LOG NO:	DEC	0	4	1992	RD.
ACTION.					
, t					:
FILE NO:					

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL

ASSESSMENT REPORT

ON THE

NOREEN PROPERTY

Vernon Mining Division NTS 82L/10E Latitude 50°40.4' Longitude 118°41.2'

GEOLOGICAL BRANCH ASSESSMENT REPORT

Owner & Operator: Teck Corp. #600,200 Burrard St. Vancouver , B.C. V6C 3L9

æ

G.Evans November 1992 Kamloops, B.C.

TABLE OF CONTENTS

.

,

-

1.	Introduction	1
2.	Location & Access	1
3.	Topography and Vegetation	1
4.	Claims	1
5.	Previous Work and History	2
6.	1992 Work	2
7°.	Geology	3
	a) Regional Geology	3
	b) Property Geology	3
8.	Soil Geochemistry	6
9.	Magnetometer Survey	7
10.	Conclusions and Recommendations	8
11.	References	9

LIST OF FIGURES

	Following Page
Figure 1:	Property Location Map 1
Figure 2:	Claim Map 1
Figure 3:	Regional Geology 3
Figure 4:	Property GeologyIn Pocket
Figure 5:	Zn in Soils Map In Pocket

Figure	6: I	Pb in	Soils	Map	• • •	• • • • •			••••	In	Pocket
Figure	7: Æ	Ag in	Soils	Map	• • •	• • • • •	••••		••••	In	Pocket
Figure	8: M	In in	Soils	Map	•••	• • • • •			• • • • •	In	Pocket
Figure	9:1	Ni in	Soils	Map			• • • • •	• • • •	• • • • •	In	Pocket
Figure	10:	Magne	etometo	er Surve	∍у (Mag.	Valu	ues).	• • • • • •	In	Pocket
Figure	11:	Magne	etometo	er Surve	∍у (Line	Profi	ile).	• • • • •	In	Pocket
Figure	12:	Magne	etometo	er Surve	∋у (Cont	our)	• • • •	• • • • •	In	Pocket

APPENDICES

Appendix I: Statement of Qualifications
Appendix II: Cost Statement
Appendix III:Certificates of Analysis
Appendix IV: Analytical Procedures
Appendix V: Rock Sample Descriptions (includes analyses)

1. INTRODUCTION

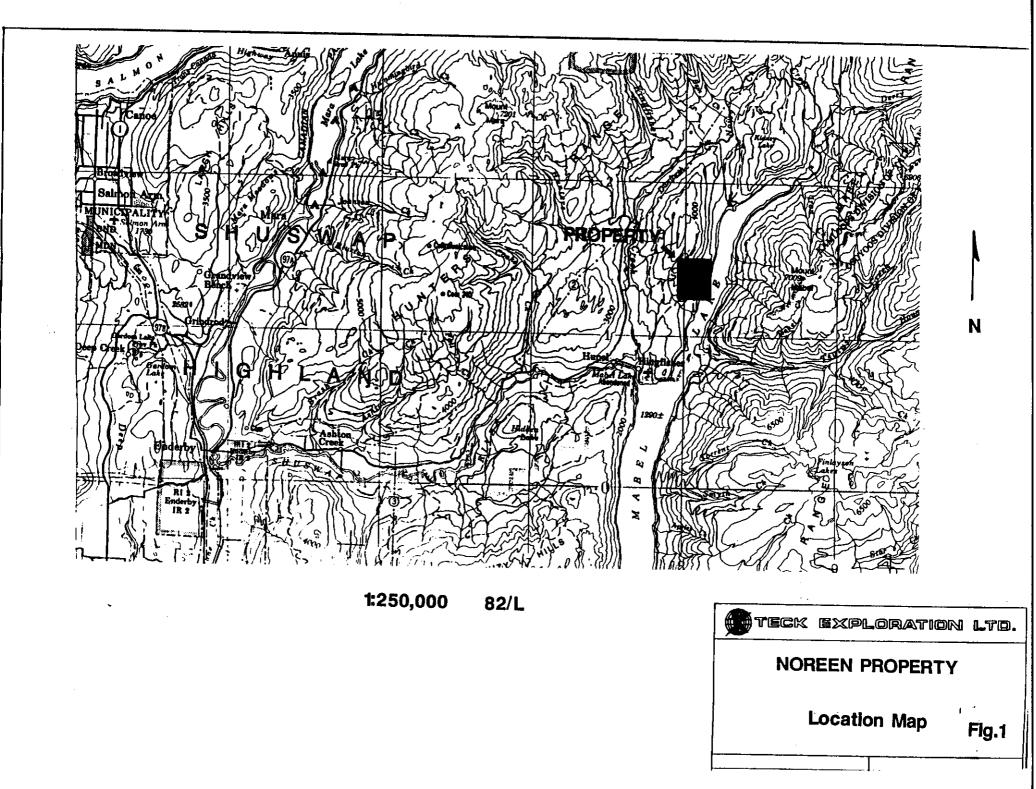
During 1992, a program of geological mapping and sampling was carried out over the property with concurrent establishment of a grid used for soil sampling and a magnetometer survey. This work has been compiled at 1:10,000 with widespaced coverage of the entire property.

This property was staked to cover a previously outlined Shuswap style system as part of a larger regional program.

This report describes the present program and results .

2. LOCATION AND ACCESS (Fig.1)

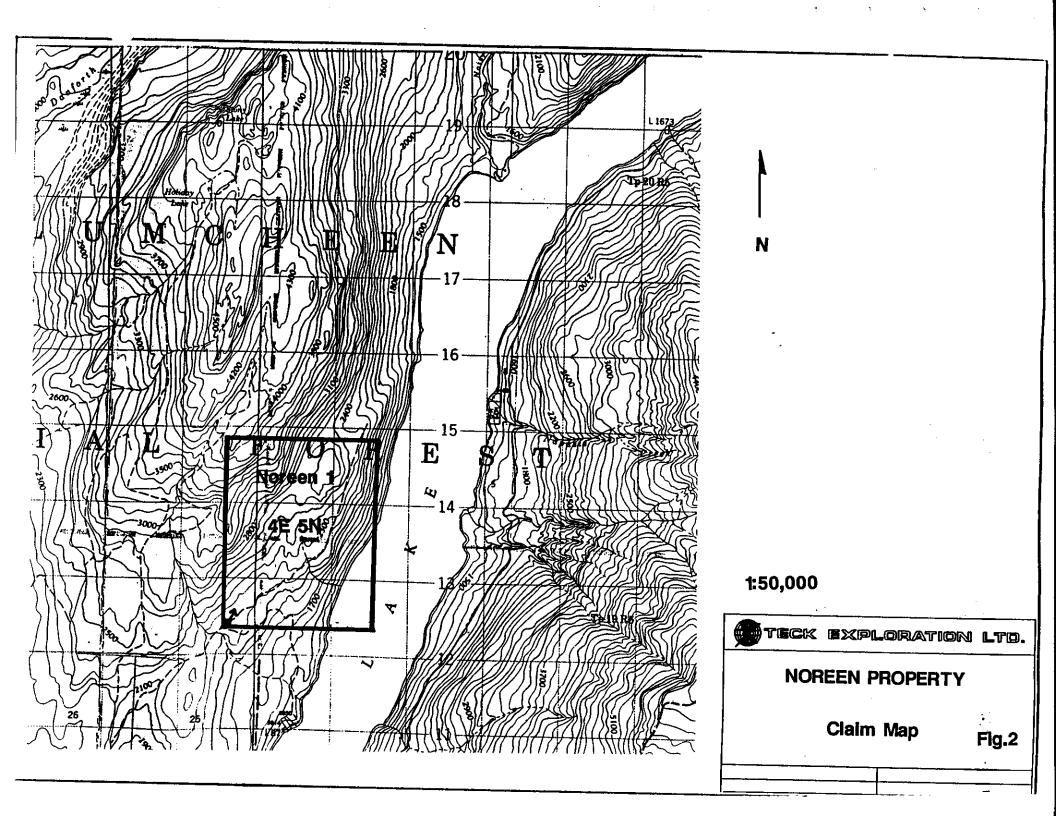
The Noreen 1 claim block is located on the west shore of Mabel Lake approximately eight kilometers north of the community of Kingfisher (82L/10E) 50°40.4'N and 118°41.2' West . The property is 34 kilometers by road east of Enderby and can be accessed by travelling 4 km's along the Kingfisher Main logging road and taking a branch road for a further 2.3 km's to the east . Several old logging roads from this point access the central and northeastern portions of the property .


3. TOPOGRAPHY AND VEGETATION

The property is located between the semi-arid Okanagan Valley and wetter conditions of the Monashee mountain range which lies to the east. The eastern portion of the property is located along the steep western shore of Mabel lake at an elevation of approximately 400 meters. The central and western portions of the property are located on a plateau ranging from 600 - 1200 meters in elevation.

Vegetation consists of fir and cedar forest with open underbrush except for devil's club infested creeks. The main land use has been limited logging. Rainfall is moderate in this area which is generally snow covered from November to April.

4. CLAIMS (fig.2)


The Noreen 1 claim block is located in the Vernon Mining Division and consists of 20 contiguous units. The property is owned by Teck Corporation of Vancouver. The record # is 304221 and upon acceptance of this report the new expiry date will be Sept. 04, 1997.

÷.

٩.

,

5. PREVIOUS WORK and HISTORY

Mineralization was first discovered on the property in 1971 on a regional program directed by K. Daughtry . Prospectors were following up a strong Zn silt anomaly in a small creek and discovered marble boulders carrying low grade Pb-Zn mineralization . The Noreen 1-8 claims were staked on a strong Pb-Zn soil anomaly north of the creek .

In 1973 the property was restaked as the OK 1-8 claims and several excavator trenches and pits were put in to test the soil anomaly. Also the original discovery area was staked as the Rolet 1-6 claims and several pits were excavated in this area. Only narrow mineralized areas were exposed on the Noreen 1-8 claims.

In 1977 the area was again staked by K.L. Daughtry and Associates Ltd. and an airborne magnetic survey was flown over the entire property .

In 1991 the property was staked by Teck Corp. as part of a regional program .

6. 1992 WORK

The following work was completed on the property :

1) Compassed and flagged grid lines spaced 300 meters apart with stations every 25 meters . Total of 13.6 Km's of grid.

2) Soil samples collected every 50 meters along the lines and analyzed for 30 element ICP. Total of 288 soil samples .

3) A magnetometer survey over the grid area with readings taken at 25 meter stations . Total of 13.6 Km's of mag.

4) Geological mapping of the property at 1:10,000 scale . 5 rock samples were taken during the program and analyzed for 30 element ICP.

7. GEOLOGY

a) REGIONAL GEOLOGY

This area has seen relatively little regional mapping with O.F. 637 by Okulitch (1:250,000 scale) providing the foundation . The area is largely underlain by Shuswap metamorphic rocks intruded by Cretaceous - Eocene granodiorites and pegmatites .

The Shuswap metamorphic rocks belong to the Proterozoic -Mesozoic amphibolite grade complex . Ages of the rocks in the area of the property are poorly understood but recent work by B.J. Johnson suggests much of the thick amphibolite sequence correlates to the Proterozoic Horsethief Creek Group . A variety of rocks form a thick overlying sequence consisting of quartzites , marbles , pelites and biotite gneisses in various proportions . These rocks have a complex structural history with at least three phases of folding and several stages of faulting . It is believed the pegmatite dyke swarms and various granodiorite to monzonite intrusives are related to the Eocene Ladybird Pegmatite formed during the unroofing of the complex .

Of particular interest in this area is an extensive marble dominant sequence which contains areas of Pb-Zn-Aq mineralization. The Kingfisher property lies approximately 10 km's to the NW of the Noreen property and has stratabound lenses of massive to disseminated pyrrhotite-sphalerite within the marble quartzite sequence . The Central showing on the property has approx. 1.8 million tons grading 2.6% Zn, 0.6% Pb with minor Ag and Cu. Airphoto work indicates the Kingfisher property occupies the western limb of a large synform with the Noreen property occupying the eastern limb of this same structure. The other area of known mineralization is the Rebar-Sherpa property which is located only three kilometers to the east of the Noreen property . This property has several areas of low grade Zn-Pb mineralization hosted within quartzites in the thick marble package . Again this area is likely structurally related to the Noreen area with a possible antiform with an axial plane along Mabel Lake.

b) PROPERTY GEOLOGY

Greater than 90% of the surface of the Noreen property is covered with overburden so that outcrop is limited to cliff faces and the occasional road cut . Only brief mapping was carried out in the time available and plotted on a 1:10,000 base map .

From Carr 1989

UPPER CRUSTAL ZONE 向 MIDDLE JURASSIC NELSON INTRUSIVE SUITE: predominantly granodiorite ALEOZOIC - LOWER JURASSIC STRATIFIED ROCKS: MIDDLE CRUSTAL ZONE ++ LATE PALEOCENE - EARLY EOCENE LADYBIRD GRANITE SUITE: blotite granite, quartz monzonite, leucocratic pegmatite (also includes areas with pegmatite with <50% metamorphic rocks LATE CRETACEOUS WHATSHAN BATHOLITH (Includes Cariboo Creek stock): hornblende biotite bearing K-feldspar megacrystic quartz monzonite, mafic hornblende biotite diorite LATE PROTEROZOIC - MESOZOIC AMPHIBOLITE FACIES METAMORPHIC ROCKS: FA = Fawn Lake assemblage; CA = Gold Range assemblage BASEMENT ZONE 13 PROTEROZOIC CRYSTALLINE BASEMENT AND LATE PROTEROZOIC -(?) CAMBRIAN COVER GNEISSES GEOLOGIC CONTACT; MAPPED, COMPILED FROM PUBLISHED MAPS, ASSUMED LOW - MODERATE ANGLE EOCENE NORMAL FAULT (PEGS ON HANGING WALL) **** STEEP EOCENE NORMAL FAULT; SENSE OF DISPLACEMENT UNCERTAIN 6 LITHOPROBE LINE BF CF CRF BEAVEN FAULT CHERRYVILLE FAULT COLUMBIA RIVER FAULT GCSZ MD OF SLFZ GWILLIM CREEK SHEAR ZONES MONASHEE DECOLLEMENT **OKANAGAN VALLEY - EAGLE RIVER FAULT SYSTEM** SIOCAN LAKE FAULT ZONE SSZ SLATE MOUNTAIN SHEAR ZONE VALKYR SHEAR ZONE VSZ TECK EXPLORATION LTD.

Regional Geology

Fig.3

LEGEND

The geology consists of amphibolite grade metamorphic rocks that correlate to the sequence of rocks seen on the Kingfisher property. This sequence strikes N-NE with shallow to moderate dips generally to the NW although mesoscopic isoclinal and broad folds complicate and possibly repeat the sequence so that tops evidence and thickness of the sequence are unknown.

The sequence is dominated by biotite schist and quartzites with lesser amounts of marbles, biotite gneisses and only minor amounts of amphibolite. These rocks are interbedded on a 1-10 cm scale in various proportions so that the dominant lithology is plotted on the Geology map. Commonly pegmatite dykes and sills invade all rock types. Large scale structures are difficult to determine due to poor outcrop and poor marker horizons but the magnetic survey, soil anomalies and mineralized float indicates a possible NE trending synform may trace through the central portion of the property with a shallow plunge to the NE.

Commonly biotite schists and quartzites contain trace to 3% disseminated pyrite or pyrrhotite but do not appear to contain base metals. Several pieces of mineralized quartzite and calc-silicate float contain disseminated pyrrhotite with lesser amounts of sphalerite and galena. Of two mineralized float samples collected the best values are 1.06 %Zn and 3.56 % Pb in sample # 27304. This style of mineralization and the setting is very similar to that at Kingfisher.

SHUSWAP ROCK UNIT DESCRIPTIONS

These units are subdivided into general ages but Shuswap rocks are ordered by lithology with no stratigraphic order:

SHUSWAP ROCKS (Proterozoic - Mesozoic)

Unit 1a) - Masive Amphibolite -A medium-coarse grained groundmass dominated by amphiboles with lesser amounts of biotite and plagioclase. Commonly contains varying amounts of .5-2.0 cm almandine garnets in layered amphibolites.

Unit 1b) - Amphibolite w/ Calc-silicate Laminations - The same amphibolite unit as 1a) with alternating bands of quartzites with diopside - tremolite and actinolite . Laminations generally on a one centimeter scale or less . Unit 1c) - Amphibolite w/ Biotite Schist - The protolith of this unit is likely a mixture of mafic tuffs and pelitic sediments. The resultant metamorphic rock is a mixture of medium grained amphibolites containing an equal amount of micas (both biotite and muscovite). This rocktype commonly contains sillimanite aggregates.

Unit 2) - Biotite Schist - Well laminated biotite with lesser muscovite bearing schists . Can contain quartzite laminations and occasionally 0.5 cm. almandine garnets . Commonly the surface is strongly gossanous due to the high iron content and trace amounts of disseminated pyrite and pyrrhotite are present .

Unit 3) - Biotite Gneiss - Matrix is dominated by finely laminated medium grained white - grey quartzite with 20-30% biotite schist laminations varying in thickness from 0.5-10.0 cm.

Unit 4) - Quartzite - Medium grained quartzite grains form beds 10-20 cm. in thickness , which display bedding with preferential weathering of certain beds due to change in grain size and carbonate content . Color varies from white to buff or a grey color . Minor rutile , biotite and muscovite grains are present .

Unit 4a) - Quartzite w/ Flake Graphite - Dull grey colored fine grained quartzite with trace-20% disseminated flake graphite grains. Commonly contains 2 - 10% disseminated pyrite and pyrrhotite with trace amounts of disseminated sphalerite.

Unit 4b) - Quartzite w/ Calcsilicate Laminations - Medium grained quartzite takes on a light green color with diopside in the matrix . Occasional laminations of calcsilicates consisting of diopside, tremolite and actinolite . Calcsilicates contain minor grains of rutile, muscovite and biotite .

Unit 5) - Marble - Marble units normally appear as grey massive weathered units grading to dark grey with increasing graphite component. Calcite grains are 1-3mm and bedding is usually apparent with graphitic beds or minor calcsilicate laminations. Occasionally flake graphite disseminations are present within the marble.

