

REPORT OF DIAMOND DRILLING ON MURDER CREEK PROJECT, RAIN PROPERTY
 Revelstoke Mining Division
 NTS 82M/8E
 $51^{\circ} 26^{\prime} \mathrm{N}, 118^{\circ} 07^{\prime} \mathrm{W}$

For
Bethlehem Resources Corp. Suite 700, 815 W. Hastings St., Vancouver, B.C.

George Cavey, P.Geo. Wesley Raven, F.G.A.C. OreQuest Consultants Ltd.

October 22, 1992

SUMMARY

The Murder Creek Project on the Rain property represents an exploration target for stratabound copper-zinc massive sulphide deposits. The property is located approximately 60 kilometres north of Revelstoke, B.C. and consists of 15 claims totalling 178 units. The property was staked in 1989-90 and is owned by Bethlehem Resources Corp. (100\%).

The 1992 exploration program consisted of a limited diamond drill program initially consisting of one hole designed to define the stratigraphy of the area and test strong copper and zinc soil geochemical anomalies coincident with 5 ground VLF-EM geophysical anomalies. This first program commenced August 5, 1992 and was completed on August 15, 1992. Encouraging results from the first hole led to an expanded program starting September 14, 1992 and ending September 25, 1992. The entire program consisted of 5 holes totalling $904.47 \mathrm{~m}(2967$ feet) over a strike length of 775 m .

The drilling has confirmed a stratigraphic package of rocks very similar to that seen at the Goldstream Mine. No economic mineralization was encountered in any of the drill holes but multiple garnet/semi-massive sulphide zones were encountered with up to 30% pyrrhotite and traces of chalcopyrite and sphalerite over 0.5 m . The presence of the garnet zones is very significant as a well defined garnet zone is located structurally above the ore zone at the Goldstream Mine and is believed to be unique to the mine area itself. Thus, the garnet zones seen on the Rain Property may
be key indicators for another massive sulphide deposit similar to that at the Goldstream Mine.

Further work is warranted on the property. A borehole time domain-EM geophysical survey is recommended to fill-in information between the existing drill holes and obtain better resolution on any deep seated mineralization not detected from surficial surveys. If the results of the borehole surveys are successful in delineating and tracing the garnetiferous/massive sulphide horizons then a surface program over the grid area utilizing the same type of survey may be warranted, though given the available information, it is possible to continue further drilling with reasonable confidence.

Additional drilling is recommended to continue to define the garnetiferous mineralized horizons to the south and to attempt to locate significant concentrations of chalcopyrite and sphalerite. A fence of holes at a 200 m hole spacing should be able to adequately trace the mineralization. In-fill holes will be required to further define the stratigraphy.

TABLE OF CONTENTS

Page
Summary
Introduction 1
Location and Access 2
Topography, Physiography and Vegetation 3
Claim Status 4
Property History 5
Regional Geology 8
Property Geology 10
Stratigraphy 11
Diamond Drilling 13
RN-92-1 and 2 15
RN-92-3 17
RN-92-4 18
RN-92-5 19
Discussion of Results 20
Conclusions and Recommendations 24
Cost Estimate 27
Statement of Costs
Certificate of QualificationsGeorge Cavey, P.Geo.Wesley Raven, F.G.A.C.
Bibliography

Figure	Location Map
Figure 2	Claim Map
Figure 3	Regional Tectonic Map
Figure 4	Diamond Drill Plan View
Figure 5	DDH RN-92-1 and 2 - Geology
Figure 5a	DDH RN-92-1 and 2-
	$\mathrm{Cu}-\mathrm{Mn}$ Geochemistry
Figure 6	DDH RN-92-3 - Geology
Figure 6a	DDH RN-92-3 -
	Cu Mn Geochemistry
Figure 7	DDH RN-92-4 - Geology
Figure 8	DDH RN-92-5 - Geology
Figure 8a	DDH RN-92-5 -
	Cu Mn Geochemistry
Figure 9	Compilation Map

LIST OF TABLES

Table 1 Claim Information Page 4

LIST OF APPENDICES

Appendix I Drill Logs
Appendix II Analytical Procedures
Appendix III Analytical Results
Appendix IV Thin Section Report

Following Summary
Following Page 4
Following Page 8
Following Page 13
Following Page 16
Following Page 16
Following Page 17
Following Page 17
Following Page 18
Following Page 19
Following Page 19
In Pocket

INTRODUCTION

The Murder Creek Project, within the Rain Property, represents a target for stratabound copper-zinc massive sulphide deposits similar to the Goldstream Mine. The property, held 100% by Bethlehem Resources Corp. is located approximately 60 kilometres north of Revelstoke, British Columbia and is underlain by rocks of the Proterozoic Horsethief Creek Group, Proterozoic to Lower Paleozoic Hamill Group, Paleozoic Badshot Formation and Lardeau Group. The Lardeau and Badshot rocks are known to host several massive sulphide deposits in the region.

This report describes and presents results from a two phase diamond drilling program completed between August 5 and September 25, 1992. The first phase of drilling consisted of one hole, designed to test strong copper and zinc soil geochemical anomalies coincident with five ground VLF-EM geophysical conductors. The hole helped to further define the stratigraphy in an area of limited surface outcrop. This first hole was successful in outlining stratigraphy very similar to that seen at the Goldstream Mine, in particular, several garnetiferous, semi-massive sulphide zones. This first phase of drilling commenced August 5, 1992 and was completed on August 15, 1992.

The success obtained from this first program lead to an expanded drilling program which commenced September 14, 1992 and was completed on September 25, 1992. The second phase of drilling

Abstract

tested the garnet/semi-massive sulphide zones along strike both north and south of the first hole and also up dip from the initial intersection.

LOCATION AND ACCESS

The Rain property is located approximately 80 road kilometres north of Revelstoke within the northern Selkirk Mountains of southeastern B.C. (Figure 1). The property straddles the Downie Creek valley from approximately 1 kilometre north of the Sorcerer Creek confluence, southward for approximately 15 kilometres, and a portion of the property area covers the headwaters of Standard Creek. The property is centred at $51^{\circ} 26^{\prime} \mathrm{N}$ latitude and $118^{\circ} 07^{\prime} \mathrm{W}$ longitude, NTS map sheet 82M/8E.

Access to the lower elevations of the property areas is gained by travelling 67 kilometres north from Revelstoke on Route 23 (Nakusp-Mica Creek Highway) then eastward along the Downie Creek logging road. The property lies between kilometre 15 and 29 along the Downie Creek logging road from which several branch roads to logged areas provide access to the lower elevations. The alpine portions of the property must be accessed by helicopter. The property is located 56 road km south of the Goldstream Mine and mill complex.

TOPOGRAPHY, VEGETATION AND PHYSIOGRAPHY
The Murder Creek Project area is centred along Downie Creek, a large U-shaped drainage in the northern Selkirk Mountains. Elevations over the whole property range from 670 m ASL on the valley floor to 2530 m ASL. Valley walls are steep with ridges and peaks being very sharp. Small glaciers cover portions of the southwestern portion of the claim group.

Vegetation consists of mature stands of cedar, hemlock and spruce with extensive ground cover consisting of dense underbrush, slide alder and devils club. Active logging continues in the Downie Creek valley and along the heavily wooded slopes.

Outcrop exposure is very limited in the lower valley being restricted to road cuts, creek exposure and scattered cliffs. Cliffs are more prevalent along the east side of the Downie Creek valley. Exposure in the alpine areas ranges from 80 to 100 per cent. Exposure on the Murder Creek grid was limited to Murder Creek, Cooler Creek and scattered outcrops of marble at the western end of northern lines.

Thick glacial till is evident from road cuts over portions of the lower valley areas. In the area of Murder Creek the soil profile consisted of a thin humus layer underlain by a 5-20 cm thick intermixed glacial till, clay layer, followed by a thin grey leached layer. Good B horizon red brown soil was located
underneath the leached layer. Soil pits dug on some of the upslope portions of Murder Creek grid revealed an overburden depth of 1 to 2 m . Overburden depth increased on the eastern portions of the grid as evidenced from road cuts, where the topography lessens and benches out.

The Downie Creek area lies within the interior rain belt with precipitation averaging 1.15 m annually. Temperatures range between $-30^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$.

CLAIM STATUS

The Rain property consists of 15 mineral claims totalling 178 units (Figure 2) registered within the Revelstoke Mining Division, B.C. Pertinent claim information is listed in Table 1 and does not include assessment credits earned during the current work program.

TABLE 1: CLAIM INFORMATION

CLATM	TENURE \#	UNITS	AREA(ha)	LOCATION DATE	EXPIRY DATE
RAIN 1	248282	15	375	ОСт 18/89	OCT 18/93
RAIN 2	248283	20	500	ОСТ 18/89	OCT 18/93
RAIN 3	248284	9	225	ОСт 18/89	OCT 18/93
RAIN 4	248285	12	300	OCT 18/89	OCT 18/93
DROP 1	248425	18	450	SEP 24/90	SEP 24/93
DROP 2	248426	15	375	SEP 24/90	SEP 24/93
DROP 6	248430	6	150	SEP 25/90	SEP 25/93
DROP 7	248431	16	400	SEP 24/90	SEP 24/93
DROP 8	248432	20	500	SEP 25/90	SEP 25/93
DROP 9	248433	10	250	SEP 25/90	SEP 25/93
DROP 10	248434	15	375	SEP 25/90	SEP 25/93
DEER 1	248451	8	200	DEC 06/90	DEC 06/93
DEER 2	248452	6	150	DEC 05/90	DEC 05/93
DEER 3	248453	4	100	DEC 06/90	DEC 06/93
MIT	302917	4	100	AUG 08/91	AUG 09/94
		178	4450		

PROPERTY HISTORY

Regionally, the area has a long history of mining exploration dating back to the 1860's. Interest in hardrock mining intensified with the discovery of the Montgomery copper-zinc-silver massive sulphide showing in 1896, approximately 12 kilometres to the northwest of the Rain property. Work on the Montgomery property has continued sporadically with the most recent work consisting of a short diamond drill program completed in September 1990 by joint venture partners Goldnev Resources Inc. and Bethlehem Resources Corp.

The Standard property located approximately 8 kilometres southwest of the Rain 10 claim was also discovered in 1896. This copper-zinc-silver massive sulphide occurrence has also been worked intermittently, the last serious work completed in 1976 by Noranda Exploration Co.

The area currently has one producing mine, the Goldstream copper-zinc massive sulphide deposit which lies approximately 20 kilometres northwest of the Rain property. Goldstream was discovered in 1974 by two prospectors, Bried and King, who optioned the property to Noranda Exploration Co. Ltd. By late 1975, a deposit containing 3.175 million tonnes grading 4.49% copper and 3.14\% zinc had been outlined. The mine operated for seven months in 1983 before closing due to prevailing metal prices. Joint ventures partners, Bethlehem Resources Corp. and Goldnev Resources

Inc., purchased the mine and mill complex in 1989. The Goldstream Mine is currently producing at a rate of approximately 1200 tonnes per day, at an average grade of 4.08% copper and 2.82% zinc. Current mineable reserves are 1.381 million tonnes grading 4.41% copper (Stockwatch, October 21, 1992) and 3.06\% zinc (Northern Miner, July 22, 1991) . Diamond drilling in 1991 on the down plunge extension of the ore body has increased the possible reserves by approximately 30% with the deposit remaining open at depth (Campbell, personal comm., 1991). The mine started up June 1, 1991. Production for the six months ending July 31, 1992 has been some 215,295 tonnes of ore being milled, 33,535 tonnes of concentrate shipped to Nippon Mining in Japan resulting in the production of $18,371,578$ pounds of copper. The zinc circuit started in April of 1992 with production to July 31, 1992 of 1,580,426 pounds of zinc at Cominco Ltd.'s smelter in Trail, B.C.

Approximately 20 kilometres to the south of the Rain property Cheni Gold Mines Inc. is currently doing a feasibility study on the J and L polymetallic massive sulphide property. Current reserves in the Main Zone stand at 1.7 million tonnes grading $7.2 \mathrm{~g} / \mathrm{ton}$ gold, $2.0 \mathrm{~g} /$ ton silver, 2.5% lead and $5.2 \% \mathrm{zinc}$, while the Yellowjacket zone hosts possible reserves of $1,000,000$ tonnes grading 7.09% zinc, 2.47% lead, $56 \mathrm{~g} /$ tonne silver (Canadian Mines Handbook, 1992-93). The deposits are hosted in "Hamill Group metasedimentary and metavolcanic rocks interlayered or in fault contact with Early Cambrian Mohican and Badshot formations, and the

Lower and Upper Index Formations of the Cambrian and younger Lardeau Group" (Meyers, R.E. et al, 1989).

Portions of the Rain property were previously held by Noranda Exploration Co. Ltd. in the late 1970's in order to evaluate a copper-tungsten showing immediately north of the Sorcerer CreekDownie Creek confluence. Geological mapping, B horizon geochemistry and ground magnetometer and VLF-EM geophysics were completed over a control grid. The Sorcerer Creek showing was interpreted to be skarn mineralization related to a Cretaceous aged intrusive to the north. Follow up work was recommended on a zinc-lead-copper-silver geochemical anomaly detected on the southern portion of the grid. No further work was recorded.

In 1989, Bethlehem Resources Corp staked the Rain property based on a re-evaluation of the Goldstream Mine stratigraphy which suggested the Rain property may be underlain by similar host rocks. Geological work by Bethlehem in 1990 (Wild, 1990) confirmed portions of the property to be underlain by the Palaeozoic Lardeau Group host to several other copper-lead-zinc massive sulphide deposits in the region, including Goldstream. Further work was recommended for the Murder Creek area.

In 1991, a detailed ground exploration program was conducted on the Murder Creek area of the Rain Property by OreQuest Consultants Ltd. This program consisted of the establishment of a
flagged grid utilized for control of soil geochemistry (B-horizon) sampling, ground magnetometer/VLF-EM geophysics, geological mapping and prospecting. This program outlined 2 anomalous areas both of which occur along strike from the banded pyrite mineralization discovered by Wild, 1990. This first area occurred in the northern part of the Murder Creek grid with the second area 1 km to the south along Murder Creek. This first area was the subject of the 1992 drilling programs.

REGIONAL GEOLOGY

The regional geology of the Goldstream River-Downie Creek area has been described in detail by several authors: Gunning (1928) and Wheeler (1965), Gibson (1978-86), Høy et al (1977, 1984-85) and Read and Brown (1981-89). The regional geology consists of metasedimentary and lesser amounts of metavolcanic rocks of early paleozoic age deposited along the western margin of Cratonic North America. These rocks lie within the Selkirk Allochthon, a composite terrain comprised of at least four major fault bounded complexly deformed tectonic slices. The Rain property lies within the Goldstream slice which also hosts the Goldstream copper-zinc deposit, the Montgomery and Standard copper-zinc, lead-zinc massive sulphide occurrences (Figure 3).

