LOG NO:	NOV 3 0 1992	RD.
ACTION.		

FILE NO:

GEOCHEMICAL, GEOPHYSICAL and GEOLOGICAL

ASSESSMENT REPORT

ON THE

BANDIT PROPERTY

SUB-R	ECO CEIV	r dér Ed
NOV	24	1992
MR #		5

VANCOUVER, B.C.

ATLIN MINING DIVISION NTS: 104K/01W

Owned & Operated By:

North American Metals Corp. 1000-700 West Pender Street, Vancouver, B.C.

Jane M. Howe

GEOLOGICAL BRANCH November 1992 ASSESSMENT REPORT

<u>Distribution:</u> Homestake/NAMC Files - original Field - 1 copy Mining Recorder - 2 copies

1.0 INTRODUCTION

- 1.1 Scope of Report
- 1.2 Property Definition
- 1.3 Location, Access and Physiography
- 1.4 Exploration History
- 1.5 Work Completed During 1992
- 1.6 Reclamation Status
- 2.0 REGIONAL GEOLOGY
- 3.0 PROPERTY GEOLOGY
 - 3.1 Lithologies
 - 3.2 Structure
 - 3.3 Alteration
 - 3.4 Mineralization

4.0 DETAILED DISCUSSION OF MINERALIZED AREAS

- 4.1 POST ZONE
 - 4.1.1 Geology
 - 4.1.2 Geochemistry
 - 4.1.3 Geophysics
- 4.2 BAN CLAIMS
 - 4.2.1 Geology
 - 4.2.2 Geochemistry
- 4.3 BANDIT (MAIN GRID)
 - 4.3.1 Geology
 - 4.3.2 Geochemistry
 - 4.3.3 Geophysics
- 5.0 SUMMARY AND CONCLUSIONS
- 6.0 BIBLIOGRAPHY AND SELECTED REFERENCES

<u>APPENDICES</u>

- 1 SAMPLE DESCRIPTIONS
- II GEOCHEMICAL ASSAY CERTIFICATES
- III ANALYTICAL METHODS
- IV THIN SECTION ANALYSIS
- V INDUCED POLARIZATION REPORT AND PSEUDO SECTIONS
- VI STATEMENT OF EXPENDITURES
- VII STATEMENT OF QUALIFICATIONS

LIST OF FIGURES

FIGU	RE	FOLLOWS PAGE
1.	Bandit Property Location Map	1
2.	Detailed Claim Location Map	2
3.	Summary of Work Completed During 1992	3
4.	Summary of Reclamation Status Map	4
5.	Regional Geology Map	4
6a) b) c)	Post Zone Detailed Geology Map Post Zone Sample Location Map Post Zone Sample Geochemistry Map	10 11 11
7a) b)	Ban Claims Geology Map Ban Claims Sample Location and Geochemistry Map	in pocket in pocket
8a) b)	Main Grid Geology Map Main Grid Sample Location and Geochemistry Map	in pocket in pocket

1.0 INTRODUCTION

The BANDIT property consists of ten claims, staked between 1981 and 1992 and are 100% owned by North American Metals Corp. which is an 83% owned subsidiary of Homestake Canada Ltd. Over the past three years, Homestake Canada Ltd has been contracted by North American Metals Corp. to conduct exploration work on the property.

1.1 SCOPE OF REPORT

This report serves to present and summarize all exploration work completed on the project in 1992 and propose further exploration in the search for economic gold mineralization. Much of the introductory section of this report is summarized from previous authors. All known reports on the BANDIT property are listed in Section 6.0 of this report.

1.2 LOCATION, ACCESS AND PHYSIOGRAPHY

The center of the BANDIT property is located at 132° 16'W and 58° 04'N on NTS map sheet 104K/01, approximately fifteen kilometres south of the Golden Bear Mine and one hundred thirty-five kilometres west of Telegraph Creek, B.C. (Figure 1). Although the two-wheel drive Golden Bear Mine road passes within eleven kilometres of the northern edge of the property, access can be gained only by helicopter, usually from the Golden Bear Mine or Dease Lake.

The BANDIT property lies within moderately rugged terrain where elevations vary from 1100 meters in Sheep Creek valley to over 2200 meters in the northwest corner of the Bandit 4 claim. Most slopes are talus covered and the property is almost totally devoid of vegetation except in creek valleys where stunted spruce are common. Soil horizons are developed only on the vegetated, lower slopes of Sheep Creek valley, the remainder of the property consists of talus or outcrop. Glaciers and permanent snow are abundant and account for approximately 25% of the total claim area. The climate is typical for a northern mountainous area, abundant snow and freezing temperatures occur for eight months of the year. Despite southern exposed slopes, snow melts slowly and surface exploration can only be conducted between mid July and mid September.

1.3 **PROPERTY DEFINITION**

The property is comprised of ten claims totalling one hundred and forty-two units or 3600 hectares. All of the claims are located in the Atlin Mining Division and are recorded as listed in Table I and shown in Figure 2.

1.4 EXPLORATION HISTORY

The BANDIT property was first staked in 1981 by Chevron Minerals Ltd. with the Bandit 1 and 2 claims as a result of a reconnaissance program in the southeastern Tulsequah map area (104K). The property was expanded with the addition of the Bandit 3 and 4, High, Liner and Hijack 1 and 2 claims in 1983.

CLAIM NAME	RECORD NUMBER	UNITS	RECORD DATE	EXPIRY DATE
Los Banditos	312605	15	Aug. 22,1992	Aug. 22,1993
Bandit Z	203363	20	June 26,1990	June 26,1996
Bandit 4	202027	5	July 4,1983	July 4,1996
Hijack 2	202026	18	July 4,1983	July 4,1996
Ban 1	202596	5	Aug. 24,1988	Aug. 24,1996
Ban 2	202597	20	Aug. 24,1988	Aug. 24,1996
Ban 4	202598	5	Aug. 24,1988	Aug. 24,1996
Bandit X	202945	20	Sept. 23,1989	Sept. 23,1996
Bandit Y	202946	20	Sept. 23,1989	Sept. 23,1996
Hijack W	202951	16	Oct. 1,1989	Oct. 1,1996

TABLE I: Summary of Claim Status.

Chevron completed a program of mapping and rock sampling on the property in 1982 (Shannon, 1982) and followed it up with a more thorough program of detailed structural mapping, rock and soil sampling and trenching in 1983 (Shaw and Thicke, 1983). The High and Liner claims along the northeastern margin of the property were allowed to lapse in 1986. In 1987, Chevron completed a program of heavy mineral talus fine sampling (Moffat and Walton, 1987) and optioned the property to Dia Met Minerals of Kelowna, B.C.

In 1988, Dia Met completed heavy mineral talus fine sampling (Fipke 1988, Fipke and Schiller 1988) and staked the Ban 1, 2 and 4 claims to extend the property to the west. During 1989, Dia Met conducted a short diamond drill program to test the Ram Reef Zone. This drilling was halted suddenly due to extreme weather conditions. The expenditures and the results of the work were never filed for assessment credit. Later in 1989, Chevron and Dia Met terminated their option agreement and the Bandit 1 and 2 claims were restaked as the Bandit X and Y and the Hijack 1 claim was restaked as the Hijack W.

In 1990, North American Metals Corp. and Chevron entered into an option agreement whereby NAMC could earn a 50% interest in the property. The Bandit 3 claim, which had been allowed to lapse in 1989, was restaked as the Bandit Z claim. The diamond drill rig used in 1989 was removed from the property and the demob costs were filed for assessment credit using the previously unreported drill logs (Marud 1990).

In 1991, a program of 1:10,000 scale mapping, rock and soil sampling, grid establishment and limited magnetometer and VLF surveys were completed on the property by Homestake Canada Ltd. personnel on behalf of North American Metals Corp. (Howe 1991). North American Metals Corp. acquired 100% interest in the BANDIT property on January 1,1992 prior to commencement of the 1992 exploration program.

1.5 WORK COMPLETED DURING 1992

During the period July 20 to August 31, 1992 work was completed over four main target areas (Figure 3) of the BANDIT property, as follows:

Cliff, East and Ram Reef Zones:

- 1:5 000 geological mapping and sampling,
- Collection of 67 chip samples at five separate locales,
- 8.0 line km of pole-dipole Induced Polarization Survey,

Post Zone:

- Establishment of 1.85 line km grid over the Post zone,
- 1:2 000 geological mapping of the Post Grid,
- 1.0 line km pole-dipole Induced Polarization Survey on the Post grid,
- Hand and blast trenching to expose Post Zone mineralization,

Ban Claims:

- 1:16 000 geological mapping and sampling,
- 1 ridge-line and 1 contour talus sample traverse,

Bandit X, Y and 4 claims,

- 1:16 000 geological mapping and sampling,
- 1:5000 compilation of existing geochemical data (1981-1992).

This Assessment Report describes the Induced Polarization Survey, all 1992 geochemical sampling and combined 1991 and 1992 geological mapping on the BANDIT property.

1.6 **RECLAMATION STATUS**

At present, North American Metals holds a \$5,000 bond (MX-1-403) for the 1992 work completed on the BANDIT property. Chevron and Dia Met Minerals both hold MX General bonds for all of British Columbia. Both companies have made requests to BCMEMPR Mines Inspector in Smithers, to have their reclamation liability for past work on the BANDIT property removed from their respective bonds. Both Chevron and Dia Met claim that their responsibilities have been assumed by North American Metals as per the Asset Sale Agreement dated October 9,1991, between North American Metals Corp and Chevron. This agreement states in Article 5, Sections 1.2 and 5.1(b)ii, that "...NAMC...shall

assume all...Environmental Liabilities...". The responsibility for reclamation stemming from DiaMet's work on the BANDIT property is obscure, as stated in Section 5 of the Letter Agreement dated December 21,1989 between Chevron Minerals and Dia Met Minerals Ltd.

During 1983, Chevron used explosives to blast 17 trenches along the Ram Reef Zone. These trenches are located in steep alpine talus (Figure 4), no vegetation was disturbed and slumping due to gravity has almost completely recontoured the trenches. It is not likely that any reclamation will be required for this work.

During 1989, Dia Met built several wooden structures, and several drill platforms near the peak on the Bandit claims (Figure 4) which have since been destroyed by wind and snow. During 1992, NAMC personnel removed most of the camp materials to the minesite dump and burnt the structures down. A corner of one structure remained under snow and ice and was not burnt, nails and other small items of aluminum were burnt and piled into a large hole, this refuse should be buried to reduce any further oxidation. A 500 gal water tank used in the drill program remains on the property, approximately 200m south of the Bandit LCP along the Ram Reef Zone (Figure 4).

Two tent campsites establish in 1991 and 1992 by NAMC have been entirely cleaned and no refuse remains (Figure 4). At the 1992 camp site, five half-full 40 gallon drums of diesel fuel remain, located beside grid picket L7+00E,11+00S.

During 1992 NAMC used explosives to blast five trenches on the Post Zone (Figure 4). These trenches are located in steep alpine talus, no vegetation was disturbed and slumping due to gravity over the next few years will completely recontour the trenches. It is not likely that any further work will be required to reclaim this trenching.

2.0 **REGIONAL GEOLOGY**

The regional geology in this area has been documented by Souther (1970) and recently by Brown and Bradford (1992).

The BANDIT property lies within the Stikine terrane, a composite terrane comprised of Paleozoic, Triassic and Jurassic island arc rocks (Figure 5). Basement rocks of the Stikine terrane are known as the Stikine Assemblage and include Devonian to Permian limestones, argillites, cherts and a variety of volcanic and epiclastic rocks. These rocks are strongly deformed and stratigraphic relationships are not well understood. Rocks younger than Permian lack diagnostic fossils and as such can only be defined as pre-Upper Triassic in age. The Stikine Assemblage is overlain by Upper Triassic oceanic arc rocks of the Stuhini Group both of which are crosscut by Upper Triassic and Jurassic

Nohillo Fourt Conversion 2 7	
King Salmon Thrust	
	Munner manun
	Meszah Peak 7 Dease Lake
9 Bear 9 Deposit 6 4 BANDIT PROPERTY	
pro de ast	5 Telegraph Creek
LECEND	4 9 Edziza 5
BOCT TERMANE ACCOUNTION	
TERTIARY AND QUATERNARY . 11 LEVEL MOUNTAIN GROUP-basalt, rhyolite	
CRETACEOUS AND TERTIARY	Modified from G.S.C.
JURASSIC AND CRETACEOUS B diorite, granodiorite, quartz diorite	map 1418A–Souther, Brew and Okulitch (1979)
7 Laberge and Bowser Groups-conglomerate, sa	ndstone
STIKINIA TERRANE TRIASSIC	Scale 1:1,000,000
6 diorite, granodiorite, quartz monzonite	
5 STUHINI GROUP-matic volcanic and sediment CARBONIFEROUS AND PERMIAN	ary rocks
4 greenstone,limestone,schist,gneiss CACHE CREEK TERRANE	NORTH AMERICAN METALS CORP.
TRIASSIC 3 SINWA FORMATION-limestone	BANDIT PROPERTY
CARBONIFEROUS AND PERMIAN 2 CACHE CREEK GROUP-limestone, basalt	REGIONAL GEOLOGY
serpentinite, periodite, gabbro, diorite	DRAWN DATE FILE CODE FIGURE E
	1 10/89 104J/4 104K/1 FIGURE 5

intrusive rocks of intermediate to felsic composition. Early Tertiary intermediate to felsic subaerial volcanics, intrusives and derived sediments of the Sloko Group unconformably overlie pre-Upper Triassic and Triassic rocks. The youngest rocks in the area are basaltic flows and pyroclastics of the late Tertiary Level Mountain Group and Hearts Peak Formation. These volcaniclastics overlie glacial till and are, in part, of Pleistocene age.

3.0 **PROPERTY GEOLOGY**

3.1 LITHOLOGIES

The BANDIT property is predominantly underlain by a tightly folded package of clastic, carbonate and volcanic rocks of the pre-Upper Triassic Stikine Terrane which is in turn overlain by a thick succession of less deformed and weakly chloritic volcaniclastics of the Upper Triassic Stuhini Group. These lithologies are locally cut by diorites to quartz-diorite intrusions of Triassic age, and plagioclase ± hornblende porphyritic dykes and fine-grained aphanitic rhyolite dykes of the Tertiary Sloko Group. A more detailed description of each lithology is given below.

Pre-Upper Triassic - Stikine Assemblage

Mafic to Intermediate Volcaniclastics

The pre-Upper Triassic volcanic rocks consist of fine-grained ash tuffs and fine-grained massive flows. These rocks are medium to pale green in colour and are intensely chloritized. Very fine-grained euhedral pyrite and specular hematite are common and occur disseminated throughout the volcanics. Alteration intensity varies with deformation intensity.

Epiclastic and Carbonate Sediments

This unit consists primarily of argillite to wacke with occasional interbedded graphitic or calcareous units. These rocks are interbedded within the mafic to intermediate volcaniclastic package. A distinct 50-100m thick sequence of well-bedded grey to white silicified limestone outcrops in several locations on the property and can be used as a marker horizon to unravel the structural history of the area. This limestone may be Permian in age, connadont age-dating is in progress by Brown and Bradford (1992).

This package is estimated to be 1000m thick, although folding may have artificially increased the apparent thickness. A large portion of this package is phyllitic with a alteration assemblage of sericite + chlorite \pm quartz. Deformation intensity and alteration intensity are directly related: a decrease in deformation intensity results in a corresponding decrease in the percentage of sericite \pm quartz replacement. Due to the intense deformation and alteration it is often difficult to divide this package into distinct mappable units.

Upper Triassic - Stuhini Group

The mafic volcaniclastic rocks of the Stuhini Group appear to be andesitic in composition based on thin section analyses. Textures vary from finegrained ash tuff to coarse crystal-lithic tuff and coarse-grained, augite porphyritic flows. This unit is typically medium to dark green, unfoliated and weakly chloritized with primary textures and mineralogy well preserved. Trace amounts of fine-grained, euhedral pyrite are disseminated throughout the volcaniclastics. Iron carbonate alteration occurs locally as fracture controlled veins or weak to moderate replacement of the pyroclastic matrix. Bedding attitudes are rare.

Triassic

Diorite - Quartz Diorite

This unit outcrops in several locations on the BANDIT property and is typically coarse-grained hornblende ± plagioclase porphyritic in a plagioclase ± quartz matrix. The diorite is unaltered, unfoliated and postdates Stuhini volcaniclastic rocks since several small diorite dikes are known to intrude Stuhini volcanics near the Post Zone and on the Bandit X claim. Most of the small bodies of diorite on the BANDIT claims are probably apophyses of the large diorite body mapped north of the property by British Columbia Geological Survey geologists in 1992 (D. Brown, pers. com.). Intense iron carbonate alteration is common near all intrusive contacts.

Tertiary - Cretaceous

Sloko Group Intermediate to Felsic Rocks

This unit intrudes all rock types on the property and is highly variable in both composition and texture. On the Ban claims, two > 10 meter wide dikes crosscut stratigraphy and form prominent north-south trending aerial photograph linear features. They are light buff-grey, unfoliated, plagioclase and hornblende porphyritic and form very blocky talus. Along the ridge-top on the Ban 2 claim, a buff, finegrained and vesicular sill intrudes along an east-west trending contact between Pre-Upper Triassic argiillites and wackes.

Stratigraphic Correlation Problems

Rocks of the Stikine Assemblage and the Stuhini units are very distinct, typically a very strong contrast in metamorphic grade and deformation intensity exists between these units. South of the Ban claims, near the Post Zone and to the north of the property a sharp contact zone exists between the Stikine Assemblage and the Stuhini volcanics. The Stuhini Group unconformably overlies the Stikine Assemblage as indicated by radical changes in bedding measurements south of the Ban claims. On the Bandit X and Y claim however, the contact between the these units is enigmatic. Unaltered, undeformed Stuhini volcaniclastics outcrop at the top of the mountain, a fracture-controlled alteration zone (Ram Reef) forms the contact zone with weakly carbonatized and chloritic massive, fine-grained mafic pyroclastics. This weakly altered mafic unit is gradational into more intensely altered and deformed pre-Upper Triassic phyllites of the Cliff Zone, and is not seen elsewhere on the property. Since the alteration and mineralization of the Ram Reef Zone is believed to be genetically related to the Cliff Zone alteration (refer to sections 3.3 and 4.3), then this package of altered volcanics must be therefore be included with the pre-Upper Triassic Stikine Assemblage.

3.2 STRUCTURE

A well-developed penetrative foliation characterizes the pre-Upper Triassic units. The foliation appears to parallel bedding, trending roughly southwest-northeast, dipping moderately to the northwest. In the central portion of the Ban 2, Bandit Y and Z claims the deformation intensity increases resulting phyllonites, which occur near interpreted fold axes.

Folding about a northeast trending axial plane predates Triassic Stuhini volcaniclastic deposition, since fold structures are only observed within the pre-Upper Triassic units. Small scale asymmetric parasitic fold structures in the area plunge moderately to the northeast and northwest, indicating that the large scale early fold axis has been refolded about a roughly north-south trending axis. Other evidence, such as refolded foliation (crenulation), large-scale N-S trending axial planer cleavage fractures manifested as deep gullies and doming of the limestone package also support this theory.

Conjugate joint and fracture sets are well-developed both megascopically and macroscopically throughout the property. Deep-sided gulleys trending northwest and northeast are common in the southern portion of the Bandit Y and Z claims. Smaller scale brittle fractures with similar orientations are developed in hinge zones of folds, offsets are common along these structures, but typically less then 1m in gulleys and <2cm for small axial planar fractures.

3.3 ALTERATION

Three dominant alteration assemblages are present on the BANDIT property: albitization, silicification and carbonatization.

Albitization, frequently misidentified in the field as silicification, occurs exclusively within the pre-Upper Triassic rocks. Intense, pervasive albitization results in a dull white, fine-grained rock, commonly with 1-2% fine- to coarse-grained pyrite. Zones of intense albitization may have either sharp contacts with relatively unaltered host rock, or gradational contacts into zones of albite \pm quartz stockwork and zones of strong pervasive silicification. In the Cliff Zone albitization and associated gold mineralization appears to be pre-Upper Triassic in age, evidenced by folding not seen in the younger rocks. This alteration assemblage is common throughout

rocks of the Stikine Assemblage in the Telegraph Creek area (Holbek 1988) and is typically enriched in precious metals, but is not yet known to host any gold deposits of economic size potential.

Silicification is common, occurring as either localized lenses or as quartz veins and stockwork. Pervasive silica alteration is usually found within or proximal to intensely albitized zones and frequently contains disseminated fine-grained euhedral pyrite. This intense alteration results in a light grey, aphanitic to saccaroidal-textured rock with an indeterminable protolith. Quartz veinlets and stockworks are concentrated within the albitized zones and multiple phases of veining are evident from broken and rotated vein fragments and cross-cutting veinlets. Multiphase silicification appears to consistently post date albitization.

Carbonatization weathers dull orange and occurs as either moderate to intense pervasive alteration over hundreds of meters, or in narrow, late-stage, network textured fracture fillings. This pervasive alteration may be related to the emplacement of a large pre-Upper Triassic diorite to granodiorite to the southeast of the property (Souther 1970), since Stuhini volcanics lack pervasive carbonate The lack of pervasive carbonatization in the younger Stuhini alteration. volcaniclastics suggests that the diorite predates the Stuhini volcaniclastics. Sulphides are not associated with this alteration feature except as rare Large areas of the property are covered with pervasively disseminations. carbonate altered mafic volcanic talus, which has been sampled extensively and does not contain anomalous quantities of gold. While pervasive carbonate alteration postdates albitization and silicification and predates Stuhini volcanism, late-stage fracture-controlled carbonate alteration occurs in all rock types found on the property.

Based on 1982-1984 talus fine sampling by Chevron on the Bandit Y claim and 1991 talus fine sampling by NAMC on the Bandit Y and Z claims, the fine fraction contains extremely anomalous quantities of gold, results are as high as 4500 ppb. The gold in talus sourced from both the Ram Reef and the Cliff Zones; all talus fine samples taken topographically above the Ram Reef lineament contained negligible gold (Thicke and Shannon 1982, Howe 1991).

Carbonate alteration of mineralized zones probably serves to assist in the mechanical concentration of gold in the fine fraction of talus. Areas of strong pervasive carbonate alteration are more susceptible to weathering, leaving behind concentrated quantities of fine-grained gold in the talus. Thin section analysis indicates that the gold is extremely fine-grained (Appendix IV). Talus fine samples consistently yield higher gold values than the either talus coarse samples or the original source of the talus.

GEOCHEMICAL, GEOPHYSICAL and GEOLOGICAL

ASSESSMENT REPORT

ON THE

BANDIT PROPERTY

ATLIN MINING DIVISION NTS: 104K/01W

Owned & Operated By:

North American Metals Corp. 1000-700 West Pender Street, Vancouver, B.C.

Jane M. Howe

November 1992

<u>Distribution:</u> Homestake/NAMC Files - original Field - 1 copy Mining Recorder - 2 copies

- 1.0 INTRODUCTION
 - 1.1 Scope of Report
 - 1.2 Property Definition
 - 1.3 Location, Access and Physiography
 - 1.4 Exploration History
 - 1.5 Work Completed During 1992
 - 1.6 Reclamation Status
- 2.0 REGIONAL GEOLOGY
- 3.0 PROPERTY GEOLOGY
 - 3.1 Lithologies
 - 3.2 Structure
 - 3.3 Alteration
 - 3.4 Mineralization

4.0 DETAILED DISCUSSION OF MINERALIZED AREAS

- 4.1 POST ZONE
 - 4.1.1 Geology
 - 4.1.2 Geochemistry
 - 4.1.3 Geophysics
- 4.2 BAN CLAIMS
 - 4.2.1 Geology
 - 4.2.2 Geochemistry
- 4.3 BANDIT (MAIN GRID)
 - 4.3.1 Geology
 - 4.3.2 Geochemistry
 - 4.3.3 Geophysics
- 5.0 SUMMARY AND CONCLUSIONS
- 6.0 BIBLIOGRAPHY AND SELECTED REFERENCES

APPENDICES

- I SAMPLE DESCRIPTIONS
- II GEOCHEMICAL ASSAY CERTIFICATES
- III ANALYTICAL METHODS
- IV THIN SECTION ANALYSIS
- V INDUCED POLARIZATION REPORT AND PSEUDO SECTIONS
- VI STATEMENT OF EXPENDITURES
- VII STATEMENT OF QUALIFICATIONS

LIST OF FIGURES

FIGU	RE	FOLLOWS PAGE
1.	Bandit Property Location Map	1
2.	Detailed Claim Location Map	2
З.	Summary of Work Completed During 1992	3
4.	Summary of Reclamation Status Map	4
5.	Regional Geology Map	4
6a) b) c)	Post Zone Detailed Geology Map Post Zone Sample Location Map Post Zone Sample Geochemistry Map	10 11 11
7a) b)	Ban Claims Geology Map Ban Claims Sample Location and Geochemistry Map	in pocket in pocket
8a) b)	Main Grid Geology Map Main Grid Sample Location and Geochemistry Map	in pocket in pocket

1.0 INTRODUCTION

The BANDIT property consists of ten claims, staked between 1981 and 1992 and are 100% owned by North American Metals Corp. which is an 83% owned subsidiary of Homestake Canada Ltd. Over the past three years, Homestake Canada Ltd has been contracted by North American Metals Corp. to conduct exploration work on the property.

1.1 SCOPE OF REPORT

This report serves to present and summarize all exploration work completed on the project in 1992 and propose further exploration in the search for economic gold mineralization. Much of the introductory section of this report is summarized from previous authors. All known reports on the BANDIT property are listed in Section 6.0 of this report.

1.2 LOCATION, ACCESS AND PHYSIOGRAPHY

The center of the BANDIT property is located at 132° 16'W and 58° 04'N on NTS map sheet 104K/01, approximately fifteen kilometres south of the Golden Bear Mine and one hundred thirty-five kilometres west of Telegraph Creek, B.C. (Figure 1). Although the two-wheel drive Golden Bear Mine road passes within eleven kilometres of the northern edge of the property, access can be gained only by helicopter, usually from the Golden Bear Mine or Dease Lake.

The BANDIT property lies within moderately rugged terrain where elevations vary from 1100 meters in Sheep Creek valley to over 2200 meters in the northwest corner of the Bandit 4 claim. Most slopes are talus covered and the property is almost totally devoid of vegetation except in creek valleys where stunted spruce are common. Soil horizons are developed only on the vegetated, lower slopes of Sheep Creek valley, the remainder of the property consists of talus or outcrop. Glaciers and permanent snow are abundant and account for approximately 25% of the total claim area. The climate is typical for a northern mountainous area, abundant snow and freezing temperatures occur for eight months of the year. Despite southern exposed slopes, snow melts slowly and surface exploration can only be conducted between mid July and mid September.

1.3 **PROPERTY DEFINITION**

The property is comprised of ten claims totalling one hundred and forty-two units or 3600 hectares. All of the claims are located in the Atlin Mining Division and are recorded as listed in Table I and shown in Figure 2.

1.4 EXPLORATION HISTORY

The BANDIT property was first staked in 1981 by Chevron Minerals Ltd. with the Bandit 1 and 2 claims as a result of a reconnaissance program in the southeastern Tulsequah map area (104K). The property was expanded with the addition of the Bandit 3 and 4, High, Liner and Hijack 1 and 2 claims in 1983.

CLAIM NAME	RECORD NUMBER	UNITS	RECORD DATE	EXPIRY DATE
Los Banditos	312605	15	Aug. 22,1992	Aug. 22,1993
Bandit Z	203363	20	June 26,1990	June 26,1996
Bandit 4	202027	5	July 4,1983	July 4,1996
Hijack 2	202026	18	July 4,1983	July 4,1996
Ban 1	202596	5	Aug. 24,1988	Aug. 24,1996
Ban 2	202597	20	Aug. 24,1988	Aug. 24,1996
Ban 4	202598	5	Aug. 24,1988	Aug. 24,1996
Bandit X	202945	20	Sept. 23,1989	Sept. 23,1996
Bandit Y	202946	20	Sept. 23,1989	Sept. 23,1996
Hijack W	202951	16	Oct. 1,1989	Oct. 1,1996

 TABLE I: Summary of Claim Status.

Chevron completed a program of mapping and rock sampling on the property in 1982 (Shannon, 1982) and followed it up with a more thorough program of detailed structural mapping, rock and soil sampling and trenching in 1983 (Shaw and Thicke, 1983). The High and Liner claims along the northeastern margin of the property were allowed to lapse in 1986. In 1987, Chevron completed a program of heavy mineral talus fine sampling (Moffat and Walton, 1987) and optioned the property to Dia Met Minerals of Kelowna, B.C.

In 1988, Dia Met completed heavy mineral talus fine sampling (Fipke 1988, Fipke and Schiller 1988) and staked the Ban 1, 2 and 4 claims to extend the property to the west. During 1989, Dia Met conducted a short diamond drill program to test the Ram Reef Zone. This drilling was halted suddenly due to extreme weather conditions. The expenditures and the results of the work were never filed for assessment credit. Later in 1989, Chevron and Dia Met terminated their option agreement and the Bandit 1 and 2 claims were restaked as the Bandit X and Y and the Hijack 1 claim was restaked as the Hijack W.

In 1990, North American Metals Corp. and Chevron entered into an option agreement whereby NAMC could earn a 50% interest in the property. The Bandit 3 claim, which had been allowed to lapse in 1989, was restaked as the Bandit Z claim. The diamond drill rig used in 1989 was removed from the property and the demob costs were filed for assessment credit using the previously unreported drill logs (Marud 1990).

In 1991, a program of 1:10,000 scale mapping, rock and soil sampling, grid establishment and limited magnetometer and VLF surveys were completed on the property by Homestake Canada Ltd. personnel on behalf of North American Metals Corp. (Howe 1991). North American Metals Corp. acquired 100% interest in the BANDIT property on January 1,1992 prior to commencement of the 1992 exploration program.

1.5 WORK COMPLETED DURING 1992

During the period July 20 to August 31, 1992 work was completed over four main target areas (Figure 3) of the BANDIT property, as follows:

Cliff, East and Ram Reef Zones:

- 1:5 000 geological mapping and sampling,
- Collection of 67 chip samples at five separate locales,
- 8.0 line km of pole-dipole Induced Polarization Survey,

Post Zone:

- Establishment of 1.85 line km grid over the Post zone,
- 1:2 000 geological mapping of the Post Grid,
- 1.0 line km pole-dipole Induced Polarization Survey on the Post grid,
- Hand and blast trenching to expose Post Zone mineralization,

Ban Claims:

- 1:16 000 geological mapping and sampling,
- 1 ridge-line and 1 contour talus sample traverse,

Bandit X, Y and 4 claims,

- 1:16 000 geological mapping and sampling,
- 1:5000 compilation of existing geochemical data (1981-1992).

This Assessment Report describes the Induced Polarization Survey, all 1992 geochemical sampling and combined 1991 and 1992 geological mapping on the BANDIT property.

1.6 **RECLAMATION STATUS**

At present, North American Metals holds a \$5,000 bond (MX-1-403) for the 1992 work completed on the BANDIT property. Chevron and Dia Met Minerals both hold MX General bonds for all of British Columbia. Both companies have made requests to BCMEMPR Mines Inspector in Smithers, to have their reclamation liability for past work on the BANDIT property removed from their respective bonds. Both Chevron and Dia Met claim that their responsibilities have been assumed by North American Metals as per the Asset Sale Agreement dated October 9,1991, between North American Metals Corp and Chevron. This agreement states in Article 5, Sections 1.2 and 5.1(b)ii, that "...NAMC...shall

assume all...Environmental Liabilities...". The responsibility for reclamation stemming from DiaMet's work on the BANDIT property is obscure, as stated in Section 5 of the Letter Agreement dated December 21,1989 between Chevron Minerals and Dia Met Minerals Ltd.

During 1983, Chevron used explosives to blast 17 trenches along the Ram Reef Zone. These trenches are located in steep alpine talus (Figure 4), no vegetation was disturbed and slumping due to gravity has almost completely recontoured the trenches. It is not likely that any reclamation will be required for this work.

During 1989, Dia Met built several wooden structures, and several drill platforms near the peak on the Bandit claims (Figure 4) which have since been destroyed by wind and snow. During 1992, NAMC personnel removed most of the camp materials to the minesite dump and burnt the structures down. A corner of one structure remained under snow and ice and was not burnt, nails and other small items of aluminum were burnt and piled into a large hole, this refuse should be buried to reduce any further oxidation. A 500 gal water tank used in the drill program remains on the property, approximately 200m south of the Bandit LCP along the Ram Reef Zone (Figure 4).

Two tent campsites establish in 1991 and 1992 by NAMC have been entirely cleaned and no refuse remains (Figure 4). At the 1992 camp site, five half-full 40 gallon drums of diesel fuel remain, located beside grid picket L7+00E,11+00S.

During 1992 NAMC used explosives to blast five trenches on the Post Zone (Figure 4). These trenches are located in steep alpine talus, no vegetation was disturbed and slumping due to gravity over the next few years will completely recontour the trenches. It is not likely that any further work will be required to reclaim this trenching.

2.0 REGIONAL GEOLOGY

The regional geology in this area has been documented by Souther (1970) and recently by Brown and Bradford (1992).

The BANDIT property lies within the Stikine terrane, a composite terrane comprised of Paleozoic, Triassic and Jurassic island arc rocks (Figure 5). Basement rocks of the Stikine terrane are known as the Stikine Assemblage and include Devonian to Permian limestones, argillites, cherts and a variety of volcanic and epiclastic rocks. These rocks are strongly deformed and stratigraphic relationships are not well understood. Rocks younger than Permian lack diagnostic fossils and as such can only be defined as pre-Upper Triassic in age. The Stikine Assemblage is overlain by Upper Triassic oceanic arc rocks of the Stuhini Group both of which are crosscut by Upper Triassic and Jurassic

Nohllo Fourier 2	
King Saimon Thrust 4	
	Manun manun
	Meszah Peak 7 9 Lake
9 Bear 9 Deposit 6 4 BANDIT PROPERTY	
for the set	Telegraph
(6)	
LEGENO	4 9 Edziza Peak 5
POST-TERRANE ACCRETION	
TERTIARY AND QUATERNARY LEVEL MOUNTAIN GROUP-basalt, rhyolite	
10 SLOKO GROUP-rhyolite;Brother's Peak Format	tion-sandstone
CRETACEOUS AND TERTIARY 9 quartz monzonite, quartz diorite	Modified from G.S.C. map 1418A-Souther,
JURASSIC AND CRETACEOUS diorite,granodiorite,quartz diorite	Brew and Okulitch (1979)
7 Laberge and Bowser Groups-conglomerate, sa	andstone
STIKINIA TERRANE	Scale 1:1,000,000
TRIASSIC diorite,granodiorite,quartz monzonite	
5 STUHINI GROUP-mafic volcanic and sediment	tary rocks
CARBONIFEROUS AND PERMIAN greenstone,limestone,schist,gneiss	NORTH AMERICAN METALS CORP.
CACHE CREEK TERRANE	
TRIASSIC 3 SINWA FORMATION-limestone	BANDIT PROPERTY
CARBONIFEROUS AND PERNIAN CACHE CREEK GROUP-limestone.basalt	REGIONAL GEOLOGY
serpentinite, periodite, gabbro, diorite	DRAWN DATE FILE COOL
	10/89 104J/4 104K/1 FIGURE 5

intrusive rocks of intermediate to felsic composition. Early Tertiary intermediate to felsic subaerial volcanics, intrusives and derived sediments of the Sloko Group unconformably overlie pre-Upper Triassic and Triassic rocks. The youngest rocks in the area are basaltic flows and pyroclastics of the late Tertiary Level Mountain Group and Hearts Peak Formation. These volcaniclastics overlie glacial till and are, in part, of Pleistocene age.

