LOG NO: NOV 1 6 1992 RD. ACTION. FILE NO:	 	!	
FILE NO:		LOG NO: NOV 1	6 1992 RD.
		ACTION.	
	\checkmark	FILE NO:	
·			

3

1.2.2

Sec.

Γ

G

Li

(Sand

ſ

Rec'd

FILE

MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

SUBJECT

NOV 02 1992

VANCOLIVER, B.C.

EUREKA RESOURCES, INC.

IRON MASK PROPERTY Kanloops Mining Division, B.C.

ASSESSMENT REPORT

1992 GEOCHEMICAL, GEOLOGICAL, & GEOPHYSICAL PROGRAM

September, 1992

GEOLOGICAL BRANCH ASSESSMENT REPORT

ASSESSMENT REPORT ON THE IRON MASK 1992 GEOCHEMICAL, GEOLOGICAL, AND GEOPHYSICAL PROGRAM

Kamloops Mining Division, British Columbia N.T.S. Map Area 921/10,15 Latitude 50° 45'N Longitude 120° 38'W

Claims: DAL 1, DAL 2, OONA, CONTACT, OONA 2 Owner: Eureka Resources, Inc. 837 East Cordova St. Vancouver, BC V6A 3R2

Operator: Eureka Resources, Inc. 837 East Cordova St. Vancouver, BC V6A 3R2

by

÷.,

M. Schatten, B.Sc. September 30, 1992

Reviewed & Approved by J. Kerr, P.Eng.

TABLE OF CONTENTS

.

1.	INTRODUCTION	1
	1.1 Location, Access, and Terrain	1
	1.2 Claim Status	1
		4
	1.4 1992 Work Summary	5
	1.5 Claims Work Performed On	6
ż.	GEOLOGY	8
	2.1 Regional	8
	2.2 Property	8
	2.2.1 Lithology	9
3.	1992 GEOLOGICAL MAPPING & ROCK CHIP SAMPLING	
3.	3.1 Maxine Zone	11
	3.2 Results	11
	J.2 RESULLS	11
4.	1992 SOIL GEOCHEMISTRY	13
	4.1 Introduction	13
	4.2 Results	13
5.	1992 MAGNETOMETER SURVEY	15
5.	5.1 Introduction	
	5.2 Results	15
	J.2 RESULCS	15
6.	DISCUSSION OF RESULTS	17
7.	COST STATEMENT	18
		10
8.	BIBLIOGRAPHY	19
9.	STATEMENT OF QUALIFICATIONS	20
2.	OVELEMENT OF ANTETOWETOND	20

,

FIGURES

Figure	1	Location Map 2
Figure	2	Claim Plan
Figure	3	Regional Geology
Figure	4	Geology - Maxine Zone (in pocket)
Figure	5	Copper in Soils - Maxine Zone (in pocket)
		Magnetometer Survey - Maxine Zone

TABLES

Table	1	Summary	of	Claims	••••••	1
				(conti	inued next page)	

APPENDICES

Appendix I	Analytical	Results
------------	------------	---------

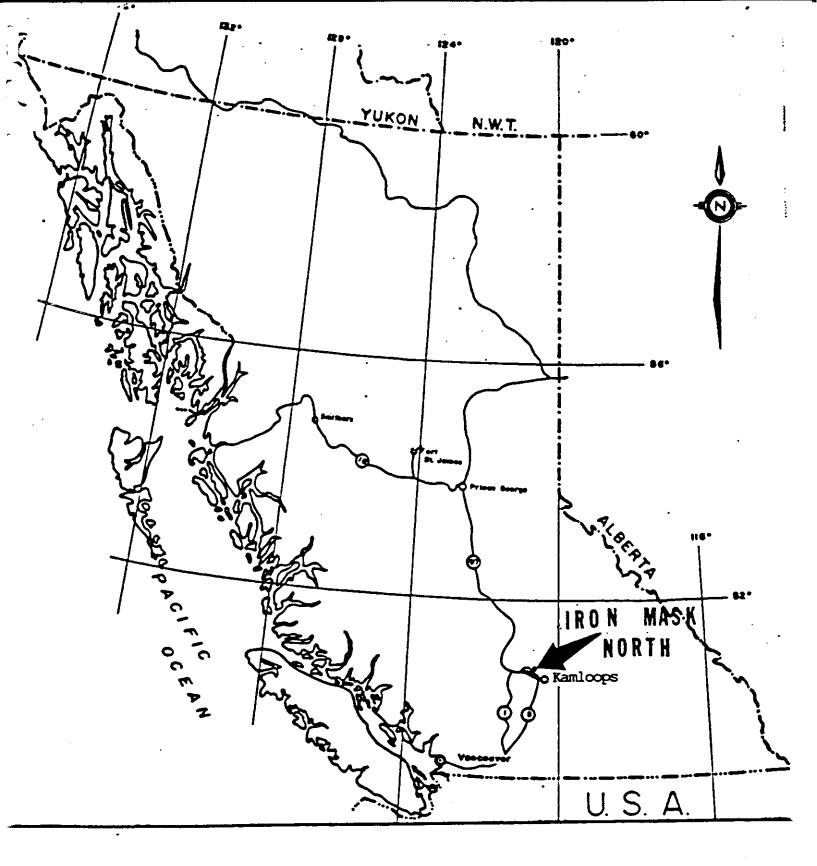
Appendix II Analytical Procedures

1. INTRODUCTION

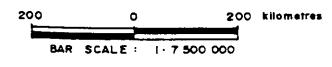
1.1 Location, Access, and Terrain

The Iron Mask North property (Figure 1) is located 15km northwest of Kamloops in south-central British Columbia. The property lies on the north shore of Kamloops Lake near the settlement of Frederick. A well kept gravel road links the settlement of Frederick with the Tranquille River road, originating in Kamloops. Several dirt roads provide access to most areas of the property. The main line of the CN railway is located along the southern boundary of the property.

The overall relief dips moderately towards Kamloops Lake (elevation 340m); but many rock bluffs (elevations up to 760m) make a large portion of the property difficult to traverse. Upper portions of the property are lightly forested with sub-commercial pine and spruce; the lower elevations are sage brush covered.

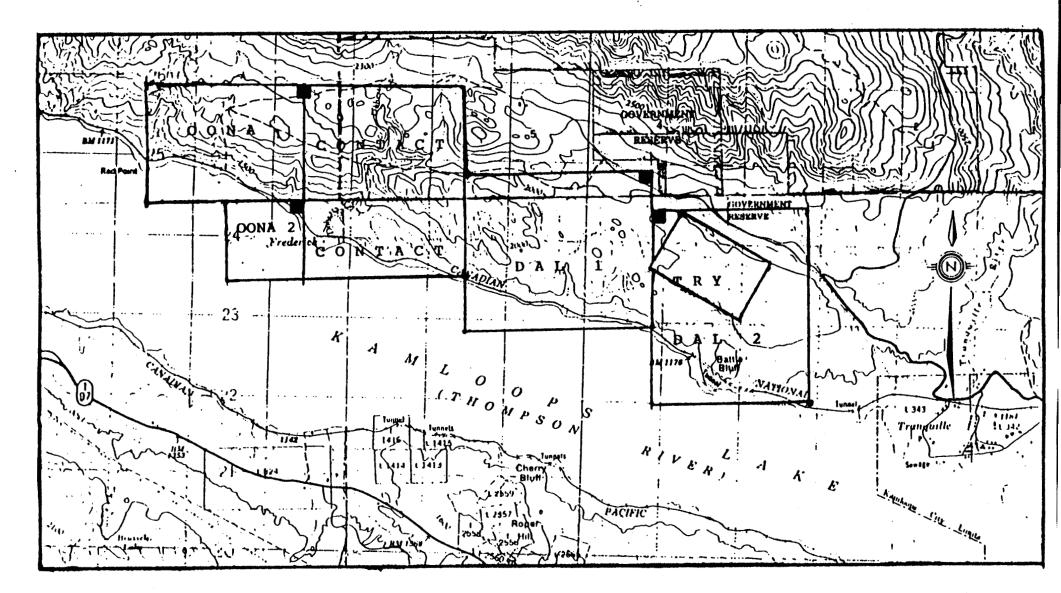

1.2 Claim Status

The Iron Mask North property (see Figure 2) consists of 5 mineral claims (76 units) all recorded in the name of Eureka Resources, Inc.. All claims are in good standing until 1995-2001 (see Table 1). The expiry dates reflect the dates that will be in effect upon acceptance of this report.


Table 1. Summary of Claim Particulars

<u>Claim Name</u>	Units	Record No.	Expiry Date*
DAL 1	20	8295	01/24/1995
DAL 2	20	8296	01/24/1995
OONA	12	8387	04/01/1997
CONTACT	20	8406	04/14/2001
OONA 2	4	8681	07/18/1995
Total Units	76		

* Does not reflect new expiry date upon acceptance of report.



EUREKA RESOURCES, INC.

LOCATION MAP FIGURE I

2

EUREKA RESOURCES, INC.

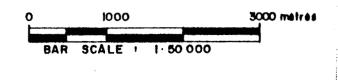


FIGURE 2

(IRON MASK NORTH)

1.3 History

The earliest known exploration on the property occurred in the early 1900's with the discovery of high grade copper mineralization in the Maxine Zone, located in the northwestern portion of the property. Ministry of Mines reports indicate that from 1914 to 1916, 33 tons containing 10% Cu, 0.03 oz/ton Au, and 1 oz/ton Ag was taken from the Maxine Mine. Several other stages of unrecorded development were most likely undertaken at the Maxine Mine prior to 1960. The only assessment work filed reports of a 1600ft diamond drill program conducted directly south of the Maxine Mine by Rich Hill Mines Ltd.. It returned only very small and low grade copper intersections.

Copper mineralization in the Frederick Zone, located in the central portion of the property near what is now the settlement of Frederick, was probably discovered while mining was undertaken at the Maxine Mine. The old adits found in the Frederick Zone were most likely driven in the early 1900's; however no recorded work regarding these adits was found.

1.3.1 Arequipa Mining Company (1963-1964)

In 1963 and 1964 an extensive trenching program was undertaken in the Frederick Zone by the Arequipa Mining Company. During this time period a small diamond drilling program was completed. Assay and hole depth information on the drill holes is not available and the collars of only two diamond drill holes have been found.

1.3.2 Royal Canadian Ventures Ltd. (1969-1971)

From 1969 to 1971 VLF-EM, I.P., magnetic, and soil geochemical surveys were conducted on the Frederick Zone. A diamond drill hole was drilled underneath Doherty Creek, immediately west of the Frederick Zone, that did not intersect any copper mineralization.

1.3.3 Spectroair Explorations Ltd. (1974)

In the early 1970's several companies conducted magnetometer and I.P. surveys and geological mapping in the eastern portion of the property over what is known as the Ski Zone. Although only very sparse amounts of copper mineralization were found on surface, encouraging results from the geophysical surveys were reported. Spectroair Explorations Ltd. drilled four diamond drill holes west and south of the Ski Zone in 1974. No significant mineralization was encountered.

