

LOG NO:	SEP 2 2 1992	RD,	
ACTION.		1	
ļ		gr.	
FILE NO:			

TITLE PAGE

CLAIM NAME Louise 8 TR. SNAW-20 units CLAIM NUMBER 25 LOT NUMBER MINING DISTRICT greenu 200 LAND DISTRICT \leq MAP SHEET NTS 82E 2n 49 07 N30" LONG. 118 51 W LAT. ____ OWNER ______ D. GERONAZZO R. Miller PROSPECTOR __ S.R. cka

RECEIVED

SEP 2 1 1992 GOVERNMENT AGENT GRAND FORKS

TABLE OF CONTENTS

1.	Title Page 0
2.	Table of Contents J
3.	Mineral and Property Report $_{v}$ - Sum mary
4.	Expenditures <
5.	Qualifications /
6.	References 2
7.	Appendix
	i. Appendix A - Assays J
<u>_</u>	ii. Appendix B - Maps J III Appendix C - Geologie Report J

.

3

	CROWNEX - MINERAL PR	OPERTY REPORT
/	ROPERTY NAME LOUISE 87	SITE VISIT Yes (Ly No ()
	PROV_B.C. MINING DIST Green Wood	GEOLOGIST _ R. Miller
	TARGET disseminated Gold @ Contact	DATE <u>Sept-1, 1992</u>
	QUAD: NTS 82 E/2W Zone Northing	
	Zone Northing UTM COORDINATE Last/Long 49'67'	Easting Nearest Town
	CLAIM INFORMATION 20 UNITS 5NX.	AW Record No 4538
	OWNER: D. Geronazzo	ding repart
	TELEPHONE: (604) 442- 8294 PROPERTY PROSPECTOR: 54	
	TELEPHONE: (604)	n Kuzicka
	GEOLOGY: Mainly unstenlass by the	
	- green stone to the South Edgene - Out cooper Consisting of Contesie	tette Puper Formalus
	BU it the Volcanic and more Se	chimenture Sequences have
	and Tertian Coryed intrusing	
	STRUCTURE: Fast - West Wallace Creek Fa	ult lies just to the north of
(the property An unsamed East-we	st fault, bounded by shotlerst
	_ the property An universed East-me 	Evene fretthe Rues Formatkin
	GEOPHYSICS: Magne temeter aver ge Week correlation with Suspected e <u>IP might beaketter technique for a</u> Suilider in the contact aurgle	liarile / Mista Sectiment Contact
	is assucciated with the diorite / M	etsediment contact and
	that is addition maybe correlated u	arsempyrite The high
	NO. SAMPLES COLLECTED: 37 rocks & DETECTIBL	FALL: MAD HI VALUE SZA 2024
	44 5016s 19/44	: 32 - > 10,000 pyb
	MINERALIZATION AND ALTERATION: Massive Sulfides along disvite metrice	LE CLOSEMINETED
	Chalconinta Arstnopunta Silicific	ation and fracture around prese
	CONCLUSION: <u>Jold is present along</u> <u>Contact</u> . Surface Minsable bulk 7. <u>possibility</u>	a diarity / metased ment
	Contact. Sur face Minable bulk	annage targets are a
•		
	RECOMMENDATIONS:	and rock chips Sampling
	pragram for guld to other area	et a Conduct an IP Survey
	gold enriched areas along	The Entrof Drill formatile
	- tongets developed in The Initial 13	ng com

3

4

Field Expenses:

Man Field Days: (\$)p

Geologist Myron Sawiuk	\$1550,°°
Prospector S. Ruzicka	# 200.00
Field Assistant M.F.Wilson	* 960 °°
K. Anshetz Vehicle Bdays x *65° / day	# 520°°
Lodging and Meals	—,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Misc.	

Geologic Expenses:

Assays

Shipping

Equipment Rental / wK @ \$250 \$ / wK _____ Magneto meter Literature and Maps _____

Misc.

Office Expenses:

Drafting and Reproduction

Report Preparation

Misc.

5780 **

\$ 1700.00

250,00

600. 20

7

Þ

ð

TOTAL:

QUALIFICATIONS

50

STAN RUZICKA

Prospecting Course by Dr. Wm White, Dept of Geology, U.B.C.

Summer 1953

Prospecting Course given by George Addy, Mines Inspector,

Nelson Fall 1977

Prospecting and sampling rock, soil, sediments for:

Gevast Holdings Ltd.	1978 - 79
Kelsey Exploration Ltd. (Yukon)	1980
Skylark Resources Ltd.	1987
Crownex	1991

Leased, mined and shipped ore to the Trail Smetler from the D.A. and Gold Bug Claims 1954 Enterprize and Paddy Claims 1963

STATEMENT OF QUALIFICATIONS

I, ROBERT MILLER, of Oroville, Washington, DO HERBBY CERTIFY THAT:

- 1. I am a geologist with Crown Resources Corporation, with a business address of Star Route 85, Oroville, Washington 98844.
- 2. I am a 1962 graduate from Brigham Young University with a Geological Engineering degree.
- 3. I have practised my profession continuously since graduation.
- 4. I personally conducted the 199 exploration program discussed in this report.

Dated this 26 day of Sept , 1992 .

٠.

E. Miller

Robert E. Miller Geological Engineer

REFERENCES

- Church, B.N. 1985 Geology and Mineralization in The Mount Attwood - Phoenix Area, Greenwood, B.C..
- Little, H.W. 1983 Geology of the Greenwood Map Area G.S.C. 79-29.
- Sookochoff, L. and H. Kim, Report of the Initial Geophysical, Geochemical and Geological Exploration of the Louise Claim Group for Pricam Explorations Inc., January 12, 1988.

APPENDIX

APPENDIX A

ASSAYS (attached commercial sheets)

APPENDIX B

MAPS

APPENDIX C

GEOLOGIC REPORT - R. Miller Geological Engineer Crown Resources June 1992

APPENDIX A

.

11

.

11

1

Analytical Chemists

Geochemists

Registered Assayers

 212
 Brooksbank
 Ave.

 North
 Vancouver,
 B.C.

 Canada
 V7J 2C1

 Phone:
 (604) 984-0221

 Telex:
 04-352597

 Fax:
 (604) 984-0218

Au (OZ/T) : Code 398

Gold analysis is carried out by standard fire assay techniques. In the sample preparation stage the screens are checked for metallics which, if present, are assayed separately and calculated into the results obtained from the pulp assay.

A 0.5 assay ton sample is fused with a neutral flux inquarted with 2 mg of Au-free silver and then cupelled.

Silver beads for AA finish are digested for 1/2 hour in 1 ml HNO3, then 3 ml HCl is added and digested for 1 hour. The samples are cooled and made to a volume of 10 ml, homogenized and run on the AAS with background correction.

Detection Limit 0.002 oz/T

Code 981 is the same as 398, but performed on a rush basis.

Gold FA-AA ppb - Chemex Code 100

A 10 gram sample is fused with a neutral flux inquarted with 6 mg of Au-free silver and then cupelled.

Silver beads for AA finish are digested for 1/2 hour in 0.5 ml HNO3, then 1.5 ml HCl is added and digested for 1 hour. The samples are cooled and made to a volume of 5 ml, homogenized and run on the AAS with background correction.

Detection limit: 5 ppb

Analytical Chemists * Geochemists * Registered Assayers 994 West Glendale Ave., Suite 7, Sparks, Nevada, U.S.A. 89431 PHONE: 702-356-5395

CROWN RESOURCE CORPORATION

820 16TH ST., STE. 415 DENVER, COLORADO 80202

A9026091

Comments: ATTN: CHRIS HERALD CC: J. SHANNON CC: R. MILLER

CERTIFICATE

A9026091

CROWN RESOURCE CORPORATION

Project: MIDWAY P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 8-NOV-90.

	SAMPLE PREPARATION												
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION											
205 294 238	10 10 10	Geochem ring to approx 150 mesh Crush and split (0-10 pounds) NITRIC-AQUA REGIA DIGESTION											
* NOTE	1:												