Rocks comprising the Selkirk Allochthon were transported from west to east over the core and mantling gneisses of the Monashee Complex during Middle Mesozoic to Eocene times an have also been

intruded by granite stocks of probable Cretaceous age (Høy et al, 1985). The Monashee decollement marks the contact between the Monashee Complex and the Shuswap Metamorphic Complex to the north and west. To the east, the east dipping Columbia River Fault separates the Selkirk Allochthon from the underlying Monashee Complex.

Rocks within the Selkirk Allochthon have under gone at least three phases of deformation. Phase 1 is believed to have inverted much of the Goldstream slice possibly as the underlimb of a major recumbent nappe. Large tight isoclinal to recumbent folds with strong axial planar foliation and northwest trending fold axes define Phase 2 folding. A third phase of deformation is evidenced by kink folds, crenulation cleavages and broad, upright, open folds.

Massive sulphide occurrences in the region are hosted in chloritic schists, sericite schist and dark banded graphitic calcareous phyllite associated with basic volcanism. Stratigraphy that hosts the Standard deposit has been correlated with the Lower Paleozoic Index formation while lead isotope data from the Goldstream Mine gives a Devonian age.

PROPERTY GEOLOGY
The Rain property is underlain by rocks of the Proterozoic Horsethief Creek Group, Proterozoic to Lower Paleozoic Hamill Group and Paleozoic Badshot Formation and Lardeau Group.

Structurally these units trend northwest with moderate east to northeast dips. Second phase isoclinal folding and a dominant axial planar foliation are the dominant structural elements. Fold axes plunge gently to the southeast and northeast end of Keystone Peak. East of Downie Creek, plunges are moderate to the northeast, steepening northward toward Downie Peak. Broad, open third phase folds warp the foliation and original layering kink folds and crenulation cleavage are the dominant third phase structures showing near vertical axial planar cleavage and gentle east-west plunges (Wild, 1990).

Chloritic and calcareous metasediments dominate from Downie Creek westward to Standard Creek. These rocks tend to become more chloritic to the south and west, eventually becoming metavolcanic greenstones near Standard Peak. To the north, graphitic dark banded phyllites are more common. These metasediments are overlain to the east by older Badshot Marble and Hamill quartzites indicating the entire section to be overturned.

The Murder Creek project area (Figure 9) is underlain by graphitic dark banded phyllite, sericite to quartz sericite schist,
siliceous siltstones and marble. Outcrop is restricted to creek valleys and road cuts, making geological contacts somewhat speculative. The dark banded phyllite exposed in Murder Creek and just north of Cooler Creek consists of siliceous chloritic to quartzitic phyllite with calcareous and graphitic interbeds. This unit is very similar, if not identical, to the enclosing strata of the Goldstream ore body. The unit trends north-south to southsouthwest with dips ranging from 40° to 65° east. The marble contact in the west portion of the grid not noted in outcrop, is based on geophysical interpretation from the field magnetics, the presence of 2 small marble outcrops on the west end of Line $2+00 \mathrm{~S}$, and the strike extension of the contact in Murder Creek at the Murder Creek showing (Wild, 1990).

The dark banded phyllite is overlain by sericite to quartz sericitic siliceous schists and siliceous siltstones, mapped along the lower road. Interbedded marble units were noted within the dark banded phyllite, and the sericitic schists.

STRATIGRAPHY

Mapping by Høy (1979) in the Goldstream area has outlined five major lithologic packages. The stratigraphically lowest consists of dominantly pelitic and calcareous schists and marble which have been tentatively correlated with the late Proterozoic Horsethief Creek Group. This package is overlain by a succession of Lower Paleozoic rocks that consists of four main divisions: 1) lower
quartzite-schist division; 2) calc-silicate gneiss division; 3) metavolcanic-phyllite division, and; 4) carbonate-phyllite division. This is considered to be the original stratigraphic succession, the Goldstream Mine is hosted within the metavolcanicphyllite division. The succession is believed to be overturned in the area of the Goldstream deposit. It is unclear as to whether the stratigraphy is upright or overturned in the Murder Creek area though mapping south of the headwaters of Standard Creek indicates the stratigraphy is inverted.

The general stratigraphic sequence at the Goldstream Mine (after Høy, Gibson and Berg, 1984) consists of the following units: unit 1 - siliceous chlorite-biotite-phyllite, phyllitic quartzite, calcareous and graphitic phyllite; unit 2 - dark carbonaceous and calcareous phyllite (dark banded phyllite) unit 3 - garnet zone; unit 4 - siliceous chlorite and sericite phyllite which encloses the massive sulphide layer; unit 5 - massive sulphide layer; unit 6 - grey banded limestone, and; unit 7 - a siliceous sericite-biotite- chlorite phyllite with minor quartzite and limestone. Greenstone (andesite) was encountered in some of the drill holes west of the deposit and likely lies structurally below the ore zone. It is referred to as unit 8 in this report. The so called garnet zone appears to be an integral part of the ore hosting sequence at the Goldstream Mine and has been interpreted to a be metamorphosed, manganiferous iron rich chert, probably an exhalite unit. Given that this stratigraphic sequence above is considered
to be overturned, the garnet zone may represent a feeder system for the mineralization or an earlier silica-sulphide rich exhalative horizon.

Units intersected in drill core at the Rain property and correlated with those seen at the Goldstream Mine include the dark banded phyllite - unit 2, garnet zone - unit 3, and likely unit 7, the siliceous sericite-biotite-chlorite phyllite. The thick succession limestone seen at the top of the holes is believed to belong to the carbonate-phyllite division. On the drill sections it appears that the stratigraphy is upright unless this limestone is in the core of an anticline, similar to that suggested at the headwaters of Standard Creek, with the drilling intersecting only one limb of a larger fold.

DIAMOND DRILLING

The drilling program was conducted in two phases. The first phase consisted of one hole ($\mathrm{RN}-1$), 303.97 m (997 ft) in length, the second phase consisted of 4 holes ($\mathrm{RN}-2,3,4$, and 5) totalling 600.5 m (1970 ft). In summary, five holes totalling 904.47 m (2967 ft) were drilled (Figure 4). The drilling was performed by Falcon Drilling Ltd. of Prince George, B.C. utilizing a "Falcon 1000 " drill, core size was BDBGM. Acid tests, for dip variance. were performed on holes $\mathrm{RN}-2,3$ and 5 with the holes remaining relatively stable. All holes were collared at an azimuth of 255° and a dip of -45°. Slope profiles were constructed for each drill

section to determine the true horizontal distance of the drill hole collars relative to the grid baseline.

All garnet-sulphide zones were generally split in 1 m sample lengths and sent to Vangeochem Labs Ltd. for analysis. A total of 35 samples were collected and run for 25 elements using the ICP method. The main non-economic element of interest in the analysis was manganese, analyzed to compare with the manganese content of the garnet zone at the Goldstream Mine. The economic elements of interest include copper with results ranging from 44 to 573 ppm , zinc with results from 54 to 443 ppm and silver, ranging from <0.1 to 1.0 ppm .

The manganese results from within the garnet zones in each hole range in value as follows: RN-1) 589-8839 ppm; RN-2) 212414,611 ppm; RN-3) 4839->20,000 ppm; RN-4) no samples taken, and; RN-5) 7148->20,000 ppm (Figure 5a, 6a and 8a). The manganese content of samples taken outside the garnet zones (collected from RN-1 only) range from 268 ppm to 1656 ppm.

The garnet zones, (labelled a, b, c and d) as shown on Figures 4 and 9 , were projected up dip to a common elevation point (820 m was arbitrarily chosen). They appear to show some consistency from hole to hole, especially the "a" zone, which is quite linear in holes RN-2, 3 and 5 with a consistent dip of -60°. The other zone projections (b, c and d) are somewhat more speculative as they are
based on intercepts from only two holes (RN-2 and 5), some 525 m apart, with different dips for the zones from hole to hole. RN-3 lies between $\mathrm{RN}-2$ and 5 but did not intersect the c and d garnet zones for reasons which remain unknown. Dips used for the respective zones from relevant drill holes were -60° for zones 2 b , 2 c , and 2 d and -50° for zones $3 \mathrm{~b}, 5 \mathrm{c}$ and 5 d . This indicates a shallowing of the dip angle to the south, though this observation is based on limited data. More drilling would be required to determine if these garnet zones can be accurately projected throughout the grid area. The numerous garnet zones may be the result of fold repetitions, though there is insufficient structural information to prove or disprove this observation.

RN-92-1 and 2 (Figures 5 and 5a)
These two holes lie on essentially the same section line (L2+50S) with hole 1 collared at $2+38 \mathrm{E}$ and hole 2 collared at 1+13E. Hole 1 intersected a thick sequence of limestone to 110.32 m (carbonate-phyllite division), then largely biotite-sericite-carbonate-graphite phyllite (dark banded phyllite, unit 2) with some intercalated limestone and andesite to 214.57 m . A garnet zone (sulphide poor, unit 3) exists from 214.57 to 219.10 m then a garnet/semi-massive sulphide zone from 219.10 to 227.15 m . Immediately below this zone is a thin lens of tan biotite phyllite, then andesite, then a thick succession of tan biotite phyllite from 237.57 m to the bottom of the hole at 303.97 m (all part of unit 7).

Sulphides within the garnet zone consist chiefly of pyrrhotite as laminations or contorted laminations and discontinuous wispy streaks with trace amounts of chalcopyrite and sphalerite, sulphide concentrations are up to 30% over 0.5 m .

Hole RN-2 intersected minor limestone (carbonate-phyllite division) at the top of the hole to 14.25 m then a thick succession of biotite-sericite phyllite and biotite-sericite-carbonategraphite phyllite (both are dark banded phyllite) with minor limestone to 139.91 m (unit 2). Within these dark banded phyllites are seven individual garnet zones (unit 3) which have been combined into four fairly distinct zones labelled $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$ and 2d. These four main zones coincide quite well with the first four VLF-EM conductors that lie west of the collar location. The lowest zone (2d), which consists of three individual zones from 119.31-120.55 m, 123.89-125.98 m, and 128.41-129.45 m has been correlated with the zone intersected in RN-1. The other three zones are found at $32.08-35.74(2 \mathrm{a})$, $68.20-68.87 \mathrm{~m}$ and $73.34-79.00 \mathrm{~m}$ (these two constitute one zone (2b)) and $106.93111 .12 \mathrm{~m}(2 \mathrm{c})$. All of these zones are enclosed by dark banded phyllite. Just below the 2d garnet zone is biotite-sericite phyllite to 139.91 m then the same tan biotite phyllite, andesite, tan biotite phyllite sequence seen at the bottom of $\mathrm{RN}-1$ ending at 166.12 m (unit 7).

These lowermost units correlate well between RN-1 and 2 and give the best information regarding the dip of the units. The

remaining units do not correlate quite as well. The thick limestone sequence is gone, though, that in part is due to hole 2 being collared well up dip on the limestone. The biggest difference lies in the many subtle variation of dark banded phyllite in RN-2 and the numerous garnet zones that occur within it that are not seen in RN-1. The other noticeable difference is a large limestone unit from 139.60 - 154.28 m in $\mathrm{RN}-1$ is not at all present in RN-2. As RN-2 is closer to a large fold system that appears on the walls of Standard Creek near the Downie Creek confluence, it is likely that it is closer to a zone of more intense deformation. The result may be en-echelon stacking of the garnet zone, which would help to explain why there are so many garnet zones in $\mathrm{RN}-2$ and why the dark banded phyllite succession is thicker.

RN-92-3 (Figures 6 and 6a)
This hole was collared on $\mathrm{L} 4+60 \mathrm{~S}, 1+17 \mathrm{E}$ and is similar to RN1. The hole intersected limestone (carbonate phyllite division, or unit 2) to 41.03 m then a small garnet zone (3a - unit 3) which consists of two zones at 41.03-41.77 m and 43.21-45.05 m separated by biotite-sericite phyllite. Below zone 3a is biotite-sericite-carbonate phyllite to 51.10 m then limestone to 55.80 m then more dark banded phyllite to 60.13 m (all unit 2). The second garnet zone (3b - unit 3) also comprised of two small zones, occurs from 60.13-64.70 m and $66.38-67.41 \mathrm{~m}$. separated by silicified dark banded phyllite. Below this second garnet zone is dark banded

phyllite to 82.41 m , a thin lens of limestone to 89.69 m , then a thick succession of dark banded phyllite to 124.75 m (unit 2), then limestone (unit 2?) to the end of the hole at 141.77 m . The lower garnet zones, seen in RN-2 (2c and 2d), were not seen in this hole although a 13 cm section of dark banded phyllite containing 3-4\% sphalerite at $115.35-115.48 \mathrm{~m}$ correlates well with zone 2 c . The limestone at the bottom of the hole appears to occupy the projected location of the main zone in RN-1 and the lowermost zone (2d) in RN-2.

The hole is very similar to $\mathrm{RN}-1$ in that it consists of alternating limestone and dark banded phyllite below a thick upper limestone member. The main difference is the two upper garnet zones in RN-3 and the lack of a lower garnet zone, with a thick limestone unit occupying the projected zone location.

RN-92-4 (Figure 7)

This hole was collared at $L 0+00,1+87 E$ and was intended to check for a northerly strike extension of the favorable garnetsulphide stratigraphy and any southerly expression of the Sorcerer Creek sulphide showing. The hole approaches the area of folding and subsequent limestone thickening seen in the walls of Standard Creek. The net result is that the limestone appears to have displaced, in an unknown direction, the thick successions of dark banded phyllite.

The hole intersected limestone to 101.88 m (carbonate-phyllite division), then dark banded phyllite to 105.20 m (unit 2) then tan biotite phyllite to 111.85 m (unit 7) then a thick succession of andesite to 163.07 m (unit 8) at which point the hole was abandoned. It was felt that such a thick accumulation of andesite was a significant departure from any of the other holes, and the lack of a thick succession of dark banded phyllite did not resemble the typical Goldstream Mine stratigraphy.

RN-92-5 (Figures 8 and 8a)
The final hole of the program was collared on L7+80S, 0+75E. The overburden depth at this location was twice as thick as previously encountered which may have resulted in casing through part of the first garnet zone (5a - unit 3). The zone started directly below the casing at 15.24 m , ending at 16.66 m , it is uncertain as to whether or not any of the zone was lost due to casing. Below this upper garnet zone is an intercalated sequence of limestone and dark banded phyllite to 51.54 m which is dominated by limestone (unit 2). From here to the bottom of the hole at 129.54 m is a thick succession of dark banded phyllite consisting of biotite-sericite \pm carbonate, \pm graphite phyllite (unit 2).

