LOG NO: FEB 0 5 1993 RD. ACTION. TOOS TOOM	LOG NO: ACTION.	NOV 0 5 10	RD.	
FILE NO: GEOLOGICAL MAPPING AND G	E ÖKINE MI	ICAL SAM	PLING	j
ASSESSMENT	REPORT			
POLO 7, 8, 13 AND	FOG CLA			
ESKAY CREEK	REGION	V C H		
SKEENA MINING BRITISH COI CANADI	LUMBIA	CAL BRAN ENT REPO	50	2
N.T.S. 10 Latitude 56		S M	\sim	1
Longitu de 13	0° 29'W	O L O S E S		PART
for		E S	\cap 1	0 -
AMERICAN FIBRE (CORPORATIO	א ה ^ע מ		
and				
HERITAGE PETRO #701 - 475 How Vancouver, B.C.	e Street	(R. J. HASLINGER	

Prepared By:

COPELAND REBAGLIATI & ASSOCIATES LTD. #920 - 1188 West Georgia Street Vancouver, B.C. V6E 4A2

> D.J. Copeland, P. Eng. R.J. Haslinger, P. Eng. C.M. Rebagliati, P. Eng.

> > October, 1992

FILMED

NGINEEP

TABLE OF CONTENTS

_

_

_

_ _

_ -

		Page #
1.0	SUMMARY	1 /
2.0	INTRODUCTION	3 /
3.0	LOCATION AND ACCESS	4 /
4.0	CLAIM DATA	5
5.0	EXPLORATION HISTORY	6 /
6.0	REGIONAL GEOLOGY 6.1 Lithology 6.2 Structural Relations	8 8 10
7.0	EXPLORATION - POLO 7, 8 AND FOG CLAIMS 7.1 Property Geology 7.11 Introduction 7.12 Lithology 7.13 Structure 7.14 Alteration and Mineralization 7.2 Lithogeochemistry 7.3 Soil Geochemical Survey	12 12 12 12. 16. 18. 19. 19.
8.0	EXPLORATION - POLO 13 CLAIM 8.1 Property Geology 8.11 Introduction 8.12 Lithology and Structure 8.13 Alteration and Mineralization 8.2 Soil Geochemical Survey	21 21 21 21 21 21 21 21 21 21 21 21 21 2
9.0	CONCLUSIONS	25,/
10.0	RECOMMENDATIONS	26 /
11.0	CERTIFICATES OF QUALIFICATIONS	28 /
12.0	REFERENCES	31,
13.0	STATEMENT OF EXPENDITURES 13.1 Expenditures for Polo 7, 8 and Fog Claims	33,
	(Groups Fibre 92-1, 92-2, 92-3) 13.2 Expenditures for Polo 13 Claim	33 / 35 /

LIST OF FIGURES

<u>Figu</u>	re	Following Page
1. 2. 3. 4.	Location Map Claim Map - Polo Group Mineral Titles Claim Map Regional Geological Setting	4 / 5 / 5 /
5. 5a.	Regional Geology, Unuk Eskay Area Table of Formations	In map file, 8⁄
6. 7. 7a.	Outcrop Geology - Polo 7, 8 and Fog Claims Interpretive Geology - Polo 7, 8, and Fog Claims Interpretive Geology (page size) Polo 7,8 and Fog Claims	In map file/ In map file/ 13/
8.	Lithogeochemistry - Sample Locations and Results - Polo 7,8 and Fog claims	In map file
9.	Soil Geochemistry - Gold (ppb) - Polo 7, 8 and Fog claims	In map file
10.	Soil Geochemistry - Silver (ppm) - Polo 7, 8 and Fog claims	In map file
11.	Soil Geochemistry - Arsenic (ppm) - Polo 7, 8 and Fog claims	In map file
12.	Soil Geochemistry - Antimony (ppm) - Polo 7, 8 and Fog claims	In map file
13.	Soil Geochemistry - Copper (ppm) - Polo 7, 8 and Fog claims	In map file
14.	Soil Geochemistry - Lead (ppm) - Polo 7, 8 and Fog claims	In map file
15.	Soil Geochemistry - Zinc (ppm) - Polo 7, 8 and Fog claims	In map file
16.	Soil Geochemistry Compilation - Polo 7, 8 and Fog claims	In map file
17.	Geology - Polo 13 claim	In map file
18.	Lithogeochemistry - Sample Locations and Results Polo 13 claim	In map file
19. 20.		In map file In map file

LIST OF APPENDICES

<u>Appendix</u>

. - .

.-.

L.

0

1000

I

ţ

1

l

ŧ.

Α	ROCK SAMPLE DESCRIPTIONS		36
В	LITHOGEOCHEMICAL ANALYSES	•	39
С	SOIL GEOCHEMICAL ANALYSES		39

5.1

1.0 SUMMARY

The Polo 7, 8, Fog 1 to 6 and Polo 13 claims are located 80 km north of Stewart, British Columbia, in the centre of the Iskut mining camp. Access includes travel by fixed-wing aircraft from Smithers or Terrace to gravel-surfaced airfields at the snip mine at Bronson Creek or at Bob-Quinn lake on the Stewart-Cassiar Highway #37. From these airfields, helicopter transportation is required for the approximately 45km distance to the claims. Road access will come to within seven kilometers of the Polo 7, 8 and Fog claims with the impending mine development at Eskay Creek.

Exploration in the area began in 1935 and has continued intermittently to the present. In 1988, the rich Eskay deposits were discovered, with current geological reserves of 5.0 million tonnes grading 23.97 g/tonne gold (0.67 oz/ton) and 820 g/tonne silver (22.92 oz/ton), immediately north of the Polo claims. Significant mineralization has been intersected by drilling to the west and south of the Polo claims on the SIB and Coul claims, respectively. Previous exploration on the Polo claims has included limited reconnaissance geological mapping and prospecting and geochemical sampling on the Polo 7 and 8 claims.

The 1992 exploration program on the Polo 7, 8 and Fog 1 to 6 claims included approximately 39.5km of line cutting and grid preparation, 1:5,000 scale geological mapping, 41.6km of magnetometer and very low frequency - electromagnetic surveying, and collecting 1,518 soil samples and 22 rock samples.

Exploration on the Polo 13 claim in 1992 included 2.4km of line cutting, 1:10,000 scale geological mapping, and collecting 65 soil samples, two silt samples and 13 rock samples.

The Polo 7, 8 and Fog 1 to 6 claims and Polo 13 claim overlie, fold and

thrust deformed Middle to Lower Jurassic Salmon River - Mount Dilworth -Betty Creek formation stratigraphy. On the Polo 7, 8 and Fog 1 to 6 claims, an approximately 3.5km strike length of Mount Dilworth formation intermediate fragmentals overlain by Salmon River formation sulphidic mudstones and turbidites extends across the property. These north-south striking, moderate east dipping formations occur in the east limb of the Eskay Anticline. This stratigraphy, continuous with the Eskay Creek ore horizon stratigraphy 7km to the north, hosts subvolcanic rhyolite and dacite intrusions enveloped by hydrothermal quartz-pyrite-sericite alteration zones. These zones also include mineralization anomalous in gold, silver, arsenic, antimony and other metals.

Strong multi-element precious-base metal soil geochemical anomalies coincide with the sulphidic Salmon River/Mount Dilworth contact and with intrusions within the Mount Dilworth volcanics. The strongest anomalies extend for up to 550m and 1600m along strike and range up to 400m in width. Two anomalies show a close correlation with electromagnetic conductors.

On the Polo 13 claim, a 500m strike length of vertical dipping massive Mount Dilworth Formation rhyolite was located. The rhyolite is continuously sulphidic along strike, and preliminary sampling indicates anomalous antimony concentrations in overlying soils.

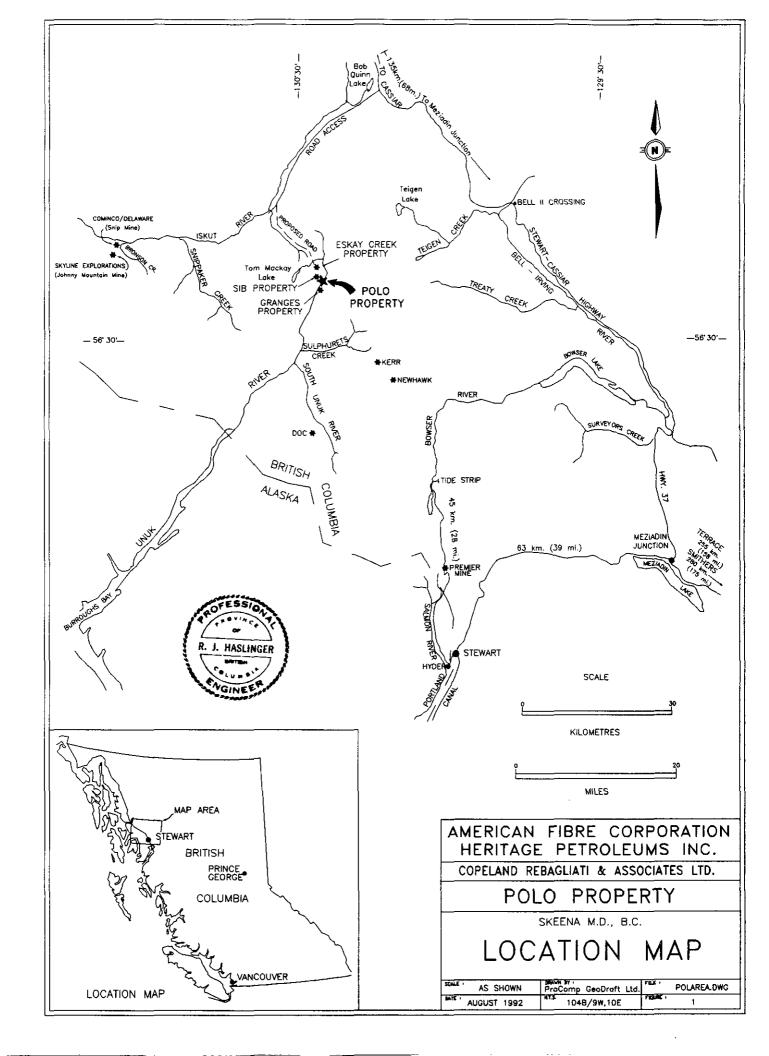
The 1992 exploration program on the Polo 7, 8 and Fog 1 to 6 claims and the Polo 13 claim delineated the economically significant Salmon River/Mount Dilworth formation stratigraphic contact horizon along with a coincident broad geochemical anomaly. This combination of favourable stratigraphy and precious-base metal geochemical signature, warrants further detailed follow-up exploration. A series of detailed geological and geophysical surveys in specific areas of interest followed by diamond drill testing is recommended.

2.0 INTRODUCTION

This report documents the 1992 exploration program, geological features, distribution of hydrothermal alteration, and distribution and characteristics of mineralization on the Polo 7, 8, 13 and Fog 1 to 6 mineral claims, situated in the Skeena Mining Division of British Columbia, Canada.

The 1992 exploration program included line cutting and grid preparation, geological mapping, soil and rock geochemical sampling.

Copeland Rebagliati & Associates Ltd. conducted and managed the exploration program on behalf of American Fibre Corporation and Heritage Petroleums Inc.


3.0 LOCATION AND ACCESS

The Polo property is located at latitude 56° 34'N and longitude 130° 29'W, in the Skeena Mining Division approximately 80 km north of Stewart, British Columbia (Figure 1). Access to the property is from Smithers, which has daily jet service from Vancouver. From Smithers, supplies and personnel can be moved by vehicle to the posts of Bell II or Bob Quinn on the Stewart-Cassiar highway #37. An airstrip at Bob Quinn also allows personnel to move by fixed wing aircraft between Smithers and Bob Quinn.

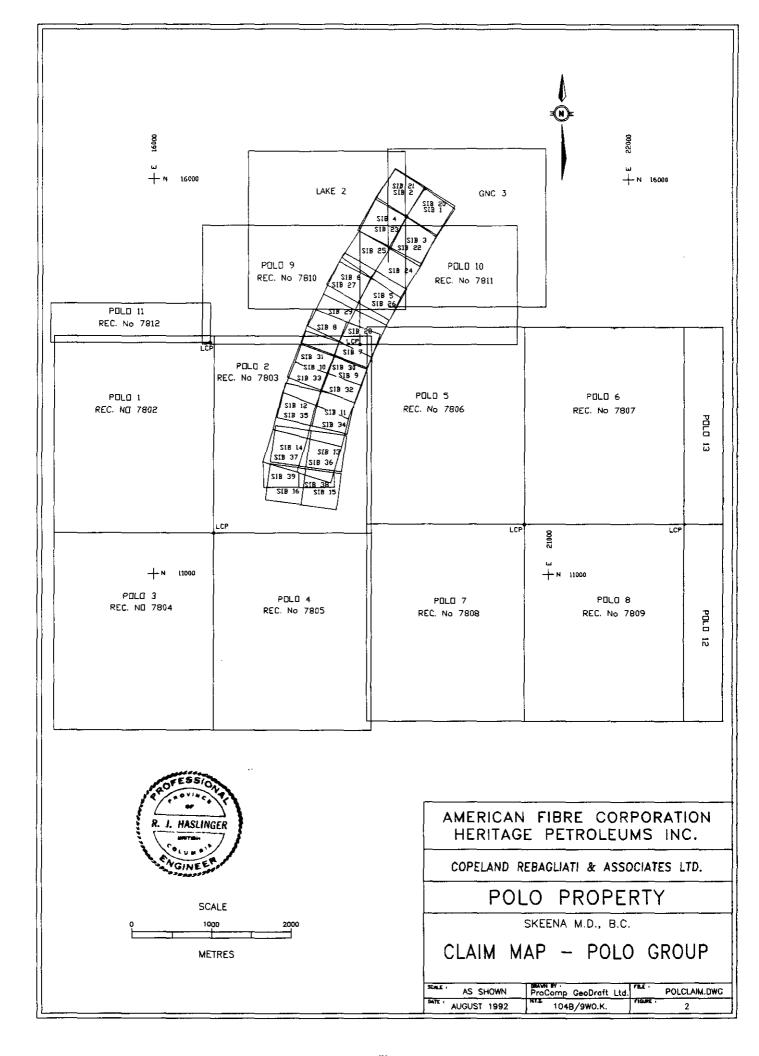
From these posts, helicopter access traverses about 45km of mountainous terrain to the property, travel time being approximately 20 minutes. An alternative is to fly by fixed wing aircraft to the Bronson air strip, site of the Cominco Snip gold mine, and thence via helicopter to the property, a distance of 30 km.

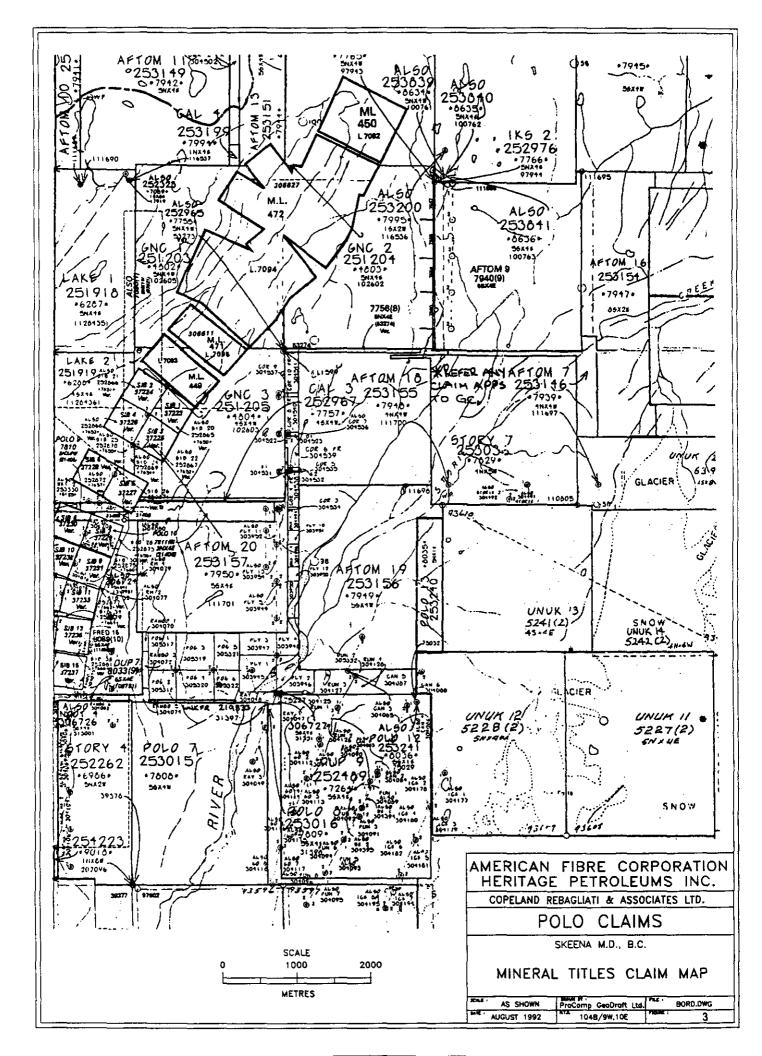
The provincial government has completed an all-weather access road from Highway #37 (Stewart-Cassiar Highway) to Volcano Creek on the Iskut River. International Corona/Homestake Mining plans, in conjunction with mine development, to build a spur to the Eskay deposit, about 7km north of the Polo 7 claim.

The claims straddle the Unuk River east of the Prout plateau. Elevations range from 260m along the river to 780m on the west side of the river and up to 1,400m on the east side of the river. Vegetation is characterized by mature northern coniferous forest. The local climate is typified by short, cool, wet summers and long moderate winters with heavy snow accumulations. Precipitation at approximately 350cm per year is more or less uniformly distributed throughout the year.

4.0 CLAIM DATA

The Polo 7, 8 and 13 mineral claims are part of the Polo 1 - 13 claim group which is situated in the Skeena Mining Division (Figure 2). Of these 13 claims, the Polo 7, 8, 10 and 13 claims have clear title and are free of any disputes or section 35 complaints. These claims acquire ground as shown in Figure 3. The remaining Polo claims are under dispute.


Under an agreement with American Fibre Corporation, Heritage Petroleums Inc. can earn a 50 percent undivided interest in the Polo claim group.


The more recently staked Fog 1 to 6 and Link FR mineral claims acquired open ground adjoining the north boundary of the Polo 7 claim.

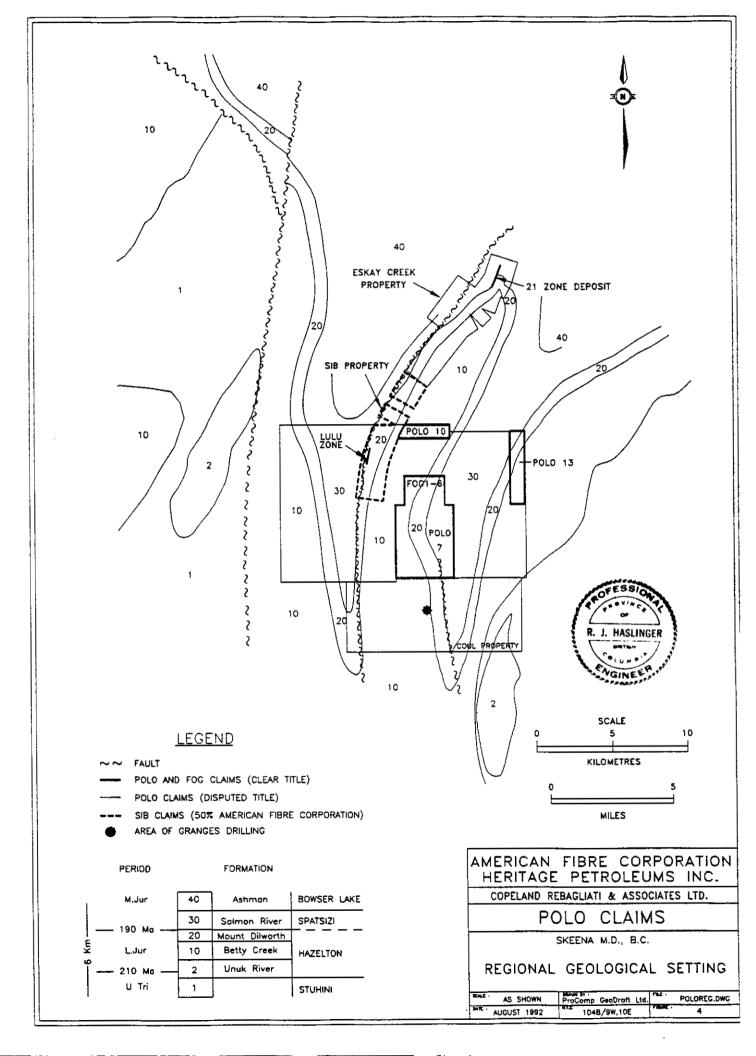
The essential claim data for the Polo 7, 8, 10, 13 and Link FR claims, which are held by American Fibre Corporation, and Fog 1 to 6 claims, which are held in trust for American Fibre Corporation, are as follows:

<u>Claim Name</u>	Record No.	<u>No. of Units</u>	Expiry Date
Polo 7	253015	20	04 Sept 2002*
Polo 8	253016	20	04 Sept 2002*
Polo 10	253018	12	31 Aug 1995
Polo 13	253240	5	15 Sept 2002*
Fog 1	305317	1	05 Oct 2002*
Fog 2	305318	1	05 Oct 2002*
Fog 3	305319	1	05 Oct 2002*
Fog 4	305320	1	05 Oct 2002*
Fog 5	305321	1	05 Oct 2002*
Fog 6	305322	1	05 Oct 2002*
Link FR	311923	1	24 July 2003*

*Subject to acceptance of report for assessment filed August 26, 1992.

The writers have not made a field examination of all claim posts and can pass no opinion on the manner of staking nor can they verify the position of the claims as depicted on Figures 2 and 3.

5.0 EXPLORATION HISTORY


Between 1935 and 1938, the MacKay Syndicate reached an agreement with Premier Mining Company Ltd., whereupon a good trail was established between Tom Mackay Lake and the headwaters of Eskay Creek. An assay lab was set up and extensive trenching was carried out on both the Tok-Kay and SIB Claims. Ten diamond drill holes were drilled on the Tok-Kay claims in the area of the Eskay #5, #21 and #22 zones.

From 1980 to 1983, Ryan Exploration Ltd. (U.S. Borax) carried out soil and rock geochemical surveys on the SIB claims while mapping and drilling on the Tok-Kay claims.

Recent exploration on the adjoining Tok-Kay claims has resulted in the discovery of a major gold-silver deposit. The Eskay 21 Zones have been traced over 1,400m along strike, 250m down dip and range from 5m to 45m wide. Combined current geological reserves are in the order of 5.0 million tonnes grading 23.97 g/tonne gold (0.67 oz/ton), 820 g/tonne silver (22.92 oz/ton) and several percent combined lead, zinc and copper.

This mineralization is hosted by northeast-southwest striking stratigraphy comprising altered volcanic and sedimentary units that are traceable through the SIB and Polo claims (Figure 4).

In 1990, drilling on the SIB claims encountered 46.9 feet of mineralization grading 0.421 oz/ton gold and 30.91 oz/ton silver in the Lulu zone (Rebagliati et al., 1991). This mineralization and

the Eskay 21 Zone deposits occur within and along the upper contact of a felsic volcanic unit known as the Mount Dilworth formation.

Reconnaissance soil sampling in 1988 identified a southwesterly trending multi-element, arsenic-antimony-lead-copper-gold-silver anomaly in the northwest corner of the Polo 5 claim (Copeland, 1989).

In 1989, Aerodat Ltd. conducted a 200 line km combined helicopter borne magnetic, electromagnetic and VLF survey of the Polo claims for American Fibre Corporation (Dvorak, 1989).

In 1990, prospecting near the centre of the Polo 7 claim located hydrothermally altered, pyritic and silicified tuffs which returned 1,380 parts per billion (ppb) gold and 1,980 parts per million (ppm) arsenic from a grab sample. Near the north end of the Polo 5 claim, a silt sample contained an anomalously high 272 ppb gold and 314 ppm arsenic (Rebagliati, 1991).

In 1991, Granges Inc. in joint venture with Springer Resources Ltd. and Cove Resources Corporation conducted a diamond drilling program on the Coul 3 claim (Figure 4). The companies reported the following higher grade intercepts from drill holes centered approximately 1.5km south of the Polo 7 claim:

HOLE	<u>INTERSECTION_LENGTH</u> (ft)	<u>GOLD</u> (oz/t)	<u>SILVER</u> (oz/t)
J91-4	16.2	0.182	4.54
J91- 7	13.1	1.210	13.38
J91-10	3.2	0.643	1.55
J91-12	5.6	0.353	1.05

COUL PROPERTY

These intersections occur within intermediate to felsic volcanic

and sedimentary strata that strike north onto the Polo 7 claim (Springer, 1991).

In 1991, reconnaissance geological mapping, prospecting and geochemical sampling were performed on portions of the Polo 7 and 8 claims by American Fibre Corporation and Heritage Petroleums Inc. Rock grab samples from the Club Zone assayed up to 0.111 oz/ton gold and 2.51 oz/ton silver. As well, soil and rock samples anomalous in gold, arsenic, silver and antimony were obtained from the Bluff Zone (Copeland et al., 1991).

6.0 REGIONAL GEOLOGY

6.1 Lithology

The regional geological framework of the Unuk - Eskay area is outlined on Figure 5, excerpted from Aldrick et al., 1989. * Note that geological mapping in the area of the Polo claims is more accurately documented later in this report than as shown in Figure 5. Several features are evident from an inspection of this map, from field observations and from the simplified Table of Formations excerpted from Anderson et al., (1990, Figure 5a).

- On a regional scale, rocks in this area range in age from the Triassic to the Upper Jurassic.
- 2. Triassic to Jurassic rocks comprise a complex volcanicplutonic arc sequence characterized by rapid lateral facies changes within the section.

• The Regional Geology section of this report is derived in part from an internal report prepared by Oliver (1992).

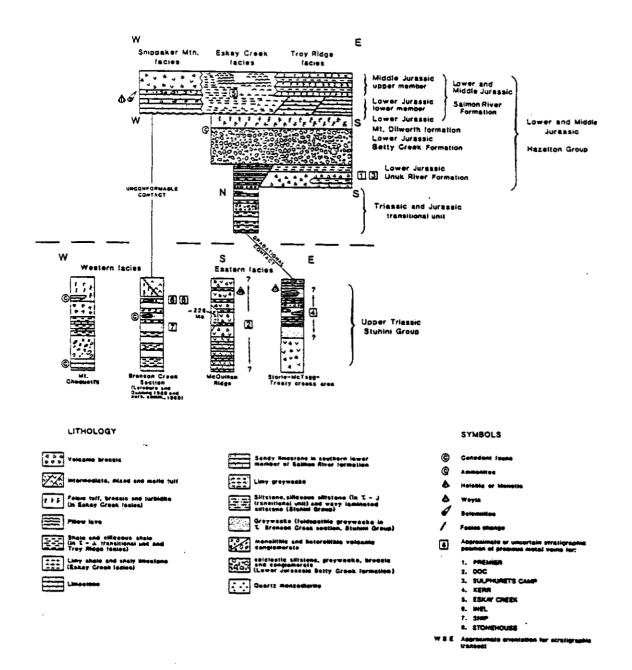


Figure 5a. Table of Formations: Schematic facies changes in Triassic and Lower and Middle Jurassic strata. Facies changes occur toward the east and northeast for upper Triassic Stuhini Group and both south to north and east to west for Upper and Middle Jurassic Salmon River formation in Iskut River map area. (From Anderson et al, 1990)

On all map scales caution must be used in a strict structural, i.e. fault - fold, interpretation of stratigraphic losses. Many of these losses may be due to the presence of rapid lateral facies changes within the evolving successor basins.

- 3. Lower to Middle Jurassic rocks dominate the map area. These rocks include mafic to intermediate volcanic and flow sequences of the Unuk and Betty Creek formations. The absence of younging indicators, marker beds, and primary bedding recognition of attitudes makes field а definitive within stratigraphic position difficult, this thick pyroclastic and flow sequence.
- 4. The Mount Dilworth formation (Felsic Volcanic Sequence) directly overlies volcanic and volcaniclastic rocks of the Betty Creek formation. The Dilworth - Betty Creek contact is defined on a regional scale by the first appearance of maroon to hematitic, clast rich volcaniclastic rocks on the immediate footwall contact with the overlying felsic rocks of the Mount Dilworth formation (Aldrick, per. comm. Dec. 2, 1991, Bartsch, written comm., 1991).
- 5. The Mount Dilworth formation is suggested by Anderson (1989) and Anderson et al. (1990) to represent the last and highly differentiated felsic phase of a Lower to Middle Jurassic volcanic event.
- 6. The onset of clastic sedimentation and a hiatus in volcanism is defined by the deposition of a thick sequence of clastic sediments forming the Middle to Upper Jurassic Salmon River and Ashman formations.

7. Intrusive rocks generally fall into two groupings, Jurassic age dioritic stocks and Tertiary age granitic rocks related to the coast intrusions. Diorites of Jurassic age are commonly fine to medium grained hornblende diorite dykes, sills or plugs which intrude all supracrustal rocks. These rocks have been mapped by Read et al., (1989) and Aldrick et al., (1989) near Mount Shirley and immediately southwest of Tom MacKay Lake.

All of these rocks are mapped as members of the Unuk River diorite suite. Tertiary age intrusion are less well represented in this map area.

6.2 Structural Relations

As illustrated on Figure 5, all rocks within the area of the Polo property have been moderately deformed by a series of large scale fold and fault processes. On Figure 5, the following points are relevant:

The Mount Dilworth formation has been used as an ideal 1. stratigraphic marker to define map scale fold closures. Α north-northeast trending synform-antiform couple is clearly shown on Aldrick's et al., (1989) map. The data on this map indicates that these folds have modest, < 20°, north directed plunges and upright to steeply east dipping axial surfaces. The folds are slightly asymmetric. East of this fold couple and along the Unuk River is a poorly documented and inferred synform. Recent mapping by Lewis (1992; per. comm. July 22, 1992) further delineates and documents this fold. Lewis has also mapped a major west-vergent thrust fault along the east side of the Unuk River at the base of John Peaks. This fault places a folded sequence of Mount Dilworth Formation and older rocks onto an upright sequence of Salmon River Formation argillites and pillowed flows (Lewis, 1992).

This fold event appears to deform rocks as young as the mid-Cretaceous, and is generally believed to represent the culmination of a mid-Cretaceous deformational process which forms the larger Skeena fold belt (Evenchick, 1991a; 1991b).

Rocks within the Iskut area form the western margin of the Skeena fold belt and folds within this belt, including those along Troy ridge, appear to have formed at deeper crustal levels than the central and eastern portions of this belt (Evenchick, per. comm. Dec. 1991). Tighter fold structures (increased shortening) and deformation of more competent and massive rock masses are a consequence of the exposed deeper crustal levels within the Iskut area.

The Eskay Creek deposit is located on the west limb of a northeast plunging anticline, close to its point of closure at MacKay Creek (Figures 4 and 5).

- 2. Un-published work by Lewis (1991) and Oliver (1992), suggests that thrust faults imbricate the folded mid-Jurassic and older rocks. This thrust event is initiated contemporaneously with folding. The map pattern on a regional scale is compatible with the development of a west verging fold and thrust belt.
- 3. The mid-Cretaceous fold and thrust system is broken and further imbricated by a sequence of either north trending or northwest trending normal faults. These faults have field relations which suggest that they are late extensional faults which post-date mid-Cretaceous deformation. Stronger controls on the chronology of this event are not available.

Many of these faults have both normal and rotational displacements. This further complicates stratigraphic reconstructions.

4. The dominant northeast trending, west verging structural grain of the map pattern, may be deflected or slightly warped across an approximate east-west trending fold axis (Anderson, 1989).

It may be equally likely that this curvature is simply a function of the west directed transport of the rocks deformed by thrusting.

7.0 EXPLORATION - POLO 7, 8 AND FOG CLAIMS

7.1 Property Geology

7.11 Introduction

The Polo 7, 8 and Fog claims were geologically mapped at 1:5,000 scale using cut grid lines and topographic maps for control. An initial grid spacing of 200m was used followed by infill lines at 100m spacing in the north west portion of the grid (Figure 6).

Outcrop exposure on the claims is about 20% of the area, with steeper terrain generally being more exposed. With the exception of a few erratics, no glacial till is present.

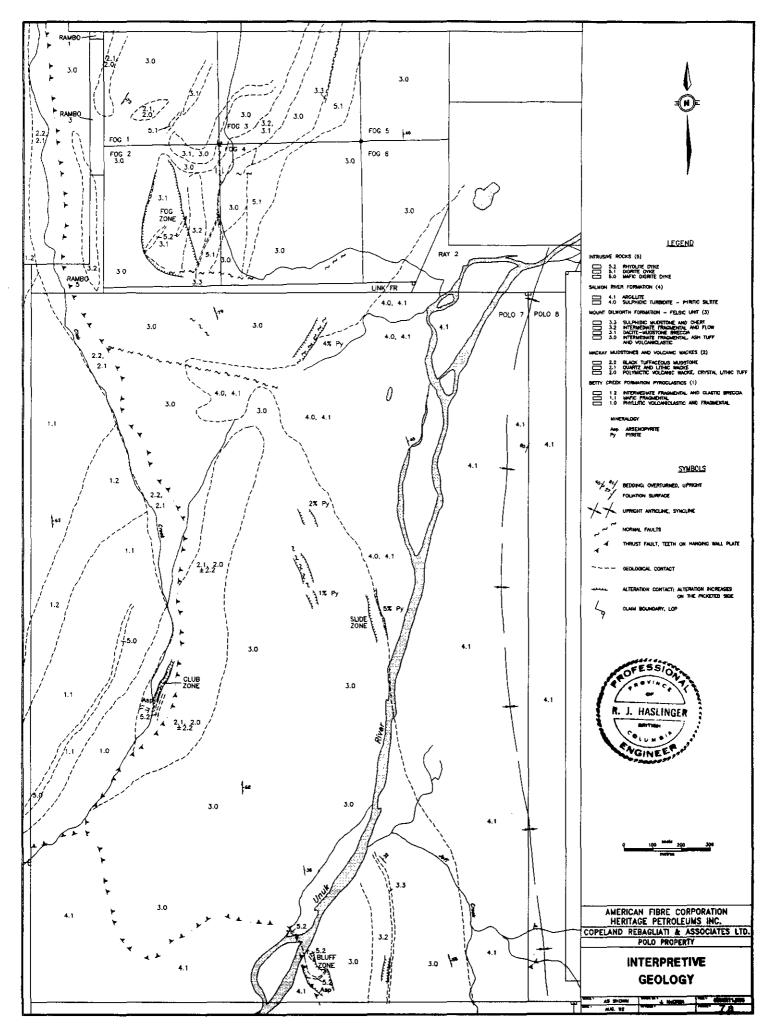
7.12 Lithology

The stratigraphic relations on the Polo 7, 8 and Fog claims are interpreted to be as shown by both the plan and legend of Figure 7. Subdivisions within the legend do not imply a strict stratigraphic position. The components of the stratigraphic column as outlined in the legend (Figure 7 and 7a) may be described as follows:

Intrusive Lithologies: Unit 5 (Jurassic)

Mafic Diorite Dykes (Unite 5.0)

This dyke rock weathers grey-brown and on a fresh surface is grey-black. These moderately magnetic and finely crystalline rocks are mapped as part of a single ridge forming, foliation parallel dyke in the south west portion of the grid. The dyke is on the order of 10m wide.


Dacite Dykes (Unit 5.1)

These dykes mapped in the north part of the grid, form blotchy beige-grey weathering outcrops that are locally heavily coated in black manganese oxid. On fresh surface the rocks are a uniform blue-grey and very finely crystalline. Contacts are distinctly knife edged.

Rhyolite Dykes (Unit 5.2)

The rhyolite is very resistant and forms local rounded ridges and knobs that are typically stained yellow and orange due to contained pyrite, up to 5%. These rocks are cream weathering and glossy translucent grey on fresh surface with a conchoidal fracture. The rhyolite can be massive or brecciated with a pyrite-quartz matrix.

These intrusives occur along mudstone-volcanic contacts and possibly along faults that cut stratigraphy. These rhyolite dykes which also appear as sills and possibly plugs range in width from 10cm to 10m, have strike

lengths from 50 to 100m, and are thought to represent subvolcanic intrusions equivalent to the Mount Dilworth formation volcanics.

Supracrustal Lithologies Salmon River Formation (Upper Jurassic): Unit 4

Argillite (Unit 4.1), Sulphidic Turbidite - Pyritic Siltite (Unit 4.0)

Thin bedded (2cm) argillites - distal turbidites with beds comprising graded siltstone to mudstone occur flatlying across the south of the property and steep west dipping to overturned along the east side of the property. The potentially economically important sulphidic turbidite and/or pyritic siltite submember occurs at the Mount Dilworth/Salmon River contact along the Unuk River. Pyrite rich quartzite interbeds 1 to 2cm thick occur interbedded with somewhat thicker, black mudstone beds.

Mount Dilworth Formation - Felsic Unit (Middle Jurassic): Unit 3

Tuffaceous mudstone and chert (Unit 3.3)

Black on weathered and fresh surfaces, these rocks form 1 to 5m thick interbeds within the volcanic Mount Dilworth package. These sediments are generally recessive and were not well delineated by mapping.

Intermediate Fragmental and Flow (Unit 3.2) Dacite-Mudstone Breccia (Unit 3.1), Intermediate Fragmental, Ash Tuff and Volcaniclastic (Unit 3.0)

Rocks of these units are prominently exposed across the property as they are moderately resistant and underlie

most east dipping slopes as they dip moderately to the The rocks are typically light grey on weathered east. and fresh surfaces. Where the rocks are more tectonized and phyllitic they are a light grey-green in colour, probably due to sericite alteration. Although commonly strongly foliated, the protoliths of these rocks are observed to be interbedded ash tuffs, matrix supported lapilli tuffs and monolithic fragment supported fragmentals. Also present are vesicular flows, often in close association with mudstone along the eastern edge of The dacite-mudstone breccia occurs centrally the unit. within the unit in the northern portion of the property (Lines 114N to 116N, 9400E).

Mackay Mudstones and Volcanic Wackes (Unit 2)

Black tuffaceous mudstone (unit 2.2)

These are fine to medium grained black clastic rocks that are poor to moderately well bedded. The sediments occur as an approximately 50m thick unit along the bottom and east slope of Club Creek. The unit overlies the Betty Creek volcanics to the west and has been over thrust by the Mount Dilworth volcanics to the east.

Quartz and Lithic Wacke (Unit 2.1), Polymitic Volcanic Wacke, Crystal Lithic Tuff (Unit 2.0)

These volcaniclastics weather to a grey-buff brown with a distinctive calcareous and iron oxide rich matrix. Texturally the rocks range from poorly sorted and massive to well bedded. The quartz dominant wacke is composed of sand to silt sized subrounded to subangular particles and weathers to a rusty orange-brown colour. The crystal lithic tuff is compositionally very similar to the quartz wacke, but has a volumetrically larger ash tuff component. Both rock types contain lithic fragments and in places chert pebbles up to 3cm in diameter.

Betty Creek Formation Pyroclastics (Unit 1)

Intermediate fragmental and flow (Unit 1.2), Mafic Fragmental and Flow (Unit 1.1), phyllitic volcanoclastic and fragmental (Unit 1.0)

These pyroclastics range from dark grey to green-black and locally strongly hematitic on weathered surfaces and from grey to black on fresh surfaces. The more mafic rocks include lapilli ash tuff grading to a fragmental composed of angular matrix supported monolithic fragments. The Betty Creek rocks occur west of Club Creek and are distinguished by a greater abundance of chlorite, particularly where they have a more phyllitic texture, and by an increased magnetic response.

7.13 Structure

The supracrustal rocks on the Polo 7, 8 and Fog claims have been deformed into a north trending, moderate east dipping synclinal limb in the central and western portion of the property. The synclinal axis (McTagg-Syncline) traces north-south along the eastern edge of the property where Salmon River stratigraphy dip steeply to the west (Figures 6 and 7). The western limb of this major syncline has been traced to the north where the rocks then form the eastern limb of the Eskay Creek Anticline as shown in Figure 4 (Edmunds, Per. Comm. Aug. 2, 1992; Bartsch, per. comm. Jul. 22, 1992).

Generated contemporaneously with the McTagg and Eskay Creek folds which are generally believed to be a product of a mid-cretaceous deformational event (Oliver, 1992; Lewis, 1992), are a series of west-vergent thrust faults. These thrusts have been mapped to the west along Coulter Creek (Oliver, 1992) and to the east along the base of John Peaks (Lewis, 1992). A similar thrust fault with a west-northwest trace across the southern portion of the property places both the Betty Creek and Mount Dilworth pyroclastics over younger Salmon River formation turbidites. This implies that to depth, Salmon River formation may underlie the entire property. A steeper splay branches north along the east bank of Club Creek and forms the Mount Dilworth/Betty Creek contact.

A well developed north trending and steep east-dipping axial planar cleavage, also generated by the above mentioned deformational event, is developed to some extent in all of the supracrustal rocks on the property. In addition, the subvolcanic intrusives and dykes are also foliated, although typically much less so then their host rocks.

Stratigraphy and dykes are also cut by steep dipping northwest and west striking brittle faults. These faults are observed principally intraformationally where they offset dykes laterally from 50 to 100m. Quartz stringers and associated pyrite occur with at least one such fault that has a northwesterly strike.

Given the fold and thrust style deformation, most volcanic-sediment contacts are faulted to some degree. This seems particularly the case where volcanics overlie sediments. Typically the upper sediment contact is sheared such as along the Mackay Mudstone/ Mount Dilworth contact along the east side of Club Creek. However the base of the Mackay Mudstone is much less deformed at its lower contact with the underlying Betty Creek volcanics. A similar

structural scenario exists to the east along the west side of the Unuk River where the Salmon River mudstone-siltstones overlie the Mount Dilworth volcanics. Although this contact is sheared to some degree in the two locales where it is exposed, should it be a sedimentary contact as stratigraphy implies, this contact is the southern, distal equivalent of the contact at which the Eskay Creek massive-sulphide ore body occurs 7km to the north.

7.14 Alteration and Mineralization

Silicification, quartz stockwork, quartz veining and disseminated pyrite mineralization occurs within narrow zones along faults, shears and foliation planes within and adjacent to rhyolite dykes and along geological contacts (Figure 7). Within these zones the host volcanics are moderately to strongly silicified and somewhat bleached by hydrothermal fluids.

Well developed quartz-pyrite stockwork within the rhyolite dykes also includes primary or pervasive potassium feldspar flooding. No potassium feldspar alteration was observed in any other rock type. Fine grained arsenopyrite and rare grains of galena also occur with the alteration within and adjacent to the rhyolite dykes.

Mineralized rhyolite dykes occur at the Club, Fog and Bluff zones (Figure 7). At the Club Zone, quartz stringers with arsenopyrite contain up to 0.111 oz/ton gold and 2.51 oz/ton silver (1991 sample numbers 191090, 191102; Copeland, et al., 1991).

At the Slide zone (Figure 7), a second style of mineralization is present. There, the stratigraphic top of the Mount Dilworth formation comprises intermediate lapilli fragmental with clasts and matrix containing carbonate and up to 40% disseminated and massive volcanogenic pyrite. This pyritic horizon which is approximately

30m thick and at least 100m long, occurs in contact with overlying black pyritic mudstone of the Salmon River formation. Mineralized angular talus boulders located along the trace of this contact comprise up to 30cm thick quartz lenses with 40% disseminated and layered pyrite. A rock sample of this material contained 478 ppb gold (0.014 oz/ton), 9.7 ppm silver (0.28 oz/ton) with elevated arsenic and antimony concentrations. Although these values are low, they represent evidence of gold and silver bearing massive sulphide mineralization at this economically important stratigraphic horizon.

In addition, 350m north of the Slide zone, a rock sample of a pyrite-quartz lamination from the basal, pyritic black mudstone unit of the salmon River formation also contained elevated silver, arsenic and antimony concentrations.

7.2 Lithogeochemistry

A total of twenty two lithogeochemical samples were collected. Sample descriptions and results are given in Appendix A and Appendix B, respectively. Sample locations and results are shown in Figure 8.

In addition to the results discussed above, the sample with anomalous silver and arsenic values at L94N, 10030E warrants follow-up prospecting and sampling.

7.3 Soil Geochemical Survey

A total of 1,518 soil geochemical samples were collected at 25m intervals along the cut grid lines which are plotted as actually cut in Figure 6. Selected analytical results are plotted with respect to an ideal grid in Figures 9 to 16. A description of

respect to an ideal grid in Figures 9 to 16. A description of analytical procedures and a complete list of analytical results are given in Appendix C. Samples were not collected where the grid lines cross river sediments (gravel bars) and swamps along the Unuk River.

Samples were typically collected from the "C" soil horizon which is well distributed across most of the property. In areas of steeper terrain where no "c" soil horizon is present, the samples were collected from talus fines. Samples were sent to ACME Analytical Laboratories in Vancouver for analysis.

Anomalous results identified on the individual element value plots (Figures 9 to 15) have been compiled on Figure 16. This compilation shows seven anomalies that have the following characteristics:

- Anomaly 1. 11700N to 12200N, 9700E, 550m long. Very high contrast and strong silver. Core values range from 10 to 46.5 ppm Silver. Coincident lead, zinc and antimony. Underlain by Mount Dilworth formation intermediate fragmentals with interbedded mudstone and subvolcanic rhyolite-dacite dykes.
- Anomaly 2. 10800N, 9600E. Spotty gold, lead, arsenic and antimony. Underlain by Mount Dilworth fragmentals.

Anomaly 3. 10800N, 9700E. Spotty zinc, good gold, lead and antimony. Underlain by Mount Dilworth fragmentals.

Anomaly 4. 10600N, 9400E. Spotty copper-zinc, copper-lead. Underlain by Betty Creek formation volcanics.

Anomaly 5. 9400N, 10000E. Spotty gold, arsenic and antimony. Underlain by Mount Dilworth fragmentals and probably an unmapped rhyolite intrusive.

- Anomaly 6. 9800N to 11400N, 1600m long, 100 to 300m wide. Strong continuity. Silver, arsenic, antimony and gold associated with Mount Dilworth are fragmentals. Silver and zinc are associated with Salmon River formation sulphidic mudstones. This anomaly occurs across the favourable Salmon River/Mount Dilworth contact.
- Anomaly 7. 9000N to 9100N, 10750E. High contrast silver, arsenic and antimony. Associated with intensely altered Mount Dilworth fragmentals intruded by subvolcanic rhyolite dyke.

All of these anomalies warrant additional followup exploration, particularly anomalies 1 and 6. These two anomalies are first priority targets due to their continuity, the high silver values of anomaly 1 and the size and stratigraphic association of anomaly 6.

8.0 EXPLORATION - POLO 13 CLAIM

8.1 Property Geology 8.11 Introduction

The Polo 13 claim as shown in Figures 3, 4 and 17, overlaps the Unuk 12 and 13 claims and has acquired an area of ground approximately 1,780m north-south by 275m east-west. A north-south baseline was established along the length of the claim to provide control for a "first-pass" geological mapping and sampling program.

The terrain is dominated by north facing cliffs and forested slopes.

8.12 Lithology and Structure

Local and regional mapping by Lewis (1992), documents volcanic rocks of the Mount Dilworth and Betty Creek formations as being steeply west facing along the west flank of John Peaks. Toward the base of John Peaks along the east side of the Unuk River, these rocks become overturned as they approach a major north trending thrust fault. This west verging thrust ramps the older volcanic rocks over younger upright mudstone-siltstone turbidites of the Salmon River formation.

The Polo 13 claim is located immediately east of this major thrust and is underlain by steep northwest dipping to overturned, northeast trending, predominantly mafic to intermediate flows and tuffs (Figure 17). These green-black rocks are typically medium grained feldspar-pheric, moderately chloritic and weakly foliated. Some interbedded cherty black mudstone and occasional white quartzcarbonate veins with minor pyrite are also present.

Interbedded within the more mafic volcanic rocks is a 60m thick bed of white weathering cherty massive rhyolite flow and fine grained rhyolite tuff. This unit, believed to be the Mount Dilworth formation rhyolite (Bartch, per. comm. Aug 4, 1992), grades from white and massive to black and massive with a minor tuffaceous fragmental component from west to east, across strike. Flow banding is present with in the western margin of the unit.

Separating the rhyolite from intermediate feldspar-pheric flows to the west is a 20 to 40m wide sill-like dacite dyke. This unit weathers grey-brown and is blue-grey on fresh surfaces. Outcrops of the dyke are massive except its margins which are brecciated, foliated and weakly pyritic.

Both the rhyolite and dacite units are continuous along their 500m strike length across the Polo 13 claim.

In addition to the flows and tuffs which over and underlie the rhyolite unit, volcaniclastic rocks comprising quartz-lithic wacke occurs in an outcrop immediately east of the rhyolite. Although no mudstones were observed with the rhyolite, both the eastern contact of the rhyolite and the western contact of the dacite units occur at recessive linear troughs about 5m wide. Hence sulphidic mudstone horizons could potentially be present along these contacts.

8.13 Alteration and Mineralization

The western hanging wall margin of the rhyolite unit, both along the rhyolite/dacite contact and 10 to 15m eastward into the rhyolite, is continuously pyritic across the Polo 13 claim. This typically gossanous margin of the rhyolite appears to host a quartz-pyrite stockwork with locally up to 25% pyrite.

The very limited number (13) of samples collected from the pyritic rhyolite did not return any significant precious or path finder metal concentrations (Figure 18, Appendix A and B).

Additional alteration occurs in the mafic volcanic flows along the east flank of the rhyolite. These typically dark green to black rocks become increasingly bleached and light grey-green in colour from the east up to the contact with the rhyolite. At the rhyolite contact these rocks host a pervasive blue-grey chalcedonic quartz stockwork with minor amounts of finely disseminated pyrite. The rhyolite is also locally brecciated and flooded with chalcedonic quartz along this contact.

8.2 Soil Geochemical Survey

To assess the soil geochemical response of the rhyolite unit and host stratigraphy, a total of 65 soil samples and 2 silt samples were collected along and across the unit (Figure 19). Analytical results for these samples are listed in Appendix C.

No obvious precious or pathfinder metal concentrations were located by these samples. However three subtle antimony anomalies are indicated by the results of greater than 10 ppm antimony shown plotted in Figure 20.

9.0 CONCLUSIONS

9.1 Conclusions - Polo 7, 8 and Fog Claims

The Polo 7, 8 and Fog Claims are underlain by a 3.5km long strike length of Mount Dilworth formation intermediate to felsic volcanics. These rocks dip moderately eastward and are overlain to the east by mudstones and siltstone of the Salmon River formation. The Mount Dilworth/Salmon River formation contact is potentially intact and is at least not a product of thrusting as occurs in the south west portion of the property. At the Slide zone, a primary volcanogenic and near massive accumulation of pyrite occurs at the stratigraphic top of the Mount Dilworth formation. This pyritic zone, which is approximately 30m thick and at least 100m long, occurs in contact with overlying pyritic black Salmon River mudstone. Quartz-pyrite lenses up to 0.3m wide, located in talus at the Slide zone, contain geochemically anomalous concentrations of gold, silver, arsenic and antimony.

The Slide zone occurs at the same geologic horizon as the Eskay Creek 21B deposit, has geochemically anomalous concentrations of the same metals found in the Eskay Creek ore, and has near massive volcanogenic pyrite in place. This zone warrants further follow-up exploration to test for precious-metal-bearing massive sulphide mineralization.

Also of interest elsewhere in the Mount Dilworth volcanic package, are a number of rhyolite and dacite subvolcanic intrusions and dykes. These intrusions, which are located at the Bluff, Club, and Fog zones and elsewhere are accompanied by hydrothermal quartzpyrite stockwork zones, often arsenopyrite-bearing. These hydrothermal alteration zones are geochemically anomalous in gold, silver, arsenic and antimony. These zones warrant further follow-

up exploration to test for economic accumulations of preciousmetal-bearing sulphide zones as stockworks along the intrusions or as massive sulphide accumulations at, over or in underlying volcanic/sediment contacts.

An additional exploration target is delineated in the northern part of the property by soil geochemistry. A silver anomaly with values up to 46.5 ppm (1.36 oz/ton) silver occurs over a strike length of 550m and is up to 75m wide. This anomaly occurs in association with a dacite sill or dyke and mudstone interbed within the Mount Dilworth formation stratigraphy. Follow-up exploration is warranted for sulphide accumulations along the strike length of this anomaly and more particularly to depth.