3.0 **PROPERTY GEOLOGY**

3.1 LITHOLOGIES

The BANDIT property is predominantly underlain by a tightly folded package of clastic, carbonate and volcanic rocks of the pre-Upper Triassic Stikine Terrane which is in turn overlain by a thick succession of less deformed and weakly chloritic volcaniclastics of the Upper Triassic Stuhini Group. These lithologies are locally cut by diorites to quartz-diorite intrusions of Triassic age, and plagioclase \pm hornblende porphyritic dykes and fine-grained aphanitic rhyolite dykes of the Tertiary Sloko Group. A more detailed description of each lithology is given below.

Pre-Upper Triassic - Stikine Assemblage

Mafic to Intermediate Volcaniclastics

The pre-Upper Triassic volcanic rocks consist of fine-grained ash tuffs and fine-grained massive flows. These rocks are medium to pale green in colour and are intensely chloritized. Very fine-grained euhedral pyrite and specular hematite are common and occur disseminated throughout the volcanics. Alteration intensity varies with deformation intensity.

Epiclastic and Carbonate Sediments

This unit consists primarily of argillite to wacke with occasional interbedded graphitic or calcareous units. These rocks are interbedded within the mafic to intermediate volcaniclastic package. A distinct 50-100m thick sequence of well-bedded grey to white silicified limestone outcrops in several locations on the property and can be used as a marker horizon to unravel the structural history of the area. This limestone may be Permian in age, connadont age-dating is in progress by Brown and Bradford (1992).

This package is estimated to be 1000m thick, although folding may have artificially increased the apparent thickness. A large portion of this package is phyllitic with a alteration assemblage of sericite + chlorite \pm quartz. Deformation intensity and alteration intensity are directly related: a decrease in deformation intensity results in a corresponding decrease in the percentage of sericite \pm quartz replacement. Due to the intense deformation and alteration it is often difficult to divide this package into distinct mappable units.

Upper Triassic - Stuhini Group

The mafic volcaniclastic rocks of the Stuhini Group appear to be andesitic in composition based on thin section analyses. Textures vary from finegrained ash tuff to coarse crystal-lithic tuff and coarse-grained, augite porphyritic flows. This unit is typically medium to dark green, unfoliated and weakly chloritized with primary textures and mineralogy well preserved. Trace amounts of fine-grained, euhedral pyrite are disseminated throughout the volcaniclastics. Iron carbonate alteration occurs locally as fracture controlled veins or weak to moderate replacement of the pyroclastic matrix. Bedding attitudes are rare.

Triassic

Diorite - Quartz Diorite

This unit outcrops in several locations on the BANDIT property and is typically coarse-grained hornblende \pm plagioclase porphyritic in a plagioclase \pm quartz matrix. The diorite is unaltered, unfoliated and postdates Stuhini volcaniclastic rocks since several small diorite dikes are known to intrude Stuhini volcanics near the Post Zone and on the Bandit X claim. Most of the small bodies of diorite on the BANDIT claims are probably apophyses of the large diorite body mapped north of the property by British Columbia Geological Survey geologists in 1992 (D. Brown, pers. com.). Intense iron carbonate alteration is common near all intrusive contacts.

Tertiary - Cretaceous

Sloko Group Intermediate to Felsic Rocks

This unit intrudes all rock types on the property and is highly variable in both composition and texture. On the Ban claims, two > 10 meter wide dikes crosscut stratigraphy and form prominent north-south trending aerial photograph linear features. They are light buff-grey, unfoliated, plagioclase and hornblende porphyritic and form very blocky talus. Along the ridge-top on the Ban 2 claim, a buff, finegrained and vesicular sill intrudes along an east-west trending contact between Pre-Upper Triassic argiillites and wackes.

Stratigraphic Correlation Problems

Rocks of the Stikine Assemblage and the Stuhini units are very distinct, typically a very strong contrast in metamorphic grade and deformation intensity exists between these units. South of the Ban claims, near the Post Zone and to the north of the property a sharp contact zone exists between the Stikine Assemblage and the Stuhini volcanics. The Stuhini Group unconformably overlies the Stikine Assemblage as indicated by radical changes in bedding measurements south of the Ban claims. On the Bandit X and Y claim however, the contact between the these units is enigmatic. Unaltered, undeformed Stuhini volcaniclastics outcrop at the top of the mountain, a fracture-controlled alteration zone (Ram Reef) forms the contact zone with weakly carbonatized and chloritic massive, fine-grained mafic pyroclastics. This weakly altered mafic unit is gradational into more intensely altered and deformed pre-Upper Triassic phyllites of the Cliff Zone, and is not seen elsewhere on the property. Since the alteration and mineralization of the Ram Reef Zone is believed to be genetically related to the Cliff Zone alteration (refer to sections 3.3 and 4.3), then this package of altered volcanics must be therefore be included with the pre-Upper Triassic Stikine Assemblage.

3.2 STRUCTURE

A well-developed penetrative foliation characterizes the pre-Upper Triassic units. The foliation appears to parallel bedding, trending roughly southwest-northeast, dipping moderately to the northwest. In the central portion of the Ban 2, Bandit Y and Z claims the deformation intensity increases resulting phyllonites, which occur near interpreted fold axes.

Folding about a northeast trending axial plane predates Triassic Stuhini volcaniclastic deposition, since fold structures are only observed within the pre-Upper Triassic units. Small scale asymmetric parasitic fold structures in the area plunge moderately to the northeast and northwest, indicating that the large scale early fold axis has been refolded about a roughly north-south trending axis. Other evidence, such as refolded foliation (crenulation), large-scale N-S trending axial planer cleavage fractures manifested as deep gullies and doming of the limestone package also support this theory.

Conjugate joint and fracture sets are well-developed both megascopically and macroscopically throughout the property. Deep-sided gulleys trending northwest and northeast are common in the southern portion of the Bandit Y and Z claims. Smaller scale brittle fractures with similar orientations are developed in hinge zones of folds, offsets are common along these structures, but typically less then 1m in gulleys and <2cm for small axial planar fractures.

3.3 ALTERATION

Three dominant alteration assemblages are present on the BANDIT property: albitization, silicification and carbonatization.

Albitization, frequently misidentified in the field as silicification, occurs exclusively within the pre-Upper Triassic rocks. Intense, pervasive albitization results in a dull white, fine-grained rock, commonly with 1-2% fine- to coarse-grained pyrite. Zones of intense albitization may have either sharp contacts with relatively unaltered host rock, or gradational contacts into zones of albite \pm quartz stockwork and zones of strong pervasive silicification. In the Cliff Zone albitization and associated gold mineralization appears to be pre-Upper Triassic in age, evidenced by folding not seen in the younger rocks. This alteration assemblage is common throughout

rocks of the Stikine Assemblage in the Telegraph Creek area (Holbek 1988) and is typically enriched in precious metals, but is not yet known to host any gold deposits of economic size potential.

Silicification is common, occurring as either localized lenses or as quartz veins and stockwork. Pervasive silica alteration is usually found within or proximal to intensely albitized zones and frequently contains disseminated fine-grained euhedral pyrite. This intense alteration results in a light grey, aphanitic to saccaroidal-textured rock with an indeterminable protolith. Quartz veinlets and stockworks are concentrated within the albitized zones and multiple phases of veining are evident from broken and rotated vein fragments and cross-cutting veinlets. Multiphase silicification appears to consistently post date albitization.

Carbonatization weathers dull orange and occurs as either moderate to intense pervasive alteration over hundreds of meters, or in narrow, late-stage, network textured fracture fillings. This pervasive alteration may be related to the emplacement of a large pre-Upper Triassic diorite to granodiorite to the southeast of the property (Souther 1970), since Stuhini volcanics lack pervasive carbonate alteration. The lack of pervasive carbonatization in the younger Stuhini volcaniclastics suggests that the diorite predates the Stuhini volcaniclastics. Sulphides are not associated with this alteration feature except as rare disseminations. Large areas of the property are covered with pervasively carbonate altered mafic volcanic talus, which has been sampled extensively and does not contain anomalous quantities of gold. While pervasive carbonate alteration postdates albitization and silicification and predates Stuhini volcanism, late-stage fracture-controlled carbonate alteration occurs in all rock types found on the property.

Based on 1982-1984 talus fine sampling by Chevron on the Bandit Y claim and 1991 talus fine sampling by NAMC on the Bandit Y and Z claims, the fine fraction contains extremely anomalous quantities of gold, results are as high as 4500 ppb. The gold in talus sourced from both the Ram Reef and the Cliff Zones; all talus fine samples taken topographically above the Ram Reef lineament contained negligible gold (Thicke and Shannon 1982, Howe 1991).

Carbonate alteration of mineralized zones probably serves to assist in the mechanical concentration of gold in the fine fraction of talus. Areas of strong pervasive carbonate alteration are more susceptible to weathering, leaving behind concentrated quantities of fine-grained gold in the talus. Thin section analysis indicates that the gold is extremely fine-grained (Appendix IV). Talus fine samples consistently yield higher gold values than the either talus coarse samples or the original source of the talus.

3.4 MINERALIZATION

Sulphides occur as disseminations, stringers or semi-massive pods in virtually all rock types. The predominant sulphide occurring on the property is pyrite, although chalcopyrite, arsenopyrite and their oxidized equivalents have been observed locally. Several distinctive mineralized zones have been mapped on the property and are described in detail in Section 4.0.

4.0 DETAILED DISCUSSION OF MINERALIZED AREAS

4.1 POST ZONE

4.1.1 Geology

Although very little exposure exists in this area, much of the geology has been inferred by talus and small scattered outcrops (Figure 6a). The zone was discovered in 1992 during an attempt to locate the potential source for two talus fine samples taken in 1982 by Chevron, which assayed 5600 and 1350 ppb.

The Post Zone appears to be similar to the Ram Reef zone in chemical, structural and stratigraphic settings. Based on talus samples, Post Zone mineralization is associated with intensely albite ± silica altered material (Appendix IV, Plate 92RXXV-13A) which has been interpreted to form within a brittle-ductile fault zone. The fault appears to place flat-lying Stuhini volcaniclastic rocks in contact with steeply-dipping pre-Upper Triassic volcaniclastics. The footwall and hanging wall terms have been used based on stratigraphic and topographic relationships in the absense of detailed structural relationships due to lack of outcrop.

The "footwall" rocks consists of Stikine Assemblage volcaniclastics and bedded limestones which are intensely folded and locally intensely albite \pm silica altered. Although, unaltered and undeformed Stuhini volcaniclastics outcrop 50 metres topographically above the zone and a 10m wide zone of intense iron carbonate alteration is manifested immediately above the zone in talus, mapping and trenching has not resolved whether the hanging wall is Stikine Assemblage or Stuhini rocks. The footwall immediately adjacent to the Post zone is a strongly deformed chlorite schist and contains lower grades of gold. Sample JH21-212 (Figure 6b) contained 1 gpt gold and was obtained from the chlorite schist footwall of trench #2.

The Post zone has a minimum strike length of 300 metres as defined by grab samples of mineralized talus. The zone is open along strike to the southeast and to depth. No information is known about the width or dip of mineralization.

LEGEND

Lithologies

Age Undetermined

8 ALBITIZED UNIT

Triassic

- 6 DIORITE
- 5 STUHINI GP

Pre Upper Triassic

4e Foliated chlorite schists

3a Sericite + chlorite phyllites

O	Outcrop
\odot	Talus
1	Contact: Inferred, Approx.
	Alteration Contact
/	Upper Limit "POST" Mineralization
1	Follation with dip
Ĭ	Trench

NORTH AMERICAN METAL BANCIT PROPERTY Post Zone Geology DRAWN DATE NTS Nov 1992 104K/01 Figure Revised

	Assay at G.B. Mine		I.C.P. Analysis by International Plasma Lab							
Sample	Au (gpt)	Ag (gpt)	Au (ppm)	Au (opt)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	SB
DH15-180			2.5		0.1	29	1	36	2.5	7.0
DH15-181			12200	0.352	1.6	1	2	2	5	2.5
DM12-102	13.47	2.0	13400		2.3	1	4	3	13	2.5
DM12-103	7.03	1.6	7500		1.5	4	5	6	14	5.0
DM12-104	tr	1.2	43	·····	0.1	37	1	35	11	7.0
DM12-105	6.62	1.8	7400		1.6	1	1	16	8	2.5
DM12-106	9.50	2.2	9600		2.0	3	4	12	20	2.5
DM20-137			13230		1.9	1	1	1	5	2.5
DM21-138	6.34	1.7								
DM24-151	15.29	4.8								
DM25-152	8.90	4.1								
DM25-153	7.54	3.2								
DM28-160	0.65	1.4								
DM28-161	0.14	1.4								
JH21-206			2.5		0.1	129	1	58	39	2.5
JH21-207			39		0.1	365	1	37	62	2.5
JH21-208			20		0.1	81	1	51	84	2.5
JH21-209			8		0.1	146	1	59	6	5.0
JH21-210			85		0.4	63	1	60	25	6.0
JH21-211			8530	0.248	1.8	15	5	25	26	2.5
JH21-212			1019	0.029	0.3	126	11	118	21	2.5
JH21-213			43		0.1	148	1	50	2.5	2.5
JH21-214			8		0.1	198	1	74	405	2.5
TR1-01	0.07	1.0								
TR1-02	0.03	1.0								
TR1-03	1.37	1.0								
TR1-04	8.23	1.4								
TR1-05	1.65	0.6								
TR1-06	1.14	1.2								
TR3-01	5.18	1.6								
TR3-02	3.77	1.2								

Table 2: 1992 Post Zone Summary of Rock Geochemistry

Blast trenching completed in late August failed to expose bedrock due to depth of talus, permafrost and rubbly, broken ground conditions. The rock debris sampled from the trenches contained less gold than the weathered surface grab samples. The lack of outcrop and mineralized talus in the trenches may indicate that the Post Zone talus has crept downslope further than expected.

The mineralization consists primarily of albite \pm quartz stockwork and veining with locally up to 5% massive and disseminated fine-grained, grey pyrite. All samples obtained from talus or sub-outcrop were vuggy and rubbly with most of the pyrite weathered out. The only other sulphide noted in the area was arsenopyrite.

<u>4.1.2 Geochemistry</u>

The Post zone appears to be a gold only system (Table 2). Of the 32 samples obtained in the vicinity of the zone, thirteen samples assayed >5 gpt. Pyrite is the dominant sulphide, it occurs disseminated within the albite \pm silica altered fault zone within the wallrock.

Samples JH21-214 and DM28-161 were the only samples noted to contain sulphides other than pyrite. Both samples, collected 20 and 25m downslope from the Post Zone respectively were silicified and stockwork brecciated phyllite, which contained 1-3% disseminated fine-grained, grey arsenopyrite. These samples assayed only 8 ppb and 0.14 gpt gold respectively. The presence of quartz stockwork plus arsenopyrite below the Post zone may indicate zonation and/or leakage of mineralizing fluids associated with the fault zone.

Thin section analysis of sample DH15-181 (0.352 opt gold) revealed 18 flecks of fine grain gold. The gold is contained in the gangue and within isolated pyrite grains (Appendix IV, Plate 92RXXXV-5A). Based on the thin section the gold may be free-milling.

4.1.3 Geophysics

One kilometre of Pole-Dipole Induced Polarization Survey (a = 12.5m, n = 1,6) was completed on the Post Grid during August 1992. The spacing was set at n = 12.5m in an attempt to locate the Post zone in bedrock. A classic IP response of low resistivity coupled with high chargeability was expected due to the nature of the shear hosted, vuggy, mineralization. This response is observed on all pseudo sections (Appendix V)

The strongest IP effect is on line 0+50E, 1+80S, and the zone appears to be faulted 10-20m northeast between line 0+50E and 1+00E. This fault structure may exist since strong northeast trending foliations in the chlorite

schist outcrop near line 1+00E. The strong chargeability anomaly on lines 0+50W and 0+50E between 1+75S and 2+25S may be related to a large (talus covered) zone of quartz stockwork with disseminated sulphides, refer to samples JH21-214 and DM28-161. The strong chargeability anomalies located on lines 13+00W and 14+00W are entirely unexplained at this time, due to extensive talus cover. These anomalies compare with the location of a weak VLF anomaly (Howe 1991), considered to be the continuation of the Ram Reef structure in the vicinity of the Post Zone.

The other resistivity anomalies can not explained, but it is likely that sudden changes in slope gradient and laterally variable permafrost could created erratic and false resistivity anomalies. The anomalous chargeability readings remain unexplained.

4.2 BAN CLAIM AREA

4.2.1 Geology

The Ban claims are underlain predominantly by mafic volcaniclastics and phyllites of the pre-Upper Triassic Stikine Assemblage (Figure 7a). The only outcrop of Stuhini volcanics in this area is south of the Ban 2 claim. The alteration, deformation and mineralization within these rocks is identical to the rocks described in Section 3.0.

During 1991, sample BN-BY-1-3870 a float sample of quartz vein material with 10% pyrite assayed 260 gpt gold. The actual location of this sample was not found during 1992 and either remained under snow or talus and avalanche debris has carried it downslope. Numerous samples of quartz veins with 5-10% massive pyrite, taken from outcrops upslope from the vicinity of the 260 gpt sample, did not contain appreciable gold (Figure 7b, Table 3). However, one quartz vein float sample (DM9-85, Figure 7b) obtained several hundred meters downslope from the 260 gpt sample returned 3500 ppb gold.

Spotty blebs of sulphides associated with zones of albite \pm silica alteration were found throughout the area of the 260 gpt gold sample. A 5m wide zone of intense alteration trends north and appears to have been intruded by a sub-parallel Sloko dike.

4.2.2 Geochemistry

Sixty-two talus fine samples were taken along the ridge and one contour line within an area of variable albite \pm silica and carbonate alteration. A broad zone of alteration occurs in the western portion of the Ban 2 claim (Figure 7a) but no gold mineralization has been noted.

Sample	Туре	AU (ppb)	AU (gpt)	AG (ppm)	CU (ppm)	PB (ppm)	ZN (ppm)	AS (ppm)	SB (ppm)
DH13-142	Talus Fine	8.0		0.1	356	6	159	2.5	2.5
DH13-143	Talus Fine	2.5		0.1	35	11	168	2.5	2.5
DH13-144	Talus Fine	2.5		0.1	8	3	136	2.5	2.5
DH13-145	Talus Fine	2.5		0.1	2	2	122	2.5	2.5
DH13-146	Talus Fine	2.5		0.1	53	6	149	2.5	2.5
DH13-147	Talus Fine	2.5		0.1	72	11	166	2.5	2.5
DH13-148	Talus Fine	2.5		0.1	22	5	185	2.5	2.5
DH13-149	Talus Fine	118.0		0.3	20	45	125	7.0	2.5
DH13-150	Talus Fine	2.5		0.1	48	22	293	2.5	2.5
DH13-151	Talus Fine	12.0		0.1	14	5	130	2.5	2.5
DH13-152	Talus Fine	25.0		0.1	23	21	310	2.5	2.5
DH13-153	Talus Fine	17.0		0.1	96	27	384	58.0	2.5
DH13-154	Talus Fine	2.5		0.8	95	22	198	85.0	2.5
DH13-155	Talus Fine	18.0		0.8	145	26	125	87.0	5.0
DH13-156	Talus Fine	40.0		0.3	61	17	275	44.0	2.5
DH13-157	Talus Fine	22.0		0.8	128	21	137	77.0	2.5
DH13-158	Talus Fine	24.0		0.6	124	33	152	46.0	2.5
DH13-159	Talus Fine	12.0		0.3	96	21	181	28.0	2.5
DH13-160	Talus Fine	94.0		0.2	68	16	153	22.0	2.5
DH13-161	Talus Fine	35.0		0.1	52	7	118	2.5	2.5
DH13-162	Talus Fine	32.0		0.1	53	6	102	8.0	2.5
DH13-163	Talus Fine	24.0		0.1	46	10	107	8.0	2.5
DH13-164	Talus Fine	30.0		0.1	47	10	122	9.0	2.5
DH13-165	Talus Fine	23.0		0.1	60	12	111	8.0	2.5
DH13-166	Talus Fine	19.0		0.1	43	7	105	2.5	2.5
DH13-167	Talus Fine	357.0		1.3	170	59	174	18.0	2.5
DH13-168	Talus Fine	60.0		0.3	49	55	200	5.0	2.5
DH13-169	Talus Fine	30.0		0.4	122	17	129	20.0	2.5
DH13-170	Talus Fine	260.0		0.8	105	33	137	44.0	6.0
DH13-171	Talus Fine	453.0		0.8	99	36	146	22.0	2.5
DH14-172	Talus Fine	6.0		0.1	17	4	142	2.5	2.5
DH14-173	Talus Fine	5.0		0.1	33	3	135	2.5	2.5

Table 3: Summary of Ban Area Geochemistry.

Sample	Туре	UA (dqq)	AU (gpt)	AG (ppm)	CU (ppm)	PB (ppm)	ZN (ppm)	AS (ppm)	SB (ppm)
DH14-174	Talus Fine	2.5		0.1	6	1	82	2.5	2.5
DH14-175	Talus Fine	2.5		0.1	4	1	43	2.5	2.5
DH14-176	Talus Fine	2.5		0.1	15	4	113	2.5	2.5
DH14-177	Talus Fine	5.0		0.1	141	8	126	41.0	2.5
DH14-178	Talus Fine	2.5		0.2	87	19	150	24.0	5.0
DH14-179	Talus Fine	5.0		0.5	96	12	113	24.0	2.5
JH3- 25	Grab		0.10	0.6					
JH3- 26	Grab		0.03	0.4					
JH3- 27	Grab	· · · · · · · · · · · · · · · · · · ·	0.14	1.0					
JH14- 94	Grab	2.5		0.1	37	1	73	2.5	2.5
JH14- 95	Grab	2.5		0.1	29	3	18	2.5	6.0
JH14- 97	Grab	2.5		0.1	18	2	103	2.5	2.5
JH14- 98	Grab	2.5		0.1	35	24	47	2.5	2.5
JH14- 99	Grab	2.5		0.1	72	2	100	2.5	5.0
JH14-101	Grab	2.5		0.1	42	11	113	2.5	2.5
JH14-102	Grab	19.0		0.1	3	6	26	2.5	2.5
JH14-105	Grab	54.0		0.1	- 8	4	-111	2.5	2.5
JH14-106	Grab	8.0		0.1	11	1	68	35.0	2.5
JH14-107	Grab	2.5		0.1	58	10	38	31.0	2.5
JH14-108	Grab	64.0		0.3	71	14	29	2.5	2.5
JH14-109	Grab	68.0		0.1	40	5	101	10.0	2.5
JH14-110	Grab	26.0		0.6	11	13	44	2.5	2.5
JH15-111	6m Chip	2.5		0.2	44	1	69	2.5	2.5
JH15-112	15m Chip	2.5		0.2	45	13	85	2.5	2.5
JH15-113	Grab	2.5		0.1	28	1	110	2.5	2.5
JH15-114	15m Chip	2.5		0.2	44	10	82	22.0	2.5
JH15-115	Grab	2.5		0.1	14	1	9	2.5	2.5
JH15-116	Grab	24.0		0.4	77	8	54	2.5	2.5
JH15-117	8m Chip	117.0		0.1	5	5	33	2.5	2.5
JH15-118	10m Chip	127.0		0.1	7	6	36	2.5	2.5
JH15-119	10m Chip	634.0		0.3	7	5	35	2.5	2.5
JH29-259	Talus Fine	131		0.3	48	2	97	2.5	2.5
JH29-260	Talus Fine	935		0.6	42	10	116	2.5	2.5

Sample	Туре	AU (ppb)	AU (gpt)	AG (ppm)	CU (ppm)	PB (ppm)	ZN (ppm)	AS (ppm)	SB (ppm)
JH29-261	Talus Fine	471		0.2	39	9	111	2.5	2.5
JH29-262	Talus Fine	1191		0.4	39	3	95	2.5	2.5
JH29-263	Talus Fine	369		0.3	62	10	150	13	2.5
JR12- 84	Talus Fine	311.0		0.6	88	11	134	15.0	5.0
JR12- 85	Talus Fine	35.0		0.1	57	7	113	2.5	2.5
JR12- 86	Talus Fine	136.0	<u> </u>	0.5	122	21	142	14.0	2.5
JR12- 87A	Talus Fine	217.0		0.3	69	6	122	2.5	2.5
JR12- 87B	Grab	2.5		0.1	16	1	62	2.5	2.5
JR12- 88	Talus Fine	219.0		0.3	78	6	103	2.5	2.5
JR12- 89	Talus Fine	154.0		0.2	85	7	115	10.0	7.0
JR12- 90	Talus Fine	75.0		0.2	112	10	120	2.5	12.0
JR12- 91	Talus Fine	66.0		0.7	158	22	132	27.0	2.5
JR12- 92	Talus Fine	48.0		0.3	102	14	143	28.0	6.0
JR12- 93	Talus Fine	25.0		0.1	83	15	138	10.0	2.5
JR12- 94	Talus Fine	14.0		0.1	66	11	116	5.0	2.5
JR12- 95	Talus Fine	52.0		0.4	89	20	159	22.0	2.5
JR12-96	Talus Fine	66.0		0.4	100	20	134	21.0	2.5
JR12- 97	Talus Fine	13.0		0.2	88	16	152	18.0	2.5
JR12- 98	Talus Fine	32.0		0.1	148	21	157	8.0	2.5
JR12- 99	Talus Fine	50.0		0.4	134	18	137	23.0	2.5
JR12-100	Talus Fine	28.0		0.3	95	18	114	10.0	2.5
JR12-101	Talus Fine	11.0		0.2	72	47	109	2.5	2.5
JR12-102	Talus Fine	12.0		0.4	59	34	165	24.0	2.5
DM 9- 82	Grab	21.0		0.1	4	7	23	2.5	2.5
DM 9- 85	Grab	3500		1.2	8	8	38	2.5	2.5
DM 9- 86	Grab	180.0		0.1	8	6	12	2.5	2.5
DM 9- 87	Grab	68.0		0.1	8	8	11	2.5	2.5
DM27-157	5m Chip		3.22	1.6					
DM27-158	Grab		0.27	0.6					
DM27-158	Grab		0.24	0.4					

The 5m wide north-south trending albite \pm silica \pm pyrite alteration zone in the central portion of the Ban 2 claim (Figure 7a) was chip sampled and returned 3.22 gpt (Figure 7b). Five, 10m wide representative talus fine samples taken along strike analyzed between 130 and 1200 ppb gold. As with the Ram Reef and Cliff Zones, mechanical weathering and transport tends to create relatively large areas of elevated gold in talus fines. The result is a 50m wide highly anomalous zone of talus fines which has a 5m weakly mineralized source.

Three talus fine samples obtained along the ridge to the east (DH13-167, 170 and 171) returned 357, 260 and 453 ppb gold, respectively. Each sample was obtained from locally derived albite + quartz stockwork zone talus. Rock samples of nearby albitic + quartz stockwork + pyrite bedrock upslope from the talus fine samples analyzed <0.2 gpt. This lends further support to the fact that talus fine samples tend to be more anomalous in gold than the source rock.

4.3 BANDIT (MAIN GRID)

4.3.1 Geology

Geological mapping and sampling during 1992 concentrated on the Cliff Zone and East Zones, an area roughly bounded by L3+00E and L10+00E between 5+00 and 7+00S. Mapping was conducted to establish continuity of mineralization and alteration in the search for a medium-sized low-grade bulk tonnage deposit.

The Cliff zone is actually a series of discrete alteration zones within the package of Stikine Assemblage sediments and volcaniclastics (Figure 8a). The rocks may be locally intensely altered and deformed, or relatively fresh. Gold mineralization is related to sulphide content within the intensely albite \pm silica altered zones.

These distinctive albite ± silica alteration zones have been documented with variable features: sharp well-defined contacts or gradational alteration contacts and strong to pervasive albitic alteration with varying amounts of quartz vein/stockwork or brecciation overprint. The only common features are total replacement of protolith and elevated gold values associated with "blebs" of pyrite up to 30cm in diameter. These alteration zones have been documented on the map legend as "Albitized and Silicified Zone" (unit 8). This alteration assemblage has also been documented in the pre-Upper Triassic Stikine Assemblage elsewhere in the area (Holbek 1988).

This alteration assemblage is fracture controlled, usually bedding parallel and typically consists of multistage brecciation and stockwork. The zones are folded within the pre-Upper Triassic package, and not seen within the

Table 4: 1992 Main Grid Summary of Sample Geochemistry

SAMPLE	EAST	NORTH	ТҮРЕ	AU (ppb)	Au (gpt)	Ag (ppm)	As (ppm)	SB (ppm)	CU (ppm)
	-1400	-600	Talus Coarse	196		0.1	2	2.5	44
	-1400	0	Talus Coarse	44		0.1	2	2.5	35
	-1500	0	Talus Coarse	42		0.1	2	2.5	25
	-1600	0	Talus Coarse	90		0.1	2	2.5	36
	-1300	50	Talus Coarse	7		0.1	2	2.5	36
	-1400	50	Talus Coarse	25		0.1	2	2.5	32
	-1500	50	Talus Coarse	56		0.1	2	2.5	28
	-1600	50	Talus Coarse	31		0.1	2	2.5	25
	-1300	-100	Talus Coarse	19		0.1	2	2.5	15
	-1400	-100	Talus Coarse	2		0.1	2	2.5	31
	-1500	-100	Talus Coarse	36		0.1	2	2.5	27
	-1300	-50	Tatus Coarse	26		0.1	2	2.5	17
	-1400	-50	Talus Coarse	20		0.1	2	2.5	25
	-1500	-50	Talus Coarse	179		0.1	2	2.5	10
	-1600	-50	Talus Coarse	171		0.1	2	2.5	8
	-1300	-200	Talus Coarse	2		0.1	2	2.5	42
	-1400	-200	Talus Coarse	47		0.1	2	2.5	21
	-1500	-200	Talus Coarse	54		0.1	2	2.5	23
	-1600	-200	Talus Coarse	181		0.1	2	2.5	33
	-1300	-150	Talus Coarse	12		0.2	2	2.5	21
	-1400	-150	Talus Coarse	750		0.3	2	2.5	10
	-1500	-150	Talus Coarse	79		0.1	2	2.5	11
	-1600	-150	Talus Coarse	2		0.1	2	6	7
	-1300	-300	Talus Coarse	41		0.1	2	2.5	13
	-1400	-300	Talus Coarse	73		0.1	2	2.5	17
	-1500	-300	Talus Coarse	2		0.1	8	7	35
	-1600	-300	Talus Coarse	18		0.1	2	2.5	15
	-1300	-250	Talus Coarse	13		0.1	23	2.5	34
	-1400	-250	Talus Coarse	5		0.1	2	2.5	19
	-1300	-400	Talus Coarse	30		0.1	2	2.5	61
	-1400	-400	Talus Coarse	149		0.1	33	2.5	71
	-1300	-350	Talus Coarse	144		0.1	2	2.5	8

20

SAMPLE	EAST	NORTH	TYPE	AU (ppb)	Au (gpt)	Ag (ppm)	As (ppm)	SB (ppm)	CU (ppm)
	-1400	-350	Talus Coarse	143		0.1	2	2.5	52
	-1300	-500	Talus Coarse	339		0.2	2	2.5	49
	-1400	-500	Talus Coarse	54		0.2	2	2.5	99
	-1300	-450	Talus Coarse	100		¹ 0.1	2	2.5	41
	-1400	-450	Talus Coarse	105		0.1	2	2.5	66
	-1300	-600	Talus Coarse	26		0.1	2	2.5	79
DH15-180	-1450	300	Grab	2		0.1	2	7	29
DH15-181	-1455	106	Grab (TS)	12200	0.35	1.6	5	2.5	1
DH16-184	1080	630	Talus Fine	18		0.1	34	2.5	102
DH16-185	1100	685	Talus Fine	6		0.1	15	2.5	33
DH16-186	1130	680	Talus Fine	2		0.1	2	2.5	24
DH16-187	1190	696	Talus Fine	212		0.4	53	11	164
DH16-188	1250	615	Talus Fine	183		0.6	110	8	355
DH16-189	1365	600	Talus Fine	38		0.1	2	2.5	54
DH16-190	1395	650	Talus Fine	96		0.1	11	2.5	57
DH16-191	1440	690	Talus Fine	71		0.1	2	2.5	49
DH16-192	1485	685	Talus Fine	189		0.2	41	5	52
DH16-193	1450	620	Talus Fine	564		0.6	130	2.5	217
DM10- 88	-1375	-275	Float	65		0.2	2	2.5	58
DM10- 90	-1350	-360	Grab	38		0.1	24	7	39
DM10- 91	-1550	-470	Grab	12		0.1	2	2.5	3
DM10- 92	-1750	-500	Float	10		0.4	28	2.5	23
DM11-93	-1450	106	Float	3740	0.11	0.1	8	2.5	2
DM11- 94	-1430	-20	Float	543		0.1	2	2.5	5
DM11-95	-1140	50	Float	6		0.1	2	6	118
DM11-96	-1260	-75	Float	258		0.2	2	2.5	4
DM11-97	-1290	-445	Grab	27		0.1	2	2.5	93
DM11- 98	-1305	-505	Float	290		0.1	2	2.5	21
DM11- 99	-1315	-400	Grab	39		0.1	2	7	30
DM11-100	-1430	-215	Float	132		0.1	15	2.5	9
DM11-101	-1315	-190	Float	2		0.1	2	2.5	5
DM12-102	-1450	105	2m Chip	13400		2.3	13	2.5	1
DM12-103	-1500	140	Float	7500		1.5	14	5	4