1.3.4 Afton Mines Ltd. and Wavecom Developments Ltd. (1975-1976)

Percussion drill programs were conducted in 1975 by Afton Mines Ltd. and in 1976 by Wavecom Developments Ltd.. Only moderately anomalous amounts of copper were encountered in the 6 holes drilled.

1.3.5 Eureka Resources, Inc. and Teck Explorations Limited (1989)

In April of 1989, Eureka Resources Inc. conducted a program that consisted of establishing a 60km chain and compass grid that covered a large portion of the property. Grid lines were spaced at 100m intervals with stations every 50m. Soil samples, totalling 1155, were collected from the grid and geochemically analyzed. A follow-up survey was conducted by Eureka in July, 1989. An additional 15.5km of chain and compass lines (two grids) were established with lines spaced every 100m. Work on these grids included a magnetometer survey done at 12.5m intervals and soil samples collected every 25m (totalling 630).

Under an option agreement with Eureka Resources Inc., Teck Explorations Ltd. conducted a drill program consisting of 1818m (19 holes) of reverse circulation drilling. 742 reverse circulation chip samples were analyzed. Mapping was done utilizing grid lines established by Eureka Resources. 32 rock samples were analyzed. Moderate mineralization was encountered in a number of the drill holes.

1.3.6 Eureka Resources, Inc. (1991)

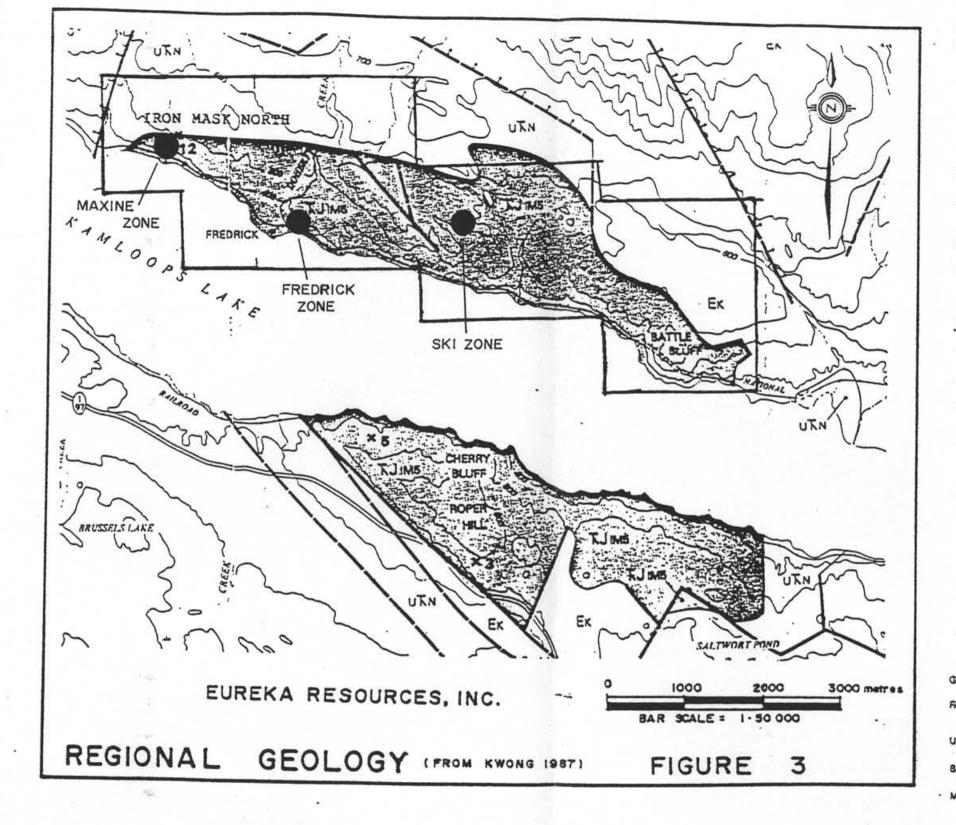
A limited reverse circulation drill program was carried out during November and December of 1991 on the Frederick Zone (Contact claim). In total 374m (5 completed holes, 1 abandoned hole) were drilled from which 123 samples were collected and analyzed, including 95 samples from overburden. Only 2 holes entered bedrock with R91-02 intersecting weak Cu and anomalous Au mineralization.

1.4 1992 Work Summary

During the periods of July 7 - 12, 1992 and August 20 - 21, 1992 Eureka Resources, Inc. conducted a program of soil geochemistry, geological mapping and rock chip sampling, and a magnetometer survey on the Oona claim.

A 17.9km compass and chain grid was established with grid lines spaced every 50m and stations at 25m intervals. A magnetometer survey was run over 11.8km of the grid with a reading taken at each station. 546 soil samples were initially collected at grid stations with an additional 142 soil samples collected to close off anomalous zones revealed by initial sampling results. A total of 688 soil samples were sent for analysis of Cu. Geological mapping and rock chip sampling was carried out over the geochemically anomalous zones. 31 rock chip samples were sent for analysis of Cu and Au.

1.5 Claims Work Performed On


Contact

Dal 1

Dal 2

Oona 17.9km grid, 688 soil samples, 11.8km magnetometer survey, geological mapping, 31 rock chip samples.

Oona 2

• :

BEDDED ROCKS
TERTINAY
MICCENE (7) AND OLDER
TV Olivine basad, local intermediate volcance
EOCENE
EX KUMLOOPS GROUP undifferentiated volcanic (basatic to andeside forms = egglomerates with minor dacite, lable and tracityte) and sediment (Buffaceous sendstone, setsione and shale with minor congromerate) 70
UNCONFORMITY
JURASSIC OR CRETACEOUS
MZC Unified polymical conglomerate
UNCONFORMITY
UPPER TRIASSIC
UTN NICOLA GROUP: Meta-basal, andesite, sull and uncommon argulate
INTRUSIVE ROCKS
JURASSIC
JGD WILD HORSE SATHOLITH, NICOLA SATHOLITH AND SIMILAR GRAN
UPPER TRIASSIC TO LOWER JURASSIC
Granodionte similar to rocks of the Guichon Creek batholith
IRON MASK BATHOLITH AND STARLAR ALKALINE INTRUSIONS
CHERRY CREEK UNIT: donte, monzonite, syends; porphynoc and graned veneoes common
SUGARLOAF UNIT: porphynic homblende : augte microdionte, and m andesid: dykes
PICRITE UNIT: besaltic dykes and lenses with abundant serperitinized or and dinopyrosene; probably non-batholithic
POTHOOK UNIT: medium to coarse-grained donte and gabbro
RON MASK HYBRID UNIT: agreate commonly with about eighty per cer volume of dionte, gabbro and homblendite tragments in a fine-grained dic matrix.
SYMBOLS
SEOLOGICAL CONTACT
AULT: deshed where interned, bar indicates down thrown ade
INCONFORMITY
BRECCIA ZONE
MINERAL OCCUPATIONCE

· . . .

100

2. GEOLOGY

2.1 Regional Geology

The Iron Mask North property is located in the southern part of the Quesnel Trough (Figure 3) which is a subdivision of the Intermontane structural belt of British Columbia. The Quesnel Trough consists of predominantly Lower Mesozoic volcanic and related intrusive rocks underlain by Palaeozoic sedimentary rocks (Kwong, 1987). The Quesnel Trough is host to a number of coppergold enriched stocks and batholiths including Mt. Milligan, Mt. Polley, Afton, and QR.

The Iron Mask Batholith is a multiphase alkaline pluton localized along the south side of a regional northwest trending fault. Several copper occurrences are found throughout the pluton including the Afton Mine, a Cu-Au porphyry deposit located at the northwestern end of the batholith. Surrounding volcanic rocks of the Nicola Group are thought to be comagmatic with the Iron Mask Batholith (Northcote, 1977). Tertiary volcanic and sedimentary rocks of the Kamloops Group unconformably overlay both the Nicola Group and the Iron Mask Batholith.

2.2 Property Geology

The most northerly exposure of the Iron Mask Batholith (Cherry Creek phase) north of Kamloops Lake is covered by the Iron Mask claims. Much of the property is underlain by Cherry Creek intrusives comprised of three units: diorite, monzonite, and syenite. Each of these units contain copper and pyrite mineralization with the Frederick Zone hosting the strongest mineralization, pervasive disseminated chalcopyrite.

Exposures of Triassic Nicola Group undifferentiated intermediate volcanics are most prevalent in the western portion of the property (Maxine Zone) where the contact between the Nicola Group volcanics and the Cherry Creek intrusives strikes in a northeasterly direction. Significant mineralization, chalcocite and malachite, is evident locally.

The eastern claim area (Dal 2) is underlain by the youngest unit, Tertiary Kamloops Group sedimentary and volcanic rocks. The volcanics are intermediate in composition while the sediments are comprised of mudstones, shales, siltstones, and local conglomerates.

The main structural trend is northwest, with major lineaments transecting the property in this direction. The Maxine and Frederick Zones are aligned along one of these major lineaments. Several cross-cutting faults and lineaments have been interpreted within the property. Jointing and block faulting are prevalent throughout the claims.

Donkersloot and Jensen (1990) have identified 6 major rock types present on the Iron Mask property. Rock types in the field are at times difficult to recognize due to very fine grain size or potassium feldspar alteration.

2.2.1 Lithology

Unit 1: Undifferentiated Intermediate Volcanics (Nicola Volcanics)

This unit consists of porphyritic andesite flows, tuffs, tuff breccias and associated volcanoclastics. The unit is grey-green in color and is aphanitic to fine-grained. An andesite with plagioclase phenocrysts is common on the property. Less common are localized occurrences of a tuff breccia that is composed primarily of Nicola Volcanic fragments with lesser, local Cherry Creek intrusive fragments. The unit is moderately to strongly jointed and displays epidote alteration, particularly near intrusive contacts. Weak K-feldspathization, Fe carbonate alteration, and strong hematite occur locally. Trace pyrite is common while chalcopyrite is rare. Chalcocite is locally abundant.

UNIT 2: DIORITE

Diorite is a speckled white and black to grey-black intrusive rock that has an equigranular (locally porphyritic) very fine to mediumgrained texture. It is composed primarily of plagioclase and hornblende with small amounts of K-feldspar (potassium) and little or no quartz. The unit is generally strongly jointed. Disseminated magnetite is common as is moderate epidote alteration along fractures and as disseminations.

Weak albite alteration is present locally but difficult to recognize. Weak to moderate K-feldspathization occurs as patches and veins (veinlets). Lithologic contacts with the monzonite and intermediate volcanics may be gradational or sharp. Mineralization occurs locally as chalcopyrite and pyrite with the Frederick Zone hosting the strongest mineralization found to date.

UNIT 3: MONZONITE

Monzonite is a speckled black, orange, and white fine- to mediumgrained intrusive rock. It is intermediate in composition between diorite and syenite and contains roughly equal amounts of plagioclase and potassium feldspar with little or no quartz. The unit displays an equigranular texture, moderate to strong jointing, moderate epidote alteration, and weak to moderate magnetite. Weak potassium feldspar and albite alteration may be present locally. Pyrite and up to 1% chalcopyrite are locally present.