9.2 Conclusions - Polo 13 Claim

The Polo 13 claim is a 275m wide claim that is underlain by 500m strike length of massive cherty rhyolite of the Mount Dilworth formation. The western hanging wall margin of this 60m thick rhyolite unit is continuously hydrothermally altered along strike. Potential exists for massive sulphide mineralization along the western margin of this unit on the Polo 13 or adjacent claims.

10.0 RECOMMENDATIONS

For the Polo 7, 8 and Fog 1 to 6 Claim group, a two phase follow-up exploration program is recommended as follows:

<u>Phase I</u>

The Phase I program will comprise of detailed geological, geochemical and geophysical surveys in areas of specific interest to provide sufficient information to select priority drill targets.

- Reduce grid line spacing to 100m east of the 10,000E base line, to better cover the Mount Dilworth formation - Salmon River formation contact where a broad (formational) geochemical anomaly occurs.
- Conduct geological mapping and soil sampling along infill grid lines to detail known anomalies.
- 3. Prospect and rock sample along the Mount Dilworth-Salmon River contact and along the soil and rock geochemical anomalies located elsewhere over the grid.
- 4. Conduct a 25km induced polarization survey over the Mount Dilworth-Salmon River contact and over other prospective targets.

<u>Phase II</u>

Diamond drill to test prospective targets, 1,830m (6,000 feet) of drilling is contemplated.

For the Polo 13 claim, it is recommended that the claim be maintained in good standing pending resolution of claim ownership of adjacent claims or a favourable exploration development on adjacent ground.

11.0 CERTIFICATE OF QUALIFICATIONS

I, David J. Copeland, of the City of Vancouver, Province of British Columbia, do hereby certify that:

- 1. I am a consulting geological engineer with a business office at Suite 920 - 1188 West Georgia Street, Vancouver, B.C. and am president of Copeland Rebagliati & Associates Ltd.
- 2. I am a graduate in economic geology with a Bachelor of Science degree from the University of British Columbia in 1970.
- 3. I am a registered member, in good standing, of the Association of Professional Engineers and Geoscientists of B.C.
- 4. Since graduation I have been engaged in mineral exploration and mine development in Canada, United States of America, South America and Australasia.
- 5. The foregoing Geological Mapping and Geochemical Sampling Assessment Report, Polo 7, 8, 13 and Fog Claims, Eskay Creek Region is based on:
 - a) A study of all available company and government reports.
 - b) My personal knowledge of the general area resulting from regional studies and from the management of exploration on the property and on an adjacent property annually from 1989 to 1992.

D.J. Copeland, P. Eng. October , 1992

Certificate of Qualifications

I, Richard Josef Haslinger, of #204 - 1990 West 6th Avenue, Vancouver, B.C. hereby certify that:

- 1. I am a Geological Engineer employed by Copeland Rebagliati & Associates Ltd., a geological consulting firm with offices at suite 920 - 1188 West Georgia Street, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia (B.Sc., Geological Engineering, 1986).
- 3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I have practised my profession continuously since graduation, excluding the period January, 1989 to June, 1990.
- 5. The foregoing Geological Mapping and Geochemical Sampling Assessment Report, Polo 7, 8, 13 and Fog Claims, Eskay Creek Region is based on:
 - a) A study of available company and government reports.
 - b) My personal knowledge of the area resulting from my direct supervision of exploration on the property in 1990, 1991 and 1992 and on an adjacent property in 1990 and 1991.

29

Certificate of Qualifications

I, Clarence Mark Rebagliati, of 3536 West 15th Avenue, Vancouver, British Columbia, do hereby certify that:

- 1. I am a consulting geological engineer with a business office at 3536 West 15th Avenue, Vancouver, B.C.
- 2. I am a graduate of the Provincial Institute of Mining, Haileybury, Ontario (Mining Technology, 1966)
- 3. I am a graduate of the Michigan Technological University, Houghton, Michigan, U.S.A. (B.Sc., Geological Engineering, 1969).
- 4. I am a member, in good standing, of the Association of Professional Engineers and Geoscientists of B.C.
- 5. I have practised my profession continuously since graduation.
- 6. The foregoing Geological Mapping and Geochemical Sampling Assessment Report, Polo 7, 8, 13 and Fog Claims, Eskay Creek Region is based on:
 - a) A study of all available company and government reports.
 - b) My personal knowledge of the general area resulting from regional studies and from the management of exploration on the property and on an adjacent property annually from 1989 to 1992.

C.M. Rebagliati, P. Eng. October , 1992

12.0 REFERENCES

Aldrick, D., Britton, J.M., Webster, I.C. and Russel, C.W.P., 1989: Geology and Mineral Deposits of the Unuk Area, Open File Map 1989-10, Scale 1:50,000, Geological Survey Branch, Ministry of Energy, Mines and Petroleum Resources.

Anderson, R.G., 1989: A stratigraphic, plutonic, and structural framework for the Iskut River map area, northwestern British Columbia; Geological Survey of Canada Paper 89-1E, p's 145-154.

Anderson, R.G., and Thorkelson, D.J., 1990: Mesozoic stratigraphy and setting for some mineral deposits in Iskut river map area, northwestern British Columbia; Geological Survey of Canada Paper 90-1E, p's 131-139.

Copeland, D.J., 1989: Exploration Report on the SIB 1-16 claims. Unpublished corporate report for American Fibre Corporation.

Copeland, D.J. and Haslinger, R.J., 1991: Exploration Report, Polo 7 and 8 claims, Eskay Creek Region. Unpublished corporate report for American Fibre Corporation.

Dvorak, Z., 1989: Report on combined Helicopter-Borne Magnetic, Electromagnetic, and VLF Survey, Unuk River Area, British Columbia; for American Fibre Corporation by Aerodat Ltd.

Evenchick, C.A., 1991: Structural relationships of the Skeena Fold Belt West of the Bowser Basin northwest British Columbia. Canadian Journal of Earth Sciences, Vol. 28, p's 973-983.

Evenchick, C.A., 1991: Geometry, evolution and Tectonic Framework of the Skeena Fold Belt, North Central British Columbia. Tectonics, Vol. 10, p's 527-546.

Lewis, P.D., 1991: Unpublished 1:25,000 scale maps of the Eskay-Unuk River area.

Lewis, P.D., 1992: Structural Geology of the Prout Plateau Region, Iskut River Map Area, British Columbia (104B/9). Geological Fieldwork 1991, British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1992 - 1, P's 521-527.

Oliver, J.L., 1992: Geological evaluation of the SIB Mining Claims, Skeena Mining Division. Unpublished corporate report.

12.0 REFERENCES CONT'D

Read, P.B., Brown, R.L., Psutka., J.F., Morre, J.M., Journeay M., Lane, L.S. and Orchard, M.J., 1989: Geology, More and Forrest Kerr creeks (parts of 104B/10, 15, 16 and 104G/1,2, northwestern British Columbia; Geological Survey of Canada, Open File 2094.

Rebagliati, C.M., 1991: Summary Report, Polo Claims, Eskay Creek Region; for Heritage Petroleums Inc.

Rebagliati, C.M., Copeland, D.J., and Haslinger, R.J., 1991: Exploration report SIB claims, Eskay Creek Region. Unpublished corporate report for American Fibre Corporation and Silver Butte Resources, February 1991.

Springer Resources Ltd., 1991: 1991 News Releases, #'s 16 to 28.

13.0 STATEMENT OF EXPENDITURES

_--

-

. ...

n---

_--

13.1 Expenditures for Polo 7, 8 and Fog Claims (Groups Fibre 92-1, 92-2, 92 - 3)

Personnel - July 1 - August 26, 1992

M. Rebagliati, P.Eng Project Manager 5 days @ \$465.00/day	\$ 2,325.00
R. Haslinger, P.Eng Field Manager 31.5 days @ \$375.00/day	11,812.50
L. Forzley, C.A Project Accountant 5.6 days @ \$300.00/day	1,680.00
J. McCrea, geologist - Field Geologist 32.75 days @ \$285.00/day	9,333.75
T. McIntyre, geologist - Field Geologist 19.5 days @ \$280.00/day	5,460.00
K. Soby, cook - Camp Cook 23.5 days @ \$280.00/day	6,580.00
J. Rollins - Field Technician 22.5 days @ \$245.00/day	5,512.50
N. Jensen - Field Technician 22.5 days @ \$230.00/day	5,175.00
M. Yates - Administrative Assistant 16.5 days @ \$150.00/day	2,475.00
P. Forigo - Secretary 11 days @ \$130.00/day	1,430.00
Expenses:	

Granges Camp Rental - 23 days @ \$300.00/day	6,900.00
Linecutting - 120 man days @ \$250.00/day	30,000.00
Geochemical Analyses - 1540 samples @ \$12.00/sample	18,480.00
Supplies & Consumables	7,255.19

<u>Expenses, cont'd:</u>	
Helicopter - 56.2 hours @ \$778.00/hour	43,723.60
Travel (Mob & Demob personnel)	2,326.39
Freight and Insurance	1,350.00
Expediting and Communications	1,800.00
Reproduction/Reporting	2,375.00
TOTAL	\$ 165,993.93

--

-

_

-

....

34

13.2 Expenditures for Polo 13 Claim

<u>-</u> -

Personnel - July 1 - August 26, 1992

R. Haslinger, P.Eng Field Manager 7 days @ \$375.00/day	\$ 2,625.00
J. McCrea, geologist - Field Geologist 3 days @ \$285.00/day	855.00
T. McIntyre, geologist - Field Geologist 3 days @ \$280.00/day	840.00
Expenses:	
Geochemical Analyses - 70 samples @ \$12.00/sample	840.00
Helicopter - 3.5 hours @ \$778.00/hour	2,723.00
Room and Board - 13 man days @ \$135.00/day	 1,755.00
TOTAL:	\$ 9,638.00

APPENDIX A

Rock Sample Descriptions - Polo 7, 8 and Fog claims

Sample <u>No.</u>	Description	Type
13301	1.5cm thick, 5 cm long pods of fine- grained pyrite in graphite black clastic (Salmon River formation).	Grab
13302	30cm thick seam/bed/vein(?) of 40% massive pyrite and quartz, angular. Located in trees immediately south of Slide Zone gossan.	Talus
13303	Rhyolite-mudstone heterolithic breccia. Network quartz-pyrite stringers with 10% pyrite.	Grab
13304	Green-grey mafic flow with chlorite veinlets and selvedges adjacent quartz- carbonate vein. Trace pyrite and chlorite.	Grab
13305	1% disseminated pyrite in dacite-rhyolite massive flow & breccia (dyke). Cut by 2cm quartz chlorite vein.	Grab
13306	Heterolithic breccia-pyritic dacite fragments-clast supported in argillite matrix. 7% chalcedonic quartz stringers. Gossanous outcrop.	Grab
13307	Net pyrite seams in grey-black mudstone. Very gossanous and phyllitic rhyolite above and below.	Grab
13308	Rhyolite-dacite fragmental with 5% pyrite in veinlets. Gossanous.	Grab
13309	Fine grained quartzite, foliated. Shear at angle to foliation. Trace pyrite and strong iron oxides along shear.	Grab
13310	Graphite rich limestone pod amongst quartz wacke float.	Talus

.

Sample <u>No.</u>	Description	<u>Type</u>
13319	Intermediate fragmental with 7% chalcedonic quartz flooding-veins up to 1cm thick. Trace pyrite.	Grab
13320	Quartz vein stockwork in grey intermediate fragmental. 50% quartz vein, 2% pyrite. trace sphalerite.	Grab
13321	Intervolcanic mudstone. 5% lithic tuffaceous component.	Grab
13322	Chloritic and tuffaceous dacite. Disseminated pyrite along cross cutting fractures (0.5%). Spotty gossan on outcrop.	Grab
13323	Grey-dacite-very close to west contact of dyke. 10% chalcedonic quartz. Very hard. Trace pyrite.	Grab
13324	Heavy black carbonate rich rock. 2% pyrite from gossanous outcrop of pyrite- quartz stockwork in intermediate fragmental.	Grab
13401	7cm quartz vein with pyritized hanging wall.	Grab
13403	Silicified intermediate ash tuff footwall to dyke. 3% pyrite. North trending dyke.	Grab
13252	Rusty-grey phyllite. White quartz veins. No sulphides.	Grab
13253	Dacitic volcanic. 2% pyrite along shear margin with jarosite staining.	Grab
13254	Pyritic dacite. 5% pyrite.	Grab

.

_

.. --

37

•

.

Rock Sample Descriptions - Polo 13 claim

Sample No.	Description	Type
13311	Rhyolite-fine grind disseminated pyrite throughout (4%).	Sitarop
13312	Grey siliceous rhyolite, conchoidal fracture. Very fine-grained pyrite throughout. Pyrite in fractures and with quartz microveining.	Grab
13313	Light grey massive rhyolite with dis- seminated and veinlet pyrite - 2%.	Grab
13314	Pyrite-disseminated and microveinlets, in blocky weathering rhyolite. Pyrite local cross cutting feature (weak-moderate stockwork).	Grab
13315	Very pyritic rhyolite at siltsample site 9102. 4cm thick-40 to 50% pyrite veinlet out of outcrop.	Talus & Grab
13316	Soft white rock - red brown weathering. White breccia fragments in silica matrix.	Grab
13317	Rhyolite-rhyolite fragmental. Some darker rhyolite fragments in fine grained glossy matrix with locally 30% pyrite as up to 2 cm diameter spheroids-possibly primary sulphide clasts.	Grab
13318	Intermediate volcanic east side of Rhyolite. Brecciated, bleached and chalcedonic flooding.	Grab
13325	In middle of lower section of rhyolite. Pyritic seam-local gossan. 1% pyrite.	Grab
13326	Fine grained grey dacite with 2% disseminated and spheroidal pyrite up to 8mm diameter.	Grab
13327	Pyritic rhyolite breccia 2% pyrite.	Grab

Sample <u>No.</u>	Description	Type
13404	Rhyolite-dacite dyke contact. Sulphidic mudstone(?). Finely disseminated pyrite (5%). Flow top breccia.	Grab
13405	Rhyolite-dacite contact. Intensely pyritic along contact in dacite.	Grab

_

.

_

_

APPENDIX B

Lithogeochemical Analyses

_

1073 Page 6

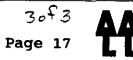
;

١

ACRE ANALYTICAL																														THE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag	i M Impon	Co ppm	Mn ppm	Fe X	As	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Сг рря	Mg X	8a ppm	TI X	B ppm	Al X	Na X	K X	V ppm	
13303	2	40	12	87		13	13	27/	10.56	141	5	ND	4	23		19	7	52	. 16 .	101	7	5	.25	7	.01	2	.88	.01	.23	<u> </u>	0
13304	7	613	7		.5	21	15	774	3.35	14	, i	ND				2	É	40		075	2	34	.98	82	.01	5.	1.50	.01	.14	20 A	5
13305	2	71	د ہ	64	1.1	21	15	•		4	2				-8	2	2				2				1 - 1 - 2 - 2 - 6				•	284	~
	3	21	0	74	- 2		17	299	6.34	25	2	ND	1	43		2	2	63		112	2		1.62	42	.01	~ ~ ~	2.03	.03	. 10	27 T	
RE 13309	1	17	5	43	- 1	14	11	1747	4.15	· 13	5	ND	3	476	· .4	2	- 4	17	10.78	034	5	9	2.51	59	.01	2	.47	.02	. 13	87 U	2
13306	1	26	10	79	.3	18	12	152	4.62	39	5	ND	1	17	.2	2	3	52	.40 .	179	7	13	.84	36	.01	2 1	1.29	.03	.15	્ર	3
13307	2	11	19	95	. ,	10	15	431	9.04	117	5	ND	1	7	2.3	2	5	83	.20 .	145	5	7	1.07	26	.01	2	.79	.02	. 14	ંગુ	3
13308	7	16	12	78		13	6	285	5.94	42	ŝ	ND	4	14		7	8	64		206	7		1.06	39	.01	-	1.43	.04	.07	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
13309		17	12			10		1774			1					-	0									2					÷
	1	12	2	44	• 1	10					2	ND	۲	481		2	2			033	2		2.54	63	.01	-	.47	.02	.13	- <u></u>	3
13310	3	- 3	2	9	.1	1	2	2588	1.35	4.	- 5	ND	1	686	.3	2	2	2		015	2		1.04	21	.01	2	.03	-01	.01	. and	- 4
13311	1	14	3	77	.1	2	27	424	9.28	2	5	ND	1	30	.2	2	10	39	.95	167	6	4	1.02	38	.01	2 2	2.38	.02	.16	્યુદ	4
13401	4	3	10	51	.9	7	14	382	5.74	162	5	ND	1	11	2	10	3	23	.19	121	2	5	.25	72	.01	2	.42	.01	. 14	ୁନ୍ତୁ	22
	20	60				71	• -				10	7	30	52	18 6		21		-,	2 - 2 -	7.8	57			· * 32 ·	34		•		6.44°	
STANDARD C/AU-R	20	60		133	7.6	71	32	1057	3.97	42	19	7			18.6	13	21		48 .	091	38	57	.88	177	.09	34	.89	.07	.15	<u>11</u>	_4

÷

ÅÅ


MORE NOVELITICAL											_																		AC.	HE ANALYT	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe X	As	U ppm	Au ppm	Th ppm	Sr ppm	6d ppm	Sb ppm	Bi ppm	V ppm	Ca X	P	La ppm	Cr ppm	Mg X	Ba ppm	11 X	8 ppm	AL X	Na X	K X	000000	Au* ppb
13252	7	11	7	20	*	13		202	2.32	59	5	ND				E	3		.06	.037	2	4.4	F 4	41	.01		.63	01	-		
13253					2	12	-				2			5	- 1 -						4	11	.56		- 199 - 1 99 M.	2		.01			2
		34	4	39		4		193	4.79	- 36	2	ND	1	26		12	2	38		.109		1	.19	59	.01	2	.80	.01	.39		2
13254	4	44	40	149	1.2	. 9	13	1635	9.78	: 83 :	2	ND	1	21	.2	9	2	88		. 161	7	- 3	.74	42	.01	6	1.48	.03	.10	Anionica S Coloridad	3
13301	79	144	11	207	4.2	39	6	2	16.91	398	5	ND	1	2	2.2	22	2	17		.002	2	- 3	.01	6	.01	10	. 19	-01	.11 }	<u></u>	6
13302	55	24	106	18	9.7	27	39	6	17.03	485	5	ND	1	1	.2	30	2	1	.01	.001	2	5	.01	4	.01	10	.01	- 01	.01		478
RE 13316	1	6	2	59	. 1	1	3	2245	5.34	2	5	ND	1	327	.2	2	2	1	8.20	.037	5	1	1.39	34	.01	2	.11	.01	.07	See.	2
13312	s s	12	13	33		ż	3	130	2.28	20	Š	ND	2	9	2	Ā	5	Å		.044	8	2	.02	63	.02	2	.17	.04	.13	1814 C	5
13313	5		14	89	.3	5	2	771	1.35	6	ś	ND	ž	40		7.	2	2		.014	13	7	.07	81	01	2	.21	.03	.15	accord a c accord ()	1
13314	2	ě	~	79	4	ź		786	2.53	46	É	ND	7	86		Ē	2			012	9		.04	53	.01	2	.18	.03	.12		
13315	27	1.	33	167		2				55	ź		2	- 00	÷4	7	Ę	-			-				N 1.4 WO	2		.03			3
13313	21	11	22	101	.2	1	0	495	4.69	22	2	ND	2		.2	15	د	3	.11	.028	11	'	.02	15	-01	6	.24	.02	.19		4
13316	1	5	2	65	. 1	1	3	2354	5.47	2	5	ND	1	336	.2	2	2	2	8.58	.038	5	1	1.44	35	.01	5	.11	.01	.07		2
13317	7	6	19	7	2	7	2	72	3.50	12	5	ND	1	5	2	5	2	2	.06	800	9	3	.02	27	.01	5	. 16	.02	.19	É	1
13318	2	9	13	81	1	7	9	1162	3.51	6	5	ND	1	44	.2	3	2	14	2.21	104	12	5	.74	73	.02	4	1.24	.03	.11	ŚŔ.	2
13319	1	8	5	219	_1	2	2	691	3.49	2	5	ND	2	31	.2	3	2	35	.64	.141	16	1	.51	70	.01		1.34	.01	.19		1
13320	7	12	16	130	2.8	8	8	101		9079	5	ND	1	31	.5	116	3	8		151	5	8	.02	31	.01	ž	.25	.01	.19	Sei -	64
						-	-				_					=	-	-		849 B.	-	-				-					- /
13402	5	9	11	18	: .1	- 4	6	131	4.95	24	5	ND	1	14	.2	4	2	31	.16	.122	4	2	.43	68	.01	2	1,00	.06	.11 🗄	Station -	2
13403	3	24	22	128	13.8	3	9	85	5.26	3879	5	ND	1	26	7	49	2	36	.37	180	11	- 3	.37	31	.01	54	.68	.06	.22	A	159
STANDARD C/AU-R	19	64	38	132	7.4	71	32	1061	4.01	41	16	7	39	53	18.7	15	21	60	.49	.092	41	- 58		178	.09	35	1.91	.07	. 15	10	506

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

2073 Page 18

ACKE AMALYTICAL

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2463

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au pp n	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V pp#	Ca X	P. *	La ppri	Cr ppm	Mg X	Ba ppm	11	8 ppm	Al X	Na X	K X	bbu	
13321	1	32	18	127	.1	15	29	443	6.08	3	5	ND	3	20	.2	2	2	52	.29	.076	13	15	.68	223	.09	6	2.57	.01	.38	ંે	2
13322	1	9	7	164	.2	2	11		7.76	19	5	ND	1	105	6	2	2	41		.097	14		1.11	37	.01		2.12	.03	.08	Č.	12
13323	1	10	50	455	.6	4	20	2484	6.87	20	5	ND	1	28	. 9	2	2	73	1.22	.071	7	3	1.44	50	. 01	2	2.49	.02	.06	1	1
13324	1	7	11	48	1.0	6	18	1489	4.35	87	5	ND	3	269	5	2	2	48	14.28	.035	4	18	1.27	27	.01	2	1.31	.01	.09	1 A .	3
13325	3	13	17	62	.2	4	6	415	2.54	11	5	ND	1	11	्र,2	3	2	10	.54	.031	12	8	.13	57	. 06	2	.32	.06	.10) (1
RE 13324	1	7	10	40		6	16	1445	4.22	80	5	ND	2	260	3	2	2	46	14.06	.036	4	18	1.24	29	.01	2	1.19	.01	.09	ંતું	3
13326	3	8	9	148	.1	1	28	617	8.99	15	5	ND	1	16	1.1	4	2	90		.079	11		2.49	7	.27	13	2.61	.03	.09	ି 🁔	1
13327	1	7	9	39	.1	3	5	91	2.02	10	5	ND	1	8	.2	3	2	6	.30		8	3	.08	59	.07	2	.31	.04	.18	8 1 .	1
13404	4	16	11	75	.1	3	34	211	10.13	18	5	ND	1	14	ं . 3	2	2	33	.86	147	5	1	.09	6	. 79	3	.69	.04	.23	8 - F	2
13405	1	9	10	117	.1	3	38	384	14.62	- 39	5	ND	1	8	7	2	2	117	.49	.143	10	3	1,46	1	11	5	2.00	.04	.10		1
STANDARD C/AU-R	19	62	39	134	7.6	73	32	1056	3.96	37	17	7	40	53	18.8	15	21	59	.49	.087	39	61	.94	183	.09	34	1.93	-07	. 14	៍ព	465

APPENDIX C

Soil and Silt Geochemical Analyses

ACME ANALY	TICA	LL	ABOF	VATO	RIES	LTI	D.	1	852 E	. H7	STI	NGS	ST.	VAN	COUVI	ER B	.c.	V6	A 11	16	P	HONE	60	4)25	3-3	· · ·		(604	1)253	-171	6
ΔΔ									G	EOC	HEM	[CÀ]	l Ai	NAL	YSIS	CE	RTI	FIC	ATE		• .				·	lof	.47		÷ A	L À	
TT			<u>Cc</u>	ppe]	land	Re	920	118 118	<u>ati</u> 8 W. G	& A eorgia	SSO(St.,	vant	tes :ouver	PRO BC	OJEC	TP Si	OLO Joniti	F ed by	ile RI	# Chard	92- Hasli	212 NGER	4	Pa	ge	1				<u> </u>	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppm	N i ppm	Co ppm	Mn ppm		As ppm		Au ppm		Sr ppm	Cd ppm	Sb ppm	Bi ppm	V Maqa	Ca X	P %	La ppm	Cr ppm	Mg X	8a ppm	Ti X	B ppm	Al X	Na X	K X J		u* xpb
11000N 9350E 11000N 9375E 11000N 9400E 11000N 9425E 11000N 9450E	4 5 1 7 7	21 15 13 56 33	15 14 6 22 27	80 65 56 165 112	.1 .1 .3 .5 .4	5 6 9 4 17	8 9 15 24 19		6.35 5.91 4.10 12.57 14.40	11 9 2 11 22	5 5 5 5 5	ND ND ND ND ND	1 2 1 1 2	15 22 80 17 14	.2	2 2 2 2 2	2 2 2 2 2	96 143 81 98 159	. 17 . 72 . 13	.101 .063 .074 .127 .177	13 9 6 14 9	22 23 9 18 39	.09 .24 .90 .15 .27		07 30 56 13 27	2 1 2 1 2 2	1.37 1.55 1.35 2.27 2.05	.01 .06 .31 .03 .01	.04 .03 .11 .04 .04	1	2 5 1 1 3
11000N 9475E 11000N 9500E 11000N 9525E 11000N 9550E 11000N 9575E	6 3 1 2 5	14 26 12 19 17	12 12 12 8 17	68 80 77 91 100	.6 .4 .4 3.7 1.2	10 12 9 10 4		1399 792	3.94 4.47 3.88 5.91 12.92	5 14 4 14 59	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1 1	58 76 71 63 14	.2 .2 .3 .2 .2	2 2 2 2 2	2 2 2 2 2 2	108 65 88 83 187	.65 .70 .57	.043 .077 .094 .137 .082	6 6 7 8 6	13 9 10 19 28	.69 .74 .72 .71 .35	39 58 55 66 42	.61 .38 .63 .33 .07	2 1 3 1 4 1	1.11 1.41 1.51 1.70 2.72	.21 .25 .25 .21 .02	-08 -08 -10 -08 -02	1 1 1 1	6 7 5 2 1
11000N 9600E 11000N 9625E 11000N 9650E 11000N 9675E 11000N 9700E	8 4 10 7	18 10 19 29 58	25 28 31 31 44	133 42 139 150 571	2.8 2.1 1.7 .7 1.0	9 6 11 15 45	24 8 24 14 31	189 902 203	15.88 7.52 10.79 14.43 6.83	215 41 89 42 67	5 5 5 5 5	nd Nd Nd Nd	3 2 2 4 1	6 12 14 12 56	.2 .2 .2 .2 4.4	3 2 2 2 6	2 2 2 2 2 2	207 160 130 69 53	.06 .12 .12	. 151 . 155 . 359 . 079 . 135	7 6 7 8 15	18 19 19 28 18	.78 .19 .73 .28 .85	84 56 45	.10 .46 .18 .12 .08	3 1 2 4 3	4.42 1.37 4.46 5.73 2.10	.01 .02 .02 .01 .06	.02 .03 .03 .02 .04	- 	5 3 6 2 3
11000N 9725E 11000N 9750E 11000N 9775E 11000N 9800E 11000N 9825E	15 50 68 57 41	34 44 39 44 40	20 12 19 33 31	245 241 222	3.0 2.5 .9 2.0 .4	17 56 35 29 68	11 10 6 9 22	291 190 142 241 790	9.03 6.01 4.83 8.47 9.67	31 72 33 31 64	6 5 5 5 5	nd Nd Nd Nd Nd	4 1 1 1	8 15 13 10 17	.6 .2 .2 .2 2.5	3 21 9 3 9	2 2 3 2	126 95 81 88 52	.10 .06 .04	.050 .068 .076 .089 .125	8 7 10 8 8	33 10 9 17 17	.18 .27 .21 .25 .83	55 23 31 53 37	.22 .05 .03 .12 .02	2 2 2 2	5.64 1.15 1.22 5.21 1.85	.02 .03 .02 .01 .01	.02 .04 .02 .02 .02	29 24 24 24 24 24	3 10 5 7 5
11000N 9850E 11000N 9875E 11000N 9900E 11000N 9925E RE 11000N 9825E	17 10 9 9 40	17 22 16 22 40	17 13 20 22 26	190 98	.5 .7 1.1 .6 .3	13 9 11 21 73	9 15 13 21 21		9.71	29 35 30 41 63	5 5 5 5 5	nd Nd Nd Nd	2 1 2 4 1	14 16 10 4 17	.2 .2 .2 .2 .2 .2 .2	2 2 2 2 9	2 2 4 2	125 97 102 63 51	.14 .07 .03	.081 131 .056 .090 .124	9 6 7 9 8	15 19 18 22 18	.15 .33 .35 .96 .86	30 39 48 40 37	.40 .14 .21 .06 .02	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.11 2.62 2.89 4.53 1.88	.03 .02 .03 .01 .01	.03 .03 .02 .03 .02		2 1 2 5
11000N 9950E 11000N 9975E 11000N 1000DE 11000N 10025E 11000N 10050E	22 32 28 17 2	21 24 26 25 8	25 3 31 24 4	1111	1.6 5.0	14 119 44 14 8		313 207	5.92	17 11 23 17 4	5 7 6 5 5	nd Nd Nd Nd	1 1 4 3 1	16 132 13 13 64	.2 26.9 1.8 .2 .2	2 2 2 2 2	2 2 6 2 2	132 24 91 126 76	3.13 .14 .05	.040 .252 .038 .034 .059	11 9 11 9 5	16 7 18 19 8	.08 .27 .24 .10 .65	52 115 69 25 67	.31 .03 .14 .46 .54	4 1 2 4 2 2	1.26 1.40 1.72 2.09 1.00	.01 .06 .02 .02 .21	.02 .02 .02 .02 .02 .08		2 1 1 1 6
11000N 10075E 11000N 10100E 11000N 10125E 11000N 10150E 11000N 10175E	1 45 17 34 6	8 63 38 35 13	5	61 466 202 1480 187	12.0 2.0	10 22 11 201 15		642 391 9259	2.98 11.55 6.57 1.53 3.25	3 102 29 7 5	5 5 10 5	ND ND ND ND	1 2 1 1		.2 1.3 .4 116.6 3.9	2 8 2 2 2	2 2 3 2 2		.06		5 7 8 18 14	8 33 21 7 10	.70 .36 .23 .33 .16	61 41 221	.42 .14 .32 .06 .31	2 2 2 4 4 1	1.20 2.93 3.32 1.25 1.37				1 10 4 4 1
11000N 10200E 11000N 10225E STANDARD C/AU-S	46 43 20	45 52 59	23	1202	2.9 2.1 7.7	82	18	1212	7.14 6.39 3.93	23	6 5 19	ND ND 7	1 1 39	34	8.6 12.1 18.5	3 2 15	2 2 19	62 81 60	.53	.047 .048 .091	13 23 39	26	.32	111 73 180	.47	2 1		.01	.02 .02 .15		3 6 46
		THI	S LEA Ample	CH IS E TYPE	S PART E: SOI	IAL F L	OR MN AU*	ANAL	ED WITH SR CA F (SIS BY	LA C Acid	RMGI	BA TI H/AA	B W FROM	AND L 10 GM	IMITED SAMPL	FOR E. <u>S</u>	NAK ample	AND A <u>S De</u>	innir	u det <u>9 're</u>	ECTIO	dupt	IT BY icate	ICP samp	IS 3 L <u>es.</u>	PPM.					
DATE REC	CEIVE	D:	JUL	27 19	992	DATI	s re	Port	C MAI	LED :	Gr	ly	30	92	SIC) NED	BY.	: f			D. TO)	Έ, C.	LEON	G, J.1	JANG;	CERTI	FIED	B.C.	ASSAYE	RS	

ACHE ANALYTICAN

Copeland Rebagliati & Associates PROJECT POLO FILE # 92~2124

2 of 47 Page 2

ACHE ANALYTICAL																												<u> </u>	AC	WE ANAL T	TICAL
SAMPLE#	No ppn	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mojoj	Ca X	Р Х	La ppm	Cr ppm	Mg X	Ba ppm	TÎ X	8 ppm	Al X	Na X	K X	W ppm	Au* ppb
1000N 10250E 1000N 10275E 11000N 10300E	52 96 62	40 34 60	23 13 20	423 152 352	2.6 2.1 3.3	63 25 67	10	224 167 335	5.02 6.51 7.15	26 31 18	5 5 5	ND ND ND	2 3 4	7 30 5	1.0 .4 1.0	2 4 2	3 4 2	76 81 48	.25	.058 .056 .116	10 4 10	14 14 18	.35 .38 .29	38 33 26	.19 .26 .14	2 2	2.15 2.48 5.32	.01 .08 .01	.02 .03 .01	1	5 4 5
1000N 10325E 1000N 10350E	39 25	40 28	24 14	252 171	1.2 2.3	40 27	7	127 114	5.67 7.61	17 20	5 5	ND ND	23	17 12	.5	2	2	70 76	.08	.041 .040	4	23 18	.30 .18	24 29	-18 -09	2	1.29 2.87	.02 .01	.01 .01		3
1000N 10375E 1000N 10400E 1000N 10425E	31 16 23	32 20 37	14 14 21	187 141 338	2.5 2.0 3.2	29 16 47	7 9 10	95 296 207	7.82 8.05 6.53	22 13 33	5 5 5	ND ND ND	2 3 5	13 13 4	.2 .6 .2	2 2 2	2 3 4	109 86 59	.06	.041 .054 .057	3 9 7	16 14 17	. 16 . 16 . 44	34 30 43	.09 .26 .05	2 '	2.05 1.61 3.83	.01 .02 .01	.02 .02 .02		
000N 10450E 10800N 9475E	22 5	30 22	15 34	261 119	2.0 1.8	30 12	8 11	195 531	6.19 9.19	21 2	5	ND ND	5	16 50	.2	22	4 2	76 117	.09	.062 .030	6 11	19 20	.33 .16	30 47	.20 .61	2 3	2.54	.03 .02	.03 .02		
000N 10475E 800N 9425E 800N 9450E 800N 9475E 800N 9500E	41 3 2 5 3	48 14 20 24 53	11 5 10 29 28	346 68 112 117 107	3.7 1.0 .1 1.7 .2	46 6 10 10 11	7 12	187 178 322 535 169	6.15 4.70 6.72 9.19 8.82	38 34 31 11 131	5 7 5 5 5	nd Nd Nd Nd Nd	2 1 1 3 2	10 11 26 50 13	.2 .2 .2 .2 .2	2 2 2 2 2 2	23222	106 82 116 118 29	.05 .23 .42	.083 .032 .079 .031 .036	5 9 5 11 4	18 10 10 20 11	.29 .08 .32 .16 .06	46 21 20 48 33	.07 .06 .42 .62 .03	2 2 2	2.05 .80 .97 1.40 1.05	.01 .01 .09 .02 .01	.02 .03 .05 .02 .02		
800n 9525e 800n 9550e 800n 9575e 800n 9600e 800n 9625e	3 6 19 20 3	29 35 15 13 32	106 159 71 78 14	191 255 89 70 95	.4 .2 1.7 1.6 .2	21 23 5 6 13	14 10	540 469	7.73 11.69 7.23 6.56 8.21	231 433 191 202 21	5 5 5 5 5	ND ND ND ND ND	1 3 1 1 1	80 11 62 49 39	.2 .2 .2 .2	2 2 36 40 2	5 3 2 6 2	61 97 43 29 59	.12 .58 .51	.091 .064 .149 .158 .053	4 5 9 11 9	31 36 9 8 17	.48 .57 .30 .15 .26	71 29 78 86 80	.04 .05 .12 .05 .10	2 : 2 : 2 :	3.54 3.93 1.81 1.47 2.31	.01 .01 .08 .04 .05	.02 .02 .05 .03 .03		4
800n 9650e 800n 9675e 800n 9700e 800n 9725e 800n 9750e	4 5 31 15 7	32 16 15 29 22	23 10 138 24 48	96 70 91 356 165	.2 .3 2.6 2.8 .3	9 5 4 33 12		288 525 238	7.17	18 11 316 62 14	5 5 5 5 5	ND ND ND ND	3 2 1 2 7	15 13 15 9 4	.2 .2 .2 .2 .2	2 2 58 8 2	11 2 3 2 9	72 105 39 60 36	.06	.046 .057 .297 .061 .091	7 12 13 7 12	18 15 8 26 16	.22 .19 .10 .75 .45		.09 .20 .03 .02 .10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.54 1.80 1.81 2.33 5.54	.03 .02 .02 .01 .01	.03 .03 .04 .02 .02		1:
800N 9775E 800N 9800E 800N 9825E 800N 9850E 800N 9875E	10 13 1 6 3	18 14 14 34 12	13 15 3 16 5	157 106 60 195 80	.4 .8 .1 .2 .1	8 4 12 18 8	22 13 16 14 9	794 422 317 275 184	9.22 8.51 4.11 8.78 5.52	27 29 3 33 20	5 5 5 5 5	ND ND ND ND	1 1 5 2	39 10 82 12 8	.2 .2 .5 .2 .2	2 2 2 2 2 2 2	2 B 2 2 2 2	53 67 74 59 86	.04 .69 .08	.152 .257 .070 .060 .031	8 6 7 9	6 8 9 18 11	.68 .21 .94 .35 .11		.10 .08 .59 .07 .05	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.76 1.83 1.32 3.72 1.87	.11 .01 .26 .03 .01	.07 .02 .10 .03 .02		
800N 9900E 800N 9925E 800N 9950E 800N 9975E 800N 10000E	7 3 8 3 8	33 21 36 15 20	16 21 19 22 22	151 104 224 106 256	.2 .2 .6 .1	15 7 28 15 16	14 16 16 17 15	481 587 391	11.56 12.13 10.48 14.32 9.51	35 20 642 42 41	5 5 5 5 5	ND ND ND ND	2 4 7 6 1	8 17 5 8 12	.2 .2 .2 .2 .2	2 2 2 2 2 2	2 2 3 8 2	78 84 51 62 100	.14 .04 .04	.033 .048 .056 .045 .066	5 6 4 10	25 20 23 20 21	.27 .26 .37 .17 .20	43 33 44 49 78	.02 .15 .04 .09 .07	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.92 5.19 7.04 4.29 5.25	.02 .05 .01 .01 .01	.02 .03 .03 .03 .02	1111	,
800N 10025E 800N 10050E ANDARD C/AU-S	9 4 20	22 13 60	25 12 39	302 114 132	7 6 7.3	17 9 71	12	482	10.63 6.24 3.93	41 41 42	5 5 20	ND ND 7	1 1 40	8 29 53	.9 .3 18.6	2 2 15	7 2 21	100 111 60	.23	.063 .085 .090	10 10 39	23 18 58	.20 .17 .89	57 169 176	.08 .04 .09	2 '	3.88 1.73 1.88	.01 .01 .08	.02 .03 .15		

Page 3

3/47

ACHE ANALYTICAL																				. <u> </u>									ACHE MAN	VTICAL
SAMPLE#	Ho ppm	Cu ppm	dq mqq	Zn ppm	, Ag , ppm	Ni ppm	Co ppin	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	b). Maqq	Sb ppm	Bi ppm	V Maja	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	K W X ppm	Au PP
0800N 10075E	6	29	20	124	.2	38		236	12.11	17	5	ND	3	8	.2	2	2	101		.082	6	68	.48	61	. 10	2 :	2.80	.02	.02 1	
0800N 10100E	10	25	20	160	.9		10		8.27	19	5	NĐ	1	9	.2	2	2	59		.155	12	8	.70	78	.04		2.45	.01	.02 1	i.
0800N 10125E	14	20	7	228	2.8	29		3419	3.74	15	7	ND	i	33	5.6	2	2	68		.042	19	18	.19	149	.21		2.05	.02	.03 1	8
800N 10150E	6	26	10	283	1.0	29		341	3.02	10	6	ND	1	21	1.4	ŝ	2	40		102	18	17	.49		. 09		2.14	.05	.04	
800N 10175E	6	15	5	220	1.7	31			2.84	× 4.	5	ND	1		12.4	ž	2	60		.085	9	8	.30	88	46		2	13	.06 1	
800N 10200E	48	35	19	192	2.5	17	5	202	9.10	83	5	ND	1	23	1:3	2	2	53		.175	18	22	. 12	70	.12	2 3	2.08	.02	.03	
800N 10225E	8	14	9	83	.8	11	5	204	3.63	19	5	ND	1	39		2	3	61	.38	.082	9	13	.35	55	. 28	3 '	1.10	.12	.05 1	
BOON 10250E	11	21	14	274	1.0	13	23	1726	4.72	10	5	ND	1	21	1.1	2	3	60	.22	.046	18	19	. 19	49	- 26		2.36	.05	.04 🔄 1	•
BOON 10275E	20	34	14	308	5.8	16	2	209	7.96	26	5	ND	3	15	्र ४7	2	2	74	.13	.053	9	24	.12	39	્ર 13		3.16	.02	.02 1	ê
800N 10300E	17	23	11	256	6.1	13	3	568	9.01	24	5	ND	2	10	-4	2	2	117	.10	-061	12	24	.14	40	. 18	2 3	3.13	.03	.01 _1	
800N 10325E	15	22	7	193	6.8	12	3	361	8.50	19	5	ND	2	8	2	2	2	129	.07	.062	12	21	. 19	38	.29	2 3	3.80	.03	.02 1	-
300N 10350E	31	32	2	334	2.3	23	4	129	3.08	23	5	ND	1	18	.4	4	2	82	.13	.044	8	7	. 18	57	07	2	1.12	.07	.03 1	
300N 10375E	23	33	18	237	3.0	21	1	218	9.77	30	5	ND	1	8	.2	2	2	70		4111	6	20	.10	40	- 04		3.76	.01	-01	÷.
00N 10400E	11	18	22	158	2.7	11	1		10.81	11	5	ND	2	18	_ 5	2	2	55		.065	12	18	.10	39	.21		2.64	.02	.01 🚲 1	
00N 10425E	23	39	18	659	2.9	49	14	1545	7.76	-34	8	ND	2	21	2.3	9	3	67	.25	-111	13	20	.35	71	् 13	5 2	2.71	.03	.05	p.
00N 10450E	18	67	15	624	6.0	56	17	5488	4.96	18	5	ND	1	41	12.9	2	4	47		.113	31	16	.49	95	.08		2.90	.09	.06 ी	è.
500N 9550E	1	11	3	83	:6	17	17	638	5.09	2	5	ND	1	95		2	2	87		.078	8		1.26	53	.75		1.71	.52	-15 👾 î	÷
600N 9575E	3	25	15	101	. 1	17	7	272	6.01	26	5	ND	1	70	.2	2	2	91		.062	4	21	.40	151	-30		1.41	.05	.04 1	
500N 9600E	3	25	17	136	3	13		259	6.35	35	5	ND	1	53	• • 2	2	2	58		.022	10	12	.11	145	14		.91	.02	.02 1	
500N 9625E	1	8	2	55	.1	11	9	218	2.70	2	5	ND	1	92	.2	2	6	41	.77	.067	5	5	.64	95	.34	3	1.02	.22	.071	
500N 9650E	1	6	3	54	.2	8	6	97	1.56	· 2	5	ND	1	64	.2	2	2	24		.055	4	2	.30	51	.20		.81	.10	.04 1	6
500N 9675E	2	10	10	81	.3	12	3	255	7.39	2	5	ND	1	- 31	2	2	2	64	.30	.035	8	- 14	.20	41	.44		1.24	-04	.01 ୃ <u>ୀ</u>	
500N 9700E	3	20	11	90	:1	7	4	225	6.02	16	5	ND	1	29	2	2	2	82	-	.034	5	14	. 18	79	.23		1.30	.03	.02 1	č
500N 9725E	10	20	17	102	1.0	13	5	355	6.76	19	5	ND	2	21	.2	2	2	126		.062	12	12	.14	48	.44		.94	.03	.04	
500N 9750E	3	36	20	109	.1	14	9	340	6.92	40	5	ND	1	15	-2	2	2	74	.13	-096	7	12	. 15	55	.05	3	1.89	.03	.04	
00N 9775E	6	19	19	343	.3	27		3501	4.89	24	5	ND	1	35	2.1	3	2	39		.173	14	15	.59		.05		2.19	.05	.04 1	
500N 9800E	8	36	24	100	3،	15		478	5.71	52	5	ND	1	23	-2	3	2	38		. 141	6	8	.31	73	.07		1.58	.08	.05	2
500N 9825E	2	14	10	36	.6	7	3		6.93	10	5	ND	- 3	14	.2	2	2	98		.051	4	13	.18	35	.48		2.38	.04	.04 3	
500N 9850E	3	14	9	47	- 4	10		225	8.61	2	5	ND	4	17	2	2	2	127		.052	7	20	.29		. 70		2.30	.06	.04 1	•
00N 9875E	8	14	6	69	1.4	9	1	218	14.34	2	5	ND	3	14	-2	6	2	69	.09	.065	11	20	.10	41	.48	5 /	2.51	.03	.03 1	
00N 9900E	3	11	6	63	.4	11	6		6.06	9	5	ND	1	32	.z	2	2	65		.076	2	8	.30		-26		1.49	.09	.04 1	
500N 9925E	2	9	9	47	-2	10	7	224	4.39	Z	5	ND	1	40	-5	2	2	113		.045	5	.?	.49	35	.76		1.20	.21	.07 1	
10600N 9850E	3	12	9	42	.3	8	4		8.18	2	5	ND	3	16	-2	2	2	123		.048	6	14	.25	25	.70		2.26	.07	.04 1	
600N 9950E	5	13	10	61	.6	5			16.73	.7	5	ND	6	15	2	2	2	44		.061	11	16	.09	24	. 25		3.07	.03	.03	
00N 9975E	5	9	39	123	.6	8	54	2442	3.78	20	5	ND	ī	22	.9	2	2	84	.17	.055	14	12	.29	11	.45	4	1.44	.10	.06 1	
500N 10000E	6	10	7	62	.2	11			3.63	21	5	ND	1	45	-4	2	2	73		.072	?	8	.40	50	-26		1.15	.16	.07 1	
600N 10025E	9	24	23	79	?	8			11.52	49	8	ND	3	11	.2.	2	2	61		.091	14	10	.14	73	. 09		2.45	.03	-04 1	
ANDARD C/AU-S	18	63	- 59	131	7.6	74	51	1052	4.06	. 40	18	7	39	52	18.9	15	19	56	.48	.092		60	.89	185	.09		1.96	.08	1611	

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2124

4/47 Page 4

АА

ACHE ANALYTICAL								-																					ACH	E MIALYT	JCAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe X		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Çr ppm	Mg X	8a ppm	ŢĮ.	8 ppm	AL X	Na X		1. A. T	Au* ppb
10600N 10050E 10600N 10075E	23 27	44 22	62 60	120	2.0	10 7	15 11	1675	18.48	543	5	ND ND	1	13 45	.2	2 16	2 2 2	67 29	. 15	.391 .194 .044	10 10	13 4 8	.24 .21 .12	191 232 74	20 .06 .10	2	2.00 1.43 1.29	.03 .08 .04	.07 .12 .04	2 1 1	4 80 3
10600N 10100E 10600N 10125E 10600N 10150E	52 35 39	37 38 32	24 43 63	218 207 183	1.3 3.6 1.5	21 40 27	3 4 2	114 303 173	5.59 8.46 8.54	109 31 35	5 5 5	nd ND NO	2 2 3	16 15 15	-2 -2 -2	13 2 2	22	86 52 93	.08	.064	14 11 9	19 19	.55	52 73	.06 .30	2	4.40	.02 .04	.04 .02 .04		2 6
10600N 10175E 10600N 10200E	14 37	23 44	18 23	128 300	2.0 3.3	18 32	3	206 109	4.77 5.58	17 36	5	ND ND	1	28 12	.2	2	2	122 97	.05	.049	7 10	13 11	.21 .28	63 41	45 10	2	.94 1.24	.06 .01	.04	े । े1	2 4
10600N 10225E 10600N 10250E 10600N 10275E	41 14 38	78 29 51	59 14 41	491 196 338	2.6 1.4 1.5	68 29 51	7 12 4	566 391 607	7.38 4.64 8.00	27 11 62	5 5 5	nd ND ND	3 1 1	10 77 18	.5 .3 .4	2 2 2	2 2 2	40 86 64	.63	.241 .082 .347	21 8 13		.98 1.73 2.14	30 49 42	.01 .36 .03	3	4.37 2.13 2.60	.02 .38 .03	.03 .12 .04		6 4 10
10600N 10300E 10600N 10325E 10600N 10350E 10600N 10375E 10600N 10400E	48 29 20 5 4	52 39 26 11 33	25 27 11 9 14	339 285 195 93 218	1.3 1.4 .5 .9 .2	47 26 24 15 4	8 18 11 8 31	530 1875 628 744 3153	7.77 9.14 4.46 2.43 10.74	110 397 72 9 248	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1 1	5 10 68 60 15	.2 1.0 .4 1.4 .2	6 12 2 14	2 2 2 2 2	55 41 53 40 21	.10 .69 .66	. 152 . 132 . 093 . 085 . 178	12 16 8 6 13	12 8 6 8 1	.37 .61 .75 .24 .77	70 48 52 60 106	.02 .06 .27 .29 .01	2 2 4	2.24 2.27 1.18 .99 1.20	.01 .02 .28 .11 .01	.03 .03 .09 .05 .03		4 11 2 5 4
10600N 10425E 10400N 8950E 10400N 8975E 10400N 9000E 10400N 9025E	7 2 2 3 1	17 7 23 26 24	10 9 38 22 41	110 37 89 64 85	.7 .2 .3 .1	7 7 10 16 13	5	348 145 12799 233 11913	5.90 1.94 6.78 8.65 8.35	73 3 6 18 9	5 5 5 5 5	ND ND ND ND	1 2 1 1 1	24 50 52 21 81	.2 .2 .2 .2 1.0	52222	2 3 2 2 3	80 100 102 79 82	.50 .68 .14	.063 .022 .076 .078 .144	7 3 8 10 8	6 5 39 40 17	.22 .18 .25 .35 .78	68 123 399 62 118	.10 .67 .50 .22 .32	3 2 2	1.02 .33 2.67 2.34 3.00	.04 .07 .04 .05 .35	.03 .04 .05 .05 .12		2 2 1 10 1
10400N 9050E 10400N 9075E 10400N 9100E RE 10400N 9000E 10400N 9125E	1 1 3 2	62 11 6 25 31	19 11 15 19 36	118 38 43 59 59	.2 .1 .1 .1	18 9 12 17 20	33 6 10 5 4	6081 415 415 229 182	9.86 6.54 3.94 8.06 2.58	5 2 20 6	5 5 5 5 5	nd Nd Nd Nd	1 1 1 2 1	21 36 62 21 13	.4 .2 .2 .2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2	87 151 99 77 40	.32 .50 .14	.302 .110 .071 .075 .083	8 5 10 14	54 29 14 38 40	.61 .39 .77 .35 .37	103 38 39 62 94	.12 .65 .69 .23 .22	2 3 2	2.99 1.35 1.16 2.24 2.56	.06 .16 .32 .06 .05	.05 .07 .11 .06 .07		1 5 2 10 7
10400N 9150E 10400N 9175E 10400N 9200E 10400N 9225E 10400N 9250E	2 3 1 1 2	6 18 7 25 31	14 23 15 18 6	43 55 32 54 52	.1 .9 .2 .4	11 13 5 10 9	8 6 2 10 6	442 865 1449 687 337	3.78 8.90 4.93 5.77 2.17	2 6 2 2 2	5 5 5 5 5	nd Nd Nd Nd	1 4 1 2 1	55 15 17 39 35	.2 .7 .2 .2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 2 2 3	128 140 126 96 34	.13 .18 .36	.064 .158 .087 .090 .172	5 7 5 6 6	13 25 12 17 5	.64 .37 .21 .46 .25	42 57 55 156 92	.79 .59 .89 .30 .24	2 2	1.23 4.08 1.16 1.98 .93	.32 .05 .07 .11 .09	.12 .05 .06 .08 .04	11121	1 3 5 3 1
10400N 9275E 10400N 9300E 10400N 9325E 10400N 9350E 10400N 9375E	2 1 3 1 2	128 13 139 10 22	50 4 73 9 15	136 60 160 62 42	.3 .2 .2 .1 .2	23 11 30 13 9	28 9 38 10 6	231	11.02 2.74 14.49 2.98 7.50	124 5 160 3 2	5 5 5 5 5	nd Nd Nd Nd	1 1 1 2	73 94 14 61 30	.0 .2 .2 .2 .2 .2 .2	71 4 84 2 2	2 2 2 3	53 45 62 72 262	.76 .12 .51	.130 .080 .146 .064 .043	4 5 6 4	15 4 21 10 17	.22 .50 .18 .63 .38	150 77 49 65 87	.06 .35 .03 .41 .76	4 2 5	1.20 1.14 1.41 1.21 1.63	.08 .26 .04 .24 .11	.04 .09 .05 .09 .06		3 1 3 1 2
10400N 9400E 10400N 9425E Standard C/AU-S	1 1 20	18 14 59	13 7 41	47 53 132	.4 .3 7.3	9 10 75	5 8 31	218 214 1050	8.54 3.42 3.93	3 3 40	5 5 17	ND ND 7	3 1 37	26 50 52	-2 -2 1920	2 2 14	2 2 21	204 75 57	.46	.034 .087 .090	5 6 39	18 8 58	.36 .40 .88	44 51 177	1.04 .35 .08	3	2.16 1.25 1.88	.11 .14 .08	.05 .06 .15	1	5 1 52

.

