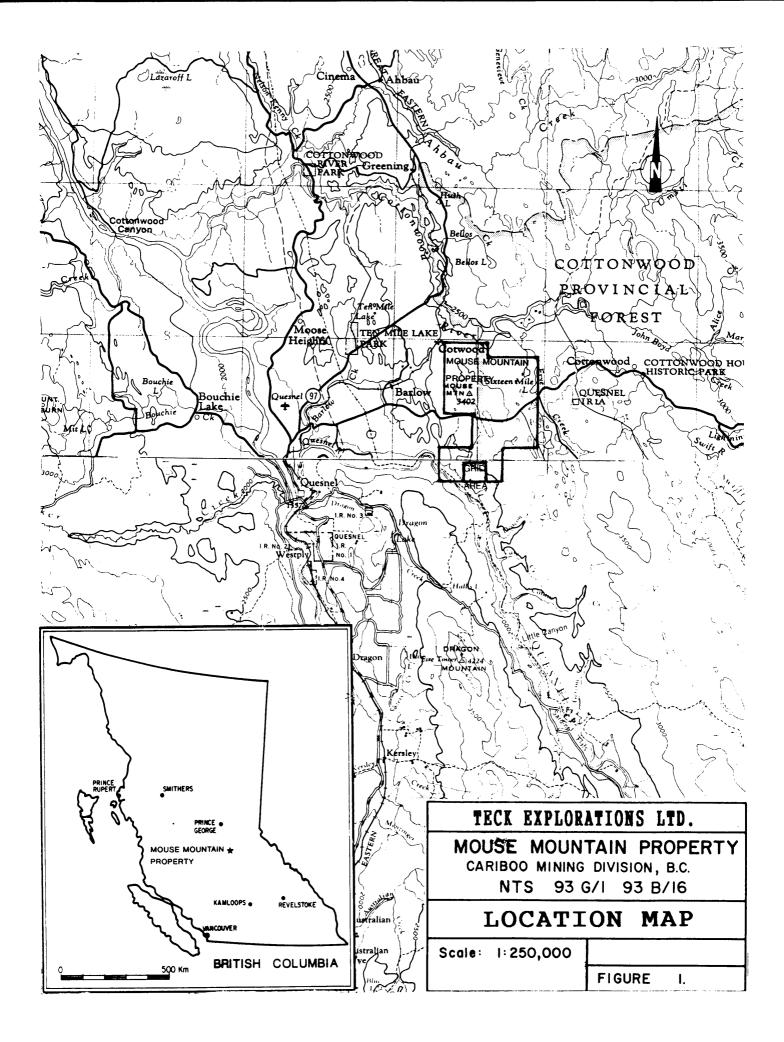
Appendix I	Geochemical and Assay Methods of Analysis	
Appendix II	Diamond Drill Logs (with results)	(in pocket)

INTRODUCTION

Teck Corporation optioned the Mouse Mountain property (Figure 1) from Quesnel Mines Limited in December of 1989. This report describes exploration work completed by Teck Exploration Ltd. between June 1, 1992 and June 29, 1992. Work undertaken during this time period consisted of 951 metres, 7 holes, of diamond drilling producing NQ core.

LOCATION AND ACCESS

The Mouse Mountain property is located 15 kilometres east-northeast of Quesnel in south-central British Columbia, between the Cottonwood River and the Quesnel River. The Quesnel-Barkerville Highway crosses through the centre of the property. A secondary exploration road that originates at the Quesnel-Barkerville Highway provides access to the survey area described in this report. A network of old logging and exploration roads provides easy access to much of the property.


PHYSIOGRAPHY

The claims are found within the Fraser Basin of the Interior Plateau. Relief varies from a high of 1025 metres on Mouse Mountain in the centre of the property to a low of 518 metres along the Quesnel River in the southwest corner of the property. Low cliffs and steep bluffs are found in the vicinity of Mouse Mountain with gently rolling hills sloping away from Mouse Mountain in all directions.

Vegetation consists of second growth spruce, fir, balsam, cedar, birch and poplar with moderate undergrowth consisting of willow, alder, devil's club and other minor shrubs. The region contains several areas cleared for agriculture and logging and minor small lakes and swampy depressions.

CLAIM STATUS AND OWNERSHIP

The property consists of 15 contiguous claims comprising a total of 219 units (Figure 3). The claims, owned by Teck Corporation, are currently subject to an option agreement with Quesnel Mines Limited completed in December of 1990. Status and ownership of the claims are listed on the following page.

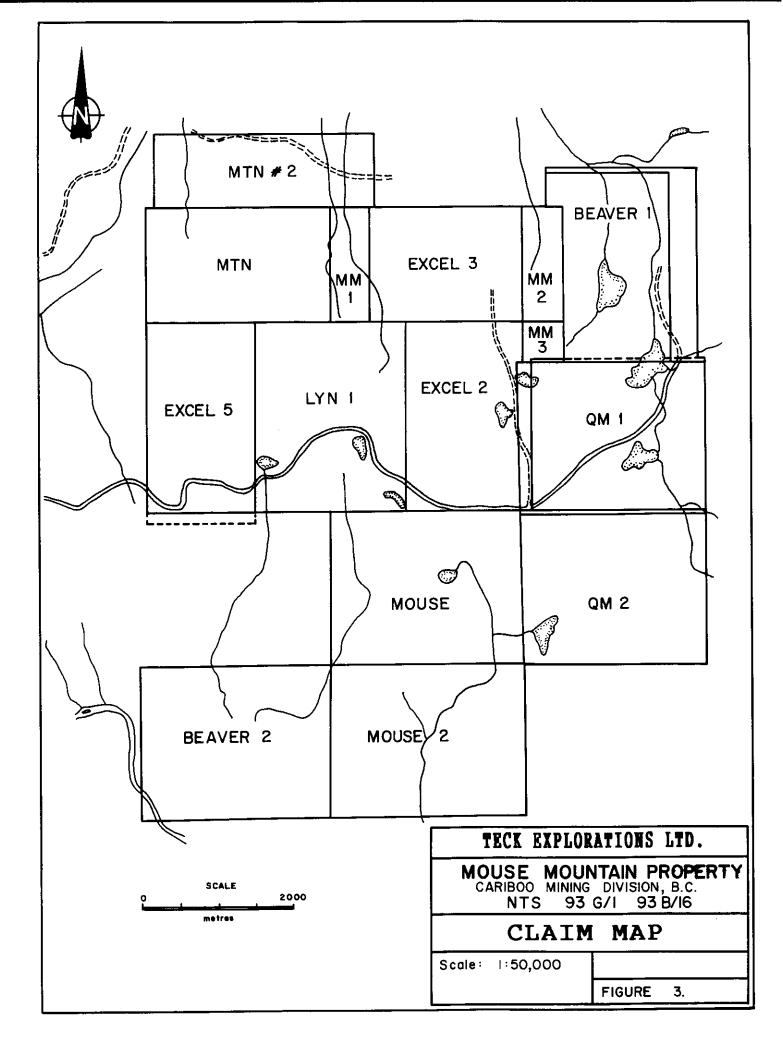


TABLE 1 - CLAIM STATUS

Claim <u>Name</u>	Record <u>Number</u>	<u>Ownership</u>	Number <u>of Units</u>	Expiry Date
Mouse	7405	Teck Corporation	20	March 18, 1997
Mouse 2	7406	11	20	March 18, 1996
Lyn 1	7898	11	20	August 22, 1998
Excel 5	7899	11	15	August 28, 1998
QM 1	9519	IT	20	December 5, 1996
QM 2	9517	IT	20	November 27, 1996
Excel 2	7692	11	15	June 4, 1998
Excel 3	7693	11	15	June 4, 1998
MTN	7941	11	15	September 8, 1998
MTN #2	7987	11	12	September 29,1998
Beaver 1	8250	11	20	February 3, 1996
Beaver 2	8296	11	20	March 9, 1996
MM 1	9923	11	3	July 25, 1998
MM 2	9924	11	3	July 27, 1998
MM 3	9925	11	1	July 27, 1998

EXPLORATION HISTORY

Most of the previous exploration work, including all of the exploration work described below, has been focused on copper-gold showings found in the immediate vicinity of Mouse Mountain, located in what is now the centre of the property. Old test pits, drill core, hand trenches and claim posts indicates much early exploration work; however no written records can be found for most of this work. Exploration for copper probably originated in the early 1950's.

A carload of hand sorted ore averaging 5.5% copper, 0.05 oz/ton gold and 0.5 oz/ton silver was produced from old workings in 1955-56 and sent to the Tacoma Smelter. Preparatory work for a program to heap leach copper mineralization from the old workings was undertaken by Euclid Mining Corporation in 1967. Minor stripping and crushing was completed; but only pilot leach tests were completed before the program was terminated due to lack of funding.

Of 14 percussion holes drilled by Bethlehem Copper in 1970, in the Valentine Zone on the east side of Mouse Mountain, five of the holes averaged greater than 0.1% copper over lengths of 80 to 180 feet. No assays were reported for gold.

Hudson's Bay Oil and Gas Company conducted a soil survey immediately southwest of Mouse Mountain in 1974. Samples were analyzed for copper, lead, zinc, silver and molybdenum.

Five percussion holes were drilled by Dupont of Canada Limited on the north side of Mouse Mountain in 1970. One of the holes averaged greater than 0.1% copper over 170 feet. This hole averaged 0.003 oz/ton gold; while the rest of the holes averaged less than 0.1 ppm gold.

From 1981 to 1984 prospecting, grid preparation and soil sampling was carried out by First Nuclear Corporation, which held much of the present claim area. Samples were analyzed for copper, lead, zinc and molybdenum. Some of the soil samples were panned for gold, but no anomalous material was found.

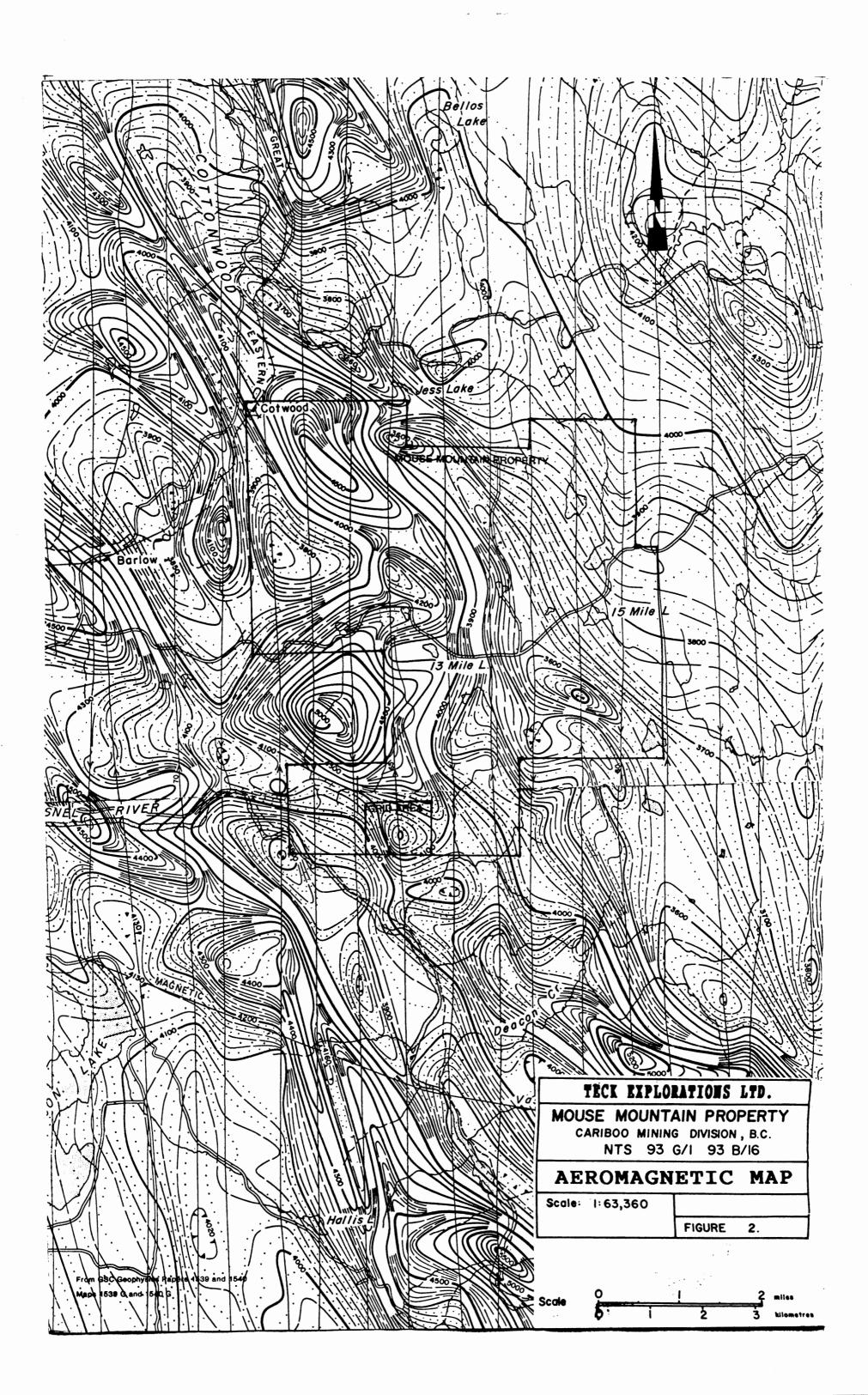
After acquiring the property in 1986, Quesnel Mines Limited conducted limited grid preparation, backhoe trenching and stripping, prospecting, magnetometer and VLF-EM surveys. Trenching was carried out over magnetometer VLF-EM anomalies and zinc anomalies found during the First Nuclear Corporation soil program. Significant faulting, pyrite and limited chalcopyrite were located during this work, but no extensive intervals of economic mineralization were found. Altered volcanics containing up to 0.021 oz/ton Au were found along the Quesnel River slightly west of the grid area covered in this report.

The property was optioned by Placer Dome Inc. in 1989 with a purpose to test the favourable basalt-felsic breccia contact for a "QR-type" replacement style gold deposit. A 73.3 line kilometre cut and flag grid on lines spaced at 100 was established. In the summer of 1989, 1328 soil samples were collected, 52.0 line kilometres of total field magnetometer surveys and 42.0 kilometres of induced polarization surveys were performed in the north central portion of the property. Figure 8 is a compilation of the results from the 1989 program.

Although several soil samples collected in 1989 contained elevated gold results, the majority of the samples collected returned values close to normal background concentrations for soils in the

Cariboo region. Small copper anomalies are found occurring with all of the mineralized showings in the Mouse Mountain area. Several small copper soil anomalies are also found east of Mouse Mountain. Bedrock outcroppings are more sparse in this area and nothing was found to explain the copper anomalies.

Chargeability anomalies were found on the northern and western flanks of Mouse Mountain, corresponding with pyritic zones in altered breccias. Moderate chargeability anomalies are found in the area of the "high grade showing" and east of Mouse Mountain.


Magnetometer data from the 1989 survey outlined a magnetic high lying underneath Mouse Mountain and extending to the Valentine zone. An extensive magnetic high is found north of Mouse Mountain corresponding with disseminated magnetite in volcanic breccias. The breccias east of Mouse Mountain are found in an area of moderate magnetic highs. A narrow northwesterly trending magnetic low extends from the valentine zone to the rainbow breccia. Magnetic lows located on the far eastern part of the grid delineate the volcanic breccia/basalt contact.

Teck conducted 20.7 line kilometres of ground magnetic and VLF-EM surveys in March of 1991. The survey, conducted near the southern property boundary, covers a circular magnetic high indicated by a regional aeromagnetic survey (figure 2). A prominent 600 metre by 800 metre magnetic high with a relief of 1486 nanoteslas was located by the ground magnetic survey.

From June to August of 1991 Teck conducted 130.3 kilometres of total field magnetics and VLF-EM surveys on three separate grids on the property. Several 200 to 600 metre diameter magnetic anomalies were found in an area extending from Mouse Mountain to the southwestern property boundary. The majority of the conductive VLF-EM anomalies located trend in a northwesterly direction.

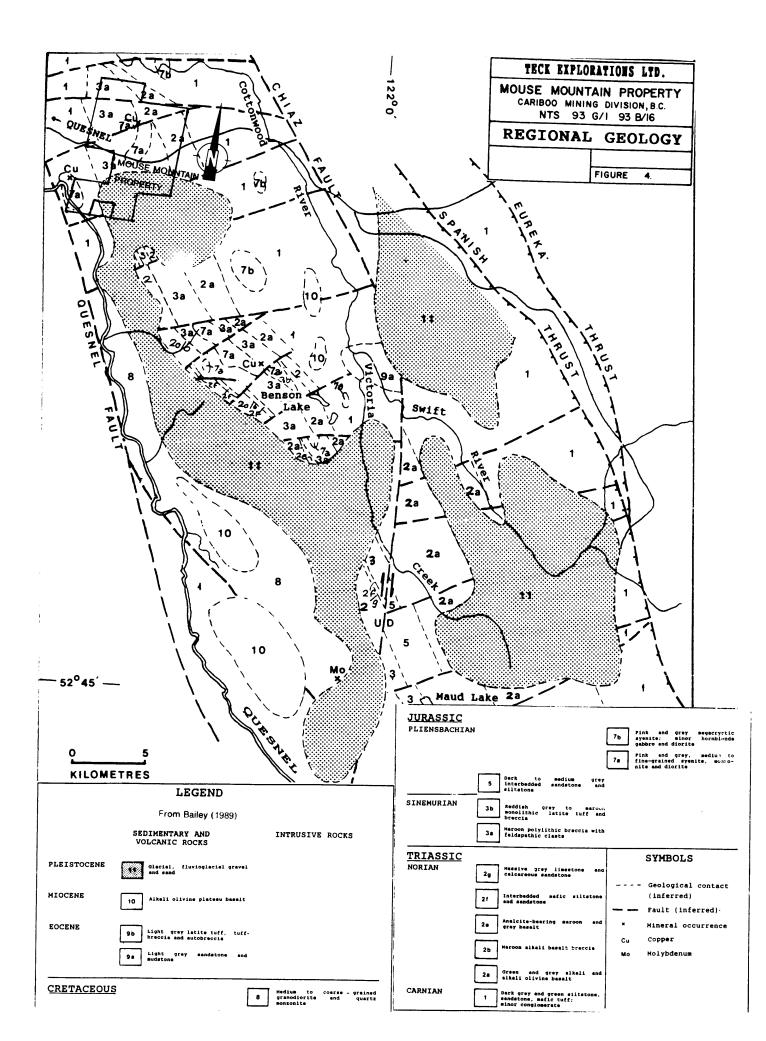
A 9.5 kilometre I.P. survey was conducted on the property in September of 1991. Chargeability anomalies were located on the southern and western edges of Mouse Mountain.

In October of 1991 nine holes totalling 915.62 metres were drilled in the Mouse Mountain area. Mineralization in the holes returned only short intervals with low grade copper and gold. The best intersection from the program returned 18.29 metres of 1621 ppm Cu. This includes a 6.1 metre section containing 0.31% copper and 123 ppb gold.

GEOLOGY

Regional Geology

The property is located within a narrow northwesterly trending assemblage of Upper Triassic and Lower Jurassic island arc volcanics and associated sedimentary facies with underlying oceanic crust (Crooked Amphibolite), known as the Quesnel belt, that extend through a significant portion of the province (Figure 4).


In the vicinity of the property the oldest rocks (unit 1) consist of fine grained epiclastic and volcanoclastic rocks (Bailey, 1990). This unit has a gradational contact with the overlying unit (2a) that consists of alkalic pillow basalts, basaltic breccia and tuff formed in relatively deep marine conditions. Nonconformably overlying this unit are a series of polylithic slump breccias (unit 3a) characterized by felsic volcanic debris, which are absent in unit 2. These volcanic and sedimentary rocks are intruded by Upper Triassic to Lower Jurassic alkalic rocks (unit 7) and Cretaceous calcalkalic rocks (unit 8).

The eastern boundary of the Quesnel belt is marked by the Eureka thrust which formed in response to accretion of Quesnellia with North America. This fault consists of rocks of the Crooked Amphibolite and Unit 1 sediments overlying rocks of the Barkerville Terrain of the Omenica belt found to the east. Rocks west of Quesnellia consist of a forearc melange of oceanic strata known as the Cache Creek Terrain. This boundary is often obscured by overburden and tertiary volcanics, but is thought to be marked by a high angle extension of the Pinchi fault, a major strike slip fault to the northwest.

The most important mineral occurrences in the area, usually consisting of copper with associated gold, are found within or adjacent to alkalic felsic stocks. The two most important deposits in the area are the Mt. Polley copper-gold deposit and the QR gold deposit (with associated copper). The Mt. Polley deposit contains mineable reserves of 551,400,000 tons at 0.38% copper and 0.55 grams per tonne gold. It is found within the felsic intrusive Mt. polley stock. The QR deposit contains a mineral inventory of 1,500,000 tonnes at a grade of 5.00 grams per tonne gold. It occurs within carbonate-altered mafic volcanic rocks that are propylitized by a metosomatic front developed during the intrusion of a nearby felsic alkalic stock.

Lithologies

The majority of the outcrop on the property is found in the Mouse Mountain area in the centre of the property where the Placer Dome grid is found (Figure 5).

Lithologies range from Lower Jurassic (Sinemurian) to Upper Triassic (Carnian). The ages of the lithologies are based on correlation with regional government mapping (Bailey, 1990).

The lowermost rocks on the property are black, weakly pyritic argillites with interbedded grey siltstones (unit 1a). These are exposed along creeks in the southwest quadrant of the property and in two diamond drill holes located west of Mouse Mountain. Clasts of argillite can be found in the adjacent heterolithic breccias and agglomerates.

A sequence of volcanic sediments (unit 1c) is exposed on the eastern property boundary just south of the Barkerville Highway. They consist of repeating cycles of volcanic rich granule conglomerate that fine upward through grey siltstone into black cherty argillite. They are interbedded with tuffs rich in plagioclase and potassium feldspar fragments. These rocks are overlain by brown weathering unbedded crystal/lapilli tuffs that contain plagioclase and potassium feldspar crystal fragments, olivine crystals, dark volcanic rock fragments and angular black chert fragments. The section dips shallowly and tops to the south. These rocks are distant from other outcrops on the property, so their relationship with the rest of the property is unknown.

Pyroxene porphyritic basalt, and agglomerates with pyroxene porphyritic clasts and matrix (unit 2) overlie the argillite, and outcrop over most of the eastern half of the property. This unit is frequently found in gradational contact with the overlying heterolithic fragmental rocks to the west. A contact between the basalt and the argillite has not been found on the property.

Pyroxene crystals in the basalt are consistently euhedral, and generally 2-3mm long. Some areas have larger phenocrysts that are up to 1 cm across. Tiny plagioclase microlites are ubiquitous in the basaltic groundmass. This unit is not normally vesicular, but an outcrop with large (1cm), flow -flattened vesicles is found on line 111N, near 110E.

Plagioclase-phyric latitic and andesitic flows (unit 3a), including **crowded plagioclase porphyries** (unit 3b) are found all over the property. They are blanketed by the overlying breccias and agglomerates so the exposures of flows show an irregular, unpredictable distribution.

Heterolithic, volcanic agglomerates and breccias (unit 3c) overlie all of the above rocks and the alkalic intrusive rocks, and they are by far the most abundant rock types on the property. These rocks vary in clast size, shape and composition, and in matrix type and amount.

Clast size ranges from <1mm to 30-40cm. Most commonly clasts are fist size and poorly sorted. Most of the clasts are subrounded (i.e. agglomeratic); however angular breccias are found in the Mouse Mountain Vicinity and in creeks near the southern property boundary. A few outcrops near the western and northwestern property boundary contain well-rounded pebble clasts. The smoothing on these clasts indicates transport by water before deposition.

The most common clast composition type in these rocks is plagioclase-phyric latite and/or andesite. Pyroxene basalt clasts are also common particularly near the breccia/basalt contact. Other clast types that occur are syenite, diorite, crowded plagioclase porphyry, monzonite, mafic volcanic rocks, argillite, intermediate feldspar phyric volcanic rocks with trachytic textures and rare black pyroxenite clasts. Clasts of agglomerate are present locally, indicating that more than one fragmenting event occurred.