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANALYTICAL PROCEDURES CHEMEX INUMBER DETECTION UPPER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 100 10 Au ppb: Fuse 10 g sample FA-AAS 10000 5 922 10 Ag ppm: 32 element, soil & rock ICP-ABS 0.2 200 921 10 Al %: 32 element, soil & rock ICP-ARS 15.00 0.01 923 10 As ppm: 32 element, soil & rock ICP-AES 10000 5 924 10 Ba ppm: 32 element, soil & rock ICP-AES 10 10000 925 10 Be ppm: 32 element, soil & rock ICP-AES 0.5 100.0 926 10 Bi ppm: 32 element, soil & rock ICP-AES 10000 2 927 10 Ca %: 32 element, soil & rock ICP-AES 0.01 15.00 928 10 Cd ppm: 32 element, soil & rock ICP-ABS 0.5 100.0 929 10 Co ppm: 32 element, soil & rock ICP-AES 10000 1 930 10 Cr ppm: 32 element, soil & rock ICP-AES 1 10000 931 10 Cu ppm: 32 element, soil & rock ICP-AES 10000 1 Fe %: 32 element, soil & rock 932 10 ICP-AES 0.01 15.00 933 10 Ga ppm: 32 element, soil & rock ICP-AES 10000 10 951 10 Hg ppm: 32 element, soil & rock ICP-AES 1 10000 934 K %: 32 element, soil & rock 10 ICP-ARS 0.01 10.00 935 10 La ppm: 32 element, soil & rock ICP-AES 10 10000 936 10 Mg %: 32 element, soil & rock ICP-ABS 0.01 15.00 937 10 Mn ppm: 32 element, soil & rock ICP-AES 10000 -5 938 10 Mo ppm: 32 element, soil & rock ICP-AES 1 10000 939 10 Na 4: 32 element, soil & rock ICP-ARS 0.01 5.00 10 940 Ni ppm: 32 element, soil & rock ICP-AES 1 10000 941 10 P ppm: 32 element, soil & rock ICP-AES 10 10000 942 10 Pb ppm: 32 element, soil & rock ICP-ARS 2 10000 943 10 Sb ppm: 32 element, soil & rock ICP-ARS 5 10000 958 10 Sc ppm: 32 elements, soil & rock ICP-ARS 1 10000 944 10 Sr ppm: 32 element, soil & rock ICP-AES 1 10000 945 10 Ti %: 32 element, soil & rock ICP-AES 0.01 5.00 946 10 T1 ppm: 32 element, soil & rock ICP-AES 10 10000 947 10 U ppm: 32 element, soil & rock ICP-AES 10 10000 948 10 V ppm: 32 element, soil & rock ICP-AES 1 10000 949 10 W ppm: 32 element, soil & rock ICP-AES 10 10000 950 10 En ppm: 32 element, soil & rock ICP-AES 2 10000

.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page Number :1-A Total Pages :1 Certificate Date: 30-JUN-92 Invoice No. :19216415 P.O. Number :5102 Account :JXX

A9216415

11

Project : CAN RECON Comments: ATTN: C. HERALD GC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

CERTIFICATE OF ANALYSIS

								<u> </u>												
SAMPLE	PREP CODE	ли ррб Гл+лл	Ag ppa	А1 \$	As ppa	Ba ppm	Be	Bi pps	Ca 8	Cd pps	Co ppm	Cr ppm	Cu ppm	Fe ¥	Ga ppm	Eg	X ł	La ppm	Mg %	Mn ppm
92CCR100R	205 274	40	< 0.2	2.84	48	220	< 0.5	2	1.27	< 0.5	9	62	48	3.85	< 10	1	0.44	< 10	0.96	865
92CCK101R	205 274	200	1.4	1.91	216		< 0.5	4	2.02	< 0.5	71	47	347	5.53	< 10	<1	0.08	< 10	0.30	530
92CCR102R	205 274		1.2	0.05	58	< 10	< 0.5	10	0.13	< 0.5	90	28		>15.00	< 10	< 1	0.02	< 10	0.10	270
92CCR103R	205 274		0.4	0.42	316	40	< 0.5	< 2	0.09	< 0.5	6	170	95	1.76	< 10	< 1	0.05	< 10	0.19	145
92CCK104R	205 274	40	< 0.2	3.73	20	190	< 0.5	2	1.20	< 0.5	14	198	106	3.44	< 10	< 1	1.09	10	1.45	850
92CCK105R	205 274	45	0.4	1,70	14	560	< 0.5	< 2	0.15	< 0.5	21	112	255	3.34	< 10	< 1	0.66	10	1.06	1170
92CCK106R	205 274		< 0.2	2.19	< 2	380	< 0.5	6		< 0.5	16	254	130	3.29	< 10	< 1	1.05	10	1.54	935
92CCK107R	205 274		0.2	1.64	24	940	< 0.5	< 2	0.12	< 0.5	7	176	123	3.14	< 10	< 1	0.57	10	1.08	715
92CCK108R	205 274	20	0.2	3.86	20	310	< 0.5	< 2	1.53	< 0.5	11	233	77	3.23	< 10	< 1	0.95	< 10	1.25	945
92CCK109R	205 274	15	< 0.2	2.35	24	1860	< 0.5	4	0.19	< 0.5	. 7	157	46	3.55	< 10	< 1	0.87	10	1,24	790
92CCR110R	205 274	10	0.2	2.29	74	1680	< 0.5	< 2	2.76	< 0.5	4	188	47	2.71	< 10	3	0.56	< 10	1.06	1115
92CCK111R	205 274		0.4	2.43	20	820	< 0.5	< 2		< 0.5	3	215	50	3.04	< 10	1	0.74	10	1.02	710
92CCK112R	205 274		0,2	1.59	4	620	< 0.5	4	0.47		6	262	71	2.68	< 10	< 1	0.74	10	0.72	735
92CCK113R	205 274		< 0.2	1.66	14	310	< 0.5	- 4		< 0.5	13	244	120	3.11	< 10	< 1	0.40	10	0.83	730
92CCK114R	205 274	65	< 0.2	0.95	16	230	< 0.5	2	0.44	< 0.5	8	242	115	2.37	< 10	< 1	0.24	10	0,45	285
92CCK115R	205 274	10	< 0.2	4.11	< 2	840	< 0.5	2	1.36	< 0.5	22	75	94	6.04	< 10	< 1	1.60	< 10	2.51	690
92CCK116R	205 274		0.4	0.78	198	30	< 0.5	< 2	4.18	< 0.5	5	95	75	5.55	< 10	< 1	0.09	< 10	0.27	2270
92CCK117R	205 274		0.4	2.19	52		< 0.5	< 2		< 0.5	9	66	84	3.72	< 10	< 1	0.43	20	1.14	600
92CCK118R	205 274		< 0.2	1.91	258	60	< 0.5	< 2		< 0.5	6	41	15	5.75	< 10	1	0.31	< 10	0.23	1070
92CCK119R	205 274	15	0.2	1.21	14	1400	< 0.5	2	0.07	< 0.5	15	100	118	2.35	< 10	< 1	0.45	10	0.69	895
92CCR120R	205 274	10	< 0.2	2.44	10	740	< 0.5	< 2	0.41	< 0.5	13	200	66	3.56	< 10	< 1	1.01	10	1.45	1110
92CCR121R	205 274		< 0.2	1.60	6	1170	< 0.5	< 2	0.70	< 0.5	16	124	68	3.19	< 10	1	0.57	< 10	1.43	700
92CCR122R	205 274		< 0.2	1.29	10		< 0.5	< 2		< 0.5	7	152	62	1.71	< 10	< 1	0.40	10	0,83	415
92CCR123R	205 274		1.2	1.19	246		< 0.5	6		< 0.5	25	152	821	10.85	< 10	< 1	0.04	30	0.27	320
92CCK124R	205 274	135	0.2	1.62	208	150	< 0.5	4	1.20	< 0.5	9	190	88	3.15	< 10	< 1	0.04	10	0.48	560
92CCK125R	205 274		0.2	1.58	166		< 0.5	< 2		< 0.5	8	194	124	3.87	< 10	< 1	0.16	10	0.66	425
92CCK126R	205 274		0.8	1,76	52	100	< 0.5	2	1.54	< 0.5	5	229	315	2.63	10	< 1	0.06	< 10	0.46	325
92CCK127R	205 274	310	0.8	1.31	156	300	< 0.5	< 2	0.76	< 0.5	6	168	85	5.12	10	< 1	0.35	< 10	0.52 0.21	215 110
92CCK128R	205 274		0.2	0.43	30		< 0.5	< 2		< 0.5	1	156	43	1.70	< 10 10	< 1	0.05 1.32	< 10 10	1,24	530
92CCK129R	205 274	55	< 0.2	3.03	314	1400	< 0.5	< 2	46.0	< 0.5	17	89	80	6.03	10	• •	1.32		4,24	530
		1																		
		1																		
]																				1
		ł																		
<u></u>																				

J'Ind

^{...}

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-964-0221

To:	CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500
	DENVER, COLORADO
	80202

Page Number :1-B Total Pages :1 Certificate Date: 30-JUN-92 Invoice No. :19216415 P.O. Number :5102 JXX Account

-«1)