Page 5

5/47

ACRE ANALYTICAL																		<u> </u>									<u> </u>		AC	NE AMALY	TICAL
SAMPLE#	Мо ррп	Cu ppn	Рb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppn	ві ррт	۷ mqq	Ca X	Р Х	La ppm	Cr ppm	Mg X	Ва ррт	TÎ X	8 ppnt	Al X	Na X	K X	V ppm	Au* ppb
10400N 9450E	1	19	9	53	2.0	14	13	342	4.20	7	5	ND	1	71	.2	2	3	63	.66	,098	6	7	.94	48	41	3	1.64	.42	.12	1	2
10400N 9475E	1	41	14	74	1.2	12	7	484	6.59	20	5	ND	1	17	.2	2	2	59	.16	.276	7	23	. 15	30	- 22	3	1.23	.04	.05	1	1
10400N 9500E	2	47	58	128	.4	11	52	7352	7.35	53	5	ND	1	53	.2	2	2	77		. 182	7	10	.65	76	-21	2	1.74	.24	.09	1	2
10400N 9525E	9	142	40	109	.7	20	20	795	7.94	73	5	ND	1	18	.2	8	2	93	. 18	. 162	7	23	.30	67	- 06	4	1.29	.04	.04	(B. 8 1 .)	2
10400N 9550E	1	79	29	86	1.2	11	6	493	8.53	35	5	ND	1	11	.2	3	2	37	.10	.231	5	12	. 16	33	.07	4	1.10	.02	-03	÷,Ľ	8
10400N 9575E	2	160	41	193	.6	46	30	1384	7.18	64	5	ND	2	43	.2	4	2	31	.56	. 165	8	18	.87	122	.02	4	1.68	.03	.06	1	9
10400N 9600E	2	40	13	73	1.2	13	7	153	2.59	24	5	ND	2	61	.2	4	2	23	.61	.092	4	9	.26	119	. 04	6	.76	.03	. 06	្រា	4
10400N 9625E	1 1	143	24	159	.2	38	23	910	5.72	- 44	5	ND	2	48	.2	2	2	25	.50	. 135	6	15	- 80	115	01	2	1.49	- 02	.04	- 1 -	7
10400N 9650E	5	35	22	102	1.1	11	5	357	6.31	27	5	ND	1	62	· .2	2	2	68	.60	.053	17	11	.18	121	.24	2	1.23	.04	.04	<. A.,	1
10400N 9675E	5	57	25	192	.5	37	12	422	9.41	48	5	ND	3	13	.2	2	2	35	.07	.090	8	31	.55	40	.02	2	3.94	.01	.03	1	4
10400N 9700E	4	44	15	150	1.2	18	7	346	6.37	34	5	ND	1	21	.2	2	3	46	.12	.098	6	15	.25	54	.08	3	1.62	.04	.05	1	2
10400N 9725E	3	37	13	178	.7	16	15	897	6.76	26	5	ND	2	11	2	2	2	49		.104	9	16	.28	44	.21	3	2.92	,02	.03	. M .	· 2
10400N 9750E	4	50	27	144	1.2	24	8	438	8.91	56	5	ND	2	6	.6	2	2	41	.04	.226	8	25	.33	36	.06	2 3	3.04	.02	.03	a. 4.	3
10400N 9775E	6	43	17	90	1.0	18	7	182	4.59	34	5	ND	1	14	.2	5	2	76		.066	9	11	.13	47	.17	6	.98	.04	.04	8 - F	2
10400N 9800E	1	21	2	127	1.6	15	19	4752	4.96	8	5	ND	1	111	1.2	2	2	68	1.14	. 105	17	15	.61	143	.42	2	2.74	.22	.08	્રે	1
10400N 9825E	1	25	10	111	.4	18	24	3952	6.07	21	5	ND	1	108	.7	2	2	70	1.00	.134	9	8	1.06	85	.41	2	1.96	.56	.16	1 N	1
10400N 9850E	2	11	9	59	.4	12	12	517	4.13	8	5	ND	1	76	.6	2	2	67	.63	.080	8	10	.64	68	.41	3	1.51	.34	.12	ંકા	2
10400N 9875E	3	57	20	128	.3	16	11	474	8.30	93	5	ND	2	13	.6	2	2	58	.07	.064	7	15	.13	59	.03	2	2.26	.03	.04	. Z.	2
10400N 9900E	1	32	12	92	1.3	10	11	800	8.77	16	5	ND	2	21	8	2	2	104	.28	. 133	5	14	.25	38	.52		3.65	.04	.04		3
10400N 9925E	4	10	25	43	.6	3	1	123	7.08	13	7	ND	5	12	.2	2	2	54	.09	.038	13	13	.10	20	.37	2 3	2.57	.05	.04	8 I.	6
10400N 9950E	4	15	11	53	.3	8	2	180	11.90	5	5	ND	1	25	4	2	2	98	.20	.071	8	13	.30	25	.27	2	1.49	.13	.05	ំរំ	1
10400N 9975E	11	15	16	108	.2	ž	6		10.87	89	5	ND	1	10	.2	2	2	36		.147	12	2	.14	80	.02		2.32	.02	.03	ି ମିଳ	1
10400N 10000E	4	15	20	96	.2	4	-		9.34	26	5	ND	1	14	.2	2	2	55		. 132	10	5	.15	76	.06		2.10	.03	.03	1	5
10400N 10025E	3	17	14	94	.3	4		4976		33	5	ND	1	12	.2	2	2	33		.384	14	4	.15	76	.05		1.38	.02	.09	ිාමී	1
10400N 10050E	22	24	13	108	.2	3			13.06	287	5	ND	1	17	.2	14	2	39		. 176	10	4	.17	79	.04		1.92	.04	.05	1	1
10400N 10075E	4	14	15	147	1.0	4	8	2067	12.95	50	5	ND	1	10	.5	2	2	64	.05	.220	13	11	. 19	102	15	2	2.16	.03	.05		2
10400N 10100E	1	14	5	67	1.6	14	11		5.11	· 9	ś	ND	1	53	.2	2	2	61		.095	7	6	.74	75	.39	-	1.56	.31	.10		1
10400N 10125E	11	26	20	145		19			11.66	34	5	ND	ź	9	.2	2	3	55		.303	12	15	.25	46	10	_	2.61	.02	.04	<u>ે ''</u> '	1
10400N 10150E	16	19	31	73	6.3	8	5		11.22	621	Ś	ND	2	17	.2	37	4	101		.084	9	11	.22		.19	-	1.46	.04	.04		11
10400N 10175E	27	28	27		10.4	13	4		10.77	291	7	ND	3	8	.2	21	2	90		.075	ģ	17	.35	52	.20		4.51	.02	.04	ी	28
10400N 10200E	8	15	17	87	3.3	5	5	529	7.43	197	5	ND	1	16	.2	5	3	74	10	112	11	8	.23	π	.13	2	1.70	.04	.03		4
10400N 10205E	4	14	14	51	9.4	6	3		8.19	160	Ś	ND	ź	20		3	4	118		.056	6	10	.21	81	54		1.41	.03	.03	s ser i	5
10400N 10250E	11	19	7	87	1.6	25		553	5.99	145	5	ND	1	6	2	3	ž	41		.084	9	13	.18	96	07	-	2.36	.01	.03	1	2
10400N 10275E	9	25	9	182	5.6	7		1220	9.91	294	5	ND	1	11	.2	11	3	46		.094	ģ	6	.50	88	03		1.96	.02	.03	(5
10400N 10275E	7	40	16	145	4.5	24			9.86		5	ND	1	14	.2	19	2	31		.241	ģ	9	.48	53	Öl		1.92	.01	.03	2	130
	,	• /			~ ~	-	-		7 00		-		~	20		-	-			AFE	,	10		**		-	4 77	07	07		
RE 10400N 10225E	4	16	15	53	9.3				7.90	174	5	ND	2	20	.2	3	Z	114		-058	6	10	.21	79	.54		1.37	.03	.03	- - 1 -	- 6
10400N 10325E	4	40	14	150	6.8	13		2229	9.53	773	5	ND	1	8	.2	9	2	34		187	10	10	.82	159	.02		2.37	.01	.03	្ឋុះ	110
STANDARD C/AU-S	19	61	39	133	7.4	79	51	1047	3.90	42	19	7	39	- 22	18.8	15	21	- 29	.48	.089	39	. 59	88	175	.09	کد	1.85	.08	<u>. 15 -</u>	\$1	_47

ACHE AMALYTICA

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2124

6/47 Page 6

ACHE ANALYTICAL																						.							AC	HE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	K X	M ppm	Au* ppb
10400N 10350E	4	22	13	74	1.5	5	4	474	7.70	209	5	ND	1	11		3	2	61	80	.579	. 8	10	.11	21	.15	6	.56	.03	.02	1	10
10400N 10375E	1	18	5	62	.9	7		2288	5.79	24	5	ND	i	16	.2	2	2	77		.426	10	15	.27	32	31		2.56	.04	.05	: <u>;</u>	6
10400N 10400E	4	21	13	81	1.8	11	8	489	6.83	63	5	ND	1	19	.2	3	2	84		.250	7	10	.33	52	.24		.48	06	.04	1	5
10400N 10425E	5	16	15	65	.6	6	6	448	7.60	71	5	ND	1	17	.2	4	2	80	.10	.250	8	11	.29	57	.18	72	.43	.03	.04	1	4
10400N 10450E	15	23	20	117	3.0	14	4	497	7.15	105	5	ND	1	24	۶.	2	2	90		.144	8	17	.22	60	.29	61	.79	.06	.04	1	9
10400N 10475E	51	45	18	450	.7	49	4	344	5.47	80	5	ND	2	5	.6	8	2	60	.07	111	7	14	.75	23	10	5 1	.34	.02	.04	1	8
10200N 9025E	2	13	7	62	. 1	12	10	388	4.00	2	5	ND	1	57	-2	2	3	69		.082	5	20	.75	121	- 45		.46	.21	.09	1	2
10200N 9050E	2	11	12	53	.8	9	8	262	3.78	2	5	ND	1	65	-2	2	2	71		.074	4	15	.56	62	- 44		.00	.27	.10	. 1	11
10200N 9075E	4	7	13	34	.1	5	3		3.18	2	5	ND	1	18	.2	2	5	132		.049	3	9	.18	17	79		.62	.07		" !	2
10200N 9100E	1	9	7	51	.2	11	10	285	3.90	.2	5	ND	2	74	- 2	3	2	81	.63	.055	6	11	.76	103	.51	6 1	.25	.35	. 13	1	3
10200N 9125E	2	10	17	48	.3	11	9	368	4.01	3	5	ND	2	49	.2	2	2	95	.52	.114	6	12	.66	52	74	5 1	.12	.26	.11	2	2
10200N 9150E	5	21	15	55	.8	13	4	218	6.98	8	5	ND	2	23	.2	2	2	133	.17	.040	5	24	.32	52	65	51	.50	.10	.04		3
10200N 9175E	2	17	15	55	.6	10	9	283	4.74	5	5	ND	1	11		4	2	85		.093	11	14	.76	64	12		2.23	.03	.07	2	3
10200N 9200E	1	28	12	96	.4	19		2241	4.68	2	5	ND	1	137	.2	2	2		1.47		12		1.41	553	- 64		2.15	-66	.18	1	1
10200N 9225E	1	8	12	37	.1	7	4	221	6.90	: <u>2</u>	5	ND	2	19	-2	2	2	151	. 16	.043	5	33	.30	71	.52	3 1	.71	.08	.05	្រា	4
10200N 9250E	1	12	10	38	.2	8	5	176	3.97	Ż	5	ND	1	16	· .2	2	2	145		.037	8	33	.26	38	.44	5	.86	.07	.05	1	2
10200N 9275E	3	7	18	33	.1	6	2	543	4.26	2	5	ND	2	12	~2	2	2	184		.131	5	21	.22	27	.82		.11	.04	.06	2	4
10200N 9300E	1	8	6	42	.2	12	10	431	3.39	2	5	ND	1	53	.2	2	3	85		.087	5	9	.70	43	.46		.36	.25	.09	1.1	2
10200N 9325E	1	27	5	45	.2	12		491	4.49	.3	5	ND	1	54	.2	2	2	115		.092	5	32	.71	39	.40		.27	.27	.10	1	3
10200N 9350E	1	46	15	76	.1	20	25	8430	5.85	2	5	ND	1	102	.6	2	4	85	1.35	.118	13	13	.80	92	.42	53	5.10	.31	.09	1	3
10200N 9375E	1	39	4	42	.1	7	5	758	2.39	2	5	NÐ	1	33	2	2	2	77	.26	.069	4	6	.25	34	.25	3	.89	.11	.04	1	2
10200N 9400E	2	23	11	56	.1	10	14	1038	3.90	2	5	ND	1	72	2	2	2	70	.66	.082	5	6	.86	101	.42	2 1	.42	.41	.12	, 1 .	6
10200N 9425E	2	22	7	57	.3	10	10		3.29	2	5	ND	1	59	.2	2	2	67		-089	6	9	.46	104	.31		.29	.17	.07	<u>_</u>	2
10200N 9475E	1	56	13	114	.5	9			8.47	8	5	ND	1	29	9	2	2	101		.078	7	16	.27	47			2.02	.06	.05	1	2
10200N 9500E	2	161	4	139	.1	11	12	594	12.65	26	5	ND	2	20	.2	2	2	76	.19	.071	5	9	.27	53	.08	21	.00	.06	.04		٦
10200N 9525E	6	107	26	91	2.5	11	7	338	8.81	52	5	ND	1	21	.2	2	2	80	.17	.201	5	11	.17	35	. 19	2 1	.43	.03	.03	<u></u>	4
10200N 9550E	6	98	30	83	4.1	19	19	791	6.95	46	5	ND	1	38	.3	4	2	76		.099	5	12	.49	40	.32		.47	. 16	.06	्रीः	- 4
10200N 9575E	10	21	9	169	1.2	11	-		10.22	- 55	5	ND	1	44	1.2	4	2	43		.108	18	8	.26	99	. 18		.87	.04	.04	્રી	2
10200N 9600E	2	33	7	61	.6	11			3.37	13	5	ND	1	34	2	3	2	51			6	5	.34	- 44	-17		.96	.14	.06	્રી	2
10200N 9625E	6	60	24	119	1.8	19	13	2098	6.47	18	5	ND	1	18	6	2	3	58	.13	.118	16	23	.23	%	. 18	33	6.63	.02	.04		7
10200N 9650E	3	28	16	101	.2	20	6	456	7.37	27	5	NĎ	3	22	.4	2	2	56		.049	7	23	.47	42	14		.98	.05	.04	1	3
10200N 9675E	1	131	28	166	.4	43	24	1026	6.19	46	5	ND	2	40	.7	3	2	31	.52	.139	6	16	.90	116	.01		.69	.02	.06	ં ી	6
10200N 9700E	5	65	29	152	1.0	20		488	6.48	21	5	ND	1	35	.2	3	2	42		.122	10	20	.44	286	.03		2.13	.02	.04	1	4
10200N 9725E	3	63	22	212	.2	32			7.18	.43	5	ND	1	39	.5	2	2	31		.110	9	16	.44	113	.03		.69	-02	.04		5
RE 10200N 9625E	6	54	23	118	1,3	17	13	2101	6.07	12	5	ND	1	18	.4	2	2	52	. 14	.108	14	21	.23	91	. 16	23	6.26	.02	.03	્ય	4
10200N 9750E	1	16	4	41	.3	7	4	262	1.74	14	5	ND	1	4	_4	7	2	14	.04	.019	3	8	. 10	27	.02	2	.78	-01	.02	6	4
10200N 9775E	1	11	3	49	.2	_7	7	182	2.20	Ž	5	ND	1	73		2	2	33		.066	4	4	.39	58	.29		.84	.14	.06	<u>_1</u>	_1
STANDARD C/AU-S	20	58	40	132	7.4		31	1062	3.94	42	19	7	38	_ 52	19.1	16	21	59	.48	.090	38	58	.87	173	.09	34 1	.84	.08	. 14	10	52

ACHE ANALYTICAL

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2124

Page 7

7/47

ACHE ANALYTICAL				ACHE ANALYTICAL
SAMPLE#	Mo Cu Pb Zn Ág Ní Co ppm ppm ppm ppm ppm ppm ppm	Mn Fe As U Au Th Sr ppm X ppm ppm ppm ppm ppm		Mg Ba TÌ B AL Na K M Au* % ppm % ppm % % % ppm ppb
10200N 9800E	4 117 37 177 1.1 36 25	596 8.95 41 5 ND 5 4	.2 2 2 41 .02 .088 8 25 .	.52 94 .02 3 5.18 .02 .04 1 5
10200N 9825E	1 12 6 60 .2 14 12			
10200N 9850E	2 24 19 115 .9 14 9	293 6.05 34 5 ND 1 71		
10200N 9875E	4 25 83 161 .8 17 19			.26 30 .11 6 6.49 .05 .05 3 1
10200N 9900E	3 15 16 75 1.1 12 7			.32 114 51 4 .86 .10 .06 1 1
TOESON YYOOL	5 15 15 15 11 IE 1			
10200N 9925E	3 32 28 155 2.0 17 10	254 9.06 57 6 ND 3 8	.2 9 2 58 .04 .040 7 16 .	.13 85 .02 3 3.61 .02 .04 2 8
10200N 9950E	3 16 18 92 .5 13 6	381 8.19 11 5 ND 5 20		
10200N 9975E	1 17 14 104 .5 13 7			.39 55 .20 2 2.29 .12 .07 1 2
10200N 10000E	8 20 24 120 .7 14 2			.19 42 .26 2 3.80 .02 .03 1 2
10200N 10025E	4 14 9 90 1.2 11 3			
	1			
10200N 10050E	9 10 4 88 .3 11 9	3364 2.45 3 5 ND 1 114	.7 2 3 43 1.21 .076 5 4 .	.54 174 35 7 1.07 .25 .09 2
10200N 10075E	1 17 9 51 .7 4 6	485 6.54 5 5 ND 1 12	.2 2 2 104 .07 .071 14 6 .	.16 49 .09 3 1.37 .03 .04 1
10200N 10100E	4 14 13 89 .9 7 7			.29 35 .26 2 1.71 .06 .04 1 1
10200N 10125E	3 13 8 61 1.9 9 11			.33 136 12 4 1.11 .11 .05 1 7
10200N 10150E	6 24 10 125 .8 13 8	441 6.39 16 5 ND 1 23	.2 3 2 120 .21 .061 7 8 .	.26 43 .38 2 1.25 .08 .04 1 2
				그는 그 옷 없는 것이 가지 않는 것 같아요. 그는 것 같아요.
10200N 10175E	1 12 5 60 .6 13 11	290 3.78 3 5 ND 1 74		.82 42 .62 2 1.25 .34 .10 1 1
10200N 10200E	2 10 9 47 6 13 11			
10200N 10225E	8 19 26 143 .9 11 5			.24 55 .16 2 2.31 .05 .06 1 14
10200N 10250E	7 27 9 230 3.3 25 24			.68 181 .30 3 4.22 .23 .07 1 3
10200N 10275E	12 23 18 80 1.7 8 2	358 11.07 78 5 ND 3 24	.2 2 2 86 .14 .104 9 14 .	.12 42 36 2 1.58 .02 .04 1
10200N 10300E	14 17 7 100 4 10 7	750 0 57 00 5 mm 3 11	2 3 3 80 OF 170 4/ 0	
10200N 10300E	16 17 3 109 6 12 3 5 54 14 123 2.6 31 20	359 9.57 90 5 ND 2 11 484 11.73 158 5 ND 4 9		.08 20 .33 4 .66 .03 .05 1 1 .56 51 .03 2 5.92 .02 .03 4 4
10200N 10323E	5 14 6 71 6 11 7			
10200N 10375E	18 35 27 130 2.0 16 1	215 4.44 205 5 ND 1 31 241 14.42 210 5 ND 2 33		
10200N 10373E	5 15 14 145 .6 12 23			.45 50 .10 2 4.45 .07 .03 1 3
10200A 10400E	5 15 14 145 .0 12 23	1121 14.19 110 J ND 1 10	12 2 2 112 .13 1172 8 7.	.49 50 .10 2 4.45 .07 .05 .4. 5
10200N 10425E	10 13 12 63 .8 9 8	271 7.24 41 5 ND 1 37	.2 2 2 151 .25 .076 6 6 .	.36 35 46 2 1.48 .14 .05 1 1
10200N 10450E	13 31 16 138 .5 14 4	143 8.23 52 5 ND 2 11		
10200N 10475E	21 47 45 430 2.2 46 10			.57 49 .05 2 3.01 .01 .04 1 35
10200N 10500E	18 34 36 209 1.9 15 69			.52 46 05 2 2.66 .01 .03 1 110
10000N 10000E	3 22 7 50 .3 12 11			.09 39 .03 2 1.14 .02 .03 1 3
	5 22 7 50 15 12 11	115 5100 35 5 NO 1 0		
RE 10200N 10425E	9 14 9 65 1.0 10 9	273 7.34 40 5 ND 2 38	.2 2 2 156 .26 .076 6 7 .	.38 34 48 2 1.45 .14 .06 1 2
10000N 10025E	6 17 16 71 .2 6 1	171 12.42 16 5 ND 7 12		.11 15 47 2 3.84 .05 .03 1 2
10000N 10050E	5 17 15 77 18 12 4	204 8.44 31 5 ND 8 19		.11 31 .24 2 4.45 .03 .04 1 7
10000N 10075E	10 31 14 189 1.9 22 5	177 8.28 24 5 ND 3 13	.2 2 2 99 .04 .038 7 18 .	- 199 SQL - 17
10000N 10100E	4 42 9 100 .7 14 11			.12 28 .06 2 1.66 .02 .03 1 3
10000N 10125E	4 13 8 60 1.4 13 15	317 4.00 13 5 ND 1 82	.7 2 2 75 .71 .075 10 6 .	.75 84 .42 4 1.53 .41 .13 1 2
10000N 10150E	4 16 14 87 .3 7 12		.2 2 2 81 .11 .266 14 11 .	
STANDARD C/AU-S			19.3 15 21 59 .48 .088 40 58 .	

9800N 10450E

9800N 10475E

STANDARD C/AU-S

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2124

8/47

2 2.75 .02 .02

3 2.30 .03 .02 1

3

3

1

Page 8

ACHE ANALYTICAL																														CHE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X		Ti X	B ppm	Al X	Na %	ĸ		Au* ppb
10000N 10175E 10000N 10200E 10000N 10225E	3 6 5	11 15 19	8 2 8	53 114 123	.1 1.0 .1	4 11 10	10 12 19	264 350	6.92 4.39 14.38	10 32 45	5 5 5	ND ND ND	1 1 2	31 46 14	.2 .2 .2	2 2 2	5 2 4	39 87 80	.42	.075 .063 .067	6 6 7	5 9 23	.15 .45 .21	31 46 42	.03 .39 .12	_	.86 .94 5.08	.02 .13 .02	.02 .06 .02	1	1 4 3
10000N 10250E 10000N 10275E	6	16 13	10 27	68 59	.2 1.4	13 9	20 10	178 263	8.18 8.04	62 128	5 5	ND ND	1 1	9 11	.2 .2	8 3	2 2	101 44		.061 .051	12 11	14 18	.10 .13	25 22	.16 .19		1.37 2.98	.02	.02 .02		2
10000N 10300E 10000N 10325E 10000N 10350E 10000N 10375E 10000N 10400E	7 12 1 20 2	13 24 6 15 8	12 13 4 25 16	93 125 45 269 119	.1 4.1 .4 5.3 .1	11 9 10 8 3	11 14 40	293 405 1019	6.68 13.66 3.64 17.31 9.29	71 39 6 1459 181	5 5 5 5 5	nd Nd Nd Nd	1 4 1 2 1	31 10 60 5 10	.2	2 2 45 2	2 2 2 2 2	107 107 64 130 101	.06 .54 .04	.050 .074 .117 .111 .176	8 8 5 7 6	16 20 9 11 7	.43 .12 .70 .28 .18	43 30 34 62 83	.23 .42 .52 .07 .11	2 1 4 1 2 3	1.72 1.82 1.20 5.85 1.78	.11 .03 .20 .01 .01	.05 .03 .09 .03 .03		6 2 3 31 3
10000N 10425E 10000N 10450E 10000N 10475E 10000N 10500E 10000N 10525E	3 4 6 6 10	10 11 42 12 37	12 11 5 16 15	88 156 171 110 238	1.1 .2 .4 .9 3.1	10 8 25 10 24	27 48 16	2245 2377 1895	7.28 10.89 13.59 8.61 7.05	211	5 5 5 12	nd Nd Nd Nd Nd	1 1 1 2	46 24 5 31 11	2 .2 .2 .2 .2 1.8	14 2 2 2 2	2 2 2 2 2	103 108 86 99 38	.22 .07 .31	. 105 . 130 . 135 . 105 . 092	6 6 9 33	8 11 32 15 19	.57 .44 .43 .39 .19	82 69 87 52 54	.19 .30 .04 .27 .15	3 2 2 2	.81 3.02 2.92 1.71 5.45	. 14 .05 .01 .10 .02	.08 .04 .05 .06 .03		3 10 2 11 6
10000N 10550E 9800N 10000E 9800N 10025E 9800N 10050E 9800N 10075E	6 5 5 5 9	18 20 7 11 11	6 26 12 25 34	58 148 55 75 58	.5 .1 .1 .2 .1	6 5 9 6	17 21 11 14 12	535 237 190	11.02 9.47 6.29 17.00 14.25	15 43 188 42 482	5 5 5 5 5	nd Nd Nd Nd	2 2 1 2 4	9 14 11 14 39	~~~~~	2 20 2 6	3 2 2 2 2 2	185 73 68 73 59	. 10 .04 .12	.081 .142 .092 .108 .326	6 9 13 7 13	18 8 5 12 15	.11 .13 .10 .14 .13	64 68	.36 .16 .03 .39 .05	3 1 4 1 4 1	2.35 1.81 1.32 1.36 2.73	.01 .02 .02 .04 .02	.03 .02 .08 .04 .15		4 1 1 5
9800N 10100E 9800N 10125E 9800N 10150E 9800N 10175E 9800N 10200E	3 6 7 7 3	11 18 15 23 33	21 17 13 16 106	82 164 108 140 146	.2 .3 .2 1.8 .7	6 10 10 8 3	22 13 17	2906 384 1888	12.69 8.20 8.86 8.50 24.36	335 214 52 46 190	5 5 8 5	nd Nd Nd Nd	1 1 5 4	46 21 31 12 23	.2 .3 .2 .8 .2	16 2 2 2 2	2 4 2 3	79 71 84 43 31	.19 .26 .10	.173 .165 .192 .100 .319	5 12 9 14 6	12 23 16 21 8	.14 .15 .34 .13 .13	287 181 79 33 163	.08 .14 .26 .22 .01	3 3 2 2 5 4	.37 5.15 2.37 .10 .11	.03 .02 .09 .03 .01	.22 .05 .07 .04 .07		1 7 2 3 6
9800N 10225E 9800N 10250E 9800N 10275E 9800N 10300E 9800N 10325E	3 7 4 4 7	19 16 14 15 11	25 22 17 16 16	196 121 174 164 105	.8 1.2 2.6 1.4 .9	8 7 7 13 6	11 26 47	615 1317 2846	15.38 8.89 15.47 9.57 12.59	201 97 38 36 117	5 7 5 5 5	nd Nd Nd Nd	2 6 2 1 2	8 12 11 9 9	.2.5.2.3.2	222222	2 3 2 2 4	138 50 160 102 148	.19 .11 .09	.079 .065 .123 .059 .252	6 16 6 7 4	22 15 11 36 15	.40 .09 .53 .55 .39	26 45 91	.02 .19 .15 .11 .27	4 3 2 3 2 5	.01 .92 .50 .46 2.04	.01 .03 .03 .02 .02	.03 .03 .03 .03 .03		5 3 4 4 8
9800N 10350E 9800N 10375E 9800N 10400E RE 9800N 10300E 9800N 10425E	7 4 4 4 10	12 26 36 16 23	19 20 19 17 17	163 118 126 170 189	4.0 1.6 .9 1.4 .6	11 20 20 12 18	28 37 50	3356 6303	10.91 10.14 15.79 9.87 11.40		5 5 5 5 5	nd Nd Nd Nd	5 2 1 1 2	8 12 12 9 12	.2 .2 .2 .2 .2	2 7 10 2 2	4 4 2 4 2	63 86 94 104 97	.08 .13 .10	.116 .133 .313 .063 .103	7 9 4 7 7	21 19 27 39 25	.21 .30 .33 .58 .21	68 51 96	.09 .34 .07 .11 .12	2 2 7 1 2 6	.29 .56 .93 .21 .42	.02 .03 .01 .02 .02	.02 .04 .04 .04 .02		4 7 5 4 3

12 .2 14 .3

7 39 52 18.5 15

2

1

2 2

2 2

73 .10 .110 10 22 .33 27 .18 56 .17 .333 12 8 .68 44 .07

22 59 .48 .089 38 59 .88 178 .09 35 1.86 .08 .16 11 54

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

18 121

5 33 23 198 ,7

.4 13

20 58 38 132 7.7 69 32 1039 3.88

26 1697 15.11

7 34 2544 10.77

22

21

43

5 ND

5 ND

23

4 21

ACHE ANALYTICAL																														VTICAL
SAMPLE#	No	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cď	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	B A	Na	ĸ		Au*
	ppa	bbu	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	pp m	*	*	ppm	ppm	X	ppm	*	ppm 3	X	X	- 339833								
9800N 10500E	3	77	22	214	6	5	56 5	5393	15.41	34	6	ND	1	6	2.9	0	2	58	.09 .	220	24	4	1.15	39	.02	27.1	04		<u> </u>	
9800N 10525E	3	21	11	146	.8	17		1034	7.23	16	5	ND	ż	6	.9	ź	ž	53		129	13	14	.32	33	.04	2 4.39	.01 .03			4 7
9800N 10550E	4	29	10	187	4.2	21		1201	7.79	30	5	ND	3	3	1.0	3	2	35		23	12	23	.29		.08	2 4.50			33	4
RE 9800N 10525E	<u> </u>	20	15	146	1.1	19	12	961	7.09	16	5	ND	2	6	1.0	4	2	53	.06 🖟	128	13	15	.31	- 34	.11	2 4.4			ાં	3

9/47 Page 9

									•						SIS								1.1		. •		- 1	10/4	<		3
IPLE#			<u>Co</u>	<u>pela</u>	anđ				ti∶& W. Geo														0	Pa	ge	1	 				Ľ
	Mo ppm	Cu	Pb ppm	Zn ppm	Ag	Ni ppm	Со ррп	Min ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd. ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	TÍ. X	B ppm	Al X	Na X	K X	- 2020	Au PP
300N 8600E	10	14	8	55	.7	7	9	242	7.47	4		ND	3	20	.2	2	3	127	. 10	.034	13	18	.19	23	.78	2	1.44	.03	.03	Ì	
300N 8625E	5	37	24	88	.5	47	10	356	4.87	32	5	ND	1	35	.2	Ž	5	36		.068	10	43	.82	41	.06		2.59		.04	1	
300N 8650E	5	26	9	42	.2	6	10	260	6.19	14	5	ND	1	14	.2	2	3	112	.07	.050	5	10	.17	34	. 12	2	1.16	.03	.03	1	
11800N 8800E	4	46	21	81	.3	37	17	480	7.50	15	5	ND	2	24	.3	2	5	55		.049	8	32	.52	66	. 14		3.12		.04	1	
00N 8675E	5	15	14	37	.3	12	7	233	4.74	8	5	ND	1	22	.2	2	5	92	. 15	-053	9	18	.26	39	.38	2	1.26	.05	.05	1	
00N 8700E	7	24	23	57	2.4	21	12	390	10.14	30	5	ND	4	6	.2	2	8	80	.02	. 174	13	40	.33	26	. 18	3	3.00	.01	.03	1	
00N 8725E	3	27	14	66	.1	18	12	203	9.14	17	5	ND	S	9	.2	2	5	83	.06	.046	5	54	.28	29	_ . 1∯	2	2.22	.01	.03	1	
00N 8750E	6	10	24	32	.1	7	6	120	4.20	16	5	ND	1	11	.2	2	3	97		-041	10	20	.20	51	.21		1.45	.02	.05	1	
00N 8775E	4	19	8	47	1.1	12	13	289	4.22	2	5	ND	1	59	-2	2	3	51		.076	30	21	.17	82	.25		4.98		.02	1	
00N 8800E	4	46	22	81	.2	37	17	476	7.43	14	5	ND	2	24	.2	2	2	54	. 15	.049	9	32	.50	67	- 15	2	3.23	.03	.04	1	•
00N 8825E	3	41	24	88	.1	35	11	332	7.10	15	5	ND	4	8	· .2·	2	6	61	.03	.067	8	39	.62	47	.15	2	2.52	.02	.03	1	
00N 8850E	6	22	19	71	.9	13	9	499	7.56	2	5	ND	2	8	.2	2	4	56		.052	23	23	.15	23	.29		3.39		.04	1	
00N 8875E	3	38	18	85	1.0	51	14	343	8.17	26	5	ND	4	7	.2	2	8	57		.069	7	64	.84	43		_	3.98		.04	· 1	
00N 8900E	Ş	39	19	51	1.0	18		168	7.21	12	5	ND	2	7	-2	2	4	78		.075	12	35	.17	31	:15		3.52		.04	્રી	
00N 8925E	3	23	15	129	.7	24	30	2632	6.88	5	11	ND	1	50	2	2	2	47	.46	.065	22	21	.33	67	.25	2	2.68	.06	.06	1	
00N 8950E	7	22	14	47	.2	12	10	209	9.80	7	5	ND	2	15	.2	2	2	81		.046	7	25	. 16	35	.26	_	1.90		.03	1	
00N 8975E	2	55	15	45	.5	10	11	201	5.29	12	5	ND	1	11	.2	2	2	61		.179	5	18	.21	84	. 18		2.04	.01	.03	1	
00N 9000E	6	19	18	55	.6	6	10	634	7.45	11	5	ND	1	21	.2	2	3	50		.060	19	14	.14	22	.29		2.25	.05	.05	1	
00N 9025E 00N 9050E	2 2	26 48	9 13	70 78	.9 .3	15 46	10	1432 329	4.67 4.85	8 11	5	ND NO	1	66 12	· .2 .2	2	2	67 44		.350	8 8	15 41	.79 .76	59 43	.33		1.38	.24 .02	.12	1	
	_				-					_	-		-			-	-				_				2 - 10 - 2 - 10						
SOON 9075E	2	17	32	62	.3	13	10	607	5.34	3	5	ND	1	24	· -2	2	2	81		.076	10	23	.24	90	- 14		2.07		.05	1	
00N 9100E	2	13 9	6	57 44	.1	8 10	12 16	379 517	9.01	2	5	ND ND	2	15 59	· .2	2	2	166 78		.075	5	19	.24	38	.86		2.22		.04		
00N 9150E	5	25	19	71	.1	39		417	3.89	6	5	ND	ż	- 29 11	.2 .6	2	2	47		.121 .042	5	10 39	.94 .55	37 34	.49		1.50		.12 .03		
00N 9175E	ś	21	23	99	.1	- 8			16.40	2	5	ND	2	5	.2	2	3	100		. 105	6	16	.36	39	.03		5.28	.02	.03	1	
DON 9200E	3	12	12	39		7	7	101	5.00	•	5	ND		10	2	-	-	07	07	DE 1	7	17	10	70		7	4 87	00	~		
00N 9225E	3	18	26	- 39	.1 .2	8	14	181 646	4.59	2 47	5	ND	1	11	-2 -2	2	ź	97 47		.052	7	17 9	.12	38 44	.30		1.87	.02 .01	.04 .06		
OON 9250E	ž	22	49	129	.9	8		1248	4.39	31	ś	ND	i	17	.ż	3	2	45		.055	8	8	.17		.09		1.32		.10	1	
00N 9275E	3	39	70	160	.9	- tĩ	11	539	4.43	42	5	ND	i	9	.6	6	Ž	24	•	.082	8	ž	.08	50	.0Z		1.01	.01	.07	ાં	
00N 9300E	4	11	2	57	.1	11	9	216	3.39	3	5	ND	Ť	41	.4	2	3	81		.057	7	10	.33	72	.51	3		.10	.06	÷, †	
00N 9325E	6	19	15	53	.3	12	9	195	6.58	6	5	ND	1	22	.2	2	2	101	. 18	.045	8	19	. 18	41	-31	2	1.43	.05	.05	1 1	
00N 9350E	7	17	19	66	.4	12	-	-	8.65	17	ś	ND	6	7	2	2	7		.07		š	29	.18		.14		2.97		.03	៍	
00N 9375E	1	9		47	.4	9			1.80	2	5			116	.ž	2		30			4	4			.22			. 15		<u>1</u>	
00N 9400E	5	26	49	194			11	598	12.38		5	ND		11	.2	4		101			4	17	.18		.46			.02		<u> </u>	
00N 9425E	1	14	4	57	.2	11	16	513	4.19	2	5	ND	1		2.	2	4	81	.46	.057	7	10	.75		.34		1.63			1 1	
00N 9450E	10	29	33	53	2.6	7	12	415	12.68	18	5	ND	11	9	.3	2	5	63	.08	.042	7	21	.12	22	.31	3	4,50	.04	.03	1	
00N 9475E	3	15	10						6.22		5	ND	1		.2	2	ź			.070	7		.40		.25			.10		́і́т	
NDARD C/AU-S	20	60	38						4.02		19	7		53			21			.091	39				.09			.07		.∄¶	5

- SAMPLE TYPE: P1 TO P5 SOIL P6 ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE.

192

Samples beginning 'RE' are duplicate samples.

.

1

DATE RECEIVED: JUL 29 1992 DATE REPORT MAILED: MM

 ACTE ANALYTICAL

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2180

Page 2

11/47

ACHE ANALYTICAL									- <u> </u>																				ACHE ANA	W YTICA
MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe	As ppm	U ppril	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca X	P %	La ppm	Cr ppm	Ng X	Ba ppm	Ti X		Al X	Na X	K Li X ppr	<u>.</u>
800N 9500E	9	32	12	83	.2	11	4	/81	10.56	31	5	ND	6	14	.2		2	78	12	.041	13	28	.11	58	.35	2 2	2.49	.02	.05 2	5
800N 9525E	1	52 61	16	92	.5	13		2040		8	ś	ND	1	64	.2	ź	2	62		.135	9	12	.84		,15		2.93	.24	.15 1	4 1 ·
800N 9550E	Ż	16	6	52	.8	11		372	-	7	5	ND	i	60	.2	ž	2	101		.049	10	13	.79	52	.32		.78	25	.12 1	1
800N 9575E	2	16	12	110	.1	4	7	641	5.64	2	5	ND	3	23	.2	2	2	100	.22	.058	14	7	.15	33	.24		1.53	.07	.06	È.
800N 9600E	5	16	38	42	.7	4	1	301	1.76	7	5	ND	3	9	.2	2	3	49	.05	.032	21	17	.04	57	.54	2 1	.03	· . 02	.06 1	ľ.
800N 9625E	3	25	29	86	.2	9	6	436	6.29	20	5	ND	3	10	.2	2	2	106		.052	12	27	.12	52	. 16		5.24	.02	.03	Î.
300N 9650E	2	33	12	89	1.7	12	6	299	9.50	12	5	ND	3	13	-2	2	2	77			8	25	.20	35	. 10		3.37	.02	.04 1	l ·
800N 9675E	1	32	603		12.5	7			12.39	24	5	NO	5	12	.8	14	2	98		.051	4	28	.10	27	-14		5.87	.02	.03 5	5.
800N 9700E 800N 9725E	1	18 20	84 116		9.4 8.3	11		343 4636	4.56	3 10	5	ND ND	1	82 40	.2 1.0	3 5	2	89 61		.057	4	15 11	-88 -32	43 60	.52		1.68 1.59	.36	.15	i.
						-				· • • •	,		•			,	_	-		1.5	Ŭ			-		_			202 °.	
100N 9750E	1	26	159	459		13			8.69	- 14	5	ND	4	75	-7	6	2	. 99		-144	8	-	1.03	50	.37		2.60	.26	.13	Į.
100N 9775E 100N 9800E		20 19	12 2	119 89	6.2	15 7	26 5		5.41 1.37	- <u>3</u> . 2	> 5	ND ND	3 1	97 39	.5 .7	2	2	100 19		.104	43	10	1.14		57 13		1.97 .97	.34	.15 1	l l
00N 9825E	8	31	109	135	2.9	9	-		11.63	30	5	ND	3	- 29 18	.2	6	2	141		.092	с 8	18	.16	= -	. 19		.91	.02	.04 1	
00N 9850E	5	26	11	83	.3	10	13		10.34	55	5	ND	3	16	.2	2	4	146		.043	7	29	.32		. 16		2.49	.04	.04 1	
00N 9875E	5	18	10	257	.5	12	32	9830	5.95	7	5	ND	8	64	1.5	2	2	101	1.15	.070	5	20	.46	353	.65	2 3	5.06	.05	.05 1	
00N 9900E	3	28	4	98	.2	47	11		8.24	20	5	ND	5	8	.2	2	2	80	.05	.089	9	49	.76	54	.12		.23	.01	.04 1	Ŷ.
00N 9925E	1	24	8	68	.5	9	12	560	8.26	47	5	ND	2	24	.2	2	2	204		.084	4	27	.34	82	.45		2.50	.05	.04 1	Ē.
00N 9950E	2	36	2	105	.5	24	10		12.69	22	5	ND	5	9	.2	2	2	118		.090	5	47	.51		.06		5.40	.01	.03 1	ļ
00N 9975E	2	20	18	101	.5	18	10	387	9.00	24	5	ND	4	6	.2	2	3	152	.03	.058	7	36	.48	60	- 18	5 2	2.95	.02	.03 1	I
00N 10000E	3	20	10	82	.7	10	8	541		21	5	ND	5	12	.2	2	2	121		.083	9	23	.28	48	.35		5.12	.02	.04 1	l I
00N 10025E	2	22	2	90	.2	29	8	229	7.82	18	5	ND	5	10	2،	2	2	78	.06		7	45	.51	46	- 408		.84	.02	.03 1	1
00N 10050E 11800N 9950E	2	25 37	23	102 105	.8 .5	14 25	10 11		11.33	43 27	5	ND ND	8 5	23 9	.2 .2	2	2	96 118		.104	6	26 47	.35 .52	26 41	.18		5.08 5.37	.07 .01	.06 2	í.
00N 10075E	9	20	2	77	.2	8	16		13.50	46	5	ND	5	14	.2	5	ž	152		.075	10	21	.14	32	.13		5.54	.02	.03 1	1
00N 10100E	4	24	8	136	.1	15	29	721	12.32	18	5	ND	5	12	.2	2	2	131	.07	.086	7	28	.98	69	.09	2 (.13	.02	.04 1	1
00N 10125E	2	24	13	87	1	9	25	740	7.89	29	5	ND	3	24	.2	ž	2	94		.180	6	19	.51	70	.08		2.82	.03	.04 1	i
00N 10150E	5	29	4	199	.6	15		1848	9.51	33	5	ND	5	9	-2	2	2	79		.145	17	17	.72	94	. 14	24	- 18	.01	.05 1	į.
00N 10175E	6	20	2	196	.4	12		1696	8.16	23	5	ND	7	19	.2	2	2	35		.130	33	11	.24	66	. 12	-	.74	.02	0 <u>4</u> ≤ 1	l –
DON 10200E	4	21	2	102	1.0	9	12	878	7.65	20	5	ND	5	18	.2	2	2	62	. 15	.095	8	14	.27	40	-21	Z 5	5.27	.02	.03 1	ļ
00N 10225E	8	22	9	112	.7	6			13.37	29	5	ND	6	8	.2	2	3	108		.207	9	17	.09	26	.35		5.14	.02	.03 1	Ï.
00N 10250E	6	24	2	181 56	.8	8	12	818	7.98	.33	5	ND	8 3	8	-2	2	2	37		.154	10	17	.72	22	.04		5.96	.01	.02 1	
10275E	12	22 29	14 8	213	1.7	6 14	6 12		9.79	73	5	ND ND	3 7	26 12	.2	25 2	2	60 74		.391	5 17	5 19	.09 .15	63 40	.02		1.34 5.13	.02 .02	.04 1	
00N 8700E	2	44	8	59	2.0	8	5	268	5.63	6	ś	ND	2	19	.4	Ž	2	80		.074	19	20	.28	24	.53		5.04	.02	.04 1	i
00N 8725E	6	32	22	57	.3	6	3	316	8.64	21	5	ND	6	10	.2	2	2	67	. 05	.055	19	29	.08	39	.32	2 2	2.18	.02	.04 1	
00N 8750E	Ť	9	7	40	,1	7			4.56	Ž	ś	ND	ž	32	.2	Ž	3	115		.051	3	14	.31	64	.82		1.72	.08	.04 1	
ANDARD C/AU-S	19	62	39	133	7.1	70			3.96	38	22	7	40		17.1	14	19	57		.090	38	56	.88	178	.09		.89	.07	.15 10	- X

|2/47 Page 3

ACHE ANALYTICAL						-			<u> </u>	·								<u>^</u>			<u> </u>					<u></u>		-	ACHE N	HAL YTIC	L
SAMPLE#	Mo ppm	Cu ppm	РЬ ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U Ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb. ppm	Bi ppm	v ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B /	AL X	Na X	K X PI	W A	u# pb
11600N 8775E 11600N 8800E 11600N 8825E 11600N 8850E 11600N 8875E	7 5 3 5	20 14 23 23 33	15 22 10 23 37	44 47 44 76 60	.6 1.0 .2 .2	8 6 12 50 13	2 4 3 6 7	193	7.10 3.04 8.42 5.04 8.66	22 11 11 21 16	5 5 5 5 5	ND ND ND ND ND	4 2 2 2 2 2	4 13 9 10 10	.2 .2 .3 .4 .2	2 2 2 4 2	2 2 2 2 2 2	93 88 75 50 84	.01 .0 .09 .0 .05 .0 .06 .0 .05 .0)38)33)25	12 14 8 14 8	35 14 36 48 36	. 16 . 13 . 19 . 96 . 31	56 47	.20 .53 .18 .12 .14	2 2.3 3 .9 2 1.9 3 2.3 2 2.6	96 91 37	.01 .03 .02 .03 .02	.03 .07 .04 .07 .05		6 7 1 7 6
11600N 8900E 11600N 8925E 11600N 8950E 11600N 8975E 11600N 9000E	3 2 4 1 4	38 77 47 189 27	16 11 12 25 11	82 162 63 189 60	.5 .6 1.1 .3 .6	29 30 8 43 11	16 35	2063	8.09 5.57 5.13 6.73 5.93	18 20 3 31 25	5 5 5 5 5	ND ND ND ND	1 1 1 2	17 74 10 58 12	.3 .8 .4 .5 .2	2 2 2 3	2 2 2 2 2 2	61 43 60 28 106	.14 .0 .67 .0 .08 .0 .57 .1 .07 .0	192 156 149	7 17 15 8 10	37 28 26 17 20	.53 .48 .13 1.04 .19	64 100 83 73 48	.08 .10 .30 .03 .23	2 2.0 2 2.0 3 2.0 2 1.0 3 1.0	40 67 83	.03 .07 .03 .04 .03	.05 .06 .04 .05 .05		2 4 2 7 1
11600N 9025E 11600N 9025E 11600N 9075E RE 11600N 9200E 11600N 9100E	7 7 3 4 10	27 31 26 26 32	13 11 3 14 31	74 81 52 49 78	23523	17 14 11 18 15	2		7.78 6.96 8.18 8.04 15.65	14 15 11 21 12	5 5 5 5 5	ND ND ND ND ND	2 2 2 1 14	16 18 11 8 5	-2 -2 -4 -2 -7	2 2 2 2 2	2 2 2 2 2 2	104 80 94 86 49	.15 .0 .11 .0 .08 .0 .04 .0 .02 .0)65 37 35	11 24 9 8 9	24 25 31 47 39	.37 .18 .17 .27 .21	60	.42 .34 .17 .08 .20	2 2. 3 1. 2 2. 2 2. 2 4.	26 33 31	.06 .05 .01 .01 .02	.04 .04 .03 .03 .04	1 1 1 1 1 1	6 2 1 1 3
11600N 9125E 11600N 9150E 11600N 9150E 11600N 9200E 11600N 9205E	6 3 27 3 10	18 26 14 22 12	12 6 19 9 11	63 70 52 44 57	4 5 1.2 4	4 20 10 19 6	1 3 10 2 1	244 177 266 112 256	6.07 6.87 5.55 7.42 9.21	2 12 203 27 9	5 5 5 5 5	ND ND ND ND	4 1 1 5	4 8 46 6 10	.2 .2 .2 .2 .5	2 2 17 2 2	2 2 2 3	17 103 70 81 67	.05 .0 .04 .0 .35 .0 .04 .0 .07 .0	147 182 134	34 8 10 8 19	14 48 8 46 16	.06 .30 .45 .26 .11	49	.16 .14 .21 .08 .50	2 3.0 2 2.0 5 1. 3 2.0 2 2.0	64 17 11	.07 .02 .24 .01 .05	.06 .03 .11 .04 .04	1 2 1 1	1 3 4 1
11600N 9250E 11600N 9275E 11600N 9300E 11600N 9325E 11600N 9350E	2 4 2 4 1	25 19 18 29 17	22 11 15 13 8	114 113 97 87 122	1.3 .4 .2 .2	11 12 10 35 9	6 10	251 1357 337	13.60 8.33 10.77 6.83 9.45	64 27 4 19 24	5 5 5 5 5	ND ND ND ND ND	3 1 1 2	15 7 13 8 3	1.0 _2 _2 _2 _2	2 6 2 7	2 2 3 2	89 90 107 85 99	.17 .0 .09 .0 .27 .1 .04 .0)75 19 78	7 11 7 13 7	26 17 16 41 16	.17 .35 .25 .51 .51		.31 .05 .21 .24 .02	2 5. 3 2. 2 2. 4 2. 2 2.	73 58 36	.03 .02 .02 .02 .02	.05 .04 .06 .05 .05		3 1 1 2 1
11600N 9375E 11600N 9400E 11600N 9425E 11600N 9450E 11600N 9450E 11600N 9475E	1 2 3 2 2	15 19 11 19 29	16 11 8 8 10	136 135 62 120 142	.1 .2 .5 .2	10 9 6 13 9	12 11 4 11 9	267	10.10 10.64 8.72 9.08 7.96	18 25 31 36 27	5 5 5 5	ND ND ND ND ND	1 1 1 1 1	8 3 15 10 8	.2 .2 .2 .2 .2	2 2 6 3 2	2 2 2 2 2	72 92 147 107 117	.04 .0 .02 .0 .10 .3 .06 .0)56 35 88	6 6 12 8 5	19 11 8 15 12	.42 .20 .11 .59 .61	52 44	.01 .03 .04 .13 .01	2 3.4 2 1.9 2 1.3 2 2.4 2 3.4	96 25 60	.02 .02 .02 .03 .03	.03 .03 .03 .04 .02		1 1 1 1
11600N 9500E 11600N 9525E 11600N 9550E 11600N 9575E 11600N 9600E	1 1 3 1 2	19 28 29 38 6	6 51 21 5	139 121 128 245 22	.1 .3 .8 .9 .5	9 13 11 14 1	8 8 18 37 3	291 938	9.02 10.28 16.24 10.22 2.64	24 36 15 34 4	5 5 5 5 5	ND ND ND ND ND	1 1 6 1 1	8 10 5 10 11	.2 .2 .3 .6 .2	2 2 6 2 2	2 2 2 2 2 2	77 126 110 124 85	.04 .0 .06 .5 .05 .0 .17 .1 .10 .0)91 43	7 8 12 9 9	11 18 60 26 8	.86 .53 .80 1.55 .13	40 81	.03 .05 .06 .01 .11	2 3. 2 1. 2 6. 2 3. 3 1.3	46 16 34	.02 .01 .01 .01 .01	.02 .03 .03 .03 .04	11311	1 1 2 1 1
11600N 9625E 11600N 9650E STANDARD C/AU-S	2 1 20	14 32 63	18 15 38	71 122 132	1.2 .7 7.6	9 7 73	23	1629	4.96 11.29 3.91	35 35 42	5 5 19	ND ND 7	- 1 1 37	42 9 52	.2 .8 18.8	2 6 14	3 2 21	72 135 56	.63 .0 .10 .0 .48 .0	170	11 7 39	17 14 58	.28 .30 .88	140 76 177		2 2.9 2 2.0 33 1.0	69	.04 .01 .08		1	12 2 53

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

.

