LOG NO: NOV O 5 1992 RD.

ACTION.

FILE NO:

NTS 93N/6 Lat 55°25'N Long 125°12'W

-

GEOLOGICAL and GEOCHEMICAL REPORT

on the
HAL PROPERTY
data Lake area

Indata Lake area Omineca Mining District British Columbia

RECEIVED

OCT 2 : 1992

Gold Commissioner's Office VANCOUVER, E.C.

for

SWANNELL MINERALS CORPORATION

#602 - 510 W. Hastings Street

Vancouver, B.C., V6B 1L8
Tel: (604) 687-5257 Fax: (604) 687-0384

by

Peter D. Leriche, B.Sc., P.Geo. Reg Faulkner, M.Sc., P.Geo.

RELIANCE GEOLOGICAL SERVICES INC.

241 East 1st Street

North Vancouver, B.C. V7L 1B4

Tel: (604) 984-3663 Fax: (604) 988-4653

20 October 1992

– Reliance Geological Services Inc. —

SUMMARY

At the request of Swannell Minerals Corporation, Reliance Geological Services carried out an exploration program consisting of rock and soil sampling surveys, and geological mapping on the HAL property during July 1992.

The HAL property comprises six contiguous mineral claims totalling 116 units in the Indata Lake area, Omineca Mining Division, approximately 125 kilometers north-northwest of Fort St James, B.C. The property is accessible by helicopter.

The claims lie in the regionally extensive Mesozoic Quesnel Belt. In the general area, Triassic Takla volcanic rocks are intruded by Triassic-Jurassic alkaline stocks and the Cretaceous Hogem batholith. Alkalic plutons of the Quesnel Belt commonly host porphyry copper-gold deposits.

The claims are underlain by Triassic-Jurassic light grey aphanitic Takla andesite intruded by Phase I units of the Hogem Batholith consisting of granodiorite, monzodiorite, and monzonite.

Work in the early 1970's included a regional aeromagnetic survey, silt sampling, and soil sampling. A discontinuous north-west trending copper/molybdenum soil anomaly was outlined measuring 300 x 1500 meters. The property was then tested further by performing IP and magnetic surveys, and limited diamond drilling (1,139 feet).

In 1991, Swannell contracted prospecting, silt sampling (18), heavy mineral sampling (9) and rock sampling (5). No outcrop was located in the area of the previously defined soil anomaly.

In 1992, followup work by Swannell included reconnaissance survey grids, geological mapping over 20% of the property, and rock and soil sampling. No porphyry style mineralization was located, but more work remains to be done to test the porphyry potential.

Exploration targets which have been identified include:

- a) Malachite infilled shear zones. All five samples collected in 1992 yielded copper results ranging from 1905 to 9230 ppm with associated gold and silver values.
- b) A coincident copper/molybdenum soil anomaly on the Hal 6 claim.
- c) A contact zone between Takla volcanics and Hogem batholith rock in the southeast property area.

Approximately 60% of the claim area remains to be investigated.

Further work, consisting of geological mapping and prospecting, soil sampling, hand trenching and blasting, and a ground magnetic survey, has been recommended.

In addition, grid establishment, reconnaissance geological mapping, and rock and soil sampling, has been recommended to expand the known copper anomaly and evaluate the mineral potential of the remainder of the property.

TABLE OF CONTENTS

HAL Property

l.		INTE	SODUC'	TI	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.		LOCA	TION	,	ACC	CES	s,	a	nd	F	ΉΥ	(S)	00	RA	PH	ΙY	•				•				2
3.		PROF	PERTY	s	TAT	rus	;									•	•		•	•		•	•	•	3
4.		REGI	ONAL	G	EOI	COG	Y			•		•	•		•	•	•		•						4
5.		PREV	7IOUS	W	ORI	K				•	•			•	•				•		•			•	7
6.		1992	WOR																				•		9
	6.1 6.2		Met										•												10
	6.2		Pro								•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
		6.2.			Alt												٠								11
		6.2.			Sti																				
		6.2.	. 4		Mir	ner	al	iz	at	ic	n														
	6.3		Roc																						12
	6.4		Soi	1	Ged	och	em	is	tr	Y	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
7.	DISC	ussic	. ис		•					•		•	•				•	•	•	•	•	•	•	•	14
8.	CONC	LUSIC	ONS .		•		•					•	•	•	•	•	•	•	•			•		•	15
9.	RECO	MMENI	OITAC	NS	•	•	•	•	•	•		•	•	•			•			•					16
	CERT	IFIC	ATES	•	•				•	•			•		•									•	17
	REFE	RENCI	Es .	•		•		•				•			•	•		•						•	19
	ITEM	IZED	COST	S	TA!	ΓEΝ	1EN	Т																	
FIGU	RE	1:	Gen	er	a l	T.c	oca	ti	on	, N	(a)	a													2a
1100.		2:	Cla								1	-													3 a
		3:	Que				elt																		6a
		4:	Reg	io	na.	1 (eo	10	gу	7															6b
		5:	Com								ce	vi	ou	s T	NO:	rk									7a
		6:	Pro																				in	_	ket
		7:	Soi	.1	Ge	oct	1em	iis	tr	У															11
		8:	Soi	.1	Ge	ocl	1em	iis	tr	У	, (GO.	ld												11
APPEI	NDICE	s:																							
		NDIX	A:		RO	CK	SA	MF	LE	: I)E	SC:	RI:	PT:	IO	NS									
			B:		AN.																				
			C:		ST									IS											

1. INTRODUCTION

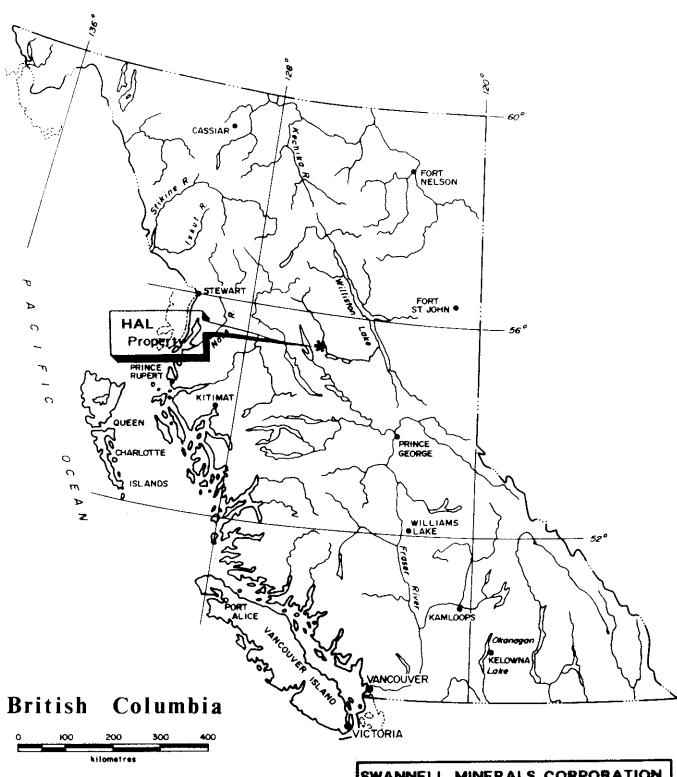
This report was prepared at the request of Swannell Minerals Corporation to describe and evaluate the results of a geological and geochemical program carried out by Reliance Geological Services on the HAL property in the Indata Lake area, Omineca Mining District, British Columbia.

The field work was undertaken for the purpose of following up on anomalous rock and soil geochemistry identified in earlier exploration programs and evaluating the potential of the property to host a porphyry copper/gold deposit.

Field work was carried out on July 30th and 31st, and August 1st, 1992, by Reg Faulkner (geologist), George King (geologist), John Fleishman (prospector), and Andrew Berry (prospector), under the supervision of Peter Leriche, P.Geo., and Mark Rebagliati, P.Eng.

This report is based on published and unpublished information and the maps, reports and field notes of the crew listed above.

2. LOCATION, ACCESS and PHYSIOGRAPHY


The HAL property is situated in the Omineca Mining Division in the Indata Lake area, approximately 125 kilometers northnorthwest of Fort St James (Figures 1 and 2).

The claims are located on Map Sheet NTS 93N/6, at latitude 55° 25' North and longitude 125° 12' West, and between UTM 6237500 m and 6243500 m North, and UTM 330500 m and 338500 m East.

Access is via the Pinchi Lake Road from Fort St James to the Leo Creek logging road (approximately 35 km), then north on the Leo Creek - Driftwood logging road approximately 80 kilometers to a lodge and seasonal helicopter base at the north end of Tchentlo Lake. From there, access is by helicopter north for 20 kilometers to the HAL claims. Alternative access is via float plane to Tchentlo or Indata Lakes.

The claims lie in the Kwanika range of the Omineca Mountains. Terrain is moderate with slopes rising from approximately 1000 meters to 1800 meters. The area is forested with spruce, pine and scrub fir, with alpine vegetation occurring above treeline (approximately 1600 meters).

Recommended work season is mid-June to the end of October.

SWANNELL MINERALS CORPORATION

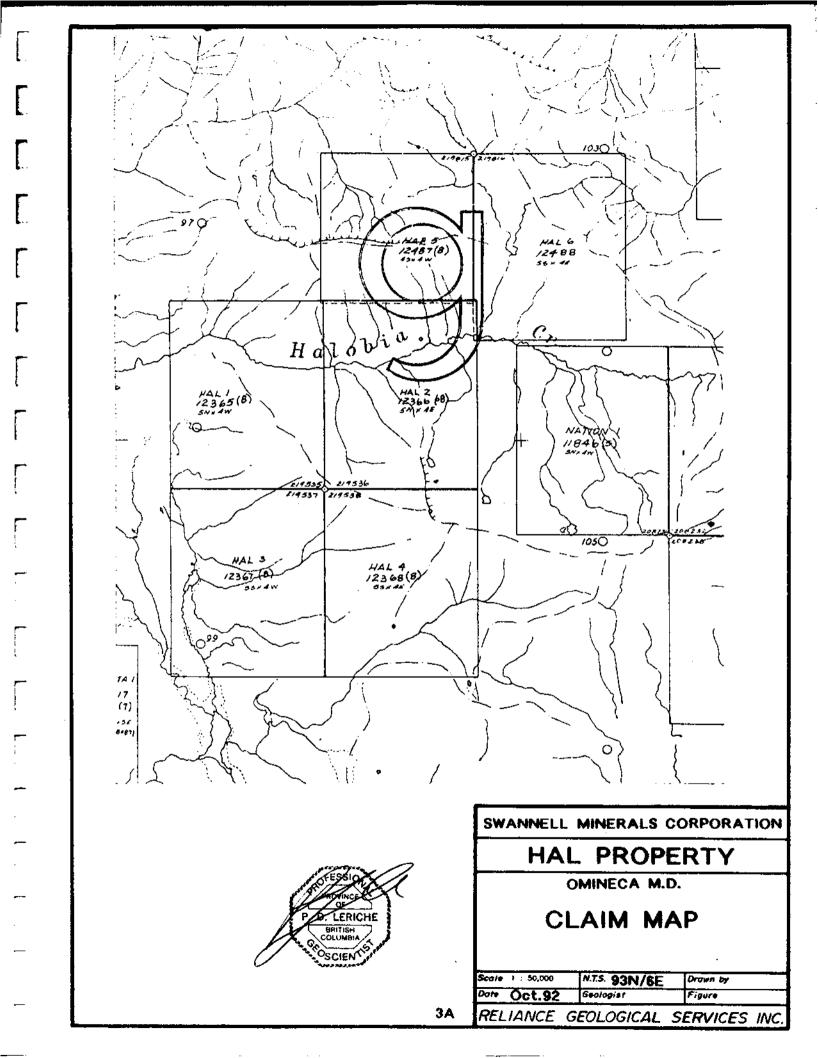
HAL PROPERTY

OMINECA M.D.

General Location Map

Scale noted above	N.T.S	Drawn by	
Date Oct.92	Geologist	Figure 1	
RELIANCE G	EOLOGICAL	SERVICES	INC.

3. PROPERTY STATUS (Figure 2)


The property consists of 6 contiguous mineral claims totalling 116 units. The claims are registered in the name of Major General Resources Ltd and have been optioned to Swannell Minerals Corporation.

Details of the claims are as follows:

Claim	Record <u>Number</u>	<u>Units</u>	Record Date	Expiry Date
Hal 1 Group: Hal 1 Hal 3 Hal 4 Sub-total	242515 242517 242518	20 20 <u>20</u> 60	3 Aug 1990 3 Aug 1990 3 Aug 1990	3 Aug 1994 3 Aug 1994 3 Aug 1994
Hal 2 Group: Hal 2 Hal 5 Hal 6 Sub-total	242516 242637 242638	20 16 <u>20</u> 56	3 Aug 1990 24 Aug 1990 24 Aug 1990	3 Aug 1994 24 Aug 1994 24 Aug 1994
Total		116 units	i .	

The total area covered by the claims is 2900 hectares, or 7163 acres.

The writers are not aware of any particular environmental, political or regulatory problems that would adversely affect mineral exploration and development on the HAL property.

4. REGIONAL GEOLOGY

(from Rebagliati, 1991)

"The HAL property lies within the regionally extensive early Mesozoic Ouesnel Belt. This 35 km wide belt extends northwesterly for 1200 km and includes equivalent rocks of the Upper Triassic-Lower Jurassic Takla, Nicola, and Stuhini Groups (Mortimer, 1986) (Figures 3 and 4). To the west, deformed and uplifted Permian Cache Creek Group rocks are separated from the Quesnel Belt by the Pinchi Fault Zone. To the east, the Manson Fault Zone separates this belt from the uplifted Proterozoic/ Palaeozoic Wolverine early Metamorphic Complex, Mississippian-Permian Slide Mountain and Cache Creek Groups (Garnet, 1978).

In the Mt Milligan - Johanson Lake district, the Takla Group volcanics are dominated by subaqueous alkalic to subalkalic dark green tuffs and volcanic breccias of andesitic and basaltic composition, interbedded with pyroxene porphyritic flow rocks of similar composition. Intercalated bedded tuffs and argillites are subordinate. Black argillites interfinger with volcanic rocks to the east and west of the central volcanic core. Locally, thick successions of maroon colored lahars suggest the presence of emergent subaerial volcanic centres.

The volcanic-sedimentary strata of the Quesnel Belt are locally intruded by alkaline syenite, monzonite, and diorite batholiths, stocks and dykes. In the Quesnel Belt, most intrusions are considered coeval and comagnatic with late Triassic-early Jurassic volcanism. Many of the stocks lie along linear trends which are interpreted to reflect fault zones which have localized volcanism and associated stock emplacement.