In most of these breccias and agglomerates, clasts dominate over matrix by volume. In some localities the matrix is intermediate tuffaceous material, in others it is plagioclase-phyric intermediate flow.

Polylithic volcanic and intrusive breccias (unit 3d) are found in the Mouse Mountain vicinity near the centre of the property. These breccias are quite similar to the breccias described above, with the main exception being that much of the matrix in these breccias consists of fine grained alkalic sub-volcanic material. Most of the clast are angular to sub-angular. Clasts of fine grained alkalic intrusive rocks are common due to the proximity of intrusions of this nature. Along with the abundant intrusive clasts many other clast types are found. This heterogeneity in clast types indicates that a considerable thickness of the stratigraphic section was sampled to produce this rock, so the intrusive events that formed it must have had considerable energy and come up from some depth. Alteration in this area is strong which often makes it difficult to distinguish whether the matrix is volcanic or fine grained intrusive material.

Alkalic intrusive rocks are exposed in outcrops on the eastern edge of Mouse Mountain (Valentine showing), along the southeastern edge of Mouse Mountain in the area of the high grade showing and on the southwestern edge of the property along the Quesnel River (unit 5). Intrusive rocks in the Mouse Mountain area consist of fine grained eguigranular diorite monzonite and syenite (unit 4).

The Quesnel River area is underlain by black pyritic argillites and associated siltstones, which are intruded by a coarse grained syneite intrusion. Pale pink aplite dykes associated with this

intrusion shoot off into the surrounding rocks. These rocks are cut by abundant mafic dykes which parallel the NNW striking steep shear foliation found along the Quesnel River. Most of these dykes are olivine basalt, but some are andesite.

Hornblende needle and plagioclase porphyry (unit 6) outcrops are located around the Barkerville highway slightly south east of Mouse Mountain. There is no visible potassium feldspar in this rock. It has a pale green groundmass and weathers white, and contains disseminated magnetite. This porphyry is probably the youngest hard rock unit on the property. Most of the outcrops are very fresh, and the distribution of the outcrops is contiguous. It does appear as clasts in the heterolithic agglomerates.

Property Geology

The black pyritic shales (unit 1a) record a deep anoxic oceanic depositional environment. The transition to pyroxene basalts(unit 2) and more felsic flows (unit 3a), and then to breccias and agglomerates (units 3c and 3d) records the emergence of an alkalic arc and subsequent shallowing of the ocean as the arc built up. The presence of maroon colours (hematite) in the fragmental rocks is evidence that the rocks were deposited in a partially subaerial environment.

Syenite and monzonite clasts are found in the polylithic breccias which are in turn intruded by syenite and monzonite. This provides evidence that the volcanic rocks and the intrusive rocks are probably comagmatic. The agglomerates and breccias contain samples from the entire sequence. The black argillite clasts are probably from the lowest part of the section. It is not known where the black pyroxenite clasts originate. They are composed of coarse black, interlocking pyroxenite crystals.

Mineralization and Alteration

Most of the previous exploration has been focused on the four mineral occurrences located over a 1700m long northwesterly trending linear zone located in the central part of the property. Rocks in this area, consisting of volcanic and intrusive breccias and monzonite and syenite intrusions, have been moderately to intensely altered (figure 6). Silicic, potassic and propylitic alteration appear to be related to the intrusive rocks. Fe-carbonate alteration appears to be later, and associated with a NNW striking fault system that cuts the area. Mineralization in the area is, at least in part, controlled by this fault system.

8

Chloritic alteration is found throughout most of the central area of the Mouse Mountain property. An area extending from the top of Mouse Mountain to the Valentine zone on the eastern edge of Mouse Mountain contains significant amounts of potassic alteration. Pyritic zones are found on the northern, western and southern flanks of Mouse Mountain.

The "High grade showing", located at the southeastern base of Mouse Mountain, consists of a fracture zone containing chalcopyrite, bornite and trace amounts of chalcocite hosted in fine grained monzonite. The mineralized zone, which trends in a northerly direction, is 3 metres wide and exposed over a distance of 1.5 metres. A sample containing 1.58 % copper over a distance of 3 metres was returned from the showing. No copper mineralization was found in the monzonite immediately surrounding the showing.

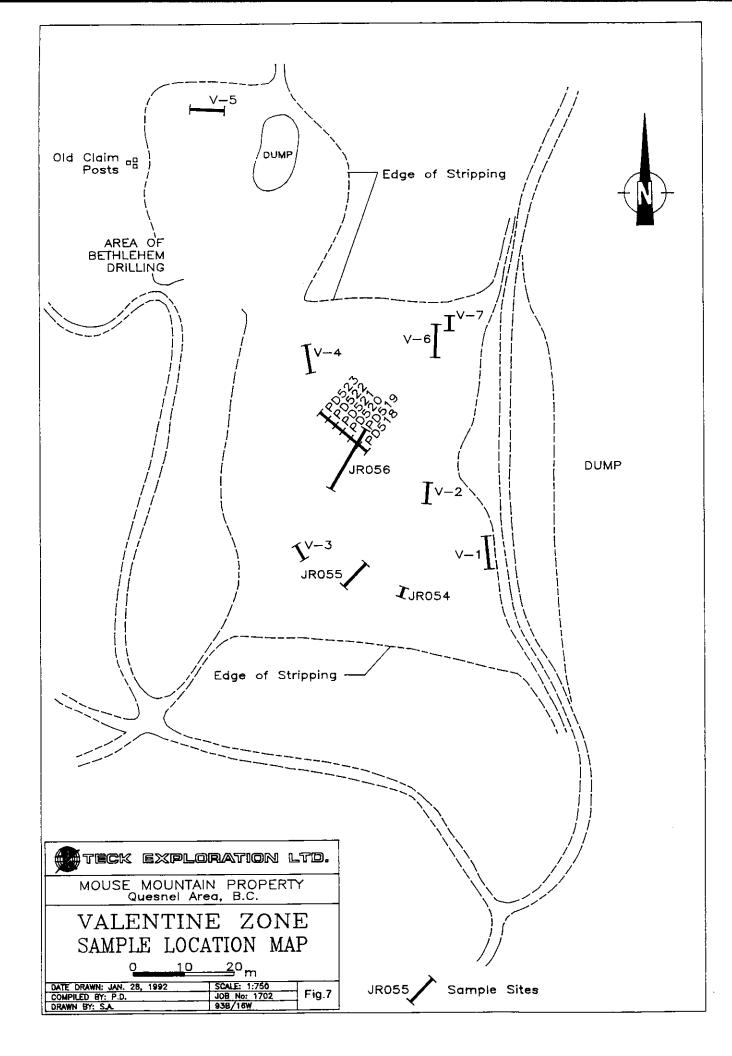
Two short addits, now caved, are located near the high grade showing. An old report (Mitchell, 1967) describing drilling in the immediate area of the high grade showing, conducted in the mid 1950's, reports of a 228 foot intersection containing 0.35% Cu. Reports (Mitchell, 1967 and Sutherland, 1956) of several other shorter but significant intersections drilled in the same area were also mentioned.

A small outcrop of monzonite located approximately 50 metres north of the high grade showing contains minor amounts of disseminated chalcopyrite and pyrite with some malachite staining. A grab sample containing 2766 ppm copper was returned from this outcrop.

Holes **91MM-1 to 91MM-4** were drilled in the area of the "high grade showing". Siliceous monzonites, syenites and intrusive breccias with varying degrees of potassic and chloritic alteration were found in these holes. Much disseminated pyrite was found in the holes; but only minor amounts of disseminated and fracture controlled chalcopyrite was found. The best intersection from the area returned 18.29 metres of 1621 ppm copper, that also included 6.10 metres containing 0.31% copper and 123 ppb gold. The width and magnitude of copper values found in the holes are significantly less than those reported from the 1955-56 drilling.

The "Valentine zone" is an exposure of fine grained intrusive rocks with disseminated and fracture filling chalcopyrite (<6%) and pyrite, with associated malachite and azurite, located approximately 400 metres north of the "high grade showing". It is approximately 100 metres in diameter. Outcrops of slightly silicified chloritically altered volcanic and intrusive breccias with only very minor copper occurrences are located adjacent to the intrusion. Many shears and faults trending in several different directions are located on the valentine zone. Fracturing within the rock has given much of the intrusion a crackle breccia texture. The valentine zone is commonly

brecciated along the it's margins. A prominent northwesterly trending lineament is located on the eastern edge of the valentine zone. The intrusive rocks range from dioritic to syenitic in composition and are potassically altered. It is not readily distinguishable whether the exposure consists of more than one intrusive event or one intrusive event that is magmatically differentiated.


Samples collected on the valentine zone are indicated on figure 7. Chip samples collected contain between 0.11 % and 0.42 % copper and gold values ranging from 310 ppb to 0.013 oz/t. Five percussion holes were drilled on or adjacent to the valentine zone in 1970. Five of the holes averaged greater than 0.1% copper over lengths of 80 to 180 feet. No assays were reported for gold.

The "Rainbow breccia zone" is located approximately 600 metres northwest of the valentine zone on the northeastern edge of Mouse Mountain. It consists of a 7 metre by 3 metre exposure of pale green grey siliceous chloritically altered intrusive breccia with < 7% disseminated pyrite and < 4% disseminated chalcopyrite. A milky white alteration (albitic?) is also found over parts of the showing. Chip samples collected returned 4 metres of 0.23 % copper and 2 metres of 0.15 % copper. Alteration has destroyed most of the original texture in the rock.

A grab sample was collected from a 2 metre diameter intrusive breccia outcrop located approximately 250 meters east-northeast of the rainbow breccia, at coordinates 11360N and 9980E. It contains minor disseminated chalcopyrite and returned an assay with 0.14 % copper. It is the closest outcrop to the rainbow breccia showing in the east-northeasterly direction.

The area drilled by Dupont is located approximately 250 metres northwest of the rainbow breccia zone. Of the five percussion holes drilled only one of the holes returned significant mineralization; 170 feet containing 0.1% copper. The bedrock in this area is the same as the outcrop that surrounds the rainbow breccia. It consists of slightly siliceous chloritically altered intrusive and volcanic breccias with many calcite filled hairline fractures and <8% disseminated pyrite.

An extensive alteration zone can be found in **intrusive rocks located near the Quesnel River** in the southwestern corner of the property. A series of northerly trending faults and shears can be found along the Quesnel River. This part of the property is located close to the Quesnel fault, which separates the Quesnel terrain from the Cache Creek terrain, and shearing in this area could be related to the fault. All of the rocks found here are affected by a silicification event that is probably controlled by the shearing. Bleaching and intense silicification of the syenites and

aplites has resulted in the formation of white felsite. The outlines of relict plagioclase and potassium feldspar crystals are visible in some of the felsite, but staining shows that all of the potassium feldspar has been replaced by silica. These rocks, and spatially associated mafic rocks, are rich in disseminated and fracture controlled pyrite, with rare chalcopyrite. The mineralization appears to be related with the silicification event.

A small exposure of fine grained feldspar porphyritic syenite with minor disseminated chalcopyrite and pyrite and associated malachite is located near the Quesnel River slightly off the southwestern property boundary. This showing was drilled by Noranda in the early seventies; but results of the drilling are uncertain.

TABLE 2MOUSE MOUNTAIN PROPERTY SIGNIFICANT RESULTS

SUMMARY OF 1992 DRILL RESULTS

<u>HOLE #</u>	FROM (m)	<u>TO (m)</u>	<u>INTERVAL (m)</u>	<u>Cu ppm</u>	<u>Au ppb</u>
MM92-10	0.3	44.8	44.5	2045	107
Incl.	8.2	23.4	15.2	3308	141
Incl.	14.3	17.4	3.1	5523	200
MM92-12	50.9	75.2	24.3	3331	230
Incl.	56.0	56.9	0.9	5235	230
Incl.	63.0	69.1	6.1	5321	307
MM92-14	93.5	96.6	3.1	3505	55
MM92-15	3.0	108.8	105.8	599	46
Incl.	63.0	66.1	3.1	1136	90
Incl.	96.6	99.7	3.1	582	180
MM92-16	3.0	5.2	2.2	2072	35

1991 DIAMOND DRILLING SIGNIFICANT RESULTS

DDH #	FROM	<u>TO</u>	<u>WIDTH</u>	<u>Cu</u>	<u>Au</u>
	(metres)	(metres)	(metres)	<u>(ppm)</u>	<u>(ppb)</u>
1	29.57	38.71	9.14	524	
2	34.75	47.85	13.10	638	
Incl.	44.81	47.85	3.04	(0.14%)	
2	53.95	55.17	1.22	542	
2	62.03	65.10	3.07	650	
3	66.14	69.19	3.05		105
4	26.52	44.81	18.29	1621	
Incl.	38.71	44.81	6.10	(0.31%)	123
5	10.30	20.42	10.12	501	
6	72.24	75.29	3.05		115
6	102.72	105.77	3.05		210
9	3.05	32.61	29.56	812	
Incl.	5.18	8.23	3.05	(0.12%)	
Incl.	11.28	14.33	3.05	660	145
Incl.	23.47	32.61	9.14	1426	458
Incl.	29.57	32.61	3.04	(0.29%)	0.027oz/t
*bracketed values have been assaved					

*bracketed values have been assayed

VALENTINE ZONE

A) Percussion Drilling Highlights (Bethlehem, 1970)

Hole #	<u>FROM</u>	<u>TO</u>	<u>WIDTH</u>	<u>Cu (%)</u>
	(feet)	(feet)	(feet)	
1	80	200	120	0.114
3	20	200	180	0.145
6	0	140	140	0.150
9	30	110	80	0.108
13	30	110	80	0.120

B) Surface Samples (Teck, 1991)

<u>Width</u>	<u>Copper</u>	<u>Gold</u>
(metres)		
15	0.30 %	310 ppb
10	0.17 %	290 ppb
3	0.42 %	540 ppb
12	0.18 %	0.005 oz/t
incl. 4m	0.32 %	0.007 oz/t

C) Surface Samples (Quesnel Mines, 1988)

<u>Width</u>	<u>Copper</u>	<u>Au oz/t</u>	
(metres)			Sample No.
6.71	0.11	0.006	V-1
4.57	0.21	0.008	V-2
4.27	0.22	0.011	V-3
6.40	0.19	0.010	V-4
7.01	0.32	0.013	V-5
3.35	0.30	0.010	V-6
7.01	0.42	0.010	V-7

HIGH GRADE SHOWING

.

A) Surface Samples

<u>Company</u>	<u>Year</u>	<u>Width</u>	<u>Cu %</u>	<u>Au oz/t</u>
Teck	1991	3.0m	1.58	0.005
20 m NW of showing	grab	0.28		
Quesnel Mines	1988	6 feet	3.60	0.052

<u>Hole #</u>	<u>FROM</u>	<u>TO</u>	<u>WIDTH</u>	<u>Cu (%)</u>
	(feet)	(feet)	(feet)	
1	30	258.1	228.1	0.35
2	150	175.8	25.8	0.46
3	135	140	5	1.0
Q9			3.5	1.00
Q9			8.7	1.2
Q10			24.7	0.78
Q10			7.8	0.76
Q115			4	1.35
Q118			4	1.4
Q119			1	1.37
Q119			1	1.47

B) 1955 - 56 Diamond Drilling Highlights

C) Trench North of High Grade Showing

grab sample 2766 ppm Cu

RAINBOW BRECCIA ZONE

A) Surface Samples

Width)	<u>Cu %</u>	<u>Au oz/t</u>
(metres)		
4	0.23	0.004
2	0.15	0.003

DUPONT PERCUSSION DRILLING (NORTH OF RAINBOW BRECCIA ZONE)

Hole #	<u>FROM</u>	<u>TO</u>	<u>WIDTH</u>	<u>Cu (%)</u>	<u>Au oz/t</u>
	(feet)	(feet)			
WP75-1	110	280	170	0.102	0.003

SHOWING OFF SOUTHWEST CORNER OF PROPERTY

grab sample from showing drilled by Noranda: 0.28 % Cu

DIAMOND DRILLING

Seven diamond drill holes totalling 951 metres of NQ core were drilled by LDS Diamond Drilling of Kamloops, B.C. from June 11 to 17, 1992 using a longyear 38 diamond drill. All drill core is stored on the property. Core samples were collected at approximately 3.0 metre intervals and sent to Chemex Labs Ltd. of Vancouver, B.C. for 32 element ICP analysis and gold atomic absorption analysis.

Drill logs and analytical results are provided in appendix II. Figures 5 and 6 are plan maps showing the drill hole collar locations, figure 9 shows a drillhole cross section through the "valentine zone" and table 2 shows all significant results from the 1992 drill program.

Within in the mineralized intervals elevated values of copper, gold, arsenic, antimony and mercury are found. Copper and gold values are usually directly correlatable with each other which is common in alkalic porphyry deposits. Both chalcopyrite and pyrite are common in the mineralized intervals. Arsenic, antimony and mercury also have strong correlation coefficients with each other, which probably indicates the presence of a sulphosalt within the mineralized intervals.

Holes MM92-10, MM92-12 and MM92-14 were drilled in the area of the "valentine zone". The drill holes delineated a 100 metre diameter copper-gold zone that appears to pinch out at a shallow depth. The zone is only about 25 metres wide at a depth of 60 metres below surface. Copper values range from .1% to .6% and gold values range from 100 ppb to 500 ppb. The mineralization consists of disseminated and fracture filling pyrite and chalcopyrite found in magnetite rich potassically altered syenite. The syenite is crackle brecciated with a fine grained intrusive cement that forms along fractures and separates the syenite into individual clasts. The rocks adjacent to the mineralized syenite are usually bleached siliceous and chloritically altered polylithic intrusive breccias that contain minor amounts of disseminated pyrite and chalcopyrite.

MM92-10 was drilled at the eastern base of the "valentine zone". It was drilled to test for continuity of mineralization below the "valentine zone". The hole extended below two of the best holes from the bethlehem drill program. The first 45 metres of the hole contains 0.2% copper and 107 ppb Au. No other significant mineralization was intersected in the hole.

MM92-12 was drilled on the western edge (on the top) of the "valentine zone". It was drilled to test for western and northern continuity of mineralization intersected in hole 10. A 24.3 metre interval (from 50.9 to 75.2 metres) containing 0.3% copper and 230 ppb gold was intersected.

MM92-14 was drilled slightly east of the "valentine zone", on the other side of a gully flanking the eastern edge of the "valentine zone". The hole was drilled to test for deeper continuity of mineralization intersected in holes 10 and 12. The 3.1 metre wide interval containing 0.35% copper was the only significant mineralization intersected.

MM92-11 was drilled to test for mineralization at greater depths below Mouse Mountain. The presence of potassic alteration and a magnetic anomaly on top of Mouse Mountain indicated the possible proximity to porphyry mineralization. No significant mineralization was intersected.

MM92-13 was drilled to test a weak chargeability and magnetic anomaly located slightly east of Mouse Mountain. The majority of the hole consists of feldspar porphyritic monzonite with minor chloritic alteration. No significant mineralization was intersected. The feldspar porphyry in the hole is the same feldspar porphyry indicated on the geology plan (unit 3b on figure 6).

MM92-15 and MM92-16 were in drilled in the vicinity of the "rainbow breccia zone".

MM92-15 was drilled to test a chalcopyrite showing located east of the "rainbow breccia zone". The entire hole consists of a potassically altered feldspar porphyry breccia with minor disseminated magnetite. A fine grained intrusive cement occurring along fractures in the rock separates the feldspar porphyry into individual fragments. The feldspar porphyry is the same rock type as the unit found in hole 13. Trace amounts of chalcopyrite were intersected over the entire length of the hole. The hole was 108.8 metres long and averaged 599 ppm copper.

MM-92-16 was collared on the "rainbow breccia zone". It was drilled to test for continuity of mineralization found in the rainbow breccia. Most of the hole consists of chloritically altered siliceous polylithic intrusive breccia. A 2.2 metre wide interval at the top of the hole containing 0.21 % copper was the only significant mineralization found in the hole.

CONCLUSIONS AND RECOMMENDATIONS

The Mouse Mountain property is located in an area known to have a significant copper-gold relationship with alkalic felsic stocks. Two important deposits of this nature (QR and Mt. Polley) are found in the area.

Significant porphyry style copper mineralization related to alkalic felsic stocks is found in the centre of the property in the vicinity of Mouse Mountain. However, this area has been adequately tested with geological, geophysical and geochemical surveys along with several drill programs. The extent of the mineralization found is not large and chances of finding a large body of porphyry style mineralization in the Mouse Mountain vicinity are small.

There are other parts of the property that warrant more exploration. Due to the sparseness of outcrop not much is known of most of the ground outside of the Mouse Mountain area. Several prominent magnetic highs are found between the Mouse Mountain area and altered intrusive rocks located near the Quesnel River in the southwestern corner of the property. Follow-up I.P. surveys and soil geochem surveys could help delineate drill targets in this area. Soil surveys should be planned carefully because of overburden depths.

REFERENCES

Armstrong, H.H. (1956)	Mouse Mountain Drill Plan, Report for Mcfie Explorations and Harrison Minerals, January 1956
Bailey, D.G. (1990):	Geology of the Central Quesnel Belt, British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990-31
Bailey, D.G. (1989):	Geology of the Central Quesnel Belt, Swift River, South- Central British Columbia, (93B/16, 93A/12, 93G/1), B.C. Ministry of Energy of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1, pp. 167-172
Donkersloot, P. (1991)	Geophysical Report on the Mouse Mountain Property, Teck Exploration Ltd., Assessment Report, March 1991
Donkersloot, P. (1992)	<u>Geophysical Geological and Drill Report on the Mouse</u> <u>Mountain Property</u> , Teck Exploration Ltd., Assessment Report, March 1992
Fox, P.E. and MacDonald, R.C.: (1989)	<u>Geochemical and Geophysical Report on the Mouse Mountain</u> <u>Property, Cariboo Mining Division</u> , Fox Geological Consultants Ltd., Report for Placer Dome Inc., September 1989
Mitchell, J.A.: (1967)	Progress Report on the Wanda Group, Report For Euclid Mining Group, December 1967
MacDonald, R.C.: (1990)	Project Report, Mouse Mountain Property, Cariboo Mining Division, Fox Geological Consultants Ltd., Report for Placer Dome Inc., January 1990
Sanguinetti, M.H.: (1989)	Report on the Mouse Mountain Property, Quesnel River Area, <u>Cariboo Mining Division, British Columbia</u> , Sanguinetti Engineering Ltd., Report for Quesnel Mines Limited, November 1989
Sanguinetti, M.H.: (1988)	Preliminary Report on the Mouse Mountain Property, Quesnel River Area, Cariboo Mining Division, British Columbia, Sanguinetti Engineering Ltd., Report for Quesnel Mines Limited, February 1988
Scott, A.: (1989)	Logistical Report, Induced Polarization/Resistivity Surveys, Mouse Mountain Project, Quesnel, B.C., Scott Geophysics Ltd., Report for Fox Geological Consultants Ltd., August 1989

Geology, Prince George, Cariboo District, British Columbia, Geological Survey of Canada, Map 49-1960

Tipper, H.W.: (1960)

MOUSE MOUNTAIN PROJECT 1992 STATEMENT OF COSTS

LDS Diamond Drilling Ltd. Coring TOTAL EXPENSES

3,121 feet @ \$14.00 foot

43,694.00

<u>\$43,694.00</u>

WRITER'S CERTIFICATE

I, Paul Donkersloot, of #9 3627 Oak Street., Vancouver, British Columbia do hereby certify that:

- 1. I am a geologist employed by Teck Explorations Ltd. of #272 350 Victoria Street Kamloops, B.C.
- 2. I am a graduate of the University of Alberta (B.Sc. Geology, 1984).
- 3. I have engaged in the study and practice of mineral exploration in British Columbia, Northwest Territories and Yukon Territory since 1982.
- 4. I supervised the 1992 field program undertaken on the Mouse Mountain property and am the writer of the foregoing report.
- 5. I have not received nor do I expect to receive any interest, direct or indirect, in the property of Teck Explorations Ltd. or of Quesnel Mines Ltd., or any of their affiliates; nor do I own any securities, directly or indirectly, of Teck Explorations Ltd. or any share of Quesnel Mines Ltd.

Paul . Monterbot

P. Donkersloot, B.Sc.

20

APPENDIX I GEOCHEMICAL AND ASSAY METHODS OF ANALYSIS

Chemex Labs Ltd.

