log no :	NOV 3 0 1992	-
ACTION.	an a	74. J - Constanting of the second
FILE NO:		

REPORT ON THE GEOLOGY, GEOPHYSICS, GEOCHEMISTRY AND DRILLING ON THE BEND PROPERTY

Golden Mining Division NTS 83 D/1 & 82M/16 Lat: 52°02' Long: 118°14'

- Owner: Cominco Ltd. 700 - 409 Granville Street Vancouver, B.C. V6C 1T2
- Operator: Teck Exploration Ltd. 350-272 Victoria St., Kamloops, B.C. V2C 2A2

GEOLOGICAL BRANCH ASSESSMENT REPORT

PART NF Craig Alford Greg Thomson

SUMMARY

A sequence of limestones and calcareous mica and garnet schists belonging to the Kinbasket and Tsar Creek Formations were observed across the property on either side of the Cummins River canyon.

A ground Pulse E-M survey delineated an open-ended E-M anomaly extending between lines 3+00S northward to line 22+00N. The anomaly strikes 130°, approximately coplanar with observed stratigraphy.

Narrow, strong conductive horizons coincident with the mineralized horizons were recognized by the downhole EM survey of holes TK-92-1 and TK-92-2. The surface EM anomaly correlates with mineralization encountered in the drill holes

Drilling confirmed the presence of the sulphide horizon, similar to that observed within the canyon showing, in all drill holes. The strike extent of the mineralized horizon extends through the entire Bend claims, a distance of approximately 2.7 kilometres.

The results from the 1992 Bend drilling program were encouraging. Of nine drill holes (TK-92-9 was lost in overburden), TK-92-5, TK-92-8 and TK-92-12 intersected a relatively thick sequence of sulphide bearing dolomite.

At best the mineralized horizon assayed 3.58% Zn, 0.84% Pb and 14.97 g/t Ag over 5.24 metres (TK-92-5) which includes 0.35m of 8.50% Zn, 1.78% Pb and 24.68 g/t Ag.

The thickness of the mineralized horizon appears to decrease away from the Cummins River canyon.

The sulphide horizon exhibits characteristics of a large, mineralized basinal environment, with generally decreasing width and increasing Zn/Pb ratios away from the Cummins River canyon.

RECOMMENDATIONS

Good potential for the sulphide horizon still exists within the area down-dip of holes TK-92-8 and TK-92-12 (both north and south of the Cummins River).

However, due to the sub-economic character (grade, mineral assemblage) of the sulphide horizon observed to date, only a limited drilling program at this specific area is warranted to test the mineralizations' continuity and character.

If no change in the character of the sulphide horizon is observed no further work would be recommended.

TABLE OF CONTENTS

	Summary i
	Recommendations i
1.	Introduction
2.	Location and Access
3.	Physiography and Vegetation
4.	Claim Status
5.	Previous Work
6.	1992 Program
7.	Geology7A)Regional Geology7B)Property Geology7I)Lithology8II)Structure9III)Trenches10
8.	Soil Geochemistry
9.	Geophysics
10.	Drilling13A)Results14B)Mineralization and Geochemistry20
11.	Discussions
12.	Conclusions
13.	References

TABLES

Page

Page

Table 1:	Bend Claim Group Records	2
Table 2:	Previous Work	4
Table 3:	1991 & 1992 Diamond Drill Hole Data	13
Table 4:	Geochemical Ratios	22

LIST OF FIGURES

Figure 1:	Claim Location Map 2
Figure 2a&b:	Drill Hole Location In Pocket
Figure 3:	Property Geology (1:5000) In Pocket
Figure 4:	Zn Soil Geochemistry In Pocket
Figure 5:	Pb Soil Geochemistry In Pocket
Figure 6:	Mn Soil Geochemistry In Pocket
Figure 7:	Ground Pulse E.M. Survey: Line Profiles In Pocket
Figure 8:	Contoured Total Field Magnetometer Data In Pocket
Figure 9:	VLF EM Line Profiles In Pocket
Figure 10:	Fraser Filtered In-Phase VLF In Pocket
Figure 11:	Dolomite Horizon Isopach Map In Pocket
Figure 12:	Cross Section DDH TK-92-1 (1:1000) In Pocket
Figure 13:	Cross Section DDH TK-92-2 (1:1000) In Pocket
Figure 14:	Cross Section DDH TK-92-3 (1:1000) In Pocket
Figure 15:	Cross Section DDH TK-92-4 (1:1000) In Pocket
Figure 16:	Cross Section DDH TK-92-5 (1:1000) In Pocket
Figure 17:	Cross Section DDH TK-92-7 & TK-92-8 (1:1000) In Pocket
Figure 18:	Cross Section DDH TK-92-11 (1:1000) In Pocket
Figure 19:	Cross Section DDH TK-92-12 (1:1000) In Pocket

APPENDICES

- Appendix A: Statement of Qualifications
- Appendix B: Cost Statement
- Appendix C: Certificate of Analyses
- Appendix D: Analytical Procedures
- Appendix E: Drill Hole Logs
- Appendix F: Petrographic Study
- Appendix G: Geophysical Instrumentation and Field Technique

1. INTRODUCTION

During 1992, from June through to mid September, a program of VLF, Magnetometer, surface and downhole Pulse EM geophysical surveys, soil sampling, geologic field mapping and drilling was performed by Teck on both the Cominco Bend and the surrounding MGM claim groups.

A total of ten diamond drill holes (2694.5m) were completed on the Bend property. One hole, DDH TK-92-9, was lost in overburden with no core recovery.

This report describes the programs' results and presents an interpretation of the results.

2. LOCATION AND ACCESS

The property lies on the east side of the Rocky Mountain Trench approximately 100km northwest of Golden, B.C. (Figure 1), located both north and south of the confluence of Cummins River and Columbia Reach (Kinbasket Lake). The property is located on NTS map sheet 83D1 and 82M/16, bounded by latitude's 51°59' to the south and 52°05'to the north and longitude's 118°04' to the east and 118°17' to the west.

The property is not road accessible. Helicopter services out of Golden or Revelstoke or a float plane service from Golden are available. Large freight may be brought in by a barge service out of Bush Harbour, located 50km southeast of the claim area.

The property itself is well covered by recent clear cut logging areas and logging roads which are in good driveable condition. Several are present between Cummins river and Tsar creek. Road coverage of the portion of the property lying to the north of Cummins river has been greatly increased by new roads constructed during the 1992 field season.

3. PHYSIOGRAPHY AND VEGETATION

The property lies within the Interior Wet Belt where precipitation can exceed 100 centimetres per year. Winters in the area are usually long and severe with snowfall often exceeding 9 metres. Water line of the Columbia Reach varies seasonally from approximately 730-765 metres (\approx 2400-2500 ft).

The entire property is below the treeline which is approximately at 1,970 metres. Slopes are moderate to steep.

Vegetation consists of thick stands of cedar, douglas fir and hemlock at lower elevations giving way to lodgepole pine and balsam fir above 1370 metres. For the most part the property is covered by alluvial sediments ranging in thickness from 1 to 30 metres.

4. CLAIM STATUS

The property is located in the Golden mining division. The property is 100% owned by Cominco Ltd. and currently held in trust by Teck Corporation with a option agreement for Teck to obtain a 50% interest in the property. The present Bend Group comprises 12 two-post claim units as follows:

Table 1.

Claim Data

CLAIMS	CLAIMS RECORD NO.S		EXPIRY DATE		
Bend 1-10	213889 to 213898	SEPT/06/66	SEPT/06/2002		
Bend 34 & 35	213899 & 213900	JUNE/22/67	JUNE/22/2002		
Total: 12 Units					

44

The current claim configuration for the property is shown on Figure 1.

TABLE 2 5. PREVIOUS WORK

YEAR	COMPANY	WORK	RESULTS
1940		Big Bend highway Construction	Discovered Canyon zone on Cummins river.
1949		First claims staked	Claims lapsed.
1966	Cominco Ltd.	Staked the Bend group of claims (45 units)	
1967	Cominco Ltd.	Geological mapping 240m of drilling (13 holes) Trenched main showing on either side of Cummins river	Outlined the Canyon zone to be a stratiform body of massive sulphide mineralization yielding an average width of 6.5m of 3% combined Zn-Pb & 0.25 oz/t Ag. Considered occurrence to be of 'fissure vein' type.
1968-1974	Cominco Ltd.		Cominco gradually reduced claim group to the 12 now currently being held.
1970	Laura Mines Ltd.	Geological mapping Soil sampling ≄490m of drilling (4 holes - canyon showing)	A coincident Pb-Zn geochem anomaly was outlined in the area of the known mineralized structural trend. No other geochemical trend was outlined. Expanded known width of the canyon zone to 8.6m however as a result aggregate grades are lower than Cominco's. Drill results include: Returned property to Cominco.
1979	John Leask & Assoc.	Staked the MGM and the MGM2-4 claims over area previously covered by older Cominco Bend claims. Reconnaissance geological mapping	Reinterpreted the Bend mineral occurrence to be of a shale hosted massive sulphide type similar to the Cirque and Howards Pass deposits.
1981	E&B Explorations Inc.	Geological mapping	Related the north road showing, the canyon showing and a pyrrhotite showing within the Tsar creek area to one conformable mineralized unit with a strike length of approximately 12 kilometres.
1983	Riocanex	Carried out Magnetic, VLF-EM and SE-88 Genie surveys over the MGM and the MGM 2,3 and 7 claims. Minor prospecting over the magnetic anomaly.	A magnetometer anomaly, north of the Cummins River, striking ≈110 ° was observed. A slightly weaker mag response was observed over the North Rd. showing. No VLF-EM response was observed over the known mineralization. The mag anomaly was found to be caused by narrow bedding conformable bands of disseminated magnetite within a 'dirty quartzite'.

4

PREVIOUS WORK CONTINUED

YEAR	COMPANY	WORK	RESULTS
1985	Esso Minerals Canada	Geological mapping Soil sampling VLF-EM & large loop EM-37 over north rd. showing 211.85m of drilling (2 holes near north rd. showing)	Further outlined the north road showing (3km north of canyon zone) with Zn and Pb soil geochemistry and geologic mapping. The two drill holes intersected weak Zn-Pb mineralization within a siliceous dolomite, however, results neither confirmed nor denied the presence of the massive sulphide extension to the North road area. A picture of greater geological complexity was encountered.
1987	Cominco Ltd.	Geological mapping Road access and drill site construction	Enhanced access to mineralized area south of Cummins River. Observed the stratabound mineralization over a longer strike/dip distance than previously inferred.
1991	Cominco Ltd.	≈1200m of drilling (3 holes)	Traced the mineralized dolomite unit to greater depth and southeasterly extent. DDH C-91-2 provided an 11.2m (structurallythickened) intersection of the sulphide-dolomite unit. Best intersections include C-91-1: 3.29% Zn, 0.86% Pb over 1.93m and 3.36% Zn, 0.86% Pb over 1.8m. C-91-2: 4.68% Zn, 1.02% Pb over 5.4m which includes a 1.25m section of 10.2% Zn, 2.1% Pb. C-91-3: 1.85% Zn, 0.29% Pb over 3.5m.
1991 3	Teck Expl.	Geologic Mapping Geochemical Sampling HLEM Geophysics 1873.8m of drilling Downhole UTEM survey	Mapped a similar geological sequence to that exposed within the Cummins River 13Km south to Tsar Creek. Indicated and confirmed the presence of the sulphide horizon south to 3Km from Cummins River. Intersections of the sulphide horizon were generally of sub-economic width, best intersections include: TK-91-1: 9.36% Zn, 4.22% Pb, 65.6 g/t Ag over 0.5m. TK-91-3: 4.44% Zn, 3.06% Pb, 34.6 g/t Ag over 0.4m. TK-91-4: 5.82% Zn, 0.76% Pb, 8 g/t Ag over 0.5m.

6. 1992 PROGRAM

From June 10 to Sept 20, Teck Exploration conducted a concurrent exploration program of the Cominco Bend and the surrounding White Knight MGM claims. In total, 72 field days were spent examining the Bend property.

Work by Teck Exploration on the Bend Property consisted of the following:

1. Establishment of 9,239 metres of new gridlines, both north and south of the Cummins River.

2. 9,260 metres of ground Pulse E-M surveys conducted both north and south of Cummins River (Pacific Geophysical Surveys).

3. Collecting of 132 soil samples on the north side and 53 soil samples on the south side of the property.

4. A total of 6,905 metres of concurrent ground Magnetometer and VLF surveys, covering 3,345 metres of gridlines on the north side and 3,560 metres of gridlines on the south side of the property.

5. Downhole Pulse E-M surveys on diamond drill holes TK-92-1 and TK-92-2 (Pacific Geophysical).

6. Trenching of Line 0+00 sulphide occurrence.

7. Joint payment with Forestry Service in the completing of new access roads north of the Cummins River.

8. Geologic mapping (1:5000) of exposure along access roads and grid lines.

9. Relogging and sampling of Laura Mine drill core (located on line 13+00N, 1+00E).

10. Diamond drilling of 10 holes totalling 2694.5 metres.

Drill hole locations are shown on Figure 2a & 2b.

Drill core samples were analyzed by Rossbacher Labs of Burnaby, B.C. and by Eco-Tech Labs of Kamloops, B.C.

7. GEOLOGY

A. Regional

Regionally, the property lies on the west limb of a major anticlinorium and is bounded to the west by the Purcell Thrust Fault.

The property is in an area of dominantly Lower to Mid Cambrian miogeosynclinal rocks represented by three main lithological elements: the Mid to Upper Cambrian Kinbasket Limestones and the Mid to Lower Cambrian Tsar Creek metapelites of the Chancellor Group and the Lower Cambrian Quartzites of the Gog Group.

Metamorphic grade throughout the property ranges from lower to upper greenschist facies up to amphibolite or garnet-staurolite-kyanite grade. Muscovite, biotite, almandine garnet and cordierite are common metamorphic minerals. Kyanite and sillimanite were observed in a few localities.

Previous depositional environment interpretation (Teck 1991) of the area has related the Tsar Creek Formation to be a product of an influx (orogenic?) of pelitic material into a quiescent platform-margin calcareous-chert basin (Gog group lithologies). With the cessation of pelitic deposition the carbonate platform environment of the Kinbasket Formation developed.

B. Property Geology

Significant overburden and forest coverage throughout the area severely limit outcrop exposure. Existing and newly constructed logging roads assisted greatly in providing outcrop exposure and drill access to the mineralized horizon.

Geologic mapping at 1:5000 (Figure 3) revealed similar lithologies to those observed within the Cummins River Canyon. Investigation indicates the conformable sequence of Kinbasket Limestones, Tsar Creek metapelites and Gog Group lithologies are correlatable across the property.

44.00

I) Lithology

Gog Group

The Gog group is Lower Cambrian in age and consists of three formations, from youngest to oldest: Mahto, Mural and McNaughton. For the purpose of this investigation Gog group lithologies have not been subdivided.

In the property area this sequence consists of milky to greyish white quartzite, light grey to pale pink micaceous quartzite, thinly laminated light grey to pink quartzofeldspathic schists, chert, interbedded biotite and garnet schists and a greyish white to light buff coloured marble.

Chancellor Group

The Tsar Creek and Kinbasket Formations of the Chancellor group are recognized to be Middle Cambrian in age. Due to structural thickening, stratigraphic thicknesses are hard to establish. The upper Tsar creek-lower Kinbasket contact is gradational and thus its placement is very much subjective.

Tsar Creek Formation

Beginning at the base, the Tsar creek formation is dominated by dark grey-brown, noncalcareous pelitic schists of varying argillaceous component with lesser interbedded siliceous schists. Lithologies observed include biotite schists, garnet-biotite schists and garnet-staurolite schists and sericitic siliceous schists (altered muddy cherts).

Upwards, the Tsar Creek Formation hosts a crudely stratabound sulphide horizon of variable width bounded by relatively distinct hanging and foot wall lithologies. The sulphide mineralogy is simple with pyrrhotite, pyrite, sphalerite and galena predominating. Lithologies associated with the mineralized horizon, from hanging wall to foot wall are; Very fine grained, grey cherts and waxy, yellow-grey-green quartz-sericite schists, weakly siliceous, brown weathering, grey manganiferous dolomites, siliceous sericitic dolomitic schists and fine grained, dark grey to grey, argillaceous garnet schists and siliceous sericitic pelitic schists.

Such lithologies may relate to metamorphosed cherts, carbonates and argillites deposited within a cratonic margin basin.

Upwards from the mineralized zone the Tsar Creek rocks are dominated by light grey to grey-brown pelitic schist of variable metamorphic grade (the assemblage may reflect original bulk composition) and calcareous component. Lithological units observed were calcareous muscovite, biotite, garnet and cordierite schists, with lesser amounts of micaceous (often cordierite bearing) limestones and non-calcareous pelitic schists.

Kinbasket Formation

The Kinbasket Formation is dominated by light grey to grey, thinly laminated, sandy to silty limestones often with varying amounts of intercalated pelitic material. Interstratified beds of calcareous pelitic sediments from 2-30m in thickness occur within the limestones. Regularly banded, light grey-dark grey (carbonaceous \pm graphite laminae), limestones are also recognized within the formation.

The limestones have been metamorphosed to impure marbles and pelitic material within the limestones has formed mica, garnet and cordierite. Similarly, the interstratified pelitic layers have been metamorphosed to calcareous biotite-muscovite, garnet-biotite and garnet-cordierite-biotite schists. Under the local metamorphic grade the Kinbasket limestones generally appear as a rusty to buff weathered, biotitic and locally garnet bearing grey unit.

A sequence of creamy white cherts, grey-green muddy cherts, quartzo-feldspathic schists, dark grey to grey-brown garnet-mica schists and garnet-staurolite-biotite schists with minor interbeds grey to dark grey limestones and magnetite-bearing tuffs was observed within the Cummins canyon and in outcrop just west of the Bend claims. This sequence of rocks may conformably overlie the Kinbasket Formation or may be fault bounded to the sequence.

II) Structure

Three phases of deformation are recognized within the area. The dominant structures within the Kinbasket and Tsar Creek rocks are the second phase (F_2) tight to isoclinal asymmetric step-like folds with an associated axial planar (S_2) cleavage near parallel with the average long limb orientation. First phase folds (F_1) are isoclinal and may be observed on a single layer scale. Third phase structures (F_3) are recognized by the rotation of linear (L_2) fabrics and curvilinear F_2 fold axes.

Lithologies of the Kinbasket and Tsar Creek Formations generally strike northwestsoutheast and dip 50°-60° southwest.

Off the Bend claims to the north, structures within the Kinbasket and Tsar Creek Formations are observed to be more gently dipping (15°-35°) and the local topography often presents a dip-slope face for the Tsar Creek lithologies.

The complex relationship between the Tsar Creek and Kinbasket Formations north of the Bend claims is mainly due to a flattening of the strata and dually plunging fold structures.

The sequence of cherts, quartzofeldspathic schists, metatuffs and dark grey limestones which occurs within the Cummins River canyon and along the Columbia Reach north of the Cummins river (see Figure 3), is interpreted as being fault bounded to the Kinbasket and Tsar Creek stratigraphy. Within the fault boundary, lithologies strike approximately 110° and dip moderately 45-55° toward the South-South-West. This fault bounded strata is extended south of the Cummins River approximately to line 12+00S where the fault continues under the Columbia reach.

III) Trenches

A hand trench was excavated on Line 0+00 near station 3+75E.

The trench exposed a thin, yellowish-grey, bed of dolomite and overlying quartz-sericite schist and chert rocks. Very thin laminations of pyrite and sphalerite and minor galena were observed within the units. No samples were taken.

8. SOIL GEOCHEMISTRY

Mattock soil sampling was carried out selected portions of the north and south side grid area. Sample interval was generally 25m. A total of 132 and 53 samples were collected from the north and south grid areas respectively and examined by 30 element (Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Sr, Ti, U, V, W, Y, Zn) ICP analysis. Samples were collected from the 'B' horizon which generally occurred at a depth of 15 to 20cm. All analyses were conducted by Eco-Tech Laboratories in Kamloops, B.C. For a complete list of results see Appendix C for certificate of analyses. Analytical procedures are included in Appendix D.

Sample locations and geochemical results for zinc, lead and manganese are displayed on Figures 4, 5 and 6 respectively.

Slightly elevated soil geochemical values for Zn, Pb and Mn are observed at easternmost grid stations south of Cummins River, from lines 0+00 to line 4+00N. Near station 3+75E, line 0+00, high geochem values occur for all three elements. Within the area south of the Cummins River, the elevated soil geochem results are generally coincident with the surface trace of the dolomite horizon (see Figure 3).

Soil geochem results from lines 13+00N to 18+00N, north of the Cummins River, display anomalous results, but do not tend to outline the observed surface trace of the mineralized stratigraphy. Overburden within the area is generally much thicker than that observed south of the Cummin River and may mask true surface geochemical trends.

44.14

9. **GEOPHYSICS**

Several geophysical surveys were conducted. The down hole and ground Pulse E-M survey was conducted by Pacific Geophysics of Vancouver, B.C. The Magnetometer and VLF geophysical surveys were conducted by Teck personnel.

For the Pulse EM survey, the association of pyrrhotite, an excellent conductor, with the lead-zinc mineralization was inferred to indicate areas of increased base metal accumulations.

The ground Pulse EM survey delineated an open-ended E-M anomaly extending between lines 2+00S, through the Cummins River canyon, northward to line 22+00N (Figure 7). The trace of the anomaly is continuous and appears coincident with mineralization encountered in the 1991 Cominco diamond drill holes. The trace of the updip high and low frequency EM data strike approximately 130°, coplanar with observed stratigraphy.

A downhole Pulse EM survey was employed in an attempt to locate any off-hole response which may reflect concentrated mineralization. Two 1992 boreholes, TK-92-1 and TK-92-2 (see Figure 2a for location) were surveyed with the EM system utilizing separate loop configurations.

The survey confirms the presence of a strong E-M anomaly coincident with the encountered mineralization. Neither drill hole produced any significant off-hole response.

A full report and interpretation of the Pulse EM geophysics is included in Appendix F.

Magnetometer and VLF surveys were conducted over selected portions of the grid both south and north of Cummins River.

The contoured mag results (Figure 8), on the south side grid displayed a high mag response near to the sulphide horizon at the easternmost extent of lines 0+00 to 6+00N. North of Cummins River the area presents a very broad moderate mag response. The weak mag high occuring on line 14+00N, 7+00E may be due to the mineralized horizon.

Figure 9 presents the individual VLF line profiles conducted over the grid area. Figure 10 presents contoured Fraser filtered VLF data. North of the Cummins River a high VLF EM response (see Figure 10) from 4+00E to 7+00E on lines 13+00N to 16+00N appears to correspond to the results from the ground Pulse EM survey. Within this area the sulphide horizon is well defined by electromagnetic surveys. South of the Cummins River, two high VLF EM fields exist. The response striking roughly 130° from line 6+00N, 2+00W to line 0+00, 3+75W is coincident with the results from the ground Pulse EM survey and may outline the sulphide horizon. The high response nearer to the baseline may be the result of the sulphide horizon or from local steep topography.

10. DIAMOND DRILLING

Ten diamond drill holes were cored for a total of 2691.44 metres. Drilling was carried out by Lone Ranger Diamond Drilling of Lumby, B.C. Selected portions of the NQ (1&7/8) core were split and sent to Eco-Tech Labs in Kamloops, B.C. (holes 1-3) and Rossbacher Labs in Burnaby, B.C. (holes 4-12). A total of 159 samples were collected and analyzed; all for 30 element by ICP; 133 were assayed for Ag, Pb and Zn, and 6 assayed for Au. Complete results are listed in the certificates of analyses in Appendix C.

Drill hole locations are plotted on Figure 2a & 2b and Table 3 summarizes locations and data for the 1991 and 1992 Bend drill programs. Core is currently being stored on the property. Core recovery averaged 100%-90%.

TABLE 3

Hole No.	Grid Location	Elevation (metres)	Azimuth	Dip	Length (metres)	No. of Samples			
	1991 Drilling								
C-91-1	6+91N, 2+34W	975	12*	-60°	308.8				
C-91-2	6+20N, 1+26W	1010	10*	-60*	303.9				
C-91-3	5+34N, 2+73W	995	18*	-60*	453.3				
	1992 Drilling								
TK-92-1	2+00N, 3+75W	1007	35*	-60*	392.9	6			
TK-92-2	2+00S, 2+95W	1045	35*	-75*	324	33			
TK-92-3	4+00N, 2+50W	1008	35*	-45*	346.9	10			
TK-92-4	13+83N, 4+00E	915	40*	-60*	279.19	4			
TK-92-5	13+67N, 5+00E	925	70*	-60*	229.82	27			
T K-92-7	14+75N, 4+00E	930	30*	-50*	227.08	2			
TK-92-8	14+75N, 3+99E	930		-90*	314.6	30			
TK-92-9/9A	13+82N, 3+21E	920	100*	-70*	36.27/21.95	_			
ТК-92-11	15+70N, 4+30E	945	40*	-65*	211.83	5			
Т К-92-12	12+78N, 3+88E	885	90* * s	-70*	306.9	42			
				Total	2691.44	159			

Diamond Drill Hole Data

Objectives of the drill program were:

1) To define and trace the sulphide horizon to the northwest and southeast from Cummins canyon showing and previous drill intersections.

2) To examine the potential for the horizon to increase in grade and thickness.

The target stratigraphy, the Kinbasket and Tsar Creek Formations were intersected within all drill holes.

Where the mineralized horizon occurred, a hanging wall sequence of calcareous garnet schists, quartz-sericite schists and cherts and a foot wall sequence of argillaceous garnet schists and micaceous quartzites was observed. Numerous minor folds were observed within all horizons.

Complete drill logs are included in Appendix E. A brief description of each drill hole with best mineralized intersections follows.

A) Results

TK-92-1 (Figure 12)

Objective: To test the character of the sulphide horizon between the 1991 Cominco diamond drill holes and the MGM 1991 drill holes TK-91-1 and TK-91-3.

Result:

0-10.7; Overburden.

10.7-188.15; Grey micritic Limestone with Garnet-mica Schist \pm cordierite interbeds.

188.15-319.3; Interbedded micritic Limestone, calcareous Cordierite Schist and Garnet-cordierite-mica Schist.

319.3-327.35; Chert w. trc. suphide lamellae.
327.35-365.65; Quartz sericite schist w. trc. sulphide lamellae.
365.65-369.7; Grey Dolomite w. trc.-minor sulphide lamellae.
369.7-370.1; Siliceous dolmitic Schist.
370.1-376.3; Garnet-muscovite-biotite Schist.
376.3-377.75; Siliceous sericitic Schist.
377.75-392.9; Siliceous Garnet-mica Schist.

Best results include:

Sample No.	From	То	Length	%Zn	%Pb	g/tAg
106020	319.96	320.2	0.24	3.46	1.38	15.2
106021	320.2	321.3	0.70	3.72	0.31	4.2

TK-92-2 (Figure 13)

Objective: To test the sulphide horizon at a similar structural position as TK-91-1.

Result:

0-3.0; Overburden.

3.0-62.9; Grey micritic Limestone, strongly banded @ 25.2-62.9.

62.9-97.5; Calcareous Garnet-mica-cordierite Schist.

97.5-235.9; Grey micritic Limestone w. narrow calcareous pelitic schist (garnet, cordierite).

235.9-263.2; Calcareous Garnet-mica Schist ± cordierite

263.2-279.1; Grey Chert w. minor isolated sulphide lamellae, msv. band from 273.4-273.9.

279.1-295.6; Quartz sericite schist w. trc. suphide lamellae. 295.6-305.0; Dolomite w. trc. to isolated sulphide bands. 305.0-307.5; Siliceous dolomitic Schist.

307.5- 324.0; Garnet-mica Schist.

Best results include:

Sample No.	From	То	Length	%Zn	%Pb	g/tAg
106036	273.4	273.9	0.50	8.28	2.24	30.9
106037	295.55	296.5	0.95	3.72	0.31	4.2

TK-92-3 (Figure 14)

Objective: To test the sulphide horizon in a similar structural position as Cominco's trenches and the up-dip expression of the horizon.

Result:

0-16.1; Overburden.

16.1-40.95; Banded 'zebra' Limestone.

40.95-124.8; Biotite Schist \pm garnet \pm cordierite with varying calcareous component and minor amounts of micaceous limestone and dolomite porphyroblasts.

124.8-200.4; Grey limestone \pm cordierite with interbedded micaceous limestone and biotite schist \pm garnet.

200.4-295.23; Calcareous Mica Schist \pm garnet \pm cordierite porphyroblasts with interbeds of grey limestone and cord. limestone.

295.23-299.04; Siliceous Garnet Schist.

299.04-320.5; Quartz-sericite schist with minor Po & Py with a grey chert interbed.

320.5-325.76; Mineralized Dolomite.

DDH TK-92-3 continued

325.76-326.25; Sericitic Dolomite Schist.
326.25-331.22; Dark grey, Garnet Schist.
331.22-333.67; Siliceous sericitic Schist.
333.67-346.86; Garnet-biotite schist with increasing amounts of staurolite

±phlogopite downhole.

Best results include:

Sample No.	From	То	Length	%Zn	%Pb	g/tAg
106049	320.5	321.4	0.90	1.93	0.46	7.0
106050	321.4	321.85	0.45	1.98	0.55	6.8

On the basis of the mineralized intersections observed within the 7 holes drilled by Teck (4 on the MGM claim group), 3 holes drilled by Cominco and 2 holes drilled by Laura Mines south of the Cummins River canyon showing and the promising geophysical target on the north side of the Cummins canyon, the drilling program switched its emphasis towards the north side of the property.

TK-92-4 (Figure 15)

Objective: To test the sulphide horizon north of the Cummins River canyon showing.

Result:

0-16.61; Overburden.
16.61-50; Calcareous Biotite Schist ±Garnet ±Cordierite\
50-80.58; Calcareous Biotite-dolomite Schist with interbedded limestone
80.58-91.23; Grey limestone with interbedded micaceous limestone
91.23-101.19; Garnet-dolomite-mica Schist
101.19-109.78; Grey limestone
109.78-157.48; Drk grey Chloritic Garnet Schist.
157.48-228.66; Calcareous Garnet-mica Schist ±Cordierite with lesser interbeds
of Limestone-cordierite Schist.
228.66-237.06; Quartz-sericite Schist.

237.06-239.14; Mineralized Dolomite.
239.14-239.63; Siliceous sericitic Dolomite Schist.
239.63-261.83; Siliceous sericitic Pelitic Schist.
261.83-265.25; Dark grey, Garnet-biotite Schist.
265.25-277.9; Siliceoust sericitic Pelitic Schist.
277.9-279.19; Garnet-staurolite-biotite Schist.

TK-92-4 Best results include:

From	То	Length	%Zn	%Pb	g/tAg
237.06	237.56	0.50	1.28	0.44	4.54
237.56	238.18	0.62	1.78	0.48	3.97
238.18	238.66	0.48	3.42	0.66	6.24
238.66	239.14	0.48	2.06	0.68	10.21
	From 237.06 237.56 238.18 238.66	FromTo237.06237.56237.56238.18238.18238.66238.66239.14	FromToLength237.06237.560.50237.56238.180.62238.18238.660.48238.66239.140.48	FromToLength%Zn237.06237.560.501.28237.56238.180.621.78238.18238.660.483.42238.66239.140.482.06	FromToLength%Zn%Pb237.06237.560.501.280.44237.56238.180.621.780.48238.18238.660.483.420.66238.66239.140.482.060.68

TK-92-5 (Figure 16)

Objective: To test the sulphide horizon between the up-dip low frequency edge and the up-dip high frequency edge of the EM conductor close to the canyon.

Result:

0-2.13; Overburden
2.13-4.25; Grey Limestone.
4.25-31.4; Calcareous Mica-cordierite Schist.
31.4-50.4; Grey Limestone.
50.4-117.7; Garnet-mica-cordierite Schist w. minor interbedded limestone.
117.7-149.6; Limestone w. lesser interbedded Garnet-mica-cordierite Schist
149.6-184.25; Garnet-mica-cordierite Schist.
184.25-192.4; Quartz sericite schist w. trc. sulphide lamellae.
192.4-199.7; Dolomite- strongly mineralized w. msv. to semi-msv. sulph.
199.7-209.55; Dolomite- sparsely mineralized w. py+sph. bands to 0.5 m.
209.55-211.1; Sericitic siliceous Dolomitic Schist.
211.1-221.7; Garnet-biotite Schist.

Best results include:

Sample No.	From	То	Length	%Zn	%Pb	g/tAg
81715	193.21	1 93.64	0.43	5.00	1 .64	21.94
81719	195.10	195.36	0.26	6.48	1.30	28.06
81721	196. 18	196.51	0.33	8.36	1.28	17.83
81724	197.53	197.88	0.35	8.30	1.78	24.68
81729	200.35	200.6	0.25	4.22	1.04	14.4

A weighted average from 193.21m to 198.45m (5.24m) yields 3.58% Zn, 0.84% Pb and 14.97 g/t Ag.

TK-92-7 (Figure 17)

Objective: To test the up-dip low frequency edge of the EM conductor.

Result:

0-20.55; Overburden.

20.55-106.98; Grey cordierite bearing limestone with interbedded calcareous Biotite Schist \pm garnet \pm cordierite porphyroblasts.

106.98-204.33; Calcareous Garnet-biotite Schist \pm cordierite \pm dolomite porphyroblasts with interbedded micaceous limestone.

204.33-209; Quartz-sericite Schist. 209-210.56; Mineralized dolomite. 210.56-211.88; Siliceous sericitic Dolomite Schist. 211.88-214.68; Dark grey, Garnet-biotite Schist.

214.68-227.08; Siliceous sericitic Pelitic Schist.

Best results include:

Sample No.	From	То	Length	%Zn	%Pb	g/tAg
81743	209.0	209.45	0.45	3.07	0.83	10.97

TK-92-8 (Figure 17)

Objective: To test the down dip potential of the sulphide horizon.

Result: 0-24.5; Overburden.

24.5-178.8; Micaceous Limestone with 2-20m interbeds of calcareous Biotite Schist \pm cordierite \pm garnet porphyroblasts.

178.8-256.0; Calcareous Biotite-cordierite Schist \pm garnet with 2-20m interbeds of cordierite bearing Limestone.

256-257.35; Grey chert with thinly laminated Po, Py & Sph.
257.35-258.94; Grey siliceous unit with disseminated Po & minor Sph.
258.94-277.2; Quartz-sericite Schist.
277.2-294.24; Mineralized Dolomite.
294.24-300.5; Siliceous sericitic Dolomite Schist.
300.5-301.8; Dolomite Schist.
301.8-214.55; Sericitic siliceous Pelitic Schist.

Best results include:

Sample No.	From	То	Length	%Zn	%Pb	g/tAg
18502	256.95	257.35	0.40	3.04	0.50	10.9
18503	257.35	258.65	0.65	2.26	0.32	7.88
18513	280.55	280.80	0.25	6.10	0.32	1 3.7

TK-92-9

Objective: To test the down dip extension of mineralization observed in TK-92-5.

Result: Two attempts were made at coring the hole, TK-92-9 was terminated at 36.27m and TK-92-9A was terminated at 21.95m due to technical problems and depth of overburden.

TK-92-11 (Figure 18)

Objective: To test the strike length of the sulphide horizon.

Result:

0-16.5; Overburden

16.5-81.63; Interbedded grey limestone, micaceous limestone with calcareous garnet - mica schist

81.63-98.75; Staurolite-cordierite-garnet-mica schist
98.75-183.75; Interbedded cordierite-garnet-mica schist with grey limestone
183.75-184.42; Mixed quartz sericite schist to micaceous chloritic schist
184.42-190.3; Quartz sericite schist
190.3-190.42; Massive sulphide band (po.,py.,sph.)
190.42-191.2; Dolomite w. minor sulphide lamellae/bands
191.2-191.7; Dolomitic quartz sericite schist
191.7-211.8; Siliceous biotite-garnet schist

Best results include:

Sample No.	From	То	Length	%Zn	%Pb	g/tAg
18533	190.15	190.43	0.28	1.86	0.52	6.86

TK-92-12 (Figure 19)

Objective: To test the down dip potential of the sulphide horizon close to the north edge of the canyon.

Result:

0-9.75; Overburden

9.75-46.25; Grey Limestone to Micaceous Limestone with 2-3m interbeds of calcareous Biotite Schist \pm garnet.

46.25-80.3; Calcareous Garnet-biotite Schist ± dolomite porphyroblasts.

80.3-164.48; Grey Limestone to Micaceous Limestone with interbedded calcareous Biotite Schist \pm cordierite.

164.48-245.19; Calcareous Garnet-biotite Schist \pm cordierite \pm kyanite with interbedded Micaceous Limestone. Schist unit becomes sericitic at lower contact.

DDH TK-92-12 continued

245.19-271.12; Quartz-sericite Schist.
271.12-293.83; Mineralized Dolomite.
293.83-294.3; Sericitic Dolomite Schist.
294.3-306.9; Siliceous sericitic Pelitic Schist.

Best results include:

Sample No.	From	То	Length	%Zn	%Pb	g/tAg
18571	285.08	285.78	0.70	5.10	1.34	10.98
18577	289.85	291.22	0.37	2.48	0.38	4.12

B) Mineralization and Geochemistry

A crudely stratiform sulphide horizon is contained primarily within the manganiferous dolomites and quartz-sericite schists of the Tsar Creek Formation. Current and previous drill efforts have proven the existence of the sulphide bearing horizon across the property (a ≈ 2.8 Km strike length) and over 900m of down-dip extent.

Dominant sulphides are pyrrhotite, pyrite, sphalerite and galena with minor occurrences of chalcopyrite.

Sulphides typically occur as;

1) massive very fine grained bands of primarily pyrrhotite with lesser sphalerite yielding approximately 1.5-8.0% Zn, 0.5-2.3% Pb and 7-30 g/t Ag.

2) 0.3-1.0cm laminated bands of pyrite, sphalerite and minor galena yielding approximately 0.15-1.4% Zn, 0.05-0.35% Pb and 1.5-4.5 g/t Ag.

3) stringers of pyrite, galena and minor sphalerite within quartz veins/bands yielding approximately 0.2-0.4% Zn, 0.1-0.25% Pb and 1.5-5.3 g/t Ag.