Project : CAN RECON Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

										CE	RTIF	CATE	(SIS	A9216415		
SAMPLE	PREP	Mo	Na t	Ni ppm	P	Pb ppm	Sb ppa	Sc ppn	Sr ppa	Ti %	T1 PPm	D bbw	v Ppm	N N	Zn pp a	
92CCK100R 92CCK101R 92CCK102R 92CCK103R 92CCK104R	205 274 205 274 205 274 205 274 205 274 205 274		0.28 0.13 0.01 0.01 0.43	4 54 102 12 38	920 290 160 70 770	< 2 6 < 2 < 2 < 2 < 2 < 2	6 12 20 2 2	11 5 2 2 12		0.17 0.19 < 0.01 < 0.01 < 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	107 51 52 27 105	< 10 < 10 < 50 < 10 < 10	92 30 28 16 42	
92CCK105R 92CCK106R 92CCK107R 92CCK108R 92CCK108R 92CCK109R	205 27 205 27 205 27 205 27 205 27 205 27	< 1 6 1 6	0.01 0.11 0.03 0.30 0.08	93 63 30 33 23	590 740 480 590 610	< 2 < 2 < 2 < 2 < 2 < 2 2	4 2 2 4	9 14 10 11 14	6 16 9 93 17	0.10 0.17 0.09 0.15 0.14	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	44 108 127 107 128	< 10 < 10 < 10 < 10 < 10 < 10	48 44 34 66 68	
92CCR110R 92CCR111R 92CCR112R 92CCR112R 92CCR113R 92CCR114R	205 27 205 27 205 27 205 27 205 27 205 27	3 5 10 2 1	0.05 0.14 0.07 0.07 0.02	23 18 26 35 18	520 560 950 460 1950	4 4 8 < 2 < 2	2 4 2 2 2	8 10 8 7 4	96 36 34 17 5	0.09 0.11 0.07 0.07 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	106 122 110 87 76	< 10 < 10 < 10 < 10 < 10 < 10	84 60 92 56 18	
92CCK115R 92CCK116R 92CCK117R 92CCK118R 92CCK118R 92CCK119R	205 27 205 27 205 27 205 27 205 27 205 27	2 1 1 1	0.32 0.07 0.20 0.01 0.01	35 9 9 2 87	860 1640 1180 840 230	< 2 < 2 6 < 2 2	8 6 2 4 < 2	21 3 7 4 6	52 18 102 7	0.22 0.08 0.12 < 0.01 0.09	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	216 73 99 43 21	< 10 < 10 < 10 < 10 < 10 < 10	50 54 92 34 50	
92CCK120R 92CCK121R 92CCK122R 92CCK123R 92CCK123R 92CCK124R	205 27 205 27 205 27 205 27 205 27 205 27	3 6 1 3 10	0.10 0.10 0.04 0.09 0.15	55 38 41 51 22	880 490 270 2500 1130	< 2 < 2 < 2 < 2 < 2 2 < 2 2	4 4 < 2 6 4	12 11 6 3 5	21 14 12 32 42	0.15 0.13 0.03 0.06 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	130 128 35 119 98	< 10 < 10 < 10 < 10 < 10 < 10	78 44 22 20 28	
92CCR125R 92CCR126R 92CCR127R 92CCR128R 92CCR128R 92CCR129R	205 27 205 27 205 27 205 27 205 27 205 27	10 4 10 13 6	0.09 0.17 0.09 < 0.01 0.12	40 32 18 7 25	1070 1070 2390 170 740	2 2 2 < 2 < 2 < 2	2 < 2 4 < 2 4	5 5 4 2 18	24 57 52 1 45	0.03 0.10 0.03 < 0.01 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	107 70 136 33 174	< 10 < 10 < 10 < 10 < 10 < 10	44 32 16 8 40	
										<u></u>	- ,,			CERTIFIC	CATION:	Thai D Ma

r

fo: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO

Chemex Labs Ltd.	fo: CROW SEVEN 1225 1	NTE
Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver	DENVI 80202	
British Columbia, Canada V7J 2C1 PHONE: 604-984-0221	Project : Comments:	MI AT

NIDWAY ATTN: C. HERALD OF: R. MILLER CC: J. SHANNON CC: M. SAWIUK

											CE	RTIF	CATE	OF	ANALY	YSIS		A9216	504		
SAMPLE	PR CO		уп DDp 27+77	λg ppel	A1 %	As ppe	Ba ppm	Be ppn	Bi p pm	Ca %	cđ ppa	Co ppa	Cr ppm	Cu ppa	70 %	Ga ppm	Hg ppm	к %	La ppa	Ng %	Mn. ppm
92CCR130R 92CCR131R 92CCR132R 92CCR132R 92CCR133R 92CCR134R	205 205 205	274 274 274 274 274 274		1.6 0.2 3.0 4.0 8.2	1.23 2.25 0.75 1.34 0.69	>10000 1390 730 406 5310	40 120 80 90 < 10	1.5 2.0 2.0 2.0 1.0	12 2 28 18 48	0.18 0.58 0.12 0.06 0.19	25.0 3.7 0.8 1.3 51.0	21 10 3 3 32	96 64 175 244 243	241 111 134 149 1205	6.32 4.32 5.77 4.84 13.40	10 10 10 < 10 10	< 1 < 1 < 1 1 < 1	0.55 0.44 0.21 0.25 0.02	< 10 < 10 < 10 < 10 < 10 < 10	0.61 1.18 0.22 0.41 0.19	350 750 135 220 180
92CCK135R 92CCK136R		274 274	3540 1660	5.6 3.2	0.06	3380 >10000	10 < 10	1.0 2.0	30 14	0.03	0.4 2.1	3 6	421 307	224 86	3.31 4.34	< 10 < 10		< 0.01 < 0.01		< 0.01 < 0.01	60 20
															-						
																	<u>}+</u>	hai	-A	Ma	

40

 $\mathcal{A}^{(i)}$

To: CROWN RESOURCE CORPORATION SEVENTEENTH STREET PLAZA 1225 17TH ST., STE. 1500 DENVER, COLORADO 80202

Page iber :1-Total Hages :1 iber :1-B Certificate Date: 02-JUL-92 Invoice No. : 19216 P.O. Number : 5113 :19216504 Account :JXX

3

MIDWAY Project :

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

						_					CERTIFICATE OF ANALYSIS				A9216504		
SAMPLE	PR		Mo ppa	Na %	ni ppa	P	Pb ppm	Sb ppm	Sc ppm	Sr ppa	Tİ X	Tl ppm	D ppa	V DDM	W DDan	Zn ppm	
2CCR130R 2CCR131R 2CCR131R 2CCR132R 2CCR133R 2CCR134R	205 205 205	274 274 274 274 274 274	4 1 3 2 3	0.05 0.08 0.06 0.03 0.01	24 3 3 3 6	410 800 270 320 30	32 < 2 2 30 12	18 4 6 2 10	10 7 3 3 2		0.04 0.04 0.02 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 73 33 33 11	< 10 < 10 < 10 < 10 < 10 < 10	780 226 74 256 2740	
CCK135R CCK136R	205	274 274		¢ 0.01 ¢ 0.01	4	20 20	2 8	44 16	1 < 1		¢ 0.01	< 10 < 10	< 10 < 10	6 5	20 < 10	64 166	
											-				ERTIFIC	ATION:_	Thai OMa

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	CROWN RESOURCE CORPORATION
	SEVENTEENTH STREET PLAZA
	1225 17TH ST., STE. 1500
	DENVER, COLORADO
	80202

Page Number :2 Total Pages :3 Certificate Date: 29-JUN-92 Invoice No. :19216414 P.O. Number :5080 Account :JXX

Project : CAN RECON Comments: ATTN: C. HERALD CC: R. MILLER CC: J. SHANNON CC: M. SAWIUK

						CERTIFIC	CATE OF	ANALYSIS	A92	216414	
Samp Le	PREP CODE	Ац ррб FA+AA	Au FA oz/T								
150E 1000N 550E 0000N 550E 0050N 550E 0100N 550E 0150N	201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 5 10 5</pre>									
550E 0200N 550E 0250N 550E 0300N 550E 0350N 550E 0400N	201 201 201 201 201 201	20 < 5 < 5 < 5 < 5 35									
550E 0450N 550E 0500N 550E 0550N 550E 0650STN 550E 0600N	201 201 201 201 201	>10000 35 40 30 50	0.848 								
550E 0650N 550E 0700N 550E 0750N 550E 0800N 550E 0850N	201 201 201 201 201	25 < 5 < 5 < 5 < 5 < 5 < 5									
550E 0900N 550E 0950N 550E 1000N L650E 0000N L650E 0050N	201 201 201 201 201 201	4560 < 5 < 5 < 5 < 5 20	 								
L650E 0100N L650E 0150N L650E 0200N L650E 0250N L650E 0250N L650E 0300N	201 201 201 201 201 201	<pre>< 5 < 5</pre>	 			1 1					
L650E 0350N L650E 0400N L650E 0450N L650E 0500N L650E 0550N	201 201 201 201 201 201	35 < 5 < 5 < 5 < 5 55	 								
650E 0600N 650E 0650N 650E 0700N 650E 0750N 650E 0750N	201 201 201 201 201	<pre></pre>									
<u> </u>			1,.	L	L	<u> </u>		CERTIFICATION:).		Inh

Г

:7

C	Chem Analytical Chemists 212 Brooksbank / British Columbia, PHONE: 604-984	* Geochemists * R Ave., North Vanc Canada V7J 2		SEVE 1225 DENV 80202		Page Number :3 Total Pages :3 Certificate Date: 29-JUN-92 Invoice No. : 19216414 P.O. Number :6080 Account : JXX CC: M. SAWIUK			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		puise				NALYSIS	 6414	
SAMPLE	PREP CODE	Au ppb FA+AA	Au FA oz/T						
L650E 0850N L650E 0900N L650E 0950N L650E 1000N L650E 1050N	201 201 201 201 201 201	<pre>< 5 < 5 30 < 5 < 5 < 5</pre>							
				-					
				1					
				 			CERTIFICATION	wh	Vmh

.