Analytical Chemists

Geochemists

Registered Assayers

 212
 Brooksbank
 Ave.

 North
 Vancouver,
 B.C.

 Canada
 V7J 2C1

 Phone:
 (604) 984-0221

 Telex:
 04-352597

 Fax:
 (604) 984-0218

Crushing

The entire sample is passed through TM Rhino crusher to yield a crushed product where greater than 60% of the sample passes a -10 mesh screen. A split in the range of 200-350g (weight depends on parameters requested) is then taken using a stainless steel Jones riffle splitter.

Chemex Code Sample Weight

274 (Rush code - 292) 0 - 15 lbs

Ring Grinding

Chemex Codes: 205 geochemical samples

A crushed sample split is ground using a ring mill pulverizer with a chrome steel ring set. The Chemex specification for this procedure is that greater than 90% of the ground material passes a 150 mesh screen. Grinding with chrome steel will impart trace amounts of iron and chromium to a sample.

Chemex Labs Ltd.

Analytical Chemists

Geochemists

Registered Assayers

 212
 Brooksbank
 Ave.

 North
 Vancouver,
 B.C.

 Canada
 V7J 2C1

 Phone:
 (604) 984-0221

 Telex:
 04-352597

 Fax:
 (604) 984-0218

32-Element Geochemistry Package (32-ICP) Inductively-Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)

A prepared sample (1.0g) is digested with concentrated nitric and aqua regia acids at medium heat for two hours. The acid solution is diluted to 25ml with demineralized water, mixed and analyzed using a Jarrell Ash 1100 plasma spectrometer after calibration with proper standards. The analytical results are corrected for spectral inter-element interferences.

Chemex	Element	Detection	Upper
Codes		Limit	Limit
2119	* Aluminum	0.01 %	15 %
2118	Silver	0.2 ppm	0.02 %
2120	Arsenic	2 ppm	1 %
2121	* Barium	10 ppm	1 %
2122	* Beryllium	0.5 ppm	0.01 %
2123	Bismuth	2 ppm	1 %
2124	* Calcium	0.01 %	15 %
2125	Cadmium	0.5 ppm	0.05 %
2126	Cobalt	1 ppm	1 %
2127	* Chromium	1 ppm	1 %
2128	Copper	1 ppm	1 %
2150	Iron	0.01 %	15 %
2130	* Gallium	10 ppm	1 %
2132	* Potassium	0.01 %	10 %
2151	* Lanthanum	10 ppm	1 %
2134	* Magnesium	0.01 %	15 %
2135	Manganese	5 ppm	1 %
2136	Molybdenum	1 ppm	1 %
2137	* Sodium	0.01 %	10 %
2138	Nickel	1 ppm	1 %
2139	Phosphorus	10 ppm	1 %
2140	Lead	2 ppm	1 %
2141	Antimony	2 ppm	1 %
2143	* Strontium	1 ppm	1 %
2144	* Titanium	0.01 %	10 %
2145	* Thallium	10 ppm	1 %
2146	Uranium	10 ppm	1 %
2147	Vanadium	1 ppm	1 %
2148	* Tungsten	10 ppm	1 %
2149	Zinc	2 ppm	1 %
2131	Mercury	1 ppm	1 %

* Elements for which the digestion is possibly incomplete.

Chemex Labs Ltd.

Analytical Chemists

Geochemists

Registered Assayers

 212
 Brooksbank
 Ave.

 North
 Vancouver,
 B.C.

 Canada
 V7J 2C1

 Phone:
 (604) 984-0221

 Telex:
 04-352597

 Fax:
 (604) 984-0218

Gold - Atomic Absorption Spectroscopy

Chemex Code: 17

A prepared sample (10 grams) is ashed at 600°C for approximately one hour to destroy any organics. The material is digested with aqua regia and taken to dryness. The residue is taken up with 25% hydrochloric acid. The gold is then extracted as the bromide complex into MIBK and analyzed by atomic absorption spectroscopy, with background correction.

Detection Limit: 5 ppb

Upper Limit: 10,000 ppb

Gold - Fire Assay Collection/ Atomic Absorption Spectroscopy (FA-AA)

Chemex Code: 983

A 30g sample is fused with a neutral lead oxide flux inquarted with 6mg of gold-free silver and then cupelled to yield a precious metal bead.

These beads are digested for 30 mins in 0.5ml concentrated nitric acid, then 1.5ml of concentrated hydrochloric acid are added and the mixture is digested for 1 hr. The samples are cooled, diluted to a final volume of 5ml, homogenized and analyzed by atomic absorption spectroscopy.

Detection Limit: 5 ppb

Upper Limit: 10,000 ppb

Copper - Reverse aqua regia

Chemex Code: 301

A prepared sample (0.5 - 2.00g) is digested in a hot nitric - hydrochloric acid mixture and taken to dryness, cooled, and then transferred into a 250ml volumetric flask. The final matrix is 25% hydrochloric acid. The solutions are then analyzed on an atomic absorption instrument.

Detection Limit: 0.01 %

Upper Limit: 100 %

APPENDIX II DRILL LOGS WITH ANALYTICAL RESULTS DDH MM92-10

Page: 1

HOLE-IDLOCATION LOCATION LOCATION LENGTH CORE SIZE LOGGED BY COMPLETED[EAST][NORTH]MM92-1010198.010198.010565.0990.0182.5 NQP.D.12/06/92

FROM TO AZIMUTH DIP 0.0 182.5 270.0 -60.0

-

FROM	то	INTERVAL	SAMPLE	NO.	RECOVERY	CU PPM	AU PPB
0.3	3.0	2.7	524101		0	2282	105
3.0	5.2	2.2	524102		68	1661	115
5.2	8.2	3.0	524103		100	1672	105
8.2	11.3	3.1	524104		100	258 8	145
11.3	14.3	3.0	524105		103	1407	75
14.3	17.4	3.1	524106		100	5523	200
17.4	20.4	3.0	52 4107		100	4276	135
20.4	23.4	3.0	524108		102	2476	140
23.4	26.5	3.1	524109		99	1864	115
26.5	29.5	3.0	524110		101	1208	90
29.5	32.6	3.1	524111		100	1052	90
32.6	35.7	3.1	524112		100	620	55
35.7	38.8	3.1	524113		100	637	45
38.8	41.7	2.9	524114		103	1651	90
41.7	44.8	3.1	524115		97	1690	115
44.8	47.8	3.0	524116		103	520	45
47.8	50.9	3.1	524117		97	148	15
50.9	53.9	3.0	524118		100	148	10
53.9	56.9	3.0	524119		103	62	5
56.9	60.0	3.1	524120		103	122	10
63.0	66.1	3.1	524121		97	144	10
69.1	72.2	3.1	524122		97	41	0
75.3	78.3	3.0	524123		103	289	10
81.4	84.4	3.0	524124		103	34	5
87.5	90.5	3.0	524125		103	117	0
93.5	96.6	3.1	524126		97	99	0
99.6	102.7	3.1	524127		97	97	0
105.7	108.8	3.1	524128		100	109	5
111.8	114.9	3.1	524129		97	101	5
117.9	121.0	3.1	524130		97	17	0
124.0	127.1	3.1	524131		97	151	5 5
130.1	133.1	3.0	524132		100	93	5
136.2	139.2	3.0	524133		100	83	5
139.2	142.3	3.1	524134		97	162	0
142.3	145.3	3.0	524135		97	117	10
145.3	148.4	3.1	524136		97	227	10
148.4	151.4	3.0	524137		100	120	0
154.5	157.5	3.0	524138		103	169	5
160.6	163.6	3.0	524139		103	173	10
166.7	169.7	3.0	524140		103	249	0
172.8	175.8	3.0	524141		100	142	5 0
178.9	181.9	3.0	524142		100	191	U.

DATE:30	0/06/92		DDH MM-92-10
FROM	то	INTERVAL (CU PPM AU PPB
0.3	44.8	44.5	2045 107
0.3	32.6		2388 120
0.3			2790 129
8.2		15.2	3308 141
38.8			1689 114
50.0	44.0	0.0	1009 114
FROM	то	ROCK-TYPE	RT-CODE
0.0	29.8	2	KSYENBX
29.8	45.2	5	APOLYBX
45.2	51.3	6	LAT
51.3	53.6	5	APOLYBX
53.6	54.7	6	LAT
54.7	58.0	5	APOLYBX
58.0	61.6	8	ALATBX
61.6	66.4	5	APOLYBX
66.4	98.0	2	SYENBX
98.0	113.9	4	POLYBX
113.9		2	SYENBX
121.1		4	POLYBX
139.6		5	APOLYBX
144.3		6	LAT
		-	_

•

Page: 2

.

0.0 3.0

CASING 0.3-3.0m -bedrock was collected and sampled SYENITE BRECCIA:-grey orange, fine grained equigranular syenite with 35% dk qy intrusive material separating clasts into individual subangular clasts mod K alt., minor silic., <5% py and <3% cpy diss and along fract's in rock mod diss mt -many (3/5cm) hairline Ca frct's -mod Fe-ox staining along frct's 3.0 29.8 K ALT. SYEN BRECCIA: -gy orange fn gr equign syen separated into individual subrounded to subangular clasts (2mm to 5cm in dia) by 15 to 35% grey fine grained intrusive material -<5% py and <2% cpy diss and along frct's in rock -<5% diss mt -many (2/5cm) hairline Ca frct's (dominant core angles of frct,s 30 and 60 degrees) minor qz frct's - mod K alt., weak light grey background alt. (silic?) -weak chl alt. (usually occuring along dark green frct's in rock) 3.0-19.0m -- moderate Fe-Ox staining along frct's 3.0-5.7m -60% light grey fine grained intusive matrix surrounding 1mm-2cm dia. syen clasts 7.0-8.1m -core is rubbly -mod. chl. alt. and silic -much Fe-Ox staining along frct's 8.5-11.5m -2-5% diss cpy 12.6-14.8m -strong K alt. mod chl alt. -minor clasts in this interval contain strong chl. alt. and mod. silic.(i.e. alt. during a seperate alt. epidote.) 14.8-29.8 -increase in chl. alt. (mod. chl. alt.) mainly in matrix -1-5% diss and fret filling cpy and 1-5% py, incl. 5% cpy from 15.0-26.0 16.0-20.0m -7% cpy 25.0-26.4 -strong K alt. 26.1-26.8 -20% clasts in breccia 29.8 - contact with polylithic breccia, core angle 40 degrees 29.8 45.2 CHLORITE ALTERED SICIFIED POLYLITHIC INTRUSIVE BRECCIA: -10 TO 40% 2mm-4cm dia. subangular clasts in fine grained grey green intrusive matrix -most of the clasts appear to be fine grained syenite but volcanic clasts are also found in the rock -alteration makes clast lithology difficut to distingiush -mod. to strong chl. alt. mod silic. weak hem alt. -many (3/5cm) qz frct's (upto 3mm wide) - dominant core angle of frct's is 40 degrees -tr diss and fret filling py, tr diss mt, tr cpy 31.0 -2cm wide qz vein with 20 green clay (core angle 40 degrees) 32.0-33.0 -2% py -2cm wide brecciated qz vn (core angle 45 degrees) 33.5 34.45 -34.65 -brecciated gz vn with 10% green clay (core angle 70 degrees) 34.7 -2cm wide qz vn (core angle 70 degrees) 35.3-37.1 -incr. to mod hem alt. 36.2 -2cm wide qz vn (core angle 70 degrees) 39.1 -3cm wide vuggy qz vn (core angle 25 degrees) 41.0-45.2 -mod. to strong silic, 4% black specs (Mn oxide?) in core 40.9 -2cm wide vuggy qz vn (core angle 50 degrees) 43.0 -2cm wide vuqqy qz vn (core angle 35 degrees) 45.2 -contact with latite? (core angle 40 degrees)

Page: 4 DATE: 30/06/92 DDH MM-92-10 45.2 51.3 LATITE DYKE ?: -brown orange aphanitic rock with 25 % 0.5-1.0mm dia white feldspar crystals -mod hem alt. -minor siic. and chl. alt. -many qz frct's ,up to 2mm wide, (3/5cm) with a dominant core angle of 40 degrees -5% 2mm 2cm dia subagular grey aphanitic clasts (unknown lithology) in rock -tr diss py 47.4-48.0 -rock is slightly bleached -bleached front has core angle of 40 degrees 49.2-51.3 -15% of rock is altered to red grey clay -mod. silic. -35% subangular clasts (2mm-3cm dia.) of unknown lithology type 51.3 -contact with polylithic breccia -core angle 30 degrees 51.3 53.6 CHLORITE ALTERED SILICIFIED POLYLITHIC INTRUSIVE BRECCIA: -same description as 29.8-45.2 53.6 - 5cm wide interval with 25% of the rock altered to red grey clay contact with latite dyke has a core angle of 45 degrees 53.6 54.7 LATITE DYKE: -same description as 45.2-51.3 54.0-54.7 -10% of rock is altered to grey red clay -30% 2mm-2cmm dia subuangular clasts in rock (unknown clast lithology) -beginning of clay alteration has core angle of 50 degrees 54.7 -contact with polylithic brecccia has core angle of 45 degrees 54.7 58.0 CHLORITE ALTERED SILICEOUS INTRUSIVE BRECCIA: -same description as 29.8-45.2 54.7-55.7 -strong silic. -10% green clay along frct's in rock -minor vugs in silicified intervals 58.0 61.6 HEMATITE ALTERED LATITE BRECCIA: -80% 1-10cm dia. subrounded clasts of latite clasts in a brown red aphanitic matrix -clasts consits of 45% 0.5-1mm dia felspar crystals in a red brown aphanitic groundmass -strong hem alt., weak chl alt. -mod. (1/5cm) hairline qz-ca frct's -dominant core angles of frct's 20 and 40 degrees 60.5 - 2cm wide gz vein (core angle 60 degrees) 61.6 -contact with polylithic breccia, core angle 30 degrees 61.6 66.4 CHLORITE ALTERED SILICEOUS BRECCIA: -bleached interval with same description as 29.8-45.2 66.4 -contact with syenite breccia has core angle of 60 degrees 66.4 98.0 SYENITE BRECCIA: -75% Smm-10cm dia. sub rounded clasts of grey orange fine grained equigranular syenite in grey orange fine grained syenite matrix minor (<1%) volcanic clasts - mod hem alt, weak chl and K alt., very minor silic - mod (1/5cm) gz frct's (dominant core angles 20 degrees and 50 degrees) -minor ca frct's -minior diss mt 66.4 68.0 -5% green white clay along frct's in rock 88.8-93.0 -many qz-ca frct's (3/5cm) -65% clasts, 35% matrix, 5% volcanic? clasts -2% green white clay along frct"s 88.8-90.3 -15% of rock is altered to green white clay 88.9 -5cm wide vuqqy qz vn (core angle 60 degrees)

DATE: 30/06/92DDH MM-92-10 Page: 5 90.2 -2cm wide gz vn (core angle 70 degrees) 93.5- 96.5 -3% green white clay along frct' ~mod amount of gz frct's (3/5cm) -mod silic. 97.0-98.0 -5% grey aphanitic volcanic? clasts 98.0 -contact with polylithic breccia (core angle 50? degrees) 98.0 113.9 POLYLITHIC INTRUSIVE BRECCIA: -30-70% 2mm-10cm dia subangular clasts in a fine grained light grey intrusive breccia matrix -clasts consist of orange fine grained syenite (20-70% of clasts), brown red latite (10-50% of clasts), light grey aphanitic volcanics (10-35% of clasts) and basalt (trace) -trace diss. mt and py -weak to mod. chl. alt. and silic. -weak hem alt and K alt.? -minor (1/5cm) qz frct's (up to 2mm wide) -dominant core angle of frct's are 25 degrees and 55 degrees 98.5-98.6 -breciated gz vn (core angle 45 degrees) 101.8-105.3 -mod chl. alt. and silic. -mod qz frct's (3/5cm) 107.3 -2cm wide vuggy qz vn (core angle 50 degrees) 113.8 -qz ca vn (core angle 70 degrees) 113.9 -contact with syenite breccia (core angle 25 degrees) 113.9 121.1 SYENITE BRECCIA: -same description as 66.4-98.0 -mod. chl. alt. in matrix 119.7-121.1 -mod to strong red orange alt. throughout rock (hem and K?) 121.1 -contact with polylithic breecia (core angle 50 degrees) 121.1 139.6 POLYLITHIC INTRUSIVE BRECCIA: -same description as 98.0-113.9 -minor green white clay along qz-ca frct's (up to 5mm wide) -very minor Fe-ox staining along frct's 129.0-130.0 -strong hem alt. 132.3-132.9 -interval of stong K alt. - possibly large symmite clast -core angle 80 degrees) 138.1-139.3 -crackle brecciated syenite clast -mod K alt., weak hem alt. core angle 70 degrees 139.6 144.3 ALTERED POLYLITHIC INTRUSIVE BRECCIA: -same lithology as overlying unit that has been more intensely altered -mod chl. alt. and silic. -4% white clay along frct's -many (1/1cm) qz and creamy white (ankerite?) frct's, up to 5mm wide -minor qz flooding -4% white clay along frct's -clay alt. has caused small cavities to form in rock -core angle of most frct's is 20 degrees this is possibly a fault zone 144.3 -contact with latite (core angle 20%) 144.3 182.5 LATITE DYKE -red grey aphanitic rock with 20% o.5-1.0mm dia white felspar crystals and 8% 1mm dia green black crystals of chlorite altered mafics rock appears to be slightly calcareous (it reacts wel with HC1) -minor (1/10cm) hairline ca frct's (dominant core angle 50 degrees -minor 1-2mm dia. ca blebs in rock -minor hem alt. -some of the rock is crackle brecciated with fine grained latite? separating the clasts 144.3-148.4 -rock is slightly silicified -many (3/5cm) qz ca frct's with a dominant core angle of 50 degrees -2% white clay along frct's 148.4-150.1 -20% of rock is altered to green grey clay -clay alt. frct's

DATE: 30/06/92 DDH MM-92-10 core angle of 20 degrees 150.0-155.0 -mod ca frct's (2/5cm) 154.0 -24cm wide ca vn (core angle 35 degrees) 169.5-171.5 -10% 1-3mm dia elongate ca blebs in rock 171.5 171.9 -ca vn (core angle 20 degrees) 172.2-172.4 -ca vn (core angle 20 degrees) 182.4 -3cm wide ca vn (core angle 20 degrees) 182.5 EOH Page: 6

Page: 1

LOCATION LOCATION LOCATION LENGTH CORE SIZE LOGGED BY COMPLETED HOLE-ID [EAST] [NORTH] [ELEV.] 9990.0 10547.5 1021.0 169.8 NQ P.D. MM92-11 13/06/92

FROM TO AZIMUTH DIP 0.0 169.8 315.0 -60.5

5.2 8.2 3.0 524143 97 61 5 11.3 14.3 3.0 524144 100 29 0 17.4 20.4 3.0 524145 100 42 0 23.5 26.5 3.0 524146 100 40 5 29.6 32.6 3.0 524147 100 48 5 35.7 38.7 3.0 524147 100 109 10 38.7 41.8 3.1 524150 100 143 0 44.8 47.9 3.1 524151 100 76 0 47.9 50.9 3.0 524152 90 52 5 50.9 53.9 3.0 524153 93 60 5 57.0 60.0 3.0 524154 103 51 0 63.1 66.1 3.0 524155 100 60 5 69.2 72.2 3.0 524157 97 57 15 81.3 84.4 3.1 524157 97 57 15 81.3 84.4 3.1 524157 97 98 0 96.6 99.6 3.0 524157 97 98 0 96.6 99.6 3.0 524162 100 46 0 105.7 108.8 3.1 524163 100 60 0 111.8 114.9 3.1 524163 100 <	FROM	TO	INTERVAL	SAMPLE	NO.	RECOVERY	CU	PPM	AU	PPB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.2	8.2	3.0	524143		97		61		5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.3	14.3	3.0	524144		100		29		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20.4	3.0	524145		100		42		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.5	26.5		524146		100		40		5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.6	32.6	3.0	524147		100		48		
41.8 44.8 3.0 524150 100 143 0 44.8 47.9 3.1 524151 100 76 0 47.9 50.9 3.0 524152 90 52 5 50.9 53.9 3.0 524153 93 60 5 57.0 60.0 3.0 524154 103 51 0 63.1 66.1 3.0 524155 100 60 5 69.2 72.2 3.0 524157 97 57 15 81.3 84.4 3.1 524157 97 57 15 81.3 84.4 3.1 524158 100 133 10 87.4 90.5 3.1 524159 100 49 0 93.5 96.6 3.1 524160 97 98 0 96.6 99.6 3.0 524161 103 169 15 99.6 102.7 3.1 524162 100 46 0 105.7 108.8 3.1 524163 100 60 0 111.8 114.9 3.1 524164 97 42 0 117.9 120.9 3.0 524167 100 169 20 142.0 127.1 3.1 524167 100 148 10 136.2 139.2 3.0 524167 100 169 20 142.3 145.3 3.0 52		38.7	3.0	524148		93		54		10
44.8 47.9 3.1 524151 100 76 0 47.9 50.9 3.0 524152 90 52 5 50.9 53.9 3.0 524153 93 60 5 57.0 60.0 3.0 524154 103 51 0 63.1 66.1 3.0 524155 100 60 5 69.2 72.2 3.0 524156 90 124 5 75.3 78.3 3.0 524157 97 57 15 81.3 84.4 3.1 524158 100 133 10 87.4 90.5 3.1 524159 100 49 0 93.5 96.6 3.1 524160 97 98 0 96.6 99.6 3.0 524161 103 169 15 99.6 102.7 3.1 524162 100 46 0 105.7 108.8 3.1 524163 100 60 0 111.8 114.9 3.1 524165 100 57 10 124.0 127.1 3.1 524165 100 104 5 130.1 133.1 3.0 524167 100 148 10 136.2 139.2 3.0 524167 100 148 10 136.2 139.2 3.0 524167 100 145 10 142.3 145.3 3.0 <td< td=""><td>38.7</td><td>41.8</td><td>3.1</td><td>524149</td><td></td><td>100</td><td>1</td><td>09</td><td></td><td>10</td></td<>	38.7	41.8	3.1	524149		100	1	09		10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.8	44.8	3.0	524150		100	1	L 4 3		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.8	47.9	3.1	524151		100		76		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.9	50.9	3.0	524152		90		52		5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.9	53.9	3.0	524153		93		60		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57.0	60.0	3.0	524154		103		51		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63.1	66.1	3.0	524155		100		60		5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69.2	72.2	3.0	524156		90	1	24		5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.3	78.3	3.0	524157		97		57		15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81.3	84.4	3.1	524158		100	1	33		10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87.4	90.5	3.1	524159		100		49		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93.5	96.6	3.1	524160		97		98		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96.6	99.6	3.0	524161		103	1	.69		15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99.6	102.7	3.1	524162		100		46		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		108.8	3.1	524163		100		-		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		114.9	3.1	524164		97				0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3.0			100				10
136.2139.23.052416810016920142.3145.33.052416910020025145.3148.43.152417010013510148.4151.43.05241711006215154.5157.53.05241721008710			3.1			100	1	04		5
142.3145.33.052416910020025145.3148.43.152417010013510148.4151.43.05241711006215154.5157.53.05241721008710										
145.3148.43.152417010013510148.4151.43.05241711006215154.5157.53.05241721008710										
148.4151.43.05241711006215154.5157.53.05241721008710										
154.5 157.5 3.0 524172 100 87 10							1			
160.6 163.7 3.1 524173 100 70 5										
166.7 169.8 3.1 524174 100 35 15	166.7	169.8	3.1	524174		100		35		15

FROM	TO	ROCK-TYPE	RT-CODE
0.9	18.0	2	SYENBX
18.0	49.5	5	APOLYBX
49.5	53.4	10	FLT
53.4	68.6	5	APOLYBX
68.6	74.0	9	ALAT?
74.0	91.6	5	APOLYBX
68.6	74.0	9	ALAT?