		T			<u> </u>	1	r		1
SAMPLE	EAST	NORTH	TYPE	AU (ppb)	Au (gpt)	Ag (ppm)	As (ppm)	SB (ppm)	CU (ppm)
DM12-104	-1570	180	Grab	43		0.1	11	7	37
DM12-105	-1440	75	Float	7400		1.6	8	2.5	1
DM12-106	-1430	65	Float	9600		2	20	2.5	3
DM13-109	500	-1700	Grab	63		0.5	10	2.5	79
DM13-111	1050	-1400	Grab	762		3	7	2.5	1224
DM13-112	1250	-1350	Grab	405		0.4	2	2.5	10
DM15-121	1060	-900	Grab	797		0.7	2	2.5	42
DM15-122	1250	-720	Grab	321		0.2	2	2.5	4
DM15-123	1410	-500	Grab	318		0.2	2	2.5	28
DM15-124	1510	-770	Grab	35		0.1	2	2.5	11
DM17-125	550	-1040	Grab	9		0.1	2	2.5	3
DM17-126	150	-975	Grab	135		0.1	2	2.5	4
DM17-127	50	-865	Grab	44		0.2	2	2.5	2
DM17-128	-20	-875	Grab	49		0.1	2	2.5	8
DM17-129	-30	-885	Grab	25		0.1	6	2.5	17
DM17-131	-455	-915	Grab	17		0.1	2	2.5	5
DM17-132	-430	-1030	Grab	24		0.1	2	2.5	18
DM17-133	-375	-1050	Grab	182		0.7	2	2.5	10
DM17-134	-315	-1055	Grab	2		0.1	2	2.5	- 2
DM17-135	-40	-940	Float	673		1.2	2	2.5	4
DM20-137	-1445	100	Grab	13230		1.9	5	2.5	1
DM21-138	-1365	45	Float		0.18	1.7			
DM22-139	1700	-200	Grab	57		0.1	6	2.5	24
DM22-140	1730	-230	Grab	1178	0.03	0.3	2	2.5	8
DM22-141	1740	-260	Grab	362		0.1	6	2.5	14
DM22-142	1750	-270	Grab	207		0,1	2	2.5	15
DM22-143	1800	-300	Grab	9710	0.25	2.7	5	6	159
DM23-145	-580	-1165	Grab	79		0.1	9	2.5	10
DM23-146	-535	-1180	Float	80		0.1	2	2.5	55
DM23-147	-920	-1300	Grab	951		0.3	2	2.5	11
DM24-148	1125	-1050	Grab	2		0.1	2	2.5	45
DM24-149	1200	-1025	Grab	77		0.1	2	2.5	12
DM24-150	1185	-1015	Grab	2		0.1	2	2.5	9

SAMPLE	EAST	NORTH	TYPE	AU (ppb)	Au (gpt)	Ag (ppm)	As (ppm)	SB (ppm)	CU (ppm)
DM24-151	-1410	75	Grab		0.45	4.8			
DM25-152	-1250	-5	Float		0.26	4.1			
DM25-153	-1325	25	Float	<u></u>	0.22	3.1			
DM28-160	-1490	5	Float		0.02	1.4			· ·
DM28-161	-1472	95	Float		0	1.4			
JH16-131	1040	380	Grab	6		0.1	2	2.5	0
JH16-132	1055	315	Talus Coarse	6		0.1	2	2.5	3
JH16-133	1055	315	Talus Fine	27	1	0.1	2	2.5	8
JH17-134	1080	530	Talus Coarse	7		0.1	35	6	53
JH17-135	1100	575	Talus Coarse	2		0.1	2	2.5	7
JH17-136	1130	580	Talus Coarse	203		0.2	2	2.5	7
JH17-137	1140	600	6m Chip	15		0.2	78	6	249
JH17-138	1190	595	Talus Coarse	27		0.1	20	8	68
JH17-139	1245	620	Grab	116		1.1	145	6	307
JH17-140	1250	615	Talus Coarse	94		0.4	40	2.5	93
JH17-141	1275	615	Grab	62	-	0.5	79	2.5	203
JH17-142	1315	600	10m Chip	52		0.1	14	2.5	28
JH17-143	1315	600	5m Chip	30		0.4	29	5	211
JH17-144	1360	630	3m Chip	118		0.4	10	2.5	8
JH17-145	1395	650	Talus Coarse	34		0.1	2	2.5	14
JH17-146	1440	690	Talus Coarse	72		0.2	2	6	16
JH17-147	1485	685	Talus Coarse	61		0.1	2	7	15
JH17-148	1450	620	Talus Coarse	123		0.2	2	7	75
JH18-150	650	-750	10m Chip	523		0.1	2	2.5	3
JH18-151	655	-745	12m Chip	76		0.1	2	2.5	1
JH18-152	665	-735	16m Chip	38		0.1	2	2.5	5
JH18-153	670	-710	20m Chip	111		0.1	2	2.5	2
JH18-154	675	-690	15m Chip	242		0.1	2	2.5	51
JH18-155	675	-680	15m Chip	264		0.1	2	2.5	4
JH18-156	685	-675	10m Chip	356		0.2	2	2.5	15
JH18-157	680	-670	15m Chip	375		0.2	2	2.5	30
JH18-158	675	-660	15m Chip	940		0.3	6	2.5	70
JH18-159	670	-655	10m Chip	765		0.1	2	2.5	1

SAMPLE	EAST	NORTH	TYPE	AU (ppb)	Au (gpt)	Ag (ppm)	As (ppm)	SB (ppm)	CU (ppm)
JH18-160	680	-630	15m Chip	93		0.1	2	2.5	6
JH18-161	677	-620	9m Chip	517		0.2	2	2.5	4
JH18-162	675	-610	4m Chip	25		0.1	5	2.5	20
JH18-163	675	-600	15m Chip	212		0.1	2	2.5	5
JH18-164	665	-590	17m Chip	78		0.1	2	2.5	60
JH18-165	650	-580	15m Chip	2		0.1	2	2.5	88
JH18-166	795	-585	5m Chip	44		0.1	5	2.5	41
JH18-167	795	-590	8m Chip	93		0.1	2	2.5	7
JH18-168	795	-595	15m Chip	9		0.1	2	2.5	41
JH18-169	715	-580	4m Chip	71		0.1	2	2.5	10
JH18-170	718	-585	2m Chip	14		0.1	2	2.5	64
JH18-171	745	-580	10m Chip	103		0.1	2	2.5	2
JH18-172	760	-570	10m Chip	271		0.1	2	2.5	2
JH18-173	762	-585	30m Chip	31		0.1	2	2.5	43
JH18-174	763	-595	5m Chip	226		0.1	2	2.5	16
JH18-175	765	-605	15m Chip	26		0.1	2	2.5	33
JH19-176	1215	-615	10m Chip	705		0.4	21	2.5	34
JH19-177	1205	-615	10m Chip	100		0.1	2	2.5	5
JH19-178	1195	-615	10m Chip	1162	0.04	0.5	2	2.5	4
JH19-179	1190	-610	10m Chip	1045	0.03	0.4	2	2.5	6
JH19-180	1187	-605	10m Chip	285		0.2	6	2.5	57
JH19-181	1184	-600	2m Chip	2110	0.06	0.9	2	2.5	5
JH19-182	1180	-595	10m Chip	922		0.3	2	2.5	3
JH19-183	1160	-590	10m Chip	340		0.1	2	2.5	0
JH19-184	1155	-586	10m Chip	264		0.1	2	2.5	0
JH19-185	1150	-583	10m Chip	817		0.2	2	2.5	80
JH19-186	1145	-580	10m Chip	51		0.1	2	2.5	36
JH20-187	385	-660	7m Chip	24		0.2	2	2.5	62
JH20-188	380	-650	10m Chip	113		0.2	2	2.5	34
JH20-189	378	-640	10m Chip	72		0.1	2	2.5	33
JH20-190	375	~635	10m Chip	70		0.1	2	2.5	42
JH20-191	373	-625	10m Chip	260		0.1	2	2.5	21
JH20-192	370	-615	10m Chip	98		0.1	2	2.5	23

undeformed Stuhini. The age of alteration and mineralization is believed to be pre-Stuhini, possible genetically and temporally related to the emplacement of the large pre-Upper Triassic diorite pluton to the east of the property.

The Ram Reef zone is an extremely linear, fracture-controlled, intense albite ± silica alteration of mafic pyroclastics (believed to be pre-Upper Triassic Stikine Assemblage), and is similar mineralogically to the Cliff Zones. The only apparent difference between these zones is the extremely linear and undeformed nature of the Ram Reef in contrast to the intensely folded Cliff Zone, but they may be genetically related.

4.3.2 Geochemistry

Sixty-eight continuous chip samples were taken over a total of 720 metres of altered and mineralized rocks in 5 separate areas (Figure 8b, Table 4). The samples were representative continuous-channel chips and did not over-emphasize high grade pods of massive pyrite which are so common in these altered zones. The samples were taken over widths varying from 2 to 15 metres and occasionally over multiple rock types. The sampling was performed to determine continuity of grade across large zones of moderate to intense alteration and sulphidization to test for a bulk mineable target. Previous samples in these areas were restricted to zones of intensely altered and higher grade mineralization and almost always contained >500 ppb gold. Many grab samples obtained over the years have assayed >1 gpt gold.

The results of the chip sampling and other sampling in the area confirms that higher concentrations of gold are associated with massive sulphide blebs and not with disseminated sulphides throughout the alteration zones. Since these sulphide blebs are only found locally within folded and faulted alteration zones, gold mineralization in this area is discontinuous and erratic.

The East zone, a very strongly albitic ± silica stockwork + pyrite altered mafic tuff, indicates 40m averaging 1380 ppb gold with very limited strike potential (1991 grab samples returned 3.4 and 4.1 gpt). Detailed sampling across similar zones within the Cliff Zone returned negligible gold values. Of 57 samples collected, only five samples contained greater than 500 ppb gold. Within the Cliff Zone however, a zone of similar alteration but containing distinctive and abundant chalcopyrite, malachite and azurite in addition to pyrite, yielded three chip samples (JH22-217, -218, -221) containing 17.6, 5.9 and 5.2 gpt respectively. This zone appears to be 5m wide with a limited strike potential of approximately 100 to 130 metres. The zone is faulted, and bound by detailed sampling to the east and west (Figure 8b).

4.3.3 Geophysics

Eight line kilometres of pole-dipole Induced Polarization survey was completed over the Cliff zone and along strike to the west (Appendix V). The intent of the survey was to determine the continuity and possible strike extent of pyritic enriched alteration zones beneath talus cover.

The alteration zones are typically narrow and since the dip relative to grid line slope is nearly perpendicular well formed "pant-leg" anomalies are common. Many of the resistivity anomalies strike across the entire grid and appear to represent lithological and alteration differences.

Chargeability anomalies D and F (Appendix V) are roughly parallel and may represent repetition of an albitic ± silicified ± pyrite unit due to large scale folding. Anomaly E is a resistivity low and chargeability high, mapping confirms the presence of a sheared fault structure, perhaps originally the fold axis between anomalies D and F. Anomaly C may represent the Ram Reef zone, although the size of the resistivity and chargeability anomaly is unexplained. Anomaly B represents high chargeability and low resistivity and is explained by the disseminated sulphides throughout the mafic Stuhini volcaniclastic rocks. Anomaly A probably indicates the Post Zone mineralization, refer to Section 4.1.

5.0 SUMMARY AND CONCLUSIONS

The BANDIT property is located 130 kilometres west of Telegraph Creek and consists of one-hundred forty two units held by North American Metals Corp. Access to the property is by helicopter, a two-wheel drive road passes 10 kilometres to the north of the property. The claims were originally staked in 1981, following discovery of anomalous gold values in talus fine samples along the steep slopes at the headwaters of Sheep Creek.

Geological mapping and sampling at 1:5,000 scale on the Cliff and East zones indicate an erratic gold distribution. 1:2,000 scale mapping and sampling on the newly discovered Post Zone delineated a shear hosted target grading up to 15.3 gpt Au over a minimum strike length of 300 meters (talus only) with an unknown width. Nine line km of Induced Polarization survey assisted in the understanding of the structures and lithology near the Cliff and Ram Reef Zones and increased the knowledge of the Post Zone geometry. Mapping and sampling failed to locate the source of a quartz vein boulder that returned 260 gpt gold on the Ban claim but did locate mineralization similar to other parts of the property.

Gold values are associated with structurally controlled alteration and sulphide mineralization. Sulphide mineralization ranges from trace disseminations to massive pods but is restricted to albitic and silicified, folded mafic volcanics of the Stikine Assemblage. Gold does not appear to have any association with Cu, Zn, Pb, Ag, As or Sb.

Trenching on the Post zone was inconclusive since no outcrop was exposed, but this zone represents the best potential for sizeable economic gold mineralization on the property. Other targets tested todate are discontinuous with limited strike potential and inconsistent and erratic gold values.

Further work is recommended on the Post Zone to determine the width and strike extent of the zone.

6.0 BIBLIOGRAPHY AND SELECTED REFERENCES

Brown, D. and Bradford, J., (1992) 1:50 000 Geology of 104KSE and 104JSW, in prep.

Fipke, C.E. (1989) "Assessment Report on Ban 1,2,4 Claims" British Columbia Assessment Report 19323, 55p.

Holbek, P.M., (1988) "Geology and Mineralization of the Stikine Assemblage, Northwestern British Columbia, Unpublished M.Sc. Thesis, University of British Columbia.

Howe, J.M. and Marud, D.E. (1992) "Geological, Geochemical and Geophysical Assessment Report on the Bandit Property" British Columbia Assessment Report.

Howe, J.M. (1991) "Internal Year End Report of Activities on the Bandit Property" In-house Report.

Howe, J.M. (1991) "Geophysical and Geochemical Assessment Report on the Bandit Property" British Columbia Assessment Report 21990, 17p.

Marud, D.E. (1990) "Diamond Drilling Report on the Bandit Property." British Columbia Assessment Report 20669, 7p.

Moffat, L. and Walton, G. (1987) "Geology and Geochemistry and Physical Work on the Bandit Group." British Columbia Assessment Report 16528

Shaw, D. (1983) "Notes on the Geology of the Cliff Section, Bandit 1 Claim" Inhouse report, 8p.

Shaw, D. (1984) "Summary Report 1983" In-house report, 12p.

Schiller, E. and Fipke, C.E. (1988) "Assessment Report on Bandit Claims" British Columbia Assessment Report 17745, 55p.

Schiller, E. and Fipke, C.E. (1989) "Assessment Report on Bandit and Hijack Claims" British Columbia Assessment Report 18021, 37p.

Southam, P.J. (1991) "1991 Assessment Report on the Ban Claims." British Columbia Assessment Report 21842, 8p.

Souther, J.G. (1970) "Geology of Tulsequah and Juneau." Geological Survey of Canada, Map 1262A.

Thicke, M. and Shannon, K., (1982) "Geological and Geochemical Survey, Bandit Group." British Columbia Assessment Report 10755, 11p.

Thicke, M. and Shaw, D., (1983) "Structural, Geological and Geochemical Survey, Bandit Group." British Columbia Assessment Report 11824, 13p.

Walton, G. (1985) "Compilation Report, Geology and Geochemistry, Bandit Area." In-house report, 18p.

APPENDIX I

(1992 Sample Descriptions)

SAMPLE	TYPE	WIDTH	Au ppb	AREA	DESCRIPTION
DM9-82	Grab		21	Ban	Argillic felsic int., 1-5% c.g. py
DM9-85	Float		3500	Ban	Sil. phyllite, 1-3% py
DM9-86	Float		180	Ban	Sil. felsic, 5% clotty py.
DM9-87	Float		68	Ban	Qtz sw, sil, tr grey sxs.
DM10-88	Float		65	Bandit Z	Qtz vn with 1% py and 1% tet ?
DM10-90	Grab		38	Bandit Z	Sil breccia, tr f.g diss py
DM10-91	Grab		12	Bandit Z	Bx'd imst, local gouge, tr py
DM10-92	Float		0	Bandit Z	Fit. bx, qtz clasts, tr py
DM11-93	Float		3740	Bandit Z	qtz, argillic alt'n, 1% py
DM11-94	Float		543	Bandit Z	Resample 3924, albitite feisic, 2% py
DM11-95	Float		6	Bandit Z	Pyx phyric Stuhini, Fe cbt alt'n
DM11-96	Float		258	Bandit Z	Sil, alb. felsic, tr py
DM11-97	Grab		27	Bandit Z	Sil bx, cbt stringers, 1-3% hem
DM11-98	Float		290	Bandit Z	sil, white qtz stringers, 1-3% py
DM11-99	Grab		39	Bandit Z	Perv ank, qtz sw, tr diss py
DM11-100	Float		132	Bandit Z	Pyritic argillic, felsic dyke, tr diss py
DM11-101	Float		0	Bandit Z	White albitite Int., tr f.g. diss py
DM12-102	Chip	2m	13000	Post	Sil, qtz sw, 10% py
DM12-103	Float		7500	Post	as 102
DM12-104	Grab		43	Post	Fe cbt bx, stringer and diss py
DM12-105	Float		7400	Post	as 102
DM12-106	Float		9600	Post	as 102, 1-2% py
DM13-109	Grab		63	Bandit Y	Bedded, sil, bleached pyritic mafic tuffs
DM13-111	Grab		762	Bandit Y	30cm skam in imst, mv py
DM13-112	Grab		405	Bandit Y	cbt bx, tr - 1% diss py
DM14-114	Grab		11	Sheep Ck	Sloko dyke, chalcedonic bx, sw
DM14-116	Grab		8	Sheep Ck	Sloko dyke, vuggy chalcedonic bx
DM14-117	Grab		25	Sheep Ck	Fault contact diorite-phyllites
DM14-118	Float		171	Sheep Ck	Chalcedonic sw in sil bx, diss py
DM14-119	Grab		137	Sheep Ck	Ferricrete
DM14-120	Grab		1695	Sheep Ck	2m albite dyke, tr py
DM15-121	Grab		797	Bandit Y	sheared ank. tuffs
DM15-122	Grab		321	Bandit Y	1m albitized dyke, tr-1% py
DM15-123	Grab		318	Bandit Y	1m albitized dyke, tr py in clots
DM15-124	Grab		35	Bandit Y	ank, chi phyllite, cbt stringers
DM17-125	Grab		9	Bandit Y	alb. dyke, 10% clotty diss. hem
DM17-126	Grab		135	Bandit Y	albitized dyke, coarse clots py
DM17-127	Grab		44	Bandit Y	.5 m albitized dyke, 5% diss hem, 1% py
DM17-128	Grab		49	Bandit Y	as above
DM17-129	Grab		25	Bandit Y	1m atz-ser-ov bedded tuffs
DM17-131	Grab		17	Bandit Y	3m albitized dyke, 3% c.g euhedral py
DM17-132	Grab		24	Bandit Y	2m strat, pyritic horizon, 1-3% py
DM17-133	Grab		182	Bandit Y	albitized dyke, 3% clotty py
DM17-134	Grab		O	Bandit Y	as above, 5% cbt veinlets
DM17-135	Float	1	673	Bandit Y	Quartz boulders, 10% clotty py
DM20-137	Grab		13000	Post	As DM12-102
DM21-138	Float		6340	Post	White bleached, sil volc, 2-3% py