UNIT 4: SYENITE

Syenite is a fine- to medium-grained pink intrusive rock that is composed of potassium feldspar with minor amounts of plagioclase and mafics with little or no quartz. It is weakly magnetic and pyritic and displays weak to moderate epidote alteration as disseminations and along fracture planes. Disseminated chalcopyrite (up to 1%) is present locally and sometimes associated with epidote. Syenite usually occurs as dykes.

UNIT 5: MAFIC DYKE

Unit 5 is a dark green to black, fine-grained locally hornblende porphyritic mafic dyke. It is andesitic to basaltic in composition, magnetic, and non-foliated. Weak pyrite is found locally. Mafic dykes are late stage (young) as they are found cutting both the Cherry Creek intrusives and Nicola Volcanics but not the Kamloops Group, and may, in fact be the feeder dykes of the later Kamloops Group volcanic complex.

UNIT 6: KAMLOOPS GROUP

UNIT 6A: SEDIMENTS

This sedimentary unit consists of grey, black, and brown finegrained mudstones, shales, siltstones, and local conglomerates.

UNIT 6B: VOLCANICS

Unit 6B is a grey to black and brown, fine-grained intermediate (andesite) volcanic. It is derived from flows and minor tuffs. Distinction from the Nicola Volcanics is made by its lack of porphyritic texture and fresher looking appearance. The presence of columnar jointing is also an aid in recognition.

3. 1992 GEOLOGICAL MAPPING & ROCK CHIP SAMPLING

3.1 Maxine Zone

The Maxime Zone is located on the Oona claim, near the western property boundary. Detailed mapping (1:2000) and rock chip sampling was carried out over geochemically anomalous areas (see figure 4) on August 20 - 21, 1992.

Both Nicola Group volcanics and Cherry Creek intrusives are exposed on this portion of the property. The Cherry Creek phase of the Iron Mask Batholith is composed of diorites and possibly monzodiorites. Diorites near the Nicola Group/Iron Mask contact, which transects the Maxine Zone in a general northeast direction. tend to be very fine-grained and difficult to recognize as they grade into andesite. A brecciated phase containing volcanic clasts is present adjacent to the inferred lithologic contact. Alteration consists primarily of epidote as fracture fillings and This unit displays strong jointing and may be disseminations. weakly to strongly magnetic. Mineralization is visible as malachite smears and chalcopyrite along fracture planes.

The Nicola Group volcanics are porphyritic in nature, containing plagioclase phenocrysts, and locally are fairly coarse-grained. In places the phenocrysts are mafic (pyroxene, olivine) in composition. Strong epidote alteration occurs along joints and as disseminated patches throughout the unit but becomes more pervasive in the western portion of the grid. Associated weak to moderate carbonate alteration is present as is local hematite. Numerous malachite showings are evident along fractures. Chalcocite is locally abundant while chalcopyrite is rare.

3.2 Results

A total of 31 rock chip samples were collected and analyzed for copper and gold from the area mapped. Of these, 12 were selectively taken across malachite showings over widths of 0.3m to 1.0m (see figure 4). Each of these showings directly correspond to geochemical highs. Values returned ranged from 0.04% Cu to 3.1% Cu, the average being 1 - 2% Cu and trace to 0.01 oz/ton Au. IM92-15 (3% Cu) was taken over a width of 0.3m across a fracture carrying malachite, azurite, and chalcocite at line 51+30W and 5+70N. IM92-17 (3.1% Cu), a 0.7m chip sample, was collected at the base of a bluff at line 54+70W and 6+10N. The approximately 14cm wide mineralized fracture contained malachite and azurite in an epidote, carbonate altered volcanic. 19 random rock chip samples were collected over the geochemical anomalies in the central part of the grid. Rock chips were taken perpendicular to joints (joints trending NW and NNW) across widths of 0.4m to 0.7m. Only trace pyrite and chalcopyrite was noted in one sample. Values range from 5ppm Cu to 0.04% Cu.

4. <u>1992 SOIL GEOCHEMISTRY</u>

4.1 Procedure

During July 7 - 12, 1992 a compass and chain grid was established on the Oona claim to cover the Maxine Zone (see figure 5). A baseline, 4+00N, was run east-west from line 45+00W to line 60+00W. Cross lines oriented due north-south were spaced at 50m intervals with stations every 25m. Lines varied in length from 350m to 750m, including additional stations added August 20 - 21, 1992. Grid lines totalled 17.9km.

Soil samples were collected every 25m. 546 samples were collected from July 7 - 12 and 142 samples from August 20 - 21, 1992 as follow-up. A total of 688 soil samples were collected and shipped via Greyhound to the laboratory of Bondar-Clegg in North Vancouver for geochemical analysis of copper. All soil samples were collected well into the "B" horizon at depths of 10-30cm. A grid co-ordinate was assigned to each sample.

4.2 Results

Geochemical analysis revealed several significant anomalies. Copper values >150ppm were considered to be anomalous and contoured (figure 5) on intervals of: 150-250ppm

250-500ppm

>500 ppm

The north-central, south-central, and southwest portions of the grid have numerous subcroppings and outcroppings with only a shallow covering of overburden. Relief in areas of bluffs and south towards Kamloops Lake is quite steep with slopes up to approximately 45°. Elsewhere overburden is deeper with few rock exposures and more gentle slopes.

- The largest anomaly, trending in an east-west direction, 750m long and 150m wide lies in the south central part of lines 49+50W to 57+00W. It is underlain by brecciated and altered Cherry Creek intrusives and Nicola Group volcanics. Values range from 150ppm - 1171ppm Cu.
- 2) A second major northwest trending anomaly lies in the north central - northeast portion of the grid from line 47+50W to line 52+00W. It is roughly 450m long and up to 100m wide and is underlain by altered Nicola volcanics to the northwest and altered and brecciated Cherry Creek intrusives to the southeast. It is within this anomaly that rock chip sample, IM92-15, returned a value of 3.0% Cu. Geochemical results range from 150ppm - 635ppm Cu.

- 3) A third anomalous zone from line 53+50W to line 55+50W lies in the north central part of the grid and covers the old Maxine Mine workings. It is predominantly underlain by volcanics although pods of intrusives may be present. Soil disturbances have occurred in this area due to previous mining and road construction and may have affected geochemical values.
- 4) To the northwest, line 56+50W to line 59+00W, a fourth geochemical anomaly extends over a length of 250m and width of 50m. Rock chip sample IM92-17 was collected in the area of line 57+00W and 5+00N and assayed 3.1% Cu. Nicola Group volcanics underlie this area. Copper in soils go up to 685 ppm.
- 5) The last significant anomaly lies in an east-west direction starting at line 57+50W and is open at the western end of the grid, line 60+00W. It is up to 150m wide in places and is underlain by Nicola Group volcanics. Soil samples returned highs up to 1293ppm Cu.

5. <u>1992 MAGNETOMETER SURVEY</u>

5.1 Procedure

During July 7 - 12, 1992 a magnetometer survey was conducted over 11.8km of the grid using a Unimag 2 proton magnetometer. Magnetic readings were taken at 25m spaced grid stations while facing west. One base station per line was utilized to account for diurnal variations. However since diurnal variations were slight, generally less than 50 gammas, in comparison to a range of up to 3800 gammas in magnetic readings over the grid raw data was used for contouring and interpretation.

Magnetic readings were contoured (see figure 6) at 500 gamma intervals: 7000-7500 gammas 7500-8000 gammas 8000-8500 gammas 8500-9000 gammas 9000-9500 gammas 9500-10000 gammas.

5.2 Results

Interpretation of magnetic readings will be discussed with respect to the areas covered by the five geochemical anomalies aforementioned.

- This area (lines 49+50W 57+00W) is characterized by a northeast trending magnetic low enveloped by a magnetic high, typical of the main Afton ore deposit. The magnetic low, less than 8000 gammas, corresponds with anomalous soil copper values greater than 150ppm. Highly anomalous geochemical results, greater than 250ppm, correlate directly to magnetic lows less than 7500 gammmas. Magnetic data is incomplete in the southwestern part of the geochemical anomaly. Rock exposure is relatively good in the area.
- 2) The area from line 47+50W to line 52+00W is characterized by scattered magnetic lows, less than 7500 gammas, trending northeasterly over a distance of 150m. Rock chip sample IM92-15, 3.0% Cu, falls within one of these lows. Scattered highs flank the lows. Again rock exposure is good.
- 3) The Maxine Mine at line 55+00W and 5+50N lies in a northwest trending magnetic low reflecting the mineralized structure. Several other magnetic lows trending northeast and northwest cover the area to the north and the south of the old workings.

- 4) Magnetic lows, less than 7500 gammas, trending northwest and west-northwest cover a large portion of the geochemical anomaly from line 56+50W to line 59+00W. Strong scattered magnetic spot highs flank the area. A magnetic high of 10527 gammas at line 57+00W and 5+50N is just north of a magnetic low where rock chip sample IM92-17 assayed 3.1% Cu.
- 5) Magnetic data is incomplete in this area (line 57+50W to 60+00W), however one magnetic low with associated highs corresponds with the geochemical anomaly.

A general east-northeast trending magnetic configuration in the order of 7500-7900 gammas cuts the grid and may reflect the contact between Cherry Creek intrusives and Nicola Group volcanics.

6. DISCUSSION OF RESULTS

Results from soil geochemistry, geological mapping and sampling, and magnetic data provide several targets for future exploration on the Maxine Zone (Oona claim).

The contact between the Cherry Creek phase of the Iron Mask Batholith and Upper Triassic Nicola Group volcanics transects the Maxine Zone in a general northeast direction. To the west and northwest of the contact lay three geochemical anomalies underlain by Nicola Group volcanics. The first extends from line 56+50W to line 59+00W and has a coincident magnetic low. Strong, spotty magnetic highs are associated with the geochemical anomaly. To the west of the contact from line 57+50W to line 60+00W lies an eastwest trending geochemical anomaly with associated magnetic lows. A third anomalous zone, line 53+50W to line 55+50W, northwest of the lithologic contact is also predominantly underlain by Nicola volcanics. The old Maxine Mine lies at line 55+00W and 5+50N and falls within the geochemical anomaly with an associated magnetic low. It is hosted by a northwest trending shear zone that may be extended through further exploration. Moderate to strong epidote, carbonate, and local hematite alteration is found throughout the Nicola volcanics. Malachite showings are abundant throughout this area occurring as smears along fracture planes. The above geochemical/magnetic anomalies offer the potential of hosting structurally controlled (shear zone) copper (gold) deposits.