FROM	TO	COMMENTS
0.	3.0	CASING:0-0.9m overburden 0.9-3.0m -SYENITE DOMINATED POLYLITHIC INTRUSIVE BRECCIA: -see 3.0-18.0m for description
3.0	18.0	SYENITE DOMINATED POLYLITHIC INTRUSIVE BRECCIA: -45-85% 2mm-10cm dia. subrounded clasts in grey green fine grained intrusive? matrix -clasts consist of orange grey fine graine egugranular syenite (50-90% of clasts), grey aphanitic altered volcanic? clasts (5-40% of clasts), red grey aphanitic latite? clasts (<10% of clasts), and feldspar porphyry clasts (<10% of rock) -mod chl. alt. (mainly in matrix), weak to mod. K alt. (mainly in syenite clasts), very minor silic<3% diss mt in syen clasts - rare diss py -minor (1/10cm) hairline qz frct's -most common core angle of frct's is 30 degrees
3.0	27.0	-minor Fe-ox staining along frct's
13.6	18.0	-90% 1-15cm dia. syen clasts
18.0	35.9	CHLORITE ALTERED POTYLITHIC BRECCIA: -probably same lithology as overlying unit -mod. to stong chl. alt. makes original texture difficult to recognize -minor silic -mod qz ca frct's (2/5cm) -most common core angle of frct's is 30 degrees <7% diss mt, <2% diss py -weak K alt. in syen clasts that are distinguishable -possibble basalt clasts in breccia

COMMENTS FROM TO CHLORITICALLY ALTERED SILICEOUS INTRUSIVE 35.9 49.5. BRECCIA: -same lithology as 3.0-18.0m -strong chloritic alt. and silic. has destroyed most of original texture -4% green white clay along frct's -many (3/5cm) qz ca frct's, up to 1cm wide -most common core angles of frct's are 50 degrees and 20 degrees -minor qz flooding weak K alt. in syen clasts -<7% diss mt, <2% diss py -core is blocky -5cm wide gz vv (core angle 50 degrees) 38.0 -3cm wide qz vn (core angle 20 degrees) 37.5 -3cm wide qz vn (core angle 15 degrees) 40.4 -2cm wide qz vn (core angle 8 degrees) 47.2 48.2 49.5 -25% of rock is altered to clay FAULT: -light green polylithic breccia that 49.5 53.4 has been altered (90% of the rock) to light green clay -core angle of fault is 15 degrees CHLORITE ALTERED POLYLITHIC INTRUSIVE BRECCIA: 53.4 68.6 -same description as 18.0-35.9m -most common core angle of qz ca frct's is 60 degrees minor hem along frct's -contact with latite (core angle 65 degrees) 68.6 K ALTERED LATITE ?: - flesh coloured fine 68.6 74.0 grained rock with 35% 0.5-2mm dia. feldspar phenocrysts and 8% small black specs (biotite?) -mod hem and K? alt. -minor chl alt. in phenocrysts -minor (1/5cm) qz frct's, up to 2mm wide -most common core angle of frct's is 70 degrees

FROM TO COMMENTS 91.6 CHLORITICALLY ALTERED POLYLITHIC BRECCIA: -60-74.0 85% 5mm-5cm dia. subangular clasts in grey green fine grained intrusive matrix? -stong chl alt. in both clasts and matrix makes original texture of rock difficult to recognize -weak to mod. silic., minor K alt. along frct's and in syen clasts -clasts consist of feldspar porphyry (most abundant), syenite and altered volcanics -due to alt. it is usually difficult to distinguish clast lithology -<5% diss mt, trace diss. py -mod. (2/5cm) ca frct's -most common core angles of frct's are 65 degrees and 20 degrees 74.0 76.0 -mod silic. -minor qz flooding 76.0 -2cm wide vugg y qz vn (core angle 20 degrees) 91.6 102.1 CHLORITIC AND CLAY ALTERED POLYLITHIC BRECCIA: -same rock unit as above with 5-35% grey green clay alt. along frct's and eminating outwards into rock -mod silic. -ca frct's have core angles ranging from 15-35 degrees -possibly part of a fault 102.1 143.5 CHLORITICALLY ALTERED POLYLILITHIC BRECCIA: same description as 74.0-91.6 -increase in amount of syenite clasts and decrease in feldspar porphyry clasts -coe angles of ca frct's range from 20 to 40 degrees 102.1 105.0 -2% light green clay along frct's 123.0 136.0 -2% green clay along frct's 134.4 125.0 -strong silic. 141.0 142.5 -minor light green clay alt. 143.5 151.3 CHLORITIC SILICEOUS POLYLITHIC BRECCIA: same lithology as 74.0-91.6 -mod to strong chl. alt. and silic. -weak K alt. (mainly in syen. clasts) - mod (2/5cm) 1mm-1cm wide vuggy qz vnlt's -minor pale yellow clay along qz vnlt's -most common core angle of vnlt's is 30 degrees

TO COMMENTS FROM 151.3 CHLORITICALLY ALTERED POLYLITHIC BRECCIA: same description as 74.0-91.6 -minor (1/5cm) ca frct's, up to 7mm wide -most common core angle of frct's is 75 degrees -minor green white clay along frct's - 5% of rock is altered to grey green clay 161.7 160.5 rock is moderately silicified - 3cm wide brecciated qz vn (core angle 35 161.7 degrees) -EOH 169.8

Page: 1

.

LOCATION LOCATION LOCATION LENGTH CORE SIZE LOGGED BY COMPLETED HOLE-ID [EAST] [NORTH] [ELEV.] MM92-12 10106.5 10576.0 1015.0 151.5 NQ P.D. 14/06/92

 FROM
 TO
 AZIMUTH
 DIP

 0.0
 151.5
 90.0
 -65.0

FROM	то	INTERVAL	SAMPLE NO.	RECOVERY	CU PPM	AU PPB
5.1	8.2	3.1	524210	100	21	0
11.2	14.3	3.1	524211	100	539	275
17.3	20.4	3.1	524212	100	109	5
23.4	26.5	3.1	524213	100	51	0
29.5	32.6	3.1	524214	100	159	5
32.6	35.6	3.0	524215	100	159	10
35.6	38.7	3.1	524216	100	3	5
38.7	41.7	3.0	524217	100	81	10
41.7	44.8	3.1	524218	100	545	35
44.8	47.8	3.0	524219	100	166	20
47.8	50.9	3.1	524220	100	17	5
50.9	53.9	3.0	524221	100	1175	60
53.9	56.0	2.1	524222	100	2773	120
56.0	56.9	0.9	524223	100	5235	230
56.9	60.0	3.1	524224	100	1506	105
60.0	63.0	3.0	524225	100	4627	170
63.0	66.1	3.1	524226	100	5236	280
66.1	69.1	3.0	524227	100	5406	335
69.1	72.2	3.1	524228	100	3209	250
72.2	75.2	3.0	524229	100	1980	80
75.2	78.3	3.1	524230	100	655	40
78.3	81.3	3.0	524231	100	151	15
81.3	84.4	3.1	524232	100	102	5
84.4	87.4	3.0	524233	100	137	10
87.4	90.5	3.1	524234	100	96	5
90.5	93.5	3.0	524235	100	89	0
93.5	96.6	3.1	524236	100	91	0
96.6	99.6	3.0	524237	100	104	0
99.6	102.7	3.1	524238	100	98	0
105.7	108.8	3.1	524239	100	134	0
111.8	114.9	3.1	524240	100	97	0
117.9	121.0	3.1	524241	100	96	0
124.0	127.1	3.1	524242	100	42	0
130.1	133.1	3.0	524243	100	70	0
133.1	136.2	3.1	524244	100	112	0
139.2	142.3	3.1	524245	100	102	5
145.3	148.4	3.1	524246	100	155	0

FROM	то	INTERVAL	CU PPM	AU PPB
50.9	75.2	24.3	3331	179

DATE:30	0/06/92		DDH	MM92-12
FROM	то	ROCK-TYPE	RT-CODE	
0.0	0.6	1	OB	
0.6	10.0	5	APOLYBX	
10.0	17.2	8	ALAT	
17.2	20.2	5	APOLYBX	
20.2	30.7	6	LAT	
30.7	33.6	5	APOLYBX	
33.6	56.0	8	ALAT	
56.0	70.3	3	KSYENBX	
70.3	74.8	8	ALATBX	
74.8	80.8	5	APOLYBX	
80.8	82.9	7	ALAT	
82.9	88.6	4	POLYBX	
88.6	101.2	5	APOLYBX	
101.2	118.3	4	POLYBX	
118.3	121.1	8	ALATBX	
121.1	129.4	8	ALATBX	
129.4	133.3	10	FLT/ALA?	гвх
133.3	135.0	8	ALATBX	
135.0	144.0	6	LAT	
144.0	148.0	4	POLYBX	
148.0	151.5	6	LAT	

•

Page: 2

FROM	<u>TO</u>	COMMENTS
0.0 0.0	3.0	CASING: overburden
0.6	3.0	CHLORITICALLY ALTERED SILICEOUS POLYLITHIC BRECCIA: -see below unit for description
3.0	10.0	CHLORITICALLY ALTERED SILICEOUS POLYLITHIC BRECCIA: -80% 3mm-5cm dia. grey green subangular clasts in fine grained grey green intrusive? matrix -clasts consit of fine grained syenite (70-90% of clasts), feldspar porphyry (5-10% of clasts), latite (5-10% of clasts) and grey aphanitic volcanics? (5-10% of clasts) -stong chl. alt. altering most of original texture -weak to mod. silicvery weak K alt. (mainly in syen clasts) -minor (1/10cm) qz frct's -most common core angle of frct's is 40 degrees -tr diss py and mt - minor Fe-ox staining along frct's
10.0	17.2	SILICEOUS LATITE: -green grey aphanitic rock with 25% 0.5-2mm dia. feldspar crystals 5-10% chloritically altered mafic specs -rock contains 5% 5mm-2cm dia. subrounded clasts of syenite feldspar porphyry and aphanitic volcanics -strong silic. masks much of original texture -mod. chl. altweak K alt. in some clasts -tr diss py -mod (2/5cm) qz frct's up to 5mm wide -most common core angle of qz frct's is 40 degrees -minor Fe-ox staining along frct's
17.2		-contact with polylithic breccia (core angle 60 degrees)
'17.2	20.2	SILICEOUS CHLORITICALLY ALTERED POLYLITHIC BRECCIA: -grey green fine grained intrusive matrix with 30-70% 5mm-3cm dia.subangular clasts -clasts consist of latite (70-90% of clasts), feldspar porphyry (5-10% of clasts), syenite (10-30% of rock) and aphanitic volcanics? (<5% of clasts) -mod to strong chl. alt. and silic. alters much of the original rock texture -mod (2/5cm) qz frct's, up to 5mm wide -most common core angle of qz frct's is 40 degrees -tr diss py -minor Fe-ox staining along frct's
20.2		-contact with latite is 30 degrees

FROM	<u>T0</u>	<u>COMMENTS</u>
20.2	30.7	LATITE DYKE: -red grey fine grained rock with 25% 0.5-2.0mm dia. feldspar crystals and 5% 0.5mm dia. mafic phenocrysts (biotite and hornblende?) - weak chl. alt. and silic minor hem in rock -mod (2/5cm) hairline qz frct's -most common core angle of frct's is 35 degrees -minor Fe-ox along frct's
30.7		-contact with polylithic breccia (core angle 60 degrees)
30.7	33.6	SILICEOUS CHLORITICALLY ALTERED POLYLITHIC BRECCIA: -same description as 17.2-20.2m -mod (2/5cm) vuggy qz vnlt's, upto 7mm wide -rock is slightly bleached and has minor Fe-ox along frct's
33.6		-contact with latite (core angle 60 degrees)
33.6	38.8	SILICEOUS LATITE: -light grey fine grained rock with 30% 0.5-2.0mm dia. feldspar crystals and 15% 0.5mm dia Mn-ox? specs -5% 2mm-5mm dia. light grey altered clasts in latite -mod. to strong silic alters much of the original texture of the rock -weak chl altmod (2/5cm) qz vnlt's ,up to 5mm wide -most common core angle of veinlets is 60 degrees -rock is slightly bleached
38.8	56.0	K ALTERED LATITE? BX: -flesh coloured fine graine rock with 20% 0.5mm-3mm dia feldspar crystals and 15% 0.5mm dia. (mn-ox?) specs hydrothermal alteration along frct's has seperated rock into individual clasts -<5% 5mm lcm dia. subangular light grey aphanitic volcanic? clasts in latite -strong K alt. has altered original texture of rock -rock is possibly K altered syenite? -mod silic., weak chl. altmany (3/5m) qz frct's, up to 5mm wide, in rock -early phase fracuring has core angles in any direction -late phase fracturing has a most common core angle of 30 degrees - much black (Mn-ox?) material found along frct's, associated with tr py and very minor cpy
51.0	52.6	- bleached interval with strong chl. alt. and silicminor green white clay along frct's
56.0		-contact with syen. (core angle 40 degrees)

TO FROM COMMENTS. 70.3 K ALTERED SYENITE BRECCIA: -80% 5mm-10cm dia 56.0 subangular clasts of grey orange fine grained equigranular syenite in grey orange fine grained intrusive matrix -<5% light grey altered volcanic? clasts in both syenite clasts and intrusive matrix -strong K alt. -weak to mod chl. alt. and silic. -mod (2/5cm) qz-ca frct's, up, to 5mm wide -more than one generation of gz-ca fracturing occurs, and sulphide mineralization appears to occur with -<3% cpy one of the earlier fracturing stages and <5% cpy (diss and along frct's) -<5% diss mt 59.8 60.6 -minor white clay along frct's -with 5cm wide vuggy gz vn at end of interval (core angle 40 degrees) 62.2 62.4 - 25% of rock is altered to light green clayfault (core angle 65 degrees) 64.5 65.4 -strongly silicified interval -original texture is destroyed (core angle of frct's is 60 degrees 66.8 66.3 -7% cpy 70.3 74.8 K ALTERED LATITE?? BRECCIA: -orange grey fine grained rock with 25% 0.5-3.0mm dia feldspar crystals -strong K alt. makes it difficult to distinguish if the rock is a K altered latite or syenite -weak to mod. silic. and weak chl. alt. -hydrothermal alteration along frct's separates rock into individual clasts -<5% different rock clast, up to 2cm long, of unknown lithology -mod. (2/5cm) qz frct's, up to 5mm wide -most common core angles of frct's are 25 degrees (early) and 45 degrees (late) <3% py and tr cpy (diss and along frct's) unknown black mineral is associated with sulphide bearing frct's -contact with poplylithic breccia (core angle 74.8

50 degrees)

FROM	<u>TO</u>	COMMENTS
74.8	80.8	HEMATITIC POLYLITHIC INTRUSIVE BRECCIA: -75% 2mm-5cm dia. subangular clasts in brown red hematite rich fine grained intrusive? matrix - clasts consist of latite (70% of clasts), syenite (20% of clasts) and light grey volcanic clasts -much hem. in rock -mod. chl. alt., weak silicminor (1/10cm) qz frct's, up to 5mm wide -most common core angle of frct's is 50 degrees
74.8	76.0	-mod. to strong chl. alt. and silic., minor K alt.
79.4	80.0	- 30% of rock is altered to red brown clay (fault) -core angle60 degrees
80.8		-contact with latite (core angle 50 degrees)
80.8	82.9	SILICEOUS CHLORITICALLY ALTERED LATITE: -grey green fine grained rock with 30% 0.5-2.0mm dia. feldspar crystals -mod chl alt. and silic., weak K altminor (1/10cm) qz frct's, up to 5mm wide -most common core angles of qz frct's are 35 degrees and 90 degrees
82.9	88.6	POLYLITHIC INTRUSIVE BRECCIA: 75%2mm-5cm dia. subangular claasts in light grey fine grained intrusive? matrix -clasts consist of latite (70%of clasts), syenite (20% of clasts) and light grey volcanics - weak chl alt. and silic. minor hem. in matrix - minor (1/10cm) qz frct's, up to 5mm wide -most common core angle of frct's is 70 degrees
88.6		-contact with qz flooded breccia (core angle 75 degrees)
88.6	01.2	QUARTZ FLODED CLAY ALTERED POLYLITHIC BRECCIA: -same rock type as overlying unit that contians minor qz flooding and minor green white clay alt. along frct's -shear zone
98.0	98.4	- 25 % of rock is altered brown red clay
100.7	101.2	- brecciated qz vn with 10% yellow white clay (core angle 25 degrees)

FROM то COMMENTS 101.2 118.3 POLYLITHIC INTRUSIVE BRECCIA: -same description as 82.9 to 88.6 110.0 112.0 -minor yellow white clay along frct's -interval of latite with 5% 2mm -2cm dia. 114.0 114.5 foreign clasts (core angle 45 degrees) -contact with clay altered breccia (core angle 118.3 60 degrees) CLAY AND K ALTERED LATITE BRECCIA; 118.3 121.1 -same description as underlying unit with 7% of the rock altered to yelow white clay -mod. (3/5cm) qz frct's, up to 5mm wide, (core angle 45 degrees) associated with clay alt. 120.9 121.1 - qz vn with 10% green white clay (core angle 35 degrees) 121.1 129.4 K ALTERED LATITE? BRECCIA: -80% 3mm-3cm dia. subrounded clasts in fine grained intrusive? matrix -clasts consist mainly of latite?, with minor clasts of unknown lithology also in the breccia -rock is grey orange -strong K alt. and mod chl. alt. makes original texture difficult to distinguish -minor chl. alt. and -minor (1/10cm) qz frct's, up to 5mm wide hem. -most common core angles of frct's are 20 degrees (earlier) and 60 degrees (late) 124.0 127.0 -minor yellow white clay along frct's -core angle of clay frct's is 60 degrees 128.0 129.4 - minor green white clay along frct's -core angle of clay frct's is 60 degrees 133.3 SHEARED LATITE: -red grey latite with 15% 2-129.4 5mm wide qz-biotite veins (core angle 30 degrees) -minor white clay along frct's minor chl alt. -minor hem in latite -weak K alt. 132.6 gz vn (core angle 60 degrees) 132.1 135.0 -same description 133.3 K ALTERED LATITE? BRECCIA: as 121.1-129.4 metres

TO FROM COMMENTS 135.9 144.0 LATITE: -red grey fine grained rock with 25% 0.5-2mm dia. feldspar crystals and 5-10% 0.5mm dia mafic grains (biotite and hornblende?) weak chl. alt. (mainly in felspar crystals) latite is hematitic -mod (2/5cm) qz frct's most common core angle of frct's is 60 degrees -fractuting along rock has breeciated part of rock into crackle breccia 144.0 contact with polylithic breccia (core angle 65 degrees) -65% 2mm-3cm 144.0 146.0 POLYLITHIC INTRUSIVE BRECCIA: dia. subangular clasts in green grey fine grained intrusive? matrix -clasts consist of latite (70% of clasts), light grey volcanics (20% of clasts) and sygnite -minor chl. alt. and silic. -minor hem. in matrix -mod.(2/5cm) qz frct's, up to 5mm wide -most common core angle of frct's is 70 degrees contact with latite (core angle 55 degrees) 146.0 146.0 151.5 LATITE: -same description as 135.9-144.0 metres - 5cm wide gz vn (core angle 30 degrees) 148.6 151.5 -EOH

DATE:30/06/92

Page: 1

HOLE-IDLOCATION LOCATION LOCATION LENGTH CORE SIZE LOGGED BY COMPLETED
[EAST] [NORTH] [ELEV.]MM92-1310560.0 10703.0 951.0 111.9 NQP.D. 14/06/92

FROM TO AZIMUTH DIP 0.0 111.9 44.0 -48.0

FROM	ТО	INTERVAL	SAMPLE	NO. RECOVERY	CU PPM	AU PPB
6.1	8.2	2.1	524297	95	139	5
8.2	11.2	3.0	524298	93	149	5
11.2	14.3	3.1	524299	97	119	0
14.3	17.3	3.0	524300	93	71	0
17.3	20.4	3.1	524301	94	92	0
26.5	29.5	3.0	524302	83	64	10
35.6	38.4	2.8	524303	79	101	5
44.1	47.5	3.4	524304	85 -	151	10
53.6	56.8	3.2	524305	94	59	0
56.8	60.0	3.2	524306	97	85	0
60.0	63.0	3.0	524307	100	92	5
63.0	66.1	3.1	524308	97	160	0
72.2	75.3	3.1	524309	100	189	0
81.4	84.4	3.0	524310	100	46	0
90.5	93.6	3.1	524311	100	16	0
99.7	102.7	3.0	524312	100	40	0
108.8	111.9	3.1	524313	100	33	5

FROM	то	ROCK-TYPE	RT-CODE
0.0	4.5	1	OB
4.5	6.6	12	ANDBX
6.6	8.2	8	ALATBX
8.2	16.3	12	ANDBX
16.3	111.9	14	FP

ſ		
FROM	<u>TO</u>	COMMENTS
0.0	6.1	CASING: -approximately 1.0 metre of casing sample (HQ core) was collected -not sure how deep overburden is (5.0 mtres?) -casing collected is BRECCIATED ANDESITE -same as underlying core
6.1	6.6	ANDESITE BRECCIA: -dark grey aphanitic rock with 15% 0.5mm dia. feldspar crystals and 5% 1mm dia. mafic phenocrysts (biotite and hornblende?) -fracturing in rock has separated it into individual clasts (crackling) -minor Fe-ox along frct's -minor hairline qz frct's -minor Fe-ox staining along frct's -minor chl. alt.
6.6	8.2	BLEACHED LATITE: -grey white fine grained rock with 25% 051.0mm dia. feldspar crystals and 10% 0.5mm dia. mafic specs (biotite and hornblende) -mod. (3/5cm) qz vnlt's, up to 1cm wide -most common core angles of vnlt's are 20 and 50 degrees -rock is bleached and slightly silicminor chl. altmuch Fe-ox staining along frct's -tr diss. py
8.2		-contact with andesite (core angle 40 degrees)
8.2	16.3	ANDESITE BRECCIA: -dark grey aphanitic rock with 15% 0.5mm dia. feldspar crystals and 5% 1mm dia. mafic phenocrysts (biotite and hornblende?) -fracturing in rock has separated it into individual clasts (crackling) -3% 2mm- 2cm dia subangular light grey aphanitic andesite? clasts in rock -mod chl. alt. minor yellow white clay along frct's -minor epidote along frct's -many (1/1cm) hairline qz frct's -qz frct's have no preffered orientation -core is blocky and has mod. Fe-ox staing along frct's
	16.3	-contact with feldspar porphyry (core angle 65 degrees)

FROM то COMMENTS 16.3 111.9 FELDSPAR PORPHYRITIC SYENITE: - orange grey to light grey fine grained rock with 25% 1mm-1cm dia. felspar (probably K feldspar) phenocrysts and 5% 0.5mm mafic (biotite and possibly hornblende?) grains -feldspar crystals are often zoned -weak chl. alt. -minor (1/1m) qz vnlt's, up to 1cm wide -most common core angle of gz vnlt's is 55 degrees -contact with andesite does not appear to be chilled but there is minor white clay along frct's for a 1m int. adj. to and. 16.3 26.0 -minor Fe-ox staining along frct's 16.3 56.0 -core is block -recov. between 80 and 95% 57.5 60.0 -core is slightly bleached -minor white clay along frct's 63.8 62.4 -shear zone -2-10% white clay along frct's core angle of clay frct's is 50 degrees 78.0 81.5 -core is slightly bleached -minor white clay along frct's 94.1 93.9 -qz (80%), K feldspar (15%), chl. (5%) vn (core angle 60 degrees) 111.9 -EOH

Page: 1

HOLE-IDLOCATION LOCATION LENGTH CORE SIZE LOGGED BY COMPLETED
[EAST] [NORTH] [ELEV.]MM92-1410314.510564.0989.0118.0 NQP.D.15/06/92

FROM TO AZIMUTH DIP 0.0 118.0 270.0 -65.0

FROM	то	INTERVAL	SAMPLE H	NO.	RECOVERY	CU PPM	AU	PPB
5.2	8.2	3.0	524276		93	121		5
11.2	14.3	3.1	524277		100	98		0
17.3	20.4	3.1	524278		100	119		0
23.4	26.5	3.1	524279		100	100		5
29.5	32.6	3.1	524280		100	186		25
35.6	38.7	3.1	524281		100	109		0
41.7	44.8	3.1	524282		100	131		5
44.8	47.8	3.0	524283		100	4		5
50.9	53.9	3.0	524284		100	44		10
56.9	60.0	3.1	524285		100	68		0
60.0	63.0	3.0	524286		100	30		5
63.0	66.1	3.1	524287		100	33		0
66.1	69.1	3.0	524288		100	23		0
69.1	72.2	3.1	524289		100	12		0
75.2	78.3	3.1	524290		100	38		5
81.3	84.4	3.1	524291		100	64		0
87.4	90.5	3.1	524292		100	49		5
93.5	96.6	3.1	524293		100	3505		55
99.6	102.7	3.1	524294		100	428		45
105.7	108.8	3.1	524295		100	276		50
111.8	114.9	3.1	524296		100	225		5