The Hogem Batholith of Early Jurassic to Cretaceous age is the largest body of intrusive rock within the Omineca Mountains (Armstrong and Garnett 1973).

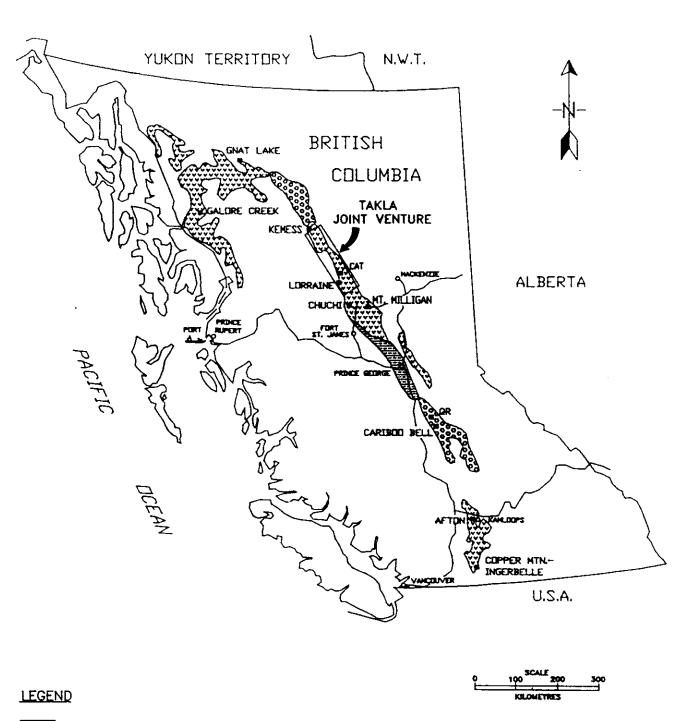
Takla Group volcanic and sedimentary strata are intruded by the north-south elongate batholith which is, in part, truncated along its western margin by the Pinchi Fault. Numerous satellitic plutons flank the eastern margins of the batholith.

The complexity of the Hogem Batholith is characterized by rock units ranging in composition from diorite to granite. Lithologic changes are rapid to gradational at all scales of mapping.

Garnett, who used the I.U.G.S. classification of 1973 as shown in Table 1 on the following page, described three phases within the Hogem Batholith.

The earliest, Phase I, contains the more basic phases, including pyroxenite, gabbro, diorite, monzodiorite, monzonite, and the 'Hogem Granodiorite', and accounts for two-thirds of all rock types mapped. The Hogem Granodiorite is a distinctive leucocratic felsic division, predominantly quartz diorite in composition, but also comprising quartz monzodiorite, quartz monzonite and, more rarely, quartz diorite, tonalite and granite.

The Phase II syenites, such as the Duckling Creek complex, (with migmatitic, compositionally banded, and intrusive varieties) and the leucocratic Chuchi (quartz) syenite, are reported to be intrusive into Phase I rocks.


Phase III rocks include leucocratic varieties (including aplites, pegmatite, varieties of granite, quartz syenite and alaskite). These rocks may be represented by leucocratic late-stage dykes cutting units of Phases I and II.

Numerous porphyry copper prospects occur throughout the Hogem Batholith. The alkalic plutons of the Quesnel Belt commonly host porphyry copper deposits, which are increasingly being recognized as an important source of gold. It has also been recently recognized that related failed porphyry systems (copper deposits not formed) also have the potential to generate disseminated gold deposits (eg: QR and the 66 Zone at Mt Milligan).

Many auriferous porphyry copper prospects are under active exploration within the Quesnel Belt, and the following deposits have been identified:

Gold-Copper Porphyry Deposits Quesnel Belt British Columbia

Property	No. of <u>Deposits</u>	Reserves/Minera Copper(x10 ⁶ lbs)	
In Production:			
Copper Mountain (Cassiar) 5	1,600	.910
Afton (Teck)	2	680	.970
Exploration/Development	<u>Stage</u>		
Mt. Polley (Imperial Met	als) 2	875	2.000
Galore Creek (Hudsons Bay et al)	8	3,000	1.750
Red Chris (Noranda)	2	550	.450
QR (QPX)	4		.200
Lorraine (Kennco)	2	150	.100
Mt. Milligan (Continenta Gold/Placer Dome)	1 2	1,680	6.376
Kemess (El Condor)	2	1,615	6.226

ALKALINE VOLCANIC ROCKS

SUBALKALINE VOLCANIC ROCKS

MAINLY SEDIMENTARY ROCKS

■ GOLD AND / OR COPPER DEPOSIT

After Fox et. al. 1976

SWANNELL MINERALS CORPORATION

HAL PROPERTY

QUESNEL BELT
UPPER TRIASSIC & LOWER JURASSIC VOLCANIC
ROCKS, SIGNIFICANT GOLD AND / OR COPPER
DEPOSITS, ASSOCIATED WITH ALKALIC PLUTONS

Scale AS SHOWN	N.T.S.	Drown by	
Date Oct.92	Geologist	Figure 3	
RELIANCE	GEOLOGICAL	SERVICES	INC

6A

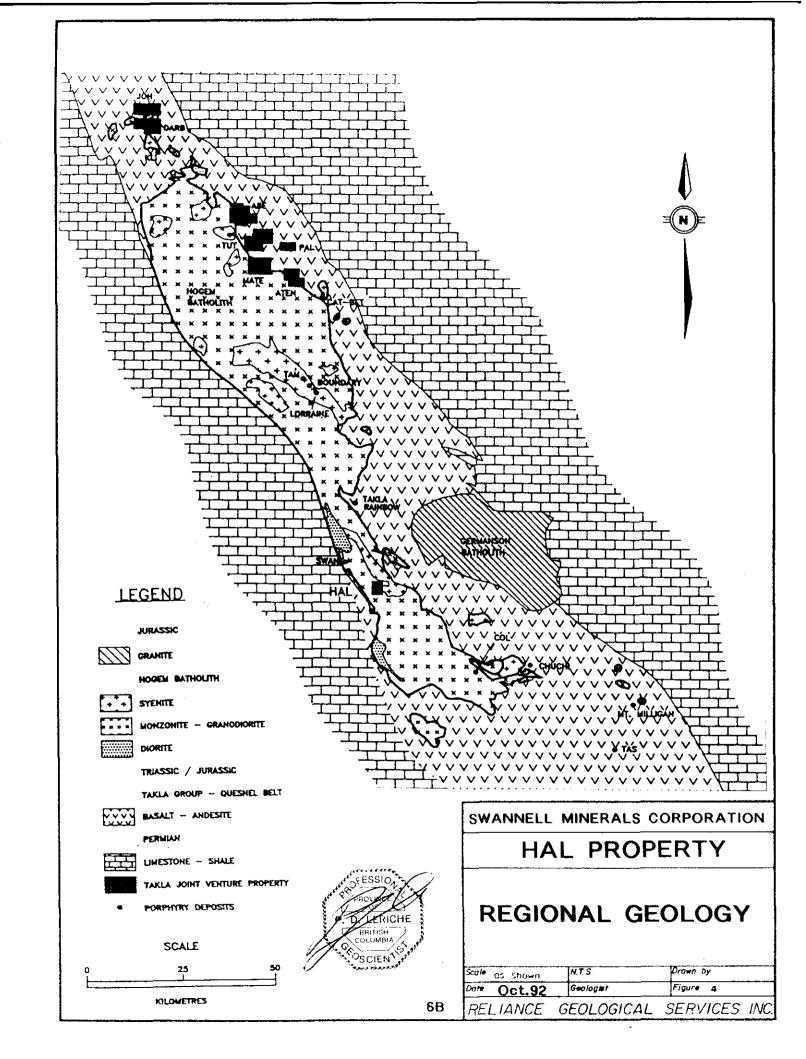
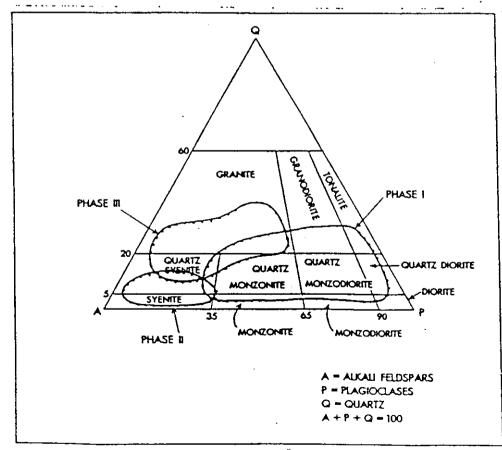
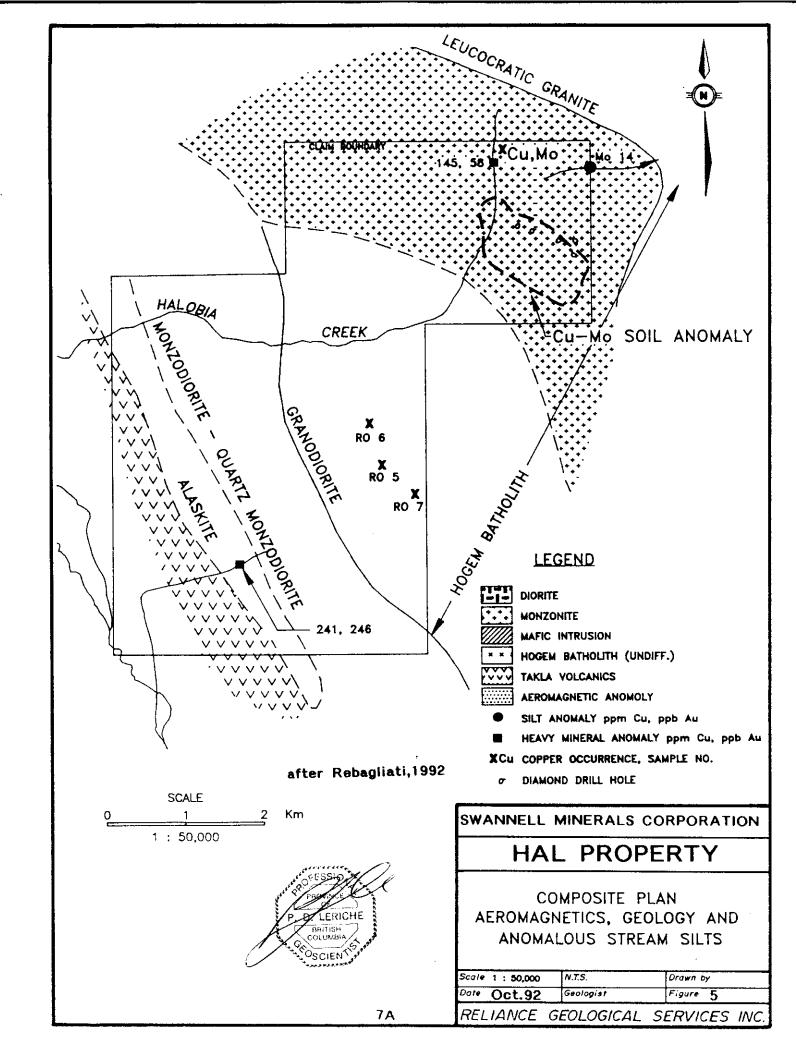



TABLE 1
SOUTHERN HOGEM BATHOLITH: INTRUSIVE ROCK DIVISIONS

INTRUSIVE PHASES	PHASE DIVISIONS	UNIT	ROCK VARIETIES
PHASE III LOWER CRETACEOUS	·	9	LEUCOCRATIC GRANITE, Alaskita
PHASE II MIDDLE JURASSIC	CHUCHI SYENITE	8	LEUCOCRATIC SYENITE, Quartz Syenite
TO	DUCKLING CREEK SYENITE	7	LEUCOCRATIC SYENITE
JURASSIC	COMPLEX	6	FOLIATED SYENITE
	HOGEM GRANODIORITE	5	GRANODIORITE, QUARTZ MONZONITE, minor Tonalita, Quartz Diorita, Quartz Monzonita, Granita
PHASE 1 LOWER		4	MONZONITE to Quertz Monzonite
JURASSIC	HOGEM	3	MONZODIORITE to Quartz Monzodiorite
UPPER TRIASSIC	BASIC SUITE	2	NATION LAKES PLAGIOCLASE PORPHYRY (a) Monzonite (b) Monzodiarite
		1	DIORITE, minor Gebbro, Pyroxenite, Hornblendite


Hogem batholith intrusive phases in relation to general plutonic rock classification (after I.U.G.S., 1973).

5. PREVIOUS WORK

- 1969 Umex Wenner Gren Joint Venture conducted reconnaissance stream sediment sampling in the area. Anomalous molybdenum values led to claim staking in 1971.
- 1971 Umex Wenner Gren collected 369 soil samples and analyzed them for copper, molybdenum and zinc. A discontinuous north-west trending copper/molybdenum soil anomaly was outlined measuring 300 x 1500 meters. The anomaly lies on the eastern part of the Hal 6 claim.
- 1972 Umex Wenner Gren conducted geological mapping, line-cutting, 10.9 line kilometers of IP, 20 line kilometers of magnetic surveys followed by 5 short diamond drill holes totalling 1,139 feet. Drilling was done upslope from the soil anomaly to take into account possible downslope migration of metals from the source area.

Results from all surveys were inconclusive.

- 1980 Dome Exploration Ltd. evaluated the claims for molybdenum and tungsten potential. A program of silt sampling, 10 test soil profiles and 52.5 line kilometers of magnetic surveys were carried out.
- 1990 Hal 1 to 6 claims acquired by Major General Resources.
- 1991 Swannell Minerals Corp conducted prospecting, silt sampling (18), heavy mineral sampling (9) and rock sampling (5). No outcrop was located in the area of the previously defined soil anomaly.

In 1991, three copper bearing shear zones were sampled on the Hal 2 and 4 claims. Results from select sampling are as follows:

sample	Cu (ppm)	Ag (ppm)	Au (ppb)	As (ppm)	Sb (ppm)	Rock Type
R05	10413	8.6	15	7	9	Sheared granodiorite
R06	3754	20.8	10	5	1	Skarn
R07	15970	11.5	38	753	197	Sheared granodiorite

Rebagliati (1992) concluded that the enriched concentrations of silver, arsenic and antimony in the shear and skarn zones could represent polymetallic mineralization commonly associated with the outer edges of porphyry copper hydrothermal systems.

6. 1992 WORK PROGRAM

Done under B.C.M.E.M.P.R. Approval Number PRG-1300203-44751

6.1 <u>Methods and Procedures</u>

Geological and geochemical surveys were carried out on the Hal 2, 4, and 5 claims.

Two reconnaissance survey grids were laid out on the Hal 2 and 4 claims. All lines were surveyed using compass, hipchain and flagging.