Covering the Nicola Group/Iron Mask contact are two significant geochemical anomalies underlain by brecciated and altered Cherry Creek intrusives to the northeast and southeast and by Nicola Group volcanics to the west and northwest. The breccia zone strikes northeast and appears to be intrusive in nature. The first anomaly, the largest, extends from line 49+50W to line 57+00W in the southern portion of the grid and is up to 150m wide. The second geochemical anomaly trends northeast over the northern part of lines 47+50W to line 52+00W. Both have associated magnetic lows enveloped by magnetic highs. Rock exposure is good in this area. Alteration consists primarily of epidote and carbonate. Numerous malachite showing are scattered throughout the two geochemical anomalies. Chalcopyrite, disseminated and fracture filling, pyrite, and chalcocite occur locally. This area of the Maxine Zone has similarities to the Afton Cu (Au) porphyry deposit to the south and has the potential to host the same style of mineralization. The magnetic configuration, a low flanked by a high, is the same as that at the main Afton ore body. The geological environment, brecciated, altered Iron Mask Batholith intrusives enveloped by volcanics, is similar to Afton and warrants further investigation.

7. COST STATEMENT

1 day @ \$350/day 8.5 days @ \$192/day 8.5 days @ \$162/day 2 days @ \$100/day	350.00 1,632.00 1,377.00 200.00
vel)	
CICAL ples @ \$3/sample .es @ \$10/sample	2,064.00 310.00
@ \$60/man/day	1080.00
uding fuel & mileage) @ \$60/day.	540.00
SUPPLIES .es rental - 3 days @ \$20/day	400.00 60.00
EPORT 2 4, Sept 23 - 28, 1992 Cation & Drafting	
5192/day printing	2,592.00 150.00
al 3/day	92.00
	<pre>8.5 days @ \$192/day 8.5 days @ \$162/day 2 days @ \$100/day vel) TCAL bles @ \$3/sample es @ \$10/sample @ \$60/man/day uding fuel & mileage) @ \$60/day SUPPLIES es rental - 3 days @ \$20/day REPORT : 4, Sept 23 - 28, 1992 ration & Drafting S192/day printing cal</pre>

TOTAL EXPENSES

•

\$10,547.00

<u>18</u>

8. **BIBLIOGRAPHY**

Donkersloot, P. and Jensen, S., 1990; 'Assessment Report on the Dal 1, Dal 2, Oona, Contact, and Oona 2 Claims.'

Kwong, Y.T.J., 1987; 'Evolution of the Iron Mask Batholith and its Associated Copper Mineralization', Mineral Resources Division, Geological Survey Branch, Bulletin 77.

Northcote, K.E., 1977; 'Notes to Accompany Preliminary Map No. 26, Iron Mask Batholith, (92I/10E,9W)', Ministry of Mines and Petroleum Resources.

4

9. STATEMENT OF OUALIFICATIONS

I, MYRA G. SCHATTEN, resident of Calgary, Province of Alberta, hereby certify as follows:

- 1. I am a contract geologist currently employed by Eureka Resources, Inc. at 837 East Cordova, Vancouver, B.C..
- 2. I was actively involved as a field geologist on the Iron Mask North property during the 1992 geochemical, geological, and geophysical program and assisted in the collection of the data referred to in this report.
- 3. I graduated from the University of Alberta, Edmonton, Alberta, B.Sc. Geology, 1987. I have been actively involved in mineral exploration since 1987.

DATED at Vancouver, Province of British Columbia this 30th day of September, 1992.

M.G. Schatten, B.Sc.

M.G. Schatten, B.Sc. Geologist

I, JOHN R. KERR, of Vancouver, British Columbia, do hereby certify that:

- 1. I am a member of the Association of Professional Engineers of British Columbia and a Fellow of the Geological Association of Canada.
- 2. I am a geologist employed by Eureka Resources Inc. of 837 East Cordova Street, Vancouver, B.C..
- 3. I am a graduate of the University of British Columbia (1964) with a B.A.Sc. degree in Geological Engineering.
- 4. I have practised my profession continuously since graduation.
- 5. I supervised and assisted in the collection of the data as compiled in this report. I have reviewed the contents of this report which is based on the aforementioned data, and supervised the compilation and authorship by M. Schatten. I verify the costs as reported to be true.
- 6. I am an officer and director of Eureka Resources Inc. and hold a direct and indirect interest in the securities of this company.

DATED at Vancouver, Province of British Columbia this 30th day of September, 1992.

Kerr. Enq.

APPENDIX I

.....

ANALYTICAL RESULTS

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue North Vancouver Bath VTP 2R5

Tel: (604) 985-0681 Fax: (604) 985-1071

Geochemical Lab Report

۰.

REPORT: V92-00734.0 (COMPLETE)			•	DATE PRINTED:					
	SAMPLE					PROJECT: NONE	GIVEN	PAGE 1	
	NUMBER	ELEHENT	Au	Cu	SAMPLE	ELEMENT	Au	Cu	
	WORDER	UNITS	268	264	NUMBER	UNITS	PPS	PPH	
	S1 IN L45+5	SOW 0+SON		139					
	S1 [H L45+9			139		6+50# 3+50N		184	
	S1 IM L45+5			208		6+50W 3+75N		279	
	SI IN L45+5			214		7+00# 0+50N		74	
	S1 IN L45+5			191		7+00W 0+75N		109	
				171	51 IN L4	7+00W 1+00N		96	
	S1 IH L45+5			154	S1 TH 1.3	7+00W 1+25N			
	S1 IN L45+5			54		7+00W 1+25N 7+00W 1+50N		75	
	S1 IN L45+5			82		7+00W 1+75H		122	
	S1 IM L45+5			91		7+00W 2+00N		38	
	S1 IM L45+5	0# 2+75#		67		7+00W 2+25N		147	
	C1 TH 1 45 -	04. 3. 600				COW L'LIN		154	
	S1 IM L45+5			67	S1 IN 147	7+00W 2+50N		165	
	S1 IN L45+5			55		7+00W 2+75N		155 158	
	S1 IN L45+5			58		+COW 3+00N		155	
	SI IN L45+5 SI IN L46W			88		+00W 3+25N		105	
	SI 14 L40#	MUC+0		368		+00W 3+50N		135	
$\dot{}$	S1 IH L46W	0+75N		201				1JJ	
	S1 IN L46W			381		+00W 3+75N		137	
	S1 IH L46W			64 100		+50W 0+50N		78	
	S1 IN L46W			109		+50W 0+75N		62	
	S1 IM L46W			102 127		+50W 1+00N		81	
				127	S1 IH L47	+50W 1+25N		93	
	S1 IM L45W 2			76	C1 TH + 47				
	S1 IN L46W 2	2+25N		89		+50W 1+50N		73	
	S1 IN L46W 2			78		+50W 1+75N +50W 2+00H		95	••
	S1 IN L46W 2			99		+50W 2+25N		141	
	S1 IN L46N 3	3+00N		93		+50W 2+25N +50W 2+50N		118	
_	01 14				51 IN (4)	MUC+2 WUC		123	
	S1 IN L46W 3			91	S1 IH 47	+50W 2+75N		1(1	
	S1 IN L46W 3			86	S1 IN L47	+50W 3+00N		161	
	S1 IN L46W 3 S1 IN L46+50			110	S1 IH L47	+50W 3+25N		139 166	
	SI IN L46+50			99	S1 IN L47	+50W 3+50N		132	
	JT 14 640730			68		+50W 3+75N		132	
	S1 IN L46+50	W 1+00M		63					
	S1 IN L46+50			63 83	S1 IN L48			147	
	S1 IM L46+50			83 79	S1 IM L48			74	
	S1 IN L46+50			124	S1 IN L484			96	
	S1 IN L46+50			135	S1 IH L484			100	
					S1 IN L48+	UUW 1+00N		84	
	S1 IM L46+50			106	C1 TH I IA.				
~	S1 IN L46+50			116	S1 IM L48+			65	
	S1 IN L46+50			155	S1 IM L48+ S1 IM L48+			78	
	S1 IN L46+50			157	S1 IN L48+			104	
	S1 IN L46+50	N 3+25N		189	S1 IN L48+			138	
					JI IN LAOT	10W 2723N		151	

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue North Vancoustic (3.37) VTP 185

Tel: (604) 985-0681 Fax: (604) 985-007

ſ

BONDAR-CLEGG

Geochemical Lab Report

<u>(</u>							DATE PRINTED:	23-301-9	2	
	REPORT: 792	-00734.0 (COM	PLETE)				PROJECT: NONE	GIVEN	PAGE	2
	SAMPLE HUMBER	ELEHENT UNITS	Au 223	Cu PP N		SAMPLE NUHBER	ELEMENT UNITS	Au PP3	Cu PPH	
	S1 IN L48+0			193	·····		······································			
	S1 IM L48+0			67						
	S1 IN L48+0			115						
	S1 IN L48+0 S1 IN L48+0			182 142						
	JI IN L40+0	MICTC WU		142		<u></u>				
	S1 IN L48+0			134						
	S1 IM L48+5 S1 IM L48+5			99 102						
	S1 IM L48+5			103 99						
	S1 IN L48+5			73						
	01 TH I 40.0			00						
	S1 IN L48+5 S1 IN L48+5			99 115						
	S1 IN L48+5			132						
	S1 IN L48+5			115						
	S1 IM L48+5	50W 2+00N		111						
<u>_</u>	S1 IN L48+5	504 2+254		97						
	S1 IN L48+			135						
	S1 IN L48+			114						
	S1 IN L48+			126						
. <u> </u>	S1 IN L48+	JUW 3+2JW		140	·					
	S1 IN L48+			138			<u></u>			
	S1 IN L48+	5UW 3+/5N	0	126	23-11 × 20					•
	R2 IN92-1 R2 IN92-2		8 10	22 108	.01				3	
	R2 IN92-3		<5	364	.04					
	R2 [M92-4		7	101	. 61					
	R2 IM92-5		<\$	2629						
	R2 IM92-6		<5	2961						
-										
Ч -										
Ì						,				
			·							
-										

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue North Vancouver, B.C. VTP 2R5