In addition, the hole intersected two lower garnet zones (unit 3) within the dark banded phyllite with zone 5c at 97.95-99.30 m and zone 5d at 111.65 - 116.25 m . These zones have been correlated with zones 2 c and 2 d .

DISCUSSION OF RESULTS

Although the drilling program completed to date has yet to intersect economic mineralization, the program must still be considered a success primarily because of the presence of multiple garnetiferous horizons. The garnet zone appears to be an integral part of the ore hosting sequence at the Goldstream Mine.

On the Rain property, the garnet zones are hosted within dark banded phyllite, originally either the biotite-sericite-carbonategraphite phyllite or the biotite-sericite phyllite. The zones themselves are strongly silicified as a fine grained pervasive alteration and commonly containing siliceous bands, likely originally chert bands, up to 5\%. Quartz augens are also present as are splotches of quartz comprising $5-10 \%$ of the unit. The garnets are subhedral to euhedral and pale white to pinkish-white in color. They are porphyritic relative to the matrix material ranging from $2 \times 2 \mathrm{~mm}$ to $5 \times 5 \mathrm{~mm}$. The unit is not fractured and sheared like that commonly seen at the Goldstream Mine.

Sulphides consist chiefly of pyrrhotite as laminations or contorted laminations and discontinuous wispy streaks with trace amounts of chalcopyrite and sphalerite. Sulphide concentrations can be up to 30% over 0.5 m .

The presence of multiple garnet zones in some holes, "missing" garnet zones in other holes (ie. the two lower zones not present in

RN-3, but present in $\mathrm{RN}-2$ and 5 north and south respectively) and only one zone in RN-1 cannot be fully explained. It is felt that these are structurally related differences.

Multiple garnet zones have not been consistently observed at the Goldstream Mine itself, but on the Rain property they could be the result of an en-echelon stacking of the unit. This would explain why there are multiple garnet zones and also help to account for the local thickening and diversity of units from hole to hole. The multiple zones themselves likely explain why there is such a large soil geochemical anomaly at the north end of the grid. The anomaly is not from one single source, but many sources. Thickening overburden to the south may have been sufficient to mask any surface soil geochemical anomalies.

Another general observation is that the three holes drilled closer to the baseline ($\mathrm{RN}-2,3$ and 5) seem to have a more complex stratigraphy than the holes drilled further east (RN-1 and 4) with much intercalation of units, subtle variation within the dark banded phyllite and multiple garnet zones. Perhaps there is a broad detachment zone related to folding that gradually diminishes further east of the baseline. A re-examination of the ground magnetic and VLF-EM geophysical surveys does not give any conclusive evidence of such a feature, though the cross-cutting geophysically inferred fault on Lines $4+00$ S to $15+00$ may represent such a feature at depth (Figure 9).

There are many similarities between the holes drilled on the Rain Property and those drilled proximal to the Goldstream Mine by Noranda and Bethlehem. Except for the thick limestone seen at the top of most of the holes, the stratigraphic succession is quite similar with a thick dark banded phyllite unit overlying the garnet zone. The most notable difference are: 1) the lack of a siliceous grey-green chlorite-sericite phyllite unit which envelops the ore zone at Goldstream, and; 2) the limestone unit that sits structurally below the ore zone at Goldstream has not been observed in the Rain drilling.

The relationship of the lower limestone (unit 6) may or may not be important to the Goldstream deposit. However, the siliceous grey-green chlorite sericite phyllite is thought to be important because, although in part, it may represent epiclastic accumulations, it may also include a siliceous exhalative component (Hoy, Gibson and Berg, 1974).

If a similar unit could be intersected in future drill programs, it is felt that it would help significantly in locating the Rain stratigraphy relative to that seen at the Goldstream Mine and therefore aid in determining if another economic sulphide zone exists on the Rain property. The presence of the garnet zones indicate that the area drilled must be close to a "Goldstream type" model, how close cannot yet be accurately determined.

An examination of the Noranda and OreQuest drill holes completed on and peripheral to the Goldstream deposit has yielded some useful information in determining the proximity of the Rain Property stratigraphy relative to that at the Goldstream Mine. Holes NG-51 and A-06, which are both approximately 1.8 km west of the orebody, intersected garnet zones with semi-massive sulphides. Therefore the garnet zones located on the Rain Property may be up to 1.8 km away from significant economic base metal mineralization.

Another point of interest is the lateral extent of the siliceous grey-green chlorite sericite phyllite. At the Goldstream Mine this unit (outside the defined ore body) is found in holes NG 35, 37,17 and 18 ; both east and west of the deposit but not on the more distal holes like NG-51 and A-06. This gives it an extent of some 450-500 m flanking the deposit and narrows down the proximity to the Goldstream deposit considerably more than does the garnet zone.

Intersecting this unit does not necessarily mean that economic mineralization is sure to follow; a case in point is hole NG-56. This hole intersected stratigraphy virtually identical to that seen at the ore zone, unit $2-6$, but no unit 5 ; the copper-zinc massivesulphide horizon. This would indicate that there are more than just stratigraphic controls on the mineralization.

CONCLUSIONS AND RECOMMENDATIONS

Surface diamond drilling work completed on the Rain Property Murder Creek Project has confirmed a stratigraphic package of rocks very similar to that seen at the Goldstream Mine. The drilling has not intersected any economic mineralization but has encountered multiple garnet zones containing semi-massive sulphides (pyrrhotite with traces of chalcopyrite and sphalerite) of up to 30% over 0.5 m. The presence of the garnet zone is very significant as this horizon has only been found structurally above the ore zone at the Goldstream Mine and therefore is believed to be unique to the Goldstream deposit itself. Thus, the garnet zones may be a key indicator for massive sulphide deposits similar to the Goldstream deposit.

A total of 5 drill holes totalling 904.47 m (2967 ft) were completed on the Rain property. The holes are spread out over a strike length of 775 m at roughly 200 m intervals, with two of the holes on the same section line. The drilling indicates that the favorable stratigraphy disappears to the north, somewhere between LO+00 and L2+50S, but is present from $2+50 \mathrm{~W}$ to $7+75 \mathrm{~S}$ with potential for continued exploration to the initial Murder Creek showing a further 2.2 km to the southwest.

Further work is definitely warranted on the property. As a prelude to further drilling, a borehole time domain-EM geophysical survey is recommended. The casing was left in all the drill holes
so no difficulties are expected in going back down the holes except for hole 2. This hole has penetrated an aquifer and therefore is producing water which could potentially force the sensing equipment back out to surface.

The borehole survey will have the advantage of getting better resolution on any deep seated mineralization as the sensor will be up to 200 m vertically below surface. It will also give more detailed information between the drill holes as a relatively inexpensive way to fill in the gaps resulting from a 200 m hole spacing and should aid in collaring future in-fill drilling.

If the results of the borehole geophysics are successful in providing useful information with which to trace the garnet zones and/or massive sulphide horizons, then a surface program over the grid area utilizing the same type of survey equipment utilized in the borehole program may be warranted, though there is enough information to continue drilling with reasonable confidence. The surface program can be considered as an option, depending upon the effectiveness of the borehole program. No budget estimates have been made for this type of survey.

Additional drilling is also recommended, after the borehole geophysical survey, to continue to test for the continuation of the favorable stratigraphic package to the south of the last drill hole. A fence of drill holes at roughly 100 m and 200 m east of
the baseline at a 200 m hole spacing should adequately test the favorable stratigraphy both along strike and down dip. Any anomalies detected by the geophysical survey should also be tested.

The two tiers of drill holes'could be staggered to result in roughly a 100 m hole spacing with the upper tier of drill holes at even numbered lines, eg. L8+00S and L10+00S and the lower tier of holes at odd numbered lines, eg. L9+00S and L11+00S. Given that the Goldstream orebody is roughly 100 to 150 m wide, this drill program should intersect economic mineralization if it is present, or at least, the favorable garnet and siliceous grey-green chlorite sericite phyllite stratigraphy, thus narrowing down the area for in-fill drilling. If the borehole geophysics is successful in the old holes then it should also be done in any new holes drilled.

COST ESTIMATES

PHASE II BORE HOLE GEOPHYSICS
Mob/Demob
Personnel: 3 men a $\$ 900 /$ day $x 2$ days \$ 1,800
Vehicle: 2 @ $\$ 75 /$ day/truck $x 2$ days 300
Accommodation/Food: 3 men \& $\$ 25 /$ day $x 2$ days 150
Misc. (gas) 150
Field Costs
Geophysicist: 1 @ $\$ 400 /$ day $x 5$ days 2,000
Assistants: 2 @ $\$ 500 /$ day $x 5$ days 2,500
Support Costs
Accommodation
Room/Day: 1 cabin @ $\$ 35 /$ day $x 6$ days 210
Board/Day: 3 men \& $\$ 75 /$ day $x 5$ days 375
Camp Supplies 200
Transportation
4x4 truck: $2 \times \$ 75 /$ day $x 5$ days 750
4-trax: $1 \times \$ 40 /$ day $x 5$ days 200
Equipment Rental
Borehole EM unit: 5 days \& \$650/day 3,000
Report1,500Subtotal
Contingency @ 10\% 0\%TOTAL PHASE II\$13,135SAY1,314\$14,449$\mathbf{\$ 1 5 , 0 0 0}$

Note: If borehole EM sensor is lost downhole it will likely cost $\approx \$ 15,000$ to replace
PHASE III DIAMOND DRILLING
Mob/Demob
Personnel: 2 men @ $\$ 600 /$ day $x 2$ days \$ 1,200
Vehicle: $1,4 x 4$ @ $\$ 75 /$ day $x 2$ days 150
Food: 2 men \& $\$ 25 /$ day $x 2$ days 100
Misc. (gas) 50
Field Costs
Project Manager: 1 @ $\$ 450 /$ day $x 6$ days 2,700
Project Geologist: 1 e $\$ 350 /$ day $x 45$ days 15,750
Assistants: 1 \& $\$ 250 /$ day $x 45$ days 11,250
Support CostsAccommodation (includes drillers)
Room/Day: 45 mandays e $\$ 70 /$ day 3,150
Board/Day: 270 mandays e \$20/day 5,400
Camp Supplies 500
Transportation
4x4 truck: 1 \& $\$ 75 /$ day $\times 45$ days 3,375
Communication 1,000
Freight 500
Vancouver Support 1,500
Contract Services
Drilling: 8500' @ $\$ 22 /$ foot 187,000
Cat: 120 hours @ $\$ 60 / \mathrm{hr}$ 7,200
Analysis:
Rocks - Geochemical: 150 @ $\$ 10 /$ sample 1,500

- Assay: 25 e $\$ 20 /$ sample 500
Thin Section: 10 a $\$ 50 /$ sample 500
Report
Project Manager: 4 @ $\$ 450 /$ day 1,800
Geologist: 8 e $\$ 350 /$ day 2,800
Drafting: 30 hours a $\$ 20 / \mathrm{hr}$ 600
Supplies, Typing, Copying, etc. 400
Subtotal \$248,925
Contingency @ 10\% 24,892TOTAL PHASE III
\$273,817SAY
\$274,000

STATEMENT OF COSTS

Mob/Demob\$ 2,558.78
Camp Costs 3,034.62
Wages:
Raven, W. - 21 days \& $\$ 350 /$ day 7,350.00
Pickston, D. - 20 days \& $\$ 250 /$ day 5,000.00
Contract Services
Falcon Drilling 71,536.03
Analyses 519.50
Equipment Rental 660.00
Communication 206.48
Office Costs/Report 2,669.67
Total Statement of Costs \$93,535.08

CERTIFICATE OF QUALIFICATIONS

I, George Cavey, of 6891 Wiltshire Street, Vancouver, British Columbia hereby certify:

1. I am a graduate of the University of British Columbia (1976) and hold a B.Sc. degree in geology.
2. I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of \#306-595 Howe Street, Vancouver, British Columbia.
3. I have been employed in my profession by various mining companies since graduation, with OreQuest Consultants Ltd. since 1982.
4. I am a Fellow of the Geological Association of Canada.
5. I am a member of the Canadian Institute of Mining and Metallurgy.
6. I am licensed to practice as a Professional Geologist in Alberta.
7. I am licensed to practice as a Professional Geologist in British Columbia.
8. The information contained in this report is based on supervision of the work done by OreQuest Consultants Ltd., a property examination during the recently completed drill program, and information listed in the Bibliography.
9. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the Rain Property nor in the securities of Bethlehem Resources Corp.
10. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

George Cavey, P.Geo., F.G.A.C. ©unnin'
DATED at Vancouver, British Columbia, this 22nd day of October, 1992

CERTIFICATE of QUALIFICATIONS

I, Wesley D.T. Raven, of \#108-1720 W. 12th Ave., Vancouver, British Columbia hereby certify:

1. I am a graduate of the University of British Columbia (1983) and hold a B. Sc. degree in geology.
2. I am presently retained as a consulting geologist with OreQuest Consultants Ltd. of \#306-595 Howe Street, Vancouver, British Columbia and have been employed on a full time basis since 1983.
3. I am a Fellow of the Geological Association of Canada.
4. The information contained in this report is based on work done by OreQuest Consultants Ltd. for which I was the field project manager, and information listed in the Bibliography

5 . Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the Rain Property nor in the securities of Bethlehem Resources Corp.
6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

$$
\begin{aligned}
& \text { Welly Ravin } \\
& \text { Wesley D.T. Raven, } \\
& \text { B.Sc., F.G.A.C. }
\end{aligned}
$$

DATED at Vancouver, British Columbia, this 22nd day of October, 1992

BIBLIOGRAPHY

BROWN, R.L., LANE, L.S., PSUTKA, J.F., AND READ, P.B. 1983: Stratigraphy and Structure of the Western Margin of the Northern Selkirk Mountain: Downie Creek Map Area, British Columbia; in Current Research, Part A_{i} Geol. Surv. Can., Paper 83-1A.

BROWN, R.L., TOPPETT, C.R., AND LANE, L.S.
1977: Stratigraphy, Facies Changes, and Correlations in the Northern Selkirk Mountain, Southern Canadian Cordillera; Can. Jour. Earth Sci., Vol. 15, pp. 1129-1140.

CAMPBELI, I.
1991: Report of Exploration on Murder Creek Project, Rain Property, Revelstoke Mining division, for Bethlehem Resources Corp., October 25, 1991.

1991: Report on Surface Exploration, Goldstream Project, Revelstoke Area, B.C., Internal Report, Goldnev Resources Inc.

