LOG NO:	OCT 3 0 1992	RD.
ACTION.		
·····		

KOKANEE EXPLORATIONS LTD.FILE NO:

Report On Diamond Drill Holes A92-6,7&8

Arc Property

Sure Bet 3 Claim

Slocan Mining Division

Crawford Peninsula Area

N.T.S. 82F/10W

Lat: 49° 38'N

Long: 116° 50'E

Owner

Kokanee Explorations Ltd.

Suite 104, 135 - 10th Ave. S., Cranbrook B.C. V1C 2N1

Work performed from July 12, 1992 to August 4, 1992.

Reported by David P. Meeks p.eng. Submitted October, 1992.

Table of Contents

1.0	Introduction	•	• •	•	•	•	1
2.0	Location and Access	•	• •	•	•	•	1
3.0	Regional Geology	•			•	•	1
4.0	Local Geology	•		•	•	•	2
5.0	Diamond Drill Holes	•	• •	٠	•		2
	5.1 A92-6	•	• •	•	•	•	2
	5.1 A92-7	•	• •	•	•	•	2
	5.1 A92-8	•	• •	•	•	•	3
6.0	Conclusions	•		•	•	•	3
EXHII	BIT "A" - Statement	of	Expenditur	es.	•	•	4
AFFI	DAVIT	•		•	•	•	5
AUTH	OR'S QUALIFICATION	•		٠	•	•	6
LOCA	TION MAP - Drill hol	es	A92-6,7&8	•	٠	•	7
DRIL	L LOGS - A92-6,7&8	•	• •	•	•	•	Attached
ASSA	Y CERTIFICATES		• •	•	•	•	Attached

KOKANEE EXPLORATIONS LTD.

Report On Diamond Drill Holes A92-6,7&8 Sure Bet 3 claim Slocan Mining Division

David P. Meeks

October, 1992.

1.0 Introduction

The Arc Property consists of 124 units in 92 claims. These mineral rights were acquired by optioning claims from prospectors and by staking ground on adjoining crown and private land. The ground was acquired for the purpose of exploring for massive sulphide deposits as indicated by various boulders of high grade massive sulphide float found on and near the property.

2.0 Location and Access

The Arc Property is located in south east British Columbia with the centre of the claim group being approximately 3km SSW of the town of Crawford Bay. This places the property more or less in the centre of N.T.S. map sheet 82F/10W. Access to the property is via private and public roads in the north and via the Pilot Bay Forestry road in the south.

3.0 Regional Geology

The claims are underlain by rocks of the Kootenay Arc. This belt of complexly deformed sedimentary, volcanic and metamorphic rocks trends northeast, curving to the northwest on the west side of the Purcell Anticlinorium. The rocks form a relatively conformable sequence of early Cambrian to late Mesozoic units.

The most economically significant units are the Cambrian limestones, namely; the Badshot, the Reeves, and the Metalline formations. Within these units several major lead zinc deposits have been mined, including the Reeves MacDonald (+7 million tons), the Jersey (+7 million tons), the HB (+7 million tons), Pend Oreille-Grandview-Metalline (+10 million tons), Bluebell (4.7 million tons) and are being mined, (Vanstone - Equinox +3 million tons), or are under development for mining (Duncan -Cominco).

These Cambrian Limestones which are locally the Badshot formation underlie the Arc Property and host the Bluebell deposit 12 kilometres to the north. At the Bluebell the limestone replacing ore zones "are localized along steep cross-fractures that trend west/north-westerly. Within the zones are tabular ore shoots that are transverse to the bedding and plunge westward following the intersection of the[se] fractures with the marble." (Hoy 1980 page 81).

4.0 Local Geology

In the area of the drilling, the Badshot consists of calcite marble and minor dolomite marble as well as a thin continuous schist unit near the bottom of the formation. Structurally the formation is overturned and strikes north-easterly and dips to the north-west at various dips from vertical to 46°. It is conformably in contact with the Mohican formation which consists of calcareous schists, quartzites, and marbles. It is also unconformably in contact with Jurassic to Cretaceous 'syntectonic' pegmatite, which is common throughout the property.