Unit 5a) - Calcsilicates +/- Marble - These rocks are a pale green color with beds and pods of marble preferentially eroded . The calcsilicates consist of impure quartzites containing diopside, amphiboles, biotite with minor rutile and muscovite.

JURRASSIC ROCKS (above Columbia and Okanogan Faults)

Unit 6) - Argillite - Graphitic argillite and phyllite with strong slaty cleavage. Bedding is preserved with interbedded graywackes common .

Unit 6a) - Mafic Volcanics - Pervasive chlorite alteration to various mafic volcanic units with a strong schistosity developed . Remnant textures include laminated tuffs , vesicular flows and lappili tuffs .

TERTIARY LADYBIRD LEUCOGRANITE SUITE

Unit 7) - Pegmatites - Coarse grained dykes sills and small plugs of pegmatites are common throughout all rocktypes . Normally the rock is dominated by 0.5 - 1.0 cm. crystals of quartz, alkali feldspars and plagioclase . Varying lesser amounts of biotite, muscovite and tourmaline are also present.

Unit 7a) - Ladybird Granites - These form fine to medium grained stocks and plutons. Compositionally these rocks range from granite to quartz monzonite. Minerals consist of plagioclase alkali feldspar and quartz with access muscovite biotite and occasionally garnet.

EOCENE DYKES

Unit 8) - Lamprophyre Dykes - Occassional unaltered extremely mafic dykes are present. Matrix is a dark brown fine grained biotite, amphibole and mafic minerals with ocassional vesicles and calcite filled amygdules.

8. SOIL GEOCHEMISTRY (fig.5-9)

Samples were collected along 9 E-W lines every 50 meters for a total of 288 samples . Samples were collected from the B horizon which varied in depth from 25-80 cm's and sample details were noted at each site .

Samples were sent to Echo-Tech Labs Laboratories Ltd. in Kamloops B.C. and were analyzed for the 30 element ICP package . This package includes Zn, Cd, Pb, Ag, Cu, Ni, Ca, Mg, Fe, Mn, Mo, V, Co, Cr, Bi, As, Sb, Ba, Al, K, Na, Sr, Sn, W, La, Y, B, P, Ti, and U. See the appendix #IV for details of the analysis .

Results were put through a preliminary statistical package to determine useful elements which were plotted on the maps included in this report. These include Pb, Zn, Ni, Mn and Ag.

Silver showed incredibly uniform 0.2 ppm values over the entire grid indicating no signifigant anomalies . Pb shows a persistent NE trending anomaly over the entire length of the grid with values greater than the 80th (50ppm) percentile outlining a zone which corresponds to the known float boulder occurences . Zn also outlines this same NE trending anomaly with values in the 200-707 ppm range . Both Pb and Zn outline a weaker but signifigant NE trending anomaly to the west of the main trend (max. values to 102 ppm Pb and 1980 ppm Zn).

Mn and Ni show weaker but signifigant anomalies over these same anomalous target areas. Other elements not plotted but which appear to correspond with the Pb-Zn anomalies include Mg, Fe, V, Cr, and Ba.

9. MAGNETOMETER SURVEY (fig. 10-12)

Previous magnetic surveys have proved quite effective at locating mineralization on the Kingfisher property . In 1992 a Geometrics Model G-816 portable proton magnetometer was used on all grid lines with multiple readings taken at every 25 meter station (Total of 13.6 Km's) . For drift corrections base station points were established and daily and hourly corrections were made where necessary .

Two 1:10,000 plots were made on Geosoft software (Fig.11 line profile and Fig.12 a contour plot). Both base maps were corrected to a 57,500 gamma baseline as a background level. Several discrete 1000+ gamma anomalies which have not been explained but are likely sulphide occurrences containing pyrrhotite with associated Pb-Zn mineralization.

A broad magnetic high feature (200-700 gamma) trending NE corresponds to the main Pb-Zn anomalies and is likely reflecting sulphide bearing mineralized stratigraphy. This anomaly is quite irregular likely reflecting multiple discrete mineralized horizons and more detailed station readings are required to define discrete mineralized horizons. A second but more erratic NE trending magnetic high feature follows the second Pb-Zn soil anomaly with several spiky (400-500 gamma highs), again likely reflecting mineralized zones.

10. CONCLUSIONS AND RECOMMENDATIONS

The Noreen property covers a package of mineralized stratigraphy hosting Shuswap type Pb-Zn mineraliztion. This sequence is probably the same stratigraphy hosting mineralization at the nearby Kingfisher and Rebar-Sherpa properties.

The magnetic high anomalies correspond to two NE trending Pb-Zn soil geochemical anomalies and persist across the length of the property. This also corresponds to known mineralized float boulders and is believed to reflect a wide persistent mineralized sequence.

Future work should include trenching several of the coincident Pb-Zn soil anomalies with a corresponding magnetic anomaly. This will allow an estimate of thickness and tenor of the mineralization. Prior to trenching site specific magnetometer surveys should be run to better define the anomalies on a scale that could be trenched.

11. REFERENCES

K.L. Daughtry	Report on Aeromagnetic Survey on the Noreen Claim , Assessment Report
T. Hoy	FX, FC, Colby (in Lead-Zinc Deposits) BCDM , Geol.Fieldwork, 1974
B.J. Johnson	Stratigraphy and Structure of the Shuswap Metamorphic Complex in the Hunters Range, Geological Fieldwork , 1988-1
A.V. Okulitch	O.F. # 637 Thompson-Shuswap-Okanagan Stratigraphy and Structure,

.

APPENDIX 1

.

Statement of Qualifications

.

STATEMENT OF QUALIFICATIONS

- I , Graeme Evans , do certify that:
- 1) I am a geologist and have practiced my profession for the last ten years .
- I graduated from the University of British Columbia , Vancouver , British Columbia with a Bachelor of Science degree in Geology (1983).
- 3) I was actively involved and supervised the Noreen program and authored the report herein .
- 4) All data contained in this report and conclusions drawn from it are true and accurate to the best of my knowledge.
- 5) I hold no personal interest, direct or indirect in the Noreen property which is the subject of this report.

Graeme Evans Project Geologist November , 1992

APENDIX II

Cost Statement

.

STATEMENT OF EXPENDITURE

.

1.	GEOLOGY Fred Daley (Exploration Manager) 1 Day @ \$311.20 /day (July 19)	\$ 311.20
	Graeme Evans (Project Geologist) 5 Days @ \$261.80 /day (June 8-12)	\$1309.00
2.	MAGNETOMETER SURVEY Hugh Stewart (U.B.C. Eng. Student) 5 Days @ \$191.00 /day (June 8-12)	\$ 955.00
	Magnetometer Rental	\$ 350.00
3.	SOIL SURVEY & GRID WORK Discovery Consultants Crew (3 Men) 15 Man Days + Vehicles	\$5091.22
4.	ANALYTICAL COSTS 288 Soil Samples for 30 element ICP @ Echo-Tech Labs \$ 7.28 /sample	\$1872.00
	5 Rock Samples @ \$9.00 /sample	\$ 45.00
	Field Suplies(Flagging, Topo , Bags etc.)	\$ 390.00
5.	TRANSPORTATION 5 Days @ \$70 /Day	\$ 350.00
6.	FOOD & ACCOMMADATION 11 Man Days @ \$ 60/day	\$ 660.00
7.	PROCESSING DATA & REPORT 3 Days Magnetic Processing H. Stewart @ \$ 191.00/day	\$ 573.00
	Base Map & Soil Compilation Steve Archibald 6 days @ \$180/day	\$ 1080.00
	Report Writing & Preparation Graeme Evans 4 Days/ \$261.80	\$ 1047.20
	Prints , Copies & Materials	\$ 386.38
	TOTAL	\$14,420.00

APENDIX III

•

Certificate of Analysis

.

.

Date of Report: 23-Jun-92

Project 221

NOREEN

Soil Sampling Results 1992

Reference: etk92-214

5a e j	ole ID	Zn pp s	Cd pp e	Pb ppa	Ag pp#	Cu ppæ`	Ni pp#	Ca 7	Ng Z	Fe 7	Nn pp n	No pp a	V pp n	Co ppn	Cr ppn	Bi ppr
DON	0+00E	446	<1	12	<0.2	17	27	0.27	0.58	2.83	193	<1	44	15	39	:>
MOC	0+50E	476	<1	48	0.2	15	32	0.26	0.58	2.70	285	<1	- 44	15	35	<5
DON	1+00E	139	(1	6	(0.2	25	47	0.31	0.98	3.04	247	(1	55	21	65	3
MOC	1+50E	91	(1	6	(0.2	12	30	0.22	0.53	2.41	142	<1 	44	15	39	(
DON	2+00E	77	(1	12	<0.2	14	37	0.25	0.82	2.81	154	(1	57	20	62	
NOC	2+50E	124	(1	8	<0.2	17	38	0.24	0.76	2.92	208	(1	53	20	55	(
DON	3+00E	147	(1	4	0.2	34	62	0.24	0.59	2.88	360	(1	47	22	49	(
NOC	3+50E	141	(1	6	0.2	17	47	0.27	0.62	2.66	825	<1	43	21	47	~
DON	4+00E	118	(1	6	(0.2	47	91	0.33	0.91	3.39	335	(1	62	34	77	<
NON	4+50E	368	(1	60	(0.2	25	43	0.39	0.84	2.75	171	<1 //	53	20	63	(
DON	5+00E	317	(1	84	0.2	20	42	0.45	0.52	2.61	263	<1	40	18	39	<br
don Don	5+50E	314		14	(0.2	16	40	0.41	0,48	2.37	199	<1	37	15	36	(
	6+00E	194	<1	14	(0.2	19	40	0.41	0.53	2.61	144	<1	39	18	36	() ()
don Don	6+50E 7+00E	182		16 14	(0.2	20 20	41	0.27	0,48	2.61	251	2	42	19	35 45	
)ON	7+50E	209	(1	14	0.2 0.2	26 56	44 71	0.33	0.68 0.63	2.76	232	<1 (1	45 20	21 22	45	
DON	8+00E	160 63	(1 (1	4	<0.2	36 13	71 20	0.59 0.33	0.65	3.03 2.14	813 192	<1 <1	38 39	14	48 40	() ()
DON	8+502	63 75	< <u>(1</u>		(0.2	13	24	0.30	0.76	2.84	243		48	17	44	4
DON	9+005	107	(1)	. 8	0.2	23	27	0.37	0.31	2.37	243 174	<1 <1	29	15	16	() ()
DON	9+50E	- 190	< <u>(</u> 1	24	<0.2	35	60	0.73	0.61	3.05	358		49	19	46	
	10+00E	117		10	<0.2	26	30	0.65	0.47	2.35	182	<1	38	16	32	e
	10+50E	234		10	<0.2	18	38	0.44	0.44	2.67	266	<i st<="" td=""><td>36</td><td>17</td><td>28</td><td>C C</td></i>	36	17	28	C C
	11+00E	129	<1 <1	12	0.2	23	38	0.42	0.30	2.54	159	<i< td=""><td>31</td><td>17</td><td>20</td><td></td></i<>	31	17	20	
	11+50E	152	<1	6	0.2	19	38	0.52	0.47	2.67	291	<1	39	16	28	Ċ
	12+00E	119	< <u>1</u>	8	0.2	11	22	0.31	0.25	2.55	423	à	32	13	17	, i
	12+50E	116	<1	4	0.2	9	25	0.94	0.30	2.66	222	A	34	14	19	(
	13+00E	87	(1	4	0.2	;	24	0.37	0.22	2.03	182	1	26	9	14	(
)3N	0+00E BL	85	(1	6	(0.2	19	58	0.26	0.78	2.67	199	- di	42	21	54	(
03N	0+50E	104	(1	4	(0.2	23	82	0.39	1.00	3.22	212	(1	54	25	70	ļ
)3N	1+00E	68	<1	2	<0.2	19	45	0.27	0.91	2.99	183	All	54	23	62	<
03N	1+50E	89	(1	6	0.2	19	39	0.18	0.53	2.99	191	1	44	21	38	<
D3W	2+00E	109	(1	2	(0.2	33	48	0.27	1.10	3.65	270	(1	67	28	68	(
D3N	2+50E	176	<1	6	0.2	17	30	0.32	0.40	2.89	242	(1	39	18	30	<
)31	3+00E	t18	(1	6	0.2	19	42	0.23	0.64	2.96	253	(1	50	22	- 41	(
03N	3+50E	71	4	4	<0.2	30	43	0.26	0.92	3.20	371	a	60	24	62	4
03N	4+00E	103	(1	8	0.2	15	41	0.33	0,43	2.58	201	4	37	21	31	<
03N	4+50E	254	(1	6	<0.2	21	51	0.27	0.66	2.75	260	(1	47	19	46	<
)3N	5100E	520	(1	32	(0.2	14	32	0.22	0.69	2.82	376	4	50	18	49	Ċ
03N		191		24	0.4	46	77	0.71	0,45	4.04	317	1	54	22	49	<
)3N		177.	(i	10	0.2	16	29	0.24	0.54	2.57	245	(1	40	16	33	0

•

Final

Project 221

Soil Sampling Results (part 2)

Samp	le ID	As	Sb	8a	A l	K	Na	Sr	Sn	W	La	Y	B	P	Ŧi	Į
		ppe	pp#	ppe	7.	1	` ĩ	ppm	pp •	ppa	ppm	ppe	ppe	ppm	7.	ppi
DON	0+00E	<5	<5	375	3.02	0.15	0.01	14	<20	<10	10	13	4	1050	0.16	(1)
DON	0+50E	<5	<5	655	2.99	0.10	0.01	13	<20	<10	<10	12	6	1600	0.14	(10
)0N	1+00E	<5	<5	375	2.50	0.23	<0.01	14	<20	<10	10	16	6	780	0.21	<1(
0N	1+50E	5	<5	200	1.96	0.10	0.01	12	<20	<10	<10	12	4	180	0.16	<1
)0N	2+00E	<5	5	145	2.30	0.14	(0.01	13	<20	30	<10	15	6	100	0.21	<1
ØN	2+50E	<5	<5	265	2.71	Q.24	0.01	15	<20	<10	<10	16	6	670	0.22	- <1
)ON	3+00E	<5	<5	315	3.21	0.13	0.01	13	<20	<10	<10	15	6	2060	0.21	<1
ON	3+50E	5	<5	345	2.60	0.23	0.01	18	<20	<10	<10	15	6	1280	0.21	4
)ON	4+00E	<5	<5	340	2.59	0.25	0.01	17	<20	<10	<10	19	6	710	0.27	- <1
ON	4+50E	<5	<5	325	1.77	0.39	0.01	15	<20	<10	10	20	6	490	0.24	<1
)ON	5+00E	<5	<5	565	2.84	0.18	0.01	18	<20	<10	<10	15	6	1220	0.18	- (1
ÔN	5+50E	<5	<5	535	2.45	0.14	0.01	18	<20	<10	<10	13	6	710	0.16	- <1
)0 X	6+00E	<5	<5	430	3.35	0.17	0.01	17	<20	<10	10	18	8	9B0	0.19	4
ON	6+50E	<5	<5	405	3.69	0.16	0.01	15	<20	30	10	18	8	1690	0.21	(1
ÔN	7+00E	<5	5	420	3.15	0.20	0.01	16	<20	<10	10	19	6	1500	0.21	<1
ÓN	7+50E	<5	5	380	2.74	0.21	0.02	31	<20	<10	10	24	6	620	0.17	<1
ON	8+00E	<5	<5	220	1.54	0.26	0.01	15	(20	<10	10	13	6	390	0.16	<1
ON	8+50E	5	<5	265	2.17	0.33	0.01	17	<20	<10	10	15	6	430	0.18	<1
ON	9+00E	<5	(5	250	4.37	0.09	0.01	20	<20	<10	10	23	8	1830	0.17	4
ÔN	9+50E	<5	<5	375	2.95	0.23	0.02	35	<20	<10	10	19	6	360	0.18	<1
	10+00E	<5	<5	520	2.97	0.16	0.02	31	<20	<10	10	16	6	1160	0.16	4
	10+50E	<5	<5	470	3.35	0.14	0.02	25	<20	<10	<10	14	8	2140	0.18	
	11+00E	5	<5	310	4.37	0.08	0.02	26	<20	<10	10	18	8	1380	0.17	<1
	11+50E	<5	<5	575	4.45	0.15	0.02	30	<20	(10	<10	15	8	1930	0.19	<1
	12+00E	(5	<5	315	3.48	0.10	0.01	18	<20	<10	(10	14	8	2280	0.19	4
	12+50E	(5	(5	310	4.47	0.10	0.01	36	<20	(10	(10	13	8	3100	0.18	- (1
	13+00E	<5	(5	280	4.31	0.08	0.01	17	<20	<10	<10	14	6	2380	0.17	- (1
31	0+00E BL	<5	<5	220	2.69	0.25	0.01	19	<20	<10	<10	15	6	380	0.19	
3N	0+50E	(5	5	195	2.90	0.32	0.01	19	<20	<10	<10	19	6	320	0.26	<1
3N	1+00E	<5 (5	(5	175	2.18	0.40	<0.01	16	<20	<10	<10	17	6	280	0.25	
3N	1+50E	<5	. (5	240	4.22	0.25	0.01	15	<20	<10	<10	20	8	1010	0.25	(1
3N	2+00E	5	5	245	2.56	0.43	<0.01	24	(20	<10	<10	20	6	610	0.29	<1
3N	2+50E	<5	<5	240	4.10	0.16	0.01	19	<20	<10	<10	17	8	2370	0.22	
3N	3+00E	<5 (5	<5 (5	375	3.27	0.26	0.01	17	<20	<10	<10	18	6	710	0.24	
)3N	3+50E	<5 (5	< 5	225	2.16	0.42	0.01	15	<20	<10	<10	17	6	400	0.24	<1
31	4+00E	<5	(5	270	3.92	0.18	0.01	18	<20	<10	10	21	6	1050	0.22	
)3N	4+50E	<5	< 5	575	2.90	0.31	0.01	19	(20	<10	10	19	4	590	0.21	(1
31	5+00E	<5	< 5	625	2.67	0.25	0.01	11	<20	<10	<10	16	4	980	0.22	
)3N	5+50E	5	(5	975	5.64	0.17	0.01	55	<20	(10 ,	20	31	6	1850	0.23	1>
31	6+00E	5	<5	555	3.74	0.20	0.01	14	<20	<10	<10	18	8	1480	0.22	- (1