Cross-lines were put in at 200 line spacings and stations were marked at 50 meter intervals with marked double flagging. Total line surveyed was 7.6 kilometers.

Geological mapping was performed over approximately 20% of the property at a scale of 1:10,000 (Figure 6).

A total of 5 rock samples were collected and analyzed for gold (Fire Assay/AA) and multi-element ICP by Chemex Labs Ltd. See Appendix A for rock sample descriptions and Appendix B for analytical reports and techniques.

The grids were soil sampled at 50 and 100 meter station spacings. 110 samples were taken. All samples were taken with a grub hoe from the B horizon (approximate depth 30 cm), placed into marked Kraft paper bags and sent to Chemex Labs Ltd. for analysis.

The analytical results for two elements (Cu, Au), were computerplotted on 1:10,000 scale maps (Figures 7, 8). To evaluate any existing geochemical anomalies, frequency distribution histograms based on laboratory data were prepared for each of the aforementioned elements (Appendix C). Anomalous values were chosen using natural breaks in each histogram.

For interpretation purposes, correlation coefficients were calculated (Appendix C) and anomalous ranges for each element were plotted using symbol maps (Figures 7 and 8). All statistical and plotting work was performed by Tony Clark, Ph.D.

6.2 Property Geology (Figure 6)

Previous mapping by Umex and Dome show the property to be underlain by Triassic-Jurassic Takla volcanics (southeast corner of claims) which are intruded by Phase I units of the Hogem Batholith consisting of granodiorite, monzodiorite and monzonite. Phase III units of the Hogem Batholith consisting of leucocratic granite and alaskite dykes cut the volcanics and granodiorite (Figure 5).

6.2.1 Lithologies:

Rocks of the Jurassic - Cretaceous Phase I Hogem Batholith (4) were observed during 1992 mapping.

Unit 4a, a quartz monzonite, was the dominant rock type mapped. Unit 4a is fine to medium grained with 70+ percent plagioclase feldspars in the matrix and as discrete crystals <10 percent mafic minerals, <10 percent potassium feldspars and <10 percent quartz.

Unit 4b, a granodiorite, was located along line 1400 and the northern portion of line 1550. Plagioclase feldspars make up 60+ percent, mafic minerals 20 to 40 percent, quartz <10 percent and potassium feldspars 0 to 5 percent.

6.2.2 Alteration

Alteration is localized and limited to introduced epidote and quartz along fractures. Fractures may have narrow <5 cm wide envelopes where the host rock has been silicified or the plagioclase feldspars have been altered to epidote - chlorite. Mafic minerals may be partially altered to chlorite.

6.2.3 Structure:

All rock types are fractured and jointed, but magnetic influences make structural orientations difficult. There are three locations at which intense fracturing appears to have controlled mineralization. At two locations (sample sites 12077 and 12078), fracturing is less than 1 meter wide. The third location (sample locations 12079, 12080 and 12081) consists of a 25 meter wide zone containing at least three 1 meter wide fractured zones hosting quartz. The general trend of the fracturing is north.

6.2.4 Mineralization:

Mineralization observed to date consists of malachite along fracture surfaces and disseminated within the fractured intrusive and quartz vein material. Magnetite is associated with quartz veining at rock sample locations 12079, 12080 and 12081. A 5 cm wide magnetite-epidote veinlet trending 151° was found on the ridge north of Halobia Creek.

6.3 Rock Geochemistry (Figure 6)

For complete rock sample descriptions, see Appendix A. All 5 rock samples returned significant results.

Sample #	Туре	Width (meters)	Cu (ppm)	Au (ppb)	Ag	Description
12077	Chip	4.0	9230	120	23.0	Fractured, limonitic quartz monzonite flooded with malachite.
12078	Chip	1.0	3920	225	16.0	Fractured, silicified intrusive with strong malachite staining.
12079	Chip	1.0	5960	20	5.8	Samples 079, 080, 081 from fractured,
12080	Chip	1.0	1905	25	2.0	limonitic, magnetic granodiorite or
12081	Grab	-	5120	395	4.6	monzodiorite mineralized with malachite.

6.4 Soil Geochemistry (Figures 7, 8)

Summary Statistics:

	Copper	<u>Gold</u>
Range	8 to 1914 ppm	0 to 130 ppb
Mean	52.18	7.64
Standard Deviation	179.77	22.46
Background	8 to 49 ppm	0 to 19 ppb
Low Anomalous	50 to 69 ppm	20 to 39 ppb
High Anomalous	70 + ppm	40 + ppb

The correlation coefficient chart (Appendix C) did not show any significant correlation between gold and any other elements. There is a moderate correlation between copper and molybdenum and a weak association with copper and silver.

Anomalous results for both copper and gold are scattered and spotty. Four anomalous gold values (>40 ppb) and the highest copper value (4914 ppm) occur along L12+200N, north and downslope from rock sample site 12077.

None of the soil lines covered any of the malachite infilled shear zones. No soil sampling has been done to test mineralized shear zones along strike, under overburden.

7. <u>DISCUSSION</u>

The 1992 exploration program did not locate any porphyry style mineralization. However, not enough work has been done to test the porphyry potential.

The following exploration targets have been identified and warrant follow-up exploration work.

- a) Malachite infilled shear zones.

 All five samples collected in 1992 yielded copper results ranging from 1905 to 9230 ppm with associated gold and silver values. Samples 12079, 12080, 12081 were taken from subcrops in a fracture zone at least 25 meters wide. Potential exists for a small copper oxide deposit amenable to SXEW techniques.
- b) A coincident copper/molybdenum soil anomaly on the Hal 6 claim has not been followed up in sufficient detail. No precious metals have been analyzed.
- c) A contact zone between Takla volcanics and Hogem batholith rocks in the southeast property area has not been investigated.

Approximately 60% of the claim area remains to be investigated.

8. <u>CONCLUSIONS</u>

The HAL property has potential to host a porphyry or copper oxide style deposit for the following reasons:

- It lies in the Mesozoic Quesnel Belt which hosts several porphyry copper/gold deposits;
- the geological environment, granodiorite/monzonite intruding
 Takla volcanic rocks, is favorable; and
- two targets have been located:
 - a) malachite mineralization in fracture zones, and
 - b) a coincident copper/molybdenum soil anomaly.

9. RECOMMENDATIONS

- a) Geologically map and prospect the property area with attention to the Takla-intrusive contact;
- b) Soil sample (approximately 300 samples) over the previously outlined Cu/Mo anomaly and the area with malachite infilled fracture zones at 200 line spacings and 100 meter sample spacings;
- c) Hand trench and blast the malachite showings;
- d) Perform a ground magnetic survey over the malachite showings to trace mineralization along strike.

Contingent upon favourable results, further work would consist of an IP survey and diamond drilling to test the targets at depth.

CERTIFICATE

I, PETER D. LERICHE, of 3125 West 12th Avenue, Vancouver, B.C., V6K 2R6, do hereby state that:

- I am a graduate of McMaster University, Hamilton, Ontario, with a Bachelor of Science Degree in Geology, 1980.
- 2. I am registered as a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a Fellow in good standing with the Geological Association of Canada.
- 4. I have actively pursued my career as a geologist for twelve years in British Columbia, Ontario, the Yukon and Northwest Territories, Montana, Oregon, Alaska, Arizona, Nevada and California.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out under my direction, and on published and unpublished literature. I have not visited the subject property.
- 6. I have no interest, direct or indirect, in the subject claims or the securities of Swannell Minerals Corporation or Major General Resources Ltd, nor do I expect to receive any.
- 7. I consent to the use of this report, only in its entirety, in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

RELIANCE GEOLOGICAL SERVICES INC.

Peter D. Leriche, B.Sc., P.Geo.

Dated at North Vancouver, B.C., this 19th day of October 1992.

CERTIFICATE

- I, REG FAULKNER, of 302 1475 West 11th Avenue, Vancouver, B.C., do hereby state that:
- 1. In 1974, I graduated from the University of British Columbia, Vancouver, B.C. with a Bachelor of Science degree in Physical Geography and Geology.
- In 1988, I graduated from the University of British Columbia, Vancouver, B.C. with a Master of Applied Science Degree from the department of Mining and Mineral Process Engineering.
- 3. I am registered as a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I have actively pursued my career as a geologist for thirteen years in the Yukon and Northwest Territories, British Columbia, Alberta, Alaska, Nevada, and California.
- 5. The information, opinions, and recommendations in this report are based on fieldwork carried out by me, and on published and unpublished literature. I worked on the HAL property during July 1992.
- 5. I have no interest, direct or indirect, in the subject claims or the securities of Swannell Minerals Corporation or Major General Resources Ltd, nor do I expect to receive any.
- 6. I consent to the use of this report, only in its entirety, in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

RELIANCE GEOLOGICAL SERVICES INC.

Reg Faulkner, M.Sc., P.Geo.

Dated at North Vancouver, B.C., this 19th day of October 1992.

REFERENCES

- ADAMSON, R.S., (1968-72):

 Geochemical Report on the Noble Claims, Assessment Report #3611. Sept, 1971.
- CHOW, F. and KAHLERT, B.H.

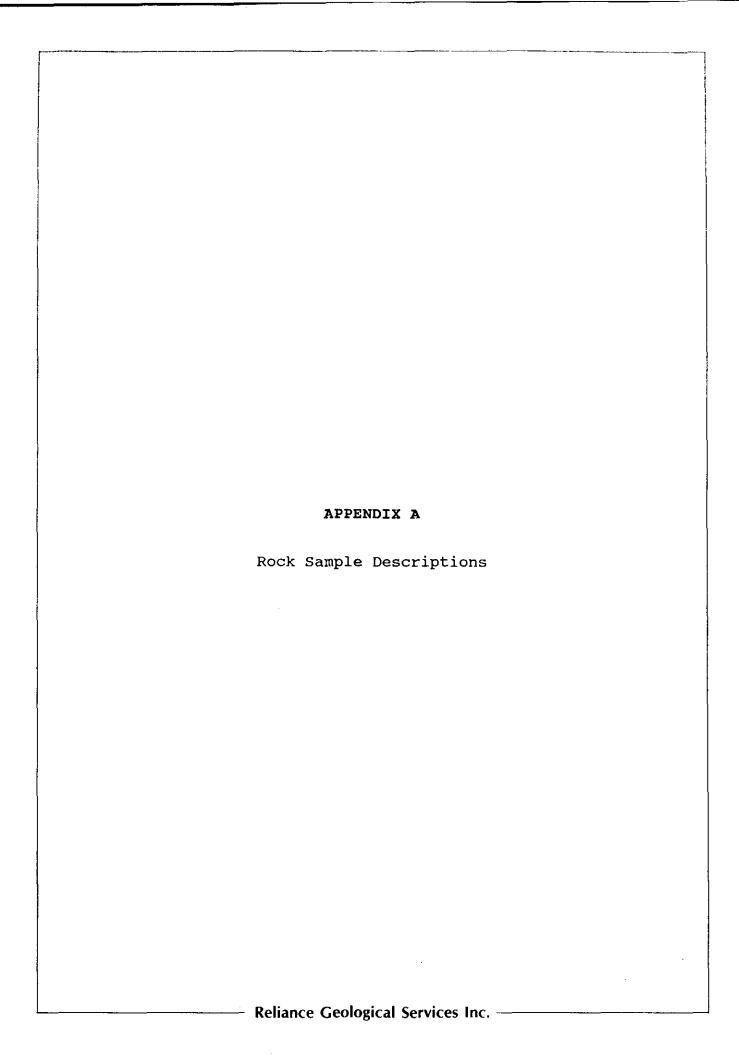
 Hal Property: Compilation of geological, Geochemical,
 Geophysical, Diamond Drilling and Other Data on the Hal
 Group of Mineral Claims, in house report for Takla Joint
 Venture. Nov. 19, 1990.
- FRASER, B.M. (1980):

 Geological, Geochemical Report on the Halo 1 Mineral Claim.

 Assessment Report #8988. Dec. 11, 1980.
- GARNETT, J.A., 1978:

 The Southern Hogem Batholith, BCDM Bulletin #70. 1974.
- PARDOE, A.J., 1991:

 Geological Mapping, Prospecting and Stream Sampling on the
 Hal Group, Halobia Creek, BC.
- REBAGLIATI, C.M., 1991:
 Summary Report, Takla Joint Venture, Porphyry Copper Gold
 Project.
- REBAGLIATI, C.M., 1992:


 Summary Report, Takla Joint Venture, Porphyry Copper Gold

 Project.

ITEMIZED COST STATEMENT HAL PROJECT (J770)

Project preparation			\$ 540
Mobilization and demobili (includes transporta			\$ 4,730
Supervision (P. Leriche &	M. Rebagliati)		\$ 1,100
Field Crew: Project Geologist (R. Faulkner: July 30,31, Field Geologist (G. King: July 30,31, Aug Prospectors (A. Berry & J. Fleishman:	Aug 1, 1992) \$ 275/day x 3 days (1, 1992) \$ 250/day x 6 days	\$ 825 \$ <u>1,500</u>	\$ 3,900
Field Costs: Helicopter Communications Expediting and freight Food & accommodation Supplies Vehicle	\$ 750/hr x 2.3 hrs \$ 14/day x 12 days \$ 75/day x 15 days \$ 18/day x 12 days \$ 30/day x 3 days	\$ 168 \$ 310 \$ 1,125 \$ 216	\$ 3,634
Assays & Analysis: 110 soil samples @ \$14/sa (Geochem/AA for Au + 30 e 5 rock samples @ \$17/samp (FA/AA for Au and 30 elem	element ICP) ole	\$ 1,540 \$ <u>85</u>	\$ 1,625
Report: Writing, editing, map preprocessing, binding, copy			\$ 2,150
Administration, incl over	rhead and profit		\$ 709
Sub-total			\$ 18,388
plus 7% G.S.T.			\$ 1,287
TOTAL			\$ 19,675
\$9,837 to Hal 1; \$9,838 to plus PAC	co Hal 2		

----- Reliance Geological Services Inc. -------

APPENDIX "A" ROCK SAMPLE DESCRIPTIONS HAL CLAIMS

Sample Number	Туре	Width (m)	Description
12077	Chip	4.0	Sample from subcrop, a well fractured, limonitic, slightly propylitic quartz monzonite(?) with malachite staining and minor potassium feldspars. It is believed to be sample 91HR05.
12078	Chip	1.0	Sample from subcrop, a well fractured, silicified intrusive with malachite staining. It is believed to be sample 91HR07.
12079	Chip	1.0	Sample from subcrop, a well fractured, quartz veined, magnetic Granodiorite(?) with malachite staining.
12080	Chip	1.0	Sample from subcrop, a well fractured, limonitic, magnetic Monzo-Diorite(?) with malachite staining on fracture surfaces.
12081	Grab		Sample from subcrop, a well fractured, limonitic, magnetic Monzo-Diorite(?) with malachite staining on fracture surfaces.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: RELIANCE GEOLOGICAL SERVICES INC.