4) massive bands of course grained pyrite within interstitial sphalerite yielding approximately 1.0-5.0% Zn, 0.25-1.25% Pb and 2.0-25 g/t Ag.

Porphyroblastic magnetite was also observed in several localities. The magnetite is thought to have been developed by pyrrhotite breaking down in the presence of oxygen.

Current and previous drilling by Teck has, to date, revealed widths of 0.2-15.0m for the dolomite horizon and 0.2-3.0m for the massive sulphide horizon on the Bend property. Increased widths and/or sulphide content will be required before the sulphide horizon is considered economic.

A petrographic description, by Vancouver Petrographics Ltd. of Fort Langley, B.C., of the massive sulphide horizon encountered in DDH TK-92-2 is included in Appendix F.

11. **DISCUSSIONS**

The sulphide horizon and host lithologies of the Bend claims are indicative of a sedimentary exhalative deposit type. Geological mapping, geophysics and drill efforts have all succeeded in defining a folded sheet-like sulphide horizon of considerable strike length and down dip extent.

Mineralization is usually contained within the quartz-sericite schist and manganiferous dolomite horizons. Typical of 'sedex' style mineralization, the lateral dimensions of the sulphide zone have proven to be much greater than its thickness.

To date, the character (grade and thickness) of the sulphide horizon has been typically subeconomic, it is necessary to examine the acquired data in order to locate areas which could produce economic width and/or grades of mineralization.

Favourable areas for increased sulphide potential within 'sedex' deposits usually occur within second order (sub-basins) and/or proximal to the exhalative source.

Within first order basins, abrupt changes in sedimentary facies and thicknesses reflect the presence of sub basins. Typically, the whole sequence containing the stratiform mineralization is thickest at a point adjacent to the massive sulphide ore.

Lateral and/or vertical zonation of Pb-Zn may exist as a result of rapid cooling and dilution of the hydrothermal solution by sea water near the discharge zone and the consequent precipitation of minerals in a sequence according to their solubilities. Subsequently, a lateral zonation of Cu-Pb-Zn-(Ba) and a vertical zonation of Cu-Zn-Pb-(Ba) away from the discharge zone is observed. The Zn/Pb ratio gradually increases distally.

Thus observing facies thicknesses and chemical ratios present two possible methods for locating areas of increased potential for the hosting of economic lead-zinc mineralization.

A true thickness, plan view isopach map of the dolomite horizon (Figure 11) was constructed for all Bend drill intersections (including the 1970 Laura Mine intersections). The dolomite horizon has been rotated to the horizonal about a line striking 130° passing through the horizon at the Cummins River canyon water level. Data from the line 0+00 trench provides the thinning contours to the east. The dolomite horizon in the Cummins River canyon at water level was plotted as 7m thick (after Reddy and Godwin 1986). Apparent from the section is that the dolomite appears to be thickest toward the west (down dip), just north of the canyon, and thin towards the north and south. Thick areas of the dolomite may reflect structurally thickening or primary deposition.

Chemical parameters controlling the origin and deposition of 'sedex' style deposits are discussed by Lydon (1983). Table 5 presents a sample of metal ratio data from drill hole intersections. The ratios are generally calculated from the fine grained, massive sulphide horizons encountered within the Bend drill holes. This horizon (which is not necessarily the richest) was chosen as it may represent one complete exhalative cycle.

Hole	Sample	Zn	РЬ	Fe	Ag	Zn/Pb	Zn/ Zn+Pb	Fe/ Fe+Zn	Fe/ Fe+Zn+Pb	Pb/ Pb+(Ag*1000)
92-1	106024	0.94	0.19	10.41	1.70	4.95	0.83	0.92	0.90	0.53
92-2	106036	1.78	0.33	8.95	5.60	5.39	0.84	0.83	0.81	0.37
92-3	106049	1.93	0.46	8.49	7.00	4.20	0.81	0.81	0.78	0.40
92-4	81710	1.72	0.48	13.25	4.80	3.58	0.78	0.89	0.86	0.50
92-5	81717	3.66	1.02	15.19	1 2 .10	3.59	0.78	0.81	0.76	0.46
92-7	81743	3.07	0.83	11.7	10.97	3.70	0.79	0.79	0.75	0.43
91-8	18504	1.80	0.22	13.10	5.48	8.18	0.89	0.88	0.87	0.29
92-11	18533	1.86	0.52	7.78	6.86	3.58	0.78	0.81	0.77	0.43
92-12	18571	5.10	1.34	27.90	10.98	3.81	0.79	0.85	0.81	0.55

Table 5. Metal ratios for the MGM sulphide horizon

The Zn/Pb ratios are plotted along with the dolomite thickness on the isopach contour map (see Figure 11). The Zn/Pb ratios are generally lowest (reflecting a proximal locality) near to the canyon and increase (reflecting a distal environment) toward the north and south. This correlation suggests that the area about the Cummins River canyon may hold the best potential for economic mineralization.

Zn/Zn+Pb ratios for the sulphide horizon are noted to generally fall within the range from 0.7-0.9. Lydon (1983) accredits such a range to deposits of medium size formed from hydrothermal solutions mobilized from maturely-leached reservoirs. Deposits with Zn/Zn+Pb ratios less than 0.7 tend give rise to deposits with the highest quantities of ore.

Deposits with Fe/(Fe+Zn+Pb) ratios greater than 0.7 are considered iron rich.

The Pb/Pb+(Ag*1000) ratios tend to be relatively constant (between 0.4-0.5) for the property which may indicate the general dependency of the amount of silver on the abundance of lead.

Fluid temperature, oxygen fugacity, sulphur fugacity, brine salinity, availability of reduced sulphur and metal content of source rocks are some of the numerous variables that should be considered in assessing the sulphide body. However, within the scope of our investigation, facies thickness and metal ratios appear to act as a reasonable predictor for results.

-

11. CONCLUSIONS

A sequence of limestones and calcareous mica and garnet schists belonging to the Kinbasket and Tsar Creek Formations were observed across the property on either side of the Cummins River canyon.

Zn, Pb and Mn soil geochemistry was effective in discerning the surface trace of the sulphide horizon south of Cummins River. Due to thick overburden cover, the soil geochemical survey was not effective on the property north of the river.

A ground Pulse E-M survey delineated an open-ended E-M anomaly extending between lines 3+00S northward to line 22+00N. The anomaly strikes 130°, approximately coplanar with observed stratigraphy.

Narrow, strong conductive horizons coincident with the mineralized horizons were recognized by the downhole EM survey of holes TK-92-1 and TK-92-2. The surface EM anomaly correlates with mineralization encountered in the drill holes

The sulphide horizon at surface produced a definable mag signature south of Cummins River.

The results from the VLF survey produced anomalous results roughly coincident with the trace of the anomaly produced by the ground Pulse EM survey.

Drilling confirmed the presence of the sulphide horizon, similar to that observed within the canyon showing, in all drill holes. The strike extent of the mineralized horizon extends through and beyond the entire Bend claims.

Four styles of sulphide mineralization were typically observed within the dolomite horizon:

1) massive very fine grained bands of primarily pyrrhotite with lesser sphalerite yielding approximately 1.5-8.0% Zn, 0.5-2.3% Pb and 7-30 g/t Ag.

2) 0.3-1.0cm laminated bands of pyrite, sphalerite and minor galena yielding approximately 0.15-1.4% Zn, 0.05-0.35% Pb and 1.5-4.5 g/t Ag.

3) stringers of pyrite, galena and minor sphalerite within quartz veins/bands yielding approximately 0.2-0.4% Zn, 0.1-0.25% Pb and 1.5-5.3 g/t Ag.

4) massive bands of course grained pyrite with interstitial sphalerite yielding approximately 1.0-5.0% Zn, 0.25-1.25% Pb and 2.0-25 g/t Ag.

The best sulphide intercept was located in DDH TK-92-5, assaying 3.58% Zn, 0.84% Pb and 14.97 g/t Ag over 5.24 metres including 0.35m of 8.50% Zn, 1.78% Pb and 24.68 g/t Ag.

The thickness of the mineralized horizon appears to decrease away from the Cummins River canyon. The area down-dip of TK-92-8 and TK-92-12 (both north and south of the Cummins River) appears to be a promissing drill target.

The sulphide horizon exhibits characteristics of a large, mineralized basinal environment, with generally decreasing width and increasing Zn/Pb ratios away from the Cummins River canyon.

-

12. **REFERENCES**

Alford, C. and Lormand, C. 1992. Report on the Diamond Drilling and Downhole Geophysics on the MGM Property. Golden Mining Division. Teck Exploration Ltd.

Alford, C. and Thomson, G. 1992. Report on the Geology, Geochemistry and Geophysics of the MGM Property. Golden Mining Division. Teck Exploration Ltd.

Dodson, E.D., 1971. Report on a Geochemical Survey on the Bend No.1 Mineral Claim. Golden Mining Division. MacDonald Consultants Ltd. Assessment Report 2991.

Dodson, E.D., 1971. Report on a Geochemical Survey on the Bend 17-26 Mineral Claims. Golden Mining Division. MacDonald Consultants Ltd. Assessment Report 2992.

Jenks, J., 1985. Drilling report - MGM Property. Golden Mining Division. Esso Minerals Canada. Assessment Report 15251.

Large, D.E., 1980. Geological Parameters Associated with Sediment-Hosted, Submarine Exhalative Pb-Zn Deposits: An Empirical Model for Mineral Exploration, Geol. Jb. D40, p. 59-129.

Leask, J.M., 1981. Geology of the MGM Property, Big Bend District, East Central British Columbia. Assessment Report No. 9994.

Lydon, J.W., 1983. Chemical parameters controlling the origin and deposition of sediment-hosted, stratiform lead-zinc deposits, in Short Course in Sedimentary Stratiform Lead Zinc Deposits, D.F. Sangster, (ed.), Min. Assoc. of Canada, p. 175-250.

Marr, J.M., Oliver, J.L. and Melnyk, W.D., 1986. MGM Project 1985. Esso Minerals of Canada Ltd. (in house report)

Mawer, A.B., 1987. Geological - Access road and Drill site construction report. Bend Group, Golden Mining District, Cummins River Area. Cominco Ltd. Assessment Report No. 16544.

Mawer, A.B., 1991. 1991 Year End Report, Diamond Drilling Report - Bend Group. Golden Mining District, Cummins River Area. Cominco Ltd.

Reddy, D.G. and Godwin, C.I. 1986. Geology of the Bend Zinc-Lead-Silver Massive Sulphide Prospect Southeastern British Columbia, British Columbia Ministry of Energy, Mines and Resources, Geological Fieldwork, Paper 1987-1, p.47-52.

-

Spence, C.D., 1983. Geophysics and Geochemistry. Riocanex. Assessment Report 12155.

-

Walcott, P.E. and Associates, 1983. A Geophysical Report on Electromagnetic and Magnetic Surveys. McNaughton Lake, British Columbia. Riocanex Inc. Assessment Report 11565.

APPENDIX A

Statement of Qualifications

×.

I Greg Thomson, do certify that:

1. I am a geologist and have practiced my profession continuously from 1970 - 1974 and from 1983 to present.

2. I graduated from the University of British Columbia in 1970 with a B.Sc. in Geology.

3. I was actively involved in property management and core logging on the Bend property and co-authored the report contained herein.

4. All data contained within this report and conclusions drawn from it are true and accurate to the best of my knowledge.

5. I hold no personal interest, direct or indirect in the Bend Property, which is the subject of this report.

I. R. Miens

Greg Thomson Geologist November, 1992 I, Craig Alford, do hereby certify that:

- 1. I am a geologist and have practised my profession continuously since graduation.
- 2. I graduated in 1988 from Lakehead University with a M.Sc. in Geology
- 3. I was actively involved in the corelogging and mapping of the Bend Property and coauthored the report contained herein.
- 4. All data contained within the report and conclusions drawn from it are true and accurate to the best of my knowledge.
- 5. I hold no personal interest, direct or indirect in the Bend Property which is the subject of this report

Craigalfar

Craig Alford Geologist November, 1992

APPENDIX B

Cost Statement

A

EXPLORATION COSTS (June 1 - November 20, 1992)

A) ADMINISTRATION - F. Daley		
2 days @ 311.20/day	622.40	
D) CALADIES		
D) SALAKIES G. Thomson (Gool)		
74 dows @ 250.86	18545 87	
C Alford (Geol)	105-5.07	
$\frac{1}{2} \frac{1}{2} \frac{1}$	23910 50	
J Oliver (Geol)	23710.30	
5 days @267 50	1335 33	
B Lovang (Geochem Tech)	1000.00	
13 days @ 236.90	2980 45	
K Chubb (Geonh Tech)	2700113	
5 days (0.00000, 10000)	1109.64	
H. Norris (Cook)		
73 days @ 244.74	17870.02	
D. Nikirk (Helper)		
10 days @ 195.80	1957.94	
S. Archibald		
(Drafting)	2655.74	
	Salaries Total	70365.49
C) CONTRACTORS		
Pacific Geophysical Limited	27922.72	
Minconsult	43782.76	
Gottler Trucking	425.60	
Lone Ranger Diamond Drilling	184223.72	
O.W. Braisher Contracting,		
R.B. Contracting	7683.67	
	Contractor Total	264029 47
	Contractor Total	204038.47
D) GEOCHEMICAL ANALYSES		
- 185 soils (30 element I C P)		
-177 core/rock (Ag Ph Zn + 30 LCP)		5020.66
- 177 core/rock (Ag,Pb,Zn + 30 I.C.P.)		5020.66
- 177 core/rock (Ag,Pb,Zn + 30 I.C.P.) E) LIVING EXPENSES		5020.66
 - 105 sons (56 clement 1.C.P.) - 177 core/rock (Ag,Pb,Zn + 30 I.C.P.) E) LIVING EXPENSES - camp rental (June-Sept), groceries, fue 	1,	5020.66
 E) LIVING EXPENSES camp rental (June-Sept), groceries, fue misc. motel and restaurant meals 	1,	5020.66 24420.38
F) TRANSPORTATION - Cana Rentals: 3, 4x4 pickups (4 mos.) - Mica Marine barge service		
---	----------	
- gasoline, diesel	28289.63	
G) CHARTERED AIRCRAFT Canadian Helicopters	2511.32	
H) FIELD COSTS	1609.29	
I) TELEPHONE	1238.51	
J) EQUIPMENT RENTALS, REPAIRS Falcon Research (radio telephones) boat rental, generator	4506.23	
K) MAPS, PRINTS (includes base map prep.)	2139.64	
L) COMPUTER SUPPLIES	28.55	
M) DRILLING SUPPLIES Prolite Pipe, Edmonton	2926.45	
O) POSTAGE, OFFICE EXPENSES	81.48	
P) PETROGRAPHIC STUDY	259.28	
Q) FREIGHT & SHIPPING	417.93	

Property Total \$408475.71

APPENDIX C

Certificates of Analyses

ì

Soil Analyses

4....

ECO-TECH LABORATORIES LTD. 10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

VALUES IN PPM UNLESS OTHERWISE REPORTED

JULY 2, 1992

TECK EXPLORATION LTD. ETK 92-268 # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY PROJECT NO. 1703 55 SOIL SAMPLES RECEIVED JUNE 24, 1992 submitted by Gregg thompson

ET i	DES	CRIPTION				AG	AL(%)	AS	в	BA	BI	CA(%)	CD	со	CR	CU	FE(%)	K(%)	LA	MG(%)	MN	мо	NA(%)	NI	P	PB	SB	SN	SR	TI(%)	U	v	W	¥	ZN
1	- L	0 + 00		8/L		<.2	2.14	 <5	2	130	5	.16	<1	17	17	11	3.27	.11	10	.40	263	1	.01	26	1550	8	<5	<20	17	.04	<10	15	<10	6	77
2	- L	0 + 00	0	+ 252	3	<.2	1.19	5	<2	75	<5	.14	<1	14	17	8	2.87	.08	10	.50	225	<1	<.01	19	470	<2	<5	<20	12	.02	<10	12	<10	5	42
3	- L	0 + 00	0	+ 50E	5	<.2	1.33	<5	<2	60	<5	.15	<1	13	16	9	2.87	.11	20	.51	232	<1	<.01	20	690	2	<5	<20	13	.02	<10	10	<10	6	47
4	- L	0 + 00	0	+ 758	:	<.2	1.51	<5	<2	80	<5	.28	<1	17	17	15	3.26	. 19	20	.56	498	<1	.01	28	700	2	<5	<20	19	.03	<10	12	<10	10	40
5	- L	0 + 00	1	+ 00E	:	<.2	1.38	<5	<2	100	<5	.18	<1	10	13	5	2.36	.08	10	. 34	311	<1	.01	15	500	2	<5	<20	14	.04	<10	17	<10	4	46
6	- r	0 + 00	1	+ 251	:	<.2	1.17	<5	<2	60	<5	.14	<1	9	11	4	2.42	.05	10	.30	137	<1	<.01	14	400	2	<5	<20	10	.03	<10	17	<10	3	33
7	- L	0 + 00	1	+ 508	:	<.2	2.21	<5	<2	135	<5	.12	<1	13	14	7	3.02	.10	10	.36	252	<1	.01	23	680	2	<5	<20	12	.06	<10	18	<10	6	38
8	- L	0 + 00	1	+ 75E	2	<.2	1.63	5	<2	95	<5	.06	<1	11	16	9	3,96	.10	10	.44	131	<1	<.01	18	1420	4	<5	<20	8	.07	<10	23	<10	6	33
9	- L	0 + 00	2	+ 00E	:	<.2	2.90	<5	<2	95	<5	.08	<1	14	14	10	3.66	.08	<10	.28	298	1	<.01	14	750	8	<5	<20	9	.08	<10	18	30	7	39
10	- L	0 + 00	2	+ 25E	:	. 2	2.84	<5	<2	120	<5	.09	<1	16	13	10	2.98	.08	10	, 30	841	<1	.01	14	1920	2	<5	<20	11	.07	<10	17	<10	6	48
11	- L	0 + 00	2	+ 50E	.	<.2	1.94	<5	<2	115	<5	.13	<1	12	16	11	3.65	.10	10	, 36	193	<1	<.01	22	990	6	<5	<20	12	.05	<10	20	<10	S	55
12	- L	0 + 00	2	+ 75E		. 2	3.69	<5	<2	105	<5	.15	<1	17	16	11	3.10	.04	<10	.26	708	<1	<.01	14	1280	12	<5	<20	10	.08	<10	Z 1	<10	7	97
13	- L	0 + 00	3	+ 00E		<.2	4.16	<5	<2	150	<5	.44	<1	17	21	8	3.83	.08	<10	.44	505	<1	.03	23	1360	8	<5	<20	31	.12	<10	30	<10	10	150
14	- L	0 + 00	3	+ 252	:	<.2	3.68	<5	<2	105	<5	.34	<1	17	25	9	3.97	.04	<10	. 49	540	<1	.02	25	680	8	<5	<20	28	.11	<10	33	<10	8	144
15	- L	0 + 00	3	+ 50E	:	<.2	6.86	<5	<2	125	<5	2.85	<1	24	68	11	4.77	.06	<10	1.22	407	<1	.12	40	740	8	10	<20	217	.15	<10	54	<10	12	205
16	- L	0 ÷ 00	3	+ 75E		1.2	2.30	5	<2	85	<5	.18	2	14	9	13	3.70	.01	10	.08	3954	<1	.01	6	2170	1922	<5	<20	10	.07	<10	26	10	10 2	1336
17	- L	2 + 00N		B/L		<.2	3.35	<5	<2	160	<5	.38	<1	15	33	6	3.31	.11	<10	.58	336	<1	.02	21	300	20	5	<20	30	.15	<10	47	<10	11	93
18	- L	2 + 00N	0	+ 25E	:	<.2	6.61	<5	6	155	<5	1.42	<1	25	65	24	5.15	.23	<10	1.34	318	7	.09	38	730	22	5	<20	122	.17	<10	56	70	14	97
19	- L	2 + 00N	0	+ 50E	:	<.2	4.09	<5	<2	165	<5	.73	<1	16	36	10	3.45	.10	<10	.61	338	<1	.03	25	490	8	<5	<20	57	.15	<10	38	<10	10	82
20	- L	2 + 00N	O	+ 75E		<.2	6.45	<5	<2	145	<5	.52	<1	23	57	18	4.20	.24	<10	1.10	159	<1	.02	35	510	8	5	<20	40	.19	<10	47	<10	17	77
21	- г	2 + 00N	1	+ 00E		<.2	1.89	<5	<2	95	<5	.25	<1	11	24	4	2.30	. 09	<10	. 32	440	<1	.01	13	230	4	<5	<20	19	.14	<10	40	<10	9	47
22	- L	2 + 00N	1	+ 25E		<.2	6.28	<5	<2	235	<5	1.08	<1	26	60	22	5.07	. 16	<10	1.19	988	<1	.06	42	790	6	5	<20	101	.19	<10	50	<10	13	110
23	- г	2 + 00N	1	+ 50E	:	<.2	3.21	<5	4	90	10	.49	<1	18	14	6	4.27	.01	<10	.35	330	5	.04	26	880	18	<5	<20	54	.07	<10	26	50	5	103
24	- L	2 + 00N	1	+ 75E	:	<.2	4.00	<5	<2	90	<5	.23	<1	15	23	9	3.26	.06	<10	.40	428	<1	.02	21	770	12	5	<20	22	.14	<10	39	20	13	80
25	- L	2 + 00N	2	+ 00E	•	<.2	3.57	5	<2	125	<5	.34	<1	28	34	18	3.73	.06	<10	.86	642	<1	.02	42	790	8	5	<20	30	.14	<10	53	<10	11	89
26	- L	2 + 00N	2	+ 25E		<.2	2.66	5	<2	75	<5	.11	<1	12	13	5	3.48	.03	<10	.23	123	<1	.01	15	590	10	<5	<20	9	.12	<10	28	<10	B	60
27	- г	2 + 00N	2	+ 50E	1	<.2	3.94	<5	<2	65	<5	. 39	<1	18	29	10	3.37	.04	<10	.53	97	<1	.02	25	420	8	<5	<20	29	.13	<10	35	<10	9	67

PAGE 2 TECK EXPLORATIONS LTD.	ETK 92-268	3								:	JULY 3	2, 1992										E	CO-TE	сн гав	ORATOR	ES LT	D.			
ET# DESCRIPTION	AG	AL(%)	AS	В	BA	BI	CA(%)	CD	со	CR	CU	FE (%)	K(%)	LA	MG(%)	MN	мо	NA(%)	NI	P	PB	SB	SN	SR	TI(%)	U	v	W	¥	ZN
28 - L 2 + 00N 2 + 75E	<.2	3,38	5	<2	95	<5	1.61	<1	30	28	21	4.92	.07	<10	.84	392	<1	.06	 51	360	16	5	<20	83	.07	<10	23	<10	13	114
29 - L 2 + 00S B/L	<.2	1,47	<5	<2	75	<5	.13	<1	11	15	8	2.24	.13	10	.38	203	<1	.01	19	310	2	<5	<20	15	.02	<10	9	<10	4	33
30 - L 2 + 00S 0 + 25B	<.2	.95	5	<2	40	<5	.11	<1	9	12	4	2.28	.06	10	.35	148	<1	<.01	13	430	2	<5	<20	9	.02	<10	10	<10	3	33
31 - L 2 + 00S 0 + 50E	<.2	1.74	<5	<2	110	<5	.28	<1	13	18	10	2.60	.12	10	.46	579	<1	.01	20	680	4	<5	<20	25	.03	<10	15	<10	4	57
32 - L 2 + 00S 0 + 75E	<.2	1.71	5	<2	120	<5	.12	<1	13	18	7	2.74	.10	10	.43	603	<1	.01	20	630	8	<5	<20	14	.04	<10	15	<10	4	55
33 - L 2 + 00S 1 + 00E	<.2	1.19	5	<2	55	<5	.11	<1	13	14	9	2.56	.08	10	.46	238	<1	<.01	20	430	2	<5	<20	11	.02	<10	8	<10	4	34
34 - L 2 + 00S 1 + 25E	<.2	1.58	5	<2	95	<5	.11	<1	1 2	14	6	3.03	.09	10	.35	186	<1	<.01	18	910	4	<5	<20	11	.04	<10	17	<1D	4	39
35 - 1 2 + 00S I + 50E	<.2	1.55	5	<2	115	<5	.08	<1	13	14	8	2,92	.07	<10	.28	588	<1	.01	17	1160	6	<5	<20	10	.06	<10	20	<10	5	50
36 - L 2 + 00S 1 + 75E	<.2	1.42	<5	<2	105	<5	.11	<1	10	15	6	3.09	.09	10	.38	178	<1	<.01	19	830	2	<5	<20	13	.04	<10	19	<10	3	42
37 - L 2 + 00S 2 + 00E	<.2	2.86	<5	<2	130	<5	.22	<1	20	23	12	3.86	.06	<10	.35	785	<1	.01	24	1170	10	<5	<20	16	.11	<10	33	<10	8	76
38 - L 2 + 00S 2 + 25E	<.2	2.85	<5	<2	120	<5	.40	<1	19	18	15	4.11	.12	10	.52	244	<1	.02	30	640	8	<5	<20	44	.05	<10	15	<10	8	55
39 - L 2 + 005 2 + 50g	<.2	3.76	<5	<2	140	<5	.69	<1	29	41	14	5.11	.18	<10	.80	267	<1	.03	47	530	4	5	<20	59	.14	<10	44	<10	11	91
40 - L 2 + 00S 2 + 75E	<.2	1.45	5	<2	55	<5	.08	<1	13	16	8	3.42	.04	<10	.36	248	<1	<.01	17	340	6	<5	<20	9	.08	<10	28	<10	7	65
41 - L 2 + 00S 3 + 00E	<.2	1.14	5	<2	80	<5	.07	<1	10	10	7	3.90	.02	<10	.12	699	<2	.01	8	1050	26	<5	<20	7	.13	<10	40	<10	9	55
42 - L 2 + 005 3 + 25E	<.2	1.22	<5	<2	35	<5	.05	<1	8	11	10	2.78	.03	<10	.21	176	<1	<.01	10	840	8	<5	<20	10	.07	10	24	<10	6	37
43 - L 2 + 00S 3 + 50E	. 2	2.26	<5	2	95	10	.11	<1	17	16	8	5.80	.02	<10	. 22	1518	2	<.01	14	1720	88	<5	<20	10	.10	<10	29	40	7	118
44 - L 2 + 00\$ 3 + 75E	<.2	4.48	5	<2	120	<5	.76	<1	22	14	21	5.68	.02	<10	.32	971	<1	.06	34	1310	16	5	<20	79	.08	<10	18	20	14	153
45 - L 2 + 00S 4 + 00E	<.2	1.53	<5	<2	50	<5	.06	<1	6	12	13	2.54	.02	<10	.12	352	<1	.01	8	640	6	<5	<20	7	.08	<10	29	<10	6	47
46 - L 2 + 00S 4 + 25E	<.2	1.51	10	<2	55	<5	.08	<1	11	16	8	4.12	.01	10	. 46	220	<1	<.01	15	370	16	<5	<20	5	.06	<10	21	<10	5	85
47 - L 2 + 005 4 + 50E	<.2	.82	<5	<2	30	<5	.04	<1	3	5	4	1.68	.01	<10	.08	81	<1	<.01	3	410	14	<5	<20	5	.05	<10	21	<10	3	24
48 - L 2 + 005 4 + 75E	<.2	1.71	5	<2	100	<5	. 32	<1	19	24	9	4.45	-20	10	. 54	1727	<1	<.01	19	2090	46	<5	<20	12	.17	<10	20	<10	17	883
49 ~ L 2 + 00S 5 + 00E	<.2	. 57	5	<2	50	<5	.02	<1	5	5	3	1.70	.01	<10	.08	1800	<1	<.01	4	570	2	<5	<20	3	.04	<10	17	<10	3	32
50 - L 4 + 00N B/L	<.2	1.86	5	<2	125	<5	.12	<1	12	16	9	3.25	.11	10	.45	200	<1	.01	19	780	4	<5	<20	12	.05	<10	18	<10	5	48
51 - L 4 + OON 0 + 25E	.2	2.58	<5	<2	175	<5	.24	<1	11	10	5	2.36	.07	<10	.20	1127	<1	.01	10	3310	6	<5	<20	13	.12	<10	21	<10	10	72
52 - L 4 + 00N 0 + 50W	<.2	2.17	<5	<2	95	<5	.10	<1	14	11	6	2.76	.05	<10	. 25	340	<1	.01	17	1610	8	<5	<20	9	.10	<10	23	<10	7	66
53 - L 4 + 00N 0 + 75W	<.2	1.09	<5	<2	50	<5	.13	<1	9	13	6	2.60	.07	10	.41	162	<1	<.01	14	410	2	<5	<20	9	.02	<10	11	<10	З	34
54 - L 4 + 00N 1 + 00W	<.2	1.61	<5	<2	110	<5	.15	<1	11	14	4	2.59	.08	10	.37	450	<1	.01	16	530	4	<5	<20	13	.03	<10	16	<10	3	50
55 - L 4 + DON 1 + 25W	. 2	3.91	<5	2	265	<5	1.02	<1	36	45	21	4,10	.17	<10	1.01	2080	<1	.04	56	490	12	5	<20	90	.11	<10	51	<10	13	68
DC DATA	ş																													
REPEAT #:	┓╸╸┺╡┲┲┏╓┎╒												=									-2528								
37 - L 2 + 00S 2 + 00E GEO STANDARDS:	<.2	2.79	5	<2	125	<5	. 20	<1	18	19	14	3.68	.06	<10	.37	767	<1	.02	27	1130	10	<5	<20	14	.10	<10	29	<10	17	73
STANDARD 1991	1.0	1.98	55	2	185	<5	1.88	<1	21	69	73	3.94	. 36	<10	1.00	676	<1	.02	22	640	22	5	<20	68	.14	<10	84	50	15	67

NOTE: < = LESS THAN

SC/TECK2

ECO-TECH LABORATORIES LTD.

ECO-TECH LABÓRATORIES LTD. FRANK J. PEZZOTTI,B.C. Certified Assayer

193- L 13: + 00N 1 + 50E	. 2	2.80	<5	<2	115	<5	.10	<1	10	12	4	2.33	.06	10	.26	166	<1	.01	13	630	8	<5	<20	9	.11	<10	23	<10	11	105
194- L 13 + 00N 1 + 75E	<.z	1.33	<5	<2	65	<5	.13	<1	8	13	5	2.41	.05	10	.31	177	<1	<.01	15	420	4	<5	<20	8	.05	<10	18	<10	5	46
195- L 13 + 00N 2 + 00E	<.2	1.74	<5	<2	45	<5	.16	<1	6	9	3	1.79	.04	10	.17	362	<1	.01	10	290	6	<5	<20	8	.05	<10	24	<10	5	36
196- L 13 + 00N 2 + 25E	<.2	2.56	<5	<2	135	<5	.19	<1	16	22	13	3.24	.12	10	.60	186	<1	.01	27	430	14	<5	<20	19	.06	<10	21	<10	8	76
197- L 13 + 00N 2 + 50E	< 2	2.10	<5	<2	90	<5	.17	<1	8		3	1.74	.04	10	.14	335	<1	.01	8	270	6	<5	<20	11	.10	<10	25	<10	10	47
198- L13+ + 00N 2 + 75E	< 2	2 67		<2	110	<5	.14	<1	12	13	-	2.57	.05	<10	.23	252	<1	.01	12	210		-5	<20	11	.14	<10	31	<10	11	76
199- L 13 + 00N 3 + 00E	<.2	4.14	<5	<7	130	<5	.74	•	19	30	16	3.90	. 11	10	.71	290	<1	.02	29	890	14	~5	<20	23	.12	<10	31	<10	12	93
200- L 131 + 00N 3 + 25R		4 37		~7	140	<5	. 20	~ 1	17	16	7	3.16	.06	<10	. 31	196	<1	.01	15	1060	10		<20	17	. 16	<10	31	<10	13	100
201- L13 + 00N 3 + 50R	<. 7	3.77	~5	<2	155	<5	.13	<1	12	15	Ś	2.84	.05	<10	.24	508	<1	.01	14	610	. Q	~5	<20	11	.13	<10	-31	<10	10	84
202- L13 + 00N 3 + 758	e. 7	2.94	~5	<2	120	<5	.11	< 1	12	21	8	3.08	.08	<10	.46	154	<1	.01	20	450	12	<5	<20	11	.11	<10	29	<10	9	85
203- L 13: + 00N 4 + 00K	e. 7	7 14	~	27	100	<5	.18	<1	15	18	12	3.14	.06	10	.47	212	<1	- 01	74	450	10	-5	<20	12	.07	<10	21	<10	9	73
204- L13 + 00N 4 + 25B	<. 2	3.40	25	<2	125	<5	.21	<1	17	32		3.62	.09	<10	. 62	392	<1	.01	22	520	8	~5	<20	17	.16	<10	45	<10	12	96
205- L 13 + 00N 4 + 50K	< . 7	3.40	~	~2	150	<5	. 22	<1	19	35	19	4.87	. 10	10	.70	177	<1	.01	11	610	9 8	<5	<20	19	.12	<10	44	<10	10	85
$206 - L_{13} + 00N_{4} + 75\pi$	~ 7	3 10	~~	~2	65	~5	. 16	~	13	23	<u>د</u>	2.63	06	<10	.41	232	<1	.02	18	200	ć	~5	<20	24	.15	<10	39	<10	11	57
207- L13 + 00N 5 + 00K	~ ?	7 40	~5	~ 2	120		.47	~1	15	24	å	1.28	.00	<10	. 53	369	<1	.07	74	430	12	5	<20	36	.11	<10	28	<10	11	67
$208 - L_{13} + 00N_{5} + 25\pi$	~ 7	4 97	~	~ 2	155		1 27	~1	22	45	11	4 50	24	<10	1.01	573	<1	.07	14	610	••	5	<20	106	.19	<10	59	<10	17	92
209- L 13 + 00N 5 + 50F	~ 7	7 70	~5	-2	140	~5	19	~1	14	20	<u>,</u>	3.37	08	10	. 52	364	<1	-01	74	1070	٠ د		×20	16	.08	<10	26	<10	7	87
210 1 13 00N	~~~	4.20																		1010		~	~20	30		<10	30	~10	70	119
210 - 10 + 00N + 752	<.2	2.53	<5	<2	145	<5	.47	<1	17	26	6	3.08	14	<10	• 54	1233	<1	,03	23	1090	8	< 3	~20	39	.14	~10	30	-10	10	110
211 - 10.13 + 00N + 00R	<.2	3.42	<5	<2	85	<5	.21	<1	22	24	15	3.46	•06	<10	.52	353	L	.01	33	1340	14	<5	<10	70	.13	<10	41	~10	,,	134
$212 = 0.13 \pm 0.08 + 258$	<.2	3.98	<5	<2	115	<5	.34	<1	20	31	11	4.21	.09	<10	.57	350	<1	, UZ	32	1110	•	< 2	42U 	20	.10	<10		~10	**	134
213~ 213 + 0014 6 + 50g	<.2	2.45	<5	<2	180	<5	.11	<1	16	19	7	3.83	.07	10	. 44	237	<1	<,01	18	1430	8	<5	<20	10	.10	<10	21	<10	a -	114
214 - 1013 + 00N 6 + 75E	<.2	2.80	<5	<2	145	<5	.09	<1	13	14	5	3.32	.05	10	. 37	224	<1	<.01	17	1190	8	<5	<20	8	.09	<10	24	<10	1	136
215- LIN + WN 7 + 00E	<.2	2.49	<5	<2	105	<5	.09	<1	11	16	6	3.73	.05	10	.34	172	<1	<.01	14	520	12	<5	<20	8	.08	<10	28	<10	7	115

NOTE: < - LESS THAN

GATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. Certified Assayer

SC/TECR2

 FAGE 7
 TECK EXPLORATION ETX 92-269
 JULY 1, 1992
 ECO-TECH LABORATORIES LTD.