The unit that hosts the mineralization is in the Badshot formation and occurs near the contact with the Mohican formation with the thin continuous schist unit being in close proximity in the hangingwall rocks. The mineralized unit consists of brecciated and silicified marble. The brecciation may be a result of Karst activity as indicated by some of the textures in the drill cores. The mineralization is characterized by the presence of oxides of lead, zinc, and copper as well as barite at the surface. Trenching yielded galena, honey coloured sphalerite, tetrahedrite, and barite on fresh surfaces. Assay grades of selected hand samples were as high as 2.80% lead, 5.65% zinc, and 10.16 oz/t silver.

5.0 Diamond Drill Holes

5.1 A92-6

This hole was drilled to test the grade and extent of the mineralization from the west of the showing.

Bedrock was encountered at 2.4m. A zone from 2.4m to 4.0m that resembled material that could be expected in a Karst hole was encountered. The mineralized zone was encountered from 5.4m to 13.1m. The zone was for the most part weathered out. Pegmatite was encountered from 13.1m to 15.6m. The hole ended in dolomite at 44.2m. The assay results of the mineralized zones were poor.

5.2 A92-7

This hole was drilled from the same site as hole A92-6 and along the same bearing but at a steeper dip in order to test the mineralized zone at depth in less weathered rock.

Bedrock was encountered at 3.7m. Marble was encountered from 3.7m to 11.6m. There was some evidence of weathering from 8.7m to 9.0m as limonite was present in abundance. Pegmatite was encountered from 11.6m to 12.7m. Marble similar to the marble up hole was noted from 12.7m to 15.9m. The hole ended at 23.5m in a dolomite unit similar to the one seen in hole A92-6. The mineralized zone as seen in A92-6 and at surface was not observed.

5.3 A92-8

This hole was drilled normal to the bedding and was designed to test the grade and extent of mineralization from the hanging wall side of the showing.

Bedrock was encountered at 3.7m. Marble was encountered from 3.7m to 8.1m, some weathering was present near a shear zone from 7.7m to 8.1m. The mineralized zone was encountered from 8.1m to 13.2m. The unit was limonitic and copper stained with patchy disseminations of pyrite and galena. The host is brecciated marble and pegmatite. The hole ended in dolomite at 32.3m. The overall results of the assays were better in this hole than in the other 2 holes but were still well below typical ore grades with a combined lead zinc copper assay of less than 0.2%.

6.0 Conclusions

The drill program as summarized above adequately tested the depth extent and grade of the showing that was found on the Sure Bet 3 claim. The results of this part of the exploration program on the Arc property are negative and no further work is warranted at this time. This does not preclude the possibility of more work on this favourable horizon should additional data become available as a result of new developments in the area.

Reported by:

DPM:dpm October, 15 1992.

EXHIBIT "A"

STATEMENT OF EXPENDITURES

DIAMOND DRILLING PROGRAM

ON SURE BET 3 CLAIM SLOCAN MINING DISTRICT

Covering the period from July 12, 1992 to August 4, 1992.

INDIRECT

Salaries:

David Meeks - Geologist/P.Eng - supervision, core logging 11 days @ \$400/day \$4,400.00 David Meeks - Geologist/P.Eng - report writing 1 day @ \$400/day \$400.00

Lodging:

Brockman Holdings Ltd.	
Boswell B.C.	\$ 600.00

Assays:

Acme Analytical Laboratories Ltd. 852 East Hastings Street Vancouver B.C. V6A 1R6

Core samples (30 element ICP & Fire Assays) \$ 286.70

DIRECT

LeClerc Drilling Ltd.

Beaverdell, B.C.

- 5 -

IN THE MATTER OF THE

B.C. MINERAL ACT

AND

IN THE MATTER OF A DIAMOND DRILL PROGRAM

CARRIED OUT ON THE SURE BET 3 CLAIM

CRAWFORD BAY AREA

in the Slocan Mining District of the Province of British Columbia

More Particularly N.T.S. 82F/10W

AFFIDAVIT

I, David P. Meeks, of the City of Cranbrook, in the Province of British Columbia, make oath and say:

- 1. That I am employed as a Geological Engineer by Kokanee Explorations Ltd. and as such, have personal knowledge of the facts to which I hereinafter depose:
- That annexed hereto and marked as Exhibit "A" to this my Affidavit is a true copy of expenditures incurred on a Diamond Drill Program, on the Sure Bet 3 mineral Claim;
- 3. That the said expenditures were incurred between the 12th day of July, 1992 and the 4th day of August, 1992 for the purpose of mineral exploration.