241 E. 1ST. ST. NORTH VANCOUVER, BC V7L 1B4

A9219009

Comments:

CERTIFICATE

A9219009

RELIANCE GEOLOGICAL SERVICES INC.

Project: P.O. #:

HAL 770

Samples submitted to our lab in Vancouver, BC. This report was printed on 14-AUG-92.

	SAMPLE PREPARATION				
CHEMEX	NUMBER SAMPLES	DESCRIPTION			
205 274 229	5 5 5	Geochem ring to approx 150 mesh 0-15 lb crush and split ICP - AQ Digestion charge			
* NOTE	1:				

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANALYTICAL PROCEDURES												
CHEMEX NU	JMBER MPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT							
100 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2150 2130 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2145 2146 2147 2148 2149	5 Ag 5 Al 5 Ag 5 Bg 5 Bg 5 Cc 5 Cc 5 Cc 5 Cc 5 Fg 6 Gg 7	u ppb: Fuse 10 g sample g ppm: 32 element, soil & rock 1 %: 32 element, soil & rock s ppm: 32 element, soil & rock a ppm: 32 element, soil & rock e ppm: 32 element, soil & rock i ppm: 32 element, soil & rock d ppm: 32 element, soil & rock d ppm: 32 element, soil & rock o ppm: 32 element, soil & rock o ppm: 32 element, soil & rock u ppm: 32 element, soil & rock u ppm: 32 element, soil & rock e %: 32 element, soil & rock a ppm: 32 element, soil & rock g ppm: 32 element, soil & rock a ppm: 32 element, soil & rock g x: 32 element, soil & rock u ppm: 32 element, soil & rock c ppm: 32 element, soil & rock u ppm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 0.01 10 0.01 10 0.01 10 2 2 2 1 1 0.01 10 2 2 2 2	10000 15.00 10000							

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: RELIANCE GEOLOGICAL SERVICES INC.

241 E. 1ST. ST. NORTH VANCOUVER, BC V7L 1B4

Project: HAL Comments:

Page Number :1-A Total Pages :1

Certificate Date: 14-AUG-92 Invoice No. : 19219009

P.O. Number :770 Account :ILR

				CERTIFICATE OF ANALYSIS A92								49219	009	· ·							
Sample	PRI		Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	К %	La ppm	Mg %	Mn ppm
12077 12078 12079 12080 12081	205 205 205 205 205 205	274 274 274	120 225 20 25 395	23.0 16.0 5.8 2.0 4.6	1.17 1.10 1.43 1.42 1.37	34 446 2 4 < 2	130 150 430	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 16 2 < 2 6	0.82 0.17 0.38	< 0.5 30.5 < 0.5 < 0.5 < 0.5	24 7 5 7 12	48 29 149 51 117	9230 3920 5960 1905 5120	6.22 4.01 4.33 3.47 5.68	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.34 0.49 0.39 0.12 0.28	30 20 < 10 < 10 < 10	0.25 0.07 0.64 0.77 0.50	460 495 400 505 420
·																					
·																					

CERTIFICATION:_____

Thai & Ma

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: RELIANCE GEOLOGICAL SERVICES INC.

241 E. 1ST. ST. NORTH VANCOUVER, BC V7L 1B4

Project : HAL Comments:

Page Number :1-B Total Pages :1 Certificate Date: 14-AUG-92

Certificate Date: 14-AUG-92 Invoice No. : 19219009 P.O. Number : 770

P.O. Number :770 Account :ILR

											CE	RTIF	CATE	OF A	NAL'	YSIS	A9219009
SAMPLE	PRE		Mo ppm	Na %	Ni ppm	P P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
12077 12078 12079 12080 12081	205 205 205 205 205 205	274 274 274	83 4 7 4 11	0.03 0.01 0.07 0.03 0.05	2 < 1 3 5 3	570 620 720 790 710	74 18 16 4 < 2	< 2 72 2 < 2 2	2 1 2 3 3	33 <	0.01 0.01 0.01 0.03 0.01	< 10 < 10 < 10 < 10 < 10	10 < 10 < 10 < 10 < 10	25 21 44 63 54	70 < 10 240 < 10 30	252 2220 66 58 70	
i																	
1																	

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: RELIANCE GEOLOGICAL SERVICES INC.

241 E. 1ST. ST. NORTH VANCOUVER, BC V7L 1B4

A9219008

Comments:

CERTIFICATE

A9219008

RELIANCE GEOLOGICAL SERVICES INC.

Project: HP.O. #: 7

HAL 770

Samples submitted to our lab in Vancouver, BC. This report was printed on 15-AUG-92.

	SAMPLE PREPARATION											
CHEMEX	NUMBER SAMPLES	DESCRIPTION										
201 229	110	Dry, sieve to -80 mesh ICP - AQ Digestion charge										
* NOTE	1:											

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANALYTICAL PROCED	URES
-------------------	------

	Ţ				
CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
100	110	Au ppb: Fuse 10 g sample	Fa-aas	5	10000
2118	110	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	110	Al %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2120	110	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	110	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	110	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	110 110	Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock	ICP-AES ICP-AES	2 0.01	10000 15.00
2124 2125	110	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2125	110	Co pum: 32 element, soil & rock	ICP-AES	1	100.0
2127	110	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	110	Cu ppm: 32 element, soil & rock	ICP-AES	ĩ	10000
2150	110	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	110	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	110	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	110	K %: 32 element, soil & rock	ICP- AE S	0.01	10.00
2151	110	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	110	Mg %: 32 element, soil & rock	ICP- AE S	0.01	15.00
2135	110	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	110	Mo ppm: 32 element, soil & rock	ICP-AES	1 0.01	10000 5.00
2137 2138	110 110	Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock	ICP- AE S ICP- AE S	1	10000
2139	110	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	110	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141	110	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	110	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	110	Sr ppm: 32 element, soil & rock	ICP- AE S	1	10000
2144	110	Ti %: 32 element, soil & rock	ICP-ABS	0.01	5.00
2145	110	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	110	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	110	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	110	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	110	Zn ppm: 32 element, soil & rock	ICP- AES	2	10000
·	ļ <u>.</u>				

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RELIANCE GEOLOGICAL SERVICES INC.

241 E. 1ST. ST. NORTH VANCOUVER, BC V7L 1B4

Project : Comments: HAL

Page Number :1-A
Total Pages :3
Certificate Date: 15-AUG-92
Invoice No. :19219008
P.O. Number :770

Account :ILR

CERTIFICATE	OF ANALYSIS	A9219008
O	01 11111E1010	

										 :										
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	ppm Cd	Co ppm	Cr ppm	Ppm Cu	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Mn ppm
122+00# 130+00E	201 229	< 5	< 0.2	2.42	< 2	110	< 0.5	< 2	0.33	< 0.5	4	27	28	3.22	< 10	< 1	0.06	< 10	0.37	445
122+00# 130+50#	201 229	< 5	< 0.2	2.55	< 2	80	< 0.5	4	0.39	< 0.5	9	45	43	4.51	< 10	< 1	0.06	< 10	0.59	465
122+00W 131+00E	201 229	10	< 0.2	2.63	< 2	90	< 0.5	< 2	0.36	< 0.5	6	26	33	3.47	< 10	< 1	0.05	< 10	0.47	325
122+0087 131+50E	201 229	5	< 0.2	2.41	< 2	90	< 0.5	< 2	0.58	< 0.5	10	35	45	4.52	< 10	< 1	0.05	< 10	0.69	390
122+00N 132+00E	201 229	< 5	< 0.2	2.85	< 2	70	< 0.5	< 2	0.42	< 0.5	10	36	57	4.03	< 10	< 1	0.06	< 10	0.67	375
122+00W 132+50E	201 229	< 5	< 0.2	2.73	< 2	70	< 0.5	< 2		< 0.5	12	38	48	4.29	< 10	< 1	0.06	< 10	0.74	455
122+OON 133+00E	201 229	< 5	< 0.2	2.57	< 2	100	< 0.5	< 2	0.48	< 0.5	12	34	49	4.11	< 10	< 1	0.06	< 10	0.72	495
122+00# 133+50E	201 229	< 5	< 0.2	2.64	< 2	100	< 0.5	< 2	0.58	< 0.5	12	37	45	4.09	< 10	< 1	0.06	10	0.71	470
122+00M 134+00M 122+00M 134+50M	201 229	< 5	< 0.2	2.41	< 2	100	< 0.5	< 2		< 0.5	9	34	46	4.60	< 10	< 1	0.06	< 10	0.70	380
122+00M 134+5UE	201 229	10	< 0.2	2.44	< 2	510	< 0.5	< 2	0.92	< 0.5	6	8	30	2.70	< 10	< 1	0.08	10	0.66	1695
L22+00N 135+00E	201 229	55	< 0.2	2.82	< 2	660	< 0.5	< 2	0.75	< 0.5	11	9	31	3.04	10	< 1	0.09	10	0.74	2230
122+00N 135+50E	201 229	80	< 0.2	2.34	< 2	100	< 0.5	< 2	0.41	< 0.5	6	30	49	3.37	< 10	< 1	0.05	< 10	0.53	350
122+00M 135+68E	201 229	55	0.6	1.79	50	370	< 0.5	4	0.27	< 0.5	14	4	1915	3.55	< 10	< 1	0.11	10	0.29	1900
122+00M 137+00E	201 229	5	< 0.2	2.48	< 2	70	< 0.5	< 2		< 0.5	8	48	63	4.36	< 10	< 1	0.05	< 10	0.61	345
122+00N 137+50E	201 229	90	< 0.2	2.33	4	90	< 0.5	< 2	0.34	< 0.5	8	43	38	4.05	< 10	< 1	0.06	< 10	0.51	275
122+00M 138+00E	201 229	< 5	< 0.2	2.01	< 2	70	< 0.5	< 2	0.29	< 0.5	6	37	39	3.43	< 10	< 1	0.06	< 10	0.47	245
122+00W 138+50E	201 229	< 5	0.4	2.36	10	90	< 0.5	< 2	0.23	< 0.5	6	33	36	3.32	< 10	< 1	0.05	10	0.48	260
122+00W 139+00E	201 229	< 5	< 0.2	2.13	< 2	80	< 0.5	< 2	0.26	< 0.5	7	29	35	4.43	< 10	< 1	0.03	< 10	0.37	295
122+00N 139+50E	201 229	< 5	< 0.2	2.07	10	70	< 0.5	< 2	0.23	< 0.5	4	25	22	2.85	< 10	< 1	0.03	< 10	0.29	155
122+00M 140+00E	201 229	< 5	< 0.2	1.53	10	60	< 0.5	< 2	0.21	< 0.5	. 4	25	28	3.97	< 10	< 1	0.02	< 10	0.29	205
124N 130+00E	201 229	< 5	< 0.2	1.96	< 2	70	< 0.5	< 2	0.24	< 0.5	4	28	27	2.43	< 10	< 1	0.04	< 10	0.33	225
L24N 130+50E	201 229	< 5	< 0.2	1.87	< 2	70	< 0.5	< 2	0.32	< 0.5	7	40	31	4.04	< 10	< 1	0.04	< 10	0.39	220
124N 131+00E	201 229	< 5	< 0.2	2.36	< 2	60	< 0.5	< 2	0.39	< 0.5	6	35	47	3.46	< 10	< 1	0.05	< 10	0.53	330
L24N 131+50E	201 229	< 5	< 0.2	1.83	< 2	140	< 0.5	< 2	0.24	< 0.5	1	14	18	1.45	< 10	< 1	0.05	< 10	0.16	175
124N 132+50E	201 229	45	< 0.2	1.89	< 2	120	< 0.5	< 2	0.40	< 0.5	10	29	46	3.56	< 10	< 1	0.05	< 10	0.49	400
124N 133+50E	201 229	15	< 0.2	1.98	< 2	100	< 0.5	< 2	0.27	< 0.5	5	25	26	3.82	< 10	< 1	0.06	< 10	0.46	270
124N 134+00E	201 229	< 5	< 0.2	2.59	< 2	190	< 0.5	< 2	0.28	< 0.5	5	17	31	3.60	< 10	< 1	0.05	< 10	0.41	495
24N 135+00E	201 229	< 5	< 0.2	2.37	< 2		< 0.5	< 2	0.34	< 0.5	6	25	27	3.18	< 10	< 1	0.06	< 10	0.41	370
124N 135+50E	201 229	< 5	< 0.2	2.26	< 2		< 0.5	< 2	0.27	< 0.5	3 7	18 34	16	1.63	< 10	< 1	0.04	< 10	0.23	220
124N 136+00E	201 229	< 5	< 0.2	2.04	< 2	70	< 0.5	< 2	0.44	< 0.5		34	38	4.38	< 10	< 1	0.04	< 10	0.49	295
124M 136+50B	201 229	< 5	< 0.2	1.31	< 2	40	< 0.5	< 2	0.28	< 0.5	5	28	15	2.08	< 10	< 1	0.06	< 10	0.31	145
24N 137+00E	201 229	< 5	< 0.2	1.84	< 2	50	< 0.5	< 2	0.23	< 0.5	3	25	22	2.08	< 10	< 1	0.03	< 10	0.26	195
L24N 137+50E	201 229	< 5	< 0.2	1.67	< 2		< 0.5	2		< 0.5	4	22	19	2.77	< 10	< 1	0.03	< 10	0.27	155
138+00E	201 229	< 5	< 0.2	2.19	< 2	80	< 0.5	< 2	0.26	< 0.5	5	21	15	2.08	< 10	< 1	0.03	< 10	0.30	155
124N 138+50K	201 229	< 5	< 0.2	1.88	4	50	< 0.5	< 2	0.26	< 0.5	4	21	19	2.12	< 10	< 1	0.04	< 10	0.32	160
L24N 139+00E	201 229	< 5	< 0.2	1.39	4		< 0.5	< 2	0.23	< 0.5	3	18	10	1.86	< 10	< 1	0.03	< 10	0.11	105
124N 139+50E	201 229	< 5	0.2	1.75	< 2		< 0.5	< 2		< 0.5	3	22	17	2.47	< 10	< 1	0.04	< 10	0.29	145
24N 140+00E	201 229	< 5	< 0.2	1.41	< 2		< 0.5	< 2	0.29	< 0.5	3	22	15	1.34	< 10	< 1	0.07	10	0.29	130
126N 130+00E	201 229	< 5	< 0.2	3.12	< 2		< 0.5	< 2	0.82	< 0.5	13	36	56	4.05	10	< 1	0.10	< 10 < 10	1.01 0.61	805 275
126N 130+50E	201 229	20	< 0.2	2.34	< 2	60	< 0.5	< 2	0.39	< 0.5	8	34	43	4.42	< 10	< 1	0.04	< 10	0.61	4/3

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RELIANCE GEOLOGICAL SERVICES INC.