Date of Report: 23-Jun-92

NOREEN

Soil Sampling Results 1992

Reference: etk92-214

Sample (D	Zn	Cd	የኔ	Ag	Cu	Ni	Ca	Hg	Fe	Ma	No	Y	Co	Cr	8i
	<u>ppe</u>	p a	ppa	ppe	pp a `	pp#	۲	ĩ	7	ppe	ppa	pps	ppa	ppn	ppa
03N 6+50E	245	<1	18	<0.2	11	23	0.24	0.49	2.19	274	<1	35	13	32	<5
3N 7+00E	124	(1	10	<0.2	21	35	0.45	0.68	2.90	168	<1	50	19	48	(5
D3N 7+50E	118	<1	8	<0.2	18	29	0.41	0.51	2.46	165	<1	38	14	33	<5
3N 8+00E	325	(1	32	0.2	36	62	0.64	0.55	3.24	933	<1	-44	18	43	<5
)3N 8+50E	238	<1	16	0.2	15	35	0.40	0.55	2.70	434	<1	41	18	40	<
3N 9+00E	207	1>	10	<0.2	26	28	0.63	0.37	2.95	181	<t< td=""><td>36</td><td>15</td><td>27</td><td><5</td></t<>	36	15	27	<5
)3N 9+50E	175	(1	16	0.4	20	35	0.31	0.47	2.80	202	(1	42	17	32	<
3N 10+00E	149		- 14	0.2	18	39	0.24	0.46	2.72	243	<1	43	17	31	<5
3N 10+50E	89	(1	6	<0.2	29	40	0.66	0.59	2.76	204	(1	42	18	33	<
3N 11+00E	75	(1	4	(0.2	29	49	0.74	0.53	2.87	270	<1	39	21	32	<
3N 11+50E	131	(1	6	<0.2	50	63	0.75	0.73	3.69	475	<1	55	25	45	C.
3N 12+00E	114	(1	10	0.2	27	38	0.66	0.60	2.77	358	1>	40	18	29	<5
3N 12+50E 3N 13+00E	121		24	0.2	33	43	0.55	0.36	2.70	209	6	37	20	25	1
5N 0+00E	114	{1	10	<0.2	40	48	0.89	0.65	2.95	213	(1	41	21	32	<
6N 0+50E	114	(1	6	0.2	40	51	1.29	1.55	3.56	278	(1	48	23	33	<
6N 1+00E	63 07	4	2	0.2	34	47	2.78	0.21	3.08	160	1	19	20	9	<
6N 1+50E	97 201		4	<0.2	39	70	0.35	1.21	3.59	247	(1	65	29	83	<
6N 2+00E	201 45	<1	14	0.2	83	173	0.83	0.97	3.89	736	(1	53	25	84	<5
6N 2+50E	127	<1 /1	2	0.2	15	42	0.52	0.53	2.06	225	(1	30	11	39	<5
6N 3+00E	79	<1 <1	6	0.4	28	92	0.80	0.48	2.77	380	, (1	33	17	40	<5
6# 3+50E	79		2	<0.2 <0.2	11	24	0.33	0.47	1.98	210		32	13	26	(5
6N 4+00E	75		4 2	(0.2	23	38	0.49	0.51	2.66	222	(1	39	19	30	<5
6N 4+50E	118	4	4	0.2	29 26	44	0.71 0.77	0.56	2.78	168	(1	40	18	33	<5
6N 5+00E	96	< <u>(1</u>	4	0.2	36 19	46 38	0.47	0.63	2.71	141	(1	42	15	52	<5
SN 5+50E	39	t	4	0.2	31	30	0.59	0.79	3.28	164	(1	58	21	50	<5
6N 6+00E	74	τ.	6	<0.2	58	68 68	0.87	0.20 1.03	2.00	125 300	<1	23	8	25	<5
5N 6+50E	80	à	8	0.2	31	78	0.61	0.76	3.42 3.13	392	(1 (1	61 51	29 27	94	<5
6N 7+00E	148	1	6	0.2	38	89	0.52	0.87	3.52	553	1	JI 72	31	72	<5
5N 7+50E	109	<i l<="" td=""><td>6</td><td>0.2</td><td>31</td><td>72</td><td>0.48</td><td>0.71</td><td>2.87</td><td>305</td><td>(1</td><td>48</td><td>25</td><td>82</td><td><5</td></i>	6	0.2	31	72	0.48	0.71	2.87	305	(1	48	25	82	<5
5N 8+00E	111	<1	8	0.4	50	58	0.44	0.36	2.82	154	(1	41	17	66 37	<5 <5
N 8+50E	131	A	12	0.2	43	49	0.41	0.63	2.86	193	< <u>1</u>	49	23	36	
5N 9+00E	85	(1	4	(0.2	50	55	0.45	0.85	3.03	194		57	27	50 51	<5 /5
W 9+50E	268	Ä	44	0.2	20	44	0.32	0.49	3.00	341	A	43	19	33	<5 /5
5N 10+00E	169	(1	32	<0.2	8	14	0.37	0.54	1.92	157	<1 <1	43 34	11	33 29	<5 <5
5N 10+50E	390	a d	68	<0.2	13	23	0.56	0.52	2.38	523	< <u>(</u>	3 4 37	15	29 30	<5 <5
5N 11+00E	205	<1	36	(0.2	22	45	0.73	0.63	2.94	208	(1	40	20	30	<5
N 11+50E	174	à	28	0.2	23	42	0.55	0.58	3.22	279	<1	44	19	27	
SN 12+00E	218	<i st<="" td=""><td>16</td><td>0.2</td><td>21</td><td>27</td><td>0.73</td><td>0.48</td><td>7.78</td><td>1741</td><td>1</td><td>38</td><td>18</td><td>25</td><td><5</td></i>	16	0.2	21	27	0.73	0.48	7.78	1741	1	38	18	25	<5
5N 12+50E	366	A	44	<0.2	32	47	1.06	0.93	3.56	271	(1	38 54	22	25 40	5 <5

Project 221

Soil Sampling Results (part 2)

ample ID	As	Sb	Ba	Al	K	Na	Sr	Sn	W	La	Y	8	P	Ti	Ų
	₽₽ ₽	pp#	pp#	¥ 	، ۲	1	pp n 	pp n	pp a	рр а	pp∎ 		pp n	ï	ppe
3N 6+50E	<5	<5	450	2.26	0.16	0.01	12	<20	<10	<10	12	6	1110	0.15	<10
3N 7+00E	5	5	360	3.18	0.22	0.01	28	<20	<10	10	18	6	570	0.21	<10
3N 7+50E	<5	<5	250	2.82	0.13	0.01	22	<20	<10	10	14	6	1320	0.14	<1(
3N 8+00E	5	<5	500	3.54	0.19	0.02	48	<20	<10	10	19	6	320	0.18	(10
3N 8+50E	<5	5	350	3.07	0.21	0.01	18	<20	<10	<10	15	6	2130	0.20	<1(
3N 9+00E	5	<5	210	3.55	0.11	0.01	24	(20	<10	<10	13	8	3390	0.17	<10
3N 9+50E	10	<5	415	4.31	0.15	0.01	16	<20	<10	10	-19	6	1670	0.21	<10
3N 10+00E	5	<5	410	3.38	0.14	0.01	16	<20	20	<10	14	8	1320	0.18	<10
3N 10+50E	. 5	<5	390	2.93	0.20	0.03	42	<20	<10	10	15	6	1070	0.14	<10
3N 11+00E	5	<5	216	3.27	0.17	0.03	49	<20	<10	10	16	2	1022	0.15	<10
3N 11+50E	15	5	445	3.29	0.22	0.03	49	<20	<10	10	17	6	1700	0.21	(1(
3N 12+00E	5	<5	355	3.22	0.18	0.03	40	<20	<10	10	16	6	1550	0.17	<10
3N 12+50E	<5	<5	200	3.28	0.09	0.02	28	<20	30	10	16	10	1200	0.16	<1(
3N 13+00E	5	<5	535	3.61	Q.22	0.04	61	<20	<10	10	16	8	1300	0.17	<10
6N 0+00E	<5	5	400	4.87	0.27	0.06	84	<20	<10	10	22	10	1740	0.22	- (1(
6N 0+50E	<5	<5	130	4.65	0.08	0.16	205	<20	<10	20	12	12	2820	0.06	- (10
6N 1+00E	5	5	230	2.83	0.46	0.01	21	<20	<10	<10	19	6	560	0.27	<10
6N 1+50E	5	<5	335	3.94	0.37	0.02	- 44	<20	<10	20	4 L	6	250	0.20	- (10
6N 2+00E	<5	<5	175	2.19	0.18	0.01	34	<20	<10	10	14	6	330	0.12	<10
6N 2+50E	<5	<5	335	4.08	0.20	0.01	61	<20	<10	10	22	8	490	0.17	- (10
6N 3+00E	<5	<5	250	2.36	0.14	0.01	23	<20	<10	<10	i 11	6	930	0.13	- (10
6N 3+50E	5	<5	205	3.07	0.16	0.02	38	<20	<10	10	13	6	1110	0.15	<10
6N 4+00E	<5	<5	215	3.08	0.16	0.03	54	<20	<10	10	16	8	710	0.15	<10
6N 4+50E	<5	<5	335	2.59	0.34	0.02	45	<20	<10	<10	20	8	480	0.23	<10
6N 5+00E	5	<5	250	3.11	0.24	0.01	24	<20	<10	<10	17	6	1120	0.19	<1(
6N S+50E	<5	<5	215	3.05	0.05	0.01	34	<20	<10	10	18	6	780	0.12	<10
5N 6+00E	<5	5	215	2.53	0.49	0.03	52	<20	<10	10	23	8	1660	0.28	<10
6N 6+50E	<5	<5	385	3.35	0.34	0.02	45	<20	<10	<10	21	8	930	0.28	<10
6N 7+00E	<5	<5	545	3.32	0.37	0.02	35	<20	<10	<10	23	6	2080	0.32	- (10
6N 7+50E	5	<5	295	3.21	0.29	0.02	31	<20	<10	<10	21	8	1680	0.27	<10
6N 8+00E	10	(5	445	4.94	0.13	0.02	28	<20	<10	10	23	6	2480	0.21	<10
6N 8+50E	5	<5	390	2.94	0.22	0.01	17	<20	<10	10	23	6	1720	0.25	<10
6N 9+00E	5	<5	365	2.42	0.36	0.01	19	<20	<10	10	22	6	1180	0.26	<10
5N 9+50E	5	<5	445	4.13	0.19	0.01	14	<20	<10	<10	20	8	2460	0.24	<10
6N 10+00E	<5	5	615	1.66	0.22	0.01	13	<20	<10	10	11	6	800	0.12	<10
6N 10+50E	<5	(5	690	2.78	0.19	0.02	22	<20	<10	10	20	8	1060	0.18	<10
5N 11+00E	15	(5	470	3.74	0.17	0.04	37	<20	<10	10	20	2	1740	0.18	(1
6N 11+50E	10	(5	405	4.02	0.15	0.03	32	<20	<10	10	19	2	1540	0.20	<10
6N 12+00E	30	(5	835	3.78	0.20	0.02	39	<20	<10	10	19	2	1080	0.19	(10
6N 12+50E	15	<5	950	3,98	0.25	0.04	49	<20	(10	10	23	2	1290	0.22	

Date of Report: 23-Jun-92

NOREEN

Soil Sampling Results 1992

Reference: etk92-214

iampie ID	Zn pp=	Cd pp#	Pb ppa	Ag pp=	Cu ppn`	Ni pp a	Ca I	Ng Z	Fe I	Na ppo	No ppm	V pp#	Co pp=	Cr ppn	Bi ppi
)6N 13+00E	174	<1	18	0.2	18	34	0.52	0.54	2.73	311	<1	40	17	31	</th
9N 0+00E	120	<1	6	0.2	[1	40	0.33	0.52	2,72	257	4	45	18	31	<
)9N 0+50E	56	(1	2	<0.2	16	20	0.38	0.65	2.30	346	<1	42	16	43	<
9N L+00E	179	<1	8	0.2	24	40	0.67	0.63	2.72	276	Æ	42	19	36	<5
)9N 1+50E	119	<1	_12	0.2	11	17	2.23	1.41	1.81	379	3	28	10	19	<
9N 2+00E	95 7	1	38	0.2	6	19	0.83	0.66	1.92	180	<1	24	9	15	<:
)9N 2+50E	1980	2	102	<0.2	37	72 -	1.35	1.80	4.93	497	- 11	87	35	136	
19N 3+00E	158		8	0.2	15	- 44	0.45	0.76	3.35	260	4	41	20	38	(5
)9N 3+50E	409	1	10	0.2	38	81	1.13	0.79	3.20	578	<1	42	21	60	<
9N 4+00E	26 7	< <u>1</u>	12	0.2	8	17	0.38	0.30	2.05	525	(1	25	11	19	<5
9N 4+50E	148	1	12	0.2	13	28	0.59	0.34	2.29	154	<1	31	12	26	(
9N 5+00E	70	<1	- 4	0.2	23	48	0.75	0.49	2.45	490	<1	32	15	34	<5
9N 5+50E	102	4	6	<0.2	13	32	0.28	0.48	2.43	373	<1	36	15	31	(
9N 6+00E	83	<1	6	<0.2	48	144	0.39	0.97	3.65	312	<1	53	36	76	<
9N 6+50E	101	- C	8	<0.2	42	57	0.37	0.94	4.07	380	<1>	67	28	63	<
9N 7+00E	114	<1	8	0.2	28	57	0.32	0.53	3.35	480	<1	50	25	40	
9N 7+50E	113	4	8	0.2	23	58	0.38	0.69	3.13	275	1	51	23	52	C
9N 8+00E	148	<1	8	0.2	42	66	0.45	0.77	3.52	304	{1	65	27	67	C.
9N 8+50E	363	<1	- 48	0.2	30	93	1.04	0.55	3.71	242	<1	51	31	53	<
9N 9+00E	132	<1	10	0.2	26	83	0.40	0.53	3.01	376	<1	51	26	44	<
9N 9+50E	120	4	10	0.2	28	53	0.41	0.70	3.14	210	1	51	24	55	<
9N 10+00E	102	<t l<="" td=""><td>8</td><td><0.2</td><td>30</td><td>59</td><td>0.41</td><td>0.98</td><td>3.11</td><td>441</td><td>1></td><td>56</td><td>26</td><td>72</td><td></td></t>	8	<0.2	30	59	0.41	0.98	3.11	441	1>	56	26	72	
9N 10+50E	105	- <1	10	0.2	- 46	49	0.43	0.72	3.34	242	4	54	24	50	</td
9N 11+00E	107	(1	16	<0.2	34	36	0.56	0.53	2.63	217	(1	41	17	33	<
9N 11+50E	381	<1	56	<0.2	19	29	0.67	0.36	2.29	204	2	35	15	26	<
9N 12+00E	444	<1	56	<0.2	17	23	0.64	0.55	2.55	387	<1	42	17	32	<
9N 12+50E	438	<1 ×1	56	(0.2	18	36	0.68	0.57	2.89	269	<1	41	19	31	<
9N 13+00E	164	<1	38	` {0. 2	23	34	0.72	0.63	2.83	243	<1	43	18	34	(
9N 13+50E	137	<1	26	<0.2	22	41	0.77	0.57	2.80	336	<1	39	19	31	</td
2N 0+00E	68	<1	8	<0.2	21	25	0.24	0.63	2.81	190	<1	47	16	39	<
2N 0+50E	121	. (1	12	0.2	18	29	0.67	0.33	3.24	765	(1	39	19	25	C
2N 1+00E	87	<1	14	(0.2	22	45	0.84	0.43	3.41	321	<1	45	25	34	C
2N 1+50E	96	4	10	<0.2	40	56	0.63	0.80	4.00	532	(1	68	30	58	-
2N 2+00E	144	<1	8	(0.2	29	81	0.54	0.79	3.68	516	<1	60	32	56	-
2N 2+50E	154	<1	12	<0.2	32	66	0.63	0.83	4.00	317	(1	65	31	50	ļ
2N 3+00E	162	(1	10	<0.2	16	45	1.06	0.93	3.23	314	1	55	24	45	(
2N 3+50E	310	à	26	(0.2	16	33	0.51	0.65	2.89	293	(i	40	16	25	<
2N 4+00E	116	ä	8	(0.2	11	-32	0.28	0.80	3.29	380	a	52	20	41	<
2N 4+50E	188	ä	10	0.4	14	42	0.31	0.30	2.05	186	ä	27	13	16	d
2N 5+00E	405	ť	14	(0.2	16	33	0.27	0.56	2.81	433	1	45	16	31	<

.