Tel: (604) 985-0681 Fax: (604) 985-1071

Geochemical Lab Report

(_	DATE PRINTED:	23-JUL-92		
[REPORT: V92-00735.0 (COM	PLETE)	·		PROJECT: NONE	GIVEN	PAGE	3
r	SAMPLE ELEMENT Number units	Cu PPM		SAMPLE NUMBER	ELEMENT UNITS	Cu PPM		
с Г	S1 IN 58+50W 5+00N S1 IN 58+50W 5+25N	89 81 70		S1 IM LSOW S1 IM LGOW S1 IM LGOW	4+50N	155 189 220		
	S1 IM 58+50W 5+50M S1 IM 58+50¥ 5+75N S1 IM 58+50W 6+00N	79 91 453		SI IN LOOM SI IN LOOM SI IN LOOM	5+00N	229 87 70		
	S1 IN 58+50W 6+25N S1 IN 58+50W 6+50N	46 57		S1 IN L60W S1 IN L60W	5+75N	233 72		
	S1 IN 58+50W 6+75N S1 IN 58+50W 7+00N S1 IM 58+50W 7+25N	58 167 30		S1 IN LGOW S1 IN LGOW S1 IN LGOW	6+25N	50 51 39		
	S1 IN L59W 4+25N S1 IM L59W 4+50N	91 442		S1 IN LOOW S1 IN LOOW	7+00N	48 50		
	S1 IN L59W 4+75N S1 IN L59W 5+00N S1 IN L59W 5+25N	193 83 84		S1 IM LSOW S1 IM LGOW S1 IM LGOW	7+50N	50 50 44		
	S1 IN L59W 5+50N S1 IN L59W 5+75N	114 43						
	S1 IM L59W 6+00N S1 IM L59W 6+25N S1 IM L59W 6+50N	40 46 47						
	S1 IN L59W 6+75N S1 IM L59W 7+00N	55 183						
	S1 IN L59W 7+25N S1 IN L59W 7+50N S1 IN L59W 7+75N	516 171 46						
	S1 IN L59+50W 4+25N S1 IN L59+50W 4+50N	112 188						
	S1 IN L59+50W 4+75N S1 IN L59+50W 5+00N S1 IN L59+50W 5+25N	55 67 248						
	S1 IN L59+50N 5+50N S1 IN L59+50W 5+75N	50 46						an a
	S1 IN L59+50W 6+00N S1 IN L59+50W 6+25N S1 IN L59+50W 6+50N	32 36 46						
	S1 IN L59+50W 6+75N S1 IN L59+50W 7+00N	49 102						
	S1 IN L59+50W 7+25N S1 IN L59+50W 7+50N S1 IN L59+50W 7+75N	95 82 41						
L								

:

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue North Vancouver, B.C. V7P 2R5

Tel: (604) 985-0681 Fax: (604) 985-1071

Geochemical Lab Report

(· ·	DATE PRINTED: 23-111 -92
	REPORT: V92-00735.0 (COMPLETE)	PROJECT: NONE GIVEN PAGE 2
- [SAMPLE ELEMENT Cu	SAMPLE ELEMENT CU
	NUMBER UNITS PPM	NUMBER UNITS PPH
LJ _i	S1 IN L55W 5+00N 48	S1 IM L56+50W 5+00N 112
	S1 IN L55W 5+25N 186	S1 IN L56+50W 5+25N 157
Γ	S1 IN L55W 5+50N 308	S1 IN L56+50W 5+50N 111
E.	S1 IN LS5W S+75N 68	S1 IN L56+50W S+75N 77
	S1 IN L55W 6+00N 427	S1 IM L56+50W 5+00N 51
	S1 IN L55+50W 2+00N 307	S1 IN L56+50W 6+25N 39
	S1 IN L55+50W 2+25N 200	S1 IN L57W 4+25N 89
	S1 IM L55+50W 2+50N 203	S1 IN L57W 4+50N 93
	S1 IM L55+50W 2+75N 356	S1 IN L57W 4+75N 49
	S1 IN L55+50W 3+00N 660	S1 IN L57W 5+00N 685
	S1 IN L55+50W 3+25N 171	S1 IM L57W 5+25N 558
[:	S1 IN L55+50W 3+50N 316	S1 IN L57W 5+50N 105
	S1 IN L55+50W 3+75N 48	S1 IM L57W 5+75N 87
	S1 IM L55+50W 4+25N 65	S1 IM L57W 6+00N 26
ł	S1 IN L55+50W 4+50N 138	S1 IN L57W 6+25N 152
5	S1 IN L55+50W 4+75N 200	S1 IN L57+50W 4+25N 520
	S1 IN L55+50W 5+00N 72	S1 IN L57+50W 4+50N 72
٠	S1 IN L55+50W 5+25N 78	S1 IN L57+50W 4+75N 52
~	S1 IN L55+50N 5+50N 83	S1 IN LS7+50W 5+00N 76
	S1 IM L55+50W 5+75N 75	S1 IN L57+50W 5+25N 115
:	S1 IN L55+50W 6+00N 68	S1 IM L57+50W 5+50N 300
Γ	S1 IN L56+00W 2+00N 213	S1 IN L57+50W 5+75N 412
1	S1 IN LS6+00W 2+25N 156	S1 IN L57+50W 6+00N 61
ľ	S1 IN L56+00W 2+50N 164	S1 IH L57+50W 6+25N 35
÷	S1 IN L56+00W 2+75N 99	S1 IN L57+50W 6+50N 45
	S1 IN L56+00W 3+00N 98	S1 IN L57+50W 6+75N 43
_	S1 IN L56+00W 3+25N 55	S1 IN L58W 4+25N 94
	S1 IN L56+00W 3+50N 78	S1 IN L58W 4+50N 137
	S1 IN L56+00W 3+75N 50	S1 IN L58W 4+75N 39
,	S1 IN L56+00W 4+25N 48	S1 IN L58W 5+00N 38
	S1 IN L56+00W 4+50N 57	S1 IN L58# 5+25N 59
	S1 IN L56+00W 4+75N 77	S1 IN L58W 5+50N 65
_	S1 IN L56+00W 5+00N 70	S1 IN L58W 5+75N 105
	S1 IN L56+00W 5+25N 64	S1 IN L58W 6+00N 67
	S1 IN L56+00W 5+50N 98	S1 IN L58W 6+25N 49
	S1 IN L56+00W 5+75N 94	S1 IN L58W 6+50N 167
	S1 IN L56+00N 6+00N 51	S1 IN L58W 6+75N 84
	S1 IN L56+50W 4+25N 77	S1 IN L58+50W 4+25N 93
	S1 IN L56+50N 4+50N 49	S1 IN L58+50N 4+50N 74
	S1 IN L56+50W 4+75N 30	S1 IN L58+50W 4+75N 213

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

.

Ŀ

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V92-01145.0 (COMPLETE)		A DIVISION C	r increare inspection & re	DATE PRINTED: 22-SEP-92	DATE PRINTED: 22-SEP-92			
L [REPORT: V92-01145.0 (CO	MPLETE)			PROJECT: NONE GIVEN	PAGE 1		
	SAMPLE ELEMENT NUMBER UNITS	Au 998	Cu PPH					
	R2 IN92-20 R2 IN92-21 R2 IN92-22 R2 IN92-23 R2 IN92-24	9 <5 <5 <5 <5	311 78 39 251 115					
	R2 IN92-25 R2 IN92-26 R2 IN92-27 R2 IN92-28 R2 IN92-29	<5 <5 7 6 <5	19 5 7 10 30					
	R2 IN92-30 R2 IN92-31	<5 9	39 16					
					· · · · · · · · · · · · · · · · · · ·			
• (· · · · · · · · · · · · · · · · · · ·				
ſ								

Sondar-Clegg & Company 30 Pemberton Ave. North Vancouver, B.C. /7P 2RS 604) 985-0681 Telex ()4-35			BONDA	R-CLEEG		Certificate of Analysis
		A DIV	ISION OF INCHCAPE INS	SPECTION & TESTING	GSERVICES	50 .00
REPORT: V92-0	1038.6 (COM	PLETE)			DATE PRINTED: 15-SI PROJECT: NONE GIVE	N PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	Cu PCT				
R2 IN92-15 R2 IN92-17		3.03 3.10				
				, · 		

						• •
				,	\sim	
					1	K

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue North Vancouver, B.C. V7P 2R5

Tel: (604) 985-0681 Fax: (604) 985-1071

Ł

Geochemical Lab Report

(DATE PRINTED:	2-SEP-92		
	REPORT: V92-0	1038.0 (COM	PLETE)		·	PROJECT: NONE	GIVEN	PAGE	2
r	SAMPLE NUNBER	ELEMENT	Au 228	Cu PPN	SAMPLE NUMBER	ELEMENT UNITS	Au PP8	Cu PPN	
	S1 IN L54+50W			64	S1 IN L58+			135	
r	S1 IN L54+500			69	S1 IN L58+			213	
	S1 IN L55+00			262	S1 IN L58			560	
	S1 IN L55+000			207 242	S1 IN L584	+UUW 3+5UN +OOW 3+75N		107 155	
r	S1 IN L55+00	NC 17/ 1			JI IN LJO				
	S1 IN L55+00	6+25N		92	S1 IN L58	+50W 2+50N		190	
	S1 IN L55+00			43		+50W 2+75N		145	
П	S1 IN L55+00			81		+50W 3+00N		215	
	S1 IN L55+00			50		+50W 3+25N		172	
	S1 IN L55+00	W 7+25N		36	S1 IN L58	+50W 3+50N		166	
「 <u> </u>	S1 IN L55+00	W 7+50N		44	S1 IN L58	+50W 3+75N		107	
	S1 IN L55+50	W 1+50N		185	S1 IN L59	+00W 3+00N		120	
	S1 IN L55+50	₩ 1+75₩		144		+00W 3+25N		62	
	S1 IN L55+50			43		+00W 3+50N		130	
1	S1 IN L55+50	W 6+50N		44	S1 IN L59	+00W 3+75N		1293	
	S1 IN L55+50	W 6+75N		41	S1 IN L59	+50W 3+00N		477	
	S1 IN L55+50	W 7+00N		51	S1 IN L59	1+50W 3+25N		93	
· /	S1 IN L56+50			255		+50W 3+50N		432	
-	S1 IN L56+50			270		H50W 3+75N		152	
	S1 IN L56+50	JW 2+50N		132	SI IN LGO)+00W 3+00N		123	
	S1 IN L56+50	DW 2+75N		224	S1 IN L60	0+00W 3+50N		275	
	S1 IN L56+50			120		0+00W 3+75N		163	· •
!	S1 IN L56+50			89	R2 IN92-0		75	10970	
	S1 IN L56+5			86	R2 IN92-0		<5	370	
	S1 IN L56+5	OW 3+75H		107	R2 IN92-	8	<5	1295	
	S1 IN L57+0	OW 2+00M		296	R2 1892-	09	15	2894	
	S1 IN L57+0			161	R2 IN92-	10	147	13026	
	S1 IN L57+0			1171	R2 IW92-		113	18698	
	S1 IN L57+0			95	R2 1W92-		<5	11086	
_	S1 IN L57+0	ow 3+00N		87	R2 IN92-	13	9	123	
	S1 IN L57+0	UN 3+25N		90	R2 1192-		16	12105	
	S1 IN L57+0	ION 3+50N		105	R2 IN92-		14	>20000	
-	S1 IN L57+0			92	R2 IN92-		7	10940	-
	S1 IN L57+5			78	R2 IM92-		12	>20000	
	S1 IN L57+5	50W 2+75W		48	· R2 IN92-	.19	<\$	1855	
	SI IN L57+5	50W 3+00W		68	RZ 1492-	-19	<5	365	
	S1 IN L57+5			93					
r	S1 IN L57+			61					
	S1 IN L57+			136	,				
	S1 IN L58+	00W 2+50N		224					

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue North Vancouver, B.C. V7P 2R5

. .