FROM	то	ROCK-TYPE	RT-CODE
0.0	1.0	1	OB
1.0	42.9	4	POLYBX
42.9	59.4	5	APOLYBX
59.4	84.4	8	ALATBX
84.4	95.1	5	APOLYBX
95.1	118.0	6	LAT

FROM	<u>T0</u>	COMMENTS
0.0	3.0	CASING: -0.0-1.0 metres overberden
		1.0-3.0 -POLYLITHIC INTRUSIVE? BRECCIA: - casing samples are of the same description as the underlying core samples
3.0	42.9	POLYLITHIC INTRUSIVE? BRECCIA: -80% 5mm-5cm dia. subrounded clasts in green grey fine grained intrusive? matrix -clasts consist of grey red latite (60% of clasts), orange grey syenite (30% of clasts) and grey aphanitic volcanic clasts -weak chl altportions of the rock are slightly silicified -minor Fe-0x staining along frct's -tr diss py -minor (1/10cm) qz frct's, up to 5mm wide -most common core angles of frct's are 30 degrees and 60 degrees
3.0	10.0	- core is blocky -much Fe-ox along frct's - poor recovery
3.0	20.3	-mod. (<5%?) diss mt
20.3	21.4	-mod. chl. alt. and silicmuch of original texture is destroyed -mod. Fe-ox along frct's -core is blocky
21.4	28.8	-matrix is red grey (hematite rich) -70% of the clasts are latite
28.8	33.2	-mod chl. alt7% of clasts are syen.
33.2	42.9	-much hematite in matrix
42,9	47.5	SILICEOUS CLAY ALTERED POLYLITHIC BRECCIA: - green white rock with 75% subrounded clasts, up to 5cm in dia., in fine grained intrusive matrix -clasts probably consist of latite syenite and andesite, clast type is difficult to determine due to alteration in rock -mod. to strong silic. clay alt. and bleaching makes original texture difficult to distinguish - mod. chl alt4% py (diss and along frct's) -minor (1/10cm) qz vnlt's, up to 1cm wide - clay, py, qz frct's have a core angle of 25 degrees -minor Fe-ox staining along frct's - shear zone

FROM TO COMMENTS 47.5 53.0 CHLORITICALLY ALTERED POLYLITHIC BRECCIA: grey green rock with 70% 5mm-7cm dia. subrounded clasts in a fine grained intrusive? matrix -clasts consist of grey red latite (65% of clasts), orange grey syenite (20% of clasts) and grey aphanitic andesite -mod. to strong -minor weakly silic. intervals over chl alt. portions of the rock -minor hem. in rock -tr diss. py -minor (1/10cm) gz frct's, up to 5mm wide -most common core angles of qz frct's are 25 and 50 degrees 53.0 59.4 HEMATITIC POLYLITHIC BRECCIA: -same rock type as overlying unit with much hematite in matrix giving it a brown red colour -chl. alt. is minor (but is possibly overprinted by hem.) 59.4 60.2 K ALTERED LATITE: -brown orange fine grained rock with 25% 0.5mm-2.0mm dia. feldspar crystals and 8% 0.5mm dia. mafic specs (biotite and hornblende?) -mod K alt., weak chl. alt., slight silic. -mod. (3/5cm) gz frct's, up to 5mm in dia. -most common core angle of frct's is 50 degrees -hydrothermal fracturing has separated rock into individual clasts (crackling) 60.2 71.0 SILICEOUS CLAY ALTERED LATITE BRECCIA: -same rock type as overlying unit that is bleached moderate to strong silic. and green white clay (3% of rock) -much of original texture of rock is gone -mod. chl. alt., weak K alt. -minor hem. along frct's -2% py (diss and along frct's) -mod. (3/5cm) qz vntl's, up to 2cm wide -core angle of qz, py clay, chl. frct's is 35 degrees -core is blocky -shear zone 71.0 84.4 K ALTERED LATITE: -same description as 59.4-60.2 metres -minor white clay along frct's -core is blocky 71.0 78.0 -mod. chl. alt. 74.1 74.3 -qz vn (core angle 60 degrees)

FROM	<u>T0</u>	COMMENTS
84.4	94.3	K ALTERED POLYLITHIC BRECCIA: -grey orange rock with 80% 2mm-10cm dia. subrounded to subangular clasts -clasts consist of latite (65-90% of clasts), syenite (5-20% of clasts) and andesite (5-15% of clasts) -mod K alt weak chl. alt. and silicminor hem. in rock -mod. (2/5cm) qz frct's, up to 5mm wide
87.0	88.0	-hematite rich interval (core is brown red)
91.0	94.3	-many (1/1cm) qz frct's
94.3	95.1	CLAY ALTERED POLYLITHIC BRECCIA (FAULT): -same lithology as overlying unit -20% of rock is altered to green white clay -core angle of fault is 60 degrees
95.1	118.0	LATITE: -redish black fine grained rock with 25% 0.5-2.0mm dia. feldspar crystals and 5-10% 0.5mm dia. mafic specs (biotite and hornblende?) -rock is hematite rich -weak chl. altmod (2/5cm) qz frct's, up to 5mm wide -most common core angle of frct's is 55 degrees -hydrothermal fracturing has separated rock into individual clasts (crackling)
110.0	118.0	- minor qz flooding -3-8% qz along irregularly shaped frct's in rock
118.0		-ЕОН

.

DATE:30/06/92 DDH MM92-15

Page: 1

HOLE-ID LOCATION LOCATION LENGTH CORE SIZE LOGGED [EAST] [NORTH] [ELEV.] 9927.0 11332.0 931.0 108.8 NQ P.D. 16/06/92 MM92-15

FROM TO AZIMUTH DIP 0.0 108.8 270.0 -56.0

3.0 5.2 8.2 11.3 14.3 17.4 20.4 23.5 26.5 29.6 32.6 35.7 38.7 41.7 44.8 47.8 50.9 56.9 60.0 66.1 72.2 78.3 81.3 84.4 90.5 93.5 96.6 99.7 102.7	5.2 8.2 11.3 14.3 17.4 20.4 23.5 29.6 32.5 29.6 35.7 38.7 44.8 47.8 47.8 53.9 56.9 53.9 56.0 63.0 66.1 72.2 78.3 84.4 87.4 93.5 99.7 1025 7	$\begin{array}{c} 2 \cdot 2 \\ 3 \cdot 0 \\ 3 \cdot 1 \\$	524175 524176 524177 524178 524179 524180 524181 524182 524183 524183 524184 524185 524186 524187 524187 524188 524189 524190 524191 524192 524193 524193 524194 524195 524197 524197 524197 524200 524201 524201 524203 524204 524205 524207	$\begin{array}{c} 82\\ 100\\ 97\\ 100\\ 97\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$	$\begin{array}{c} 433\\ 149\\ 232\\ 759\\ 587\\ 518\\ 518\\ 518\\ 518\\ 710\\ 4699\\ 6572\\ 8884\\ 113\\ 783\\ 4199\\ 619\\ 5998\\ 772\\ 5998\\ 772\\ 5889\\ 772\\ 5889\\ 772\\ 5899$ 772\\ 5899 772\\ 5899 772\\ 5899 772\\ 5899 772 772 772 772 772 772 772 772	$35 \\ 0 \\ 25 \\ 40 \\ 50 \\ 25 \\ 40 \\ 40 \\ 30 \\ 20 \\ 20 \\ 35 \\ 45 \\ 35 \\ 35 \\ 80 \\ 40 \\ 70 \\ 70 \\ 70 \\ 40 \\ 55 \\ 40 \\ 180 \\ 35 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 55 \\ 40 \\ 180 \\ 35 \\ 180 \\ 35 \\ 180 \\ 180 \\ 35 \\ 180 \\ 180 \\ 35 \\ 180 \\ 180 \\ 35 \\ 180 \\ 180 \\ 35 \\ 180$
102.7 105.7	102.7 105.7 108.8	3.0 3.1	524207 524208 524209	100 100 100	396 699	25 35

FROM	ТО	INTERVAL	CU	PPM	AU	PPB
3.0	108.8	105.8	5	599		46

FROM	то	ROCK-TYPE	RT-CODE
0.0	3.4	1	0B
3.4	108.8	19	AFPBX

DATE:30/06/92 0.0 3.4 OVERBURDEN: -casing

3.4 5.9 CHLORITE ALTERED SILICEOUS FELDSPAR PORPHYRY BRECCIA: -85-95% lcm 1-25cm dia. subangular clasts consisting mainly of grey green felspar porphyry in a fine grained grey geen (feldspar porphyry?) matrix -felspar porphyry originally consisted of a fine grained grey rock with 35-40% 2-8mm dia. feldspar phenocrysts and 2-10% 1-3mm dia. mafic (biotite and amphibole?) phenocrysts -<5% grey gren aphanitic volcanic? clasts occcuring both as individual clasts and as clasts within feldspar porphyry clasts -strong chl. alt. and weak to mod. silic. alters original texture of rock -weak K alt. tr cpy and py (diss and along frct's) -tr diss mt -mod (3/5cm) qz frct's, up to 5mm wide, with most common core angles of 25 degrees (late) and 55 degrees (early) -sulphides appear to be related to the earlier qz veining phase -mod Fe-ox staining

Page: 2

5.9 8.6 <5% DISS mt, 5-10% 1-2mm dia. chlorite grains in rock

8.6 11.1 -strong hem alt. -rock is brown red -most felspar phenos. are alt. to chl.

11.1 21.8
-strong K alt. -rock is flesh coloured -weak to mod. chl. alt and silic. many (1/1cm) hairline qz frct's -most common core angles 60 and 20 degrees
-11.1-11.2m minor qz flooding (20% qz in rock) -7% py in qz

21.8 32.0 -mod K alt., weak chl. and silic. alt -mod Fe-ox staining along frct's -<5%py and tr cpy (diss and along frct's -tr mt with sulphide frct's -many (1/1cm) qz frct's, up to 5mm wide -most common core angles of frct's are 40 degrees (early) and 60 degrees (late) -sulphides appear to be associated with earlier stage veining

32.0 58.1

-end of Fe-ox staining -mod to strong K alt. -weak chl alt. (mainly along frct's) -weak silic. -<7% py and < 2% cpy (along frct's and diss), tr mt along py frct's -minor black mineral (chalcocite??) associated with sulphide frct's -very rare silver coloured metalic specs -many (3/5cm) qz frct's, up to 5mm wide -most common core angles of frct's are 60 degrees (late) and 30 degrees (early) -sulphides appear to occur with earlier veining stage -rock is orange grey

58.1 64.3 -strong K alt. (rock is flesh coloured) -weak to mod silic. -weak chl. alt. -many (3/5cm) qz frct's up to 7mm wide -most common core angles of frct's are 20 (late) and 60 (early) degrees -<7%py and < 4%cpy diss and along frct's in rock -minor unknown black mineral along frct's with sulphides sulphides appear to occur with earlier phase veining -60.3-60.4m -8% cpy

64.3 68.7

Page: 3 DATE: 30/06/92 DDH MM92-15 -same description as 32.0-58.1m 64.3-66.1 -minor white clay along frct's -mod silic. 64.9 -5cm wide gz vn (core angle 60 degrees) 68.7 76.5 -same description as 58.1-64.3m -97.0 76.5 -mod. K alt., weak to mod. silic, weak chl. alt. -mod (3/5cm) gz frct's, up to 5mm wide -most common core angles of frct's are 40 degrees (early) and 30 degrees (late) -<5%py and <2%cpy (diss and along frct's) -sulphides appear to occur with earlier stage veining -unknown black mineral occurs with sulphides along frct's 97.0 103.3 -80% 1mm-3cm dia. light grey felpar porphyry clasts in a light grey matrix consisting of silicified felspar porphyry and quartz -more explosive phase of hydrothermal brecciation -mod. silic., weak to mod K alt., minor chl. alt. -<3% py and tr cpy (diss and along frct's -many (1/1cm) qz frct's with core angles in all directions -102.9m -4cm wide vuggy gz vn (core angle 50 degrees) 103.3 108.8 -mod K alt., weak silic and chl alt. $-\langle 2\%py \rangle$ and tr cpy diss and along frct's -mod (3/5cm) qz frct's, up to 5mm wide -most common core angle of frct's is 45 degrees

-108.8 -EOH

Page: 1

LOCATION LOCATION LOCATION LENGTH CORE SIZE LOGGED BY COMPLETED HOLE-ID [EAST] [NORTH] [ELEV.] 9761.0 11276.0 929.0 108.8 NQ P.D. 17/06/92

- MM92-16
- FROM TO AZIMUTH DIP 0.0 108.8 90.0 -55.0

FROM	то	INTERVAL	SAMPLE	NO.	RECOVERY	CU	PPM	AU	PPB
0.2	3.0	2.8	524247		0		294		10
3.0	5.2	2.2	524248		55	20)72		35
5.2	8.2	3.0	524249		100	1	.63		10
8.2	11.3	3.1	524250		100	1	13		5
11.3	14.3	3.0	524251		100		93		5
14.3	17.4	3.1	524252		100	1	02		0
17.4	20.4	3.0	524253		100	5	578		25
20.4	23.5	3.1	524254		100	1	.76		10
23.5	26.5	3.0	524255		100	1	41		10
26.5	29.6	3.1	524256		100	¢	588		40
29.6	32.6	3.0	524257		100	1	14		0
32.6	35.7	3.1	524258		100	1	42		5
35.7	38.7	3.0	524259		100	1	14		0
38.7	41.8	3.1	524260		100]	.06		0
41.8	44.8	3.0	524261		100		85		0
44.8	47.9	3.1	524262		100]	11		0
47.9	50.9	3.0	524263		100	1	.25		5
50.9	53.9	3.0	524264		100		86		0
53.9	57.0	3.1	524265		100	1	.34		0
57.0	60.0	3.0	524266		100		93		0
63.1	66.1	3.0	524267		100	1	.32		5
69.2	72.2	3.0	524268		100	1	.16		0
72.2	75.3	3.1	524269		100		.20		5
78.3	81.4	3.1	524270		100		10		10
81.4	84.4	3.0	524271		100	2	219		5
84.4	87.5	3.1	524272		100		69		0
90.5	93.6	3.1	524273		100		81		0
96.6	99.7	3.1	524274		100]	.61		0
102.7	105.8	3.1	5242 7 5		100		30		0

FROM	то	ROCK-TYPE	RT-CODE
0.0	0.5	1	OB
0.5	57.3	5	APOLYBX
57.3	64.3	7	LATBX
64.3	84.0	5	APOLYBX
84.0	87.1	10	FLT
87.1	99.4	8	ALATBX
99.4	108.8	5	APOLYBX

FROM TO COMMENTS CASING: 0.0-0.5 m -overburden 0.0 3.0 0.5-3.0 m SILICEOUS CHLORITICALLY ALTERED **POLYLITHIC BRECCIA:** -same description as underlying unit -casing samples were sent in for analysis 3.0 6.4 SILICEOUS CHLORITICALLY ALTERED POLYLITHIC BRECCIA: -light green rock with 65% 5mm-3cm dia. subangular to subrounded clasts in a fine grained intrusive matrix -clasts consist of latite (60% of clasts), green grey aphanitic volcanic? clasts (20% of clasts) and feldspar porphyry clasts (20% of clasts) -strong chloritic and mod. silic. alt. has destroyed much of original texture -<3% py and tr cpy (diss and along frct's) -mod. Fe-ox staining along frct's -mod. (2/5cm) gz frct's, up to 5mm wide 6.4 HEMATITIC POLYLITHIC BRECCIA: -same lithology 11.2 as overlying unit -core is green red -hematite in rock dominates rock colour -mod. chl. alt.?, weak silic. -mod Fe-ox staining along frct's -minor (1/10cm) qz frct's, up to 5mm wide -most common core angle of frct's is 50 degrees -<2% py (diss and along frct's)

Page <u>1</u>

FROM то COMMENTS CHLORITICALLY ALTERED POLYLITHIC BRECCIA: 11.2 57.3 light green rock with 65% 5mm-3cm dia. subangular clasts in a fine grained intrusive? matrix -clasts consist of latite (65% of clasts), feldspar porphyry (15% of clasts), syenite (10% of clasts) and green grey aphanitic volcanic? clasts (10% of clasts) -tr py (diss and along frct's) -only very minor islolated specs of cpy were found -strong chl. alt., weak silic. -minor hem. in rock -mod Fe-ox staining along frct's -minor (1/10cm) qz frct's, up to 5mm wide -most common core angle of frct's is 50 degrees 18.8 19.5 - felspar porphyry clast with 3% py and tr cpy 26.0 31.0 -3% py 36.0 34.0 -3% py 39.0 57.3 -80 % clasts -some fragments are less than 1mm in dia. -qz vein (core angle 25 degrees) 51.5 -2% light green clay along frct's and much Fe-57.3 51.0 ox staining 55.0 56.5 -core is blocky 57.3 -contact with latite breccia (core angle 30 degrees) 57.3 64.3 LATITE BRECCIA: -orange grey fine grained rock with 25% 0.5-2mm dia. feldspar crystals and 5-10% 0.5 mm dia mafic flecs (biotite and hornblende?) -mod. chl. andK alt. -weak -minor hem. along frct's -mod (2/5cm) silic. qz frct's, up to 5mm wide -most common core

 angle of frct's is 50 degrees -hydrothermal fracturing has separated rock into individual clasts (crackling)
 61.6 62.2 -chloritic polylithic breccia interval
 64.3 -contact with polylithic breccia (core angle 70 degrees)

FROM TO COMMENTS 84.0 64.3 CHLORITICALLY ALTERED POLYLITHIC BRECCIA: green grey rock with 75% 5mm -5cm dia. subangular to subrounded clasts in fine grained intrusive? matrix -clasts consist of latite (70% of clasts), syenite (10% of clasts), feldspar porphyry (10% of clasts) and light grey aphanitic volcanics (10% of clasts) -mod. to strong chl. alt. destroys much of original texture -weak silic. and K alt. -minor hematite in rock -tr diss py -minor (1/10cm) gz frct's, up to 5mm wide -most common core angle of frct's is 65 degrees 70.5 71.0 -feldspar porphyry clast 75.0 78.0 much hem. in matrix 78.8 5cm wide gz vn (core angle 15 degrees) 80.2 80.8 -feldspar porphyry clast 84.0 87.1 CLAY CHLORITE ALTERED POLYLITHIC BRECCIA (FAULT): -rock type described in overlying unit where 5-10% of the rock is altered to light green clay -core angle of fault zone is 35 degrees 87.1 99.4 K ALTERED LATITE BRECCIA: -orange grey rock with 85% 5mm-5cm dia. subrounded clasts in a fine grained intrusive? matrix -clasts consist mainly of latite with only 5% of the clasts consisting of syenite, feldspar porphyry and andesite -mod K alt. alters part of the original rock texture -minor chl. alt. and silic. -minor hem. in rock -minor (1/20cm) qz frct's, up to 5mm wide -most common core angle of frct's is 40 degrees

FROM TO COMMENTS 99.4 108.8 SILICEOUS CHLORITICALLY ALTERED LATITE BRECCIA: pale green fine grained rock with 25% 05.-2mm dia. feldspar crystals and 5% 0.5mm dia. mafic flecs (biotite and hornblende?) -5% 3mm -3cm dia. subangular syenite, feldspar porphyry and andesite clasts are found within the latite hydrothermal alteration along frct's has separated latite into individual clasts (crackling) -mod. to strong chl. alt. and silic. has destroyed much of the original texture of the rock -weak K alt. -minor (1/10cm) qz frct's, up to 5mm wide -most common core angle of frct's is 30 degrees -2% py (diss and along frct's) 108.8 - EOH

٩

الم خصيف

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 ----

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number : 1-A Total Pages :3 Certificate Date: 25-JUN-92 Invoice No. : 19216245 P.O. Number : Account HPO

Ma

Project : 1702 Comments: ATTN: FRED DALEY GC: TOR BRULAND

					- <u></u>	<u></u>	<u></u>			CE	RTIFI	CATE	OF A	NAL	/SIS		A9216	245		
SAMPLE	PREP CODE	Au-AA ppb	λg ppm	31 %	a. Ppr	Ba 9 9 5	Be ppn	Bi ppm	Ca %	Cd ppm	Co ppa	Cr ppa	Cu p p	Fe X	Ga. ppm	Hg ppa	K %	La ppa	Ng X	Mn ppa
824101	208 274	105	0.4	0.98	< 2	120	< 0.8	10	2.34	< 0.8	11	6	2260	8.30	< 10	3	0.21	< 10	0.88	61 0
524102	205 274	115	0.2	0.67	12	240	< 0.5	< 2	3.76	< 0.5		42	1660	3.65	< 10	< 1	0.22	< 10 < 10	0,53 0,99	740
524103	205 274	105 145	0.6	0.89	232 10	150 340	< 0.5		2.92	< 0.5 < 0.5	9 10	41 46	1670 2590	4.08	< 10 10	< 1	0.18	< 10	0.92	645 630
524104 524105	205 274 205 274	75	0.2	0.62	2	230	< 0.5	< 2	2.35	< 0.5	11	43	1405	4.96	< 10	<1	0.20	< 10	0.88	610
524106	205 274	200	0.8	1.32	16	210	< 0.5	16	2.55	< 0.5	19	54	5520	6.64	< 10	< 1	0.30	< 10	1.84	740
524107	205 274	135	0.6	1.49	< 2	200	< 0.5	10	2.16	< 0.5	18	46 47	4280 2480	7.04	< 10	< 1 < 1	0.20 0.17	< 10 < 10	1.65	660 580
524108	205 274	140 115	0.2 < 0.2	1.56	2	130 290	< 0.5	6	2.22	< 0.5	17 17	51	1865	6.04	10 10	< 1	0.21	< 10	1.80	645
524109 524110	205 274	90	< 0.2	1.13	6	270	< 0.5	2	2.71	< 0.5	13	50	1210	4.43	< 10	< 1	0.14	< 10	1.31	710
524111	205 274	90	< 0.2	0.56	56	100	< 0.5	2	4.08	< 0.5	13	15	1050	4.17	< 10	5	0.29	< 10	1.83	985
524112	205 274	55	< 0.2	0.34	52	380	< 0.5	2	5.96	< 0.5	13	18	620	3.98	< 10	< 1	0.24	< 10	2.52	1065
524113	205 274	45	< 0.2	0.43	56	30	< 0.5	2	4.98	< 0.5	7 12	24 21	637 1650	2.42	< 10 < 10	< 1 27	0.20 0.23	< 10 < 10	1.99 3.59	725 1135
524114	205 274	90 115	0.2 < 0.2	0.44 0.61	310 118	60 40	< 0.5	4	4.27	< 0.5	10	32	1690	4.61	< 10	- <u>-</u>	0.16	< 10	1.86	795
524115	203 4/4		< 0.2	·····		•••		_												
524116	205 274	45	< 0.2	0.49	46	100 30	< 0.5	2	4.85	< 0.5	9	37 17	520 148	3.06	< 10 < 10	< 1 < 1	0.24 0.15	< 10 < 10	1.96	835 895
524117 524118	205 274 205 274	15 10	< 0.2	0.69	-	130	< 0.5	< 2	3.67	< 0.5		12	148	2.87	< 10	< 1	0.19	< 10	1.37	955
524119	205 274	5	< 0.2	0.77	12	20	< 0.5	< 2	6.64	< 0.5	14	9	62	2.61	< 10	< 1	0.24	< 10	2.56	1080
524120	205 274	10	< 0.2	0.91	12	20	< 0.5	4	5.27	< 0.5	16	17	122	4.03	< 10	< 1	0.54	< 10	2.37	1220.
524121	205 274	10	< 0.2	0.66	8	40	< 0.5	2	9.43	< 0.5	17	10	144	3.16	< 10	< 1	0.31	< 10	3.79	1340
524122	205 274	< 5	< 0.2	2.68		110	< 0.5	< 2	2.66	< 0.5	8	11 12	41 289	2.92	< 10 < 10	< 1 1	0.32 0.35	< 10 < 10	0.87 1.24	710 960
524123 524124	205 274 205 274	10 5	< 0.2	1.64 2.16	4 10	230 90	< 0.5	< 2	3.11	< 0.5	10	12	34	2.92	< 10	< 1	0.23	< 10	1.03	810
524125	205 274	< 5	< 0.2	1.78	24	550	< 0.5	6	3.45	< 0.5	9	12	117	3.04	< 10	< ī	0.33	< 10	1.22	830
524126	205 274	< 5	< 0.2	1.28	78	940	< 0.5	< 2	2.74	< 0.5	8	10	99	2.82	< 10	< 1	0.14	10	0.96	770
524127	205 274	< 5	< 0.2	1.93	14	600	< 0.5	4	4.01	< 0.5	11	17	97	3.31	< 10	1	0.29	< 10	1.33	975 870
524128	205 274	5	< 0.2 < 0.2	2.37 1.87	34	150 100	< 0.5	< 2	3.12 3.16	< 0.5	10	18 29	109 101	3,24	10 < 10	< 1 < 1	0.27	< 10 < 10	1.14 1.15	910
524129 524130	205 274	< 5	< 0.2	1.47	40	700	< 0.5	2	3.02	< 0.5	ž	15	17	2.78	10	< 1	0.21	< 10	1.11	\$65
524131	205 274	5	< 0.2	1.04	32	1060	< 0.5	2	3.65	< 0.5	10	15	151	3.06	< 10	1	0.11	< 10	1.35	\$55
524132	205 274	5	< 0.2	1.15	18	1520	< 0.5	< 2	3.60	< 0.5	9	19	93	2.84	< 10	< 1	0.31	< 10	1.23	970
524133	205 274	5	< 0.2	0.78	26	60	< 0.5	< 2	3.63	< 0.5	10	20	83	3.35	< 10	< 1	0.13	< 10	1.31	1045
524134	205 274	< 5	< 0.2	0.77	32	40	< 0.5	< 2	3.72	< 0.5	10 12	15 12	162 117	3,72 3,10	< 10 < 10	< 1	0.27 0.19	10 < 10	1.49	1245 1450
524135	205 274	10	< 0.2	0.59	18	50	< 0.5	< 2	•. >>	< 0.5		**				<u> </u>				
524136	205 274	10	< 0.2	0.56	22	30 20	< 0.5	< 2	6.32	< 0.5 < 0.5	10 B	16 8	227 120	3.43 2.76	< 10 < 10	< 1 1	0.13 0.19	< 10 < 10	2.42	1140 490
524137 524138	205 274	< 5	< 0.2 < 0.2	0.97 3.51	32 38	20	< 0.5	2	4.29	< 0.5	16	19	169	4.15	< 10	< 1	0.30	< 10	1.38	895
524139	205 274	10	< 0.2	3.72		160	< 0.5	< 2	4.80	< 0.5	19	17	173	4.69	< 10	2	0.51	< 10	1.89	995
524140	205 274	< 5	< 0.2	3.10	14	200	< 0.5	< 2	8.31	< 0.5	18	19	249	4.29	< 10	< 1	0.58	< 10	2.51	1165
														_			•	_		