Page 4

13/47

SAMPLE#					Ag			Min			-		Th ppm	_		Sb.		V	Ca X		La				 ∞ X, F		AL X	Na X		<u> </u>	
	ppm	ppm	ppm	рра	ppm	ppii	ppm	ppm		ррш	ppni	ppm	ppm	ppm	ppm	abia	ppus p	mqc		<u> </u>	bbu	ppm	*	bbw	<u></u> F	- mak	*	*	*	yon p	pio
11600N 9675E	2	21	16	72	1	10	9	614	9.26	11	5	ND	1	15	.2	5	2 1	120	.15	. 155	4	13	. 18	52	. 19	2	1.37	.01	.02	÷₽.	1
11600N 9700E	2	10	18	59	.5	10	5	287	4.94	5	6	ND	1	24	.8	2	2	38	.21	.056	13	8	.18	57	.18	3	1.82	.07	.05	1	1
11600N 9725E	1	10	32	91	.1	17	7	323	8.24	14	5	ND	1	15	.2	2	2 1	108	.06	.052	5	33	.35	50	.09	2	2.90	.01	.02	Ť	2
11600N 9750E	11	16	51	124	1.2	9	34	6535	8.15	4	5	ND	1	34	.4	2	3 1	121	.43	.149			.55			2	3.65	.03	.03	1.	2
11600N 9775E	1	8		36				214	5.87	2	5	ND	1	14	.2	2	-		-	.043		17	.18	-		_	1.26			1	Ī
11600N 9800E	2	17	17	132	.1	25	23	652	7.49	23	5	ND	1	15	.2	2	2 1	151	. 10	.049	5	36	.66	114	.17	2	3.20	.03	.04		2
11600N 9825E		13		-					8.02			ND	1	11	.2	2	2 2			.063		25	.36			_	1.89	. –		1	1
11600N 9850E	3								8.06		5	ND	1	15	ž	2	2 1			.065	7		.24				2.64		-	- C	ż
11600N 9875E			. –				18		10.08		ś	ND	1	29	.2	ĩ	2 1			.073		27					3.60			1	3
11600N 9900E	2								8.00		ś	ND	i	21	.2	2	31			.077	6	22	.31		.27	_	2.78		-	Î	4
11600N 9925E	2	20	27	82	.6	12	20	979	9.26	68	5	ND	1	16	.2	2	2 1	123	.10	.132	5	28	56	85	.06	2	2.78	.02	.04		2
11600N 9950E	2	20							7.58	-	5	ND	i	12	2	2	4 1			091	6	28	.23			_	2.27			:	2
11600N 9975E	3			103		15			9.48		Ś	ND	i	10	2	ź				.082	7		.40				3.09			्हें	ž
11600N 10000E	5			111	-				9.47		5	ND	1	25	.2	2				.105		15					2.81			<u> </u>	2
11600N 10000E Dup.		16		157				12396			5	ND	i	81		2				.178	19		.40			-	2.30		1.1	1	2
11000W 10000E Dap.		10		121		10	55	12390	0.05	50		ΠU		01	0	2	د	17		• 170	17	24	.40	277		2	2.30	.02	.04		2
11600N 10025E	2	13	10	70	.8	7	6	289	5.72	13	5	ND	1	Z 0	.3	2	2	86	.10	.081	9	7	.24	54	.28	2	2.82	.03	.03	Ť	2
11600N 10050E	4	33	8	120	2 , ا	- 16	14	1152		21	5	ND	1	61	· .2	2	2	85 1	1.44	.071	13	27	.22		17	2	1.85	.02	.03	° 1 –	4
11600N 10075E	3	10	11	- 46	.2	6	4	248	1.93	5	- 5	NÐ	1	41	.4	2	3	78	.54	2037	6	11	.14	78	.51	- 4	.81	.03	.03	- 1É -	4
11600N 10100E	2	11	8	58	,2	8	6	279	2.42	. 8	5	ND	1	129	.3	2	2	58 1	1.62	-056	10	5	.34	109	.40	2	2.63	.06	.04	1	3
11600N 10125E	3	17	12	88	.9	6	6	274	6.96	13	5	ND	2	16	.5	2	2	92	.06	.092	10	5	.22			2	3.45	.02	.02	ţ.	3
11600N 10150E	4	15	20	123	.4	7	17	640	11.06	31	5	ND	1	14	.2	2	2 1	162	.12	. 130	7	15	.42	29	. 16	2	3.82	.03	.02	Ť	3
11600N 10175E	3	17	11	113	,3	8	16	704	8.87	14	5	ND	1	35	.2	2	2	55	.28	.252	8	3	.89	44	.15	2	2.76	.10	.05	1	3
11600N 10200E	3	18	12	77	.4	5	11	595	7.51	11	5	ND	1	10	.6	3	2	81	.07	.243	8	6	.47	26	.15	2	3.16	.02	.02	1	3
11600N 10225E	10	14	5	91	1.0	11	6	258	3.70	18	5	ND	1	19	.4	2	2 1			.072	8	7	.17		.44	4	.68	.04	.04	1	3
11600N 10250E	33	38	40	338	2.9	47	6	245	5.56	24	5	ND	1	9	.7	2	2		.05	.078	7	13	.17	62	- 06	2	2.74	.02	.03	<u>_</u> 1	8
11600N 10275E	14	19	62	157	1.3	18	4	376	10.93	25	5	ND	3	20	6	2	2	82	.12	.058	9	29	.20	29	.29	2	2.23	.04	.03	1	3
RE 11600N 10175E	1 · · ·			113			•		8.93		5	ND	1	35	.2	ž		55		.250	8	3	.89		.15		2.77			1	3
11600N 10300E					1.5			1882	7.72		ś	ND	i	31	.6	2	ž			.103		18	.28				3.22			5 1	4
11600N 10325E	5						12	429	4.07	7	5	ND	1	13	2.1	2		41		.029		74					2.52			÷Ť.	3
11600N 10350E	-				2.2				6.71		5	ND	i	14	.5	4				.180	Ż			44			3.37				10
9600N 10000E	2	7	9	39	8.	10	7	272	2.90	28	5	ND	1	42	.2	2	2	80	.38	.052	5	7	.50	41	.65	3	.85	. 15	.08	4	8
9600N 10025E	6	22	-		5.9		5	-	6.76		ś	ND	11	3	.2	2				.040	10		.27		.07		6.36			1	6
9600N 10050E	-				.9	_	-		4.75		5	ND	1	30	.ž	2	ž			.054		3	.43			_	1.62			i ti	4
9600N 10075E	2				-				9.77	3	5	ND	ż	20	.2	2	21		.17			17	.40	47			2.55			Ť	4
9600N 10100E	_	20	-						10.95		5	ND	ź	20	ź	2	ź			.042		16	.10		.36		2.33			. I .	7
FOUN TO FOUL	"	20	7	03			2	202	10.73	20	2	ΝŲ	2	,		2	2	101	.05	·U4 <u>4</u>	y	10	. 10	21	• 30	۲	2.33	.01	.ve		'
9600N 10125E	-			-	1	_	-		13.05		5	ND		11		3				.100	5	7	.10				1.59			<u> </u>	2
9600N 10150E					2,5				9.85		5	ND	4	10		6				,044			.27				3.72				
STANDARD C/AU-S	18	60	- 39	131	7,6	70	31	1059	3.94	39	18	- 7	39	52	18.7	14	21	58	.48	.090	38	58	.88	176	.09	35	1.87	.07	, 15 -	11	51

)4/47 Page 5

ACHE ANALYTICAL																														THE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	Tj X	B / ppm	NL X	Na X	K X	N PDR	Au* ppb
9600N 10175E	16	41	17	131	5.3	16	4	330	10.14	58	5	ND	8	7	.2	2	2	54	.02	.032	9	18	.08	38	. 18	23.	14.	.01	.02	1	1
9600N 10200E	2	22	3	119	.1	10	27	829	8.71	19	5	ND	4	13	.2	2	3	102	.12	.080	4	17	.65	40	.33	2 4.3	39.	.03	.03	ः ।	1
9600N 10225E	17	26	5	173	.5	14	7	232	5.46	90	5	ND	1	10	.2	6	2	80	.08	.077	7	10	.08	29	.07	2 .9	97.	.01	.02	1	2
9600N 10250E	10	32	16	118	.7	9	3	590	6.76	38	5	ND	2	78	· .2	2	2	79	.80	.039	9	13	.07	166	.44	2 1.4	46 .	.01	.02	1^*	1
9600N 10275E	9	37	6	224	1.3	14	14	709	7.89	66	5	ND	2	62	.2	4	2	44	.51	.077	12	20	.14	119	- 11	2 3.	58 .	.01	.02	3	5
RE 9600N 10375E	5	43	8	294	.6	16	33	1740	10.47	72	5	ND	6	8	.2	2	2	41	.04	. 137	12	9	.65	39	.05	2 3.9	95.	.02	.02	1	4
9600N 10300E	8	66	8	323	.9	20			11.26	77	5	ND	10	6	.2	2	2	27	.04	.163	12	10	.25	32	.08	2 4.4	49	.02	.03	1	3
9600N 10325E	11	28	ŭ	224	2.6	10			11.96	152	5	ND	4	38	.2	2	2	79	.35	.142	7	12	.66	138	.26	2 2.0	65.	. 13	.07	· · 1	- 4
9600N 10350E	6	80	2	400	.9				10.52		5	ND	13	5	.3	2	2	18	.03	.098	14	9	.12	36	.08	2 5.3	27 .	.03	.04	Ű,	5
9600N 10375E	5	45	6	300	.4	15			10.77	75	5	ND	6	8	.2	2	2	42	.04	.138	13	9	.66	39	.05	2.4.	09.	.02	.02	1	4
9600N 10400E	8	26	21	130	.5	8	8	420	9.92	57	5	ND	5	9	.2	2	2	87	.06	.099	11	17	.10	44	.24	2 2.	B1 .	.03	.02	1	1
9600N 10425E	7	46	2	162	.7	18	23	505	10.42	85	5	ND	5	9	.2	2	2	49	.05	.101	6	14	.91	37	.03	2 5.3	39 .	.01	.01	1	3
9600N 10450E	6	31	14	174	.4	11	13	531	9.28	45	5	ND	5	9	.2	2	5	41	.05	.139	9	11	.59	38	. 03	2 3.0	62	.01	.02	1 t	2
9600N 10475E	6	30	Ż	231	1.4	17	12	490		36	5	ND	9	15	.2	2	2	29	.23	.078	12	18	.12	46	` . 11`	2 5.	50 .	.02	.03	1	3
9600N 10500E	9	33	2	89	1.1	12	5		11.63	39	5	3	4	10	.2	2	2	41	.04	.083	6	19	.11	45	.06	3 3.	75	.01	.02	1	1
STANDARD C/AU-S	19	62	37	132	7.4	74	31	1062	4.05	41	20	7	39	53	17.3	14	21	60	.49	.09Ż	40	59	.89	181	.09	35 1.	98	.07	.15	<u>1</u> 1	47

44			Col	el i	and	Re	baq	Lia	s, vig ⊉rin∦ana		EMI Soc	iat		PRO	TEC	Tr P	oto	F	ile	4	92-	239	2 2	Pa	ge		5/	47		Â
					·.	\$	20 - Co	1188 Mn	W. Geo Fe	rgia	St., U	Venco	uver Th	BC Vé Sr	E 4A2	st Sb	ubmitt Bi	ed by	: RIU	HARD	HASLI La	NGER	<u>Ng</u>	Ba		<u> </u>	<u>.</u> 1	<u></u>		¥,
IPLE#	Ho ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	ppm	ppm	ге Х	ppm	ppm	ppm	ppm		 NO1 			ppm	X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	ppm	X	ppm	<u> </u>	ppm	*	X	<u>x p</u>	
	3	13	6	44	.3	13				8	5	ND	1	27	.2	2	6	64 91			11	21 50	-19 -28	74 39	.23					1
	. –					_				2.122	5				5	_	5					40	.54	69	. 15				05 🔆	£
	-		-								-		i				ź	65			12	26	.23	67	.19	3 2.9	i4 .(04.	05 🤅	<u>.</u>
	2	52 41	12	90	1	17			5.89	13	5	ND	1	29	.2	2	2	63			6	29	.21	83	.06	3 1.8	81 .0	02.	04	1
ppm ppm																														
12200N 9400E 3 13 6 44 3 13 7 19 2.00 3 3 10 10 2.00 3 10 10 2.00 3 10 10 10 2.00 3 10 10 10 2.00 10 2.00 9 12 6 34 11 200 7.02 2 10 10 2.00 10 10 2.00 10 10 2.00 1																														
122000 9475E 3 32 9 90 1 15 10 394 4.09 7 5 NO 1 28 22 2 26 23 087 19 3 3.1 02 0.0 1 12200N 950E 2 41 12 9 103 5.89 13 5 ND 1 29 2 2 2 63 1.11 03 2.14 11 10 2.1 105 11 102 2 2 2 63 1.11 102 10 11 2.2 3 7 102 103 13 1.102 10 11 102 2 3 7 103 1.18 3 2.66 0.0 105 11 12200N 9550E 2 19 2 62 2 11 12 23 7 102 103 13 1.78 101 105 11 13 1.18 3 2.64 10 11 10 100 100 <		ŝ.																												
122000 9400E 3 13 6 44 3 13 7 19 2.00 9 10 10 2.00 9 10 2.00 9 11 200 7.02 2 5 NO 1 17 2 2 5 71 1.0 24 2.00 10 24 25 10 17 12 2 2 5 71 1.42 206 9 0.56 65 15 4 2.27 01 0.05 12200N 9500E 2 41 12 90 .1 17 9 13 5 N0 1 12 2 2 5 71 .02 09 .062 10 32 .29 40 18 32.68 .01 .05 12200N 950E 2 19 2 62 .2 11 12 39 70 102 .09 .062 10 32 .29 40 18 32.64 .05 .06 .17 .05 .06 <		1																												
200N 9625E	3	30	21	113	.5	23	11	247	9.26	40	5	ND	1		•4	2	2	()	.05		'								8.35	
	2					7					-		1			7	_									•				ł
						-					-		1	-		2	-			1/11/2						2 2.	50 .3	22 .	.11 📳	(
											-		ż				_		.04	.117	10	39	.21		.09					<u>A</u> .
	5					7				· · ·			2	14	.2	2	2	140	.09	.058	11	14	-17	43	.26	32.	13 .	03	,04 <u></u>	<u>}</u>
200N 9775F	3	20	65	334	2.0	17	24	2421	8.81	23	5	ND	1	15			_								5 1 1 1 1 1 1					1
	2										5	ND	1	34	Alter Contract	_	_			1					1.1.2.2.2.5					3.
	7		636	379	7.2	5	23		14.84		_		1		- 10 C - 1							_							2.44	<u>.</u>
200N 9850E	2	8	23	45	6	7	-				-		1				-													1
200N 9875E	3	23	49	315	.1	7	31	5363	9.96	2	5	ND	1	38	ैं	2	2	145	.40	-003	14	15	-		194					2
	3					9				5	-		1				_													1
	1					4	-	- · ·									-													ŧ٢.
	1 1		-								-		•				_			1. 1. 1.					1	2 1.	34.	01	.03 🔅	1
	4										-		1				_				5	19	. 15	52	.33	5.	94.	02	.04 ို	1
122004 00005		22	54	320	T	6	35	8974	0 88	2	5	ND	1	17	1.0	2	2	127	.20	. 181	19	18		129	.22					્રિ
	2									ं इ	-		1			2	2	98	. 19	.071	10				A. 21 A. 4					1
	4									22	5	ND	1	12	ં.2	-	-								···· 7 5 2 4				- 1. No-	2
200N 10075E	4	21	17	158	.3	12	18	1803	10.11	: 2			1	13	ે .3			114		.142	11	26	.21	47	.12	23. 53.			.04 8	÷.
200N 10100E	3	15	10	132	.7	8	13	694	9.03	4	5	ND	3	10	3	2	3	112	. 10	.070	10	27	.22	25	.23	· · ·	<i>'</i> °.	02	. ~	
200N 10125E	3	12	15	81	-3	6			9.34	3	. 5	ND	1	22	5	2		122		.222	8	22 31	.30		.40	22. 45.			.05	1
200N 10150E	3	16	18		.2				9.27	: 13		ND	7				-	85		.108	10 10	32	.41 .55		≥.15 ≥.13		26.			1
200N 10175E	2	19		208					8.55		-		8	9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3	2	94 58		,123	7				.07		70.			١Ì.
000N 8875E 000N 8900E	6	61 38	34 27						8.40 9.63		· _	ND ND	4	29 16		່ 2	2	115		.053	9	44	.27	91	.22	2 1.			.05	1
											. E	ы	,	40	.2	2	2	97	.29	.083	11	31	.36	71	.25	42.	00.	.03	.06	1
000N 8925E	8	35 29	23 33		_				10.18	26		ND	1			2				.073		26	.30	- 79	.28	2 2.	86.	.03	.06 🔅	्री
000N 8950E ANDARD C/AU-S	19				7.1				3.81						18.5			58	.47	,089	39	58	.88	176	.08	34 1.	94.	.07	.15	10
		THIS Assi - Si	S LEA AY RE Ample	CH IS COMME TYPE	PART NDED : P1	IAL F FOR R TO P1	OR MN OCK A 6 SOI	FESI NIDCO LP17	D WITH R CA P RE SAM SILT	LAC Ples P18 R	R MG IF CU OCK	BATI PBZ	BW. NAS	AND L > 1%,	IMITE AG >	5 FOR 30 P	NAK PNI&⊥	AND / AU > 1	1000	AU DE	ECHI	M L11	TO 10 Mit Bi	ML WI Y ICP	15 3	TER. PPM.				
		Sam	ples	begin	ning_	'RE'	are d	uplic	MAIL	nples	Å		1			NED	(γ	K.							CERTIFI				c

ŧ

Т

44
ACHE ANALYTICAL

Page 2

16/417

ACHE ANALYTICAL																												ACHE ANAL	TTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm j	Ag	Ni ppm	Co ppm	Mn ppm	Fe As X ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bî ppm	V ppm	Ca X	P	La ppm	Cr ppm	Mg X	Ba ppm	11 *	B pp#	Al X	Na X	K M X ppm	Au# ppb
12000N 8975E	5	25	14	67	.2	14	3	140	6.85 25	5	ND	2	9	.2	2	2	83	.12	.060	10	33	.21	77	.07	3 2	. 83	.01	.05	6
2000N 9000E	1	85	26	130	.8	30	54	7702	6.08 34	5	ND	1	55	.7	3	2	41	.30	. 146	36	27	.32	78	. 08	2 3	.76	.03	.07	5
2000N 9025E	1	22	11	52	.2	10	5	300	5.21 21	5	ND	1	24	2	2	2	118	.20	.049	9	23	.18	68	.24	2 1	.86	.04	.04	- 4
2000N 9050E	1	128	36	126		29	18	499	12.58 52	5	ND	4	5	2_	2	2	35	.04	.086	13	22	.16	61	.01	2 3	.67	.01	.07	8
2000N 9075E	Ż	42	21	67	.6	13	6		8.15 37	5	ND	Z	14	. . 2	2	Ž	56		.086	10	13	.08	38	.06			01	.09 1	1
2000N 9100E	5	17	27	53	-4	8	1	280	8.15 6	5	ND	2	14	.2	2	2	114	. 10	.042	16	20	.14	45	.62	2 1	.96	.05	.05	2
2000N 9125E	4	25	20	58	.6	8	6	157	7.10 36	5	ND	2	27	 2	2	2	132	.17	.051	6	12	.21	84	े.47	2 1	.64	.07	.07 🔄	2
2000N 9150E	1	41	12	189	2.0	12	17	1756	6.42 5	5	ND	1	64	.6	2	2	87	.70	120	31	14	.62	119	.55	2 3	1.96	.11	.07 👾 1	2
2000N 9175E	2	11	11	59	" 1 -	7	5	257	5.94 🖂 4	5	ND	1	31	.2	2	2	225	.22	.037	5	9	.26	81	.92	2 1	.09	.13	.05 🔄 1	2
2000N 9200E	4	16	5	34 :	1	12	8	103	2.03 20	5	ND	1	15	ົ.2	2	2	95	. 12	.019	13	11	.13	46	. 19	2	.71	.04	.05 1	2
2000N 9225E	3	13	6	47	1	5	3	325	13.52 93	5	ND	2	13		2	2	123	.08	.080	9	14	.17	48	. 18	2 3	1.12	.03	.03	2
2000N 9250E	5	19	12	51	4	12	7	173	6.35 23	5	ND	1	17	.2	2	2	142	.08	,069	11	21	.16	50	×17	2 1	.60	.05	.05 👘	1
2000N 9275E	1	15	15	76	.4	10	26	2526	10.82	5	ND	1	18	(3)	3	2	109	.11	.122	8	12	.39	96	.09	2 2	2.65	.03	.06	່ 1
2000N 9300E	8	20	26	156	. † .	10	11	741	10.11 27	5	ND	1	25	.2	2	2	83	.22	.148	8	11	. 38	- 34	.20	2 1	.11	.12	.06 1	1
12000N 9325E	2	37	12	94	1	9	8	489	4.95 8	5	ND	1	37	2	2	2	80	.34	.076	7	9	.26	83	.21	3	.86	.11	.08	1
2000N 9350E	10	28	30	89		21	5	423	9.07 20	5	ND	2	13	° .2	2	2	83	.06	.052	21	102	.21	47	.28	2 1	.68	.03	.04 1	2
2000N 9375E	1	21	32	115	1.0	17	48	4455	7.65 7	5	ND	1	40	. 5	2	3	39	.64	, 138	20	23	.17	73	°, 13°	24	. 80	.04	.05 🔄 1	2
2000N 9400E	2	22	8	123	41	10	10	891	5.36 2	5	ND	1	57	2	2	2	84	.51	.056	17	7	.63	51	18	2 1	.68	.31	.11 💮	2
12000N 9425E	4	16	19	68	.7	18	5	319	7.04 16	5	ND	3	24	.2	2	2	74	.20	.056	11	30	.42	38	ं 15	2 2	2.50	.13	.08 🏹	4
2000N 9450E	3	26	17	80	.5	37	5	246	9.18 29	5	ND	3	12	.2	3	2	8 4	.08	.049	10	51	.51	69	.13	2 2	2.38	-01	.06 🧐	3
12000N 9475E	9	19	23	63	1	6	1	203	12.64 11	5	ND	3	11	.2	2	2	82	.11	.048	18	21	.09	27	47	2 2	2.06	.03	.04	z
12000N 9500E	1	19	24	138	4	14	13	9105	6.44 9	5	ND	1	32	.3	2	2	62	.39	.072	23	21	.20	129	ં 34	3 2	2.58	.05	.07	2
12000N 9525E	1	87	55	126	4	29	44	7943	7.52 82	5	ND	1	29	.2	6	2	40	.27	142	11	12	.33	205	.03	3 1	.48	.07	.12	5
12000N 9550E	6	25	26	64	.9	18	4		8.01 20	5	ND	3	11	2	3	2	96		.050	19	28	.37	28	35	4 1		.04	.04 🏹	4
RE 12000N 9475E	10	20	27	65	.2	8	1		12.97 11	5	ND	3	12	.2	2	2	85		.050	19	22	.10	29	.49		2.14	.03	.05	2
2000N 9575E	3	22	13	104	.9	11	9	742	8.38 2	5	ND	4	26	.2	2	2	137	.27	.076	9	15	.44	37	74	24	.55	.11	.07	3
2000N 9600E	1	17	12	118	.5	13	15	12625	5.32 5	5	ND	1	54	2	2	2	78	.54	.090	14	12	.56	208	· 34	3 2		.20	.13 🔅 🕅	ີ 2
12000N 9625E	1	26	11	105 1	1.0	14	11	1219	9.33 4	5	ND	4	32	-2	2	2	147	.31	. 191	9	21	.48	56	55	3 3	1.71	.14	.07 2	8
2000N 9650E	2	14	9	35	.3	4	2	101	1.70 9	5	ND	1	17	.2	8	3	79	.11	.050	12	11	.13	56	.26	3 1	.96	.05	.06 1	6
2000N 9675E	3	21	18	117	.4	12	8	1331	8.03 2	5	ND	4	25	.2	2	3	106	.29	. 100	12	16	.42	95	.45	2 5	.75	.07	.051	3
2000N 9700E	3	35	33	159 3	3.1	6	4	1202	20.58 18	5	ND	2	11	.2	2	2	114	.07	.091	8	16	.14	44	.09	2 3	5.07	.02	.03 1	1
2000N 9725E	1	113	1852	1633 34	4.9	16	19		3.86 5	5	ND	1	134		7	Ž	60	2.04	.106	12	7	.95	164	31	5 2	2.58	.55	.15	់ 1
2000N 9750E	1 1	10	38		2.5	11	ý.	389	3.71 2	5	ND	i	68	,7	ż	Ž	94		.065	6	8	.71	39	.68		. 15	.39	.13 👘	15
2000N 9775E	3	17	66		1.6	12	ģ	3621	6.72 10	5	ND	ż	27	. 4	4	2	96		.087	9	19	.30	77	.38		.95	.10	.08 1	13
12000N 9800E	4	16	48		1.5	8	Ś	408	5.75 15	5	ND	2	19	.5	3	2	180		.039	13	14	.17	69	.40	-	.47	.04	.04 1	14
12000N 9825E	2	16	34	89	.2	7	7	2841	9.78 7	5	ND	1	28	.2	2	2	156	.45	.328	10	15	.30	77	.11	2 2	2.03	.04	.09 ៉	13
2000N 9850E	ì		8		1.4	13	13		4.41 4	Ś	ND	ż	96	2	ž	2	75		.081	9	7	.94		57		.80	.52	.17 1	ć _
STANDARD C/AU-S	19	59	41	132 7		74		1039		18	7	40		19.1	15	20		.47		40		.88		.08	34 1		.08	- 1 - 1 - 4 - C - KG	· . Ξ
STARDARD L/AU-S	19	78	41	134 1	.0	14	36	1039	3.73 42	10		40	36	1711	12	20	10	.+/	1030	40		.00	1//			101	.00		

Page 3

17/47

ACHE ANALYTICAL																														THE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mri ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X		La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	K X	btow M	Au*
12000N 9875E	2	27	17	183	7	13	59	4159	4.71	16	5	ND	1	144	.5	2	5	60	3.39	099	10	6	1.06	225	.35	5	1.82	.27	.13	3 (1
RE 12000N 10075E	2	15	4	151	1	30	20	793	6.96	2	5	ND	4	9	.2	2	2	63		.082	10	31	.82	51	્રા 🍕	_	6.63	.02	.04		Š
2000N 9900E	3	18	34	146	.1	7	64	6036	6.45	18	5	ND	1	45	.2	3	2	76		. 158	7	10	.56	127	.32	_	1.58	.10	.08		1
2000N 9925E	2	10	15	59		6	11	467	2.82	. 9	5	ND	1	66	-2	2	2	41		.084	6	7	.20	273 148	.07	-	.93 2.07	.04 .07	.06		2
12000N 9950E	1	24	12	88	1.8	11	16	887	2.91	· 3	5	ND	1	131	1.4	2	2	41	5.14	110	25	Ŷ	.47	140		,	2.0/	.07	.00	822	
2000N 9975E	7	14	21	100		6	6	477	6.22	1	5	ND	2	23	.2	2	2	86	.23	.040	15	16	.11	40	.54	3	.99	.02	.03	24	2
2000N 10000E	2	16	15	79	.4	16	10	217	7.34	7	5	ND	1	20	2 Z	Ž	2	117		.069	6	33	.26	54	.08	3	2.22	.01	.05	<u></u>	3
2000N 10025E	4	13	12	77	1.2	10			5.62	5	5	ND	1	21	.2	2	2	127		.045	7	18	. 14	50	.30	-	1.25	.02	.04	28	2
2000N 10050E	3	22	21	311	1.0	26	17	1481	7.60	9	5	ND	1	20	4	2	2	86		,091	18	31	.58	73	.22		4.21	.02	.05	100	ŝ
2000N 10075E	2	16	6	160	.1	30	20	735	7.00	<u>2</u>	5	ND	3	6	2	2	2	67	.07	-084	11	33	.78	47	- 14	4	6.53	.01	-04		2
2000N 10100E	4	15	15	286	.6	16	14	880	6.99	12	5	ND	6	6	2	2	3	43	.11	.095	12	19	.25	36	15	2	5.88	.02	.05		2
2000N 10125E	2	12	12	106	7	9	14		8.59	26	6	ND	2	9	.2	6	2	68	.08	217	9	15	.26	38	.08		2.95	.02	.04	82	1
2000N 10150E	25	15	15	162	5	9	23	820	12.61	359	12	ND	3	8	.2	17	2	80		.333	11	15	.20	53	.08		3.82	.01	.03		3
2000N 10175E	5	14	11	161	.6	6	17		9.93	- 99	5	ND	3	10	.2	4	2	66		.270	12	12			- 12		4.52	.02 .02	.03 .04	88	
2000N 10200E	11	12	28	107	.8	9	24	664	11.02	63	5	ND	2	10	-2	14	2	52	.08	-128	10	8	.50	47	.02	,	2.17	.02	.04		
2000N 10225E	5	14	15	123	1.1	10	22	603	11.15	18	6	ND	3	9	.2	3	2	61	.08	.098	9	12	.37	62	.06	3	4.53	.02	.03	<u> </u>	1
1900N 8875E	6	19	24	116	.8	10	8		9.00	17	5	ND	1	101	2	2	2	40		.042	38	15	. 19	81	.24		2.41	.04	.06	201	
1900N 8900E	8	22	19	89	1	33	13	512	10.64	15	5	ND	4	12	.2	2	2	99		.039	16	42	.53	27	. 39		3.33	.02	.03		
1900N 8925E	5	20	16	83	.2	27			8.73	17	5	ND	2	16	.2	2	2	81		074	11 5	34 11	.45	56 40	.21 .15	_	1.88	.01 .01	.08	88	
1900N 8950E	4	18	13	69	-1	10	9	237	7.42	20	5	ND	1	18	2	2	2	92	. 13	.094	,		• • •	40		-	1.41	.01			
1900N 8975E	5	31	19	78	.1	37	13	275	10.90	21	5	ND	3	19	.2	2	2	75	.10	.042	8	48	.69	64	-17	3	2.69	.02	.04		1
1900N 9000E	17	14	14	75	1	11	6		8.38	20	5	ND	3	16	.2	2	2	133		.032	19	16	.12	49	78		1.26	.02	.04	-	
1900N 9025E	4	12	20	70	1.0	26	6	233	4.91	10	5	ND	2	50	.2	2	2	72		.040	14	43	.49	64	.34		1.92	.03	.06		1
1900N 9050E	3	36	16	59	- 1	14	12		4.29	- 27	5	ND	1	16	.2	2	2	64 81		.112	8 12	12 26	.14	32 33	.29		.68 5.34	.03 .03	.05		
1900N 9075E	2	47	15	86	.2	18	14	717	8.05	11	5	ND	2	16	.2	2	2	01	. 19	्रम् सम्बद्ध	12	20	. 44				4.34			368	
1900N 9100E	1	19	16	81	.1	15	19	1636	3.99	5	5	ND	1	82	.2	2	3	92	.74	.089	7	13	.83	79	.62	3	1.71	.26	.13	X	1
1900N 9125E	8	17	21	78	.1	9			11.22	19	5	ND	12	8	.2	2	2	76		.042	11	30	.13	19	. 35		4.28	.02	.03	38 K	
1900N 9150E	8	13	27	85	.1	8	8	549	9.30	7	5	ND	11	6	. 2	2	6	28		.041	25	30	.08	13	.24		5.43	.04	.04		
1900N 9175E	8	24	23	86	· .2	28	11		8.01	13	5	ND	7	11	.2	2	8	55		.070	14	33 41	.48 .36	30 45	.19		3.65	.02 .05	.06 .04		
1900N 9200E	3	18	10	56	.1	20	11	210	6.91	12	5	ND	2	26	.2	2	2	111	. 10	.054	y	41	00	43		~	C.JI	.05			
1900N 9225E	3	15	11	71	.3	12	20	525	8.30	6	5	ND	3	32	.5	4	2	165		.074	8	15	.47	77	.29		2.37	.09	.08	<u></u>	
1900N 9250E	2	14	15	92	.6	11	15		6.49	: 2	6	ND	3	39	.2	2	4	123		.069	14	14	.51	62	-34	. –	2.85	.15	.10	88)	
1900N 9275E	8	29	27	99	.5	16			11.76	24	5	ND	6	8	· .4	2	2	70		062	22	32		34	.23		4.08	.02 .07	.04 .08	- 1	
11900N 9300E	2	33	59	154	1.9	10			10.12	6	5	ND	1	36 11	.2	2	2	89 67		.123	58 9	22 46		143 50	.30 .05	. –	2.08	.07	.06	84 B	
1900N 9325E	4	38	24	107	.6	38	74	341	8.41	19	5	ND	3	11	.2	2	2	0/	-00	.033	,	40					J.Er				
1900N 9350E	7	25	23	80	1.0	11	15	676	7.94	4	5	ND	2	32		2	2	67		.060	23	25	.33	46	.33		3.10		.07	. j. j.	
11900N 9375E	4	19	20	76	.1	16	14		12.94	51	5	ND	2	11	.4	2	2	90		.048	9	39	.21		.18		2.63	.01		ુ્ર્	2
STANDARD C/AU-S	19	59	. 38	132	7.3	70	32	1043	3.72	40	21	7	41	53	19.0	15		59	48	.090	40	57	. 88	174	.08		1.83	.07	,15	10	52

ACHE MINAL VTICAL

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2392

ACRE ANALTTICAL						,	·																-						
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mn ppm	fe X	As ppm	U ppm	Au ppm	Th ppm	Şr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca P X X	La pp#	Cr ppm	Mg X	Ba ppm	Tİ X				C Ppm	Au* ppb
11900N 9400E	1	8	10	45	· · ·	12	10	289	5.43	3	5	ND	2	61	-2	2	2	136	.54 .053	6	10	.77	50		4 1.31	.36	. 12		1
11900N 9425E	6	7	19	40		5	2		7.12	ેંડ્રે	5	ND	3	17	ંેટ	2	2	149	.10 .023	12	16	13	24	90	5 .90			200120/2022	2
11900N 9450E	3	11	16	100		7	ž		7.05	ି 🕇	5	ND	1	28	ંટ	2	3	82	.40 .076	15	11	.22	140	102101-001-0001	3 2.50			122 2010 2020	2
11900N 9475E	6	29	28	118	2.0	12	2		10.07	24	5	ND	1	12	್ಷಾತ್	2	2		.10 .038	7	29	.13	46	.27	2 2.25				1
11900N 9500E	ŭ	56	21	103	.7	8	7	1002	7.72	12	5	ND	6	5	. 2	2	ž	40	.03 .044		16	.13	63	(01)	3 5.19			-	Ĺ.
	- T			.03	•••	Ŭ		TOOL		2 . .		NV	Ŭ	-	3 Q (-	-												•
11900N 9525E	1	51	19	103	44	22	24	3334	6.33	16	5	ND	1	147	ે કે	4	2	85	1.42 .075	11	8	1.59	103	.50	3 2.57	.96	.27	1	2
11900N 9550E	9	13	22	75			2	338	8.43	15	5	ND	3	12	∞ . ∠	Ż	2	139	.10 .046	13	14	.13		.61	2 1.35			1997 - S.	3
11900N 9575E	6	21	42	118	2.4	. 8	ŝ	348	9.36	17	5	ND	3	15	े.2	4	2	106	.12 .055	14	15	. 19		.25	3 2.59				1
11900N 9600E	š	23	36	77		7	4	649	7.51	10	5	ND	2	20	2	2	2	76	.16 .056		15	.22	37	.51	4 2.07				2
11900N 9625E	ŭ	19	22	56		8	5	516	8.17	21	5	M	2	16	2	ž	2		.16 .141	8	18	.33	51	1 M 1 A 2 2 2 4 1	3 2,65				3
	-	.,				•	-	2.0	••••	1 - - 1			-			-	-		1938	-				3500					-
11900N 9650E	4	9	31	66	1	9	8	390	6.33	9.	5	ND	2	56	.2	2	2	125	.49 .055	11	12	.64	40	.79	3 1.31	.36	.11		2
11900N 9675E	4	18	30	108	1. I¥	14	10	1658	6.74	9	5	ND	1	46	ંટ્ટ	2	3	77	.52 .091	11	16	.63	62	.29	4 2.81				· 2
11900N 9700E	ġ.	26	59	88	5.7	11	2		11.49	10	5	ND	3	16	·	2	2		.13 .065	11	25	.28	29	. 70	2 2.06				2
11900N 9725E	3	128	650		21.4	11	17		7.37	20	5	ND	2	32	.9	114	2	127	.32 .043	7		.45	98	.50	3 2.08			1 20200-000	3
11900N 9750E	2	42	101		4.9	10	10	1330		12	5	ND	1	12	ં્ડ	14		136	.21 .141	8	25	.34		11	2 3.61				1
	-			,						27	-		•		S.C.	• •	-		지 않았										
11900N 9775E	2	18	56	168	1.7	11	8	1895	7.50	18	5	ND	1	8	.2	2	2	103	.09 .102	10	23	.21	35	. 10	4 1.96	.02	.04	• 8¥	2
11900N 9800E	1	23	60	194	111	11		18915	8.82	. 17	10	ND	1	37	1.3	7	2	90	.59 .173	12	13	.39	139	.14	3 2.70	.08	.07	183	2
11900N 9825E	3	16	43	140	.6	12	29	3198	8.35	38	5	ND	1	24		5	2	113	.24 .107	9	22	.37	91	.20	5 2.71	.07	.04	• 2 Å	2
11900N 9850E	1	9	5	70		21	20	773	5.39	20	5	ND	1	112	.2	2	2	86	1.05 .086	9	8	1.57	64	61	3 2.01	.68	. 19) 🕮	1
11900N 9875E	4	17	38	114	1.2	15	10	844	10.55	- 13	5	ND	2	15	.2	2	4	167		8	30	.33	61		3 4.27	'.03	.03	5 881	1
	}																							828					
11900N 9900E	8	21	- 36	- 95	.7	6	1		17.52	52	5	ND	- 4	10	ં •ટ	2	5	94	.12 .042	9	- 31	.10	25	, 39	2 2.98			T 10. C 000	1
11900N 9925E	1	15	9	- 78	.2	17	9	315	7.22	-15	5	ND	1	26	ି . ଅ	2	2	140	.21 100	8	28	-54	55	- H	4 2.49			- Acro copo	1
11900N 9950E	1	22	16	150	5	22	20	1863	8.20	22	5	ND	1	15	- . 2:	2	2	104	.18 .141	7	33	.64	62	. 16	4 3.23			5 <u>884</u> .	2
11900N 9975E	1	8	26	238	- 1.1)	13	18	11166		11	8	ND	1	15	S. S.	- 4	- 3	105	.14 .126	10	18	.33	131	. 15	3 4.29			- 338	2
11900N 10000E	9	- 14	25	84	₽	8	1	647	9.91	20	5	ND	4	- 14	-2	2	2	84	.17 .066	16	14	.11	41	.50	3 2.58	.05	.06		- 4
										-	-						-	100	ं य	-		74		S. S.	7 7 / 6			. 828	
11700N 9000E	4	38	20	64	.3	21	4		10.05	35	2	ND	1		· •2:	2	2	128	.05 .120	7	49	.32	80), 13	3 2.45			0000000	14
RE 11900N 9850E	1	. 9	4	66	.1	20	19	699	5.14	21	5	ND		106	-2	2	2	83	.99 .084	9	-		62	_ .5 9	2 1.91		-		-
11700N 9025E	5	36	24	119	° -7	28	12	1046	8.51	24	5	ND	1	23	-2	3	2	71	.26 .096	19	- 34	.35	73	.21	5 2.41				
11700N 9050E	3	16	21	83	.8	12	14	1994	6.85	20	5	ND	1	23	.z	2	2	82	.27 .069	24	22			.38	5 2.37			 A state of the sta	2
11700N 9075E	3	26	17	58	.6	16	4	226	6.44	17	5	ND	1	13	्टू -3	2	4	86	.09 .087	13	32	.25	42	-30	5 2.78	.04	.04	• 33.\$	2
11700N 9100E	11	23	30	83		23	4	644	9.97	18	5	ND	1	10	.z	2	4	61	.08 .040	22	31	.42	21	.33	2 2.70	.05	.04	. X	8
11700N 9125E	5	26	16	56	1.4	17	4	207	9.51	21	5	ND	2	14	.2	ź	7	139	.06 .073	10	34	.30	44	28	3 2.41			1.000 1.201	9
11700N 9150E		14	23	69	.2	6	1		9.24	15	5	ND	2	6	.2	2	2	61	.06 .075	26	24	.10	19	.37	4 3.19		-		ź
11700N 9175E			22		.2	7	11	1133		42	5		5	13	.2	ź	ź	156	.12 .218		19	.29			2 5.31			- 195 Q.	2
	7	27 14	- 22 16	73 55	.2	8	4		9.56	52	5	ND ND	2	22	.2	4	2	153	.16 .087		14	.27	58	75	4 1.69			5 - O - C - 20-	3
11700N 9200E	'	14	10	22		ø	-	244	y.70	34	3		2	22	 €	4	2	123	. 10 .001	2	ΗΦ	.2/	20		4 1.07		- 04		
11700N 9225E	10	16	22	77	.5	10	2	264	8.85	13	5	ND	3	22	.3	2	2	111	.23 .067	16	16	.20	44	.68	3 2.01	.05	.04	\sim 1	2
11700N 9250E	6	23	17	59	.1	6	8		11.26	22	Ś	ND	1	15	.2	2	2		.09 .126		14	.16		12	2 2.56				2
STANDARD C/AU-S	17				7.1	72		1021		43	20	7	38		19.2	15			.47 .088	38				.09	33 1.86		. 15	the first state of the	48
	L								2.00																				
1																													

1

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

Page 4

Т

18/47

1

ACHE MALVYICAL

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2392

Page 5

1

19/47

ACHE ANALYTICAL											·																-		ACI	E ANALYT	ICAL
SAMPLE#	Мо рряі	Cu ppm	Pb Ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As	U ppm	Au ppm	Th ppm	Sr ppm	Cd	Sib pipm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	9a ppm	Ti X	8 ppm	AL X	Na X	K X	0000776	Au* ppb
11700N 9275E 11700N 9300E 11700N 9325E 11700N 9350E 11700N 9375E	5 5 3 3 2	24 24 27 19 27	21 14 29 18 20	97 84 78 81 92	.6 .5 1.3 .8 .3	29 25 9 15 42	9 8 21 22 15	210 580 1404	5.34 6.70 10.78 9.80 9.99	33 18 45 11 23	5 5 5 11 5	ND ND ND ND	2 1 2 1 3	7 8 10 11 6	.2 .2 .4 .5 .2	2 2 10 2 2	2 2 5 2 2	42 68 94 84 57	.05 .10 .31	.047 .051 .060 .114 .027	15 12 5 14 9	31 35 20 24 61	.46 .34 .20 .21 .62	33 38 32 30 33	.06 .10 .21 .05 .05	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.68 2.55 2.45 2.97 3.63	.01 .01 .01 .01 .01	.06 .05 .04 .03 .04	1111	4 3 2 3
11700N 9400E 11700N 9425E 11700N 9450E 11700N 9475E 11700N 9500E	2 3 6 4 5	47 33 27 26 29	9 31 76 15 35	90 86 198 76 137	4 .6 1.0 2 7	6 25 12 17	14 15 13 10 14	239 3867 391 221 604	11.78 9.95 9.68 8.39 8.83	2 23 48 16 28	5 5 7 7 7	nd Nd Nd Nd	3 1 2 1 2	13 8 14 15 21	.2 .2 .2 .2 .2 .2	2 4 2 2 2	10 5 2 4 3	106 90 61 109 96	.05 .16 .10	.066 .151 .096 .043 .080	20 9 6 10 12	14 27 46 26 28	.28 .15 .39 .22 .31	51 64 46 34 70	.19 .04 .04 .12 .26	4 2 2 2	3.48 2.61 2.92 2.69 2.43	.03 .01 .01 .04 .05	.04 .04 .04 .04 .06		2 1 3 4
11700N 9525E 11700N 9550E 11700N 9575E 11700N 9600E 11700N 9625E	3 3 3 4 3	33 11 17 27 16	48 16 10 35 7	59 77	15.8 .9 .7 2.3 1.0	18 7 9 17 7	18 11 9 12 7	1149 198	11.59 7.24 3.14 11.23 5.91	58 6 17 24 7	8 7 5 9 5	nd ND ND ND ND	2 2 1 4 1	8 15 41 8 15	.2 .4 1.1 .2 .2	5 2 6 2 2	7 2 4 3 2	98 157 74 80 115	.13 .37 .04	.081 .072 .068 .042 .049	10 8 9 7	25 18 11 26 17	.19 .21 .17 .29 .19	76 33 165 42 34	.04 .68 .19 .14 .37	2 2 2 3 2 2	3.60 2.73 .84 2.95 2.50	.01 .03 .04 .01 .03	.03 .03 .05 .04 .03	1	2 2 3 2
11700N 9650E 11700N 9675E 11700N 9700E 11700N 9725E 11700N 9750E	3 1 1 6 1	18 11 17 11 13	494 40 21 36 4	307 303	24.7 3.3 .7 1.5	6 15 12 8 7	21	3156	8.68 6.58 13.83 11.39 4.13	17 4 5 21 6	5 5 6 5	ND ND ND ND	1 1 2 11 1		9.9 1.1 .3 .2	19 3 2 3 2	4 7 2 2	116 92 122 71 54	.61 .09 .09	.192 .117 .078 .043 .053	14 8 8 10 6	8 16 18 19 9	.40 .73 .31 .09 .62	65 64 81 15 37	.09 .33 .03 .31 .28	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.19 2.29 3.70 4.71 1.42	.02 .20 .01 .03 .18	.05 .10 .03 .04 .08		2 2 2 3 2
11700N 9775E 11700N 9800E 11700N 9825E 11700N 9850E 11700N 9875E	2 1 5 3	20 25 21 14 16	17 13 11 6 10	134 145 145 300 93	.4 .6 .1 .8 .4	8 9 14 19 22	32 49	6567 4702 4571 21595 1350	6.59	7 3 10 5 14	5 5 5 5 5	ND ND ND ND	1 1 1 1	8 47 19 71 21	.2 .3 .2 2.4 .2	5 3 2 2 2	8 5 2 4 2	89 83 119 68 97	.98 .46 1.22	.188 .380 .187 .131 .042	14 9 6 25 7	13 9 20 14 30	.30 .42 .56 .42 .60	69 32 522	.09 .15 .32 .22 .17	5 2 2 2	3.50 1.56 2.16 2.51 3.00	.01 .07 .03 .08 .04	.03 .06 .04 .05 .03		2 3 2 3
11700N 9900E 11700N 9925E 11700N 9950E 11700N 9975E 11700N 10000E	1 4 1 3 1	59 24 9 9 12	8 18 3 14 5	176 206 71 69 53	1.3 .2 .2 .1 .1	18 24 12 8 11	31 41 24 11 14	1388 1789 791	4.13 10.97 5.41 4.77 3.43	7 57 9 29 3	5 5 6 5 5	ND ND ND ND	1 1 1 1	180 18 78 25 71	1.0 .2 .2 .2 .4	2 3 2 2 2	2 3 3 12 2	55 178 118 172 67	.72 .25	.462 .065 .091 .110 .080	8 7 6 4 5	15 35 15 20 8	.51 1.25 .98 .45 .65	111 114 49 39 34	.03 .10 .53 .47 .52	2 3	1.52 3.61 1.75 1.28 1.36	.05 .02 .30 .05 .21	.06 .05 .13 .04 .09	1	3 2 4 3 2
RE 11700N 9600E 11700N 10025E 11500N 9150E 11500N 9175E 11500N 9200E	3 4 5 4 7	25 21 23 16 21	32 19 14 6 21	148 141 63 42 81	2.0 .3 .1 .7 .1	16 17 10 8 16	12 27 11 7 11	681 240 123	10.49 9.96 9.25 5.91 8.68	26 40 14 19 16	5 5 8 7 5	nd Nd Nd Nd	4 3 1 1 4	9 10 18 18 8	.2 .2 .2 .2 .2 .2	2 2 2 2 2 2 2 2	2 7 5 2 2	75 89 88 103 79	.07 .15 .11	.040 .069 .052 .038 .033	8 9 15 10 10	25 23 26 21 34	.29 .69 .29 .16 .44	56 27 40		2 2 2 2	2.66 3.84 3.04 1.77 3.56	.02 .02 .05 .02 .01	.04 .03 .04 .03 .03	1	4 6 4 2
11500N 9225E 11500N 9250E STANDARD C/AU-S	3 6 19	7 24 58	3 14 37	21 59 132	.2 .2 7_4	5 16 72	4 11 32		2.95 12.20 4.01	26 19 41	5 9 18	ND ND 7	1 4 39	17 13 53 1	.2 .2 18.5	2 2 14	2 4 20	64 80 58		.026 .047 .092	17 8 39	9 40 59	.21 .25 .89	72 40 180	.15 .23 .09	2 3	1.65 3.03 1.90	.05 .02 .07	.07 .05 .15	1 1 11	2 2 55