 ET# DESCRIPTION
 AG AL(%) AS B BA BI CA(%) CD CO CR CU FE(%) K(%) LA MG(%) MM MO NA(%) NI P PØ SB SN SR TI(%) U V M Y 2)

	_															3	1117.9 1	. 1992									E	CO-TECH	LABO	RATORI	E2 11	p.	_
PAGE ET#	DESCRIPTIC	733C) 741	T EXPLORATION	ETK AG	92-269 AL(1)	٨S	8	BÅ	BI	CA(%)	CD	со	CR	cu	FE(%)	K(%)	LA	HG(%)	MN	ю	NA(%)	NI	P	PB	SB	SN	SR	TI(%)	U	v	¥	Y	ZN
		_													2.04		<10	. 39	229	<1	. 01	21	510	20	<5	<20	29	.08	<10	24	10	8	103
151	- L 14+00N	2	+ 508	<.2	2.57	<5	<2	80	<5	. 49	<1	14	10		2.94		<10	<.01	<1	-	<_01	<1	<10	<2	<5	<20	1	<.01	<10	<1	<10	<1	<1
152	- L 14+00N j	2	+ 752	<.2	<.01	<5	<2	<5	<5	<.01	<1	<1	<1	<1	<.01	<.01	10	.03	222	-1 	<.01	23	380	<2	<5	<20	7	<.01	<10	I	<10	1	32
153	- L 14+00N	3	+ 00E	<.2	.73	35	<2	60	<5	.12	<1	16	1	72	3.50	.00	~10	.05	27B	~1	.01	3	230	2	<5	<20	7	.07	<10	22	<10	5	31
154-	- L 14+00N	3	+ 25E	<.Z	1.11	<5	<2	40	<5	.09	<1	4	3	1	1.03	.01	10	.05	197	~1	.01	31	540	20	<5	<20	23	.06	<10	23	30	9	115
155-	- L 14+00N	3	+ 50E	<.2	3.57	<5	<2	140	<\$. 25	<1	18	Z9	15	3.78	.08	~10	.05	704	~		10	250	8	<5	<20	11	.10	<18	26	<10	8	57
156-	- L 14+00N	3	+ 75E	<.2	1.88	5	<2	80	<5	.19	<1	8	10	3	1.99	.03	<10	34	1508	~1	.01	13	1140	8	<5	<20	24	.10	<10	29	<10	8	70
157-	- L 14+00N	4	+ 00E	<.2	2.00	<5	<2	100	<5	.32	<1	10	18	5	2.34	.06	10		309	~	.01	26	770	16	<5	<20	15	.07	<10	21	<10	9	74
158-	- L 14+00N	4	+ 25E	<.2	2.61	<5	<2	110	<5	.19	<1	16	22	11	3.17	.08	<10		120	~1	< 01	14	590	10	<5	<20	8	.11	<10	28	<10	10	76
159-	L 14+00N	4	+ 50E	<.2	3.00	<5	<2	100	<5	.07	<1	12	15	7	3.21	.04	<10	.23	764	~1	~.01	17	980	12	<5	<20	12	.13	<10	30	<10	11	103
160-	L 14+00N	4	+ 75g	<.z	4,31	<5	<2	130	<5	.14	<1	14	20	7	3.43	.06	<10	.43	413	-1	.01	27	590	18	<5	<20	50	.12	<10	39	<10	11	100
161-	L 14+00N	5	+ 00E	<.2	3,53	<5	<2	110	<5	.61	<1	15	26	8	3.42	.12	<10	.02	•13		.03	29	1040	10	<5	<70	30	.16	<10	50	<10	14	157
162-	L 14+00N	5	+ 25E	<.2	5.28	<5	<2	145	5	. 39	<1	20	41	9	4.18	.11	<10		1310	~1	.02	6	320	4	<5	<20	8	.09	<10	28	<10	8	42
163-	L 14+00N	5	+ 50E	<.2	2.00	<5	<2	95	<5	.10	<1	7	7	2	1.69	.02	<10	.12	1210		.01	23	570	10	<5	<20	15	.10	<10	31	<10	9	79
164-	L 14+00N	5	+ 75E	<.2	2.87	<5	<2	145	<5	.20	<1	15	23	10	3.34	.07	10	.51	319	~1	.01	12	940	10	25	<20	10	.08	<10	27	<10	7	61
165-	L 14+00N	6	+ 005	<.2	2.04	<5	<2	100	5	.10	<1	10	17	5	2.59	.06	10		634	<1	.01	12	320			<20		.07	<10	29	<10	6	63
166-	L 14+00N	6	+ 255	<.2	1.76	5	<2	90	<5	.05	<1	9	14	5	3.23	.04	10	. 33	150	<1	<.01	1.2	1560	12	~5	<20	13	.11	<10	23	<10	10	102
167-	L 14+00N	6	+ 50g	<.2	2.41	<5	<2	95	<5	.27	<1	11	12	5	2.64	.05	<10	.27	1652	<1	.01	12	1300	12	~5	<20	12	.12	<10	.35	<10	9	121
168-	L 14+00N	6	+ 75E	<.2	3,26	<5	<2	160	<5	.17	<1	11	18	6	3.69	.05	10	. 39	164	1	<.01	13	730	14		<20	90	.09	<10	20	<10	16	182
169-	L 14+00N	7	+ 008	<.2	4.04	<5	2	105	5	1.93	<1	49	22	30	6.64	.08	<10	.78	1189	1	.03	12	/10	1.4	-45	-20							

.

.

ł

JULY 13, 1992 Page 2 TECK EXPLORATIONS ETK 92-287 ECO-TECH LABORATORIES LTD. AG AL(%) AS B BA BI CA(%) CD CO CR CU FE(%) K(%) LA HG(%) SR TI(%) v W Y ZN ET DESCRIPTION HN HO NA(\$) HI P PB SÐ SN Ð 26 -L 15+00N 3 + 25E <.2 3.46 10 <2 120 <5 .32 <1 18 24 15 3.84 .09 10 .64 174 <1 .01 31 300 12 <5 <20 34 .08 <10 23 <10 9 111 L15+00N 3 + 50E 27 -5 <5 .55 <1 10 13 8 2.32 .04 10 .25 2093 <1 .01 12 720 12 <5 <20 26 .15 <10 25 <10 17 157 <.2 4.26 <2 80 L 15+00N 3 + 75m <5 <20 . 08 <10 25 <10 7 93 28 -22 12 3.05 .08 10 .54 206 <1 <.01 23 290 8 <.2 2.42 10 <2 95 <5 .11 <1 -14 6 L 15+00N 4 + 00E . 09 23 <10 15 29 -5 <2 80 <5 .44 <1 10 15 10 2.20 .04 10 . 32 2845 <1 .01 16 510 6 <5 <20 21 <10 70 .2 2.80 L 15+00N 4 + 25E 30 -5 <2 75 <5 ,05 <1 10 11 8 3.16 .02 <10 .14 141 <1 <.01 8 1300 12 <5 <20 5 .18 <10 32 <10 15 64 5.14 <.2 L 15+00N 4 + 50B .11 <10 .08 .01 <10 .08 680 <1 .01 740 <5 <20 6 23 <10 8 40 31 -<.2 2.35 5 <2 60 <5 <1 6 7 4 1.71 5 8 L 15+00N 4 + 75B .07 28 .04 <10 .35 146 <1 <.01 650 8 <5 <20 7 .11 <10 <10 . 88 32 -<.2 2.78 10 <2 70 <5 <1 12 16 9 2.82 14 L 15+00N 5 + 00E 33 -<.2 3.50 15 <2 85 <5 .11 <1 12 15 7 2.96 .03 <10 .31 214 <1 .01 14 930 10 <5 <20 11 .12 <10 28 <10 9 88 L 15+00N 5 + 25E .08 <10 25 <10 34 -<.2 2.64 10 <2 55 <5 .10 <1 12 19 7 3.13 .04 <10 . 39 345 <1 <.01 16 1750 10 <5 <20 6 6 86 L 15+00N 5 + 50B 263 <1 <.01 <5 <20 .13 <10 32 <10 10 122 35 -<.2 3.94 10 <2 70 <5 .12 <1 14 ZŻ 7 3.48 .04 <10 . 39 16 1230 12 8 L 15+00N 5 + 75R .11 36 -<.2 3.31 5 <2 75 <5 .11 <1 12 15 7 2.67 .04 <10 .31 232 <1 <.01 14 450 8 <5 <20 <10 23 <10 10 93 37 -L15+00N 6 + 00E <.2 3.37 10 2 70 <5 .11 <1 -14 16 7 3.27 .03 <10 . 29 162 2 <.01 15 520 14 <5 <20 9 .11 <10 28 <10 9 154 L 15+00N 6 + 25E . 09 .03 10 . 22 31 <10 23 <10 16 38 -<.2 3.35 5 <2 65 <\$.75 <1 - 24 16 11 2.80 1152 <1 .01 12 330 10 <5 <20 87 L 15+00N 6 + 50E .03 10 .41 1 .01 17 260 <5 <20 30 . 09 <10 25 <10 10 105 39 -4.50 15 <2 70 <5 . 39 <1 13 22 9 3.61 9B 18 <.2 40 -L15+00N 6 + 758 . 59 3 3 1.69 <.01 <10 .07 26 <1 <.01 2 180 <5 <20 Z4 .12 <10 28 <10 9 36 <.2 1.05 5 <2 15 <5 <1 4 10 L 15+00N 7 + 00E .03 <10 .21 69 <.01 270 <5 <20 .11 <10 30 <10 8 92 41 -<5 .15 <1 15 7 3.49 1 11 10 9 <.2 2.89 <5 <2 65 9 42 - L 15+00N 7 + 25E <.2 <5 <2 70 <5 .10 <1 13 15 5 2.63 .03 <10 .28 557 <1 <.01 13 280 10 <5 <20 8 . 09 <10 26 <10 7 100 1.92 L 15+00N 7 + 50E 43 -80 <5 .21 <1 16 27 10 3.16 .06 10 . 59 180 <1 .01 23 650 14 5 <20 14 .08 <10 27 <10 8 105 <.2 3.34 5 <2 44 - L 15+00N 7 + 75H .20 20 12 217 3.20 .08 <10 .56 .01 2Z 660 32 5 <20 17 .12 <10 30 65 <5 <1 16 24 10 194 1 <.2 4.35 - 5 2 45 - L 15+00N 8 + 00E . 22 10 .08 <10 .46 194 <1 .01 20 410 22 <5 <20 19 .10 <10 25 <10 10 166 <.2 3.46 10 <2 85 <5 <1 14 19 2.95 46 - L 15+00N 8 + 25E 1.79 .07 10 .34 1193 <1 <5 <20 .09 <10 18 <10 19 64 .02 14 750 61 .2 3.68 5 2 40 <5 <1 - 11 16 14 2.40 4 47 - L 15+00N 8 + 50# .05 10 .64 188 <1 . 02 <20 35 .08 <10 25 <10 13 115 <.2 4.39 15 <2 50 <5 .46 <1 16 30 11 3.60 26 430 12 5 48 - L 15+00N 8 + 75E .06 <10 22 <10 8 140 25 <5 1.22 <1 9 15 4 2.09 . 09 10 .41 571 <1 .05 12 720 5 <20 77 <.2 2.45 10 <2 4 49 - L 15+00N 9 + 00E .07 <10 <5 . 43 14 26 3.25 .04 10 .53 131 <1 .01 21 400 <5 <20 29 20 <10 11 94 <.2 3.54 5 <2 40 <1 B 10

.

Į.

NOTE: LESS THAN

.

ECO-TECH ABORATORIES LTD. FRANK J. PEZZOTI, A.Sc.T. B.C. Certified Assayer

·. `

PAST CANAL KANLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700

JULY 13 , 1992 FAX - 604-573-4557

VALUES IN PPH UNLESS OTHERNISE REPORTED

. .50, 212 victoria street KAMLOOPS, B.C. V2C 2AZ

ATTENTION: STEVE JENSEN

PROJECT NO.: 1703

49 SOIL SAMPLES RECEIVED JULY 1, 1992

ET#	DESCRIPTION	ÅG	AL(\$)	عد ا		Вλ	BI	CA(\$)	CD	co	CR	CU	FE(%)	K(%)	LA	XG(\$}	MOS	мо	NA(%)	NI	₽	PB	SB	SN	SR	TI(1)	U	v	W	Y	ZN
1 -	L 16+00N 6 + 25E	<.2	1.62	2 <5	<2	55	<5	.18	<1	10	13	7	2.55	.08	10	.31	110	<1	<.01	17	220	14	<5	<20	12	.04	<10	13	<10	5	77
2 -	L 16+00N 6 + 50E	<.2	2.47	1 10	<2	50	<5	.18	<1	15	30	7	4.12	.07	<10	. 54	141	1	<.01	19	320	14	<5	<20	13	.13	<10	45	<10	9	198
3 -	L 16+00N 6 + 75E	<-2	5.79	<5	2	85	<5	.55	<1	14	3Z	9	4.38	.05	10	. 56	90	2	.02	19	130	12	5	<20	39	.13	<10	36	<10	12	178
4 -	L 16+00N 7 + 00E	<.2	3.45	i <5	<2	45	<5	. 49	<1	11	32	9	2.49	.05	20	.34	425	1	.01	19	120	12	<5	<20	28	.12	<10	23	<10	43	159
5 -	L 16+00N 7 + 25E	<.2	2.86	5	<2	50	<5	.26	<1	13	19	6	3.03	.05	<10	.38	221	<1	.01	18	250	10	<5	<20	21	.11	<10	29	<10	9	132
6 -	L 16+00N 7 + 502	s.2	3.10	10	<2	95	<5	.18	<1	16	27	7	3.90	.09	<10	. 59	176	<1	<.01	25	380	10	<5	<20	12	.09	<10	29	<10	7	226
7 -	L 16+00N 7 + 75E	<.Z	2.10		<2	65	<5	.10	<1	12	18	6	3.22	.04	<10	.35	196	<1	<.01	13	450	8	<5	<20	8	.11	<10	33	<10	8	130
8 -	L 16+00N + 00R	<.7	4.78		-22	80	< 5	.38	<1	15	26	Å	3.07	.05	<10	.58	183	<1	.02	23	410	14	5	<20	33	.10	<10	23	<10	10	380
9 -	L 16+00N 8 + 25F		3 78		,	60	<5	.27	<1	17	19	- 7	2.95	.07	<10	.40	185	2	- 07	14	440	14	<5	<20	21	.13	<10	33	<10	9	135
10 -	L 16+00N 8 + 50E	<.2	3.67	5	<2	65	<5	. 22	<1	13	23	8	3.10	.06	<10	.53	180	<1	.01	21	420	12	<5	<20	17	.11	<10	27	<10	10	107
11 -	L 16+00N 8 + 752	<.2	3.06	5	<2	65	<5	. 25	<1	14	25	8	3.18	.08	10	.58	356	<1	.01	24	330	8	5	<20	15	.10	<10	27	<10	8	86
12 -	L 16+00N 9 + 00E	<.2	4.44	5	<2	80	<5	. 77	<1	17	38	15	3.72	.13	10	.94	213	<1	.04	30	510	14	<5	<20	66	.09	<10	31	<10	10	84
16 -	L 15+00N 0 + 75R	<.2	1.79	5	<2	50	<5	.12	<1	9	11	7	2.72	.03	<10	. 22	86	<1	<.01	13	220	4	<5	<20	10	.06	<10	27	<10	5	52
17 -	L 15+00N 1 + 00E	<.2	3.01	<5	<2	80	<5	.90	<1	12	15	12	2.68	.08	20	. 33	923	<1	.01	22	330	6	<5	<20	44	.08	<10	16	<10	20	40
18 -	L 15+00N 1 + 25E	<.2	2.76	10	<2	6 5	<5	.35	<1	10	8	7	2.72	.05	10	.10	163	<1	<.01	9	240	6	<5	<20	19	.12	<10	21	<10	15	46
19 -	L 15+00N 1 + 50E	<.Z	2.71	10	<2	80	<5	.54	<1	12	7	10	2.92	.04	20	. 09	543	<1	<.01	13	530	6	<5	<20	31	.10	<10	23	<10	21	73
20 -	L 15+00N 1 + 75E	<.2	3.36	10	<2	85	<5	.16	<1	13	8	4	2.85	.03	<10	.14	217	<1	<.01	7	2010	8	<5	<20	11	.17	<10	28	<10	12	84
21 -	L 15+00N 2 + 00E	<.2	2.66	10	<2	45	<5	.19	<1	8	7	5	2.16	.02	<10	.08	194	<1	.01	6	510	10	<5	<20	11	.12	<10	28	<10	9	55
22 - :	L 15+00N 2 + 25E	<.2	2.75	10	<2	50	5	.20	<1	10	11	4	2.39	.03	<10	.19	226	<1	.01	8	270	8	<5	<20	11	.13	<10	32	<10	10	71
23 - 1	L 15+00N 2 + 50E	<.2	3.86	10	<2	45	<5	.32	<1	12	18	6	2.76	.03	10	. 34	174	<1	.01	14	220	10	<\$	<20	26	.10	<10	26	<10	15	56
24 -	L 15+00N 2 + 75E	<.2	1.02	<5	<2	10	<5	1.10	<1	3	2	10	1.02	.01	<10	.06	60	<1	.01	1	180	<2	<5	<20	41	. 06	<10	22	<10	5	26
25 - 1	L 15+00N 3 + 00E	<.2	4.00	5	<2	50	<5	.88	<1	10	17	6	2.52	.03	<10	.36	119	1	.01	13	240	16	<5	<20	43	10	<10	25	<10	9	108

.*

.

· · ·

.

THER REPLORATION MIX 92-269 ECO-TECH LABORATORIES LTD. JULY 1, 1992 TTI DESCRIPTION W T ZH v AG AL/&) AS 5 BA SI CA(&) (D) CO CR (D PE(&) K(&) LA HG(&) ZE (#)AN OH TH P PB 53 5W 5R TI(1) σ 22 <10 14 48 L 18+00N 3/L 348 <1 .08 <10 49 .37 .01 25 490 6 <5 <20 23 20 <.2 2.01 10 <2 190 <5 . 34 <1 14 17 11 3.21 .18 23 <10 . 44 69 L 18+00N 0 + 252 . 08 <10 .20 122 <1 .01 13 830 10 <5 <20 10 .11 <10 2.31 5 <2 80 <5 9 7 2.62 <.2 .13 <1 12 23 <10 70 L 18+00N 6 37 .08 <10 0 + 50x .04 10 .22 73 <1 <.01 7 750 6 <5 <20 6 <.2 . 99 <5 <2 55 <5 .07 <1 6 10 1 2.23 71 L. 18+00N 0 + 752 .48 1745 .02 800 54 .12 <10 40 <10 27 76 . 47 40 1 59 12 <5 <20 .2 5.06 10 2 490 <5 .50 <1 21 29 40 5.21 72 L 18+00N 13 <10 7 46 1 + 002 .45 243 <1 <.01 12 .04 <10 <.2 1.84 5 <2 90 <5 .14 <1 13 14 . 2.86 .12 20 21 510 2 <5 <20 73 L 18+00N .09 <10 25 <10 . 75 1 + 258 .37 257 <1 .01 13 2.59 10 <2 165 <5 .24 <1 3.42 .16 10 25 960 10 <5 <20 <.2 14 10 10 27 <10 10 102 74 L 18+00N 228 <1 .12 <10 1 + 502 <.2 2.86 10 <2 180 <5 .19 <1 14 16 7 3.37 .11 10 . 30 .01 18 2070 10 <5 <20 12 75 L 18+00N .06 <10 19 <10 6 86 1 + 758 .12 10 .35 306 <1 <.01 22 1630 <5 <20 11 3.06 6 <.2 1.74 5 <2 135 <5 .18 <1 12 16 7 19 <10 10 76 L 18+00N 76 .05 <10 2 + 002 2.30 5 <2 145 <5 .41 <1 15 3.04 .15 20 .53 771 <1 .01 25 460 6 <5 <20 28 <.2 20 . 25 <10 7 86 77 L 18+00N .28 .09 <10 2 + 252 .08 594 <1 .01 570 <5 <20 10 <.2 2.10 5 <2 105 <\$.11 <1 11 13 6 2.82 10 13 - 6 78 L 18+00N 28 <10 112 2 + 50E 3.22 . 06 <10 .33 151 <1 .01 12 380 10 <5 <20 11 ,11 <10 .17 <1 10 <.2 2.76 10 <2 110 <5 14 4 79 L 18+00N .09 <10 23 <10 13 73 38 2 + 758 3.51 10 <2 160 .77 <1 3.27 .17 20 .42 402 <1 .01 25 370 8 <5 <20 <.2 <5 15 18 12 80 L 18+00N .36 414 <1 .01 290 36 .05 <10 21 <10 . 51 3 + 00E <5 <20 <.Z 2.22 <5 <2 75 <5 .73 <1 10 13 10 2.22 . 09 10 14 4 65 <10 13 90 61 L 18+00N 1.26 216 <1 .30 31 380 10 <5 <20 318 .12 <10 3 + 258 <.2 8.98 2 140 <5 4.66 <1 20 74 14 3.40 .13 <10 <5 .11 <10 29 <10 14 66 82 L 297 <1 18+00N 3 + 50x .26 10 1.10 .05 36 410 20 5 <20 66 3.79 <.2 3.79 10 <2 145 <5 .90 <1 27 34 17 47 83 L 18+00N .09 <10 30 <10 • 56 3 + 758 .76 2.14 .02 <10 . 30 56 <1 .02 8 180 4 <5 <20 <.2 **<2** 35 <5 <1 7 16 3 3.03 5 33 <10 13 81 84 L 18+00N 419 <1 197 .10 <10 .94 .10 23 500 12 <5 <20 4 + 002 .18 <10 <.2 5.19 <5 <2 80 <5 2.85 <1 16 40 10 3.54

PAGE 3

ł i

PA		THER EXPLO	RATION STR	92-26	Į.											JULT	1, 1992									z	CO-TECI	I LABO	RATOR	IZS L	D.	
				¥L(\$	<u>مد</u> (; B	51	BI	CA(\$)	CĐ	00	CR	CU	7E(%)	K(%)	LA	HG(%)	10	Ю	NA(%)	ĦI	P	PB	8	50	SR	TI(%)	σ	· 🗸	Ħ	Y	23
12	20-1. 16+00N	005 Q + 75E	<.2	2.17	4	~	85	<5	-44	<1	12	13	7	2.81	.06	10	.29	332	<1	.01	18	340	6	<5	<20	23	.08	<10	25	<10	,	47
12	21-L 16+00N	005 1 + 00 5	<.2	3.3(l <5	<2	55	<5	. 39	<1	10	8	5	2.02	. 02	10	.11	219	<1	.02	9	340	4	<5	<20	25	.08	<10	22	<10	12	39
12	2-L 18+00N	008 1 + 25¥	<.2	3.00	: <5	2	75	<5	.35	<1	9	5	- 4	2.60	.03	<10	.07	428	2	.01	5	1600	10	<5	<20	18	-13	<10	25	10	11	47
12	3-L 16+00N 0	05 1 + 50X	<.2	1.04	<5	<2	75	<5	. 09	<1	7	8	3	1.93	.04	10	.17	135	<1	. 01		400	2	<5	<20	9	.06	<10	21	<10	5	64
12	4-L 16+00N 0	HOS 1 + 75E	<.2	1.64	<\$	<2	90	<5	.15	<1	10	14	7	2.62	.07	10	.30	175	<1	.01	18	300	6	<5	<20	14	.08	<10	27	<10	7	50
12	2*L16+00N 0	05 2 + 00 <u>r</u>	<.2	3.80	<5	<2	125	<5	-23	<1	12	16	6	3.45	- 07	<10	.36	168	<1	.01	16	240	10	<5	<20	33	-11	<10	34	<10	10	36
14	9-L16+00N g	QS 2 + 25E	<.2	4.45	4	<2	115	5	-64	<1	17	18	6	3.36	.05	10	.48	223	1	<.01	22	450	12	<5	<20	34	.10	<10	21	<10	17	81
175		03 7 + 50E	<.2	3.16	9	<z< td=""><td>145</td><td><5</td><td>. 38</td><td><1</td><td>16</td><td>22</td><td>13</td><td>3.37</td><td>. 09</td><td>10</td><td>.45</td><td>681</td><td>1</td><td>.01</td><td>28</td><td>380</td><td>10</td><td><5</td><td><20</td><td>32</td><td>- 07</td><td><10</td><td>25</td><td><10</td><td>12</td><td>73</td></z<>	145	<5	. 38	<1	16	22	13	3.37	. 09	10	.45	681	1	.01	28	380	10	<5	<20	32	- 07	<10	25	<10	12	73
1.70	- 18+00N 0	UN Z + 75R	<.2	4.81	<5	2	155	5	-51	<1	20	41	10	4.46	.08	<10	.72	873	1	. 82	29	490	12	<5	<20	37	.13	<10	47	<10	11	158
130	L 18+00N 0	VA 3 + 00X	<.2	1.75	<5	<2	30	<5	1.01	<1	3	6	4	1.46	.02	<10	.07	178	<1	.02	- 4	249	2	<5	<20	44	-07	<10	22	<10	8	29
1 71	- L 16+00N		<.2	4.40	<5	<2	65	<5	-44	<1	11	20	8	2.47	.05	10	.31	95	<1	.02	16	190	16	<5	<20	32	•12	<10	22	10	14	74
132	-L16+00N A	- 3 + 30E	<.2	5.39	<5	<2	90	<5	1.70	<1	16	39	12	3.51	.07	10	-82	264	<1	.06	26	250	12	5	<20	108	.13	<10	37	<10	17	99
133	- L 16+00N 00		<.2	4.55	<5	<2	82	9	. 40	<1	12	16	7	Z.94	.04	<10	.26	180	<1	.01	15	260	10	\$	<20	25	-14	<10	31	<10	14	56
134	-L 16+00N 00		<.2	5.40	<3	<2	32	<		<1	14	21	,	3.73	.04	<10	.34	113	<1	.01	19	420	16	<5	<20	24	.15	<10	30	<10	15	104
135-	- L 16+00N 00		<.2	3.37	9		/3	<5	• 4 2	<1	13	19	5	3.38	.04	<10	.36	252	1	.01	13	460	18	<5	<20	13	.15	<10	39	30	11	105
136-	L18+00N 00	8 4 4 75¥	~ 2	2.75	-	~2	63 81	~	.45	<1	12	18	7	2.59	.05	<10	.33	1334	<1	.01	13	920	10	<5	<20	13	.10	<10	29	<10	9	71
137-	L 16+00N 00.	85 + 007	~ 7	2.31		~	80	~	.08	~1	12	18	•	2.83	.04	<10	.35	327	<1	.01	17	1110	10	4	<20	11	-12	<10	28	<10	10	94
138-	L 18+00N 00	5 + 752 2		4.33		~	100		. 11		12	12	1	2.77	.04	<10	.31	224	<1	<.01	14	670	6	<	<20	7	.10	<10	25	<10	9	67
139-	L 16+00N 00	6 5 + 50x		1.75	~	~	55	<5	.11	~1	10	13	2	4.98	.04	<10	.36	453	<1	.06	25	1430	20	<5	<20	127	.07	<10	18	<10	12	142
140-	L 16+00N 601	S S + 752	<.2	4.01	5	2	90	<5	.27	<1	12	18		2.41	.04	<10	.34	151	<1	<.01	13	430		<	<20	13	.05	<10	17	<10	5	55
141-	L 18+00N 001	5 6 + 00x	<.2	1.79	<5	-	90	<5	.14	<1		12	3	2 20	.05	<10	.3/	200	4	.01	10	560	4	9	<20	12	• 4 2	<10	29	50	20	244
					-			-		-					.05	-10	.23	341	~1	.01	10	210	•	9		**	.03	~10	29	<10	7	104
146-	L 14+00N	1 + 252	<.2	4.20	<5	2	60	<5	1.61	<1	,	12	11	2.17	.05	10	.25	369	<1	.02	12	460	8	<5	<20	71	.13	<10	12	<10	23	36
147-	L 14+00N	1 + 50E	<.2	2.19	<5	<2	20	<5	. 50	<1	10	11	5	2.70	.06	<10	.26	102	<1	<.01	15	210	4	<5	<20	26	.07	<10	17	<10	6	54
148-	L 14+00N	1 + 752	<.2	1.84	5	<2	85	<5	.16	<1	10	13	6	Z.34	.06	<10	. 32	121	<1	<.01	17	210	10	<5	<20	13	.05	<10	17	<10	5	73
149-	L 14+00N	2 + 002	<.2	2.14	<5	<2	95	<5	-12	<1	10	11	4	2.55	.04	<10	.20	702	<1	.01	10	650	8	<5	<20	10	.13	<10	31	<10	10	106
150-	L 14+00N	2 + 25E	<.2	4.32	5	2	95	<5	.72	<1	13	17	5	3.09	.05	<10	.38	191	<1	.01	16	770	14	<5	<20	33	.14	<10	28	<10	12	208
																			-			,		-								

. **a** .

. . **Rock Analyses**

A ...

ı

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557*

JULY 7, 1992

CERTIFICATE OF ASSAY ETK 92-276

TECK EXPLORATION # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

SAMPLE IDENTIFICATION: 19 ROCK samples received JUNE 26, 1992 ----- PROJECT: 1703

ET#	Description	Ag (g/t)	Ag (oz/t)	Pb (욱)	Zn (%)	
1-	106001	<.1	<.01	<.01	.01	
2-	106002	10.7	.31	.68	.62	
3-	106003	25.5	.74	1.06	.17	
4	106004	29.4	.86	1.22	.10	
5 -	106005	11.3	.33	.52	.23	
6 -	106006	21.6	.63	.67	.38	
7-	106007	3.8	.11	.14	1.58	
8-	106008	8.0	.23	.46	1.08	
9-	106009	20.2	.59	.94	5.58	
10-	106010	12.6	.37	.53	.16	
11-	106011	1.5	.04	.09	.72	
12-	106012	17.3	.51	.79	1.64	
13-	106013	53.4	1.56	3.40	1.14	
14-	106014	3.5	.10	.21	.14	
15-	106015	5.9	.17	.45	2.46	
16-	106016	3.7	.11	.23	.66	•
17-	106017	18.2	.53	1.54	4.62	
18-	106018	5.2	.15	.29	.88	
19-	106019	7.4	.22	.55	2.02	

ECO-TECH ZABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

-

ECO-TECH LABORATORIES LTD. 10041 EAST TRANS CAMADA HWY. KAMLOOPS, B.C. V2C 2J3 PHOME - 604-573-5700 FAX - 604-573-4557 TECK EXPLORATION ETK 92-276 # 350, 272 Victoria Street KANLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY PROJECT NUMBER: 1703

19 ROCK SAMPLES RECRIVED JUNE 26, 1992

ST# DESCRIPTION	лG	AL(%)	as.	8	BA	BI	CA(*)	CD	<u></u>	CR	CU	FE(%)	X(\$)	LA	HG(%)	HOS	- HO	NA(\$)	MI	P	PB	\$8	SM	SR	TI(%)	a	v	W	T ZI
1 ~ 106001	<.2	.83	5	~	5	<5	.55	-4	5	142	2	2.65	.01	20	. 16	248	4	<.01	5	1090	4.	<5	<20	20	.01	<10	5 <	10	9 10
2 ~ 106002	8.4	.15	485	<2	50	5	3.27	4	8	68	25	>15	<.01	<10	1.41	3378	4	<.01	5	330	5034	5	<20	34	.01	30	<1 <	10 ·	<1 526
3 - 106003	18.2	.08	465	<2	50	20	2.77	<1	7	56	9	>15	<.01	<10	1.15	2974	2	<.01	- 4	210	>10000	15	<20	31	<.01	30	<1 <	10 .	<1 114
4 - 106004	21.6	-15	370	<2	50	10	. 77	<1	9	87	15	>15	<.01	<10	- 22	1125	5	<.01	5	170	>10000	5	<20	12	.01	30	<1 <	10 .	<1 69#
5 - 106005	9.2	.11	440	<2	45	10	. 29	1	9	89	10	>15	<.01	<10	.06	473	3	<.01	7	310	4236	<5	<20	5	.01	30	<1 <	10 -	<1 263/
6 ~ 106006	15.6	.06	450	<2	40	10	.01	1	7	102	6	>15	<.01	<10	<.01	84	6	<.01	4	<10	5782	5	<20	<1	<.01	30	<1 <	10 -	<1 388/
7 - 106007	4.0	. 09	270	<2	50	5	6.09	11	8	28	12	1 2.46	<.01	<10	4.46	>10000	2	<.01	3	620	894	10	<20	63	<.01	30	<1<10	. 00	<1>1000/
8 - 106008	9.2	.13	280	<2	65	<\$	13.66	19	8	33	53	11.98	<.01	<10	5.82	>10000	4	<.01	- 4	1720	3434	30	<20	137	<.01	40	<1<10	0	6>1000(
9 - 106009	14.0	.07	625	<2	65	5	2.19	56	8	46	44	>15	<.01	<10	-78	2275	3	<.01	11	760	903B	15	<20	20	<. 01	30	<1<10	00 -	<1>1000
10 - 106010	11.0	.04	520	<2	60	10	1.01	<1	9	103	10	>15	<.01	<10	-18	606	6	<.01	6	360	4882	<5	<z0< td=""><td>17</td><td><.01</td><td>30</td><td><1 <</td><td>10 -</td><td><1 1592</td></z0<>	17	<.01	30	<1 <	10 -	<1 1592
11 - 106011	2.8	.03	230	<2	45	5	12.12	4	3	16	10	11.53	<.01	<10	5.63	>10000	2	<.01	1	250	570	5	<20	73	<.01	20	<1 <	0	<1 704
12 - 106012	14.0	.04	375	<2	55	10	5.56	21	10	44	16	>1\$	<.01	<10	1.88	7098	<1	<.01	10	80	6294	15	<20	44	<.01	50	<1<10	00 •	<1>1000
13 - 106013	>30	.05	745	<2	70	40	. 35	12	15	104	8	>15	<.01	<10	<.01	405	10	<.01	9	370	>10000	40	<20	<1	.01	10	<1<10	00 -	<1>1000
14 - 106014	3.4	. 11	425	<2	40	10	.73	<1	8	96	3	>15	<.01	<10	-18	783	6	<.01	8	310	1586	<5	<20	7	<.01	20	<1 <	10 1	<1 102
15 - 106015	4.4	.12	670	<2	45	5	1.65	23	8	64	14	>15	<.01	<10	• 57	1826	3	<.01	11	1050	3300	30	<20	16	<.01	30	<1<10	10 1	<1>10004
16 - 106016	5.8	.48	110	<2	85	20	1.60	5	12	34	68	>15	.18	<10	1.71:	>10000	3	<.01		1170	1534	<5	<20	25	.04	70	<1 <	LO 4	<1 391
17 - 106017	12,6	.04	125	<2	25	<5	12.50	54	- 4	12	7	6.80	<.01	<10	4.49	>10000	<1	<.01	<1	480	>10000	20	<20	76	<.01	10	<1<10	00	4>1000
18 - 106018	5.0	.26	520	<2	55	10	2.68	7	10	9 1	28	>15	<.01	<10	1.27	5614	6	<.01	12	1130	215B	5	<20	22	.03	40	<1 <	10 -	<1 646(
19 - 106019	7.4	.43	240	<2	90	30	4.17	22	- 14	23	25	>15	. 20	<10	1.90	9839	3	<.01	10	940	4292	10	<20	44	.04	60	<1<10	0 1	<1>10000
QC DATA		7																											
REPEAT #:																													
18 - 106018	4.8	.26	515	<2	55	10	2.54	6	8	66	27	>15	<.01	<10	1.20	5445	2	<.01	13	1010	205B	10	<20	20	.03	40	<1 <	0 1	<1 614?
STANDARD 1991 -	1.0	1.94	50	<2	190	<5	1.86	<1	19	66	78	4.03	. 37	`≪10	1.02	673	<1	.01	21	630	6	5	<20	58	.13	<10	80 <	L O]	14 61

PLEASE NOTE: W detection limits are higher than normal due to massive In interference

ı.

BOTE: < = LESS TRAM

JULY 7, 1992

> - GREATER THAN

ECO-TECH LABORATORIES LTD. FRANK J. FEZZOTTI, A.Sc.T. B.C. Certified Assayer **Drill Core Analyses**

m - -

-

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 31, 1992

CERTIFICATE OF ANALYSIS ETK 92-346

TECK EXPLORATION LTD. 350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY/GREG THOMPSON

SAMPLE IDENTIFICATION: 2 ROCK samples received JULY 23, 1992 ----- PROJECT: 1703

ET	¥ 	Description	FE (%)	PB (%)	ZN (१)	,
1 2		106026 106027	13.04 19.68	.04 2.24	.18 8.28	

ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C. Certified Assayer

/10 - 4

		ECO-TE	CH LABO	RATO	RIES	LTD.									1	ECK BXE	LORATI	ION I	TD. ETK	92-34	46										
		10041 1	east tr	ANS	CANAI	DA HWY	•								4	350, 2	72 Vic	tori	a Stree	t											
		KAHLOOI	PS, B.C	• V2	C 2J3	3									7	AMLOOPS	, в.с.	•													
		PHONE ·	- 604-5	73-5	700										۷	2C 2A2															
JULY	31, 1992	FAX -	604-5	73-4	557																										
															A	TTENTIC	N: PRE	D DA	LEY/GRE	g thoi	PSON										
VALUI	RS IN PPM UNLES	S OTHER	ISE RE	PORT	BD					•					F	ROJECT	#: 170	3													
															2	ROCK	AMPLES	S REC	EIVED J	ULY 2	3, 199	92									
RT.	DESCRIPTION	AG	AL(%)	AS	в	RA	BT	CA(3)	CD	60	CR	сп	PR(1)	T (\$)	LA	MG(%)	MN	мо	NA(%)	NI	Р	PB	ŚB	SN	SR	TI(\$)	σ	v	W	¥	ZN
																													rinteres en r	ra ada:	- 22 2 2 2 2 2 2
1	- 106026	1.6	. 29	30	<2	50	<5	1.13	2	11	167	64	13.83	.01	<10	.29	1475	12	<.01	18	940	424	<5	<20	14	<.01	20	<1	70	1	1656
2	- 106027	>30.	.28	5	<2	55	10	1.07	140	17	72	118	>15	.09	<10	.74	9274	10	<.01	5	580	>10000	<5	<20	30	.04	40	<1	4170	<1 3	>10000
QC D/	ТА																														
geneta																															
REPE	AT #1																														
_					_		_		_								16.20		< 01		000	440	~5	~20	14	< 01	10	~1	40	2	1693
1 - 1	106026	1.8	. 30	30	<2	50	5	1.18	2	11	172	66	13.03	.01	<10	. 32	1230	13	<.01	10	990	440	~ 5	~20	1.1		10	~*		-	1055
STAN	ARD 1991	1.4	2.12	60	2	140	<5	2.25	<1	25	81	82	4.87	. 41	<10	1.10	812	<1	.02	26	780	18	<5	<20	70	.16	<10	96	10	17	91

Т.

NOTE: < = LESS THAN

> = GREATER THAN

¥ 1

SC/TECK2

ECO-TECH LABORATORIES LTD.