241 E. 1ST. ST. NORTH VANCOUVER, BC V7L 1B4

Project : Comments: HAL

Page Number :1-B
Total Pages :3
Certificate Date: 15-AUG-92
Invoice No. :19219008
P.O. Number :770

Account :ILR

									CERTIFICATE OF ANALYSI					'SIS	A9219008	
SAMPLE	PREP CODE	Мо	Na %	Ni ppm	ppm P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	D Dav	DDav A	DDur M	Zn ppm	
122+00N 130+00E	201 229	< 1	0.01	9	1220	10	< 2 8	1	72 50	0.04	< 10 < 10	< 10 < 10	97 132	< 10 < 10	50 68	
122+00N 130+50K 122+00N 131+00E	201 229 201 229	< 1 < 1	0.01 0.01	13 10	1440 1060	16 10	< 2	2	60	0.06	< 10	< 10	94	< 10	62	
122+00N 131+50E	201 229	< 1	0.01	11	1800	12	2	4	59	0.07	< 10	< 10	136	< 10	56	
122+00W 132+00E	201 229	< 1	0.01	14	1640	8	4	3	49	0.07	< 10	< 10	116	< 10	60	
122+00F 132+50E	201 229	< 1	0.01	15	1160	14	< 2	4	52	0.09	< 10	< 10	123	< 10	70	
122+00M 133+00E	201 229	< 1	0.01	16	1450	14	< 2	4	52	0.09	< 10	< 10	118	< 10	70	
122+00N 133+50E 122+00N 134+00E	201 229 201 229	< 1 < 1	0.01 0.01	15 11	1860 1820	18 2	< 2 2	3 4	55 58	0.08 0.10	< 10 < 10	< 10 < 10	123 131	< 10 < 10	62 64	
122+00N 134+50E	201 229	< 1	0.01	4	1420	10	< 2	3	224	0.02	< 10	< 10	57	< 10	48	
122+00W 135+00W	201 229	< 1	0.01	4	1350	12	< 2	4	234	0.02	< 10	< 10	63	< 10	58	
122+00N 135+50K	201 229	₹ 1	0.01	12	1480	8	2	3	52	0.08	< 10	< 10	99	< 10	48	
122+00N 135+68R	201 229		0.01	3	890	22	2	3	47	c 0.01	< 10	< 10	36	< 10	68	
122+00M 137+00E	201 229	< 1	0.01	16	1610	14	< 2	3	46	0.08	< 10	< 10	135	< 10	54	
122+00N 137+50E	201 229	< 1	0.01	15	1110	14	4	3	51	0.08	< 10	< 10	117	< 10	62	
122+00W 138+00E	201 229	1	0.01	16	830	8	< 2	3	35	0.09	< 10	< 10	104	< 10	56	
122+00W 138+50R 122+00W 139+00E	201 229 201 229	< 1 < 1	0.01 0.01	16 9	950 1250	12 10	< 2 2	3 2	29 48	0.05 0.06	< 10 < 10	< 10 < 10	79 113	< 10 < 10	56 44	
122+00N 139+50E	201 229	< 1	0.01	7	1030	-6	< 2	ī	40	0.06	< 10	< 10	91	< 10	40	
122+09N 140+00E	201 229	< 1	0.01	8	870	6	< 2	1	44	0.05	< 10	< 10	105	< 10	36	
124N 130+00E	201 229	< 1	0.01	9	900	16	4	2	39	0.06	< 10	< 10	83	< 10	38	
124N 130+50K	201 229	< 1	0.01	12	1260	16	< 2	2	43	0.08	< 10	< 10	145	< 10	42	
124N 131+00E	201 229	< 1	0.01 0.01	12 2	1840 1580	6 < 2	< 2 < 2	2 < 1	42 44	0.06	< 10 < 10	< 10 < 10	111 52	< 10 < 10	44 38	
124N 131+50E 124N 132+50E	201 229 201 229	< 1 < 1	0.01	17	1330	` 4	` 6	3	47	0.06	< 10	< 10	102	< 10	48	
124N 133+50E	201 229	< 1	0.01	10	1270	6	2	1	51	0.02	< 10	< 10	97	< 10	46	
124N 134+00E	201 229	₹1	0.01	6	1480	10	2	< 1	85	0.01	< 10	< 10	80	< 10	44	
124N 135+00E	201 229	< 1	0.01	7	1550	< 2	< 2	1	151	0.04	< 10	< 10	94	< 10	46	
124N 135+50E	201 229	< 1	0.01	4	840	8	< 2	1	54	0.05	< 10	< 10	62	< 10	30	
124N 136+00E	201 229	1	0.01	11	2320	16	2	3	50	0.06	< 10	< 10	133	< 10	44	
124N 136+50E	201 229	< 1	0.01	8	460	6	4	2	47	0.11	< 10	< 10	92	< 10	24	
124N 137+00E	201 229		0.01 0.01	5 7	650 930	6 10	< 2 < 2	1 1	38 38	0.07 0.07	< 10 < 10	< 10 < 10	77 91	< 10 < 10	32 32	
124N 137+50E 124N 138+00E	201 229 201 229	< 1 1	0.01	6	620	10	2	2	60	0.08	< 10	< 10	74	< 10	34	
124N 138+50E	201 229	< 1	0.01	7	710	4	2	2	46	0.07	< 10	< 10	75	< 10	30	
124N 139+00E	201 229	< 1 <	0.01	3	490	4	4	1	45	0.07	< 10	< 10	80	< 10	22	
124N 139+50E	201 229	< 1	0.01	6	810	< 2	2	2	52	0.07	< 10	< 10	89	< 10	28	
124N 140+00E	201 229	< 1	0.01	7	510	2	< 2	2	44	0.09	< 10	< 10	58	< 10	24	
126N 130+00E	201 229	< 1	0.01	11	2540	4	< 2	6 3	92 45	0.06	< 10	< 10	105 113	< 10 < 10	92 44	
126W 130+50%	201 229	< 1	0.01	9	2470	2	< 2	3	45	0.07	< 10	< 10	113	1 0	~~	
																· · · · · · · · · · · · · · · · · · ·

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Project:

To: RELIANCE GEOLOGICAL SERVICES INC.

241 E. 1ST. ST. NORTH VANCOUVER, BC V7L 1B4

HAL Comments:

Page Number :2-A Total Pages :3 Certificate Date: 15-AUG-92 Invoice No. : 19219008

P.O. Number : 770 Account :ILR

										CERTIFICATE OF ANALYSI			/SIS	S A9219008							
Sample	PRE		Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Pe %	Ga ppm	Hg ppm	к %	La ppm	M g %	Mn ppm
126N 131+00E	201	229	< 5	< 0.2	3.09	< 2	60	< 0.5	< 2	0.46	< 0.5	8	42	43	4.55	< 10	< 1	0.05	< 10	0.59	315
126W 131+50W	201		< 5	< 0.2	2.59	2	80	< 0.5	2	0.36	< 0.5	7	23	35	3.12	10	< 1	0.06	< 10	0.51	325
126W 132+00E	201		< 5	< 0.2	2.04	4	60	< 0.5	< 2	0.32	< 0.5	4	19	20	2.67	10	< 1	0.05	< 10	0.33	185
126N 132+50E 126N 133+00E	201		< 5 < 5	< 0.2 < 0.2	3.00 3.42	4 < 2	80 500	< 0.5 < 0.5	< 2 < 2	0.61 0.96	< 0.5 < 0.5	13 13	30 29	54 61	4.55 3.75	10 10	< 1 < 1	0.07 0.08	< 10 10	0.89 0.82	505 1060
126N 133+50E	201	220	95	< 0.2	2.74	< 2	220	< 0.5	< 2	0.32	< 0.5	6	21	32	3.37	10	< 1	0.07	< 10	0.56	1275
126N 134+50E	201		20	< 0.2	1.96	1	70	< 0.5	< 2	0.28	< 0.5	3	27	24	2.68	< 10	< 1	0.04	< 10	0.22	1375 120
126W 135+00E	201		< 5	0.2	2.62	< 2	120	< 0.5	< 2	0.50	< 0.5	5	33	45	3.03	< 10	< 1	0.05	< 10	0.45	210
126N 135+50E	201		< 5	< 0.2	2.69	4	60	< 0.5	< 2	0.39	< 0.5	6	35	32	4.64	< 10	< 1	0.04	< 10	0.53	235
126N 136+00E	201	229	30	< 0.2	1.96	< 2	60	< 0.5	< 2	0.26	< 0.5	5	30	23	3.15	< 10	< 1	0.05	< 10	0.41	215
126M 136+50E	201		< 5	< 0.2	1.94	< 2	40	< 0.5	< 2	0.29	< 0.5	4	21	14	2.47	< 10	< 1	0.03	< 10	0.27	140
126W 137+00E	201		130	< 0.2	2.08	< 2	60	< 0.5	< 2	0.29	< 0.5	5	22	17	2.34	10	< 1	0.05	< 10	0.39	170
126N 137+50E	201		< 5	< 0.2	2.15	< 2	60	< 0.5	< 2	0.33	< 0.5	5	26	24	3.67	< 10	< 1	0.04	< 10	0.48	230
126W 138+00E	201		< 5	< 0.2	1.97	< 2 6	50	< 0.5	< 2	0.28 0.81	< 0.5 < 0.5	. 6 12	28 52	21 56	4.38	< 10	< 1	0.04	< 10	0.41	190 845
126N 138+50E	201	229	< 5	< 0.2	2.95		170	< 0.5	< 2	0.81	< 0.5	13	34	36	6.77	< 10	< 1	0.07	10	0.75	845
126N 139+00E	201		< 5	< 0.2	1.58	< 2	40	< 0.5	< 2	0.28	< 0.5	2	15	10	1.13	< 10	< 1	0.04	< 10	0.09	95
126N 139+50K	201		< 5	< 0.2	1.78	< 2	50	< 0.5	< 2	0.28	< 0.5	4	25	21	2.55	10	< 1	0.05	< 10	0.29	330
126N 140+00E	201		< 5	< 0.2	1.77	< 2	40	< 0.5	< 2	0.33	< 0.5	5	28	20	3.34	< 10	< 1	0.05	< 10	0.39	260
128N 130+00E	201		25	< 0.2	1.87 1.80	< 2 < 2	70 60	< 0.5 < 0.5	< 2	0.71 0.29	< 0.5 < 0.5	10 8	48 42	55 32	3.39 3.79	< 10 < 10	< 1 < 1	0.07 0.06	< 10 < 10	0.87 0.45	300 330
128N 130+50E	201	229	10	< 0.2	1.80		อบ	< U.5	· 4	0.29	< 0.5	•	44	34	3.79	- 10	· · ·	0.00	· 10	0.43	
128N 131+00E	201		< 5	< 0.2	1.73	12	70	< 0.5	< 2	0.35	< 0.5	8	46	41	3.97	< 10	< 1	0.05	< 10	0.62	360
128N 131+50E		229	< 5	0.4	2.20	< 2	60	< 0.5	< 2	0.38	< 0.5	8	42	31	2.60	< 10	< 1	0.06	< 10	0.64	210
128N 132+00E		229		< 0.2	2.56	8	50	< 0.5	< 2	0.52	< 0.5	8 7	44	49	3.13 2.98	< 10	< 1	0.05	< 10	0.67 0.67	240 260
128N 132+50E 128N 133+00E	201	229	5 5	< 0.2	2.63 3.39	2 < 2	80 340	< 0.5 < 0.5	2 < 2	0.42	< 0.5 < 0.5	9	45 22	40 56	3.13	< 10 < 10	< 1 < 1	0.10	< 10 < 10	0.58	585
128N 133+00B	201	429		· 0.2	3.33	• 4	340	· (0.5		0.37	(0.5			30	J. 13	\ 10		0.10	\ 10	0.50	303
128N 134+00E	201	229	< 5	< 0.2	2.30	< 2	140	< 0.5	< 2	0.71	< 0.5	9	32	45	3.09	10	< 1	0.08	10	0.69	410
128N 134+50E		229	< 5	< 0.2	2.55	8	70	< 0.5	< 2	0.25	< 0.5	6	27	26	4.38	< 10	< 1	0.04	< 10	0.53	220
128N 135+00E		229	< 5	< 0.2	3.15	< 2	140	< 0.5	< 2	0.22	< 0.5	9	35	43	4.58	< 10	< 1	0.10	< 10	0.63	400
128N 135+50E		229	< 5	< 0.2	1.97	< 2	80	< 0.5	< 2	0.28	< 0.5	7	41	28	4.55	< 10	< 1	0.05	< 10 10	0.52 0.22	220 85
128N 136+00E	201	229	< 5	0.2	1.77	10	70	< 0.5	< 2	0.16	< 0.5	2	24	8	1.03	< 10	< 1	0.04	10	0.22	83
128N 136+50K	201	229	< 5	0.2	3.10	< 2	90	< 0.5	< 2	0.37	< 0.5	8	73	33	4.88	< 10	< 1	0.05	< 10	0.72	310
128N 137+00E		229	95	< 0.2	2.66	< 2	90	< 0.5	< 2	0.34	< 0.5	8	21	25	3.58	10	< 1	0.06	< 10	0.59	255
128W 137+50E		229	< 5	< 0.2	2.02	12	60	< 0.5	< 2	0.26	< 0.5	3	20	20	1.58	< 10	< 1	0.05	10	0.34	130
128N 138+00E		229	< 5	< 0.2	1.80	8	70	< 0.5	< 2	0.24	< 0.5	4	22 20	21 20	2.64 3.93	< 10 < 10	< 1 < 1	0.04	< 10 < 10	0.34	165 255
128N 138+50E	201	229	< 5	< 0.2	2.08	< 2	70	< 0.5	< 2	0.24	< 0.5		20	20	3.33	<u> </u>					
128N 139+00E	201	229	< 5	< 0.2	2.16	< 2	70	< 0.5	< 2	0.19	< 0.5	6	21	21	5.12	< 10	< 1	0.05	< 10	0.45	300
128N 139+50E		229	< 5	< 0.2	2.28	< 2	70	< 0.5	< 2	0.21	< 0.5	6	18	19	3.88	10	< 1	0.04	< 10	0.36	270
128N 140+00E		229	< 5	< 0.2	1.59	< 2	160	< 0.5	< 2	0.35	< 0.5	2	14	11	1.58	10	< 1	0.07	10	0.24	115
1400 ST 0000		229	< 5	< 0.2	3.19	< 2	100	< 0.5	< 2	0.49	< 0.5	12	21	48	5.06	10	< 1 < 1	0.07 0.05	< 10 < 10	0.98	365 245
1400 ST 0100	201	229	< 5	< 0.2	3.67	< 2	90	< 0.5	< 2	0.35	< 0.5	9	23	26	5.17	10	< 1	0.05	、10	0.54	443
	1 1																	_	_		

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RELIANCE GEOLOGICAL SERVICES INC.