1

ÅΑ
TT
ACHE ANALYTICAL

20/47 Page 6

1

ACRE ANALYTICAL					•					-																			ACHE ANALI	TTECAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		Ni ppm	Co ppn	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppn	Bi ppm	V	Ca X	(P) (*** X)	La ppm	Cr ppm	Mg X	Ba ppm	Ti X		l X	Na X	K U X ppm	Au* ppb
11500N 9275E 11500N 9300E 11500N 9325E 11500N 9350E 11500N 9375E	10 5 4 32 2	15 13 13 41 19	22 11 4 27 15	32 86 65 277 109	.1 1.2 .4 .1 .4	8 14 15 26 17	1 3 11 5 7	358 679 247	21.24 8.08 2.77 8.04 8.92	709 21 26 56 29	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	19 56 299 22 13	1.3 .5 .7 .2 .2	20 2 5 2 2	2 3 3 2 2		.72 3.70 .10	.059	7 28 12 13 13	5 14 6 11 19	.12 .23 .77 .14 .93	107 72 61	.05 .37 .35 .06 .20	2 1.6 3 1.7 7 1.4 2 1.1 2 3.0	78 -0 -4	.09 .33	.06 1 .05 1 .10 1 .03 1 .03 1	1 11 4 2 2
11500N 9400E 11500N 9425E 11500N 9450E 11500N 9475E 11500N 9500E	5 2 2 1 1	23 15 21 22 19	18 5 11 15 19	159 61 129 218 136	.4 .7 .2 .1 1.0	12 11 18 23 13	14 9 12 17 6	210 256 410	8.04 3.63 10.11 11.80 9.85	45 18 40 64 36	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	16 43 38 2 8	.2 .2 .2 .4	2 4 8 10 8	3 4 3 2 2	80 69 147 135 94	.30 .11 .01	.097 .063 .189 .098 .135	11 7 6 7		.28 .45 .51 1.47 .63	63 53 63 48 47	.16 .32 .03 .01 .03	3 1.6 5 1.0 3 1.7 2 3.1 2 2.9	8 8 3	.03 .18 .04 .01 .02	.04 1 .08 1 .04 1 .04 1 .03 1	2 1 2 2 2
11500N 9525E 11500N 9550E 11500N 9575E 11500N 9600E 11500N 9625E	2 2 9 1	23 22 17 11 20	10 25 43 27 11	95 92 174	1.1	13 16 15 9 10	10 7 25	613 1322 1597	7.92 9.65 11.73 10.03 6.70	29 30 91 137 49	5 5 5 5 5	ND ND ND ND	1 2 1 1	43 12 6 14 44	.2 .2 .2 .9 .2	2 2 3 2	2 2 3 2 2	148 77 144 145 133	.21 .03	.249 .728 .063 .099 .253	7 15 12 7 7	14 27 30 28 20	.34 .99 .64 1.31 .67		.16 .05 .40 .09 .23	5 1.7 2 2.7 2 2.6 2 4.5 4 1.8	5 1 9	. 13 .03 .02 .04 . 17	.05 1 .04 1 .02 1 .02 2 .05 1	3 7 2 3 1
11500N 9650E 11500N 9675E 11500N 9700E 11500N 9725E 11500N 9750E	1 3 4 2 2	48 20 20 20 19	16 14 7 13 10	186 79 57 126 124	1.4 1.0 .6 .8	16 10 19 45 44	13 7 5 10 8	480 196 421	6.55 10.49 5.17 6.65 6.30	14 18	5 5 5 5 5	ND ND ND ND	1 2 1 2 5	40 10 11 11 9	_8 _2 _2 _3 _3	3 2 2 2 4	2 3 4 3 2	62 156 134 89 66	.10 .09 .11	.123 .236 .058 .051 .047	14 7 12 7 8	13 24 38 52 44	.47 .36 .24 1.01 .90	348 40 34 61 59	.03 .36 .31 .07 .10	2 2.4 2 3.1 4 1.6 3 4.5 5 4.3	8	.10 .03 .03 .03 .03	.09 1 .04 1 .04 1 .04 1 .04 1	2 2 3 2 2
11500N 9775E 11500N 9800E 11500N 9825E 11500N 9850E 11500N 9875E	5 3 3 1 1	16 20 14 7 30	14 13 11 11 9	97 126 71 35 114	.1 .6 .4 .8 1.0	5 28 8 7 23	13 10 11 7 19	516 458 226	17.33 9.75 10.26 3.18 10.54	10 27 95 7 614	5 6 5 5 6	nd Nd Nd Nd	2 4 1 1 5	8 11 21 43 8	1.0 .3 .2 .2 .2	9 10 2 3	2 2 2 2 2	302 120 242 93 94	.09 .15 .38	.059 .055 .074 .066 .131	6 7 6 10	38 43 26 8 22	.84 .62 .57 .51 .49	50 34	.31 .11 .34 .72 .12	2 3.3 2 4.2 2 2.2 4 1.0 2 4.4	19 14 19	.05 .03 .09 .24 .03	.02 1 .05 3 .04 1 .08 1 .04 1	2 1 1 1 17
11500N 9900E 11500N 9925E 11500N 9950E 11500N 9975E 11500N 10000E	1 4 6 3 8	31 28 26 21 15	6 16 15 12 11	86 89 126 94 129	1.9 .6 .4 .5	20 6 8 23 5	43	322 5127 548	10.40 16.51 15.99 8.13 15.06	85 128	5 5 5 5 5	ND ND ND ND	1 2 3 1 2	13 13 8 20 5	.2 .7 .8 .2 .2	3 7 2 3 21	2 2 2 3	115 79 48 86 143	.04 .05 .21	.134 .061 .089 .057 .075	8 5 10 8 9		.61 .42 1.22 .74 .09	57 25 48 50 27	.08 .12 .11 .08 .24	2 3.5 2 3.5 2 6.5 4 2.6 4 1.9	6 5 0	.01 .02	.03 1 .03 1 .01 1 .04 1 .02 1	4 2 3 1
11400N 8950E 11400N 8975E RE 11500N 9600E 11400N 9000E 11400N 9025E	1 2 3 1 3	136 49 11 79 28	32 16 31 15 7	148 53 174 76 81	.6 1.0 .7 .2 .2	52 13 8 10 44	11 24	1569 1620	6.71 7.13 10.25 6.99 4.88	26 7 121 4 17	5 5 5 5 5	nd Nd Nd Nd	1 1 1 1	39 29 15 48 56	.2 .2 .2 .2 .2	4 2 2 3	2 2 3 2 2	53 101 145 78 46	.29 .08 .52	.103 .313 .108 .333 .044	11 8 6 8 13	40 18 28 21 43	.74 .40 1.34 .29 .69	995 108 120 499 86	.04 .36 .09 .20 .10	4 3.5 4 1.0 2 4.5 4 1.2 5 1.8	4 i9 i7	.02 .12 .04 .04 .04	.05 1 .06 1 .01 1 .04 1 .06 1	10 2 3 3 3
11400N 9050E 11400N 9075E STANDARD C/AU-S	3 2 19	54 207 58		67 172 131		34 36 74	50		5.04 7.81 4.00	17 37 41	5 5 18	ND ND 7	1 1 38	17 18 52	.2 .2 19.1	2 2 15	4 2 21	51 40 58		.185 .188 .091	9 11 38		.52 1.04 .89	42	.05 .05 .09	5 1.6 3 2.6 35 1.9	0	.01 .04 .08	.07 1 .04 1 .15 10	3 6 46

1

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

1

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2392

Page 7

T

21/47

MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag: ppm:	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	2	La ppm-	Cr ppm	Mg X	Ba ppm	11 *	B ppm	Al X	Na X	K X	U COM	
400N 9100E	1	106	23	140	.6	71	25	1258	5.23	27	5	ND	1	12	3		2	35	.08	.086	9	46	.98	π	.01		2.71	.01	05		
400N 9125E	4	33	18	84	.2	33	7	643	7.77	26	5	ND	3	19	.2	2	ž	81		.075	10	39	.38	69	.33		2.04	.02	.05 .02	83.	1
400N 9150E	Ż	16	10	50	1	8	8	271	3.08	3	5	ND	1	33	2	ž	2	85		.075	6	10	.30		.42		.98			set.	ļ.
400N 9175E	3	30	12	70	1.1	17	12	1023	8.75	24	ś	ND	1	12		ź	ź	66		.110				52				.14	.06	33 4 8	
00N 9200E	Ĩ	36	13	128	.4	50	7	292	7.44	24	5	ND	i	10	.2	ž	2	59		.050	12 9	33 51	.25 .77	41 56	.14 .06		2.35 2.87	.03	.04 .05		
00N 9225E	4	18	15	60		8	6	256	7.78	16	5	ND	2	18	.2	2	2	117	.12	.060	6	15	.23	62	.43	2	1.66	.07	.05		i.
00N 9250E	6	6	13	31		7	3	114	1.84	40	5	ND	1	21	.2	2	2	53		.038	14	16	.24	54	.25		1.25	.08	.06	32 4 .	
DON 9275E	3	13	7	36		7	4	146	5.12	20	5	ND	1	28	.2	ž	2	147		.043	10	13	.33	58	.42		1.62	. 15	.04	888	
00N 9300E	2	19	4	61	.8	8	7	194	8.80	12	5	ND	ź	29	ž	ž	2	117		.061	9	13	.33	85	.27		2.22	.11	.05	200	
DON 9325E	16	18	10	48	.6	7	ż	124	9.40	382	5	ND	1	22	.2	11	Ž	58		.243	12	7	.17	55	:12		1.41	.06	.05	S.	
DON 9350E	3	24	7	72	-3.4	12	29	1100	5.91	7	5	ND	1	30	7	2	2	84	.31	.877	19	14	.48	35	.63	4	5.84	.14	.06		
DON 9375E	5	22	14	419	1.3	39	10	3166	5.97	122	5	ND	4	36	1.8	2	2	19	.34	.064	36	16	.25	139	.12		3.75	.06	.07	in a state a st	-
DON 9400E	3	29	52	230	1.0	44	12	663	6.39	43	5	ND	5	11	.2	3	2	65	.06	.040	9	39	.65	59	. 13		3.77	.03	.04	ંટ્રેટ	-
ON 9425E	2	29	48	184	2.0	27	6	465	11.97	43	5	ND	2	9	.2	2	2	68		.077	8	39	.40	71	.02	_	3.49	.01	.03		
ON 9450E	1	108	33	167	-9	28	5	447	11.58	40	7	ND	1	6	2	3	2	52		.058	12	30	-48	46	.05		3.86	.01	.04	84	
ON 9475E	1	11	9	16	.3	2	1	2	15.79	131	5	ND	1	47	.2	28	2	24	.01	.306	6	3	.03	20	.01	3	.27	.06	1.40	XX:	
ON 9500E	8	20	16	73	1,8	10	3	212	9.73	37	5	4	2	19	.2	8	2	110	. 15	. 109	13	12	.13	26	.33	4	1.15	.04	.08		
1400N 9400E	3	28	56	234	.9	46	12	641	6.59	- 410	5	ND	5	12	.2	Z	2	68		.041	9	39	.68	56	13	-	3.75	.03	.04	STR.	
ON 9525E	2	30	24	116	3.9	12	9	941	12.09	59	5	ND	1	16	.2	2	2			.133	7	31	.53	68	.07		5.83	.03	.03		
ON 9550E	1	16	16	125	.3	17	5		13.14	13	5	ND	1	7	2	ž	3	206		.209	6		1.55	26	.10		4.00	.02	.01		
ON 9575E	6	25	34	108	.1	26	7	380	10.76	32	5	ND	1	12	.2	2	2	107	.08	.048	10	48	.58	43	.09	2	2.95	.02	.02	÷	
ON 9600E	9	27	22	83	. .4	14	4	283	7.02	34	5	ND	1	24	.2	4	3	122	.19	.051	15	19	.15	50	.26	2	1.45	.02	.04	88 P.	j.
ON 9625E	1	165	648	480	1.4	10	20	2266	11.61	88	5	ND	1	6	1.7	7	ž	123		.063	7		1.26	58	.02	-	6.73	.01	.03	22.62	
ON 9650E	8	29	24	453	1.5	29		14773	4.49	44	5	ND	1	94	3.7	ż	2		1.19		14	17	.47	429	.05		3.43	.05	.05		:
ON 9675E	2	31	19	167	.3	11	56	1286	8.19	26	5	ND	i	7	.2	Ž	2	52 52		130	12	9	.42	75	.01		5.44	.01	.04		į
ON 9700E	3	41	28	119	.6	15	9	450	5.95	37	5	ND	1	69	.4	Z	3	86	.62	.117	10	16	.54	336	. 19	3	1.98	.06	.04		
ON 9725E	4	22	22	84	2.4	11	5	391	7.02	20	5	ND	1	9	.2	2	4	155	.06	.029	9	34	.29	54	.31	2	1.92	.02	.02	1	
ON 9750E	4	11	13	55	-1	11	6	202	8.64	18.	5	ND	1	22	.2	2	2	138		.052	7	27	.42	35	.38	_	2.17	.09	.04	2 (
ON 9775E	7	18	27	115	1.4	28	12		11.15	1316	5	ND	3	8	.2	ž	3	145		.044	ġ	37	.48	37	.26		4.31	.02	.01	388 Q.	
ON 9800E	9	15	51	67	.9	8	2		9.79	37	5	ND	5	6	.2	ž	6	113		.038	13	26	.12	34	.32	_	5.02	.03	.04	23.	
ON 9825E	2	22	17	205	1	10	33		11.21	256	5	ND	1	21	.2	2	2	145	.21	. 136	11	15	1.47	110	.05	2 :	5.07	.11	.07	<u> </u>	
ON 9850E	5	25	9	236	.1	9	35	2844	11.03	60	5	ND	1	7	.4	2	2	76		.218	18		3.39	61	.01		3.77	.01	.01	2.4	
ON 9875E	6	17	12	109	`_ ⊾ †_	5	10	393	8.75	26	5	ND	1	8	2	ž	ž	91		.078	9		1.19	58	.04		6.00	.02	.01	(a) (s) (
ON 9900E	2	17	10	138	.4	9	8		11.14	31	5	ND	ź	15	2	z	2	67		.100	6		1.15		.11		5.69	.05	.02		
ON 9925E	2	51	30	161	.3	20	28	- • -	7.31	97	5	ND	ī	25	.3	7	2	59		.104	11	16	.87		.03		2.33	.05	.08	1	
ON 9950E	6	16	17	77	.7	12	7	189	12.48	134	5	ND	5	9	.2	5	2	66	.07	.097	8	27	.42	28	.13	2 5	5.13	.04	.03	្ន	
ON 9975E	19	12	7	102	.3	9	13	299	13.88	141	5	ND	3	9	.2	27	2	148		.063	6	13	.41		.32		5.53	.03	.02	Ύ́ É	
DARD C/AU-S	18	59	38	131	7.3	73	32	1045	3.94	41	20	7	39	53	19.3	14	20	57	.48		39	58	.89	181	.09	33 1		.08	.14	11	

Page 8

22/47 .

	·····		=																					· · · · ·					··· · ·	C. 23.	TICA
MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag. ppn	Ni ppm	Co ppm	Mn ppm	Fe X	As	U ppm	Au ppm	Th ppm	Sr: ppm	Cd	Sb ppm	Bi ppm	V ppm	Ca %	2 X	La ppm	Cr pp#	Mg X	Ba ppm	ा। ४	B ppm	AL X	Na X	K I	200100	AL PI
		FF						.,			<u> </u>												.								
400N 10000E	7	10	- 14	122	-1	10	15		10.30	16	5	ND	4	17	.5	2	5	124		.050	13	12	.24	63	. 15		2.59	.02	.03	8 X -	
400N 10025E	2	14	6	92	.2	3	14	202	7.33	-17-	5	ND	2	5	्र.२	3	2	92		. 185	6	8	.10	41	.03		5.25	-01	.02	્રા	
400N 10050E	5	10	10	48	- 1	6	10	185	7.93	2 11 .	5	ND	3	23	⇒.2`	2	7	131		.040	6	13	.20	31	.70		1.63	.05	.04		
400N 10075E	4	17	11	91	· .8	3	10	119	12.98	- 24	5	ND	2	13	2	- 4	2	69	.07	.234	5	9	.23	39	. 35	5	2.16	.02	.03		
400N 10100E	1	9	5	53	· .6	11	15	345	3.79	2	5	ND	1	105	.3	2	2	64	.75	.082	6	8	1.01	59	.54	4	1.60	.33	.13		
400N 10125E	6	23	10	87	. 3	5	13	1351	6.17	50	5	ND	1	11	5	2	2	28	.06	.092	19	8	.06	28	. 14	5 (5.86	.01	.01		
00N 10150E	6	21	14	182	1	16	13	308	6.58	38	5	ND	2	12	S 5	3	5	42		.049	7	14	.80	41	.03	4 1	5.06	.01	.03	÷**	
00N 10175E	26	33	27	329	3.6	29		285	7.11	34	5	ND	3	7	3	6	2	54		.059	ġ	20	.41	71	.04		2.22	.02	.03	- A	
00N 10200E	10	10	7	55	3.8	4	í.	140	2.93	ः उ	5	ND	1		1.4	6	2	-	1.37		6	9	.17		.51		.60	.04	.03	8 - -	
00N 10225E	3	11	2	200	.1	20	5	269	1.41	2	5	ND	1	157	3.6	2	ž		4.09		ŭ	ś	.32		17	5	.73	.08	.04	1	
	_	••	-	200			-			· · ·	-						-														
11300N 9175E	3	20	20	- 77	.3	12	20	649	7.97	27	5	ND	2	22	4	5	3	83	.29	.066	8	21	. 39	41	.40		5.94	.04	.03	3 .	
00N 10250E	3	12	2	55	1.6	9	11	224	3.21	20. 2 0	5	ND	1	66	<u>्र.</u> 5	2	2	52	.45	,068	6	8	.64	64	- 44		1.45	.19	.09	- 18 C	
00N 10275E	34	26	18	224	1.7	34	7	110	6.22	26	5	ND	2	6	.2	- 4	2	100	.02	.035	5	17	. 18	45	. 03	2	2.16	.01	.02		
00N 10300E	55	50	11	288	1.0	64	7	95	5.49	30	5	ND	1	16	.4	5	2	60	.15	.086	4	13	.30	33	. 03	2	1.72	.02	.02	ંદ	
00N 10325E	39	35	26	308	1.9	53	8	404	5.32	24	5	ND	1	5	<u>्</u> र5	4	2	73	.02	.095	6	13	.67	41	.03	3	2.43	.01	.02		
00N 10350E	40	37	24	383	1.9	52	7	139	6.30	26	8	ND	1	8		4	4	73	01	.049	3	16	.25	39	.03	2	2.35	.01	.02		
00N 10375E	26	39	- 24	177	7.0	9	5	58	4.68	- 53	5	ND	4	~ ~	.2	9	2	97		.063	ž	13	.09	100	.01		1.55	.01	.03		
	4	44	•	81	.7	11	10	366	7.32	95	5	ND	1	15	.2	13	ź	49		.077	6	8	.12	36	.07		1.01	.02	.03	ŝ.	
SOON 9150E	-		27								5		•		.2	7	2	88		.069	8	21	.40		.40		3.99	.04	.03		
500N 9175E	3	24	24	76	4	12	21	680	8.56	30	5	ND	23	19 9	2	ź	ź				6	22	.14	43	.05		2.98	.03	.03		
100N 9200E	3	15	39	106	.2	16	17	567	9.18	43	2	NÐ	2	У	4	2	2	69	.07	.034	•	~~	. 14	43	.03			.03	.05		
00N 9225E	2	17	10	87	.1	10	15	285	11.35	14	5	ND	2	28	.2	2	2	78		.052	6	17	.84	42	.22		5.29	.08	.04	<u> </u>	
00N 9250E	3	21	20	79		14	12	300	11.62	18	5	ND	- 4	11	.2	2	2	97		.048	7	43	.25	33	.27	-	5.95	.03	.02	9. J	
00N 9275E	4	18	19	69	.6	6	15	333	10.36	22	6	ND	3	11	.2	2	2	- 79	.07	.071	6	28	.22	33	्. 14	4.	5.70	.03	.03	્યા	
00N 9300E	4	23	13	98	.3	6	15	334	10.15	29	5	ND	2	5	· .2	3	2	60	.02	.185	8	13	.22	34	.05		5.22	.01	.02	33 1 -	
00N 9325E	5	25	25	121	- 1	32	11	326	7.73	28	5	ND	2	7	2	2	2	59	.04	.033	11	38	.52	45	. 10	8	2.42	.01	.05	3 - -	
00N 9350E	3	14	26	56	· .5	6	15	750	5.22	. 8	5	ND	1	23	.2	3	3	122	14	.054	7	16	.30	40	ંદુ	5	1.52	.06	.07	÷.	
00N 9375E	1	26	14	89	.1	ÿ	17	. –	12.17	ž	5	ND	1	10	.2	ž	2	122		.040	6	27	.19	52	.03		2.90	.01	.04	÷1	
00N 9400E	2	11	24	61		8	10	417	7.86	6	5	ND	ż	14	.2	2	2	131		.083	ž	21	.25	71	.63		2.50	.04	.06	1 i -	
00N 9425E	5	11	23	66		7	10	253	8.48	23	5	ND	2	4	.2	3	5	176		.092	13	26	.21	63	17		2.39	.01	.03	8 i -	
	8	18	35		1.2	3	10		10.79	21	5	ND	8	5	.2	2	3	60		.061	16	26	.08	23	. 18		4.18	.02	.04	39 .	
00N 9450E	°	10	33	/0	1.1	2	10	202	10.79		2	WU	0	2		2	J	00	.02	.001	10	20	.00	25	* 10		4. IU	.02			
00N 9475E	5	27	42	96	.2	20	11		10.56	98	5	ND	Z	6	.2	2	5	111		.199	12	30	.15	50	18		2.23	.01	.03		
00N 9500E	2	13	13	61	.6	8	10	230	6.16	20	5	ND	1	10	.2	2	2	143		.104	12	20	.29	40	<u>, 15</u>		2.00	.02	.03		
500N 9525E	5	17	25	71	1.3	7	10	245	9.42	- 44	5	ND	- 3	5		4	6	168		,047	10	21	. 14	43	.28		2.18	.01	.03	CR.	
500N 9550E	2	25	30	183	.7	29	20	760	8.33	88	5	ND	- 3	- 3	-2	5	2	90		.099	10	26	.95	53	.02		4.20	.01	.04		
00N 9575E	3	15	20	84	.2	12	12	26 6	8.85	38	5	ND	Z	8	: .2	4	2	122	.04	.059	10	33	.27	39	- 17	2 3	2.75	.01	.03	J.	
00N 9600E	2	23	151	157	.7	7	41	2692	11.23	101	5	ND	3	6	.2	14	2	122	.05	.321	8	19	.45	55	17		5.28	.02	.02	۰. ۲	
00N 9625E	1	16	26	101	.4	8			11.30	129	5	ND	2	11	.2	12	3	237	.07	.734	7	34	.71	47	31	4	3.26	.03	.03	1 t	
ANDARD C/AU-S	19	59			7.5	70			3.99	42	19	7	39		18.4	15	19			.090	39	58		180			1.89	.07	.15	ា	

23/47 Page 9

ï

			_									<u> </u>			_														
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Ço ppni	Nn ppm	Fe %	As ppm	U Mqq	Au ppm	Th ppm	Sr ppm	Cd	Sb ppm	81 ppm	V ppm	Ca P % %		Cr ppm	Mg X	Ba ppm	TI X	B ppm	AL X	Na X	K X p	W Au pre pp
1300N 9650E	1	9	9	78	.6	7	18	938	10.70	141	5	ND	6	11	-2	12	2	209	.11 145	6	19	2.21	111	.01	3 3	5.24	.02	.04	1
1300N 9675E	1	11	15	54	8	10	10		3.69	9	5	ND	2	45	.Ž	2	2	64	.42 .131	· 3	13	.63	37	.38		1.49	.15	.08	1
1300N 9700E	4	46	19	66	.6	10	21		13.48	71	5	ND	5	13	.2	6	3	231	.02 .243	15	20	.33	79	.07		5.61	.01	.04	ŧ۲.
1300N 9725E	2	15	5	74	1.0	9	12		6.38	25	5	ND	3	67		4	2	119	.65 .071	5	9	.46	104	. 33	2 '	1.50	.12	.06	1 - C
1300N 9750E	Ž	25	18	67	4.0	9	15		10.08	113	5	ND	Ž	23	.Z	4	2	149	.17 .189	6	24	.73	105	. 10		5.11	.07	.05	
1300N 9775E	1	27	8	93	. ,9	19	15	551	4.82	23	5	ND	5	63	.2	7	2	80	.81 .074	8	25	.82	118	.56	4 2	2.75	.07	.06 🖗	2
1300N 9800E	7	18	12	154	1	11	18	1912	8.44	31	5	ND	- 3	37	5.	6	2	55	.52 .051	16	9	1.66	130	.04	3 2	2.21	-01	.02 👋	1
1300N 9825E	28	15	7	52	3.	6	5	127	5,56	103	5	ND	2	19	.2	- 14	2	102	.09 .062	8	9	.08	41	.23	2	.71	.03	.02 🗟	8 1 8
1300N 9850E	1	22	12	92	.7	5	10	708	8.30	: 12	5	ND	4	23	.2	3	2	71	.15 .310	5	8	.82	46	. 15	2 2	2.20	.02	.03 🔅	÷.
1300N 9875E	3	31	11	57	.9	6	16	147	9.10	12	5	ND	6	23	े.2	11	2	120	.12 .064	10	14	.25	24	<u>_</u> 17	5 1	1.74	.04	.03 🔅	1
1300N 9900E	3	28	13	72	2.3	7	10	251	9.57	14	5	ND	7	23	.2	8	2	72	.16 .177	10	13	.43	40	.12	4 3	5.66	.01	.03 🖏	1
1300N 9925E	1	27	2	49	.6	8	7	318	8.15	45	5	ND	6	16	2	16	2	79	.09 .107	5	21	.06	71	.07	5 3	5.26	.01	.03 📎	ેટ્રે
1300N 9950E	4	18	9	39	.3	13	16	177	4.96	97	5	ND	5	17	.2	13	2	106	.14 .073	6	11	. 18	23	. 4 1	2 '	1.02	.05	.04 🖏	8 C
1300N 9975E	4	23	7	107	. "Z	14	18	293	8.02	50	5	ND	3	13	.2	7	2	61	.08 .111	8	15	.35	68	.02	2 3	5.31	.01	.03 🔅	1. S
1300N 10000E	4	36	7	47	3.1	7	7	186	11.94	18	5	ND	4	25	-2	6	5	85	.10 .134	5	22	. 18	64	.53	4 2	2.01	.04	.04 🖉	
1200N 9075E	1	112	38	224	1.2	64	36	1428	5.81	50	5	ND	5	18	.5	7	2	35	.19 .124	10	37	.75	95	.01		1.84	.01	.06	<u>.</u>
1200N 9100E	1	31	- 4	82	÷ 18	12	9	301	2.89	< 5	5	ND	- 4	50	.2	3	2	43	.50 .108	5	7	.40	81	. 29	3 '	1.02	.09	.04 🛞	Ú.
1200N 9125E	1	22	4	61	. 5	t7	19	509	4.48	5	5	ND	3	108	.2	2	2	80	1.05 .098	5	12	1.30	71	.61	3 '	1.74	.41	. 17 🖄	8 1
1200N 9150E	3	39	26	126	6	24	12	813	7.25	26	5	ND	4	28	.2	7	2	89	.26 .075	10	25	.38	56	17	4 2	2.70	.04	.04 🖄	2
1200N 9175E	3	33	24	119	1	40	9	236	6.78	25	5	ND	4	7	2	2	2	78	.03 .024	7	51	.57	69	.09	2 3	5.66	.01	.04 🧕	1
1200N 9200E	4	29	14	115	.2	16	7	232	9.75	26	5	ND	5	14	.2	6	2	132	.06 .032	8	38	. 18	56	. 16	2 2	2.44	.01	.02 🖉	
1200N 9225E	2	33	7	60	. 8	19	12	264	9.14	15	5	ND	4	18	.2	7	2	81	.13 .086	7	41	.29	42	2.11	2 3	5.09	.04	.03 🔅	2
E 11200N 9400E	3	22	21	99	.1	14	54 (21059	7.58	· 7	5	ND	15	34	.5	2	2	104	.31 .084	6	30	.40	142	. 48	2 2	2.92	.09	.08 🔅	<u>ال</u> (
1200N 9250E	4	34	8	62	.3	19	9	458	10.00	24	5	ND	7	12	.2	8	2	121	.08 .074	10	49	.24	41	13	3 2	2.63	.02	.02 🔅	2
1200N 9275E	2	36	13	52	4	11	7	665	8.27	20	5	ND	3	12	.2	5	2	70	.10 .065	5	29	.09	35	.02	2 3	2.20	.01	.06 👸	1
1200N 9300E	5	16	18	30	.1	5	3	180	10.46	15	5	ND	8	9	.2	2	3	90	.05 .048	6	36	.06	23	.30	2 3	5.67	.02	.04	÷.
1200N 9325E	2	56	8	67	.5	5	16	1020	18.49	11.	5	ND	4	15	.2	6	2	170	.11 141	6	14	.27	46	.09	6 2	2.93	.01	.04	ौ
1200N 9350E	7	26	23	62	. 1-	9	5	262	9.35	- 13	5	ND	11	8	.2	14	4	87	.05 .039	10	34	. 10	19	. 50	54	4.26	.04	.04	3
1200N 9375E	2	13	19	66	.6	6	8	372	5.02	68	5	ND	6	14	.6	13	2	135	.12 .050	12	15	.30	77	. 10	4 1	2.34	.03	.05 🔅	1
1200N 9400E	4	27	24	101	·· _1	15	56 3	21206	7.82	11	15	ND	5	33	-6	2	3	106	.33 .093	6	33	.42	134	.49	3 2	2.86	.08	.08 🖉	:¶
1200N 9425E	3	32	14	90	.1	9	12	994	9.05	28	5	ND	1	26	.2	4	3	93	.60 .101	6	20	.29	57	.20	2 3	2.10	.03	.04 ိ	Ĩ.
1200N 9450E	ž	24	13	51	.8	9	8	304	3.58	8	5	ND	4	39	.3	2	4	114	.30 .089	3	11	.28	71	. 81	3	.88	.08	.07	ોં
1200N 9475E		27	28	80	: 3	19	7		10.93	23	5	ND	5	14	2	- 4	Ż	124	.07 .062	11	51	.38	38	.29		80.5	.01	.02	÷Ê –
1200N 9500E	1	24	14	115	.3	20	12		8.90	15	5	ND	4	16	.2	Ż	Ž	102	.17 .078	6	23	.63	47	.12	2	3.18	.03	.04	ŝî –
1200N 9525E	2	29	16	74	.1	21	11		12.17	32	5	ND	4	9	.3	3	2	165	.03 .077	8	48	.27	40	.09		5.82	.01	.02	4
1200N 9550E	2	25	24	97	1.9	11	15	96 2	12.01	65	5	ND	6	12	.2	8	2	96	.07 .205	8	25	.76	49	.03	2 3	3.16	.01	.05	1
1200N 9575E	3	27	20	80	1.2	31	13		9.86	36	5	ND	5	13	.2	4	2	79	.08 .237	. 8	47		49	.09		2.69	.01	.03	1
STANDARD C/AU-S	19	60	37				31	1037		42	19	7	40		17.2	15	19	59	.48 .090		62	.88	176	.09		1.86	.07		11 4

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

.

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2392

Page 10

i

24/47

ACHE ANALYTICAL																								<u> </u>				ACHE ANALY	TTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Со ррт	Mn ppm	Fe A X pp	500 C	Au ppm	Th ppm	Sr ppm	Cd ppn	Sb ppm	Bi ppm	V ppm	Ca X	P *	La ppm	Cr ppm	Mg X	8a ppm	TÎ X	8 ppm	AL X	Na X	K M X ppm	Au# ppb
11200N 9600E	1	9	19	232	.1	12	6	219	11.68 13	5 5	ND	1	8	.2	17	2	- 99	.07	.086	5	19	1.29	92	.04	- 4	4.42	.01	.05 1	1
11200N 9625E	1	10	- 19	218	- 1	13	13	819	11.98 9		ND	3	1	.2	13	2	127		.166	9		1.23	96	.01		5.43	.01	.04 1	1
11200N 9650E	1	10	13	84	1	8		1270	9.33 94		ND	1	22	ંટ	2	2	197		,132	5	26	.71	45	.36		3.20	.07	.03 ू 1	3
11200N 9675E	1	20	12	75	8	12		1053	8.92 4		ND	1	16	2	4	2	162		.098	6	32	.79	85	- 16	-	3.24	.02	.03	
11200N 9700E	1	13	6	89	-1	(17	3101	8.20 1	ງ 5	ND	1	37	.2	2	2	163	.48	,213	7	30	-71	47	-20	۷.	2.48	.08	.03	1
11200N 9725E	2	18	24	98	: .3	18	5	316	13.04 > 5	5.5	ND	2	7	.2	7	2	87	.03	:047	6	33	.29	54	ોં	-	2.85	.01	.01 2	1
11200N 9750E	16	15	17	- 77	.9	7	3				ND	1	22	.2	11	2	44		.203	9	14	.09	84	.08	-	3.50	.03	.03 1	4
11200N 9775E	12	16	24	79	1.2	8	2		10.81 10	· .	ND	4	14	.2	8	2	52		118	11	17	.12	53	- 13		3.13	.02	.04 1	1
11200N 9800E	3	15	16	80	.2	8	-		5.22	-	ND	1	47	.2	2	2	59		.173	13	12	-33 -19	111 34	<u>.40</u>		1.63	.09	.05	1
11200N 9825E	8	23	32	83	2.6	8	1	493	14.17 2	<u>(</u>) >	ND	4	8	.2	2	4	78	.05	.228	13	18	- 19	-34	.43	2	2.31	.02	.05 👘	1
11200N 9850E	1	17	14	180	.2	22	24	871	9.44 .4	5	ND	3	2	.2	7	2	52	.01	.083	8	21	1.18	33		2	5.12	.01	.04	1
11200N 9875E	5	26	23	94	1.2	13	5	-	12.34 5 3		ND	2	9	.2	2	2	81		.088	8	27	.30	28	. 13		3.30	.01	.02 1	1
11200N 9900E	5	- 29	26	97	.6	6	15		10.17 1		ND	2	12	.2	2	2	213		.096	5	5	-21	27	.95		1.32	.02	.03 1	2
11200N 9925E	1	15	14	49	1.0	11	5		5.95 1		ND	1	30	.2	2	2	134		.082	777	10	.23	63 39	.64 .52	-	1.69	.03	.02 1	2
11200N 9950E	2	11	13	57	1.0	7	4	265	6.95	כיב	ND	2	15	-2	2	2	131	.15	,113	(15	- 12	39	~76	3	1.67	-02		ı
11200N 9975E	10	41	19	181	2.5	7	15	468	12.12 3	5 5	ND	3	10	.2	8	2	51	.15	.274	11	9	.22	33	.20	3	5.39	.01	.04 3	1
11200N 10000E	4	12	3	60	1.8	9	9	243	3.31 1	5 5	ND	1	61	,2	2	2	46	.45	,108	5	- 4	.41	- 44	.33	3	.97	.16	.08 👘 🚺	1
11200N 10025E	6	25	14	42	1.2	6	1		18.18 12		ND	- 3	19	·2	2	2	59		.469	9	8	.18	75	. 19	_	1.76	.04	.07 1	1
11200N 10050E	19	27	16	190		19				-	ND	1	8	4	7	2	93		.184	10		2.04	42	.07		4.04	.01	.02	2
11200N 10075E	28	31	22	256	2.0	35	10	2641	8.27 5	5. 5	ND	1	>	∿ x 4	3	2	117	.03	, 126	13	15	3.94	27	.04	2	4.47	.01	.02	2
11200N 10100E	11	17	19	114	1.9	11	2	813	10.29 2	2 5	ND	3	17	.2	2	2	59	.17	.251	16	18	.12	35	.26	2	2.26	.04	.05	1
11200W 10125E	19	31	24	221	3.2	30	8	540	7.66 2	5 5	ND	2	18	S5.	2	2	61	- 17	.070	8	16	.36	67	. 16	2	3.64	.03	.03 🔄	2
11200N 10150E	37	41	22	339	3.6	43	6		7.90 4		ND	2	12	.6	- 4	2	57		.080.	11	19	.35	39	.03	_	5.10	.01	.02 1	3
11200N 10175E	31	28	15	268	.8	27	2		7.32 3	-	ND	1	10	.2	6	2	121		.027	9	13	.08	32	् । (1.40	.02	.02	2
11200N 10200E	30	37	29	242	1.8	47	5	173	8.32 2	B5	ND	5	11	2،	2	2	55	.06	.070	6	23	.41	37	.14	2	3.57	.03	.03	۲
11200N 10225E	30	44	33	316	2.7	40	3	170	6.98 3	f: 5	ND	2	9	.4	7	3	68	.04	.085	6	16	.61	44		2	3.23	.02	.03	4
11200N 10250E	17	26	14	78	1.9	13	2	127	7.57 1	5 5	ND	2	18	.2	- 3	2	103	.10	.064	6	16	.24	23	.47)	2	3.25	.05	.03 1	1
11200N 10275E	52	38	25	217	+ • •	30	2	503	7.34 4		ND	1	14	-4	7	2	108		,145	17	17	.63	28	.02		2.07	.01	.03 1	2
11200N 10300E	12	16	5	96	.8	15	9	1.1	+	2 5	ND	1	57	.2	2	2	99		.074	6	10	.66	42	.44		1.31	.29	.09	1
11200N 10325E	36	24	12	108	1.2	16	4	293	5.96 .1	5 5	ND	3	21	.2	2	3	98	. 16	.093	10	15	.41	43	-43	5	3.77	.06	.02	2
11200N 10350E	13	23	27	204	3.7	17	1	275	10.57 2	5	ND	8	9	.8	2	2	57	.04	.084	9	29	.16	25	. 16	2	6.60	.02	.02 1	3
11200N 10375E	16	23	15	231	2,9	22	1	362	7.71 2	5 5	ND	5	11	.9	3	4	60	.05	.125	9	27	- 18	26	, 16	2	4.68	.02	.03 1	2
11200N 10400E	40	33	15	323	2.5	46	1	117	8.59 3	•	ND	2	8	×4	4	3	93		.036	- 4	22	.32	45	- 13		2.89	.02	.01 2	2
11200N 10425E	11	18	14	69	2.5	9			10.98 . 1	-	ND	5	25	- 5	2	2	87		,036	7	18	.23				1.83	.10	.05 1	1
RE 11200N 10325E	35	25	11	109	1.5	17	5	303	5.88 2) 5	ND	3	20	.2	4	3	99	.16	.092	11	15	.40	42	÷ 4 4	5	3.87	.07	.04 2	. 2
11100N 9350E	1	20	13	94	. 1	20	5	321	10.76 2	5 5	ND	2	11	.2	2	2	108	.07	.027	7	36	.37	52	19	2	3.47	.03	.01 🔆 1	1
11100N 9375E	1	8	12	101	1	8		1982	10.93 1		ND	2	16	2	2	2	182	.31	.040	8	10	.30	126	.52		2.43	.04	.03 1	1
STANDARD C/AU-S	17	58	39	132	7.3	75	31	1038	3.93 4	ž 19	7	- 38	52	18.6	15	20	57	.48	,090	39	58	-88	176	.09	33	1.87	.08	. 15 🔆 HT	49

Page 11

25/47

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	iN anqq	Co ppm	Min spipilit	Fe %	As ppm	U niqq	Au ppm	Th ppm	Sr ppm	Cd ppn	sb ppnn	Bi ppm	V Maqq	Ca X	Р. Х		Cr ppm	Mg X	Ba ppm	- C.22	B Pipim	Al %	Na X	K H	Au* ppb
11100N 9400E	9	16	13	71	.1	8	8	372	8.75	8		ND	4	12	.2	2	2	126	.11	.040	15	17	.12	41	.49	5 2	.53	.02	.03	2
11100N 9425E	3	13	14	68	1	8		555	7.06	Ż	5	ND	2	30	.2	4	ź	181		.046	8	17	.37	54		3 1	.68	.09	.06	2
11100N 9450E	6	23	27	65	1	6			6.42	2	5	ND	Ž	17	.2	2	2	131	.16	.065	10	12	.15	62	.53	2 1	.33	.02	.06 🔆 1	2
11100N 9475E	2	28	40	118	.3	11	-		11.02	ંં 🤹	5	ND	2	12		2	2	77		.127	9	23	.21	57		2 3	. 15	.02	.04	៍ 1
11100N 9500E	3	20	14	56	.1	7			4.42	5	5	ND	1	18	.2	2	2	97	. 16	.051	14	14	.17	203	.15	2 1	.65	.01	.07 1	3
11100N 9525E	7	55	24	100	.2	15	6	471	6.67	4	5	ND	2	37	. . .	2	2	53	.32	.033	26	14	. 18	129	.45	3 1	.41	.05	.05	1
11100N 9550E	2	21	11	62	f	9	11	496	6.97	5	7	ND	1	- 36	.2	2	2	164	.36	.048	6	16	.33	54	.42	2 1		.08	.05 🔄 1	2
11100N 9575E	6	17	21	87	. 8	11	9	514	7.67	10	5	ND	4	23	.2	2	4	70	. 19	.070	15	20	. 22	- 34		4 3	.21	.06	.05	61
11100N 9600E	2	26	44	230	.8	35	15	468	7.23	35	5	ND	3	5	.2	9	2	59	.03	.029	6	37	.83	40	.03	34	.01	.01	.03 🔅 1	ė 3
11100N 9625E	40	27	31		3.4	23			6.64	123	5	ND	1	58	.2	13	3	57	.42	.207	11	14	.60	89	.09	21	.78	. 15	.09 🔄 1	3
11100N 9650E	3	25	91	348	1.2	20	21	643	14.85	131	5	ND	2	19	.2	10	2	185	. 15	.084	4	14	2.16	25	.21	24	. 14	.05	.03	5
11100N 9675E	3	15	42	139	- 4	7	11	242	10.28	166	5	ND	1	17	° `.2 `	7	2	121	.08	.201	8	9	.70	80	.06	2 3	.02	.02	.04 🔅 (1
1100N 9700E	1	19	16	79	1	9	11	409	9.88	86	5	ND	2	22	.2	3	2	97	.21	.346	- 4	12	.28	69	.30	23	.66	.02	.03	1
11100N 9725E	6	21	14	129	1	11	12	234	13.98	21	5	ND	4	8	.2	2	2	98	.04	.063	12	31	.12	31	.30	23	.98	.01	.03 🔅 1	(2
11100N 9750E	20	24	19	176	3.5	21	10	482	7.42	- 28	5	ND	1	20	-3	2	5	91	- 20	. 107	8	20	-29	106	.07	22	.52	.01	.03	2
11100N 9775E	35	27	17	285	1.6	34	11	248	8.85	54	5	ND	2	7	.2	17	2	85	.04	.066	12	15	.28	39	.03	22	.64	.01	.02 1	3
11100N 9800E	4	27	13	351	1.7	37	30	2747	7.42		5	ND	1	67	4.3	2	2	70	1.06	.080	- 29	19	.49	115	.37	2 2	.59	.14	.08 🔅 1	₿ 1
1100N 9825E	7	17	- 4	116	.3	10	13	413	8.57	22	5	ND	- 3	26	.2	2	2	98	.22		9	16	.34	53	.40	22	.70	.07	.05 🔅 1	1
11100N 9850E	5	22	6	173	1.4	12	14	388	8.05	- 32	5	ND	7	7	.2	2	2	53	.05		9	24	.26	- 44		27	.57	.03	.04 🏹	ķ 1.
1100N 9875E	17	19	16	106	1.0	8	16	192	14.62	37	5	ND	3	20	.2	8	2	76	.12	.212	5	14	.26	27	્યા	63	.29	.01	.03	2
11100N 9900E	9	27	9	257	9	12	21	555	11.27	19	5	ND	4	18	.2		2	46		.263	8	5	.69	41	. 10	23		.03	.03	2
11100N 9925E	6	26	- 11		1.4	19			11.55	508	5	ND	- 11	8		2	2	44		.172	- 14	- 19	.45	49	12	27		.02	.03 🔅	3
11100N 9950E	24	23	13	199	1.6	6			14.78	110	5	ND	6	7	2	12	2	50		.379	10	7	.78	37	.06	23		.02	.03	4
1100N 9975E	19	24	11	93	2.9	5	16	380	14.08	61	5	ND	2	29	.2	14	2	49	. 14		8	11	.37	- 80	.08	54			.03 😳	6 4
1100N 10000E	17	16	12	169	1.6	14	16	1109	9.50	31	5	ND	3	45		7	2	70	.34	. 173	20	12	.66	95	.23	32	.31	.08	.07	1 5
10900N 9425E	3	30	11	69	.2	9	11	276	6.49	24	5	ND	2	20	.2	3	2	94	. 16	.031	8	12	.27	38	.22	2 1	.28	.07	.05	<u>)</u>
RE 11100N 9925E	6	29	15	358	1.6	17	23	531	11,55	526	5	ND	10	8	.2	2	2	46	.04		15	19	.45	5 1	. 12	66		.02	.03 🔅 ി	5
10900N 9450E	4	23	13	113	· .1	10			7.57	- 36	5	ND	2	23	.2	3	2	106	. 18	.029	5	20	.22	42	. 56	31		.05	.04 í	5
10900N 9475E	5	37	- 29	118	1.1	20	15	467	6.91	56	5	ND	12	11	· .7	3	4	46	.09	.035	- 14	18	.30	- 64		43	.%	.03	.05 🔅 (33
10900N 9500E	2	21	9	99	.9	10	25	2449	4.69	9	5	ND	1	176	_4	2	2	70	1.79	.041	10	14	.27	173	.45	32	-03	.03	.04	₿ 3
10900N 9525E	2	27	11	42	.5	10	9	240	5.62	11	5	ND	3	29	.2	2	2		.20		6	14	.17	60	. 56	4 1		.04	.04	2
10900N 9550E	1	16	2	56	.4	11	13	1824	3.09	2	5	ND	1	70	.3	2	2	64	.75	.081	5	9	.64	- 47	.40	3 1	.17	.22	.12 🤤	ș 1
10900N 9575E	1	- 14	2	66	- 1	19	21	556	4.79		5	ND	1	100	.2	2	2		.93		7	11	1.44	- 44	.63	61		.40	.17 🛒	8
10900N 9600E	1	15	12	73	. 3	11	13	1452	4.22	13	5	ND	1	48	-2	2	2	73	.54	-081	8	- 14	.31	- 69	.23	2 1	.25	.08	.06 🔄 1	2
10900N 9625E	24	22	29	81	.4	5	18	833	14.47	132	5	ND	2	14	.2	13	2	47	.11	.179	6	11	.08	61	.02	22	.76	.02	.02	2
10900N 9650E	9	21	12		.5	9			11.87	33	5	ND	4	15	.2	2	3		.11		8	19	. 15	38		23			.03 1	§ 1
10900N 9675E	5	13	11	155	.5	11			8.97	40	5	ND	1	32	.2	2	2		.42		11	20	.26	94	.33	52			.04 🔄	2
STANDARD C/AU-S	19	61	- 38	133	7.4	71	32	1067	3.79	- 43	22	7	39	53	18.6	15	19	59	.47	.089	40	58	.85	178	.09	34 1	.86	.07	. 15 🛒 🗄	6 48

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

1

26/47 Page 12

:

	7																														TICAL
MPLE#	Mo ppm	Cu ppm	Pb ppm		Ag	Ni ppm	Co ppm	Mn ppm	Fe X	S 1 1 1 1 1 1	U ppm	Au ppm	Th ppm	Sr ppm	63 Indd	Sb ppm	Bi	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Tî %	B ppm	Al X	Na X	K X	1000000	Au
900N 9700E	16	18	13	119	1.3	6	- 13	269	12.22	160	5	ND		7	2	6	2	106	05	.086	8	10	.54	26	.04	3	4.38	01		22	
900N 9725E	52	45	38	475	1.5	82	14		11.22		5	ND	- 2	12		8	2	70		.169	ş		1.04	56	.02		4.30 2.81	-01 -01	.02		7
900N 9750E	23	31	29	412	1.8	43			11.64	104	5	ND	6	17	.2	6	ž	73		.368	ŝ	28	.61	94	.05		4.28	.02	.03	ti de la compañía de	7
900N 9775E	13	25	39	435	2.9	19	14		14.01		5	ND	4	8		6	ž	83		.087	11	29	.24	64	.05	-	4.08			<u> 232</u>	-
900N 9800E	14	20	25	442	.8	25			11.00	50	5	ND	4	6	.5	2	4	74		.067	10	28	.31	45	.09			.01 .01	.03 .03		1
900N 9825E	30	57	18	312	6.2	26	9	245	8.42	45	5	ND	1	4	2	5	2	81	.02	.241	10	37	.50	31	.05	2	3.55	.01	.02		
900N 9850E	7	22	3	1040	1.4	66	11	661	2.96	8	5	ND	1		14.3	3	2		2.31		5	10	.56	109	.23		1.55	.15	.07		
900N 9875E	9	12	19	136	.1	11	11	356	8.50	29	5	ND	4	13	.2	ž	ž	50	.07		8	11	.35	38	.10		4.07	.03	.03	2224	
900N 9900E	18	27	28	208	1.0	24	11	246	9.89	38	5	ND	4	5	2	3	ž	51	.02		10	19	.40	47	.06		5.80	.01	.03		
900N 9925E	16	16	22	184	2.1	14	12	464	8.36	170	5	ND	3	5	.2	13	ž	43		.112	4	14	.51	37	.01		5.22	.01	.02	ñ.	
900N 9950E	3	9	17	191	6	11	17	719	10.90	20	5	ND	5	27	.2	2	2	70	.23	.091	7	29	.42	36	.20	2	4.87	.08	.06		
00N 9975E	10	17	11	134	.1	8	14	381	8.93	19	5	ND	1	6	ି 2	2	ž	122		.195	ġ	12	.32	48	.08		2.56	.01	.02		
200N 10000E	6	14	11	124	.7	7	10	146	7.62	3	5	ND	1	15	.2	2	ž	85		.070	5	9	.13	88	.35		1.90	.02	.02	18 R.	
00N 9550E	4	43	15	122	1	53	17	701	5.18	18	5	ND	1	40	.2	2	3	47		.045	12	46	.96	237	.06	_	2.11	.01	.05	838	
00N 9575E	7	85 -	41	143	.4	11	40	1178	8.41	56	5	ND	1	40	.2	Ž	ž	113	.35	.072	11	22	.40	137			5.90	.04	.04	S.	
00N 9600E	1	13	2	58	1	10	13	334	3.17	2	5	ND	1	100	.4	2	3	57	.63	.060	4	8	.66	140	.47	3	1.05	.17	.09		
10100N 9725E	4	35	35	71	.1	7	8	180	8.69	2	6	ND	17	9	.2	2	2	39		.029	8	32	.12	12	. 18		9.71	.04	.03	24	
DON 9625E	9	69	19	105	1	10	20		10.33	3	5	ND	2	14	.2	2	2	126	.12		6	34	.38	84	11		2.57	.02	.03	224	
00N 9650E	11	41	21	133	1	8	14	481	8.60	11	5	ND	4	5	.2	2	Ž	84		.184	16	26	.14	72	.27		2.56	.02	.04		
DON 9675E	1	11	2	60	.4	7	9	210	2.41	3	5	ND	1	182	7	Z	ž	40	.95		4	6	.61	255	.31		1.00	. 19	.10		
00N 9700E	1	12	2	63	.1	11	13	319	3.52	2	5	ND	1	107	.5	2	2	63	.75	.073	4	7	.79	83	.62	2	1.14	.23	. 12		
00N 9725E	4	36	38	74	1	4	8	187	8.18	. 7	9	ND	17	10	.2	2	2	36	.08	.032	8	32	- 14	10	.18	2 9	9.40	.04	.03	8 P.	
ION 9750E	3	38	17	68	.5	7	11	253	6.86	20	5	ND	2	22	.2	2	2	168	.18		6	14	.18	43	18		2.18	.04	.04	<u>_</u>	
DON 9775E	1	227	42	165	.5	47	36	1240	5.96	35	5	ND	1	80	.3	2	2	35	.77	a	5		1.12	52	.01		2.06	.01	.04	8¥.	
00N 9800E	6	34	25	104	.9	7	9		9.88	13	5	ND	7	10	.2	2	6	58		.030	11	20	.13	17	.31		5.67	.04	.05	98	
ON 9825E	8	52	15	155	.3	17	10	154	7.79	26	5	ND	2	8	.2	3	S	80	.06	.044	7	17	.20	30	. 12	2 '	1.96	.01	.03		
DON 9850E	6	25	21	113	1.1	9	10	278	11.87	26	5	ND	7	6	.2	2	2	72	.04		8	22	.15	34	.23		5.48	.02	.02	1 1	
)ON 9875E	5	30	40	118	.5	10	12	482	9.90	31	5	ND	2	23	.2	2	2	84	.24	.242	8	17	.23	41	.20		.68	.03	.04	्रः	
ON 9900E	1	31	13	70	1.8	10	11	362	8.05	11	5	ND	4	20	.2	5	Z	83	.18	.096	7	18	.37	29	44	_		.04	.04	<u></u>	
DON 9925E	4	26	22	151	1.9	14	12	387	8.38	25	5	ND	5	8	.2	2	3	71		.061	11	20	.22	48	.17	_	5.79	.02	.03	1	
ON 9950E	4	18	29	116	1.9	6	11	375	9.99	27	5	ND	10	8	.2	2	4	43	.07	.054	9	19	.13	26	.11	2 5	5.41	.04	.04	÷.	
ON 9975E	3	30	10	71	.5	8	8	155	4.11	42	5	ND	2	6	.2	2	2	52	.03	.025	6	10	.08	38	.02		2.09	.02	.03	8 i -	
DON 10000E	4	33	31	172	.3	11	14	238	7.33	42	5	ND	2	7	.2	5	2	62		.069	5	9	.08	43	.01		1.58	.01	.02	°\€	
DON 9100E	8	34	28	124	.1	11	7	233	6.83	7	5	ND	4	49	.2	Ž	6	44	.20		36	18		110	.32		.53	.04	.04	- 19 - 1	
DON 9125E	8	20	4	72	1	15	22	1007	5.37	2	5	ND	1	241	.2	2	2	89		.058	19	15	.98	211	.69		2.44	.30	.13	1	
ON 9150E	2	15	11	34	.1	6	9		4.33	2	5	ND	1	47	.2	2	2	165	.30	.036	6	12	.41	66	.72	2 1	.06	.11	.06	1	
JON 9175E	6	26	12	72	.1	9			9.22	. 7	5	ND	2	22	.2	2	2		.12		7	27	.24	44			.63	.04	.03	1	
NDARD C/AU-S	19	59	43	137	7.3	71			3.91	43	19	7	41		19.3	14	21	59	.48		39	60		180		34 1		.07	.15	10	