FRAME J. PHEZOTTI, A.Sc.T. B.Q. Certified Assayer

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 30, 1992

CERTIFICATE OF ANALYSIS ETK 92-317

TECK EXPLORATION LTD. 350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY/GREG THOMPSON

SAMPLE IDENTIFICATION: 6 ROCK samples received JULY 23, 1992 ----- PROJECT: 1703

ET 	#	Description	AG (g/t)	AG (oz/t)	PB (%)	ZN (`%)
1	_	106020	16.2	.47	1.38	3.46
2	-	106021	4.2	.12	.31	3.72
3	-	106022	7.5	.22	.63	1.44
4	-	106023	5.2	.15	.39	1.40
5	-	106024	1.7	.05	.19	.94
6	-	106025	4.8	.14	.27	.30

ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C. Certified Assayer

n - -

JULY 30 , 1992 Values in PPM Unles	ECO-TE(10041) KANLOOI PHONE - FAX - S OTHERN	CH LABO EAST TR 25, B.C 604-5 604-5 VISE RE	RATO ANS . V2 73-5 73-4 PORT	RIES CANAI C 2J: 700 557 ED	LTD. DA HWY	ζ.								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TECK BX 350, KANLOOP V2C 2A2 ATTENTIC PROJECT 5 ROCK :	PLORATIO 272 Vic 5, B.C. DN: FRED #: 170 SAMPLES	ON LI toria D DAI 3 RECE	TD. BTK a Street LEY/GREG SIVED JU	92-3: : : THO: :LY 16	17 1950n 5, 1992	2									
ET# DESCRIPTION	AG	AL(%)	AS	Ð	BA	BI	CA(%)	CD	co	CR	ເປ	FE(%)	K(%)	LA	MG(%)	MN	мо	NA(%)	NI	P	PB	SB	SN	SR	TI(%)	σ	v	W	¥	ŹN
1 - 106020 2 - 106021 3 - 106022 4 - 106023 5 - 106024 6 - 106025	13.8 3.8 7.2 5.0 1.6 4.2	.12 .09 .19 .08 .76 .26	10 15 10 15 5 5	<2 <2 <2 <2 <2 <2 <2 <2	35 30 85 40 55 50	<5 <5 15 <5 10 <5	3.11 2.42 8.71 >15 8.79 .66	48 56 16 15 9 6	23 5 9 4 10 3	101 95 17 17 56 136	88 66 40 6 15 5	5.59 5.09 >15 7.49 10.41 2.38	.01 <.01 .08 .03 .51 .10	<10 <10 <10 <10 <10 <10 10	.19 .69 3.39 6.05 2.95 .11	762 2369 >10000 >10000 >10000 702	13 10 3 1 4 5	<.01 <.01 <.01 <.01 <.01 <.01	16 8 3 <1 6 4	1230 1510 320 860 1820 1100	>10000 2778 4438 2712 1498 2654	5 10 <5 5 <5 <5	<20 <20 <20 <20 <20 <20 <20	46 40 79 125 108 11	<.01 <.01 .02 .01 .06 <.01	<10 <10 30 10 30 <10	<1 <1 <1 <1 7 <1	<10 <10 <10 <10 <10 <10	3 >: 5 >: <1 >: 2 >: 8 7	10000 10000 10000 10000 7401 3309
QC DATA REPEAT #: 3 - 106022	8.3	.21	10	<2	85	15	8.88	19	9	19	43	>15	.07	<10	3.59	>10000	3	<.01	3	360	4982	<5	<20	82	.02	30	<1	330	<1 >1	10 000

.

NOTE: < = LESS THAN

> = GREATER THAN

7

÷

SC/TECK2

eithe (huno. -----

RCO TECH LABORATORIES LTD. FRANK J. PETKOTTI A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 30 , 1992

CERTIFICATE OF ASSAY ETK 92-348

TECK EXPLORATION # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY

.

SAMPLE IDENTIFICATION: 19 ROCK samples received JULY 24, 1992 PROJECT: 1703 SAMPLES SUBMITTED BY GREG THOMPSON

		Ag	Ag	Pb	Zn	Fe	
ET#	Description	(g/t)	(oz/t)	(율)	(8)	(8)	:
			*********	****=====			
1-	106028	.5	.02	.02	.19	-	
2-	106029	.8	.02	.04	.22	-	
3-	106030	<.1	<.01	.01	.45	-	
4	106031	.6	.02	.05	.60	-	
5 -	106032	.6	.02	.02	.04	-	
6 –	106033	1.7	.05	.19	.58		
7-	106034	.7	.02	.06	.30	-	
8 –	106035	2.7	.08	.23	.92	-	
9-	106036	5.6	.16	.33	1.78	-	
10-	106037	4.1	.12	.28	3.00	8.68	
11-	106038	<.1	<.01	.03	.09	-	
12-	106039	1.4	.04	.08	.08	-	
13-	106040	1.2	.04	.07	,17	-	
14-	106041	.4	.01	.03	.06		
15-	106042	2.8	.08	.20	.79		
16-	106043	.6	.02	.04	.20	-	
17-	106044	2.3	.07	.11	.26		
18-	106045	1.7	.05	.12	.25	-	
19-	106046	1.4	.04	.06	.04	-	

NOTE: < = LESS THAN

-

(ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.SC.T. B.C. CERTIFIED ASSAYER ECO-TECH LABORATORIES LTD. 10041 EAST TRANS CANADA HWY. KANLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

•

VALUES IN PPM UNLESS OTHERWISE REPORTED

JULY 31, 1992

TECK EXPLORATION LTD. ETK 92-348 # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY/GREG THOMPSON PROJECT #: 1703 19 ROCK SAMPLES RECEIVED JULY 24, 1992

				•		-			~~~(+)						w(*)	144	ualat															_
1	+	106028	.6	.75	i 15	<2	45		4.85	2	9	147	19	3.69	.06	10	. 50	1322	7	.01	15	1290	146	<5	<20	66	<.01	<10	1	<10	10	1650
2	-	106029	1.0	. 33	25	<2	30	<5	2.53	3	8	108	17	4.62	.07	10	. 47	1728	9	.01	14	1520	264	<5	<20	28	<.01	<10	<1	<10	8	1980
3	_	106030	<.2	.25	5 15	<2	80	<5	7.08	6	4	149	4	3.09	.05	10	2.44	5778	7	<.01	4	1310	48	5	<20	64	<.01	<10	<1	<10	7	3650
4	-	106031	.4	.24	i 30	<2	55	<5	3.69	8	4	155	9	2.93	.04	10	1.24	3867	11	<.01	6	1540	326	<5	<20	45	.01	<10	2	<10	7	5460
5	-	106032	.6	.22	20	<2	95	<5	. 81	<1	3	285	11	1.39	.05	10	. 21	1015	13	<.01	5	840	178	<5	<20	19	<.01	<10	1	<10	5	376
6	-	106033	1.8	.19	35	<2	45	<5	. 46	8	5	182	26	6.09	.10	<10	. 23	2224	14	<.01	4	1390	1518	<5	<20	19	.64	10	2	<10	6	4924
·7	-	106034	. 8	.15	20	<2	20	<5	1.32	4	2	241	4	1.83	.05	<10	.46	1966	10	<.01	3	1030	488	<5	<20	32	<.01	<10	1	<10	5	2454
8	-	106035	2.8	.16	20	<2	10	<5	. 51	15	2	290	6	.61	.02	10	.07	313	20	<.01	6	1070	2058	<5	<20	13	<.11	<10	2	<10	5	8791
9	-	106036	6.0	. 30	115	<2	65	10	11.64	18	7	32	9	8.95	.11	<10	3.73	>10000	4	<.01	6	1700	2222	20	<20	127	.02	30	<1	<10	4	>10000
10	-	106037	4.0	. 20	200	<2	65	5	9.91	37	8	29	19	12.55	.06	<10	4.01	>10000	з	<.01	5	850	1984	10	<20	118	.02	20	<1	<10	<1 >	>10000
11	-	106038	<.2	.04	60	<2	25	<5	12.05	<1	3	19	1	4.96	<.01	<10	4.23	>10000	1	<.01	<1	770	1 36	10	<20	112	<.01	10	<1	<10	2	650
12	-	106039	1.6	.07	100	<2	35	<5	11.98	<1	4	24	2	5.64	<.01	<10	4.26	>10000	1	<.01	<1	910	476	5	<20	152	<.01	10	<1	<10	2	679
13	-	106040	1.4	.04	65	<2	35	5	12.87	<1	6	13	15	7.64	<.01	<10	5.17	>10000	1	<.01	2	490	354	10	<20	130	<.01	10	<1	<10	<1	1563
14	-	106041	.6	.04	35	<2	25	5	14.56	<1	2	9	2	4.18	<.01	<10	5.88	>10000	1	<.01	<1	760	132	10	<20	187	<.U1	10	<1	<10	3	456
15	-	106042	3.0	. 21	40	<2	55	5	10.66	7	5	14	13	7.76	.09	<10	4.08	>10000	1	<.01	2	900	1208	10	<20	130	.01	20	<1	<10	2	6980
16	-	106043	.4	.06	35	<2	30	<5	13.15	<1	3	17	2	4.31	.01	<10	5.20	>10000	1	<.01	<1	730	228	10	<20	124	<.01	10	<1	<10	3	1560
17	-	106044	2.2	.12	390	<2	50	5	6.80	<1	12	23	12	14.41	<.01	<10	2.35	8496	2	<.01	11	1260	768	10	<20	94	.01	30	<1	<10	<1	2321
18	-	106045	1.8	13	60	<2	40	5	11.78	1	3	24	3	4.92	.02	<10	4.07	>10000	1	<.01	<1	1000	712	10	<20	164	<.01	10	<1	<10	4	2063
19	-	106046	1.2	• .14	165	<2	50	5	9.39	<1	6	26	10	8.65	<.01	<10	3.40	9838	1	<.01	7	1240	338	10	<20	141	<.01	30	<1	<10	2	326
QC DAT	TA																															

REPEAT #:

.01 20 <1 <10 <1 >10000 4 760 1954 10 <20 112 10 ~ 106037 4.2 .18 195 <2 55 5 8.89 35 7 25 18 11.92 .05 <10 3.91 >10000 2 <.01 66 STANDARD 1991 1.2 1.79 55 2 125 <5 1.76 <1 19 62 77 3.77 .34 <10 .94 659 1 .01 23 640 10 5 <20 61 .12 <10 76 <10 14

.

NOTE: < = LESS THAN

> = GREATER THAN

ECOTECE LABORATORIES LTD. FRAME J. FEIZOTEI, A.Sc.T. B.C. Certified Assayer

SC/TECK2

• 1

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4657

JULY 31, 1992

CERTIFICATE OF ANALYSIS ETK 92-346A

TECK EXPLORATION LTD. 350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY/GREG THOMPSON

SAMPLE IDENTIFICATION: 2 ROCK samples received JULY 23, 1992 ------ PROJECT: 1703

		λG	AG	
ET#	Description	(g/t)	(oz/t)	
*******			2.花花兰三月月月月月月月月月月日	
2 -	106027	30.9	.90	<i></i>

ECO-TECH LABORATORIES LTD.

UTTA JEALOUSE B.C. Certified Assayer

Aug. - ----

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy . Kamboops. B.C. V2C 233 (604) 573-5700 Fax 573-4557

AUGUST 7 , 1992

CERTIFICATE OF ASSAY ETK 92-373

TECK EXPLORATION # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

.

SAMPLE IDENTIFICATION: 12 ROCK samples received AUGUST 5, 1992 ----- PROJECT: 1703

ET#	Description	Ag (g/t)	Ag (oz/t)	Pb (%)	Zn (%)	
1-	81701	15.0	.44	.66	.42	
2-	81702	3.0	.09	.08	.11	
3-	81703	1.8	.05	.02	.05	
4-	81704	1.2	.04	.04	.14	
5-	81705	1.6	.05	.06	.12	
6-	81706	2.6	.08	.19	.27	
7-	81707	3.0	.09	.25	.77	
8-	81708	23.2	.68	2.39	7.06	
9-	106047	4.8	.14	.19	.21	
10-	106048	7.6	.22	.46	.61	
11-	106049	7.0	.20	.46	1.93	
12-	106050	6.8	.20	.55	1.98	

.

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

A ...

ECO-TECH LABORATORIES LTD. 10041 BAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

VALUES IN PPM UNLESS OTHERWISE REPORTED

AUGUST 7, 1992

TECK EXPLORATION LTD. ETK 92-373 # 350, 272 Victoria Street KAMLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY/GREG THOMPSON PROJECT #: 1703 12 ROCK SAMPLES RECEIVED AUGUST 5, 1992

et‡		DESCRIPTION	ÅG	AL(%)	AS	в	BA	BI	CA(%)	CD	СО	CR	CU	FE (%)	⊼(\$)	LA	HG(₿) HN	ю	NA(%)	NI	₽	PB	SB	SN	SR	TI(%)	U	v	W	¥	ZN
1		81701	14.8	.10	140	<2	45	<5	14.40	3	4	22	166	6.63	.01	<10	5.55>10000	2	<.01	1	910	4424	30	<20	180	<.01	20	<1	<10	2	3289
2	-	81702	2.8	2.18	<5	2	70	<5	9.62	1	13	42	29	2.38	.09	<10	.27 989	з	.08	23	530	606	5	<20	221	<.01	<10	<1	<10	7	805
3	-	B1703	.8	1.37	<5	<2	40	<5	12.81	<1	10	24	17	2.39	.09	<10	.32 1000	1	.04	24	320	178	5	<20	204	<.01	<10	<1	<10	6	363
4	-	81704	1.4	.03	40	<2	20	5	>15	<1	2	11	1	5.49	<.01	<10	5.75>10000	<1	<.01	<1	440	226	15	<20	146	<.01	20	<1	<10	1	968
5	-	81705	1.8	.03	50	<2	15	<5	>15	<1	2	16	4	4.51	<.01	<10	5.87>10000	<1	<.01	<1	760	382	15	<20	161	<.01	10	<1	<10	3	878
6	-	81706	2.4	.03	65	<2	28	5	14.68	1	5	10	4	5.57	<.01	<10	5.58>10000	1	<.D1	<1	520	1654	15	<20	183	<.01	20	<1	<10	3	1946
7	-	81707	2.8	.05	15	<2	5	<5	5.36	9	1	63	2	1.93	.01	<10	1.88 4229	4	<.01	1	610	2136	10	<20	58	<.01	<10	<1	<10	5	6560
8	-	81708	22.8	. 42	15	<2	20	10	1.04	119	13	81	90	6.20	.15	<10	.56 6023	9	<.01	14	410	>10000	<5	<20	13	.03	10	<1	<10	7 >	10000
9	-	106047	4.6	.06	90	<2	20	<5	1.64	2	- 4	76	47	4.69	<.01	<10	.03 235	4	<.01	14	800	1516	<5	<20	23	<.01	<10	<1	<10	2	1823
10	+	106048	7.0	.09	110	<2	20	<5	1.88	9	4	82	19	3.53	<.01	<10	.09 531	4	<.01	6	930	3696	5	<20	31	<.01	<10	<1	<10	3	4848
11	-	106049	7.2	. 49	40	<2	55	<5	6.53	21	5	32	10	8.49	.40	<10	2.54>10000	<1	<.01	4	650	3120	10	<20	95	.03	20	<1	<10	2 >	10000
12	-	106050	7.4	. 43	40	<2	35	<5	4.22	17	6	31	15	10.51	.35	<10	2.28>10000	2	<.01	2	780	4384	<5	<20	61	.03	30	<1	<10	<1 >	10000

OC .	DATA
------	------

REPEAT #: 6 - 81706 2.4 .03 70 <2 20 <5 14.22 4 5.39 <.01 <10 5.80 >10000 1 <.01 <1 500 1188 20 <20 194 <.01 40 <1 <10 4 1930 2 5 10 1.0 1.89 35 <2 100 <5 1.46 <1 15 47 74 2.99 .31 <10 .80 573 <1 .01 STANDARD 1991 19 480 14 5 <20 57 .08 <10 60 <10 10 63

NOTE: < = LESS THAN

> - GREATER THAN

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC/TECK2

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C. Project: 1703 G.THOMSON Type of Analysis: Assay

ſ

Certificate:	92314 A
Invoice:	30373
Date Entered:	92-08-15
File Name:	TEK92314.A
Page No.:	1

A 81709 0.16 0.44 1.28 16.2 A 81710 0.14 0.48 1.72 15.7 A 81712 0.36 0.68 2.06 12.4 A 81712 0.36 0.68 2.06 12.4	PRE FIX	ç	SAMPLE NAME	oz/t Ag	% % Pb Zn	ጽ Fe			
	A		81709 81710 81711 81712	0.16 0.14 0.22 0.36	0.44 1.28 0.48 1.72 0.66 3.42 0.68 2.06	16.2 15.7 18.1 12.4			

7. Constant CERTIFIED BY : _

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C. Project: 1703 G.THOMSON

Type of Analysis: ICP

Certificate:	92314 A
involce:	30373
Date Entered:	92-08-15
File Name:	TEK92314.I
Page No.:	1

PRE F1X		SAM	IPLE M	NAME	F	PPM MO	РР (1	H J	PPM PB	PF 2	n N	P P M AC	₽	PM N1	PPI CC	1 F	PM MN	X Fe	P	PM AS	PPM U	r P	PM AU	РРМ HG	PP S	R	PPM CD	PPN Se	и Р Э	РМ В I	PPM V	c	% :A	% Р	PPM LA	Pf	PM CR	% MG	PP/ B/	4	% T I	% AL	N	% IA	% S I	PP# W	e i	PPM BE			
A		· · · · · · · · · · · · · · · · · · ·	81 81 81 81	1709 1710 1711 1712		2 2 3 5	14	4 3 5 3 7 6 3 6	452 937 303 266	1131 1517 3144 2051	4 5 9	5.5 5.3 7.3		4 1 3 13	1	156 156 112 80	538 1 508 1 214 1	3.75 3.25 8.08 2.00	3	7 5 77 05	5 5 5		ND ND ND	ND ND ND	11 11 7 7	8 3 2 5	17 24 54 36	1 1 15	N N N	1 1 12 27	1 1 1	6.0 6.7 4.4 4.2	18 0 16 0 12 0 15 0	.14 .09 .16 ,10	1 1 1		17 8 18 25	2.77 1.31 2.59 2.94	11. 149 43	3 0 9 0 2 0 3 0	06 03 03 01	0.74 0.37 0.34 0.17	0.0 0.0 0.0 0.0	11 0 11 0 11 0	3.01).01).01).01	11 12 13	2	1 1 1 1 1			
			 4.	- - - -									· · · · · · · · · · · · · · · · · · ·			- - -																								17.17. 17.17.17. 17.17.17. 17.17.17. 17.17.17.17.17.17.17.17.17.17.17.17.17.1							-				-
	· · · · ·	· · ·			:				• • • •																											•															
		- - -	· · ·													- 					• •	•												· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·															 	
												•																				CE	RT	FIE	D E	3Y :		/	.7) Л	2	,	\mathcal{R}	b	1	E	l	1	>	 	

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C. Project: 1723

Type of Analysis: Assay

Γ

Certificate:	92319
Invoice:	30379
Date Entered:	92-08-19
File Name:	TEK92319
Page No.:	1

PRE FIX	SAMPLE NAME	oz/t Au	oz/t Ag	% Pb	% Zn	۶ Fe							
	81713 81714 81715 81715 81716 81717	0.001	0.24 0.04 0.64 0.22 0.36	0.62 0.10 1.64 0.56 1.02	2.44 0.26 5.00 1.52 3.66	12.70 19:85							
	81718 81719 81720 81721 81722 81723	0.002	0.20 0.76 0.18 0.52 0.12 0.30	0.66 1.30 0.58 1.28 0.28 0.84	2.72 6.48 1.62 8.36 2.16 4.44	13.50 							
	81724 81725 81726 81726 81727 81728 81729	0-003	0.72 0.14 0.04 0.14 0.10 0.42	1.78 0.32 0.10 0.46 0.24 1.04	8.30 1.52 0.52 1.74 0.74 4.22	21.40							
	81730 81731 81732 81733 81734 81735 81736 81736 81737 81738 81739	0.002	0.08 0.04 0.90 0.24 0.06 0.06 0.10 0.02 0.23 0.10	0.18 0.08 1.90 0.50 0.14 0.12 0.14 0.04 0.44 0.18	0.56 0.22 1.66 0.48 0.36 0.46 0.76 0.18 0.48 0.48	18.35							
	81740	0.001	0.06		1.60	22.90							
							 CERTIFIE	D BY :	7.0	2 Jo	P	fae	1

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C.

Project: 1723

Type of Analysis: Assay

Certificate:	92319
Invoice:	30379
Date Entered:	92-08-19
File Name:	TEK92319
Page No.:	1

PRE FIX	SAMPLE NAME	oz/t Au	oz/t Ag	% Pb	% Zn	% Fe	
	81713	0.001	0.24	0.62	2.44	12.70	
	81714		0.04	0.10	0.26		ana di Nazio ang kabangan na kabangan na kabangan na kabangan kabangan kabangan kabangan kabangan kabangan kab Kabang pang kabang k
	81715	0.002	0.64	1.64	5.00	19.85	1997 - Maria Barang, ang kanalan na sa kanalan na kanalan na kanalan na kanalan kanalan kanalan kanalan kanala Kanalan kanalan
	81716		0.22	0.56	1.52		
: 100.111.	81717	utitike s	0.36	1.02	3.66		talla balan se en antalian se anna se se balan se a tra del tra sea chas se a fannar marta se stê a se se a se Na
	81/18		0.20	0.66	2.72		
	81719		0.70	0.50	0.40		
	81721	0 002	0.10	1 28	8 36	13 50	
	81722	0.002	0.12	0.28	2.16		
	81723		0.30	0.84	4.44		
	81724	0.003	0.72	1.78	8.30	21.40	
	81725		0.14	0.32	1.52		
	81726		0.04	0.10	0.52		na na sana na salahan na sana n Na sana na sana
	81727		0.14	0.46	1.74		
	81728		0.10	0.24	0.74	-	
	81729		0.42	1.04	4.22	!	
	81730		0.08	0.18	0.56	i	
	81731		0.04	0.08	0.22	2	
	81732	0.002	0.90	1.90	1.66	5 18.35) The many second strategies and the second
	81733		0.24	0.50	0.48		
	81734		0.06	0.14	0.36) 	
	51732		0.00	0.12	0.74) 	
	91737		0.10	0.14	0.70)) · ·	
	81738	• •.	0.02	0.04	0.10	1	
	81739		0.10	0.18	0.46	, i	
	81740	0.001	0.06	0.10	1.60	,) 22.90)
2.23							en en general integrale bener en
					1.1		
				•			
							CERTIFIED BY :
							The man

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C.

Project: 1723

Γ

Type of Analysis: Assay

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

_

_

Certificate:	92319
Invoice:	30379
Date Entered:	92-08-19
File Name:	TEK92319
Page No.:	1

PRE FIX	SAMPLE NAME	oz/t Au	oz/t Ag	% Pb	% Zn	% Fe											
	81713 81714 81715 81716 81716 81717 81718 81719 81720	0.001	0.24 0.04 0.64 0.22 0.36 0.20 0.76	D.62 0.10 1.64 0.56 1.02 0.66 1.30	2.44 0.26 5.00 1.52 3.66 2.72 6.48	12.70 19.85											
	81720 81721 81722 81723 81724 81724 81725 81726 81727 81728	0.002	0.18 0.52 0.12 0.30 0.72 0.14 0.04 0.14 0.10	0.58 1.28 0.28 0.84 1.78 0.32 0.10 0.46 0.24	1.62 8.36 2.16 4.44 8.30 1.52 0.52 1.74 0.74	13.50 21.40										· · · ·	
	81729 81730 81731 81732 81733 81734 81735 81736 81736 81737 81738	0.002	0.42 0.08 0.04 0.90 0.24 0.06 0.06 0.10 0.02 0.23	1.04 0.18 0.08 1.90 0.50 0.14 0.12 0.14 0.04	4.22 0.56 0.22 1.66 0.48 0.36 0.46 0.76 0.18 0.48	18.35										· · · · · ·	
	81739 81740	0.001	0.10	0.18	0.46	22.90				. :							
							 	<u> </u>	CERTIF	IED E	BY : _	 V	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	la	ø	5

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET

KAMLOOPS, B.C. Project: 1723

Type of Analysis: ICP

Certificate:	92319
Invoice:	30379
Date Entered:	92-08-19
File Name:	TEK92319.I
Page No.:	1

PRE			РРМ	РРМ	РРМ	РРМ	РРМ	РРм	РРМ	PPM	*	PPM	PPM	PPM	PPM	PPM	РРМ	РРМ	PPM	PPM	%	*	ррж	РРМ	%	РРМ	*	*	%	X	*	PPM	PPM		
FIX	SAMPI	LE NAME	MO	cu	PB	ZN	AG	NI	co	MN	FE	AS	U	AU	HC	SR	CD	SB	BI	v	CA	Р	LA	CR	MG	BA	1T	AL	NÁ	К	SI	w	BE		
		01713		3.4	4474	10100	.7.3	3		11290	9 77	37	5	ND	ND	151		10	. 1	3	7 37	0.05	4	14	3 41	102	0.03	0.70	0.03	0.47	0.02	2	1.		<u> </u>
		01/13 01714	1997 1997 - 1997	34	9447.4	2616	0.5	1		11205	5 65	34		ND	ND.	180		1.		1	12 48	0.06	1	13	5.72	190	0.03	0.54	0.09	0.48	0.01	1	1		
2		81715	4	45	13419	47127	19.8	1	5	9515	15.01	75	5	ND	ND	87	82	24	1	2	4.03	0.05	2	17	1.94	36	0.01	0.30	0.01	0.22	0.02	3	. 1		
Â		81716	1	24	4778	13872	7.8	. 1	2	14668	10.68	33	5	ND	ND	168	25	10	1	.2	9.42	0.05	2.	16	4.11	154	0.03	0.61	0.06	0.47	0.02	2	1	•	
A		81717	. 4 .	43	8941	34388	11.0	1	9	11804	15.19	70	5	ND	ND	104	65	16	1	3	5.37	0.03	3	18	2.82	54	0.02	0.44	0.01	0.29	0.01	2	, 1 [°] ,		t.
A		81718	1	32	5224	23495	7.8	1	6	13679	11.46	27	5	ND	ND	127	45	10	1	4	7.90	0.05	3	18	3.65	99	0.04	0.58	0.02	0.46	0.03	2	1		
A		81719	1	26	10626	53899	20.2	1	1	11956	8.25	7	5	ND	ND	141	98	7	1	1	10.01	0 08	2	11	4,72	46	0.01	0.18	0.01	0.14	0.01	1	1		
A		81720	1	19	4677	14852	6.3	2	5	11573	9.58	47	5	ND	ND	135	29	9	1	4	8.85	0.05	4	16	3.98	98	0.02	0.46	0.06	0.31	0.02	1	1		
A		81721	4	36	11999	78148	16.1	1	10	11276	12.49	45	5	ND	NÐ	110	137	20	1	3	6.89	0.08	4	20	3.19	28	0.01	0.29	0,01	0.20	0.01	1	1		
A		81722	2	25	2498	20646	3.9	1	7	12283	10.70	43	5	NÐ	ND	127	38	9	. 1	2	7.80	0.05	3	22	3.83	90	0.02	0.41	0.03	0.32	0.02	2	1		
A		81723	2	38	6634	38289	10.4	1	б	11618	11.01	33	5	ND	ND	102	69	18	1	4	6.39	0.05	2	20	3.25	67	0.02	0.40	0.01	0.35	0.02	2	1		
A		81724	6	96	15813	63046	23,2	1	13	77,11	18.30	47	5	ND	ND	61	121	38	1	4	3,02	0.07	2	29	1.59	26	0.01	0.35	0.01	0.24	0.01	3	1		
A		61725	1.11	33	3160	15570	4 2	6	. 5	9650	7.40	35	5	ND	ND	134	23	17	14	6.	6.58	0.05	6	36	2.56	155	0.04	0.93	0.05	0.57	0.01	Z. :			1.1
A		81726	1.	1	947	5116	0.7	1	1	15488	6.1D	2	5	ND	ND	131	6	1.	199 1	. 1	13.96	0.06	1	. 13	5.65	56	0.01	0.17	0.09	0.11	0.01			1.1	. i - ii
Ă		81727	2	- 36	3784	15637	4.0	2	- 9	12303	12.90	43	5	ND	ND	94 -	. 30 .	22	3	2	7:69	003	. 3	32	2.80	- b5 ac	0.01	0.32	0.04	0.13	0.01	,	1		
A		81728	1	7	2392	7836	3.6	1	1	1284/	6.48	2	5	ND	ND	203	12	1	1	1	15.94	0.06	1	20	4.82	30	0.01	0.12	0.09	0.05	0.01	י ז	•		
A		81729	5	31	8517	3/891	13.8	30	23	43/6	17.75	448	5	ND	NU	5.5	45	39	12	1	3.90	0.05	4	40	1.00	40	0.01	0.05	0.07	0.02	0.01	1	1		
<u>^</u>		81730		ł	1855	5714	2.0	2		13026	6.9/ E 3E	31	2	ND	NU	140	*	1	0 4		15 10	0.00	4	20	5.05	30	0.01	0.04	0.10	0.00	0.01	1	1		
^		81/31	4	-	17000	23/1	1.3	27		5099	0,30 18 97	0 806	5	ND	ND	63	34	59	4	1	13.15	0.07	5	38	2 /19	21	0.01	0.05	0.05	0.01	0.01	1	1		
1		01/32	ю 1	10	17009	10010	20.1	27		12030	0.45	175	5	ND -	ND	1 20	. 9	5,			11.58	0.04	1	19	5.33	18	0.01	0.02	0.08	0.01	0:01	2	. 1		
		81733 81734	. 1 .	14	1188	0046	1.6	4	1	13860	7 82	96	5	ND	ND	128	6	. .	1 1 1.	1	14 27	0.11	. †	19	6.20	17	0.01	0.01	0.10	0.01	0.01	្រ	1	· · ·	. •
Â		81735	. 1	4	1158	4576	15	2	1	11945	6.09	66	. 5	ND	ND	98	5	1		1	13.46	0.06		18	5.70	33	0.01	0.06	0.09	0.03	0.01	1	- 1		· ·
A		81736	1	21	1186	6993	3.4	5	3	14776	7.43	35	5	ND	ND	110	10	13	1	6	9.44	0.05	2	23	4.52	246	0.05	0.54	0.07	0.56	0.01	1	. 1		
A		817.37	1	3	325	1770	0.6	1		13607	5.69	24	5	ND	ND	106	2	1	1.	. 1	14.60	0.06	1	12	6.16	42	0.01	0.08	0,10	0.04	0,01	1	1		
A		81738	1	2	3809	4604	8.6	Ŧ	1	12486	4.98	22	5	ND	ND	119	7	1	1	1	15.25	0.06	1	12	6.54	20	0.01	0.02	0.09	0.01	0.01	1	1		
A		81739	1	50	1676	4371	3.6	7	4	12872	8.62	59	5	ND	ND	123	10	1	1	1	13.22	0.08	1	20	5.83	14	0.01	0.02	0.09	0.01	0.01	1	1		
A		81740	8	48	878	14995	1.1	17	28	4246	20.63	1431	5	ND	NÐ	47	38	45	24	1	3.28	0.09	3	66	1.70	15	0.01	0.05	0.01	0.01	0.01	1	1		
1																																			

CERTIFIED BY:

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C. Project: 1723

Type of Analysis: Assay

Certificate:	92333
Invoice:	30410
Date Entered:	92-08-25
File Name:	TEK92333
Page No.:	1

PRE FIX	SAMPLE NAME	oz/t Au	oz/t Ag	% የቴ	% Zn	% Fe	í			
1 A.:. A:	81743 81744		0.32	0.83	3.07 0.29	11.70				

tombal **CERTIFIED BY :**

		To : Projec Type o	ТІ # Кл :: f Ап	ECK 350 : AML alys	EXP 272 V .00P 17/ Is:	LOR 1CT 5, B. 23	ATIO ORIA C. ICF	SNS STI	LTD. REE1																ertif nvoid ate i ile N age	icate ce: Ente lame No.:): red: :		92 30 92 TH 1	333 410 -08-3 EK92	1 10 1333.1			
RE IX	SA	WPLE NAME	PPi M	1 PP) ()	N PPN U PB	1 PPN 3 Zh	I PPN I AG	PPN NI	PPM CO	PPN. MN	¥ FE	PPN As	PPN U	PPN Au	PPN HG	PPN SR	PPM CD	PPM SB	PPM Bt	РРм V	X CA	¥ P	PPN LA	PPM CR	X MG	PPM BA	X Ti	X AL	X NA	X K	* S1	PPN W	PPM BE	
A A		81743 81744		3	4 8266 7 2961	28688 2854	17:2	3	1	14814 13594	12.97 7.51	17	5. 	ND	ND ND	141 180	58 5	9	,	9 2	,08 (1,38 (). 15 1.05	4	16 37	1.37 6.59	107 87	0,03 0.02	0.85 0.20	0.01	0.09 0.12	0,01 0.01		2	
				•																														
				•																														

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD.

350 272 VICTORIA STREET KAMLOOPS, B.C. Project: 1723

Type of Analysis: Assay

Certificate:	9234 1
Invoice:	30418
Date Entered:	92-09-02
File Name:	TEK92341.A
Page No.:	1

RE FIX	SAMPLE NAME	oz/t Au	oz/t Ag	ጽ Pb	لا Zn	% Fe				
	18501 18502 18503 18504 18505 18506 18507	0.001	D.22 0.32 0.23 0.16 0.15 0.17 0.26	0.36 0.50 0.32 0.22 0.21 0.34 0.90	0.76 3.04 2.26 1.80 0.36 0.88 1.10	13.10 8.92				
	18508 18509 18510 18511 18512 18513 18514 18515		0.13 0.04 0.09 0.17 0.08 0.40 0.07 0.04	0.44 0.04 0.18 0.14 0.04 0.32 0.08 0.08	0.86 0.10 0.46 0.18 0.14 6.10 0.24 0.04	23.36				
A	18516 18517 18518 18519 18520 18521 18522 18523 18523		0.05 0.03 0.04 0.03 0.38 0.09 0.10 0.06	0.06 0.04 0.02 0.04 0.38 0.10 0.28 0.14	0.14 0.06 0.14 0.22 1.50 0.62 1.88 0.32					
A 4	18525 18526 18527 18531		0.15 0.22 0.07 0.07	0.10 0.42 0.08 0.02	0.18 0.96 0.46 0.60	19.90 13.26				
						CERTI	FIED BY	No	noba	L

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C. Project: 1723

ſ

Type of Analysis: Assay

Certificate:	92384 A
Involce:	30460
Date Entered:	92-09-26
File Name:	TEK92384.A
Page No.:	1

PRE	SAMPLE	- NAME	oz/t	g/t Aq	% Pb	% 70	% Fe	
		- (17416		//y			, .	
A		18533	0.20	6.86	0.52	1.86		
•		18545	0.20	6.86	0.36	1.42		이 방법 방법에 관계 이 것 같은 것을 받았다. 이 가격 방법을 받아야 하는 것을 수 있는 것을 수 있는 것을 하는 것을 수 있는 것을 하는 것을 수 있다. 것을 하는 것을 수 있는 것을 수 있다. 귀에서 같은 것을 수 있는 것을 수 있다. 것을 수 있는 것을 수 있다. 것을 것 같은 것을 수 있는 것을 수 있는 것을 것을 수 있는 것을 수 있다. 것을 것 같이 않는 것 않는 것 같이 않 것 같이 않는 것 않는
A		18549	0.16	5.49	0.22	1.90		
		10551	0.10	1.3/	0.08	0.58	26.0	
Δ.		19552	U.IU. 0.12	200-408-00 x 17	0.24	0 40	20.0	ala balan katalan kata A
A		18553	0.12	3 43	0.24	0.40	23 3	
A		18554	0.06	2.06	0.12	0.16	16.4	
A		18555	0.04	1.37	0.08	0.50	10.4	
A		18556	0.06	2.06	0.20	0.82		
A - :	en de la composition de la composition Composition de la composition de la comp	18557	0.03	1.03	0.16	0.90	nen. Entre E	in en en la servició de la completa de la completa de la completa de la completa da construcción de la complet A completa de la comp
A :		18558	0,12	4.12	0.18	0.56		
A		18559	0.16	5.49	0.26	1.04	38.4	- 노동 비원 정신 것을 하는 것은 것 것을 벌었다. 알 경영방법
A		18560	0.14	4.80	0.18	0.62	25.2	an a
Α.		18561	0.18	6.17	0.20	0.46		an an an an ann an Anna Anna A Anna an Anna an
A		18562	0.14	4.80	0.18	1.56		
A		18563	0.01	0.34	0.04	0.25		
۸		18564	0.12	4.12	0.20	1.06		
A		18565	0.04	1.37	0.06	0.22		
A		18566	0.12	4.12	0.20	0.46		
Α.		18567	0.04	1.37	0.04	0.04	·	
•		18568	0.04	1.37	0.04	0.50	29.6	
A L		18569	0.06	2.06	0.10	0.42		그는 그는 것은 것은 것을 가지 않는 것 같은 것이 말했는 것 같은 것을 수 없다.
A		18570	0.01	0.34	0.02	0.04	···· .	lan anna an ann an ann baile a' bhairte ann a' bhairte ann a' bhairte ann a' bhairte ann ann ann a' bhairte a' Bhairte ann an ann an ann ann ann ann ann ann
A		18571	0.32	10.98	1.34	5.10	27.9	
A		18572	0.04	1.37	0.14	0.90		
A		18573	0.08	2.(4	0.10	2.26	20.3	
~		10574	0.00	2.00	0.00	0.30		
•		19576	0.02	0.07	0.02	0.10	15 1	
Ā		18577	0.00	4 12	0.10	0.34		
A		18578	0.12	2 74	0.30	0 74		
Ā		18579	0.08	2.74	0.14	2.22	32.4	a an an an ann an an ann an Airte an an Anna an Airte ann an Airte an Airte an Airte an Airte an Airte Anna Air An an Airte ann an Airte Airte Airte Air
A		18580	0.02	0.69	0.01	0.34		a an
		· · · · · · · · · · · · · · · · · · ·		••••••••••••••••••••••••••••••••••••••	5.01	••••••		
					. * .			and a second

tonbao **CERTIFIED BY :**

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C.