CERTIFICATION:

241 E. 1ST. ST. NORTH VANCOUVER, BC V7L 1B4

HAL

Project : Comments:

Page Number :2-B Total Pages :3 Certificate Date: 15-AUG-92 invoice No. : 19219008

P.O. Number : 770 Account :ILR

							·		CERTIFICATE OF ANALYS					'SIS	A9219008	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	DDur B	Pb	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W mqq	Zn ppm	
126N 131+00E	201 229	< 1	0.01	8	1800	8	< 2	4	49	0.08	< 10	< 10	138	< 10	48	
126N 131+50E	201 229	< 1	0.01	7	1240	2	< 2	2	50	0.05	< 10	< 10	90	< 10	46	
126N 132+00E 126N 132+50E	201 229 201 229		0.01 0.01	5 11	770 2040	< 2 16	< 2 < 2	1 5	61 60	0.05 0.09	< 10 < 10	< 10 < 10	90 130	< 10 < 10	36 64	
126N 133+00E	201 229		0.01	10	1890	18	< 2	5	237	0.07	< 10	< 10	109	< 10	54	
126N 133+50E	201 229	< 1	0.01	7	1230	< 2	< 2	1	104	0.03	< 10	< 10	83	< 10	56	
126N 134+50E	201 229	< 1	0.01	3	830	6	< 2	1	57	0.04	< 10	< 10	97	< 10	32	
126N 135+00E	201 229	< 1	0.01	9	950	14	< 2	3	68	0.08	< 10	< 10	100	< 10	42	
126N 135+50E 126N 136+00E	201 229 201 229	< 1	< 0.01 0.01	9 5	1880 1130	2 6	< 2 2	3 2	42 45	0.06 0.07	< 10 < 10	< 10 < 10	130 103	< 10 < 10	48 40	
126N 136+50E	201 229	< 1	< 0.01	1	1040	2	< 2	2	42	0.07	< 10	< 10	86	< 10	28	
126N 137+00E	201 229	< 1	0.01	3	1230	2	< 2	1	45	0.05	< 10	< 10	69	< 10	36	
126N 137+50E	201 229	< 1	0.01	5	2020	6	< 2	2	47	0.05	< 10	< 10	104	< 10	44	
126N 138+00M 126N 138+50M	201 229 201 229	< 1 11	0.01 0.01	6 15	1100 2450	6 10	< 2 2	2 7	44 66	0.07 0.07	< 10 < 10	< 10 < 10	138 168	< 10 < 10	42 98	
126N 139+00E	201 229	< 1	0.01	< 1	460	2	< 2	1	57	0.05	< 10	< 10	51	< 10	20	
126N 139+50E	201 229	< 1	0.01	3	870	< 2	4	2	50	0.06	< 10	< 10	94	< 10	30	
126N 140+00E	201 229	< 1	0.01	5	700	4	< 2	3	58	0.07	< 10	< 10	121	< 10	36	
128N 130+00E 128N 130+50E	201 229	< 1 < 1	0.01 0.01	17 9	1890 1 4 60	< 2 < 2	< 2 2	1	68 40	0.11 0.05	< 10 < 10	< 10 < 10	119 128	< 10 < 10	52 50	
	-															
128N 131+00E 128N 131+50E	201 229 201 229	< 1 < 1	0.01 0.01	11 10	1360 1680	8 8	< 2 < 2	3 3	45 46	0.07 0.08	< 10 < 10	< 10 < 10	136 85	< 10 < 10	46 46	
128N 132+00E	201 229	< 1	0.01	11	2270	2	2	3	49	0.08	< 10	< 10	85 97	< 10	46	
128N 132+50E	201 229	< 1	0.01	13	2340	4	< 2	3	48	0.07	< 10	< 10	88	< 10	48	
128N 133+00E	201 229	< 1	0.01	9	890	2	< 2	3	126	0.02	< 10	< 10	66	< 10	46	
128N 134+00E	201 229	< 1	0.01	12	1490	4	2	5	91	0.07	< 10	< 10	89	< 10	88	
128N 134+50E 128N 135+00E	201 229 201 229	3	0.01 0.01	7 16	1070 790	4	2 < 2	3 5	47 47	0.08 0.07	< 10 < 10	< 10 < 10	115 99	< 10 < 10	46 64	
128N 135+50E	201 229	2	0.01	14	940	2	₹ 2	3	39	0.07	< 10	< 10	131	< 10	50	
128N 136+00E	201 229		< 0.01	3	380	6	< 2	1	29	0.05	< 10	< 10	46	< 10	24	
128N 136+50E	201 229	2	0.01	24	2330	< 2	< 2	3	43	0.05	< 10	< 10	110	< 10	60	
128N 137+00E	201 229	< 1	0.01	7	1140	6	< 2	3	62	0.05	< 10	< 10	100	< 10	48	
128N 137+50E 128N 138+00E	201 229 201 229		< 0.01 < 0.01	7	870 990	6 8	< 2 < 2	2 2	36 38	0.07 0.05	< 10 < 10	< 10 < 10	5 4 69	< 10 < 10	30 36	İ
128N 138+50E	201 229	< 1 `	0.01	6	1030	< 2	< 2	2	53	0.03	< 10	< 10	102	< 10	44	
128N 139+00E	201 229	< 1	0.01	5	1510	6	< 2	1	49	0.02	< 10	< 10	114	< 10	42	
128N 139+50E	201 229	< 1	0.01	5	980	2	< 2	1	52	0.03	< 10	< 10	108	< 10	40	
128N 140+00E	201 229	4	0.01	1	430	< 2	< 2	1 6	62 54	0.04	< 10 < 10	< 10 < 10	57 143	< 10 < 10	38 72	j
1400 ST 0000 1400 ST 0100	201 229 201 229	< 1 < 1	0.01 0.01	9 7	2490 4190	< 2 10	< 2 < 2	5	54 55	0.14	< 10 < 10	< 10	147	< 10	60	İ
THUY SI UIUU		` `	3.01	•			` -	-								
L																

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RELIANCE GEOLOGICAL SERVICES INC.

241 E. 1ST. ST. NORTH VANCOUVER, BC V7L 1B4

Project: HAL Comments:

Page Number :3-A

Total Pages :3 Certificate Date: 15-AUG-92 Invoice No. : 19219008
P.O. Number : 770
Account : ILR

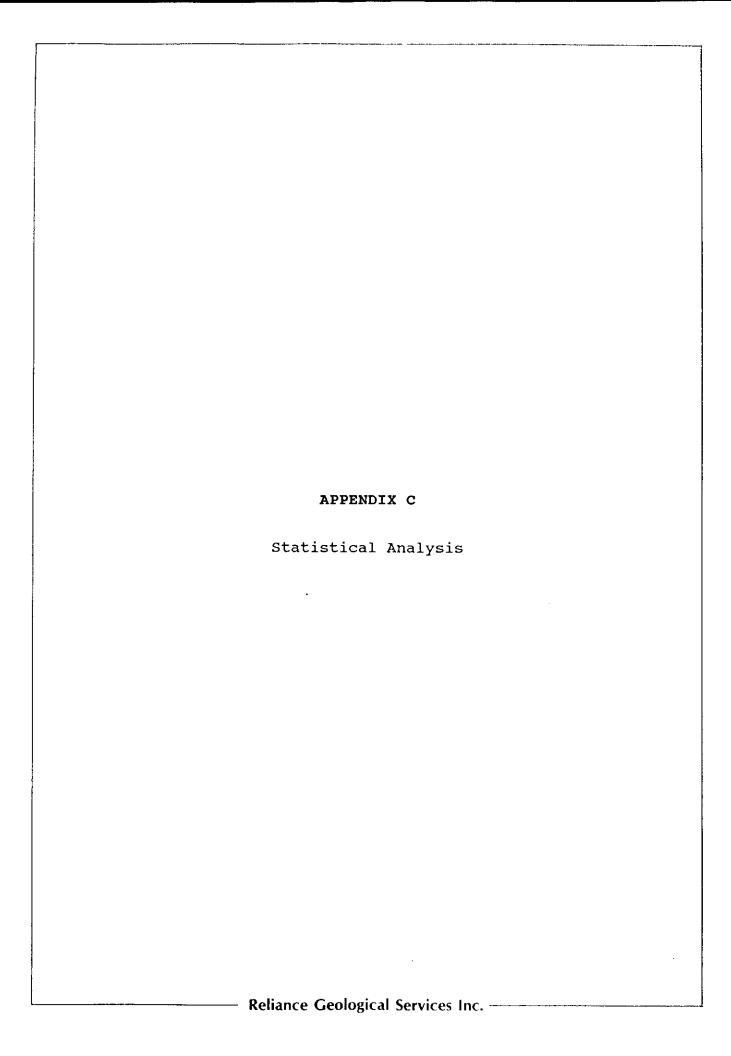
									CERTIFICATE OF ANALYSI			YSIS		49219	800					
SAMPLE	PREP	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cq	Co	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	አ	La ppm	Mg %	Mn ppm
1400 ST 0200	201 229	< 5		3.40	4	110	< 0.5	4		< 0.5	13	21	47	5.51	< 10	< 1	0.05	< 10	1.02	355
1400 ST 0300	201 229	< 5	< 0.2	2.80	< 2	140	< 0.5	< 2	0.64	< 0.5	12	30	53	5.63	10	< 1	0.10	< 10	0.99	405
1400 ST 0400	201 229		< 0.2	2.47	8	120	< 0.5	< 2	0.34	< 0.5	11	24	44	4.19	< 10	< 1	0.08	< 10	0.61	250
1400 ST 0500 1400 ST 0600	201 229 201 229		< 0.2 < 0.2	3.35 2.66	2 22		< 0.5 < 0.5	< 2 2	0.48 0.45	< 0.5 < 0.5	11 10	23 33	63 33	4.93 3.94	10 < 10	< 1 < 1	0.07 0.09	10 < 10	0.96 0.71	400 400
1400 ST 0700	201 229	< 5	< 0.2	1.89	4	50	< 0.5	< 2	0.24	< 0.5	5	38	16	3.67	< 10	< 1	0.04	< 10	0.31	160
1400 ST 0800	201 229	< 5	< 0.2	1.97	< 2	200	< 0.5	< 2		< 0.5	9	41	47	3.21	< 10	< 1	0.09	10	0.51	655
1400 ST 0900	201 229	_	< 0.2	2.21	< 2		< 0.5	< 2	0.57	< 0.5	8	38	31	3.75	< 10	< 1	0.08	< 10	0.53	440
1400 ST 1000	201 229	< 5	0.2	2.04	< 2		< 0.5	< 2		< 0.5	15	21	83	5.15	10	< 1	0.10	10	0.55	1400
1400 ST 1100	201 229	5	< 0.2	2.26	12	150	< 0.5	< 2	0.41	< 0.5	13	17	68	5.35	10	< 1	0.07	< 10	0.73	685
1400 ST 1200	201 229	< 5	< 0.2	2.34	< 2	140	< 0.5	4	0.41	< 0.5	15	52	77	4.74	< 10	< 1	0.07	< 10	0.70	470
1400 ST 1300	201 229		< 0.2	1.92	< 2	90	< 0.5	< 2			11	56	41	4.83	< 10	< 1	0.06	< 10	0.61	225
1400 ST 1400	201 229		< 0.2	1.91	< 2		< 0.5	< 2		< 0.5	7	36	50	3.41	< 10	< 1	0.04	< 10	0.56	180
1400 ST 1500	201 229		< 0.2	1.59	< 2		< 0.5	< 2		< 0.5	6	34	27	3.02	< 10	< 1	0.03	< 10	0.41	170
L1550 ST 0000	201 229	< 5	< 0.2	1.76	< 2	80	< 0.5	< 2	0.19	< 0.5	4	18	24	2.71	< 10	< 1 	0.03	< 10	0.42	190
L1550 ST 0100	201 229	_	< 0.2	2.44	< 2		< 0.5	< 2		< 0.5	5	24	53	3.77	< 10	< 1	0.02	< 10	0.38	175
L1550 ST 0200	201 229	< 5	< 0.2	2.31	< 2		< 0.5	< 2		< 0.5	6	25	44	3.37	10	< 1	0.05	< 10	0.33	755
L1550 ST 0300 L1550 ST 0400	201 229	< 5 < 5	< 0.2 0.6	2.69 2.77	< 2 < 2		< 0.5 < 0.5	< 2 < 2		< 0.5 < 0.5	7 6	37 22	44 34	4.43	10 10	< 1 < 1	0.07 0.06	< 10 < 10	0.52 0.54	415 335
L1550 ST 0500	201 229		< 0.2	2.29	16		< 0.5	< 2	0.30	< 0.5	7	18	26	3.04	< 10	< 1	0.05	< 10	0.47	265
L1550 ST 0600	201 229	< 5	< 0.2	2.24	24	80	< 0.5	< 2	0.50	< 0.5	9	25	39	4.46	< 10	< 1	0.06	< 10	0.73	330
L1550 ST 0700	201 229	< 5	1.0	2.03	< 2		< 0.5	< 2		< 0.5	7	19	29	3.03	< 10	< 1	0.07	< 10	0.50	450
L1550 ST 0800	201 229	< 5	0.2	1.95	< 2	110	< 0.5	< 2		< 0.5	6	22	32	2.87	< 10	< 1	0.06	< 10	0.49	600
L1550 ST 0900	201 229		< 0.2	2.64	2		< 0.5	< 2		< 0.5	10	34	39	5.09	10	< 1	0.07	< 10	0.85	365
L1550 ST 1000	201 229	< 5	< 0.2	2.15	< 2	100	< 0.5	< 2	0.32	< 0.5	9	33	39	4.55	< 10	< 1	0.07	< 10	0.62	455
L1550 ST 1100	201 229		< 0.2	2.19	< 2		< 0.5	< 2		< 0.5	6	37	19	3.84	< 10	< 1	0.05	< 10	0.46	355
L1550 ST 1200	201 229		< 0.2	2.95	6		< 0.5	< 2	0.49	< 0.5	11	57	51	4.43	< 10	< 1	0.05	< 10	0.82	265
L1550 ST 1300	201 229		< 0.2	2.25	< 2 6		< 0.5 < 0.5	< 2		< 0.5 < 0.5	10 8	52 34	50 46	4.28 3.04	< 10 < 10	< 1 < 1	0.06	< 10 < 10	0.80 0.76	280 360
L1550 ST 1400 L1550 ST 1500	201 229		< 0.2 < 0.2	1.88 1.21	6		< 0.5	< 2 < 2		< 0.5	7	54	24	3.09	< 10	< 1	0.08	< 10	0.42	260
2230 81 1300	201 429	. 3																		

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: RELIANCE GEOLOGICAL SERVICES INC.