5 3

ROCK & MPLE SHEET

_Sampler							
Date	144	-2		Property	Louise 87	N	ITS
	b1	, 1	ESCRIPT	ION		Table I.	ASSAYS
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL DE	SERVATIONS	PC & PAM PAMPAM 1/6 Au As As Cu F=
92 CCK 100R	G	In XIIIino	wherey: Knownalitie	Trip;	1550E 300 N	rel. cut	AP 10 10 10 287
92 CCK 10/ A		chert	Silie				20 1 1 1 2 50 1 50 1 50 1 50 1 50 1 50 1
92 CCK			fract.	Marl. Py To Po. Fc. Py Chalco.	1550E 325N	nd. cut	
102 R 92 CCK		chert gkite?	Silie Augill.	Massive Sulf. Fe ox	6550E 450N	cat cut	
103R 9200K	G	Chert?	blehid	Tr Sulfide. Tr Sulfide	1550E 600N	0e	Nº 0: 3 07 1.
104n 9200K	G	Volcani	Silve	Stringers	L550E 650N	0.2.	AD 10. 20 10 344
105R 92CCK	G	Augulite	Silve	Tr Sullide.	1550E 700 N	0.C.	A O. N. B 3ª
1062	3	Arguite	Silve	Tr-Sulfide	1550E 750N	0,C.	20 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
92 CCK 10712	G	Silie. Volcens	Silie.		1550E 775N	٥.د.	35 0. 2 12 12 3.
9250K 1082	3	Volcan	Silize Agaile	Feox Tr. Sulfide.	1550E 950N	0.2	2° 0° 2° 1° 323
9200K	0	Valcan	Silie Availe	Frox The Sulfide	L550E /025A		15 w. 20 No 3.50
92CCK 110R	G	Avall.	fract	Feor	1550E 15001	/	10 0.2 x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
92EEK IIIR	G		Argillie	FEOX	1450E 9501		10 0. A 20 50 3. A
92555 11212		1 Jacob	tohated	Tr. Ry	1450E 850		10 0.2 A A1 2
922CK 1137-					<u> </u>		
922CK		, ,		TE Py	2450E 8001		
C-CHIP 6		<u>chert</u>	Sure 1	Tr py	LASOE 825 M		165 Loi 16 115 2.5x

C-CHIP G-GRAB F-FLOAT

12

1.5

ROCK (MPLE SHEET

Sampler_

. .

Date	19	192		Property	Louise Et		N	TS _				
SAMPLE	Samele	<u>ا</u>	DESCRIPT	ION	1			L		SS/		ŧ
NO.	Yidth	Rock Type	Alteration	Mineralization	ADDITION	AL OBSERVA	TIONS	PPo Au	ern An	rem As	rem 9	죍
92CCK 115R	G	Argilit	fract Silie	Mard. Pa	L450E	AUGN	0. C.	10	1°.7/	$\mathcal{L}^{\mathcal{V}}$	at 1	À.
9255K 116R	G	chert	Silve	Mod pu po	1450E	325N	0.2.	ŵ	o [.] A	. a.s	25	5
92205C	G	charite	Penpyhhi Silic	Tr. Sulfile	1450E	100 N	<u>ت.</u>	2°	_ه ک	5~	84 7	3.
920000 11812	G	Burshyry	Argilic	Feox	L 450E	075N	0.Z.	R	40. V	,5°	16	10
92 ccre 119R	G	Henri	Amelle	Tr py	L 650E	975 N	0.2.	5	o ^{.~}	12	18	\$5 V
92000 1200	6	Ubkanie-	blandard	Tratis Sules	2650E	900 N	0.2	P	N. V.	2	We n	ふう
92 CCk 121 R	G	Valcanie	frae.	Feex	1650E	700 N	0.2.	5	ر بول	6	30 1	かい
92 CCK 12212	G	ghzite?		Feux Tropy	L 650E	635N	0.2.	20	~ L ⁰ .	10	62	x1 1.
920040 1230	Ğ	chert	Argulic	Fear - abud Sulfiche R. Pechel	2550E	ASON	0.C ;	\0 ⁰	_ا بم	2ª	97	35
9200K	G	chert	Silic	Trt Sulficter	1525E	450N	ھ، کے .	33	o.~/	208	2 ⁹ 2	12
9255K 12512	G	chert	Silie	Tet Sulfides	1540E	ASON	p.t.	15	~~	16	122 7	2 ^{9,X}
9200K 1261-	G	chart	Suliz.	Tr+ Sureda	1550E	480N	trench	Jue	~/ 0`	5~	3 ¹⁵ h	63) 1
92224 1272	G	chert	Silic	Tr Sulfide	L525E	ABON	0.2.		0.		85 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
920000 128 R	G	chert	Silve	Tr Sul Pula	15108	ABON	0, 2.	35	~			X°
92CCK 12912	_	. 1	silie_	To ++ Sulfide	LSIDE	480 N	0.E.		JP.V	314	80 V	0 ³⁷

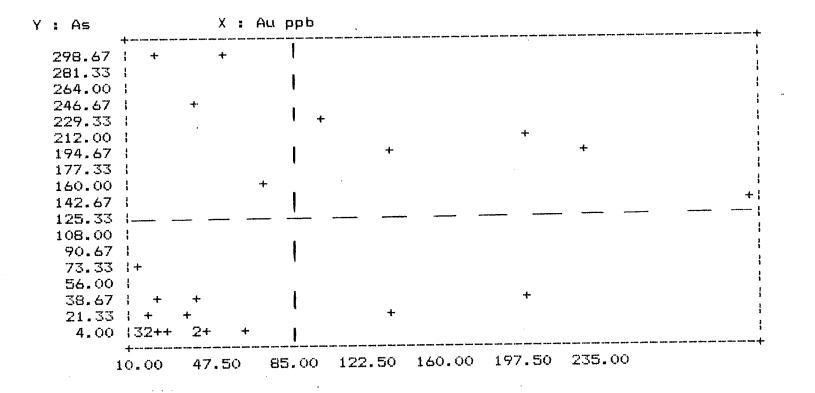
C-CHIP G-GRAD F-FLOAT

-

ROCK (MPLE SHEET

Samp	
Date	

er 1992


1.

Louise 87 Property _

NTS ____

SAMPLE	Sample	, t	ESCRIPT	ION		ASSAYS						
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au		ppn 4s		3 2		
9250K 130N	G	chert/	Silic.	Py, Aspy, Po?	Copper Cabin pit. 250E - 240N	5 kg				32		
922csc 131,2	G	chinte	Silie.	Py, Trpa?	Compare Cabio 300E 200 N	\$				N.		
92cck 13212	6	الم الم	Sile.	•	Sepper Subix 30DE 200N	1,15		x30	3A (**		
92 CCK 1332	¢۲	gtz in		Feox		290	R°.	N ²	149	N.X.		
9255x 134p	G	dwite Jossan	oxulgied Shear	Fear, Ry Aspy, charles	Shuft @ Copper Cabins 350E 200N	29.79	¢ ₿`	538	205	×° 3.		
92000 13512	G	chat.	oxidizie) shear	Fear, Ry Asysi	Copper Cabin 350E 140N	n fr	4	299		م ^ر بح		
9220e 136n	1 1	chart		Tr. py Asoy		16th		191	80	An		
				(])-								
										, <u>1997</u>		
				-								

C-CHIP G-GRAB F-FLOAT

		CR	ow	N RESOURCE CORPORATION
COMPILED	DATE	DRAFTED	DATE	IOUISE 87
NEVISED	DATE	REVISED	DATE	
				X-Y Plot Au: As
				X-Y Plot Au: As 30 Sample Rock Suite
	1			Kunn
		<u> </u>		DATE 6/42 SCALE DWG NO.

Y : Cu		Χ:	Au ppb						
776.22			• •••• ••• ••• ••• ••• ••• ••• ••• •••						
731.44	1								1 9
686.67	i								ł
641.89	1								1
597.11	1								1
552.33	1								1
507.56	1	·							1
462.78	i								1
418.00	1								1
373.22	1								ł
328.44	1					+			1
283.67	1					-+-			1
238.89	1	+							
194.11	ļ					,			i
149.33 104.56	12	++ + +							1
59.78		+ +		-4-			.+		+
							•		1
15.00	i 2+	2							1
4	.0.00	47.50	85.00	122.50	160.00	197.50	235.00	272.50 3	\$10.00
File	.0.00	47.00	au. 00	للالية والمكالية الأ	100.00	17/:00		ست * ۱۹۰۵ ۲۵ ستن و پیش	an ana man na man nan'
r									
	· · · · · · · · · · · · · · · · · · ·						e aeroat i i i i		

.

		CR	ow	N RESOURCE COR	PORATION
COMPLED	DATE	DRAFTED	DATE	LOUISE - 8	2
REVISED	DATE	REVISED	DATE		
				X-Y Plot. Au	i. Cu.
				30 Sample Roc	te Suite
				DATE 6 4 2 SCALE	DWG NO.

• •

İ

Select : au

VARIABLE :	Au ppb	FA+AA
COLUMN NUMBER :	3	
DETECTION LIMIT :	5.0000	
NUMBER OF OBSERVAT	IONS :	30
MINIMUM	:	10.000
MAXIMUM	. :	475.000
MEAN	:	81.667
STANDARD ERROR OF	MEAN :	19.447
STANDARD DEVIATION	1	106.515
COEFFICIENT OF VAR	IATION :	130.426
SKEWNESS		2.083
KURTOSIS	:	4.202
Option :		

. ..