Page 13

27/47

ACHE ANALYTICAL	·																												ACHE	MIAL YT	ICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U mqq	UA Rog	Th ppm	Sr ppm	Cd	Sb ppm	Bi ppm	V P(PM	Ca X	2 2	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	K X F	0.0.00 C	Au# ppb
10000N 9200E 10000N 9225E 10000N 9250E 10000N 9250E 10000N 9275E 10000N 9300E	2 3 3 3 8	8 22 40 30 30	7 13 13 21 30	32 55 60 81 46	.1 .2 1.1 .1 .2	8 10 7 15 6	8 9 13 10 10	174 151 885 208 307	2.60 8.50 5.11 9.53 6.32	4 14 2 20 11	8 9 6 5 6	ND ND ND ND	2 4 2 3 2	37 19 137 14 14	.4 .3 .2 .2	2 3 2 2 2	8 8 2 3 9	102 110 137 88 139	.26 .15 .77 .11 .11	.040 .032 .049	5 5 9 8 7	13 32 18 40 15	.49 .28 .17 .24 .42	30 39 686 53 49	.67 .43 .84 .14 .30	2 2 2	.72 1.71 1.47 5.98 1.91	.10 .06 .02 .02 .02	.06 .04 .03 .03 .04	1	3 2 2 1 5
10000N 9325E RE 10000N 9725E 10000N 9350E 10000N 9375E 10000N 9400E	4 5 3 3 3	28 24 24 34 47	18 13 21 21 20	59 92 60 92 89	.3 .1 .3 .2 .2	9 10 9 14 16	12 9 14 9 17	201 243 753 349 392	9.16 7.75 9.21 6.46 6.14	13 11 7 9 7	16 5 6 7 5	nd Nd Nd Nd Nd	3 2 1 2 1	18 9 23 14 15	.2.2.2.2	2 2 2 2 2 2	3 3 5 3 2	131 135 145 70 93	.15 .06 .23 .12 .14	.020 .068 .038	6 5 4 16 11	33 19 27 30 28	.38 .19 .35 .28 .30	39 33 88 181 299	.32 .49 .54 .38 .11	2 5 2	2.16 1.56 1.44 1.99 2.17	.06 .02 .07 .03 .02	.05 .02 .06 .05 .04	1 1 1 1	3 1 3 2 2
10000N 9425E 10000N 9450E 10000N 9475E 10000N 9500E 10000N 9525E	4 1 2 2 5	56 18 21 33 15	48 7 12 14 10	132 49 65 54 70	4 7 5 1 7	23 14 10 9 12	18 13 14 12 10	627 374 753 292 337	9.83 4.17 6.60 7.20 5.18	19 4 2 8 12	9 8 5 5 10	nd Nd Nd Nd	4 1 1 2	6 54 36 13 25	2 2 2 2 2 2 3	2 5 2 2 2	4 2 4 3	92 65 151 129 104	-04 -49 -32 -14 -19	.061 .082 .064	6 5 6 8	53 19 39 35 16	.37 .85 .54 .30 .27	90 59 231 66 40	.10 .37 .27 .16 .31	2 2 2	5.98 1.27 1.78 2.21 1.12	.01 .21 .09 .02 .06	.04 .14 .06 .03 .06	1 1 1 1	2 4 2 3 2
10000N 9550E 10000N 9575E 10000N 9600E 10000N 9625E 10000N 9650E	2 5 5 6 4	10 44 36 26 17	5 21 18 14 18	49 111 101 83 78	.3 .1 .1 .1	13 21 16 11 10	23 18	312 2184 614 234 325	3.75 4.81 9.97 9.98 6.18	2 5 15 18 7	5 6 5 5	nd Nd Nd Nd	1 1 2 2 1	110 211 32 18 75	4	2 2 2 2 2 2	2 3 2 4 7	79 54 94 92 72	.70 1.32 .18 .11 .50	.081 .042 .058	5 15 6 16	13 38 37 29 20	.87 .63 .41 .29 .38	166 536 142 54 244	.54 .28 .30 .19 .53	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.20 2.72 2.52 2.01 1.75	.24 .06 .02 .03 .08	.10 .04 .03 .03 .05		3 2 4 2 3
10000N 9675E 10000N 9700E 10000N 9725E 10000N 9750E 10000N 9775E	2 5 5 6 2	74 18 22 16 77	14 7 16 12 17	120 63 87 58 114	.7 .1 .3 .3	9 7 9 5 10	34 11 10 7 16	833 243 243 165 345	9.11 6.22 7.35 7.36 5.69	4 16 13 12 21	9 5 7 8 5	ND ND ND ND	1 1 3 2 1	41 30 10 10 27	.8 .2 .2 .2 .2	2 2 3 2 2	2 2 3 3 2	66 97 133 98 56	.36 .26 .07 .06 .34	.033 .021 .029	7 6 5 8 10	15 14 18 14 13	.37 .34 .19 .11 .29	163 32 36 36 94	.11 .38 .48 .16 .05	2 2 3	2.69 1.13 1.44 1.78 2.27	.05 .10 .02 .01 .01	.04 .04 .03 .02 .03		3 2 2 2 2 2 2
10000N 9800E 10000N 9825E 10000N 9850E 10000N 9875E 10000N 9900E	1 4 4 4 2	312 111 35 26 46	26 23 9 7 16	221 187 77 73 50	.3 .6 .7 1.5 .9	61 35 13 9 8	18 9	2870 381 126 115 114	7.20 6.64 4.49 4.41 5.39	35 47 23 51 23	5 5 5 5 5	ND ND ND ND	1 3 2 1 1	84 8 14 14 16	1.0 .2 .2 .2	3 2 4 2 2	2 2 3 2 2	33 34 71 94 90	.69 .05 .11 .07 .18	.041 .028 .033	4 8 6 8 6	18 21 12 11 15	1.19 .69 .23 .10 .20	83 61 33 47 90	.01 .01 .17 .23 .16	2 2 2 2	1.99 2.91 1.23 1.17 2.13	.01 .01 .02 .01 .01	.03 .04 .03 .03 .03		9 4 1 3 3
10000N 9925E 10000N 9950E 10000N 9975E 9900N 9600E 9900N 9625E	2 6 3 3 7	42 33 19 24 21	18 34 7 11 7	90 98 62 81 91	.6 .5 .6 .4 .2	13 11 9 4 10	12 13 11 13 8	335	5.38 12.11 3.62 11.31 3.17	25 42 17 2 2	5 5 5 5 5	ND NG ND ND ND	1 11 1 1	15 4 23 14 550	.4 .2 .2 .2 .3	5 2 3 2 2	2 2 2 2 2		.15 .02 .20 .13 1.43	.041 .041 .062	11 11 6 3 11	15 22 8 23 16	.46 .22 .32 .16 .63	77 34 26 51 481	.04 .12 .11 .17 .58	2 3 2	2.58 4.16 1.19 1.78 3.04	.03 .01 .08 .01 .08	.05 .02 .07 .02 .02	1	5 2 2 3 1
9900N 9650E 9900N 9675E STANDARD C/AU-S	5 1 19	10 11 58	17 9 40	47 36 132	.4 1 7.4	6 6 69			8.82 4.56 3.94	18 2 41	18 5 18	ND ND 7	10 1 40		.2 .2 18.5	2 2 15	4 2 21	57 126 57	.16 .21 .48	.041	9 5 39	16 13 59	.22 .52 .88		.34 .39 .08	2	4.02 1.49 1.87	.05 .08 .07	.04 .04 .15	1 1 10	2 2 51

ΔΔ
ACHE ANALYTICAL

2 8/47 Page 14

ACHE ANALYTICAL					·																									CHE ANALY	TICAL
SAMPLE#	Мо рря	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min pipin	Fe X		U ppm	Au ppm	Th ppna	Sr ppm	Cd pp#	Sb ppm	Bi ppm	V Ppm	Ca X	Р \$	La opm	Cr ppm	Ng X	Ba ppm	11 7	B PPM	Al X	Na X	K X	· Sections	Au* ppb
9900N 9700E	1	6	7	15	.2	4	1	56	6.73	2	5	ND	2	13	2	2	2	119	.11 🛱	018	7	31	.13	22	.26	3	.76	.06	.04	<u>_</u>	2
9900N 9725E	1	9	7	24	.2	5	3	148	5.74	2 _	5	ND	2	7	.2	2	2	99	.07 🤅		4	11	-11	41	43	4	.93	.03	.03	૾૾૽ૼ૽	1
9900N 9750E	1	12	9	32	.3	7	5	238	5.67	2	5	NÐ	1	24	2	2	2	124	.24 🛛	035	5	14	.35	57	.45	- 4 ⁻	1.48	.10	.04	<u></u>	6
9900N 9775E	1	43	26	97	.1,3	14	5	464	9.58	16	5	ND	1	6	2	2	2	55	.03 🤤	069	6	28	.21	97 .	.08	3 2	2.27	.01	.02	્રા	- 4
9900N 9800E	1	187	36	179	.3	53	42	1937	7.63	42	5	ND	1	74	.4	5	2	41	.87	131	8	16	1.48	75	- 14	4 3	2.32	.20	.07		9
9900N 9825E	6	91	24	155	.6	23	10	326	8.51	100	5	ND	2	13	े.2	9	2	49	.13 🕺	054	9	19	.50	63	.01	4 3	2.45	.03	.04	Ì.	5
9900N 9850E	1	37	8	136	.3	19	24	3827	4.05	7	5	ND	2	68	.9	- 5	2	113	.87 🍹	142	24	19	. 54	143 -	.90	5 !	5.71	.20	.10	્રી	1
9900N 9875E	1	79	38	139	.5	23	16	667	11.79	55	5	ND	- 4	7	.2	9	2	43	. 14 🔅	072	17	28	. 39	53	.08	5 4	4.40	.01	.04	ି 2	5
9900N 9900E	1	47	26	115	· 1.4	19	7	331	11.80	- 46	5	ND	1	- 36	.2	6	2	50	.42 .1	053	6	25	.63	72 -	.04		5.48	.01	.04	100 t e	3
9900N 9925E	1	47	9	89	1.1	21	24	7338	4.76	10	5	ND	1	124	1.5	2	2	47	1.72 .	118	17	25	.53	177	.32	4 3	2.30	.06	.03		2
RE 9800N 9350E	7	22	5	130	1.8	19	13	866	6.48	2	5	ND	3	506	.5	2	2	100	1.45	071	17	16	.84	356	.75	4 (4.11	.08	.04		13
9900N 9950E	1	22	20	62	3.3	9	9	815	5.12	33	5	ND	1	21	2 . 2	2	2	48	.18 🛛	045	6	10	- 14	81	.06	3 '	1.80	.02	.05	ંત	15
9900N 9975E	1	21	33	84	.4	11	12	401	9.92	23	5	ND	3	12	.2	2	3	92	.11 .	049	5	14	. 18	47	.41	3 2	2.94	.03	.04	5. L	8
9900N 10000E	3	16	6	39	.2	9	6	147	3.14	23	5	ND	1	12	.2	3	2	69	.10	026	9	5	.11	25	· 17	4	.78	.04	.04	Š.	5
9800N 9150E	1	64	21	85	.5	18	7	156	10.40	22	5	ND	1	9	.2	4	2	55	-06	073	7	38	.22	37	.05	6 :	3.07	.01	.03		6
9800N 9175E	2	39	5	41	.2	7	9	138	4.52	24	5	ND	1	16	· .2	2	2	133	.17	043	11	8	. 19	52	.05	4	1.17	.05	.04		4
9800N 9200E	2	22	12	73	.3	21	Ś	126	9.13	10:	ŝ	ND	3	5	ें <u>दि</u>	ŝ	ź	86	.03	712.70	8	44	.37	34	.12	4	4.40	.01	.03	1 S. 🕯 -	2
9800W 9225E	2	30	13	80	- ĴŦ	15	5	230	9.71	11	5	ND	Ž	5	» .Z	2	ź	102		045	7	39	.33	38	iz.	33	5.16	.01	.03	1 A A	3
9600N 9250E	7	26	18	66	.3	12	i.	124	4.40	6	5	ND	1	275	2	3	ž	55	.44		13	20	.34	75	15	-	5.55	.04	.04		4
9800N 9275E	i	12	8	38	,5	8	5	215	7.00	Ž	5	ND	3	37	.2	4	2	117	.28		6	15	.36	24	.70	5	2.66	.09	.05	2	4
9800N 9300E	1	38	17	48	.7	8	37	677	7.34	2	5	ND	1	32		2	2	64	.31 🕄	079	13	16	.30	87	.21	4 4	4.16	. 10	.06		6
9800N 9325E		35	15	101	5	15	5		10.99	20	5	ND	Ż	6	.2	2	ž	106	.04 .		6	41	.22	40	13	-	4.04	.02	.03	ΞŤ.	5
9600N 9350E	'	22	ž	128	1.9	19	12	817	6.47	- 2	ŝ	ND	3	528	े 🕹	2	ī			069	18	16	.80	366	.76		4.19	.09	.04	Se	8
9800N 9375E	5	-5	5	33		7	2	- 99	5.25	. ž	5	ND	2	173	.2	2	2	131	. 66 .	7 7 5.5	5	11	. 16	224	. 95	-	.68	.04	.02	199 1	2
9800N 9400E	10	30	10	109	.8	11	17	2152		2	5	ND	ĩ	279	10 4	2	Ž		1.29		18	18	.31	326	.49		5.51	.08	.06		5
9800N 9425E	9	77	10	115	.6	13	18	663	14.66	18	5	ND	1	14	2	5	2	151	.09	173	6	40	1.16	56	10	2	3.05	.01	.03		5
9800N 9450E	69	354	3	436	-1.4	93		36731	4.79	2	25	ND	÷	262	5.4	2	2	55	.88		62	37	.66	779	22		5.46	.04	.04	- ÷	6
9800N 9475E	9	34	29	149	.8	18	21		9.30	8	5	ND	Ś	14	2	2	2	78	.10		13	30	.28	96	42		5.65	.05	.05	्रि	2
9800N 9500E	12	41	12		.4	14	17		5.47	2	5	ND	1	48	.2	2	3	88	.40		23	23	.29		.52	-	5.11	.09	.04	i i i i i i i i i i i i i i i i i i i	2
9800N 9525E	1	25	19	51	.4	11	9		9.62	. 4	5	ND	ż	8	ž	3	ž	128	.07		6	43	.29	51	31		1.97	.01	.04	Ĩ.	7
9800N 955DE		24	13	68	.7	12	7	224	10.12	10	5	ND	2	15	.2	3	2	116	.17	194	6	24	.29	113	.25	2	2.02	.04	.05		4
9800N 9575E		24 14	13	42	.8	8	5	303	7.03	· 2	5	ND	2	12	.2	2	2	122	.11		6	26	.29	99	.56		1.80	.02	.03	80 k	7
9800N 9600E	7	20	15	74	.5	11	21	1742	6.79	2	5	ND	<u>د</u>	138	.2	2	2	57	.74		14	18	.21	389	.22		3.55	.02	.04		4
9600N 9625E		20	11	105	.7	18		472	7.29	8	5	ND	2	17	.3	4	2	47	.15		15	20	.27	55	.17		5.58	.02	.03	<u></u>	7
9600N 9650E	1	83	17	82	6	13	18	1175		2	5	ND	Ĩ	39	· 4	2	2	128	.49		7	51	.61	;	07		5.30	.03	.03	ं।	8
0000 0/7FF	.	07			,	17	14	770	17 00	45	F		•	7/		2	2	4//	74		c	20	40	E2 -		- ·		21	07	2003 1000 6 0	
9800N 9675E		87	14	73	-4	13	11	-	13.09	15	2	ND	1	36	3	2	2	144	.36		5	20	.69	52	19		3.11 . 57	.21	.07		4 8
9800N 9700E		95	15	212	.5	53	17	286	6.02	24	5	ND 7		12	.4. 18 E	45	2	51	.14		10	31	-83	87	.05		3.57	.03	.05		-
STANDARD C/AU-S	17	60	38	132	7.5	75	22	1043	3.95	42	19	7	37	24	18.5	15	19		.48 .1	עאַט	38	58	.88	178	.09		1.88	.08	.15	-8 1 1	51

Z	9/47	/
Page	15	٦

ACHE ANALYTICAL																													AC	HE ANNLY	TICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	υ	Au	Th	Sr	Cd	Sb	Bi	۷	Ca %	P X	La	Cr ppm	Mg X	Ba ppm	Ti S	B	Al X	Na X	K		Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%_	ppm	bbu	ppm	ppm	ppm	ppm	ppm	ppm	ppm	^	<u></u>	ppm	- Phan		Phane -	<u></u>	- PP					
9800N 9725E	6	34	20	96	1.8	11	9	209	7.49	15	5	ND	2	18	2	2	5	92	.14	.050	7	16	.16	76	.44	2 '	1.61	.01	.03	1	2
800N 9750E	1	27	17	87	1.6	12	11	157	8.71	45	5	ND	1	9	2	3	5	89	.04	.059	6	15	.21	46	.29	2 2	2,10	.01	.02	1	2
800N 9775E	3	53	13	68	1.1	11	11	138	9.23	34	ŝ	NO	2	17	2	7	6	99	.05	.060	5	14	.11	60	.24	2	1.71	.01	.02	<u></u>	2
800N 9800E	6	96	24	146	.7	19	14	241	7.70	86	5	ND	2	11	2	4	6	56	.06	.060	11	20	.38	59	.09	2 2	2.50	.02	.03	ંશ	3
800N 9825E	3	45	26	147	.4	18	19	993	7.87	46	5	ND	1	10	.2	2	2	35		.052	11	20	.31	61	.04	2 :	3.04	.01	-03	(1	2
000M 90292	5		20	147	• •	10		,,,,			-		•			-	-														
800N 9850E	5	51	46	101	.4	16	17	298	12.85	50	5	ND	6	7	2	4	2	47	.02	.049	5	31	.25	39	.07	24	4.55	.01	.02	88 N.	
800N 9875E	3	24	18	220	.9	12	17	582	8.35	25	5	ND	2	12	.2	3	2	62	.07	.032	7	12	.11	53	.04	2	1.99	.01	.02	્રે	
800N 9900E	Ž	54	15	68	.1	13	21	368	4.98	35	5	ND	1	9	.2	3	2	84	.04	.040	6	11	.09	67	.06	2	1.68	.01	.04	ા	
800N 9925E	4	28	28	81	.4	20	21	368	7.94	65	5	ND	1	9	. 2	7	2	61	.08	.099	5	12	.07	44	.02	2	1.58	.01	.04	્રા	
800N 9950E	3	23	15	39		ŷ	8	184	3.81	24	5	ND	1	11	2	4	2	97	.07	.036	7	13	. 05	37		2	.85	.01	.03	<u></u>	
000M 77JUL	3	2.5				,			5.0.		-				27. T				•••						0.84					22	
800N 9975E	5	53	31	97	.8	12	16	488	7.92	66	5	ND	1	13	.2	6	2	38	.11	.074	8	10	.13	66	.02	2	1.63	.01	-04	<u>_</u>	7
700N 9875E	1	11	4	58	.1	8	8	170	2.25	10	5	ND	1	44	3	Z	4	32	.62	.080	3	5	.3t	119	.25	2	.77	.08	.05	St.	
700N 9900E	Ż	34	38	187	.2	8	-		8.61	65	5	ND	1	22	.2	7	2	73	.20	.259	7	8	.29	51	.09	2	1.48	-03	.05		
700N 9925E	1	25	37	157	.5	9			10.87	26	5	ND	1	30	.2	3	2	88		. 144	10	10	.20	92	.21	2	1.90	.02	.03	8 9 -	
700N 9950E	Ż	77	26	133	.3	25			7.56	45	5	ND	1	63	.2	7	2	64	.61	,082	9	10	.80	154	.22	2	1.90	.20	-11	S.L	
TOOM FFJOE	- ⁻		20				20	1231			-																			183 -	
E 9400N 10050E	8	13	18	78	4.2	9	8	255	8.93	147	5	ND	2	16	.2	2	2	75	.10	.101	12	9	. 15	45	.37	3	1.27	.04	.05	28 Q.	
700N 9975E	3	11	23	153	- 3	ś	14		11.42	9	5	ND	1	29	2	2	3	236		.054	8	14	.50	34	.32	2	2.02	.09	.05	E.	
700N 10000E	3	17	21	100	.5	6	19		14.43	57	Ś	ND	ź	9	ž	11	2	86		.082	8	18	.13	51	. 10	2	2.03	.01	.03	્યુક	
400N 10000E	31	10	75	154	3.7	ž	16		16.19		ś	ND	2	11	.2	221	Ž	72		.210	11	7	.13	84	.12	7	1.18	.01	.03	्री	5
400N 10025E	17	14	36	123	3.6	8	15		13.39	4180	5	ND	3	24	ž	61	- Ž	66		.112	9	16	.13	108	. 14	2	2.27	.02	.05	1	2
HOON TOUZJE	"	14	30	123		0		500		-,			-	- •		•	-	•							경영사						
400N 10050E	9	11	14	73	4.5	8	9	229	9.28	162	5	ND	1	15	.2	3	2	73	.08	.104	11	9	. 14	45	.37	5	1.31	-04	.05	<u>_</u> 1	
2400N 10075E	3	16	20	75	.9	8	20		10.21	55	5	ND	1	21	.2	7	5	176		. 103	6	10	.28	32	.32	6	1.90	.04	.05	्रा	
400N 10100E	2	10	10	47	.1	10	12	296	4.12	15	ś	ND	1	49	.2	ż	3	140		.053	7	11	.63	48		5	1.55	. 18	.09	્રા	
2400N 10125E	4	11	11	43	.1	7	8	373	3.71	17	5	ND	1	22	.2	ž	10	129		.048	ġ	13	.29	47		2	1.49	.06	.07	ોો	
400N 10120E	13	31	22	215	.3	26	11	249	8.61	. 57	5	ND	i	13	.5	7	2	83	.07		11	18	.27	55	.20	4	2.09	.02	.03	81	
400# 101502	13	21	22	213		20	••	247	0.01	,			•			•	-	•••	•••						8. S. S.	-					
400N 10175E	7	12	34	138	.9	12	23	489	10.67	51	5	ND	6	8	.2	2	6	44	.09	.131	10	16	. 14	32	. 14	2	4.83	.02	.04	1	
400N 10200E	6	40	15	285	3.6	18			5.56	1118	ŝ	ND	1	40	2.4	2	2	50		.181	38	21	.31	87	. 16	2	6.48	.04	.04	್ಟ್	
400N 10225E	10	18	21	161	1.4	17			7.56	111	ŝ	ND	i	16		26	4	94		.060	9	15	.22	47	. 12	2	1.65	.03	.03	્ય	
400W 10250E	4	9	12	100	.5	10			7.58	41	Ś	ND	1	36	.3	6	2	129		.081	9	12	.43	82	.21	2	1.95	.09	.06	्र	
	3	43	12	105	-5	14			13.17	151	ś	ND	i	13	7	3	2	117		. 102	6	41	.40	46	.04	2	2.71	.01	.02	<u></u> 1;	1
400N 10275E	2	43	12	105		1		4005	13.17	1.01			•			-	-	•••	• • •		-				3.8						
10700E		24	14	169	.1.0	17	24	1087	9.88	78	5	ND	1	12	.z	2	2	90	. 15	.065	15	29	.41	52	.08	5	3.33	.02	.03	ुः 🖗	-
400N 10300E	6	21	18	168		14		3976		66	ś	ND		83	.9	12	2			.082	14	16	.32	175	.18	: 3	2.41	.02	.04	ેા	
400N 10325E	10	19	18	176	1.4	22		1469	8.80	88	5	ND	2	13	- 3	8	ž	66		.085	14	16	.69	55	.12	· -	3.05	.02	.03	1	
400N 10350E		29		254	-9	11	16	786	8.03	39	5	ND	5	11	.2	2	2	48		.084	11	16	.25	36	14		4.69	.02	.03	ें 🏌	-
400N 10375E	5	18	25	164	.7						5	ND	2	10	.2	2	2	51	.09		7	15	.82	46	.05	_	5.08	.02	.03	3 ()	
400N 10400E	5	22	23	175	1.2	15	20	574	8.47	49	2	NU	3	10	• 2	-	2		.07		,					-				283	-
10/05-	-	/-	72	200	4 7	7	30		8 77	37	5	ND	2	14	- Z	9	2	46	21	.476	19	6	.79	54	.02	3	2.91	.01	.02	1	
2400N 10425E	5	42	32	209	1.2	- ;	25	955	8.72		5	ND	2	13	.2	6	2	51		.375	15	7	.59	59	.05		3.50	.01	.02	1	
9400N 10450E	5	35	31	195	.7	- 4		1906		23	-	NU 7	39		19.2	14	20	60		.087	40	59	.88	178	.09	-	1.85	.07		10	
STANDARD C/AU-S	20	60	40	131	1.4.	72	- 32	1080	3.85	42	22	1	- 27	22	17.2	14	20		. 40	1001											

44
ACHE ANALYTICAL

-	30/47	Å
Page		Т

ACHE ANALYTICAL					·							<u> </u>												- <u>-</u>						CHE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Agi ppm	Ni ppm	Со ррля	Hn ppn	Fe X	1.17	U ppin	Au ppm	Th ppm	Sr ppw	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P 3	La ppm	Cr ppm	Ng X	8a ppw	Ti X	B ppm	Al X	Na X	K X	u ppn	Au* ppb
9400N 10475E	2	11	τ	92	.5	5	8	522	4.32	> 1 1	5	ND	1	66	.2	٦.	2	39	.96	.067	8	6	.85	71	11	2	1.69	.04	.02		1
9400N 10500E	5	25	19	199		41	-	3766	6.62	े 1 2	, ř	ND	i	15	3	2	2	47	.15		10	30	.73	57	06		3,43	.06	.05		2
9200N 10000E	2	58	17	124	7	17	9	373	9.93	44	Ę	ND	Ż	ŝ	27	2	2	51	.04	.050	8	18	.29	56	.02		3.68	.02	.04		1
9200N 10025E	2	40	10	68		11	ś	159	7.16	26	ŝ	ND	1	Ă	ెం	ž	5	93	.05	.065	7	16	.16	39	18		2.05	.02	.04		1
9200N 10050E	3	25	10	126	8	11	7		10.61	39	5	ND	1	4	.2	2	2	87	.03	.078	8	26	.24	52			2.48	.02	.03	ે કે	i
00000 400750											-			-		•	-	-		8. A.S.		40	• •	405				~	~		
9200N 10075E	1	36	28	102	1	20			6.11	16	2	ND	2	2	<u></u> Z	2	2	34	.02	.041	15	12	- 14	102	.01		1.60	.01	.06	3. P.	11
RE 9200N 10400E	5	21	11	159	-1 .8	12	5		11.63	336	5	ND	8	5	् .ट	11	2	55	.05	.056		- 17	.31	36	10		4.95	.02	.02		-
9200N 10100E	5	26	17	192	· . 6	13	4	304	8.58	39	5	ND	9	5	Z	2	2	31	.06		15	21	.15	29	् 13		6.19	.03	.04	1994	1
9200N 10125E	3	10	4	62	. 6	3	3	223	6.98	8	5	ND	2	9	ે ⊶2 ્ર	5	2	95	.07	.069	12	7	.17	59	. 18		2.17	.04	.04	-39 C	2
9200N 10150E	8	10	2	75	- 1	7	2	118	5,55	- 49	5	ND	1	3	୍ .2	4	2	76	.02	.079	15	8	.08	24	.08	2	1.49	.01	.02		1
9200N 10175E	8	16	4	140	.2	6	5	331	15.16	47	5	ND	2	14	ંટ	7	2	109	.16	152	9	14	. 16	49	411	2 2	2.99	.02	.04		1
9200N 10200E	7	12	13	131	.5	3	5	257	9.27	- 26	5	ND	2	6	. 2	3	2	70	.05	.084	16	11	. 18	71	.09	2 2	2.65	.01	.04		2
9200N 10225E	4	9	10	64	.6	4	3	2210	8.36	2	5	ND	1	12	.2	2	2	64	.07	.310	10	9	. 15	126	.22	2 '	1.93	.02	.04	S.	2
9200N 10250E	10	- 34	15	223	.8	22	7	545	9.94	80	5	ND	1	9	ે.2ે	6	2	57	.15	. 163	7	19	.36	47	05	2 2	2.19	.01	.04	3 1	- 3
9200N 10275E	1	14	2	79	3.4	7	5	514	6.67	9	5	ND	2	11	-,2	2	2	94	. 12	. 109	6	17	.29	32	.52	3 4	4.03	.04	.03		1
9200N 10300E	9	29	21	146	.5	15	7	677	12.41	55	5	ND	2	0	.2	5	2	74	.06	.067	7	21	.29	52	. 10	2	3.59	.01	.03		1
9200N 10325E	10	22	10	193	1.5	11	, A	930	8.40	87	5	ND	2	12	. R	2	2	47	.10	.075	16	13	.19	49	.20		3.52	.02	.03	24	3
9200N 10350E	5	45	16	111	1.6	20	11	461	9.20	82	ŝ	ND	õ	30	7	7	ž	69	.29	.076	7	19	.69	59	21		3.13	.16	.07		
9200N 10375E	3	27	14	249	1.4	16				92	ŝ	ND	1	11		Å	2	56	.10	.085	ż	15	.59	56	ंठ		3.06	.02	.04	1 Pr	2
9200N 10400E	5	19	12	166	1.7	11	5		10.77		5	ND	Ż	5	4	7	2	53	.05	.053	7	16	.33	38	.10		4.70	.02	.02	Ĩ	9
9200N 10425E	7	19	9	114	.5	8	10	1926	7.86	107	5	ND	1	23	.2	٦	2	77	31	.131	R	12	.54	80	.05	. 2 3	2.53	.06	.06		1
9200N 10450E	2	12	12	52	.8	6	5	356	5.28	80	, , , , , , , , , , , , , , , , , , ,	ND	- 1	14	- 7	ž	5	95	.15	.084	7	12	.26	41	.24		1.42	.05	.05	್ರಿಸ್ಟೇ	- i
9200N 10475E	2	10	·2 6	90		11	7	719	2.63	26	Ę	ND		106	: * 5:	7	2		1.28		10	13	.49	145	. 69		1.82	.15	.07	24	- i
9200N 10500E	18	35	13	300	7	44	Ś	488	7.12	53	Ś	ND	- 1	60		7	2	49	.82	-	6	20	.41	79	്ങ		1.72	.02	.05	- N 12	4
9200N 10525E	9	49	1.1	333	.5	54	12	3404	3.56	29	5	ND	4	90	1.9	6	2		1.16		36	17	.36	408	27		2.50	.06	.05	1	
7200M 10323E	7	+7	2	دور	.2	74	12		5.90	C7.	2	жU		90	- 1 47	0	2	27	1,10		30	"	. 30	400			2,30		. 00		,
STANDARD C/AU-S	18	59	38	132	7.3	74	31	1055	3.98	42	19	7	37	52	18.7	15	21	57	.48	.091	38	58	.89	179	.09	33	1.89	.08	.16	्री	51

4	
ACHE ANAL	TTICAL

ACHE ANALYTICAL	_										_																		N	CHE ANALYT	TICN
SAMPLE#	Mo	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	TF	B	AL	Na	K	M Auf	*
	ppm	ppm	ppm	ppm	ppm	ррм	ppm	ppm	*	ppm	ppm	ppm	рря	ppm	ppm	ppm	ррм	ppm	X		ppm	ppm	X	ppm		ppm	*	<u>x</u>	X (pp	n ppt	b
ss-92-01	4	24	6	150	5	28	13	1327 4	74	25	- 5	ND	1	49	5	2	2	47	.53	.086	14	24	.91	147	.06	31	.88	.06	.09	∰ ∰ 1	1
ss-92-02	4	22	10	154	1	29		1452 5	-	21	5	ND	1	43	2	2	2	47	47	.084	16	20	.94	Q.	07	32		.07	.11 🔅	<u>i</u> 1	1
RE \$\$-92-02	4	23	11	152	1	27	12	1372 4	. 81	22	5	ND	1	42	.3	2	2	46	.45	.079	15	20	.91	- 139 🔅	.07	32	,00	.07	.09 😣	(1) -	•

31/47

Page 17

					بورى ك	من ينت) je ju	i ha	<u> </u>		BIS			0.63	120	$\sim g_{\rm s}$			28 turk Victoria	i Ligikas	ي ميزيد ا	10	en e dite en	2/4		۱V	
			CO		ind		bag. 20		<u>ti 8</u> W. Ge						JEC E 4A2					# Chard			3	Pa	ge	1		417		Ŀ	L
MPLE#	No ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U Maqa	Au ppm	Th ppm	Sr ppm	Cd	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	8a ppm	 	8 ppm	AL X	Na X	K X	pp a	
17	3	37	10	53	.4	23	16	263	9.84	10	7	ND	2	16	.2	2	2	158	.33	.047		90	.33	30	.51	7	4.84	.02	.01		i i i i i i i i i i i i i i i i i i i
01	8	39	9	103	.2	35	22	830	9.96	42	Ś	ND	2	5	.2	ō	ž	128	.06	.041	6	88	.75	97	-1£	6	3.44	.01	.03	Č Ť	-
08	16	23	8	53	9		6		13.23	44	ŝ	ND	1	13	2	ż	ž	100	.19	.078	9	6	.19	53	.55	2	2.03	.02	.02	ંે	į.
17	4	36	14	88	Ĩ.	31	15	435	7.16	11	ŝ	ND	6	8	.2	2	2	65	.15	.035	11	118	.51	57	.18		6.68	.02	.03	te se	ŝ
01	14	17	15	62		5	5		11.73	39	c c	ND	2	8	.2	2	2	141		.054	6	12	.14	18	.42		3.70	.01	.01		:
,	14	17	12	02		,	,	270	11.73		2	NU	2	0	•4	č	2	1441	.09		0	12		10		-	3.10	.01	.01	88 S	÷
8	44	14	10	70		3	33	3120	22.25	92	5	ND	1	13	. 2	2	2	157	.52	.112	10	2	.24	43	.26	3	1.80	.01	.01	Ĩ	ł.
7	7	22	15	60	1	11	5		13.93	22	5	ND	3	6	.2	ž	2	122	.11	.030	5	40	.23	24	.38	2	3.26	.01	.01		į.
7	6	12	12	99	.1		11		12.09	14	É	ND	1	5	.2	5	2	214	.03	.079	7	Ĩ	.20	41	.22		2.20	.01	.02	().2¥	ŝ.
1	1 -	15				-		-		54	5		<u>'</u>	-	.2	2	2	152		.065	4	18	.11	28	41		3.32	.01	.02	ź	2
8	12		12	60	- 1	5	5	-	10.43		2	ND	2	6	4		-		.04	V			-					.02	.02	<u></u>	1
Þ	9	15	3	57	1	9	3	224	7.17	12	2	ND	1	14	• • •	2	2	179	.17	.041	5	15	.15	18	.63	2	.85	.02	.04	222 IS 2.3928	į.
7	24	12	11	33		6	3	54	9.79	56	5	ND	2	3	ંતુ	7	2	166	.01	047	4	14	.07	17	.14	2	3.34	.01	.01		ŝ
7	12	23	25	100	- 6		-			53	5	ND	2	8	3	ź	2	81		.040	11	21	.36	71	.06		3.41	.01	.04	- 38 E	į.
-	1				.3	16	10	402	8.27		2		2	_		_	2								1.1.1.202					100.4	8
0	5	21	24	187	1	14		1860	7.11	21	5	ND	1	3	. 2	2	2	27	.06	.055	37	13	.22	93	.06		3.01	.01	.05	38 P	÷
1	1	16	10	82	. 4	15	30	2519	4.43	5	5	ND	1	83	-3	2	- 3	57		102	23	8	.78	187	.35		2.92	.26	.12	옷문	4
2	9	13	16	47		6	1	266	4.78	13	5	ND	1	7	ୁ .2	2	3	75	.04	.032	18	10	.06	43	<u>. 37</u> ्र	2	1.64	.01	.03	2	į
3	8	14	18	47	4 - 4-	F		154	5.94	. 42	4	NO	4	9		2	2	74	.07	.051	17	14	.12	29	.36	2	1.43	.03	.04		£.
	12	14	32		1.1	5				12	6 7	ND			.2	2	4	74		.040		18	.15	29	47		1.44	.02	.06	<u> </u>	¢.
)4)5	+ =			48		6		147	3.46	16		ND	2	6	0.172	2	2		.03	100 C 100 C	28	-			1						ŧ.
15	10	21	19	73	2	16	5		11.64	23	6	ND	3	11	2	2	2	129	.08	.074	11	43	.51	32	. 36		2.53	.01	.03	<u></u>	ŝ.
6	4	12	28	33	.5	5	2	432	5.51	5	7	ND	- 4	6	.2	2	2	29	.03	.089	8	11	.07	31	14		5.96	.01	.02	ି 2	2 6
7	3	17	7	47	.3	14	7	573	6.05	13	5	ND	1	5	.2	2	2	70	.05	.078	8	57	.24	24	्. 13	2	1.98	.02	.03	્યા	<u>^</u>
8	6	29	11	126	.3	33	21	2532	7.40	36	5	ND	1	6	.2	2	,	79	11	185	11	50	1.04	37	.1¥	2	3.10	.01	_04	 >< ∞ ¶	ź.
	10		15							26	5			ğ	ž		5	88		.051		13	.21	- 44	.55		3.66	.02	.03		<u>.</u>
8012		19		88	2 <u>2</u>	_5	6	388	9.45		2	ND	4	¥.		2					11										2
19	7	31	15	116	.2	32	12	572	8.92	41	<u> </u>	ND	2	8	- 2	2	2	81	.13	.055	6		1.16	31	-11		3.05	.02	.03	<u></u>	<u>,</u>
0	6	20	9	47	.2	8	- 4	274	7.21	18	5	ND	1	6	2	2	2	89	.05	.039	8	35	.16	27	- 18		3.03	.01	.02	્રહ્ય કુ	Ì.
1	7	12	22	56	.7	5	4	315	9.78	. 31	5	ND	4	4	.2	2	2	103	.03	.041	6	13	.14	103		2	3.15	.01	.02	्रीः	ć.
•	9		20	87	÷	F		700			-		,	•		~	,	82		ൂ		40	20	13	.54	•	3.45	.02	.03		ŝ
2	-	16	20	83	.3	5	5	329	8.87	29	2	ND		8	.2	2	2	82			11	12	.20	42							2 0
3	7	22	24	114	.5	7	15	604	8.16	81	2	ND	4	3	- 2	7		45	.03	-041	15	11	.18	37	.05		3.25	.01	.02		÷
4	10	15	35	134	. 1	6		3703	7.83	48	5	ND	1	7	.2	9	2	22		.079	32	4	.10	80	े 03		1.14	.01	.05	1	÷
5	4	7	10	54	.4	2	5	692	1.82	-13	- 5	ND	1	12	.2	2	2	26	.11	.060	22	2	.11	27	∴. 06	2	.81	.04	.05	: S 1	2
6	12	17	43	137	.3	4	25	2653	9.09	60	6	ND	3	5	.2	14	2	15	.04	.074	43	4	.04	52	.01	2	2.57	.01	.04	ંી	2
7	5	10	38	07	é	5	44	<u></u>	5.12	34	e	NP.		24		40	r	£4	7/	505	46	7	.24	184		2	1.60	.06	.07	64	
	-	10		93	.5	-				26	2	ND		21	.2	10	2	61	.24	.082	15	3	-	184	,05						¢
8	6	20	48	169	.5	6			8.00	46	5	ND	I	5	.2	13	2	34		.124	14	1	.04	40	.02	2	.98	.01	.06	ं है	:
9	4	23	50	137	.3	6		1103	5.16	. <u>31</u> /	5	ND	1	7	·· .3	15	2	34	.07	.088	22	1	.04		.02		.91			્યુ	ς
0	6	26	27	84	.1	- 11			9.63		5	ND	4	7	.2	4	2			.068	15		.30		.,44		2.37			્યુ	
1	4	12	34	80	.8	8	6	867	4.01	52	5	ND	1	10	.4	6	2	88	.08	.039	10	7	.08	35	.35	2	.92	-01	.04	9 J.	
2	1	77	17	110	t	22	44	109/	6.56	7.0	c	μn	4	17		7	2	60	47	071	10	25	61	72	16	2	2.84	02	24	· []	ŝ
2		33	17		.4	22					5	ND		14	-2	2	2	59		.071	10	25									
3	5	26	18			11			8.51		2	ND	Ţ	15	.4	2		108		.183	9			119			2.09			: <u>1</u>	
NDARD C/AU-S	18	57_	57	133	7.4	70	- 31	1043	3.94	42	18	7	- 41	52	18.6	- 14	- 19	58	.48	.090	39	58	.88	178	.09	- 34	1.88	.07	.15	. 11	

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 TO P16 SOIL P17 ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

п

Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: AUG 10 1992 DATE REPORT MAILED:

92 SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

STANDARD C/AU-S

NE AMALYTICAL

N Aut

- 1

ppme ppb

Ť.

Ĵ.

1.

ЧĽ.

Z

ା

.06

.31 2 2.32 .02

.03

44												•													Pol	101			
ACINE ANALYTICAL			C	ope	lan	1 R	eba	gli	ati	& A	980	cia	tes	PF	ROJE	CT	POL	ю	FIL	Æ #	92	-24	63			P	age	2 53/4	/7
SAMPLE#	No ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mn ppm	Fe %		U ppm	Au ppm	Th ppm	Şr ppm	Cd ppm	sb ppn	Bi ppm	v ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	AL X	Na X	K S
8024 8025 8026 8027 8028	4 7 4 7 6	16 18 25 18 16	6 12 9 8 31	93 65 84 91 128	.5 .1 .2 .2	10 7 14 7 8	8 11 13 19 21		9.03	6 20 14 19 410	5 5 5 5 5 5	ND ND ND ND ND	1 1 4 5 4	6 8 8 6 6	.2 .5 .2 .5 .3	3 2 2 3 9	2 4 2 4 2	27 176 85 152 47	.05 .08 .06	.125 .043 .053 .046 .062	22 9 6 7 13	20 19 26 22 20	.20 .14 .35 .32 .19	32 34 21 27 56	.09 .49 .29 .34 .06	2 2 2 2	5.41 2.34 6.25 5.30 5.60	.02 .01 .01 .01 .01	.03 .02 .02 .01 .03
8029 8030 8031 8032 8033	7 7 7 11 7	24 23 19 25 24	14 20 12 23 12	85 102 106 196 116	.1 .1 .5 .1	11 13 5 14 18	17 22 27 25 15	615 472 1633	12.69 14.05 14.55 11.04 12.11	41 26 30 113 29	5 5 5 5 5	nd Nd Nd Nd	4 1 2 1 1	5 15 6 17 13	,2 .4 .7 1.0	6 10 5 6 2	2 2 2 2 2	149 145 146 73 84	. 13 . 08 . 22	.059 .083 .101 .082 .058	7 7 24 7	37 44 15 20 40	.30 .37 .22 .23 .59	28 45 28 80 38	.32 .16 .22 .16 .18	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.88 2.67 3.32 4.03 3.74	.01 .02 .01 .01 .01	.02 .03 .02 .04 .03
8034 8035 8036 8037 8038	13 6 5 6 10	19 18 13 18 14	17 22 28 15 14	78 119 86 109 85	.1 .2 .5	11 16 2 11 8	8 14 7 12 10	264 249 355 409 241	8.27 9.64 7.18 8.30 9.26	28 21 3 17 29	5 5 5 5 5	nd Nd Nd Nd Nd	2 7 6 1	11 8 4 5 7	.2 .2 .3 .2	2 2 3 4 3	7 3 2 2 6	112 83 47 59 103	.07 .02 .05	.035 .023 .028 .038 .057	13 7 9 9 16	16 40 20 26 21	. 14 . 49 . 10 . 36 . 17	46 49 48 43 43	.44 .16 .18 .12 .20	2	1.64 6.21 7.64 6.25 2.95	.01 .02 .01 .02 .01	.03 .04 .02 .03 .02
RE 10008 8039 9001 9008 9017	3 6 6 10 13	19 18 18 13 4	14 15 22 25 5	94 121 76 90 32	1 .4 .3 .1 .1	8 12 6 8 3	11 12		7.41 12.36 10.59	7 22 17 25 15	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 3 1 1	23 10 6 37 8	.3 .2 .2 .8 .2	3 3 2 2 4	3 2 3 2 2	72 75 95 45 54	- 14 - 03 - 44	.326 .091 .062 .120 .026	9 12 9 17 14	15 19 26 12 5	.32 .49 .15 .32 .09	102 61 93 41	.30 .06 .16 .17 .28	2	2.92 3.06 3.50 2.81 .50	.05 .01 .01 .09 .03	.06 .07 .03 .06 .04
9037 10001 10008 10017 10037	17 6 2 19 7	10 14 20 18 16	29 25 13 22 22	93 66 92 73 131	.8 .1 .3 .1 .3	2 4 6 2 8	7 11 16 11 10	7159	13.32 5.73 13.41	132 39 6 39 123	5 5 5 5 5	nd Nd Nd Nd Nd	3 2 1 2 4	6 4 23 6 7	.2 .2 .3 .2 .6	15 2 2 10	2 2 2 3	24 82 70 61 79	.03 .26 .05	.048 .052 .327 .062 .037	31 8 9 8 14	4 29 15 16 21	.05 .19 .33 .11 .25	66 45 96 36 51	.03 .24 .31 .19 .08	2 3 2	1.47 3.14 2.84 2.69 3.06	.01 .01 .05 .01 .01	.04 .03 .06 .02 .04
11001 11008 11017 11037 12017	6 7 7 8 7	15 16 9 10	10 22 10 9	67 39 50 48	.1 .1 .1	7 4 3 9	7 4 8 7 7	399 93 183 154	3.47 5.93 6.72	17. 6 21 17	5 5 5 5	ND ND ND ND	1 1 1 1	6 9 9 12	.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 4 9	60 70 70 131	.06 .06	.060 .040 .035 .025	14 12 8 8	20 10 7 17	.14 .07 .08 .14	89 39 32 23	.19 .38 .22 .39	2 2 2	2.83 1.41 1.02 1.08	.01 .01 .02 .02	.04 .04 .03 .03

ND .2

20 56 39 132 7.6 71 32 1051 3.93 43 22 7 40 53 19.2 15 19 59 .48 .090 40 58 .87 177 .09 34 1.88 .07 .15 11 46

 .04 .038

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

.1

7 190

9.32

34/47 Page 3

ΔΔ	
THE ANALYTICAL	_

ACHE ANALYTICAL																													CHE ANALY	TICAL
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe X	As	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppn	Sb ppm	Bi ppm	V ppm	Ca X	P *	La ppm	Cr ppm	Mg X	Ba Ti ppm X			Na X	к %	N 100 T	Au* ppb
11400N 10700E 11400N 10725E 11400N 10750E 11400N 1075E 11400N 1075E	21 8 7 10 10	85 18 20 16 24	16 5 5 6 7	695 97 88 102 132	1.6 1.5 .7 .3 1.4	68 8 11 15 15	3 5 4	1365 360 188 116 173	6.50 6.46 9.29 2.37 6.04	47 15 22 12 15	5 5 5 5 5	ND ND ND ND	3 2 2 2 2	7 23 41 18 3	1.5	3 2 2 3 2	2 2 3 2	61 122 73 105 106	.09 .22 .11	.110 .156 .061 .024 .030	13 7 6 12 11	22 10 14 4 11	.26 .19 .27 .15 .10	147 .03 41 .57 44 .35 26 .40 43 .10	2	6.02 2.32 1.46 .91 2.08	.01 .02 .06 .04 .01	.02 .03 .04 .03 .02	2111	2 2 1 1
11400N 10825E 11200N 10675E 11200N 10700E 11200N 10725E 11200N 10775E	6 4 5 7 10	54 24 16 20 9	4 4 4 5 3	176 71 87 113 71	3.0 .4 1.0 .6 .5	52 26 11 24 7	4 6 3 5 2	204 177 195 92 113	4.74 7.56 6.29 5.33 2.74	17 15 13 18 12	5 5 5 5 5	ND ND ND ND ND	2 1 10 2 1	6 7 15 6 21	~~~~~	2 2 2 2 2 2	2 2 2 2 2 2	64 96 52 104 90	.02 .07 .02	.025 .075 .064 .113 .029	6 7 7 8 11	38 61 23 30 5	.55 .24 .07 .09 .08	36 .07 30 .04 29 ,19 19 .14 35 .28	2	2.23 3.12 5.30 1.25 1.06	.01 .01 .02 .01 .01	.02 .03 .03 .03 .03		1 1 1 2
11200N 10800E 11200N 10850E 11200N 10875E 11200N 10900E 11200N 10925E	15 5 11 73 14	19 14 30 125 18	2 2 8 15 2	90 59 171 303 67	.2 .6 1.3 2.1 .3	10 9 22 25 8	5 4 51	117 189 129 1860 123	3.97 3.71 7.62 7.75 2.25	18 8 24 41 18	5 5 5 5 5	ND ND ND ND	2 1 2 2 1	14 39 9 2 11	5.5.2.3	2 2 2 2 4	2 5 2 2 2	137 109 125 52 85	.26 .05 .01	.022 .040 .082 .121 .043	8 5 7 6 12	8 5 31 26 6	.08 .38 .19 .09 .08	18 .24 38 .60 34 .11 22 .04 19 .15	22	.98 2.12 7.65	.02 .11 .02 .01 .02	.03 .06 .03 .02 .04		5 2 2 2 1
11200N 10950E 11000N 8850E 11000N 8875E 11000N 8900E 11000N 8925E	11 5 1 4 5	38 18 10 25 31	16 15 9 12 12	254 53 39 60 58	1.3 .1 .1 .1	31 18 12 5 16	5 4 11 2 5	154 246 410 340 241	12.40 5.82 3.08 5.47 7.04	34 17 4 17 36	5 5 5 5 5	nd Nd Nd Nd	4 1 1 4 2	5 9 59 9 17	~~~~~~	2 2 2 2 2 2	2 2 2 3 2	103 60 69 32 70	.05 .53 .11	.082 .041 .044 .058 .037	6 16 7 22 21	47 28 3 8 26	.25 .38 .98 .12 .44	29 .08 21 .25 43 .66 20 .23 29 .41	22	4.83 2.38 1.18 3.74 2.35		.03 .04 .11 .07 .05		1 16 3 2 2
11000N 8950E 11000N 8975E RE 11000N 9125E 11000N 9000E 11000N 9025E	2 2 5 4 1	8 13 56 38 86	13 4 19 14 24	28 40 69 64 84	.2 .2 .1 .8	7 8 15 10 25	4 10 11 11		2.19 2.86 6.66 11.07 7.97	9 26 34 58 43	5 5 5 5 5	ND ND ND ND	1 1 1 1	24 17 17 9 10	~~~~~	2 2 3 2 5	3 2 2 2 2	83 90 83 91 33	.19 .12 .04	.034 .042 .088 .072 .106	11 8 10 6 8	14 14 22 19 21	.32 .13 .13 .11 .11	43 .37 37 .28 42 .16 42 .21 39 .03	23	1.36 .98 1.21 1.41 2.47	.08 .02 .01 .01 .01	.06 .04 .04 .03 .02		2 1 5 3
11000N 9050E 11000N 9075E 11000N 9100E 11000N 9125E 11000N 9150E	1 2 4 5 4	95 42 32 53 25	16 19 10 19 19	101 35 59 68 90	.4 .1 .3 .1 .4	23 6 13 16 7	7 7 10	2317 285 287 370 1116	7.67 5.98 5.92 6.63 7.20	58 39 26 33 21	5 5 5 5 5	ND ND ND ND	1 1 1 1	70 5 37 18 5	~~~~	2 2 2 2 2 2 2	2 2 2 2 2 2 2	75 45 65 83 21	.04 .23 .12	.164 .294 .050 .089 .070	13 7 9 11 26	11 15 19 23 13	1.08 .05 .29 .13 .07	45 .41 16 .05 42 .14 43 .16 13 .17	2	2.14 .85 1.41 1.22 3.34	.28 .01 .03 .01 .04	.12 .03 .04 .04 .05		1 1 4 3
11000N 10825E 11000N 10850E 11000N 10875E 11000N 10900E 10800N 8900E	6 5 6 11 2	30 18 25 13 98	11 12 9 9 11	160 99 216 52 66	.9 .5 1.1 .4 .5	25 14 19 5 11	6 2 5 2 13	163 112 199 83 952	5.17 7.63 7.62 5.43 11.99	17 19 20 16 7	5 5 5 5 5	nd Nd Nd Nd	3 10 3 1 2	9 10 9 20 9	227.72	2 2 3 2	22222	62 48 86 169 146	.05 .04 .08	.028 .046 .065	9 8 9 5 4	31 15 44 14 57	.21 .14 .14 .12 .30	46 .08 18 .22 25 .06 22 .86 54 .43	2	3.50 3.54 2.58 .74 2.03	.02 .02 .02	.03 .03 .03 .03 .03		1 4 2 5
10800N 8925E 10800N 8950E STANDARD C/AU-S	2 3 18	12 62 60	24 32 38	35 68 131	.4 .4 7.4	8 10 73		536	4.00 6.05 4.00	50 15 43	5 5 18	ND ND 7	1 1 41	12 28 53	.2 .2 18.8	2 2 15	2 4 20	84 102 59	.25	.042 .080 .092	9 8 40	21 10 61	.21 .33 .89	39 .20 85 .39 180 .09	2	1.38 1.06 1.90	.08	.04 .05 .15	1 1 11	1 2 51