Project: 1723 Type of Analysis: ICP

Certificate:	92384 A
Invoice:	30460
Date Entered:	92-09-26
File Name:	TEK92384.I
Page No.:	1

PRE F1X		SAMPLE	E NAME	PPM MO	PPN CU	РРМ 198	PPM ZN	PPM Ag	PPM N1	PPM CD	PPM MN	X FE	PPM AS	₽PM U	PPN AU	РРМ HC	PPN SR	PPM CD	PPM SB	PPM B1	PPM V	X CA	X P	PPM LA	PPM CR	X MG	PPN BA	х т I	X AL	% NA	× K	x SI	PPM W	PPM BE		
			18532 18533 18535 18536	1	5 27 33 32	23 4579 802 84	10 17030 1564 161	0.2 6.7 1.3 0.3	6 13 7 23	1 1 1 7	614 8781 15450 2749	0:59 7.78 7.60 2.43	108 49 2 234	\$ 5 5 5	ND ND ND	ND ND ND ND	19 96 150 31	1 42 7 1	3 10 1 2	5 1 1 7	2 10 3 4	1.21 4.55 14.61 2.74	0,08 0.23 0.08 0.15	15 7 5 9	48 22 10 35	0.42 1.98 6.56 1.10	70 157 57 71	0.01 0.04 0.01 0.01	0.26 1.06 0.18 0.47	0.01 0.01 0.02 0.01	0.16 0.54 0.01 0.34	0.05 0.06 0.01 0.04	10 9 1 9	1		,
À			18537	en 2,. ∎ 2	45	17	47.)	0.2	39	10	601	2.92	43	5.5 <u>5</u>	ND	ND	Ţ2		ŧ	1		0.87	0.08	13	45	0.86	109	0.12	1.46	0.02	1.18	0.04	189,4 († 16 1. 17 - 1 9 1)	1	副日本1991 	
Ă			18545	11	75	3280	14199	7.2	49	5	1852	11.52	22	5	ND	5	15	29	2 8 - 1	1. 1. j	2	1.07	0.07	7	54	0.39	70	0.01	0.40	0.01	0.12	0.03		1 1 1 1		
Å	kiri. Gʻat		18546	1	10	64	293	0.2	6	1	3336	2.30	22	5	ND	ND	92	3	6	1	1	4.03	Ö.06	1	32	1.54	120	0.02	0.60	0.01	0.35	0.04	8	i i		4
			18547	- 1	4	43	74	0.1	2	1	2919	1.19	28	5.5	ND	ND	70	sta - S	<u>ः १</u> २	9 1 - 2		2.47	0.05	111	43	0.90	90	0.01	0.27	0.01	0.16	0.04	6	90 f	na thaile	
Â			18549	2	14	1557	16030	53	2 16	17	5/14 7370	2.18 A 02	3/	5 5	ND	ND	119	1	2	1	2	4.37	0.06	7	30	1.47	101	0.01	0.30	0.01	0.17	0.04	9	1		
A			18550	1	16	713	6009	1.9	19	7	8374	5.73	63	5	ND	ND	179	12	4	1	13	3.63	U.24	4	12	1.40	131	0.04	1 22	10.01	0.64	0.04	5	1		
A			18551	3	18	1371	17670	5.0	15	17	\$677	20.33	429	5	ND	9	73	46	9	13	13	2.22	0.26	ś	6d	1 15	189	0.00	0.94	0.01	0.88	0.03	Å	1		
A			18552	1	23	2072	4229	4.1	11	3	19490	12.11	123	5	ND	ND	146	16	1	1	5 1	10.19	0.09	5	16	4.39	251	0.04	0.55	0.02	0.41	0.04	1	,		
A			18553	1	22	1930	6527	3.3	2 Ż.,	2	19940	12.75	93	-5	ND	ND	119	21	i ti	i sui u	4	6.57	0.08	4	18	3.39	255	0.04	0.52	0.01	0.52	0.04				
A.		1	18554	1	33	1135	1626	2.1	8	i (t	28790	12.56	27	5	ND	ND	182	(iii)	1	•	5 1	2.77	0.07	7	1	5.14	192	0.02	0.38	0.04	0.23	0.02		2	일을 물지 않는 것이 없다.	
A .			18555	a - 1 1	29	728	4742	2.4	7	1	23340	15.57	133	5	ND	ND	188	20	1	7	6	8.69	0.08	5	22	3.74	213	0.02	0.44	0.02	0.30	0.03		2	a Maria. Ata arista da	
A		i de	18556	1	22	1578	7395	3.0	7	3	39100	13.23	109	5	ND	ND	129	24		4	5 1	0.56	0.16	4	18	4.60	171	0.02	0.31	0.01	0.19	0.02	1	2		
1.1	÷.,	$\Omega_{\rm H} = 1$	18557	1.1	15	1422	9088	3.7	5	- 2	19870	14,48	240	. \$	ND	ND	170	27	1	5	4 1	0.65	0.21	4	21	4,78	156	0.02	0.28	0.01	0.16	0.01	8 H I	2	요즘들감하	
1 ?			18558	1	16	1595	5526	3.9	7	3	16050	10.61	189	, 5	ND	ND	140	16	1	1	8 1	13.15	0.23	5	14	5.49	241	0.03	0.52	0.02	0.39	0.03	1	2		
1			18559	8	5	2507	10990	6.0	12	31	7652	27.54	929	5	ND	13	79	56	14	50	4	3,36	0.10	4	56	1.41	122	0.02	0.25	0.01	0.16	0.02	15	1		
I Â			18560	2	30	1870	6735	5.2	12	7	21930	18.67	175	5	ND	ND	168	30	5	17	7	7.81	0.20	5	34	3.49	184	0.02	0.26	0.02	0.14	0.02	1	2		
L Â			10563	1	37	1865	4638	5.6	10	1	25900	15.28	38	5	ND	ND	178	21	1	5	4 1	10.47	0.10	6	16	4.47	152	0.02	0.28	0.03	0.14	0.01	1	2		
	ġr.,	a spine,	10202	្រោះដំប	1	1/56	15280	4.4	- - 2	0.11	19750	18.57	217	5	ND	ND	159	48	6 1 - 1 - 6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	21 5699,240	,	7.62	0.19	5	34	3.80	196	0.04	0.51	0.01	0.42	0.02	6	2		
	10		18564		10	1020	1004				15810	7.40	45		ND	ND	160	6	818	. I.		13.27	0.16	A	8	5.55	204	0.03	0.51	0.02	0.44	0.02	1	2.		
			18565		10	1930	14210				12850	14.58	315		NU	ND	114	26		1	10	Z.51	0.16	4	27	3.37	192	0.05	0.56	0.01	0.44	0.03	1			
A			18566		41	1605	4471	1.	2		140/0	10.4/	380		NU	NU.	181	10	8 <u>1</u> 8,	1	୍ ୀ 1	2.78	0,15	5	11	5.66	81	0.01	0.17	0.02	0.02	0.01		2		
Å			18567		1	643	346	្ទីខ្ល		14	11020	10.02	524		NU		101	25		23	<u> </u>	5.73	0.15	5	38	2.79	152	0.02	0.26	0.02	0.15	0.02	3	2		
A			18568	4	13	470	4986	-: Fa⊒re 1_4	21	ີ	0071	19:44	1221	· D··.	ND ND	10	123.81	: 13): 33	: 3.:::: ••	:		Ø.15	U. 16 🖓	· 4. · .	24	4.87	⊖- 84 :	0.01	0.14	0.02	0.01; (0.01	2.1	- 1		
A			18569	2	13	939	4020	2.7	15		5604	14 78	471	5	ND	10	04 86	33	7	3/	د م	3.3U 5.13	0.23	4	58	1.40	105	0.01	0.15	0.01	0.03 (0.02	4	1		
			18570	1	20	326	545	0.6	7	1	12220	5 73	-471	5	ND	ND	167	14	1	14		0.1J 6 4 1	0.26	4	30	2.87	136	0.02	0.47	0.01	0.32	0.04	3	1		
Í A			18571	5	27	11985	48020	9.4	10	14	7298	19.30	57	5	ND	7	59	120	21	, 24	3 I 7	3 33	0.10	2	2 4 1	7.40	54	0.01	0.14	0.02	0.01 0	10.01	1	2		
A			18572	1	20	966	6789	0.9	5	5	12470	11.03	39	5	ND	ND	109	18	1	7	6	J.JJ 7 33	0.44	ر ۸	42	3.45	142	0.03	0.30	0.01	0.28	0.02	2	1		
A A A			18570 18571 18572	1 5 1	20 27 20	326 11985 966	545 48020 6789	0.6 9.4 0.9	7 10 5	1 14 5	12220 7298 12470	5.73 19.30	471 2 57 39	5 5 5	ND ND ND	ND 7 ND	86 167 59 109	14 2 120 18	7 1 21	14 1 24 7	8 31 7 6	5.13 15.62 3.33 7.32	0.26 0.10 0.22 0.19	4 5 3	30 5 42	2.87 7.45 2.05	136 52 142	0.02 0.01 0.03	0.47 0.14 0.36	0.01 0.02 0.01	0.32 (0.01 (0.28 (0.24 (0.04 0.01 0.02	3 1 2	1 2 1		

Aonobool **CERTIFIED BY :**

K.	LSSL.	CE	ERT	R IFIC		. 30 E O) F A		C. LYSI	is I	L.,	D.										2225 S British Ph:(80	Spring Colu 14)299	jer Avi mbla, 1-6910	ë., ⊟u Can.) Fax	maby V5B :299-6	, 3N1 252						
	To :	TE # 3 KA	CK 50 2 ML	EXP 72 V 00P	LOR ICTC S, B.(ATIO DRIA C.	ONS STF	LTD REE	Г															Certi invol Date	ficat ce: Ente Varm	ered:	:	92 30 92 T	2384)460 2-09-1 EK9	A 26 7384 1	ſ		
	Type of	Ana	alysi	s:	~,	ICF	•																	Page	No.			2		2007.1			
RE I X	SAMPLE NAME	PPN MO	PPM CU	РРМ РВ	PPM ZN	PPN AG	РРМ NI	Р РМ СО	PPM MN	X FE	PPN AS	РРМ U	РРМ AU	PPM H G	PPM SR	PPM CD	PPM SB	PPM Bt	PPM V	X CA	X P	PPM LA	PPM CR	X MG	PPM BA	X TI	X AL	X NA	X K	* 51	PPM W	PPM BE	
	18573 18574 18575 18576 18577 18578 18577 18580 18581 18582 18583 18584 18601 18603 18604 18603 18604 18605 18605 18606 18607 18608 18609 18610 18611 18612 18613 18514 18615 18616 18617		30 20 20 20 20 20 20 20 20 20 20 20 20 21 31 30 30 10 11 12 28 8 9 9 7 6 6 11 11 12 28 8 9 9 7 7 8 21 11 12 25 7 34	941 \$72 331 1982 1982 1430 150 150 167 31 31 36 49 278 31 31 32 341 376 306 408 341 176 3528 413 311 151 151 131 151 131 141 151 151 131 151 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131<	20050 3349 1327 5525 22530 7053 22220 2072 2072 2072 2072 2072 330 103 79 68 85 57 797 1808 1265 132 797 1808 1265 132 797 1808 1265 132 797 1808 1265 132 797 1808 1265 132 797 797 132 797 132 797 797 132 797 797 132 797 797 132 797 797 132 797 797 797 797 797 797 797 797 797 79	2.5 4.7 0.6 1.5 3.9 3.1 0.2 0.1 0.1 0.1 0.1 0.1 0.6 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.2 0.5 0.4 0.5 0.4 0.5 0.4 0.2 0.5 0.4 0.2 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	6 5 4 10 7 4 12 3 4 15 10 15 29 28 27 30 8 8 8 8 10 4 4 3 3 3 14 20 19 45	4 2 25 1 2 25 1 4 3 6 9 9 7 7 6 9 9 4 4 3 1 1 1 1 2 2 1 1 6 10 6 10 6 15	16260 14760 14290 14660 14950 5702 13380 12300 2275 1864 1430 356 521 700 1550 692 898 1515 2731 828 3545 897 1849 12200 3127 1753 272 153	15.34 9.66 7.30 11.48 18.63 7.38 24.52 5.88 5.35 1.21 1.33 2.54 2.60 2.56 2.47 1.79 1.25 2.10 3.54 1.52 2.02 1.16 0.99 5.10 1.74 1.91 1.49 3.58	26 2 3 250 47 920 23 2 26 13 19 2 2 2 2 11 13 15 38 20 78 19 23 2 20 29 14 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO NO NO NO NO NO NO NO NO NO NO NO NO N	133 146 139 94 178 62 167 162 48 27 21 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 403 370 263 294 294 294 294 294 294 294 294 294 294	55. 12 6 13 60 18 67 5 6 1 1 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 3 16 1 22 1 4 3 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	13 14 14 1 1 1 1 5 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 5 7 4 4 3 4 4 3 4 6 20 6 6 0 7 3 3 4 2 2 2 2 2 2 2 3 3 3 10 8 22	9,53 9,53 9,50 9,30 15,01 15,01 15,11 15,11 1,55 1,55 1,268 1,55 1,268 1,55 1,268 1,2	0.14 0.14 0.25 0.10 0.17 0.10 0.09 0.24 0.07 0.10 0.09 0.24 0.07 0.10 0.05 0.21 0.13 0.15 0.12 0.13 0.15 0.12 0.13 0.15 0.12 0.13 0.09 0.12 0.13 0.15 0.12 0.13 0.15 0.12 0.13 0.15 0.10 0.15 0.10 0.15 0.10 0.22 0.10 0.22 0.10 0.09 0.24 0.09 0.22 0.10 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.09 0.24 0.17 0.13 0.15 0.13 0.15 0.13 0.09 0.13 0.15 0.13 0.09 0.13 0.15 0.13 0.09 0.13 0.15 0.13 0.09 0.13 0.15 0.13 0.09 0.13 0.15 0.13 0.09 0.13 0.09 0.13 0.09 0.13 0.09 0.13 0.09 0.13 0.09 0.13 0.09 0.13 0.09 0.13 0.09 0.09 0.13 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0	5 4 6 4 7 5 12 8 10 6 9 16 16 19 27 19 8 10 15 15 15 15 14 14 14 25	18 8 8 24 29 6 54 5 5 5 4 5 5 5 4 5 5 4 5 4 5 5 6 6 6 5 6 6 6 5 6 6 5 6 6 5 6 6 5 6 10 6 7 2 2 37 5 4 4 5 5 4 5 4 5 4 5 4 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 5 4 5 5 5 4 5 5 5 4 5	4,20 6,54 8,48 2,15 6,69 2,38 7,36 7,24 0,89 0,89 0,52 0,40 1,72 1,69 1,65 0,99 0,16 0,24 0,26 0,93 0,16 1,49 0,26 0,27 7,71 1,71 1,19 0,41 1,08	92 85 87 302 149 67 85 58 59 50 59 76 89 101 105 101 105 101 105 34 99 47 38 33 348 56 65 35 77	6.91 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.05 0.03 0.05 0.03 0.01	0.26 0.27 0.26 0.27 0.26 0.82 0.15 0.16 0.25 0.39 0.51 4.42 3.14 2.33 0.40 0.47 0.21 0.40 0.40 0.47 0.21 0.21 0.21 0.22 0.35 0.40 0.40 0.47 0.21 0.22 0.22 0.35 0.31 0.20 0.32 0.15 0.22 0.15 0.23 0.15 0.31 0.80 0.78 2.14	6.01 8.02 9.03 8.01 9.01 9.01 9.01 9.01 9.03 9.01 9.02 9.01 9.02 9.01 9.02 9.01 9.02	0.05 0.07 0.07 0.03 0.01 0.04 0.04 0.04 0.04 0.03 0.04 0.03 0.03	0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01	1 4 1 1 6 1 17 1 1 6 4 4 1 1 1 7 3 4 8 1 4 2 6 1 10 9 1 1	2 2 2 1 2 1 2 2 1 2 2 1 1 1 1 1 1 1 1 1	
						· • .													(CER	TIFI	ED B	¥ :/_	A	7 /	2	~~	sb	1	l	/ 	>	
ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C. Project: 1723

Type of Analysis: Geochemical

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	92384 G
Invoice:	30476
Date Entered:	92-10-04
File Name:	TEK92384.G
Page No.:	1

Horsbac **CERTIFIED BY :**

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C. Project: 1723

Type of Analysis: Geochemical

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	92384 Y
Invoice:	30483
Date Entered:	92-10-14
File Name:	TEK92384.Y
Page No.:	1

PRE FIX	SAMPLE 1	NAME	PPM Y					
P P	11 11 11	3605 3610 3612	19 15 13					
				 	CERT	IFIED BY :	Jor.	bao

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To: TECK EXPLORATIONS LTD. # 350 272 VICTORIA STREET KAMLOOPS, B.C.

Project: 1723

Type of Analysis: Assay

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

92384 Zr
40022
92-11-03
TEK92384.ZR
1

PRE FIX	SAMPLE NAME	% Zr02
P	18605 18610 18612	0.070 0.065 0.075
		CERTIFIED BY: Abad

APPENDIX D

Analytical Procedures

4

ECO-TECH LABORATORIES LT

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops. B.C. V2C 2J3 (604) 573-5700 Fax 57

GEOCHEMICAL LABORATORY METHODS

SAMPLE PREPARATION (STANDARD)

- Soil or Sediment: Samples are dried and then sieved through 80 mesh sieves.
 Rock, Core: Samples dried (if necessary), crushed, riffled to pulp size and pulverized to approximately -140 mesh.
- 3. Humus/Vegetation: The dry sample is ashed at 550 C. for 5 hours.

METHODS OF ANALYSIS

All methods have either canmet certified or in-house standards carric through entire procedure to ensure validity of results.

- 1. MULTI ELEMENT ANALYSES
 - (a) ICP Packages (6,12,30 element).

	Digestion	Finish
	Hot Aqua Regin	ICP
(b)	ICP - Total Digestion (24 elem	ent).
	Digestion	Finish
	Hot HC104/HN03/HF	ICP
(c)	Atomic Absorption (Acid Soluble Ag*, Cd*, Cr, Co*, Cu, Fe; Pb*	e) , Mn, Mo, Ni*, Zn.
	Digestion	Pinish
	Hot Aqua Regia	Atomic Absorption = Background corrected
(d)) Whole Rock Analyses.	
	Digestion	Finish
	Lithium Metaborate fusion	ICP

.

ECO-TECH LABORATORIES L

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioopa, B.C. V2C 2J3 (604) 573-5700 Fa

2. Antimony Digestion Finish ------------Hot aqua regia ICP 3. Arsenic Digestion Finish *--****** -----Hydride generation - A.A.S. Hot aqua regia 4. Barium Digestion Finish -----------Lithium Metaborate ICP 5. Beryllium Digestion Finish -----Hot aqua regia Atomic Absorption 6. Bismuth Digestion Finish ---------Hot aqua regia Atomic Absorption (Background Corrected) 7. Chromium . . Digestion Finish ----------Sodium Peroxide Atomic Absorption Fusion ---8. Plourine Digestion Finish ----------

Lithium Metaborate Fusion Ion Selective Electrode

Fusion

ECO-TECH LABORATORIES L

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fe

9. Gallium Digestion Finish ----------Hot HClO4/HNO3/HF Atomic Absorption 10. Germanium Digestion Finish -----_____ Hot HC104/HN03/HF Atomic Absorption 11. Mercury Digestion Finish ---------Hot aqua regia Cold vapor generation -A.A.S. 12. Phosphorus Digestion Finish . . ----------Lithium Metaborate ICP finish Fusion 13. Selenium Digestion ` Finish -----------Hot aqua regia Hydride generation -A.A.S. 14. Tellurium -Digestion Finish -----***** Hot aqua regia Hydride generation - A.A.S. Potassium Bisulphate Colorimetric or I.C.P.

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

GEOCHEMICAL LABORATORY METHODS

Multi Element ICP Analyses

Digestion: 1 gram sample is digested with 6 ml dilute aqua regia in a waterbath at 90°C for 90 minutes and diluted to 20 ml.

Analysis:

Inductively coupled Plasma.

. .

m - •

. .

,

GEOCHEMICAL ANALYTICAL METHODS CURRENTLY IN USE AT ROSSBACHER LABORATORY LTD.

A. SAMPLE PREPARATION

- 1. Geochem. Soil and Silt: Samples are dried and sifted to minus 80 Mesh, through stainless steel or nylon screens.
- 2. Geochem. Rock: Samples are dried, crushed to minus 1/4 inch, split, and pulverized to minus 100 mesh.

B. METHODS OF ANALYSIS

2. Antimony:

0.50 Gram sample is fused with Ammonium Iodide and dissolved. The resulting solution is extracted into TOPO/MIBK and analyzed by Atomic Absorbtion spectroscopy.

3. Arsenic: (Generation Method)

0.25 Gram sample is digested with Nitric-Perchloric acid. Arsenic from the solution is converted to arsine, which in turn reacts with silver D.D.C. The resulting solution is analyzed by colorimetry.

4. Barium:

0.20 Gram sample is repeatedly digested with $HClO_{a}$ - HNO_{a} and HF. The solution is analyzed by atomic absorbtion spectroscopy.

5. Biogeochemical:

Samples are dried and ashed at 550°C. The resulting ash analyzed as in *1, Multielement Analysis.

6. Bismuth:

0.50 Gram sample is digested with Nitric acid. The The solution is analysed by Atomic absorbtion spectroscopy.

METHODS OF ANALYSIS (CONT'D)

7. Chromium:

0.25 Gram sample is fused with Sodium Peroxide. The solution is analyzed by atomic absorbtion spectroscopy.

8. Fluorine:

0.50 Gram sample is fused with Carbonate Flux, and dissolved. The solution is analysed for Fluorine by use of an Ion Selective Electrode.

9. Gold AR/AAS:

10.0 Gram sample is roasted at 550°C and dissolved in Aqua Regia. The resulting solution is subjected to a MIBK extraction, and the extract is analzed for Gold using Atomic Absorption spectroscopy.

9A Gold FA:

10.0 Gram sample is fused with appropriate fluxes, and the resulting lead button is cupelled to produce a gold/silver bead. The bead is dissolved in Aqua Regia and analyzed for gold by AAS.

10. Mercury:

1.00 Gram sample is digested with Nitric and Sulfuric acids. The solution if analyzed by Atomic Absorbtion spectroscopy, using a cold vapor generation technique.

11. Partial Extraction and Fe/Mn oxides:

0.50 Gram sample is extracted using one of the following: hot or cold 0.5 N. HCl, 2.5% E.D.T.A., Ammonium citrate, or other selected organic acids. The solution is analyzed by use of Atomic Absorbtion spectroscopy.

12. pH:

An aqueous suspension of soil, or silt is prepared, and its pH is measured by use of a pH meter.

13. Rapid Silicate Analysis:

0.10 Gram sample is fused with Lithium Metaborate, and dissolved in HNO₃. The solution is analyzed by Atomic Absorbtion for SiO₂, Al₂O₃, Fe₂O₃, MgO, CaO, Na₂O, K₂O, TiO₂, TiO₂, P₂O₃, and MnO.

14. Tin:

0.50 Gram sample is sublimated by fusion with Ammonium lodide, and dissolved. The resulting solution is extracted into TOPO/MIBK and analysed by atomic absorbtion spectroscopy.

15. Tungsten:

1.00 Gram sample is sintered with a carbonate flux, and dissolved. The resulting extract is analyzed colormetrically, after reduction with Stannous Chloride, by use of Potassium Thiocyanate.

16. ICP :

0.5 Gram sample is digested with Aqua Regia, and analyzed using a JOBIN YVON MODEL JY 32 1987 ICP Emission Spectrophotometer for Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, La, Mg, Mo, Mn, Ni, P, Pb, Sb, Si, Sr, Ti, U, V, W, Zn.

, **.**

A ...

APPENDIX E

Drill Hole Logs

m - -

TECK	EXPLORATI	ON LTD.	BEND PROPERTY			PROJECT #	#1723	HOLE NO. TK-92-01				PAGE:	1 of 5		
	NTS: 83D/1E CLAIM: BEND 1 ELEVATION: 1007m GRID COORD: 2+00N, 3+75W LOGGED BY: G.T.		DATE COL DATE COM DATE LOG CORE SIZE	ARED: 8/07/92 PLETED: 15/07/92 3ED: 15/09/92 : NQ		<u>DEPTH</u> 0 135.9 239.88 392.89	<u>DIP</u> -60* -60 -56 -53	<u>AZ</u> 35	AZ LENGTH: 392.9 m. 35' DEPTH OF OVB: 10.7 m. CASING REMAINING: 10.7 m WATERLINE LENGTH: 2.83 km. PROBLEMS: hard ground						
DEPTH (meters) FROM/TO	DESCI	RIPTION	STRUCTURE	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	SAMPLE	DATA	LENGTH (meters)	2n (%)	Pb (%)	AESULTS Ag (g/t)	Fe (%)	Other
0 -10.67	Overburden		<u> </u>					<u> </u>							
10.67- 32.2	Grey, f.g. (micritic) limestone; r occasional elongate clasts to 1 20.42m.; < 5% peittic content.	mod. fol., minor biotite, 1.5 cm.; mod. broken to	Fol. @ 50*	Í										.	
32.2- 34.19	Med-dk grey f.g calcareous pel condiente porhyroblasts to 2.0 1-2cm grey ilmestone interbeds	litic schist; occasional dark cm., 50% pelitic content; minor s	Fol. @ 50*												
34.1 9- 47.7	Light- med. grey limestone; this weakly biotiferous, increased p 47.7 with dark carbonaceous ? cm @ 47.55m.	nly bedded @ 1mm-1cm; belitics @ 35.4-37.95 and 44.67- bands @ 45.47-45.76 and 1.5	Fol. @ 70*										 1		
47.7- 48.75	Dark f.g. calcareous schist w. : micritic limestone (<	several bands of grey banded													
48.75- 79.21	Grey, f.g., thin bedded (<1cm) limestone bands (1-5cm) produ 63.09, 62.6-62.7; minor pelitics	limestone; occasional white ucing marble texture @ 60.05- (<5%)	Fol. @ 50*										· · ·		
79.21- 97.18	Banded white/dark micritic lime mm, light bands @ 0.5 cm - 1.0	estone; dark bands @ hairline-3) cm. (zebra texture); fol. @ 70*	Fol.@ 70*												
97,18- 107.6	Garnet-phiogopite-cordierite so -pink sub - euhedral garnets to porphyroblasts, dark, ovate to	chist. 2.0 cm.(20%), cordierite 1.0 cm. (15%)	Fol.@ 40"												

.

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				Results		
FROM/TO		ANGLES	VENS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn (%%)	Pb (%)	Ag (g/t)	Fe (%)	Other
107.6- 127.54	Gemet-phiogopite-cordierite achist. -dark grey groundmass, sub-euhedral gamets to 2.5 cm. (25%); broken surfaces with talcs chiorite coatings @ 108,44- 108,66, 111,86-112,11, 110,33-110,86, 117,D-117,45, 118,95- 119,35, 119,8-120,09; py. trc. @ 116.5; wkmod. calcareous @ 123,0-127,54	Fol. @ 40° (indistinct)												
127.54- 127.8	White, glassy chert band, minor accessory chlorite, broken, contacts irregular.	Cont's @ 70*												
127.8- 148.13	MedIt. grey, mod. banded limestone, occas. qtz-carb bands (1-5cm); mod. increase of closer spaced qtz- carb bands (0.5-1.0cm) @55 @ 145.2-148.13m.; 3 cm. calcite fract. fill @ 146.1 m.; 1.5 cm, calcite veinlet sub-parallel to C.A. @ 146.64-146.89m.; 3.5 cm. cordierite rich band @ 147.6 m.	Fol. @ \$5*												<u> </u>
148.13• 150.46	Med-greenish grey gamet mica schist; wk-mod. calcareous; palle pink gamets, sub-euhedral also stretched 0.5-2.0 cm., oocasional qtz-carb bands 0.5-5.0 cm.;groundmass contains 1-3mm dolomite porhyroblasts	Fol. @ 55"												
150.46- 150.57	White quartz/chert band w. minor accessory chlorite, calcite, muscovite													
150.57- 157.8	Med-dk, grey garnet- mica schist; wk-mod. calcareous, dk. milcaceous groundmass w.1-2mm dolomite porphyroblasts, 10 % ragged, pink subhjdral garnets to 1.0 cm., several qtz-carb bainds 0.5-5.0 cm, sharp lower contact @70 °	Fol. @ 50*			5									
157.8- 186.94	Med-tt grey f.g. limestone, wk-mod. banded, occasional dk pelitic interbeds @ 160.6-166.0m; interbedded biotte schist bands (10-20 cm.) @ 179.15-180.66m; interbedded quartz-carb bands (1-10cm) throughout.	Fol. @50-60"												
186.94- 188.15	Durk, med grain micaceous schist; phlogopite, chiorite groundmasss; 20% grey micritic limestone interbeds and qtz- carb bands, overprint of 1-3mm dolomite porphyroblasts (subhedral)													
188.15- 194.02	Dark grey, f.gm.g cordiente schist; mod. calcareous, quartz- carb, vnits locally cross-cutting tol., occasionally producing wile, vn. breccia text; occasional gtz-carb bands 1.0-5.0 cm.; cordiente porchyroblasts elongate to 1.0 cm pervesive													

•

.

PAGE: 2 of 5

· . .

الاستحماد الدفيقة المارية بالحارية فالتهوي فللجهان والجالب للتهويون المائع فعارضها معروره الحالي والمائع فللمتحر للتركيب كالرا

.

And the second second second

Sec. 14

and the second second

• . . .

. . . .

.

PAGE	:	3	of	5	
------	---	---	----	---	--

.

ويم الأمادها

ОЕРТН (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLUC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn (%)	Pb (%)	Ag (g/t)	Fe (%)	Other
194.02- 199.0	Grey, banded micritic limestone	Fol. @ 60*												
199.0- 201.02	as @ 188,15-194.02													
201.02- 206.48	as @ 194.02-199.0 w, broken, white cherty qtz @ 203.5-204.1 m.													
205.48- 215.05	as @ 188.15-194.02 w. limestone interbeds @ 208.7-209.06, 209.32- 209.7, 211.45-212.0													
215.05- 228.12	Predom. grey micritic ilmestone as @ 194.02 - 199.0m, 221.14-222.52 white, cherry band w. grey ilmestone interbeds; 223.42-224.4 mixed cordierite schist and white chert bands; 225.9-226.8 mixed limestone / cordierite schist bands													
228.12- 248.55	F.g., med-dk grey calcareous cordiente schist; pervasive, sporadic cordiente zones, mottied, localized chloritic rims on condiente porphyrobiasts; mod. broken, mod. calcareous; fract. subparallet to C.A. @ 232.1232.55m. w. tr., py.; sporadic dtz-carb, bands (1-5cm) @ 239.66-240.15 m.; interbedded grey lineestone bands w. minor cordiente/ph/ogopite-chlorite bands @ 239.68-240.15 m.; gou	Fol. @ 60-70*												
248.55- 254.04	Coart-med grey garnet-condictite-philogopite (chlorite) schist: weakly calcarcous; downsection lightening with associated decrease in chlorite and condictite; garrets subhedral, brownish-pink (5-10%) (9-13cm; condictite in diffuse irregular petiches; 5% gtz-carb bands to 10.0 cm; broken w. carb chlor, fract, coatings @ 2430-250.4 m.; fract subparallel to C.A. @ 250.5-251.0m	Fol. @ 70%												
264.04- 285.25	Med. grey banded, motified limestone; numerous (20-30%) qt2- camb bands, white(1-2cm); glassy, witt qtz @ 271.66-272.3; dk. petitisc band @ 272.36-273.1 (catc. phlogopite schist); philogopite schist @ 279.43- 280.3 w.3% py, laminations; fold avis @ 265.7m.													

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn (%)	Pb (%)	Ag (g/t)	Fe (%)	Other
285.25- 318.22	Med-dk. grey garnet-mica schist (locally chloritic); wkly calcareous; pink.sub-euhedral garnets (10%), locally ragged rims; 5-10% qtz-carb bands, 1-5 cm, occasionally to 10/15 cm; weakiv-non garnetiterous @ 300.4-303.5, 304.93-310.8 (calc. mica schist)	Fol. @ 70-80*												
318.22- 319.32	Schist to chert gradational contact zone (sliiceous gamet schist) -mottled with pink sub-euhedral gamets, 15-20%, 0.5-1.0cm, dia.; greenish grey with siliceous groundmass,													
319.32- 327.35	Creamy white-light grey chert, very hard, massive to finely laminated with hairline with mice foil, partings; conspicuous foil, planes marked by hairline to 1-2 mm lamellae of segregated bruw. sph pp og al (c5%); 10-20% bands end concentrations of mixed v.f.g. sph,py,po,gn @ 319.97-320.2, 320.75-321.35m; slightly softer (qtz-ser schist), creamy greenish grey @ 323.22-323.8m.	Fol. @ 60*				106020 106021 106025	319.96 320.60 322.70	320.2 321.3 323.2	0.24 0.70 0.50	3.46 3.72 0.30	1.38 0.31 0.27	15.2 4.2 4.8		
327.35- 365.65	Creamy, It-med greenish grey (.g. quartz-sericite schist: speckled to finely lam. py>po>sph>sgal. (<1%); pale green ser. fol. partings; numerous small scale fold axes. 331.6m - 3cm qtz band w. 5% po. blebs.galena trc. @ 70° to c.axis 336.15-338.63 ; minor brwn sphal lamellae 347.1 fold axis 350.93-352.85 ; fract's parallel-sub parallel to c.a. 336.0-361.3 ; pale prink, fol. parallel flat garnets (5%) 362.22; 0.5-10 cm band of v.f.g. po.gal. and smeared graphite @ 65° to c.a. 363.3-363.8 ; chert w. scattered euhedral pink garnets (<5%), 1.0 cm. dia. 10.0cm zone at base of section (365.55-365.65) w.prominent closely spaced bands of fol. parallel flat pink garnets w. blottle partings@ 70°													

.

PAGE: 4 of 5

							and the second							
DEPTH (meters)	DESCRIPTION	STRUCTURE			METALLIC		SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	MINERALS (%)	SAMPLE NO.		то	LENGTH (meters)	Zn (%6)	Pb (%)	Ag (g/t)	Fe (%)	Other
365.65- 369.72	Mottled, creamy grey dolomite, med grain-granular; scattered minor lemticules of sph., po.,gal. (<0.5%); wk-mod. siliceous. 366.25-366.75 lammsv.,v.f.g. po.,pv.,sph.,mag. gal.(trc) - 50% subplides w. more massive areas containing 5-10% fol. aligned bands of 1-2mm brwn-pinkish shedral gamets associated w. magnetite blebs (1-2mm) 369.2- 369.63 brownish, very fin, lam. py.+ po.(5%) w. minor sph.	Fol. @ 70*				106022 106023 106024	366.13 367.29 369.14	366.83 368.15 369.58	0.70 0.86 0.44	1.44 1.40 0.94	0.60 0.89 0.19	7.50 5.20 1.70		
369.72- 370.12	Fine grain, brownish grey, laminated dolomitic quartzite - lower 5cm contact consists of greenish grey muscovite quartz schist													
370.12- 376.28	Dark-med. grey garnet-muscovite-chlorite-blotite schist • matrix consists of muscovite>>>blotite producing light silky text.; pink subhedral garnets 0.5-1.5 cm.(10%), locally chloritic rich zones; 10 cm whit, milky quartz band @371.85-371.95m.													
376.28- 377.75	White-pale greenish grey quartz sericite schist (cherty) • massive, speckled with 1% finely dissem.po.; wkly lam. @ 377.36-377.75m, w. blottle partings	Fol. @ 60-70"			:									
377.75- 392.69	Weak-mod, fol, siliceous garnet- mica schist; pantial obscuring due to local silicification; med-dk greenish grey groundmass; 10 % pink, sub-euhedral garnets, occasionally stretched; occasional irregular patches of white guartz veining? and localized silicification.													
	378.34-380.55 ; patchy wht qtz (10-20%) 380.95-381.15 ; wht qtz vn. w. (rreg. sharp contacts, several coarse po blebs. wht, barren glassy quartz w. irreg. sharp contacts @ 381.7- 382.4, 382.7-383.25m.													
392.89	End of Hole													

.