CERTIFICATION:

241 E. 1ST. ST. NORTH VANCOUVER, BC V7L 1B4

Project : Comments: HAL

Page Number :3-B
Total Pages :3
Certificate Date: 15-AUG-92
Invoice No. :19219008
P.O. Number :770
Account :ILR

									CERTIFICATE OF ANALYSIS				/SIS	A9219008		
Sample	PREP CODE	Mo ppm	Na %	Ni ppm	DDur B	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	ppm V	ppm W	Zn ppm	
400 ST 0200 400 ST 0300 400 ST 0400 400 ST 0500 400 ST 0600	201 229 201 229 201 229 201 229 201 229 201 229	< 1	0.01 0.01 < 0.01 0.01 < 0.01	9 10 7 11 20	3070 2880 1160 2530 1280	10 4 12 12 2	< 2 < 2 < 2 < 2 < 2	6 6 4 5 3	51 78 47 71 51	0.08 0.08 0.06 0.13 0.03	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	154 169 121 132 93	< 10 < 10 < 10 < 10 < 10	72 78 60 92 84	
00 ST 0700 00 ST 0800 00 ST 0900 00 ST 1000 00 ST 1100	201 229 201 229 201 229 201 229 201 229	1 · · · · · · · · · · · · · · · · · · ·	< 0.01 0.01 0.01 0.01 0.01	9 12 9 6 6	1190 1050 1110 1670 1410	< 2 6 8 20 6	< 2 < 2 < 2 < 2 < 2	2 6 4 12 6	28 135 71 89 54	0.06 0.08 0.10 0.01 0.07	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	96 100 129 136 146	< 10 < 10 < 10 < 10 < 10	44 58 48 62 98	
00 ST 1200 00 ST 1300 00 ST 1400 00 ST 1500 550 ST 0000	201 229 201 229 201 229 201 229 201 229		0.01 0.01 0.01 < 0.01	13 16 10 10	990 670 1970 1610 1070	6 8 < 2 8 2	< 2 < 2 < 2 < 2 < 2	5 4 3 2 2	49 48 43 27 27	0.15 0.15 0.10 0.07 0.05	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	157 173 101 91 72	< 10 < 10 < 10 < 10 < 10	100 68 46 40 44	
550 ST 0100 550 ST 0200 550 ST 0300 550 ST 0400 550 ST 0500	201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	8 7 10 7 6	1560 1370 1560 1290 970	4 4 2 4 10	< 2 < 2 < 2 < 2 < 2	2 1 3 2 2	22 58 103 58 50	0.04 0.04 0.06 0.06 0.05	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	91 102 131 120 93	< 10 < 10 < 10 < 10 < 10	42 62 66 68 48	
550 ST 0600 550 ST 0700 550 ST 0800 550 ST 0900 550 ST 1000	201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	9 7 6 9	2290 1550 1630 2320 970	< 2 10 < 2 8 < 2	< 2 < 2 < 2 < 2 < 2	2 1 1 5	51 55 56 51 59	0.06 0.04 0.02 0.08 0.08	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	118 84 87 142 144	< 10 < 10 < 10 < 10 < 10	66 64 70 82 74	
550 ST 1100 550 ST 1200 550 ST 1300 550 ST 1400 550 ST 1500	201 229 201 229 201 229 201 229 201 229	< 1 2 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	10 15 16 13 9	1240 2200 2100 1390 890	2 2 < 2 < 2 < 2	< 2 2 2 2 < 2	3 5 4 3 2	50 48 52 50 40	0.12 0.11 0.10 0.07 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	126 137 129 78 135	< 10 < 10 < 10 < 10 < 10	70 66 50 98 40	
·																

SOIL SAMPLE GEOCHEMISTRY ON THE HAL PROPERTY

Ву

A.M.S.Clark, Ph.D., FGAC, P.Geo.(B.C.) SEGURO CONSULTING INC.

27 August 1992

INTRODUCTION

An investigation of the distribution of gold and copper in soil samples from the Hal Property was carried out between 15 and 27 August 1992.

This report is based on an evaluation of the geochemical analyses only, the author has not visited the property.

A total of 110 samples were collected from one main grid and additional lines on the property. Statistics were undertaken on all samples together.

DISCUSSION

Summary statistics and correlation coefficients have been calculated for some of the elements and histograms have been plotted for gold and copper. Gold values are average with a few high values (up to 130 ppb Au). Copper is low with only a single high value, (see Summary Statistics Table). There is no correlation between copper and gold, but there is a moderate correlation between copper and molybdenum, and a weak correlation between copper and silver (see Correlation Coefficient Table).

The histogram of gold shows a normal Gaussian distribution to about 50 ppb Au, with several high values to 130 ppb Au. Similarly, copper shows an approximately normal distribution to 75 ppm, with a few higher values to 85 ppm and a single very high value at 1914 ppm Cu.

The 'breakpoints' for the symbol sizes used on the symbol maps were determined by inspection of the histograms. The following are the 'breakpoints' chosen as showing the most useful pattern of values on the maps:

Gold: Low values >=20 and <40 ppb Au

Higher values >=40 ppb Au

Copper: Low values >=50 and <70 ppm Cu

Higher values >=70 ppm Cu

The symbol maps of the element values (in back pocket) indicate no significant spatial association of gold and copper, and no concentration of higher values in any specific area.

CONCLUSION

The values for gold and copper in the soils are very low for copper, and moderate for gold. The higher values of gold and copper do not show any spatial association with one another, nor do they show any grouping of values in any particular area of the grid.

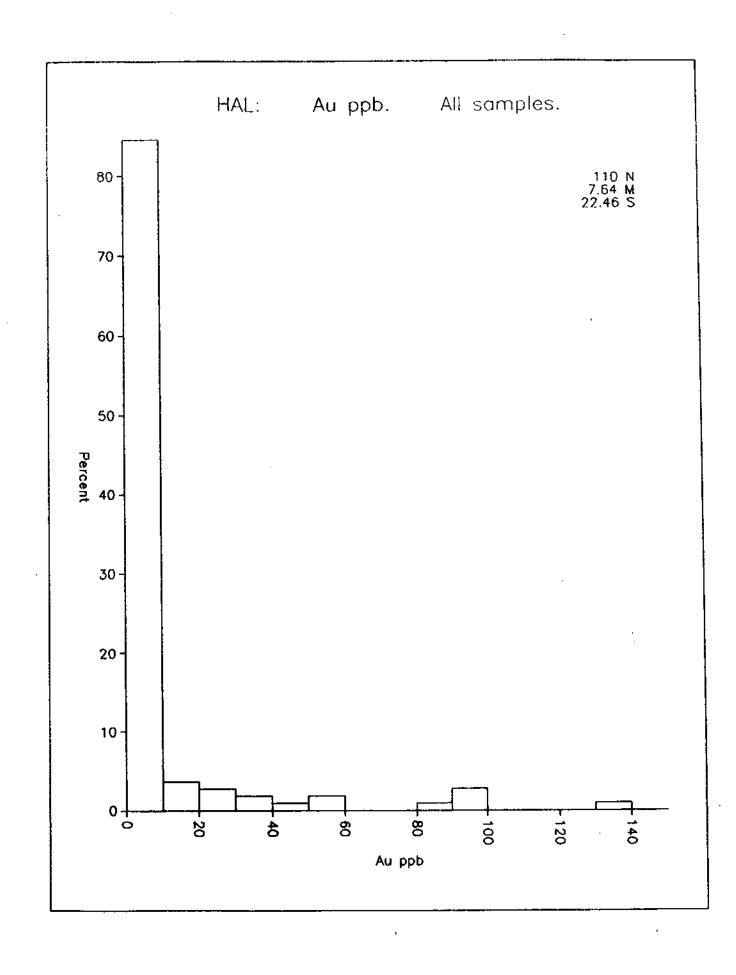
CERTIFICATE

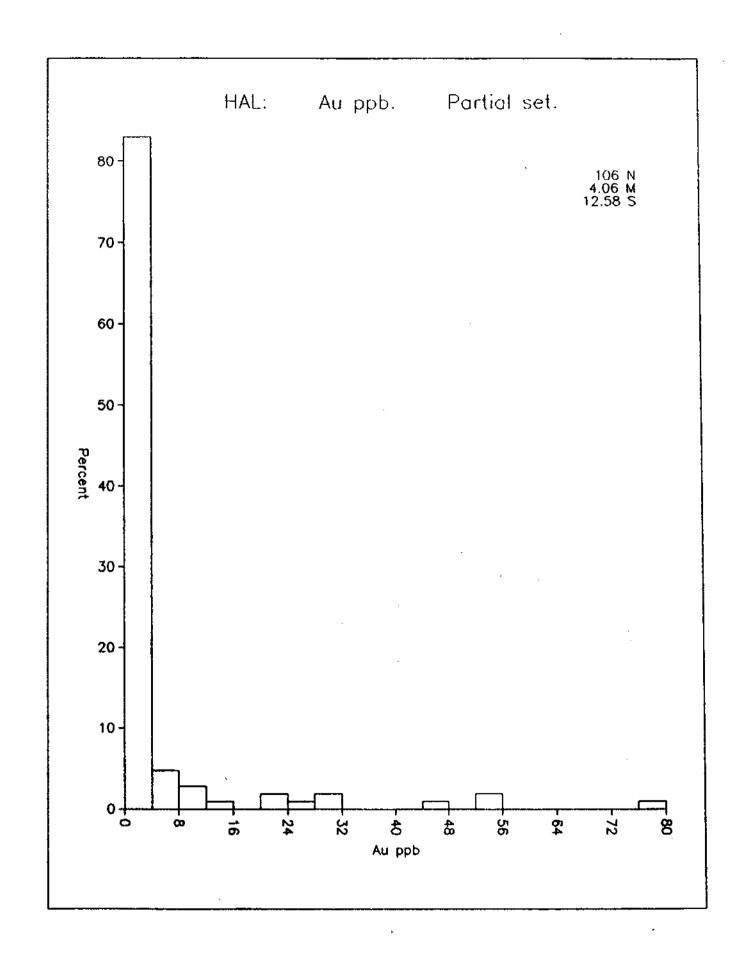
- I, ANTHONY M.S. CLARK, of 2988 Fleet Street, Coquitlam, B.C., do hereby state that:
- I am a graduate of the University of Cape Town, Cape Town, South Africa, with a Bachelor of Science Degree in Geology, 1963, and of Memorial University, St. John's, Newfoundland, with a Doctor of Philosophy Degree in Geology, 1974.
- 2. I am a Fellow in good standing with the Geological Association of Canada, and registered as a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 3. I actively pursued my career as an exploration geologist for twenty-three years from 1963 to 1986, since when I have undertaken consulting in the fields of mineral exploration and computer applications to exploration.
- 4. The information, opinions, and recommendations in this report are based on information obtained by other personnel who undertook the fieldwork on the property, and on published and unpublished literature. I have not visited the subject property.
- 5. I have no interest, direct or indirect, in the subject claims or the securities of Swannell Minerals Corporation.
- I consent to the use of this report in Prospectus or Statement of Material Facts for the purpose of private or public financing.

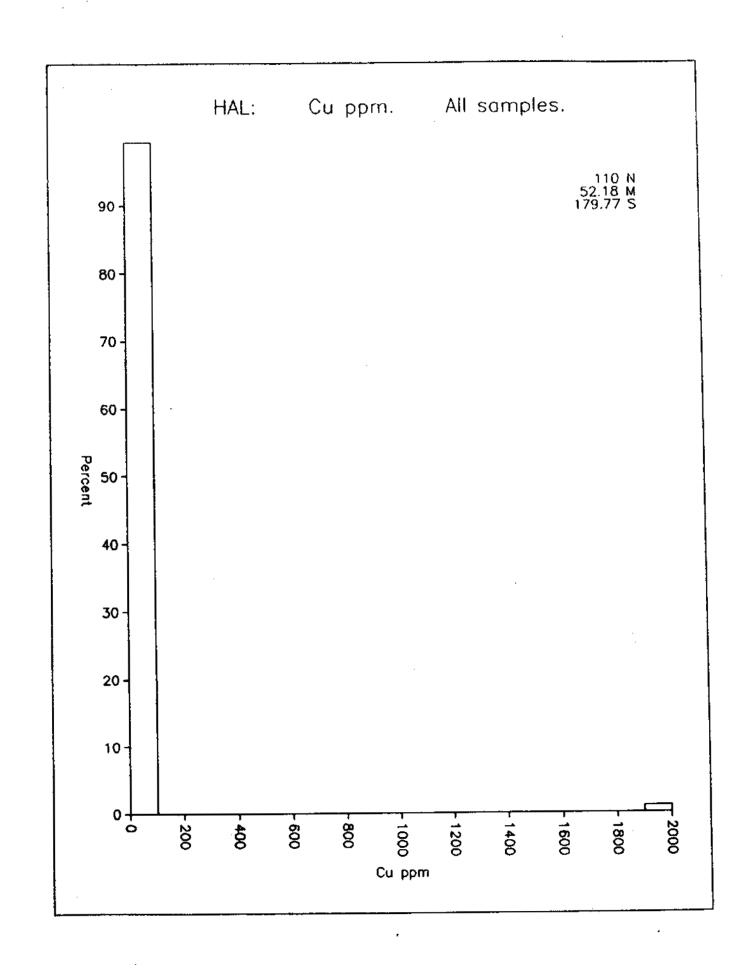
N

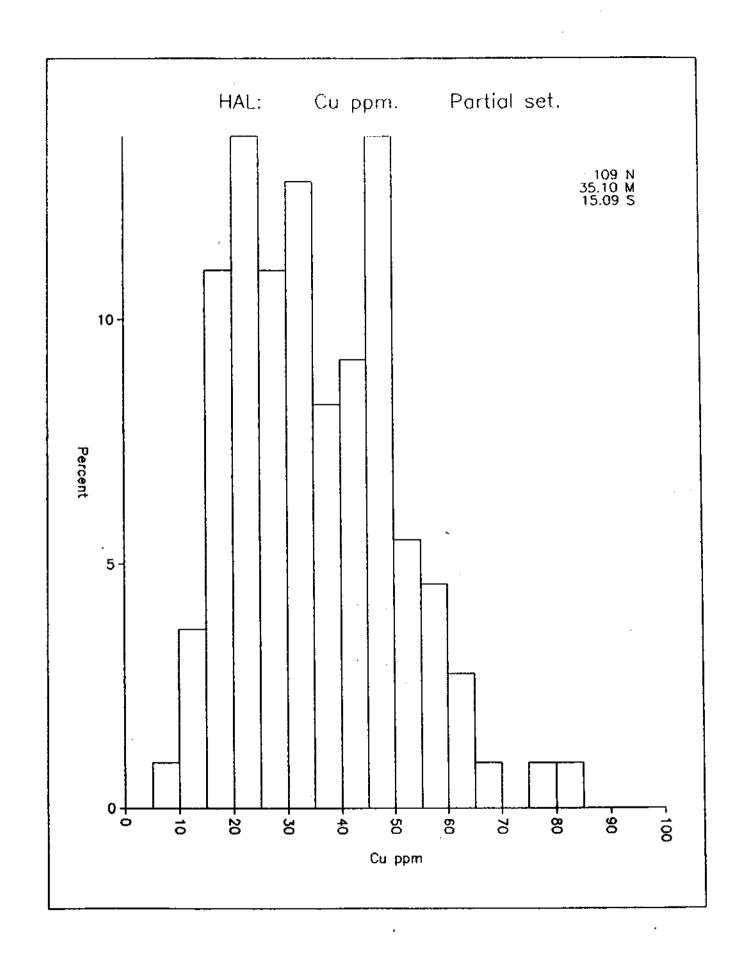
Anthony M.S. Clark, Ph.D., F.G.A.C. P.Geo. (B.C.)