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number :1-B Total Pages :3 Certificate Date: 25-JUN-92 Invoice No. :19216245 P.O. Number : Account HPQ

,

Project : 1702 Comments: ATTN: FRED DALEY CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9216245

															· · · ·	
SAMPLE	PREP CODE	No ppm	Na X	Ni ppm	P ppm	Pb ppm	SD pp=	Sc pps	8r ppn	Tİ %	T1 ppe	U ppm	V ppe	ppm M	Zn ppm	
24101	205 274	2	0.06	11	910	6	< 2	7	51	0.10	< 10	< 10	217	< 10	28	······································
24102	205 274	ĩ	0.04	- 9	930	4	4	ż	62	0.04	< 10	< 10	135	< 10	28	
24103	205 274	1	0.04	8	1020	4	24	7	66	0.05	< 10	< 10	144	< 10	38	
24104	205 274	1	0.05	10	640	10	4	6	11	0.11	< 10	< 10	178	< 10	30 28	
24105	205 274	1	0.04	9	1050	8	4		130	0.02	< 10	< 10	157	< 10	4.	
24106	205 274	1	0.06	16	1070	28	18		131	0.15	< 10	< 10	225	< 10	40	
24107	205 274	2	0.06	17	1090		2	67	128 190	0.16	< 10 < 10	< 10 < 10	245 234	< 10 < 10	40 34	
24108	205 274	1 2	0.05	13 15	1250 1110	< 2	6	.	174	0.13 0.13	< 10	< 10	227	< 10	36	
24109 24110	205 274	2	0.05	10	980	1	2	9	151	0.08	< 10	< 10	166	< 10	30	
74114																
24111	205 274	2	0.04	5	1450	< 2	18	11		< 0.01 < 0.01	< 10 < 10	< 10 < 10	109 64	< 10 < 10	34 38	
24112 .	205 274	< 1	0.02 0.05	8 7	1040 590	2	4	7		< 0.01	< 10	< 10	67	< 10	26	
24113 24114	205 274	< 1 9	0.03	÷	650	1	92	ć		< 0.01	< 10	10	78	< 10	60	
24115	205 274	< í	0.05	16	1200	2	6	9		< 0.01	< 10	< 10	143	< 10	34	
												. 10	94	< 10	28	
24116	205 274	3	0.04	8	850 1290	6 2	4	10 11	136 · 253	< 0.01 0.01	< 10 < 10	< 10 < 10	105	< 10	32	
24117	205 274		0.04		1560	2	2	11	321	0.01	< 10	< 10	110	< 10	56	
24118 24119	205 274	21	0.03	, i	1290	1	2	Ĩ	241	0.01	< 10	< 10	99	< 10	34	
24120	205 274	ki	0.02	5	1560	ē	ī	17	175	0.01	< 10	< 10	106	< 10	60	
24121	205 274	< 1	0.02	11	1180	6	4	9	300	< 0.01	< 10	< 10	109	10	44	
524122	205 274		0.99	- 1	1560	- i	< 2	ź	648	0.12	< 10	< 10	131	< 10	34	
524123	205 274	< ī	0.35	3	1420	4	< 2	7	1015	0.07	< 10	< 10	126	< 10	40	
524124	205 274	< 1	0.43	3	1540	4	2	5	323	0.07	< 10	< 10	127	< 10	40	
524125	205 274	< 1	0.36	3	1790	8	2	8	362	0.04	< 10	< 10	129	< 10	36	
524126	205 274	< 1	0.07	2	1400	8	2	8	153	0.02	< 10	< 10	112	< 10	52	
524127	205 274	< 1	0.05	3	1530	6	6	8	165	0.05	< 10	< 10	135	< 10	54	
24128	205 274	< 1	0.22	3	1510	12	4	6	973	0.11	< 10	< 10	157	< 10	50	
24129	205 274		0.10	3	1180 1010	26	4	75	429 737	0.09	< 10 < 10	< 10 < 10	170 1 46	< 10 < 10	46 38	
24130	205 274	< 1	0.07		1010	•	4 ·	3	, 31	v.v3	<u> </u>	× 4V	144	~ **		
24131	205 274	< 1	0.04	5	1560	10	4	10	279	0.01	< 10	< 10	131	< 10	44	
24132	205 274	< 1	0.07	3	1190	4	4	7	293	0.03	< 10	< 10	108 126	< 10 < 10	42 52	
24133	205 274		0.06 0.05	4	1300 1 490	8	4	10 9	214 197 -	0.01	< 10 < 10	< 10 < 10	118	< 10	54 60	
24134 24135	205 274		0.03	1	1290		1	8	249	0.01	< 10	< 10	126	10	56	
24136	205 274	< 1	0.03	1	1600	2	4	14	225 278	0.04	< 10	< 10	262 126	< 10 < 10	44	
24137	205 274		0.17 1.75	2	1360 1960	< 2 < 2	2	1	603	0.01 0.12	< 10 < 10	< 10 < 10	217	< 10	56	
524138 524139	205 274		1.75	5	1870	< ∡ ₿	1	11	459	0.16	< 10	< 10	291	< 10	62	
524140	205 274	21	1.16	Ğ	1530	10	2	14	1065	0.13	< 10	< 10	350	10	60	
				<i>,</i>												_
							-									
																Thai OMa
														CERTIFIC	ATION:	V

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number :2-A Total Pages :3 Certificate Date: 25-JUN-92 Invoice No. : 19216245 P.O. Number : Account :HPQ

Project : 1702 Comments: ATTN: FRED DALEY CC: TOR BRULAND

											CE	RTIFI	IFICATE OF ANALYSIS				A9216245				
SAMPLE	PREP CODE		Au-AA ppb	hg ppn	11 %	As ppm	Ba ppm	Be	Bi ppm	Ca ¥	cđ ppm	Co ppm	Cr ppn	Cu pps	70 X	Ga. pps	Eg pp#	Т Х	la pp=	Ng X)in ppm
824141 824142 824143 524143 524144 524145	205 205 205 205 205	274 274 274	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.74 2.70 1.31 1.04 1.32	6 < 2 < 2 < 2 2	130 200 30 240 40	< 0.5 < 0.8 < 0.5 < 0.5 < 0.5	< 2 2 2 2 2 2 2 2 2 2 2	6.33 5.79 2.04 4.05 4.26	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 17 13 14 15	20 19 8 38 16	142 191 61 29 42	4.52 3.75 3.93 3.97 4.19	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.55 0.44 0.10 0.16 0.07	< 10 < 10 < 10 < 10 < 10 < 10	1.84 1.93 1.23 1.73 1.83	1035 1010 905 955 950
524146 524147 524148 524148 524149 524150	205 205 205 205 205 205	274 274 274	5 5 10 10 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.46 1.00 0.79 0.56 1.20	6 < 2 < 2 14 6	80 120 390 50 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 6 4 < 2 < 2	3.99 3.24 5.69 7.80 3.88	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 20 16 16 16	14 66 26 26 50	40 48 54 109 143	4.67 4.74 4.53 3.74 \$.06	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.09 0.09 0.19 0.15 0.12	< 10 < 10 < 10 < 10 < 10 < 10	2.01 2.06 2.15 2.90 1.72	920 680 1090 1050 950
524151 524152 524153 524153 524154 524155	205 205 205 205 205	274 274 274	< 5 5 5 5 5 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.75 0.82 1.04 0.93 1.08	6 24 < 2 •< 2 2	30 50 90 70 300	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 6 2	8.59 8.88 6.90 1.86 1.98	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 39 20 30 17	34 49 70 53 153	76 52 60 51 60	5.34 7.59 8.96 8.84 3.93	< 10 10 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.09 0.06 0.08 0.07 0.22	< 10 < 10 < 10 < 10 < 10 < 10	3.78 3.55 1.99 1.58 2.15	1675 1405 1100 730 405
524156 524157 524158 524159 524159 524160	205 205 205 205 205 205	274 274 274	5 15 10 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.08 1.30 1.63 1.79 0.94	2 16 10 12	320 80 70 120 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2 2	2.37 3.89 2.35 2.53 3.83	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 19 16 21 27	8 42 42 112 63	124 57 133 49 98	2.83 5.19 4.98 5.49 7.54	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.52 0.29 0.20 0.40 0.13	< 10 < 10 < 10 < 10 < 10 < 10	1.03 2.04 1.50 1.95 1.98	1020 850 710 725 1600
524161 524162 524163 524164 524164 524165	205 205 205 205 205 205	274 274 274	15 < 5 < 5 < 5 10	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.50 0.86 1.41 1.37 1.67	34 < 2 6 2 10	20 40 40 60 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 < 2 < 2 < 2 < 2 < 2	5.56 4.49 2.51 2.37 2.97	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	33 21 19 13 14	69 52 71 25 22	169 46 60 42 57	6.86 5.55 5.33 3.77 4.14	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.05 0.16 0.20 0.17 0.11	10 < 10 < 10 < 10 < 10 < 10	2.34 1.73 1.68 1.13 1.53	1550 1060 710 640 580
524166 524167 524168 524169 524170	205 205 205 205 205 205	274 274 274	5 10 20 25 10	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.02 1.45 1.22 0.82 0.59	< 2 6 38 68 18	\$0 70 110 30 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	3.80 3.53 4.05 7.73 7.69	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 18 21 29 16	35 44 35 55 21	104 148 169 200 135	3.40 5.41 4.62 5.29 4.45	< 10 10 < 10 < 10 < 10 < 10	< 1 1 < 1 1 < 1	0.07 0.09 0.08 0.26 0.13	< 10 < 10 < 10 < 10 < 10 < 10	1.37 1.74 1.52 3.39 2.91	670 735 605 1130 985
524171 524172 524173 524174 524175	205 205 205 205 205	274 274	15 10 5 15 35	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.69 1.58 1.47 2.82 1.01	< 2 12 2 < 2 < 2 < 2		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 6 4 < 2	5.07 3.35 4.29 2.98 3.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 25 19 19 8	30 36 46 57 23	62 87 70 35 433	4.08 4.28 5.16 5.20 2.73	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.17 0.15 0.33 0.62 0.13	10 < 10 < 10 < 10 < 10 < 10	1.82 1.97 1.87 1.67 0.97	825 700 955 700 365
524276 524177 524178 524178 524179 524180	205 205 205 205 205	274 274 274	< 5 25 40 50 25	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.06 1.17 0.58 0.78 0.71	2 < 2 12 8 < 2	400 180 310 280 380	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 2 3	4.92 6.21 2.88 1.86 2.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	27 23 7 8 7	204 198 41 36 37	149 232 759 587 437	4.79 4.82 2.37 2.36 2.44	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.19 0.23 0.17 0.11 0.09	< 10 < 10 < 10 < 10 < 10 < 10	3.57 2.29 1.31 1.41 1.25	920 715 500 345 330
· · · · · · · · · · · · · · · · · · ·	_1								<u></u>				- · · · · · · · · · · · · · · · · · · ·		CERTIFIC	CATION:	H	ai	Ð	Ma	

Analytical Chemists * Geochemists * Registered Asseyers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6 Page Number :2-B Total Pages :3 Certificate Date: 25-JUN-92 Invoice No. :19216245 P.O. Number : Account :HPQ

. .

Project : 1702 Commenta: ATTN; FRED DALEY CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9216245

SIMPLE	PREP CODE	No ppm	Ha X	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc D D	Sr p pa	Tİ X	71 ppm	U ppm	V ppm	W ppm	Zn ppm	
524141 524142 524143	205 274 205 274 205 274	< 1 < 1 2	0.98 0.98 0.06	5 5 3	1770 1790 1110	4 < 2 8	4 4 2	13 12 5	588 802 72	0.15 0.12 0.04	< 10 < 10 < 20	< 10 < 10 < 10	269 195 137	< 10 < 10 < 10	62 58 54 46	
524144 524145	205 274 205 274	<1 <1	0.05	8	900 1170	6 6	6 2	11 9	133 150	0.09 0.08	< 10 < 10	< 10 < 10	142 145	< 10 < 10	48	
524146 524147	205 274	<1 <1	0.05	7 23	1130 440	2	2	10 11	173 262	0.13 0.17	< 10 < 10	< 10 < 10	171 164	< 10 < 10	38 30	
524148	205 274	<1	0.03	11 10	1130 830	4	4	17 11	240	0.01	< 10 < 10	< 10 < 10	141 117	< 10 < 10	46 40	
524149 524150	205 274 205 274		0.07	13	1130	< 2	2	19	240	0.15	< 10	< 10	216	< 10	50	
524151 524152	205 274	<1 <1	0.06	10 37	850 480	6	6	23 46	386 471	0.05	< 10 < 10	< 10 < 10	148 239	< 10 < 10	50 42	_
524153	205 274	< 1	0.02	22	510	2	6	51	530	0.09	< 10	< 10	314	< 10	42	
824154	205 274		0.04	27 28	320 750	< 2 < 2	4	9	120 249	0.23 0.13	< 10 < 10	< 10 < 10	279 119	< 10 < 10	34 22	
524155					400				101	0.01	< 10	< 10	65	< 10	52	
524156 524157	205 274	<1	0.08 0.05	14	1690	< 2		11	178	0.09	< 10	< 10	197	< 10	34	
524158	205 274		0.07 0.10	15 24	1600 1220	< 2	2 < 2	5	144 120	0.12	< 10 < 10	< 10 < 10	228 256	< 10 < 10	28 32	
524159 524160	205 274 205 274	1	0.04	18	1860	1	4	18	217	0.07	< 10	< 10	236	< 10	62	
524161	205 274	4	0.03	20 14	2050	6	6	35	281 223	0.01	< 10 < 10	< 10 < 10	216 192	< 10 < 10	58 40	
524162 524163	205 274		0.11	16	1990	< 2	4	5	129	0.08	< 10	< 10	208	< 10	30	
524164 524165	205 274		0.14	9 11	1550 1740	< 2	< 2	4	106 107	0.06 0.07	< 10 < 10	< 10 < 10	158 169	< 10 < 10	28 22	
524166	205 274	6	0.06	12	840	< 2	< 2	9	114	0.06	< 10	< 10	102	< 10	30	
524167	· 205 274	3	0.08	14	1560 1740	3	4	10 12	121 119	0.10 0.06	< 10 < 10	< 10 < 10	209 144	< 10 < 10	36 26	
524168 524169	205 274	20	0.09 0.03	12 42	1570	;	ĉ	27	221	0.04	< 10	< 10	174	< 10	40	
524170	205 274	2	0.04	9	1080	2	6	14	199 <	c 0.01	< 10	< 10	124	< 10	42	
524171	205 274	2	0.05	10 12	2220 1710	< 2	2	19	203 139	0.02	< 10 < 10	< 10 < 10	148 171	< 10 < 10	32 32	
524172 524173	205 274	<1	0.33	18	1880	< 2		16	234	0.08	< 10	< 10	222	< 10	40	
524174 524175	205 274	< 1	0.92	18 13	1790 1330	< 2	2	7	233 83	0.19 0.01	< 10 < 10	< 10 < 10	246 136	< 10 < 10	36 18	
										0.04	< 10	< 10	141	20	48	
524176 524177	205 274	< 1 1	0.03 0.02	149 107	940 820	< 2	2	22 25	195 192	0.02	< 10	< 10	128	20	44	
524178	205 274	i < 1	0.02	26	800	< 2	4	10		0.01	< 10 < 10	< 10 < 10	140 169	< 10 < 10	18 16	
524179 524180	205 274	1 < 1	0.04 0.05	16 18	720 720	< 2 < 2	2	₽ 7	73 78 <	0.01	< 10	< 10	176	< 10	18	
								<u> </u>		<u>.</u>						
														CERTIFIC		Whai OTha

Analytical Chemists * Geochemists * Registered Asenvers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number :3-A Total Pages :3 Certificate Date: 25-JUN-92 Invoice No. 19216245 P.O. Number Account :HPQ

Project : 1702 Comments: ATTN: FRED DALEY CC: TOR BRULAND

BARPLE PREP Au-AA Ag Ai As Ba Ba Bi Ca Cd Co Cu Fe Ga Bg X La Mg S24181 205 276 40 < 0.2 0.73 < 2 300 < 0.5 < 2 2.29 < 0.5 7 29 518 2.79 < 10 < 1 0.13 < 10 1.41			 								CE	RTIFI	CATE	OF A	NAL	YSIS		A9216	245		
524181 205 274 40 < 0.2 0.73 < 2 300 < 0.5 < 2 2.29 < 0.5 7 29 518 2.79 < 10 < 1 0.13 < 10 1.61																	Hg ppm	K %			Mn ppn
	20	105 27	40	< 0.2	0.73	< 2	300	< 0.5	< 2	2.29	< 0.5	7	29	518	2.79	< 10	< 1	0.13	< 10	1.61	355
	2																				
CERTIFICATION: Thai DMA																		0		- ,	

Analytical Chemists * Geochemists * Registered Assayars 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number : 3-B Total Pages : 3 Certificate Date: 25-JUN-92 Invoice No. : 19216245 P.O. Number : HPQ Account

*

Project : 1702 Commenta: ATTN: FRED DALEY CC: TOR BRULAND

			<u> </u>								CE	RTIF	CATE	OF A	NAL	rsis	A9216245	
SANDLE	PR		Mo Ppm	Ma X	Ni ppn	P Ppm	Pb p pm	sb ppn	Sc Dpm	Sr pp n	Tİ X	T1 Ppm	U ppm	V ppa	W DDM	Zn ppm		
524181	205	274	3	0.05	16	1180	2	2	11	92	0.01	< 10	< 10	168	< 10	16		-
	ļ																	
				<u>-</u> -					<u> </u>						<u> </u>		Thai OMa	

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1**Z6**

Page Number :1-A Total Pages :1 Certificate Date: 25-JUN-92 Invoice No. :19216246 P.O. Number Account HPQ

A0216246

Project : 1702 Comments: ATTN: FRED DALEY CO: TOR BRULAND

CERTIFICATE OF ANALVEIS

														INAL	1313		A9216			
SAMPLE	PREP CODR	Ju-JA ppb) Jg ppm	21 X	Ås ppm	Ba ppm	Be ppn	Bi P p m	Ca.	Cd ppm	Co ppm	Cr ppm	Cu pps.	7a %	Ga. ppm	Hg ppm	K %	La ppa	XC X	Mn ppn
524182 524183 524184 524184 524185 524186	205 274 205 274 205 274 205 274 205 274 205 274	40 45 40 30 50	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.50 0.73 0.76 0.97 0.55	48 78 116 130 28	230 230 290	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 2	3.90 3.07 3.00	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 9 8 13	53 38 51 51 38	514 558 845 713 510	2.50 3.19 2.74 2.52 2.23	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 7 2 < 1	0.27 0.38 0.37 0.44 0.11	< 10 < 10 < 10 < 10 < 10 < 10	1.64 1.76 1.47 1.37 1.03	320 460 340 285 275
524187 524188 524189 524199 524190 524191	205 274 205 274 205 274 205 274 205 274 205 274	20 20 35 45 35	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.86 0.84 0.70 0.63 0.80	4 10 56 30 \$	110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2.48 2.41 2.83 2.85 2.76	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 8 7 13 14	46 65 50 46 46	495 473 669 907 657	2.35 2.29 2.64 2.45 2.36	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 2 < 1 < 1	0.17 0.23 0.26 0.19 0.17	< 10 < 10 < 10 < 10 < 10 < 10	1.08 1.06 1.38 1.35 1.17	300 295 305 315 295
524192 524193 524194 524195 524196	205 274 205 274 205 274 205 274 205 274 205 274	35 80 40 90 50	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.70 0.55 0.60 0.75 0.57	50 50 94 186 56	230	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2.47 2.13 3.01 2.21 2.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 5 9 9	32 62 53 44 49	392 888 464 1135 783	2.36 2.04 1.98 2.33 2.24	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.28 0.32 0.35 0.38 0.31	< 10 < 10 < 10 < 10 < 10 < 10	1.42 1.10 1.39 1.39 1.51	300 245 320 285 285
524197 524198 524199 524200 524201	205 274 205 274 205 274 205 274 205 274 205 274	40 70 70 70 40	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.41 0.55 0.66 0.52 0.54	36 44 2 24 32	250 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 2 2	2.12 2.48 2.08 2.81 2.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 6 5 6	67 64 57 72 59	416 589 619 470 592	1.82 1.85 1.71 1.89 2.02	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.23 0.29 0.17 0.23 0.25	< 10 < 10 < 10 < 10 < 10 < 10	1.17 1.32 1.40 1.37 1.26	280 275 260 330 280
524202 524203 524204 524205 524205 524206	205 274 205 274 205 274 205 274 208 274 208 274	35 55 45 40 180	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	0.85 1.05 1.04 1.14 0.85	2 < 2 2 36 10	230 140 60 170 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2 < 2 < 2	2.77 2.77 2.98 3.97 2.87	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 20 6	46 51 60 55 56	593 998 772 643 882	1.95 2.13 1.01 2.69 1.04	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.18 0.16 0.17 0.35 0.22	< 10 < 10 < 10 < 10 < 10 < 10	1.51 1.30 1.07 1.54 1.00	365 335 365 475 340
524207	205 274	35	< 0.2	1.02	< 2	200	< 0.5	< 2	3.10	< 0.5	6	50	419	1.62	< 10	< 1	0.24	< 10	0.92	345
						·			···		<u> </u>							A	Ma	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z8 Page Number :1-B Total Pages :1 Certificate Date:25-JUN-92 Invoice No. :19216246 P.O. Number : Account :HPQ

. .