PAGE: 5 of 5

•

TECK	EXPLORATI	ON LTD.	BEND PROPE	RTY	PROJECT #	1723	HOLE	NO. TK-92-02	PAGE: 1 of 4
	NTS:	83D/1E	DATE COLLARED):17/7/92	<u>DEPTH</u>	DIP	AZ	LENGTH:	324.0m
	CLAIM:	BEND 34	DATE COMPLETE	ED:23/7/92	0	-75*	35"	DEPTH OF OVB:	3.0m
	ELEVATION:	1 045m	DATE LOGGED:24/7/92		120.7	-79		CASING REMAINING:	3.65m
	GRID COORD:	2+00S, 2+95W	CORE SIZE: NQ		291.4	-80		WATERLINE LENGTH:	2.7km.
	LOGGED BY:	G.T.						PROBLEMS:	Hard-slow drilling

DEPTH (meters) FROM/30	DESCRIPTION	STRUCTURE	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	SAMPLE FROM	DATA ТО	LENGTH (meters)	2n (%)	Pb (%)	RESULTS Ag (g/t)	Fe (%)	Other
0- 3.0	Overburden													
3.0- 25.2	Med. grey, f.g.limestone-micaceous limestone; approx.1%, 1- 3cm phlogopite bands	Fol. @ 60-70*												
25.2- 62.94	Grey, banded (zebra texture) limestone; alternating bands 2mm-1cm w. wht. bands wider than grey; clean continuous zone; no pelitic/qr: bands; upper contact marked by 4.5 cm qtz-carb band with abrupt change to general fold, angle @ 30° to c.axis; broken @ 29.75- 30.4m.;localized tight isoclinal Z- shaped tolding @ 33.64-34.84m.;wavy, variable fol. @ 20-30° to sub-parallel to c.a. from 44.63-46.13m.;tight isoclinal folding @ 48.33-47.0, 52.453.05, 53.6-82.94m; fol. sub-parallel to c.a. @ 53.1-58.5m.	Fol. @ 30-40*												
62.94- 64.15	Dark grey garnet-cordiente- mica schist; garnets brownish, euhedral to 1.5 cm.; cord. porph's dark, eiongate 0.25-1.0 cm.; ilmonite coatings on fol. planes.	Fol. @ 40*												
64.15- 70.25	Meddk grey, calcareous cordiente-mica schist; 20-40% ckusters of dark elongate cord.to 1.0 cm. w. lighter musccarb. groundmass; fol, variable, but generally parallel to c.a.; several irreg, wht gtz-carb bands, 1-10 cm. @ 67.22-68.12 m.													

e e contra contra contra contra contra se contra Maria Adama Maria Atama Atama Atama Maria, Maria Maria Contra

DDH NO. TK-92-02

PAGE: 2 of 4

												·		
DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn (%6)	Pb (%)	Ag (g/t)	Fe (%6)	Other
70.25- 83.53	Med. dk. greenish grey garnet-mica-cordierite schist; garnets subhedral, brownish to pale grey (0.5-2.0cm.), often w. ragged rims, (10-20%); f.g. groundmass of musc.,cord.,chlor.; local limonite stain along fol. planes; tol. variable to indistinct, appprox 40°; dtc bands @ 72.09 -4cm.,72.39 -4cm.,77.22- 77.42, 80.58-80.88m.	Fol. @ 40*												
83.53- 84.13	Interbedded garnet-cordierite shist and 60% qtz-carb, bands	Fol @ 40*												
84.13-94.3	Dk. med. grey, calcareous mica-cordiente schist (musc>cord>biot): localized cord. clusters and bands; mod strong calcareous w. calc-musc. groundmass; 10-20% diffuse and distinct with qtz-carb bands; ilmonte fract. coetings @ 84.75-90.6m; grey f.g. limestone interbed @ 90.62-91.9m, w. 60° fol.	Fol @ 40*												
94.3- 97.5	Garnet-mica schist; strongly fract. w. lim. coatings; wkmod. calc; garnets pale brwn to 1.5 cm., subhedral, 5-10%, fract. parallel to c.a. @ 95.0-96.0m.	Fol. @ 50*			i									
97.5- 235.92	 Med. grey f.g. banded limestone, approx. 5% qtz-carb interbetis (3-15 cm); wk. localized limonite on fol. planes to 171.0 m.; increase in gelitic content to calcareous cord. schist @ 107.6-123.53 and 124.35-128.3m 189.5-199.58 Calc. cord.garnet schist; darker increased pelitic zone: sporacic, eurodraid dk. brown garnets to 2.0 cm. (c5%); calcchlor groundmass; irreg. patches and bands of dk. elongate cordierites (20-00%); broken @ 190.6-191.4m. 123.53-124.35 wft; chalky qtz +/ bante band, contacts 25-30°; strong infusion of qtz-carb(80-90%) @ 129.45-130.2, 131.9- 132.7m. Fol. flattens parallel-subparallel to c.a. @ 138.0-150.0m.; fol. approx. 40° @ 150.0-178.05m.; abrupt fol. change to subparallel to c.a. @164.47-164.8m. 177.3-178.05 - med.grain, calc. phlog. schist; evenly distributed phlogopite books to 3.0 mm (20%), slickensides @ 20° to c.a. 178.05-235.92 - fol. @ 40-50°; fold axis @ 229.75-229.92m. 	Fol. @ 50-60* 40* (contacts)												

		· · · · · · · · · · · · · · · · · · ·												
DEPTH (meters) FROM/TO	DESCRIPTION	STRUCTURE	VEINS	ALTERATION	METALLIC MINERALS	SAMPLE	Sample From	DATA	LENGTH	Zn	Pb	RESULTS	Fe	Other
260.9- 263.2	Strongly chloritic, broken, mottled gamet-cordiente schist; cord, selectively replaced by chlorite (5-10% cord.); pink sub- culhedral gamets to 2.0 cm.; interbedded wht, cherty bands (30-40%); sharp irreg, lower contact @ 80°	Fol @ 60*			(%)	NG. 18602 18603 18604	260.45 261.45 262.45	261.45 262.45 263.20	(meters) 1.0 1.0 0.75	(%) 79ppm 68ppm 57ppm	(%) 11ppm 30ppm 19ppm	(9/1)	(%)	
263.2- 279.1	Grey-greenish grey, f.g. v.f.g. hard, glassy chert, laminated @ 2- 4 mm.; several minor fold axes; elongate pink garnets often in clusters (5-10%); writ micas on fol, planes.; sporadic wk. sphal. lameliae except as noted below. 265.4-266.7 : qtz-sericite schist, finely lam. 270.6-271.3 : secondary glassy, writ qtz w. 25% stockworks of po. > py 271.9 : 2-3 cm. band mixed po>py 273.4-273.9 : massive v.f.g. sulphides (100%); mixed po.,py,.sph. (brown) w. oval glassy qtz eyes 0.25-2.0 cm. (10%) 273.9-274.4 : Drk., finely lam., wkmod. chloritic, contains 4 cm. pyrtic rimmed qtz inclusion; section is mod. to stongly magnetic as lowermost 7cm.has laminated intergrowth of f.g. pink gamets and flattened magnetite blabs. 274.4-274.55 : writ sigcondary qtz containing contact sphal lameliae with overlying drk.magnetic band @ 274.4m.; brwn. sphal. blebs (2%), galena trc. within qtz; contacts sharp, irreg. w. chert. 274.55-279.1 : glassy, grey- greenish grey, fine -v.f. lam. chert; < 1% fine lenticules sph.,po.,py,trc. gal.	Fol. @ 70* Fol. @ 60*				106028 106039 106030 106031 18605 18607 18607 18608 18609 18609 18619 18611 106034 106035	263.2 264.4 265.4 266.4 267.2 269.2 270.6 271.25 272.5 273.4 275.4 275.4 276.8 276.8 276.8	264.4 265.4 266.4 269.2 270.5 271.25 272.5 273.4 273.9 274.4 275.4 276.8 276.8 277.32 279.1	1.2 1.0 1.0 0.8 1.0 1.4 0.7 1.25 0.5 0.5 0.5 1.0 1.4 1.26 0.52 0.5	0,19 0,22 0,45 0,60 2061ppm 395ppm 0,18 132ppm 0,04 8,28 0,59 797ppm 1808ppm 1808ppm 0,30 0,92	0.02 0.04 0.01 0.05 306ppm 408ppm 0.04 176ppm 0.02 2.24 0.19 528ppm 413ppm 311ppm 0.06 0.23	0.50 0.60 <.01 0.60 30.9 1.70 0.70 2.70	13.04 19.68	
279.1- 295.55	Light-med grey cherty quartz sericite schist; f.g-v.f.g., finely lam.; sporadic minor lamellae (<1%) of brn sph>po.>py.>gat. (trc): sericitic fot, partings.	Fol. @ 50 *				018612	279.1	279.8	0.70	421ppm	201ppm	0.3ppm		

PAGE: 3 of 4

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	2n (%)	Pb (%)	Ag (g/t)	Fe (%)	Other
295.55- 305.02	Med. to it. grey/ creamy, mottled, dolomite, fine-med. grain, weak-mod. siliceous. 295.55-295.8 : Interbedded 1 cm. mica bands, dol. and pale smeared garnets 295.8-297.47 : Iam semimassive(30-40%) sulphides; mixed granoblastic py. w. interstitial brn. sph. (py.5:sph2); dissem. mag. @296.6-296.7; 1.0 cm. mixed po/py band @295.85 297.47-299.4 : dol.w. sporadic py. Iameliae (hairline-0.5cm.), 3- 5% sulphides 299.4-300.3 : brecclated dol. w. 5-10% breccla matrix , py.>po.					106036 106037 106038 106049 106040 106042 106043 106044 106045 106045	295.55 296.5 298.6 299.4 300.4 301.31 302.1 302.7 303.74 304.52	296.5 297.6 298.16 299.4 300.4 301.31 302.1 302.7 303.74 304.52 305.30	0.95 1.1 0.56 1.24 1.0 0.81 0.6 1.04 0.78 1.40	1.78 3.00 0.08 0.17 0.06 0.79 0.20 0.26 0.25 0.25 0.04	0.33 0.28 0.03 0.08 0.07 0.03 0.20 0.04 0.11 0.12 0.06	5.60 4.10 <.10 1.40 1.20 0.40 2.80 0.60 2.30 1.70 1.40		
	302.1-302.1 : drk. grey dol. w. 3-10% pypo. stringers 302.1-305.02 : grey dol. w. lam. bands of py>po.>sph (8:2:1); minor local brecc. w. silicification													
305.02- 307.5	Saliceous dolomitic schist; f.g., med. grey, lam.; localized narrow musc. bands, gredational lower contact.					018613 018613 018514	305.30 306.04 307.17	306.04 307.17 307.60	0.74 1.13 0.43	2022ppm 143ppm 40ppm	151ppm 49ppm 21ppm			
307.5- 324.0 E.O.H.	Gernet-blotite schist; garnets pale pink to 1.0 cm. (15-25%), euhedral to ragged/figtered; drk. groundmass (blot>musc.); widy siliceous @ 309.15-309.7m. 307.6-308.4 : 70-80% wht, broken, cherty qtz 311.7-312.6 : downward widening interbedded wht cherty bands within garnet-mica schist 312.6-314.3 : med grey, f.g. jaminated chert	Fol. @ 50-60*				018616 018617	307.60 308.22	308.22 309.68	0.62 1.46	32ppm 91ppm	13ppm 11ppm			

.

PAGE: 4 of 4

•

TECK EXPLORATION LTD.

.

NTS:	83D/01E
CLAIM:	BEND 1
ELEVATION:	1 008m
GRID COORD:	4+00N, 2+63E
LOGGED BY:	C.A.

BEND PROPERTY DATE COLLARED: 24/07/92 DATE COMPLETED: 29/07/92 DATE LOGGED: 29/07/92 CORE SIZE: NQ

HOLE NO. TK-92-3 DEPTH DIP <u>AZ</u> -45° 0 35' -47* 35 153.01

-46*

35

LENGTH: DEPTH OF OVB:

.

PAGE: 1 of 4 346.86m 15.85m CASING REMAINING:15.85m WATERLINE LENGTH:3000m PROBLEMS:

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	OATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn (%)	Pb (%)	Ag (1/2)	Fe (%)	Other
0-16.1	Overburden													
15.1- 40.95	F.g., Ight grey-drk grey banded Limestone ('zebra rock'), 2- 10mm bands commonly tightly folded. Drk grey, v.f.g., wkly magnetic pelitic band from 40.13-40.47m.	Fol @66*												
40.95- 46	F.g., drk-med, grey, calcareous Garnet-biolite schist with minor 2-8mm elliptical porphyroblasts of cordierite. Garnets subbedral. 5-25cm bands of creamy white Otz-carb bands from 44.1-44.95m.	Foi @60*												
46.0- 74.75	Drk grey, well fol., Garnet-biotite Schist. 0,4-1.2cm sub-anhedral pale pink garnets display a poikalitic texture and possess an internal fol, non-parallel with the matrix fol. Small anhedral staurolites occur locally. A grey micaceous Rmestone band occurs from 60-60.52m.	Fol @50° Fold axis (F.A.) @48.5, 49.5, 56.2, 57.0												
74.75- 79.1	F.g., well fol., drk gréy Mica Schist. Possibly orig, of a graywacke composition. Minor small anhedral garnets and 0.5-1.0cm Otzz-carb bands occur locally.	Fol @80*												
79.1-98.1	Drk grey, well fol., Garnet-biotite Schist							Γ						
98.1- 112.32	Calcareous Blotte Schist. Minor % of anhedral, pale pink 0.3-1.0cm garnets which decrease in abundance toward bottom of unit.	Minor folds from 109.5-110.2												
112.32- 121.9	Lght grey, mod-well fol, Mica schist with +10% calcareous component. Abundance of +1cm fol parallel Qtz-carb bands. Minor gamet component which increases slightly toward bottom of unit. Calcareous mica schist interbed from 120.67- 121.9m.	Fol @65*												

PROJECT #1723

275.84

1500

والمعتقدة والمتعالمة والتركيم والم

•

a. .

and the second second

الانفادة والاستعمادية

· · · ·

.

10 20

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALUC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn (%)	Pb (%)	Ag (g/t)	Fe (%)	Other
109.78- 157.48	F.g., mod fol., drk grey Chloritic Garnet Schist with occasional 5-15cm Qtz-carb band. 0.5-2cm subhedral grey-brown garnets In dark grey-green chloritic matrix. Cordiente occurs locally. Unit appears to derive from a more argliaceous source. Broken, rubbly core (possible fault) from 109.8-111.6m.	F.A. @131.6												
157.48- 168.7	Grey to drk-grey, banded, Barnet-cordiente Schist with minor calcareous component and minor interbeds of cord, bearing limestone. Garnets are sub-anhedral and become less abundant toward bottom of unit. 14-dem band of Citz-carb occur locally. Band of Cordiente Limestone from 161,1-162,11.	Fol @45-50"												
168.7- 172.45	Grey to Ight-grey, calcareous Cordierite-Mica Schist with Interbedded Limestone Cordierite Schist.													
172.45- 175.56	Garnet-cordiente-chlorite-mica Schist. Garnet and cord. display retrograde metamorphic effects; ragged crystal edges and cord. aftered to chlorite. Retrograde evidence increases toward bottom of unit. Core is broken & imonitic with areas of poor recovery (fault) from 174-175.56m.													
175.56- 183.7	Wkly banded, grey to Ight-grey, Limestone Cordiente Schist. Cord. is elliptical with p.d.o. parallel to fol.	Fol @50* F.A. @182.61 183.25												
183.7- 204.6	Grey to grey-brown, calcareous Garnet-blottle Schist with interbedded limestone. 1-10cm cordiente bearing bands locally. Blottle displays anastomozing cleavage about garnet prph-blasts. 1-10cm Chz-carb bands. Broken, rubbly core (fault) from 199.3-199.6m.													
204.6- 222.45	Banded, grey Garnet-Biotite Schist with numerous 1-3cm Otz- carb bands. +5% calcareous component.					u .								
222.45- 228.66	Drk grey, Gamet-cordiente-biotite Schist. Biotite anastomozes about numerous anhedral gamets and elliptical cord.	Fol @50*			Minor Py & Po									
228.66- 237.06	Waxy grey-green, well fol., Quartz-sericite Schist.	Fol @70"			Py on fol & frac. surfaces									

PAGE: 2 of 3

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALUC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn (%6)	Pb (%)	Ag (g/t)	Fe (%)	Other
237.06- 239.14	Mineralized section. 237.06-238.74m, v.f.g., laminated to banded Py, Mag., & Po with -3% Sph in thinly banded and with brecciated dolomite. 238.74-239.14m, grey dolomite with several 3-5cm bands of Py. Sph & minor Po.					81709 81710 81711 81711 81712	237.06 237.56 238.18 238.66	237.56 238.18 238.66 239.14	0.50 0.62 0.48 0.48	1.28 1.72 3.42 2.06	0.44 0.48 0.66 0.68	4.54 3.97 6.24 10.21	16.2 15.7 18.1 12.4	
239.14- 239.63	Siliceous Sericitic Dolomite Schist.													
239.63- 261.83	Well fol, banded, waxy yellow-green and grey-brown Siliceous Sericitic Pelitic Schist. Unit appears to be an interbadded Otz- sericite schists with f.g. micaccous and grey silt sized material. Locally the unit becomes less siliceous and more a banded drk grey to grey argillaceous schist. Shearing effects are noted by stretched/flattened pale pink garnets. Otz-carb band from 241.66-242.11m.	Foi @70* F.A. @244.6, 252.31. 254.26, 255.38			Py on frac. surfaces									
261.83- 265.25	F.g., banded grey to drk grey, Garnet-blottle Schist with 0.4- 1.0cm biotite aggregates or 'bookiets'.	Fol @60* Beading @85*												• • • • • • • • • • • • • • • • • • •
265.25- 277.9	Siliceous sericitic Pelitic Schist with minor amounts of 0.5- 2.0cm subhedral red-brown garnets.	F.A. @267.85 267.85, 271.9, 272.35												
277.9- 279.19 Е.О.Н.	Staurolite-garnet-biotite Schist. 0.6-1.5cm golden-brown staurolites and -0.5cm garnets with 0.5cm biotite booklets in 1.g. lght grey micacebus matrix. Contact with above unit very well fol. & broken (possible fault).													

PAGE: 3 of 3

TECK EXPLORATION LTD.

.

NTS:	83D/01E
CLAIM:	BEND 5
ELEVATION:	925m
GRID COORD:	13+67 N, 5+00 E
LOGGED BY:	G.T.

BEND PROPERTY DATE COLLARED: 07/08/92 DATE COMPLETED: 10/08/92 DATE LOGGED: 12/08/92 CORE SIZE: NQ

PROJECT #1723

0

171.3

218.2

DEPTH

<u>DIP</u>

-60*

-64°

-64*

HOLE NO. TK-92-05

<u>AZ</u>

70*

PAGE: 1 of 5

LENGTH:229.8m DEPTH OF OVB:2.1m CASING REMAINING:2.1m WATERLINE LENGTH: 300m PROBLEMS:

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn (%)	Pb. (%)	Ag (g/t)	Fe (%)	Au (oz/t)
0-2.13	Overburdren								ļ					_
2.13-4.25	Med. grey f.g. limestone: several qtz-carb bands to 0.25 cm., limonite on fract. surfaces.	Fol. @ 40*												
4.25-31.35	Dark grey calcareous mica schist: occasional narrow bands of elongate cordierite porphyrobiasts to 1.0 cm., often associated w. dtz-carb bands (10% dtz-carb bands); wkmod. lim. frac. coatings: rare anhedral pinkish garnets to 1.5 cm.; fold axes @ 10.97, 15.0, 16.5, 22.0 m.	Foi. @ 40*												
31.35-50.4	LL-med. grey limestone : 10% qtz-carb bands, 1-5 cm.: minor pelitic interbeds, 5-10%, : mod-strong limonite fract. coatings; 34.79-35.09 - biotitic, phiogopite schist 35.09-36.09 - brownish grey calcareous mica schist.	Fol, @ 40-50*												
50.4-64.43	Dark grey, mottled chloritic garnet - mica schist; sub-euhedral brownish-pink garnets to 3.0 cm. (10-20%), garnets more ragged in more chloritic zones; sporadic cordierite clusters; chloritic groundmass; mod. broken to 53.2 m.; qtz-carb bands @ 58.6-58.92,59.4-59.65, 60.65-60.98 (80%), 62.7-62.95, 63.31- 63.46m.	Fal. @ 65"												
64.43-71.63	Zone of mixed dk, grey tol. limestone and calcareous cordiente- mica schists; 5%, 1-5cm. qtz-carb bands, rare pale euhedral garnets (<5%); grey tol. limestone(80%) @ 69.5- 71.63m.	Fol. @ 60*												

ing is consider an ender

والإيداحين مواليته والأ

and the second second

4

A LOS ALL AREA LA MARKED

Sec. 14. 1. 1. 1.

a a a a

PAGE: 2 of 5

141. 44

DEPTH (meters)	DESCRIPTION	STAUCTURE			METALUC	CAMP 6	SAMPLE	DATA		79	Ph	RESULTS	Fø	Au
FROM/TO		ANGLES	VEINS	ALIENATION	MINEHALS (%)	NO.			(meters)	(%)	(%)	(g/t)	(%)	(02/t)
71.63- 109.73	Dk. grey, strong, fol, garnet-mice schist; dk. chloritic muscovite +/- philogopite groundmass; 20-30% sub-euhedral brownish, pink garnets, 1-3 cm.; local concentrations of elong. cordierite porph's to 1.0 cm.; < 5% gtz-carb bands.	Fol. @ 60*												
109.73- 110.25	Grey, f.g. fol. Ilmestone.	Foi. @ 60*												
110.25- 113.13	Dk. grey, strong. fol. garnet-cordiente- mica schist; 10-15 % euhedrai, brownish pink garnets to 4.0 cm.	Fol. @ 50*												
113.13- 116.5	L1. grey. f.g. limestone; 15 % diffuse qt2-carb bands; wk. sporadic cordierite develop't.	Fol. @ 60*												
116.5- 117.65	Garnet-mica schist; pink subhedral garnets to 3.0 cm. (20%); wkmod. calc, groundmass; trc, py. smears on fol, planes.													
117.65- 133.24	Light grey limestone ; 10 % qtz-carb bands, 1% micaceous bands													
133.24- 137.73	Mixed limestone, weakly calc. garnet-mica schist; wht gtz >> carb. band @ 135.56-135.92m.													
137.73- 141.38	Lt. grey f.g. limestone, wk. cord. develop't.	Foil. @ 70*												
141.38- 145.0	Calcareous, garnet-cordiente-mica schlst; 10-20% sub- euhedral pale pink garnets, often w. ragged rims; limestone Interbeds @ 142.68-142.86, 144.59-144.67													
145.0-149.6	Light grey, fol. limestone													
149.6- 184.25	Mod. calc garnet-mice-cordierite schist; garnets pale pink, sub- euhedral, often w. ragged rims, 1-3 cm. (15-20%), occasional qtz-carb bands, indistict fol.	Fol. @ 70*									-			
	162.1 : mod. fract. schist with wkmod. 1mm-1cm calcite fract. fills.; 163.4-163.8 - fol. flattens to 25° w. associated pale green carb. filling along fol. plane.; 177.95 - 12cm, qtz-carb band followed by bleached, greenish calc. altered zone (178.0- 178.51); bleached w. increased musc. groundmass @ 183.5- 184.25m.													

T	K-	92	-5
---	----	----	----

DEPTH (meters) FROM/TO	DESCRIPTION	STRUCTURE	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE	SAMPLE	DATA TQ	LENGTH	Žn	 Pb	RESULTS	Fe	Au
184.25- 192.4	Wht-creamy It. grey, cherty quartz sericite schist; banded and laminated; mod.fract. w. limonite stain on frac's.: fine	Fot. @ 45*				NO.			(meters)	(%)	(%)	(g/t)	(%)	(oz/t)
	laminations and flecks of py-po-sph-gn (1-2%); sericite and py, smears on fol. planes; strongly broken @ 187.45-189.58m.				 		ļ							
192.4- 199.68	Wht. dolomitic limestone w. laminated, semi-massive and massive bands of v.f.g. py.po.,sph. and trc. galena; localized bands of small flattened pink gamets often w. magnetite ass'n.; rock has complex folded texture with more massive zones containing variable size dolomitic bodies/clasts? w. lesser oral quarz eyes; foldiston planes are chloritic w. pyrite smears and laminations: mineralization is typically brown- reddish brown (sulphides are typically po.,py with lesser sph. and officult to distinguish due to very small grain size) SULPHIDE ESTIMATE: 192.4-193.15 : Lamsemi-msv., 20-30 % 193.15-193.55 : msv., 80% 193.55-198.45 : semi-msv. to msv., 60-70 % 193.45-199.25 : wk. lam., 1 %		·			81713 81714 81715 81716 81717 81719 81720 81721 81722 81722 81723 81724 81725 81726 81727	192.40 192.71 193.21 193.64 194.19 194.65 195.10 195.36 196.51 197.04 197.53 197.04 197.53 197.04	192.71 193.21 193.64 194.65 195.10 195.36 196.18 196.51 197.04 197.53 197.88 199.45 199.69	0.31 0.50 0.43 0.55 0.46 0.45 0.26 0.33 0.52 0.53 0.53 0.57 0.57 0.54	2.44 0.26 5.00 1.52 6.48 1.62 6.36 2.16 4.44 6.30 1.52 0.52 1.74	0.62 0.10 1.64 0.56 1.30 0.58 1.28 0.28 0.28 0.84 1.78 0.32 0.10 0.46	8.23 1.37 21.94 7.54 12.34 6.86 26.06 6.17 17.83 4.11 10.28 24.68 4.9 1.37 4.8	12.70 19.85 13.50 21.40	0.001 0.002 0.002 0.003
199.68+ 200.3	Quartz carbonate breccia; white, broken dolomite, vuggy, siliceous frags, w. sulphide rims (py5%, ga1%)			· ·		81728	199.69	200.35	0.66	0.74	0.24	3.43		

.

PAGE: 3 of 5

TK-9	2-5	
------	-----	--

DEPTH (meters) FROM/TO	DESCRIPTION	STRUCTURE	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	SAMPLE FROM	DATA TO	LENGTH (meters)	2n (%)	Po (%)	RESULTS Ag (q./t)	Fe (%)	Au (oz/t)
200.3- 209.55	 Siliceous dolimitic limestone with pyritic bands; mod. calc. mortied, grey dolomite w. variable narrow glassy silice veinlets and inclusions (1-5%); localized wit, brecclation w. silica matrix filing; pyrite occurs as distinct bands of granular porphypoblastic, granular py. with minor interstitial sph.(py 10 : sph 1); unit also contains pervasive scattered lameliae of py > sph > gal. 205.7-206.1 : closely spaced lameliae of mag., sph., minor py (5% combined) msv py. bands @ 200.55-200.7, 202.25-202.67m. 208.03-208.6 : mod-strong brecc. dol. w. 10% silica breccia matrix w. granular py., minor po. trc. gal. 206.9-203.4 : msv., medcoarse gran. py. (80%) w. 2-3% interstitial sph. 205.0 : 8 cm. second. qtz band w. py., sph., gal. selvages. 	Fol. @ 50°, 40° Fol. @ 50°				81729 81730 81731 81732 81733 81734 81735 61736 61737 81738 81739 81739 81740	200.35 200.60 201.00 202.20 203.80 204.60 205.65 206.10 207.00 208.03 208.03 208.90	200.60 201.00 202.20 202.80 203.80 204.80 205.65 206.10 207.00 208.03 208.90 209.65	0.25 0.40 1.20 0.40 1.00 0.85 0.45 0.90 1.03 0.87 0.75	4.22 0.56 0.22 1.66 0.48 0.46 0.76 0.18 0.46 1.60	1.04 0.18 0.08 1.90 0.14 0.12 0.14 0.14 0.14 0.14 0.14 0.10	14.4 2.74 1.37 30.86 8.23 2.06 2.06 7.88 3.43 2.06 7.88 3.43 2.06	18.35 22.90	0.002
209.55- 211.1	Cherty, dolomitic quartz-sericite schist, it. grey, f.g.													
211.1-212.0	Gradational zone / cpmact; dolomitic qtz- ser. schist to garnet blotite schist													
212.0-221.7	Strongly fol. garnet-blottle schist; dk. biottle bands; garnets pale pink, 1-5 mm. in streaks and bands, garnets an-euhedral to 1.5 cm. (10-20%); fold axis @ 220.8 w. minor py., po.	Fol. @ 60*					<u> </u>			L				
221.7- 221.85	Dolomitic quartz-sericite schist; contains tight isoclinal fold bangs w, 5% blebs and narrow bands brown sph, and minor galena along fold axes.									L				
221.85- 222.17	Grey, mottled dolomite, w, fine lamellae of brwn. sph.; some minor remote qtz. bands, 2-4 mm. w. minor assoc. sph., ga.	Fol. @ 45"												1

PAGE: 4 of 5

•

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	OATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn (%)	Pb (%)	Ag (g/t)	Fe (%)	Au (oz/t)
222.17- 229.82	Sticeous, pelitic, quartz-sericite schist (cherty); wht-cream bands w. fine laminations of dk. brwn pelitics (micaceous);banded, well fol;; minor isolated clusters of flattened garnets to 0.5 cm.; chlor, and py. smears on fol. planes; occas, tight isocinal folds; mod. broken @ 227.18- 226.9; rare biotite-garnet remnant bands to 224.0 m.; downsection increase in pelitic content; fold axis @ 222.77m.	Fol. @ 80*												
229.82	End of Hote													i — — —

1

PAGE: 5 of 5

.

TECK	EXPLORAT]	ON LTD.	BEND PF	OPERT	r	PROJECT #	#1723	HOL	E NO.	TK-92-7	,	PAGE	: 1 of 2		
	NTS: CLAIM: ELEVATION: GRID COORD: LOGGED BY:	92J/10W BEND 7 930m 14+70N, 3+97E C.A.	DATE COL DATE COM DATE LOG CORE SIZE	LARED: IPLETED: GED: ::	15/08/92 19/08/92 19/08/92 NQ	<u>DEPTH</u> 0 163.37	<u>DIP</u> -50° -55°	<u>AZ</u> 30 30	LE DE CA W/ PR	NGTH: PTH OF O SING REM TERLINE OBLEMS:	VB: IAINING: LENGTH:	227.08 20.55r 20.55r 300m Broke	lm n n ground		
DEPTH (meters)	DESC	RIPTION	STRUCTURE					SAMPLE	DATA				Results		
FROM/TO			ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	ном	то	LENGTH (meters)	2n (%)	Pb (%)	Ag (g/t)	Fe (%)	Other
0- 20.55	Overburden														
20.55- 37.98	Grey to grey-brown, calcareou Interbedded micaceous limest from 32.3-36.8m.	s Biotite Schist with minor one. Minor garnet component	Fol @45-50* Fold Axis (F.A.) @27, 27.7m.												
37.98- 64.8	Grey micaceous limestone with biotite schist from 45.3-46.1, 5 Qtz-carb bands and disrupted throughout unit.	n interbedded grey-brown calc. 0.09-51.66 & 55.1-58.1m. Minor pands (as fragments) occur	F.A. @64.19, 64.44												
64.8- 78.13	Mod. fol, grey Micaceous Lim micritic limestone.	istone with interbedded grey	Fol @60*												
78.13- 83.11	Wikly banded, ight grey to grey Umestone.	-brown, Mica-cordientia	Fol @60*							<u> </u>					
83.11-95.0	Mod-Well fol., grey-irown, cal	careous Blotite Schist.	Fol @65"											L	<u> </u>
95.0- 100.6	Grey to drk grey, Garnet-Blotth subhedral dolomite prph-blast metamorphic texture.	e Schist with numerous 1-4mm s overprinting the earlier garnet	Foi @60*							ļ					
100.6- 106.98	F.g., light grey to grey Limesto the lower 1m.	ne. Cordiente is present within	Foi @70*												
106.98- 124.16	Ork grey Garnet-Cordiente-Dol interbeds of micaceous limest subhedral prph-blasts. Otz-car 123.7-124.08m (mod brecc.)	prite Schist with minor 2-10cm one. Dolomite occurs as small b bands from 122.59-122.82 &				Minor Py on trac. surfaces.									
124.16- 130.45	Banded, grey to grey-brown, 0 with <5% calcareous component	ordierite-gamet-blotite Schist													

.

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA		-		RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn. (%6)	Рь (%)	Ag (g/t)	Fe (%)	Other
130.45- 143.14	Mottled, drk grey, Cordierite-garnet-dolomite-biotite Schist. Garnets are 0.7-2cm in size, subhedral and pink-brown. Kyanite occurs from 139.45-141.92m. Core broken & rubbly with chlorite & carbonate alteration from 137.87-138.84m.													
143.14+ 160.52	Mod fol., wkly banded, grey Micaceous Limestone with 1-8cm white Otz-carb bands. Chloritized cordierite prph-blasts occur tocally.	Fol @65⁺ F.A. @149.18												
160.52- 200. 86	Wkly banded, grey to drk grey calcareous Garnet-cordierite- blotite Schist with 0.5-10cm bands of Otz-carb. Banded grey limestone occurs from 199.24-199.57m, Pale yellow-grey sericitic section from 183.15-184.66m.			1										
200.86+ 204.33	Mottled, drk grey, Garnet-staurolite-biotite Schist. Unit appears to be orig. derived from a more argillaceous source than previous units.	Fractures near parall, C.A.												
204.33- 209.0	Broken, rubbly, grey Quartz-sericite schist/Grey Chert.	Possible fault through unit												
209.0- 210.56	Grey, wkly siliceous Dolomite, Massive Po, Sph & Py from 209-209.85m. Banded and thinly laminated Py, Po & Sph from 209.85- 210.36m.					81743 81744	209.0 209.45	209.45 210.36	0.45 0.91	3.07 0.29	0.83 0.30	10.97 6.17	11.70	
210.56- 211.68	Siliceous Dolomitic-sericitic Schist. Upper contact with dolomite gradational?													
211. 58- 214.68	Wkly-mod banded Garnet-blotte Schist. Otz-carb band from 212.92-213.03m.	Fol @50° Beading @72°												
214.68- 227.08 E O H	Grey, siliceous Sericitic pelitic Schist, Pelitic material appears as drk brown laminae within siliceous cherty unit. Unit contains directed bit creat to valitable bit a cleate	Fol @70"												

a. _

PAGE: 2 of 2

TECK	EXPLORATION LTD.		BEND PR	OPERT	r	PROJECT	#1723	ю	LE NO.	TK-92-8	1	PAGE	: 1 of 3		
<i></i>	NTS: CLAIM: ELEVATION: GRID COORD: LOGGED BY:	92J/10W BEND 7 930m 14+70N, 3+96E C.A.	DATE COLL DATE COM DATE LOGO CORE SIZE:	ARED: PLETED: NED:	20/08/92 25/09/92 25/09/92 NQ	<u>DЕРТН</u> 0	<u>DIP</u> -50*	<u>AZ</u> 10	LE DE CA WA PR	NGTH: PTH OF O SING REM TERLINE OBLEMS:	VB: IAINING: LENGTH:	314.6r 24.5m 24.38r 300m Broke	n n n ground		
DEPTH (meters) FROM/TO	DESCR	IPTION	STRUCTURE	VEINS	ALTERATION	METALUC MINERALS (%)	SAMPLE NO.	SAMPLE FROM	DATA TO	LENGTH (meters)	Zn (%)	Po (%)	AESULTS Ag (g/1)	Fe (%)	Other
0-24.5	Overburden	······································													
24.5- 48.35	Mod-well fol, calcareous Blotite Core broxen & rubbly from 24.5 (fault?) from 40.85-41.05m. Unit staining along fractures.	-Garnet Schist. -27.58m, Gouge material displays meteoric water	Fol @10"												
48.35- 100.29	F.g., mod fol, grey Micaceous L unit sharp @20" to C.A. Core bri 63.09-64.1 (fault), 64.55-65.04, 9 @95.09-95.3m. Chlorite+Biotte r dyke) from 99.2-99.67m.	imestone. Contact with upper oken & rubbly from 48.65-49.1, 13.17-93.37m. Gouge material rich layer (possibly attered	Fol @5-10" changes to 40" @80m												
100.29- 108.25	Interbedded brown-grey calcare banded Micaceous Limestone. Chiorite rich band of gamet-biot	tous Biotite Schist and grey	Fol @30-40* Fold axes @102.9, 103.2,												
108.25- 120.3	Brown-grey calcarealus Biotite-C 30cm interbedded Micaceous U component.	Cordierite Schist with minor 5- Imestone. Minor garnet	Fol varies from 20-35° F.A. @110.96, 112.98, 117m												
120.3- 127.0	Banded Micaceous Umestone v calcareous Mica Schist.	with minor interbeds of	Fol @20-25"												
127.0- 139.5 5	Mod-wet fol, brown-grey calcar Schist. 5-15cm Otz-carb bands component decreases slightly to Micaceous imst interbed from 1	eous Blotte-Garnet-Cordierite occur locally, Calcareous oward bottom of unit. 36.25-137.45m.	Fol @25" Fol from 139m is 40" F.A. @130.67, 131.15, 137.95, 139,34m												
139.55- 154.53	Interbedded grey Micaceous Lin Schist. 6.5-10cm Qtz-carb band	nestone and calcareous Biotite a locally.													

ОЕРТН	DESCRIPTION	STRUCTURE				4 	SAMPLE	ĐATA				RESULTS		
(meters) FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	2n (%)	Pb (%)	Ag (g/t)	Fe (%)	Other
154.53- 169.24	Calcareous Blotite Schist with minor interbedded Micaceous Limestone. Cordierite occurs in 2-20cm bands locally.	F.A. @157.93, 165.12. Fol ranges from 10-40" with folding												
169.24- 178.8	Grey banded Micaceous Limestone with minor interbeds of calcareous Biotite Schist. Within some Biotite schist bands prph-blasts of cordierite and dolomite occur.	F.A. @170.49, 171.5m												
178.8- 200.19	Drk grey, wkly calcareous, mottled Garnet-Cordierite-Dolomite Schist. Dolomite occurs as small subhedral grey porphyroblasts. Dtz-carb bands occur from 178.8-179.02, 180.23-180.53, 196.13-198.43m.	Fol @10-30" F.A. @184.2, 192.62m.		- - - - - - -	Minor Py.									
200.19- 219.55	Grey banded Cordierite bearing Limestone. Interbedded calcareous Gamet-Cordierite Schist from 204.1-206.45 and 207.45-207.95. Mod brecciation and chlor alteration from 212.99-213.65m.	Fol @10-20 F.A. @203.68, 211.95, 214.6, 217.69			:									
219.55- 229.93	Grey-brown banded calcareous Biotite-Cordierite Schist with minor pale pink enhedral gamet component. 0.5-5cm bands of Qtz-carb throughout unit.	Fol @10-20*												
229.93- 234.18	Grey, wkly banded, Cordierite Limestone Schist.													
234.18- 252.77	Grey to grey-brown, calcareous Gamet-Cordierite-Blotte Schist with numerous 1-5cm fol, parallel Otz-carb bands. Core blocky from 241.55-244.45m. Unit possesses a pale grey zone due to increased intercalated limestone.	Fol @35*												
252.77- 256.0	Grey to drk grey, banded Garnet-Cordierite Schist. Cord. display retrograde metamorphic effects from 255.08-256.02m as chlorite alteration increases.													
256.0- 257.35	Opalascent grey Chert with banded and laminated pyrrhotite, pyrite and sphalerite.					18501 18502	256.0 256.95	256.2 257.35	0.2 0.4	0.76 3.04	0.36 0.5	7.54 10.97		
257.35-	Dissemintated pyrrhotite and minor sphalerite within a grey					18503 18504	257.35 258.0	258.0 258.94	0.65	2.26 1.8	0.32	7.88 5.48	13.10	

PAGE: 2 of 3

•

						and the second sec								
OEPTH (meters) FROM/TO	DESCRIPTION	STRUCTURE ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	SAMPLE FROM	DATA TO	LENGTH (meters)	Zn (%)	Pb (%)	AESULTS Ag (g/t)	Fe (%)	Other
258.94- 277.2	Well fol, waxy grey-green Quartz-sericite Schist with minor Py on fol surfaces. 259-259.3m: Quartz layer/vein with diss. and stringer Po, Py and minor galena.		·• ·		-	18505	259.0	259.3	0.3	0.36	0.21	5.14	8.92	
277.2- 294.24	Grey, wkly siliceous, wkly brecclated mineralized Dolomite. Banded and laminated Po, Sph, Py and Mag. from 277.2-278.7, 279.25:260.55, 282.25-282.74, 283.4-283.8, 284.8-265.15, 285.8- 286.5, 287.2-287.55, 288.1-289.27m. Massively bedded Po, Sph with minor Py and Mag from 280.55-280.8m. Thinly laminated Po, Sph with minor Py, Mag and Gal. from 276.7-279.25, 280.8-262.25, 282.74-283.4, 283.8-284.8, 285.15- 285.8, 286.5-287.2, 287.55-288.1, 289.27-290.4m. Dolomite displays granular 'gneissic' texture from 278.27- 279.7m. Biotite present.					18506 18507 18509 18510 18511 18512 18513 18514 18515 18516 18517 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528	277.2 277.6 276.27 279.25 279.25 280.55 280.8 281.6 282.25 282.74 283.4 283.6 285.15 285.8 286.5 285.8 286.5 287.2 287.2	277.8 278.27 278.27 279.7 280.08 280.55 280.8 281.6 282.25 282.74 283.4 285.15 285.8 285.15 285.8 285.5 286.5 286.5 288.1 288.1 288.1 288.1 288.1	0.6 0.47 0.43 0.55 0.45 0.45 0.47 0.25 0.8 0.65 0.49 0.66 0.4 1.0 0.35 0.65 0.7 0.35 0.55 0.54 0.63 1.13	0.88 1.10 0.86 0.10 0.46 0.14 0.14 0.24 0.04 0.04 0.14 0.22 1.50 0.62 1.50 0.32 1.50 0.32 1.00 0.18 0.32	0.34 0.90 0.44 0.04 0.18 0.14 0.04 0.02 0.06 0.04 0.06 0.04 0.38 0.10 0.28 0.10 0.28 0.10 0.28 0.14 0.28 0.10 0.28	5.83 8.91 4.46 1.37 3.08 5.83 2.74 13.71 2.4 1.37 1.03 1.37 1.03 13.03 3.08 3.43 2.06 1.37 5.14 7.54 2.4 2.4	23.36 , 19.90	
294.24- 300.5	Siliceous-Sericitic-Dolomitic Schist. Thinky lamineted Py & Po (1-2%) within unit from 294.24- 300.3m. Band of massive Po with Py and minor Sph from 300.3-300.5m.	Fol @40*				18529 18530 18531	297.79 298.22 300.3	298.22 299.25 300.5	0.43 0.97 0.2	218ppm 902ppm 0.60	67ppm 276ppm 0.02	0.1 0.1 0.7	13.26	
300.5- 301.8	Whily sillcoous, yellow-grey to grey Dolomite with minor Py and Po laminae and infilling along fracture in whily brecciated unit.											<u> </u>		
301.8- 314.55 E.O.H.	Waxy, pale yellow-grey to grey Chert with minor sericite and drk grey flecks along foliation. Small band of wkly fractured grey dolomite from 310,53-311.18m.	Fol @40*												

.