1992: Personal Communication.
VANCOUVER STOCKWATCH, WESTERN EDITION
1992: Bethlehem Resources Corp., September 23, 1992. Bethlehem Resources Corp., October 21, 1992. Goldnev Resources Inc., October 16, 1992.

CANADIAN MINES HAND BOOK, 1992-93
CHENI GOLD MINES
1991: July 30, 1991 Press Release.
DEVLIN, W.J.
1988: Stratigraphy and Sedimentology of the Hamill Group in the Northern Selkirk Mountains, B.C.: Evidence for latest Proterozoic-Early Cambrian Extensional Tectonism; Can. Jour. Earth Sci., Vol 26, pp. 515-533 (1989).

FOX, J.S.
1984: Besshi-Type Volcanogenic Sulphide Deposits - A review, CIMM V77 \#864, p. 57-68.

GEORGE CROSS NEWSLETTER
1992: No. 202 (1992), October 22, 1992.
GIBSON, G., HUGHES, B.B., AND BRADISH, L.B.
1977: Geological, Geochemical and Geophysical Survey, Mars 1 to 4, Key 3 to $5,9,16,17,20,21$, Standard 1 to 4 , and Kelly 1; B.C. Min. En. Min. Pet. Res., Assessment Report 6187.

HØY, T.
1989: Geology of the Goldstream Area; B.C. Min. en. Min. Pet. Res., Bulletin 71.

HØY, T., GIBSON, G., AND BERG, N.W.
1984: Copper-Zinc Deposits Associated with Basic Volcanism, Goldstream Area, Southeastern British Columbia; Econ. Geol., Vol 79, pp. 789-814.

LANE, L.S.
1977: Structure and Stratigraphy, Goldstream River-Downie Creek Area, Selkirk Mountains, B.C.; Unpublished M.Sc. Thesis, Carleton University, Ottawa, Ontario.

McARTHUR, G., RAVEN, W., LEWIS, L.
1991: Diamond Drilling on the Goldstream and Jenkins Project Area, Revelstoke Mining District, B.C.

MATHIESON, G.A., AND LEWIS, T.
1980: Geological, Geophysical and Geochemical Report on the Soc 1 and 2 Mineral Claims, Revelstoke Mining Division; B.C. Min. En. Min. Pet. Res., Assessment Report.

READ, P.B., AND BROWN, R.I.,
1981: Columbia River Fault Zone: Southeastern Margin of the Shuswap and Monashee Complexes, Southern B.C.; Can. Jour. Earth Sci., Vol 18, pp. 1127-1145.

WHEELER, J.O.
1965: Big Bend Map Area, B.C.; Geol. Surv. Can., Paper 64-32.
WILD, C.J.
1990: Geological and Geochemical Report on the Rain 1-17 Mineral Claims. Assessment Report.

WILD, C.J. AND ADAMSON, R.S.
1990: Drilling Report on the Keystone Property, Revelstoke Mining Division; B.C. Min. En. Min. Pet. Res., Assessment Report.

APPENDIX I
DRILL LOGS

OREQUEST CONSULTANTS LTD. DIANOND DRILL HOLE RECORD CI ient BEIHLEMEM
Page 11 of 9

LIMESTONE (L)

$4.63 \quad 11.68$
ine grained equigranular rounded quartz eyes (203) in a carbonate roundmass. Contains darker bands of biotite $+/-$ sericite $+/-$ graphite (5-158) which impart a foliation to the rock at $10-30$ to SCA. (Short Core axis). Contains trace quant it ies of subhedral dissen inated pyrite Has an overall dirty grey colour. Hinor siliceous bands where quartz carbonate, bands are generally 5-20ma nide. Very minor himonit ic
staining on fractures. Has a seni-"sugary" look ing appearance
sericite occasionally very obvious as seni fibrous growths.
$-5.47-5.53 \mathrm{~m}$ rubble, rounded rock chips
6.02-6.25m rubble, rounded rock chips
7.00-7.35 rubble, rounded rock chips
10.98-11.33 interbedded black limy siltstone unit, upper and lower contacts at 30 to SCA., 158 blebs of quartz throughout unit
(IMY BLACK SIL TSIONE (lbs)
Dark banded unit with grey to grey-white carbonate natrix. Carbonate onst itutes $50-60$ of unit with black biotite $+/-$ sericite $+/-$
graphite, locally bedded. Graphite more obvious on ends of core. Unit has been quartz flooded with broken ve ins, blebs, and pinched out ve in tructures averaging 108 of unit. The quartz veins are a quartz >> carbonate nixture. Graphitic stylol ites common as sutures around semibecciated quartz blebs. Upper contact at 20 to SCA. Contains trace-
is dissen inated pyrite which locally increases to 23 around wore
silicified sections. Local pale grey-white sections that are
strongly calcareous.
-11.34-12.03m rubble, rounded rock chios
12.40-12.45m inor folds, dxes at 0-5 to SCA
$12.40-12.67 \mathrm{~m}$ 3nate wide gouge ve in at 85 to SCA
$-13.71-1 j .77 \mathrm{~m}$ 6manide quartz ve in

OREQUEST CONSULTANTS LTD.

$\begin{aligned} & \text { FROM } \\ & (n) \end{aligned}$	$\begin{aligned} & \text { to } \\ & (\mathbf{n}) \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	DESCRIPTION	PERCENT SULPHIDE	$\begin{aligned} & \text { FOL } \\ & \text { SCA } \end{aligned}$	SAMPLE No.	FROM $\text { (} 1 \text {) }$	$\begin{aligned} & \text { io } \\ & (\boldsymbol{n}) \end{aligned}$	LENGTH (n)	$\begin{aligned} & A g \\ & \text { ppn } \end{aligned}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{PDO} \end{gathered}$	Cu ppn	Mn ppn	Pb pp	$2 n$

$-14.33-14.50$ b broken core, rubble,
$-15.80-16.36$ u quartz-carbonate ve in and quartz flooded section, sol id
ve in to 16.11 n then broken core that is quartz flooded to 16.36 m
-16.36 m fol iated section at 60 to SCA, inor folds with axes at 60
to SCA, one swall speck of chalcopyrite
-17.88-23.00 quartz flooded and brecciated section with graphite sutures around the quartz blebs, upper section to 19.36 is dirty grey quartz- carbonate nix with angular quartz breccia fragments, grey quart2- carbonate contact at 40 to SCA, lower contact at 50 to SCA
19.36-20.43m less quartz, sore graphite with gouge at upper contact
0.43-20.70 m broken quart2 ve in
20.70-21.64 liny black siltstone
$-21.64-23.00 \mathrm{n}$ quartz-carbonate flooded with white quartz up to 708 of section
-22.30 m lcm wide gouge ve in with clay and rock chips at 65 to SCA $-22.35-22.45 \mathrm{~m}$ liny bed with bands at 70 to SCA
$-30.80-31.02 \mathrm{~m}$ quartz-carbonate vein, upper contact at 20 to SCA , lower contact gradational but approxinately 50 to SCA
LIMY Black silitione / Limestone transifion zone (lbs/L)
Gradational contact zone between well defined siltstone above and well def ined marble below. Has liny matrix with darker bands of the black siltstone at 5-15 to SCA. Weak minor folding, axes at 5-25 to SCA. Trace-1: dissen inated pyrite and pyrrhot ite.
LIMESTONE (L)
As previously described, 4.63-11.68n. Contains inor graphit ic stylol ites. Sugary looking texture, dirty grey-white colour.
$-34.70-34.90 \mathrm{n}$ minor folding throughout section with axes at $10-40$ to SCA, the pyrmotite is concentrated around the fold axes $-41.00-41.65 \mathrm{~m}$ transition zone between marble above and liny black siltstone below
LIMY BLACK SIL ISTONE (Ibs)
As previously described, $11.68-32.48 \mathrm{~m}$. Fol iations are a little flatter at 5-15 to SCA. Quartz flooded like the previous unit. Contains trace-18 pyrite and pyrrhotite (weakly magnet ic) generally as elongated grains stretched out along the fol iation planes. Quartz $+/-$ carbonate a bit more prevalent than upper same unit at $10-20$ mostly
as $5-2 \mathrm{Omm}$ wide veins, blebs, and tension gash infillings. Minor
graphit ic stylolites, local minor kink bands.

FROM ($\begin{aligned} & 10 \\ & (\mathbf{n}) \end{aligned}$	$\begin{aligned} & \text { ROCX } \\ & \text { TYPE } \end{aligned}$	DESCRIPIION	PERCENT SULPHIDE	$\begin{aligned} & \text { FOL } \\ & \text { SCA } \end{aligned}$	SAMPLE No.	FROM (${ }^{1}$	$\begin{aligned} & \text { io } \\ & (\mathbf{n}) \end{aligned}$	LEMGTH (n)	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{ppm} \end{aligned}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \text { Cu } \\ \text { ppu } \end{gathered}$	$\underset{\text { ppn }}{N n}$	Pb PD	2n ppm

-42.30m ninor fold, axis at 45 to SCA
-43.30-43.77m strongly deforeed section with kink bands and minor
folds at 15-60 to SCA
$-51.23-51.29$ dark banded section with 58 pyrite drawn out along
fol iation planes at $5-30$ to SCA
$-54.69-54.74 \mathrm{~m}$ brown clay gouge, upper and lower contacts at 5 to SCA
$-55.13-55.55$ moderately broken section with inor quartz flooding
ending in a 10 ca wide quartz ve in, anor limonit ic staining
$57.95 \quad 110.32$
LIMESTONE (L)
As previously described, 4.63-11.68n. Dirty grey-white colour, sugary appearance, probably a carbonate flooded quartz rich siltstone?? Upper contact seni broken but - 10-20 to SCA, lower contact sharp at 40 to SCA. Moderate fractur ing throughout unit, stronger than that seen in any previous unit.
-57.95-58.35 fracture zone, sections of broken core
$-61.90-62.45 \mathrm{~m}$ fracture zone, sections of broken core, especially
last 15 cm
$-63.11-63.31 \mathrm{n}$ broken and fractured core
$-66.20-66.50$ b broken and fractured core
-69.15-69.80n oderate fracture zone
$-75.25-77.56$ broken and fractured core, 50 intercalated liny black siltstone for upper 50 cm
$-80.46-90.55$ n this entire section is basically one broad fracture zone, all the rock is moderately to strongly fractured with very 2one, all the rock is moderately to strongly fractured with very
inor limonite staining, local sect ions of more competent core but inor limonite staining, local sections of more competent core
overall very few pieces $>10 \mathrm{~cm}$ in length, also contains - $15-208$ intercalated liay black siltstone
-81.27-81.377 is intense rubble
-90.55-97.00 rock is much more conpetent and the quant ity of limy
black siltstone is gradually decreas ing dommole, the siltstone,
then present, forns bands/fol iat ions at $0-10$ to SCA
$-95.44-95.78 \mathrm{~m}$ is mostly siltstone
$-97.00-99.43$ - 000 "clean n artle no siltstone intercalatons
-99. 13-110.32 black banded narble due to intercalations of liny
black siltstone marble is weakly fractured with inor limonite
stain on fractures
$110.32 \quad 139.60$
bIotile - Sericlie - ouariz - graphite phyllite (bscgp) (DARK BANDED PHYLLIIE)

Dark black colour with small bands or ve iniets of quartz $+/$ - carbonate
generally $1-5$ an wide at $10-30$ to SCA. Rock is composed of black

FROH (\mathbf{n})	$\begin{aligned} & \text { io } \\ & (\boldsymbol{n}) \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	DESCRIPIION	PERCENT SULPHIDE	$\begin{aligned} & \text { FOL } \\ & \text { SCA } \end{aligned}$	SAMPLE No.	FROM (${ }^{(1)}$	$\begin{aligned} & \text { To } \\ & \text { (n) } \end{aligned}$	LENGTH (${ }^{(1)}$	$\begin{aligned} & A g \\ & \text { Ppin } \end{aligned}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	Cu	\cdots	Pb PpI	In pp

[^0]Upper contact share at 20 to SCA
OREQUEST CONSULTANTS LTD.
MOLE 1: RN-92-1
PRGE 5 of 9

FROM	10	ROCK	DESCRIPIION	PERCENT	FOL	SAMPLE	from	10	LENGTH	Ag	Au	Cu	mn	Pb	2 n
(${ }^{\text {a }}$	(${ }^{\text {) }}$	TYPE		SULPHIDE	SCA	No.	(1)	(${ }^{\text {a }}$	(${ }^{\text {a }}$	ppl	ppb	ppt	ppn	ppe	ppn

-140.21 minor folds, axes at 5-10 to SCA
140.64-140.95. broken core
$-144.69-148.78$. strong argillaceous component in the marble, black bands to 302 of the unit at 5-15 to SCA
-148.78-149.38n small interbed of biotite-graphite-sericite phyllite upper contact sharp, lower contact more gradational, at 15-20 to SCA $-149.38-153.10 \mathrm{~m}$ as $144.69-148.78 \mathrm{~m}$, with strongly broken core from 152.86-153.10
-153.10-154.28. Transition Zone $=50-50$ marble with biot ite-graphite-seric ite phyll ite, bas ically a gradat ional change between a well def ined arble and well def ined black phyll ite
contorted biotite - sericite - carbonate - graphite phyllite (bscgp)
Rock is composed of fol iated biotite, sericite, and graphite in a quart2-carbonate atrix and also contains 102 quartz-carbonate ve ins, blebs, and tension gash inf illings which are highly contorted.
Fol iated at 0-10 to SCA with a Phase 3 crenulation cleavage (graphit ic bands) at 40 to SCA. Contains $2-5 \$$ disseminated pyrhot ite with inor pyrite and trace chalcopyrite around wore silic fied sections. The pyrrhotite occurs as coarse blebs up to axom and as elongate blebs and fine disseninations strung out along the fol iation planes. The upper half of the unit is the most contorted. Upper contact is gradational but appears to parallel the foliation at " 10 to SCA. The
lomer contact is also seni-gradational at roughly 20 to SCA. Unit has a mottled grey-black colour and is strongly calcareous throughout.
chlorite - Sericite - quariz - biotite phyllite (And)
Unit is not contorted like the black ohyllite above. Chlorite is the don inant mineral in a fine grained quartz-carbonate matrix. Well fol iated at 10-15 to SCA. Also conta ins 5-88 quartz-caromate ve ins -10na nide parallel to fol iation. Upper and lower contacts fairly sharp at 20 to SCA. Irace disseninated pyrrhot ite, Minor "granitic" looking bands near bottom of unit.
contorteo biohite - sericite - carbonate - graphite phyllite (bscgp)
As described, 154.28 - 158.98n but even more contorted. Anastomos ing veins as tension gash infillings. Wavy foliation, crenuated folds and Phase 3 crenulat ion clearage developed at 40 to SCA. Conta ins 1 - 58 pyrrhot ite with trace pyrite and chalcopyrite as blebs and dramm
out along fol iation. Some broad foids at 85 to SCA.
-164.13-166.04m band of marble, crenulat ion cleavage is also
developed in this unit at 40 to SCA, upper contact sharp at 20 to SCA