		CR	aw	N RESOURCE CORPORATION
COMPLED	DATE	DRAFTED	DATE	IOUISE - 87
REVISED	DATE	REVISED	DATE	GOLD IN Rock
				30 Sample Rock Suite
		<u> </u>		Ren
		<u>├</u>		DATE 6/92 SCALE DWG NO.

Select : as

ł,

VARIABLE	: As	ppm	
COLUMN NUMBER	:	7	
DETECTION LIMIT	: 2.00	000	
NUMBER OF OBSER	VATIONS :	28	
MINIMUM	:	4.000	
MAXIMUM		316.000	
MEAN	:	92.429	
STANDARD ERROR (OF MEAN :	19.526	
STANDARD DEVIAT	ION :	103.323	
COEFFICIENT OF 4	VARIATION :	111.787	
SKEWNESS	:	0.934	
KURTOSIS	:	-0.710	
Option :			

.

ŧ.

a second and the second second second second second second second second second second second second second sec

g		1wor	N RESOURCE CORP	ORATION
OMPILED	DATE DRAFTED	DATE		
EVIBED		DATE	LOUISE 87	
			Arseniz In F	Rock
			30 Sample Su	it.
		(DATE 6/42- SCALE	DWG NO.

Select : au

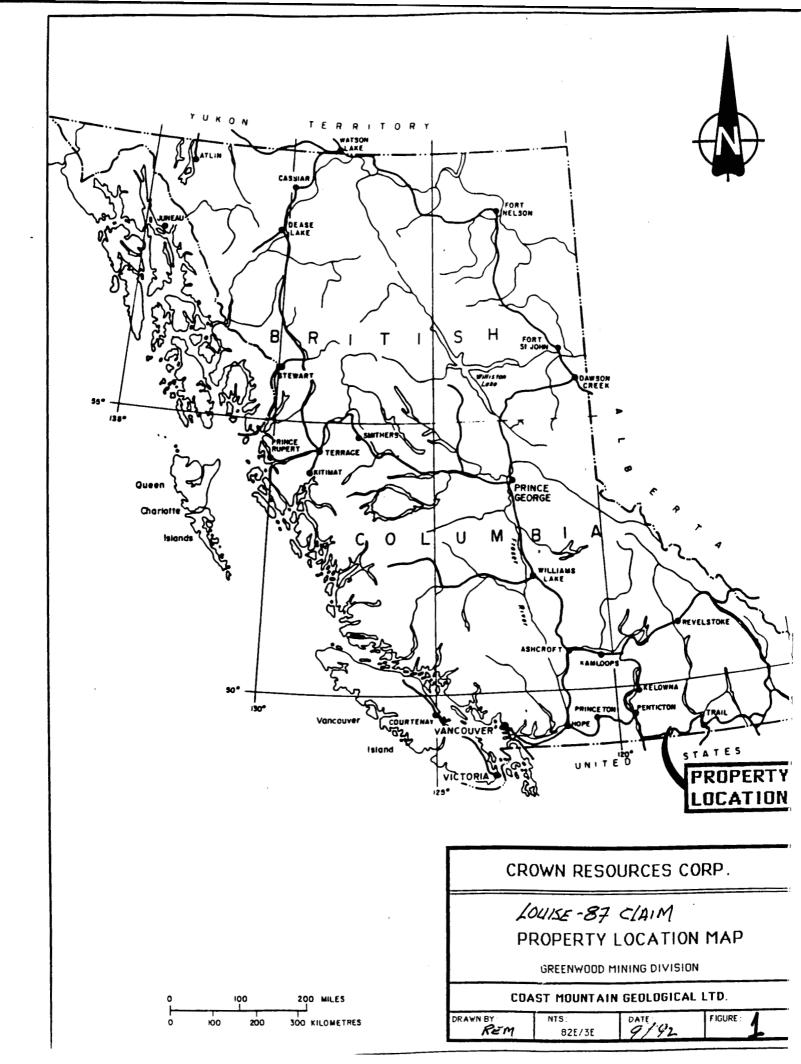
(

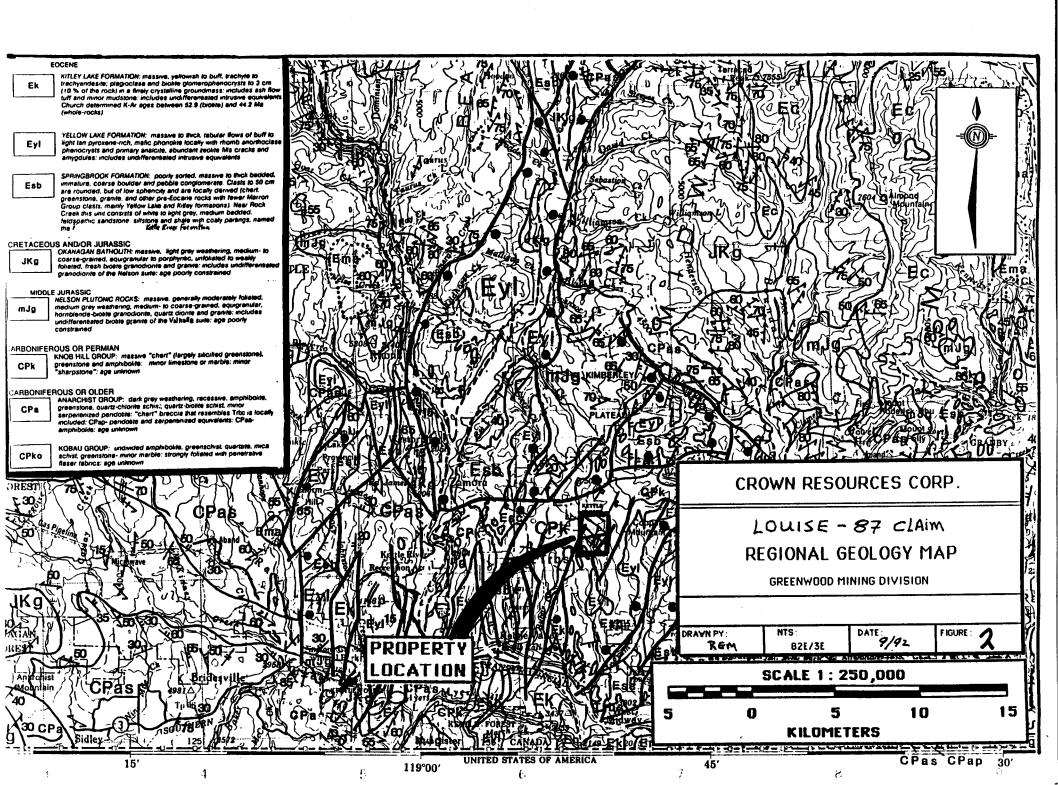
VARIABLE :	Au ppt	3	FA+AA
COLUMN NUMBER :		2	
DETECTION LIMIT :		0000	
NUMBER OF OBSERVAT	IONS	1	23
MINIMUM		:	5.000
MAXIMUM		:	4560.000 🕊
MEAN		:	221.957
STANDARD ERROR OF	MEAN	1	197.206
STANDARD DEVIATION	4	;	945.769
COEFFICIENT OF VAR	RIATION	4 =	426.106
SKEWNESS		:	4.187
KURTOSIS		2	16.246
Option :			

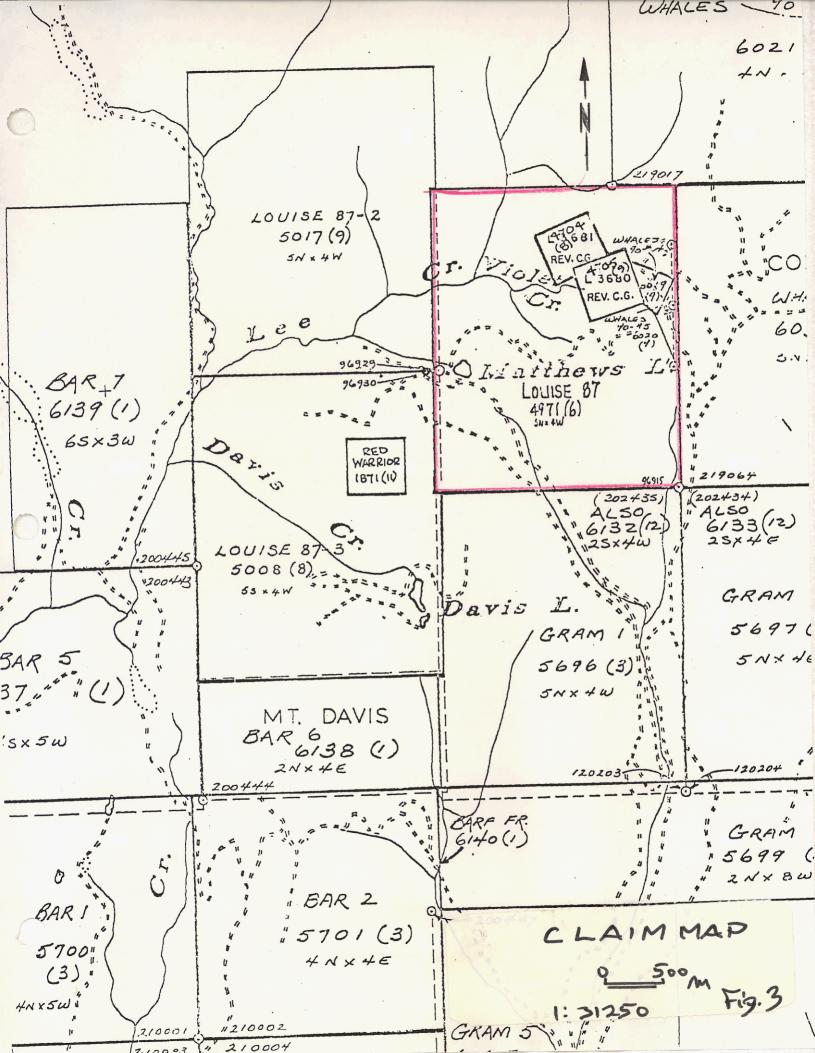
* doesn't include the >10,000 ppl are sample