Project 221

Soil Sampling Results (part 2)

lample ID	As	Sb	Ba	Al	K	Na	Sr	Sn	- W	La	Y	8	P	Ti	t
	ppi	ppe	pp#	7.	X'	7	ppe	pp a	ppn	pp a	ppe	ppe	ppe	1	pp
)6N 13+00E	5	<5	415	3.48	0.20	0.02	26	<20	<10	10	19	2	1570	0.20	(1)
19N 0+00E	<5	<5	540	3.35	0.33	0.01	23	(20	(10	10	22	2	820	0.27	- (10
)9N 0+50E	5	<5	155	1.73	0.40	0.02	24	<20	<10	10	18	<2	420	0.19	<10
)9N 1+00E	<5	5	235	3.80	0.32	0.03	65	<20	<10	20	28	2	1400	0.22	<10
)9N 1+50E	<5	5	285	3.16	0.15	0.02	35	<20	20	10	19	6	1640	0.15	(1)
9N 2+00E	<5	<5	1720	2.86	0.15	0.02	31	<20	<10	<10	10	2	2870	0.09	<10
9N 2+50E	5	5	425	3.32	0.72	0.01	68	<20	<10	20	73	<2	1360	0.47	<1
I9N 3+00E	5	(5	445	3.75	0.43	0.01	29	<20	<10	10	18	2	770	0.20	<10
9N 3+50E	<5	<5	555	3.73	0.28	0.02	62	<20	<10	20	28	2	420	0.21	
9N 4+00E	5	<5	510	3.47	0,11	0.02	18	<20	<10	10	16	2	3850	0.16	<10
ISN 4+50E	<5	<5	350	3.91	0.09	0.02	28	<20	20	10	18	2	940	0.17	(1
9N 5+00E	<5	<5	470	3.08	0.15	0.02	34	<20	(10	10	18	2	310	0.15	4
9N 5+50E	5	(5	300	3.09	0.15	0.01	21	<20	<10	10	15	2	1180	0.16	(1
9N 6+00E	5	<5	245	3.15	0.33	0.02	28	(20	<10	10	22	<2	760	0.25	
9N 6+50E	<5	<5	390	4.15	0.29	0.01	35	<20	<10	10	21	(2	1040	0.27	
9N 7+00E	15	<5	275	4.47	0.25	0.02	29	<20	(10	10	22	2	1440	0.28	
9N 7+50E	(5	<5	385	4.32	0.25	0.02	25	<20	<10	10	25	2	1750	0.27	
9N 8+00E	<5	<5 (5	340	4.43	0.26	0.02	23	<20	(10	10	24	2	2400	0.27	
9N 8+50E	5	<5 (5	405	5.10	0.21	0.03	38	<20	<10	20	26	2	4250	0.22	(1
9N 9+00E	10	<5 (5	440	3.68	0.19	0.02	21	<20	<10	10	20	2	2630	0.23	
9N 9+50E	5	<5	335	3.62	0.18	0.02	16	<20	<10	10	23	<2 (2	2360	0.27	- (1
9N 10+00E	10	5	370	2.69	0.33	0.02	18	<20	<10 (10	10	23	<2	1210	0.29	
9N 10+50E	10	<5 /5	275	4.11	0.21	0.02	26	<20	<10 (10	10	22	2	1360	0.24	- (1
9N 11+00E 9N 11+50E	<s< td=""><td><5 /5</td><td>270</td><td>3.22 2.68</td><td>0.13</td><td>0.02 0.03</td><td>33 35</td><td><20 <20</td><td><10 <10</td><td>10 10</td><td>16 12</td><td>2 2</td><td>1240 1090</td><td>0.15 0.13</td><td></td></s<>	<5 /5	270	3.22 2.68	0.13	0.02 0.03	33 35	<20 <20	<10 <10	10 10	16 12	2 2	1240 1090	0.15 0.13	
9N 12+00E	<5	<5 /5	520		0.11				<10	10	12	<2	1140	0.13	
9N 12+50E	5 5	<5 <5	825 495	3.10 3.29	0.21 0.18	0.03 0.03	31 33	<20 <20	<10	10	17	<2	990	0.18	(1) - (1)
9N 13+00E	5 5	(J (5	395	3.16	0.24	0.03	33 34	<20	<10	10	18	<2	1120	0.18	
9N 13+50E	10	(5	375	3.17	0.20	0.04	38	(20	<10	10	18	2	1260	0.18	
2N 0+00E	5	<5	170	2.72	0.14	0.01	18	<20	<10	10	17	<2	730	0.18	
2N 0+50E	رج ۲	<5	260	4.70	0.14	0.03	54	<20	<10	10	20	2	940	0.20	
2N 1+00E	5	<5	210	5.59	0.20	0.03	96	<20	<10	10	19	2	860	0.20	
2N 1+50E	5	<5	245	5.10	0.38	0.02	58	<20	<10	10	28	<2	1190	0.32	
2N 2+00E	5	(5	435	4.18	0,48	0.02	59	<20	<10	10	23	2	1380	0.31	
2N 2+50E	5	<5	310	3.73	0.36	0.03	53	(20	<10	10	20	2	850	0.25	1>
2N 2+30E	10	5	375	3.99	0.36	0.05	46	<20	<10	10	19	4	1140	0.24	
2N 3+50E	5	(5	585	4.04	0.22	0.02	27	(20	<10	10	18	2	2990	0.21	
2N 4+00E	5	5	315	2.79	0.44	0.01	17	<20	<10	10	15	<2	440	0.19	
2N 4+50E	5	(5	285	3.73	0.15	0.02	23	<20	<10	10	23	2	1850	0.21	d
2N 5+00E	10	5	650	3.90	0.17	0.01	14	(20	<10	10	18	2	3940	0.19	

Project 221

NOREEN

Soil Sampling Results 1992

Reference: etk92-214

Date of Report: 23-Jun-92

ample ID	Zn pp a	Cd pp=	РЬ рр е	Ag pp n	Cu ppa	Ni ppæ	Ca X	Ng I	Fe X	Ka ppa	Мо рря	¥ pp n	Co pp#	Cr pp n	Bi ppi
							·						 / F		
2N 5+50E 2N 6+00E	207 76	<1 /1	28	(0.2	17	24	0.35	0.55	2.56	223	1)	41	15	32 35	(
2N 6+50E	159	<1 <1	8	0.2	13	19 40	0.47	0.40	2.16	533	(1	33 37	12	25 25	C
2N 7+00E	95		8	<0.2 <0.2	12	57	0.44 0.37	0.52	2.66	523			16	35 25	
2N 7+50E	53 62		10 6	(0.2	23 27	57 65	0.41	0.41 1.10	2,85	348 253	<1 /1	37 60	19 27	35 84	() ()
2N 8+00E	100		14	(0.2	14	36	0.51	0.29	3.40 2.49	255 357	<1 <1	33	15	23	
2N 8+50E	97	ä	12	(0.2	37	117	1.07	0.78	3.77	350	1	45	24	71	(
2N 9+00E	103	A A	8	0.2	35	74	0.48	0.85	3.41	280	<1	57	27	72	(
2N 9+50E	179		8	(0.2	34	94	0.3B	1.07	3,45	20V 544		52	31	96	
2N 10+00E	111	< <u>i</u>	8	(0.2	35	58	0.39	0.60	3.00	343		49	24	49	(
2N 10+50E	139	a	12	0.2	15	33	0.28	0.21	2,60	185	à	31	18	22	(
2N 11+00E	81	1	8	0.4	HI	65	2.66	0.45	2.54	1375	1	43	15	43	, and the second
2N 11+50E	295	4	30	(0.2	14	27	0.32	0.33	2,33	591	6	40	15	26	, i
2N 12+00E	225	(1	36	<0.2	23	42	0.60	0.49	2.95	250	4	40	20	29	C
2N 12+50E	362	(1	58	(0.2	17	40	0.46	0.45	2,81	340	<1	41	19	31	<
2N 13+00E	127		52	(0.2	22	33	0.76	0.81	2.67	268	ä	47	20	43	- 0
2N 13+50E	274	ä	42	<0.2	14	39	0.27	0.48	2.98	270	ä	44	17	31	<
2N 14+00E	264	(Î	122	(0.2	20	34	0.48	0.48	3.02	412	(1	43	20	30	() ()
2N 14+50E	176	(1	20	0.2	19	38	0.40	0.33	2,82	282	<1	37	17	22	<
2N 15+00E	196	(1	22	<0.2	18	35	0.57	0.47	2.97	317	< <u>a</u>	43	18	29	<
SN 0+00E BL	109	(i	14	<0.2	27	31	0.21	0.87	4.32	602	ā a	69	20	59	
5N 0+50E	100	(1	14	0.2	26	44	0.17	0.70	3.88	315	1	57	25	45	9
5N 1+00E	110	0	12	(0.2	102	69	1.22	0.84	3,88	584	(Î	72	42	65	<
5N 1+50E	90	<1	10	<0.2	15	22	0.31	0.57	2,70	475	(1	45	15	35	<
5N 2+00E	108	(1	14	(0.2	26	40	1.18	0.47	3.74	695	(1	42	25	32	<
SN 2+50E	130	(1	10	0.2	13	22	0.23	0.27	2.33	605	(1	31	13	21	<
5N 3+00E	73	(1	10	(0.2	47	72	0.72	0.64	3.04	207	(1	47	31	46	<
5N 3+50E	86	<1	12	(0.2	34	31	1.51	1.26	3.11	553	(1	47	19	46	<
5N 4+00E	84	(1	6	<0.2	19	29	0.31	0.76	2.86	204	<1	54	19	47	<
SN 4+50E	100	(I	16	<0.2	15	31	0.23	0.96	4.13	405	1	67	25	53	t
5N 5+00E	177	(1	20	<0.2	15	24	1.25	0.84	2.10	223	<1	35	15	33	
5N 5+50E	138	<1	14	<0.2	17	34	0.34	0.43	2.56	256	(1	37	18	27	<
5N 6+00E	278	1	12	0.4	93	105	1.00	1.11	5.61	989	1	82	28	88	<
5N 6+50E	127	(1	4	<0.2	19	25	0.20	0.51	2.28	231	<1	36	- 14	32	<
5N 7+00E	131	(1	6	0.2	19	30	0.31	0.42	2.71	426	(1	45	18	27	<
SN 7+50E	126	(1	2	<0.2	35	58	0.41	1.15	4.19	285	(1	76	29	70	<
5N 8+00E	109	ä	4	<0.2	21	46	0.24	0.80	3.05	201	2	52	21	54	(
5N 8+50E	102	4	8	0.2	32	63	0.80	0.43	2.99	418	5	40	14	38	
5N 9+00E	37	(1	<2	(0.2	11	19	0.24	0.36	1.76	184	di	27	10	23	<
5N 9+50E	73	(1	6	0.2	13	30	0.10	0.30	2.38	403	A	35	16	24	<

.

Project 221

.

Soil Sampling Results (part 2)