AUTHOR'S QUALIFICATIONS

I, David P. Meeks, of the City of Cranbrook, in the Province of British Columbia, do hereby certify that:

- 1. I graduated from The University of British Columbia in 1979 with a Bachelor of Applied Science degree in Geological Engineering.
- 2. I am registered as a Professional Engineer in the Province of Alberta and am currently a member in good standing.
- 3. I have over 15 years of combined experience in the natural resource industries, primarily in petroleum and natural gas evaluation, development, and production and mining exploration.

DRILL LOGS

D.D.H.'s A92-6,7&8

KOKANEE EXPLORATIONS LTD.

DRILL HOLE RECORD

Page No. l

Name of Property: ARC	Corr. Dip: -45°	Remarks:
Hole No.: A92-6	Length: 44.2m	
Location: 709N, 2299E	Start Date: July 13/92	Finish Date: July 14/92
Elevation: 920m	Azimuth: 045°	Collar Dip: -45
Core Size: NQ	Tests at:	Logged by: D.Meeks Date:

METERAGE DESCRIPTION Sample

From T	o	No.	From	То	Au	Ag	Рb	Zn	Cu
0.0-2.4m	OVERBURDEN				ppb	ppm	%	8	ppm
2.4-4.0m	<u>CONGLOMERATE</u> : White to buff coloured, micaceous, medium grained. Buff colour is a result of limonite being present as a result of surface weathering. This unit could be a result of sand infill into an old Karst hole. Lower contact is distinct and cuts the core at 58° at 4.0m.								
4.0-5.4m	MARBLE: White to light grey, medium crystalline, occasional fractures infilled with material similar to above. Mineralization consists of finely disseminated pyrite? and tetrahedrite? 1- 3%. Sample 1308 4.0-5.4m; marble.	1308	4.0-5.4		2	0	0.005	0.01	9
5.4-13.1m	BRECCIA - MARBLE: White to grey in a matrix of limonite, mica and sand. The matrix likely originated from weathering of local rock. Sulphides consist of pyrite and galena.	1309 1310 1311	6.7-7.7 7.7-9.0 9.0-10.0	ı	1 11 3	0 8 2	0.03 0.70 0.20	0.06 0.13 0.06	74 169 88

Page: 2

Property: ARC

Hole No.: A92-6

<u>METERAG</u>	<u>E</u> <u>DESCRIPTION</u>	Sa	m p l	e					
<u>From To</u>		No.	From	То	Au	Ag	Pb	Zn	Cu
	Mineralization consists of disseminated sulphides and blebs of sulphide up to 5.0m wide by 3.0cm long. Sulphides consist of pyrite and galena. Some copper staining is present as well, indicating tetrahedrite?				ppb	ppm	<u></u> 8	. 8.	<u>p</u> pm
13.1-15.6m	<u>PEGMATITE</u> : Coarsely crystalline, fractured and weathered. The top contact has a clay seam which could be related to the shear zone observed on the surface showing. The unit is much more fractured at the top contact. Contact at 13.1m is 23° to core, lower contact at 15 fm is 37° to core	1212	13 1-1	4 1	4	2	0.02	0.03	12
	Pyrite is scattered throughout unit. Rust fractures occur throughout unit, some of the surfaces may contain red sphalerite veinlets, as at 14.4m. 1312 13.1-14.1m; pegmatite 1313 14.1-15.3m; pegmatite	1313	14.1-1	5.3	4	1	0.008	0.01	11
15.6-16.6m	<u>DOLOMITE</u> : Brecciated, light grey to grey, buff, medium crystalline, limonitic, micaceous matrix. Fine grained, weathered pyrite is disseminated throughout.	1314	15.6-1	6.6	3	4	0.03	0.06	17

Page: 3

Property: ARC

Hole No.: A92-6

	<u>DEDURIFIION</u>	<u> </u>	mpie		•		÷1		
FLOM TO		NO.	From	то	Au	Ag	PD	Zn	Cu
					ppb	ppm	*	_*	ppm
16.6~44.2m	DOLOMITE: White to light grey - medium								
	crystalline, fractured throughout unit with								
	fracture density decreasing toward bottom.	1315	17.9-18	. 2	3	0	0.005	0.005	1
	Some brecciation with limonitic, micaceous,	1316	31.7-32	.0	1	0	0.005	0.01	1
	infilling such as at 17.9-18.2m, 31.7-	1317	34.9-35	.7	1	0	0.005	0.03	3
	32.0m, 34.9-35.7m, 42.4-42.6m. Fractures are usually calcitic.	1318	42.4-42	.6	3	0	0.005	0.01	2
44.2m	END OF HOLE								
	The core is stored in racks at the Vine								
	property.								