FROH (a)	$\begin{aligned} & \text { T0 } \\ & (1) \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	OESCRIPIIIN	PERCENT SULPHIDE	$\begin{aligned} & \text { FOL } \\ & \text { SCA } \end{aligned}$	SAMPLE No.	FROM $(\mathbf{~})$	To $\text { (} \mathbf{n} \text {) }$	LENGTH (n)	$\begin{aligned} & \text { Ag } \\ & \text { ppı } \end{aligned}$	Au ppb	cu ppu	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppn} \end{gathered}$	Pb pp	2n pp

LIMESTONE

As previously described. Upper contact sharp at 55 to SCA. Black bands give foliated appearance at 20 to SCA with soue silty bands at 70 to SCA.
-175.70-175.91 broken fractured core
-177.75-177.90 broken core, rubble and rock chips
-180.18-180.27 blebby pyrite zone 4 ca wide at 70 to SCA, pyrite 108
COHTORTED BIOTIIE-GRAPHIIE PHYLLIIE \& LIMESTONE (BGP/L)
poper contact distorted at 85 to SCA. Intercalated marble and black phyll ite with blebby pyrite enrichment, locally to 10\%, averages 3-5\% over length of section. Most of the pyrite is in a 2 cn vein with graphit ic stringers at 85 to SCA to 181.27/. This ve in is crosscut Quartz carbonate veins at 60 to SCA which have been offset by the pyrite ve in by $1-2 \mathrm{~cm}$. The adin ve in contains 208 pyrite.
182.00-183.70m marble as general description
183.70-185.26 mostly black phyll ite with inor intercalated marble, local pyrite enrichment in the marble, especially at 183.77 183.88 (20-258) dissen inated pyrite blebs and at 184.94-185.06n 109 pyrrhot ite and 18 pyrite in a quartz flooded area of black phyll ite. 185.26-187.17 is nostly limestone
187.17 BIOTiIE - SERICIIE - CARBONAIE - GRAPHIIE PHYLLITE (8SCGP)

As previously described 110.32-139.60, not contorted, contain inor intercalated sections of Chlorite-Sericite-Quartz-Biot ite hyllite and Marble. Weak carb in matrix. Foliation at 20 to $S C A$. Upper contact sharp at 15 to SCA. Contains 3-58 at2 - carb tension gash infillings and 1-38 blebby 90 and rare traces of cpy.
-187.17-187.89 Chlorite-Sericite-Quart2-8iot ite Phyllite (Andesite) 189.03-189.97 Chlorite-Sericite-Quartz-8 iot te Phyll ite (Andes ite) 193. 66 partial quartz vein with 103 pyrmotite, trace chalcopyrit 194.21-199.25 rubble
194.35-196.30m marble, upper contact share at 40 to SCA, lower contact sharo at 15 to SCA
197 90-198.01 rubble and gouge, 1 cm gouge ve in at 2010 SCA
199.08-199.19m quart2 ve ining and silicification with 102 blebby dissem inated pyrrhot ite at 40 to SCA.
201.93-202.01m silicified section mith 10% po, tr-. 58 chalcopyrite

$\begin{aligned} & \text { FROH } \\ & (\boldsymbol{n}) \end{aligned}$	$\begin{aligned} & 10 \\ & (m) \end{aligned}$	Rock	DESCRIPIION	PERCEMT SULPHIDE	$\begin{aligned} & \text { FOL } \\ & \text { SCA } \end{aligned}$	SAMPLE No.	FROH (n)	$\begin{aligned} & 10 \\ & (\mathrm{n}) \end{aligned}$	LENGTH $\text { (} \quad \text {) }$	$\begin{aligned} & \text { Ag } \\ & \text { Ppm } \end{aligned}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	Cu ppu	$\cdots \begin{gathered}\text { nn } \\ p \text { n }\end{gathered}$	Pb ppe	2n pp

$210.00 \quad 211.00$
$213.00 \quad 214.00$
$214.57 \quad 219.10$
$215.00 \quad 216.00$
$218.00 \quad 219.00$
$219.10 \quad 227.15$
220.00211 .00
$223.00 \quad 224.00$
225.00271 .60
above and below this interval are patches of quartz-carbonate altered feldspar crystais?, small white blebs up to 2 mmx 2 ma , nostly anhedral with some good square crystals.
-202.75-205.00n sect ion of broken fractured core with quartz-cart
veining throughout, up to 103, ve ins generally at $70-85$ to SCA with
1-58 pyrrhotite and tr chalcopyrite around the most silicified areas.
-205.95-206.00 gouge and rubble.
$-206.40-214.57 \mathrm{~m}$ finely laminated (at $20-258$ to $5(A)$, alternating 1 ight (carbonate) and dark(biotite) bands with 58 very fine grained dissem. pyrrhotite within the laninae and occasionally larger blebs overgrowing the lamination. Unit is highly calcareous.
-206.92-207.14n silicified zone with 108 pyrithot ite, .58 chalcopyrite as blebs, wineral izat ion parallel to fol iat ion at $20-25$ to SCA
-as generai description
-as general description
SILICIf IED GARNE! ZONE (G2)
silicified zone, carbonate virtually gone replaced by fine grained pervasive silicification. Also contains up to 108 tine grained garnets $2 \times 2 \mathrm{~m}$ that are a pale white to faint white-pink colour, they show up as nore pinkish on spl it surfaces, Unit also contains 2-58 dissen inated pyrrhotite strung out along fol iat ion at $10-20$ to SCA.
-as general description
GARNET ZONE / SEH! MASSIVE SULPHIDES (6Z/SMS)
iot ite-graphite-garnet-silicified zone with semi - massive pyrrhotite locally to 308 but averages $5-108$ as fine disseminations and massive bands parallel to fol iation at $10-20$ to SCA. The zone is strongly sil ic if ied with 5 -10\% blebby quartz. Areas of strongest silicification have qreatest sulphide concentration. Also has fine grained pervasive silicification and 5 sherty bands.
$-219.10-219.50 \mathrm{n}$ 308 nassive pyrrhot ite, trace chalcopyrite -220.18-220.66m 308 massive pyrchotite, trace chalcooyrite and from $20.88-221.00 \mathrm{~m}$ is 208 mass ive pyrrhot ite, trace chalcopyrite $-20.15-222.80 \mathrm{~m}$ l08 banded pyrrhotite, trace chalcopyrite -as general description
$-23.92-224.70 \mathrm{~m}$ 15-208 nassive banded pyrrhotite, trace chalcopyrit -3s general description
127.15-233.7n more laninated, gradual decrease in sulohides
to 3-5 pyrrhot ite then 3 gradational contact to the underiy ing
tan biot ite phyllite

8216	210.00	211.00	1.00	0.5	50	87	771	23	136
8217	213.00	214.00	1.00	0.4	30	97	1656	<2	132

8218	215.00	216.00	1.00	0.3	10	94	1471	<2	75
8219	218.00	219.00	1.00	0.3	30	84	3807	<2	97

$8222 \quad 226.00 \quad 227.00 \quad 1.00$
0.4
358

OREQUEST CONSULTANTS LTD. HOLE I: RH-92-1 PAGE: 9 of 9

FROM	$\begin{aligned} & \text { io } \\ & (\mathbf{n}) \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	DESCRIPTION	PERCENT SULPHIDE	FOL SCA	SAMPLE No.	FRON	$\begin{aligned} & \text { io } \\ & (\mathbf{a}) \end{aligned}$	LENGTH	Ag	Au pob	${ }_{\text {cu }}^{\text {cu }}$	Nn	Pb ppb	$\underline{2 n}$

-285.06-285.08n quartz bleb with 208 pyrrhot ite
-289.96-294.82n greenish-grey-white colour, strongly silicified section with sericite, there are numerous snall quartz veins throughout the section at various angles to the core axis fill ing stress related fracturing, veins are 1-2 ma wide, e 293.90-294.82 core is intensely fractured with broken rock chips and inor gouge ith carbonate in the gouge, minor pyrite and pyrrhotite at 293.90m 295.53-295.73n
as.j3-29.is a man with 128 disserinated pyrite and
pyrrhot ite along with chlorite-sericite clots, upper contact sharp at
40 to SCA, lower contact broken but approxinately 10 to SCA
296.00-296.10m quart2 vein, barren
300.77-301.02 broken core, rock chips
$-301.02-301.26 \mathrm{~m}$ pale green colour, silicif fied with sericite $-301.75-302.40 \mathrm{~m}$ pale green colour, silicified with sericite

OREQUEST CONSULTANTS LTD. DIAMOND DRILL MOLE RECORD CI Ient BETHLEHEM
Page 11 of 6

| 8.23 | 10.24 | BOULDERS (OB) |
| :--- | :--- | :--- | :--- |

 uartzite, and rare granit ic pebbles. Core is broken and rounded, some of it probably close to bedrock (the liny siltstone) other fragments
def inately transported. The last 10 cm of core (before what was
considered def inite bedrock) is bromn clay mud.
LIMY BLACK SILISTONE (Ibs)
banded unit with alternat ing white carbonate and black silty bands int ire unit is strongly calcareous. Banding $=$ foliation at 15 to SCA, inor traces of pyrite. Minor quartz veining parallel to foliation and 2-53 quartz augens.
10.67-10.75 broken core and rubble
12.29-12.47 gouge zone at 15 to SCA
quariz - 8IOTIIE - GRAPhite phyllite (obgp)
Unit is a dark black colour and has fine pervasive silicification. Contains 58 quartz ve ins and augens at 20 to SCA , some minor carbonate ve ins and quartz-carbonate veins. Upper contact in broken core, lower ontact sharp at 15 to SCA. Unit contains 1-38 pyrrhot ite mostly as blebs with in the quartz augens.
$16.53 \quad 22.32$
tuffaceous anoesite (And)
init has a medium green colour and is slightly speckled in appearance. pper and lower contacts sharp at $10-15$ to SCA. Contains $5\{$ quartz $+/$ -
arbonate ve ins at $10-15$ to SCA. Minor pyrite and pyrrhot ite (18)
especially around quartz veins.
18.25-18.98 Biot ite-Sericite-Ouartz Phyllite with minor quartz

OREQUEST CONSULTANTS LTD.							HOLE I: RN-92-2				PAGE \ 1 of 6				$\begin{array}{r} 2 n \\ \text { ppn } \end{array}$
FROH (n)	$\begin{aligned} & 10 \\ & (\mathbf{n}) \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	OESCRIPITION	PERCENT SULPHIDE	fol SCA	SAMPLE No.	$\begin{gathered} \text { FROM } \\ (1) \end{gathered}$	$\begin{aligned} & \text { io } \\ & \text { (n) } \end{aligned}$	LEMGTH (${ }^{(1)}$	$\begin{aligned} & \text { Ag } \\ & \text { Ppm } \end{aligned}$	$A_{p p D}^{A n}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{kn} \\ \mathrm{ppran} \end{gathered}$	$\begin{gathered} \text { Pb } \\ \text { ppn } \end{gathered}$	
75.00	76.00		looks like silicified biot ite-sericite-garnet phyllite -upper 50 cm is sil ic if ied biot ite-sericite-garnet phyllite with 38 pyrrhotite, lower 50 ca has more cherty bands at 20 to SCA and also averages 38 pyrrhot ite		3	8234	75.00	76.00	1.00	<0.1		133	10979	13	87
76.00	77.00		-garnet and sulphide poor section with both averaging 13 respect ively in silicified biot ite-sericite phyllite		1	8235	76.00	71.00	1.00	<0.1		55	2124	<2	154
77.00	78.00		-upper 25 cm as above, lower 75 ca has 58 cherty banding, sulphide poor		2	8236	77.00	78.00	1.00	<0.1		97	10221	3	90
78.00	79.00		-more quartz flooding, garnets and sulphides		8	8237	78.00	79.00	1.00	0.2		171	14611	8	132
79.00	94.75		810tile - sericile - carbonate - graphite phyllite (bscgp)												
			As previously described from 35.74-56.00n. Contains 2-58 disseninated blebby pyrrhotite, trace pyrite.												
			-80.81-81.01 dirty quartz ve in, minor graphitic fragments and 1-28 pyrthot ite $-83.68-83.82$ quartz ve in, upper and lower contacts at 10 to SCA $-84.02-84.13$ quartz ve in, upper and lower contacts at 10 to SCA $-85.30-85.41$ quartz ve in, upper and lower contacts at 10 to SCA -89.57-90.61 Liay Siltstone with black bands at 30 to SCA, upper contact at ${ }^{5} 5$ to SCA, lower contact at 40 to SCA $-92.45-94.00$ fol iat ion steepens gradually till its 90 to SCA												
94.75	103.33		LIMESTONE (L)												
			Massive equigranular re-crystallized linestone with weak black banding at 20 to SCA. Hinor intercalated black phyllite, upper contact sharp at 20 to SCA, lower contact gradat ional.							-					
			$-96.35-96.95$ lens of black phyllite, upper and lower contacts at 10 to SCA - 102.11 -103.33 gradational change from clean limestone to liny black siltstone to phyllite below												
103.33	106.93		8IOTIIE - SERICIIE PHYLLIIE (8SP)												
			As previously described $56.00-68.20 \mathrm{~m}$.												
106.93	111.12		GARNE IONE (62)												
			As previously described $32.08-35.74 \mathrm{~m}$. Upper contact 20 to SSA, lower contact enere gradational, both poorly defined												
100.93	108.00		-silicitied, averages 3 \% pyrrhotite, trace chalcopyrite, 10\% garnets		3	8238	100.93	108.00	1.07	<0.1		310	6850	<2	71
108.00	109.00		-as above, fewer sulphides		2	$8 \% 39$	108.00	109.00	1.00	<0.1		109	6205	< 2	54

$139.91 \quad 150.04$
$150.04 \quad 164.70$
$164.70 \quad 166.12$
166.12
137.29-137,48 quartz ve in with 2-33 pyrrhot ite and tan biotite, upper contact at 60 to SCA, lower contact at 40 to SCA
38.83-138.98 ouart2 vein, upoer contact at 50 to SCA, lower contact - 5 to SCA, ve in has about 18 pyrrhot ite
biotile - seriche - tan biotile phyllite (tbp)
Sinilar to the 8iotite-Sericite Phyllite but has the addition of 5-15: tan coloured biot ite. Upper and lower contacts at 40 to SCA. The fol lat ions at 25 to SCA.
-141.88-142.30 fol iat ion at 70-90 to SC $-145.40-145.80$ fol lation at 70 to SCA