E

Geochemical Lab Report

			DATE PRINTED: 2-SEP-92						
8	EPORT: V92-01	L038.0 (COM	PLETE)		-	PROJECT: NONE	GIVEN	PAGE 1	
	AMPLE	ELEMENT	Au	Cu	SAMPLE	ELENENT	Au	Cu	
N	UMBER	UNITS	PP8	PPM	NUMBER	UNITS	PP8	PPN	
S	1 IN L47+50W	4+25N		110		+50W 7+25N		48	·
	1 IN L47+50W			122		+50W 7+50N		74	
	1 IN L47+50W			164		+00W 6+25N		91	
	1 IN L47+50W			205		+00W 6+50N		128	
<u> </u>	1 IN L47+50W	5+25N		97	S1 IN L52	+00W 6+75N		82	
	1 IN L47+50W	5+50N		68	S1 IN L52	+00W 7+00N		101	
Ś	1 IN L48+00W	4+25N		222	S1 IN L52	+00W 7+25N		130	
\$	51 IN L48+00W	4+50N		116	S1 IN L52	2+00W 7+50N		126	
	51 IM L48+00W			107		2+50W 6+25N		61	
	51 IN L48+00W	5+00N		110	S1 IN L52	2+50W 6+50N		131	
	51 IN L48+00W	5+25N		149	S1 IN L52	2+50W 6+75N		145	
:	51 IN L48+00W	5+50N		274		2+50W 7+00N		218	
:	51 IM L48+50W	4+25N		173	S1 IN L52	2+50W 7+25N		89	
	51 IN L48+50W	4+50N		209	S1 IN L52	2+50W 7+50N		90	
	51 IN L48+50W	4+75N		143	S1 IN L53	3+00W 0+50N		210	
	S1 IN L48+500	5+00N		115	S1 IN L5	3+00W 0+75N		285	
	S1 IN L48+500			154		3+00W 6+25N		208	
	S1 IN L48+500	5+50N		147	S1 IN L5	3+00W 6+50N		90	
	S1 IN L49+001	4+25N		156	S1 IN L5	3+00W 6+75N		48	
	S1 IN L49+001	4+50N		181	S1 IN L5	3+00W 7+00N		90	
	S1 IN L49+00	4 4+75N		94	SI IN LS	3+00W 7+25N		44	
	S1 IN L49+00			100		3+00W 7+50N		42	. •
	S1 IN L49+00			135		3+50W 0+75N		214	
	S1 IN L49+00			100		3+50W 6+25N		126	
	S1 IN L49+00	N 5+75N		104		3+50W 6+50N		93	
	S1 IN L49+50	4+258		131	ST TH 15	3+50W 6+75N		64	
	S1 IN L49+50			129		3+50W 7+00N		69	
	S1 IN L49+50			193		3+50W 7+25N		65	
	S1 IN L49+50			141		3+50W 7+50N		74	
	S1 IN L49+50			103		54+00W 1+00N		99	
	S1 IN L49+50	5+50N		89	SI TH IS	54+00W 5+25N		175	
	S1 IN L49+50			131		54+00W 6+50N		64	
	S1 IN L51+00			62		54+00W 6+75N		132	
	S1 IN L51+00			150		54+00W 7+00N		292	. /
	S1 IN L51+00			128		54+00W 7+25N		146	
	S1 IN L51+00	N 7+00N		47	SI IN I	54+00W 7+50N		58	
	S1 IN L51+50			92		54+50W 6+25N		70	
-	S1 IN L51+50			67		54+50W 6+50N		45	
	S1 IN L51+50			98		54+50W 6+75N		50	
	S1 IN L51+50			128		54+50W 7+00N		104	

• •

.

.

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue North Vancouver, B.C. VTP 2R5

Tel: (604) 985-0681 Fax: (604) 985-1071

/

RON FIASK.

Geochemical Lab Report

Γ	REPORT: V92-00735.0 (COMPLETE)	DATE PRINTED: 23-JUL-92
L		PROJECT: NONE GIVEN PAGE 1
	SAMPLE ELEMENT CU Number units PPM	SAMPLE ELEMENT CU NUMBER UNITS PPM
Γ	S1IM8L4N+0045+00W79S1IM8L4N+0045+50W94S1IM8L4N+0046+00W193	S1 IN L54W 3+75N 46 S1 IN L54W 4+25N 124
	S1 IM BL4N+00 46+50W 187 S1 IM BL4N+00 47+00W 133	S1 IM L54W 4+50N 212 S1 IM L54W 4+75N 180 S1 IM L54W 5+00N 101
	S1 IM BL4N+00 47+50W 203 S1 IM BL4N+00 48+00W 154 S1 IM BL4N+00 48+50W 126 S1 IM BL4N+00 49+00W 137	S1 IN L54W 5+25N 79 S1 IN L54W 5+50N 69 S1 IN L54W 5+75N 78 S1 IN L54W 6+00N 159
	S1 IH BL4N+00 49+50W 131	S1 IN L54W 6+00N 159 S1 IN L54+50W 1+25N 142
	S1 IM BL4N+00 50+00W 113 S1 IM BL4N+00 50+50W 110 S1 IM BL4N+00 51+00H 116 S1 IM BL4N+00 51+50W 36 S1 IM BL4N+00 52+00W 128	S1 IM L54+50W 1+50N 297 S1 IM L54+50W 1+75N 266 S1 IM L54+50W 2+00N 230 S1 IM L54+50W 2+25N 310 S1 IM L54+50W 2+50N 256
	S1 IM 8L4N+00 52+50W 220 S1 IM 8L4N+00 53+00W 122 S1 IN 8L4N+00 53+50W 149 S1 IM 8L4N+00 54+00W 51 S1 IM 8L4N+00 54+50W 74	S1 IN L54+50W 2+75N 96 S1 IN L54+50W 3+00N 162 S1 IN L54+50W 3+25N 87 S1 IN L54+50W 3+50N 101 S1 IN L54+50W 3+75N 61
	S1 IM BL4N+00 55+50W 52 S1 IM BL4N+00 56+00W 80 S1 IM BL4N+00 56+50W 64 S1 IM BL4N+00 57+00W 116 S1 IM BL4N+00 57+50W 203	S1 IM L54+50W 4+25N 79 S1 IM L54+50W 4+50N 226 S1 IM L54+50W 4+75N 244 S1 IM L54+50W 54 S1 IM L54+50W 53
	S1 IM BL4N+00 58+00W 289 S1 IM BL4N+00 58+50W 208 S1 IN BL4N+00 59+00W 352 S1 IM BL4N+00 59+50W 80 S1 IM BL4N+00 60+00W 170	S1 IN L54+50W 5+50N 125 S1 IN L54+50W 5+75N 415 S1 IN L54+50W 6+00N 412 S1 IN L55W 2+00N 335 S1 IN L55W 2+25N 592
	S1INL54W1+25N192S1INL54W1+50N229S1INL54W1+75N339S1INL54W2+00N230S1INL54W2+25N137	S1 IN L55W 2+50N 75 S1 IN L55W 2+75N 65 S1 IN L55W 3+00N 279 S1 IN L55W 3+25N 83 S1 IN L55W 3+50N 82
	S1 IN L54W 2+50N 327 S1 IN L54W 2+75N 102 S1 IN L54W 3+00N 173 S1 IN L54W 3+25N 114 S1 IN L54W 3+50N 49	S1 IN LS5W 3+75N 75 S1 IN LS5W 4+00N 104 S1 IN LS5W 4+25N 94 S1 IN LS5W 4+50N 66 S1 IN LS5W 4+75N 156

Bondar-Cleag & Company Ltd. 130 Plan territies Wid. North Nick Jouwar, Back VTP 2005 (604) 085-0681 Tetex 04-252567

(

Geochemical Lab Report

	86F087: VG1)7	5.5 × COH F		·		<u></u>		9466 1	
	SAMPLE NUMBER	ELEMENT UNITS	09 201		 SAMP <u>le</u> Humber		0 264		
	S1 1M L49W 0+00 S1.1M L49W 0+25 S1.1M L49W 0+50 S1.1M L49W 0+75 S1.1M L49W 1+00	in In In	154 192 97 84 106		 SL IH LSO SL IH LSO SL IH LSO SL IH LSO SL IH LSO SL IH LSO	W 2+25# W 2+50W W 2+75#	173 133 204 194 133		
\$	S1 [M L49W 1+29 S1 IN L49W 1+50 S1 IN L49W 1+50 S1 IN L49W 2+00 S1 IN L49W 2+00 S1 IN L49W 2+25	DN 5X DN	95 109 99 113 131		 S1 IN LS0 S1 IN LS0 S1 IN LS0 S1 IN LS0 S1 IN LS0 S1 IN LS0	W 3+50N W 3+75N W 4+25N	- 115 117 100 172 162		
	S1 IM L49W 2+50 S1 IM L49W 2+70 S1 IM L49W 3+00 S1 IM L49W 3+20 S1 IM L49W 3+50	5N DN 5N	139 107 120 124 150		S1 IN L50 S1 IN L50 S1 IN L50 S1 IN L50 S1 IN L50 S1 IN L50	W 5+00N W 5+25N W 5+50N	177 201 167 217 151		
	S1 IM L49H 3+7 S1 IM L49+50W S1 IM L49+50W S1 IM L49+50W S1 IM L49+50W	0+00n 0+25n 0+50n	137 115 132 115 145		 S1 IN LS0 S1 IN LS0	W 5+00N D+50W 0+00N D+50W 0+25N D+50W 0+50N D+50W 0+75N	63 145 113 226 208		
	S1 IM L49+50W S1 IM L49+50W S1 IM L49+50W S1 IM L49+50W S1 IM L49+50W	1+25n 1+50n 1+75n	121 127 128 320 162		S1 IN L50 S1 IN L50 S1 IN L50	D+50H 1+00H D+50H 1+25H D+50W 1+50N D+50W 1+75N D+50W 2+00N	130 150 197 212 128		
	S1 IN L49+50W S1 IN L49+50W S1 IN L49+50W S1 IN L49+50W S1 IN L49+50W	2+50N 2+75N 3+00N	150 157 168 106 124		S1 IN LS S1 IN LS S1 IN LS S1 IN LS	D+50W 2+25N D+50W 2+50N D+50W 2+75N D+50W 3+00N D+50W 3+25N	128 104 125 79 152		
	S1 IN L49+50W S1 IN L49+50W S1 IN L50W 0+0 S1 IN L50W 0+2 S1 IN L50W 0+5	3+75N Ion 25N	170 122 142 243 194		S1 IN L5 S1 IN L5 S1 IN L5	0+50W 3+50N 0+50W 3+75N 0+50W 4+25N 0+50W 4+75N 0+50W 4+75N	142 161 160 81 132		
-	SI IM LSOW 0+1 SI IW LSOW 1+1 SI IM LSOW 1+1 SI IM LSOW 1+1 SI IM LSOW 1+1 SI IM LSOW 1+1)on 25n 50n	112 176 138 136 168		S1 IN LS S1 IN LS S1 IN LS	0+50% 5+00N 0+50% 5+25N 0+50% 5+50N 0+50% 5+75% 0+50% 6+00N	242 257 269 145 77		

.