Page No. 1 Corr. Dip: -65° Name of Property: ARC Remarks: Hole No.: A92-7 Length: 23.5m Location: 709N, 2298E Start Date: July 14/92 Finish Date: July 14/92 Sure Bet #3 Azimuth: 045° Elevation: 720m Collar Dip: -65 Core Size: NQ Tests at: Logged by: D.Pighin Date:

METERAGE DESCRIPTION Sample

	No.	From	То	_ Au	Ag	Pb s	Zn Se	Cu
OVERBURDEN				<u>P</u> PD	Ppm	<u>, o</u>		
<u>MARBLE</u> : Light grey to light brown, medium crystalline, micaceous with weakly disseminated pyrite throughout unit. Unit is fractured and occasionally vuggy. Vugs typically are lined with crystals up to 6.0mm wide.	1319	10.6-11.	. 6	4	0	0.005	0.005	2
<u>MARBLE</u> : Thinly laminated with micaceous partings, grey to dark grey. The top 30.0cm of this unit is very pyritic and limonitic. Angles of laminae vary from 45°to core to parallel.								
<u>PEGMATITE</u> : Pyritic, coarsely crystalline. Upper contact cuts core at 30°, lower contact cuts core at 45°.	1320	11.6-12.	. 7	4	0	0.005	0.005	3
	OVERBURDEN <u>MARBLE</u> : Light grey to light brown, medium crystalline, micaceous with weakly disseminated pyrite throughout unit. Unit is fractured and occasionally vuggy. Vugs typically are lined with crystals up to 6.0mm wide. <u>MARBLE</u> : Thinly laminated with micaceous partings, grey to dark grey. The top 30.0cm of this unit is very pyritic and limonitic. Angles of laminae vary from 45 to core to parallel. <u>PEGMATITE</u> : Pyritic, coarsely crystalline. Upper contact cuts core at 30°, lower contact cuts core at 45°.	No.OVERBURDENMARBLE: Light grey to light brown, medium crystalline, micaceous with weakly disseminated pyrite throughout unit. Unit is fractured and occasionally vuggy. Vugs typically are lined with crystals up to 6.0mm wide.MARBLE: Thinly laminated with micaceous partings, grey to dark grey. The top 30.0cm of this unit is very pyritic and limonitic. Angles of laminae vary from 45 to core to parallel.PEGMATITE: Pyritic, coarsely crystalline. Upper contact cuts core at 30°, lower contact cuts core at 45°.	No.FromOVERBURDENMARBLE: Light grey to light brown, medium crystalline, micaceous with weakly disseminated pyrite throughout unit. Unit is fractured and occasionally vuggy. Vugs typically are lined with crystals up to 6.0mm wide.MARBLE: Thinly laminated with micaceous partings, grey to dark grey. The top 30.0cm of this unit is very pyritic and limonitic. Angles of laminae vary from 45'to core to parallel.PECMATITE: Pyritic, coarsely crystalline. Upper contact cuts core at 30°, lower contact cuts core at 45°.132011.6-12	No.FromToOVERBURDENMARBLE: Light grey to light brown, medium crystalline, micaceous with weakly disseminated pyrite throughout unit. Unit is fractured and occasionally vuggy. Vugs typically are lined with crystals up to 6.0mm wide.MARBLE: Thinly laminated with micaceous partings, grey to dark grey. The top 30.0cm of this unit is very pyritic and limonitic. Angles of laminae vary from 45 to core to parallel.PECMATITE: Pyritic, coarsely crystalline. Upper contact cuts core at 30°, lower contact cuts core at 45°.No.FromTo	No.FromToAuPDbOVERBURDENMARBLE: Light grey to light brown, medium crystalline, micaceous with weakly disseminated pyrite throughout unit. Unit is fractured and occasionally vuggy. Vugs typically are lined with crystals up to 6.0mm wide.131910.6-11.64MARELE: Thinly laminated with micaceous partings, grey to dark grey. The top 30.0cm of this unit is very pyritic and limonitic. Angles of laminae vary from 45°to core to parallel.132011.6-12.74	No.FromToAuAgOVERBURDENMARBLE: Light grey to light brown, medium crystalline, micaceous with weakly disseminated pyrite throughout unit. Unit is fractured and occasionally vuggy. Vugs typically are lined with crystals up to 6.0mm wide.131910.6-11.640MARBLE: Thinly laminated with micaceous partings, grey to dark grey. The top 30.0cm of this unit is very pyritic and limonitic. Angles of laminae vary from 45'to core to parallel.131910.6-11.640PEGMATITE: Pyritic, coarsely crystalline. Upper contact cuts core at 30°, lower contact cuts core at 45°.132011.6-12.740	No.FromToAuAgPbDVERBURDENMARBLE: Light grey to light brown, medium crystalline, micaceous with weakly disseminated pyrite throughout unit. Unit is fractured and occasionally vuggy. Vugs typically are lined with crystals up to 6.0mm wide.131910.6-11.6400.005MARBLE: Thinly laminated with micaceous partings, grey to dark grey. The top 30.0cm of this unit is very pyritic and limonitic. Angles of laminae vary from 45°to core to parallel.132011.6-12.7400.005PEGMATITE: Pyritic, coarsely crystalline. Upper contact cuts core at 45°.132011.6-12.7400.005	No.FromToAuAgPbZnOVERBURDENMARBLE: Light grey to light brown, medium crystalline, micaceous with weakly disseminated pyrite throughout unit. Unit is fractured and occasionally vuggy. Vugs typically are lined with crystals up to 6.0mm wide.131910.6-11.6400.0050.005MARBLE: Thinly laminated with micaceous partings, grey to dark grey. The top 30.0cm of this unit is very pyritic and limonitic. Angles of laminae vary from 45'to core to parallel.131010.6-11.6400.0050.005PEGMATITE: Pyritic, coarsely crystalline. Upper contact cuts core at 45'.132011.6-12.7400.0050.005