TUFFACEOUS ANDESITE (And)

Nediun green colour, generally massive looking but does have foliated sections defined by simll bands of tan biot ite at $30-40$ to SCA. Local sections of quartz flooding and quartz veining. Contains about 18 disseninated pyrite and pyrrhotite. Unit is silicified and contains areas of darker green bands which are strongiy silicif ied.
-152.58-153.04 quartz flooding with 708 milky white coloured ve ins -163.94-164.10 barren quartz ve in at 45 to SCA
tan biotite - sericite - ouariz phyllite (tbp)
E6.12 ENO OF HOLE

Hole No. Property Location NTS Clain No	$\begin{aligned} & \text { RN-92-3 } \\ & \text { RAIN } \\ & \text { MUROER CREEX } \\ & \text { B2H/8E } \\ & \text { DEER } 3 \end{aligned}$	Northing 4+605 East ing $1+17 \mathrm{E}$ Elevation 795 Latitude 5131 N Longitude 11810 W	Core Size Casing Length Dip-Collar Bearing	808GM left in hole 141.77 -45 255	Depth Dip $141.7-48$	Az inuth		Depth	Dip Az	Azimuth	Started Completed Drill co. Logged By Units	SEPT.17, 1992 SEPT.18, 1992 falcon drilling H.RAVEN MEEESS		Target Comments	GARNET 2ONE		
$\begin{aligned} & \text { FROM } \\ & (\boldsymbol{m}) \end{aligned}$	IO ROCK (n) TYPE		DESCRIPTIOH			PERCENT SULPHIDE	$\begin{aligned} & \text { FOL } \\ & S C A \end{aligned}$	SAMPLE No.	$\begin{gathered} \text { fron } \\ (\mathbf{n}) \end{gathered}$	$\begin{aligned} & 10 \\ & (\boldsymbol{n}) \end{aligned}$	LENGTH (${ }^{(1)}$	$\begin{aligned} & A q \\ & p p(1 \end{aligned}$	$\begin{gathered} \mathrm{Au} \\ \text { pob } \end{gathered}$	$\begin{gathered} \text { cu } \\ \text { ppn } \end{gathered}$	$\begin{gathered} \mathrm{Kn} \\ \text { ppn } \end{gathered}$	$\begin{gathered} \text { Pb } \\ \text { oon } \end{gathered}$	$\begin{aligned} & \text { 2n } \\ & \text { ppn } \end{aligned}$
	5.18	OVERBURDEN (OB)															
5.18	8.75	LIMESTONE (L) Grey-white colour, mass and white (pure linesto with clay and mud on fro	ooking with nos at 10 to s.	or black (argi CA. Core is fa	ceous) broken												
8.75	12.98	blolite - sericite - che Well fol iated at 5 to SCA wide at 5 to SCA. Upper sharp at 20 to SCA. -8.75-9.00 sect ion near and trace-18 sphalerit $-12.08-12.55$ silicified of pyrite and chalcopy	- GRAPHIIE so contains t sharp at 5 contains on with 10-1	PHYLLIIE (BS quartz ve ins to SCA, lower 158 pyrrhotite pyrrhotite and	to les act pyrite races												
12.98	41.03	LIMESTONE (L) As described 5,18-8.75 $-35.50-41.03$ linestone	dirty due	argillaceous	onent												
41.03	41.77	garnet ZONE / SEm! MASS Unit is silicitied dark white garnets. Sulphide traces of chalcopyrite	PHIDES 162	(S) contains 5% ite averaging	pink - 5% with												
41.03	41.77	-as above description				10		8246	41.03	41.77	. 74	0.2		573	4839	4	129
41.77	43.21	biotile - sericite phyl Minor quartz veining and	(BSP) zarbonate	vining at $15-2$	SiA.												

$\begin{aligned} & \text { FROM } \\ & \text { (n) } \end{aligned}$	$\begin{aligned} & 10 \\ & (\mathbf{m}) \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { IYPE } \end{aligned}$	DESCRIPTION	PERCENT SULPHIDE	$\begin{aligned} & \text { FOL } \\ & S C A \end{aligned}$	SAMPIE No.	FROM (1)	$\begin{aligned} & \text { io } \\ & \text { (n) } \end{aligned}$	LENGTH (${ }^{(1)}$	$\begin{aligned} & A g \\ & p \mathrm{~Pa} \end{aligned}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \text { Cu } \\ \text { ppin } \end{gathered}$	$\begin{gathered} M_{n} \\ p p n_{n} \end{gathered}$	$\begin{gathered} \text { Pb } \\ \text { pp } \end{gathered}$	$\begin{gathered} 2 n \\ p p n \end{gathered}$
Contains about 18 fine disseninated pyrrhot ite. tension gash infill ings near bottom of unit.															
43.21	45.05		GARNEI ZONE / SEM MASSIVE SULPHIDES (G7/SMS)												
			As described at 41.03-41.77 was good sections of siliceous banding (chert bands) and splotches of quart2.												
43.21	44.00		-as described above	15		8247	43.21	44.00	. 79	0.7		430	8121	11	212
44.00	45.05		-as above, broken core from 44.07-44.45n	5	5	8248	44.00	45.05	1.05	0.2		178	11755	<2	146
45.05	51.10		biotite - Sericite - carbonate - graphite phyllite (bscgr)												
			Unit is strongly calcareous with 15-208 carbonate stringer ve ins. Contains 1-3i pyrrhotite as coarser blebs. Fol iat ion at 5-15 to SCA. Upper contact at 20 to SCA, lower contact gradational and broken.												
51.10	55.80		LIMESTONE (L)												
			Dirty linestone like that described at $35.50-41.03 \mathrm{n}$. Minor pyrchotite (108) over 15 c : in phyll ite above at contact. Argillaceous bands give fol iat ion at $5-25$ to SCA.												
55.80	60.13		810TIIE - SERICITE - CAR8ONATE - GRAPYIIE PHYLLITE (BSCGP)												
			As described $45.05-51.10 \mathrm{~m}$. Upper contact sharp at 20 to SCA, lomer contact sharp at 10 to SCA.												
60.13	64.70		GRRNET ZONE / SEMI MASSIVE SULPHIDES (GZ/SMS)												
			As previously described 41.03-41.77w. Ent ire zone is strongly contorted and silicified and contains pyrrhot ite, chalcopyrite and traces of sphalerite. Core difficult to see as its is soaked in hydral ic oil.												
60.13	61.00		-upper 25 cn more like biot ite-sericite phyllite than mell developed garnet zone, good garnet zone below 60.38 m	20		8249	60.13	61.00	. 87	0.3		250	5041	2	322
61.00	62.00		-as general description, convoluted foliations	8	8	8250	61.00	62.00	1.00	0.2		129	15008	4	177
62.00	63.00		-pyrrhotite banded at 35 to SCA	15		8251	62.00	63.00	1.00	0.3		411	13938	8	182
63.00	64.00		-as general descriotion	8	8	8252	63.00	64.00	1.00	0.4		258	>20000	6	126
64.00	64.70		-zone ends 3t 15cn wide quartz ve in	8	8	8253	64.00	64.70	. 70	0.2		220	16883	2	120
64.70	66.38		SLICIFIED BIOTIE - SERICIIE PhYLLIE (85p)												
66.38	67.41		garnel zone / SEMI Massive sulphioes (G//SMS)												

$\begin{gathered} \text { FROM } \\ (m) \end{gathered}$	$\begin{aligned} & \text { IO } \\ & (n) \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	descriplion	PERCENT SULPHIDE	$\begin{aligned} & \text { FOL } \\ & \text { SCA } \end{aligned}$	SAMPLE No.	$\begin{aligned} & \text { from } \\ & (\boldsymbol{s}) \end{aligned}$	$\begin{aligned} & \text { Io } \\ & (\mathbf{n}) \end{aligned}$	$\underset{(\mathrm{n})}{\text { LEMGTH }}$	$\begin{aligned} & \text { Ag } \\ & \text { Ppп } \end{aligned}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	cu ppm		$\begin{gathered} \text { Mn } \\ \text { ppan } \end{gathered}$	$\begin{gathered} \text { Pb } \\ \text { Pp\\| } \end{gathered}$	$\begin{array}{r} \text { 2n } \\ \text { ppn } \end{array}$
66.38	67.41		-10-15\% garnets, silicified, 58 pyrrhot ite	5		8254	66.38	67.41	1.03	0.1			44	6103	<2	148
67.41	82.41		8IOIIIE - SERICIIE - CARbonate - Graphite phyllite (bSCGP)													
			As previously described $45.05-51.10 \mathrm{~m}$. Well fol iated at $10-15$ to SCA. Conta ins $3-58$ quartz augens and 1-38 pyrrhotite as coarser cubes up to $5 \times 5 \mathrm{ma}$, and trace-13 pyrite.													
			$-81.54-81.70$ broken core and gouge $-82.06-82.30$ broken core and gouge $-82.75-83.00$ broken core and gouge													
82.41	89.69		LIMESTONE (L)													
			Upper contact sharp at 10 to SCA, lower contact not as well defined but is ${ }^{-} 10$ to SCA.													
89.69	124.75		810tile - SERICITE - CRRBonate - GRaphite phyllite (bSCGP)													
			As previously described, 45.05-51.10n. Nunerous liny interbeds generally < 2cm, 1-28 pyrrhot ite blebs and 1-23 pyrite blebs and cubes. Weak to moderate silicificat ion throughout.													
			$-90.48-90.63$ quartz ve in and quartz flooded section $-98.52-99.95$ carbonate rich interval that has a speckled appearance (black graphite), massive looking to fol iated with fol iation at $45-90$ to SCA -109.06-115.85 sect ion has increased carbonate content and a wavy fol iation, it is also more siliceous and has a slightly higher sulphide content averaging 48 pyrite and pyrrhot ite $-115.35-115.48$ silicified section with $3-48$ reddish sphalerite as veins at - 30 to SCA - 119.30-119.80 broken core, ninor gouge, strongly graphit ic $-120.30-120.501$ iny lens -122.71-123.38 I imestone lens, upper and lower contacts sharp at 25 !o SCA													
124.75	141.77		LIMESTONE (L)													
			Massive fairly clean looking grey limestone to a dirtier looking fol iated limestone. Sol iation at 10 to SCA and defined by argillaceous bands. Upper contact sharp at 20 to $\$(A$. Unit quite competent but does have a fen small sections of fractured core.													
	14.77		END OF HOLE													

OREQUEST CONSULTANTS LTD_ DIAHOND DRILL HOLE RECORD Client BETHLEHEM Page il of 2

	6.96	OVERBURDEN (08)
6.96	7.40	BOUDERS (OB)
		First 30 Cm is liwestone then hit a granitic boulder ending at 7.40 m .
7.40	15.85	LIMESTONE (L)
		Massive looking grey linestone, some dirt ier (argillaceous) sections giving fol iated appearance at 5 to SCA
15.85	18.05	BIOTIIE - SERICITE - CARBONAIE - GRAPHITE PYYLLItE (8SCGP)
		Upper contact kind of broken but - 60 to SCA, lower contact fairly sharp at 5 to SCA. Unit has contorted carbonate veins which paralle fol iation, overall at 10-15 to SCA. Contains 1-2i pyrrhot ite blebs.

$18.05 \quad 101.88$ LIMESTONE (L)
As described at 7.40-15.85n.
-19.30-24.40 clay and nud on fractures as sporadic occurances
101.88105 .20 BLOTIIE - SERICIIE - CARBOMATE - GRAPMITE PHYLLIIE (BSCGP)

Dark banded phyllite. Upper contact fairly sharp at 25 to SCA, lower contact is more gradat ional but ${ }^{-1} 10$ to SCA. Unit contains 2-38 disseninated pyrite and pyrrhot ite. Fol iat ion at 20 to SCA with some sections at 50 to SCA.
105.20111 .85 TAN 81 IIIIE - OUARIL - SERICIIE PHYLLIE (TBP)

Unit has 30-40: tan biotite, 30-40\% quartz and 10-20: sericite.
Contains 2-3: quartz veins at $15-20$ to SCA. Upper contact at 10 to
SCA, lower contact at 30 to SCA. Foliation at $20-30$ to SCA.

OREQUEST CONSULTANTS LTD.
HOLE : : RN-92-4
PAGE : 2 of 2

FROH	10 (1)	ROCX TYPE	DESCRIP IION	PERCENI SULPHIDE	$\begin{aligned} & \mathrm{FO} \\ & \mathrm{SCA} \end{aligned}$	SAMPLE No.	from (\mathbf{n})	$\begin{aligned} & 10 \\ & (\mathbf{m}) \end{aligned}$	LENGIH (a)	$A g$	Au pob	cu pon		Pb ppı	$2 n$ $p p n$

$111.85^{\circ} 163.07$
TUFFACEOUS ANDESITE (And)
Pale to medium green colour, entire unit is moderately silicified, can barely scratch with knife. Generally wassive looking, ninor bits of tan biotite in upper part of unit. Contains 53 feldspar crystals.
$-112.93-113.40$ tan biot ite phyll ite, last 15 cm is gouge
163.07

ENO OF HOLE

FROM $\text { (} \quad \text {) }$	10 (n)	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	description	PERCENT SULPMHE	$\begin{aligned} & \text { FOL } \\ & \text { SCA } \end{aligned}$	SAMPLE No.	FROM (${ }^{(1)}$	$\begin{aligned} & 10 \\ & \text { (n) } \end{aligned}$	LENGTH (${ }^{(1)}$	$\begin{aligned} & \text { Ag } \\ & \text { ppm } \end{aligned}$	Au $p p b$	Cu ppm	Mn	Pb ppa	$2 n$ $p p m$

.. $-37.38-38.43$ contorted Biot ite-Sericite-Carbonate-Graphite Phyll ite, upper and lower contacts sharp at 5 to SCA
41.15-41.28 vuggy weathered linestone
$-41.49-41.85$ vuggy weathered linestone all snall rock chips < 1 cm wide -42.32-44.36 vuggy weathered linestone all small rock chips < cm wide 44.36-46.25 8iot ite-Sericite-Carbonate-Graphite Phyll ite, upper and lower contacts fairly sharp at 20 to SCA, foliated at $10-15$ to SCA, upper part to 44.60 m contains 88 pyrrhotite and is silicified, from 45.15 m to 46.25 is broken core with gouge and rubble

BIOIITE - SERICITE - CARBONAIE - GRAPHIIE PHYLLIIE (8SCGP)
Contains 58 quartz augens and 2-38 coarse blebby pyrrhotite whith
overgrows fol iation at 5 to SCA. Caroonate as small veins parallel to fol iat ion.
-55.55-55.80 broken core and rock chips
$-61.25-62.73$ wavy fol iat ion at 40 to SCA
tuffaceous andesile to cylorite phyllite (and)
Fol iated at 10 to SCA, has 58 Quartz ve ins
810TIIE - SERICIIE +/-CAR80NAIE PHYLLIIE (8SCP)
Uoper contact at 10 to SCA. Unit contains 2-38 pyrrhot ite blebs *hich overgrow fol iation at $10-15$ to SCA and are up to $5 \times 5 \mathrm{ma}$
71.84-73.63 Biot ite - Sericite Phyll ite with $3-58$ very fine grained disseninated pyrrhot ite

GARNEI ZONE / SEM MASSIVE SULPHIDES (G2/SMS)
Zone is silicified and has a variable sulphide and garnet content Lone averages 108 pyrrhotite but has local 10cn sections with $15-203$ pyrrhot ite. Upper contact sharp at 10 to SCA, lower contact broken.
-3s above description

Unit is mell foliated at $5-10$ to SCh, the foliation is of ten wavy.
Contains approximately 58 quartz ve ins generally parallel to fol iation
Also has 2-48 coarse pyrriot ite blebs (up to $5 \times 5 \mathrm{~mm}$) that overgron
fol iation and sone finer grained pyrhot ite that parallels folition.