Page 4

35/47

ACHE ANALYTICAL																										-			ACHE ANALT	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Çd. ppm	sb ppm	Bi ppm	V ppm	Ca X		La opm	Cr pp#1	Mg X	8a ppm	TT X	B ppm	AL X	Na X	K W X ppm	Au# ppb
10800N 8975E	2	30	11	45	.6	5	7		8.07		5	ND	2	18	2	2	2	103			5	9	.24	55 93	.15		1.44	.03	.04 1	1
10800N 9000E 10800N 9025E	33	46	25 16	45 135	.2	6 24	9 31	589 572	7.37 9.15	2 92	5 5	ND ND	1	15 17	.2	2 76	2	91 116	.18 .1		6 6	10 9	.22	57	.08		1.55	.01 .04	.03 1	2
10800N 9023E	2	117 82	18	70	.3	15	18		18.20	86	5	ND	2	5	.2	10	ź	66	.02 .04	S. 10	ž	27	.05	56	.05	17 1		.01	.02 1	3
10800N 9075E	3	38	15	52	.2	11	7		10.62	10	5	ND	2	16	.2	Ž	2	120	.11 .0		4	32	.15	44	.39	13 1		.02	.02 1	ī
10800N 9100E	2	104	45	70	.1	7	25	3360	19.55	2	5	ND	1	26	.2	2	2	144	.34 .0	30	5	17	.27	76	.05		1.52	.02	.03	1
10800N 9125E	2	29	20	64	.2	28	8	263		19	5	ND	1	28	.2	2	2	68	.20 .2		4	48	.52	62	-09		2.17	.04	.04 🔆 1	2
10800N 9150E	4	48	31	48	,5	10	10		14.34	- 33	5	ND	2	11	ି : ମିଳ	2	2	83	.07 .0	. S. K.	3	39	.16	28	.06		2.42	.01	.02	2
10800N 9175E	9	32	26	70	1.9	11	6		17.48	15	5	ND	4	10	<u> </u>	2	2	82	.09 .0		12	60	.16	35	.30		3.05	.02	.03 1	2
0800N 9200E	2	25	23	63	.5	22	8	551	7.08	- 18	5	ND	1	12	.2	2	2	73	.08 .1	51	8	34	.36	51	.17	24	2.23	.02	.04 1	2
0800N 9225E	1	27	15	167	3	26	13	32 96	5.30	494	5	ND	1	65	.7	2	2	37	1.01		54	17	.32		. 18		3.76	. 03	.05 1	Z
0800N 9250E	4	28	15	72	.8	21		513		19	5	ND	1	25	-2	2	2	84	.30 .0		12	36	.22	59	<u>_19</u> _	-	1.72	.01	.04 1	1
0800N 9275E	8	22	17	101	- 4	27	5	471	8.62	17	5	ND	2	14	.3	2	5	76	.08.0	. f	10	31	.36		.34		1.83	.01	.03 1	
0800N 9300E	1	.9	8	36	-4	8	3			8	5	ND	2	29		2	3	103	.18 .0		5	12	.19		.73		.85	.03	.03	3
0800N 9325E	2	27	18	42	.1	8	4	127	6.49	8	5	ND	1	11	ి.2	2	3	111	.06 .0	27 }	6	20	. 16	53	. 25	4	1.81	.02	.02 2010	3
0800N 10975E	12	22	9	173	.8	14	4	144	7.36	21	5	ND	1	10	.8	2	2	- 95	.02 .0		7	29	.11		-06		1.86	.01	.02	2
0800N 11000E	3	22		1115	1.8	116	6	369	2.69	2	5	ND	1		17.9	2	2		3.13 .0		7	5	.46	105	- 36		1.72	.03	.03	1
0800N 11025E	10	29		3072	3.0	99	5		5.54	. 17	5	ND	1		11.0	2	2		1.16 .0	1. A	9	19	.32	108	.10		3.00	.02	.03 1	4
0800N 11050E	15	49	16	227	3.5	23	4	150	5.28	24	5	ND	3	4	.2	3 2	2	68	.01 .0		6	27	.32 .14	65 58	.02		4.21	.01 .01	.03 1	3
0700N 9500E	2	45	27	173	.4	14	14	3948	8.21	56	5	ND	1	21	-2	2	2	65	.34 .3	19 : - 12	6	18	. 14	20	.11	4	1.86	.01		
0700N 9525E	1	33	25	121	.5	14	14	709	7.70	42	5	ND	2	29	.2	2	2	85	.42 .0		6	12	.31	112	, 19		1.77	.06	.05 1	2
0700N 9550E	5	18	27	93	.4	10	5		11.09	16	5	ND	10	7	- 2	2	2	64	.05 .0		7	28	. 18	24	.21		4.44	.02	.03 🔅 👔	2
0700N 9575E	4	22	20	76	.7	16	9		8.92	37	5	ND	2	14	-4.	2	2	79	.11 .0		.6	33	.36	45	.03		2.43	.02	.03	3
0700N 9600E	3	39	23	78	6	15	9	374	6.78	39	5	ND	1	35		2	2	78	.20 .1		11	17	.17	59 68	⇒17 zo		1.23	.03 .01	.03 1	
0700N 9625E	3	33	15	70	.4	11	6	206	4.16	24	5	ND	ł	34	3:	2	2	78	.36 .0		11	12	. 12	00	.30	2	.70	.01		
0700N 9650E	1	25	8	112	.3	9	8		5.34	31	5	ND	1	97	.2	2	2		1.10 .0		5	8	.23	122	.22		.79	.05	.04 1	2
0700N 9675E	3	25	19	175	.9	16	10	322		28	5	ND	2	86	.2	2	2		1.15 .0		12	20	.30	183	.26		2.96	.01	.02	3
0700N 9700E	2	19	13	93	1.2	10	10	382	6.62	19	5	ND		92		2	2		1.03 .0	2 a.a.	10	14 57	.21	164 37	.20	_	1.67 2.98	.02 .01	.02 1 .03 1	2
E 10800N 9175E	9	31	22	69	1.8	11	- 5		16.87	12	5 5	ND ND	4	12 70	.2	2	2	80 47	.11 .0		12 18	57 18	.16	103			2.90	.02	.03	
0700N 9725E	8	45	27	134	.4	22	20	1255	9.89	36	,	NU	,	70		2	ć	47	.70 .0		,0	10	,	105			6	. 02		
0700N 9750E	13	42	23	163	.4	12			12.13	62	5	ND	6	17	.2	4	2	35	.18 .0		16	16 8	.17	41	11		5.87	.01	.06	4
0700N 9775E	130	27	25	152	-8	12	8		11.56	202	5	ND	4	10		33 2	2	45 35	.06 .0		6 36	14	.35 .47	28 132	.01		2.99 3.73	.01 .05	.02 1	2
10700N 9800E	9 3	24	12 19	258	.4	39 8	9	3329	6.80 6.79	19 17	5	ND ND	1	78 33	1.5	2	ź	- 30 - 51	.35 .0		30 7	- 14	.19	46			1.53	.03	.03	
10700N 9825E 10700N 9850E	11	19 20	5	103 43	.3 .1	7	5		4.48	154	5	ND	1	11	.2	3	ź	66	.06 .0		5	3	.06	22	. 18	2	.%	.01	.03 2	1
10700N 9875E	7	29	22	88	.1	7	6	443	11.89	43	5	ND	٦	3	.2	2	2	53	.02 .0	41	6	19	.05	31	.08	3 3	2.50	.01	.02 1	2
10700N 9900E	5	26	22	110		15	-		7.42	35	5	ND	2	3	.2	2	ž	47	.01 .0		4	13	.22	48	.04		3.35	.01	.02 1	
STANDARD C/AU-S	18	57	38	130	7.2	70			3.96	41	17	7	39	-	19.2	14	19	58	.52 .0	· . ·	38	57	.92	183	.08		2.00	.07	.14 .11	

Sample type: \$01L. Samples beginning 'RE' are duplicate samples.

|

36/47	
Page 5	TT

ACHE ANALYTICAL																														THE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mri ppm	Fe X	As ppm	ນ ppm	Au ppm	th ppm	Sr ppm	Cd ppm	Sb ppm	ai ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Ng X	8a ppm		8 ppm	Al X	Na X	K X	V prm	
10700N 9925E	2	10	6	39	1	7	5	84	1.34	10	5	ND	2	45	.5	2	2	35	. 15	039	3	4	.20	48	.14	2	.38	.04	.04	2	1
10700N 9950E	1	5	2	31	.1	5	5	95	1.46	1.4.	5	ND	1	25	· 4	2	2	29	.14	029	4	4	.23	49	. 11	2	.86	.05	.05	ંત્ર	1
10700N 9975E	6	15	5	68	.5	8	Š	185	2.03	12	5	ND	1	13	4	3	2	75	.06		6	6	.07	19	.08	2	.48	.01	.02	<u></u>	- 4
RE 10600N 9025E	2	26	21	60	2.1	9	15	487	5.86	2	5	ND	1	34	.2	2	2	79	.32 .		- Ā	14	.48	136	.23		1.25	.12	.08	ંગે	1
10700N 10000E	Ž	20	9	94	5	8	9	181	4.48	16	5	ND	1	9	.2	ž	2	36	.04		3	8	.11	81	.02		1.75	.02	.04	्रि	1
10600N 8950E	1	11	4	34	.1	6	8	136	2.22	10	5	ND	1	15	2	2	2	68	.13	045	6	13	.25	25	.27	2	.94	.05	.04		1
10600N 8975E	2	11	18	35	- 1	7	8	136	5.59		5	ND	2	ō	.2	2	- Ž	123	.07 .		8	38	.21	27	.26		2.20	.03	.02	- Se 🚯	1
10600N 9000E	2	158	25	104	1	43	-	1068	6.51	40	ś	NO	1	13	.2	2	ž	62	.12 .		10	48	.78	249	.04		5.24	.01	.03	100	ż
10600N 9025E	1			58		10	16	509	6.05	2	5	ND		35	.2	2	3	80	.32		4	16	.50	137	.25		1.28	.12	.08	÷ 4	1
10600N 9050E	1	26 12	15 8		2.2	6			2.36	2	5	ND	1	41	.4	ź	2	37	. 44		4	7	.30	60	.28		.92	.08	.06	24	i
10600N 9075E		75		10	•	40	40	1105	4 01		5			25	.2	2	2	110	. 19	050	5	13	.34	124	.24	.	1.40	.02	.04		2
	3	25	11	62	-1	10		1195	6.01	6	5	ND		70		ź	ź				6		1.13	49	59	_	1.24	.30	.13	18 N	1
10600N 9100E	1	11	3	55	.1	15	16	389	4.06	2	-	ND			,2	-	_	86	.62		•									ં સંવર્ષ	8
10600N 9125E	2	31	18	76	- 1	34			5.98	19	5	ND	1	33	-3	2	5	56	.26		5	50	.57	79	.08		2.10	.06	.06	- in 19	-
10600N 9150E	4	42	27	79	6	14	14	469	8.21	19	5	ND	6	12	.2	2	2	41	.08		.9	32	.11	.55	. 18		5.20	.01	.02	- Y	5
10600N 9175E	7	23	20	105	.5	24	13	572	7.08	· 25	5	ND	2	86	.2	2	2	58	.80	.043	15	30	.38	439	.20	2 .	1,58	.02	.04		2
10600N 9200E	3	57	36	82	1.2	9	12	188	11.73	18	5	ND	4	10	.2	2	2	49	.07 .		5	20	.40	36	. 13	_	4.59	.01	.01	ાં	2
10600N 9225E	2	50	32	- 74	7	7	12	187	9.85	- 31	5	ND	3	7		- 4	2	65	.03 .		3	22	.37	- 37	.03	3 2	2.86	.01	.03	1 I	2
10600N 9250E	5	19	11	50	.1	10	7	150	2.99	. 13.	5	ND	2	15	.2	2	2	109	.08	.038	6	16	.11	28	.,44	5	.72	.01	.03	ંદ	1
10600N 9275E	7	87	46	82	.1	13	30		10.60	196	5	ND	1	11	.2	4	6	97	.11	076	4	15	.24	24	:12	2 '	1.58	.02	.03	ંદ	- 5
10600N 9300E	8	97	19	82	1.3	12	18	290	8.53	91	5	ND	1	12	-3	8	2	76	.12	086	3	13	.31	30	.03	5 '	1.07	.03	.03	्	2
10600N 9325E	7	774	38	128	.6	24	40	1345	10.45	106	5	ND	2	39	.7	3	2	83	.38 .	088	8	21	.69	46	.17	10 2	2.78	.12	.07	Ï	13
10600N 9350E	Ś	462	496	193	. 9	31		5850	7.99	80	ŝ	ND	1	48	8.6	7	2	43	.68		10	14	.50	185	.06	2 2	2.50	.01	.03	1 E	18
10600N 9375E	3	64	37	76	.2	13		307	6.32	. 44	5	ND	i	22	.2	ż	2	44	.12		3	13	.29	104	.06		1.13	,04	.04	👔	2
10600N 9400E	4	163		1059	.7	34		2254	9.53	113	5	ND		62	5.3	3	Ž		1.01		7	15	.76	73	.08		2.04	.07	.05	1	4
10600N 9425E	2	141	51	228	1	31	-		8.60	80	5	ND	1	38	.2	5	ž	49	.49		5	17	.64	186	.04		1.84	.03	.04	- É	3
			-					_					·	-	·	-	_											-			
10600N 9450E	10	120	54	144	.1	23			14.08	72	5	ND	1	34	.2	2	2	90	.45		10	24	.59	166	.01		2,89	.02	.04	્રાષ્ટ્ર	1
10600N 9475E	4	82	33	115	.1	18	55 🗆	2965	10.20	47	5	ND	1	- 46	.2	2	2	68	1.13 :	128	9	19	.61	109	- 0ő		1.75	.05	.05	1	1
10600N 10875E	9	38	24	153	.6	26	19	737	7.18	17	5	ND	3	15	.2	2	2	88	.17 .	078	9	35	.40	- 44	- 18	54	4.07	.04	.04	1	1
10600N 10900E	24	31	24	237	.8	26	16	334	11.23	58	5	ND	3	6	.2	17	2	115	.08	047	- 4	73	.27	45	.08	2 4	4.52	.01	.02	ା 🕻	4
10600N 10925E	19	32	15	274	.7	34	20	603	7.74	45	5	ND	4	7	7	6	2	62	.11 .	056	7	76	.32	60	.07	2.6	5.22	-01	.03	्रा	3
10600N 10950E	9	42	19	370	.5	60	26	641	5.69	29	5	ND	6	7	.8	3	2	41	.06 .	038	14	52	.62	52	.05	2 4	4.76	.02	.04	1	3
10600N 10975E	8	27	16	187	9	32	14		7.05	10	5	NO	5	ġ	.2	2	2	93	.08 .		6	45	.40	53	.20		4.49	.02	.03	1	2
10600N 11000E	21	24	14	173	.8	25			10.12	35	5	ND	2	12	.2	Ģ	3	169	.12		ŭ	57	.31	63	29		2.58	.02	.02	1	1
10600N 11025E	16	22	14	198	.7	25	14	350	9.00	30	5	ND	3		.2	í.	ž	93	.10		4	80	.25		16		5.07	.01	.01	1	1
10600N 11050E	20	48	35	484	. 9	65		-	7.53	46	5	ND	3	6	.2	10	2	79		064	7	58	.56	88	.07		5.77	.01	.04	$\sim \mathbf{i}$	4
10600N 11075E	18	74	26	180	1 1	28	17	673	10.15	38	5	ND	2	9	.2	7	2	122	.11 .	064	3	110	.33	55	.13	2 9	5.53	.01	.02	100 S	1
		31			1.1	30							2			2	_				В	36	.17		.03				.03		1
10600N 11100E	12	28	31	357	1.3		19		7.29	26	5	ND		13	1.5	4	2	44	.06 .					100			5.53	.01		10	52
STANDARD C/AU-S	19	_ 59	42	132	6.1	70	- 52	1048	3.95	43	20	7	<u> </u>	22	18.7	15	21	58	.48 .	070	39	58	.88	175	.09		.88	.07	.15	<u>FU</u>	2

37/47 Page 6

MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	· Ag ippmi	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	2 P.	La ppm	Cr ppm	Mg X	Ba ppm	s(T) S	B ppm	AL X	Na X	K X	pran.	
500N 8950E	3	15	18	33	.1		4	103	4.07	20	5	ND	1	9	.2	2	2	150	.05	,044	11	28	.21	58	.14	2	2.14	.01	.03	<u></u>	
500N 8975E	ž	12	20	59		14	17	1414	7.13	4	Š	ND	1	95	.2	2	ž	140		.061	8		1.06	151	75		1.85	.36	.14	2	
00N 9000E	1	25	26	65	.2	12	13	1283	6.00	3.	5	ND	1	51	.2	2	2	111		.095	ğ	28	.52	416	.47		1.34	.12	.06	Ĩ	
DON 9025E	1	27	16	44	÷ .4.	9	6	258	6.78	6	5	ND	1	26	.2	2	3	153	•	.064	7	35	.26	121	.36	-	2.13	.03	.04	ે હે	
DON 9050E	1	16	31	61		8	16	3616	7.93	Ž	5	ND	1	30	.ž	Ž	2	156		.149	6	32	.38		-45		1.89	.04	.05	ેકે	
00N 9075E	2	7	41	28		4	7	292	1.70	7	5	ND	1	8	2	2	2	58	.09	.047	10	21	. 18	167	. 18	2	1.45	.01	.04	ંદ	÷
DON 9100E	2	32	20	62	.5	11	12	1040	8.91	5	5	ND	ż	14	.2	2	3	144		.060	6	38	.37	91	.53		3.68	.02	.03	8 f.	
ON 9125E	ī	75	20	65	.3	16		13044	5.31	2	5	ND	1	61	.2	2	ž	74		.122	6	28	.86	674	.21		1.90	. 19	.10	<u></u>	
DON 9150E	1	33	28	58		16		15386	6.64	5	5	ND	i	41	.5	2	2	107		.335	4	45	.80	142			1.61	.12	.08	े हे।	
DON 9175E	ż	15	14	52	-11	9	6	328	4.49	11	5	ND	i	24	.2	2	2	112	.26	.053	9	16	.23		.45		1.15	-06	.05		
DON 9200E	1	20	19	46	.3	11	8	275	2.97	8	5	ND	1	29	.2	2	2	72	.29	.049	13	19	.34	205	18	2	1.58	.07	.06	S.	
ON 9225E	3	60	19	53	.1	15	6	260	7.98	16	5	ND	1	25	.2	2	2	100		.060	8	48	.22	113	17		2.76	.02	.04	÷ í	
00N 9250E	3	94	30	48	.9	7	16		10.80	15	Ś	ND	i	15		2	2	162		.149	5	39	.21	85	22		3.19	.01	.02	ંગેન્ટ્રોન્ટ્રેન્ટ્	
DON 9275E	4	20	15	48		10	6	240	3.46	. 6	5	ND	1	33	2	2	3	132		.043	7	17	.21	50	ંદ્ર		.63	.05	.04	÷.	:
DON 9300E	1	37	23	61	3.4	21	10	387	6.61	27	5	ND	1	36	.2	Z	2	67		.086	7	38	.54		.14		2.18	.09	.06	्र	
DON 9325E	1	35	12	57	1.1	13	11	327	4.71	13	5	ND	1	56	.2	2	3	73	.49	.102	7	12	.44	68	.38	2	1.80	.12	.06		
10500N 9225E	3	59	20	52	.1	14	6	264	7.83	14	5	ND	1	25	.2	2	2	98		.060	8	46	.21	111	17		2.71	.02	.04	ંડ 🖡	;
OON 9350E	4	41	24	37	4	8	5		10.52	12	5	ND	ż	20	.2	2	4	150		.050	Š	24	.22	70	63		2.34	.03	.03	. ÷	
DON 9375E	2	55	14	38	5	5	8	308	8.40	2	5	ND	1	20	× .2	2	2	179		.035	4	12	.21	53	15		1.47	.03	.04	ે જે 👘	
00N 9400E	2	43	34	74	5	10	25	3830	8.64	- 4	5	ND	i	41	.2	2	2	130		.096	5	22	44	179	.20		2.19	.04	.04	៍	
DON 9425E	3	107	31	75	.5	10	23	3127	9.84	. 9	5	ND	1	57	.3	2	2	153	.52	.149	7	32	.34	149	. 35	5 3	2.22	.01	.04		
00N 9450E	8	114	47	111	.3	17	19	-	12.92	92	5	ND	3	5	.2	13	2	70		284	11	30	.13	43	.07		1.83	.01	.03	×4.	
DON 9475E	ŭ	48	33	182		26	20	455	6.43	43	5	ND	1	99	ं .टे	3	2	40		,070	14	22	.37	174	.04		3.75	.01	.04	ંદે	
DON 9500E	1	35	16	80	.5	16	14		3.62	12	5	ND		289	.5	2	2		3.40		8	19	.66	388	. 18		1.61	.14	.07	18 4 -	
DON 9525E	i	54	25	63	.6	7	6	65	5.19	41	5	ND	i	52	5	6	2	59		.051	3	7	.12	87	.13		.76	.01	.02	ð.	
XXN 9550E	2	65	31	99	.7	24	20	513	5.50	31	5	ND	1	71	.3	2	2	65	-63	.069	8	13	.72	133	15	5	1.78	.16	.07		•
DON 9575E	1	88	27	119	.1	24	20	655	5.55	50	5	ND	1	30	.2	2	2	40		.092	5	13	.66	74	.05		1.53	.03	.04	ें के	
DON 9600E	1	221	30	189	.3	53	50	1649	6.54	44	ś	ND	i	101	4	2	2		1.08		6	8	.84	96	.02		1.49	.01	.03	ं ।	
DON 9625E	7	40	46	118	.4	15	8		13.54	29	5	ND	6	7	.2	2	2	108		.075	12	47	.23		.25		3.11	.01	.04	<u></u>	:
ON 9650E	1	39	21	111	1.8	25	15	2390	5.54	20	5	ND	1	88	1.1	Ž	2		1.03		22	24	.46	123	.07		2.48	.03	.04	<u>_</u>	
00N 9675E	3	38	29	114	.8	31	13	740	8.24	25	5	ND	1	65	.3	2	2	74	.69	.073	11	36	.61	106	्र ्र13:	8	1.80	.01	.04	្ម័	
ON 9700E	Š	43	35	96	.4	22	8	364	8.36	34	ś	ND	3	10	.2	Ž	2	82		.037	12	34	.32	49	13		1.79	.01	.03	ં દ	
DON 9725E	3	25	24	86	5	10	8	296	8.42	22	8	ND	8	6	.2	2	2	52		.055	7	20	.62	23	.06		4.22	.01	.01	ं 🕯	
DON 9750E	4	38	19	100	.3	16	ğ	593	6.58	55	5	ND	1	13	.ž	2	ž	103		.059	12	23	.27		12	-	1.97	.01	.03	1	
00N 9775E	5	56	56	119	.3	19	10		13.34	55	5	ND	3	8	.2	2	ž	66		.199	6	25	.29		.05		2.85	.01	.03	ેં 🕻	
DON 9800E	3	33	32	141	2.7	17	10	486	7.40	36	5	ND	1	27		2	2	49	.29	.068	18	15	. 18	84	. 14	6 :	2.55	.01	.04	1	
00N 9825E	5	33	22	99	2.5	10	6	231	9.38	36	5	ND	3	15	.2	ž	2	50		.049		13	.10	70	11:		2.33	.02	.03	1	
NDARD C/AU-S	18	59	42		7.5	71	31	1047	3.94	43	17	7	41		18.7	15	20	59		,090	39	59	.89	177	.09		1.88	.07	. 15	ं मं	

3^{8/4/7} AA Page 7

ACHE ANALYTICAL									·																			ACHE	ANAL YTIC	AL.
SAMPLE#	No ppn	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe X	As	U ppm	Au ppm	Th ppm	Sr ppm	Cd	Sb ppm	Bi ppm	V ppm	Ca X	P X	La	Cr ppm	Mg X	Ba ppm	TI X	BAL ppm %	Na X	K X P	pm p	\u* xpb
10500N 9850E	5	18	26	73	.3	6	2	375	9.73	6	5	ND	1	19		2	5	51	.15	.050	15	10	.07	39	.39	3 1.97	.02	.04	1	2
10500N 9875E	5	32	21	98	2.6	10	6	977	9.35	32	5	ND	2	20	.Z	2	5	50	.21	.052	9	13	.10	131	11	4 2.23	.02	.03	.	2
10500N 9900E	4	37	22	322	.5	31	16	1014	6.26	37	5	ND	1	24		2	2	40		.090	15	17	.54		.03	2 2.33		.06 💮	1	4
10500N 9925E	7	17	14	76	.4	11	3	295	6.22	1 8	7	ND	2	16	.2	2	7	143		, 030	12	15	. 10		.72	2 1.19		.03		1
10500N 9950E	5	7	26	36	.1	4	3	102	6.56	9	7	ND	2	11	ີ.2	2	2	72	.08	.064	17	11	.17	33	4 17	3 2.19	.04	.05	1	1
10500N 9975E	3	9	11	34	.3	5	3	111	3.91	30	6	ND	1	4	2	2	4	106	.03	.072	13	13	.11	48	.31	2 1.50	.01	.03	۱.	1
10500N 10000E	17	15	13	85	1.1	14	6	323	9.72	19	8	ND	3	24	.2	2	2	75		.047	8	29	.34		.30	2 3.96		.05	્યુ	1
10400N 10800E	2	17	17	60	1.6	28	7	407	6.70	. 9	5	ND	1	12	ି - 2	2	2	66		.110	6	57	.29		.04	2 3.61		.02	1	1
10400N 10825E	13	23	11	165	1.3	25	7	359	7.01	31	5	ND	1	18	ुः,3ुः	7	3	93	-14		4	54	.19		. 10	2 2.40	P	.03 🛞		3
10400N 10850E	17	31	16	215	2.9	27	7	454	8.41	40	5	ND	1	16	4	11	3	63	-14	.067	6	47	.30	51 (.08	2 3.89	.01	.02	83 1 8 5-65	6
10400N 10875E	9	28	24	289	1.0	32	7	546	8.71	20	9	ND	4	4	4	2	5	54	.02	.054	16	30	.25	38 🖇	.13	2 3.89	.01	.04	े	3
10400N 10900E	3	14	24	107	.6	19	3	154	6.12	6	9	ND	9	6	.2	2	4	41		,047	9	30	. 18		19	2 7.18		-03 💮	1	- 2
10400N 10925E	18	26	18	161	1.4	18	4	227	8.63	39	6	ND	2	9	_ .2 .	8	5	139		.035	6	42	.21		.46	2 2.59		.02 💮	<u> </u>	3
10400N 10950E	8	19	.7	102	.6	11	4	130	2.91	13.	5	ND	1	26	6	2	2	112		.035	6	13	.20		.24	2 1.09		.04 Š	1	6
10400N 10975E	9	41	17	261	-9	34	7	173	7.94	20	5	ND	1	15	- 2	2	4	99	.11	.031	7	50	.39	71 (.06	3 3.06	.03	.03	8 1 . 	2
10400N 11000E	5	16	4	210	.7	42	6	4476	2.38	5	5	ND	1	163	3.3	2	2	16	1.98	.113	6	7	.07	162	.03	2 1.04	.01	.03 👸	ા	1
10400N 11050E	14	24	13	258	.7	24	10	2285	7.53	18.	5	ND	2	10	្នុះទីខ	5	8	116	.09	.405	5	34	.32		.42	3 3.94		.03 <u></u>	1	5
10400N 11075E	26	28	13	287	.5	36	9	346	8.51	47	5	ND	2	9	.2	16	3	87	.10	.065	4	59	.33		.07	2 4.70			1	4
10400N 11100E	27	30	13	196	.5	29			9.27	45	5	ND	1	15	·2	17	2	161		.066	5	59	.23	64	.22	2 2.52			<u>.</u>	3
10400N 11125E	10	40	17	80	2.2	34	29	1330	10.22	3	5	ND	1	25	.2	2	2	223	.40	.081	4	111	.45	40	.75	3 3.61	.06	.03 🥘		2
RE 10400N 11050E	14	25	16	253	.8	24	11	2301	7.39	19	6	ND	3	10	:.3	7	5	116	.09	404	5	34	.30	57	.43	2 3.92	.02	.03	÷ (5
10400N 11150E	10	45	5	113	.8	64	39	1556	11.03	- 13	5	ND	1	13	.2	2	3	162	.92	.096	4	143	.96	25	. 55	2 5.86	.03	.02 🖄	્રા	1
10300N 9150E	1	15	6	49	.2	7	2	178	4.24	- 4	5	ND	1	85	.2	2	4	106	1.07	. 063	- 5	35	. 18	545	.58	2 1.26		.03 炎	1 (3
10300N 9175E	1	31	8	68	.3	15		2456	5.40	2	5	ND	1	81	.2	2	5	86	.76		13	17	.89		. 59	2 2.54		.13 🔅	1	2
10300N 9200E	3	164	18	135	.2	18	38	2572	8.56	ຸ 2	5	ND	1	14	``*5 `	2	3	70	.20	. 154	13	41	.27	152	.09	2 5.54	.02	.04		5
10300N 9225E	1	30	7	50	.1	11	10	268	3.86	6	5	ND	1	55	.2	2	3	107	.43	.046	7	9	.51	192	.27	2 1.34	. 13	.08	¥	26
10300N 9250E	1	12	6	48	.5	8	7	402	3.52	2	5	ND	1	37	.2	2	3	102	.31	.065	5	12	.37	102	.60	3.90	.08	.05	1	2
10300N 9275E	1	8	12	37	.1	10	10	286	4.12	2	5	ND	1	54	.2	2	2	129	.50	,058	6	13	.72	41 🔅	.88	2 1.20	.21	. 10 🔅	۲ ۴ –	5
10300N 9300E	2	20	12	62	.2	7	9	178	8.28	2	5	ND	1	16	2	2	3	9 1	.12	.045	7	29	.48	108	.07	2 3.35	.03	.06	: 1 :	5
10300N 9325E	1	15	9	46	.2	11	8	231	3.78	6	5	ND	1	38	.2	2	5	139	.34	.033	8	15	.55	49	.56	2 1.33	.17	.08 jõ	1	2
10300N 9350E	1	30	14	37	.1	5	5	652	5.84	2	5	ND	1	18	z.	2	2	305	.14	.030	5	17	. 16	45	.96	2.99	.02	.02 ိ	- (3
10300N 9375E	10	45	25	89	.4	7	16	1103	14.19	10	5	ND	1	11	.2	2	2	152	.09	.085	5	34	.56	127	.06	4 3.54	.01	.04	1	12
10300N 9400E	1	56	13	77	.8	9	24	3114	5.16	2	5	ND	1	75	4	2	5	96	.90		21	35	.32		.33	2 2.50		.04	1	2
10300N 9425E	5	165	10	102	.1	10	14	333	7.56	35	5	ND	1	30	.2	68	4	111	.20	.060	7	22	.33	451 ×	.08	2 2.25	.04	.05	1.	4
10300N 9450E	3	51	17	121	.3	19	17	393	9.19	10	5	ND	1	32	.2	6	2	138	.22	.057	9	38	.48	468	.05	2 3.82	01,	.03 🎡	t.	3
10300N 9475E	5	109	27	159	.2	32	13	284	9.32	17	5	ND	5	11	.2	2	2	50	.09	.035	17	36	.42	150	.05	2 5.84	.01	.03	Z	4
10300N 9500E	2	89	17	110	.8	14	10		10.08	26	ś	ND	1	43		ž	2	54	.34		3	15	.16		.17	3 1.85			1.	2
STANDARD C/AU-S	18	59		133	7.4	70			3.94	41	18	7	40		18.7	14	21	59	.48		39	58	.88		.09	34 1.87			1É –	49

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

. .

37/47	
Page 8	TT

ACRE ANALYTICAL																		-	=											THE ANALY	TICAL
SAMPLE#	Mo popmi	Cu ppm	Pb Ppm	Zn ppm	Ag	Ni ppm	Co ppm	Nn ppm	Fe X	As ppn	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppu	Sb ppm	Bi ppm	V mqq	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	_ 11 ≸	B ppm	Al X	Na X	K X	ppm W	
0300N 9525E	3	105	41	107	.7	18	8	261	11.18	41	5	ND	3	12	.2	10	2	45	-08	.066	5	15	.18	29	.07	5	1.48	.04	.04	S.	
0300N 9550E	1	98	23	137	.1	27	16		10.20	46	5	ND	ĩ	20	_z	3	2	43		.357	7	20	.29	29	.05	-	3.67	.03	.04	ંજ	
0300N 9575E	1	169	31	197	.2	55	24	379	9.38	64	5	ND	2	10	.2	6	2	33	.15	.202	9	17	.37	41	.03		2.16	.01	.02	ંદ	
0300N 9600E	1	94	30	95	. . 1	22	8		12.36	37	5	NØ	1	11	-2	2	2	51		.537	5	21	.13	40	.03		1.93	.01	.02	્યુ	
0300N 9625E	1	45	28	71	5	13	7	273	7.01	21	5	ND	1	17	.5	2	2	50	.09	.135	6	17	.17	39	. 06	3	1.77	.03	.03	8	
300N 9650E	1	81	30	141	.2	31		1146	7.89	48	5	NÐ	1	12	2	5	2	35		.163	7	23	.70	58	.01	-	1.99	.01	.04	្រា	
300N 9675E	1	67	19	106	.3	23	11	420	7.43	30	6	ND	2	15	. . Z	5	2	39		.098	5	23	.54	53	.02		2.06	.05	.04	21	
300N 9700E		127	26	151	.1	38	22 19	948	6.38	47	5	ND ND	1	34 39	. .2	2	2	36 24		.135	6	19 16	.81 .51	114 143	.04		1.65	.02 .02	.04	848	
0300N 9725E 0300N 9750E	1	99 117	21 21	128 145	.3	28 35		803 1117	5.16 6.42	34 43	5	ND	i	66	.2 .2	ž	2	46		.126	7		1.07		.19		1.97	.28	.09	8.	
300N 9775E	2	39	0	82	,ġ	12	5	320	3.63	33	5	ND	1	17	.2	2	2	84	09	.084	7	12	.12	46	.15	3	.91	.02	.03		
300N 9800E	3	37 82	21	136	1.8	24	6		6.25	89	5	ND	ż	15	.2	22	ž	55		,156	7	10	.10	37	13	- ž	.70	.02	.05	8	
0300N 9825E	2	29	18	82	.5	11	Š		11.12	17	5	ND	1	15	.2	2	2	114		.055	7	29	.14	67	31	3	1.61	.02	.03	ંદ્ર	
300N 9850E	2	30	6	116	1.4	12	11		4.63	19	5	ND	1	175		2	2	61	1.09	.066	8	9	. 16	169	.22	3	1.74	.05	.04	ંધ	
300N 9875E	2	44	11	117	9	18	15	853	4.71	20	5	ND	1	147	.6	2	2	58	1.13	.073	7	11	.61	144	.27	2	1.68	.22	.08		
300N 9900E	1	17	62	199	.7	11	28	1958	8.91	6	5	ND	1	15	.4	2	2	82	.17	.086	6	26	.45	47	.20	2 5	5.23	.04	.02	्रा	
300N 9925E	5	16	9	93	1.5	6	14	243	5.53	18	5	ND	1	18	-2	6	2	129		.047	11	10	.11	119	.19	-	.90	.03	.03	80 - 5	
300N 9950E	1	10	43	74	1.3	6	5	609	6.24	3	5	ND	1	37	.2	2	3	146		.060	4	15	.26	96	-42		1.19	.06	.04	20k	
1300N 9975E 1300N 10000E	4	15 15	20 3	89 89	· .9 · .4	5	6 11	498 351	8.73	8 24	5 5	ND ND	2	23 16	.2 .2	6 9	2	157 111		.079	5 8	11	. 15 . 19	50 32	.80 .32		1.18 1.14	.04 .06	.03 .03	8	
200N 10925E	18	21	11	126	2.0	14	2	201	8.38	20	5	ND	2	8	.2	2	4	107	03	.191	11	33	.12	37	.22	2	3.70	.02	.01	R	
200N 10950E	21	18	19	92	1.6	11	ĩ		11.03	64	ś	ND	2	33	ž	3	3	91		.138	7	19	. 10	56	.24		1.89	.02	.03	ŝŧ	
200N 10975E	12	38	21	180	4.4	28	3		8.69	22	7	ND	3	15	.5	2	2	53	.05	.096	6	- 34	. 19	45	.05	3 1	5.07	.01	.02	82	
200N 11000E	12	15	9	103	1.7	17	2		6.73	17	5	ND	1	23	.2	5	2	127		.047	6	24	.29	59	.43		1.68	.08	.04	ંદ્ર	
200N 11025E	19	31	12	252	3.5	37	2	189	10.49	39	5	ND	1	8	.2	5	2	100	.03	.047	6	41	.29	51	. 14	2	1.87	.01	.02	X.	
200N 11050E	34	32	13	281	1.9	32	7	463	10.10	64	5	ND	1	13	.8	14	2	140		.047	10	42	.22	78	.15		2.41	.01	.03	ો	
200N 11075E	10	40	19	388	.9	53	7		8.74	33	5	ND	2	16	1.7	5	2	54	+	.057	8	37	.46	59	.05		3.32	.02	.03	ुष्ट्र	
200N 11100E	16	34	19	167	5.8	13	1		10.60	. 46	5	ND	3	9	-3	7	2	110		.060	8	29	.20	29	.25		3.89	.03	.04	9 P	
200N 11125E 200N 11150E	36 12	29 39	11 16	206 219	1.4	25 38	4	158 430	8.24	76 32	5	ND ND	1	6 5	.2	19 2	2	147 98		.034	6	36 67	.16	58 37	.15		2.25	.02 .01	.02 .02	Š.	
							-				-		-		.]	_	-				-				82					1	
200N 11175E 10200N 11075E	16	37 40	18 20	334 391	1.4	40 55	8	653 368	8.88 8.80	22 32	5	ND ND	2	14 16	1.5	2	2	75 53		.070	77	45 37	.28 .46	44 58	.05		4.40 3.37	.04 .02	.03 .02	8 S 🕹	
200N 11200E	10	76	20	381	1.3	55	12		8.60	26	5	ND	ź	5		ź	2	86		.098	10	44	.26	55	.07		4.63	.02	.03	ंं	
000N 10925E	28	19	16	238	1.6	20				40	5	ND	1	62	4.7	2	2	89		.320	18	17	.25	143	13		1.80	.05	.05	ંદ	
000N 10950E	12	10	18	71	2.0	7	1		8.72	13	19	ND	8	27	.5	3	4	65		.075	11	16	. 12	33	.33		2.70	.04	.05	Į.Ľ	-
000N 10975E	9	35	16	226	3.7	31	3	170	8.12	- 24	5	ND	2	11	.4	2	2	74	.05	.050	6	33	.37	56	.06	z	4.06	.02	.02	ંા	
000N 11025E	13	46	17		1.2	30			12.80	37	5	ND	2	10	.7	3	2	121	.05	.046	5	39	.32		.07		3.02	.01	.02	્યુ	_
TANDARD C/AU-S	19	62	38	132	7.2	79	32	1070	3.87	43	17	7	39	53	19.2	15	21	60	.48	.090	41	- 58	.89	178	.09	35	1.87	.08	.15	ः 👭	5

40/47 Page 9

ACHE ANALYTECAL																												ACN	E ANNLYT	JCAL
SAMPLE#	No ppm	Cu ppm	Pb ppm	Žn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm		As	U PPM	Au ppm	Th ppm	Sr ppm		Sb ppm	Bi ppm	V ppm	Ca P X X	La ppm	Cr ppm	Mg X	8a ppm	11 5	B ppm	Al X	Na X	K X		Au# ppb
10000N 11050E	5	20	7			15 8	6	101 60	5.12	12	8 5	ND ND	2	7 13	.2	2	2	83 86	.05 .033	10 10	23 19	.20 .11	49 18	.21		2 .97 1.81	.02 .01	.02		2
10000N 1107SE 10000N 11100E	Ö	21 16	6 15	84 231	1.5	23	10	496	5.13	15	5	ND		48	1.4	2	5	43	.04 .042	17	19	.23	55			1.21	.02	.04	ျက်	3
10000N 11125E	5	14	18	66	1.7	17	11	488	6.39	24	6	ND	i	26	2.2	2	2	121	.19 .049	6	33	.32	83	. 39		1.76	,05	.03	1	ž
10000N 11150E	11	26	17	231	1.0	30	13	261	9.93	17	5	ND	1	9	.2	2	2	89	.06 .132	6		.28	45	. 10		2.62	.01	.03		1
10000N 11175E	4	19	3	93	2.1	15	9	265	6.28	.5	5	ND	3	15	.2	2	2	96	.12 .044	6	35	.30	45	.39		4.22	.03	.02	1	3
10000N 11200E	9	27	16	345	.3	48	13	235	7.52	<u>: 11</u>	7	ND	4	6	.,Z	2	2	71	.04 .039	9	45	.23	92	04		3.97	.01	-03		2
10000N 11225E	8	33			.6	126		2572	7.96	23	5	ND	1	41	2.9	2	2	44	-48 -134	21	31 9	-58 -87	77 35	.04		2.60 1.52	.01 .24	.04 .12		2
10000N 11250E 9800N 11025E	17	13 50	2 12	66 665	.2 1.0	14 51		320 766	4.01 4.59	2 8	5 5	ND ND	1	70 63	.9 9.6	2 2	2	66 37	.60 .092	15	20	.29	73	.24		1.86	.05	.05		ż
9800N 11050E	9	37	19	298	2.3	44	10	255	6.Z4	19	5	ND	4	13	.6	2	2	49	.06 .042	7	43	.40	59	.04	7 :	5.98	.01	.02		4
9800N 11075E	6	16	6	84	1.3	11	9	253	5.95	7	5	ND	2	33	.2	2	5	115	.20 .066	7	20	.25	27	.61		1.83	.06	.05 🖉	1	6
9800N 11100E	7	16	12	106	1.5	16	7		6.18	. 14.	9	ND	2	15	.2	2	2	85	.08 .144	5	28	.20	31			2.50	.02	.04	្វា	3
9800N 11125E 9800N 11150E	8	48 21	19 16	251 261	1.0	32 25	13 37		10.27	: 29 5	5 5	nd Nd	3	10 102	·	5	2 2	57 69	.10 .290	6 10	54 19	.22 .22	20 89	.05		6.75 1.77	.01 .04	.01 .07		3 2
9800N 11175E	10	19	12	202	.6	36	12	350	7.19	 T	5	ND	2	21	.5	2	2	80	.16 .040	18	30	. 15	79	.27	4	2.55	.03	.04	1	2
RE 9800N 11250E	10	15	17	205	.2	- 30 9	10		11.14	- #1	5	ND	3	13	3.6	2	2	118	.10 .029	14	20	-08	32	.50		2.11	.01	.02	1	Ž
9800N 11200E	10	43	12		2.1	54		_	6.17	15.	5	ND	- 4	5	.5	2	2	45	.04 .053	12	53	.46	45	.05	3	5.02	.01	.02	1	- 4
9800N 11225E	4	22	12	67	1.5	12	9	211	6.86	8	5	ND	1	20	.2	2	3	81	.10 .137	4	35	- 16	33	- 10 C T 43		2.04	.01	.02	् १ -	2
9800N 11250E	10	16	19	199	.4	8	10	446	11.20	7	8	ND	4	13	3.4	2	8	120	.10 .037	14	21	-08	31	.48	4	2.12	.01	.02		3
9800N 11275E	11	31	16	424	1.9	35	12	231	6.59	23	5	ND	2	27	1.2	2	2	59	.21 .041	13	30	.30	77	.04	7	3.60	.01	.03	1	3
9800N 11300E	11	38	14	649	.7	50	33	-	7.74	21	5	ND	1	60	2.9	2	2	50	.30 .068	27	25	.36	77	.06	_	2.78	.02	.04	្រា	4
9600N 9200E	3	43	13	154	1	12			10.06	. 9	5	ND	2	12	_ .2	2	2	166	.07 .070	2	25	-48	. %	- 23		3.72	.02	.05		3
9600N 9225E	3	31	9 3	73	.3	9 5	15		11.12	3	5	ND ND	2	12	.2	2	2	167 124	.06 .088	8 9	20 12	_44 _44	70 42	.20		2.94 2.37	.02	.05	2011 2014 -	2
9600N 9250E	'	32	2	62	.2	2	11	204	7.19	3	2	NU	I	ÿ	- 	2	2	124		Y	12			2005) 63568				4		
9600N 9275E	3	28	4	92	.5	13	12		6.88	5	5	ND	5	6	.2	2	2	84	.03 .034	9	25	.35	70	.24		5.31	.02	.03	्ष	3
9600N 9300E	5	30	9	76	.1	7	14		14.71	3	5	ND	4	16	.2	2	2	126	.15 .063	8	28	.17		- 64	-	2.89	.03	.03		1
9600N 9325E	3	52	18	104	1.0	13	16		8.39	37	5	ND	3	90 41		2	2	88 120	.35 .060	19 9	19 23	.42	373 78	.06		3.96 2.78	.01 .02	.02	S	2
9600N 9350E 9600N 9375E	2	29 11	8 10	84 27	.1	7 4	13 5		11.62 4.03	- 5	5	nd Nd	1	12	.2	2 2	2 3	120 170	.18 .057	7		.10	50	74	_	1.17	.01	.02		3
9600N 9400E	5	34	11	75	.1	12	12	151	9.01	11	6	ND	4	10	.2	2	3	103	.06 .057	9	29	.27	45	17	2	3.79	.02	.03	1	3
9600N 9425E	6	21	7	67	. 1	7	11	170	9.76	4	9	ND	5	14		2	3	140	.11 .063	8	37	. 19		47		4.56	.04	.03	្រា	2
9600N 9450E	2	18	6	70	.7	9	14	434	10.99	2	9	ND	4	21	.2	2	2	224	.16 ,062	5	43	.38		- CC - 200		3.50	.05	.03	া	2
9600N 9475E	3	18	8	62	.1	13	16	200	9.30	<u> </u>	5	ND	1	15	.2	2	2	163	.11 .065	7	36	.55	53	.24		2.39	.05	.04		12
9600N 9500E	4	16	9	65	7	8	9	304	7.58	3	7	ND	6	8	.2	2	2	76	.09 .161	8	22	. 16	32	.22	2	3.68	.02	.03		3
9600N 9525E	3	35	11	111	.1	12	14		11.46	2	5	ND	5	8	.2	2	2	96	.05 .122	6	36	-17	38	.13		5.60	.01	.02	1	2
9600N 9550E	5	36	10	97	- 4	17		382		17	5	ND 7	5	12	.3	2	- 6	106	.09 .040	9 40	26 58	.36 .88	80 174	.24	-	3.57 1.83	.02 .07	.03	∷	- 51
STANDARD C/AU-S	20	58	39	<u></u>	7.5	69	- 32	1029	3.84	42	20				19.4	13	20		.48 .089	40	20	.00	174		- 20	(.0.)	.07	. 12 .		