Page: 2

Property: ARC

Hole No.: A92-7

From To		No.	From To	Au	Ag	Pb	Zn	Cu
12.7-15.9m	MARBLE: Thinly laminated, light grey to light brown, micaceous and pyritic. Fractured - fractured and filled with limonite. Upper 30.0cm of unit is very pyritic.	1321	12.7-13.7	рр <u>р</u>	ppm_ 0	% 0.005	% 0.01	ღрო 5
15.9-23.5	<u>DOLOMITE</u> : White to light grey, coarse to medium crystallinity. Fractured throughout unit with fractures frequently being lined with limonite.							
23.5m	END OF HOLE							
	The core is stored in racks at the Vine property.							

Page No. l

Name of Property: ARC	Corr. Dip: -45°	Remarks:
Hole No.: A92-8	Length: 32.3m	
Location: 716N, 2294E	Start Date: July 15/92	Finish Date: July 15/92
Elevation: 718m	Azimuth: 135°	Collar Dip: -65
Core Size: NQ	Tests at:	Logged by: D.Meeks Date:92/07/17

From To		No.	From T	'o	Au	Ag	Pb	Zn	Cu
			1 2 010	<u> </u>	ppb	ppm	8	8	ppm
0.0-3.7m	OVERBURDEN								
3.7-8.lm	MARBLE: Thin bedded, gneissic, light grey - blue grey and green grey. Occasionally biotite is present in abundance. Bedding/foliation 55° to core. The unit is weathered from 6.3-8.1m. This is likely due to the presence of a shear zone from 7.7-8.1m. The lower contact of the shear cuts the core at 39° and is clean but slightly irregular.								
8.1~13.2m	<u>MARBLE</u> : Light grey to grey - medium crystalline - unit is limonitic and contains breccia which host the mineralization. Mineralization is as follows: 9.2–9.5m; copper stained with disseminated pyrite hosted by brecciated marble.	1322 1323 1324 1325	9.2-9.5 9.9-10.9 10.9-12.0 12.0-13.0)	1 1 1 1	3 5 33 1	0.02 0.07 0.5 0.01	0.08 0.04 0.06 0.03	604 66 229 15