-109.83-111.27 broken core, rubble, minor gouge
$111.65 \quad 116.25$
$111.65 \quad 112.50$
$112.50 \quad 113.50$
$113.50 \quad 114.50$
$114.50 \quad 115.50$
$115.50 \quad 116.25$
$116.25 \quad 129.54$

GARNEI ZONE / SEMI MASSIVE SULPHIDES (GZ/SHS)
As described $97.95-99.30 \mathrm{n}$. Sulphide content is highest to 113.04 m here it averages 208. 8elow this point sulphides drop off not icably and average about 2-48. Upper contact sharp at 15 to SCA, lower contact is more gradational. Silic if ied throughout, ninor cherty bands
-minor liay comoonent, very few garnets, sulphides mostly pyrrhot ite with trace chalcopyrite and sphalerite
-upper 54 cm has 20 -258 pyrrhot ite with trace chalcopyrite and
sphalerite, lower 46 c has 108 garnets, $1-38$ pyrrhot ite
5-88 garnets, 1-38 pyrrhot ite
5-8\% garnets, 1-38 pyrrhot it
$-5-8$ garnets, $1-38$ pyrrhot ite

8257	111.65	112.50	.85	0.9	238	13834	59	443
8258	112.50	113.50	1.00	1.0	255	>20000	31	137
8259	113.50	114.50	1.00	<0.1	190	17750	<2	138
8260	114.50	115.50	1.00	0.1	295	14289	<2	146
8261	115.50	116.25	.75	0.1	92	7148	<2	147

8 hotite-sericite - phyllite io blotite-sericite-carbonate GRAPHIIE PHYLLIIE (BSP / BSCGP)

The two lithologies are interaixed and difficult to seperate
Senerally well fol iated at 10-15 to SCA. Contains trace-38 pyrrhot ite as fine dissen inat ions and some coarser blebs which overgrow fol iation
$-122.32-122.52$ gouge and rubble and rock chios
END OF HOLE

APPENDIX II

ANALYTICAL PROCEDURES

October 24, 1991

TO:	Mr. Ian Campbell
	OREQUEST CONSULTANTS LTD.
	$306-595$ Howe Street
	Vancouver, BC V6C 2T5
FROM:	VANGEOCHEM LAB LIMITED
	1630 Qandora Styeet
	Vancouver, BC \quad V5L 1L 6

SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.

1. Method of Sample Preparation
(a) Geochemical soil, silt or rock samples were recelved at the laboratory in high wet-strength, $4^{\prime \prime} x 6^{\prime \prime}$, Kraft paper bags. Rock samples would be received in poly ore bags.
(b) Dried soil and silt samples were sifted by hand using an $\theta^{\prime \prime}$ diameter, 80 -mesh, stalnless steel sieve. The plus 80-mesh fraction was rejected. The minus 80 -mesh fraction was transferred into a new bag for subsequent analyses.
(c) Drled rock samples were crushed using a jaw crusher and pulverlzed to 100 -mesh or finer by using a disc mill. The pulverized samples wexe then put in a new bag for subsequent analyses.
2. Method of Extraction
(a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
(b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhlet to form a lead "button".
(c) The gold is extracted by cupellation and parted with diluted nitric acid.
(d) The gold beads are retained for subsequent measurement.

3. Method of Detection

(a) The gold beads are dissolved by boiling with concentrated aqua regia solution in hot water bath.
(b) The detection of gold was performed with a Techtron model AA 5 Atomic Absorption spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.
4. Analysts

The analyses were supervised or determined by Mr. Raymond Chan or Mr. Conway Chon and his laboratory staff.

Raymond Chan VANGEOCHEM LAB LIMITED

October 21, 1992

T0:	Mr. Wes Raven OREQUEST CONSULTANTS LTD. 306 - 595 Howe street vancouver, BC V6C 2T5
FROM:	VANGEOCHEM LAB LIMITED
	1630 Pandora street
	Vancouver, BC V5L 1L6
SUBJECT:	Analytical procedure used to determine hot acid soluble for 25 element scan by Inductively Coupled plasma
	Spectrophotometry in geochemical silt and soil samples

1. Method of Sample Preparation
(a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, $4^{\prime \prime} X 6^{\prime \prime}$, Kraft paper bags. Rock samples would be received in poly ore bags.
(b) Dried soil and silt samples were sifted by hand using an $8^{\prime \prime}$ diameter, 80 -mesh, stainless steel sieve. The plus 80 -mesh fraction was rejected. The minus 80 -mesh fraction was transferred into a new bag for subsequent analyses.
(c) Dried rock samples were crushed using a Jaw crusher and pulverized to 100 -mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2 Method of Digestion

(a) 0.50 gram portions of the minus 80 -mesh samples were used. Samples were weighed out using an electronic balance.
(b) Samples were digested with a 5 ml solution of HCl:HNO H : H 2 O in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
(c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with demineralized water and thoroughly mixed.
3. Method of Analyses

The ICP analyses elements were determined by using a Jarrell-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disketts.
4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

Conway Chun VANGEOCHEM LAB LIMITED

APPENDIX III

ANALYTICAL RESULTS

CLIENT: OREQUEST CONSULTANTS LTD.
ADDRESS: $306-595$ Howe St.
: Vancouver, BC : V6C 2T5

DATE: AUG 181992

JOB\#: 920076

PROJECT\#: RAIN
SAMPLES ARRIVED: AUG 171992
REPORT COMPLETED: AUG 181992
ANALYSED FOR: Au (FA/AAS) ICP

INVOICE\#: 920076 NA
TOTAL SAMPLES: 11
SAMPLE TYPE: 11 CORE
REJECTS: SAVED

SAMPLES FROM: MR. GEORGE CAVE COPY SENT TO: OREQUEST CONSULTANTS LTD.

PREPARED FOR: MR. GEORGE CAVE

ANALYSED BY: Raymond Chan
SIGNED:

REPORT MOUPER: 220076 GA	JOB NUYBER: 920018	ORENEST COMSILIMITS LTI.	PRGE 1 Of 1
SAMPLE \#	Au		
	ppb		
8216	50		
8217	30		
8218	10		
8218	30		
8220	50		
8221	20		
8222	50		
8223	20		
8224	10		
8225	10		
8226	10		

VANGEDCHEM LAB LIMITED

1630 Pandora Street，Yancouver，B．C．V5L IL6
Ph：（604）251－5656 Fax：（604）254－5717

IGAF GEDEHEMIEAL ANALYSIS

A． 5 gran sample is digested with 5 al of $3: 1: 2 \mathrm{HCL}$ to HNO_{3} to $\mathrm{H}_{2} \mathrm{O}$ at $95{ }^{\circ} \mathrm{O}$ for 90 ninutes and is diluted to 10 al with water．
This leash is partial for $\mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{K}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{P}, \mathrm{Sn}, \mathrm{Sr}$ and H ．

REPORT ： 920076 PA	OREQUEST CONSULTANTS LTD．				project：rain						DATE IN：AUS 171992				date out ald 181992			ATtention：george cavey				PAGE｜OF 1				
Sample Name	Ag	Al	As	iAu	Ba	$8 i$	Ca	cd	Co	Cr	Cu	Fe	K	Mg	Mn	Ho	Na	Ni	p	Pb	56	5 n	Sr	U	H	In
	ppm	4	ppa	ppt	ppa	ppe	$\%$	ppm	ppa	pom	ppa	2	\％	$\%$	ppa	ppm	4	ppm	$\%$	ppa	ppa	ppo	ppe	ppo	ppa	ppa
8216	0.5	2.27	く3	50	62	＜3	310	0.7	12	50	87	3.00	0.01	1.26	771	8	0.04	37	0.26	23	＜2	＜2	282	＜	く3	136
8217	0.4	4.78	＜3	30	185	3	7.53	＜0．1	19	79	97	4.82	＜0．01	2.12	1656	5	0.11	53	0.28	12	（2	＜2	176	＜ 5	＜3	132
8218	0.3	3.30	＜3	10	318	（3	4.17	＜0．1	14	36	94	3.50	＜0．01	1.25	1471	2	0.09	23	0.18	12	0	（2	121	＜ 5	13	75
8219	0.3	2.66	＜3	30	253	3	3.85	＜0．1	15	48	87	4.27	10.01	1.10	3807	1	0.02	30	0.25	12	12	＜2	111	＜ 5	＜3	97
8220	2.3	1.35	＜3	50	101	＜3	9.04	<0.1	20	44	337	110	＜0．01	0.73	7626	22	0.11	135	0.31	82	＜2	＇2	189	＜ 5	13	391
8221	0.8	0.93	54	20	117	13	5.08	10.1	15	51	228	8.39	＜0．01	0.21	8833	8	0.04	129	0.35	4	12	12	105	15	13	202
8222	0.4	3.21	3	50	65	3	1.83	60.1	25	66	73	4.83	＜0．01	0.96	589	9	0.19	84	0.07	＜2	12	＜2	59	＜ 5	（3）	139
8223	0.3	5.54	＜3	20	166	3	1.62	＜0．1	31	106	27	5.77	＜0．01	1.34	448	4	0.29	61	0.04	（2	12	（2	76	15	13	109
8224	0.2	3.46	13	10	111	3	0.10	＜0．1	26	76	5	4.87	＜0．01	1.43	268	3	0.11	63	0.04	＜2	（2	2	6	＜ 5	＜3	55
8225	0.2	2.24	＜3	10	2	13	2.61	10.1	24	49	26	2.67	（0．01	1.03	331	4	0.21	24	0.06	＜2	2	12	47	＜ 5	3	37
8226	0.2	5.02	＜3	10	226	3	1.21	＜0． 1	34	95	43	5.75	<0.01	1.42	453	4	0.25	71	0.05	＜2	¢2	亿	40	¢ 5	3	133
Minimm Detection	19.1	ij． 01	3	5	i	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	10000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000

A． 5 gran sample is digested with 5 al $3: 1: 2 \mathrm{HCl}$ to HNO_{3} to $\mathrm{H}_{2} \mathrm{O}$ at $95^{\circ} \mathrm{C}$ for 90 andes and is diluted to 10 al with water．
This leach is partial for $\mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{K}, \mathrm{H}, \mathrm{H}_{1} \mathrm{Na}, \mathrm{P}, \mathrm{Sn}, \mathrm{Sr}$ and H ．
ANALYST： \qquad