Project : 1702 Comments: ATTN: FRED DALEY CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9216246

SAMPLE	PRE		Mo ppa	Ka. K	Ni ppm	P ppm	Pb ppm	Sib ppm	Sc ppz	Sr Ti pp n h		u Der	A A A	W pp n	Zn ppz	
24182	205	274	24	0.05	8	1420	< 2		10	108 < 0.01		< 10	88	10	18	
24183	205	274	1	0.05	8	1180	4	12	12	239 < 0.01		< 10	112	10	20	
24184	205		6	0.08	9	1430	2	40	12	147 < 0.01		< 10	116	10	16	
24185	205		9	0.07	7	1390	6	20	11 11	116 < 0.01		< 10 < 10	123 154	10 10	14 14	
4186	205	274	7	0.04	8	1490	4	•		137 < 0.01	< 10	< 10	134	10	1e	·
24197	205		6	0.07	7	1380	< 2	2	9	144 0.0		< 10	173	10	18	
24188	205		6	0.10		1400	4	2		131 0.03 151 < 0.01		< 10 < 10	166 143	10 10	16 14	
24189	205		3	0.08	9	1340 1340	6	10	11 11	137 0.01		< 10	148	10	14	
24190 24191	205		23 11	0.08	10	1400	< 2	2	10	120 0.01		< 10	171	10	16	
24192	205		5	0.05	7	1370	< 2	<u>6</u> 2	11	169 < 0.01 141 < 0.01		< 10 < 10	130 104	10 10	18 12	
24193	205		2	0.07	7	1020 930	< 2	2	10	209 < 0.01		< 10	94	10	10	
24194 24195	205		1 10	0.06	6	1430	2	2		169 < 0.01		< 10	103	10	18	
24196	205		4	0.06	7	1250	< 2	2	ý	193 < 0.0		< 10	112	10	14	
24197	205		< 1	0.07	8	800	< 2	2	7	155 < 0.01		< 10	97	10	10	
24198	205		1	0.07	7	1090	2	4	9	152 < 0.02		< 10	92	10	10 12	
24199	205		3	0.07	7	1280	4	< 2	9	113 < 0.01 136 < 0.01		< 10 < 10	117 95	< 10 10	14	
24200	205		27	0.07 0.07	6	1200 1290	< 2	4	10	136 < 0.0		< 10	93	10	14	
24201	405	2/4		0.07		1490	<u> </u>	4	10	133 < 0.0		<u> </u>				
24202	205		7	0.07	8	1330	< 2	< 2	10	153 0.03	-	< 10	125	10	16 18	
24203	205		10	0.09		1170	4	2	1 6	120 0.03 112 < 0.03		< 10 < 10	140 110	10 10	18	
24204	205		13 10	0.08 0.06	8	900 1020	2 < 2	< 2	10	145 0.0		< 10	108	10	20	
24206	205		Ĩ	0.04	i i	780	2	2	5	146 < 0.0		< 10	78	10	18	
24207	205	274	9	0.06	6	760	4	3	5	155 < 0.03	< 10	< 10	84	10	18	
		ļ														
	1 1	[
		1														
		1														
																Thai O'Ma

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z8

Page Number : 1-A Total Pages : 1 Certificate Date: 25-JUN-92 Invoice No. : 19216342 P.O. Number Account HPO

Project : 1702 Comments: ATTN: FRED DALEY OO: TOR BRULAND

											CE	RTIFI	CATE	OF A	NAL	(SIS	/	9216	342		
SAMPLE	PREP		Au-AA ppb). Jg	A1 %	λs ppm	Ba ppm	Be ppn	Bi ppm	Ca %	Cd ppm	Co p pm	Cr ppm	Cu p pa	70 X	Ga. ppm	Hg ppm	K %	La ppa	Ng X	Ma ppa
524205 524209 524210 524211 524212	208 27 208 27 205 2 205 2 205 2 205 2	74 74 74		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.01 0.85 1.31 0.65 0.96	4 22 2 104 20	410 210 390 180 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2.66 2.40 3.12 3.58 6.37	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 7 8 7 11	73 64 54 40 27	296 699 21 539 109	1.84 1.66 2.80 2.29 3.27	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.22 0.21 0.39 0.40 0.55	< 10 < 10 < 10 < 10 < 10 < 10	1.12 1.21 1.17 0.99 2.44	295 290 915 965 1460
524213 524214 524215 524215 524216 524217	205 2 205 2 205 2 205 2 205 2 205 2	74 74 74		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.37 1.09 1.02 0.85 0.66	14 32 26 4 8	470 230 50 190 390	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	2.84 4.35 5.22 3.56 3.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 10 9 8 7	23 31 36 39 57	51 159 159 3 81	4.38 3.22 3.11 2.57 2.69	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.27 0.57 0.48 0.48 0.30	< 10 < 10 < 10 < 10 < 10 < 10	1.40 1.80 2.06 1.37 1.38	1710 1075 990 895 790
524218 524219 524220 524221 524221 524222	205 21 205 21 205 21 205 21 205 21 205 21	74 74 74	35 20 5 60 120	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	0.68 0.67 0.89 0.92 0.78	30 18 20 50 110	120 330 210 170 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 4	3.35 3.19 3.58	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 9 7 6 11	51 39 28 60 61	545 166 17 1175 2770	3.01 3.27 2.96 3.80 4.47	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 4 6	0.29 0.42 0.51 0.37 0.24	< 10 < 10 < 10 < 10 < 10 < 10	1.57 1.49 1.10 1.44 1.50	810 790 885 685 720
524223 524224 524225	205 21	74	230 105 170	0.4 < 0.2 0.4	1.12 0.94 1.15	30 8 12	50 180 160	< 0.5 < 0.5 < 0.5	2 < 2 < 2	2.07 2.44 2.89	< 0.5 < 0.5 < 0.5	18 9 10	86 66 70	5240 1505 4630	5.22 4.49 4.56	< 10 < 10 < 10	< 1 < 1 < 1	0.24 0.12 0.12	< 10 < 10 < 10	1,16 1.07 1.30	630 595 610
																		7		Ma	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 128

Page Number :1-B Total Pages :1 Certificate Date: 25-JUN-92 Invoice No. : 19216342 P.O. Number Account HPQ

,

Project : 1702 Comments: ATTN: FRED DALEY CC: TOR BRULAND

A9216342 **CERTIFICATE OF ANALYSIS**

														_					
SNPLE	PREP CODE	Мо ррж	llia %	Ni p pn	P ppm	Pb pp=	Sb p pa	Sc ppn	8r pp n	Tİ %	T1 ppm	D D	V ppm	N N	Zn ppn				
524208 524209 524210 524211 524211	205 27 205 27 205 27 205 27 205 27 205 27	19 1 < 1 1 < 1	0.02	6 7 9 3 5	830 760 720 770 880	2 6 4 < 2 2	2 4 4 2	5 5 4 6		0.01 0.02 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	92 92 67 34 55	10 < 10 10 10 20	18 18 36 34 38				
524213 524214 524215 524216 524216 524217	205 27 205 27 205 27 205 27 205 27 205 27	4 2 4 2 4 < 1	0.04 0.04 0.05	3 5 3 7 10	1070 1180 920 710 730	6 4 < 1 10 2	< 2 10 10 2 2	7 6 4 9		0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	95 63 77 58 108	20 10 20 10 10	66 28 34 34 24				
524218 524219 524220 524221 524221 524222	205 27 205 27 205 27 205 27 205 27 205 27	4 3 4 7 4 2	0.05 0.05 0.04	9 7 3 8 12	940 1040 1080 930 930	< 2 2 6 4	6 4 2 30 52	8 5 10 9	94 103 < 88 < 134 < 145 <	0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	128 114 81 124 135	10 10 10 10 20	30 24 28 32 40				
524223 524224 524225	205 27 205 27 205 27	6 2	0.06	16 11 12	920 840 820	< 2 < 2 4	6 6 4	8 7 7	96 186 132	0.08 0.09 0.09	< 10 < 10 < 10	< 10 < 10 < 10	161 166 148	10 10 20	28 26 28				<u> </u>
	I				,									ERTIFIC		The	úЭ	Ma	

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 126 Page Number : 1-A Total Pages :1 Certificate Date: 28-JUN-92 Invoice No. : 19216417 P.O. Number : Account : HPQ

Ma

-ai

Project : 1702 Comments: ATTN: FRED DALEY CC: TOR BRULAND

												CE	RTIF	CATE	OFA	NAL	YSIS		A9216	417		
SAMPLE	PREI		Au-AA ppb) PP		11 1 1	Xs ppe	Ba ppn	Be p pm	Bi ppm	Ca %	Cđ ppm	Co D pm	Cr Ppn	Cu p pm	Ia X	Ge ppn	Hg ppn	K X	La ppin	Ng X	Ma ppa
524226 524227 524228 524229 524229 524229	205 205 205 205 205 205	274 274 274	280 335 250 80 40	< 0. < 0. < 0. < 0. < 0.	1. 20. 20.		700 20 58 78 50	320 310 160 160 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	3.22 2.44 2.71 3.14 4.99	0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 15 16 12 15	55 79 68 60 35	5240 5410 3210 1980 655	4.77 3.97 3.41 3.55 4.06	< 10 10 < 10 < 10 < 10 < 10	4 < 1 1 8 < 1	0.17 0.19 0.09 0.24 0.28	< 10 < 10 < 10 < 10 < 10 < 10	1.35 1.17 1.10 1.08 1.95	640 655 640 705 1115
524231 524232 524233 524233 524234 524235	205 205 205 205 205 205	274	5 10 5	< 0. < 0. < 0. < 0. < 0.	22. 21. 21.	71 37 16 02 97	26 6 36 20 32	110 600 340 150 350	0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 2 < 2 < 2 < 2	4.15 2.83 6.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 14 10 12 11	25 26 22 18 19	151 102 137 96 89	3.40 2.99 2.60 2.01 2.71	< 10 < 10 < 10 < 10 < 10 < 10	1 1 < 1 < 1 < 1	0.14 0.10 0.28 0.16 0.14	< 10 < 10 < 10 < 10 < 10 < 10	0.92 1.07 0.68 2.01 2.06	775 920 730 1015 1035
524236 524237 524238 524239 524239	205 205 205 205 205 205	274 274 274	< 5 < 5	< 0. < 0. < 0. < 0. < 0.	2 1. 2 2. 2 1.		46 14 42 50 28	220 60 430 20 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4.66 2.63	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 10 13 10 12	24 15 20 21 17	91 104 98 134 97	2.88 3.26 3.27 2.61 3.02	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 1 < 1 1	0.28 0.16 0.32 0.13 0.47	< 10 < 10 < 10 < 10 < 10 < 10	1,25 0,99 1,34 0,86 0,85	840 870 1100 780 790
524241 524242 524243 524243 524244 524244	205 205 205 205 205 205	274 274 274	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0. 0. 0. < 0.	22. 60. 21.		44 86 26 30 30	210 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	8.49	< 0.5 < 0.5 0.5 < 0.5 < 0.5	12 13 16 16 25	13 14 18 23 21	96 42 70 112 102	2.94 3.22 3.82 3.98 4.98	< 10 < 10 < 10 < 10 < 10 < 10	1 1 < 1 < 1 < 1	0.20 0.34 0.23 0.53 0.33	< 10 < 10 < 10 < 10 < 10 < 10	1.37 0.93 2.95 1.82 2.82	1030 850 1330 1090 1495
524246	205	274	< 5	0.	2 1.	40	12	720	< 0.5	< 2	6.72	< 0.5	18	20	155	3.95	< 10	< 1	0.42	< 10	1.30	1095

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-964-0221

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number :1-B Total Pages :1 Certificate Date: 28-JUN-92 Invoice No. 19216417 P.O. Number . Account HPO

. .

Project : 1702 Comments: ATTN: FRED DALEY CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9216417

A A	-	-		

	PREP	Mo	lia	Ni	P	Pb	\$b	Sc	8r	Tİ X	71	Ū	Y	¥	Zn	
SAMPLE	CODE	pp	*	ppa	pp	ppz	PP	ppi	ppe	*	pp n	pp	pp	ppa	ppa	
24226	205 274	32	0.04	11	1020	4	44	9	125	0.02	< 10	< 10	132	20	46	
24227	205 274	4	0.08	13	980	< 2	2.	6	126	0,09	< 10	< 10	154	10	48	
24228	205 274	3	0.04	12	910	2	4		135	0.04	< 10	< 10	120	10	36 32	
24229	205 274		0.07	10	910 1580	< 2	6	10 9	145 173 ·	0.01	< 10 < 10	< 10 < 10	112 121	< 10 < 10	34 78	
24230	205 274	< 1	0.04	•	1940	14	•	y	1/3	C 0.01	< 10	< 10 	141	× 1v		
24231	205 274		0.06	4	1600	6	2	9	303	0.02	< 10	< 10	146	< 10	68	
24232	205 274		0.05	3	1420	2	< 2	7	263	0.07	< 10	< 10	122	< 10	64	
24233	205 274		0.06	2	1520	12	< 3	Ę	186 194	0.08 0.04	< 10 < 10	< 10 < 10	109 88	< 10 < 10	52 50	
24234	205 274	<1<1	0.04 0.05	4	1410 1330	6 12	2	5	201	0.03	< 10	< 10	91	< 10	52	
24235	405 4/4		0.03		1330		•				<u> </u>					
24236	205 274	< 1	0.08	5	1800	6	2	7	170	0.04	< 10	< 10	104	< 10	48	
24237	205 274		0.04	1	1770	é	2		165	0.05	< 10	< 10 < 10	130 127	< 10 < 10	54 60	
24238	205 274		0.31 0.06	3	1380 1450	6 10	2	8 5	338 180	0.07 0.11	< 10 < 10	< 10	125	< 10	64 64	
24239 24240	205 274		0.71	3	1720	6	2	5	298	0.15	< 10	< 10	144	< 10	58	
			<u> </u>								<u> </u>					
24241	205 274	< 1	1.04	2	1680	2	4	7	157	0.05	< 10	< 10	134	< 10	50	
24242	205 274		1.07	3	1910	< 2	4	6	471	0.08	< 10 < 10	< 10 < 10	157 102	< 10 < 10	50 82	
24243	205 274		0.02 0.09	5	1920 1510	6 < 2	6	9 9	115	< 0.01	< 10	< 10	107	< 10	64	
24244 24245	205 274		0.02	9	1790	6	6	13	159	0.01	< 10	< 10	89	< 10	106	
24246	205 274		0.06	5	1870	2	2	10	834	0.08	< 10	< 10	210	< 10	60	
				٩	.											
	╶┺═┈┷═┈┙	. <u></u>			<u></u>	<u></u>	<u> </u>							ERTIFIC		Thai O'Ma

Ansiytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-964-0221

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 126

Page Number :1-A Total Pages :2 Certificate Date: 29-JUN-92 Invoice No. :19216528 P.O. Number : Account HPQ

,

Project : 1702 Commenta: ATTN: FRED DALEY OC: TOR BRULAND

										CE	RTIFI	CATE	OF A	NAL	/SIS		A9216	528		
SAMPLE	PREP CODE	л л-уу рор	Ag ppm	21 %	Хя рра	Ba ppn	Be	Bi ppm	Ca.	Cd ppm	Co	Cr ppa	Cu p pm	70 X	Ga. ppa	Hg ppm	K X	La	Ng Ng	Mn ppm
524247 BIG	205 274	30	< 0.2	0.93	66	890	< 0.5	< 2	4.14	< 0.5	13	48	293	3.72	10	3	0.40	< 10	1.59	785
524247 #WALL 524248	205 274	10	< 0.2 < 0.2	0.94 1.15	54 238	670 900	< 0.5 < 0.5	< 2	4.73 3.54	< 0.5 < 0.5	14 21	31 61	294 2070	4.16 5.54	10 10	3	0.47	< 10 < 10	1.88	860 920
B24249	205 274	10	< 0.2	1.42	10	860	< 0.5	< 2	4.99	< 0.5	12	17	163	3.62	10	< î	0.78	< 10	1.29	1020
524250	205 274	5	< 0.2	1.80	16	370	< 0.5	< 2	6.36	< 0.5	9	12	113	3.02	10	< 1	0.96	< 10	0.82	1170
524251	205 274	5	< 0.2	1.41	6	560	< 0.5	< 2	4.12	< 0.5	11	18	93	3.30	10	< 1	0.70	< 10	1.40	1065
524252 524253	205 274	< 5	< 0.2	1.01 0.78	6 104	920 830	< 0.5 < 0.5	< 2 < 2	3.59 2.66	< 0.5 < 0.5	9 11	21 24	102 578	3.06 3.41	10 10	< 1 < 1	0.50	< 10 < 10	1.48	845 840
524254	205 274	10	< 0.2	0.94	104	700	< 0.5	< 2	4.27	< 0.5	15	35	176	4.12	10	< 1	0.50	< 10	2.64	1100
524255	205 274	10	< 0.2	0.69	16	790	< 0.5	< 2	3.44	< 0.5	14	18	141	3,93	10	< 1	0.39	< 10	2.12	1060
524256	205 274	40	< 0.2	0.76		\$20	< 0.5	< 2	3.49	< 0.5	12	24	588	3.46	< 10	1	0.43	< 10	2.04	805
524257 524258	205 274	< 5	< 0.2 < 0.2	0.53 0.62	22	970 730	< 0.5	< 2	4.61 3.49	< 0.5 < 0.5	12 13	19 19	114 142	3.68	< 10 < 10	1 < 1	0.30	< 10 < 10	1.95 1.93	930 920
524259	205 274	< 5	< 0.2	0.60	22	660	< 0.5	22	3.76	< 0.5	11	15	114	3.34	< 10	< 1	0.34	< 10	1.38	865
524260	205 274	< 5	< 0.2	0.86	14	520	< 0.5	< 2	4.81	< 0.5	12	20	106	3.62	< 10	< ī	0.47	< 10	1.68	1025
524261	205 274	< 5	< 0.2	0.95	16	1040	< 0.5	< 2	4.23	< 0.5	13	27	85	3.70	10	< 1	0.43	< 10	1.88	950
524262	205 274	< 5	< 0.2	1.32		280	< 0.5	< 2	4.26	< 0.5	12 13	31 19	111 125	3.64	10	< 1	0.58	< 10 < 10	1.54	910 915
524263 524264	205 274	< 5	< 0.2	1.09	32	330 670	< 0.5 < 0.5	< 2	3.86	< 0.5 < 0.5	10	20	125	2.95	10 < 10	< 1 < 1	0.67	< 10	2.12	1195
524265	205 274	< 5	< 0.2	1.12	14	90	< 0.5	2	5.85	< 0.5	10	21	134	3.43	10	₹ 1	0.69	< 10	2.19	1380
524266	205 274	< 5	< 0.2	1.42	8	240	< 0.5	< 2	4.38	< 0.5	10	17	93	3.21	10	< 1	0.66	< 10	0.90	1115
524267	205 274	5	< 0.2	1.95	4	340	< 0.5	2	4.57	< 0.5	14	26	132	3.85	10	1	0.63	< 10	1.52	1100
524268 524269	205 274	< 5 5	< 0.2 < 0.2	1.56 1.43	10	570 900	< 0.5 < 0.5	2 < 2	5.86 4.69	< 0.5 < 0.5	15 13	44 21	116 120	4.22 3.46	10 10	1	0.64	< 10 < 10	2.00 1.38	1295 1085
524270	205 274	10	< 0.2	1.10	10	500	< 0.5	< 2	8.52	< 0.5	9	16	110	2.92	< 10	< 1	0.70	< 10	0.95	1270
524271	205 274	5	< 0.2	0.84	18	1620	< 0.5	2	6.92	< 0.5		15	219	2.63	< 10	< 1	0.55	< 10	1.08	1350
524272	205 274	< 8	< 0.2	0.62	< 3	\$30	< 0.5	< 2	8.26	< 0.5		15	69	2.84	< 10	< 1	0.51	< 10	1.42	975
524273 524274	205 274	< 5 < 5	< 0.2	0.78	< 2	500 540	< 0.5	1	5.04 7.07	< 0.5		10	81 161	2.59	< 10 < 10	< 1 < 1	0.47 0.51	< 10 < 10	1.39	965 1110
524275	205 274	< 5	< 0.2	0.70	2	830	< 0.5	2	5.02	< 0.5	6	ī	30	2.04	< 10	< 1	0.43	< 10	1.18	715
524276	205 274	5	< 0.2	1.67	26	90	< 0.5	< 2	2.73	< 0.5	8	26	121	3.18	20	< 1	0.15	< 10	1.05	865
524277	205 274	< 5	< 0.2	2.54	20	100	< 0.5	< 2	1.91	< 0.5	.9	18 25	98	3.24	30	< 1 1	0.25	< 10 < 10	0.94 1.36	\$05 910
524278 524279	205 274	< 5	0.2 < 0.2	2.96 1.21	10	120 530	< 0.5 < 0.5	4	4.27 3.78	< 0.5	12 10	13	119 100	3.08	30 10	< 1	0.14 0.68	< 10	1.50	1015
524280	205 274	25	0.2	3.43	22	620	< 0.5	< 2	4.98	< 0.5	12	29	186	3.63	30	ì	0.07	< 10	1.21	1060
524281	205 274	< 5	< 0.2	1.16	16	1580	< 0.5	4	3,66	< 0.5	9	11	109	2.86	10	< 1	0.51	< 10	1.27	1015
524282	205 274 205 274	5	< 0.2	0.89	46	260	< 0.5	< 2	4.95	< 0.5		14	131	2.98	< 10	1	0.45	< 10	2.02	830 595
524283 524284	205 274 205 274	10	< 0.2 < 0.2	1.11 1.42	32 48	50 140	< 0.5	< 2	4.08 2.46	< 0.5 < 0.5	11	14 21	44	3.32	10 20	1	0.25 0.23	< 10 < 10	1.55 1.24	575
524285	205 274	< 5	< 0.2	1.32	92	780	< 0.5	< 2	3.63	< 0.5	12	12	68	3.56	20	< 1	0.40	< 10	1.67	975
L		<u>. </u>							<u> </u>		<u>.</u>							D	1	
													(CERTIFIC	CATION:_	T.	a	\mathcal{D}'	ma	

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-964-0221

To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number : 1-B Total Pages : 2 UN-92 6528

Project : 1702 Comments: ATTN: FRED DALEY CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9216528

Certificate Dat Invoice No. P.O. Number	1921
Account	HPO

	CERTIFICATE OF ANALTSIS A9210														
Sample	PREP CODE	Mo ppm	jia 1	ni ppa	ppa. P	Pb ppm	SD 979	Sa ppn	Sr Ti ppn %	T1 ppm	U ppa	V ppa	W ppa	In ppa	
24247 BIG	205 274	2	0.05	7	1070	4	26	10	270 < 0.01 314 < 0.01	< 10	< 10	92 98	< 10 < 10	50 52	
24247 SUNL L 24248	205 274	3	0.02	15	1190 1260	< 2	24	12 17	196 0.01	< 10 < 10	< 10 • 10	149	< 10	46	
24249	205 274	< 1	0.04	3	1460	2	2	10	261 0.02	< 10	< 10	116	< 10	46	
24250	205 274	< 1	0.02	1	1640	6	4	7	312 0.03	< 10	< 10	106	€ 10	44	
24251	205 276	< 1	0.03	2	1300	6	4	9	240 < 0.01	< 10	< 10	128	< 10	50	
24252	205 274	< 1	0.04	3	1120 1190	< 2	4	8 11	245 < 0.01 201 < 0.01	< 10 < 10	< 10 < 10	102 109	< 10 < 10	42 44	
24253 24254	205 274	1 < 1	0.06 0.05	2	1290	1	1	13	252 0.01	< 10	< 10	125	< 10	54	
24255	205 274	< 1	0.04	5	1390	Á.	4	12	211 < 0.01	< 10	< 10	94	< 10	50	
24256	205 274	< 1	0.07	6	1170	2	6	10	268 < 0.01	< 10	< 10	88	< 10	42	
24257	205 274	< 1	0.04	7	1310	< 2	10	11	241 < 0.01	< 10	< 10	92	< 10	46	
24258 24259	205 274	1	0.05 0.05	6	1190 1110	2	2	12 10	188 < 0.01 172 < 0.01	< 10 < 10	< 10 < 10	65 61	< 10 < 10	42 42	
24260	205 274	1	0.06	Ē	1250	2		9	170 < 0.01	< 10	< 10	83	< 10	46	
24261	205 274	< 1	0.06	11	1340	6	2	- 9	198 < 0.01	< 10	< 10	100	< 10	48	······································
24262	205 274	< 1	0.05		1430	< 2	2	10	173 0.01	< 10	< 10	103	< 10	46	
24263 24264	205 274	< 1 < 1	0.03	6	1480 1220	4	2	9	189 < 0.01 237 < 0.01	< 10 < 10	< 10 < 10	75 86	< 10 10	42 48	
24265	205 274	<1	0.02	5	1320	10	4	7	307 < 0.01	< 10	< 10	95	< 10	52	
24266	205 274	2	0.05	4	1400	4	2	7	216 0.02	< 10	< 10	118	10	48	••••••••••••••••••••••••••••••••••••••
524267	205 274	< 1	0.04	.7	1640	2	2		266 0.02 430 0.01	< 10 < 10	< 10	141 131	10 10	68 62	
524268 524269	205 274	< 1	0.03	22	1300 1400	2	2	12 9	358 < 0.01	< 10	< 10 < 10	91	10	62	
524270	205 274	ī	0.02	3	1160	ā	à		482 < 0.01	< 10	< 10	\$7	10	34	
24271	205 274	< 1	0.02	4	1110	2	4	8	586 < 0.01	< 10	< 10	56	10	38	
524272 524273	205 274	< 1 < 1	0.02 0.03	2	1510 1690	< 2	4	9	482 < 0.01 375 0.02	< 10 < 10	< 10 < 10	\$3 96	10 10	36 34	
524274	205 274	< 1	0.03	< 1	1550		2		499 0.01	< 10	< 10	86	10	32	
24275	205 274	< 1	0.01	1	1120	4	2	5	340 < 0.01	< 10	< 10	56	10	28	
24276	205 274	1	0.12	4	1080	10	2	6	127 0.13	< 10	< 10	153	< 10	52	
24277 24278	205 274	2 < 1	1.05 0.07	4	1250 1440	í 1	2	5	360 0.16 339 0.14	< 10 < 10	< 10 < 10	172 187	< <u>10</u> 10	54 58	
524279	205 274	1	0.07	2	1530	< 2	6	9	287 0.05	< 10	< 10	123	10	42	
24280	205 274	1	0.07	4	1410	4	2		1515 0.14	< 10	< 10	187	10	72	
24281	205 274	< 1	0.07	1	1390	4	2		414 0.03	< 10	< 10	107	10	44	
24282 524283	205 274	< 1 1	0.03 0.0 6	2	1420 2010	62	8	7	176 < 0.01 219 < 0.01	< 10 < 10	< 10 < 10	76 109	10 10	38 18	
24284	205 274	< 1	0.09	2	1030	< 2	< 2	6	688 0.11	< 10	< 10	140	10	26	
124285	205 274	< 1	0.06	4	1500	2	4	12	368 0.10	< 10	< 10	109	10	50	
			<u> </u>					~		. <u> </u>				<u> </u>	
													ERTIFIC		Thai OMa

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-964-0221

To: TECK EXPLORATIONS LTD.