ample ID	As ppm	Sb pp∎	Ba pp n	1A ג	K Z	Na Z	Sr pp n	Sn pp a	W pp n	La pp e	Y pp n	B pp∎	P ppm	Ti Z	pp 1
~~~~~~~~~~~															۳۴ 
2N 5+50E	<5	<5	835	3.73	0.15	0.01	19	{20	<10	10	18	<2	1120	0.17	ki
2N 6+00E	5	<5	325	3.01	0.12	0.02	22	<20	<10	10	17	<2	1140	0.16	<1
2N 6+50E	5	<5	515	3.67	0.18	0.01	21	<20	<10	10	14	<2	1000	0.17	<1
2N 7+00E	5	<5	325	3.40	0.14	0.01	22	<20	(10	10	16	<2	2730	0.18	- (1
2N 7+50E	5	<5	130	2.46	0.42	0.02	24	<20	<10	10	20	<2	440	0.24	<1
2N 8+00E	5	<5	220	4.76	0.11	0.02	29	<20	<10	10	21	2	2810	0.21	1>
2N 8+50E	15	<5	295	4.39	0.23	0.03	56	<b>{20</b>	<10	20	-24	2	400	0.23	
2N 9+00E	5	5	345	4.39	0.31	0.02	39	<20	<10	10	27	2	1060	0.29	<1
2N 9+50E	10	5	610	3.76	0.24	0.02	26	<20	<10	10	27	2	1400	0.36	- (1
2N 10+00E	10	(5	370	4.00	0.20	0.01	25	<20	<10	10	22	2	2600	0.27	
2N 10+50E	10	(5	235	4.81	0.05	0.01	19	<20	<10	10	18	2	4530	0.21	(1
2N 11+00E	5	<5	410	2,47	0.19	0.01	76	<20	<10	40	34	4	830	0.10	(1
2N 11+50E	5	(5	435	2.65	0.08	0.01	16	<b>{20</b>	40	10	15	6	1380	0.19	- (1
2N 12+00E	<5	<5	440	4.08	0.16	0.03	31	<20	<10	20	20	2	1180	0.20	- (1
2N 12+50E	10	<5	525	3.59	0.15	0.02	23	<20	(10	20	21	2	1270	0.21	
2N 13+00E	5	5	430	2.52	0,26	0.03	35	<20	<10	10	15	<2	1190	0.16	
2N 13+50E	5	<5	505	4.41	0,15	0.01	16	<20	<10	10	18	2	1360	0.22	<1
2N 14+00E	10	<5	380	3.50	0.16	0.02	24	(20	<10	10	18	(2	1240	0.19	4
2N 14+50E	5	(5	370	5.25	0.10	0.02	25	<20	<10	20	24	2	1600	0.22	
2N 15+00E	5	(5	380	4.24	0.16	0.02	31	<20	<10	10	18	2	1480	0.20	
5N 0+00E BL	10	(5	360	3,96	0.36	<0.01	19	(20	<10	10	20	<2	480	0.28	d
5N 0+50E	10	5	290	4.85	0.29	0.01	19	<20	<10	10	25	2	810	0.30	
5N 1+00E	10	(5	265	5.00	0.41	0.06	128	<20	(10	10	25	2	1000	0.29	
5N 1+50E	5	<5	275	2.85	0.17	0.01	29	<20	<10	20	15	<2	1140	0.18	
5N 2+00E	10	<5	315	4.70	0.27	0.04	91	<20	<10	10	18	2	1250	0.20	
5N 2+50E	5	<b>(</b> 5	215	4,15	0.13	0.01	22	<20	<10	10	18	2	3340	0.19	
5N 3+00E	5	(5	200	4.40	0.17	0.04	50	<20	<10	10	21	2	560	0.22	
5N 3+50E	(5	5	445	3.72	0,46	0.02	41	<20	<10	20	25	2	840	0.21	- (1
5N 4+00E	5	<5	240	2.66	0.29	0.01	20	<20	<10	10	20	<2	520	0.23	
5N 4+50E	20	5	285	4.13	0,47	0.01	22	<20	<10	10	28	2	670	0.36	
5N 5+00E	5	5	1330	2.27	0.29	0.01	30	<20	<10	10	17	<2	4500	0.16	<[]
5N 5+50E	5	(5	325	3.83	0.15	0.01	21	<20	(10	10	19	2	1880	0.20	- (1
5N 6+00E	<5	<5	670	6.04	0.66	0.02	52	<20	<10	20	38	6	820	0.27	
5N 6+50E	<5	<5	315	2.59	0.13	0.01	19	<20	<10	<10	10	2	640 2450	0.13	
5N 7+00E	<5	<5	305	4.21	0.16	0.01	21	<20	(10	<10	17	2	2450	0.22	
5N 7+50E	<5	5	305	4.06	0.57	0.01	35	<20	<10	<10	22	2	720	0.32	<1
5N 8+00E	<5	<5	165	2.80	0.42	0.01	21	<20	<10	<10	16	2	520	0.23	
5N 8+50E	<5	<5	240	3.89	0.20	0.02	36	<20	10	10	21	6	760	0.17	- (1
5N 9+00E	<5	(5	155	2.27	0.10	0.01	19	<20	<10	10	12	<2	580	0.12	4
5N 9+50E	<5	<5	180	4.14	0.08	0.01	9	<20	<10	<10	15	<2	2030	0.21	<1

Date of Report: 23-Jun-92

# Project 221

NOREEN

## Soil Sampling Results 1992

Reference: etk92-214

Sample ID	Zn pp <b>s</b>	Cd pp <b>n</b>	Pb pp#	Åg pp#	Cu ppa	Ni pp <b>e</b>	Ca T	Ng Z	Fe X	Mn	No	۷	Co	Cr	Bi
							•	* 	<b>۸</b>	pp <b>.</b>	ppm	pp <b>a</b>	pp=	ppm 	pp1 
15N 10+00E	134	(1	4	0.2	24	49	0.42	0.68	3.18	212	۲>	54	24	52	<5
15N 10+50E	98	<1	2	0.2	22	- 41	0.43	0.50	2.75	374	<1	46	19	40	<5
15N 11+00E	136	4	6	0.2	12	38	0.14	0.22	2.22	291	<1	32	16	19	<5
15N 11+50E	118	(1	4	0.2	28	40	0.33	0.39	2.56	406	<1	38	20	28	{5
15N 12+00E	120	(1	20	<0.2	11	26	0.36	0.52	2.27	10B	<1	44	15	38	<5
ISN 12+50E	148	(1	8	0.2	15	29	0.19	0.36	2.66	184	4	50	20	31	5
15N 13+00E	183	(1	18	0.2	36	32	1.04	0.49	3.39	823	· <t< td=""><td>39</td><td>17</td><td>20</td><td>&lt;5</td></t<>	39	17	20	<5
ISN 13+50E	168	<1	22	0.2	53	66	0.60	0.74	3.51	322	<1	54	28	43	<5
15N 14+00E 15N 14+50E	305	(1	170	0.2	36	60	0.90	0.61	3.71	469	<1	4B	26	34	<5
ISN 15+00E	313	(1	30	0.2	23	42	0.47	0.59	3.11	302	<b>{</b> 1	49	21	34	<5
ISN 15+50E	222	(1	14	0.2	15	47	0.51	0.51	2.87	722	<1	41	20	31	<5
ISN 16+00E	233		10	0.2	18	41	0.39	0.34	2.73	236	1>	35	17	22	<5
SH 16+50E	193	<1	8	0.2	9	29	0.22	0.27	2.64	211	<1	34	- 14	21	<5
5N 17+00E	158 96	(1	8	0.2	30	41	0.47	0.87	3.46	389	<1	57	22	42	<5
8N 0+00E		(1	4	0.2	23	39	0.52	0.61	2.94	296	<1	45	21	33	<5
BN 0+50E	116	(1	6	<0.2	21	49	0.20	0.89	3.64	227	t	59	25	59	5
8N 1+00E	176	(1	4	0.2	21	63	0.24	1.13	4.19	511	<1	74	29	69	(5
81 1+50E	145 154	(1 (1	2	0.2	14	39	0.24	0.56	2.46	299	<1	37	17	36	<5
8N 2+00E			6	0.2	9	20	0.31	0.27	2.40	699	(1	32	15	21	<5
8N 2+50E	66 47	<1 /1	12	0.2	12	21	0.23	0.35	2.40	267	. (1	36	10	[8]	<5
8N 3+00E	115	(1 (1	<2 10	<b>&lt;0.2</b>	10	18	0.28	0.51	1.88	270	(1	34	13	33	(5
8N 3+50E	224	(1	12	<0.2	24	27	0.27	0.74	3.16	285	4	54	19	46	5
8N 4+00E	70		6	0.2	5	12	0.24	0.27	1.56	450	(1	24	8	14	<5
8N 4+50E	57		۰ 2	<0.2 0.2	21	26	0.42	0.54	2.51	345	(1	43	14	38	<5
BK SHOOE	53	<1	<2	0.2	13 12	21 52	0.25	0.43	1.99	197	1)	31	12	29	<5
8N 5+50E	87	< <u>1</u>	2	0.2	19	52 27	9.38	0.55	2.05	210	4	34	13	35	<5
BN 6+00E	61		<2	0.4	17	29	0.40 0.55	0.62	2.84	302	4	48	18	36	<5
8N 6+50E	71	(1	<2	0.4	38	40	0.35	0.13	2.03	276	(1	24	14	8	<5
BN 7+00E	117	(i	<2	<0.2	30 86	112	0.59	0.72 1.07	3.26	165	<1	59	25	46	<5
BN 7+50E	169	(1	(2	(0.2	63	94	0.69		3.97	660	<1	81	58	81	<5
BN 8+00E	205	ä	2	(0.2	20	71		1.30	4.39	552	(1	93	45	100	<5
BN 8+50E	144	<1	2	0.2	15	27	0.96	0.88	3.07	374	(1	67	34	64	<5
BN 9+00E	58	à	<2	0.4	13		0.53	0.18	1.77	159	<1	22	13	11	(5
BN 9+50E	83		2	(0.2	13	22 19	0.45	0.34	2.25	342	4	43	. 14	27	<5
BN 10+00E	117		2	(0.2	31	19 54	0.26	0.28	2.23	191	<1 (1	38	11	23	<5
BN 10+50E	149		6	0.6			0.30	0.78	2.86	183	4	55	22	49	<5
X LI+00E	99	(t	2	0.4	13	31	0.18	0.34	2.54	641	1	38	19	24	<5
BN 11+50E	173	(1	18		23	-56	0.36	0.53	3.07	265	(1	47	22	35	<5
NO TTOOL	113	1	10	0.2	17	- 44 -	0.27	0.49	2.88	397	<1	- 44	23	34	<5

# Fina]

. .

# Project 221

Soil Sampling Results (part 2)

.

Sample ID	As	Sb	Ba	Al	K	Na	Sr	Sn	W	La	Y	8	P	Ti	1
	ppe	ppn	ppe	7	X '	χ	pp <b>a</b>	eb∎ 	ppm	pp <b>e</b>	pps	ppa	ppe	2	
15N 10+00E	<5	<5	255	3.40	0.27	0.01	23	<20	(10	(10	20	<2	1090	0.28	
5N 10+50E	<5	<5	215	3.52	0.18	0.01	22	<20	<10	<10	19	<2	1360	0.25	(1)
ISN 11+00E	20	5	220	2.79	0.07	0.01	9	<20	<10	<10	14	<2	1980	0.20	<1
5N 11+50E	<5	(5	255	3.13	0.11	0.02	22	<20	<10	<10	14	<2	1500	0.19	- <1
ISN 12+00E	<5	<5	325	2.45	0.14	0.01	14	<20	<10	<10	13	<2	400	0.17	(1
5N 12+50E	<5	<5	295	3.81	0.18	0.01	13	<20	10	<10	19	4	1580	0.22	<10
5N 13+00E	<5	<5	275	4.80	0.13	0.02	23	<20	<10	20	-33	2	2550	0.20	- (1
SN 13+50E	5	<5	470	3.68	0.26	0.03	37	<20	<10	10	22	2	950	0.24	(1)
ISN 14+00E	- <5	<5	565	3.85	0.26	0.04	48	{20	<10	<10	18	2	1190	0.20	<1
5N 14+50E	<5	<5	560	3,78	0.22	0.02	22	<20	<10	<10	20	2	1720	0.23	- (1)
ISN 15+00E	<5	<5	515	3.05	0.22	0.02	30	<20	<10	<10	15	2	1730	0.20	4
SN 15+50E	<5	<5	465	4,44	0.11	0.02	19	<20	<10	<10	16	2	1520	0.18	(1)
15N 16+00E	<5	<5	265	3,88	0.08	0.01	12	<20	<10	<10	14	2	2130	0.20	<1
SN 16+50E	<5	<5	450	3.60	0.28	0.02	27	<20	<10	<10	19	(2	1270	0.24	- (1)
5N 17+00E	5	<5	300	2.78	0.19	0.01	19	<20	<10	<10	17	2	1160	0.19	- <1
8N 0+00E	<5	<5	290	3.50	0.54	0.01	21	<20	<10	<10	20	2	290	0.31	- (1)
8N 0+50E	5	<5	475	4,25	0.95	0.01	27	<20	<10	<10	25	2	450	0.38	- (1
8N 1+00E	<5	<5	320	2.52	0.23	0.01	19	<20	<10	<10	14	<2	1920	Q.19	<1
BN 1+50E	<5	<5	345	3,04	0.12	0.01	20	<20	<10	<10	12	<2	4180	0.18	<1
8N 2+00E	5	<5	225	3.58	0.09	0.01	25	<20	10	10	<u></u> 15	<2	2130	0.15	4
BN 2+50E	5	<5	125	1.49	0.27	0.01	18	<20	<10	10	13	<2	630	0.15	4
8N 3+00E	15	<5	260	2.66	0.36	<0.01	29	<20	<10	10	18	<2	630	0.23	4
BN 3+50E	5	<5	320	1.76	0.14	0.01	30	<20	<10	10	9	<2	1390	0.08	<1
8N 4+00E	<5	<5	130	2.36	0.29	0.01	37	<20	<10	30	23	<2	290	0.18	<10
BN 4+50E	<5	<5	145	1.96	0.19	0.01	21	<20	<10	10	13	<2	670	0.14	(1)
8N 5+00E	5	<5	85	1.72	0.29	0.01	25	<20	<10	<10	13	<2	140	0.17	<10
BN 5+50E	5	(5	280	3.59	0.25	0.02	32	<20	<10	<10	18	<2	930	0.22	(1
8N 6+00E	5	<5	240	4,94	0.05	0.02	38	<20	<10	<10	14	2	2720	0.20	(10
8N 6+50E	5	<5	425	4,05	0.57	0.01	30	<20	<10	<10	24	2	520	0.35	(1
BN 7+00E	30	10	430	3.41	0.69	0.02	35	<20	<10	<10	22	2	580	0.32	<1
8N 7+50E	10	. <5	400	3.73	0.83	0.03	44	<20	<10	<10	26	2	680	0.39	
8N 8+00E	5	<5	420	3.01	0.77	0.04	64	<20	<10	<10	21	2	980	0.34	(1)
BN 8+50E	<5	<5	190	3.77	0.09	0.03	43	<20	<10	<10	18	2	1950	0.16	(1
BN 9+00E	<5	<5	100	3.74	0.10	0.01	23	<20	(10	(10	17	<2	1140	0.18	
8N 9+50E	<5	<5	140	3,14	0.07	0.01	17	<20	<10	(10	12	(2	1370	0.14	(1
8N 10+00E	<5	<5	250	2.42	0.19	0.01	15	<20	<10	<10	16	<2	1240	0.21	<1
8N 10+50E	<5	(5	320	4,47	0.11	0.01	18	<20	<10	<10	18	<2	1900	0.23	1)
8N 11+00E	<5	<5	255	4.48	0.16	0.02	26	<20	<10	<10	18	<2	1360	0.23	(1
8N 11+50E	5	<5	340	3.75	0.16	0.01	19	<20	<10	<10	17	2	1650	0.24	<1
8N 12+00E	<5	<5	450	3.52	0.18	0.01	17	<20	<10	<10	19	2	1860	0.23	_ {1

Date of Report: 23-Jun-92

NOREEN

### Soil Sampling Results 1992

Reference: etk92-214

iample ID	Zn pp <b>n</b>	Cd ppm	Pb ppm	Ag ppm	Cu pp∎'	Ni ppm	Ca X	Ng Z	Fe 1	Mn ppa	Mo pps	V Pp <b>n</b>	Co p <b>pa</b>	Cr pp#	9 PP
				·								******			
IBN 12+50E	301	<1	30	0.2	17	42	0.31	0.43	3.13	361	(1	43	20	29	
8N 13+00E	209	(1	10	0.2	22	31	0.44	0.26	2.88	617	(1	31	20	16	<