Bondar Clegg & Company Ltd. 150 Wepherron Ave. - Chillian Grant Mill - Chillian Grant B.C. - VTP 285

_

Geochemical Lab Report

·

•

504) 985-5 681 Falex ()4-3515-11	1	BONDAR-CLEEG	
REPORT: VS COLLA DIN CON	94 372 S	<u>0475 9210550 07-00</u> 99034 0 - 0005 81054	26 <u>0</u> 2402 - <u>2</u>
SAMPLE CLEMENT NUMBER UNITS		SAMPLE ELIMENT (M NUNBER UNITO 2014	
S1 (# LS1W 0+00N S1 (# LS1W 0+25N S1 (# LS1W 0+50N 31 (# LS1W 0+75N S1 (# L51W 1+00N	231 157 117 118 223	SL IM LS1+50% 4+25% 107 SL IM LS1+50% 4+25% 102 SL IM LS1+50% 4+25% 102 SL IM LS1+50% 4+25% 129 SL IM LS1+50% 5-00% 137 SL IM LS1+50% 5+25% 162	· · · · · · · · · · · · · · · · · · ·
S1 IN LS1W 1+25N S1 IN L51W 1+50N S1 IN L51W 1+75N S1 IN L51W 2+00N S1 IN L51W 2+25N	179 139 115 134 173	S1 IN L51+50W 5+50H 178 S1 IM L51+50W 5+75H 108 S1 IM L51+50W 5+75H 394 S1 IM L52W 0+00H 211 S1 IM L52W 0+00H 211 S1 IM L52W 0+25H 183	
S1 IM LS1W 2+50N S1 IM L51W 2+75N S1 IM L51W 3+00N S1 IM L51W 3+25N S1 IM L51W 3+25N	93 122 131 135 107	S1 Im LS2W 9+50N 178 S1 IM LS2W 9+75N 192 S1 IM LS2W 0+75N 220 S1 IM L52W 1+00N 220 S1 IM L52W 1+25N 156 S1 IM L52W 1+50N 222	
31 IN LS1W 3+75N S1 IN L51W 4+25N S1 IN L51W 4+50N S1 IN L51W 4+75N S1 IN L51W 5+00N	126 107 183 213 171	S1 IH L524 1+75N 142 S1 IH L524 2+00N 192 S1 IH L524 2+25H 100 S1 IH L524 2+50N 138 S1 IH L524 2+75H 103	
SI IH L51W S+25H SI IH L51W S+56N SI IH L51W S+75H SI IH L51W S+00H SI IH L51W S+00N SI IM L51+50W 0+00N	191 635 100 102 295	S1 IH L52W 3+00H 129 S1 IM L52W 3+25H 107 S1 IM L52W 3+50H 111 S1 IM L52W 3+75H 91 S1 IM L52W 4+25H 101	· · · · · · · · · · · · · · · · · · ·
S1 IN L51+50W 0+25N S1 IN L51+50W 0+50N S1 IN L51+50W 0+75N S1 IN L51+50W 1+00N S1 IN L51+50W 1+25N	192 83 135 139 138	S1 IN L52W 4+50N 87 S1 IM L52W 4+75N 119 S1 IM L52W 5+00N 135 S1 IM L52W 5+25N 93 S1 IM L52W 5+50N 126	
S1 IN L51+50N 1+50N S1 IN L51+50N 1+75N S1 IN L51+50N 2+00N S1 IN L51+50W 2+25N S1 IN L51+50W 2+50N	149 162 213 70 94	\$1 IM L52W 5+75N129\$1 IM L52W 5+00N272\$1 IM L52H 5+50W 0+00N158\$1 IM L52+50W 0+25H136\$1 IM L52+50W 0+50N167	
S1 IN L51+50W 2+75N S1 IN L51+50W 3+00N S1 IN L51+50W 3+25N S1 IM L51+50W 3+50N S1 IM L51+50W 3+75N	243 113 122 149 90	S1 IM L52+50W 0+75N 161 S1 IM L52+50W 1+00N 137 S1 IM L52+50W 1+25N 217 S1 IM L52+50W 1+50N 274	

Bondar--Elegg & Company Ltd. 170 Temberton Ave. 1 och Santonivar, 3.6 . NTP 183

(604) 985-9681 Telex 04-35255

Geochemical Lab Report

	T. 002 (0.20) - 20	40-072		<u>- 6477 22.9170</u> - 22023071 4343		0.407 0	
2000X	T: V91-09-1919 - CC			i a tidadi i Ades 		PAGE 3	
SAMPL		Cu	SA 1913	<u></u>	Cu Pow		
NUMBE	2 UR175	2PH	40%669	#C0	203		
\$1 F	1.52+50W 2+0CH	149	\$1 IN 1.53	+50% 2+25%	138		•
	1 1.52+50¥ 2+25#	114		+50# 2+50#	167		
	1 1 .52+50 0 2+500	247		+50% 2+75N	157		
	1 1.52+50W 2+75#	69		+50% 3+00%	152		
S1 II	1 L52+50W 3+00N	52	S1 IM 153	+50% 3+25%	347	<u></u>	
S1 I	1 L52+50W 3+25N	113	S1 TH L53	+50% 3+50%	103		
S1 [4 L52+50W 3+50N	293		1+50W 3+75H	85		
	H L52+50W 3+75H	111		1+504 4+254	142		
	H L52+50W 4+25H	76		3+50% 4+50N	163		
S1 I	H L52+50W 4+50N	89	31 IN L5:	3+50¥ 4+75N	139		
\$1 I	N 152+50W 4+75N	150	S1 1# 15	3+504 5+00#	155		
	H 152-500 5-000	134		3+50% 5+25#	62		
	N 152+504 5+25N	126		3+50% 5+50%	39		
	H L52+504 5+50N	111		3+504 5+751	103		
51 1	H 152+50W 5+75N	92	31 18 03	3+50% 5+00N	83		
<u> </u>	H L52+50W 5+00N	148					
	M L53W 1+00N	204					
	N 1.53W 1+25H	358					
	IM 153W 1+50N	147					
	LH L53W 1+75N	127					
	IN L53W 2+00N	340					
	IN L53W 2+25N	101					
1	IM L53W 2+50N	83 126					
1	IN L53W 2+75N IN L53W 3+00N	113					
	IH L53W 3+25N IN L53W 3+50N	137 220					
	IN L53W 3+75N	453					
	IN L53W 4+25N	126					
	IN L53W 4+50N	120					
	IN LS3W 4+75N	128					
	IN L53W 5+00N	99					
	IN 153W 5+25N	70					
S1	IN L53W 5+50N	95					
S1	IN L53W 5+75N	123	•				
S1	IN 1534 5+00N	96					
	IN 153+50W 1+00N	206					
S1	IN L53+50W 1+50N	191					
	IN 153+50W 1+75N	168 .	,				
S1	IN 153+50W 2+00N	166					

APPENDIX II

٢

ANALYTICAL PROCEDURES

GEOCHEMICAL ANALYSIS FOR GOLD

Fire Assay Preconcentration finished by Atomic Absorption Spectroscopy

The fire assay preconcentration consists of a standard litharge fusion followed by cupellation of the lead button to obtain the precious metals concentrated into a tiny (about 3 mg) silver prill. Bondar-Clegg has adopted this technique as our primary method for the preconcentration of gold and other precious metals because of its proven track record and sensitivity. The silver prill is dissolved in aqua regia and the diluted solution is then aspirated into the AAS flame for measurement of the gold concentration.