-

OW22-130 Grab F7 Sheep Ck Amabilized dyke, 2% cliss hem. DM22-140 Grab 1176 Sheep Ck Amabilized dyke, 2% cliss hem. DM22-141 Grab 202 Sheep Ck Amabilized dyke, 5% clip, py DM22-142 Grab 202 Sheep Ck Amabilized dyke, 1% clip, py DM22-142 Grab 9710 Sheep Ck Ambilized dyke, 1% clip, py DM23-145 Grab 9710 Sheep Ck Amkine Multip to 5% clip, py DM23-146 Grab 9710 Bendit Z Ankine male volic, 1% clip, py DM23-147 Grab 0.8 Bendit Y Ankine calcle sw, all tx DM24-148 Grab 0 Bendit Y Silvolos, try end hemattle DM24-149 Grab 15200 Post Silvolos, try end hemattle DM24-151 Grab 12201 Silvolos, try ord, py DM24-152 Grab 2200 Ban ablized dyke + 12% cpy DM24-153 Grab 2200 Ban Silvolos, try on, 5% py <	SAMPLE	TYPE	WIDTH	Au ppb	AREA	DESCRIPTION
DM22-140 Grab 177 Sheep Ck Im abilized dyke, 2% dis hem. DM22-140 Grab 362 Sheep Ck Im abilized dyke, 2% dis hem. DM22-142 Grab 362 Sheep Ck Im abilized dyke, 5% dis hem. DM22-143 Grab 971 Sheep Ck Im abilized dyke, 5% dis py DM22-143 Grab 971 Sheep Ck Im abilized dyke, 5% dis hem. DM22-143 Grab 971 Sheep Ck Im abilized dyke, 5% dis hem. DM22-143 Grab 971 Sheep Ck Im abilized dyke, 5% dis hem. DM22-143 Grab 971 Sheep Ck Im abilized dyke, 5% dis hem. DM23-145 Grab 971 Sheep Ck Im abilized dyke, 5% dis hem. DM23-143 Grab 951 Bandt Z Alvander byke, 17(% py DM24-140 Grab 0 Bandt Z N/kemito calche sw, si bx DM24-150 Grab 10 Bandt Z Sw, 1-3% py DM24-151 Grab 270 Ban abilized dyke + tpt xw, 5% py						
DM22-140 Grab 1178 Sheep Ck Im abilized tyke, 5% c.g. py DM22-142 Grab 207 Sheep Ck abilized trut with up to 5% c.g. py DM22-142 Grab 207 Sheep Ck abilized trut with up to 5% c.g. py DM22-143 Grab 770 Bendt Z Nake male vole, 1% f.g. py DM23-146 Grab 00 Bendt Z Nake male vole, 1% f.g. py DM24-149 Grab 0 Bendt Z Nake male vole, 1% f.g. py DM24-149 Grab 0 Bendt Z Nake male vole, 1% f.g. py DM24-149 Grab 0 Bendt Z Nake male vole, 1% f.g. py DM24-151 Grab 15250 Post Sk qtz sw, 1-3% py DM24-152 Grab 12250 Post Sk qtz sw, 1-3% py DM24-152 Grab 2200 Ben abilized dyke st qtz vns, 5% py DM24-152 Grab 2200 Ben abilized dyke st qtz vns, 5% py DM24-163 Grab 100 Fost sheared argiline, qtzc vts w, trg/ <	DM22-139	Grab		57	Sheep Ck	2m albitized dyke, 2% diss hem.
DM22-142 Grab 332 Sheep Ck an ablitzed tyke, 5% cp, py DM22-142 Grab 9710 Sheep Ck afm white bud qu m, 10% diss py DM23-145 Grab 9710 Sheep Ck afm white bud qu m, 10% diss py DM23-145 Grab 961 Bendit Z Nic mite cole, 1% (p py DM23-146 Grab 961 Bendit Z Nic mite cole, 1% (p py DM24-148 Grab 0 Bendit Y Silvoice, try and hematitie DM24-149 Grab 0 Bendit Y Silvoice, try and hematitie DM24-149 Grab 1550 Post Silvoice, try and hematitie DM24-150 Grab 15500 Post Silvoice, try, 3% (py DM24-151 Grab 15200 Post Silvoice, try, 3% (py DM24-153 Float 1520 Post Silvoice, try, 3% (py DM27-157 Grab 270 Ban 2 bull qtz vns, try, 3% (py DM27-159 Grab 140 Post Silvoice silvoice, try, 3% (py	DM22-140	Grab		1178	Sheep Ck	1m albitized dyke, 5% c.g. py
DM22+42 Grab 207 Sheep Ck abitized firt. with up to 5% cg. py DM22+143 Grab 9710 Sheep Ck abitized firt. with up to 5% cg. py DM23+46 Grab 97 Bandt Z Nucbioy abitized dyke, tr diss py DM23+46 Grab 96 Bandt Z Nuc male volc. 1% tp py DM24+46 Grab 0 Bandt Y Ankentic calcite w, sit by DM24+47 Grab 0 Bandt Y Nateritic calcite w, sit by DM24+48 Grab 0 Bandt Y Nateritic calcite w, sit by DM24+51 Grab 0 Bandt Y Nateritic calcite w, sit by DM24+51 Grab 15250 Post Battzed dyke, risk py DM27+52 Float 7540 Post Batzzet vite vite vite vite vite vite vite vi	DM22-141	Grab		362	Sheep Ck	2m albitized dyke, 5% c.g. py
DM22-14:3 Grab 9710 Sheep Ck. 6 m white build rzt vn. 10% diss py DM23-146 Grab Bandt Z Pubbley albitzed dyke, tr diss py DM23-146 Grab 951 Bandt Z 10m sil mafic volc, 1% py DM24-149 Grab 0 Bandt Y Ankent volc, 1% py DM24-149 Grab 0 Bandt Y Ankent volc, 1% py DM24-150 Grab 0 Bandt Y Ankent volc, 1% py DM24-160 Grab 158 albitzed dyke, tr -1% py DM24-161 DM24-150 Grab 12820 Post Sil qiz xe, 1-5% py DM25-153 Float 7540 Post Blached Sil volc, tr oxd, py DM27-159 Grab 270 Ban Sil bitzed dyke, tr jz xn, 5% py DM27-158 Grab 270 Ban Sil bitzed dyke, tr jz xn, 5% py DM27-169 Grab 140 Post Sil dyz zw, 1-5% py DM28-160 Frab 0 Ban Sin qyz zw, 1-6% py DM38-160 Grab 0	DM22-142	Grab		207	Sheep Ck	albitized int. with up to 5% c.g. py
DM23.146 Grab P6 Bandt Z Ank male vole., 1% tg py DM23.147 Grab 0 Bandt Z Ank male vole., 1% tg py DM24.148 Grab 0 Bandt Z Ank male vole., 1% tg py DM24.149 Grab 0 Bandt Y Si voles, tp y and hematte DM24.150 Grab 0 Bandt Y Si voles, tp y and hematte DM24.151 Grab 15220 Post Sit voles, tr ys, and hematte DM24.151 Grab 15220 Post Sit voles, tr ys, and hematte DM24.152 Float 3220 Ban abitized dyke, tr 1% py DM24.157 Grab 3220 Ban abitized dyke, tr 1% py DM24.159 Grab 3220 Ban sil and arkeritic chloritic tufs DM24.160 Float 650 Post Sil dz zw, 5% py DM24.160 Grab 0 Bandt 4 arkeritic chloritic tufs DM24.160 Grab 0 Bandt 4 arkeritic chloritic tufs DM24.160	DM22-143	Grab		9710	Sheep Ck	.5 m white bull qtz vn, 10% diss py
DM23147GrabB0Bandit ZAnk. mafk volc., 1% (g pyDM23147Grab951Bandit Z10m sli malik volc., 1% (g pyDM24148Grab77Bandit YSli volcs, try and hematikeDM24150Grab0Bandit YSli volcs, try and hematikeDM24150Grab15200PostSli volcs, try and hematikeDM24151Grab15200PostSli volcs, try and hematikeDM24151Grab15200PostSli volcs, try and hematikeDM24152Grab15200PostBlandit YDM24153Grab3220Banabitizad dyke + qtz vns, 5% pyDM27159Grab2200Banabitizad dyke + qtz vns, 5% pyDM27150Grab270Ban2 buli qtz vns, tr cpy, 3% pyDM27150Grab1400PostSli bx 2-3% sepyDM24161Grab1400PostSli bx 2-3% sepyDM24161Grab0BanArkenitic obitic tufsDM24161Grab0BanGtz vn in stuhini, 1-2% pyDM24162Grab0BanStrong cbt + sli n mafe volcDH15180Grab0BanStrong cbt + sli pyJH1499Grab0BanStrong cbt + sli n mafe volcJH1499Grab0BanStrong cbt + sli pyJH1490Grab54BanNtreme sli plag xwJH14910Grab64BanGtz vn, pods of massive pyJH14102G	DM23-145	Grab		79	Bandit Z	Rubbley albitized dyke, tr diss py
DM2:4:47 Grab 951 Bandt Y Ankorito calcite sw, sib tx DM2:4:49 Grab 0 Bandt Y Ankorito calcite sw, sib tx DM4:4:49 Grab 0 Bandt Y 1.5m abitized tyke, tr-1% py DM4:1:50 Grab 0 Bandt Y 1.5m abitized tyke, tr-1% py DM4:1:51 Grab 15290 Post Sit voics, tr py and hematte DM4:1:51 Grab 15290 Post Sit zes, 1:5% py DM2:1:52 Float 7540 Post Bleached si voic, tr cov, 1% py DM2:1:53 Float 3220 Ban albitzed tyke + qtz vns, 5% py DM2:1:59 Grab 3220 Ban si and ankertic chorito tuffs DM2:1:59 Grab 240 Ban si and ankeritic chorito tuffs DM2:1:50 Grab 0 Bandt Y ankeritic chorito tuffs DM2:1:61 Grab 0 Bandt Y ankeritic chorito tuffs DM2:1:61 Grab 0 Ban Ciz sw, sy fy DH1:4:50	DM23-146	Grab		80	Bandit Z	Ank. mafic volc., 1% f.g py
DM24-148 DM24-149Grab0Bandit YAnkentic calcite sw, sit bxDM24-150Grab0Bandit YSit voles, r py and hematiteDM24-151Grab15200PostSit qt zw, 1-3% pyDM25-152Float7640PostSit qt zw, 1-3% pyDM25-153Float7640PostBleached sit vole, tr oxd, pyDM27-157Grab3220Banabtitzed dyke + qt zws, 5% pyDM27-158Grab220Banabtitzed dyke + qt zws, 5% pyDM27-159Grab220Banabtitzed dyke + qt zws, 5% pyDM27-159Grab240Ban sit and ankertic chorito tuffsDM27-169Grab140PostSit by 2-3% aspyDM26-161Grab0Bandit 4arkertic shear, Stuhini volenciasticsDM26-162Grab0Bandit 4arkertic shear, Stuhini volenciasticsDH15-180Grab0BanQt zw, 5% pyJH14494Grab0BanQt zw, 5% pyJH14495Grab0BanQt zw, 5% pyJH14496Grab0BanQt zw, 12% pyJH14497Grab0BanQt zw, 12% pyJH14498Grab0BanQt zw, 14% pyJH14490Grab0BanQt zw, 14% pyJH14491Grab64BanNames sit aplag swJH14495Grab0BanQt zw, 14% pyJH14410Grab64BanQt zw, 14% py <td>DM23-147</td> <td>Grab</td> <td></td> <td>951</td> <td>Bandit Z</td> <td>10m sil mafic volc, 1% py</td>	DM23-147	Grab		951	Bandit Z	10m sil mafic volc, 1% py
DM24.149 DM24.150Grab77Bandi YSil volcs, rp, and hematiteDM24.151 DM24.151Grab0Bandi Y1.5m ablitzed tyke, tr-1% pyDM25.152 DM25.153Float15200PostSk qtz sw, 1-5% pyDM25.153Float7540PostBleached sli volc, tr oxd, pyDM27.157Grab3220Banablitzed dyke + qtz vns, 5% pyDM27.159Grab220Banablitzed dyke + qtz vns, 5% pyDM27.159Grab240Banablitzed dyke + qtz vns, 5% pyDM27.159Grab260Postsheared argilite, qtz-cht sw, tr pyDM27.159Grab140PostSi bx, 2-3% aspyDM28.161Grab0Bandit 4ankeritic shears, Stuhini volonicaticsDM38.161Grab0Bandit 4ankeritic shears, Stuhini volonicaticsDH15.180Grab0BanSit qtz sw, 5% pyJH14.94Grab0BanSit qtz sw, 5% pyJH14.95Grab0BanStrong cbt + sli n mafe volc.JH14.98Grab0BanStrong cbt + sli n mafe volc.JH14.122Grab0BanStrong cbt + sli n mafe volcJH14.122Grab0BanStrong cbt + sli n mafe volcJH14.122Grab0BanStrong cbt + sli n mafe volcJH14.122Grab54BanInterse sli zeg at n rare py blebsJH14.122Grab54BanInterse sli zeg at n rare py blebs <td>DM24-148</td> <td>Grab</td> <td></td> <td>0</td> <td>Bandit Y</td> <td>Ankeritic calcite sw, sil bx</td>	DM24-148	Grab		0	Bandit Y	Ankeritic calcite sw, sil bx
DM24-190 Grab D Bandti Y 1.5m ablized dyke, tr-1% py DM24-191 Grab 15290 Post Si, qtz sw, 1-5% py DM25-192 Float 8900 Post Bleached sil volc., tr oxd. py DM25-193 Grab 3220 Ban ablitzed dyke + qtz vns, 5% py DM27-187 Grab 220 Ban ablitzed dyke + qtz vns, 5% py DM27-189 Grab 240 Ban sil and ankeritic chloritic taffs DM27-189 Grab 240 Ban sil and ankeritic chloritic taffs DM29-161 Grab 140 Post Sil qtz sw, 5% py DM29-161 Grab 1200 Post Sil qtz sw, 5% py DH15-180 Grab 0 Ban Qtz vn in Stuhini voleniclastics DH14-94 Grab 0 Ban Qtz vn in Stuhini 1-2% py JH14-97 Grab 0 Ban Qtz vn in Stuhini 1-2% py JH14-98 Grab 0 Ban Qtz vn in Stuhini 1-2% py JH14-97 Gr	DM24-149	Grab		77	Bandit Y	Sil volcs, tr py and hematite
DM24-161 Grab 1 5290 Post Ski qtz xx, 1-5% py DM25-163 Float 6800 Post Qtz tx xx, 1-3% py DM25-163 Float 7540 Post Qtz tx xx, 1-3% py DM27-157 Grab 3220 Ban abtitzed dyke + qtz vns, 5% py DM27-169 Grab 2200 Ban sheared argilite, qtz vns, 5% py DM27-169 Grab 2400 Ban sheared argilite, qtz vns, fY py DM27-169 Grab 2400 Ban sheared argilite, qtz vns, fY py DM28-160 Grab 0 Bandt 4 ankertic shear, Stuhini volonicastics DM45-161 Grab 0 Bandt 4 ankertic shear, Stuhini volonicastics DH15-181 Grab 0 Ban Qtz vn in Stuhini, 1-2% py JH14-94 Grab 0 Ban Strong ct + 41 in maic volc. JH14-95 Grab 0 Ban Strong ct + 41 in maic volc. JH14-96 Grab 0 Ban Interse silica + 1ga gtm, fica train	DM24-150	Grab		0	Bandit Y	1.5m albitized dyke, tr-1% py
DM25162 Float B800 Post CitzAx sw, 1-3% py DM25163 Float 7540 Post Bleached sil voic, tr oxd, py DM27169 Grab 3220 Ban abitized dyke + qt vns, 5% py DM27169 Grab 240 Ban sil and ankeritic chloritic tufs DM27169 Grab 240 Ban sil and ankeritic chloritic tufs DM27169 Grab 240 Ban sil and ankeritic chloritic tufs DM28160 Float 650 Post sil and ankeritic chloritic tufs DM29161 Grab 0 Bandit 4 ankeritic shear, Stuhin voloniclastics DH15180 Grab 0 Ban Ankeritic shear, Stuhin voloniclastics JH1494 Grab 0 Ban Strong ctr vin in chl schist JH1495 Grab 0 Ban Strong ctr vin n chl schist JH1496 Grab 0 Ban Strong ctr vin n chl schist JH1496 Grab 0 Ban Strong ctr vin n chl schist <t< td=""><td>DM24-151</td><td>Grab</td><td></td><td>15290</td><td>Post</td><td>Sil, qtz sw, 1-5% py</td></t<>	DM24-151	Grab		15290	Post	Sil, qtz sw, 1-5% py
DM25153Float7540PostBleached sil volc., tr oxd. pyDM27157Grab3220Banalbitzed dyke + qt zvn.s, 5% pyDM27159Grab270Ban2 bull qt vrs.s, tr op, 3% pyDM27159Grab240Bansil and ankeritic chloritic tuffsDM26160Float650Postsheared arglille, qt zcbt sw, tr pyDM26161Grab140PostSil bx, 23% aspyDM26162Grab0Bandt 4ankeritic shear, Stuhini volcriclasticsDH15180Grab0Bandt 4ankeritic shear, Stuhini volcriclasticsDH15480Grab0BanQt z wn in Stuhin, 1-2% pyJH14496Grab0BanStr qt z wn in the schistJH1499Grab0BanStrong cbt + sil in mafic volc.JH1499Grab0BanStrong cbt + sil in mafic volcJH1499Grab0BanIntense silca + plag aftn, pare py blebsJH1410Grab0BanIntense silca + plag aftn, pare py blebsJH14102Grab64BanIntense silca + plag aftn, pare py blebsJH14103Grab64BanCarse talks, sil + plag aftnJH14106Grab64BanSloko, hetero brecciaJH14108Grab64BanNafe tuff, ri% py,JH14109Grab0BanNafe tuff, ri% py,JH14100Grab68BanCoarse talks, sil + plag aftnJH14106Grab <td>DM25-152</td> <td>Float</td> <td></td> <td>8900</td> <td>Post</td> <td>Qtz-bx sw, 1-3% py</td>	DM25-152	Float		8900	Post	Qtz-bx sw, 1-3% py
DM27-157 Grab 3220 Ban abitized dyke + qtz vns, 5% py DM27-158 Grab 270 Ban 2 buil qtz vns, tr cpy, 3% py DM27-159 Grab 240 Ban sil and ankeritic chloritic tuffs DM28-160 Float 650 Post sil and ankeritic chloritic tuffs DM28-161 Grab 0 Band t4 ankeritic shear, Stufnin volcrictastics DH15-180 Grab 0 Band t4 ankeritic shear, Stufnin volcrictastics DH14-94 Grab 0 Ban Qtz vn in Stufni, 1-2% py JH14-95 Grab 0 Ban Agt vn in chl schist JH14-96 Grab 0 Ban Forg vn in chl schist JH14-99 Grab 0 Ban Strong cbt + sil in mafic volc. JH14-101 Grab 0 Ban Intense sil-plag sw JH14-102 Grab 0 Ban Intense sil-plag sw JH14-103 Grab 54 Ban Intense sil-plag sw JH14-106 <td< td=""><td>DM25-153</td><td>Float</td><td></td><td>7540</td><td>Post</td><td>Bleached sil volc., tr oxd. py</td></td<>	DM25-153	Float		7540	Post	Bleached sil volc., tr oxd. py
DM27:158Grab270Ban2 bull qtz vns, tr cpy, 3% pyDM27:159Grab240Bansil and arkeritic choinc tuffsDM28:160Fioat650Postsheard arglillte, qtz-cbt sw, tr pyDM28:161Grab0Bandit 4arkeritic shear, Stuhini volcniclasticsDH15:180Grab0Bandit 4arkeritic shear, Stuhini volcniclasticsDH15:181Grab0Bandit 4arkeritic shear, Stuhini volcniclasticsJH14:94Grab0BanQtz vn in Stuhini, 1-2% pyJH14:95Grab0BanStrong cbt + si in malic volc.JH14:96Grab0BanStrong cbt + si in malic volc.JH14:97Grab0BanStrong cbt + si in malic volc.JH14:98Grab0BanStrong cbt + si in malic volc.JH14:90Grab0BanStrong cbt + si in malic volc.JH14:101Grab0BanStrong cbt + si in malic volc.JH14:102Grab0BanIntense sill-plag swJH14:103Grab0BanQtz vn, pods of mas/ve pyJH14:104Grab26BanQtz vn, pods of mas/ve pyJH14:105Grab0BanQtz vn, pods of mas/ve pyJH14:106Grab68BanStoch, hetero brecciaJH14:107Grab0BanStoch, hetero brecciaJH14:108Grab0BanMalc tuff, 1% py,JH14:109Grab0 <td< td=""><td>DM27-157</td><td>Grab</td><td></td><td>3220</td><td>Ban</td><td>albitized dyke + qtz vns, 5% py</td></td<>	DM27-157	Grab		3220	Ban	albitized dyke + qtz vns, 5% py
DM27:159Grab240Bansil and arkeritic chloritic tuffsDM28:160Float660Postsheared argillite, atzecht sw, tr pyDM29:161Grab140PostSil bx, 2-3% aspyDH5:180Grab0Bandit 4arkeritic shear, Stuhini voleniclasticsDH5:181Grab12000PostSil, qtz sw, 5% pyJH14:94Grab0BanQtz vn in Stuhini, 1-2% pyJH14:95Grab0BanQtz vn in Stuhini, 1-2% pyJH14:96Grab0BanQtz vn in stuhini, 1-2% pyJH14:97Grab0BanPost sil gan tuffs with mafic vole.JH14:98Grab0BanProst sil gan tuffs with mafic vole.JH14:99Grab0BanNtranse sil-plag swJH14:102Grab0BanIntense sil-plag swJH14:103Grab54BanIntense sil-plag swJH14:104Grab64Banresample BN 3988(1991), pods massive pyJH14:105Grab64Banresample BN 3988(1991), pods massive pyJH15:109Grab68BanSloko, hetero brecciaJH15:110Grab26BanMafc tuff, 1% py,JH15:113Grab0BanIntense sil and sw, 2% pyJH15:114Chip15m0BanIntense sil and sw, 2% pyJH15:115Grab0BanIntense sil and sw, 2% pyJH15:116Float24BanIntense	DM27-158	Grab		270	Ban	2 bull qtz vns, tr cpy, 3% py
DM28-160 Float 650 Post sheared argilite, qtz-cbt sw, tr py DM28-161 Grab 140 Post Sil bx, 2-3% aspy DH15-180 Grab 0 Bandit 4 ankertic shear, Stuhini volcniciastics DH15-181 Grab 0 Bandit 4 ankertic shear, Stuhini volcniciastics JH14-94 Grab 0 Ban Qtr vn in Stuhini, 1-2% py JH14-95 Grab 0 Ban Qtr vn in Stuhini, 1-2% py JH14-96 Grab 0 Ban Qtr vn in Stuhini, 1-2% py JH14-99 Grab 0 Ban Qtr vn in Stuhini volc. JH14-99 Grab 0 Ban Ntrong cbt + sil in mafic volc. JH14-90 Grab 0 Ban Intense sil-palg sw JH14-105 Grab 54 Ban Intense sil-palg aitn, rare py blebs JH14-105 Grab 64 Ban resample BN 388(191), pods massive py JH14-106 Grab 26 Ban Coarse taus, sil + plag aitn, JH1	DM27-159	Grab		240	Ban	sil and ankeritic chloritic tuffs
DM28-161 Grab Interfactor Post Sil bx, 2-3% aspy DH15-180 Grab 0 Bandit 4 ankerfüt: shear, Stuhini volcricitastics DH15-181 Grab 12000 Post Sil, qtz sw, 5% py JH14-94 Grab 0 Ban Chz sw, 5% py JH14-95 Grab 0 Ban Qtz sw, 5% py JH14-96 Grab 0 Ban Qtz sw, in Rithini, 1-2% py JH14-97 Grab 0 Ban Qtz + chi sw in malic volc. JH14-98 Grab 0 Ban Strong cbt + sil in malic volc. JH14-98 Grab 0 Ban Intense sil + plag sw JH14-101 Grab 0 Ban Intense sil + plag sw JH14-102 Grab 54 Ban Intense sil + plag sw JH14-106 Float 8 Ban Qtz sw in politi tsil stain JH14-106 Grab 0 Ban Catz w, pods of massive py JH14-106 Grab 0 Ban	DM28-160	Float		650	Post	sheared argillite, qtz-cbt sw, tr py
DH15-180Grab0Bandit 4ankertic shear, Stuhini voloniclasticsDH15-181Grab12000PostSil, qtz sw, 5% pyJH14-94Grab0BanQtz vn in stuhini, 1-2% pyJH14-95Grab0BanQtz vn in stuhini, 1-2% pyJH14-96Grab0BanQtz vn in stuhini, 1-2% pyJH14-97Grab0BanQtz vn in stuhini, 1-2% pyJH14-98Grab0BanRecrystallized qtz vn, 1-2% pyJH14-99Grab0BanStrong cbt + sl in mafe voleJH14-101Grab0BanIntense sl+plag swJH14-102Grab19BanIntense slipa gat'n, rare py blebsJH14-103Grab54BanIntense slipa gat'n, float trainJH14-106Float8BanQtz vn, pods of massive pyJH14-107Grab0BanCoarse tabls, sli + plag at'n, float trainJH14-108Float8BanCoarse tabls, sli + plag at'n, float mainJH14-109Grab26BanCoarse tabls, sli + plag at'nJH15-110Grab26BanCoarse tabls, sli + plag at'nJH15-112Chip15m0BanMafe tuff, 1% py,JH15-113Grab0BanMafe tuff, and wilk qtz vnJH15-113Grab0BanIntense sli and sw, 2% pyJH15-114Chip15m0BanJH15-117ChipBm117JH15-1	DM28-161	Grab		140	Post	Sil bx, 2-3% aspy
DH15-181Grab12000PostSil, qtz sw, 5% pyJH14-94Grab0BanCtz vn In Stuhit, 1-2% pyJH14-95Grab0BanJm qtz vn In chi schistJH14-96Grab0BanCtz + chi sw In maîc volc.JH14-97Grab0BanPecrystalized qtz vn, 1-2% pyJH14-99Grab0BanRecrystalized qtz vn, 1-2% pyJH14-101Grab0BanStrong cbt + sil in maîc volcJH14-102Grab0BanIntense silca + plag atm, rare py blebsJH14-106Grab54BanIntense silca + plag atm, faor py blebsJH14-106Grab0BanQtz + vn, pods of massive pyJH14-106Grab64Banresample BN 3688(1991), pods massive pyJH14-107Grab68BanSloko, hetero brecciaJH15-110Grab26BanMaîc tuff, 1% py,JH15-111ChipSm0BanJH15-112Chip15m0BanJH15-113Grab0BanIntense sil and sw, 2% pyJH15-114Chip15m0BanJH15-115Grab0BanJH15-116Float24JH15-117ChipBm117JH15-118Chip10mJH15-119Chip10mJH15-119Chip10mJH15-119Chip10mJH15-118Chip10mJH15-119 <td>DH15-180</td> <td>Grab</td> <td></td> <td>0</td> <td>Bandit 4</td> <td>ankeritic shear, Stuhini volcniclastics</td>	DH15-180	Grab		0	Bandit 4	ankeritic shear, Stuhini volcniclastics
JH14-94 Grab 0 Ban Cltz vn In Stuhini, 1-2% py JH14-95 Grab 0 Ban Jm qtz vn in chi schist JH14-97 Grab 0 Ban Ctz vn in subini, 1-2% py JH14-99 Grab 0 Ban Ctz vn in subini, 1-2% py JH14-99 Grab 0 Ban Recrystallized qtz vn, 1-2% py JH14-90 Grab 0 Ban Strong cht + sl in mafic volc JH14-101 Grab 0 Ban Intense sil+plag sw JH14-102 Grab 19 Ban Intense sil-plag atrin, rare py blebs JH14-106 Grab 54 Ban Intense sil-plag atrin, rare py blebs JH14-106 Grab 64 Ban Intense sil-plag atrin, rare py blebs JH14-106 Grab 64 Ban Qtz vn, pods of massive py JH14-106 Grab 64 Ban Coarse talus, sil + plag atrin JH15-100 Grab 26 Ban Coarse talus, sil + plag atrin JH15-111 <	DH15-181	Grab		12000	Post	Sil, qtz sw, 5% py
JH14-95Grab0Ban.5m qtz vn in chi schistJH14-97Grab0BanQtz + chi sw in mafic volc.JH14-98Grab0BanRecrystallized qtz vn, 1-2% pyJH14-99Grab0BanStrong ct + sil in mafic volcJH14-101Grab0BanStrong ct + sil in mafic volcJH14-102Grab0BanQtz sw in lapilit uff, 2% pyJH14-105Grab19BanIntense sil-plag swJH14-106Grab54BanIntense sil-plag strin, rare py blebsJH14-106Grab54BanQtz vn, pods of massive pyJH14-106Grab64Banresample BN 3883(1991), pods massive pyJH14-107Grab68BanSloko, hetero brecciaJH15-110Grab28BanCoarse talus, sil + plag at'nJH15-110Grab28BanNafic tuff, 4% py,JH15-112Chip15m0BanJH15-113Grab0BanIntense sil and sw, 2% pyJH15-116Float24BanIntense sil, felsic?, 5-6% pyJH15-117Chip8m117BanJH15-118Chip10m634JH15-119Chip10mJH15-119Chip10mJH15-119Chip10mJH15-119Chip10mJH15-119Chip10mJH15-119Chip10mJH15-119Chip10m<	JH14-94	Grab	1	0	Ban	Qtz vn In Stuhini, 1-2% py
JH14-97Grab0Ban $Qtz + chl sw ln mafic volc.$ JH14-98Grab0BanRecrystallized qtz vn, 1-2% pyJH14-99Grab0BanStrong cbt + sil ln mafic volcJH14-101Grab0BanQtz sw in lapilii tufi, 2% pyJH14-102Grab19BanIntense sil-plag swJH14-105Grab54BanIntense silca + plag attn, rare py blebsJH14-106Float8BanQtz vn, pods of massive pyJH14-106Float8BanCtz vn, pods of massive pyJH14-107Grab0Banresample BN 3868(1991), pods massive pyJH14-108Grab64Banresample BN 3868(1991), pods massive pyJH15-109Grab28BanCoarse talus, sil + plag attnJH15-110Grab28BanBanMafic tuff, 1% py,JH15-112Chip15m0BanMafic tuff, c.g. diss pyJH15-113Grab0BanIntense sil and sw, 2% pyJH15-116Float24BanIntense sil fals(c?, 56% pyJH15-117Chip15m0BanIntense sil fals(c?, 56% pyJH15-119Chip10m634BanIntense sil sw, fals(c?)JH15-118Chip10m634BanIntense sil sw, fals(c?)JH15-119Chip10m634BanIntense sil sw, fals(c?)JH15-119Chip10m634BanIntense sil sw, fals	JH14-95	Grab		0	Ban	.5m qtz vn in chi schist
JH14-98 JH14-99Grab0BanPecrystallized qtz vn, 1-2% pyJH14-99Grab0BanStrong cbt + sli in mafic volcJH14-101Grab0BanQtz sw in lapilli tuff, 2% pyJH14-102Grab19BanIntense sil + plag swJH14-106Grab54BanIntense sil + plag at'n, rare py blebsJH14-106Float8BanQtz + plag at'n, float trainJH14-108Grab0BanQtz vn, pods of massive pyJH14-108Grab64Banresample BN 3888(1991), pods massive pyJH15-109Grab68BanSloko, hetero brecciaJH15-110Grab26BanCoarse talus, sil + plag at'nJH15-111Chip6m0BanJH15-112Chip15m0BanJH15-113Grab0BanJH15-114Chip15m0JH15-115Grab0BanJH15-116Float24JH15-117Chip15m0JH15-118Chip10mJH15-119Chip10mJH15-119Chip10mJH15-119Chip10mJH15-119Chip10mJH15-119Chip10mJH15-119Chip10mJH16-120Grab5JH16-120Grab40JH16-123Talus Coarse40JH16-123Talus Coarse40JH16-123 <td>JH14-97</td> <td>Grab</td> <td></td> <td>0</td> <td>Ban</td> <td>Qtz + chi sw in mafic volc.</td>	JH14-97	Grab		0	Ban	Qtz + chi sw in mafic volc.
JH14-99Grab0BanStrong cbt + sil in mafic volcJH14-101Grab0BanQtz sw in lapilii tuff, 2% pyJH14-102Grab19BanIntense sil+plag swJH14-105Grab54BanIntense silca + plag alt'n, rare py blebsJH14-106Float8BanQtz + plag alt'n, foat trainJH14-107Grab0BanQtz + plag alt'n, foat trainJH14-108Float8BanQtz + plag alt'n, foat trainJH14-109Grab64Banresample BN 3868(1991), pods massive pyJH15-109Grab68BanSloko, hetero brecciaJH15-110Grab26BanCoarse talus, sil + plag a;t'nJH15-111Chip6m0BanMafic tuff, 1% py,JH15-112Chip15m0BanBedded tuff/argilite, tr pyJH15-113Grab0BanIntense sil and sw, 2% pyJH15-114Chip15m0BanIntense sil and sw, 2% pyJH15-115Grab0BanIntense sil sw, massive py podsJH15-117Chip8m117BanIntense sil sw, felsic?JH15-118Chip10m127BanIntense sil sw, felsic?JH16-120Grab14Bandit XItrense sil sw, felsic?JH16-124Grab5Bandit XQtz vn in StuhiniJH16-123Talus Coarse40Bandit XStrong and, flaggyJH16-124<	JH14-98	Grab		0	Ban	Recrystallized qtz vn, 1-2% py
JH14-101Grab0BanQtz sw in lapilii tufi, 2% pyJH14-102Grab19BanIntense sil+plag swJH14-106Grab54BanIntense silica + plag alt'n, rare py blebsJH14-106Float8BanQtz + plag alt'n, float trainJH14-107Grab0BanQtz vn, pods of massive pyJH14-108Grab64Banresample BN 3368(1991), pods massive pyJH15-109Grab68BanSloko, hetero brecciaJH15-110Grab26BanCoarse talus, sil + plag at'nJH15-111Chip6m0BanMafc tuff, 1% py,JH15-112Chip15m0BanMafc tuff, c.g. diss pyJH15-113Grab0BanIntense sil and sw, 2% pyJH15-114Chip15m0BanIntense sil and sw, 2% pyJH15-115Grab0BanIntense sil and sw, 2% pyJH15-116Float24BanIntense sil sund sw, 2% pyJH15-117Chip8m117BanJH15-118Chip10m127BanJH15-119Chip10m634BanJH16-120Grab14Bandit XJH16-120Grab5Bandit XJH16-123Talus Coarse40Bandit XJH16-123Talus Coarse5Bandit XJH16-123Talus Coarse5Bandit XJH16-123Talus Coarse5Band	JH14-99	Grab		0	Ban	Strong cbt + sil in matic volc
JH14-102Grab19BanIntense sil +plag swJH14-105Grab54BanIntense silica + plag alt'n, rare py blebsJH14-106Float8BanQtz + plag alt'n, float trainJH14-107Grab0BanQtz vn, pods of massive pyJH14-108Grab64Banresample BN 3868(1991), pods massive pyJH15-109Grab68BanSloko, hetero brecciaJH15-110Grab26BanCoarse talus, sil + plag at'nJH15-111Chip6m0BanMafic tuff, 1% py,JH15-112Chip15m0BanBedded tuff/argillite, tr pyJH15-113Grab0BanIntense sil and sw, 2% pyJH15-114Chip15m0BanIntense sil and sw, 2% pyJH15-115Grab0BanIntense sil sum silve py podsJH15-116Float24BanIntense sil sw, massive py podsJH15-117Chip8m117BanIntense sil sw, flelsic?JH15-118Chip10m127BanIntense sil sw, flelsic?JH16-120Grab14Bandit XIntense sil swJH16-122Grab5Bandit XIntense sil swJH16-123Talus Coarse40Bandit XStrong ank, flaggy	JH14-101	Grab		0	Ban	Qtz sw in Iapilli tuff, 2% py
JH14-105Grab54BanIntense silica + plag at'n, rare py blebsJH14-106Float8BanQtz + plag at'n, float trainJH14-107Grab0BanQtz vn, pods of massive pyJH14-108Grab64Banresample BN 3868(1991), pods massive pyJH15-109Grab68BanSloko, hetero brecciaJH15-110Grab26BanCoarse talus, sil + plag a;t'nJH15-111Chip6m0BanMafic tuff, 1% py,JH15-112Chip15m0BanBedded tuff/argilite, tr pyJH15-113Grab0BanMafic tuff, c.g. diss pyJH15-115Grab0BanIntense sil and sw, 2% pyJH15-116Float24BanIntense sil sw, massive py podsJH15-117Chip8m117BanIntense sil sw, felsic?JH15-118Chip10m127BanIntense sil sw, felsic?JH16-120Grab14Bandit XIntense sil swJH16-122Grab5Bandit XQtz vn in StuhiniJH16-123Talus Coarse40Bandit XStrong alk flaggy	JH14-102	Grab		19	Ban	Intense sil +plag sw
JH14-106Float8BanQtz + plag alth, float trainJH14-107Grab0BanQtz vn, pods of massive pyJH14-108Grab64Banresample BN 3868(1991), pods massive pyJH15-109Grab68BanSloko, hetero brecciaJH15-110Grab26BanCoarse talus, sil + plag a;t'nJH15-111Chip6m0BanMafe tuff, arglilite, tr pyJH15-112Chip15m0BanBedded tuff/arglilite, tr pyJH15-113Grab0BanIntense sit and sw, 2% pyJH15-114Chip15m0BanIntense sit and sw, 2% pyJH15-115Grab0BanIntense sit, felsic?, 5-6% pyJH15-116Float24BanIntense sit sw, massive py podsJH15-118Chip10m127BanIntense sit sw, felsic?JH15-119Chip10m127BanIntense sit sw, felsic?JH16-120Grab10m634BanIntense sit sw, felsic?JH16-120Grab14Bandit XIntense sit sw, tr pyJH16-120Grab5Bandit XQtz vn in StuhiniJH16-123Talus Coarse40Bandit XStrong ank, flaggy	JH14-105	Grab		54	Ban	Intense silica + plag alt'n, rare py blebs
JH14-107GrabOBanQtz vn. pods of massive pyJH14-108Grab64Banresample BN 3868(1991), pods massive pyJH15-109Grab68BanSloko, hetero brecciaJH15-110Grab26BanCoarse talus, sil + plag a;t'nJH15-111Chip6m0BanMafic tuff, 1% py,JH15-112Chip15m0BanBedded tuff/argillite, tr pyJH15-113Grab0BanMafic tuff, cg. diss pyJH15-114Chip15m0BanIntense sit and sw, 2% pyJH15-115Grab0BanIntense sit and sw, 2% pyJH15-116Float24BanIntense sit, felsic?, 5-6% pyJH15-118Chip10m127BanIntense sit sw, felsic?JH15-119Chip10m634BanIntense sit swJH16-120Grab5Bandit XQitz vin in StuhiniJH16-123Talus Coarse40Bandit XStrong ank, flaggy	JH14-106	Float		8	Вап	Qtz + plag alt'n, float train
JH14-108Grab64Banresample BN 3868(1991), pods massive pyJH15-109Grab68BanSloko, hetero brecciaJH15-110Grab26BanCoarse talus, sil + plag a;t'nJH15-111Chip6m0BanMafic tuff, 1% py,JH15-112Chip15m0BanBedded tuff/argillite, tr pyJH15-113Grab0BanMafic tuff, c.g. diss pyJH15-114Chip15m0BanIntense sil and sw, 2% pyJH15-115Grab0BanBarren white, milky qtz vnJH15-116Float24BanIntense sil, felsic?, 5-6% pyJH15-118Chip10m127BanIntense sil sw, felsic?JH15-119Chip10m634BanIntense sil swJH16-120Grab10m634BanIntense qtz + plag sw, tr pyJH16-123Talus Coarse40Bandit XStrong ank, flaggyJH16-127Talus Coarse5Bandit XStrong ank, flaggy	JH14-107	Grab		0	Ban	Qtz vn, pods of massive py
UH15-109GrabGrab68BanSloko, hetero brecciaJH15-110Grab26BanCoarse talus, sil + plag a;t'nJH15-111Chip6m0BanMafic tuff, 1% py,JH15-112Chip15m0BanBedded tuff/argillite, tr pyJH15-113Grab0BanMafic tuff, c.g. diss pyJH15-114Chip15m0BanIntense sil and sw, 2% pyJH15-115Grab0BanBarren white, milky qtz vnJH15-116Float24BanIntense sil sw, massive py podsJH15-118Chip10m127BanIntense sil sw, felsic?JH15-119Chip10m634BanIntense sil swJH16-120Grab5Bandit XIntense qtz + plag sw, tr pyJH16-123Talus Coarse40Bandit XStrong ank, flaggy	JH14-108	Grab		64	Ban	resample BN 3868(1991), pods massive py
JH15-110GrabGrab26BanCoarse talus, sil + plag a;t'nJH15-111Chip6m0BanMafic tuff, 1% py,JH15-112Chip15m0BanBedded tuff/argililte, tr pyJH15-113Grab0BanMafic tuff, c.g. diss pyJH15-114Chip15m0BanIntense sit and sw, 2% pyJH15-115Grab0BanIntense sit and sw, 2% pyJH15-116Float24BanIntense sit, felsic?, 5-6% pyJH15-117Chip8m117BanIntense sit, sw, massive py podsJH15-118Chip10m127BanIntense sit sw, felsic?JH15-119Chip10m634BanIntense sit swJH16-120Grab14Bandit XIntense qtz + plag sw, tr pyJH16-123Talus Coarse40Bandit XStrong ank, flaggyJH16-127Talus Coarse5Bardit XStrong ank, flaggy	UH15-109	Grab		68	Ban	Sloko, hetero breccia
JH15-111Chip6m0BanMafic tuff, 1% py,JH15-112Chip15m0BanBedded tuff/argilite, tr pyJH15-113Grab0BanMafic tuff, c.g. diss pyJH15-114Chip15m0BanIntense sil and sw, 2% pyJH15-115Grab0BanBarren white, milky qtz vnJH15-116Float24BanIntense sil, felsic?, 5-6% pyJH15-117Chip8m117BanIntense sil sw, massive py podsJH15-118Chip10m127BanIntense sil sw, felsic?JH15-119Chip10m634BanIntense sil swJH16-120Grab14Bandit XIntense qtz + piag sw, tr pyJH16-123Talus Coarse40Bandit XStrong ank, flaggyJH16-127Talus Coarse5Bandit XStrong ank, flaggy	JH15-110	Grab		26	Ban	Coarse talus, sil + plag a;t'n
JH15-112Chip15m0BanBedded tuff/argilite, tr pyJH15-113Grab0BanMafic tuff, c.g. diss pyJH15-114Chip15m0BanIntense sil and sw, 2% pyJH15-115Grab0BanIntense sil and sw, 2% pyJH15-116Float24BanIntense sil, felsic?, 5-6% pyJH15-117Chip8m117BanIntense sil, sw, massive py podsJH15-118Chip10m127BanIntense sil sw, felsic?JH15-119Chip10m634BanIntense sil swJH16-120Grab14Bandit XIntense qtz + plag sw, tr pyJH16-123Talus Coarse40Bandit XStrong ank, flaggy	JH15-111	Chip	6m	o	Вал	Mafic tuff. 1% py.
JH15-113Grab0BanMafic tuff, c.g. diss pyJH15-114Chip15m0BanIntense sil and sw, 2% pyJH15-115Grab0BanBarren white, milky qtz vnJH15-116Float24BanIntense sil, felsic?, 5-6% pyJH15-117Chip8m117BanIntense sil sw, massive py podsJH15-118Chip10m127BanIntense sil sw, felsic?JH15-119Chip10m634BanIntense sil swJH16-120Grab14Bandit XIntense qtz + plag sw, tr pyJH16-122Grab5Bandit XQtz vn in StuhiniJH16-123Talus Coarse40Bandit XStrong ank, flaggy	JH15-112	Chip	15m	o	Ban	Bedded tuff/argillite, tr py
JH15-114Chip15m0BanIntense sil and sw, 2% pyJH15-115Grab0BanBarren white, milky qtz vnJH15-116Float24BanIntense sil, felsic?, 5-6% pyJH15-117Chip8m117BanIntense sil sw, massive py podsJH15-118Chip10m127BanIntense sil sw, felsic?JH15-119Chip10m634BanIntense sil swJH16-120Grab14Bandit XIntense qtz + plag sw, tr pyJH16-123Talus Coarse40Bandit XStrong ank, flaggyJH16-127Talus Coarse5Bardit XStrong aldrin	UH15-113	Grab		o	Ban	Mafic tuff. c.g. diss pv
JH15-115Grab0BanBarren white, milky qtz vnJH15-116Float24BanIntense sil, felsic?, 5-6% pyJH15-117Chip8m117BanIntense sil sw, massive py podsJH15-118Chip10m127BanIntense sil sw, felsic?JH15-119Chip10m634BanIntense sil swJH16-120Grab14Bandit XIntense qtz + plag sw, tr pyJH16-122Grab5Bandit XQtz vn in StuhiniJH16-123Talus Coarse40Bandit XStrong ank, flaggy	JH15-114	Chip	15m	o	Ban	Intense sil and sw. 2% py
JH15-116Float24BanIntense sil, felsic?, 5-6% pyJH15-117Chip8m117BanIntense sil sw, massive py podsJH15-118Chip10m127BanIntense sil sw, felsic?JH15-119Chip10m634BanIntense sil swJH16-120Grab14Bandit XIntense qtz + plag sw, tr pyJH16-122Grab5Bandit XQtz vn in StuhiniJH16-123Talus Coarse40Bandit XStrong ank, flaggy	UH15-115	Grah		o	Ban	Barren white, milky otz vn
JH15-117Chip8m117BanIntense sil sw, massive py podsJH15-118Chip10m127BanIntense sil sw, felsic?JH15-119Chip10m634BanIntense sil swJH16-120Grab14Bandit XIntense qtz + plag sw, tr pyJH16-122Grab5Bandit XQtz vn in StuhiniJH16-123Talus Coarse40Bandit XStrong ank, flaggy	JH15-116	Float		24	Ban	Intense sil, felsic?, 5-6% pv
JH15-118 Chip 10m 127 Ban Intense sil sw, felsic? JH15-119 Chip 10m 634 Ban Intense sil sw JH16-120 Grab 14 Bandit X Intense qtz + plag sw, tr py JH16-122 Grab 5 Bandit X Qtz vn in Stuhini JH16-123 Talus Coarse 40 Bandit X Strong ank, flaggy	H15-117	Chip	8m	117	Ban	Intense sil sw. massive pv pods
JH15-119 Chip 10m 634 Ban Intense sil sw JH16-120 Grab 14 Bandit X Intense qtz + plag sw, tr py JH16-122 Grab 5 Bandit X Qtz vn in Stuhini JH16-123 Talus Coarse 40 Bandit X Strong ank, flaggy	H15-118	Chin	10m	127	Ban	Intense sil sw. felsic?
JH16-120 Grab 14 Bandit X Intense qtz + plag sw, tr py JH16-122 Grab 5 Bandit X Qtz vn in Stuhini JH16-123 Talus Coarse 40 Bandit X Strong ank, flaggy	H15-119	Chin	10m	634	Ban	Lintense sil sw
JH16-122 Grab 5 Bandit X Qtz vn in Stuhini JH16-123 Talus Coarse 40 Bandit X Strong ank, flaggy	H16-120	Grah		14	Bandit X	lintense atz + alaa sw. tr.ov
JH16-123 Talus Coarse 40 Bandit X Strong ank, flaggy	H16-122	Grah		5	Bandit X	Otz vn in Stubini
Ult 6 107 Talus Coarso 5 Bandit Y Strong plag alt'n	H16-123	Tatus Coarse		40	Bandit X	Strong ank, flaggy
	H16-127	Tatus Coarse		5	Bandit X	Strong plag alt'n

SAMPLE	TYPE	WIDTH	Au ppb	AREA	DESCRIPTION
JH16-130	Talus Coarse		o	8andit X	Intense ankerite alt'n
JH16-131	Grab		6	Bandit X	Sil + plag alt tuff, 5% py
JH16-132	Talus Coarse		6	Bandit X	Pink and white mottle, plag alt'n
JH16-134	Talus Coarse		7	Bandit X	
JH16-135	Talus Coarse		0	Bandit X	
JH16-136	Talus Coarse		203	Bandit X	
JH17-137	Grab		15	Bandit X	Limonitic, jarosite mafic tuff, 3-4% py
JH17-138	Talus Coarse		27	Bandit X	
JH17-139	Grab		116	Bandit X	Intense plag + cbt alt'n, 1% py
JH17-140	Talus Coarse		94	Bandit X	
JH17-141	Grab		62	Bandit X	Plag + ank mafic, 3% py
JH17-142	Chip	10m	52	Bandit X	Plag + sil alt'n
JH17-143	Chip	5m	30	Bandit X	Mafic volc., 1% py
JH17-144	Chip	3m	118	Bandit X	Pervasive plag alt'n and sw
JH17-145	Talus Coarse		34	Bandit X	Pervasive cbt + plag + sil
JH17-146	Talus Coarse		72	Bandit X	Phyllite, mafic volc. and plag/sil talus
JH17-147	Talus Coarse		61	Bandit X	50/50 cbt veins and plag/sil talus
JH17-148	Talus Coarse		123	Bandit X	Intense ankeritic talus
JH17-150	Chip	1 Dm	523	Cliff Zone	siliceous blob
JH17-151	Chip	12m	76	Cliff Zone	1% diss py
JH17-152	Chip	16m	38	Cliff Zone	Strong sil, tr diaa py
JH17-153	Chip	20m	111	Cliff Zone	Mod sil, 1% py blebs
JH17-154	Chip	15m	242	Cliff Zone	Mod sil, tr py
JH17-155	Chip	15m	264	Cliff Zone	Mod sil, tr-1% PY
JH17-156	Chip	10m	356	Cliff Zone	Mod sil, tr-1% PY
JH17-157	Chip	1501	375	Cliff Zone	Int. Sil, locally 10cm-1m msv py blebs
JH17-158	Chip	15m	940	Cliff Zone	Int. Sil, locally 10cm-1m msv py blebs
JH17-159	Chip	10m -	765	Cliff Zone	Int. Sil, locally 10cm-1m msv py blebs
JH17-160	Chip	15m	93	Cliff Zone	Int. Sil, locally 10cm-1m msv py blebs
JH17-161	Chip	9m	517	Cliff Zone	int: Sil, locally 10cm-1m msv py blebs
JH17-162	Chip	4m	25	Cliff Zone	Discrete local shear zone xcuts alb+sil
JH17-163	Chip	15m	212	Cliff Zone	Sil, locally 10cm msv py
JH17-164	Chip	17m	78	Cliff Zone	Mod obt alt mafic volc.
JH17-165	Chip	15m	0	Cliff Zone	Fresh mafic volc.
JH17-166	Chip	5m	44	Cliff Zone	Fissile argiilite
JH17-167	Chip	8m	93	Cliff Zone	Intense sil/plag
JH17-168	Chip	15m	9	Cliff Zone	Intense folding in phyllites
JH17-169	Chip	4m	71	Cliff Zone	Intense folding in phyllites, sheared fold axis
JH18-170	Chip	2m	14	Cliff Zone	Intense folding in phyllites, sheared fold axis
JH18-171	Chip	10m	103	Cliff Zone	Int. sil, with 2-3% blebby py
JH18-172	Chip	10m	271	Cliff Zone	Faulted plag/sil altered tuffs & seds
JH18-173	Chip	30m	31	Cliff Zone	Cleaved tuffs, mod cbt and wk sil
JH18-174	Chip	5m	226	Cliff Zone	Plag/sil altered tyuff
JH18-175	Chip	15m	26	Cliff Zone	Bedded mafic tuffs, wk cbt
JH19-176	Chip	10m	705	East Zone	Mod sil+plag, with 2-3% blebby py in tuffs
JH19-177	Chip	10m	100	East Zone	Mod sil+plag, with 2-3% blebby py in tuffs
JH19-178	Chip	10m	1162	East Zone	Resample 3534(1991)