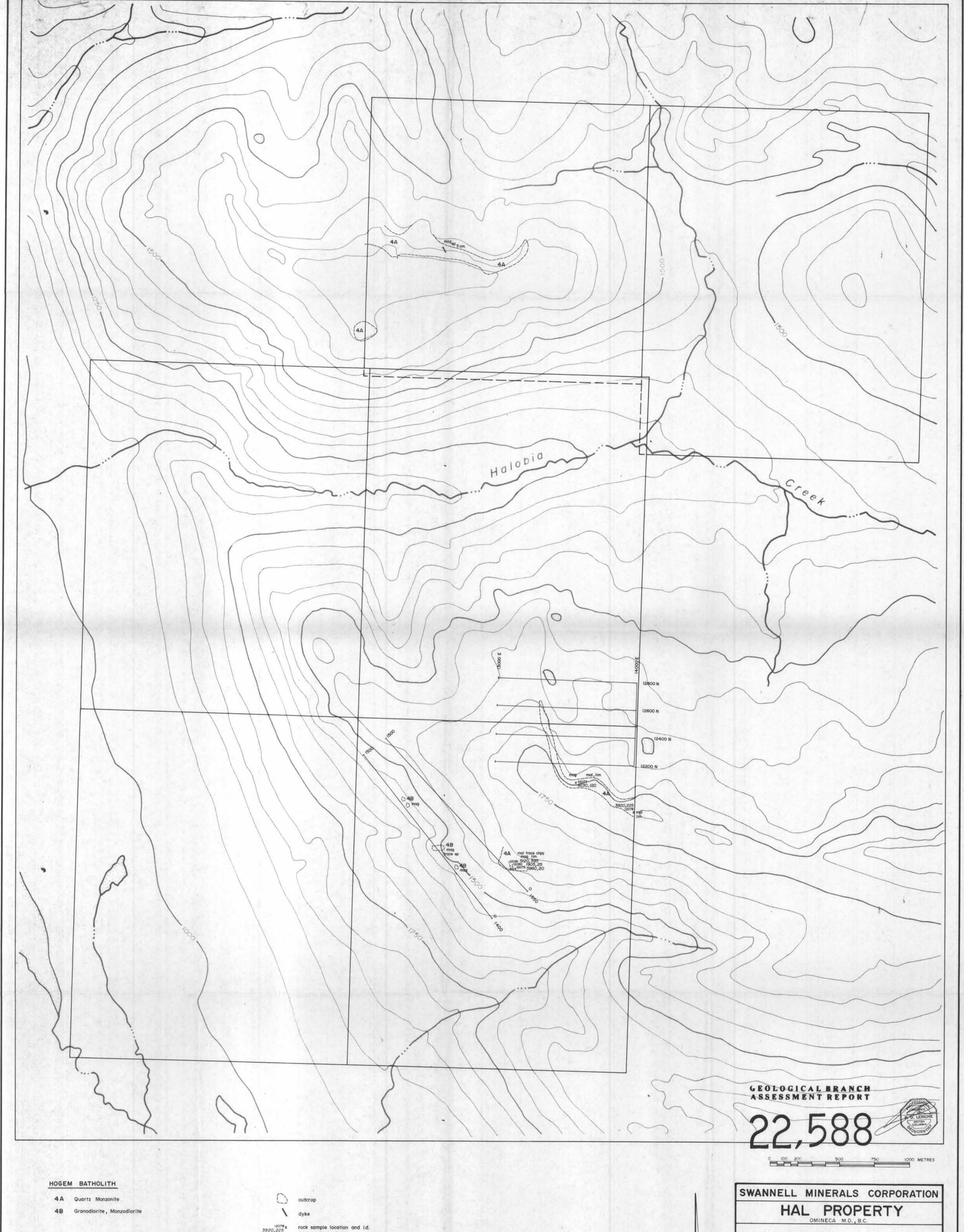
Dated at Coquitlam, B.C., 27Av; (592


HAL Property:

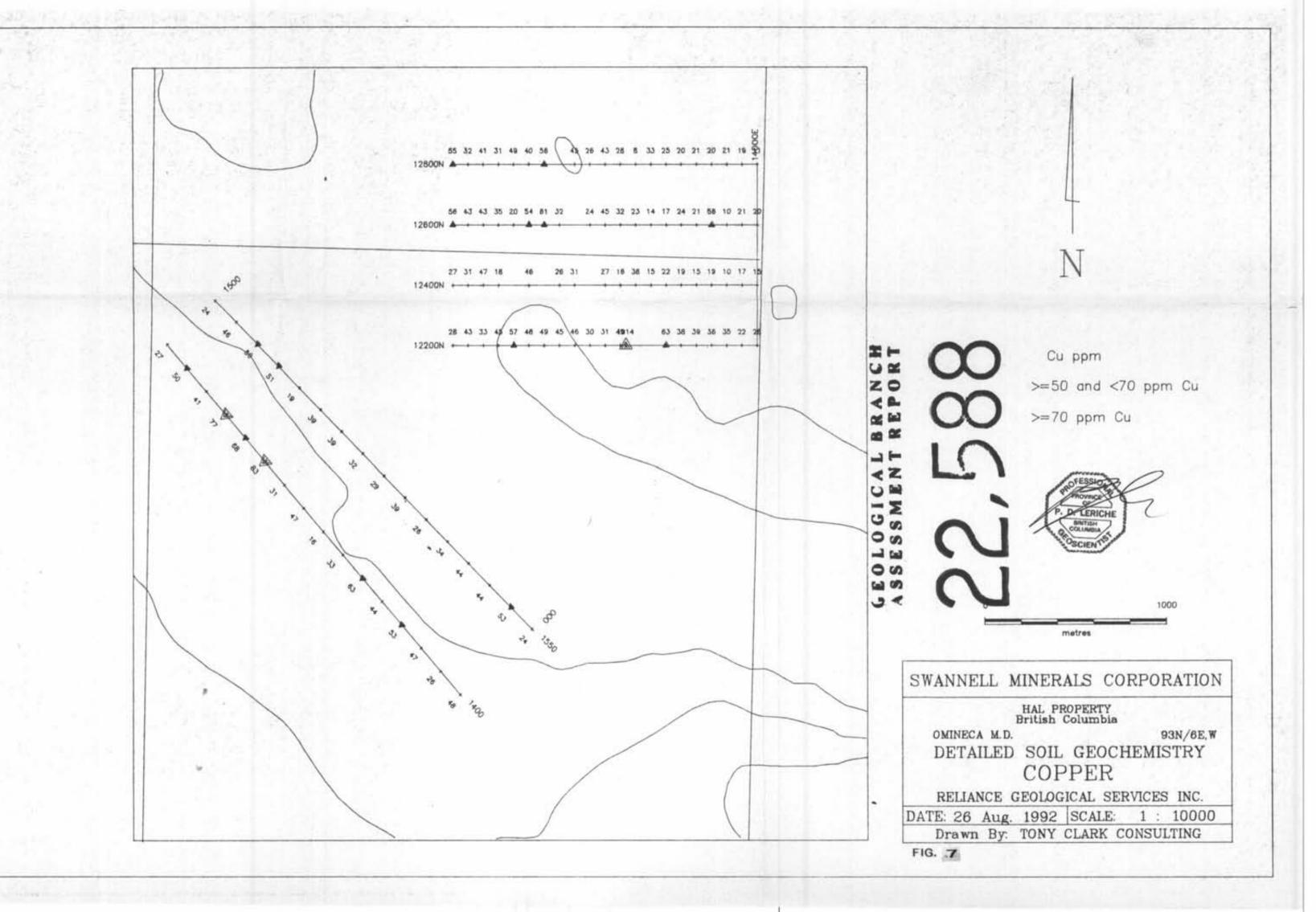

Pearson Correlation Coefficients

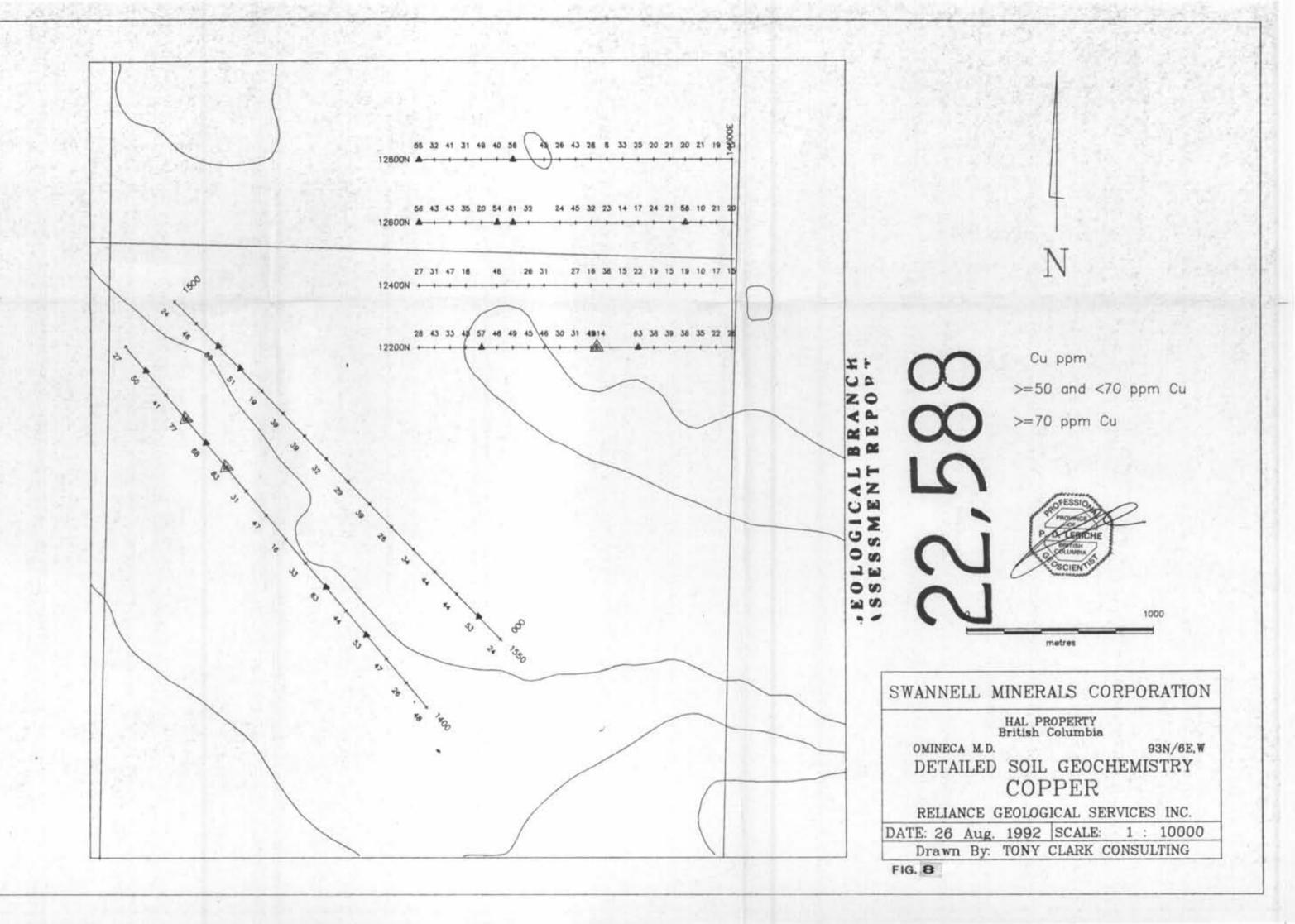

	dqq_uA	Cu_pppm	МОДИЯ	سمعر ون	ֆր_ թբ ու
Au_ppb	1.	0.1990	0.0120	0.0027	0.1213
Cu_opm	0.1990	1.	0.4936	0.3839	-0.0158
Mq_ppm	0.0120	0.4986	1.	0.1445	~0.0271
Ag_ppm	0.0027	0.3839	0.1445	1.	-0.0615
Sr_ppm	0.1213	-0.0158	-0.0271	-0.0615	1.


Summary Statistics


0011111100.7	0000100100				
	Au_ppb	Cu_ppտ	Mo_ppm	Ag_ppm	Sr_ppm
Number	110	110	110	110	110
Mean	7.64	52.18	0.47	0.038	59.12
Std Dev	22.46	179.77	1.46	0.139	35.18
Variance	504	32319	2	0.0	1238
Maximum	130	1914	11	1.0	237
Minimum	0	8	0	0.0	22
Range	130	1906	11	1.0	215
Coef Var	294.1197	344.5163	309.5590	365.2253	59.5061
Std Err	2.1415	17.1409	0.1395	0.0133	3.3542
Median	0.0	33.0	0.0	0.00	50.0
Mode	0	31	Ö	0.0	47

rock sample location and i.d.
Cu (ppm), Au (ppb)


mal - malachite chpy - chalcopyrite lim - limonite



GEOLOGY and GEOCHEMISTRY

Scale I: 10,000 N.T.S. 93·N/6E,W Drawn by

Date August 1992 Geologist Figure REBAGLIATI GEOLOGICAL CONSULTING LTD. RELIANCE GEOLOGICAL SERVICES INC.