REPORT ： 920101 PA

Sample Naze	Ag	Al	As	Ba	Bi	Ca	cd	Co	Cr	Cu	Fe	k	H9	Mn	Mo	Na	Ni	p	Pb	Sb	5 n	Sr	U	H	in
	ppa	\％	pon	ppa	ppa	\％	opa	ppa	ppa	ppı	$\%$	$\%$	\％	ppa	ppa	2	ppa	\％	ppa	ppa	ppa	ppa	ppa	pps	ppe
8227	0.6	2.55	＜3	126	＜3	9.38	<0.1	27	107	310	710	＜0．01	0.72	8497	35	0.06	190	0.33	13	＜2	＜2	213	＜5	＜3	338
8228	0.3	2.30	＜3	173	（3	7.91	＜0．1	12	193	201	310	＜0．01	0.56	11357	18	＜0．01	124	0.35	4	＜2	＜2	195	＜	＜3	338
8229	0.5	1.97	49	123	＜3	6.82	＜0．1	18	84	517	710	＜0．01	0.59	7627	26	0.06	227	0.40	13	＜2	＜2	173	＜5	＜3	259
$8: 30$	0.2	2.18	＜3	154	＜3	7.09	＜0．1	16	56	137	9.69	$\langle 0.01$	0.94	10887	10	¢0．01	91	0.33	＜2	＜2	＜2	187	＜	（3	111
£231	0.1	2.77	＜3	－ 80	＜3	5.63	（0．1	20	149	144	9.58	10.01	0.64	6033	12	0.07	114	0.22	＜2	＜2	＜2	115	＜	＜3	126
8232	0.1	2.21	＜3	100	＜3	8.60	0.1	15	75	101	7.83	10.01	0.66	4371	11	0.04	87	0.24	＜2	＜2	＜2	142	＜	\｛3	138
5233	0.1	1.56	： 47	129	＜3	7.53	＜0．1	16	142	436	110	＜0．01	0.56	13486	21	0.03	173	0.36	44	＜2	＜2	181	＜ 5	＜3	293
8234	＜0．1	1.66	＜3	173	＜3	4.63	＜0．1	17	52	133	6.14	＜0．01	0.69	10979	9	＜0．01	54	0.16	13	＜2	＜2	131	＜	13	87
8235	＜0．1	3.42	＜3	366	＜3	1.46	＜0．1	8	158	55	5.58	＜0．01	1.04	2124	7	0.03	22	0.09	＜2	＜2	\bigcirc	54	＜ 5	Q	SCH_{4}
3 ECO	0.1	1.79	亿	170	＜3	3.67	0.1	15	48	97	6.22	＜0．01	0.71	10221	5	＜0．01	30	2.18	3	＜2	12	117	＜5	（3）	9
2237	0.2	1.57	亿	121	く3	5.53	10.1	14	177	171	710	20．01	0.62	14611	11	＜0．01	71	0.28	8	＜2	＜2	177	¢	＜3	132
8238	0.1	3.08	13	147	＜3	4，88	＜0．1	17	82	310	8.27	＜0．01	0.63	6850	12	0.07	100	0.22	＜2	12	12	134	＜ 5	＜	7
8239	0.1	1.92	＜3	145	＜3	4.96	＜0．1	14	231	169	5.22	＜0．01	0.68	6205	3	0.01	65	0.22	＜2	＜2	＜2	109	（5	S	54
8240	（0．1	3.10	＜3	175	＜3	4.36	＜0．1	17	81	126	5.32	＜0．01	0.73	4387	6	0.08	62	0.15	＜2	＜2	＜2	115	＜ 5	Q	65
8241	（0， 1	3.48	3	153	＜3	5.13	0.1	27	158	133	7.60	＜0．01	0.62	3278	10	0.13	B4	0.19	＜2	＜2	＜2	117	＜	6	$8:$
824	6． i	3.27	＜3	248	$\langle 3$	3.55	0.1	16	57	145	8.92	＜0．0：	1.02	4840	13	0.03	66	0.20	＜2	＜2	＜2	107	＜ 5	3	129
8×3	＜0． 1	2.07	＜3	221	3	5.50	（0．）	15	：53	145	8.60	＜0．01	0.80	9185	9	＜0．01	77	0.25	＜2	＜2	（2	131	＜	Q	10
8244	0.6	2.59	＜3	152	＜3	9.47	＜0．1	16	107	383	210	＜0．0）	0.97	8928	24	0.02	193	0.39	12	＜2	＜2	204	15	9	4.1
824.5	0.5	2.8 i	＜	16	＜3	8.43	＜0．1	24	102	388	710	＜0．01	1.03	6675	28	0.08	213	0.39	3	12	12	109	く5	3	312
3245	0.2	3.79	＜3	119	13	8.95	10.1	21	162	573	210	0，01	1．0）	4839	16	0.14	145	0.17	12	12	3	162	¢	3	12
8247	0.7	2.70	亿	45	＜3	9.12	＜0．1	22	200	430	310	10.01	0.84	8121	24	0.06	214	0.27	11	2	＜2	151	＜5	3	212
8×48	0.2	1.65	＜ 3	8	＜3	7.33	0.1	14	68	178	8.42	0.01	0.55	11755	9	10，01	90	0.27	＜2	12	2	126	＜	3	146
8245	0.3	3.47	＜3	113	＜3	5.35	＜0．1	18	115	250	110	10.01	0.99	5041	21	0.06	144	0.32	，2	＜2	＜2	119	＜	0	32
8250	0.2	0.91	＜3	5	＜3	710	＜0．1	10	119	129	5.11	＜0．01	0.39	15008	8	＜0．01	60	0.33	4	＜2	＜2	203	＜	＜3	177
3251	0.3	： 32	47	＜1	＜3	9.78	10.1	20	53	411	710	＜0．01	0.52	13938	14	＜0．01	150	0.30	B	（2	＜2	199	¢	\bigcirc	182
8252	0.4	1.12	＜3	＜1	11	8.73	＜0．1	19	143	258	7.92	10.01	0.41	120000	12	＜0．01	135	0.30	δ	<2	<2	205	is	－ 8	126
8253	0.2	1.21	3	43	＜3	8.26	＜0．1	14	45	220	6.93	＜0．01	0.47	16883	12	＜0．01	98	0.28	<2	＜2	＜2	199	＜5	（3）	120
8254	0.1	2.47	亿	163	く3	4.96	80．1	7	182	44	6.29	10．0：	0.97	6103	11	＜0．01	30	0.09	＜2	＜2	＜2	135	＜ 5	3	148
8255	0.7	3.02	＜3	31	＜3	6.96	0.1	12	103	270	210	＜0．01	0.90	17343	24	＜0．01	154	0.35	11	＜2	＜2	153	$\stackrel{5}{5}$	0	315
8258	0.6	2.81	3	＜	＜3	3.27	＜0．1	15	202	322	310	10.01	1.31	320000	24	＜0．01	149	0.33	＜2	$\bigcirc 2$	＇2	192	¢	（3）	209
8257	0.5	0.68	＜3	57	＜3	110	（0． 1	10	72	238	310	10.01	0.66	13834	23	＜0．01	90	0.29	59	＜2	＜2	636	＜ 5	3	443
8259	1.0	0.30	＜3	89	＜3	5.45	＜0．1	18	129	255	310	60.01	1.11	720000	21	＜0．01	103	0.36	31	12	＜ 2	140	45	0	137
8259	0．1	2.39	＜3	227	＜3	6.19	＜0．1	18	185	190	110	＜0．01	1.73	17750	10	＜0．01	65	0.26	＜2	＜2	2	196	\leqslant	3	138
8260	0.1	2.21	＜3	212	＜3	4.99	0.1	20	253	295	110	＜0．01	1.52	14289	12	＜0．01	75	0.24	＜2	＜2	＜2	166	（5	（3）	148
8261	0.1	1.51	亿3	175	＜3	3.75	＜0．1	11	205	92	5.48	＜0．01	1.0 i	7148	10	＜0．01	39	0.12	＜2	＜2	＜2	136	$<$	＜ 3	147
Minaum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	
Maximia Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	2000

APPENDIX IV

THIN SECTION REPORT

VPE
 Vancouver Petrographics Ltd.

JAMES VINNELL, Manager
JOHN G. PAYNE, Ph.D. Geologist
CRAIG LEITCH, Ph.D. Geologist
JEFF HARRIS, Ph.D. Geologist
KEN E. NORTHCOTE, Ph.D. Geologist
Report for: Christopher J. Wild, Goldstream Mine, P.O. Box 2970, Revelstoke, B.C. VOE 2SO
P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. VOX 1 Jo PHONE (604) 888-1323
FAX. (604) 888-3642

Job 58
September 9th, 1992

SAMPLES:

Two rock samples representing the Garnet Zone at the Rain property were submitted for petrographic examination. The samples, numbered RN 92-01 216.45-216.7 and 224.34-224.52 respectively, were prepared as polished thin sections.

SUMMARY:

The two samples are of similar macroscopic appearance, being fine-grained, laminated rocks of metasedimentary aspect.

Sample 216.45-216.7 is composed predominantly of quartz, with pale green (actinolitic?) amphibole as the principal accessory. Biotite, garnet, pyrrhotite and graphite are minor components. Feldspars are notably absent. The laminar fabric is defined by variations in grain size and relative abundance of the accessory constituents.

Sample 224.34-224.52 is composed essentially of quartz and carbonate with accessory pyrrhotite, biotite and minor garnet.

The precise origin of these rocks is debatable. They clearly show a high degree of metamorphic recrystallization, and may have originated from thinly bedded, impure, siliceous and calcareous siltstones.

The suggestion of an exhalative connection is not inconsistent with the observed petrography. The first sample somewhat resembles some variants of the feldspar-free, siliceous, sulfidic amphibolites from Echo Bay's Lupin property - rocks which most likely represent metamorphosed cherts. The second sample, with its high content of carbonate, could also be interpreted as a form of chemical sediment.

The substantial contents of sulfides (pyrrhotite, with traces of chalcopyrite, sphalerite and arsenopyrite), occurring as an intimately intergrown component within the quartz-amphibole and quartz-carbonate matrices, have the aspect of a primary (syngenetic) constituent - recrystallized along with the calc-silicate host.

Individual petrographic descriptions are attached.

(929-5867)

Estimated mode

Quartz	75
Amphibole	13
Biotite	2
Garnet	2
Carbonate	1
Epidote	trace
Pyrrhotite	5
Fe-Ti oxide	trace
Graphite	2

This is a metasedimentary rock consisting predominantly of a microgranular aggregate of quartz and accessory amphibole. A prominent, finely laminar fabric is defined by variations in grain size and/or proportions of accessory amphibole, and by the presence of abundant, close-spaced schlieren of biotite, pyrrhotite and graphite. The sectioned area also includes part of a non-laminated, quartz-rich lens.

The quartz matrix in the laminated portion typically has a grain size of 20 - 60 microns, and often shows more or less pronounced grain flattening. Occasional intercalations of slightly coarser grain size are less deformed.

The principal accessory is a pale green amphibole - possibly actinolite. This occurs intimately intergrown with the quartz in varying proportions, as foliaceous wisps and small fibrous/radiate clusters. It locally segregates as laminae in which it constitutes the predominant constituent.

The non-foliated quartz lens consists of a mosaic of grain size 50 - 200 microns, locally showing coarser, accretive recrystallization. Minor actinolite, commonly associated with carbonate, forms sporadic shreds and clumps within the quartz.

Biotite is a minor, intimately intergrown associate of the amphibole in some of the most strongly laminated zones.

Pale brown garnet forms scattered, individual grains and strings of lenticular to ovoid porphyroblasts, $0.1-0.5 \mathrm{~mm}$ in size. Garnet also occurs as a single, more concentrated lamina at one end of the slide. This consists of subhedral grains of homogenous garnet, to 1.Omm in size, mantled by "dirty", garnetized matrix (packed with wisps of Fe oxides and graphite).

The principal opaque component is pyrrhotite, typically as fine-grained flecks of grain size 10-50 microns, locally coalescing as networks and small segregations to 200 microns. It sometimes concentrates as specks within garnet porphyroblasts. Chalcopyrite, of similar textural mode, is a rare associate. The

Sample RN 92-10 $216.45-216.7$ cont.
pyrrhotite is notably fresh.
Graphite forms intermittent thin films or contorted schlieren, 5 20 microns in thickness. Tiny lamellar grains of an anisotropic (ilmenitic?) oxide are another trace constituent, oriented parallel to the sinuous foliation.

Estimated mode

Quartz	40
Carbonate	39
Amphibole	1
Biotite)	6
Phlogopite)	3
Garnet	trace
Epidote	10
Arsenopyrite	trace
Chalcopyrite	trace
Sphalerite	trace
Graphite	1

This is a rock of similar macroscopic aspect to the other sample. The sectioned portion consists of a finely laminated sequence flanking a more massive augen-like core of coarser, sulfide-poor material.

Thin section examination shows that it is made up of the same mineralogical components as the other sample, but in markedly different proportions.

Carbonate is a major constituent, present in approximately equal abundance to the quartz. Amphibole is very minor and, instead, the principal mafic constituent is biotite. Pyrrhotite is perceptibly more abundant than in the other sample, and the sulfide assemblage includes traces of arsenopyrite and sphalerite as well as (extremely sparse) chalcopyrite.

The laminated portion consists of intergrowths and segregated bands of mosaic-textured quartz and carbonate, having a general grain size range of 20 - 150 microns. The carbonate is partly reactive with dilute acid, and is probably a mixture of calcite and dolomite or ankerite. The dark schlieren consist of concentrations of fine-grained biotite and intimately intergrown pyrrhotite, with occasional graphitic partings. The biotite is partiy a normal brown variety and partly pale olive-coloured phlogopite.

Garnet occurs in some of the biotite/sulfide schlieren as thin (0.5-1.0mm), semi-continous bands. It is typically loaded with fine-grained inclusions of the other constituents. It is also seen, in more homogenous form, as rare clumps in the granular quartz/ carbonate intergrowth making up the central augen.

Pyrrhotite in this rock has a grain size of 10 - 50 microns, and occurs intimately intergrown with the matrix. It frequently shows partial segregation as networks and semi-continuous schlieren, in which sulfides from patches up to 0.2 mm (and rarely as much as 0.5 mm) in size. The finer pyrrhotite is typically in the biotite-
garnet laminae, and the coarser segregations in carbonate or quartz zones.

Arsenopyrite is seen as scattered, small, porphyroblast-like grains within the more segregated pyrrhotite. Chalcopyrite is a trace constituent, sometimes associated with pyrrhotite and sometimes as tiny independent specks in the matrix. Sphalerite is present in similar abundance, typically associated with pyrrhotite rather than chalcopyrite.

[^0]: biotite > graphite ($50-608$), sericite ($10-303$), and quartz ($10-308$). Also contains $1-38$ subhedral pyrihot ite and ninor pyrite as blebs xlmu up to $5 \times 5 \mathrm{~mm}$ which overgrom fol iation and ve in boundaries. Also ound as elongate blebs stretched along fol iation planes. Little to n carbonate in matrix except as a local ateration. Upper contact sham to to SCA. (huch steeper than anticpated). Lower contact sharp to SCA. Pyrmotie is also stretched along the quartz-carbonte ve inlets. Minor carbonate veinlets and tension gash infilings. Heak foliation parallel to tere tsaly to ite weakly to moderately magnetic. Locally there are sections of a more tan coloured biot ite.
 -112.05-112.83m quart2-carbonate flooded section with 20-25? as veins and blebs
 114.00\% a inor sphalerite
 115.36m inor folds in quart2-carbonate ve in, axes at 40 to SCA $-117.62-118.70 \mathrm{~m}$ quartz-carb flooded section, inor chlorite in ve ins and 3-48 pyrrhot ite throughout interval with trace chalcopyrite, ninor light green coloured aineral = chlorite-sericite aix
 120.01-120.33 broken fractured core, blocky
 124.33-124.68 silicified section containing 2 quartz ve ins both 2 cm wide that coalesce into one ve in containing 58 pyrrhot ite blebs, ve ins at 40 to SCA, trace chalcopyrite
 125.30-125.50n local quart2 flooding to 308 with 38 pyrr and chlorite 125.93-130.18m st rongly deformed section with phase 3 crenulat ion
 cleavage developed at 60 to SCA, strong carbonate alterat ion throughtout section, 2-38 pyrrhotite strung out parallel to foliation at 20 to SCA and as coarser blebs overgrowing fol iation and occasionally over the crenulat ion cleavage
 131.18-131.88n still deformed but intensity decreasing
 $-131.88-139.60 \mathrm{~m}$ quartz flooded sect ion with tan biot ite (208) and large clots of pale green chlorite-sericite, variable silica intensity of $20-402$ nostly as veins $1-5 \mathrm{ca}$ wide at $10-30$ to SCA
 131.88-132.10n quartz vein
 132.83-133.23. broken core, 8 na gouge at end
 135.05-135.80 302 tan biot ite, silicification decreased to 58 ve ins
 135.80-136.15 broken core, gouge and rubble with 503 recovery
 138.98-139.60m marked decrease in tan biotite and órop in silica
 $139.60 \quad 154.28$
 LIMESTONE (L)
 As previously described, 4.63-11.68m. Minor black argiliaceous bands over upper part of unit giving rise to fol iation at $10-15$ to SCA, then marked increase in the argillaceous component belom 144.69n.