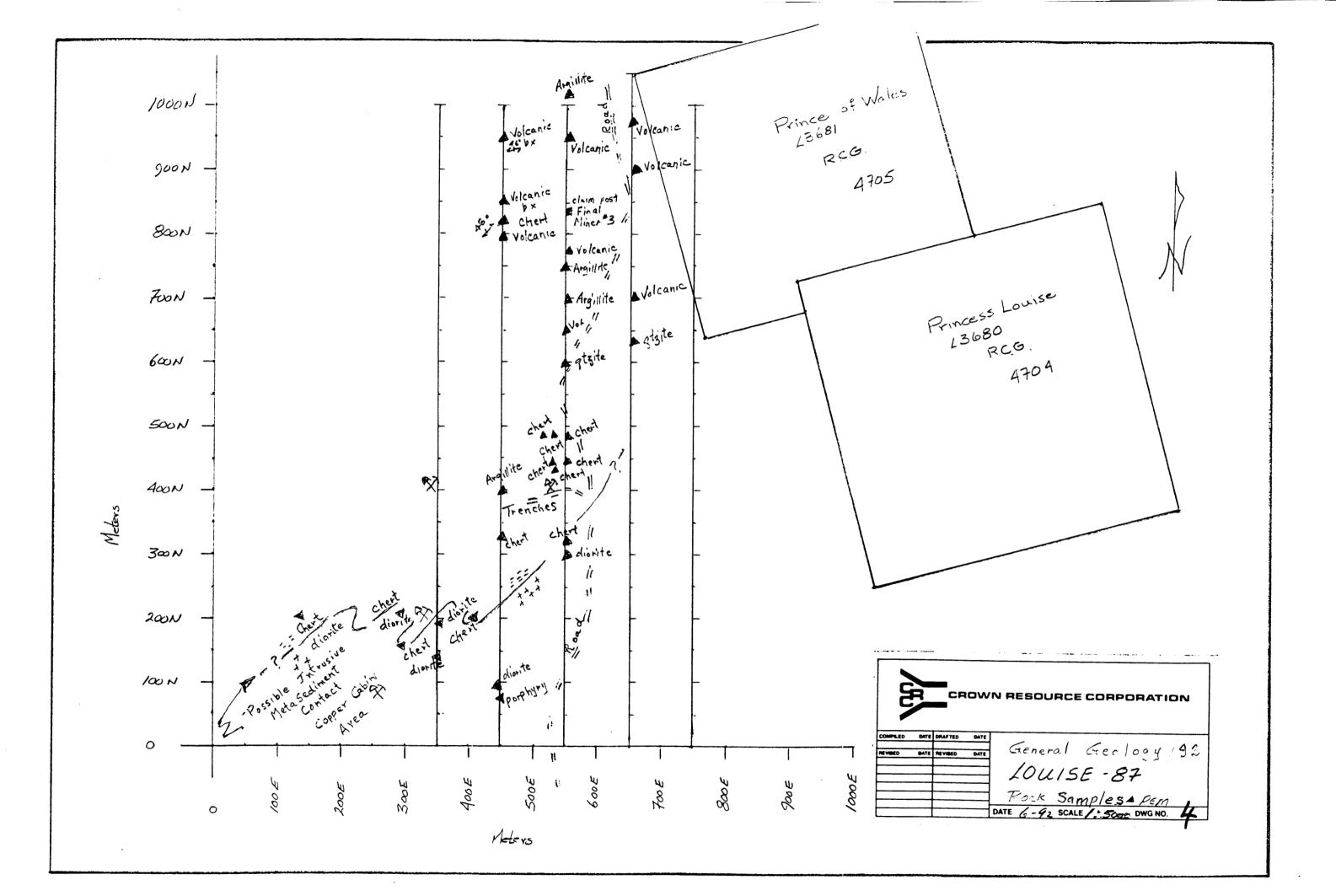
CROWN RESOURCE CORPORATION DATE COMPLED DATE DRAFTED LOWISE - 87 REVIDED GOLD In Soil -80 Mesh. REm DATE 6/92 SCALE DWG NO.