SAMPLE	TYPE		Au ppb	AREA	DESCRIPTION
JH19-179	Chip	10m	1045	East Zone	Mod sil+plag, with 2-3% blebby py in tuffs
JH19-180	Chip	10m	285	East Zone	Mod sil + plag, with 2-3% blebby py in tuffs
JH19-181	Chip	2m	2110	East Zone	1.5m pyritic gossan
JH19-182	Chip	10m	922	East Zone	Mod sil+plag, with 2-3% blebby py in tuffs
JH19-183	Chip	10m	340	East Zone	Mod sil+plag, with 2-3% blebby py in tuffs
JH19-184	Chip	10m	264	East Zone	Mod sil + plag, with 2-3% blebby py in tuffs
JH19-185	Chip	10m	817	East Zone	Mod sil+plag, with 2-3% blebby py in tuffs
JH19-186	Chip	10m	51	East Zone	Resample 3690(1991)
JH20-187	Chip	7m	24	Cliff Zone	gossanous sil phyllite
JH20-188	Chip	10m	113	Cliff Zone	alternating qtz veins and sll pyllite
JH20-189	Chip	10m	72	Cliff Zone	alternating qtz veins and sil pyllite
JH20-190	Chip	10m	70	Cliff Zone	alternating qtz veins and sil pyllite
JH20-191	Chip	10m	260	Cliff Zone	mod sil ? plag altered tuffs
JH20-192	Chip	10m	98	Ciff Zone	mod sil ? plag attered tuffs
JH20-193	Chip	10m	62	Cliff Zone	mod sil ? plag altered tuffs
JH20-194	Chip	10m	31	Cliff Zone	mod sil ? plag attered tuffs
JH20-195	Chip	10m	15	Ciiff Zone	mod sil ? plag altered tuffs
JH20-196	Chip	10m	20	Cliff Zone	mod sil ? plag altered tuffs
JH20-197	Chip	10m	31	Cliff Zone	mod sil ? plag attered tuffs
JH20-199	Chip	14m	39	Cliff Zone	mod sil ? plag altered tuffs
JH20-200	Chip	10m	164	Cliff Zone	mod sil ? plag altered tuffs
JH20-201	Chip	10m	36	Cliff Zone	mod sll ? plag altered tuffs
JH20-202	Chip	1m	13	Cliff Zone	Plag/sil unit, 3% py
JH20-203	Chip	1m	72	Cliff Zone	Chlorite - sericite schist
JH20-204	Chip	3m	14	Cliff Zone	Plag + sll blob
JH20-205	Chip	2m	0	Cliff Zone	Plag alt'n, 1-2% py
JH21-206	Chip	611	0	Post	Ankerite, quartz mafic volc.
JH21-207	Chip	3m	39	Post	Sil mafic volc., quartz stringers
JH21-208	Chip	5m	20	Post	Mafic Volc.
JH21-209	Chip	15m	8	Post	Mafic tuffs
JH21-210	Chip	8m	85	Post	Very siliceous mafic tuffs
JH21-211	Chip	2m	8530	Post	Silicified, 3% pyrite
JH21-212	Grab	_	1019	Post	Sheared chloritic volcabics
JH21-213	Chip	2m	43	Post	weak sil ash tuff, tr py
JH21-214	Grab		8	Post	Sil volc, 1-2% silver grey py
JH22-215	Chip	5m	15	Cliff Zone	Chlorite schist with weak plag/sil
JH22-216	Chip	3m	27	Cliff Zone	Intense silicitied, ankentic matic voic.
JH22-217	Chip	5m	18000	Clift Zone	UTZ SW, DX, 4-5% CPY, Tr Dornite, mai
JH22-218	Chip	6m	5470	Cliff Zone	UTZ, SW-DX, 1-3% CPV
JH22-219	Chip	3.5m	. 278	Cliff Zone	Cossanous plag/sil unit
JH22-220	Chip	3m	835	Cliff Zone	As above
JH22-221	Chip	1.5m	4380	Cliff Zone	Calcite bx with cpy and malachite
JH22-222	Chip	10m	40	Cliff Zone	weak sil, ank volc, 1% py
JH22-223	Chip	10m	800	Cliff Zone	As above
JH22-224	Chip	10m	331	Cliff Zone	As adove
JH22-225	Chip	10m	188	Cut Zone	As above
JH23-226	Chip	10m	122	Ciff Zone	Sil volc, tr qtz vn, 1% py

SAMPLE	TYPE	WIDTH	Au ppb	AREA	DESCRIPTION
JH23-227	Chip	10m	115	Cliff Zone	Sil + ank volc, tr py
JH23-228	Chip	10m	84	Cliff Zone	Sil + ank volc, 1% py
JH23-229	Chip	10m	382	Cliff Zone	As above
JH23-230	Chip	10m	17	Cliff Zone	Sil volc, 1% py
JH23-231	Chip	10m	28	Cliff Zone	Sil volc, tr qtz vn, 1% py
JH23-232	Chip	10m	37	Cliff Zone	As above
JH23-233	Chip	10m	113	Cliff Zone	As above
JH23-234	Chip	10m		Cliff Zone	Sil volcs, 1% py
JH23-235	Chip	10m	45	Cliff Zone	Argillites with qtz vns, 1% py
JH23-236	Chip	10m	13	Cliff Zone	SII, bedded volcanics
JH23-237	Chip	10m	136	Cliff Zone	Sil volc, 1% py
JH23-238	Chip	10m	209	Cliff Zone	Albitized volcs, 1% py
JH23-239	Chip	10m	24	Cliff Zone	Blob of qtz sw zone, 2% py
JH23-240	Chip	7m -	373	Cliff Zone	Sil + plag, ank, tuff
JH23-242	Float		26	Bandit Y	Mafic volc, cbt bx, calcite vns, 1% cpy
JH25-243	Grab		٥	Bandit Y	Stuhini, 1% clots and diss py
JH25-244	Chip	25m	250	Lip Zone	Cbt altr'd mafic tuff, 1% py, tr hem
JH26-247	Grab		84	Bandit Y	Sil + plag, qtz sw, 1% py
JH26-249	Grab		50	Bandit Y	Wk sil, mafic volc, 5% diss-stringer py
JH26-250	Chip	10m	13	Bandit Y	Sil, tr-1% py blebs
JH26-251	Grab		111	Bandit Y	Sil, 1% py in euhedral blebs
JH26-252	Grab		170	Bandit Y	Stuhini plag crystal tuff, 1-2% diss py
JH26-253	Chip	8m	140	Bandit Y	As above, 3% py
JH28-255	Grab		140	Bandit 4	Pervasive cbt, wik plag alt'n, 2-3% clot py
JH28-256	Chip	8m	210	Bandit 4	Stuhini tuffs, 2-3% py
JH28-258	Grab		170	Bandit 4	Augite phyric Stuhini, tr-1% py
DH13-144	Talus Fine		0	Вап	
DH13-145	Talus Fine		0	Ban	
DH13-146	Talus Fine		0	Ban	
DH13-147	Talus Fine		0	Ban	
DH13-148	Talus Fine		٥	Ban	
DH13-149	Talus Fine		118	Ban	·
DH13-150	Talus Fine		O	Вап	
DH13-151	Talus Fine		12	Ban	
DH13-152	Talus Fine		25	Ban	
DH13-153	Talus Fine		17	Ban	
DH13-154	Talus Fine		0	Ban	
DH13-155	Talus Fine		18	Вап	
DH13-156	Talus Fine		40	Вап	
DH13-157	Talus Fine		22	Вап	
DH13-158	Talus Fine		24	Ban	
DH13-159	Talus Fine		12	Ban	
DH13-160	Talus Fine		94	Ban	
DH13-161	Talus Fine		35	Ban	
DH13-162	Talus Fine		32	Ban	
DH13-163	Talus Fine		24	Вап	
DH13-164	Talus Fine		30	Ban	

*

SAMPLE	TYPE	WIDTH	Au ppb	AREA	DESCRIPTION
DH13-165	Talus Fine		23	Ban	
DH13-166	Talus Fine		19	Ban	
DH13-167	Talus Fine		357	Ban	
DH13-168	Talus Fine		60	Ban	
DH13-169	Talus Fine		30	Ban	
DH13-170	Talus Fine		260	Ban	
DH13-171	Talus Fine		453	Ban	
DH14-172	Talus Fine		6	Ban	
DH14-173	Talus Fine		5	Ban	
DH14-174	Talus Fine		0	Ban	
DH14-175	Talus Fine		0	Ban	
DH14-176	Talus Fine		0	Вап	
DH14-177	Talus Fine	1	5	Вал	
DH14-178	Talus Fine		0	Ban	
DH14-179	Talus Fine		5	Ban	
DH16-184	Talus Fine		18	Bandit X	
DH16-185	Talus Fine		6	Bandit X	
DH16-186	Talus Fine		0	Bandit X	
DH16-187	Talus Fine		212	Bandit X	
DH16-188	Talus Fine		183	Bandit X	
DH16-189	Talus Fine		38	Bandit X	
DH16-190	Talus Fine		96	Bandit X	
DH16-191	Talus Fine		71	Bandit X	
UH16-192	Talus Fine	1	189	Bandit X	
UH16-193	Taius Fine		193		
JH12-84	Talus Fine		311	Ban Bar	
JH12-85	Talus Fine Talus ™	ļ	35		
JH12-86	Talus ⊨ine		136	Ban D	· · · · · · · · · · · · · · · · · · ·
UR12-87	Talus Fine		217	вал	
JR12-88	Talus Fine		219		
UR12-89	Talus Fine		154	Dan	1
UR12-90					
UR12-91	Talus Fine		66	Bor	
UD12-92	Talus Fine		48	Ran	
UR12-93	Talus Fine		20	Ran	
UT12-94	Talus Fina		14 50	Ran	
B12-06	Talus Fino	1	66 22	Ran	
IB12-07	Talus Fine	l	12	Ran	
IR12-00	Talus Fine		טו מיד	Ran	
UR10-00	Talus Fine	1	50	Ban	1
UB12-100	Talus Fine	l	20	Ban	
JB12-101	Talus Fine		11	Вал	
UB12-102	Talus Fine	ł	10	Ban	
UH16-194	Talus Fine	ĺ	7		
JH16-129	Talus Fine		, R	ŀ	
JH16-133	Talus Fine		27		
II ^{SE} 100	1	ı	,	•	'

APPENDIX II

. .

(1992 Geochemical Assay Certificates)

	P		
INTERNA	IONAL PLASMA	LABORATORY LTD	

Min Limit	50	1	1 2	2 1	5	5	3	1	10	2	0.1	1	1	2	5	1	2	1	2	1	1	1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Max Reported*	9999 99	9 2000	0 2000	20000	9999	9999 9	999 9	9999	999	999	99.9	999	999	9999	999	999	999	9999	999	999	999	- 99	1.00	9.99	9.99	9.99	9.99	9,99	5.00	5.00
Method	FAAA I	CP IC	P IC	› ICP	ICP	ICP 3	ICP	ICP	ICP	ICP	ICP	ICP	IC	CP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP		ICP
~-=No Test	Insuffic	ient Sa	πple	S=Soil	R=Ro	ck C≕Ca	ore l	L=Si1	t P=	Pulp	> U=U	ndefi	ne	m =	Estir	nate	/1000) Z _	Fetir	nato	2 F	lax="	1- C-	timat	-					
natic	'lasnį	Ltd	36 C.	् व	St.	1000	ur,	;	VE.		Ph	. 3	379–7		Fax		_ 79-	-7L												

INTERNATIO	NAL PLA	SMA LAB	ORATO	RY LTD.																									Canac Phone Fax	la V5) (604) (6 04)	3E1 879-78 879-78	378 398	
iPL R eport: Project:	- 920 Nor	10598 Ne Giv	T ven	Home	estake	Canad	a Ltd.					C	in: A Jut: A	ug 0	6, 1 7, 1	992 992		6	Pulp	/Roc	Pa :k	ge i	l of		Certi	Sect ified	ion BC A:	⊡of ssaye	1 r	È	HZ.	 Da	wid Chiu
Sample Name	ž	l PR	Au ob	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo 1 ppm pp	1 Bi n ppn	Cd ppr	Со ррл	Ni ppm	Ва ррп	W ppm	Cr ppm	V ppm	Mn ppm	La La	Sr ppm	Zr ppm	Sc ppm	Ti %	A1 %	Ca X	Fe %	Mg %	K Z	Na %	р %	
B92DM12-102 B92DM12-103 B92DM12-104 B92DM12-104 B92DM12-106 B92DM12-106	2 3 4 5 5	P 750 P 750 P 40 P 740 P 960	1 3m 00 13 00 00	2.3 1.5 0.1 1.6 2.0	1 4 37 1 3	4 5 < 4	3 6 35 16 12	13 14 11 8 20	< 5 7 <	< < < < <	13 15 3 7 11	~ ~ ~ ~ ~		1 3 22 5 2	3 4 83 8 3	83 68 54 12 24	< < 5 < <	33 46 149 34 33	3 4 99 8 4	37 53 957 295 79	12 5 <	6 6 86 11 5	1 1 1 1 2	1 1 14 3 1	< < < < <	0.25 0.39 0.34 0.36 0.31	0.09 0.04 7.24 0.58 0.04	3.80 4.44 3.95 4.58 4.61	0.04 0.05 4.31 0.20 0.02	0.04 0.02 0.01 0.01 0.03	0.04 0.03 0.03 0.01 0.02	0.01 0.01 0.01 0.01 0.01 0.02	
DM20-137	,	R 1	13m	1.9	1	<	1	5	<	<	30	< <	: <	1	3	154	<	68	2	36	13	7	1	*	<	0,38	0.02	3.27	0.02	0.05	0.07	0.01	
	•																																

2036 Columbia Street Vancouver, B.C.

INTERNATIONAL PLASMA LABORATOR	Y LID		<u>.</u> ! 8	1992 1992		- B	1753 175 2000	ter 3 - 1 11+1	RD	Br	sur it	€1. +€ U(; ; en. 21					,		1			2036 Vanc Cana Phon Fax	Colum ouver, da V5 e (604 (1604	ibia S B.C. Y 3E1) 879-) 879-	treet 7878 7898		
iPL Report: 9200611 T Project: 3130 Bandit	Honesta	ke Car	iada (Fi	ge 555	<u>se</u>	/		In Out	: Aug : Aug	10, 19 13, 19	92 92		172 Ra	xk/S	oil	age	1 of	5 (Certi	Secti fied	on BC A	1 of ssaye	1 er 	Ø	2		David	Chiu
Sample Name	Au ppb	Ag ppm	Cu ppm	РЪ ррт	Zni ppm	As ppm	Sb Hg. ppm ppm	Mo ppm	T1 B	ni Ca ni ppr	Co ppm	Ni ppm	Ba ppm p	W opmop	pm pp	M PP	ƙn La Dimippim	Sr ppm	Zr ppm	Sc. opm	Ti Z	A1 %	Ca X	Fe Z	Mg X	× 7	Na Z	P %
B92 00+00S 13+00W B92 00+50S 13+00W B92 01+00S 13+00W B92 01+50S 13+00W B92 02+00S 13+00W	説 129 第2日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	0.1 < < <	48 36 15 17 42	5 2 < < <	215 56 49 73 67	~ ~ ~ ~ ~	< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	4 4 3 3	<u> </u>	< 0.8 < 0.1 < 0.1 < < < 0.3	16 16 8 12 19	37 22 9 14 22	109 246 341 285 112	< 1 < 1 < 1 < 1 < 1	12 7 82 5 77 2 82 2 60 6	75 108 51 109 21 72 29 108 56 129	39 <	75 48 23 21 48	1 1 2 3 1	10 0 7 0 4 0 5 0 10	1.02 1.01 1.01 1.02 <	0.83 0.91 0.42 0.48 0.50	5.23 3.68 1.36 2.17 5.22	3.80 3.56 3.15 3.76 3.93	2.58 1.19 0.29 0.26 1.33	0.07 0.07 0.09 0.10 0.07	0.05 0.05 0.08 0.07 0.04	0.05 0.06 0.05 0.09 0.05
B92 02+50S 13+00W B92 03+00S 13+00W B92 03+50S 13+00W B92 04+00S 13+00W B92 04+50S 13+00W	R 12 R 41 R 13 R 30 R 144	0.2 0.1 0.1	21 13 34 61 8	< < < < <	64 75 67 37 29	× 23 ×	< < < < < < < < < <	3 5 5 3 3		<	7 9 18 16 14	6 60 12 9	57 55 72 445 105	< < 1 < 1 < 1	51 1 96 1 24 10 23 8 20 7	1 99 3 110 6 118 3 102 7 114	95 23 92 17 90 10 29 < 10 2	15 30 115 94 119	2 2 1 <	2 2 14 13 0 11 0	< < 1.02	0,37 0,36 0,71 0,45 0,36	1.56 1.69 7.59 5.54 5.97	3.44 3.86 4.20 4.39 4.02	0.12 0.13 4.17 2.61 2.96	0.07 0.09 0.04 0.12 0.11	0.07 0.07 0.03 0.04 0.06	0.03 0.07 0.03 0.06 0.05
B92 05+00S 13+00W B92 05+50S 13+00W B92 06+00S 13+00W B92 00+00S 14+00W B92 00+50S 14+00W	R 339 R 100 R 26 R 44 R 25	0.2 0.1 0.1 <	49 41 79 35 32	< < 4 11	29 44 50 70 44	* * * * *	<pre>< < < </pre> < < < <	5 2 3 3 14	V V V V	<	20 17 24 16 10	43 17 72 34 19	67 89 83 236 145	~ ~ ~ ~	76 8 28 7 89 9 73 9 88 2	89 109 72 91 86 116 87 94 88 87	92 × 19 2 50 2 15 4 78 2	131 74 78 24 50	1 1 2 2	18 0 9 0 11 7 0 6 0	0.02 0.01 0.01 0.01	0.45 0,61 1.16 0.94 0.50	6.30 4.97 5.35 3.92 4.52	4.27 4.28 4.85 4.06 2.70	3.38 2.41 3.18 0.86 0.41	0.03 0.10 0.10 0.12 0.10	0.04 0.05 0.04 0.05 0.05 0.03	0.07 0.07 0.08 0.06 0.08
B92 01+00S 14+00W B92 01+50S 14+00W B92 02+00S 14+00W B92 02+50S 14+00W B92 03+00S 14+00W	R 20 R 20 R 750 R 750 R 73	< < 0.3 0.1	31 25 21 10 17	4 ~ ~ 2	43 76 64 79 117	* * * * *	< < < < < <	2 3 6 7 9	* * * * *	<	12 17 10 11 14	16 15 10 8 8	401 89 110 65 80	< < < < < < < < < < < < < < < < < < <	77 5 50 4 83 1 60 1 44 2	53 75 12 101 19 110 15 102 12 147	54 6 15 13 02 12 24 9 74 8	44 41 48 50 57	1 4 2 3	70 63 340	0.01 < < .01	0.56 0.79 0.48 0.35 0.53	3.63 3.51 2.11 2.31 2.61	2.67 3.97 3.35 4.12 4.79	1.64 1.19 0.53 0.55 0.70	0.03 0.12 0.12 0.12 0.12 0.16	0.05 0.04 0.06 0.06 0.05	0.04 0.07 0.10 0.11 0.12
B92 03+50S 14+00W B92 04+00S 14+00W B92 04+50S 14+00W B92 05+00S 14+00W B92 05+50S 14+00W	R 5 R 149 R 143 R -54 R 105	0.1 0.2 0.1	19 71 52 99 66	~ ~ ~ ~ ~	100 49 45 42 58	× 33 × × ×	< < < < < < < < < < < < <	8 5 5 4	۲ ۲ ۱	< < < < < <	17 22 18 20 22	10 45 33 56 35	86 206 555 205 217	~ ~ ~ ~ ~	55 4 58 13 50 10 51 8 52 9	40 126 31 107 31 129 36 99 36 99	59 21 78 < 99 < 95 2 25 2	63 77 121 121 68	2 < 1 1 1	60 16 11 110 100).03 < <).01).01	0,41 0,97 0,66 0,48 1,64	3.75 5.29 8.47 6.42 4.26	4.06 5.13 4.91 4.70 4.95	1.16 2.72 4.27 3.18 2.17	0.05 0.06 0.08 0.07 0.11	0.07 0.02 0.03 0.05 0.04	0.11 0.03 0.06 0.09 0.09
B92 06+00S 14+00W B92 00+00S 15+00W B92 00+50S 15+00W B92 01+00S 15+00W B92 01+50S 15+00W	R 196 8 42 8 56 8 36 8 179	* * * * *	44 25 28 27 10	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	45 60 57 79 58	~ ~ ~ ~ ~	< < < < < < < < < < < < < <	3 6 4 12	< < 10	<	21 12 10 18 18 8	45 22 12 21 9	145 139 226 77 117	~ ~ ~ ~ ~	61 8 61 4 63 2 49 4 57 1	2 112 4 112 3 111 5 131 8 104	29 2 27 3 11 4 11 6 13 11	75 145 73 66 30	1 1 2 3 5	11 0 6 4 7 3).01 < < < <	1.35 0.65 0.48 0.90 0.56	4.62 4.95 4.70 3.95 1.60	4,53 3,52 3,13 4,82 4,49	2.32 2.32 1.07 1.23 0.39	0.11 0.08 0.09 0.14 0.08	0.05 0.04 0.04 0.05 0.05 0.08	0.08 0.07 0.06 0.10 0.04
892 02+005 15+00W 892 02+505 1£+00W 892 03+005 15+00W 892 00+005 16+00W 892 00+505 16+00W	R 54 R 79 R <	< 0.1 < <	23 11 35 36 25	4 2 2 2 <	122 92 91 58 66	<	< < < < 7 < < < < <	8 7 5 4 3	V V V V V	× × × × × × × × × × × × × × × × × × ×	: 22 : 9 : 21 : 18 : 15	16 8 49 30 18	65 147 218 201 90	< < 1 < <	25 4 87 1 26 7 67 6 61 3	13 159 13 117 70 120 54 91 39 107	92 6 74 6 00 7 16 3 75 8	115 34 92 93 65	5 2 2 1 7	7 0 3 0 11 0 8 6).01).01).02 < <	0.97 0.32 1.03 1.40 0.88	3.90 1.70 4.86 4.03 3.79	5.95 3.75 4.27 4.17 3.73	1.04 0.36 2.42 2.17 1.12	0.13 0.06 0.09 0.12 0.09	0.05 0.06 0.04 0.04 0.04 0.04	0.22 0.07 0.10 0.06 0.07
B92 01+505 16+00W B92 02+005 16+00W B92 02+505 16+00W B92 03+005 16+00W	Ř 171 Ř 181 Ř ≺ Ř 18	0.1 < <	8 33 7 15	2 6 3 4	72 92 44 65	< < < <	<pre>< < <pre>< < <pre>< < <pre>6 < <pre>< <</pre></pre></pre></pre></pre>	3 5 4 3	Y Y Y	<	 18 14 3 6 13 	23 13 4 12	96 251 35 430	~ ~ ~ ~	40 4 39 3 15 2 83 3	45 109 36 113 20 69 34 97	99 5 30 6 93 7 79 5	74 67 111 60	3 6 2 4	7 C 6 C 3 5 C).02).01 、 、).01	0,99 0,93 0,72 0,92	6.02 4.18 16 4.46	4.02 4.47 1.77 3.31	1.05 0.59 0.77 0.70	0.09 0.11 0.05 0.11	0.06 0.07 0.03 0.03 0.05	0.12 0.11 0.04 0.07
Min Limit Max Reported [*] Method o Teg s=In d	5 9999 FAAA cient	0.1 99.9 : ICP)le	1 20000 ICP	2 20000 : ICP 11 R	1 20000 9 ICP C=C	5 9999 ICP 2	5 3 9999 999 ICP ICP Silt	1 9999 ICP 1p	10 999 99 169 10 U	2 0. 9 9° 29 Finec	1 999 .CP	1 999 ICP Esti:	2 9999 TCP	5 999 9 ICP T 000	1 199 99 109 T(2 99 999 CP Tr tima	1 2 99 999 ~¤ *CP	1 999 ICn ax=r	1 999 709 0 cst	1 (99 1 ICP imate).01 1.00	0.01 9.99 IC ^{rr}	0.01 9.99	0.01 9.99 IC^	0.01 9	0.01 1.99 ר ו־ר	0.01 5.00 SP	0.01

Intern	INTERNATIONAL PLASMA LABORAT	TORY LTD.				B errine A	t t		¥ V	1	.	Ţ		ł		Ŧ	******	-4	Here	•••	¢						2036 Vanc Cana Phon Fax	Colun ouver da V5 e (604	nbia S , B.C. Y 3E1) 879-) 879-	treet 7878 7898		
iP	L Report: 9200611 T Project: 3130 Bandi	Hom t	esta	ike Ca	nada L	td.					In: Au Out: Au	ig 10 ig 13	, 199 , 199	12 12		172 R	cck/	Soil	Page	≥ 2	of	5 Ce	erti	Sect fied	ion BC A	1 of Issay] er	B	K		David	Chiu
Sa	mple Name		Au ppb	Ag ppm	Си ррт	Pb ppm	Zn ppm	As ppm	Sb ppm p	Hg pm	Mo T1 ppm ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm p	V opm	Mn ppm	La ppm	Sr ppm p	Zr	Sc ppm	Ti %	A1 X	Ca X	Fe X	Mg %	K Z	Na %	P X
89 89 89 89 89 89	2-DM 9- 82 2-DM 9- 85 2-DM 9- 86 2-DM 9- 87 2-DM10- £8	.ಶುಸುನುನುನು. ಬ	21 500 180 68 65	<pre></pre>	4 8 8 58	7 8 6 8 66	23 38 12 11 36	< < < < <	~ ~ ~ ~ ~	~ ~ ~ ~ ~	47 < 4 < 82 < 20 < 9 <	V · V · V · V	< < < < <	4 6 2 5	4 5 3 5	12 56 36 32 32	< < < < <	40 57 45 62 124	< 5 2 4 5	194 577 310 138 297	15 14 67 13	5 15 14 5 4	8 2 2 6 2	< 3 1 1 <	<	0, 19 0, 25 0, 16 0, 19 0, 11	0.04 0.46 0.53 0.02 0.15	3.04 3.25 2.67 2.63 3.30	0.02 0.21 0.21 0.01 0.02	0.11 0.02 0.01 0.02 0.02	0.08 0.10 0.11 0.13 0.08	0.01 0.06 0.01 < <
89 89 89 89 89	2-DM10- 90 2-DM10- 91 2-DM11- 93 2-DM11- 94 2-DM11- 95	(20120120120120) CU	38 12 740 543 6	< < < < < <	39 3 2 5 118	2 9 < 4 <	47 27 5 11 57	24 < 8 <	7 < < 6	~ ~ ~ ~ ~	7 < 5 < 11 < 2 < 4 <	< < < < < <	<pre></pre>	13 2 5 35	44 5 4 112	47 15 120 37 158	< < < < < < < < < < < < < < < < < < <	123 27 60 103 120	76 6 8 4 83 1	586 373 139 165 101	¥27 222	51 252 5 6 116	1 < 1 1 1	10 1 2 2 21	<	0.31 0.23 0.73 0.20 0.76	5.11 267 0.06 0.33 5.77	3.05 0.63 4.07 2.73 5.30	2.66 0.32 0.07 0.07 4.96	0.03 0.03 0.06 0.04 0.12	0.02 0.02 0.02 0.08 0.03	0.01 0.01 0.01 0.01 0.01 0.08
89 89 89 89 89 89	2-DM11- 96 2-DM11- 97 2-DM11- 98 2-DM11- 99 2-DM11- 99 2-DM11-100	1201,201,501,500,500	258 27 290 39 132	0.2 < < < <	4 93 21 30 9	< < < 5	14 17 6 30 11	< < < 15	< < 7 <	~ ~ ~ ~ ~	14 < 3 < 16 < 4 < 15 <	~ ~ ~ ~ ~	< < < < <	3 11 16 15 4	4 30 19 39 3	66 37 23 207 31	~ ~ ~ ~ ~	51 81 73 150 1 79	4 87 28 18 2	531 842 382 831 74	12 3 V ¥ 5	19 123 26 113 7	4 1 5 1 3	1 14 (7 13 <	<).05 < < <	0.18 0.18 0.44 0.41 0.11	1.48 4.96 0.79 8.05 0.04	2.14 3.47 5.34 3.14 2.64	0.30 2.62 0.35 4.50 0.02	0.02 0.02 0.01 0.05 0.01	0.11 0.08 0.02 0.03 0.10	0.02 0.08 0.07 0.01 <
89 89 89 89 89	2-DM11-101 2-JH14- 94 2-JH14- 95 2-JH14- 97 2-JH14- 98		~ ~ ~ ~ ~ ~ ~ ~	< < < < <	5 37 29 18 35	< 3 2 24	31 73 18 103 47	< < < < <	< < 6 < <	~ ~ ~ ~ ~	8 < 4 × 3 × 5 < 7 ×	3 < < < < <	< 1.1 < <	5 17 8 8 10	5 22 7 4 13	40 34 275 26	~ ~ ~ ~ ~	39 84 1 80 42 122	15 168 18 1 8 1 24	412 646 112 556 366	24 5 3 10 3	11 51 663 101 69	3 3 7 7	1 (14 (3 2 (2 (0.01).01 < 0.10).01	0.25 2.56 0.44 1.62 0.61	0.63 1.85 167 1.47 1.62	3.08 5.44 1.70 6.13 1.82	0.09 2.79 0.30 0.90 0.43	0.02 0.02 0.02 0.19 0.04	0.13 0.06 0.02 0.06 0.06	0.02 0.08 0.06 0.23 0.02
89 89 89 89 89	2-JH14- 99 2-JH14-101 2-JH14-102 2-JH14-105 2-JH14-106	1.201.201.201.50	< < 19 54 8	< 0.1 (0.1	72 42 3 8 11	2 11 6 4 <	100 113 26 111 68	< < < 35	5 < < < < <	~ ~ ~ ~ ~	6 « 12 × 26 × 5 ×	<	0.2 0.1	15 2 2 2 2	17 3 3 3 5	101 24 13 11 7	5 < < < <	45 28 43 30 33	67 3 61 12	587 629 956 512 406	5 42 24 59 29	22 27 13 35 16	2 10 7 8 8	5 (< < <).07 < < <	2.64 0.42 0.20 0.20 0.82	0.23 0.84 0.53 1.19 0.19	6.24 2.51 2.85 3.73 4.77	2.28 0.12 0.03 0.03 0.33	0.21 0.13 0.13 0.09 0.04	0.05 0.09 0.07 0.10 0.12	0.07 < 0.01 0.02
89 89 89 89 89	2–JH14–107 2–JH14–108 2–JH14–109 2–JH14–110 2–JH14–110 2–JH15–111	221221201201220	 64 68 26 < 	0.1 0.3 0.1 0.6 0.2	58 71 40 11 44	10 14 5 13 <	38 29 101 44 69	31 < 10 < <	< < < < <	~ ~ ~ ~ ~	4 « 6 « 7 « 2 « 4 «	<	< < < < <	21 20 20 6 26	28 35 27 8 25	11 11 124 419 61	~ ~ ~ ~ ~	58 57 48 84 59 1	35 18 66 1 12 06	723 745 194 919 934	2 < 8 9	93 125 173 43 137	1 1 2 1 4	8 7 8 3 7 (< < < 0.09	0.43 0.46 1.70 0.33 2.41	3.23 3.95 4.50 1.67 3.57	4.36 5.17 5.15 2.86 5.17	1.02 0.94 1.49 0.38 2.17	0.02 0.02 0.17 0.09 0.09	0.10 0.08 0.05 0.06 0.05	0.07 0.03 0.10 0.04 0.09
89 89 89 89 89	2-JH15-112 2-JH15-113 2-JH15-114 2-JH15-115 2-JH15-115	ಜುಸುಸುಸುನ	< < < 24	0.2 0.1 0.2 < 0.4	45 28 44 14 77	13 、 10 、 8	85 110 82 9 54	< 22 <	~ ~ ~ ~ ~	* * * * *	3 < 3 < 4 × 2 < 10 <	~ ~ ~ ~ ~	< < < < <	18 27 16 4 23	20 6 24 6 20	62 8 70 19 21	~ ~ ~ ~ ~	65 8 78 158 34	63 65 1 85 12 25 1	809 401 613 588 058	9 24 3 3	86 91 29 117 236	2 10 2 4 1	4 (4 (6 1 12).05).11 < < <	2.24 3.91 2.03 0.32 0.20	2.99 1.66 0.94 4.26 6.03	4.46 8.23 5.40 0.92 5.50	1.64 2.47 1.68 0.17 2.18	0.14 0.06 0.16 0.03 0.03	0.04 0.05 0.05 0.02 0.06	0.13 0.45 0.07 0.01 0.13
89 89 89 89	2-JH15-117 2-JH15-118 2-JH15-119 2- JH15- 180 DH15	20120120120	117 127 634 <	 0.1 0.3 0.1 	5 7 7 29	5 5 <	33 36 35 36	< < < < <	< < 7	< < < 3	2 × × × × × × × × × × × × × × × × × × ×	2 ~ ~ ~	< < 0.5	3 3 5 14	4 5 6 34	70 114 230 956	< < < < <	69 82 85 57 1	5 5 8 100 1	654 432 907 172	4 7 6 ≮	36 13 23 164	1 2 1 1	4 3 3 10	< < < <	0.18 0.25 0.20 0.39	1.14 0.39 1.05 122	2.40 2.27 3.13 4.02	0.33 0.09 0.19 6.24	0.04 0.04 0.05 0.02	0.08 0.10 0.08 0.03	0.02 0.02 0.06 0.04
Mi Ma Me	n Limit x Reported* thod o Te .s=It	9 F Scien	5 9999 AAA	0.1 99.9 ICP ple	1 20000 ICP 20000	2 20000 ICP 11 F	1 20000 ICP : C-	5 9999 ICP C	5 9999 9 ICP I ≖Sil	3)99 ;CP	1 10 9999 999 ICP ICP JIP L	2 999 ICP f1	0.1 9° °	1 999 ICP =E	1 999 ICP sti	2 9999 ICP	5 999 ICP 000	1 999 9 ICP 1	2 999 9 ICP stime	1 9999 ICP	2 999 ICP Ma	1 999 9 ICP 1	1 999 (CP _st	1 (99 1 ICP im	0.01 1.00 ICP	0.01 9.99 ICP	0.01 9.99 TCP	0.01 9.99 ICP	0.01 9	0.01 9.99 JCP	0.01 5.00 TCP	0.01 5.00 TCP