- -

··· .

PAGE: 3 of 3

TECK	EXPLORATION LTD.		BEND PROPERTY			PROJECT #	HOL	HOLE NO. TK-92-11			PAGE:	1 of 3			
	NTS: CLAIM: ELEVATION: GRID COORD: LOGGED BY:	83D/01E BEND 5 950m 15+69N, 4+37E G.T.	DATE COLLARED: DATE COMPLETED: DATE LOGGED: CORE SIZE:		3/09/92 7/09/92 8/09/92 NQ	<u>DEPTH</u> 0 182.9	<u>DIP</u> -65° -70°	<u>AZ</u> 40'	LENGTH:211.83m DEPTH OF OVB: CASING REMAINING: WATERLINE LENGTH:1(PROBLEMS:			16.46m 16.46m 100m			
DEPTH (meters) FROM/TO	DESCRIPTION		STRUCTURE	VEINS	ALTERATION	METALUC MINERALS (%)	SAMPLE NO.	SAMPLE FROM	DATA TO	LENGTH (meters)	Zn (%)	Pb (%)	RESULTS Ag (g/t)	Fe (%)	Other
0-15.45	Overburden			1						1					
16.46-24.45	Mod. fol., tLmed. grey limest parallel to c.a. @ 17.07-17.47m 18.02-18.37 : drk. grn. chloritic angular biolite books 22.67-23.7 : clean, non micace	one; f.g., weakly micaceous.; fot. band (mafic dyke?) w. 15% sous ilmestone	Fol. @ 40-50*												
24.45-46.5	Med dk. grey, garnet-mica sc garnets pale, brownish, mottie (20%); mottied overall texture; variably fol. 25.6-27.1 : micaceous, grey, fc 37.0-37.6 : wht, qtz, carb, ban Fold axes @ 32.6, 34.5m.	hist; minor calcareous bands, d, ragged, subhedral to 3.0 cm. 10% wht. qtz-carb bands; xl. limestone. ds (80%)	Fol. @ 50*												
46.5-57.52	Med dk. grey limestone, wk. calc. groundmass; rare flatten band @ 52.34-52.58m. w. 50 *	-mod micaceous; micaceous, ed pink garnets; wht, qtz-carb contacts	Fol. @ 40*												
57.52-69.95	Mod. calc. garnet-mica schist, groundmass;pervasive 1-3mm porphyroblasts (10%); garnets subhedral (ragged rims); 1-5 c	med dk. grey anhedral dolomite ;, 0.5-2.0 cm., pale brwnish pink, m. qtz-carb bands (5-10%)	Foi. @ 40*												
69.95-81.63	Ltmed. grey limestone, f.g., banded, fol.; weakly micaceous w. narrow localized drk. mica bands; several minor fold axes		Fol. @ 50*												

.

È

t

٠

DEPTH (meters)	DESCRIPTION	STRUCTURE				SAMPLE DATA				RESULTS					
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO,	FROM	то	LENGTH (meters)	Zn (%)	Pb (%)	Ag (g/t)	Fe (%)	Other	
81.63-84.62	Mottled, garnet-cordierite-staurolite schist ; drk. micaceous groundmass w. 5-10% amorphous wht. 1- 3mm. pophyrobissts, prob. dolomite; fol. indistinct. dk. grey oval cord.to 1.0 cm. (15%); greenish brwn anhedral staurolites (10%) mottlied, ragged, pale pink garnets (15%)														
84.62-92.1	Staurolite-gamet-cordiente-blotte schist: drk. grey groundmass; bands of ellipsoidal cordiente to 1.0 cm. (10-15%); pink gamets, 0.5-2.0 cm., euhedral, weakly calc., green, 1-3mm, rounded staurolites (25%)	Fol. @ 40*													
92.1-98.75	Staurolite-cordierite-garnet-mica schist (20) (15) (10) drk. groundmass. mottled.; 1-3mm. anhedral wht dol.(10%); garnets pale pink, ragged, subhedral to 2.0 cm.; fol. indistinct														
98.75- 117.32	Cordiente-garnet-mica schist. -ok grey groundmäss, mottled, mod. calc.;banded, fol.; gemets sub-euhedral, pale brownish pink to 3.0 cm. (20%); cordiente patches and bands (30%); tgt-carb bands to 5.0 cm. (10%); several na/row micaceous limestone bands; mod. increase in dgt-carb, content @ 116,5-117.32m.; wk-mod. stauroite @ 113,2-114.5m.	Fol. @ 50*													
117.32- 142.4	Banded, fol. It. grey Imestone, f.g.; localized minor cordiente bands; wht. qtz-carb bands (15-20%); Increased phogopite @ 118.9-121.22m.	Fol. @ 50*													
142.4-179.9	Gernet-cordierite-mice schist; dk. grey, micaceous, calc. groundinsss, garnets pale brownish pink, 0.5-2.0cm., subhedral (10-15%); localized tracturing w. chlorcash coatings; qtz-cash bands up to 10cm. (10%) 152.6- tucose, silickanside surfaces, 165.25-165.75 - wht qtz band w, 5.0 cm. pale grn. inclusion.	Fol. @ 50*]								,			
179.9- 180.54	Mottled, f.g. grey to whit limestone														
160.54- 183.75	Garnet- mica schist; as above at 142.4-179.9m. w. wk-mod.														

PAGE: 2 of 3

+
18-92-11

DEPTH (meters)	DESCRIPTION	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO		ANGLES	VEINS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	2n (%)	Pb (%)	Ag (g/t)	Fe (%)	Other
183.75- 184.42	Transition zone of mixed quartz-sericite schist bands (pale green) with micaceous chloritic schist. 183.87 - 2mm, po. band 183.94 - chloritized cordierite phorphyroblasts.													
184.42- 190.3	Pale, greenish grey quartz- sericite schist; finely laminated; minor (1-2%) flattened pink garnets; trc. suiphide lamellae (py,po) ;broken w. lost recovery @169.28-190.1m (40%)	Fot. @ 70*				18532	188.52	190.15	1.63	10ррт	23ppm	0.2ppm		
190.3- 190.42	Band of v.f.g. massive sulphide, consisting of laminated po.: pysph.; sharp contacts; contains 10% oval quartz eyes, 2-5 mm.	Contacts @ 60*				18533	190.15	190.43	0.28	1.86	0.52	6.86		
190. 42- 191.21	Grey, mottled dolomite, mod. silicified; wk. fract. fills of < 1%, lameliae py>sph> trc. ga. 190.8 - 7 cm. irreg. band of 40% granular py. with access. sph., po.					18535	190.43	191.21	0.78	1564ppm	802ppm	1.30ррт		
191.21- 191.73	Dolomitic schist; med. grey.siliceous, fine-med. laminated, sharp contacts	Fol. @ 60*				18536	191.21	191.73	0.52	161ppm	64ppm	0.30ppm		
191.7 3 - 217.8 3	Siliceous, banded, blottle-garnet schist; strongly fol. and banded, alternate grey, cherty bands w. wisoy blottle- garnet schist bands; numerous, tight isocilinai folds; garnets typically flattered to anhedral, birk, to 0.5 cm. (<5%), occuring in sporadic, blottlerous bands; pelitic:chert (2:1) 192.94 - 7 cm. band bir grey dolomite, shp contacts, modsrongly brin @ 200.9-206.04m.	Fol. @ 60*				18537	191.73	192.43	0.70	47ppm	17ppm	0.20ppm		
211.63	End of hole													

.

PAGE: 3 of 3

TECK	EXPLORATI	ON LTD.	BEND P	ROPERT	4	PROJECT # ⁻ //09/92 <u>DEPTH</u>		#1723 HOLE		LE NO. TK-92-12			1 of 3		
	NTS: CLAMA	92J/10W	DATE CO	LLARED:	7/09/92	DEPTH	<u>DIP</u>	<u>AZ</u> 077	LEN	IGTH:	ю.	306.9m			
	ELEVATION:	885m	DATE CO	GGED:	13/09/92	128.01	-70	90	CAS	SING REM	aining:	9.75m			
	GRID COORD: LOGGED BY:	12+78N, 3+88E C.A.	CORE SIZ	ZE:	NQ	304.8	-75*	90	WA	TERLINE L DBLEMS:	ENGTH:	200m			
ſ					•									-	
OEPTH (meters)	DESCR	AIPTION .	STRUCTURE					SAMPLE	DATA				RESULTS		
FROM/TO			ANGLES	VENS	ALTERATION	METALLIC MINERALS (%)	SAMPLE NO.	FROM	то	LENGTH (meters)	Zn (%)	Po (%)	Ag. (g/t)	Fe (%)	Other
0- 9.75	Overburden														
9.75- 11.8	Calcaraous Blottle Schist, Core broken and ground water stained.														
11.8- 17.67	Thinly bedded, ight grey Limest	one. Beds 1-3mm.	Fol @10*												
17.67- 20.88	Calcareous Gamet-Blotte Schla anthedrai, Upper & Iower contac	it. Germets pale pink and its of unit sharp.	Fol @10*												
20.88- 28.36	Light grey, micritic Limestone. (25.02m.	Diz-carb bands from 24.32-	Fol @12*												
28.36-46.25	Grey, why banded, Miceceous	Limestone.	Fol @10"												
46.25- 77.53	Brown-grey, calcareous Biotite bands and Ilmestone Interbeds. porphyrobiasts toward bottom	Schist with minor Qtz-carb Inclusion of minor dolomite of unit.		:											
77.53- 60.3	Grey-brown, calcareous Garnet	-Biotite Schist.	Fol @25*												
80.3- 91.81	Thinly bedded, grey micritic Lim	estone.	Fol @40*												
91.81- 124.66	Interbedded and Intercalated ca Micacsous Limestone. Beds of Chiorite occurs locally within so Kyanite observed @117.1m.	Icareous Biotite Schist and both units vary from 3mm-1m. Ime calc. blottle schist units.	Fol @30-35" F.A. @113.4, 114.3m.												
124.68- 138.7	Grey, Micaceous Umestone wi Trace grey anhedral cordients. 128.71m. Mod. breccistion and 138.7m.	Fe-carb siteration from 127.48- possible fault from 138.43-	F.A. @126.2 128, 129.84, 131.2m.												
			-			•		-							

.

.

. . . TK-92-12

DEPTH DESCRIPTION STRUCTURE SAMPLE DATA RESULTS (meters) METALLIC FROM FROM/TO ANGLES VEINS ALTERATION MINERALS (%) SAMPLE то LENGTH Zn Pb Ag Fe Other NO. (meters) (%) (%) (9/1) (%) 135.7-**Efficaceous** Limestone with minor interbedded calcareous Fol @40* Blottle Schist, 1-10cm Olz-carb bands locally. Lower 40cm of 146.33 unit contains drk grey elliptical cordiente, 146.33-Banded, ight grey Limestone with minor cordiente and biotite F.A. @158.1 164.48 bearing layers. Section from 158.6-159.52m unit possesses 160.54m. mottled sopearance and 0.5-1.0cm drk calc. fragments. 164.48 Wildy banded, Cordiente-Garnet-Blottle Schist with prph-blasts Fol @40-55* minor Py & Po 190.31 of dolomits and amphibols (7). Garnets ragged, cord, elliptical with p.d.o. toward fol. Ciz-carb bands from 167-167.18, 180.99-181.34, 183.17-184.45, 107.79-168.25, 188.41-189.01m. From 184.46-187.79 grey-blue prismatic kyanite and small subhedral green amphibole porphyroblasts occur. Gemete darker in colour from 189.35-190.1m. Brecclated and Broken rubbly section from 173.37-174.33m (possible fault). 190.31-F.g., grey to light grey, Umestone with minor interbedded F.A. @200, 220.05 micaceous limestone and 200.44. **Citz-carb** bands. Minor folds from 207.64-Interbed of calc. gamet-cord.-biotite schist from 195,06-196.73m. 209.34m. Citz-carb rich area from 191.3-193.83m. Mic. Imst & calc. gernet-blottle schist interbeds from 199.9-201.31, 214.03-217.11m. 220.05 Calcareous Garnet-Biotite Schist with minor cordiarite. Garnets F.A. @228.66, 235.9 fiend to be brown-red, subsdrai to subhedral and large. 231.66m. 235.9-Whily calc, to non-calc, Garnet-Cordiente Schist, F.g. Fol @60* 242.28 groundmass. Minor interbeds of limestone. 242.28-Caldaraous Sericitic Garnet-Cordierite Schist, Sericite % 245.19 increases from 243.9 to bottom of unit. Garnets are pale pink and cord, show retrograde effects. 245.19-248.71 0.19 Waxy, yellow-grey Quartz-sericite Schist. Py & 18545 248.52 1.42 0.36 6.55 271.12 Increased pelitic content within unit from 247.24-248m. Tourmaline on 18546 267.76 268.56 0.60 293ppm 64ppm 0.2ppm Olz bands (veins) from 246.68-246.94, 248.34-248.44m. Fol. surfaces. 18547 268.56 269.59 1.03 74ppm 43ppm 0.1ppm Remobilized galene observed within quartz. 18548 269.59 270.12 0.51 87pom 63ppm 0.3ppm Massive Po band from 248.58-246.71m. 18549 1557ppm 270.12 271.21 1.09 16030pm 5.300m

PAGE: 2 of 3

TK-92-12

							C					DECLU TO		
DEPTH (meters)	- DESCRIPTION	STRUCTURE					SAMPLE	UATA				HEBULIS		
(mere a)														
					METALLIC		FROM							
FROM/TO		ANGLES	VEINS	ALTERATION	MINERALS (%)	SAMPLE		то	LENGTH	Zn	Pb	Ag	Fe	Other
						NO.			(meters)	(%)	(%)	(g/t)	(%)	
271.12-	Mineralized Dolomite Horizon					18550	271.21	271.99	0.78	0.58	0.08	1.37		
293.83						16331	271.99	272.64	0.65	1.75	0.16	3.43	26.5	
	Banded to mining laminated grey dolomita from 2/2.81-2/3.46					18553	272.04	273.30	0.94	0.40	0.24	141	22.1	
	(Web allow Mag), 276.7-277.00 (millior blocke), 200.17+201.20, 285 (A.985 21, 201.2, 203.81	1				18554	273.80	273.00	0.30	0.12	0.22	206	18.4	
	200.00-200.21, 231.2-233.01					16555	274.62	275.45	0.83	0.50	0.05	1.37	1	
	Mottled to weakly brecclated dolomite from 271 12-271 45.					18556	275.45	276.10	0.65	0.62	0.20	2.06		
	274.96-275.25, 275.57-275.67, 277.65-278.07, 278.73-280.17,					18557	276.10	276.70	0.60	0.90	0.16	1.03		
	266.38-290.0					18558	276.70	277.25	0.55	0.56	0.18	4.12		
						16559	277.25	278.07	0.82	1.04	0.26	5.49	38.4	
	Moderately brecclated dolomite with stockwork-like Po and Py					16560	278.07	278.91	0.84	0.62	D. 16	4.80	25.2	
	from 274.62-274.98, 286.65-288.38					18561	276.91	279.36	0.45	0.46	0.20	6.17		
				ł		16562	279.36	279.96	0.60	1,56	0.18	08.4	1. Sec. 1. Sec. 1.	
	Sands of coarse Py within dolomite from 273.58-273.88,					16303	279.90	250.41	0.45	0.23	0.04	0.34		
	277.06-277.65, 281.25-265.08					10004	200.41	201.20	1.03	0.00	0.20	1 17		
	Rends to this leminations of fig. dark celltic meterial with					18568	281.23	262.20	0.62	0.48	0.20	4 12		
	percets within dolomite from 271 99-272 81					16567	262.90	283 35	0.45	0.4	0.04	1 37		
						18568	263.35	203.73	0.38	0.50	0.04	1.37	29.6	
	Massive band of coarse Py with minor Son from 275.45-					18569	263.73	284.38	0.65	0.42	0.10	2.05		
	275.57, 278.07-278.73					16570	204.30	265.06	0.70	0.04	0.02	0.34		
						18571	265.06	285.78	0.70	5.10	1.34	10.98	27.9	
	Massive band of fine grained Po with lesser Sph from 285.21-					18572	205.78	286.43	0.65	0.90	0.14	1.37		
	285.58, 285.58-286.65 (folded bands within laminated dol),					18573	286.43	287.10	0.67	2.26	0.10	2.74	20.3	
	290.0-290.1					18574	287.10	267.46	0.36	0.30	0.06	2.06		
	· · · · · · · · · · · · · · · · · · ·					16575	267.46	268.79	1.33	0.16	0.02	0.69		
	Mottled weakly siliceous dark grey dolomitic unit with blotte				1	165/6	266.79	209.85	1.06	0.54	0.10	2.06	15.1	
	2Chiome from 2/1.45/2/1.99, 2/3.88-2/4.82 (diss. Po), 2/3.25-					103//	209.00	291.22	0.37	2.40	0.38	9.74		
	273.43 (DOIDH Mag), 273.87-276.31 ("DOREC"), 276.31-276.7			1		18570	291.22	291.70	0.51	9.99	0.22	2.19	324	
						18580	291.13	292.13	0.40	0.22	0.14	0.69	32.4	
	V.1.c. purplish siliceous unit from 273.46-273.58				1	18581	293.05	293.83	0.78	2072ppm	1960pm	0.4ppm		
293.83	Yellow-grey, well fol, Dolomitic-Sericitic Schist, Upper dol. unit				Minor Py on foi.	18582	293.83	294.30	0.47	66ppm	49ppm	0.1ppm		
294.3	grades into this unit.				surfaces.									
204 2,208 0	difference Define Containing Containing					10503	204.20	205.05	4.98	0200-000	(78eeem	0.1		
E.O.H.	SHILEDUS FERUG BENGIUG BENSE					16564	295.65	293.03	0.41	2392ppm 330com	167ppm	0.200m		

.

PAGE: 3 of 3

...

٠

.

APPENDIX F

Petrographic Studies

TK 92-2 Massive sulphides

Summary description Groundmass of sulphides among rounded, irregular anhedral and subhedral grains of gangue. <u>Cut by a quartz veinlet.</u>

Sulphides consist of an almost continuous groundmass of pyrrhotite (35%) abundantly flecked (sieve texture) by minute irregular sphalerite (20%) grains and irregular clusters of grains forming a very fine sieve texture (see note below). There are minor scattered coarser fracture controlled irregular grains and fracture controlled discontinuous networks of sphalerite in quartz gangue. Galena (4%) occurs as scattered irregular clusters, generally coarser than sphalerite, in pyrrhotite. Very minor chalcopyrite (<1%) as small irregular clusters of grains. Disseminated subhedral pyrite (>1%)

Note: If this sample is representative, milling to a very fine grain-size would be required to liberate sphalerite.

Gangue consists of rounded "eyes" and very fine grains of quartz, lesser rounded and irregular clusters and very fine grains of carbonate (dolomite) and subhedral prismatic amphibole grains with preferred orientation. Traces of garnet clusters with carbonate and trace of rounded zircon(?) grains were noted in quartz.

Microscopic description

Transmitted light Gangue approximately 40%

- Quartz; 20%, anhedral (<.05 to 1.0 mm). As rounded grains to (>4.0 mm) composed of interlocking granules with strained and varied extinction orientation resulting from shear. Disseminated, forming sieve texture with sphalerite and carbonate in pyrrhotite. Ragged margins rimmed by clusters of minute grains of quartz, biotite, chlorite and amphibole. Crackles contain irregular clusters of biotite, chlorite, sphalerite, pyrrhotite, pyrite. One grain unconfirmed tourmaline.
- Carbonate; 15%, anhedral, (microgranular to 0.5 mm). Subrounded and irregular ragged grains. Disseminated, forming a sieve texture with quartz, sphalerite in pyrrhotite.
- Amphibole; 5%, anhedral/subhedral (<.05 to 2.0 mm, most grains <0.5 mm). Isolated grains with preferred orientation disseminated throughout sulphide groundmass. Also clusters of minute grains with biotite, chlorite, (garnet) at margins of quartz grains. Inclined extinction. Few grains show characteristic cleavage.

Tourmaline(?); trace, anhedral (0.1 mm). One grain in quartz.

Garnet(?); <1%, anhedral (<.05 to 0.1 mm). Small irregular clusters in quartz gangue and small grains at margins of quartz grains. Widely disseminated grains in sulphide groundmass. Isotropic, moderate to high(+) relief.

TK 92-2 Continued

Biotite; <<1%, anhedral (<.05 mm). As irregular laths, clusters of laths at margins and in fractures in quartz grains. Associated with chlorite.

Reflected light Opaques 60%

- Pyrrhotite; 35%, anhedral (<.01 to 0.1 mm). Aggregates of grains forms a near continuous groundmass among gangue and sphalerite grains.
- Sphalerite; 19%, anhedral (microgranular to 0.1 mm) Disseminated grains, irregular clusters of grains associated with very fine gangue forming a sieve texture in pyrrhotite groundmass.
- Galena; 4%, anhedral (<.01 to 0.2 mm). Scattered irregular blebs in pyrrhotite.
- Pyrite; >1, subhedral/euhedral (<.05 to 0.3 mm, most grains <0.1 mm). Disseminated grains clusters of grains.
- Chalcopyrite; <<1%, anhedral, (<.05 to 0.1 mm), widely scattered clusters of irregular grains associated with galena in pyrrhotite.

-

TK 92-4 61.9 m Sheared metasediment with dolomite overprint

Summary description

Original textures are obliterated by shearing of the groundmass, by early biotite/garnet porphyroblasts and by a later(?) overprint of dolomite porphyroblasts. The groundmass is composed of interlocking grains and lensoidal aggregates of plagioclase, quartz and minor ragged, colourless amphibole remnants. There is intermixed biotite both as ragged foliated clusters and as less deformed irregular clusters of coarser grains. In addition there are minor broken (dislocated) coarse garnet porphyroblasts weakly felted muscovite and a few grains of unconfirmed staurolite.

Abundant medium to coarse grained relatively undeformed clusters (porphyroblasts) of carbonate (dolomite) are superimposed on the above. The carbonate has a weak sieve texture of small quartz, some plagioclase(?), lesser biotite grains and very minor loose felted muscovite grains. Although the carbonate porphyroblasts are less deformed than minerals comprising the groundmass there is some local crushing and weak foliation.

There is varied intensity of sericitic alteration of plagiclase and chloritic alteration of amphibole and biotite.

Opaques, which constitute about 8%, are mainly fracture/crackle breccia void controlled although smaller grains are disseminated, particularly in carbonate. A polished thin section is required.

Veins carbonate (effervesces in cold H Cl)

Microscopic description

- Plagioclase; 20%, anhedral (<.05 to 0.3 mm). Interlocking irregular grains, lensoids of aggregates of grains intermixed with quartz and ragged biotite. Varied intensity of sericitic alteration. Shear foliation. Some grains with conspicuous polysynthetic twinning indicating composition in andesite range.
- Quartz; 15%, anhedral (<.05 to 0.3 mm). Interlocking irregular grains/lensoids of aggregates of grains intermixed with plagioclase and ragged biotite. Inclusions in carbonate.
- Biotite; 25%, anhedral, (<.05 to >2.0 mm). Occurs as ragged clusters of deformed fine grains following shear foliation in plagioclase/quartz groundmass and as clusters of coarse warped grains. Varied intensity of chloritic alteration, finer sheared fraction more intensely altered. Contains irregular patches of remnant altered amphibole.
- Amphibole; 5%, anhedral (<.05 to 0.5 mm). Irregular grains. Partial replacement by carbonate and chlorite. Pale green/colourless pleochroism. Characteristic cleavage <u>pattern</u>. Partial chloritic alteration.

TK 92-4 Continued

Accessories

- Staurolite(?); <1%, anhedral (<.05 to >1.0 mm). Irregular prismatic grains. Associated with garnet. Lacks the abundant quartz inclusions commonly associated with staurolite. <u>Pale yellow colour</u>, pleochroism present but not distinct as anticipated for staurolite moderately high (+) relief. <u>Low birefingence.</u> No conspicuous cleavage (+) elongation. Biaxial(+?) Large 2 V. Yellow in colour and lacks anomalous birefringence of clinozoisite.
- Garnet; <1%, anhedral (<.05 to >4.0 mm). Broken/dislocated fragments of coarse grained porphyroblasts. Veined by biotite, chlorite and opaques. Contains abundant quartz blebs.

Porphyroblasts

Carbonate (dolomite); 20%, anhedral/subhedral (<.05 to >3.0 mm). Forms amorphous <u>relatively undeformed</u>, clots. Appears to be a late overprint. Contains abundant small quartz and lesser biotite grains. Confirmed optically but also gives <u>weak</u> effervescence in cold H Cl.

Alteration

- Chlorite; 5%, anhedral, (microgranular to <.05 mm) Alteration of biotite/amphibole. Felted masses among biotite, carbonate and amphibole.
- Sericite/muscovite; 2%, anhedral (<.05 to >1.0 mm). Clusters of loosely felted blades.

Opaque; 8%, anhedral (<.01 to 0.5 mm). Some dissemination but mainly fracture (crackle breccia) controlled.

APPENDIX G

Geophysical Report

PACIFIC GEOPHYSICAL LIMITED

REPORT ON THE

TIME DOMAIN ELECTRO-MAGNETIC SURVEY

ON THE

BEND PROJECT

GOLDEN MINING DIVISION, B.C.

FOR TECK EXPLORATION LTD.

BY

PAUL A. CARTWRIGHT, P. Geo.

GEOPHYSICIST

/11-1-1

TABLE OF CONTENTS

1.	Introduct	ion .	•••	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	1
2.	Survey Spe	ecifica	ations	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	1
3.	Instrument	: Speci	ficat	ion	s	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	2
4.	Discussion	n of Re	sults	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	2
5.	Conclusion	ns.	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
6.	Recommenda	ations		•••	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	5
APPEI	NDIX I	Stater	ment o	EQ	ua	li :	fic	cat	tic	ons	5											
APPEI	NDIX II	Data S	Section	ns																		

/% - •

1. INTRODUCTION

Surface and borehole time domain electro-magnetic (TDEM) surveying have been completed on the Bend Project on behalf of Teck Exploration Ltd. by Pacific Geophysical Ltd.

The Bend Property is located approximately 120 kilometers northwest of Golden, British Columbia, on the east side of Kinbasket (McNaughton) Lake. Access to the property is by logging road to either Bush Harbour or Sullivan River Camp and then via barge to the Tsar Creek Logging Camp.

Previous work in the area consisted of geological mapping, soil sampling, and diamond drilling.

The objective of the present (June/July 1992) surface TDEM survey was to map the extent of the massive sulphide horizon seen in the walls of the Cummins River canyon and intersected in previous diamond drill holes. The present (July 1992) borehole EM surveys were carried out in 2 holes primarily to test for the possible presence of conductive mineralization located close to, but not actually intersected by the holes in question. Both of these holes were drilled in July 1992. Plastic casing was used in one of the holes to insure that the holes were accessible for the downhole work.

2. SURVEY SPECIFICATIONS

The surface TDEM measurements were made at 25 meter intervals, with the exception of Line 22+00N (north of Cummins River) which used 50 meter readings. Downhole survey work used a 20 meter reading interval from the surface to a point mid-way down the hole, and then a 10 meter interval until reaching the vicinity of the intersected mineralization, whereupon readings were taken every 5 meters.

Relatively large transmitter loops were employed to make the surface measurements. A typical loop size was 600m X 800m. In every case the loops were placed over the hanging wal side of the hoped-for conductor to increase coupling with a relatively shallow dipping target. The borehole program use four 200m X 200m loops to energize each of DDH TK-92-1 in order to better ascertain the direction from which any anomalous response originated from. DDH TK-92-2 was surveyed from a single 200m X 200m loop centered on the dril collar.

3. INSTRUMENT SPECIFICATIONS

A Crone Digital Pulse EM system was used to make both the surface and borehole measurements. This time domain electromagnetic (TDEM) method employs an alternating pulsed primary current, with a controlled shutoff ramp, connected to a closed loop of wire (transmitter loop) laid on the surface. Typical loop currents were in the order of 8 amperes. The rate of decay of any induced secondary field is then measured across a series of time windows during the off time of the waveform, using a small portable receiving coil connected to the receiver unit. The receiver coil was moved along survey lines located both inside the loop and to the east of the transmitter loop. Two components were measured at each station; X - horizontal and Y - vertical. As much of the survey area consisted of moderately to steeply inclined west facing slopes, the receiver components were measured approximately parallel (X comp.) and perpendicular (Z comp.) to the average slopes. Transmitter On time was 16.66ms, with a turnoff 'ramp' of 1.0ms. Twenty receiver channels were recorded at every station, yielding a total measurement interval of 77 micro-sec. to 14.5 milli-sec.

It should be noted that, in every case, the so-called DEEPEM convention was used with regard to the sign of the response. This results in the primary field being signed negative (downwards) in the center of the loop, for both the surface and borehole work.

The downhole surveys measured a single component, parallel to the long axes of the drill holes.

4. **DISCUSSION OF RESULTS**

I) Surface Surveys

The TDEM ground survey was conducted concurrently over both the Bend Property and the MGM claim group.

South of the Cummins River, TDEM surveying was completed over Line 6+00N to Line 2+00S. Three loops were utilized to make the measurements, with eastern edges of all loops being positioned along the 125° baseline. The western edges of all of the loops were along the western limit of the grid lines (lower road).

Two transmitter loops were used to survey the grid north of the Cummins River, with the eastern loop edges coincident with the 5+00E tieline and the western loop edges lying along the 140° baseline.

While there is a wide range of magnitudes evident in the secondary field data collected on the various TDEM lines, all exhibit the same basic signature; X component data display prominent crossovers from negative to positive as one moves from west to east, while Z component data are marked by well defined negative troughs, which eventually cross over to lower magnitude positive values as one moves further eastward. There does not appear to be any significant amount of overburden or conductive half-space response in the TDEM data set. This is consistent with a very resistive terrain, covered with only a sporadic, thin, poorly conducting overburden layer. The exception is the southern part of the grid north of Cummins River where the effects of a somewhat thicker overburden layer can be seen, as evidenced by an elevated channel one response.

Conductive thin plate modelling confirms that the above signature is indicative of a conductive plate dipping in the order of 20°-50° towards the west under the loop(s). The model data included with this report (Figure 1:X component & Figure 2:Z component) is not specific to any particular line profile, however, it was computed to model, in a general way, the high magnitude data outlined on the grid north of Cummins River - Lines 13+00N, 14+00N, 15+00N & 16+00N, show similar high magnitude values and the same characteristic curve shapes. As depth to the target has the most influence on the measured amplitudes, given roughly similar loop sizes and currents, it would appear that the target is closest to the surface in the region of Lines 13+00N, 14+00N, 15+00N & 16+00N. The modelling, which closely approximates the field data, used a plate buried 100 meters at it's upper edge and dips 25° from the slope horizon towards the west. As this model does not take into account the topographic slope, one must add the average topographic slope to the model dip to obtain the true dip from the horizontal. The target appears to plunge slowly towards the north of Line 16+00N.

In the case of the area surveyed south of Cummins River, anomalous results occur in the data recorded from Lines 4+00N to 2+00S, an area where diamond drill holes have intersected the massive sulphide horizon. In general, it seems that within this area the target is relatively shallow (probably in the order of 200 meter sub-surface as a minimum) and relatively uniform.

Also evident in the computed models is the fact that the position of the upper edge of the conductive plate is closely marked by the positive peak of the X component curves and also by the west to east, negative to positive cross-over of the Z component curves. Using this information, one is able to map the approximate position of the upper edge of the conductive sheet. If the sheet has a shallow enough dip and a large enough depth extent, the position of the downdip edge can also be estimated, primarily from the location of the X component negative maximum.

By using the above techniques, on can definitely outline the upper edge of the conductor detected both north and south of Cummins River.

PROME GEOPHYSICS Limited

Conductive Thin Plate Modelling

GRID GENERAL MODEL Dipping Plate

User : Crone Geophysics Ltd.

System: Crone Digital Pulse EM File : mgm5.syn

25°

Scale: 1:5000

Unit Scale: Compressed Lin-Log

X - Component

II) Borehole Surveys

Two diamond drill holes were surveyed using the downhole TDEM technique; DDH TK-92-1 and TK-92-2.

Four separate 200 meter X 200 meter transmitter loops were positioned around DDH TK-92-1, with one loop roughly centered on the hole collar and the other three each having one common edge with this central loop in the northern, eastern and southern quadrants.

TK-92-2 was surveyed from a single 200m X 200m loop centered on the drill collar.

As would be expected, there is good correlation between the mineralization intersected in the holes and the measured downhole logs. No significant off-hole response is interpreted to be present in the data recorded from both holes.

nu - ----

5. CONCLUSIONS

Surface and downhole TDEM surveys have been carried out on the Bend Project as part of an on-going program to further define massive sulphide mineralization initially discovered in the Cummins River canyon.

Model studies of the TDEM results indicate that a conductive sheetlike body, having a dip in the range of 20° to 50° and burial depth in the order of 100 meters or more, is the primary source of the anomalous EM results.

Therefore, the surface TDEM survey has outlined the downdip extension of the sulphide zone. The near-surface mineralization is apparently not conductive enough or thick enough to be detected with EM methods. At some pint downdip, however, the mineralization becomes thick enough, and/or well enough connected to give rise to a surface EM response. This effect is best seen in the data from the southern part of the grid north of Cummins River, where very high magnitude EM anomalies are detected in the TDEM data.

6. RECOMMENDATIONS

Drilling should be carried out to test the TDEM zone outlined north of Cummins River, particularly in the region of Lines 14+00N, 15+00N and 16+00N, in the vicinity of stations 6+50E to 5+50E.

APPENDIX I

Statement of Qualifications

· · ·

CERTIFICATE

I, Paul A. Cartwright, of the City of Vancouver, Province of British Columbia, do hereby certify:

- 1. I am a geophysicist residing at 4238 West 11th Avenue, Vancouver, British Columbia.
- 2. I am a graduate of the University of British Columbia, with a B.Sc. degree (1970).
- 3. I am a member of the Society of Exploration Geophysicists, the European Society of Exploration Geophysicists and the Canadian Society of Exploration Geophysicists.
- 4. I have been practising my profession for 22 years.
- 5. I am a Professional Geophysicist licensed in the Province of Alberta, and I am a Professional Geoscientist registered in the Province of British Columbia.

Dated at Vancouver, British Columbia this 11th day of August, 1992.

Paul A. Cartwright, P. Geo.

CERTIFICATE

I, Michael J. Cormier, of the City of Vancouver, Province of British Columbia, do hereby certify:

- 1. I am a geophysicist residing at 5512 Kings Road, Vancouver, British Columbia.
- 2. I am a graduate of McGill University, Montreal, Quebec with a B.Sc. degree (1981).
- 3. I have been practising my profession for 10 years.
- 4. I have no direct or indirect interest, nor do I expect to receive any interest, directly or indirectly, in the property or securities of Teck Explorations Ltd. or any affiliates.
- 5. Permission is granted to use in whole or in part for assessment and qualification requirements but not for advertising purposes.

Dated at Vancouver, British Columbia this 11th day of August, 1992.

Michael J. Cormier, B.Sc. Proc.

APPENDIX II

Data Sections

Surface Pulse E.M. Linear and Log Plots

-

.