Page: 2

Property: ARC

Hole No.: A92-8

From To		No.	From	То	Au	Ag	Pb	Zn	Cu
					ppb	թթա	8	8	ppm
	The marble on each side of the mineralized zone is weathered possibly as a result of solution activity.								
	10.9-12.0m; main mineralized zone	1326	16.8-1	.7.6	1	0	0.005	0.008	3
	consisting of patchy disseminations of galena and pyrite with blebs up to 3.0mm wide. The host is a breccia of marble and pegmatite cemented by calcite.	1327	20.2-2	20.7	1	0	0.005	0.01	3
13.2-32.3m	<u>DOLOMITE</u> : White, light grey, medium crystalline. Fractures occur throughout unit with a higher density of fractures occurring near the top to the unit. An open vuggy crystalline zone occurs from 17.6-17.8m. Breccia zones occur as follows: 15.1-15.6m, 16.8-17.6m, 20.2- 20.7m. The breccia appears to have a limonitic calcareous matrix.								
32.3m	END OF HOLE								
	The core is stored in racks at the Vine	}							
	property.								
		Ĩ							

ASSAYS CERTIFICATES

ACME ANALYT	FICAL LABORATORIES	LTD. 852 E. HASTINGS ST. VANCOU	VER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716
AAC		ASSAY C. TIE	FILATE
		<u>Kokanee Explorations Ltd.</u>	L L
		SAMPLE#	Pb %
A92-6	2°-10.° m	01310	.74
DATE RECE	SIVED: JUL 30 1992	- 1 GM SAMPLE LEACHED IN 50 ML AQUA - - SAMPLE TYPE: CORE PULP DATE REPORT MAILED: ANg 4/92 S	REGIA, ANALYSIS BY ICP.
		0	l.

	ACM	e analy	TICA	L 12	BOR	ATOP	IES	LTD	•	8	52 E	• H	ASTI	NGS	ST.	VAN	ເດດກ	/ER	B.C.	v	6 a 1	R6	P	HONE	(60	4)25	3-31	58	FAX	(60	4)25	3-17	16
	А	∧ (G	EOC	HEM]	[CA]	ΓA	Nzei	YSI	5 C	ERT	IFI	CATI	3								(Ma		a I	
	Ê	<u>t</u>						<u>Kokanee Explorations Ltd.</u> File # 92-2044 104 - 135 - 10th Ave S., Cranbrook BC VIC 2N1 Submitted by: D.L. PIGHIN															節										
	SAMPLE#	()	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	\$b	Bi	V	Ca Y	P	La	Cr	Mg	Ba	Ti 7	B	Al %	Na %	K Y	W	Au*
		<u>(m)</u>	ppm	ppn	ppii	ppn	Phil	ppn	ppii	- PDH		- hhii	Рры	Phu	Ph.	- physi	<u>PPN</u>	ppin	Phil	- ppm			PP**	<u> </u>				PP					<u> </u>
	01308	4.0_5.1	1	9	23	109	.2	6	2	115	.30	2	5	ND	2	1183	1.7	2	2	4	33.91	.030	3	4	.13	3	.01	2	.12	.01	.01	1	2
	RE 0131	3	2	13	70	138	1.2	6	1	64	.55	- 4	24	ND	3	21	<u>_</u> 5	2	4	1	1.36	.031	2	5	.03	- 4	.01	2	.29	.01	.08		2
	01309	61-1.1	2	74	282	585	-3	24	8	211	1.00	5	5 5	ND	0 7	242	10.7	4	2	10	12 00	-051	17	כו 7	.07	228	01	2	.29	.01	.05		11
	01311	9.9-10-10-1	1	88	1600	580	1.6	5	1	202	.85	2	5	ND	2	362	5.3	2	2	5	21.29	.053	3	3 2	2.27	13	.01	ž	.16	.01	.06	1	3
5	01712	13.1-14.1	7	17	205	775		4	2	40	/ 0	_	0	ыņ	1	21	1 4	,	7	2	84	0/1	2	17	03	o	01	٦	26	01	11	τ.	4
2	01313	14-15	2	11	205	148	 0	6	1	56	.56	ے ج	30	ND	4	18	6	2	2	1	1.34	.031	3	6	.04	ં ડંં	.01	ž	.31	.01	.09	Ĩ	4
2	01314	154-16.6	4	17	342	635	3.7	11	ż	157	1.06	5	5	ND	ż	60	3.1	2	5	6	3.49	.057	Ž	6 1	.26	9	.01	2	.20	.01	.07	1	3
∢	01315	179.100	2	1	19	34		3	1	354	1.02	2	5	ND	1	57	.5	2	2	3	22.56	.014	2	17	.29	12	.01	2	.08	.01	.01	1 1	3
	01316	317-32.	2	1	20	132	1	5	1	295	.72	2	5	ND	2	82	.4	2	2	8	22.18	.019	2	28	.89	8	.01	2	.10	.01	.02	1	1 1
	04747	349 357	-	-	47	25.4		•	4	700	4 00		E		,	07	és į.	2	2	7	21 07	070	7	7 6	58	1र ँ	01	2	11	01	01	1	1
	01318	424-426	2	2	6	120		7	2	571	55	5	5	ND	2	53		2	2	4	25.78	.012	2	55	.42	27	.01	2	.12	.01	.01	3 i	3
	01319	10.6-11.6	1	2	8	23		4	ž	84	.44	2	5	ND	1	796	.2	Ē	2	6	30.40	.051	ž	4 2	.41	49	.02	2	.67	.01	.42	1	4
\sim) 01320	11.6-127	ż	3	16	31		5	1	87	.40	2	6	ND	2	24	.2	2	10	1	.89	.022	2	19	.08	42	.01	2	.29	.02	.09	1	4
22	01321	12.7-13.1	1	5	13	101	•1	5	2	122	.47	2	6	ND	1	1025	.6	2	2	4	27.92	.027	2	2	.33	16	.01	2	.56	.01	.06	1	Z
×١	STANDAR	D C/AU-R	19	59	39	133	7.2	70	31	1046 3	3.99	41	18	7	39	52	16.9	14	19	57	.48	.091	37	57	.88	177	.09	34 1	.89	.07	.15	11	490