18N 13+50E	292		64	0.4	21	72	0.41	0.49	2.98	435		42	27	31	<
14+00E	492		94	0.2	20	58	0.61	0.77	3.17	937	<1	54	28	50	<
IBN 14+50E BN 15+00E	470 500	<1	. 70	0.2	17	42	0.49	0.44	2.75	639 202	(1	40	19	28	•
BN 15+50E	509 707	1	34	0.2	10	23	0.43	0.23	2.51	293	(1	32	14	15	•
8N 16+00E	823	<1 (1	40 136	0.2 0.2	8	22	0.47	0,40	2.34	493	-<1	31	14	18	•
8N 16+50E	72				24 33	43	0.94	1.03	3.14	278		42 57	20	27	(
8N 17+00E	120	<1 <1	4	<0.2 <0.2		42	0.54	0,96	3.30	253 389	(1	56 50	19	52	•
IN 0+00E BL	120 96			<b>(0.2</b>	31 73	44	0.46	0.91	3.73		(1	59	21	42	(
IN 0+50E			6	0.2		145	0.32	1.36	3.60	794		77	36	158	1
11 0+30E	92 112	۲۱ ۲۱	<2 <2	<0.2	58 59	73 49	0.32 0.37	0.55	2.77	622 404	1)	43 99	22	45	•
IN 1+50E	92	< <u>1</u>	2	0.2	13	42 14	0.12	1.70 0.20	3.59 2.17	284	(1 (1	35	23	82	
1N 2+00E	98	<1	6	0.2	16	32	0.25	0.55	2.91	204 184		46	11 19	14 47	•
IN 2+50E	101		<2	<0.2	30	72	0.15	0.93	4.42	222	4 <1	72	34	62	
1N 3+00E	136		<2	0.2	14	47	0.23	0.66	2.77	380		44	21	51	•
1N 3+50E	90		4	0.2	21	37	0.32	0.68	2.89	209		45	17	40	(
IN 4+00E	145	<1	<2	0.4	21	57 59	0.30	0.62	3.16	442		52	18	40	•
1N 4+50E	109	(1	(2	<0.2	10	55	0.28	0.51	2.12	325		34	15	32	(
1N 5+00E	119	<1	2	0.2	32	44	0.58	0.57	3.49	364	- KI	45	25	36	
IN 5+50E	92	(1	4	0.2	13	33	0.22	0,41	2.25	487		31	13	26	(
IN 6+00E	105	<1	2	0.4	14	37	0.27	0.44	2,45	347	(1	36	16	28	
IN 6+50E	115	< <u>i</u>	2	0.2	25	33	0.45	0.70	3,28	412	<1	51	21	44	(
1N 7+00E	108		<2	0.2	25	40	0.62	0.63	3.08	540		49	22	44	
IN 7+50E	118	ä	4	0.4	24	38	0.49	0.44	2.78	394	3	46	20	34	
1N 8+00E	99	<1	<2	<0.2	43	55	0.51	0.76	3.37	441	,	67	29	58	
1N 8+50E	126	<i l<="" td=""><td>&lt;2</td><td>0.2</td><td>58</td><td>61</td><td>0,64</td><td>0.90</td><td>3,50</td><td>598</td><td>&lt;.</td><td>80</td><td>32</td><td>65</td><td>(</td></i>	<2	0.2	58	61	0,64	0.90	3,50	598	<.	80	32	65	(
1N 9+00E	67	(1	<2	0.2	57	46	0.58	0.75	3,18	413	(1	63	27	57	•
1N 9+50E	130	(1	<2	0.2	34	60	0.54	0.91	3,26	447	(1	71	29	63	(
1N 10+00E	131	(1	<2	0.2	33	45	0.53	0.70	3.09	284	(1	54	23	47	•
1N 10+50E	139	a	4	0.4	27	27	0.38	0.44	2.60	245	t)	43	15	28	•
1N 11+00E	223	<1	2	0.4	26	36	0.29	0.67	3.87	164	<1	60	23	44	
IN 11+50E	187	<li>A la la</li>	8	0.4	22	44	0.19	0.44	3.08	209	(1	42	22	28	•
IN 12+00E	164	ä	36	0.2	20	31	0.85	0.24	2,68	193	à	27	19	17	•
IN 12+50E	124		14	0.2	20	49	0.24	0.46	2,83	218	(1	48	25	34	•
IN 13+00E	106	<1	2	0.4	19	21	0.61	0.14	2.34	677	(1	21	15	10	
IN 13+50E	292	A A	46	0.4	10	38	0.31	0.32	2.60	1380		35	18	22	(
11N 14+00E	252		70 34	0.4	19	52	0.43	0.43	3.0B	232	<1	42	20	26	
10 141VVC	F64	11	54 54	(0.2	56	69	0.44	0,95	3.74	305		65	33	58	(

# Project 221

Soil Sampling Results (part 2)

jample ID	As pp <b>a</b>	Sb pp <b>a</b>	8a pp <b>n</b>	A1 7	K X	Na X	Sr ppn	Sn pp <b>e</b>	W ppm	La ppm	Y ppæ	8 pp <b>a</b>	P ppm	Ti Z	U pp:
								*******							
BN 12+50E	5	<5	380	4.33	0.14	0.01	20	<20	<10	<10	15	2	2160	0.21	(1
8N 13+00E	(5	<5	445	3.89	0.10	0.03	33	<20	<10	<10	13	2	2120	0.20	
BN 13+50E	<5	<5	565	4.31	0.18	0.02	26	<20	<10	<10	18	2	1190	0.23	
8N 14+00E	(5	<b>&lt;</b> 5	1015	3.08	0.46	0.02	31	<20	<10	<10	19	2	850	0.28	
18N 14+50E	5	<5 (5	590	3.48	0.18	0.02	25	<20	<10	<10	16	2	1730	0.21	<1
8N 15+00E	<5 (5	<5 (5	400	4.95	0.08	0.02	26	(20	<10	<10	16	2	1500	0.19	
IBN 15+50E	<5	(5	410	3.24	0.14	0.02	23	<20	<10	<10	12	2	2310	0.19	- (1
18N 16+00E	5	5	570	3.61	0.17	0.04	43	<20	(10	<10	16	2	2340	0.18	
IBN 16+50E	10	5	215	2.16	0.37	0.02	23	<20	<10	10	20	<2	940	0.22	
SN 17+00E	5	<5 (5	320	3.74	0.30	0.02	29	<20	<10	10	24	2	930	0.23	- (10
21N 0+00E BL	5	<5 (5	135	2.69	0.08	0.01	21	(20	30	<10	13	<2	870	0.23	- (1
21N 0+50E	5	<5 5	285	2.64	0.09	0.01	21	<20	<10	<10	13	<2 /2	1380	0.20	
21N 1+00E	5	5	275	3.68	0.22	0.01	25	(20	(10	<10	28	<2 (2	1060	0.35	
11N 1+50E	<5 5	<5 /5	190	4.80	0.04	0.01	12	<20	<10	<10	15	<2	2070	0.19	
2400E	5	<5 /5	230	4.24	0.12	0.01	20	<20 (20	20	<10 (10	14	6	4420	0.22	
2+50E 21N 3+00E	5 5	<5 <5	310 335	3.94	0.52 0.28	0.01	15	<20 <20	<10	<10	21	<2 (2	660 1730	0.35	
	5 5	(5 (5		3.00		0.01	20		<10 (10	<10 (10	17 17	(2		0.25 0.23	
21N 3+50E 21N 4+00E	ა <5	(5) (5)	180 335	3.27 4.85	0.32 0.51	0.01 0.01	28 30	<b>₹20</b> ₹20	<10 <10	<10 <10	22	<2 2	1990 750	0.23	<10 - (10
11 4+50E	5	<5	230	2.14	0.29	0.01	23	<20	<10 <10	<10 <10	13	<2	1210	0.19	- (10
21N 5+00E	ں 5	<5	230	4.03	0.27	0.02	23 47	(20	<10	<10	18	2	940	0.23	
IN 5+50E	5	<5 <5	265	2.41	0.21	0.02	24	<20	<10	<10	11	2	1090	0.16	
1N 6+00E	<5	<5	285	3.56	0.26	0.02	27	(20	(10	(10	19	2	1440	0.22	
IN 6+50E	<b>∖</b> 3 <b>⟨5</b>	<b>√</b> 5	295	3.36	0.40	0.02	43	(20	<10	<10	15	2	740	0.25	
1N 7+00E	5	<5	340	4.13	0.31	0.03	59	(20	<10	10	20	2	1230	0.24	
1N 7+50E	رج ا	(5	235	4.80	0.19	0.01	35	<20	10	10	24	4	1200	0.26	
1N 8+00E	10	(5	310	4.03	0.36	0.02	44	(20	<10	<10	21	<2	470	0.30	
IN 8+50E	<5	<5	425	3.45	0.59	0.02	41	<20	<10	<10	20	2	770	0.31	
1N 9+00E	5	<5	320	3.31	0.39	0.02	39	<20	<10	<10	16	6	650	0,25	<10
1N 9+50E	10	<5	320	3.32	0.53	0.02	39	<20	<10	<10	19	4	1080	0.30	
1N 10+00E	10	<5	290	3.85	0.27	0.02	37	<20	<10	<10	17	6	1420	0.22	
IN 10+50E	10	(5	235	4.72	0.12	0.01	25	<20	(10	<10	16	6	2500	0.18	
IN 11+00E	10	<5	275	5.19	0.27	0.01	24	<20	(10	<10	24	4	2190	0.32	
IN 11+50E	10	<5	240	4,44	0.12	0.01	16	<20	<10	<10	14	4	1240	0.22	<10
IN 12+00E	5	<5	185	4.34	0.07	0.03	61	<20	<10	(10	9	4	4430	0.13	- (1
1N 12+50E	10	<5	230	3.62	0.17	0.01	18	<20	<10	<10	17	4	1270	0.25	
IN 13+00E	5	<5	225	2.93	0.05	0.03	44	<20	<10	<10	7	4	2630	0.11	
IN 13+50E	10	< <u>5</u>	575	3.17	0.11	0.01	18	<20	<10	(10	13	4	1450	0.19	
IN 14+00E	10	<b>&lt;</b> 5	465	4,47	0.14	0.02	25	<20	(10	<10	16	6	1110	0.21	- (10
IN 14+50E	10	<5	555	3.56	0.32	0.01	20	<20	<10	<10	22	4	1310	0.31	

Date of Report: 23-Jun-92

NOREEN

.

### Soil Sampling Results 1992

Reference: etk92-214

Sample ID	Za pp∎	Cd ppa	₽b pp∎	Ag ppe	Cu pp=`	Ni ppm	Ca Z	Ng Z	Fe X	Yn pp∎	No ppm	V ppa	Co ppm	Cr ppm	Bi ppi
										ے ہو ہو اور ہے بار ہو			******	*	
21N 15+00E	355	(1	62	0.2	14	38	0.45	0,44	2.88	505	<1	40	19	26	(
21N 15+50E	303	<1	60	0.2	23	53	0.44	0.47	3.35	310	4	45	26	28	<
21N 16+00E	551	<1	156	<0.2	24	49	0.69	0.58	3.14	517	<1	45	23	35	<
21N 16+50E	54L	{[	278	<0.2	31	46	0.78	0.82	3.89	5 <del>4</del> 1	2	56	22	- 44	<
21N 17+00E	272	<1	78	0.2	46	49	0.71	0.80	4.36	539	1	60	26	40	<
21N 17+50E	161	<1	38	0.2	14	32	0.43	0.41	2.79	248	<1	39	17	24	•
21N 18+00E	108	(1	10	0.2	28	42	0.57	0.71	3.28	293	·<1	51	22	39	<
24N 0+00E BL	117	<1	8	<0.2	34	36	0.56	0.96	5.26	717	1	82	25	51	:
2 <b>4N</b> 0+50E	32	<1	- 14	0.2	5	7	0.04	0.10	2.90	75	5	44	7	13	
24N 1+00E	72	(1	<2	0.2	47	64	0.76	0.88	4.53	391	1	68	26	45	<
24N 1+50E	136	<1	- 4	0.2	35	72	0.71	0.99	4.13	531	<b>{1</b>	<u>69</u>	35	68	<
24N 2+00E	103	(1	2	<b>{0.2</b>	37	37	0.62	0.90	4.90	470	1>	73	22	50	<
24N 2+50E	78	<1	- 4	0.2	18	25	0.49	0.49	2.61	633	<1	38	17	30	<
24N 3+00E	70	<b>{</b> }	2	0.2	13	24	0.38	0.17	2.56	144	(1	29	15	15	<
24N 3+50E	122	<1	4	0.2	15	39	0.30	0.48	3.32	577	<1	51	28	34	<
4N 4+00E	70	<1	4	0.2	17	24	0.10	0.39	2.74	208	<b>(</b> 1	42	14	29	<
24N 4+50E	72	<1	2	0.2	12	28	0.10	0.30	2.32	445	(1	34	13	21	<
24N 5+00E	96	<1	10	0.2	34	78	0.33	0.74	3.47	428	(1	59	32	60	<
24N 5+50E	42	<1	<2	<0.2	192	145	0.92	0.88	3.12	282	(1	59	42	103	<
24N 6+00E	171	<1	<2	0.2	27	40	0.54	9,57	2.77	817	. <1	37	21	46	(2)
24N 6+50E	91	<1	6	<0.2	19	21	0.13	1.00	4.57	246	<1	90	16	73	<
24N 7+00E	56	(1	26	<0.2	14	11	0.07	0.29	3.02	156	1>	50	8	26	<
24N 7+50E	118	<b>(1</b>	10	0.2	28	36	0.21	1.05	4,97	1135	6	88	23	72	
24N 8+00E	130	<1	<2	0.2	12	31	0.15	0.26	2.22	638	<1	30	- 14	20	!!</td
24N 8+50E	114	(1	<2	0.2	34	103	0.26	1.00	4.25	281	{1	71	36	72	<
24N 9+00E	244	<1	4	0.2	14	35	0.60	0.55	3.05	450	1>	42	22	40	- C
24N 9+50E	63	<1	<2	<0.2	54	62	1.69	0.77	4.96	356	<1	56	36	54	<
24N 10+00E	111	4	16	<0.2	29	71	1.86	0.77	4.30	742	(1	59	36	53	1
24N 10+50E	152	<1	10	<0.2	43	107	0.43	1.38	4.74	452	<1	124	43	106	
24N 11+00E	121	<b>(1</b>	12	<0.2	50	84	0.96	1.03	4.16	423	<1	71	35	84	<
24N 11+50E	114	. (1	10	(0.2	41	72	0.93	1.03	4.10	363	<1	70	34	77	
24H 12+00E	138	<1	14	<0.2	15	27	0.99	0.23	2.29	756	<1	26	15	18	1
4N 12+50E	84	<1	12	0.2	19	24	0.80	0.18	2.43	463	<1	37	15	22	<
13+00E	95	<1	12	<0.2	19	29	0.25	0.64	3.24	109	3	93	. 22	65	
24N 13+50E	57	<1	14	<0.2	22	34	0.16	0.46	3.62	93	1	66	22	4B	
24N 14+00E	114	<t< td=""><td>8</td><td>&lt;0.2</td><td>37</td><td>61</td><td>0.39</td><td>0.96</td><td>3.82</td><td>597</td><td>&lt;1</td><td>76</td><td>31</td><td>68</td><td>:</td></t<>	8	<0.2	37	61	0.39	0.96	3.82	597	<1	76	31	68	:
24N 14+50E	161	<1	10	<0.2	17	35	0.25	0.72	3.05	255	<1	58	24	50	
4N 15+00E	498	<1	56	<0.2	18	32	0.28	0.65	3.15	345	۲)	53	25	44	
24N 15+50E	293	(1	62	<0.2	12	33	0.26	0.41	2.90	469	<1	43	21	29	<
4N 16+00E	284	<b>(</b> 1	74	<0.2	54	68	0.84	0.77	4.20	556	1	57	38	41	<

.

# Project 221

Soil Sampling Results (part 2)

Gample ID	As ppe	Sð pp∎	Ba pp <b>n</b>	Al Z	K X	Na Z	Sr pp <b>s</b>	Sn pp∎	H ppa	La pp <b>n</b>	Y ppa	B pp∎	P pp∎	Ti X	U pp <b>e</b>
	=														
21N 15+00E	15	<5	570	3.88	0.18	0.01	20	<20	<10	<10	16	6	1920	0.22	<10