,	INTERNATION		TOAY LTD.			N ALCOST	i to		Χ.,	2	1 :	ś			•.											203 Var Car Pho Fax	6 Colu Icouve Iada V Ine (60 C (60	imbia er, B.C /5Y 3E 04) 879 04) 879	Strei 1 9-787 9-789	et 78 €8		
i	iPL Report: Project:	9200611 T 3130 Band	Homest	ake Ca	anada l	.td.					In: Au Out: Au	g 10 g 13	, 199 , 199	2 2		172 R	ock/	Soil	Page	e 3 c	of 5	; Ce	- Se rtifi	ction ed BC	1 o Assa	f 1 ^{yer}	Ţ	A	Ζ.	— Da	avid	Chiu
S	Sample Name		Au ppl	u Ag popon	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm p	Hg opm	Mo T1 ppm ppm	8i ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	₩ ppm j	Cr ppm p	V pm	Min ppm p	La pri p	Sr opm p	Zr S pm pp	c T m	i A X		a F %	e M %2	kg Z	K Z	Na %	P %
B B B B	392- JH15 -18 392-JH16-120 392-JH16-122 392-JH16-123 392-JH16-123	DH15	R 12 R 14 R 40 R 40	2m 1.6 0.2 5 < 1 < 5 <	1 106 9 68 17	2 < < < <	2 23 1 47 38	5 81 ~ 30 ~	< 9 5 < <	~ ~ ~ ~ ~	21 < 6 < 3 < 3 < 3 <	~ ~ ~ ~ ~	~ ~ ~ ~ ~	1 6 11 20 9	4 12 5 29 15	99 1495 34 122 25	~ ~ ~ ~ ~	71 162 190 70 1 28	10 2 198 1 62 1	31 89 39 004 122	10 V V 5 6	5 33 3 30 78	1 1 2 2 2	< < 1 6 0.0	< 0.3 < 0.2 < 0.0 < 0.7 1 0.6	3 0.0 7 0.2 3 0.0 5 4.3 4 5.4	4 3.1 6 0.7 9 2.8 6 5.6 2 3.8	3 0.0 9 0.0 8 0.0 0 1.5 3 1.8	20. 90. 40. 80. 80.	.05 (.03 (.02 (.05 (.06 ().08).02).02).02).02).02	0.01 0.01 < 0.14 0.10
8 8 8 8	892-JH16-130 892-JH16-131 892-JH16-132 892-JH17-134 892-JH17-135		2000 2000 2000 2000 2000 2000 2000 200		68 3 53 7	5 ~ ~ 2	30 17 46 40 17	9 < 35 <	5 < < 6 <	< < < < <	2 × 5 × 3 × × 2 ×	<	<	10 11 7 16 4	53 5 5 87 5	51 15 130 59 56	* * * * *	64 44 22 102 34	45 30 31 63 27	714 297 998 732 474	323 70	38 12 47 82 50	1 1 2 1 1	5 4 8 8	< 0.5 < 0.3 < 0.5 < 0.5 < 0.7	6 2.9 3 1.4 6 6.8 2 4.7 3 3.3	4 2.6 1 3.9 2 4.1 5 3.1 5 1.7	9 1.2 2 0.5 0 2.9 4 2.4 7 0.3	0 0. 6 0. 0 0. 7 0. 1 0.	09 0 06 0 13 0 .05 0),04),08),04),04),02),05	0.10 0.10 0.08 0.03 0.15
8 8 8 8	392-JH17-136 392-JH17-137 392-JH17-138 392-JH17-139 392-JH17-140	5 7 3 9	R 203 R 19 R 27 R 116 R 116 R 94	0.2 0.2 1.1 0.4	7 249 68 307 93	2 ~ 4 3	19 149 37 46 33	< 78 20 145 40	< 6 8 6 <	< < 3 <	1 < 6 < 3 < 5 < 4 <	~ ~ ~ ~ ~	< 0.6 < < <	6 26 5 26 14	5 27 7 15 9	65 60 146 33 98	~ ~ ~ ~ ~ ~ ~ ~	52 66 1 40 29 22	25 103 12 41 37	429 646 748 574 682	5 M N N N	53 52 61 52 47	1 : 5 10 1 : 3 : 3 :	2 0.0 0 0.0 3 5 5	1 1.4 6 1.3 < 0.6 < 0.7 < 0.6	0 1.3 5 2.4 7 4.8 9 2.7 7 3.0	0 1.8 7 3.5 0 2.9 7 3.9 5 3.0	9 1.1 7 1.3 7 1.8 7 1.2 2 1.2	4 0. 1 0. 2 0. 1 0. 7 0.	.11 (.04 (.23 (.05 (.07 (1.07 1.08 1.03 1.03 1.02 0.03	0.13 0.11 0.15 0.06 0.08
B B B B	892-JH17-141 892-JH17-142 892-JH17-143 892-JH17-144 892-JH17-144	2 3 4 5	R 62 R 53 R 30 R 118 R 34	2 0.5 2 0.1 0 0.4 3 0.4	203 28 211 8 14	6 11 22 4 <	612 98 163 4 39	79 14 29 10 <	< < 5 < <	< < < < <	13 × 4 × 7 × 5 × 5 ×	~ ~ ~ 3 ~	2.7 0.3 0.5 <	31 7 28 3 13	36 9 42 4 57	27 112 64 127 233	< < < < <	23 31 67 1 54 49	66 1 25 05 4 37	697 339 773 17 811	25382	87 25 68 7 83	5 11 24 2 4 9 20 6	0 0.0 2 9 0.0 < 7	1 0.4 < 0.3 6 1.6 < 0.2 < 0.5	4 5.20 3 1.60 5 2.90 4 0.0 8 4.40	B 4.8 B 1.7 5 4.2 4 1.3 0 2.7	5 2.3 5 0.7 3 1.8 3 0.0 9 2.5	2 0. 3 0. 5 0. 2 0. 2 0.	15 0 05 0 09 0 11 0).05 ().09 ().06 ().12).04 (0.09 0.01 0.10 < 0.10
6 8 8 8 8	892-JH17-146 892-JH17-147 892-JH17-148 892-JR12- 84 892-JR12- 85	5 7 3 4 5	R 72 R 61 B 123 S 31 S 31	2 0.2 0.1 3 0.2 0.6 5 0.1	16 15 75 88 57	< 2 11 7	66 48 96 134 113	< < 15 <	6 7 7 5 <	4 < 5 4 <	6 × 7 × 3 × 5 × 4 ×	<	< < < < <	24 16 30 35 27	92 83 118 55 60	118 119 181 220 178	~ ~ ~ ~ ~ ~ ~ ~ ~	132 1 87 79 1 63 74	20 1 61 1 25 1 73 1 69 1	299 163 513 732 677	2 1 < 1 2 1 10 7	46 38 12 13 14	3 19 2 12 1 10 2 10 1 4	9 0.0 2 5 0.0 5 3	1 0.5 < 0.4 1 0.9 < 2.3 < 2.3	9 7.8 8 7.4 1 5.8 5 0.2 7 0.3	1 4.6 3 4.2 2 6.2 3 7.1 5 5.6	7 5.0 3 3.4 5 3.0 6 1.8 8 2.1	90. 20. 90. 90. 90.	12 0 04 0 14 0 06 0).04 ().02 ().04 ().02 ().02 (0.05 0.04 0.11 0.13 0.11
B B B B B	892-JR12- 86 892-JR12- 87 892-JR12- 86 892-JR12- 86 892-JR12- 89 892-JR12- 90	5 7 3 9 0	\$ 136 \$ 217 \$ 219 \$ 219 \$ 154 \$ 75	0.5 0.3 0.3 - 0.2 0.2	122 69 78 85 112	21 6 6 7 10	142 122 103 115 120	14 < 10 <	< < 7 12	5 < 4 4	7 < 3 < 4 < 3 <	< < < < <	< < < < <	40 25 31 31 33	56 53 70 63 98	352 414 225 311 298	< < < < < < < < < < < < < < < < < < <	61 77 117 105 228	91 3 62 1 88 1 84 1 81 2	8623 845 643 543 564	12 18 7 15	17 12 13 16 11	3 1 2 1 1 1 2 10 2 10	7 0.0 9 0.0 2 0.0 0 0.0 2 0.0	1 2.6 1 1.9 1 2.4 1 2.8 1 3.0	5 0.3 5 0.2 7 0.3 0 0.2 1 0.2	3 8.7 4 5.4 0 5.9 9 6.1 1 5.9	2 1.9 1 1.7 8 2.5 7 2.4 5 3.4	70. 00. 20. 40. 30.	07 0 08 0 09 0 07 0).02 ().02 ().02 ().02 ().02 ().02	0.15 0.08 0.10 0.09 0.09
B B B B	392-JR12- 9 392-JR12- 92 392-JR12- 93 392-JR12- 94 392-JR12- 94 392-JR12- 94	1 2 3 1 5	S 66 S 48 S 29 S 14 S 57	5 0.7 3 0.3 5 0.1 9 0.1 2 0.4	158 102 83 66 89	22 14 15 11 20	132 143 138 116 159	27 28 10 5 22	v 6 v v v	~ ~ ~ ~ ~	6 « 5 « « 6 « « 10 «	5 < 3 < 3	* * * * *	46 39 35 23 33	43 40 43 26 34	225 278 377 269 172	~ ~ ~ ~ ~ ~ ~	31 25 43 1 21 23	67 1 59 1 100 2 64 1 61 2	821 754 2647 781 2458	11 12 17 12 21	28 24 25 14 22	2 12 2 12 2 12 2 12 3 12 3 12	2 2 3 0	< 1.9 < 1.2 < 1.7 < 1.9 < 1.6	0 0.4 9 0.5 9 0.4 9 0.4 0 0.4 7 0.3	3 7.3 0 7.1 3 7.3 0 5.7 5 7.1	2 1.2 6 0.7 4 1.4 1 1.5 6 1.0	5 0. 6 0. 4 0. 9 0. 7 0.	07 0 09 0 06 0 09 0).02 ().02 ().02 ().03 ().02	0.14 0.13 0.16 0.12 0.12
B B B	892-JR12- 96 892-JR12- 97 892-JR12- 98 892-JR12- 98	5 7 3 9	5 66 5 1: 5 3: 5	5 0.4 3 0.2 < <	100 88 148 134	20 16 21 18	134 152 157 137	21 18 8 23	< < <	< < < <	10 < 9 < 10 < 9 <	× × 3 × 3 ×	x x x x	35 32 40 43	35 32 33 43	208 92 661 224	< < 5	25 24 28 43	48 1 55 1 67 4 73 1	799 778 702 903	13 15 21 13	21 23 25 26	3 3 2 1 2	7 0.0 7 0.0 1 0.0 9 0.0	1 1.4 1 1.7 1 1.8 1 1.9	0.3 4 0.3 6 0.3 3 0.3	4 6.2 9 6.8 3 7.4 7 6.8	7 1.0 9 1.2 5 1.4 7 1.5	4 0. 8 0. 0 0. 3 0.	06 (10 (.08 (.07 ().02 ().02 ().02 ().02	0.12 0.12 0.11 0.11
ר ד ד ד ד ד	Min Limit Max Reported Method o Te	ن * ن=1r	9999 FAA cien	5 0.1 99.9 V ICP	1 20000 ICP	2 20000 ICP	1 20000 rcp C	5 9999 ICP C	5 9999 9 ICP I _=S11t	3 999 9 [CP	1 10 9999 999 TCP 169 JP Ü	2 999 TCP fi	0.1 9°	1 999 ೧୭ E	1 999 ICP sti	2 9999 8705 , 1	5 999 ICP 000	1 999 9 100 1	2 999 9 [CP stima	ן 1999 פ זר סיז ג סיז	2 99 9 CP I Max	1 199 9 200 T	1 99 9 °P IC cstim	1 0.0 9 1.0 F TO ate	1 0.0 0 9.9 7 IC	1 0.0 9 9.9 7	1 0.0 9 9.9 P IC	1 0.0 9 9	י י. ז	.01 0 ,99 5 (^^).01 (5.00 CP	0.01

576573688

6X-63

INTERNATIONAL PLASMA LABORA	TORY LTD.		(const)		.		ç		,	5	acou, (A)	Ş		. .		-	-							20 Va Ca Ph Fa	36 C anco anad aone ax	olum uver, a V51 (604) (604)	bia St B.C. ' 3E1 879-7 879-7	reet '878 '898		
iPL Report: 9200611 T Project: 3130 Band	Homes it	take C	anada l	td.					In: Au Out: Au	ig 10. ig 13.	, 1 <u>9</u> 9 , 199	2 2		172 R	ock/S	i î	Page	3 4 0	o f 5	Ce	S rtíf	ectio ied B	n To CAssa	of 1 ayer		A	12		David	d Chiu
Sample Name	Aı ppl	л Ag ррап	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb H ppm pp	łg xm p	Mo T1 ppm ppm	B1 ppm	Cd ppm	Co ppm	Ni ppm	Ва ррт	M M	Cr pm p	V	Mn ppm p	La ppm p	Sr pm p	Zr pri p	Sc pm	Ti / %	41 X	Ca %	Fe %	Mg %	k Z	(Na ()	
B92-JR12-100 B92-JR12-101 B92-JR12-102 B92-DH13-142 B92-DH13-143	\$ 20 \$\$ 1 \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 0.3 1 0.2 2 0.4 3 0.1	95 72 59 356 35	18 47 34 6 11	114 109 165 159 168	10 < 24 < <	< < < < <	< < < < < <	12 < 4 < 8 < 19 < 19 <	< < 3 4 <	< < < < < <	30 27 32 35 11	31 21 29 315 15	357 139 921 59 36	< < < < <	31 15 1 34 33 8	60 1 11 2 85 4 32 3 22 2	751 2046 1339 3060 2081	14 12 1 23 45 72	16 69 30 14 7	2 1 5 6 5	7 0. 7 0. 12 0. 6 5	01 1.8 01 2. 01 1.4 < 0.4 < 0.4	32 0. 14 4. 13 0. 17 0. 36 0.	31 3 09 0 49 1 19 1 06 4	5.73 5.48 7.00 7.75 4.96	1.53 2.72 1.11 0.22 0.12	0.05 0.07 0.11 0.14 0.14) 0.02 0.03 0.02 0.02 0.02	0.10 0.11 0.12 0.10 0.04
392-DH13-1 44 392-DH13-145 392-DH13-146 392-DH13-147 392-DH13-148		<	8 2 53 72 22	3 2 6 11 5	136 122 149 166 185	< < < < <	* * * * *	< < < < <	6 « 5 « 6 « 13 « 79 «	~ ~ ~ ~ ~	< < < < < <	4 2 30 55 2	5 3 25 106 3	17 15 59 88 12	<	3 1 12 210 1	11 1 3 1 89 1 68 3 < 1	356 506 755 3192 120	35 38 21 54 18	5 3 18 25 3	3 3 14 15	1 0.0 < 7 0. 15 0.4	02 0.4 < 0.4 11 2. 04 1. < 0.4	10 0. 28 0. 15 0. 31 0. 30 0.	06 03 36 33 03	3.41 3.11 5.09 7.47 3.44	0.15 0.04 1.84 1.18 0.04	0.20 0.08 1.46 0.91 0.08	0-04 0.03 0.02 0.02 0.02	0.03 0.02 0.12 0.10 0.01
892-0H13-149 892-0H13-150 892-0H13-151 892-0H13-152 892-0H13-153	\$ 118 \$ 1 \$ 12 \$ 20 \$ 17	3 0.3 < < 2 < 5 < 7 0.1	20 48 14 23 96	45 22 5 21 27	125 293 130 310 384	7 < < 58	< < < < <	~ ~ ~ ~ ~ ~	196 < 14 < 14 < 26 < 44 <	4 < < <	 0.2 0.1 0.7 	7 34 4 11 32	9 66 6 9 33	56 237 117 108 94	~ ~ ~ ~ ~	5 33 4 3 16	10 1 48 3 6 1 14 4 29 3	003 868 916 1647 8832	74 77 99 55 128	5 67 9 19 3 4	8 7 2 8 6	1 0.0 9 0.0 1 3 0.0	01 0. 01 0. < 0. < 0. 01 1.	75 0. 19 0. 33 0. 33 0. 29 0.	01 8 34 7 07 7 15 6 29 6	3.70 7.14 3.52 5.80 5.65	0.13 0.26 0.09 0.10 0.72	0.08 0.22 0.09 0.10 0.11	0.02 0.02 0.02 0.02 0.02 0.02	0.03 0.11 0.03 0.07 0.10
892-DH1 3-1 54 892-DH1 3-1 55 892-DH1 3-1 56 892-DH1 3-1 57 892-DH1 3-1 57	SS 11 SS 41 SS 22 2	< 0.8 3 0.8 0 0.3 2 0.8 4 0.6	95 145 61 128 124	22 26 17 21 33	198 125 275 137 152	85 87 44 77 46	< 5 < < <	V V V V	53 < 6 < 7 < 9 < 6 <	< 2 5 5	* * * * *	52 51 26 49 50	62 42 33 53 53	81 124 89 53 86	~ ~ ~ ~ ~	20 30 41 33 37	41 2 84 1 78 1 76 1 73 1	2468 1876 1690 1501 1600	16 18 43 12 21	27 59 16 15 12	3 2 3 2 3	8 12 9 0.1 7 0.1 9 0.1	< 1. < 2. 10 2. 10 2. 10 2. 10 2.	74 0. 99 0. 22 0. 19 0. 31 0.	37 8 51 17 0 11 11	3.94 7.50 5.50 7.93 7.23	0.90 2.42 1.69 1.40 1.51	0.08 0.08 0.57 0.06 0.07	0,02 0,02 0,02 0,02 0,02	0.10 0.15 0.09 0.14 0.13
892-DH13-159 892-DH13-160 892-DH13-161 892-DH13-162 892-DH13-163	\$ 1. \$ 9. \$ 3. \$ 3. \$ 2.	2 0.3 4 0.2 5 < 2 0.1 4 <	96 68 52 53 46	21 16 7 6 10	181 153 118 102 107	28 22 8 8	* * * * * * * *	~ ~ ~ ~ ~	6 < 7 < 3 < 4 <	2 5 4 <	* * * * *	49 33 25 24 19	53 56 55 41 28	86 188 87 76 72	< < < < <	54 1 41 42 33 22	08 1 85 1 62 1 64 1 58 1	978 599 514 086 258	14 10 7 8 11	9 14 8 9 9	1 1 1 1 1	10 0.1 9 8 8 8	01 2.4 < 1.4 < 0.4 < 1.4 < 1.4	30 0. 55 0. 96 0. 24 0. 50 0.	12 29 16 17 15	7.81 7.22 5.22 5.95 5.51	2.02 1.18 0.74 0.89 0.91	0.07 0.08 0.09 0.07 0.05	0.02	0.12 0.14 0.10 0.08 0.10
392-DH13-164 392-DH13-165 392-DH13-166 392-DH13-167 392-DH13-168	5332 5352 5353 535 536 536 536 536 536 536 536 53	0 < 3 < 9 < 7 1.3 0 0.3	47 60 43 170 49	10 12 7 59 55	122 111 105 174 200	9 8 < 18 5	< < < < <	~ ~ ~ ~ ~	6 < 5 < 4 < 137 < 45 <	< 3 < <	< < < 1.5	21 22 19 31 10	30 32 31 32 9	207 111 61 85 84	~ ~ ~ ~ ~	16 20 12 12 3	52 1 52 1 29 1 32 1 8 1	1349 1188 1214 1702 1122	6 5 11 64	15 12 11 17 19	2 2 2 2 4	10 8 5 5 2	< 1.(< 1. < 0.(< 0. < 0.	19 0. 51 0. 54 0. 71 0. 30 0.	31 (23) 28 (33) 21 (5.05 5.67 4.80 7.23 3.54	0.60 0.87 0.35 0.39 0.13	0.05 0.06 0.06 0.05 0.10	; 0.02 ; 0.02 ; 0.02 ; 0.02 ; 0.02	0.13 0.10 0.10 0.08 0.08 0.05
992-DH13-169 992-DH13-170 992-DH13-171 992-DH14-172 992-DH14-173	ន 3 ន៍ 26 ទ័ទ ទ័ទ	0 0.4 0 0.8 3 0.8 6 0.1 5 <	122 105 99 17 3 3	17 33 36 4 3	129 137 146 142 135	20 44 22 <	< 6 < < <	~ ~ ~ ~ ~	12 « 8 « 7 « 11 « 7 «	<	~ ~ ~ ~ ~	47 61 51 17 22	37 47 46 28 45	139 103 141 33 41	~ ~ ~ ~ ~	11 12 31 16 43	49 1 35 1 77 1 17 2 42 2	1615 1083 1485 2278 2233	3 1 3 1 6 45 64	46 73 42 6 10	1 1 2 5 4	6 8 12 4 0. 8 0.	< 0. < 0. < 1.0 01 0. 02 0.	36 6. 39 3. 30 0. 58 0. 79 0.	81 28 79 08 12	7.76 5.35 8.70 5.21 5.83	0.22 0.43 0.81 0.22 0.49	0.09 0.07 0.08 0.29 0.49	0.02 0.02 0.02 0.02 0.02 5 0.02	0.08 0.08 0.11 0.09 2.0.09 2.0.08
392-DH14-174 392-DH14-175 392-DH14-176 392-DH14-177	cartantan.	<	6 4 15 141	< < 4 8	82 43 113 126	< < 41	< < < < <	~ ~ ~ ~	17 < 4 < 14 < 17 <	~ ~ ~ ~	~ ~ ~ ~ ~	7 3 14 70	7 3 9 42	38 28 59 93	~ ~ ~ ~	4 1 3 15	6 1 3 1 30 2 112 2	1836 1746 2972 2409	30 23 34 38	8 5 8 27	5 3 3 2	2 0. 1 4 0. 18	01 0.4 < 0.4 01 0.4 < 2.4	40 0. 28 0. 50 0. 80 0.	07 04 08 53	4.32 3.94 6.06 9.10	0.10 0.03 0.17 2.04	0.18 0.10 0.18 0.09) 0.02) 0.02 3 0.07 5 0.07	0.04
Min Limit Max Reported* Method No TiI International Plarma	999 FAA icie	5 0.1 9 99.9 A ICP 1ple	1 20000 ICP	2 20000 ICP 011	1 20000 ICP k C=	5 9999 ICP	5 9999 99 ICP I(_=S11	3 99 9 CP	1 10 999 999 ICP ICP ulp 1	2 999 ICP ∋fi	0.1 99 0	1 999 (CP ==E	1 999 ICP st	2 9999 ICP /1	5 999 ICP 00(1 999 9 ICP	2 999 9 ICP stiπ	1 9999 ICP	2 999 9 ICP 1 Ma	1 999 9 ICP 1	1 999 ICP I Esti	10. 991. CPI	01 0.0 00 9.1 CP []	01 0. 99 9. 59 1	01 .99 ICP	0.01 9.99 ICP	0.01 9.7	0.01 9.99 TCF	0.01 5.00 IC	0.01 5.00 TCP

PL Report: Project:	920061 3130 B	IT Ho andit	mesta	ike Ca	nada Lt	d.	5 - 1				In: Out:	Aug 1 Aug 1	0, 199 3, 199)2)2		172 R	ock/s	Soil	Page	5 c	of :	c	erti	Secti Fied	on BC A	1 of Issaye	1 er	B	12.		Davic
ample Name			Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm j	Hg ppm	Mo 1 ppm pp	ר Bi התוף מיות	Cd ppm	Со ррт	N1 ppm	8a ppm	W ppm j	Cr ppm	V ppm	Mn ppm p	La pm p	Sr opm	Zr ppm p	Sc opm	Ti X	A1 %	Ca X	Fe %	Mg %	K X	Na Z
92-DH14-178 92-DH14-179 92-DH16-184 92-DH16-185 92-DH16-186		なななない	< 5 18 6 <	0.2 0.5 0.1 <	87 96 102 33 24	19 12 6 5 <	150 113 90 58 36	24 24 34 15 <	5 < < < <	< < < < <	10 5 3 3 3	< < < < < < < < < < < < < < < < < < <	< < < < <	39 36 28 14 9	49 46 112 22 7	54 55 132 88 97	< < < < < <	49 36 84 15 3	75 2 57 124 1 98 1 88 1	270 976 459 273 388	42 9 7 13 13	17 12 11 14 60	2 1 2 2 1	8 0 9 10 0 8 0 4	1.03 .01 1.01 .01 <	2.32 2.01 0.79 1.10 2.07	0.29 0.14 0.47 0.58 4.17	7.81 6.81 6.46 5.77 4.58	1.80 0.92 0.52 0.67 1.52	0.14 0.04 0.05 0.05 0.10	0.02 0.02 0.02 0.02 0.02 0.02
92DH16-187 92DH16-188 92-DH16-189 92-DH16-190 92-DH16-191		るのなら	212 183 38 96 71	0.4 0.6 0.1 <	164 355 54 57 49	5 5 2 < 5	52 63 105 83 99	53 110 11 11 <	11 8 < < <	< < < < <	3 5 3 5 4	< < < < < < < < < < < < < < < < < < <	< < < < <	20 45 28 20 43	12 17 113 53 128	234 210 167 146 215	< < < < < <	5 6 103 35 184	13 44 1 105 1 70 209 1	763 090 142 924 719	2 1 2 5 3 5	15 55 70 31 24	1 3 1 3 2	3 5 14 10 34 0	< < < .02	0.41 0.82 1.22 0.43 1.26	5.89 3.23 3.92 0.53 0.91	2.85 4.99 4.10 3.85 6.85	0.45 0.55 2.07 0.34 1.39	0.10 0.05 0.06 0.08 0.24	0.02 0.02 0.02 0.02 0.02
92-DH16-192 92-DH16-193 92-JH16-124 92-JH16-124 92-JH16-129	A B	るららら	189 564 7 19 8	0.2 0.6 < < <	52 217 40 139 128	11 12 ~ 2 ~	83 89 61 63 63	41 130 7 20 21	5 < < 5	~ ~ ~ ~ ~	11 32 4 4 2	× < × 3 × 2 × <	<	38 52 19 34 11	107 71 40 43 34	156 171 125 291 76	~ ~ ~ ~ ~	39 13 21 68 33	78 13 109 13 129 14 233 14 64 0	369 320 872 462 660	8 1 2 8 10 5	01 13 69 16 8	2 2 1 2 2	16 0 14 10 0 34 6	.01 < .02 < <	0.74 0.30 0.64 0.62 0.89	3.76 0.29 4.24 7.06 0.33	5.71 11% 7.81 6.98 4.44	0.52 0.13 0.64 0.47 0.36	0.07 0.05 0.06 0.06 0.05	0.02 0.02 0.02 0.02 0.02
										:																					

			<u> </u>	992	MP: NT Ban	S/R dit-Di	nB. Maru	d.	···· .x	Zoc Vai Cai Phi Fai	o Columna Street ncouver, B.C. nada V5Y 3E1 one (604) 879-7878 x (604) 879-7898	
iPL Report: 9200 Project: 3130	0638 M ł O Bandit	lomestake Canada		影影到	In: Au Out: Au	ug 14, 1992 g 14, 1992	3 Rock	Page lof Pulp	Certi	Section 1 of 1 fied BC Assayer	DAC	David Chiu
Sample Name	Au oz/st	Sample Name	Au oz/st	Sample Name	Au oz/st	Sample Name	Au oz/st	Sample Name	Au oz/st	Sample Name	Au oz/st	
892-DM 9- 85 892-DM11- 93 892-JH15-181	0.106 0.108 0.352											
					•							
Min Limit Max Reported* Method	0.002 9.999 FAGr	ient Jo	0.002 9.999 FAGr	6-6- 8:14	0.002 9.999 FAGr	itees F-r	0.002 9.999 FAGr		0.002 9.999 FAGr		0.002 9.999 FAGr	<u> </u>
International D	Nacma Lab	1+d 2036 Colu	mhia \$+ 1	Varran RC V	EV 3E1 Dh-	604 /879_7878 F-		7000	1000- T	1100		