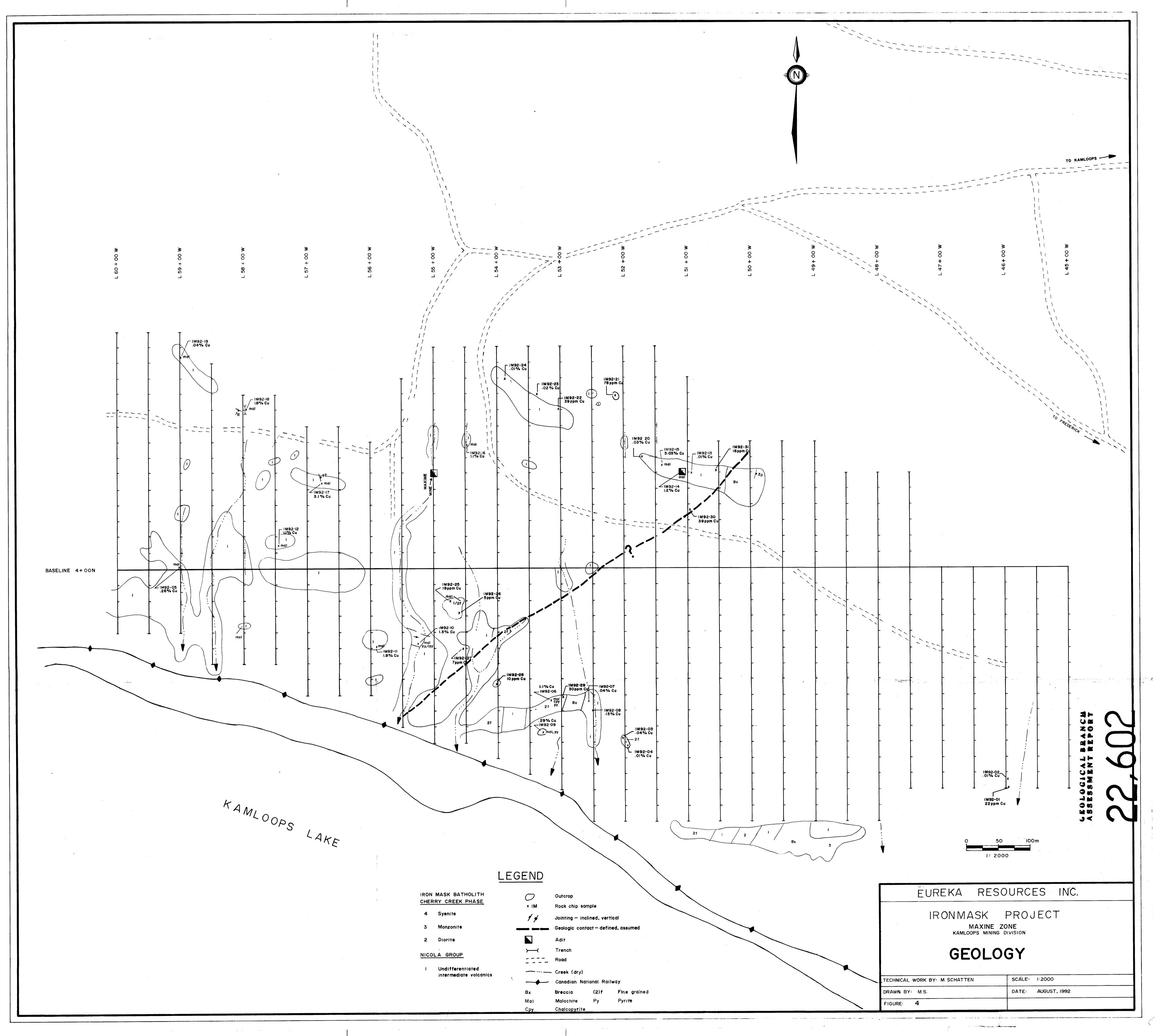
GEOCHEMICAL ANALYSIS FOR Cu

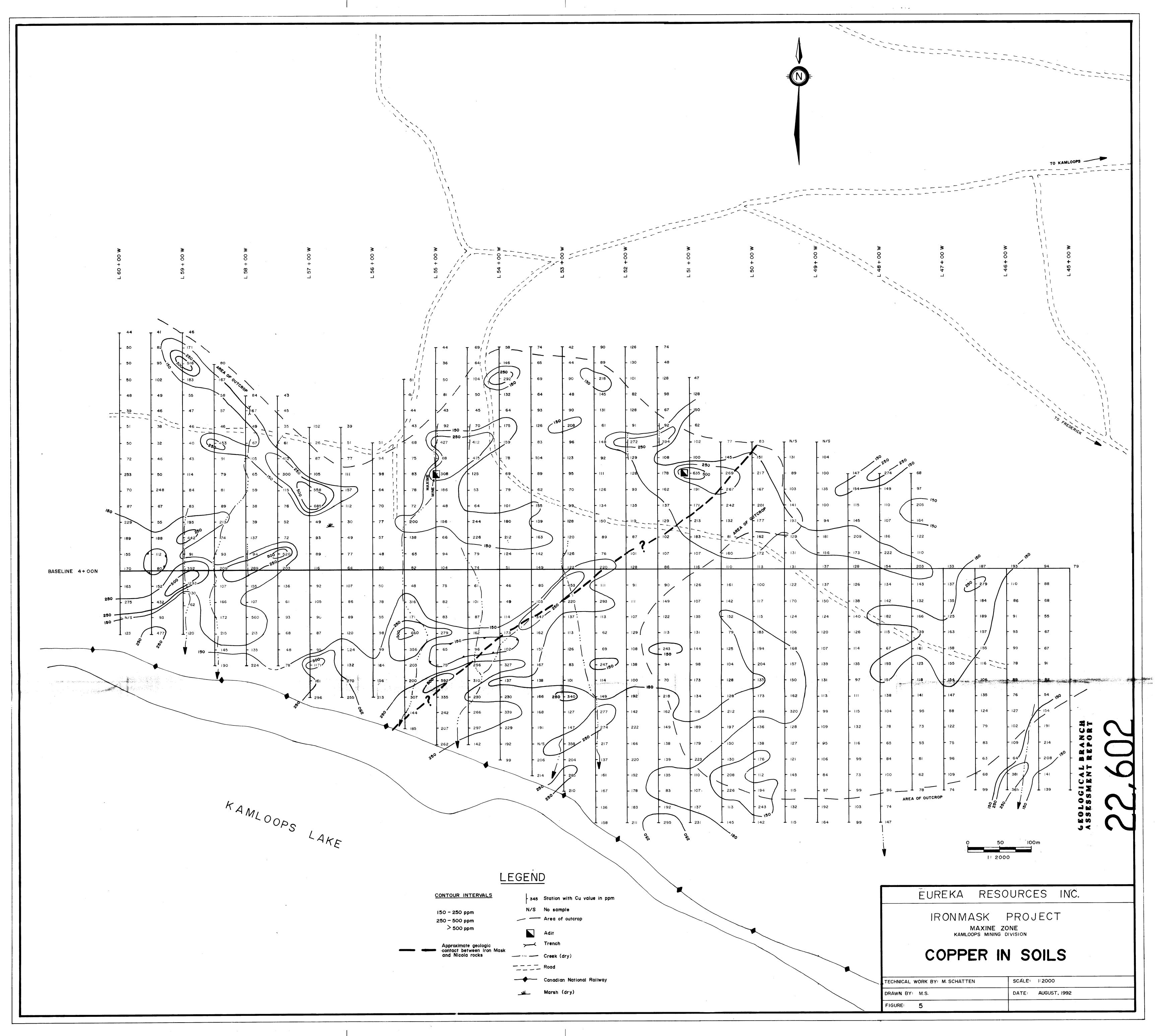
Copper is analyzed routinely by Atomic Absorption Spectroscopy (AAS) following the dissolution of the sample with aqua regla. AAS is an instrumental method of analysis in which a sample that has been put into an aqueous solution is aspirated into the flame of the instrument for measurement of the concentration of the element(s) of interest. A light source emits light at the wave length of the element to be measured in a beam that passes through the flame. The atoms of the element in the flame absorb the light in proportion to the concentration of the element in the sample solution. This absorption is compared to those measured when a series of standard solutions has been aspirated in order to estimate the concentration of the element in the sample solution

 Jan Jim Chang & Company Ltd. OD Pembarton Ave. Neeth Vancouver, B& V7P 2RS
 W-9 Joley (6) 35267

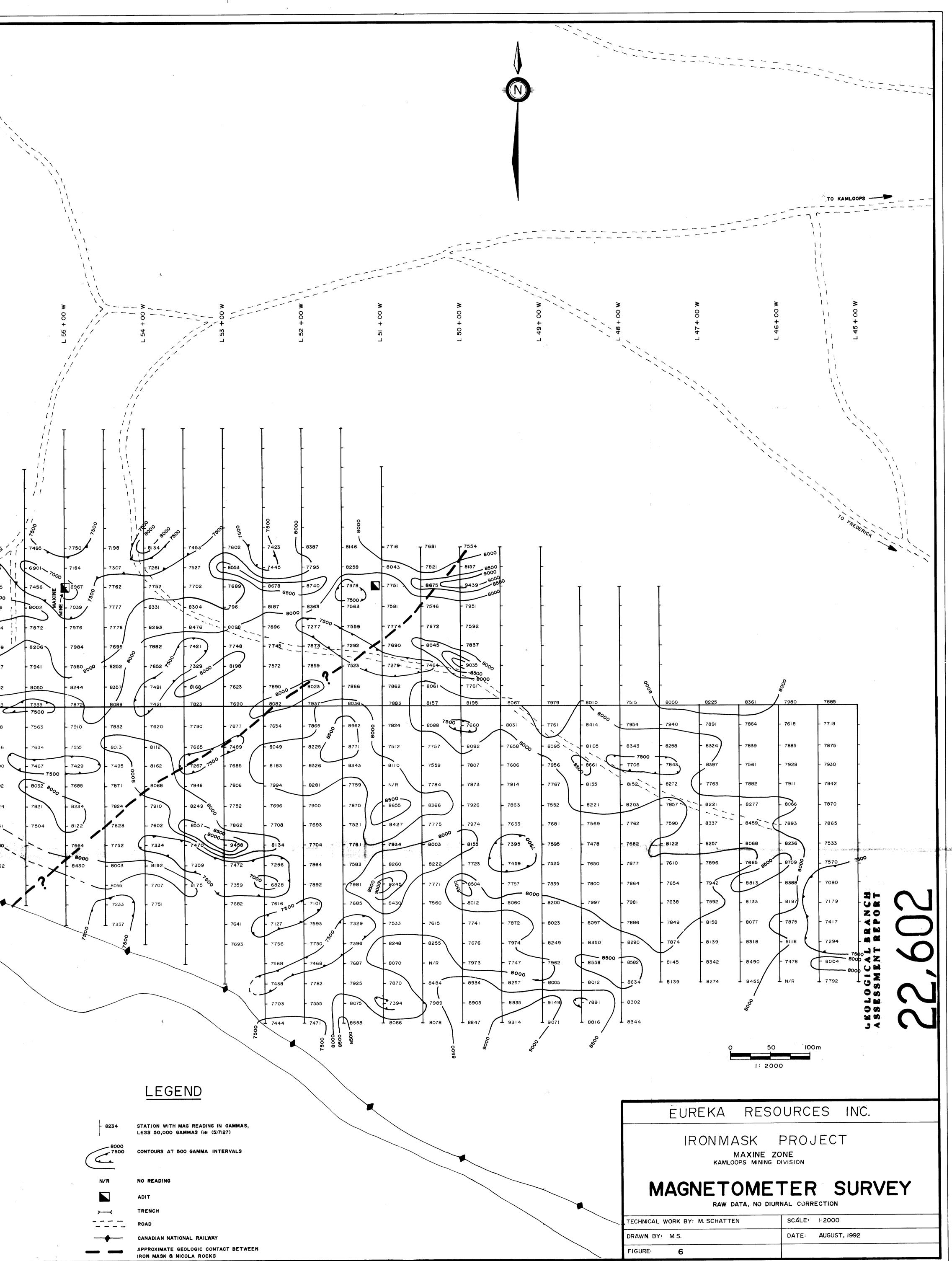
PROCEDURE FOR ASSAY AU ANALYSIS

FIRE ASSAY PROCEDURE:


A propared sample of one assay con (29.166 grams) is mixed with a flux which is composed mainly of load oxide. The proportions of the flux components (the litharge, soda, silica, borax glass, and flour) are adjusted depending upon the nature of the sample. Silver is added to help collect the gold. The samples are fused at 1950 F until a clear melt is obtained. The 30-40 gram lead button that is produced contains the precious metals. It is then separated from the slag. Heating in the cupellation furnace separates the lead from the noble metals. The precious metal beads that are produced are transferred to test tubes and dissolved with aquartegia. This solution is analyzed using Atomic Absorption by comparing the absorbance of these solutions with that of standard solutions. In the case of high grade samples, greater than 0.200 OFT, the precious metal bead is parted in dilute HNO3 acid to dissolve the silver and the remaining gold is weighed.


COMMENTS :

As part of our routine quality control we run a duplicate analysis for 2 out of each batch of 24 as well as a standard. These total about 122 of the samples. Also, all samples which are over 0.30 OPT on the original fusion are run again to verify the results. If a sample gives erratic results, such as 0.10, 0.020, 0.30, we will indicate this on the report. We suggest that a new split should be taken from the reject for preparation and analysis by our metallics sieve procedure. Certified standards and in house pulp standards as well as synthetic solution standards are run with each report or batch of samples.


COPPER ASSAY BY ATOMIC ABSORPTION

A 0.5 gram sample is weighed into a basker and digested with HNO3 and HCL on a hotplate. The sample is taken down to dryness and then HCl is added with unter and the sample is boiled into solution. The solution is transferred to an appropriate size flask. Then sample is tun on an Atomic Absorption unit along with pulp and synthetic standards. Any sample over 152 is term by

>₅₀₀ , - 669 - 7976 - **8**33! **T** 7273 - 8057 - 7308 E 7477--L 7653____ - 8204 7000 6977 -T 7395 - 7243 - 7423 - 8045 - 8460 - 7429 - 8218 00 . 7767 B055 - 7294 - 7674 **9**5 · 7458 - 8069 - 7709 - 7470 - 7802 8000 ----• 7537 - 8027 - 8121 <u>7988 7988 7</u> - 8247 BASELINE 4+00N \$00 \$00 \$00 \$00° 100 ~300 ~000 **9**0 **92** L 7962 KAMLOOPS LAKE