1N 15+50E	10	<5	495	5.13	0.11	0.02	26	<20	<10	<10	18	6	1690	0.22	<10
21N 16+00E	10	<b>&lt;</b> 5	780	2.94	0.23	0.02	29	<20	<10	(10	14	4	1580	0.19	<10
IN 16+50E	10	<b>&lt;</b> 5	570	3,48	0.30	0.02	39	<20	20	10	23	6	1430	0.18	<10
1N 17+00E	15	<5	495	3.59	0.40	0.03	47	<20	10	<10	22	6	1420	0.28	<10
IN 17+50E	10	<b>&lt;</b> 5	285	4.04	0.18	0.02	25	<20	<10	<10	17	6	790	0.22	<10
1N 18+00E	10	<b>&lt;</b> 5	260	3.46	0.27	0.02	31	<20	<10	<10	21	4	900	0.21	<10
4N 0+00E BL	10	<b>(</b> 5	195	4.93	0.23	0.03	40	<20 ·	<10	30	25	6	1000	0.32	<10
4N 0+50E	10	<5	85	3.59	0.02	<0.01	7	<20	30	<10	9	8	780	0.15	<10
4N 1+00E	15	<5	130	5.23	0.18	0.03	48	<20	<10	10	25	6	1090	0.33	<10
4N 1+50E	15	<5 (5	265	3.50	0.57	0.01	47	<20	<10 (10	(10	20	4	520	0.30	<10
4N 2+00E 4N 2+50E	20 5	(5 (5	250 180	4.32 2.71	0.44	0.02	52 32	<20 <20	<10 <10	<10	15	4	770 1060	0.25 0.18	<10
	-	<5	155	4.51	0.17 0.05	0.01	29	<20 <20		<10 (10	13	6	1400		<10
4N 3+00E 4N 3+50E	5 10	(J (5	320	<b>3.</b> 73	0.12	0.02 <0.01	22	<20 <20	<10 <10	<10 <10	10 15	6 4	850	0.14 0.22	<10 <10
4N 4+00E	10	<5 <5	170	3.60	0.11	<0.01	10	<20	<10 <10	<10	13	6	1050	0.20	(10
4N 4+50E	10	<5	220	3.95	0.06	(0.01	10	<20	<10	<10	13	4	1700	0.18	(10
4N 5+00E	10	(5	545	2.90	0.31	0.01	25	<20	<10	10	22	6	1190	0.33	<10
4N 5+50E	1V 5	<5	200	1,93	0.22	0.03	38	(20	<10	<10	22	4	1300	0.29	<10
4N 6+00E	10	(5	755	2.61	0.31	0.01	38	<20	<10	<10	16	4	4470	0.25	<10
4N 6+50E	10	(5	285	3.53	0.54	(0.01	13	<20	<10	<10	11	2	360	0.22	<10
4N 7+00E	5	<b>(</b> 5	170	2.67	0.14	<0.01	9	<20	<10	<10	7	2	1280	0.13	<10
4N 7+50E	5	<b>&lt;</b> 5	445	3.70	0.69	<0.01	27	<20	30	(10	21	8	570	0.38	<10
4N 8+00E	10	<5	340	3.53	0.16	0.01	18	<20	<10	<10	13	4	4310	0.22	<10
4N 8+50E	10	5	275	4.22	0.45	0.01	24	<20	<10	<10	19	4	600	0.33	<10
4N 9+00E	5	<5	270	2.78	0.34	0.02	60	(20	<10	(10	14	6	1690	0.24	<10
4N 9+50E	5	<5	200	4.90	0.57	0.07	167	(20	<10	(10	24	8	810	0.24	<10
4N 10+00E	Š	(5	345	4.71	0.67	0.06	171	<2Q	<10	20	22	10	800	0.25	<10
4N 10+50E	10	5	425	3.75	0.96	0.01	36	<20	<10	10	29	6	370	0.39	<10
4N 11+00E	10	<5	290	4.13	0.52	0.03	86	<20	<10	20	27	6	730	0.29	<10
4N 11+50E	20	5	320	3.96	0.64	0.03	91	<20	<10	10	24	8	730	0.29	<10
4N 12+00E	20	<5	285	4.10	0.15	0.03	101	<20	<10	20	26	10	2800	0.17	(10
4N 12+50E	15	<5	125	4.66	0.09	0.03	76	<20	<10	10	25	6	1250	0.18	<10
4N 13+00E	10	<5	115	2.13		<0.01	19	<20	10	10	22	4	230	0.28	(10
4N 13+50E	15	(5	270	4.47	0.13	<0.01	15	<20	10	10	24	6	230	0.30	<10
4N 14+00E	5	(5	325	2.75	0.20	0.01	19	<20	(10	10	24	6	1170	0.31	<10
4N 14+50E	10	<5	290	3.20	0.26	0.01	14	<20	(10	10	24	6	1560	0.29	<10
4N 15+00E	<5	(5	560	4.00	0.23	<0.01	16	<20	(10	(10	19	2	2180	0.29	10
4N 15+50E	5	<5	515	3.67	0.14	0.01	16	<20	<10	10	19	6	1360	0.23	<10
4N 16+00E	5	5	600	4.23	0.19	0.02	33	(20	<10	20	23	6	2380	0.25	(10

.

...

.

Date of Report: 23-Jun-92

NOREEN

.

### Soil Sampling Results 1992

Sample ID	Zn	Cď	Pb	Ag	Cu	Ni	Ca	Ng	Fe	Mn	Ho	Y	Co	Cr	Bi
	рр <b>е</b> 	ppa 	pp=	pp <b>a</b>	₽₽#` 	pp <b>n</b>	۲ ۲	X 	7 	pp <b>e</b>	рр <b>е</b> 	pp <b>a</b>		pp <b>a</b> 	pp:
24N 16+50E	365	(1	66	<0.2	28	68	0.69	0.84	3.83	463	1	62	35	45	ļ
24N 17+00E	423	<b>(</b> 1	56	<0.2	12	20	0.49	0.50	2.85	1166	<1	43	17	20	
24N 17+50E	270	(1	70	<0.2	12	23	0.32	0.32	2.66	455	<1	35	17	19	<
24N 18+00E	351	<1	48	<0.2	8	12	0.20	0.14	1.91	556	(1	24	10	9	
24N 18+50E	276	<1	28	0.2	8	14	0.19	0.17	2.05	442		28	Ħ	11	<
24N 19+00E	200	1>	16	<0.2	15	32	0.39	0.52	3.07	552	<1	44	17	25	<
24N 19+50E	330	<1	56	<0.2	19	- 44	0.47	0.43	3.35	365	- 4	46	22	26	
2 <b>4N 20+00E</b> (の)(2coc)×	166	(1	24	<0.2	13	36	0.47	0.51	2.82	390	[	45	21	35	
STATS:															
Ŭ=	288														
Max:	1980	2	278	0.6	192	173	2.78	1.80	7.78	1741	6	124	58	158	1
Nin:	32	4	<2	<0.2	5	7	0.04	0.10	1.56	75	(1	19	7	8	(
25% ile:	98	<1	4	<0.2	15	30	0.29	0.44	2.61	222	(1	38	16	28	4
50% ile:	126	(1	8	0.2	21	40	0.42	0.56	2.89	311	<1	44	20	36	(
75% ile:	194	1>	16	0.2	31	55	0.62	0.77	3.32	450	<1	54	24	50	-
95% ile:	438	<1	66	0.4	56	89	1.06	1.07	4.30	756	2	74	35	81	
HECK SAMPLES:															
3N 2+50E	179	۲>	8	0.2	18	30	0.32	0.41	2.92	251	(1	40	19	31	•
6N 4+00E	79	4	4	<0.2	29	- 44	0.71	0.58	2.84	175	<1	41	19	35	<
9N 11+00E	105	<1	18	<0.2	33	37	0.57	0.51	2.56	215	<1	40	16	32	•
2N 10+00E	107	<b>(</b> 1	12	<0.2	34	55	0.37	0.55	2.87	313	<1	46	23	46	<
8N 4+00E	70	4	4	0.2	21	27	0.42	0.57	2.58	354	<1	44	15	39	(
8N 17+00E	118	<1	2	(0.2	31	44	0.45	0.88	3.66	386	1	59	21	41	(
4N 2+50E	77	<1	8	0.2	17	25	0.49	0.47	2.51	619	4	38	17	29	
4N 15+00E	367	(1	42	<0.2	13	23	0.21	0.43	2.43	251	(1	37	16	32	
EO STANDARDS:															
TANDARD 1991	62	(1	12	1.0	73	21	1.79	0.95	3.84	661	(1	77	20	63	•
TANDARD 1991	65	-(1	12	1.2	71	20	1.74	0.92	3.76	655	(1	71	19	56	(
TANDARD 1991	61	(1	10	1.0	72	22	1.75	0.94	3.76	655	<1	74	19	61	•

.

# Project 221

Soil Sampling Results (part 2)

Sample ID	As	Sb	Ba	Al	K	Na	Sr	Sn	¥	La	Ŷ	B	የ	Ti	t
	pp=	ppa 	pp <b>n</b>	7	<b>%</b>	7 	ppe	pp#	ppa	ppe	рр <b>е</b>	₽₽ <b>#</b>	pp=	X 	ppi
24N 16+50E	10	5	<b>59</b> 5	3.52	0.32	0.03	38	<20	<10	20	24	6	1290	0.29	(10
24N 17+00E	10	<5	725	3.66	0.23	0.01	24	<20	<10	10	21	6	2470	0.24	<10
24N 17+50E	10	<5	345	4.43	0.10	0.01	18	<20	<10	10	17	4	1920	0.21	<10
24N 18+00E	5	<5	370	3.76	0.04	0.01	14	<20	<10	10	20	4	1930	0.17	<10
24N 18+50E	10	(5	215	4.19	0.05	0.01	11	<20	<10	10	18	4	2490	0.19	- <1(
24N 19+00E	5	5	445	3.61	0.16	0.01	18	<20	<10	10	17	6	2320	0.22	<10
24N 19+50E	15	5	480	4.83	0.13	0.01	24	<20	50	20	· 23	10	1480	0.24	<1
24N 20+00E	5	<5	370	3.06	0.23	0.01	21	<20	<10	10	20	6	1380	0.21	<10
STATS:															
n=	288														
Nax:	30	10	1720	6.64	0.96	0.16	205	<20	50	40	73	12	4530	0,47	10
Nia:	<5	<5	85	1.49	0.02	<0.01	7	(20	(10	<10	7	<2	100	0.06	<10
25% ile:	<5	<5	245	2.94	0.14	0.01	19	<20	<10	<10	15	2	780	0.18	(1
50% ile:	5	<5	325	3.56	0.20	0.01	25	<20	<10	10	18	2	1200	0.21	<10
75% ile:	10	<5	440	4.10	0.29	0.02	36	<20	<10	10	21	6	1720	0.25	<10
95% ile:	15	5	650	4.90	0.57	0.04	64	<20	10	20	27	8	2870	0.32	<10
CHECK SAMPLES:															
03N 2+50E	<5	<5	245	4.14	0.17	0.01	19	<20	<10	<10	18	4	2400	0,23	<10
06N 4+00E	<5	5	215	3.10	0.18	0.03	55	<20	<10	10	16	8	670	0.16	<10
09N 11+00E	5	<5	260	3.16	0.13	0.02	33	<b>&lt;2</b> 0	<10	10	16	<2	1250	0.15	<10
12N 10+00E	10	<5	375	3.84	0.19	0.01	24	<20	<10	10	22	2	2491	0.26	<10
18N 4+00E	5	<5	135	2.44	0.30	0.01	38	<20	<10	30	24	<2	260	0.19	<10
18N 17+00E	10	<5	315	3,74	0.28	0.01	28	<20	<10	10	23	2	910	0.23	<10
24N 2+50E	5	<5	160	2.63	0.16	0.01	32	<20	20	<10	12	10	1090	0.17	<10
24N 15+00E	(5	<5	410	2.68	0.19	<0.01	16	<20	<10	<10	12	2	1537	0.18	10
GEO STANDARDS:															
STANDARD 1991	55	5	180	1.85	0.37	0.01	58	<20	<10	10	14	2	660	0.12	<10
STANDARD 1991	55	5	180	1.70	0.33	0.01	51	<20	<10	<10	12	4	640	0.10	<10
STANDARD 1991	55	5	180	1.79	0.35	0.01	57	<20	(10	<10	13	8	630	0.11	(10

Final

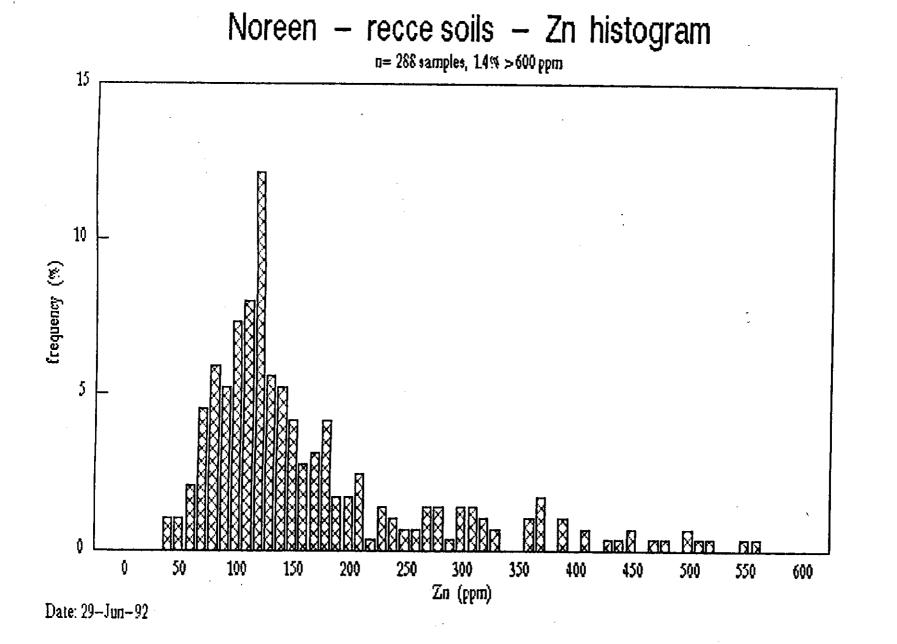
Date of Report: 23-Jun-92

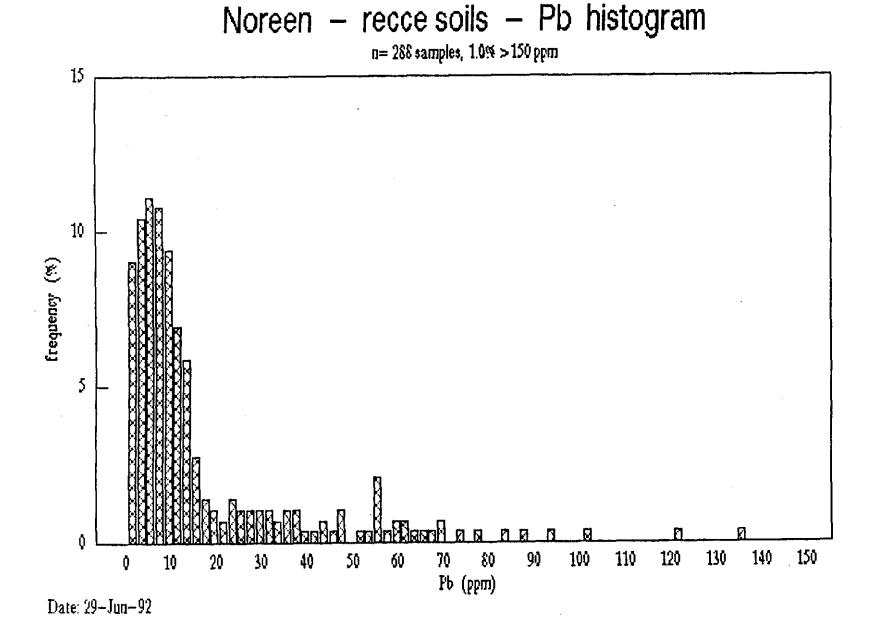
NDREEN

### Soil Sampling Results 1992

4

Reference: etk92-214


22852/822297322;	125222355			2225222		252222		\$712715	22622533		222222	.252322	3222821	=======	:======
Sample ID	Zn pp <b>o</b>	Cđ pp=	Pb pp∎	Ag pp <b>n</b>	Cu ppm°	Ni ppm	Ca Z	Hg Z	Fe I	Kn pp=	Mo ppa	V pp <b>e</b>	Co pp∎	Cr ppm	Bi ppm
STANDARD 1991			8	1.4	76	21	1.86	0.99	3.95	681	 (1	 77	20	60	<5
STANDARD 1991	61	ä	10	1.2	72	19	1.76	0.95	3.86	655	ä	78	20	60	(5
STANDARD 1991	61	1	10	1.0	74	23	1.81	0.98	3.85	667	(1	77	20	64	<5
STANDARD 1991	58	(1	12	1.0	71	20	1.71	0.92	3.69	641	<1	73	19	59	<5
STANDARD 1991	61	(I	38	1.2	73	21	1.72	0.94	3.77	657	(1	74	19	60	<5
STANDARD 1991	57	<li>AL</li>	6	1.2	70	20	1.60	0.90	3.65	633	(1	73	<b>t</b> 8	58	<5
STANDARD 1991	58	<1	8	1.2	72	21	1.73	0.95	3.73	644	<1	74	19	60	(5
STANDARD 1991	63	(1	14	1.0	69	21	1.71	0.92	3.73	641	A	72	19	59	(5


## Final

## Project 221

Soil Sampling Results (part 2)

222333222283522	*=======	***************************************														
Sample ID	As ppm	Sb pp#	Ba pp <b>m</b>	A1 2	X, K	Na Z	Sr pp <b>n</b>	Sn ppm	¥ ppa	La pp∎	Y pp∎	8 ppm	P ppm	Ti Z	U pp <b>e</b>	
STANDARD 1991	50	<5	190	1.87	0.37	0.01	60	<20	<10	<10		8	660	0.12	<10	
STANDARD 1991	50	5	175	1.81	0.35	0.01	57	<20	<10	(10	14	2	630	0.11	<10	
STANDARD 1991	55	5	185	1.85	0.35	0.01	59	<20	<10	10	14	2	670	0.11	<10	
STANDARD 1991	45	5	180	1.73	0.35	0.01	52	<20	<10	<10	13	6	620	0.11	<10	
STANDARD 1991	50	5	180	1.76	0.36	0.01	53	<20	<10	<10	13	6	630	0.11	<10	
STANDARD 1991	55	<5	170	1.70	0.33	0.01	50	<20	<10	<10	12	2	560	0.11	<10	
STANDARD 1991	55	5	175	1.80	0.35	0.01	56	<20	<10	<10	12	2	610	0.11	<10	
STANDARD 1991	55	5	185	1.76	0.33	0.01	53	<20	<10	10	13	6	650	0.11	<10	





## APPENDIX IV

# Analalytical Procedures

.



# ECO-TECH LABORATORIES LTD.

***** 

 $t_{i}^{\sigma}$ 

日本の時代の

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-6700 Fax 573-4557

### GEOCHEMICAL LABORATORY METHODS

### SAMPLE PREPARATION (STANDARD)

- 1. Soil or Sediment: Samples are dried and then sieved through 80 mesh sieves.
- 2. Rock, Core: Samples dried (if necessary), crushed, riffled to pulp size and pulverized to approximately -140 mesh.