Master- R. Britten NTS- R. Britten Bandit-D Marud. NUG 24 1992 AUG 24 1992 D Columbia Streve Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-785 Fax (604) 8/9-785														ant 178 198											
iPL Report: 9 Project: 3	200642 T 130	Homestake Ship=05	Canada	td.			UNT: Que:	Aug 1 Āug 1	7. (199 9. 199	12 12	70	Rock	Ż	Page	T of	2	Cert	Sect ified	ion BC As	of ssaye	 	Į A	$\left[\begin{array}{c} \\ \\ \end{array} \right]$	D	avid Chiu
Sample Name	Au pob p	Ag Cu opm ppm	Pb ppm j	Zn As opm ppm	Sb Hg ppm ppm	Mo II ppnippni	Bi ppm p	Cd Co spm ppm	Ni ррт	Ba ppm p	W Cr pm ppm	- V appm	Мп ррт	La ppm p	Sr Zr pm ppm	Sc ppm	⊺i %	A1 %	Ca X	Fe %	Mg %	К %	Na %	р %	
DM10 ??? DM13 109 DM13 111 DM13 112 DM14 114	R 10 0 R 63 0 R 762 3 R 405 0 R 11).4 23).5 79 3.0 1224).4 10 < 21	10 29 8 7 2	50 28 403 10 161 7 31 < 12 <	 < 4 < < < 4 < 4 < 4 < < 	27 < 3 < 4 < 14 < 3 <	< () < 2 < < < ()),1 15 2,0 11 < 39 < 36),1 6	32 11 53 16 7	83 43 5 8 528	< 148 < 86 < 95 < 85 < 126	26 45 116 8 36	1645 489 407 1559 180	4 4 4 2	78 2 28 2 36 2 08 < 15 <	7 3 11 6 3	< 0.12 0.01 < <	0,42 0,78 0,55 0,17 0,31	5.07 0.69 2.05 4.98 0.21	3.03 2.97 137 6.92 1.22	1.54 0.67 0.56 1.82 0.03	0.07 0.05 0.19 0.02 0.09	0.03 0.08 0.04 0.05 0.02	0.07 0.04 0.18 0.08 0.05	
DM14 116 DM14 117 DM14 118 DM14 119 DM14 120	R 8 2 Ř 25 Ř 171 0 Ř 137 0 Ř 1695 0	2.7 109 < 9 0.2 44 0.1 31 0.4 10	3 4 3 3 3	11 49 37 <	28 < < < < < < 3 < <	1 < 4 < 3 < 2 <	< < < () <	< 4 < 27 < 23 1.1 27 < 14	4 38 15 17 68	518 46 27 23 22	< 87 < 37 < 21 < 22 < 87	9 53 144 137 19	24 913 1171 1271 353	× × × 1	28 < 55 1 88 1 12 1 31 1	1 18 17 22 4	< < < <	0.51 0.73 0.72 0.83 0.33	0.02 8.16 6.62 6.68 1.61	0.96 5.60 5.53 6.66 3.50	0.01 1.12 3.03 3.06 0.50	0.04 0.03 0.03 0.05 0.06	0.01 0.02 0.04 0.02 0.02	0.01 0.08 0.04 0.06 0.03	
DM15 121 DM15 122 DM15 123 DM15 124 DM16 125	R 797 0 Ř 321 0 Ř 318 0 Ř 35 Ř 9	0.7 42 0.2 4 0.2 28 < 11 < 3	10 < < < < < < <	42 < 14 < 10 < 55 < 23 <	<pre>< 4 < < < < < < < 4 < < < 4 < 4 < <</pre>	12 < 12 < 32 < 3 <	< 0 < < 0 < 0	.3 25 < 13 < 5 .5 19 .1 5	24 20 5 17 7 1	12 27 71 75 128	< 50 < 98 < 66 < 14 < 94	36 6 9 48 20	1387 668 118 1543 542	< 1 < 11 4 1 5	52 2 74 < 8 4 85 1 59 1	14 9 12 6	< < < 0.01	0.29 0.17 0.21 0.36 0.23	4.35 2.31 0.03 5.99 1.53	6.30 3.22 3.53 6.79 2.23	1.76 0.95 0.02 2.48 0.72	0.02 0.03 0.01 0.19 0.06	0.08 0.07 0.13 0.05 0.09	0.11 0.05 < 0.12 0.01	
DM16 126 DM17 127 DM17 128 DM17 129 DM17 121	Ř 135 0 Ř 44 0 Ř 49 Ř 25 0 Ř 17	0.1 4 0.2 2 < 8 0.1 17 < 5	< 4 2 59	10 < 18 < 41 < 69 6 41 <	<pre>< < </pre> <pre>< < </pre> <pre>< < </pre> <pre></pre> <pre><td>24 < 16 < 24 < 12 < 293 <</td><td>< < < 0 < 0</td><td>< 8 < 6 < 11 .3 2 .1 5</td><td>6 5 14 5 3</td><td>21 84 19 66 42</td><td>< 67 < 70 < 114 < 107 < 57</td><td>4 16 20 2 7</td><td>277 504 701 124 205</td><td>13 13 13 1 13 41</td><td>13 4 26 3 31 2 6 4 7 1</td><td>1 1 3 < 1</td><td>> 0.01 0.01 0.01 0.01</td><td>0.18 0.19 0.36 0.29 0.23</td><td>0.64 1.15 2.56 0.10 0.05</td><td>2.03 2.51 4.04 2.98 3.48</td><td>0.10 0.38 0.36 0.09 0.02</td><td>0.06 0.03 0.05 0.04 0.16</td><td>0.11 0.13 0.10 0.09 0.10</td><td>0.05 0.04 0.02 0.01 0.03</td><td></td></pre>	24 < 16 < 24 < 12 < 293 <	< < < 0 < 0	< 8 < 6 < 11 .3 2 .1 5	6 5 14 5 3	21 84 19 66 42	< 67 < 70 < 114 < 107 < 57	4 16 20 2 7	277 504 701 124 205	13 13 13 1 13 41	13 4 26 3 31 2 6 4 7 1	1 1 3 < 1	> 0.01 0.01 0.01 0.01	0.18 0.19 0.36 0.29 0.23	0.64 1.15 2.56 0.10 0.05	2.03 2.51 4.04 2.98 3.48	0.10 0.38 0.36 0.09 0.02	0.06 0.03 0.05 0.04 0.16	0.11 0.13 0.10 0.09 0.10	0.05 0.04 0.02 0.01 0.03	
DM17 132 DM17 133 DM17 134 DM17 135 JH18 150	R 24 R 182 0 R < R 673 1 R 523	< 18 0.7 10 < 2 .2 4 < 3	9 13 2 26 2	21 < 21 < 13 < 12 < 23 <	< < < < < < < < < <	6 < 16 < 3 < 11 < 4 <	< < < < < <	 < 5 < 30 < 3 < 40 < 4 	5 6 4 5 3	134 7 497 2 45	< 53 < 102 < 87 < 79 < 49	9 6 7 4 4	205 85 330 57 917	5 2 10 8 17	13 3 25 1 21 2 7 4 15 3	1 1 2 <	< 0.02 <	0.33 0.13 0.15 0.22 0.23	0.19 0.09 0.17 0.04 0.78	4.26 5.35 1.62 7.10 2.80	0.07 0.02 0.03 0.02 0.11	0.15 0.03 0.02 0.18 0.09	0.08 0.09 0.12 0.07 0.10	0.09 0.02 0.03 < 0.01	
JH18 151 JH18 152 JH18 153 JH18 154 JH18 155	R 76 Ř 38 Ř 111 Ř 242 R 264	< 1 < 5 0.1 2 0.1 51 < 4	< < < 2	11 < 24 < 19 < 36 < 35 <	<pre>< < </pre> <pre>< < </pre> <pre>< < < </pre> <pre></pre>	6 < 6 < 8 < 14 <	< < < < <	< 2 < 3 < 6 < 17 0.1 14	3 3 5 14 10	26 62 42 79 41	< 48 < 46 < 43 < 43 < 43	2 5 4 21 9	625 1015 1058 1058 1839	12 31 13 3	18 2 25 2 26 4 54 3 90 2	< < 1 6 6	< < < 0.01 <	0.22 0.29 0.23 0.41 0.27	0.66 1.26 1.34 2.39 3.27	1.77 2.26 2.65 4.12 4.12	0.10 0.25 0.23 0.57 1.07	0.06 0.17 0.07 0.27 0.10	0.12 0.08 0.10 0.05 0.07	<pre>> 0.01 0.01 0.09 0.06</pre>	
JH18 156 JH18 157 JH18 158 JH18 158 JH18 159 JH18 160	R 356 C R 375 C R 940 C R 765 C R 93).2 15).2 30).3 70).1 1 < 6	2 < < < <	34 < 32 < 40 6 23 < 25 <	< < < < < < < < < <	13 < 11 < 8 < 22 < 17 <	< < () < < ()	 < 11 .2 12 < 24 < 8 .1 9 	11 11 15 5 6	24 41 40 58 52	< 57 < 56 < 37 < 43 < 52	6 9 13 10 9	861 1051 1714 970 992	5 5 4 10 8	42 3 40 4 61 3 39 4 43 4	2 3 5 2 2	< < < < <	0.33 0.33 0.43 0.33 0.30	1.90 1.92 2.85 1.84 2.18	3.24 3.76 5.00 3.63 3.35	0.62 0.53 0.91 0.49 0.57	0.12 0.20 0.29 0.12 0.14	0.05 0.05 0.04 0.08 0.07	0.02 0.06 0.10 0.05 0.06	
JH18 161 JH18 162 JH18 163 JH18 164	R 517 C R 25 R 212 R 78 78 78).2 4 < 20 < 5 < 60	<pre></pre>	23 < 90 5 15 < 75 <	< < < 3 < < < <	22 < 5 12 15 < 3 <	< < < (< 8 < 17 0.1 6 < 26	7 20 4 39	38 53 33 128	< 33 < 33 < 40 < 49	3 10 3 21) 7 9 50	1224 1066 759 996	7 × 12 × 1	30 5 92 1 16 4 13 1	2 7 1 11	< < < <	0.30 0.42 0.26 0.68	1.67 4.28 1.21 4.38	4.33 4.50 2.85 4.81	0.26 1.63 0.17 2.37	0.10 0.21 0.11 0.21	0.09 0.04 0.09 0.03	0.03 0.06 0.02 0.07	
Min Limit Max Reported* Method o Tes International	5 (9999 99 FAAA] In c Plasma Lat	0.1 1 3.9 20000 ICP ICP cien	2 20000 200 ICP Die 136 Column	1 5 000 99999 ICP ICP J1 R	5 3 9999 999 ICP ICP C=Ck	1 10 9999 999 ICP ICP Silt - BC V5V	2 0 999 99 ICP 1 1p U 351 6).1 1).9 999 CP ICP J f DH-604/	1 999 9 IC inex 879_78	2 9999 9 32 I Es	5 1 99 999 CP ICF ti	2 9999 ICP 1000	1 9999 ICP	2 999 9 ICP I stima	1 1 99 999 CP ICP	1 99 ICP Max	0.01 1.00 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01 9.99 ICP	0.01	0.01 5.00 ICP	

2030 Columnia Sarsat Vancouver, 1930 Canada VSY 3F1

Phone (604) 879-7678

Fax (604) 879-7898

iPL Report: 9200642 T Project: 3130	Homestake Ship=05	e Cānada Ltd.	In: Aug 17, 1992 Out: Aug 19, 1992	Page 2 of 2 70 Rock	Section 1 of 1 Certified BC Assayer David Chiu
Sample Name Au ppb	Ag Cu ppm ppm	Pb Zn As Sb Hg ppm ppm ppm ppm ppm	g Mo T1 Bi Cd Co Ni Ba W п ррт.ррт.ррт.ррт.ррт.ррт.ррт.	Cr V Mn La Sr Zr Sc ppm ppm ppm ppm ppm ppm	Ti Al Ca Fe Mg K N∂ P X X X X X X X
JH18 165 R < JH18 166 R 44 JH18 167 R 93 JH18 168 R 9 JH18 169 R 71	< 88 < 41 0.1 7 0.1 41 < 10	 85 92 5 19 < 5 116 < 47 < 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13919211915104115421911522902758767510244153741015286263114131455526	0.13 3.67 3.65 6.21 5.43 0.13 0.03 0.09 < 0.46 5.17 4.80 0.74 0.25 0.03 0.08 < 0.35 1.23 2.46 0.32 0.16 0.06 0.01 < 1.56 3.07 5.82 1.78 0.16 0.04 0.11 < 0.33 2.82 3.69 0.92 0.16 0.06 0.06
JH18 170 R 14 JH18 171 R 103 JH18 172 R 271 JH18 173 R 31 JH18 174 R 226	< 64 0.1 2 0.1 2 < 43 0.1 16	2 122 < < < < 14 < < < < 13 < < < < 90 < < 3 < 23 < <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36 48 1071 3 95 2 10 40 3 536 20 15 6 1 29 7 443 20 7 8<	<pre>< 0.66 3.59 4.78 1.21 0.16 0.06 0.08 < 0.21 0.83 2.38 0.13 0.06 0.12 < < 0.27 0.34 2.52 0.05 0.12 0.11 < < 0.59 4.34 5.29 1.35 0.27 0.04 0.10 < 0.24 1.11 3.84 0.26 0.13 0.09 0.01</pre>
JH18 175 R 26 JH19 176 R 705 JH19 177 R 100 JH19 178 R 1162 JH19 179 R 1045	 33 0.4 34 0.1 5 0.5 4 0.4 6 	 81 < < < 40 21 < < 50 < < < 31 < < < 2 88 < < < 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>< 0.66 3.52 4.43 1.42 0.29 0.03 0.06 < 0.30 4.56 4.84 1.90 0.14 0.06 0.07 < 0.30 6.76 4.11 3.14 0.16 0.05 0.08 < 0.27 4.35 4.83 1.94 0.07 0.08 0.17 < 0.41 5.20 6.97 2.85 0.13 0.06 0.13</pre>
JH19 180 R 285 JH19 181 R 2110 JH19 182 R 922 JH19 183 R 340 JH19 184 R 264	0.2 57 0.9 5 0.3 3 < < < <	 41 6 < < 22 < < < 3 30 < < < 24 < < < 19 < < 	<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>< 0.37 3.32 3.80 1.46 0.21 0.06 0.09 < 0.30 1.48 3.61 0.62 0.13 0.10 0.04 < 0.25 3.18 4.18 1.42 0.07 0.09 0.06 0.02 0.28 3.60 4.13 1.42 0.11 0.07 0.08 0.02 0.24 4.43 4.25 1.73 0.06 0.07 0.10</pre>
JH19 185 R 817 JH19 186 R 51 JH20 187 R 24 JH20 188 R 113 JH20 194 R 31	0.2 80 < 36 0.2 62 0.2 34 < 13	 18 23 33 33 35 39 39 	<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01 0.40 3.26 4.69 1.20 0.22 0.06 0.11 0.02 0.27 4.31 3.72 1.90 0.11 0.06 0.07 < 0.66 4.87 5.19 2.19 0.26 0.04 0.09 < 0.35 2.86 4.54 1.15 0.17 0.06 0.07 < 0.32 2.37 3.29 0.50 0.16 0.06 0.04
JH20 195 R 15 JH20 196 Ř 20 JH20 197 Ř 31 JH20 199 Ř 39 JH20 200 R 164	< 52 < 13 < 8 < 22 < 26	2 140 5 < 4 2 89 < < < 2 77 < < < < 52 < < < < 45 < <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3340169011110294236136197218333313178993103718875156225681588166916	<pre>< 0.56 4.87 7.23 2.03 0.26 0.05 0.17 < 0.50 3.32 5.75 1.16 0.20 0.04 0.15 < 0.43 4.49 5.69 1.82 0.23 0.06 0.12 < 0.41 2.72 4.12 1.01 0.20 0.06 0.07 < 0.34 3.16 3.64 1.45 0.18 0.05 0.04</pre>
JH20 201 🤅 🤶 36	< 14	2 51 < < <	< 6 < < 0.3 16 28 174 <	59 16 1002 <u>6</u> 100 2 7	< 0.36 4.16 3.62 1.96 0.19 0.04 0.04

 Min Limit
 5
 0.1
 1
 2
 1
 5
 5
 3
 1
 10
 2
 0.1
 1
 2
 5
 1
 2
 0.1
 1
 1
 2
 5
 1
 2
 1
 1
 1
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01

TERNATIONAL PLASMA LABORATORY	Masterit NTS-R.Br Banchit-J.	Howe	DECENVIE AUG 2 4 1992		2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 979-7898
iPL Report: 9200663 M Project: 3130	Homestake Canada Ltd. Ship=05	In: Out:	Ang 20, 1992 Ng 20, 1992 4 Rock	Page 1 of 1 Pulp Certi	Section 1 of 1 David Chiu
Sample Name Au oz/st	Sample Name Au oz/st	Sample Name Au oz/st	Sample Name Au oz/st	Sample Name Au oz/st	Sample Name Au oz/st
DM14 120 P 0.048 JH19 178 P 0.035 JH19 179 P 0.032 JH19 181 P 0.063	· · ·				
Min Limit 0.002 Max Reported* 9.999 Method FAGr 5 TesIn c	0.002 9.999 FAGr cien: ple vil R	0.002 9.999 FAGr C=C -Silt lp U	0.002 9.999 FAGr Finex Esti 1000	0.002 9.999 FAGr stima Max st	0.002 9.999 FAGr

iPL Report: 9	D 1	ATORY LTD.	Ma N 7 FQ(estake	. Ster 153 - . X. U. 1. Canada	(-'+ 'R. +-(_	K. B B 1 J. H	xyx 1+E1 1000	۱. ٦, e.			© SEP	- 2	// 19	// i 92						j e 1	of	- }		Sect	ion—	1-of	2036 Vano Cana Phor Fax	Colui iouve ida V ie (60	mbia r. B.C 5Y 3E 4) 879 4) 879	Streit 1 1-787i 9-789i 7-7	21 8 8-	A.
Project: 3	130 Band	it Shi	ρ=07							10	05-20	19 AP		92.70	<u></u>	<u>_</u> 19	Rock					C	erti	fied	BC A	ssaye	er		AV (<u>–</u> Dav	d Chiu
Sample Name	Au ppb	лд ррт	 ррт	ррт ррт	2n ppm	As ppm	ppm ppr) n p	Mo [В1 ррт	Cd ppm	Co ppm	Ni ppm	Ba ppm	₩ ppm ······	Cr ppm	V ppm	Min ppm	La ppm	Sr ppm	Zr ppm (Sc opm	1 i %	A1 %	Ca %	Fe ۲	è М 4	9 %	К %	Na %	Р %	
B92 DM22 139 B92 DM22 140 B92 DM22 141 B92 DM22 142 B92 DM22 142 B92 DM23 143	Ř 57 Ř 1178 Ř 362 Ř 207 Ř 9710	0.3 < 0.1 2.7	24 8 14 15 159	3 < < 5	48 7 6 9 7	6 < 6 < 5	< < < < <		2 < 20 < 14 < 19 < 7 <	< < < < <	0.1 0.1 < 0.1 <	7 4 3 2 19	6 5 4 3 14	112 15 21 13 32	< < < < < <	44 52 57 50 239	22 4 3 9	763 169 121 177 80	6 9 6 12 <	38 8 4 4 149	1 3 5 3 <	4 < < <	~ ~ ~ ~ ~	0.24 0.16 0.20 0.13 0.11	3.12 0.20 0.04 0.05 0.14	2.36 2.53 2.90 2.55 3.05	5 1.3 3 0.0 9 0.0 5 0.0 5 0.0	2 0.0 8 0.0 2 0.1 2 0.0 3 0.0	03 0. 05 0. 11 0. 04 0. 07 0.	07 0 10 08 12 03 0	.03 < < .01	
B92 DM23 145 B92 DM23 146 B92 DM23 147 B92 DM24 148 B92 DM24 149	R 79 R 80 R 951 R < R 77	< 0.3 < 0.1	10 55 11 45 12	< 3 < 2	11 51 58 71 24	9 < < < < <		< < + + + + + + + + + + + + + + + + + +	11 < 5 < 6 < 3 < 3 <	< < < < <	0.2 < 0.1 0.1 0.1	4 17 25 22 8	5 23 19 24 6	45 220 35 25 46	< < < < <	67 93 42 27 53	6 55 37 77 18	252 1059 1144 1216 800	7 5 v v 3	9 24 103 135 80	2 1 1 < 1	2 10 7 10 6 0	< < < .01	0.16 0.50 0.26 0.44 0.17	0.17 0.81 4.63 7.42 1.97	3.61 4.08 5.27 4.67 2.58	0.0 8 0.4 1.8 3.8 8 0.7	4 0.0 5 0.0 7 0.0 2 0.1 3 0.0	03 0. 07 0.0 09 0.0 04 0.0 03 0.0	11 0 07 0 06 0 05 0 09 0	.01 .06 .08 .05 .03	
B92 DM24 150 B92 JH23 240 B92 JH25 242 B92 JH25 243 B92 JH25 243 B92 JH25 243 B92 JH25 244	R < R 373 R 26 R 26 R 250	< < 1.1 0.4 <	9 30 1319 208 4	< < 9 <	44 63 15 103 58	< < 18 15 <	< . < . < .		3 < 6 < 4 < 3 < 7 <	< < < < <	0.1 < 0.1	8 28 29 24 31	7 98 54 16 81	82 49 10 11 70	< < < < <	51 118 155 36 106	16 41 117 144 48	935 1131 622 1034 1264	N N K	26 131 52 17 202	1 2 3 6 1	5 8 80 70 100	< .04 .14 .01	0.26 0.83 2.60 2.60 0.52	2.26 3.94 9.10 1.45 4.81	2.73 4.85 4.79 6.33 5.48	0.8 2.9 2.4 2.4 2.1 2.8	5 0.0 7 0.1 2 0.1 4 0.0	06 0.0 1 0.0 1 0.0 1 0.0 0 0.0	09 0 06 0 03 0 06 0 06 0	.03 .09 .10 .13 .14	
B92 JH26 247 B92 JH27 249 B92 JH27 250 B92 JH27 251	R 84 Ř 50 Ř 13 Ř 111	0.1 0.7 <	18 62 22 13	3 427 3 <	45 476 39 21	< 12 < <	< < < < < <	2 2 2 2	4 < 16 < 2 < 8 <	~ ~ ~ ~	0.2 2.6 0.1 0.2	5 15 19 11	5 7 20 8	64 16 212 32	< < < <	26 30 52 58	13 96 61 26	802 1007 852 675	38 3 3 3	24 8 46 69	4 1 < 1	1 0 4 0 9 0 5	.01 .09 .01	0.19 1.58 0.33 0.20	1.43 0.51 3.82 2.94	2.49 6.01 3.77 3.69	0.40 1.5 2.04 0.9	0 0.0 5 0.0 1 0.0 7 0.0	13 0, 1 12 0, (16 0, (13 0, (31 0 07 0 06 0 07 0	.01 .14 .09 .13	
																																-
Min Limit Max Reported* Method > Tes Laternational	5 9999 FAAA In Plasma	0.1 99.9 ICP Cien	1 20000 ; ICP + - , ; A 202	2 20000 2 ICP 1e 36 Com	1 20000 1 ICP il I	5 9999 9 ICP R 7 S+ 1	5 3 9999 999 ICP ICF C=Cc	3 999 Э 1 - -	1 10 99 999 CP ICP Silt	2 999 ICP ີ 1ρ	0.1 99.9 ICP U	1 999 ICP Fi	1 999 IC nec 79_ /	2 9999 7P E	5 999 ICP Sti	1 999 ICP	2 999 ICP 1000 879-	1 9999 ICP	2 999 ICP ;tim	1 999 9 ICP	1 999 (CP 1 7 Ma	1 0. 99 1. CP	.01 .00 [CP 	0.01 9.99 ICP ima	0.01 9.99 ICP	0.01 9.99 ICP	0.0 9.99 IC	0.0 9.9 9.10	1 0.0 9 5.0 9 5	01 0	. 01 . 00 ICP]
Master-R. Boya. NT3-R. Britten. Banchit-J. Howe	DECENVED SEP - 2 1992	2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) (779-7898																														
--	---	---																														
iPL Report: 9200686 1 Homestake Canada Ltd. Project: 3130 Bandit Ship=08	Inn Aug 25 1992 Page 1 of 2 Section 1 of Out Aug 29 1992 43 Rock Certified BC Assayer	David Chiu																														
Sample Name Au Ag Cu Pb Zn As Sb Hg ppb ppm ppm ppm ppm ppm ppm ppm ppm	Mo Tì Bi Cơ Co Ni Ba W Cr V Mn La Sr Zr Sc Ti Aì Ca Fe ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	Mg K Na P % % % %																														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.13 0.09 0.08 0.03 1.54 0.21 0.04 0.07 2.22 0.20 0.03 0.07 1.33 0.18 0.04 0.07 1.41 0.24 0.03 0.10																														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.38 0.23 0.03 0.17 0.36 0.04 0.08 < 0.08 0.03 0.10 0.02 0.09 0.05 0.10 0.02 1.56 0.30 0.03 0.06																														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 <	2.93 0.07 0.03 0.09 2.60 0.17 0.03 0.06 3.63 0.06 0.03 0.09 5.68 0.05 0.03 0.10 4.81 0.03 0.03 0.09																														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.21 0.08 0.02 0.03 0.72 0.20 0.03 0.09 4.04 0.53 0.04 0.12 5.05 0.09 0.03 0.06 0.36 0.11 0.07 0.05																														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.29 0.16 0.04 0.08 0.54 0.09 0.02 0.02 0.67 0.13 0.03 0.09 0.02 0.02 0.11 < 0.07 0.02 0.11 0.03																														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.73 0.15 0.02 0.02 1.58 0.13 0.05 0.14 0.34 0.08 0.08 0.08 0.65 0.31 0.03 0.13 0.80 0.24 0.04 0.17																														
B92 JH23 226 R 122 <	4 <	0.67 0.18 0.05 0.08 2.07 0.16 0.04 0.11 1.53 0.20 0.05 0.09 0.73 0.19 0.05 0.10 1.60 0.20 0.04 0.13																														
B92 JH23 231 A R 28 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.90 0.18 0.05 0.10 1.40 0.21 0.04 0.09 1.52 0.21 0.03 0.12 1.51 0.19 0.04 0.06																														
Min Limit 5 0.1 1 2 1 5 5 3 Max Reported* 9999 99.9 20000 20000 20000 9999 999 999 Method FAAA ICP ICP	1 10 2 0.1 1 1 2 5 1 2 1 2 1 1 1 0.01 0.01 0.01 0.01 9999 999 999 999 999 999 999 999 999 9	0.01 0.01 0.01 0.01 9.99 9.99 5.00 5.00 ICP ICP ICP																														

0	RA	
4		
IN FERNAT	IONAL PLASM	SKARANDAT A LABORATORY LTD.

•	INTERNA	TIONAL P	LASMA	LABORA	TORY LTD.																										Ph Fa	ione ix	(604) (504)	879-78 8 7 9-78	178 398	
iPL	. <u>Repor</u> Projec	t: 92 t: 3	2006 130	86 T Band i	Horr t Shi	iestake ip=08	Canad	a Ltd.	<u> </u>					T Ou	n: A t: A	lug 2 lug 2	5; 1 9 9, 19	99 2 - 992		43	B Roci		Pa	age –	2 of	2	Cer		1on BC	-1 o Assa	f 1 yer		A	2	 D	avid Chiu
San	ple Na	ле		Λu ppb	Λg ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Мо ррт	T1 ppm	Bi ppm	Cd ppm	l Co ppm	Ni ppm	Ba ppm	W ppm	i Cr ppn	- V 1 ppm	Mr ppr	n La m ppr	a Sr n ppm	Zr ppm	Sc ppm	T	i Al % %	С	a f %	Fe %	Mg %	K %	Na %	р %	· · · · · · · · · · · · · · · · · · ·
892 892 892 892	JH23 JH23 JH23 JH23 JH23	236 237 238 239	R R R	13 136 209 24	0.2	45 85 24 54	4 2 ~ 2	83 64 68 99	10 < 15	< < < <	< < < <	3 4 3 6	V V V V	* * * *	< 0.1 <	27 32 17 22	31 49 21 24	84 52 85 57	< < <	49 98 43 21	9 104 8 100 8 18 34	1009 1150 911 829	9 2 0 2 7 9	2 63 2 118 < 83 < 112	1 1 1 <	10 14 8 5		< 1.22 < 1.79 < 0.32 < 0.48	3.7 5.8 3.6 3.8	4 5.9 0 6.7 7 3.9 3 5.0	99 1 12 3 93 1 09 1	.71 .36 .77 .55	0.14 0.15 0.15 0.24	0.04 0.04 0.05 0.03	0.09 0.08 0.05 0.07	
														:																						
Mir Max Met) Limit Repor hod "> Tes	ted*	I Pla	5 9999 FAAA n 11	0.1 99.9 ICP Cien	1 20000 ICP זי ר	2 20000 ICP 51e (5) 36 (55)	1 20000 ICP i1	5 99999 ICP R ^ St.	5 9999 ICP ' C=C	3 999 ICP C	1 9999 ICP ' Si 3C	10 999 ICP It "	2 9999 ICP 1p	0.1 99.9 ICP U	1 999 ICP	1 999 IC ine 879-	2 9999 CP	5 999 ICP Esti Far	999 999 1CF	2 999 1CP 1000	9999 IC	1 2 9 999 P ICP 5t	2 1 9999 2 ICP imatr	1 999 ICP	1 99 ICP Max	0.0 1.0 IC	1 0.01 0 9.99 P ICP stime	0.0 9.9 IC	1 0.0 3 9.9 2 I(01 0. 99 9. CP	.01 .99 ICP	0.01 9.99 ICP	0.01 5.00	0.01 5.00 ICP	

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1

		M N 7 13241	asher- K. TS· R. Nclit-J.	Boya. Britte Howe	۲.) <u>E©E</u> SEP - 2	1992 1992			FTE		2036 Columbia Str Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-78 Fax (604) 879-78	oet 78 98
iPL Report: 92 Project: 3	200708 M 130 Bandit	Homestake Ship=07	Canada Ltd.					Rock Pul	Page 1 of 1 P	Section Certified I	on 1 of BC Assayer	'	7- David Chiu
Sample Name	Au oz/st	iPL Job	Sample Name	Au oz/st	iPL Job	Sample Name	Λu oz/st	iPL Job	Sample Name	Au oz/st	iPL Job	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
B92 DM22 140 B92 DM23 143 B92 JH21 211 B92 JH21 212 B92 JH22 217	R 0.033 R 0.248 R 0.248 R 0.029 R 0.515	9200685 9200685 9200686 9200686 9200686 9200686											
892 JH22 218 892 JH22 221	R 0.173 Ř 0.155	9200686 9200686											1
						•		·					
					:								
Min Limit Max Reported* Method o Te	0.002 9.999 FAGr	0 99999999 Spec cien p	le pil F	0.002 9.999 FAGr C=C =:	0 99999999 Spec Sili 1	lp L fine	0.002 9.999 FAGr =Esti	0 99999999 Spec 1000	stim: ~~ May	0.002 9.999 5 FAGr stim	0 9999999 Spec		

IL INTERNATIONAL		ITORY LTD.							à <u>f</u> e		Ĩ		Ŧ	3	¢		à		, ,								2030 Van Can Pho Fax	5 Coli icouv iada ' ine (6	umbia er, B. V5Y 3 04) 8] 04) 8]	a Strei C. E1 [9-787 79-789	et 8 8	
iPL Report: 9 Project: 3	200839 T 130 Bandi	Hom it	estake	Canad	a Ltd.						n: Se t: Oc	ep 30 ct 03	, 19 , 19	92 92		5 S	oil/I	Talus	Page s	e l	0†	L C	erti	Secti fied	on BC A	l of ssaye		P	A	7-	 Dav	vid Chiu
Sample Name	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb Hy ppm ppm	g N TT PF	1o Ti onippni	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm p	Cr >pm p	V opm p	Mn ppm p	La. ppm p	Sr opm p	Zr S pm pg	Sc pm	Ti X	AT X	Ca X	Fe		ig X	K Z	Na X	Р %	
B92-JH29 259 B92-JH29 260 B92-JH29 261 B92-JH29 262 B92-JH29 263	\$ 131 \$ 935 \$ 471 \$ 1191 \$ 369	0.3 0.6 0.2 0.4 0.3	48 42 39 39 62	< 10 9 3 10	97 116 111 95 150	< < < 13	< < <	~ ~ ~ ~	6 V V V 5 5 4 7 V	< < < < 9	~ ~ ~ ~ ~	34 28 21 18 32	94 71 41 33 55	132 188 256 269 219	< 1 < < < <	11 76 42 31 46	55 14 50 14 36 12 27 12 89 15	484 403 285 252 570	16 19 28 33 19	14 15 14 21 23	1 2 1 2 1	7 0, 6 0, 5 0, 4 12	.01 .01 .01 .01	2,44 2,15 1,70 1,00 1,62	0.27 0.25 0.22 0.23 0.40	5.32 5.49 4.76 4.14 7.14	2 2.2 7 1.7 5 1.2 4 0.6 4 0.9	23 0. 71 0. 23 0. 53 0. 94 0.	10 0 10 0 13 0 14 0 18 0	202 0 201 0 202 0 201 0 202 0	.09 .11 .10 .09 .13	
																															·	
Min Limit May Deportati	5 3999 FA-v.	0.1 °9.9 ; .CP	1 20000 2	2 20000 : IC;	1	5 9999 (5 3 9999 999 JCP I	3 999 _C	1 10 9 999 P L	2 999 9	0.1 9.9 I(1 999 9 	99. ICF	2 39 9	5 999 9 ICP	1 99 9 1	2 99 99 CP	1 999 9	2 999 9 CP 1	1 99 9	1 99 9 .P IC	1 0. 9 1.	.01 0 .00 9 P).01 ().99 (I(0.01 9.99 2P	0.01 9.99 I	0.0 9.9 C	1 0. 9 9. P	01 C 99 5	0. 5. ICP	. 01 . 00	

APPENDIX III

•

(1992 Analytical Methods)

ANALYTICAL METHODS

INTERNATIONAL PLASMA LABORATORIES LTD. (1992)

30 Element Induced Coupled Argon Plasma (ICP)

A 0.500 gram sample is digested with 3 ml 3-1-2 HCl-HNO₃-H₂O at 95° Celsius for one hour and is diluted with 10 ml water. This leach is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Au detection limit by ICP is 3 ppm.

** Au analysis by Fire Assay/ICP from 10 gram sample.

APPENDIX IV

(1992 Thin Section Analysis)

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX. (604) 888-3642

ATTENTION: Jane M. Howe Homestake Canada Ltd. #1000-700 West Pender Street Vancouver, B.C. V6C 1G8 Tel. 689-5453 Fax 689-1220

November 5, 1992 Job # 091

Dear Jane,

Re: Petrographic descriptions 6 samples P.O. #2120

Petrographic descriptions have been completed for the six samples. A summary description accompanies each.

I repolished section JH 22-217 and found gold grains in it as well as in DH 15-181.

The attached completed report with photomicrographs is being sent by Loomis courier. The samples and thin sections will be returned by bus collect. If you have any comments or questions regarding the descriptions you can reach me at 796-2068 [phone/fax].

Please note that the cost for petrographic services will be higher than indicated on your P.O. #2120. The P.O. does not allow for cost of preparation of thin and polished sections. In addition I have charged for only 6 of the 11 photomicrographs. I hope this presents no problem. I enclose a price schedule for your information.

Yours very truly,

Kin Vorthate

K.E. Northcote, Ph.D., P.Eng.

[1] DM 26-155
Porphyritic trachyte (<10% quartz)</pre>

Summary description Moderately porphyritic with very fine grained foliated groundmass. Sericitecarbonate altered fine grained plagioclase phenocrysts and lesser chloritecarbonate altered mafic grains. In a very fine foliated/locally felted groundmass of altered plagioclase. Uniform distribution of K-feldspar which appears to be interstitial to plagioclase of groundmass. Masked by red brown alteration dusting and uniformly distributed minute carbonate clusters. Minor chlorite, alteration of mafics, suspected in groundmass (low birefringence patches).

Accessories include <1% sphene, traces apatite and zircon. Opaques 1-2%, pyrite, hematized pyrite.

Problem: Are K-feldspar and quartz original or introduced? The K-feldspar occurs only in groundmass, not noted as phenocrysts. Uniform distribution suggests it is an original component. [Having said that I expect to be told that outcrop patterns show a "splotchy" introduced distribution.] However, staining of a number of specimens from across an outcrop area or length of core should help resolve this problem. Quartz is very minor, no strong fracture control, suggesting it is also an original constituent.

Microscopic description Phenocrysts

- Altered plagioclase; 15-18%, subhedral (0.2 to 1.0 mm). Disseminated single grains, clusters of grains. Strong/complete alteration to felted clusters of microcrystalline sericite with patches of aggregates of microcrystalline carbonate.
- Quartz; 3-4%, anhedral (0.1 to 0.3 mm). As angular to subangular fragments embedded in groundmass with both sharply defined and diffuse margins. [Lacks the well rounded partially resorbed quartz phenocrysts anticipated in this assemblage] <u>A few grains are interstitial to fine</u> <u>plagioclase of groundmass.</u>

Altered mafic; 3-4%, anhedral (0.1 to >5.0 mm) [a] Regular to diffuse patches of aggregates of microcrystalline to fine crystalline carbonate intermixed with generally lesser microcrystalline to very fine felted chlorite. [b] Long narrow bladed/acicular outlines to >5/0 mm pseudomorphs replaced by carbonate and chlorite as for diffuse patches above. Foliated with groundmass.

Groundmass

- Altered plagioclase; 30%, subhedral (<.05 to 0.2 mm). Some rectangular crystals as for phenocrysts but predominantly long narrow foliated, locally felted laths.
- K-feldspar; 40%, anhedral, (<.05 to 0.1 mm). Interstitial to plagioclase laths of groundmass. Masked by alteration dusting and by diffuse

DM 26-155 continued

clusters of microgranular carbonate. Uniform distribution throughout stained slab.

Quartz; 3-4%, anhedral, (<.05 to 0.1 mm). Irregular grains, widely separated clusters of grains. Interbedded to plagioclase and K-feldspar?)

Altered mafic(?); 2%, anhedral (<.05 to 0.1 mm). Inconspicuous clusters/patches of lower birefringence. Suspected, <u>not positively</u> <u>identified</u> in groundmass.

Accessories

Zircon; trace, euhedral (.05 mm). Embedded in chlorite of altered mafic. Sphene; trace, anhedral (.05 mm) Apatite; traces, anhedral (to 0.1 mm)

Alteration assemblage (percentages included with parent mineral)

Sericite; 10%, anhedral, (microcrystalline to .05 mm). Felted clusters in plagioclase phenocrysts. Present but less conspicuous in groundmass.

Red brown dusting; 10%, microgranular, semiopaque. Affects plagioclase phenocrysts, more intense dusting of groundmass.

Carbonate; 15%

[a] Alteration product of plagioclase and mafics (<1%)
 [b] Abundantly disseminated irregular clusters (<.05 to 0.2 mm) of microcrystalline carbonate throughout groundmass. Masks textures (12-15%) Overprint.

Chlorite; 4-5%

Alteration product of mafic phenocryst. Suspected in minor amounts in groundmass.

Opaques;

Pyrite and hematite after pyrite. 1-2%, anhedral/subhedral (<.05 to 0.2 mm). Skeletal outlines. Associated iron stain. [2] JR 12-89 Sanidine-plagioclase-altered mafic porphyry

Summary description Phenocrysts of moderately sericite/carbonate altered dusted plagioclase, lesser completely chlorite/carbonate/sphene altered mafic and weakly altered sanidine in a K-feldspar-rich groundmass with felted plagioclase and minor interstitial quartz. Feldspars have moderate alteration dusting. Scattered carbonate grains/clusters.