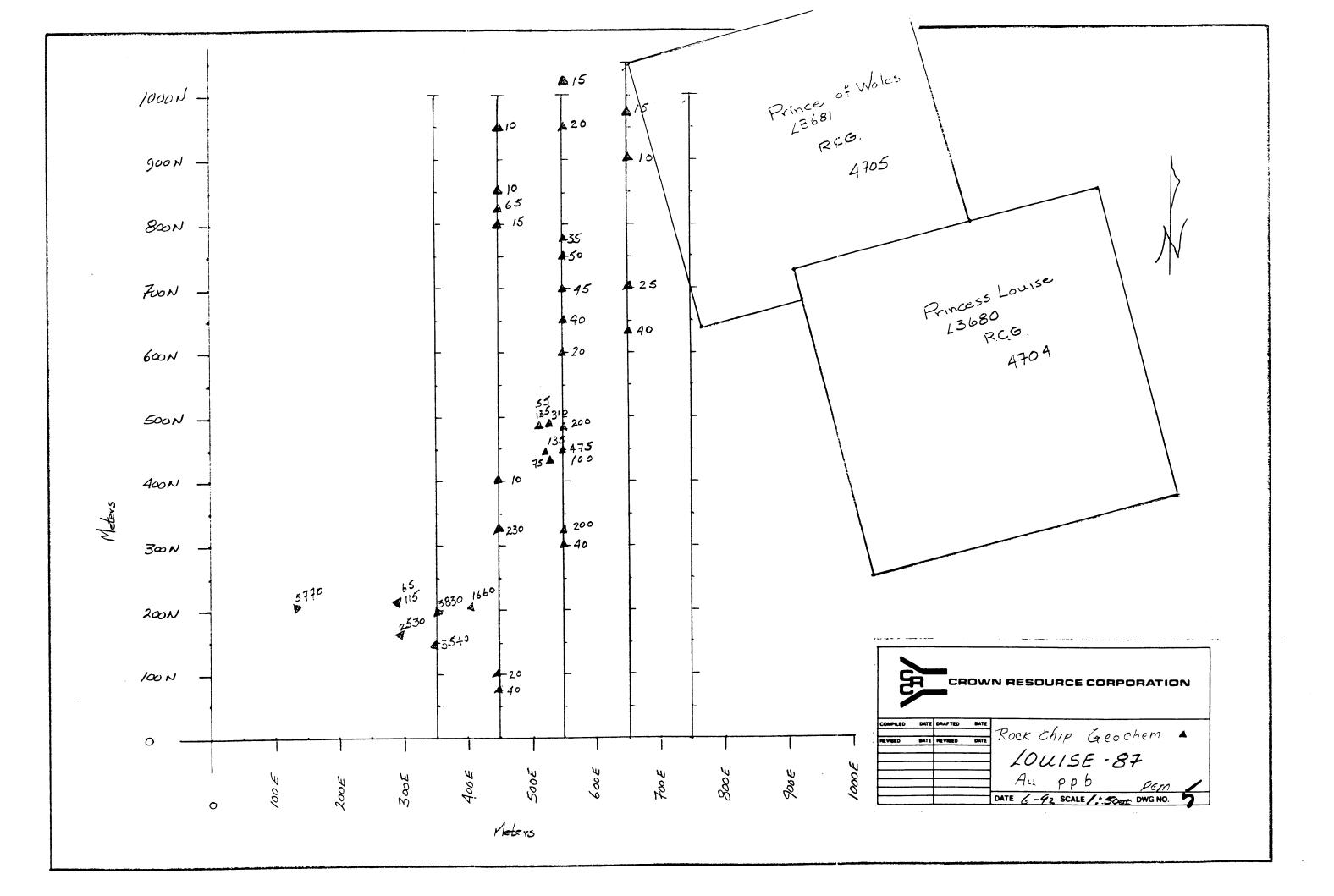
₩

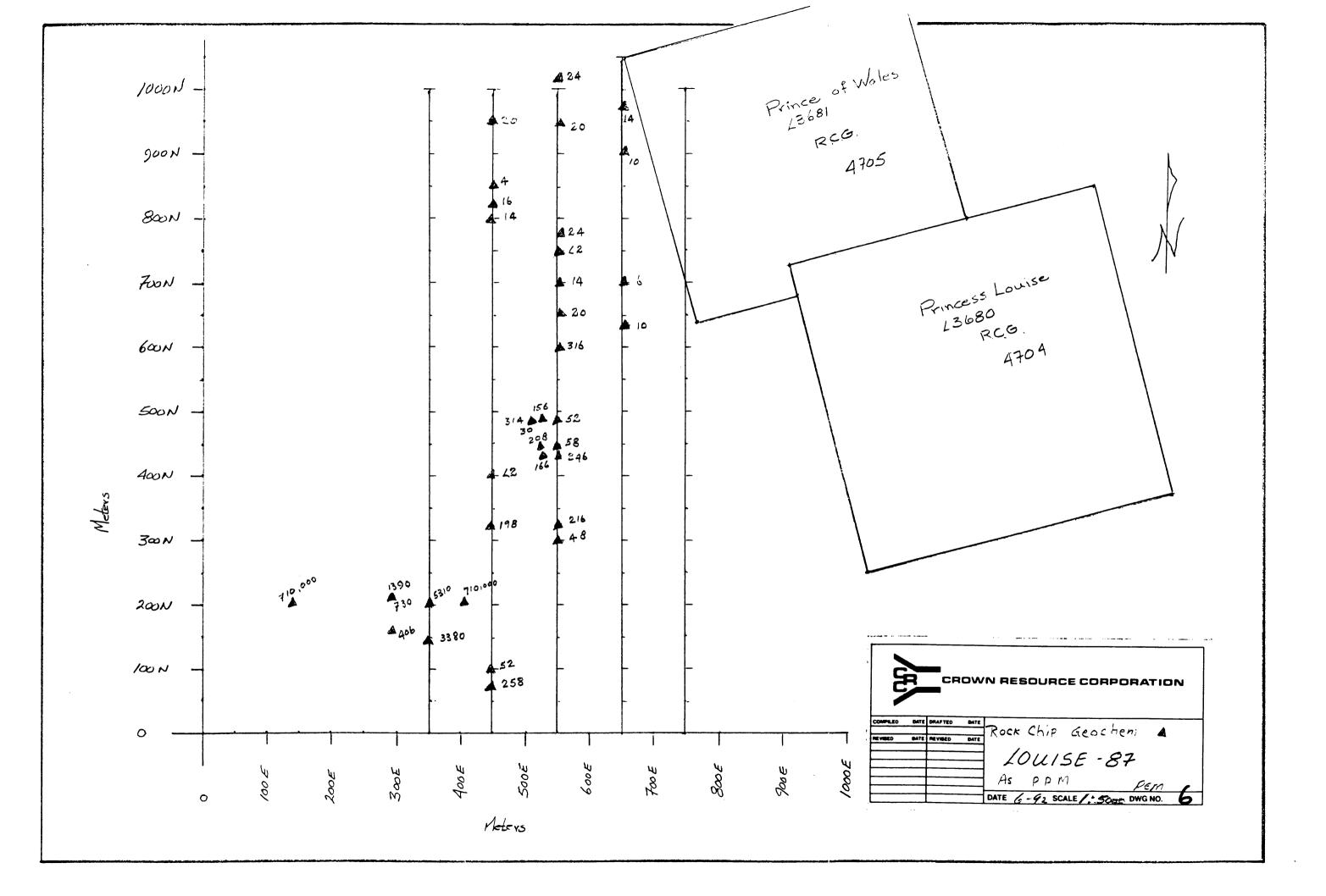

APPENDIX B

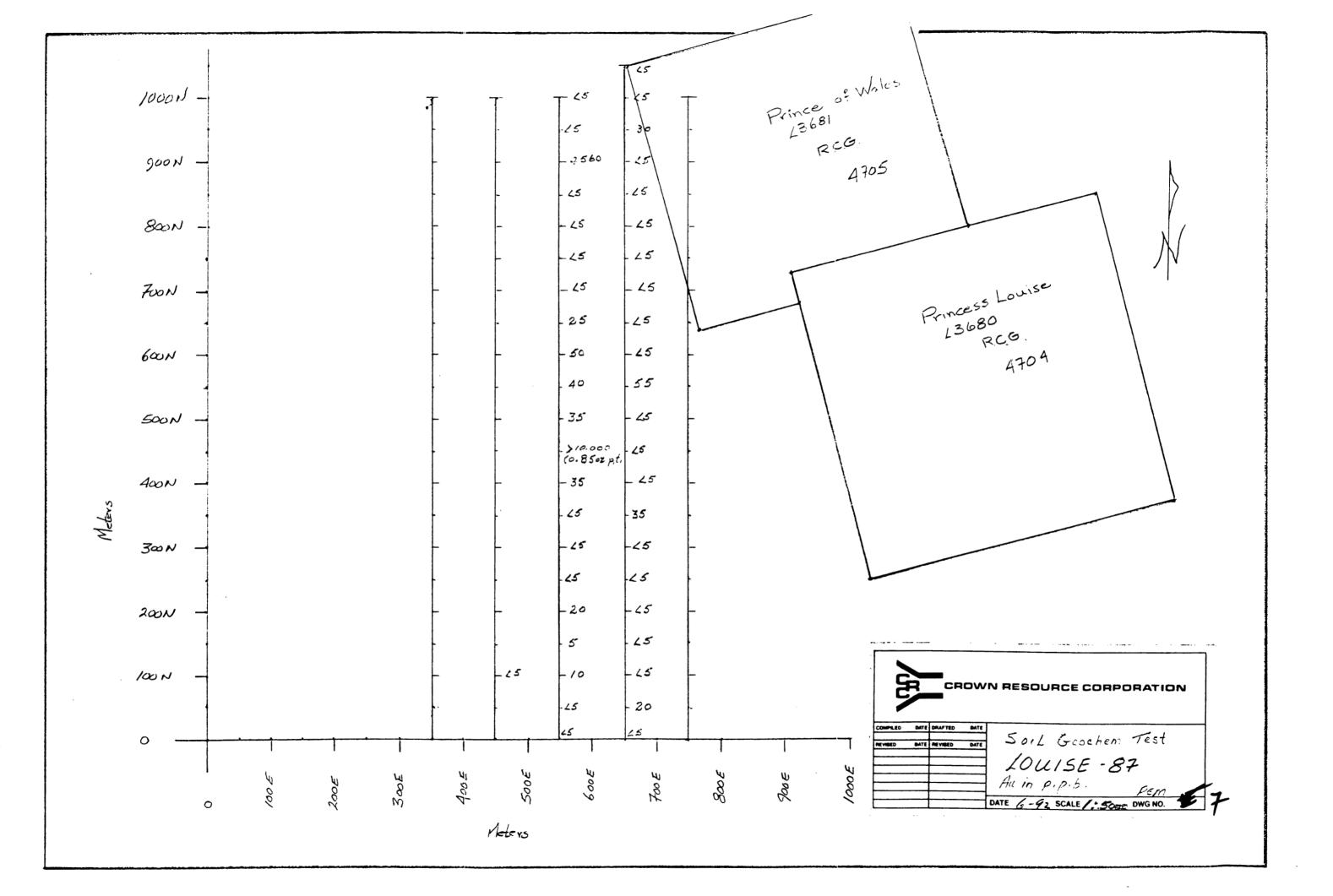

.