CRUNE GEUPHISICS & EAPLUKATION LTD SURFACE PEM

Client	: TECK/Pacific Geophy.	Line : L2200N
Grid	: MGMN	Tx Loop : N5
Time Base	: 16.66 ms	Date : Jul 24, 1992
Ramp Time	: 1.00 ms	File : L2200N.PEM
Scale	: 1:5000	Unit Scale: 1cm = 500 nT/s

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

-40	000	-3000	-2000	-1000	SR(D)NE-	+1000	+2000	+3000	+4000
250E	1				111				
275E	2				個				
300E					體				
325E									
350E					T				
375E					7				
408E									
425E					11				
450E									
47.52									
580E					T MA				
25252									
550E									
5/52									
COFF									
COL .									
600E					HINN				
7005					H HMR				
7065									
7505									
7755									
PARE									
2255									
1505									
875E					EUI				
PDPE									
925E									
950E									
975E									
LEARE									

CRUNE GEUPHISICS & EAPLURATION LTD PEM SURFACE

Client	:	TECK/Pacific Geophy.	Line	:	L2200N
Grid	:	MGMN	Tx Loop	:	N5
Time Base	:	16,66 ms	Date	:	Jul 24, 1992
Ramp Time	1	1.00 ms	File	:	L2200N.PEM
Scale	:	1:5000	Unit Scale	:	1 cm = 500 nT/s

[

I

0

D

1

0

0

[

J

[

J

T

Į

Ţ

VERTICAL COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

-484	00	-3000	-2000	-1000	CREDINE	+1000	+2000	+3000	+4000
50E					111111				
75E					it t x r				
30E					//#///////////////////////////////////				
25E									
50E))) ÷) (**)				
75E									
30E									
255))(s re				
50E					子川川晴				
75E					/ 331118				
90E					< (((+)))+				
25E									
50E					((+)()+				
75E									
99E									
25E					/////////				
50E					2001				
25E									
ΰðΕ					141.00		/		
25E					100		50		
ØE							1		
'5E						1			
00E					¥.	- 1			
25E					1	1			
50E					1	to			
'5E						1			
DOE					4	1			
25E					4	1			
50E					1	1			
25E					1	1			
and the second s						1			

CRONE GEOPHYSICS & EXPLORATION LTD SURFACE PEM

Client	:	TECK/Pacific Geophy.	Line	- î \$	L2200N
Grid	:	MGMN	Tx Loop		N5
Time Base	:	16.66 ms	Date	:	Jul 24, 1992
Ramp Time	:	1.00 ms	File	:	L2200N.PEM
Scale	:	1:5000			

D Π

CRONE GEOPHYSICS & EXPLORATION LTD SURFACE PEM

Client	:	TECK/Pacific Geophy.	Line	:	L2000N
Grid	13	MGMN	Tx Loop	:	N5
Time Base		16.66 ms	Date	:	Jul 23, 1992
Ramp Time	2	1.00 ms	File	:	L2000N.PEM
Scale	:	1:5000	Unit Scal	e:	lcm = 500 nT/s

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

CRONE GEOPHYSICS & EXPLORATION LTD

0

1

0

1

D

D

[]

F

E

T

[]

0

P

Client	:	TECK/Pacific Geophy.	Line :	L2000N
Grid	:	MGMN	Tx Loop :	N5
Time Base	:	16.66 ms	Date :	Jul 23, 1992
Ramp Time	:	1.00 ms	File :	L2000N.PEM
Scale	:	1:5000	Unit Scale:	lcm = 500 nT/s

VERTICAL COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

-4000	-3000	-2000	-1000	CREDNE	+1000	+2000	+3000	+4000
25E				WITHIN				
50E				e li la				
				们的情				
100E				1111	-15			
				111111				
150E								
				進用個體				
3695								
			1					
2502			11					
			ill					
300E				111111				
325E			111					
350E			111					
375E			444	••••••				
400E			2))					
425E			X					
450E			1 2	>>>>>+>+++11 % *				
475E			172	1((())				
500E			11					
325E			1	1//////////				
530E				<u></u>				
575E								
500E								
625E								_
650E								
675E								
700E				1913				
725E						1		
250E						1		
275E				fre		1		
800E				t	1			
				(Low	1			
850E				H	1			
					1			
900E				凝	1			

CRONE GEOPHYSICS & EXPLORATION LTD SURFACE PEM

Client		1	TECK/Pacific Geophy.	Line		: L2000N		
	Grid		MGMN	Tx Loop	:	N5		
	Time Base		16.66 ms	Date	:	Jul 23, 1992		
	Ramp Time	10	1.00 ms	File	:	L2000N.PEM		
	Scale	:	1:5000					

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

0 D 1 1 D [[[Ţ ſ ſ

E

Γ 1 [1 Л

E

0

1

1

[

CRONE GEOPHYSICS & EXPLORATION LTD SURFACE PEM

H

0

I

1

1

ſ

Π

1

ſ

Client	: TECK/Pacific Geophy.	Line :	L1800N
Grid	: MGMN	Tx Loop :	N5
Time Base	: 16.66 ms	Date :	Jul 22, 1992
Ramp Time	: 1.00 ms	File :	L1800N.PEM
Scale	: 1:5000	Unit Scale:	1cm = 500 nT/s

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

CRONE GEOPHYSICS & EXPLORATION LTD

Client	:	TECK/Pacific Geophy.	Line :	: L1800N
Grid	:	MGMN	Tx Loop :	: N5
Time Base	;	16.66 ms	Date :	: Jul 22, 1992
Ramp Time		1.00 ms	File :	: L1800N.PEM
Scale	2	1:5000	Unit Scale:	: 1cm = 500 nT/s

VERTICAL COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

0

1

[

1

[

Γ

[

1 I Γ 5 1
Client	12	TECK/Pacific Geophy.	Line	:	L1600N
Grid	:	MGMN	Tx Loop	:	NQRTH
Time Base	:	16.66 ms	Date	:	Jul 2, 1992
Ramp Time	:	1.00 ms	Eile	÷.	1.1600N.PEM
Scale	:	1:5000	Unit Sca	le:	lem = 500 nT/s
SCALE		1.0000	UNITE SCA	10.	1010 - 000 111

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

Π

1

1

0

1

0

E

I

[

F

Client	:	TECK/Pacific Geophy.	Line	:	L1600N
Grid	:	MGMN	Tx Loop	:	NQRTH
Time Base	;	16.66 ms	Date	:	Jul 2, 1992
Ramp Time	:	1.00 ms	File	:	L1600N.PEM
Scale	;	1:5000	Unit Scal	le:	1 cm = 500 nT/s

VERTICAL COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

0

0

0

0

Γ

Π

Client	: TECK/Pacific Geophy.	Line	: L1600N
Grid	: MGMN	Tx Loop	: NQRTH
Time Base	: 16.66 ms	Date	: Jul 2, 1992
Ramp Time	: 1.00 ms	File	: L1600N.PEM
Scale	: 1:5000		

1 0 [F Π

Client	: TECK/Pacific Geophy.	Line : L1500N
Grid	: MGMN	Tx Loop : NQRTH
Time Base	: 16.66 ms	Date : Jul 2, 1992
Ramp Time	: 1.00 ms	File : L1500N.PEM
Scale	: 1:5000	Unit Scale: 1cm = 500 nT/s

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

0

Π

Client	:	TECK/Pacific Geophy.	Line :	L1500N	
Grid	:	MGMN	Tx Loop :	NQRTH	
Time Base	:	16.66 ms	Date :	Jul 2,	1992
Ramp Time	:	1.00 ms	File	L1500N.	PEM
Scale	:	1:5000	Unit Scale:	lcm = 5	00 nT/s

VERTICAL COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

1

[

0

[

[

Client	: TECK/Pacific Geophy.	Line	: L1500N
Grid	: MGMN	Tx Loop	: NQRTH
Time Base	: 16.66 ms	Date	: Jul 2, 1992
Ramp Time	: 1.00 ms	File	: L1500N.PEM
Scale	: 1:5000		

D

6

I

Client	: TECK/Pacific Geophy.	Line :	L1400N
Grid	: MGMN	Tx Loop :	NQRTH
Time Base	: 16.66 ms	Date :	Jul 1, 1992
Ramp Time	: 1.00 ms	File :	L1400N.PEM
Scale	: 1:5000	Unit Scale:	1 cm = 500 nT/s

Client	: TECK/Pacific Geophy.	Line :	L1400N
Grid	: MGMN	Tx Loop :	NQRTH
Time Base	: 16.66 ms	Date :	Jul 1, 1992
Ramp Time	: 1.00 ms	File :	L1400N.PEM
Scale	: 1:5000	Unit Scale:	1 cm = 500 nT/s

0

0

[

[

VERTICAL COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

Client	:	TECK/Pacific Geophy.	Line	1	L1400N
Grid	:	MGMN	Tx Loop	:	NQRTH
Time Base	:	16.66 ms	Date	:	Jul 1, 1992
Ramp Time	5	1.00 ms	File	:	L1400N.PEM
Scale	:	1:5000			

1 Π

Client	2	TECK/Pacific Geophys	Line	;	L1300N
Grid	:	MGMN	Tx Loop	:	NQRTH
Time Base	5	16.66 ms	Date	\$	Jul 3, 1992
Ramp Time	:	1.00 ms	File	:	L1300N.PEM
Scale	:	1:5000	Unit Scale	e:	1 cm = 500 nT/s

Client	:	TECK/Pacific Geophys	Line :	L1300N
Grid		MGMN	Tx Loop :	NQRTH
Time Base	1	16.66 ms	Date :	Jul 3, 1992
Ramp Time	-	1.00 ms	File :	L1300N.PEM
Scale	:	1:5000	Unit Scale:	1 cm = 500 nT/s

VERTICAL COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

Î

Π

Π

Client	: TECK/Pacific Geophys	Line	: L1300N
Grid	MGMN	Tx Loop	: NQRTH
Time Base	: 16.66 ms	Date	: Jul 3, 1992
Ramp Time	: 1.00 ms	File	: L1300N.PEM
Scale	: 1:5000		

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

U 1 Î

IJ F

·[]

Client		TECK/Pacific Geophy.	Line		L600N
Grid	:	MGM	Tx Loop	;	N
Time Base		16.66 ms	Date	:	Jun 25, 1992
Ramp Time	:	1.00 ms	File	;	L600N.PEM
Scale	:	1:5000	Unit Scale	:	1 cm = 500 nT/s

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

[]

U

U

Client		TECK/Pacific Geophy.	Line	÷	L600N			
Grid	:	MGM	Tx Loop	:	N			
Time Base	:	16.66 ms	Date	:	Jun 25, 1992			
Ramp Time	;	1.00 ms	File	:	L600N.PEM			
Scale	:	1:5000	Unit Scale	:	lcm = 500 nT/s			

VERTICAL COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

-4000	-3000	-2000	-1000	CREDING -	+1000	+5000	+3000	+4000
C2211								
DUUM 1751				ANNIA				
47 3W								
4250								
40.00								
1750								
3500								
3250								
300W								
275W								
250W								
225W								
2000								
175W				1114 5				
150W				÷				
125W								
				· · ·				
				.10				

Client	: TECK/Pacific Geophy.	Line	: L600N
Grid	: MGM	Tx Loop	: N
Time Base	: 16.66 ms	Date	: Jun 25, 1992
Ramp Time	: 1.00 ms	File	: L600N.PEM
Scale	: 1:5000		

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

	-103	-102	-10 CRONE +1	0 +10	+103	
500W			XV / /	11111/11	2/	
475W			₩	XII K KK		
450W				× >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	77	
425W			\$}• (KIV MI	f.	
400W			At the	XXXX		
375W			A A	- Dent		
350W			A AND AND AND AND AND AND AND AND AND AN	AND		
ังอุธม			- Ale			
300M			6-1A			
,275%		and the states of the states o	AL AL			
850W		A horas				
225W		CATTER S	C V X			
- 200W		V))(///////////////////////////////////	$(\land \land)$			
175W		X//X/////	/)(X)			
150W		11(1)+(1) 1.	XX			
125W		///////////////////////////////////////	13 X XAL			

1

Î

Ĩ

Í

Ĩ

Ď

Ī

F

E

Ĩ

Ē

C

Ē

Ĩ

Ĺ

Ĩ

Ĺ

ſ

Client	: TECK/Pacific Geophy.	Line :	L400N
Grid	: MGM	Tx Loop :	N
Time Base	: 16.66 ms	Date :	Jun 26, 1992
Ramp Time	: 1.00 ms	File :	L400N.PEM
Scale	: 1:5000	Unit Scale:	lcm = 500 nT/s

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

-4900	- 3000	-2000	-1000	CRONE	+1000	+2000	+3000	+4000
950W			- N	110				ŗ
525M			~				*	
SOON								
4752				メ (額)			T	
450W				11			1	
4254						6		
400W						<		
3754							1	
356H				† 5.			J.	
325N				ł			1	
3000				t (/	
2758						1		
250W						hanne		
825W						<		
200W					7	>		
125W					£	<		
1500						3P		
1254					7 <			
100W				+*/ H///	11-	20 C		
750					TT.			
SON					11 7			
25W					1-1-/-			
355					11/			
502					11			
758					1			
1005					ŧ.			

A

1. ...

[]

L

D

0

Client	: TECK/Pacific Geophy.	Line : L200N	
Grid	: MGM	Tx Loop : N	
Time Base	: 16.66 ms	Date : Jun 26, 1992	
Ramp Time	: 1.00 ms	File : L200N.PEM	
Scale	: 1:5000	Unit Scale: 1cm = 500 nT/	s

Î

T

T

Ē

Í

D

Ł

E

U

U

L

1

Client		TECK/Pacific Geophy.	Line	1	L200N		
Grid	:	MGM	Tx Loop	:	N		
Time Ba	se :	16.66 ms	Date	1	Jun 26, 1992		
Ramp Ti	me :	1.00 ms	File	1	L200N.PEM		
Scale	:	1:5000					

1 Π 0 0 1 E C T Π Π

1

I

Client	: TECK/Pacific Geophy.	Line :	L000
Grid	: MGM	Tx Loop :	N
Time Base	: 16.66 ms	Date :	Jun 27, 1992
Ramp Time	: 1.00 ms	File :	L000.PEM
Scale	: 1:5000	Unit Scale:	1 cm = 500 nT/s

D

0

0

1

[]

Î

Γ

1

0

Γ

1

Π

[

[]

P

Γ

1

-4	4000	-3000	-3000	-1000	CRONE	+1000	+2000	+3000	+4000
5.75W					(/ 神速		The second s		
550W									
525W								7	
200W					1 Mil		4		
475W									
458W									2
+20W									
100M							ſ		
SAGM SEGNI							0		
2004					110	1			
2000					II				
275U					VI.				
2504					A				
2254							>		
PAAN									
175W									
1500									
125W									
100W									
75W					JIII .	-			
50W						1		~	
25W									
						11			
255						11			
50E						111			
75E						111			
100E					- IIII)	11			
125E					N. 1111				
150E						f = f			
175E						1			
309E									
325E									
250E									
275E					+				
300E									
2050					(翻録)				
200 - 2100									

1992	
ΞM	
500 nT/s	s
	1992 M 00 nT/

1

1

Π

1

1

0

[

[]

P

VERTICAL COMPONENT dBz/dt nanoTesla/sec - 20 channels and PP

Client	: TECK/Pacific Geophy.	Line :	: L000		
Grid	: MGM	Tx Loop :	N		
Time Base	: 16.66 ms	Date :	Jun 27, 1992		
Ramp Time	: 1.00 ms	File :	L000.PEM		
Scale	: 1:5000				

IN-LINE HORIZONTAL COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

L

Π

0

1

[

Client	: TECK/Pacific Geophy.	Line : L200S		
Grid	: MGM	Tx Loop	: N1	
Time Base	: 16.66 ms	Date	: Jun 28, 1992	
Ramp Time	: 1.00 ms	File	: L200S.PEM	
Scale	: 1:5000			

0

Γ

ſ

Downhole Pulse E.M

0

0

[

[

[

[

[

T

F

Linear and Log Plots

CRONE GEOPHYSICS & EXPLORATION LTD BOREHOLE PEM

Client	: TECK/Pacific Geophy.	Hole H921	
Grid	MGM	Tx Loop : H921N	
Date	: Jul 16, 1992	File name : H921N.P	EM

0

0

0

0

[

0

0

[

1

[

[

[

ſ

X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP Scale: 1:2000 Unit Scale: 1cm = 500 nT

	-4000	-3000	-2000	-1000	CREDNE	+1066	+36996	+3600	+4900
					aldan				
ටමහ					The offer				
40m									
60m									
80m									
190m									
				-					
i≧Øm									
					HILLIN .	111-			
: 40m					-44441	1111			
						1111		_	
160m									
						11111			~
180m						11111			1
						11111			N .
200m						111111			1
210m					and 20 1	111111			T
220m						111111			1
238m						11111			d.
±40m					¥33				10
258m					kiri i i	111111			
LeOm					The state	111111	N.		1
5.0m					Friday 1	11111	AN .	1	
2001						11111	11.	1	
295m						11175	111	*	
21.0						11.25			
3.54					1411	$\left(\left(\left$		15	>
3850					對[[]]	1111	1.5	1.	
333m					**	$(/ \land)$	1 1 / 7	1	
345#					新1)」」、 「「」」、	N. L.		5	
355	Ŷ.				14/-	1111	200		
225	7				12:22	12			
19.84	1				1 lost -	1911	- Th		
3900						1111	14.1.2		

Client	: TECK/Pacific Geophy.	Hole : H921	
Grid	: MGM	Tx Loop : H921N	
Date	: Jul 16, 1992	File name : H921N	.PEM

CRUNE GEOPHISICS & EAPLOKATION LID BOREHOLE PEM

Client	3	TECK/Pacific Geophy.	Hole		H921
Grid	3	MGM	Tx Loop	$\frac{1}{2}$	H921C
Date		Jul 16, 1992	File name		H921C.PEM

X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

Scale: 1:2000

[

Unit Scale: 1cm = 500 nT

20s 40m 60m 90s 100m 120m 120m 120m 120m 120m 120m 120m 120m 120m 120m 120m 120m 120m 140m 140m 150m 140m 140m 150m 140m	-4000	-3000	-2000	-1000	CREDNE	+1000	+2000	+3000	+4900
100 60m 00m 100m					CHUME				
40m 60m 90m 90m 100m 120m	20m				*				
40m 40m 60m 40m 90m 40m 100m 40m 120m 40m <td></td> <td></td> <td></td> <td></td> <td></td> <td>1111</td> <td>1</td> <td></td> <td></td>						1111	1		
60m 610 610 610 610 610 610 610 610 610 610	40m						4		
60m 44 90m 44 100m 44 120m 44 140m 44 140m 44 160m 44 160m 44 180m 44 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>11111</td> <td>1</td> <td></td> <td></td>						11111	1		
90m 1	6.0m					1111	1		
90m 100m 120m 120m 140m 160m 160m 160m 200m 210m 220h 210h 220h 220h 220h 220h 220h 27h 25m 25m 25m 25m 25m 25m 25m						HH	1		
100n 120n 120n 140n 140n 160n 180n 200n 200n <td>0.0-</td> <td></td> <td></td> <td></td> <td></td> <td>11111</td> <td>1</td> <td></td> <td></td>	0.0-					11111	1		
100m 120m 140m 140m 160m 160m 160m 180m 200m 210m 200m 210m 2555 200m 2555 2555	-940 HA				F	1111			
100m 120m 140m 140m 140m 140m 140m 160m 160m 160m 160m 160m 160m 160m 16	1.11					日日日	1		
120m 140m 160m 160m 160m 160m 160m 160m 160m 16	100m						1		
120m 140m 160m 160m 200m 200m 200m 220h 220h 220h 220h 22						11.1.1.1	di la constante di la constant		
140m 160m 160m 200m 200m 210m 200m 210m 220h 220h 220h 220h 220h 220h 220h 22	120m				-	1 1 1 4 4	j.		
140m 160m 180m 200m 210m 210m 220h 220h 270h 250h 250h 250h 250h 250h 250h 250h 25						1111	ł		
160m 180m 280m 280m 280m 280m 280m 280m 280m 2	140m				-	1111			
160m 180m 200m 200m 200m 270m 280m 290m 200m 210m 230m 25m 25m 25m 25m 25m 25m									
198m 200m 200m 200m 200m 200m 200m 200m 20	160m				+		1		
188m 200m 210m 220m 220m 220m 240m 250m 250m 260m 270m 280m 290m 200m 210m 250m 250m 250m 250m 250m 250m						11111			
200m 210m 220m 220m 240m 240m 250m 250m 260m 270m 280m 280m 280m 290m 300m 300m 310m 310m 333m 333m 335m 295m	130m					114111	1		
200m 210m 220m 220m 240m 250m 260m 270m 280m 290m 200m 215m 255m 255m 265m 270m 215m						11111	1		
210m 220m 230m 250m 260m 270m 280m 290m 300m 310m 310m 315m 325m 355m 355m	200m				11111111111111111111111111111111111111	11111	1		
220m 230m 240m 250m 250m 260m 270m 280m 280m 290m 300m 310m 313m 325m 370m 245m 370m 245m 370m 245m	210m				12	11111	5		
830H 840n 259m 100n 270m 880m 880m 890m 90m	užôn				8111	111111	11		
2+0m 250m 270m 280m 290m 300m 310m 315m 325m 335m 355m 245m 355m 355m	2.30H					11111	111		
250m 250m 270m 280m 290m 300m 310m 315m 125m 335m 335m 355m 355m 356m 356m 356m 356m 356m	- Line					11111	111		
200m 270m 280m 290m 300m 310m 315m 125h 335m 335m 355m 355m 355m 355m 355m	250m								
200m 290m 290m 300m 210m 315m 315m 335m 355m 355m 245m 356m 356m 356m 356m 356m						1111	1111		
190m 290m 300m 310m 115m 315m 325m 325m 350m	230-					(1)/4	1111		
200m 200m 200m 210m 315m 125m 335m 355m 245m 350m 355m 265m 370m	- Vim				.	1111	11/11		
300m 310m 315m 335m 745m 350m 355n 265m 370m 390m 390m	COUM					1111	111000		
300m 210m 315m 325m 335m 355m 355m 355m 370m 390m 390m 390m 390m	5.40m					11/1	1 1 1	1	
219m 315m 325m 335m 355m 355m 379m 390m 390m 390m	300m				1])	111,	1 2 2 4	1	
125 m 335 m 350 m 355 m 370 m 390 m 390 m 395 m	210m 315m				· (1년 1 년 1월 (1월 1 년 1 년 1 년 1 년 1 년 1 년 1 년 1 년 1 년 1	1.1.1	1. 1. 1.	3-	
130m 335m 350m 355m 355m 370m 390m 395m	125-					()	1 2	7 7	\geq
245m 350m 355n 265m 270m 390m 395m	30m					4 I I	1 2	1 2 1	61
350m 355m 370m 390m 395m						111		1.1	1
355m 378m 378m 395m	350m				1 / 41 1	1. 1. 1	1 1 1 1	111	
290m 395m	1000				174			1	
190m 395m	520m				製ジン		シンンド		
395m 11/ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	290m				164	11	611	1153	
390m	395m 390m				p 1	111	11/2	1111	

CRONE GEOPHYSICS EXPLORATION LTD Sc . BOREHOLE PEM

Client	: TECK/Pacific Geophy.	Hole	: H921
Grid	: MGM	Tx Loop	: H921C
Date	: Jul 16, 1992	File name	: H921C.PEM

X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

Scale

- 20m

- 49m

L 60m

SØm

- 100m

-120m

140m

- 160m

- 180m

- 200m

- 210m 1 220m 1 30m : 2+0m - 250m 7 260m 1 270m 7 230m - 290m 300m + 310m + 315m

- 325m - 330m - 335m

- 350m - 350m - 355m

-365m - 370m

: 190m - 285m : 390m

2: 1:2000					
-103	-104	-10	CRONE +10	+104	+162

CRUNE GEOPHYSICS & EXPLORATION LTD BOREHOLE PEM

Client	: TECK/Pacific Geophy.	Hole	: H921
Grid	: MGM	Tx Loop	H921E
Date	: Jul 17, 1992	File name	: H921E.PEM

F

Ē

ſ

X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP Scale: 1:2000 Unit Scale: lcm = 500 nT

-4000	-3000	-2000	-1000	CRONE	+1066	+5300	+3000	+4000
18m				1 111111				
					111			
100				I IIII	11.4			
Om					1111			
					11111/			
30m					111111			
					HHHH			
.90m					111117			
						1		
. 20m					MMAA	10		
1-10m					+++++++++	11		
					finff	111-		
60m				- 4 4 () 4 5 ($f \neq f$		
					11111	1111		
SØm					1111	////		
					ffff	$\langle I I \rangle$	1	
100m					1111	1111	1	
20m					61111	(1/7)	11	
130m				k		チンダイ	1.1	
24 <i>0</i> m					[1, 1, 1]		1.1.	
250m					1111	1.5.3	111	
268m				11日	11.	1. 1. 1.	1111	
270n					19	$\langle 1 \rangle$	(f) f'	
188m						1 1	111:	
300m					1111	1 1	1 July	
310m				[]])				
siom see.				E.I.I.			Contraction of the local division of the loc	
230m				11/2	C. C. J. J.			
345m				1714	8 N S S	<	1	200
350m 355m				EL//	1. 1			
365m 378m					272		3	
380m				hara	11-1	187		1
335m				*	1 15	1 1	1	10 M - 200

CRONE GEOPHYSICS & EXPLORATION LTD

X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

Client	: TECK/Pacific Geophy.	Hole	: H921
Grid	: MGM	Tx Loop	: H921E
Date	: Jul 17, 1992	File name	: H921E.PEM

0

Scale:	1:2000					
	-103	-102	-10	+10	+10 ²	+103
			- C	1 Me		
r EOm				TIP I V	ų	1
					/ / / / / /	111111
40m				1	1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i	1111111
				V	1 + 1 + 1 + 1	1 1 1 1 1 1 1 1
- 60m				4 1 \ \	4 1 1 1 1	111111
				111 / /	1 1 1	///////////////////////////////////////
SOm				*11 \ . *		
					$\{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,$	111111111
190m					1 1 1 1 1	111111111
					1 1 1 1 1	1 1
- 1 26m				11/ 1/		
r.						
- 140m				/ (⁹⁴) +		
ŧ.				4111		
- 160m				+ * /		
100-						
r 180m				110		
1000						
2:0m					TIL	
1 220m				1/ 10		
1 220m				112 1 1		
- 240m			<u></u>	±₩ (1		
- 250m				±/1 1 1	h 1 1 1	
260m						
4 370m				- i i i i i i i i i i i i i i i i i i i		
230m				$\frac{1}{7}$ $\left(\frac{1}{9^{\circ}}\right)$ $\left($		
- 290m				+ an()		
- 300m				÷/) / /	+ 1 / /	
- 310m				4/ 6 4	1112	*///////
1325m					$\rightarrow \rightarrow \perp \perp$	
- 339m				+ \ \	1 H H 1 1	1241111
1 715m				K /	1 1 1 1	17811111
- 350m - 355m				14 . W 197 1	1 1 1	M. M
365m				<i>h</i> + >	5 5 5	1 States
- 370m						
- 380m - 385m			Te		5	6 / / / / / / / M
5 390m			- the the	1	4	I I I I I I I I I I

CRONE GEOPHYSICS & EXPLORATION LTD BOREHOLE PEM

Client	2	TECK/Pacific Geophy.	Hole	Ð	Н921
Grid	1	MGM	Tx Loop	*	H921S
Date	3	Jul 16, 1992	File name	÷	H921S.PEM

1

X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP Scale: 1:2000 Unit Scale: 1cm = 500 nT.

	-4000	-3090	-3066	-1000	CREDUC	-1000	+2000	+3069	+4000
Ban Ban					CULTURE				
	20#				Sentan .				
	4.9m				د ما الدار				
30m 30m 30m 30m 100m 40m 40m 40m 40m 40m 30m 40					*				
	(0-								
Non Non 100m Non <	20m								
190m 190m	80m					1			
leen solution solutio					(H.1.1.1.)				
	100m				1 532 • • • • • •	11			
izon idon									
140m 160m 180m 100m 100m <td>120m</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	120m								
140m 150m 180m 100m 110m 120m 120m <td></td> <td></td> <td></td> <td></td> <td>and the state of t</td> <td>##</td> <td></td> <td></td> <td></td>					and the state of t	##			
160m 180m 190m 110m	140m				4	-			
138m 188m 188m 180m 180m <td></td> <td></td> <td></td> <td></td> <td></td> <td>1111</td> <td>-</td> <td></td> <td></td>						1111	-		
130m 180m 120m 120m 130m 130m 130m 130m 130m 130m 130m 130m 130m 140m	1690					1111			
188m 188m 188m 188m 190m	100					hhi		Sec. 1.	
13 of m 280 m 11 0 m 12 0 m 12 0 m 12 0 m 13 0 m 13 0 m 14 0 m 15 0 m 15 0 m 15 0 m 16 0 m 17 0 m 18 0 m 19 0 m 19 0 m 18 0 m 19 0 m	100-							1	
288m 1 210m 1 120m 1 130m 1 140m 1 150m 1 160m 1 170m 1 160m 1 170m 1 180m 1 190m	180m					5 (<u>) (</u>)		×.	
200m 110m 110m 110m 110m 110m 110m 110m					1 ,11,	i i i i			
11 0m 12 0m 12 0m 13 0m 14 0m 15 0m 15 0m 15 0m 18 0m 19	200m				1	1111		Ŧ	
110n 130n 140n 150n 150n 160n 170n 180n 190m 190m 195n 185n	210m					1111			
130m 140m 150m 100m 170m 180m 199m 199m 1995m 195m 115m 155m 115m	220m				******	1111-		2	
240m 150m 160m 170m 180m 195m 100m	230m				4			1	
150m 100m 170m 180m 190m 190m 110m 110m <td>240m</td> <td></td> <td></td> <td></td> <td>₩., (²)</td> <td>F. 341</td> <td></td> <td>÷.</td> <td></td>	240m				₩., (²)	F. 341		÷.	
Leon 270m 180m 190m 190m 100m 110m 115m 150m	250m				fireit · · · ·			×.	
279m 280m 290m 300m 310m 315m 325n 350m 350m 350m 350m	260m				24				
280m 290m 300m 310m 315m 325m 350m 350m 350m	270m							1	
290m 295m 300m 44 310m 44 315m 44	23.0m					tijiti.		8	
	290m					11111		2	
	295m				· · · · · ·	(iii)			
225n 225n 225n 225m 225m 255m 290m	320m				11111	1111		1	
225m 245m 350m 350m 350m 350m 350m 350m 350m	310m 315m				H IIII		5	ð.	
	325m				1111	in the second se	~		
245m 550m 550m 550m 590m	330m 330m				11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11117	1		
550m 555m 570m 590m	2450				Tulli.	11111	gel -		
and and an	350m					NH//	1		
Permission and the second seco					HUNG !!	11	-		
292m 195m 190m	S. Um				F// 10 , 1	Same 1			
390m	29@m				1641-	11111201			
	385m 390m				1 1111	11.11114			

CRONE GEOPHYSICS & EXPLORATION LTD BOREHOLE PEM

X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP

Client	: TECK/Pacific Geophy.	Hole	: H921
Grid	: MGM	Tx Loop	: H921S
Date	: Jul 16, 1992	File name	: H921S.PEM

-10 ² -10 ² -10 +10 -10 ² +10 ³	Scale:	1:2000				
20m 40m 90m 120m 120m 120m 120m 120m 130m 240 240 240 240 240 240 240 240		-103	-105	-18 COCNC +1	0 +10 ²	+103
20m 20m 20m 20m 20m 120m 120m 120m 120m 140m 160m 170m 160m 170m 160m 170m				CUCOVE		
10m 10m 10m 120m 120m 120m 120m 120m 160m 170m 160m 170	1 20m			¥,,, , ,		C L PENG A
130n 60m 100m 120m 120m 120m 130m 130m 130m 130m 130m 130m 130m 130m 130m 130m 130m 130m 130m 140m 1				111	1 11 11	
80m 90m 120m 120m 140m 160m 180m 200m 210m 210m 210m 210m 210m 210m 210m 210m 210m	4.9m			all -	جه به تر الم کر	2 1 2 3 1 4 4
50m 90m 120m 120m 120m 130m 230m 210m 210m 210m 210m 210m 210m 210m 210m 210m 210m					1111	///////
90m 120m 120m 140m 160m 180m 200m 210m 220m 210m 220m 210m 220m	58m			★ X + <) 4 / /	
90m 120m 140m 140m 180m 280m 280m 210m 210m 210m 210m 210m 210m 210m 210m 210m 210m 210m				\mathbb{N}/\mathbb{N}		IIIIII I I I I I I I I I I I I I I I I
120m 140m 160m 180m 200m 210m 210m 210m 210m 220m 220m	- 80m			∲ • / !	4	
120m 120m 140m 160m 180m 200m 210m	Nag.			N^{\perp}		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
140m 140m 160m 180m 280m 210m 220m 220m 220m	:00m			1 f - (1 h i i latel
120m 140m 160m 180m 280m 210m 220m 220m 230m 240m		and the second se		N.	1 4 4 4	a hara antiq
140m 160m 188m 280m 210m 220m 220m 220m 230m 230m	- 120m		10			99 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 140m - 160m - 180m - 180m - 200m - 200m	£.			ALX I		
160m 180m 200m 210m 220m 220m 230m 230m 250m	r 140m					
160m 180m 200m 210m 220m 250m 250m 250m					$\gamma + \gamma + \gamma$	(1) ((1)) (1)
188m 200m 210m 220m 220m 220m 230m 230m 250m	-160m					
- 188m - 200m - 210m - 220m - 220m - 230m - 240m - 230m - 240m - 240m - 250m - 240m - 250m -					\setminus 1 1 1	1 1 1 1 1 1 1 1 1 1
200m 210m 220m 230m 230m 250m	-180m			T() \$2 1	-	
220m 220m 230m 7240m 7250m						
r 220m + 230m + 240m + 250m + 250m	r 200m					
230m 230m 240m 250m	r ⊴10m			TX /		VI CONTRACT
7.240m (7.7 ^m) (7.7	1 220m				1 1 1 1	
1250m	r ciadan Liatom					
	1.250m			111		
	220m					· · · / · · · · · · · · · · · · · · · ·
270m	- 270m			γ ()		n · · · · · · · · · · · · · · · · · · ·
- 230m	- 230m					
- 290m	290m			1		* * * * 2
r 295m (* 1977) (* 19	r 295m r 300m			A) /	× 1º 1 1	
isigm ↓ / / / / / / / / / / / / / / / / / /	- 310m			₩ * >		
r SISm	r 315m			Æ.	< < < <	
#330m ## (r 330m r 330m			j#∓ (4	
	್ವತ್ರದ			// ///		
- 350m	- 350m			14/14		R
	7 30°5m			-		
- 370m	- 320m			101		2 Ciritan Y
	- 380m			X7 H<	6 6	
t 390m	t 390m			Z 1/04	< \ \	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CRONE GEOPHYSICS & EXPLORATION LTD BOREHOLE PEM

Client		TECK/Pacific Geophy.	Hole	:	H922C
Grid	13	MGM	Tx Loop	1	922C
Date		Jul 26, 1992	File name	:	H922C.PEM

X COMPONENT dBx/dt nanoTesla/sec - 20 channels and PP Scale: 1:2000 Unit Scale: 1cm = 500 nT

-4090	-3000	-2000	-1000	CROWE	+1000	+2000	+3000	+4000
20m				1 . Lo		E.		
						Í.		
10m				- atidat i i i i	i e i i i i	Ĺ		
						1		
(Dm)						1		
				Lin i i	(1) () ()	1		
				* *****	112 11	1		
- 11-						7		
				ALL A	11111	1		
1919m					i e i ca	1		
(Elim				den i en i i	4.00.0.4	-		
				m 111111	1111			
Lillin						A. 1.		
1-0.00					1 ilist	11		
					11111	4.4		
160m					1111	M = M		
					$(i) \cap (i)$	111		
130m					41111	1//		
				割れいいい	1111	1111		
EJOM				11111/	11111	1111		
F10m					f(f)	1 1 1 / 1		
2200					11111	11111		
					11111	1111	<i>j</i>	
caum					11111		1	
240m				1411 111	1.1.1		3	
250m				46611447		11117	1	
LoOm				劉 (平)) .	* ~ ~ ~	harden -		
270m				Mill ()	n, 1, 1, 1	17477	>	
282m				11111	413	11/16		
244CPM				117////				
295m				THEFT	A.			
3000				#77777	ALL CONTRACTOR			
112m 115m				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	12/111	117772%		
				8814 P.U.A	1	. / / / / H		

CRONE GEOPHYSICS & EXPLORATION LTD

	Client Grid Date	: :	TECK/1 MGM Jul 20	Pacific 5, 1992	Geo	ophy.		Hole Tx Lo File	oop name	: : :	H922C 922C H922C	.PEM	I
Scale	X 1:2000	COMP	ONENT	dBx/dt	nar	noTesl	a/sec	- 20	chai	nnel	s and	PP	
	-103		-102		-10	CROW	+10		+	102		+ 1	63
						CIQ							
- 20m						*	// ^{va} /	11			111		
- 40m						ţį			. 1				
- 60m						+					50		
- - 80m						11	H = X	5	11				
t						1 4	(I)	11	11	11			
-100m						+ 4 			//	1			
+ 120m						+ 1) .	1.1	Į.	-	111	111	1 1 1 1
						11	11)	$\langle \rangle$	11	1.1	111	111	11111
- 146m						+ (÷ /	/ /	14	/ /	///	111	
							1 /	11	/ /	())	(H	
- 160m						+ +	14	()	4	/ /	114	111	11111
							1 1 1		11	11	111	111	
- 180m						+	1 /	11	41	()	4 / 1	M	111111
1						1	1.1	1)		11	///	111	111111
- 200m						÷	1 /	/	4	/ /	() ¥)	141	111111
- 210m						+	6 1	18	1	11	141	111	111111
- 220m						÷	1	1	1 1	11	+//	111	
- 230m						+	he	1	/ /	()	6 / /	1 10	
- 240m						÷	1	1	1.1	4	111	141	
- 250m						+	Į.			÷ 1	E i E	6	{ { { } { } { } { } { } { } { } { } { }
260m						÷		1 1	le		114	$\left(\left(\right) \right)$	WIIIII
1279m						+		\sim	1 31	11	LAL	11	Welley /
230m						÷		ne.	1	11	14	10)))))
- 290m						1			1	1 1	14	1	
1 295m 1 330m					_)-	7	To the	30	. /
+ 310m						÷.		-	r	1	11	145	Vileinnen (
1 315m						Ţ		*	1	1	11	111	
1.1200						+			1		.8	1.55.0	n si ci ca ci ci