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI 8 W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples beginning 'RE' are duplicate samples.</u>

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716																															
GEOCHEMICAL ANASIS CERTIFICATE AC AC <u>Kokanee Explorations Ltd.</u> File # 92-2126 AC 104 - 135 - 10th Ave S., Crambrook BC VIC 2N1 Submitted by: D.L. PIGHIN AC																															
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U Ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	₿i ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ji X	B ppm	Al %	Na %	к %	¥ ppm	Au* ppb
01322 01323 01324 01325 01326	3 1 5 1 1	604 66 229 15 3	221 695 4739 112 18	838 374 643 250 79	3.2 5.4 32.7 .6 .2	28 8 5 7 1	11 5 1 2 1	239 180 148 253 344	1.46 .74 .41 .46 .67	13 8 8 4 3	8 5 5 5 5	nd Nd Nd Nd	7 1 6 1 1	153 641 292 617 78	5.3 2.7 11.2 1.6 .5	5 15 31 2 2	5 2 2 2 2	22 1 8 3 3 1 3 3 7 2	9.23 31.60 2.90 52.50 25.62	.115 .052 .051 .030 .020	21 8 10 5 3	27 4 16 1 4	.11 1.74 .25 .53 7.69	6 16 28 3 12	.01 .01 .01 .01 .01	2 2 4 2 5	.34 .10 .20 .09 .04	.01 .01 .01 .01 .01	.06 .04 .10 .05 .02	1 1 1 1	1 1 1 1
RE 01325 01327	1	15 3	115 9	262 125	.7	4	1	262 346	.47 .73	3 5	5	ND ND	1	638 69	1.6 .5	2	2	2 2	5.10	.031 .032	5 2	1	.56 9.30	4 11	.01 .01	2	.08 .02	.01	.05	1 1	1
DATE	UISZY 1 5 9 125 KR Y 2 340 .75 5 NU 1 09 5 2 2 2 25.10 002 2 19.50 11 001 4 .02 .01 .01 1 1 ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginging 'RE' are duplicate samples. DATE RECEIVED: JUL 27 1992 DATE REPORT MAILED: Jul 20 Jul																														
<u>APC</u> 492-8	3 .	50	Lmf	le-	ŧ	Int	erve		m)		AS	SSA	/ IN	PR	OGF	ESS	s /s	n br	łaj 7	, 20	<i>PP</i> "	le.									
		0338PP	22 23 24 25 26			9 9 1 1 1 1	9-1)9-1 20-1	0.9 2° 13.° 17.4	>																						
		ß	27			2	0?-	20.7	ŗ																						

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 ASSAY CE. IFICATE Kokanee Explorations Ltd. File # 92-2126R SAMPLE# Ag oz/t A92-8 10.7-12." m .90 01324 - 1 GM SAMPLE LEACHED IN 50 ML AQUA - REGIA, ANALYSIS BY ICP. - SAMPLE TYPE: CORE PULP