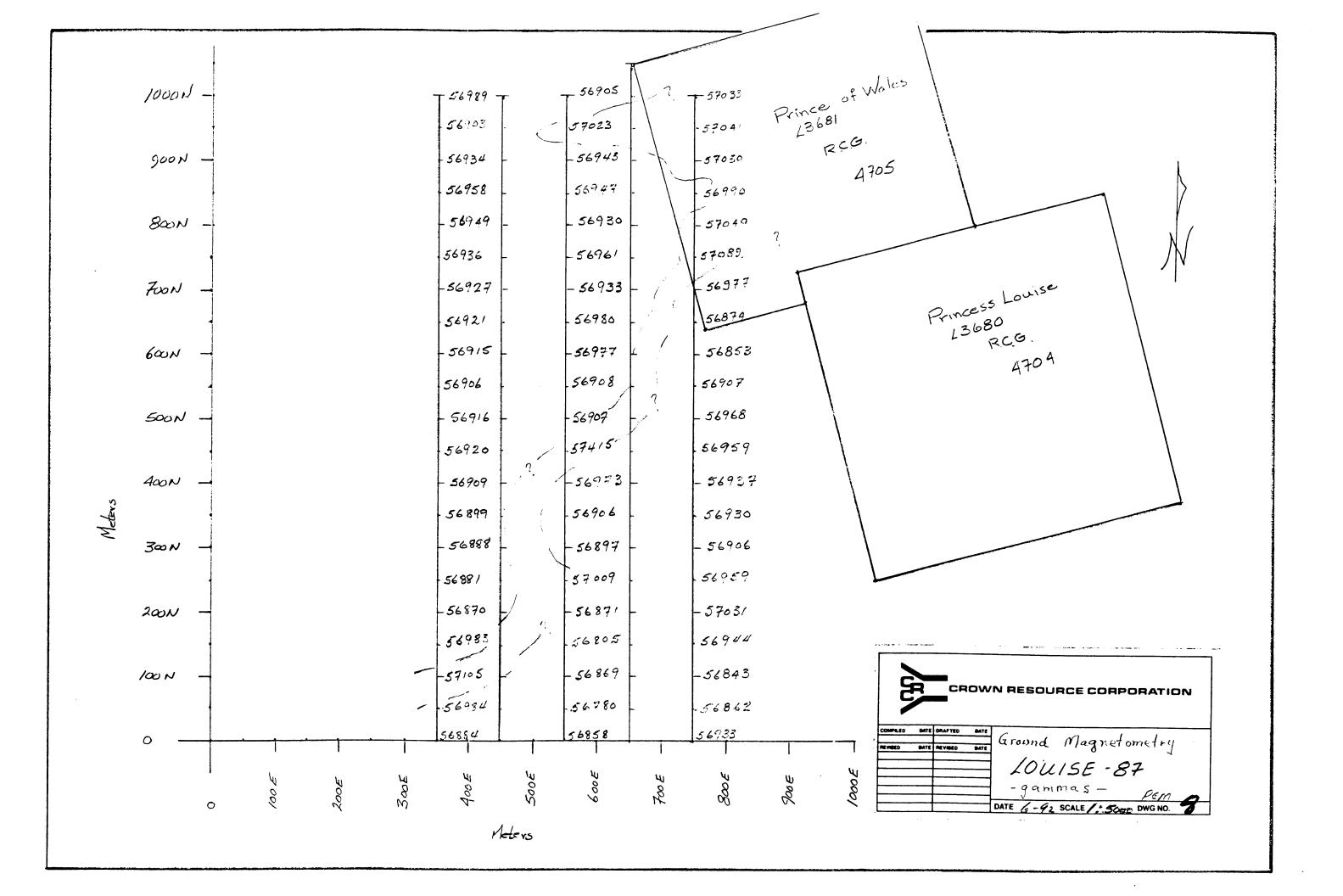

.


•


.







APPENDIX C

.

.

.

MINERAL PROPERTY - APPENDIX C - GEOLOGIC ASSESSMENT R. Miller, Geological Engineer

Crown Resources

During 1991 as a part of Crown's on-going reconnaissance gold exploration program, eighteen (18) rock chip samples were collected from the general area of the Louise 87 claim. Eleven (11) of the eighteen (18) rock chip samples were gold enriched (see attached Whales 90 tabulation sheet Appendix a) and the better gold values were associated with arsenopyrite, quartz veining and/or siliceous flooding along a chert? diorite contact.

When the Louise 87 claim became available for follow-up work in 1992 an investigative program was initiated to aid in selecting a gold exploration technique.

The property consists of a 20 unit claim and two reverted crown grants that lie within the 20 unit claim boundaries.

Claim Units			Record No.		Expiry Date			
Louise 87	20		4538		June	24,	1992	
		Lot No.						
Princess Louise		3680		4704				

Prince of Wales 3681 4704

Located at 49° 07'N, 118° 52'W the property lies approximately 14 km west of the Greenwood Townsite and some 5 km west of Copper Mountain. Access is via gravel farm and logging roads north from Highway 3 along the Ingram Creek drainage towards the Copper Mountain Lookout Road.

Physiography consists of rolling wooded hills and large flat open areas with swamps and small lakes. Rlief is moderate and probably doesn't exceed 150 meters.

Annual precipitation is approximately 45 cm with dry summers and moderate winter snow falls. Temperatures range from +37 c to -15 c with the area generally snow free from May through October.

Turn of the century active major mining camps in the Greenwood area of the Boundary District included; Phoenix, Motherlode, and Deadwood. Some 27 million tons of ore was produced from Phoenix camp alone, yielding 250,000 tons of copper, 92 million grams of silver and 30 million grams of gold.

Five km east of the property on Copper Mountain , the Copper Queen camp shipped 3000 tons of high grade copper ore.

Early work on the Prince of Wales claim, as reported in the 1907 Minister of Mines report indicates that development at the time consisted of a vertical 30 foot shaft and numerous open cuts. Work on the Princess Louise also consisted of shallow

-2-

shafts and pits.

1990 recon sampling by Grownex showed high gold values >9,999 ppb associated with a thin quartz vein at the Coronation prospect some 1000 meters west of the Copper Cabin. In addition anomalous gold was obtained from rock chip samples around the diorite/chert contact in the Copper Cabin prospects.

In the general area, west of Greenwood, carboniferous or permian Knob Hill group rocks consisting of chert, greenstone, amphibolite, limestone, argillites, quartzite and conglomerates are over lain by middle to lower Triassic sharpstone conglomerate, chert, sandstone, black argillite, greenstone, quartzite and limestone (marble and skarn) of the Brooklyn formation. Nelson intrusive rocks, mainly granodiorite have intruded the Knob Hill and Brooklyn rocks.

Tertiary flows, intrusives and minor sediments cover the older rocks.

North to north east, normal faulting is predominate and generally offset east west faulting as evidenced by the trace of the Wallace Creek fault just to the north of the claims.

At property scale the northern two thirds of the claim is underlain by Knob Hill rocks which in turn are cut by Nelson Intrusive and minor Tertiary Coryell intrusions. In the southern third of the claim group, feldspathic,

2

-3-

tuffaceous sandstone, conglomerate and minor flows lie on top of the Knob Hill group and are cut by Marron Formation intrusive rocks.

Potential for the development of a bulk tonnage gold target was envisioned to occur on the claim group along a diorite/metasediment contact that appears to be silicified, pyritized and argillic as well propylitic altered within the intrusive away from the silicified contact. Massive and disseminated sulfide lenses occur within the argillites, greenstone and cherts that make up the host rocks in the contact aureole. Quartz veins occur as fissure fillings mainly in the greenstone and in a minor way in the chert.

Review of the claim owners existing data suggests in the previous work done, data collection had not focused on an applicable gold exploration technique that would lead to drillable targets..

Crowns approach in the development of a gold exploration program was to conduct an orientation survey over part of the projected geologic contact. The program included:

- 1. re-establishment of the 1987 grid.
- soil sampling and assays for gold in the -80 fraction.
- ground magnetometery along grid lines that cross known favorable geology.

-4-

 rock chip sampling and geochemical assays for gold and trace elements.

Two suites of rocks were collected. (Table 1) Some thirty rock chip samples were collected along or near the grid lines and seven rocks chip samples were collected in and around a massive sulfide showing.

Forty-five soil samples were collected on fifty meter centers essentially along two north-south lines, 100 meters apart to see if gold in soil geochemistry would reflect known favorable gold host geology.

Chemex ICP32 plus geochem Fire assay - AA finish gold was the analytical, rock chip, investigative package. While geochem gold only was the analytical technique for the -80 mesh soil samples. In addition the soils were subjected to fire assay when one soil exceeded the upper geochemical limit of 10,000 ppb. This suspected nugget effect returned a fire assay of 0.85 opt.

Three lines of ground magnetometery were completed on fifty meter centers and at a line spacing of two hundred meters. It was thought that the small amount of pyrrhotite observed in the contact aureole as well as the massive sulfide lenses would be observable by grid magnetometery.

Twenty three of the forty five soils collected and

1

-5-

analyzed showed detectable gold values, excluding the high grade sample that ran 0.85 opt. The mean value was approximately 222 ppb with a standard deviation of approximately 946 ppb.

These two soil lines suggest that contamination from existing working and/or a strong nugget effect possibly related to gold in quartz veins, may be a concern in evaluating any geochem gold in soil data. Some positive aspects are seen in the soil data of line 550E where detectable gold values in the 20 to 50 ppb range are clustered one station south and four stations north of the high grade sample at 450 north.

An initial suite of 30 rock chip samples were collected along and near grid lines where outcrops permitted. In addition, seven additional rock chip samples were collected in and around the massive sulfide showings. Geochemical gold vlaues for all rock chips were above the detection limit with the initial thirty samples sent having a mean gold value of approximately 82 ppb and a standard deviation of approximately 107ppb.

d)

In addition, based on the ICP geochem assay, arsenic had a mean of approximately 92ppb and a standard deviation of approximately 103ppb. These values were based on assay results from the twenty-eight of thirty rock samples that showed detectable arsenic.

30

-6-

Although the arsenic/gold plot doesn't indicate a strong correlation between gold and arsenic, it does indicate that arsenic is related to the mineralizing event and when the quadrant of the plot that displays sample values of arsenic and gold above their mean values is reviewed a high arsenic - high gold correlation is observed.

Copper is present as chalcopyrite in the sulfide system and represents an additional evaluation tool.

In summary, grid soil sampling is a valuable evaluation technique and would be maximized if arsenic and copper were analyzed along with gold on the -80 fraction.

Magnetometry was marginally successful in delineating the mineralized contact but is not the recommended primary geophysical technique. The disseminated nature of the sulfides along the majority of the contact suggests that I.P. would be a better a investigative and supportive technique.

VLF-EM with a resistivity pot might be a less expensive quick geophysical tool that could, with a ground magnetometer package, provide a fairly good geophysical, albeit shallow, look at: disseminated sulfides, conductors, and magnetic minerals in the contact area. Although the extensive silicification associated with the sulfide zone could present an interpretive problem.

35

-7-

This orientation survey has shown that commercial gold grades can be obtained from surface soils and rocks on this claim and that drill targets can be developed by grid soil sampling supported by IP and /or VLF-EM resistivity magnetometer techniques.