360 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number :2-A Total Pages :2 Certificate Date: 29-JUN-92 Invoice No. : 19216528 P.O. Number : HPO Account

,

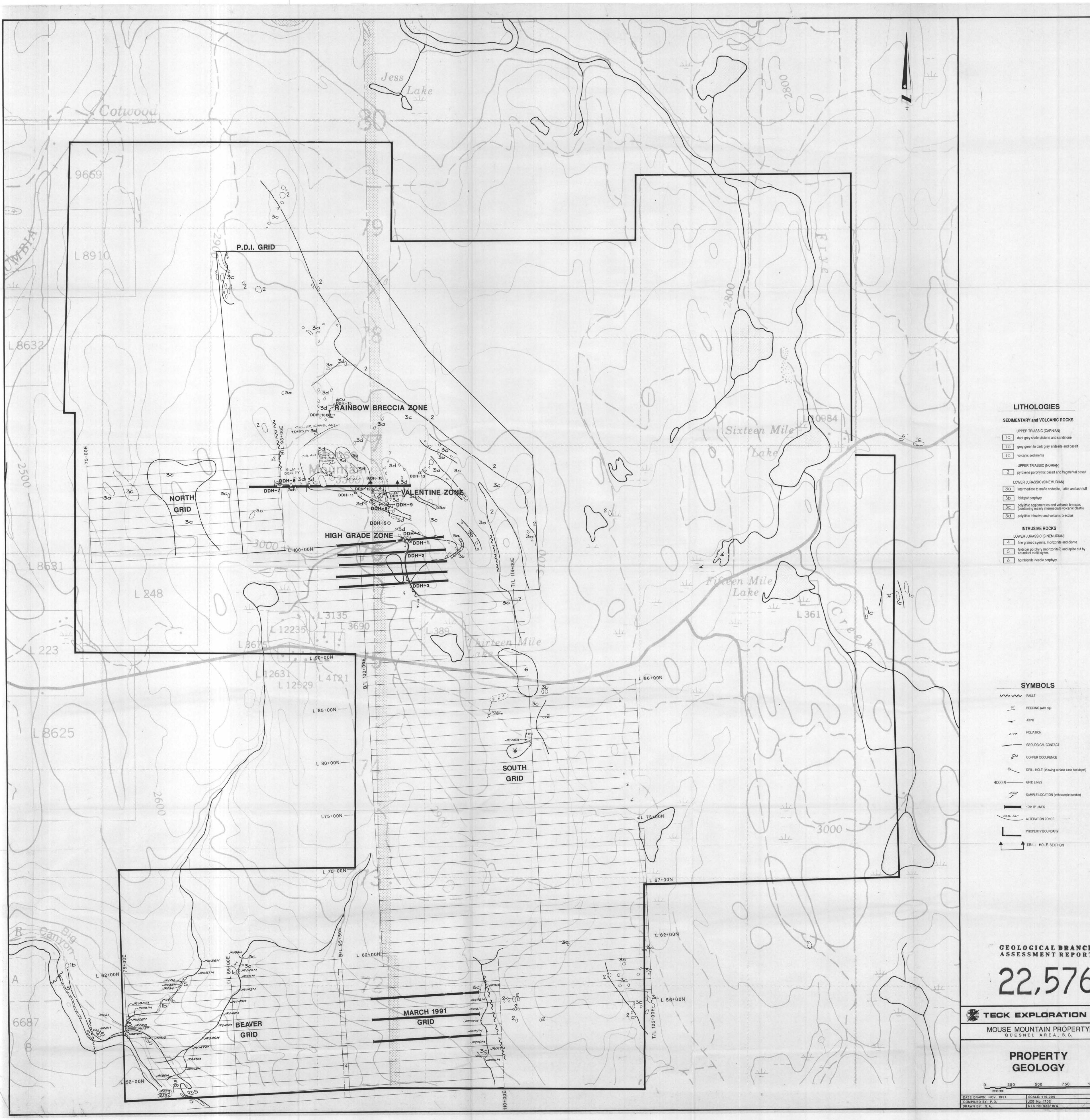
Project : 1702 Comments: ATTN: FRED DALEY CC: TOR BRULAND

SAIPLE								<u></u> _			CE	CERTIFICATE OF ANALYSIS						49216			
		PREP CODE	ya-yy Dop) Ag ppm	A1 *) Jan	Ba ppn	Be ppm	Bi ppm	Ca %	Cđ ppm	Co p pe	Cr ppz	Cu pp=	70 %	Ga. ppi	Eg p pe	K K	La	Ng X	Ma ppa
524286		274	5	< 0.2	0.44	22	750	< 0.5	< 2	4.63	€ 0.5		21	30	2.60	< 10	< 1	0.29	• 10	1.99	1055
524287		274 274	< 5	< 0.2	0.58 0.59	12	1080 820	< 0.5 < 0.5	< 2	3.66 2.92	< 0.5 < 0.5	6 5	21 14	33 23	1.89 1.98	< 10 < 10	< 1 < 1	0.34 0.39	< 10 < 10	1.45	660 620
524288 524289		274	-	< 0.2	0.68			< 0.5	. 2	3.26	< 0.5	5	11	12	2.07	< 10	< 1	0.40	< 10	1.26	665
524290		274	5	< 0.2	0.41	4	\$60	< 0.8	< 2	2.38	< 0.3	7	21	31	2.83	10	< 1	0.23	4 10	0.09	718
524291		274		< 0.2	1.12	12	500	< 0.5	< 2	1.73	< 0.5	7	23	64	2.75	20	< 1	0.16	< 10 < 10	0.76	595 855
624292		274 274	5	< 0.2	0.67 0.86	2 832	480	< 0.5 • 0.5	< 2	3.19 7.73	< 0.5	8 14	27 22	49 3510	2.73 3.45	10 < 10	224	0.43	< 10	3.19	1235
824293 524294		274	45	< 0.2	0.81	26	1440	< 0.5	1	6.30	< 0.5	16	16	428	4.68	10	ĩ	0.60	e 10	0.83	1025
524295		274	50	< 0.2	0.98	40		< 0.5	< 2	6.66	< 0.5	17	17	276	4.45	10	< 1	0.47	< 10	0.92	1035
524296		274	5	< 0.2	0.89	8	730	< 0.5	< 2	6,81	< 0.5	16	18	225	3.97	10	2	0.50	< 10	2.28	1235
524297		274	5	< 0.2	1.19	< 2	750	< 0.5	2	4.16	< 0.5	17 17	23 32	139 149	\$.00 5.04	10 10	3	0.37 0.22	< 10 < 10	1.62	1310 1205
524298 524299		274 274	5 < 5	< 0.2	1.54	12	430 890	< 0.5 < 0.8	• 2	4.00	< 0.5 < 0.5	17	30	119	4.52	20	< 1	0.13	< 10	1.93	1210
524300		274		< 0.2	1.82	2	520	< 0.5	4 2	5.46	< 0.5	10	26	71	3.25	10	< 1	0.11	< 10	1.32	1375
524301	205	274	< 5	< 0.2	1.55	< 2	70	< 0.5	< 2	2.35	< 0.5	8	21	92	2.73	10	1	0.14	< 10	1.06	765
524302		274	10	< 0.2	1.94	4	100	< 0.5	< 2	2.47	< 0.5	7	32	64	2.75	20	1	0.15	< 10	1.16	740
524303		274	5	< 0.2	2.25	6	90	< 0.5	2	2.29	< 0.5	.7	33	101	2.72	20	1	0.18	< 10	1.23	745
524304 524305		274		< 0.2 < 0.2	2.25 1.87	< 2	130 170	< 0.5 < 0.5	< 2	2.46 3.00	< 0.5 < 0.5	11 7	37 26	151 59	3.15 2.57	20 10	€ 1 € 1	0.15 0.16	< 10 < 10	1.27 1.03	800 735
524306	205	274	< 5	< 0.2	1.06		350	< 0.5	• 2	3.73	< 0.5	6	19	85	2.33	10	1	0.32	< 10	1.20	715
524307		274	5	< 0.2	1.32	2	390	< 0.5	< 2	3.47	< 0.5	7	24	92	2.56	10	< 1	0.17	< 10	1.18	775
524308		274		< 0.2	0.99	2		< 0.5	2	3.38	< 0.5	7 10	28 25	160 189	2.55	10 20	< 1 < 1	0.14	< 10 < 10	0.73 1.06	810 755
524309 524310		274 274		< 0.2 < 0.2	1.76 1.46	ŝ	240 1860	< 0.5 ¢ 0.5	< 2	2.78 3.17	< 0.5	8	34	46	2.96	10	< 1	0.19	< 10	1.02	835
524311	205	274	< 5	< 0.2	1.39	< 2	840	< 0.5	< 2	2.74	< 0.5	7	27	16	2.67	10	1	0.14	< 10	0.99	740
524312		274		< 0.2	1.13	2	\$00	e 0.5	• 2	2.86	< 0.5	8	33	40	2.68	10	1	0.17	< 10	0.95	785
524313	205	274		< 0.2	0.75	•	1680	< 0.5	< 2	3.28	€ 0.5	8	23	33	2.49	< 10	< 1	0.28	< 10	0.66	745

CERTIFICATION:

hai O'Ma

Analytical Chemists * Geochemists * Registered Assayers


212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1**Z6** Page Number :2-B Total Pages :2 Certificate Date: 29-JUN-92 Invoice No. :19216528 P.O. Number : Account :HPQ

Project: 1702 Commenta: ATTN: FRED DALEY CC: TOR BRULAND

æ

SAIPLE	_										CERTIFICATE OF ANALYSIS A9216528						
	PREP CODE		Mo ppe	Xia 3	Ni ppm	p ppm	Pb ppm	Sb ppn	Sc ppn	8r p pn	Ti X	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
524286 524287 524288 524289 524289 524290	205 2 205 2 205 2 205 2 205 2 205 2 205 2	74 74 74	<1 <1 <1 <1 <1 <1	0.03 0.03 0.04 0.05 0.08	4 1 1 2	1100 940 850 820 850	2 < 2 < 2 < 2 < 2 < 2 < 2	< 2 2 4 2	4 5 5 5 5	196 · 149 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	\$1 47 58 61 102	10 < 10 < 10 10 10	42 12 10 10 18	
24291 24292 24293 24293 24294 24294 24295	205 2 205 2 205 2 205 2 205 2 205 2	74 74 74	1 1 2 < 1 < 1	0.08 0.09 0.02 0.03 0.03	3 3 3 2 4	870 860 1390 1720 1700	< 2 6 2 2 < 2	< 2 2 248 2 4	3 6 8 12 11	184 142 242 291 267	0.08 0.03 < 0.01 0.04 0.09	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	126 94 100 138 154	10 10 20 20 20	20 42 92 44 60	
524296 524297 524298 524299 524300	205 2 205 2 205 2 205 2 205 2 205 2	174 174 174	< 1 < 1 1 1 1	0.02 0.02 0.04 0.03 0.04	4 7 9 10 7	1550 1400 1680 1510 1280	< 2 < 2 6 < 2 4	2 4 2 2 2	10 10 13 15 12	388 114 139 183 186	0.07 0.02 0.03 0.11 0.06	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	113 123 176 182 149	20 20 20 20 10	56 60 60 76	
524301 524302 524303 524304 524305	205 2 205 2 205 2 205 2 205 2 205 2	74	< 1 < 1 < 1 1 < 1	0.06 0.07 0.10 0.07 0.07	5 5 5 5 5	1160 1140 1140 1140 1140	4 2 6 8	< 2 < 2 < 2 < 2 < 2	8 8 8 7	100 106 105 90 293	0.05 0.08 0.12 0.12 0.05	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	109 119 125 129 97	10 10 10 10 10	44 48 50 62 48	
524306 524307 524308 524309 524310	205 2 205 2 205 2 205 2 205 2 205 2 205 2	174 174 174	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.05 0.05 0.06 0.06	5 5 6 4	1090 1040 1080 1130 1190	4 2 4 4 12	6 4 2 4 2	7 7 7 7	1630	< 0.01 0.01 < 0.01 0.05 0.03	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	62 87 81 100 113	< 10 10 < 10 10 10	50 54 62 58 54	
524311 524312 524313	205 2 205 2 205 2	74	< 1 < 1 < 1	0.06 0.06 0.04	564	1140 1080 1110	6 16 6	2	8 7 6	1360 231 346	0.02 0.01 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	97 92 78	10 < 10 < 10	48 50 46	
																	Thai OMa

LITHOLOGIES

SEDIMENTARY and VOLCANIC ROCKS

UPPER TRIASSIC (CARNIAN)

1b grey green to dark grey andesite and basalt

1c volcanic sediments

UPPER TRIASSIC (NORIAN)

LOWER JURASSIC (SINEMURIAN) 3a intermediate to mafic andesite, latite and ash tuff

3b feldspar porphyry 3C polylithic agglomerates and volcanic breccias (containing mainly intermediate volcanic clasts)

3d polylithic intrusive and volcanic breccias INTRUSIVE ROCKS

LOWER JURASSIC (SINEMURIAN) 4 fine grained syenite, monzonite and diorite 5 feldspar porphyry (monzonite?) and aplite cut by abundant mafic dykes 6 hornblende needle porphyry

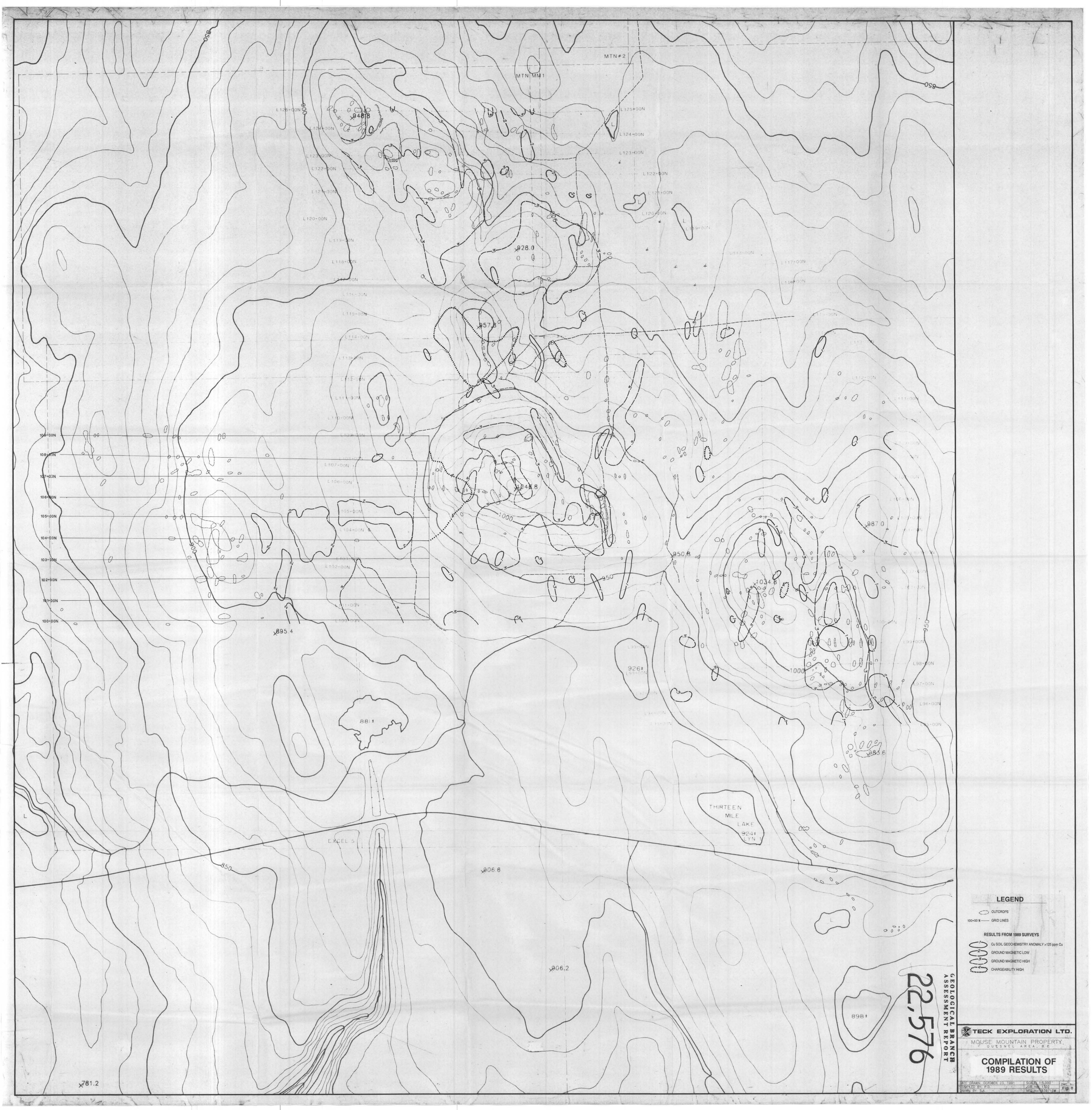
SYMBOLS BEDDING (with dip) FOLIATION _____ GEOLOGICAL CONTACT × COPPER OCCURENCE O DRILL HOLE (showing surface trace and depth) SAMPLE LOCATION (with sample number) 1991 IP LINES CHL ALT ALTERATION ZONES PROPERTY BOUNDARY A DRILL HOLE SECTION

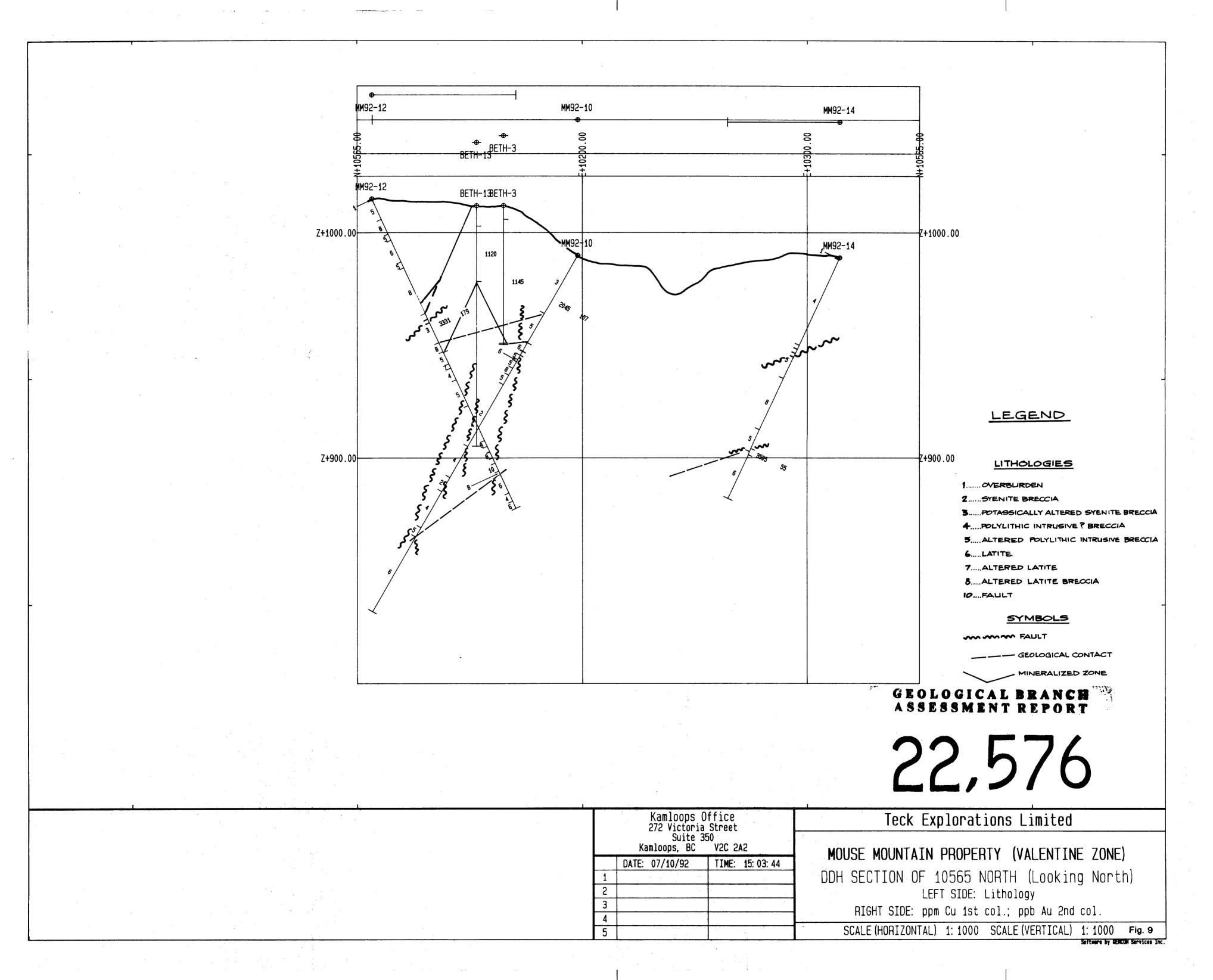
GEOLOGICAL BRANCH ASSESSMENT REPORT 22,576

TECK EXPLORATION LTD. MOUSE MOUNTAIN PROPERTY QUESNEL AREA, B.C.

750


1000


DWG. No: Fig. 5


PROPERTY GEOLOGY

SCALE: 110,000 JOB No: 1702 NTS No: 938/16W

500