41/47 AA Page 10

ACHE ANALYTICAL					-																								THE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	kġ ppm	Ni ppm	Co ppm	Mn ppm	Fe %		U ppm	Au ppm	Th ppm	Sr ppn	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X		La ppm	Cr ppm	Mg X	Ba Ti ppm	B ppm	Al X	Na X	K X	ppn	Au*
2600N 9575E	5	45	9	96	.6	15	11	815	9.04	2	- 5	ND	2	155	.2	3	2	73	.43	.112	22	30	.32	158 .20	2	4,57	.04	.03	त्राः २२ २२ वि	3
600N 9600E	3	26	13	70	4	11	6		9.79	7	7	ND	3	15	.2	3	4	87		100	7	23	.34	84 .2		3.18	.03	.04	~ *	3
600N 9625E	3	22	19	84	.7	7	2		11.20	2	Ś	ND	3	88	2	2	2	70			19	19	.16	164 3		2.25	.02	.03	ંદો	3
600N 9650E	2	164	11	136	2.3	13	10	349	6.51	19	5	ND	2	11	.2	6	2	81			11	24	.22	57 .00		2.04	.03	.03	~ 1	3
600N 9675E	1	61	15	116	.6	15			9.90	5	5	ND	2	12	.2	2	2	124		.080	7	32	.29	61 2		3.45	.03	.03	ં	5
500N 9700E	1	18	3	31	· .ž	4	3	159	8.36	2	5	ND	1	16		2	2	148	. 14	.061	6	14	.19	40	2	1.54	.04	.03	S.	4
500N 9725E	2	12	11	33	. 1	7	5	181	2.72	2	5	ND	1	37	2	2	2	92		.043	6	7	.38	43 .5	~ <u> </u>	1.02	. 15	.04	1	2
600N 9750E	4	38	26	152	8	22	9	288	8.65	235	5	ND	ź	12	Ž	4	2	49		.072	16	21	.52	85 .07	-	3.02	.01	.03	1 N	
600N 9775E	1	92	28	131	1	29	20		6.89	51	5	ND	1	22	· .2	5	Ē	32		.110	8	18	.75	55 .0		1.85	.01	.02	<u></u>	ē
600N 9800E	i	64	25	86	.1	21	8	366	9.24	37	5	ND	i	5	.z	ź	ž	46		.044	5	23	.40	45 .07		2.21	.01	.01	ં દ	6
600N 9825E	5	22	25	64	.1	17	13	198	8.36	37	5	ND	1	10	.2	7	2	58	.06	.064	5	11	.08	59 .01	2 2	2.39	.01	.01	法言	5
500N 9850E	2	17	10	54	.7	8	9	228	4.31	18	5	ND	j	19	-2	5	ž	61		.092	9	8	.12	79 .1			.04	.04	1	
500N 9875E	5	17	7	89	.3	6	Ś	369	4.23	32	5	ND	1	14	.2	3	3	59		100	12	8	.07	36 .0		.62	.02	.04	8 F.	
SOON 9900E	2	17	10	102	.3	7		543	6.85	8	5	ND	1	11	2	5	2	48		.385	13	9	.09	33 .0	- C	.89	.02	.03	R.	
500N 9925E	1	24	12	101	.1	4	-	1264	6.08	7	5	ND	1	10	.2	2	ž	40			14	6		41 .08	29	.40	.01	.02		•
00N 9950E	1	24	22	148	-8	9	16	1351	12.20	30	5	ND	1	19	.2	5	2	26	. 13	. 182	12	5	.23	95 .0	6 2	1.95	.02	.03		
00N 9975E	6	14	13	159	.Z	5	11	1035	8.55	36	5	ND	1	13	· .2.	5	2	39		.121	10	5	.20	1400	2	2.27	.02	.03	1	
00N 11050E	11	35	12	213	4.2	15	16	1005	5.90	17	5	ND	1	16	4.6	4	2	73	.11	.093	10	23	.31	42 .13	Š 3	3.02	.04	.03	S. 1.	
500N 11075E	6	29	17	221	3.6	28	4	200	8.18	15	7	ND	5	7	.7	5	2	41	.05	.058	7	38	.27	37 .0		5.21	.02	.02	× (
500N 11100E	15	45	19	161	5.1	21	2	192	8.17	44	7	ND	5	10	.2	14	2	58	.08	.098	7	35	.31	35 .02	3	4.87	.03	.04	2	1
00N 11125E	7	17	8	89	3.5	20	2	142	7.19	7	8	ND	3	21	.4	2	2	93	.06	.036	11	43	.19	37 .21	2 2	2.48	.02	.03	÷∦	:
500N 11150E	7	49	15	366	6.6	43	6	328	6.96	24	5	ND	2	7	1.2	4	2	60	.07	.074	12	41	.46	61 .0	ii 2	4.62	.02	.06	<u>_</u>	
500N 11175E	8	40	12	244	1.8	38	5	416	5.84	20	5	ND	1	16	1.1	4	2	64	.11	.076	12	43	.46	94 .05	4	2.10	.02	.06	3	
500N 11200E	6	26	12	136	1.9	19	4	231	6.09	14	5	ND	4	16	.4	2	2	76	.12	.075	11	27	.31	53 .2	2	1.81	.08	.05	1	
00N 11225E	9	45	16	301	1.6	39	7	230	7.29	21	5	ND	2	12	-8	2	2	57	.11	.079	8	33	.33	45 .00	3	2.89	.02	.04		
00N 11250E	6	33	12	271	3.8	39	4	197	6.98	18	5	ND	1	8	1.0	2	2	47	.04	.049	10	33	_44	48 .00	- 3	2.91	.02	.03	*	
00N 11275E	6	32	10	217	.5	38	4	193	7.45	13	5	ND	1	19	1.0	2	2	46	.11	.059	8	47	.43	90 .0	3	2.64	.03	.03	1	
00N 11300E	8	25	13	206	1.5	13	1	219	7.06	14	5	NO	2	7	1.2	2	2	79	.05	.059	17	21	.11	39	2	2.64	.02	.02	S 👔	
00N 11325E	11	45	16	308	3.1	32	4	212	6.10	21	5	ND	1	14	.8	3	2	46	.03	.063	9	24	.27	77 .05	4	3.12	.01	.02	<u> </u>	
OON 11350E	13	48	18	334	2.8	33	23	4986	6.43	21	5	ND	1	15	1.1	2	2	68	.06		16	24	.28	101 .10	2	2.43	.03	.03	1	
00N 11375E	7	70	38	360	1.0	95	38	1092	7.81	18	5	ND	3	13	1.1	2	2	32	.07	.088	14	53	.68	58 .02	2	3.73	.01	.03	1	
9600N 11275E	8	32	15	223	.6	42			7.59	17	5	ND	1	19	1.0	3	2	47	.12	.061	8	47	45	87 .09	3	2.74	.03	.03	े 1	
OON 11400E	13	67	20	315	1.6	54			6.66	22	10	ND	3	6	. 3	2	2	31			18	45	42	34 .02		4.46	.01	.01	· : 1	
00N 11425E	13	35	19	167	2.7	21	3	203	6.00	13	5	ND	1	11	.2	2	2	43			12	25	. 19	39 .00		3.18	.02	.03	1	
500N 1145DE	6	23	16	72	2.4	17	3		5.48	11	5	ND	1	22	.2	2	2	90	-		9	25	.27	63 .20		1.68	.04	.04	1	
00N 11475E	4	36	10	63	3.6	11	3	111	4.26	13	5	ND	1	17	.z	4	2	44	. 14	. 134	8	19	. 15	59 .08	÷ 4	. 98	.04	. 05	1	
00N 9250E	2	191	19	141	.8	46	27	1786	6.22	23	11	ND	3	29	.5	2	2	40		.116	27	28	.80	101 .02	3	3.91	.02	.03	1	
TANDARD C/AU-S	17	62	39	133	7.6	76	31		3.97	41	19	8	38	52	18.6	15	19	57	-	.090	39	59		177 .09		1.88	.08	. 15	11	- 41

MUNE ANALYTICAL	

1/2/47 Page 11

ACHE ANALYTICAL													·,							_									Aca	E AMALYI	TICAL
SAMPLE#	Мо рря	Cu ppm	Pb ppm	Zn pp#i	. Ag ppm	Ni ppm	Со ррл	Mn ppm	Fe X	As ppm	ប ppm	Au	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppnt	TÌ X	B ppm	AL X	Na X	K X	H PPM	Au* ppb
9400N 9275E	1	176	27	146		35	25	767	6.86	24	5	ND	2	22	.2	2	2	32	. 19	-126	7	16	.85	68	.02	3	2.76	.03	.02		6
9400N 9300E		80	24	92	.6	19	7	206	7.13	22	5	ND	ĩ	22	.2	2	2	48	.06		6	19	.37	96	.04		2.00	.02	.03	ા	14
9400N 9325E	1 1	51	13	60	1.0	14	6		7.12	11	5	ND	i	20	.2	4	3	120	.15		6	21	.49	41	.28	_	2.14	.05	.04	Ê.	3
9400N 9350E	2	74	19	105	.4	15	9		10.71	18	6	ND	ż	22	.2	5	2	83	.06		6	26	.74	82	.07		3.49	.03	.04	ŝ 🖡	4
9400N 9375E	1	67	20	56	.3	11	-	_	10.07	3	5	ND	ĩ	34	.2	2	Ž	143	.30		5	18	.54	26	.37		1.43	. 18	.06	<u></u>	2
9400N 9400E	1	32	21	116	.6	14	7	454	9.33	15	5	ND	4	12	,2	2	2	73	.10	.085	7	23	.41	38	.20	2	3.85	.06	.04		4
P400N 9425E	1 1	16	19	70	.5	11	5	267	8.80	8	5	ND	3	20	ं .2ं	2	2	101	.16	.087	6	23	.34	26	- 36		2.79	. 10	.05	8 1 -	2
2400N 9450E	1	14	17	64	- 4:	7	4	180	7.47	· 2	5	ND	2	11	.2	2	2	154	.08	.134	6	25	. 19	- 38	.37	2	1.90	.04	.03	્રેનુ	6
9400N 9475E	1	49	19	93	2.8	18	11	290	8.03	15	- 5	ND	4	10	:2	4	- 4	102	.07	.068	8	26	.78	60	12	2 3	2.66	.05	.05	: E	3
9400N 9500E	1	77	16	55	.4	10	11	418	6.51	2	5	ND	1	13	.2	2	2	81	.11	.083	9	18	.28	51	. 17	2	1.55	.04	-04	÷.	2
9400N 9525E	1	13	10	45	. 1	7	5	240	4.98	4	5	ND	1	23	.2	2	2	90	.28	.032	10	17	. 12	260	.35	2	.80	.02	.03	ે દે	3
400N 9550E	1	19	8	60	.4	9	9	564	5.28	2	5	ND	1	85	: .5	2	2	73	.81	.091	13	19	.29	439	.49	3	1.58	. 10	.05	1. S	2
2400N 9575E	3	28	19	- 99	9	8	4	246	10.43	18	5	ND	3	59	.2	2	2	72	.30	.066	10	19	.17	520	.21	2 🕻	3.58	.03	.04	123 h .	2
9400N 9600E	3	28	14	69	.7	9	- 4	197	8.67	- 14	5	ND	2	10	.2	2	2	92	.05	.034	8	19	. 12	60	.26	2	2.03	.03	.03		2
9400N 9625E	1	51	26	92	.6	13	6	208	10.83	23	5	ND	3	5	-2	2	2	51	.02	,064	5	26	.30	35	.07	2	4.11	.02	-03	્રા	5
2400N 9650E	1 1	38	15	101	.1	12	5	204	9.42	36	5	ND	1	10	.2	2	2	93	.07	.054	6	22	.23	35	- 14	2	2.37	.03	.02		3
9400N 9675E	2	60	28	112	1.4	14	6	129	11.12	55	5	ND	2	2	2	3	2	69	.01	.047	6	27	. 17	37	.02	2	3.74	.01	.02	्रीः	- 3
400N 9700E	1	117	25	150	. 3	33	17	5 9 2	6.07	54	5	ND	1	27	.5	4	2	31	.34	. 135	7	17	. 78	84	20.	2	1.78	.03	.03	्रा	7
2400N 9725E	1	115	28	150	3	35	23	840	6.34	56	5	ND	1	26	.2.	4	2	30	.35	.137	8	17	- 85	87	.02	2	1.70	.03	.05	3 1 -	7
9400N 9750E	1	95	21	140	.2	30	Z2	917	5.73	41	5	ND	1	27	.2	2	2	30	.34	. 131	9	18	.79	61	.03	2	1.78	.03	.04		6
9400N 9775E	3	45	20	112	.8	17	21	1559	7.81	- 31	5	ND	1	15	.2	3	3	37	.17	.288	12	10	.40	44	.05		1.70	.05	.05		2
9400N 9800E	1	54	21	114	.6	17	19	1106	8.56	52	5	ND	1	8	· .2	- 3	2	32	.08	.186	13	11	.27	40	.01	2	1.55	.01	.05	8 👔	- 3
2400N 9825E	1	36	24	119	.5	18	28	1758	10.48	37	5	ND	1	10	.2	2	2	33	.09	. 184	10	13	.34	- 46	.01	2	1.61	.01	.04	ି 🏌	- 3
2400N 9850E	1	26	17	101	.5	19	24	1165	6.38	14	5	ND	1	52	.2	2	3	58	.55	.106	10	10	.73	68	.22		1.80	.24	.09 }	<u></u>	1
9400N 9875E	1	34	16	153	1.0	20	32	2226	9.84	12	5	ND	1	13	.6	2	2	41	. 15	. 170	16	14	.50	56	.04	2	2.78	.03	_04		2
400N 9900E	1	11	7	66	.2	15	17	691	4.75	2	5	ND	1	87	.5	2	2	66	.80	.093	7	7	.97	56	47		1.56	.45	.13	ំ	1
2400N 9925E	3	28	24	123	_1	18	23	1170	8.45	30	5	ND	1	49	.7	2	4	68	.46	.074	10	- 14	. 87	127	.17		2.39	.27	.10	<u></u>	2
9400N 9950E	5	11	18	78	5	3	6	346	9.10	378	5	ND	2	9	2	40	2	47	.08	.066	15	5	. 19	89	.03	2	3.13	.02	.04 ;	i (1
2400N 9975E	1	6	11	40	.6	9	7	384	4.25	19	5	ND	1	43	.3	3	2	98	.43	.077	8	9	.57	45	. 53	2	1.29	.23	.09	12.1	2
400N 10700E	5	15	9	56	1.3	11	8	256	5.96	20	5	ND	1	38	.2	3	4	56	.33		7	10	.44	37	.24	2	1.65	.18	.07	1 .	3
2400N 10725E	7	22	16	102	2.3	12	2	118	7.15	29	5	ND	2	9	.2	2	3	68	.07	.289	11	21	.25	31	្មាន	3	3.89	.02	.02	2	3
9400N 10750E	3	16	16	95	2.7	12		418	8.95	22	5	ND	2	19	.2	2	3	102	.17	.084	9	24	.23	38	,28	2	2.06	.06	.04	2	2
9400N 10775E	5	13	22	81	2.0	12	1	192	8.59	15	5	ND	2	5	.2	2	2	88	.03		10	24	. 13	39	21	2	3.11	.01	.01	्र	8
9400N 10800E	5	19	16	94	2.1	9	10	419	8.32	14	5	ND	1	4	.2	3	2	53	.06	. 106	10	12	.26	30	×13	3	3.84	.01	.01	2	2
RE 9400N 10700E	6	16	11	54	1.4	11	7	241	5.66	19	5	ND	1	32	.2	2	4	51	.27		7	9	.35	34	, 19		1.64	. 14	.06	1	3
9400N 10825E	4	16	14	52	1.3	7	9	190	9.22	10	5	ND	1	14	.2	2	2	136	. 10		7	8	.08	30	.20	2	1.15	. 02	.02	1	3
9400N 10850E	3	12	15	60	1.2	8	5	193	8.88	10	5	ND	1	14	.2	2	2	99	.08	.056	7	10	.14	32	. 18	2	1.61	.02	.02	ા	- 4
STANDARD C/AU-S	18	60	41	135	7.5	80			4.01	42	19	7	37	52	18.8	14	21	58	.49		39	59	. 89	178	.09	35	1.89	.08	. 15	# 10	45

43/47 Page 12

AMPLE#	No	Cu ppm	Pb	Zn	Ag	Ni ppm	00 mqq	Min	Fe X		U ppm	Au ppm	Th ppm	Sr ppm	Cd pp#	Sb ppm	Bi ppm	V ppm	Ca %	2	La ppm	Сг ррм	Mg X	Ba ppm	Ti X	8 ppm	AL X	Na X	K X	ppm W	
			<u></u>								<u></u>	<u> </u>		19		<u></u>	3	61	41	. 120	6	14	.09	33	.12	3	4.97	.01	.01	<u> </u>	
400N 10875E 400N 10900E	4	18 19	5 13	58 138	1.0	6 17	8 8	292	10.37	2	5	ND ND	2	11	.2	2	2	59		.087	9	22	.30	43	17	-	4.58	.02	.02		
400N 10925E	5	15	11	112	.9	12	6	308	8.65	12	10	ND	5	7	2	ž	ž	72		.062	13	18	.27	35	.21	_	4.56	.02	.02	<u>_</u>	
00N 10950E	10	32	21	249	1.3	26	6	302	7.02	23	7	ND	3	11	.2	2	ž	58		.068	10	23	.33	63	.08	4 3	5.91	.01	.02	ંશ	
00N 10975E	10	32	16	219	1.0	17	7	268	7.31	28	5	ND	2	9	.2	3	2	71	.07	.099	10	25	,27	54	.05	3 3	3.88	.01	.02		
00N 11000E	12	19	23	191	.9	12	4	452	7.76	17	5	ND	1	24	1,3	2	3	71		.067	15	21	.14	61	.33		1.85	.02	.03		
DON 11100E	14	46	22	467	.8	59	9	365	6.47	32	5	ND	4	6	.3	2	2	53		.063	9	30	.66	62	.04	_	3.06	.01	.04	્રાષ્ટ્ર	
9400N 11275E	22	65	23	345	1.5	36	8	305	3.42	20	5	ND	1	17	2.8	5	2	94		.065	22	45	.77	72	୍ୟା	_	2.21	.01	.04	8	
DON 11125E	17	51	7	385	1.0	28	-	133	7.01	- 34	5	ND	1	10	4	3	2	107		.049	2	28	.22	59	.08		2.03	.01	.02		
DON 11200E	19	74	26	601	7	57	20	1480	6.94	54	5	ND	1	6	1.3	4	2	54	.05	.075	18	29	.58	44	.06	2	2.57	.01	.05	옷옷	
ON 11225E	18	55	20	280	.3	32		1105	9.01	34	5	ND	1	9	9	3	3	93		. 199	15	34	.29	26	.12	_	1.33	.01	.03	8	
DON 11250E	18	55	10	475	2.3	45	11		5.78	26	5	ND	!	6	1:4	5	2	66		.051	18	23	.55		: 11 : 11		1.67 2.16	.01 .01	.04 .04		
ION 11275E	23	65	25	354	1.5	37	7	286	3.33	21	5	ND	1	15	2.4	5	2	92 64		.065	21 14	41 22	.75	45	.10 .03		2.10	.02	.03	à.	
ON 11300E	15	38	16	307	1.2	26		573	4.30	27	5	ND ND	2	6 16	.2	2	2	59		152	9	14	22		.18		2.07	.02	.03	ંસ્ટ્રે	
ON 11325E	3	61	14	112	.8	18	16	212	2.92	14	,	AU.		10		4	-			1919 - 22 1912 - 22					옷	_					
ON 11350E	8	49	23	126	1.2	16	6	297	7.27	19	5	ND	2	12	.2	2	2	77		. 102	7	23	.24	- 44	-22		2.65	.02	.03	22	
ON 11375E	12	35	15	149	1.7	14	-	198	7.76	24	5	ND	2	11	2	3	3	88		.048	7	30	.26	41	.51		2.91	.03	.03	옷을	;
ON 11390E	23	18	8	83	1.4	11	7	239	3.34	· 12	5	ND	1	41	5.5	2	2	86		-061	5	11	.40	38	.26	_	1.42	.12	.06	84	:
ON 9300E	2	51	14	74	- . 8	14	-		4.83	12	5	ND	1	11	्रन्दुः	2	2	55 44		. 148	6 10	10 15	.16	28 34	.16		2.90	.02	.02	8. k	
ON 9325E	9	160	41	155	. 4	39	46	1404	11.92	73	5	ND	2	12	_ 2	15	6	44	.09	.278	10	7	,40	-		£ .	2.70	. 02	-02		
ON 9350E	4	109	28	127	.8	28	18	534	10.78	24	7	ND	3	9	.2	4	2	44		.203	7	29	.30	44	-03		4.14	.01	.03	્રા	1
ON 9375E	2	62	14	93	1.0	21	12	815	9.05	20	5	ND	1	14	.2	2	2	70	.11	.474	6	24	.33	52	.05	_	3.01	.01	.03	8 N	8
ON 9400E	4	67	25	104	1.0	16	16		8.16	11	9	ND	6	3	.2	2	3	23		- 138	14	16	.14	23	.06	-	4.41	.02	.03	82	1
ON 9425E	6	88	25	80	.4	14			15.34	- 70	5	ND	1	10	.2	3	2	109		.181	7	45	.24	30	.06		2.53	.01	.03 .03	832	-
ON 9450E	3	84	31	146	. 1	27	15	578	8.48	31	5	ND	2	12	.2	2	2	42	.05	.041	5	20	.35	60	.02	2	2.70	.01	.05	38	
ON 9475E	2	49	6	48	.5	6	8		10.31	2	5	ND	1	59	.2	2	2	124		.055	4	20	.23	127	.07		1.44	.02	.02	્ર	i.
ON 9500E	2	60	7	49	3	7	8		12.30	2	5	ND	1	8		2	2	156	.07	.060	4	24	.22	50	.08		1.58	.02	.02	80 k	į.
ON 9525E	4	33	18	67	.3	10	7		11.06	10	5	ND	4	9	े .2	2	2	101	.05	.030	6	33	.30	35 58	. 16		4.16 3.57	.02	.02 .03	84	÷
ON 9550E	7	18	22	53		5	2		13.88	6	5	ND	5	18	÷ .2	2	2	98 72		.074	9 20	23 35	.11	353	.39		2.57	.03	.03	8 	2
DN 9575E	4	55	12	180	1.4	16	11	982	10.55	27	5	ND	1	79	.2	2	2	12	.55	. 143	20	22	. 50	222	.03		2.37	.01	.05	23	è
ON 9600E	3	19	9	57	.4	9	6			14	5	ND	1	21	.Z	2	2	107		.031	9 7	15 28	.14 .38	53 60	.23		.79 2.37	.02 .02	.03 .03	1	,
ON 9625E	5	38	20	87	.6	16	10		10.40	- 13	5	ND		20	.2	23	2	75 37	.10	.111	6	20 20	.30	71	.01		2.10	.02	.03	1	
ION 9650E		79	19	115	.2	26	11	298	6.80	36	5	ND	1	11 43	.2	3	2	ے۔ 43		.092	6	15	.83	73	.08		1.97	.08	.02	ે 🕯	
0N 9675E	1	79	17 15	128 78	.3 .5	27 20	19 12		6.41 5.09	31 24	5	ND ND		43 23	.2.	2	2	40	.23	.179	6	18	.48	61	.05		2.09	.06	.07		è.
ON 9700E	('	64	15	78	.,	20	12	421	J.09	24	3	NU	ſ			2	C													÷ (
ON 9725E	2	50	15	64	8	14			6.16	24	5	ND	1	14	.3	2	2	55 49		.074	8 8	15 24	.27 .49	72 44	- 08 - 08		1.98 2.47	.02 .02	.04 .03		1
DON 9750E	4	45	23	109	.2	19	8	271	9.07	39	5 18	ND 7	2 40	12	.2 18.9	15	21	49 59	.06	.029 .091	39		.89				1.90	.02	.15	ાર્થ	č.
ANDARD C/AU-S	18	58	- 27	131	7.7	71		1000	3.98	42	10		- 40		10.7		<u> </u>		. 47	1071			07								<u>.</u>

ACHE AMAL YTECAL

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2463

44/47 Page 13

ACRE AMALYTICAL													<u> </u>					_										N	CHE ANNALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca P X X		Cr ppm	Mg X	8a ppm	Ti X	B ppm	AL X	Na X	K X		Au* ppb
9200N 9775E	6	30	18	71	.6	10	10	208	7.29	13	9	NĐ	4	3	.2	2	5	70	.02 .038	9	21	.09	51	.13	2	2.02	.01	.02	2	3
9200N 9800E	9	13	14	86	.1	12	10	512	8.79	5	5	ND	3	16	2	2	ź	79	.09 .049	13	14	. 19	20	45		1,03	.03	.03	ि	2
9200N 9825E	1	38	13	54	7	12	9	286	4.50	6	5	ND	1	26	ं 2	2	3	47	.22 .291	4	15	.32	52	.13		1.31	.04	.05	<u> 1</u>	2
9200N 9850E	2	59	14	64	.5	14	11	285	3.50	: 13	5	ND	1	21	2	2	3	33	.18 .172	3	17	.37	47	.03	_	1.22	.03	.06	્યા	3
RE 9200N 9950E	3	30	28	135	. 1	16	19	733	11.74	15	7	ND	4	6	.2	2	2	90	.03 .070	10	24	.23	70	- 06	2	3.70	.01	.02		3
9200N 9875E	3	77	22	111	.5	24	20	340	7.08	25	5	ND	3	11	.2	2	2	46	.04 .086	6	22	.39	79	.02		3.18	.01	.04		8
9200N 9900E	3	93	25	153	- 4	31	24	423	7.75	29	5	ND	5	6	.2	3	2	43	.04 .085	8	25	-41	81	. 02	_	4,48	.01	.05	ં્	7
9200N 9925E 9200N 9950E	3	60	40 30	156	.4	19	26		15.38	18	8	ND	8	3 5	.2	2	5	58	.02 .100	19	34	.22	66	.08		5.20 3.89	.01	.04	i de la	5
9200N 9975E	4	34 32	19	138 123	.1	15 19	18 13	356	12.02	: 20 60	8 5	ND ND	2	7	.2	2	2	84 68	.03 .056	10 10	24 14	.25		.06		1.67	.01 .01	.03		3
											-		-	-					i i i											
9200N 10700E	3	21	11	82	.9	7	16		8.58	21	8	ND	2	13	.2	6	2	45	.06 .162	7	10	.26				1.83	.02	.02		38
9200N 10725E 9200N 10750E	9	24 6	17	115 48	1.9	6 10	15 10	342 259	12.65	16	5	ND ND	1	12 37	4	4	6 2	67 59	.07 .161	9	13	.13 .48	48 29	.08		1.80 1.01	.01 .12	.02	anis 🚯 Tari	3 2
9200N 10775E	4	28	9	89	.9	9		1807	6.48	ý,	5	ND	1	24	4	2	5	68	.20 .136	10	8	.33	32	19		3.72	.03	.02		6
9200N 10800E	12	30	10	150	4	10		5724	6.59	22	ŝ	ND	i	10	7	2	2	46	.16 .190	24	6	.53	34	.06		5.74	.01	.01		3
02004 109255	102	46	40	101	1 1	4	17	104	14 13	477	E	MB	2	4		45	7	40	07 174	40	7	07	20	ACC -	. .	7 72	01	07		7
9200N 10825E 9200N 10850E	102 21	15 19	19 12	101 48	1.2	6	17 8	496 136	16.42	177 34	5	ND ND	1	67	.2	15	3	60 51	.03 .176	10 9	12	.07	29 21	.05		3.22 1.41	.01 .01	.02	- 28 . 1 . A \{ €	्र
9200N 10875E	j j	20	10	62	.3	5	7		3.27	14	5	ND	i	11	.2	3	4	62	.08 .059	9	7	.07	19	10		.61	.01	.02	338 X	ž
9200N 10900E	5	30	23	115		ž	18		12.34	15	5	ND	Ż	12		Ž	2	143	.05 .125	9	9	. 15	27	- 13		3.08	.01	.01	1 (1	2
9200N 10925E	6	20	11	69	1.3	8	10	138	4.73	. 3	5	ND	1	20	.2	2	4	79	.15 .077	11	8	.20	31	୍ମାହ	2	1.51	.05	.03		3
9200N 10950E	11	12	12	156	.7	12	23	753	10.83	- 4	12	ND	3	14	.ż	2	2	56	.08 .054	14	12	.11	19	.30	2	1.80	.03	.03	<u> </u>	2
9200N 10975E	5	88	32	222	1.6	6	35	686	13.39	2	7	ND	3	8	.3	3	2	84	.08 .212	8	7	.38	25	15	2	4.00	.01	.02	1. N	5
9200N 11000E	4	23	19	94	2.7	4	19	422	7.96	7	5	ND	2	12	.2	3	2	43	.08 .146	6	7	. 19	14	- 08	_	4.54	.02	.01	👔	5
9200N 11025E	9	19 14	19 9	108 95	.4	7	14	974 2182	10.65	- 14	6 5	ND ND	3	15 27	.2	2	2	100 68	.03 .179	14 11	14 13	.07 .20	30 45	-22 -34		2.12	.01	.01 .02		2
9200N 11050E	D	14	Y	72	.7	Ŷ	22	2102	7.41		2	NU	I	21	.4	2	2	00	.31 .074		5	.20	47	• 34	2	2.20	.05	.02	53 S.	2
9200N 11075E	11	31	18	179	1.5	31	11		5.77	19	5	ND	1	18	.8	4	3	92	.17 .047	13	33	.41	55	.16		1.59	.01	.03	1	3
9200N 11100E	10	7	12	68	.6	9	7	283	7.64	6	9	ND	2	.9	-2	2	2	123	.04 .030	. ?	16	.09	56	.68		1.27	.02	.02		3
9200N 11125E 9200N 11175E	18 16	69 13	37 10	534 112	1.1	38 7	60 8	3236 257	8.02	40	5	ND ND	1	13 22	. 8 . 6	5	2	55 137	.15 .095	16 9	13 17	.74	55 76			2.87	.02 .01	.02 .01		3
9200N 11200E	44	100	27	895	1.7	84	18	471	6.77	- 47	5	ND	3	5	1.4	6	2	60	02 046	13	21	.41	50		_	2.83	.01	.02	≥ 0	8
00000 44005-	-	~		4/7	-	~~			F		-		-	~~		•	•		1						-		70	44		-
9200N 11225E 9200N 11250E	7 26	21 7	4 24	163 60	.5	20 5	18 5	493 128	5.03	10 79	5	ND ND	1 2	99 46	.8 .4	2 583	2	74 64	.78 .069	8 21	12 13	1.09	64 43	47 48		1.97	.32 .07	.13	1	2
9200N 11275E	18	35	29	177	3.7	15	8	115	5.31	8	6	ND	2	12	. 7	14	2	52	.07 .054	23	30	.19	29	.16		3.89	.01	.03	10 k	5
9200N 11300E	5	19	7	130	.8	9	10	303	3.63	10	5	ND	1	109	1.5	2	2	44	.72 .066	5	14	.27	93	.22		1.63	.06	.06	ं हें	1
9200N 11325E	8	18	7	100	2.2	10	7	136	4.87	13	5	ND	1	18	. 6	4	2	111	.13 .031	8	16	.12	37	,22	2	1.17	.02	.03	ં દુ	5
9200N 11350E	5	39	11	176	1.4	49	20	1025	5.79	20	5	ND	1	27	1.8	2	5	61	.29 .081	11	48	.84	101	.13	2	2.51	.04	.05	1	6
9200N 11400E	10	41	23	207	1.5	36	20	748	6.64	21	5	ND	1	19	1.1	3	2	59	.21 .092	11	32	.57	79	.04		3.05	.02	.04	- Ý	4
STANDARD C/AU-S	20	57	40	132	7.3	71	31	1063	3.94	42	19	7	39	54	19.3	15	22	61	.48 .091	39	59	.88	178	- 109	34	1.87	.07	.15	11	51

Copeland Rebagliati & Associates PROJECT POLO FILE # 92-2463

45/47 44

P	age	14	TT
			ACHE ANALYTICAL
B	AL	Ma	K M Au

ALAR ANALYIICAL																													
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni pp m	Со рряя	Mn ppm	Fe X		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppin	Ca X	La ppm		Mg X	Ba ppm	TI X	B A	-	la X	K V X ppm	
9250N 10700E	1	43	10	164	1.4	67	14	817	6.84	23	5	ND	1	25	.5	2	2	55	.31 .10	9	63	1.05	114	.03	4 2.5	5.0	12 .1	05	3
9250N 10725E	3	23	12	166	1.3	16	23	6305	9.68	19	Ś	ND	i	13	.2	ž	2	57	.14 .13	2	23	.38	86	10	2 3.5			02 1	2
9250N 10750E	2	24	10	88	1.0	8	13	1430		22	5	NÐ	1	19	, ,2 ,	2	2	43	.18 .19		10	.38	50	.06	3 1.7			02 1	5
9250N 10775E	23	23	20	246	_ <u>1</u>	6	6		23.34	90	5	ND	1	8	୍ ,2 ,	5	2	33	.16 .21		- 4	.28	62	.04	4 1.5			02	27
9250N 10800E	4	30	19	211	.3	6	30	7101	11.05	34	5	ND	1	15	ୄୄୢୖୄୄୄୄୄ	2	2	65	.27 .26	18	7	.33	87	.05	2 2.1	9.0	n .	03 1	
9250N 10825E	4	45	21	265	.1	10	05	17848	10.98	30	5	ND	1	30	÷.,	2	2	39	.69 .35	21	4	.47	157	202 102	2 2.2	2.0	K	02 1	2
9250N 10850E	6	57	26	222	1.1	11	108	8497		37	5	ND	1	21	ે ૄેટ્ટ	5	2	52	.34 .31		5	.66	73	.06	5 2.7			05 2	3
9125N 10890E	18	49	19	133	.2	5	15		19.13	79	5	ND	2	13	.2	2	2	50	.05 .29		5	.61	119	, 05	3 1.9	6.0	3.	03 1	2
9100N 10600E	2	5	9	35	.7	8	5		2.18	<u> </u>	5	ND	1	43	ે 🕰	2	- 4		.28 .06		9	.31	79	.28	2.6		_	05 🔆 1	4
9100N 10625E	3	11	8	56	.7	11	10	254	6.51	49	5	ND	1	50	-Z	11	2	54	.45 .077	6	8	.63	55	.24	2 1.4	1.2		08 💮 🚺 -	3
9100N 10650E	7	40	1/	70		44	3	271	4 41	21	5	ND	•	14	.2	2	2	53	.13 .04	16	19	.23	44	.34	2 2.1	z.0	5	04	τ
9100N 10675E	2	18 20	14 15	87	3.2	11 11	3	231 393	6.61 5.69	20	5	ND		10	ંડ	2	2	62	.08 .05		15	.10	50	A. C. A. C. A.A.A.	3 1.1			1. A. 1. 2. 1. A.	1
9100N 10700E	2	19	15	141	2.1	40	12		5.64	13	5	ND	1	24	<.₹	2	ž	64	.32 .07		46			.20	3 1.5		-	05	1
9100N 10725E	4	15	10	53	.6	21	5	228	3.09	15	5	ND	1	12	- 2	2	2	53	.12 .10		28	.21	78	14	3 1.1	4.0	. 20	05 👘	3
9100N 10750E	4	27	14	100	.9	7	20	1632	7.95	126	5	ND	1	19 :	ି - 2	2	2	52	.24 .36	10	8	.33	66	.04	3 1.5	1.0	13 .1	03 🥂	1
9100N 10775E	,	30		477			25	2000	6 70	102	5	ND	•	23			2	52	.33 .29	11	5	.48	103	.03	2 1.5	3.0		03	1
9100N 10775E	18	- 30 - 47	16 13	133 122	8 6	6	15		8.28	1.77	5	ND	3	16	.2	2	2	63	.12 .23		10	.42	60	12	2 3.2			04	2
9100N 10825E	34	42	15	90	.5	Ś	6		23.21		5	ND	4	6	7	8	2	48	.02 .19		12		45	.08	2 3.2			02 2	ž
9050N 10600E	9	16	2	47	.9	6	4		6.48		5	ND	1	7	.2	15	2	114	.02 .06		15	.08	41	. 13	2.8	4.0	я.	02 1	2
9050N 10625E	9	16	19	39	4,1	7	1	70	17.30	3123.	5	ND	1	14	- 12	30	2	96	.06 14	8	12	.08	92	.20	2 1.0	5.0	. 20	06 1	8
9050N 10650E	10	13	35	47	7.5	7	1	161	9.31	2122	5	ND	2	18	.2	39	2	59	.08 .09	5 13	16	.09	133	. 15	2 2.0	o .0	13	08 80	0
9050N 10675E	2	24	9	86	1.8	7	6		11.80		ś	ND	1	15	ž	14	2	68	.17 .10	··-	13	. 15	40	.07	2 1.7			05 1	1
9050N 10700E	5	12	16	154	1.2	11	2		9.74	18	5	ND	6	7	.2	2	2	58	.06 .05		19	. 14	33	.21	2 4.1	3.0	13 .	02 1	1
9050N 10725E	2	8	6	60	2.4	6	3		2.91	41	5	ND	1		2	- 3	2		.09 .04				56	. 13	3 1.0			03 🤄 1	5
9050N 10750E	1	23	2	142	.4	77	15	3989	5.02	2	5	ND	1	74	2.4	2	2	77	1.00 144	12	20	.73	206	.60	2 3.5	1.1	13 .1	04	1
9050N 10775E	32	32	33	95	.8	8	8	1813	16.91	119	5	ND	1	18	.2	2	2	34	.32 .17	8	7	.25	46	.06	2 1.6	5.0	4 .	03	1
9050N 10800E	5	44	21	182	.7	10	-	4354		55	5	ND	1	46	.2	2	2		.57 .18		7	.41	188	.06	2 1.6			04 1	1
9050N 10825E	8	48	18	277	.9	15	20	1041	9.72	53	5	ND	1	10	-2	7	2	46	.17 12		9	.67	70	.02	2 2.3			01 1	2
RE 9050N 10725E	2	10	8	63	2.2	6	3		3.01	40	5	ND	1	16	.2	3	2	70	.09 .04				54	्र 13	3 1.0			03 🧐	6
9050N 10850E	3	54	42	345	.5	14	48	7633	10.40	- 34	5	ND	1	68	.7	2	2	39	1.10 .17	- 18	6	.54	226	.04	2 2.4	2.0	13 .1	02 1	2
9000N 9425E	6	35	22	66	1.7	7	6	978	10.33	4	7	ND	6	13	.2	2	3	54	.14 .08	7	20	.14	30	.24	2 3.8	0.0	J 3 .	02	2
9000N 9450E	10	32	23	62	1.7	10	3		10.76	2	8	ND	16	8		2	2	48	.07 .06		29	.23	16	- 15 J 66	2 6.9			03 2	2
9000N 9475E	3	144	21	121	6	22	9	224	8.61	19	5	ND	6	7	. .2 .	6	2	53	.06 .23	6		.56		.08	2 3.3			03 2	6
9000N 9500E	2	86	16	101	-5.	21	11		6.41	6	5	ND	1	12	ે -2	2	2	61	.07 .11			.23		. 06	2 4.3			01 1	4
9000N 9525E	3	67	28	67	1.1	11	6	309	11.26	- 14	5	ND	3	9	.2	3	2	70	.07 .26	6 5 2	21	.17	ð	.26	2 3.3	2.0	י. הי	02 1	4
9000N 9550E	2	98	14	107	.8	22	7	179	7.90	17	5	ND	1	18	.2	2	2	41	.10 .14	5	15	.21	38	.02	2 2.0			02 1	3
9000N 9575E	4	68	15	99	. 1	19	9		4.97	14	5	ND	1	11		2	2	46	.07 .09			.14		. 05	2 1.5			02	2
STANDARD C/AU-S	18	61	38	136	7.5	76	31	1062	3.%	42	18	7	38	52	18.9	15	20	57	.48 .090	40	58	.89	179	09	<u> </u>	9.0	8.	15 <u>1</u> 0	
																	_												-

£ £
ACRE ANALYTICAL

46/4	7
Page	15

ACHE ANALYTICAL									_		_																			CRE ANNLY	TICAL
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag	N i ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd	Sb ppm	Bi ppm	V ppm	Ca X		La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	Al X	Na X	K X	10	Au* ppb
9000N 9600E 9000N 9625E 9000N 9650E RE 9000N 9750E 9000N 9675E	5 5 5 5 2	52 61 46 33 58	35 26 27 21 32	67 50 98 105 97	1.2 .8 1.7 .7 1.0	12 10 14 12 18	7 6 9 7 10		11.68 9.05 9.86	16 13 24 29 29	5 5 5 5 5	ND ND ND ND	3 1 3 1	14 19 11 8 4	.2 .2 .2 .2 .2 .2 .2	2 2 3 2 2	2 2 2 4 2	77 114 60 74 41	.03 .07 .04	.073	6 5 8 9 7	18 19 20 22 20	.18 .20 .30 .19 .43	34 36 46 37 43	.10 .10 .09 .11 .03	5 2 2	3.72 2.77 2.95 3.83 3.09	.01 .01 .01 .01 .01	.02 .02 .03 .03 .02	1	3 3 3 2 3
9000N 9700E 9000N 9725E 9000N 9750E 9000N 9775E 9000N 9800E	2 4 5 4 6	22 34 36 37 34	11 12 25 23 24	58 80 105 91 95	.6 .7 .7 1.4 1.0	8 12 12 12 12	5 6 7 6	265 127 266 235 261	6.61 7.98 9.98 8.23 10.55	8 39 26 26 20	5 5 5 5 5	ND ND ND ND	1 1 3 4	27 11 8 10 11	.2 .2 .2 .2 .2 .2	222222	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	85 96 75 65 51	.03 .04 .05		8 6 9 8 6	12 15 21 18 19	.25 .17 .19 .27 .12	37 33 37 43 39	.38 .22 .11 .09 .12	2 2 3	2.08 1.77 3.82 2.77 2.95	.04 .01 .01 .02 .01	.03 .03 .03 .03 .03		1 2 3 2
9000N 9825E 9000N 9850E 9000N 9875E 9000N 9900E 9000N 9925E	1 4 5 3 2	22 51 35 34 41	11 32 31 18 21	43 106 107 97 89	.5 1.9 .6 .7 .4	7 17 11 15 22	3 10 7 10 12	857	6.52 8.14 10.01 8.73 6.91	2 29 28 15 26	5 5 5 5 5	ND ND ND ND	3 1 3 2 1	12 6 8 34 35	.2 .2 .2 .2	2 2 2 2 2 2 2 2 2	22323	95 69 77 74 55	.03 .03 .38	.315 .083 .076 .057 .217	7 8 9 11 7	14 21 22 19 21	.29 .42 .18 .45 .56	26 58 35 41 57	.59 .08 .09 .40 .07	2 3 2	2.92 2.50 3.75 2.72 4.12	.03 .01 .01 .03 .05	.03 .03 .03 .04 .04	11111	1 3 3 1 4
9000N 9950E 9000N 9975E 9000N 10000E 9000N 10025E 9000N 10050E	6 7 2 2 6	30 16 23 26 45	20 17 11 15 23	148 94 69 55 100	.8 .5 2.1 .9 1.2	18 7 10 7 16	13 10 8 2 7	461 239 115	6.06 10.59 6.49 5.26 12.28	48 4 19 21 27	5 5 5 5 5	nd ND ND ND	2 2 3 1 3	19 10 29 16 12	.3 .2 .5 .3 .2	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	39 145 62 115 71	.11 .21 .04	.117 .074 .070 .039 .059	7 10 7 6 7	19 13 9 10 26	.26 .08 .35 .14 .31	45 37 43 35 38	.06 .35 .22 .55 .11	4 2 2	5.01 1.72 1.57 1.22 3.36	.02 .01 .08 .02 .01	.03 .02 .06 .03 .05		3 1 2 3 3
9000N 10075E 9000N 10100E 9000N 10125E 9000N 10150E 9000N 10175E	3 8 10 6 2	51 34 18 29 36	29 25 28 18 10	80 175 90 102 79	.6 .7 .9 .9	12 23 6 18 13	4	355	8.53 11.68 14.12 6.99 5.27	24 29 13 22 36	5 5 5 5 5	nd Nd Nd Nd	2 2 3 1 1	19 7 10 20 28	.2 .2 .4 .2 .2	2 2 14 2	2 2 2 2 2 2 2	83 64 87 96 54	.02 .04 .06	.110	7 8 15 8 5	17 30 23 12 12	.36 .40 .06 .20 .38	47 49 34 61 55	.07 .09 .47 .39 .14	2 2 2	3.06 3.36 2.21 1.42 1.86	.04 .01 .01 .02 .05	.04 .03 .03 .04 .04		2 2 1 4 3
9000N 10200E 9000N 10225E 9000N 10250E 9000N 10275E 9000N 10300E	47572	37 24 34 32 62	16 20 13 29 23	111 134 175 156 102	.9 1.3 .8 .8	18 15 20 19 21	12 16	529 559 1141 928 573	8.76 9.70 6.34 6.51 8.27	24 32 47 48 33	5 6 5 5 5	nd Nd Nd Nd	1 1 3 1	15 9 14 7 15	.2.5.2.2.	2 2 5 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	69 95 49 39 57	.06 .10 .05	.129 .083 .147 .125 .187	8 10 10 8 5	21 22 17 20 25	.45 .32 .37 .25 .47	53 35 53 44 61	.08 .13 .07 .06 .02	6 2 2	2.85 3.46 3.62 5.43 4.24	.02 .01 .03 .01 .01	.04 .03 .04 .03 .03		2 1 2 3 4
9000N 10325E 9000N 10350E 9000N 10375E 9000N 10400E 9000N 10425E	6 3 7 2 2	64 53 54 88 71	26 29 29 44 33	156 106 221 144 137	1.0 .3 .6 1.2 1.7	25 28 25 23 25	13	841 614	11.48 8.35	91 40 136 68 40	5 5 5 5	ND ND ND ND	2 3 1 2 1	13 14 8 6 25	.2	6 2 9 3 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55 67 66 57 52	.08 .02 .03	.200 .255 .149 .180 .132	6 8 7 12 23	24 32 19 24 23	.58 .60 .68 .50 .39	70 63 54 55 88	.02 .02 .03 .01 .05	2 5 2	4.10 5.14 3.72 4.35 4.51	.01 .01 .01 .01 .01	.03 .03 .03 .03 .04		5 4 4 3 4
9000N 10450E 9000N 10475E STANDARD C/AU-S	1 5 18	18 16 61	6 23 41	46 56 133	.2 8. 7.6	9 6 71		214 562 1048	2.65 9.41 3.97	6 10 43	5 6 18	ND ND 7	1 1 40	93 11 53	.3 .2 18.8	2 2 15	2 2 19	46 82 59	.06	.075 .093 .090	5 10 40	4 24 58	.48 .13 .89	39 32 177	.42 .15 .09	3	1.09 3.67 1.89	.14 .01 .07	.08 .03 .15	1. 1 . 1 1	1 1 46

47/47

Page 16

ACINE ANALYTICAL								·							·													~	HE ANALY	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co Ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppn	Sb ppm	Bi ppm	V ppm	Ca P X X	La ppin	Cr ppm	Mg X	Ba ppm	11 *	B ppm	AL X	Na X	K X	ppn	Au* ppb
9000N 10500E	3	28	15	57	1.0	11	8	171	6.61	- 14	5	ND	2	10	.2	2	2	86	.06 .041	6	25	.27	52	.08	2	2.53	.02	.02	ť	1
9000N 10600E	15	9	38	38	4.8	5	9	92	7.76	1733	5	ND	1	24	.2	90	2	86	.07 .067	7	7	. 15	180	. 0 7		1.10	.03	. 14	1	9
9000N 10625E	4	11	18	45	6.0	14	14	280	4.64	375	5	ND	1	52	.2	17	2	69	.44 .102	6	10	.76	127	.35		1.13	.17	. 19	. I.	25
9000N 10650E	14	14	43		18.1	4	14	-	15.27		5	ND	1	36	- 2	85	2	66	.09 .348	6	12	.17	170	. 09		1.70	.02	.35	<u> </u>	43
9000N 10675E	6	7	50	19	4.7	6	5	83	2.39	219	6	ND	1	21	.2	13	3	29	.13 .054	6	7	. 19	149	. 16	4	.63	.05	. 17	- - -	9
9000N 10700E	27	43	28	392	2.5	37	10	240	8.11	104	5	ND	1	15	.2	5	2	79	.10 .077	4	21	.18	48	.02	2	1.50	.01	.03	ા	4
8800N 9450E	7	19	27	92	.8	13	10	329	8.23	23	5	ND	1	14	.2	2	2	66	.09 .098	9	16	. 16	34	.12	2	3.13	.01	.02	: 1	2
8800N 9475E	2	54	26	76	.3	16	12	356	8.13	15	5	ND	1	11	.2	2	2	62	.04 .235	5	23	.40	42	,04		2.86	.01	.02	୍ୟା	4
8800N 9500E	2	70	20	118	.3	22	17	626	6.94	- 14	5	ND	2	8	.2	2	3	54	.05 .188	10	22	.42	65	.05		3.97	.01	.04	્રાટ્ટ	4
8800N 9525E	Z	49	19	74	.6	12	11	392	6.18	12	5	ND	1	12	.3	2	2	55	.07 .169	7	19	.31	62	.07	2	2.74	.02	.03	1	3
8800N 9550E	3	47	26	97	.6	15	15	996	9.12	12	5	ND	1	9	.2	2	2	55	.07 .095	7	20	.27	52	.07	2	3.56	.01	.03	· • •	3
8800N 9575E	2	58	21	124	.3	23	17	977	6.69	11	5	ND	1	12	3	2	3	50	.11 .151	7	21	.47	47	.10	2	2.92	.02	.05	े 🏌	3
8800N 9600E	1	137	34	134	.1	34	39	2116	6.84	30	5	ND	1	43	.2	2	2	45	40 133	6	15	1.05	88	. 15	4	2.08	. 09	.07	- 1	3
8800N 9625E	2	165	36	148	.1	40	28	971	7.54	29	5	ND	2	31	8.	2	2	30	.26 .149	6	19	.89	85	.01	2	2.26	.01	.05	ंग	6
8800N 9650E	3	24	12	59	.1	10	13	273	6.99	10	5	ND	2	25	.2	2	4	168	.18 .049	6	18	.32	32	.67	2	1.04	.07	.03	1	3
8800N 9675E	2	93	31	112	.5	19	15	214	9.48	12	5	ND	4	10	.2	2	2	59	.05 .053	4	21	.51	35	.09	2	4.23	.02	.02		4
8800N 9700E	4	15	14	57	.1	6	11		14.59	14	5	ND	ž	14	.2	2	2	76	.07 .120	6	30	.15	17	.36		2.06	.03	.03	់រ	2
8800N 9725E	4	34	21	82		12	13	-	12.11	19	ŝ	ND	3	16	.2	2	2	65	.08 .063	6	22	.22	29	.23		2.79	.02	.02	1 .	2
8800N 9750E	3	37	19	106	.2	13	14		10.76	13	Š	ND	3	12	.2	2	2	79	.10 .072	6	20	.20	31	.15	2	3.21	.01	.02	1	2
8800N 9775E	3	54	20	86	.9	17	16	273	10.30	2	6	ND	5	15	.2	2	6	73	13 122	6	21	.24	19	.22	4	4.72	.03	.02	্ৰা	4
8800N 9800E	2	60	17	81	.4	16	13	209	8.38	21	5	ND	4	14	.2	3	2	60	.11 .082	5	15	.27	29	.23	2	2.65	.04	.03	ંતું	4
8800N 9825E	2	63	17	95	.3	14	14		8.02	14	5	ND	ž	j.	. 2	2	2	44	.05 .233	Š	18	.14	33	.07		2.14	.02	.02	ંગોન	3
8800N 9850E	2	51	30	72	.2	13	16		11.82	6	5	ND	6	9	.2	2	Ž	46	.03 .590	- 4	22	.09	18	.07		5.22	.01	.02	<u>1</u>	3
8800N 9875E	3	76	28	100	.4	24	18		12.17	14	5	ND	5	9	.2	2	2	78	.07 .125	6	24	.18	29	.22	2	3.77	.01	.02	. 1	4
8800N 9900E	3	47	22	89	.3	15	15		9.44	20	5	ND	2	18	.2	2	2	60	.13 .087	4	19	.11	28	.07	3	1.52	.01	.02	* 1 -	3
8800N 9925E	12	28	24	110	.7	15	32	1151	11 79	24	5	ND		14	.3	2	2	48	.08 .129	10	17	.29	38	10	2	4.75	.02	.03	starija La J∎	3
8800N 9950E	6	20	24	126	.4	13	30	1019		3	5	ND	5	6	.2	ž	ž	37	.03 .135	13	18	.22	27	12	_	5.79	.01	.03		ž
8800N 9975E	2	18	14	96	.5	13	27		10.72	2	5	ND	3	13	.2	ž	ž	89	.12 .145	ŝ	19	.26		. 14		3.94	.02	.03	1	3
8800N 10000E	5	20	25	95	.1	15	14		9.69	4	5	ND	6	11	.ž	ž	2	52	.05 .053	6	24	.22	33	13		5.04	.01	.03	Ĩ	ž
RE 8800N 9925E	13	24	16	106	.9	15	30	1134		26	5	ND	4	13	.2	ž	Ž	46	.08 .125	10	16	.28	35	. 10	_	4.66	.02	.03	े हैं।	4
107005 0/75H	70	42	- 77	FF	7 Z	7	42	200	43 44	11	e		1	10	•	13	2	47	.02 .118	11	9	.11	48	.04	2	4.04	.01	.02		5
10700E 9475N	38	16	23 23	55 29	2.6	3	16 10	-	12.11	66 73	5	ND ND	4	10 25	.2	12 11	2	67 72	.18 .068	28	12	.11	49	.20		.99	.07	.02		0
10700E 9450N 10700E 9425N	101	10 12	16	29 76	.7	13	14		8.82	124	5	ND	ź	27	.2	2	2	66	.22 .102	20	17	.50	41	.20		3.03	.06	.04		3
10700E 9423N	20	42	24	100	.3	5	18		19.76	44	5	ND	4	5	.2	2	4	56	.03 .230	6	7	.34	22	.06		2.02	.01	.01	े हैं।	ž
10700E 9375N	10	29	20	85	1.9	10	13	-	11.10	43	5	ND	ž	19	.2	ž	Ž	49	.09 .223	8	8	.20	43	.05		1.53	.02	.03	ો	Ż
107000 0750H				/ 			<u> </u>	10170	10 0/	,.	-		-	40	* *	-	-		77 50/	/=	1	70	1//		.	2 74	01	02		4
10700E 9350N	9	79	60	427	1.1	10		10170		44	5	ND	4	18 20	1.9	2	2	55 71	.37 .284	45 17	6 12	.70 .35	144 43	.02		3.76 4.83	.01 .04	.02 .04	1	3
10700E 9325N	4	26 35	23	173 166	.3	5	36 41	2017 4747	9.11	12	5 5	ND ND	1	13	.6	2	2	103	.25 .235	11	10	.35	45 50	.25		4.14	.04	.04		2
10700E 9300N	20	- 35 - 63	32 38	131	7.4	69		1100		25 42	19	110 7	39		.4 19.0	14	19	61	.47 .087	39	58		177	.09		1.78	.07		11	52
STANDARD C/AU-S				131	7.4	07		1100	3.14	44	17	<u> </u>			17.0			- 01	. +1 .001			.07								