Alteration assemblage includes sericite, carbonate, sericite, chlorite, sphene, epidote and alteration dusting.

Note: K-feldspar is original rather than introduced. Occurs in phenocrysts and is evenly distributed in groundmass. Quartz even distribution. May represent crystallization of last dregs of a barely silica saturated magma. A more uneven distribution would be anticipated with conspicuous veining if significant amounts of quartz are introduced.

Microscopic description Phenocrysts

- Plagioclase; 20-25%, subhedral/euhedral (0.2 to 3.0 mm, with most crystals 1.0 to 2.0 mm) Disseminated crystals clusters of crystals [glomerophenocrysts]. Varied abundance of clusters of very fine/microcrystalline sericite and patches of clusters of very fine/microcrystalline carbonate. Varied intensity of semiopaque dusting. Twinning and R.I. indicate composition is in low andesine range.
- Sanidine; 4-5%, subhedral/euhedral (0.5 to >2.0 mm). Disseminated crystals. Featureless to mottled intergrowths. Virtually unaltered as compared to plagioclase. Very slight dusting. [Conspicuous K-stain in stained block. Biaxial (-) with low/moderate 2V]
- Altered mafic; 10-12%, euhedral/subhedral/anhedral (0.1 to 1.0 mm). Pseudomorphs of chlorite, with minor carbonate clusters and clusters of sphene, lesser epidote.

Groundmass

K-feldspar; 30-35%, anhedral (.05 to 0.1 mm). Interlocking irregular semirectangular grains. Weak splotchy semiopaque dusting.

Plagioclase; 15%, subhedral (.05 to 0.2 mm). As for phenocrysts.

- Quartz; 8-10%, anhedral (<.01 to .05 mm). Very irregular interstitial to Kfeldspar groundmass. Appears to replace margins of K-feldspar grains producing short rod-like networks.
- Chlorite; 1-2%, anhedral (<.01 to 0.1 mm). Scattered irregular grains, alteration of mafic.

Carbonate; 2-3%, anhedral (0.2 to >1.0 mm). Irregular grains, clusters of

JR 12-89 Continued

grains.

Accessory minerals

- Zircon; trace, euhedral (0.15 mm). Widely disseminated grains in groundmass.
- Sphene; 1%, anhedral (.02 to 0.3 mm). Irregular grains associated with chlorite altered mafic, Irregular epidote.
- Apatite; traces, euhedral/subhedral (<.05 to 0.15 mm). Widely disseminated crystals.

Alteration assemblage (percentages included with parent mineral)

- Carbonate; 4-5%, anhedral, (<.05 to 0.4 mm), clusters associated with altered mafics and plagioclase. Few disseminated grains in groundmass.
- Sericite; 4-5%, anhedral (to .05 mm). Felted clusters. Alteration of plagioclase phenocrysts and groundmass.

Sphene; 1%, (see above)

- Epidote; <1%, anhedral (<.05 to 0.2 mm). Irregular grains associated with sphene in chlorite altered mafic.
- Chlorite; 8-10%, anhedral (<.05 to 0.1 mm). Plumose/felted intergrowths, alteration of mafics.

Alteration dusting; <5%, affecting feldspars.

[3] JH 22-217 Mineralized multistage quartz (barite) breccia

Summary description

Mineralized multistage quartz breccia contains sericitic altered lithic fragment remnants. Interlocking coarse quartz crystals form irregular patches in a groundmass showing with varied intensity of fracturing linear zones and networks of finer comminuted grains. Interstices/voids in quartz breccia contain later generations of quartz, and lesser <u>barite</u>. Mineralized by conspicuously fracture/breccia void controlled disseminated and massive chalcopyrite. Minor associated pyrite, sphalerite. Hematite rims, veins (and replaces) chalcopyrite and pyrite.

Repolished the section and located about 10 small gold grains ranging from (<.0025 to .055 mm). They are similar in colour to chalcopyrite, some grains slightly lighter (Ag bearing?) but all have brighter reflectance and have a poor polish. (Unfortunately many of the small chalcopyrite grains also have a poor polish but most, in this case, are partly replaced by hematite).

Microscopic description

- Lithic remnants; 5-7%, (0.2 to >3.5 mm). Consists of irregular fragments, screens, foliated sericitic masses, lesser chlorite, clusters of microgranular opaques (hematite?)
- Quartz; 55-60%, (<.01 to >2.0 mm). Wide size-range. Irregular and linear clusters of coarser interlocking quartz grains (0.2 to >2.0 mm) in a finer groundmass of quartz grains (<.01 to 0.2 mm).
- Barite; 10-12%, anhedral (microgranular to >4.0 mm). Forms coarse interlocking grains in breccia voids in quartz and as very fine grains forming diffuse fine discontinuous crackle networks in the quartz groundmass.

Alteration assemblage

Sericite; 4-5%

- [a] Lithic remnants
- [b] Veinlets/networks

Malachite scattered clusters of grains.

Reflected light

Opaques; 20%

- Chalcopyrite; 10-12%, (not representative of whole specimen), anhedral (<.01 to several mm). Strong fracture controlled. Minute disseminations to continuous irregular massive. Rimmed and replaced along fractures by hematite. Minor associated sphalerite containing chalcopyrite blebs.
- Pyrite; 0.5-1%, anhedral/subhedral (.01 to 0.6 mm). Disseminated grains, and inclusions in chalcopyrite. Partial to near complete replacement by hematite.

[3] JH 22-217 Continued

Sphalerite; <0.5%, anhedral (.01 to 0.1 mm). Irregular grains intergrown with chalcopyrite and contains minute blebs of chalcopyrite.

Gold; about 10 grains, anhedral (<.0025 to .0275 mm), similar in appearance to chalcopyrite colour, brighter reflectance, [i] 1 grain (.01 mm), partially rimmed by chalcopyrite in gangue. Confirmed. [ii] 2 grains (<.0025 and .005 mm) isolated in chalcopyrite (not confirmed) [iii] 1 grain (.0075 mm) isolated in gangue. (not confirmed). Looks slightly brighter than chalcopyrite. [iv] 8 grains (.0075 mm), (.015 mm), (.02 mm), (.015 mm), (.0125 mm), (.0275 mm), (.0125 mm) (,0275 mm). Disseminated in gangue in close proximity to chalcopyrite. Contrast with chalcopyrite distinct. [v] 2 grains (.055 mm), (.043 mm) in hematite in fracture in chalcopyrite.

- Ilmenite; 0.5%, anhedral (<.01 to <.05 mm). Clusters of interlocking grains (to 0.2 mm). Associated hematite, malachite.
- Hematite; 5-7%, anhedral, (<.01 to continuous encrustations). Rimming and replacing chalcopyrite and pyrite.

[4] DM 14-120 Albitized/silicified weakly mineralized multistage breccia

Summary description

Feldspathized (albitized) groundmass composed of microgranular interlocking weakly foliated albite, in which isolated crystals/fragments of plagioclase are embedded. This groundmass was brecciated, <u>veined and impregnated by</u> <u>coarser plagioclase</u> and subsequently by silica (quartz) of varied grain sizes. These veins and impregnations show cross cutting relationships and brecciation indicating a multistage brecciation/fracturing and infilling history. One or more of these stages was accompanied by pyrite (and gold?) mineralization. Late stages of crackle fracturing/brecciation produced hairline and wider veinlets/networks filled with quartz, sericite, carbonate vein and breccia void infillings. Late fractures are iron-stained.

Vestiges of protolith fragments may be represented by fragments of groundmass which contain <u>isolated</u> fine/very fine plagioclase and quartz fragments.

Microscopic description Groundmass

Albite; 60%, anhedral (microcrystalline to .03 mm). Irregular interlocking grains forms a massive groundmass in which widely disseminated, isolated coarser (<.05 to 0.2 mm) plagioclase crystal/fragments occur.

Brecciation: One or more stages of brecciation was accompanied by veining/infilling/impregnation by:

Coarser albite, 10%, (.05 to 0.5 mm) occurring in disrupted clusters.

Multistage fracturing/brecciation:

Silica(quartz) 25%, anhedral (microcrystalline to 0.2 mm). Interlocking irregular grains. Segregated by grain-size into veins/veinlets, impregnations, breccia infillings with earlier quartz disrupted and displaced by later episodes. Silicification and veining appears to have followed albitization. Some pyritization accompanied early introduction of quartz.

Late stage veins/infillings; 20% Multistage brecciation/fracturing accompanied by introduction of:

- Carbonate; 12-15%, anhedral, (microcrystalline to 0.5 mm). Forms veinlets, breccia infillings and disseminated clusters.
- Sericite; 5-8%, anhedral (microcrystalline to .05 mm). Felted clusters in hairline veinlets, diffuse, broad networks. Commonly associated with carbonate.

Iron stain; coating late fractures.

[5] JH 22-220 Albitized mineralized multistage breccia

Summary description

Composed of breccia fragments of shear(?) foliated fine-grained featureless elongate plagioclase (albite) with different orientation of grains in adjacent breccia fragments. Very minor groundmass among breccia fragments which is also composed of plagioclase (albite) but as finer comminuted grains. There are scattered coarser grains/clusters of grains which survived shearing, brecciation and comminution. Cut by later fractures/veins filled with plagioclase, clusters disseminations of foliated sericite few sparse quartz veinlets. Abundant clusters of fracture controlled hematite pseudomorphous after pyrite, beaded hematite in microfractures.

Microscopic description

- Plagioclase; 85%, anhedral, (<.05 to 0.2 mm). Irregular interlocking foliated elongate crystals. Foliation followed by brecciation shown by <u>varied</u> <u>orientation of foliation in adjacent fragments</u>. Interlocking breccia fragments, or with finely comminuted plagioclase (albite) forming groundmass among fragments. Also forms veinlets of slightly coarser interlocking grains. [Featureless, <u>R.I. < epoxy</u>, few twinned grains indicated albite-low oligoclase range of composition.] Scattered coarser grains/clusters which survived shearing and brecciation. <u>Cut by finer</u> linear granulated fracture zones.
- Quartz; 3-4%, anhedral (<.05 to 0.2 mm). Not conspicuous in thin section or stained slab. Very little difference in R.I., both featureless. <u>Minor quartz veins are present.</u>
- Sericite; 1%, anhedral, (microgranular to .05 mm). Foliated clusters to (0.2 mm) in fractures.
- Hematite; 10-12%, anhedral (<.01 to 0.2 mm). Pseudomorphous after disseminated euhedral pyrite, clusters of grains. Clusters (to >1.0 mm) form scattered networks and discontinuous veinlets. Beaded aggregates in hairline fractures.

[6] DH 15-181 Albitized, silicified mineralized breccia Summary description Multistage brecciation, albitization (coarse and finer) fractions of albite. Subsequent episodes of fracturing comminution with crackle brecciation accompanied by quartz and sericite infilling. Mineralization by disseminated and fracture controlled euhedral pyrite (with minor sericite). Minute gold grains occur [a] isolated in pyrite [b] interstitial to pyrite and [c] widely disseminated in gangue. Gold is associated with intermediate stages of albite/quartz veining/breccia infilling.

Note: There are no definitive protolith textures but vestiges are suggested by:

[a] relict "phenocrysts" of plagioclase showing more intense alteration dustings outlining coarser grains in a finer interlocking featureless groundmass. Could be remnants of earlier coarser feldspathization.
[b] Clusters of felted chlorite which may represent former mafic phenocrysts/fragments.

Microscopic description

Plagioclase (albite); 70% [a] Protolith; no definitive textures. Brecciation-----[b] Coarse albitization; anhedral (0.2 to >1.0 mm). Clusters of interlocking irregular grains in a finer fracture controlled albitic groundmass. Brecciation-----[c] Finer albitization, anhedral (<.05 to 0.2 mm). Linear veins, breccia voids filled with interlocking irregular grains. Comminution-----Crackle brecciation-----Ouartz: 18-20% [a] Coarser veins; anhedral (.05 to 0.2 mm). Fracture controlled irregular grains. Crackle brecciation------[b] Finer veins, anhedral (<.01 to .05 mm). Fracture controlled irregular interlocking grains. Sericite; 5% [a] Crackle fracture fillings; anhedral (microgranular to .05 mm). Forms hairline felted veinlets and discontinuous fracture controlled more diffuse clusters (to >0.2 mm) [b] Interstitial; associated with margins of pyrite grains anhedral (<.01 to .05 mm),

Reflected light

Pyrite; 6-7%, euhedral (<.01 to 1.4 mm). Disseminated grains, irregular clusters of grains of varied size. Isolated grains in gangue but most abundantly showing linear fracture control. Some clusters of grains <u>cut</u> <u>by fractures</u>, related to an earlier (intermediate?) stage of fracturing/mineralization. Appears to be related to albite and quartz DH 15-181 Continued

veinlets.

Gold; 18 grains noted, ranging from (<.0025 to .0175 mm) as isolated grains in
pyrite and isolated grains in gangue. Related to an intermediated stage of
fracturing mineralization.
[1] Isolated grains in pyrite.
 [i] .0025 mm, .0063 mm (2 grains in 1 crystal pyrite.
 [ii] <.0025, .005, .0075, .0075, .0125, .0175, .01 mm (8 grains
 in 1 crystal pyrite).
 [iii] .0025 mm
[2] In gangue inclusion in pyrite.
 [i] .0175 mm
[3] In gangue between and/or adjacent to pyrite crystals
 [i] .0088 mm
 [ii] .0075, .005, .0125 mm, .0025 mm, .0063 mm.
Leucoxene(?); <0.5%, anhedral (microcrystalline). Irregular and linear</pre>

clusters of aggregates of microgranular grains.

92 R XXXV-2A Reflected light Scale 0.1 mm 92 R XXXV-1A Reflected light Scale 0.1 mm

JH 22-217

Fracture controlled chalcopyrite rimmed and veined by hematitie with a cluster of 8 gold grains (arrows) isolated in quartz gangue. Size range (.0075 to .0275 mm)

Chalcopyrite is pale yellow. Gold grains are a similar colour but appear lighter because of higher reflectivity. Two grains are associated with hematite in a fracture but most are isolated grains not associated with hematite.

JH 22-21792 R XXXV-3AReflected light0.1 mmTwo gold grains (.055 mm)(.043 mm) in hematite veining chalcopyrite.

DH 15-18192 R XXXV-5AReflected light0.1 mmSeven gold grains ranging in size from (<.0025 to .0175 mm) in pyrite.</td>

[1] DM 26-155 92 R XXXV-12A Polarized light 0.1 mm

Porphyritic "trachyte". Showing altered (sericite and carbonate) plagioclase phenocrysts in a finer foliated/felted groundmass of plagioclase and K-feldspar. Spotted by carbonate alteration.

[2] JR 12-89 92 R XXXV-11A Polarized light 0.1 mm

Plagioclase-sanidine-altered mafic porphyry. Phenocrysts of plagioclase, sanidine, altered mafic in a fine interlocking groundmass of plagioclase with interstitial K-feldspar and lesser quartz.

[3] JH 122-217 92 R XXXV-10A Polarized light 0.1 mm _____ Multistage breccia, varied shapes of quartz, barite fragments. Hematite. pyrite [opaques]

[4] DM 14-120 92 R XXXV-9A Polarized light 0.1 mm

Multistage breccia. Very fine feldspathic groundmass, veined by coarse quartz and carbonate, cut by very fine grained quartz, cut by carbonate with late iron-stained fractures.

[5] JH 22-220 92 R XXXV-8A Polarized light

0.1 mm 💶

Breccia. Cluster of coarser plagioclase crystals in a brecciated foliated finer plagioclase groundmass showing different foliation orientation in adjacent fragments.

[6] DH 15-181 92 R XXXV-7A Polarized light 0.1 mm .____.

Breccia. Felted plagioclase groundmass cut by two inconspicuous quartz veinlets [lower left, upper right] Euhedral pyrite [opaque]

[6] DH 15-181 92 R XXXV-13A Polarized light 0.1 mm

Breccia as above, fragment of coarser interlocking plagioclase in a finer plagioclase (comminuted?) groundmass. The two cut by narrow quartz veinlet [top to bottom centre]. Euhedral pyrite [opaque]

APPENDIX V

(1992 Induced Polarization Report and Pseudosections)

PACIFIC GEOPHYSICAL LIMITED

REPORT ON THE

INDUCED POLARIZATION & RESISTIVITY SURVEY

ON THE

BANDIT PROPERTY

ATLIN MINING DIVISION, BRITISH COLUMBIA

FOR

HOMESTAKE CANADA LTD.

N.T.S. 104K/1

BY

PAUL A. CARTWRIGHT, P.Geo.

Geophysicist

DATED: November 12, 1992

TABLE OF CONTENTS

)

L

İ

PART A	REPORT	PAGE
1.	Survey and Instrument Specifications	. 1
2.	Discussion of Results	. 1
3.	Conclusions and Recommendations	• 5
4.	Certificate : Paul A. Cartwright, P.Geo	. 7
5.	Certificate : Grant D.Lockhart, B.Sc	. 8
PART B	ILLUSTRATIONS	
Main Grid	- Induced Polarization N=2 Plan File:MBI2 - Resistivity N=2 Plan File:MBR2 - Pseudosections (6)	
Post Grid	- Induced Polarization N=2 Plan File:MPi1 - Resistivity N=2 Plan File:MPr1 - Pseudosections (4)	

,

1. SURVEY and INSTRUMENT SPECIFICATIONS

Induced polarization and resistivity surveys have been carried out on the Bandit Property, on two separate grid areas; the Main Grid, and the Post Grid. Pole-dipole array was utilized to make all measurements, with an inter-electrode spacing of 50 meters being used in the case of the Main grid work, while a spacing of 12.5 meters was used to provide more detailed information on the Post Grid.

An EDA Model IP-6 induced polarization and resistivity receiver unit was utilized to make the measurements. Two separate transmitters, a Phoenix Model IPT-1 1.0 kw unit, and a Huntec Model Mk4 7.5 kw unit, were used to provide the 2 second on, 2 second off receiver signals, depending on the voltage levels required. Induced polarization values were recorded as milliseconds, using " mode 3", which employs a 80 msec delay time, followed by 10 logarithmically spaced measurement windows(80ms x 4, 160ms x 3, 360ms x 3), which were then combined into one cumulative reading.

Apparent resistivity measurements were calculated in ohm-meter units.

2. DISCUSSION OF RESULTS

i) Main Grid

The IP and resistivity data collected on the Bandit Property, Main Grid, are interpreted to form 7 relatively narrow zones of anomalous IP effects. Each of these features are discussed below and is shown on the N=2 IP contour plan-File:MBI2. <u>Zone A</u> - Very weakly anomalous IP values outline this zone, which is detected on the extreme northern ends of Lines 1400E and 1300E. Greater than background apparent resistivity values appear to be associated with the source of the IP zone. This is consistent with the presence of localized limestone outcrops noted in the immediate area. It is probable that the weak IP effects are caused by minor amounts of metallic sulphide minerals, possibly associated with gold mineralization.

<u>Zone B</u> - This feature is thought to extend across the entire survey grid, although this interpretation is made uncertain by the large distance between adjacent Lines 100W and 1300W. Weakly anomalous IP readings, together with elevated resistivity values mark the eastern end of the trend, while considerably more anomalous IP values are noted forming the zone to the west of Line 300W. This is particularly true in the case of the data from Line 100W, where strongly anomalous IP data detect the presence of a relatively narrow tabular, and near-surface source, coincident with lower than normal resistivities. This signature suggests that the zone is composed of much more concentrated metallic material in the area of Line 100W, than is present in the vicinity of the two easternmost lines.

A more deeply buried source forms the western end of Zone B, where moderate magnitude IP measurements indicate burial depths in the order of 50 meters subsurface.

- 2 -

<u>Zone C</u> - The highest magnitude results seen within Zone C are recorded in the data from Line 500W, where moderately high IP effects outline a narrow, tabular source, which is probably steeply dipping, and is associated with background level resistivities. Disseminated metallic mineralization is the most probable cause of Zone C, which has an apparent strike length in the order of 1000 meters.

<u>Zone D</u> - The source of this trend is best outlined in the data from Line 700E, where the source is indicated to be approximately 150 meters wide, and well within 50 meters of the surface. It is also possible that two, or more, narrow sources are present, but are too closely spaced to be resolved by the 50 meter interval being used. Much less anomalous results are observed as the zone trends westward, until it finally disappears between Line 500W and Line 1300W.

Zone E, Zone F - These are judged to be parallel zones of anomalous IP effects, that together vary in magnitude from strongly chargeable in the vicinity of the southern end of Line 1300E, to only weakly chargeable in the area of Line 100W, before recovering to moderate level IP values on the eastern part of the grid. Depths to the tops of the causative sources are almost always less than 50 meters. The most concentrated mineralization is outlined under Line 1300W, between Stations 1100S and 950S.

- 3 -

<u>Zone G</u> - This one line anomaly is interpreted to be a separate zone, although it may, in fact, be part of Zone F. Additional survey coverage is required to more accurately ascertain the nature of this response.

ii) Post Grid

Four zones of anomalous IP effects are outlined by the data recorded on the Post Grid. These trends are discussed below, while the individual zones are illustrated on plan File:MPi1.

<u>Zone A</u> - Weakly anomalous IP values mark this zone, together with higher than background resistivity values. This type of signature is probably indicative of minor amounts of disseminated sulphides set within resistive host rocks.

Zone B - This moderately to weakly anomalous IP zone is thought to be outlining a narrow gold bearing pyrite zone, initially detected by surface geochemistry. It is the author's understanding that a trench dug to sample the source of this response had to be abandoned at approximately 3 meters depth, before the mineralization was reached. Unfortunately, one can only discern from the 12.5 meter dipole IP data that the target is less than 12.5 meters subsurface; it is very difficult to more accurately judge the depth to a source that lies less than one dipole length beneath the surface. Smaller dipole intervals are required to improve the depth estimate in this case.

<u>Zone C</u> - Weakly anomalous IP results coincident with high magnitude resistivity values mark this feature, which probably is caused by minor amounts of disseminated metallic material associated with a resistive, possibly siliceous zone. Depths to the top of the source are less than 12.5 meters.

<u>Zone D</u> - This zone is by far the most anomalous encountered by the Post Grid IP and resistivity survey, with the highest magnitude IP effects being evident in the data recorded on the southern end of Line 50E, where somewhat lower than normal resistivities are also noted. Metallic mineralization, in stringer form, or as heavy disseminations, is thought to be the cause of this feature.

3. CONCLUSIONS AND RECOMMENDATIONS

i) Main Grid

Seven separate zones of anomalous IP effects are interpreted to be present in the data recorded on the Bandit Property, Main Grid. These trends could represent either metallic sulphides possibly associated with gold mineralization, or, in the case of the weaker responses, argillic alteration products also possibly related to elevated gold values.

Of particular note is IP Zone C, which is recommended for further investigation by drilling, based upon the relatively high amplitude values that constitute the trend, and the fact it is of limited strike length. It is the author's understanding that Zone C is closely associated with a known dykè-like structure, in a area of anomalous gold geochemical results.

ii) Post Grid

Four zones of anomalous IP values are interpreted to be present in the data recorded on the Post Grid. Zone B is coincident with a known gold bearing zone, and further work is recommended. This follow-up work should initially be in the form of additional IP surveying using 5 meter, or less, electrode intervals to more accurately determine the depth prior to trenching.

It is also recommended that all other data be correlated with the geophysical results from both the Main Grid and the Post Grid before assigning priorities for follow-up work.

Pacific Geophysical Ltd.

Paul A Cantur It

Paul A. Cartwright, P.Geo.

Dated: November 12, 1992

4. CERTIFICATE

I, Paul A. Cartwright, of the City of Vancouver, Province of British Columbia, do hereby certify:

 I am a geophysicist residing at 4508 West 13th Avenue, Vancouver, British Columbia.

 I am a graduate of the University of British Columbia, with a B.Sc. degree (1970).

3. I am a member of the Society of Exploration Geophysicists, the European Society of Exploration Geophysicists and the Canadian Society of Exploration Geophysicists.

4. I have been practising my profession for 22 years.

5. I am a Professional Geophysicist licensed in the Province of Alberta, and I am a Professional Geoscientist registered in the Province of British Columbia.

Dated at Vancouver, British Columbia this 12th day of November, 1992.

Paul A. Cantu

Paul A. Cartwright, P.Geo.

5. CERTIFICATE

)

I, Grant D. Lockhart, of the City of Vancouver, Province of British Columbia, do hereby certify:

- I am a geophysicist residing at 301 2232 West 5th Avenue, 1. Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia, with a B.Sc. degree (1987).
- I am a member of the Society of Exploration Geophysicists, and 3. the Canadian Society of Exploration Geophysicists.

4. I have been practicing my profession for 4 years.

Dated at Vancouver, British Columbia this 12th day of November, 1992.

Gran pse

GRANT D. LOCKHART, B.Sc.

GEOSOF! (tm) Software for the Earth Sciences, Toronto, Danada
12+00 \$ 11+00 \$ 10+00 \$ 9+00 \$ 8+00 \$ 7+00 \$ 6+01 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ filter 1284 1675 1734 1914 1635 1656 1310 1596 1404 1521 1835 1366 1459 1488 1796 1663 3000 2286 2674 264 264 3021 2146 filter 1494 1177 2007 1740 2077 1011 1893 1005 1191 2475 1867 1253 1982 2002 2234 1854 2170 2120 2507 3368 4339 3043 4686 2705 n=1 n= 911 1050 1723 2077 1361 1999 1362 1514-1473 1108 2564 1666 1067 1208 1998 2368 1975 [42] 1998 2118 2726 3806 3120 3522 2105 n=2 n=2 1341 Z588 (1821 1785 / 1622 (1789) 1941 1308 3423 1779 / 1217 Jak 1293 2076 2055 1516 1857 202 208 275 258 5220 1683 n=3 n=3 2162 2142 1790 1117 1365 1538 1171 (7276 / 1676 / 1196 101) કરે, છેર 1949 1958 1795 1798 296 2342 2121 2492 1455 n=4 n=4 1882 2073 /1134 1490 1217 1294 /1947 1817 1151 956 957 -1005 1375 1549 1875 1758 1828 2006 1647 1212 -1117 n=5 n=5 12+00 S 11+00 S 10+00 S 9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S filter 9.4 10 9.3 9.9 9.6 9.6 9.2 7.8 7.3 7.1 7.7 % 8.8 8.8 8.7 9.3 10 11 % 8 9 9 % 5 9.2 % 2 6.2 filter CBS. CHARGEABILTY n=1 7.4 11 / 81 /10 B.6 B.4 B.6 -7.2 6.2 4.7 5.3 7.7 8.4 - 7 6.7 7.1 9.1 8.1 10, 9.4 , 5.9 n=1 8.6 6.2 6.6 6.9 7.5 8.8 11 7,5 7.2 \square **}** 9.1 8.9 8 6.6 13 n=2 9.8 0 -9.9 12 - 11) n=2 8.4 8.4 8.8 7.6 89 8.1 ,10 96 96 89 10 12 9.2 7.6 6.4 7.8 81 7.8 99 13 94 8.9 n=3 n=3 9.1 6.6 0 10 8.5 9.1 1Z 8.2 7.4----- 7.7 8.6 9,1 8.9 7.6 8.4 B.9/ 8,9 6.3 я́в n=4 n=4 6.3 0 --- 9.8 8.1 8.1 8.3 8.3 9.7 8.5 7.7 12 11 n=5 9 9.1 8.4 9.2 14 8.9 9.3 n=5 12+00 S 11+00 S 10+00 S 9+00 S 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ filter 7.9 6.9 5.7 5.4 6.2 6.3 7.3 5 5.4 5 4.8 6.6 7.8 6.7 5.3 5.3 6 6 4.5 4.1 3.7 3.2 3.7 3.1 3.2 filter -4,4 3 3.2 4,3-55-4.2 37 -27 1.9 , 3.4, 2 n=1 7.5 8 7.7 5.1 -4.9 .85 2.2 n=1 4.6 34 41 5.7 3.8 34 4 22 34 26 31 6 12) 5,3 4.7 5.5 6.2 81 5.7 4.2 n=2 n=2 7.2 37 43 59 11 51 57 4,9 9*E* n=3 n=3 3.5 5.3 6.3 4.6 4 7.1 n=4 5.1 n=4 67 91 59 67 62 34 54 44 -56 -6.6 6.7 6.3 -4.3 4.8 4.4 n≈5 n=5

GEDSOFT (tm) Software for the Earth Sciences, ionanta, Canada

.

CEUSURT (tm) Software for the Earth Eclences, Toronto, Canada

GEDSCHI (tm) Software for the Earth Sclences, Ioronto, Canada

14+00 S 13+00 S 6+00 S 12+00 S 11+00 S 10+00 S 9+00 S 8+00 S 7+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 \$ ----filter 1608 1392 1510 1327 1904 1236 1096 952 1040 1066 1028 894 819 1116 1293 150B 1600 2010 2168 2208 2691 7247 65 1670 964 663 654 1966 1762 1269 1215 n=1 1178 1775 162 1238 1233 109 1166 1894) 2129 3042 4702 1616 1307 1270 1312 1524 636 1109 6632 1711 1332 n=2 1486 2065 1949 1574 1157 1868 2176 2587 n=3 1986 1439 1210 1178 1198 912 571 1153 10% 1806 1813 4152) 1460 1336 1577 1301 1202 Z950 1726) zzie 1757 11/6 n=4 875/ ITO 104 1998 19**D**4 In 150 n=5 1270 1382 1321 1535 1240 833 1346 1104 1677 23 1753 1516 1777 1032 988 1.00 14+00 S 13+00 S 12+00 S 11+00 S 10+00 S 9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 9.2 8.7 7.8 7.1 6.5 5 IS 5 47 46 48 55 5.6 8.6 14 filter 16 15 14 15 11 9.2 8 7.1 6 5.6 16 12 16 13 n=1 16 12 14 11 38-13 9.3 7.7 12 13 11 ~ 8.9 1 6.6 6 6.2 14.4 4.3 31 32 3-29 29 29 13 14 12 37 35 65 56 65 n=2 14 8.3 7.5_ 6.9 5.7 45 3.8 37 36 6.1 81 82 21n=3 18 12 12 94 7.9 67 61 45 42 4.3/ 16 5.3 53 n=4 19 13 12 12 6.9 7.8 14 184 6.1 15 16 7.7n=5 11 9.1 6.6 5.7 12 7.9 6.8 6.0 -87 14+00 S 9+00 S 3+00 S 13+00 S 12+00 S 11+00 S 10+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 2+00 S 1+00 S filter 10 10 11 13 9.7 10 5.4 48 37 28 25 25 31 3.2 4.6 5.5 5.7 5.1 13 11 12 16 19 19 17 14 12 11 7.3 , 7.7 n=1 9.2 19 / ,8.3 89 57 1.7 1.2 1--- 0) 29-- 3 33 23 21- 41 11-21 n=2 8.1 67 1.2 56 11 44 61 39 24 14 n=3 18 8.7/ 5.9 5.8 4.9 25 21 1.6 ,59 6.2 32 7.5 57 n=4 8.4 Z2 . 19 53 4.2 23 4.8 8.2 21 1.9 / IE 11 0 n=5 22 6.9 41 22 38 63 86 194 19 54 39 - 56 91-18 / Software for the Earth Sciences, Joronio, Lanada SDEL TRAD

• • •

GEDSOFT (tr) Software for the Earth Sciences, Toronto, Canada

•

.

TY	Line 1400 W Pole-Dipole Array a = 50m n = 1,2,3,4,5 plot paint
BILTY	Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10, Instrument : EDA IP 6 Frequency : 2s ON / 2s OFF Operators : GDL/NSH INTERPRETATION Strong increase in polarization Moderate increase in polarization
ŬF.	Weak increase in polarization Pronouced resistivity increase Pronouced resistivity decrease UNIFOTAKE CANADA LTD
	HUMESTARE CANADA LID INDUCED POLARIZATION SURVEY BANDIT PROPERTY Main Grid, Atlin M.D., B.C. Date: August 1992 Scale 1:5000
	Pacific Geophysical

EDROFT (tm) Software for the Earth Sciences Toronta Capada

APPENDIX VI

(1992 Statement of Costs)

STATEMENT OF COSTS

GEOLOGICAL MAPPING AND SAMPLING (Bandit X, Y, 4 and Ban 1 claims)				
SALARIES AND WAGES	38 field dave	@ \$200 /day	¢7 600	
D Marud	32 field days	@ \$200/day @ \$200/day	\$7,000 6 400	
J. Roozendaal	27 field days	@ \$100/day	2,700	
D. Holbek	29 field days	@ \$100/day	2.900	
J. Howe	5 office days	@ \$200/day	1,000	
GEOCHEMISTRY AND ASSAYIN	IG 220 rook	@ \$12.05 /comple	2 167	
31 element ICP analysis	239 TUCK 76 soil	@ \$13.25/Sample @ \$11.00/sample	3,107	
or clement for analysis	70 301		000	
ADMINISTRATION				
Groceries			3.629	
Sample Freight (ground)			300	
Helicopter (206B)	16.8 hrs	@ \$612/hr	10,282	
Fuel	1932	@ \$0.82/I	1,584	
THIN SECTION ANALYSIS				
INDUCED POLABIZATION SUBVEY (Bandit Y and Bandit Z claims)				
Geophysical Survey	8.5davs	@ \$985/dav	8.373	
standby	1.5days	@ \$700/day	1,050	
mob-demob	2		625	
2 Assistants	20 days	@ \$100/day	2,000	
Helicopter (206B)	8 hrs	@ \$612/hr	4,896	
Fuel	1000 I	@ \$0.82/I	820	
PROPERTY COSTS				
Filing Fees			2,600	
		SUB-TOTAL	\$ 61 162	
Administration Fee (12%)7.33				
		IOIAL <u>5</u>	<u> </u>	

Total Expenditures on Statement of Work \$ 50,500

APPENDIX VII

(Statement of Qualifications)

.

STATEMENT OF QUALIFICATIONS

I, Jane M. Howe, with a residence address of 310-1040 East Broadway Street, Vancouver, B.C., V5T 4N7, do hereby certify that:

- 1. I am a graduate of the University of Waterloo at Waterloo, Ontario with a Bachelor of Science Degree in Geology (1985).
- 2. I have practiced my profession as a Geologist in Ontario, Northwest Territories and British Columbia since 1985.
- 3. I am presently employed as a Contract Geologist by Homestake Canada Ltd. of 1000-700 West Pender Street, Vancouver, B.C.
- 4. The work described in this report is based on fieldwork conducted during July and August 1992 in which I supervised.
- 5. I have no direct or indirect financial interest in any company known by me to have an interest in the mineral properties described in this report, nor do I expect to receive any such interest.
- 6. I am the author of this report.

Dated at Vancouver, B.C. this 23 day of November

Respectfully Submitted,

Jane M. Howe