- 3. Humus/Vegetation: The dry sample is ashed at 550 C. for 5 hours.

### METHODS OF ANALYSIS

All methods have either cannot certified or in-house standards carried through entire procedure to ensure validity of results.

### 1. MULTI ELEMENT ANALYSES

(a) ICP Packages (6,12,30 element).

Digestion Finish

Hot Aqua Regin ICP

(b) ICP - Total Digestion (24 element).

Digestion Finish

Hot HC104/HN03/HF

ICP

(c) Atomic Absorption (Acid Soluble) Ag*, Cd*, Cr, Co*, Cu, Fe, Pb*, Mn, Mo, Ni*, Zn.

Digestion

Finish

Hot Aqua Regia

Atomic Absorption * = Background corrected

(d) Whole Rock Analyses.

Digestion

Finish

Lithium Metaborate fusion

ICP



ECO-TECH LABORATORIEE LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (804) 573-5700 Fax 573-45

2. Antimony

Digestion

Finish

Hot aqua regia ICP

3. Arsenic

Digestion Finish

Hot aqua regia

Hydride generation - A.A.S.

4. Barium

Digestion

Lithium Metaborate

5. Beryllium

Digestion

Finish

Finish

Finish

------

Atomic Absorption

Atomic Absorption

(Background Corrected)

Finish

ICP

Hot aqua regia Atomic Absorption

6. Bismuth

• •

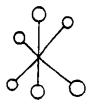
4

Digestion

Hot aqua regia

7. Chromium

Digestion


Sodium Peroxide Fusion

8. Flourine

Digestion

Finish

Lithium Metaborate Fusion Ion Selective Electrode



# ECO-TECH LABORATORIES LTD

3,

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans-Canada Hwy., Kamboops, B.C. V2C 2J3 (604) 573-5700 Fax 573-45

9. Gallium

Digestion

Hot HC104/HN03/HF

10. Germanium

Digestion

Hot HClO4/HNO3/HF

11. Mercury

Digestion Hot aqua regia

12. Phosphorus

Digestion

Lithium Metaborate Fusion

13. Selenium

Digestion

Hot aqua regia

14. Tellurium

いいしょう ちょうい 白いい

Digestion

Hot aqua regia Potassium Bisulphate Fusion Finish

Atomic Absorption

Finish

Atomic Absorption

Finish ------Cold vapor generation -A.A.S.

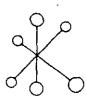
Finish

ICP finish

Finish

Hydride generation - A.A.S.

Finish


Hydride generation - A.A.S. Colorimetric or I.C.P. APPENDIX V

Rock Sample Descriptions

PROJECT:	Nor	EEN (	1720)	DATE:		TYPE: ICP GEOCHI	EM	NAME:		
SAMPLE NO.	РЬ	Zn	Ag	LITHOLOGY & SAMPLE TYPE	LOCATION	MINERALIZATION	ALTERATION	VEINING & TEXTURES	STRUCTURAL ASPECTS	COMMENTS
27301	56 ppm		<.2 ppm	BIOTITE SCHIST	~26+00N ~17+00E	3-490 po disser		minou lite	5012 030/15W	
27302	14 ppm		<.2 ppm	Marble Im Chip	23+00N 16+08E	1-290 po dissem		10% mica	075/ISNW	
27303	14 ppm	56 ppm	<.2 ppm	BIOTITE SCHIJT +QUARTZITE	24+50N ~2+00W	5% po dissem				
27304	3.5¢	୲.୦୧	N/A	Quartzite Float	18+00N 14+00E	3-490 ga 1-290 sp 2-390 po				
27305	6 Pp#	308 Pom	.6 99m	Quartzite Float	22+00N 14+50E	tr gajsp w/6%po				near old trenches
TRENCH N	.19%			Quartzite Float	22+00N 14+50E	trga, 37050 5% po				n 11
			-							

.

.



ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 7, 1992

CERTIFICATE OF ASSAY ETK 92-283

TECK EXPLORATION LTD. # 350, 272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: GRAEME EVANS

SAMPLE IDENTIFICATION: 9 ROCK samples received JUNE 26, 1992 ----- PROJECT: 1389-2

			Pb	Zn	
ET	!#	Description	(8)	(%)	
==				58252 <u>2</u> 22	
1	-	w1	1.04	14.90	
2	-	W2	.12	2.28	
3	-	EW	1.20	6.36	
4	-	W4	.47	2.28	
5	-	<b>w</b> 5	.47	.91	
6	-	Wб	1.24	3.14	
7	-	w7	.92	1.76	
8	-	TRENCH N	.19	1.90	T
9		27304	3.56	1.06	SAMPLES

ECO-TECH ABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. Certified Assayer

SC92/TECK1389

305	.6

REPEAT #: 4 - 27 1.23 <5 <2 40 <5 13.08 11 5 81 31 1.51 .04 <10 ,43 153 44 .01 74 2010 6 <5 <20 829 .04 <10 240 <10 14 313 .8 1.96 45 2 205 <5 1.94 <1 20 66 73 4.06 .37 <10 ,99 682 <1 ,01 21 650 10 5 <20 59 .13 <10 81 <10 14 67 STANDARD 1991 -

HOTE: < - LESS TEAM

> - GREATER TRAF

AG AL(%) AS B BA BI CA(%) CD CO CR CU FE(%) E(%) LA NU(%)

BCO-TECH LABORATORIES LTD. PRARK J. PRISOTTI, A.Sc.T. B.C. Certified Assayar

							_																-		_		_			-		
1 -	27301	<.2	2.34	4	-2	150	<5	1.06	<1	12	123	118	5.44	.82	10	.96	854	4	.05	17	1280	56	<5	<20	61	.17	<10	49	<10	13	150	
2 -	27302	<.2	. 27	<	<2	55	<5	>15	<1	<1	6	4	. 34	-12	<10	. 86	119	<1	<.01	1	100	14	5	<20	401	<.01	<10	2	<10	5	33	<b>NOREEN</b>
3 -	27303	<.2	5.54	<5		90	<5	4.09	<1	16	103	46	3.25	.51	10	.71	309	4	.23	22	900	14	<5	<20	209	.13	<10	42	<10	10	56	SANDICE
4 -	27305	.6	1.27	<5	4	35	<5	13.35	12	5	87	30	1.54	.04	<10	.43	154	44	.01	74	2040	6	<5	<20	822	.04	<10	260	10	14	308	SAMPLES
5 -	27306	.6	. 70	<5	4	160	<5	12.26	,	7	83	33	1.53	.25	<10	.87	226	35	.02	86	2180	4	<5	<20	608	. 06	<10	118	<10	17	273	
6 -	27307	.8	. 53	<5	4	100	<5	7.42	6	11	137	43	1.76	.12	<10	.98	147	31	.03	123	7500	4	<5	<20	308	.07	<10	118	<10	13	194	
7 -	27308	1.4	.43	<5	2	120	<5	8.13	3	7	127	24	1.65	.12	<)0	.93	129	94	.02	51	1680	2	<5	<20	206	.09	<10	156	<10	14	176	
	27309	.4	.51	4	<2	125	<5	1.32	•		174	61	1.65	. 89	<10	. 50	76	24	.01	65	3480	6	<5	<20	22	.08	<10	245	<10	12	216	
<b>9</b> -	27310	.4	.37	<5	-2	310	<5	8.13	3	5	75	36	1.20	.05	<10	2.36	192	13	.01	43	4630	<2	5	<20	209	.03	<10	77	<10	11	167	
10 -	27311	.4	. 49	4	<2	95	<5	. #2	1	- 8	238	37	1.75	.07	<10	.42	87	41	. 02	33	2080	6	<5	<20	19	.10	<10	128	10	14	53	
11 -	27312	.4	4.51	<5	2	160	<5	2.13	<1	18	214	35	3.95	1.08	<10	1.79	490	4	-16	44	1020	4	5	<20	103	. 22	<10	340	<10	18	59	
12 -	27313	2.8	1.11	4	<2	45	<5	1.18	<1	- 4	121	16	1.73	.12	10	. 35	52		.08	,	1390	2	<5	<20	62	.10	<10	30	<10	10	26	
13 -	27314	2.6	.65	20	- 2	35	<5	>15	- 4	- 5	152	20	1.02	.83	<10	.90	260	•	<.01	73	1290	<2	<5	<20	1400	<.01	<10	- 94	<10	12	#5	
14 -	27315	.2	. 36	Q	<2	20	<5	.41	<1	15	97	27	2.76	.05	10	. 31	89	5	.03	- 44	950	2	<5	<20	21	.10	<10	37	<10	21	24	
15 -	27316	.6	.78	<5	2	260	4	13.22	1	2	27	7	. 69	.38	<10	2.53	234	2	.01	24	730	<2	5	<20	603	.02	<10	56	<10	9	69	
26 -	27317	<.2	.06	5	<2	45	<5	5.86	<1	32	38	27	3.80	<.01	30	. 25	283	2	.02	- 6	3360	12	<\$	<20	1129	. 24	<10	24	<10	34	26	
17 -	27318	.8	.82	4	<2	200	<\$	. 77	<1	16	165	37	1.78	.34	<10	. 88	304	5	.05	72	620	2	<5	<20	35	.13	<10	39	<10	16	79	
	,	,																														
QC DATE	•												•																			
_																						·										

ATTENTION: GRAENE EVANS PROJECT MUNBER: 1716

17 BOCK SAMPLES RECEIVED JUNE 26, 1992

MM MO NA(4) MI P PB SB SM SR TI(4) U V W Y ZM

· ....

TECK EXPLORATION BYE 92-282

# 350, 272 Victoria Street

RANLOOPS, B.C.

V2C 2A2

VALUES IN PPH UNLESS OTHERWISE REPORTED

ET# DESCRIPTION

10041 BAST TRANS CARADA HWY. KANGLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557 JULY 7, 1992

SCO-TECH LABORATORIES LTD.

 $e^{-i\pi i \pi}$  , where  $e^{-i\pi i \pi}$  is a set of the standard structure of the set of the set of  $x_{2}$  and  $e^{-i\pi i \pi}$  ,  $e^{-i\pi i \pi}$ 

,

3 1.00

75 4.39

<5 7.54 47 <1 78

<2 45 <5 1.17 22 8 176

SCO-TRCE ABORATORIES LTD. TRAME J. PESSOTTI, A.Sc.T. B.C. Certified Assayer

## PLEASE NOTE: W detection limits are higher than normal due to sessive Sn interference.

8 - <b>INRECH 'H</b> 9 - 27304	.2	3.17	<5	~	60	50	2.79	32	6	87	18	3.77	.18	<10	. 10	108	21	.23	5	920 >10000	<5 <20	18	.06	<10	3 1000	11 /10000
QC DATA																										
REPRAT 6: 3 - W3 Standard 1991 -	3.8 1.0	.25 1.71	55 50	<2	295 210	20 <5	6.32 1.80	124 «1	10 19	3 61	60 69	>15 4.00	.08 .33	<10 <10	.25 .91	333 669	5 <1	<.01 .01	2 21	650 >18000 610 64	<5 <20 5 <20	41 51	-01 -11	30 <10	<1 <1000 74 <10	<1 >10000 13 282

<.01 <10

.09 <10

MG	AL(\$)	A2	8		a i	CA(%)	СВ	00	CR	cu	78(%)	X(%)	13	HG(%)		ю	RA(\$)	MI	p P	<u> 8</u> 2	531	8R	TI( <b>\</b> )	U	v 1	# 
							122	11	14	38	14.86	. 36	10	. 38	503	29	<.01	12	3880 >1000	) <5	<20	13	.04	••		
<.2	.26	25	<2	83	3	7.04	41	5	65	20	11.00		10			-			640 >1000 490 383		<20	41	. 01	40	<1 <100	0
2.8	. 02	15	<2	35	15	- 44	27	- 2	127	24									490 383		<20	47	<.01	10	72 <14	0
1.2	.03	12		•				-	-		7.64	<.01	<10	. #3	75	12	<.01	4	670 >1000		<20	30	<.01	e10	3 ~100	•
3.0	- 04	20	<2	45	15	6.4Z	40		/4	•						-					<70		< O1	<10	4 <100	0

.71 85

#### VALUES IN FPH UNLESS OTHERWISE REPORTED

3.0

.2

.2 .46 10

.04 20

.02 <5 <2 35

ITS DESCRIPTION

11

¥2

#3

144

113

117

NOTE: < - LESS TRAN > - GREATER TRAE

1 -

2 -

4 -

5 -

-

6 -TRRBCE 'N

. -

7

3 -

BCO-TECH LABORATORIES LTD. 10041 EAST TRANS CARADA MWT. ENHLOOPS, B.C. V2C 233 PROME - 604-573-5700 PAX - 604-573-4557 JULT 7, 1992

#### TECK EXPLORATION ETK 92-283 # 350, 272 Victoria Street EANLOOPS, B.C. ¥2C 2A2

PROJECT NUMBER: 1385-2

6 <.D1

9 ROCK SAMPLES RECEIVED JUNE 26, 1992

.16 167 20 <.01 13 2510 1578 <5 <20

.10 108 21 .23 5 920 >10000 <5 <20

ATTENTION: GRANNE EVANS

#### and the second · . . . •

PR SB SW SR TI(\) U V W Y IM

<.01 <10

56

18

18

2 130 8794 <5 <20

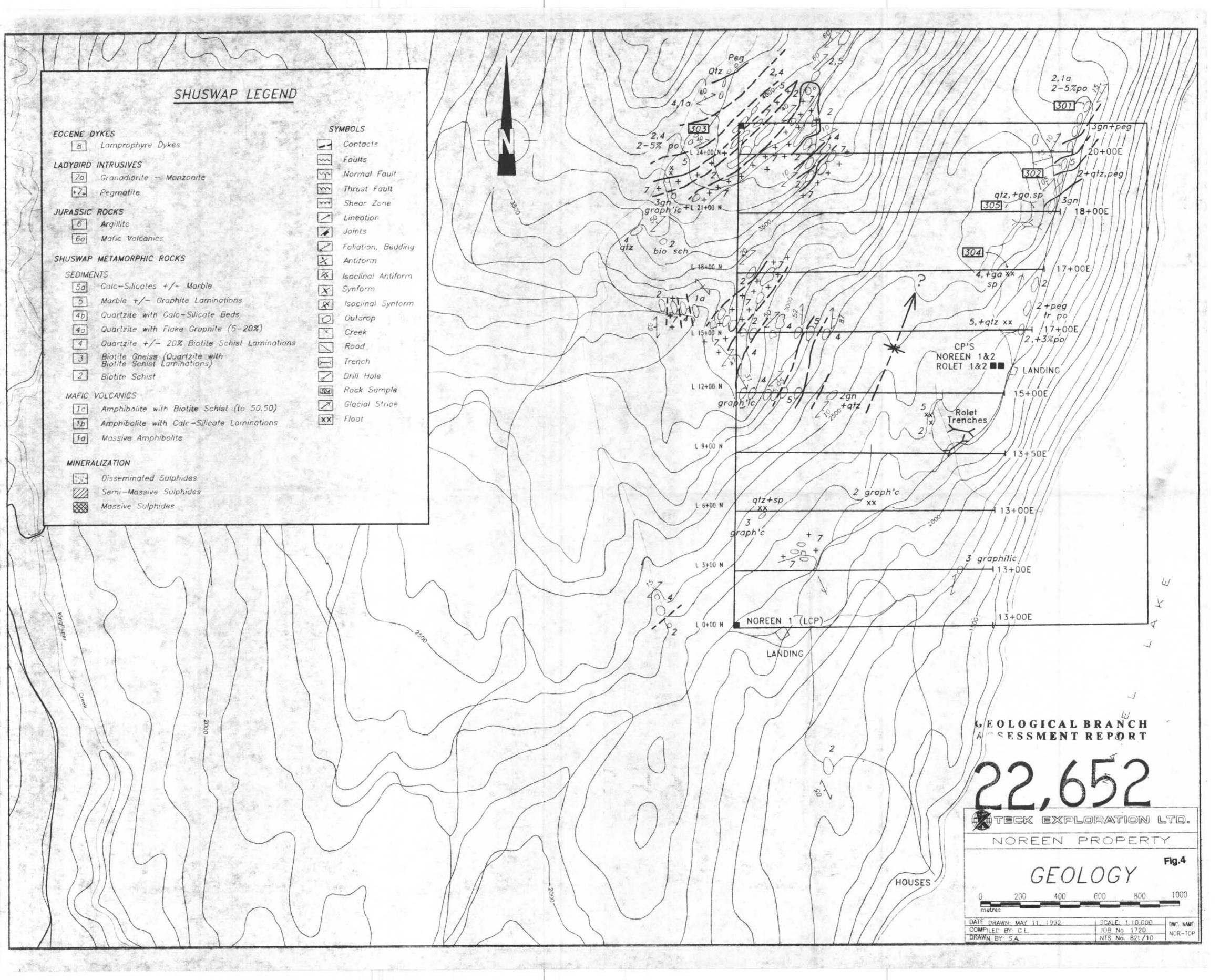
.02 10 22 <1000 13 >10000 .06 <10 3 <1000 12 >10000

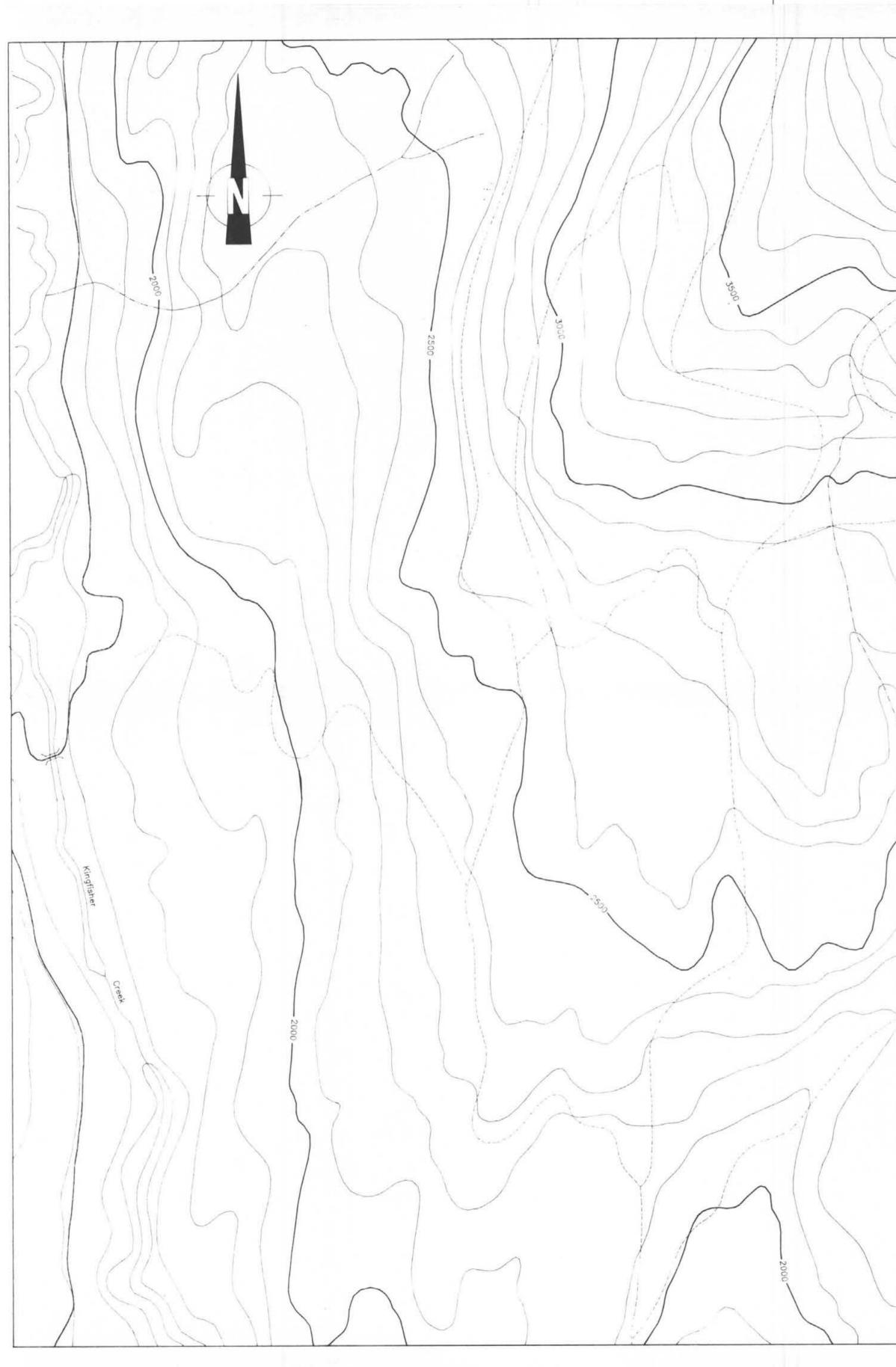
16 >10000 <1 >10000

<1 >10000

<1 >10000

1 9035

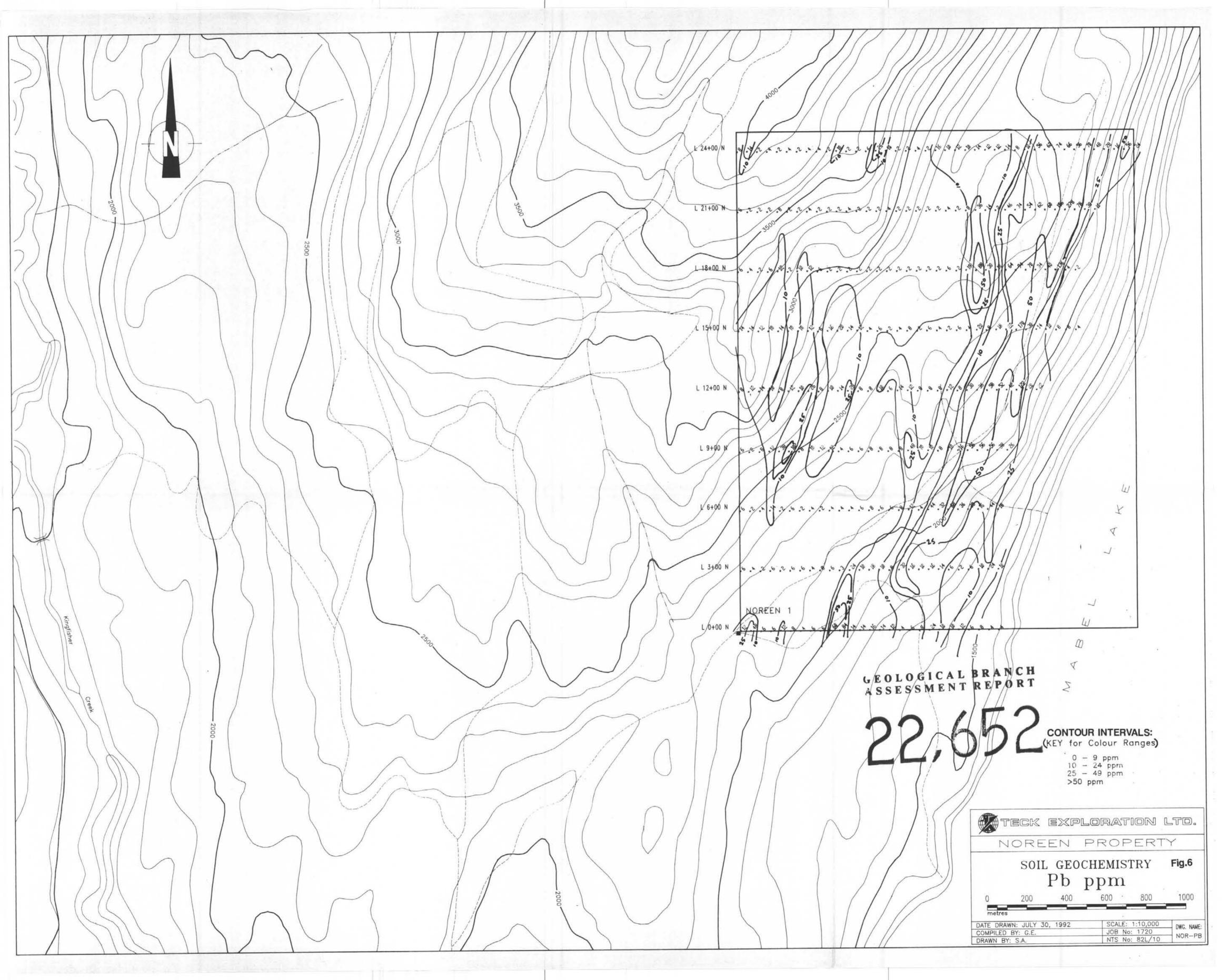

<1 >10000

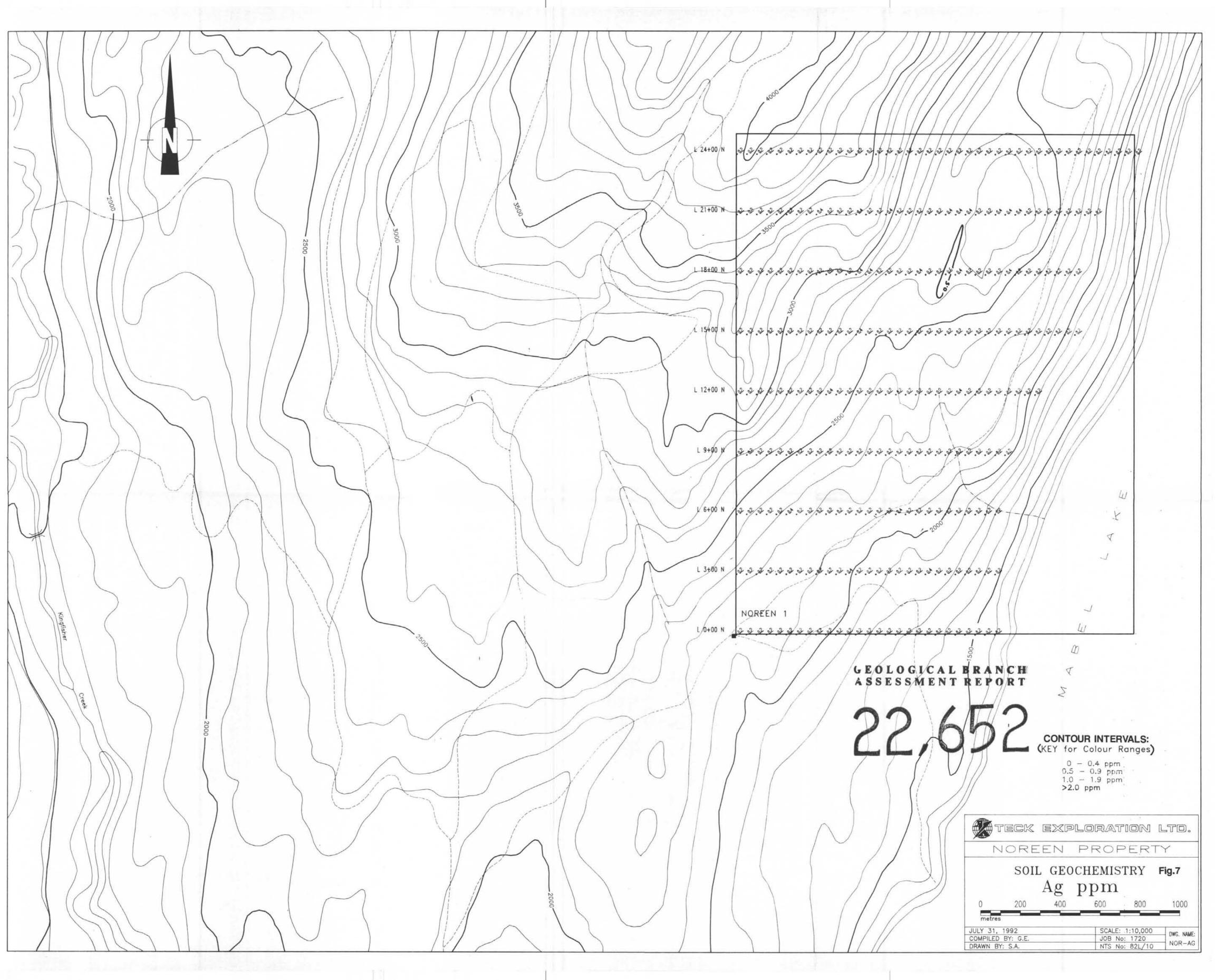

3 >10000

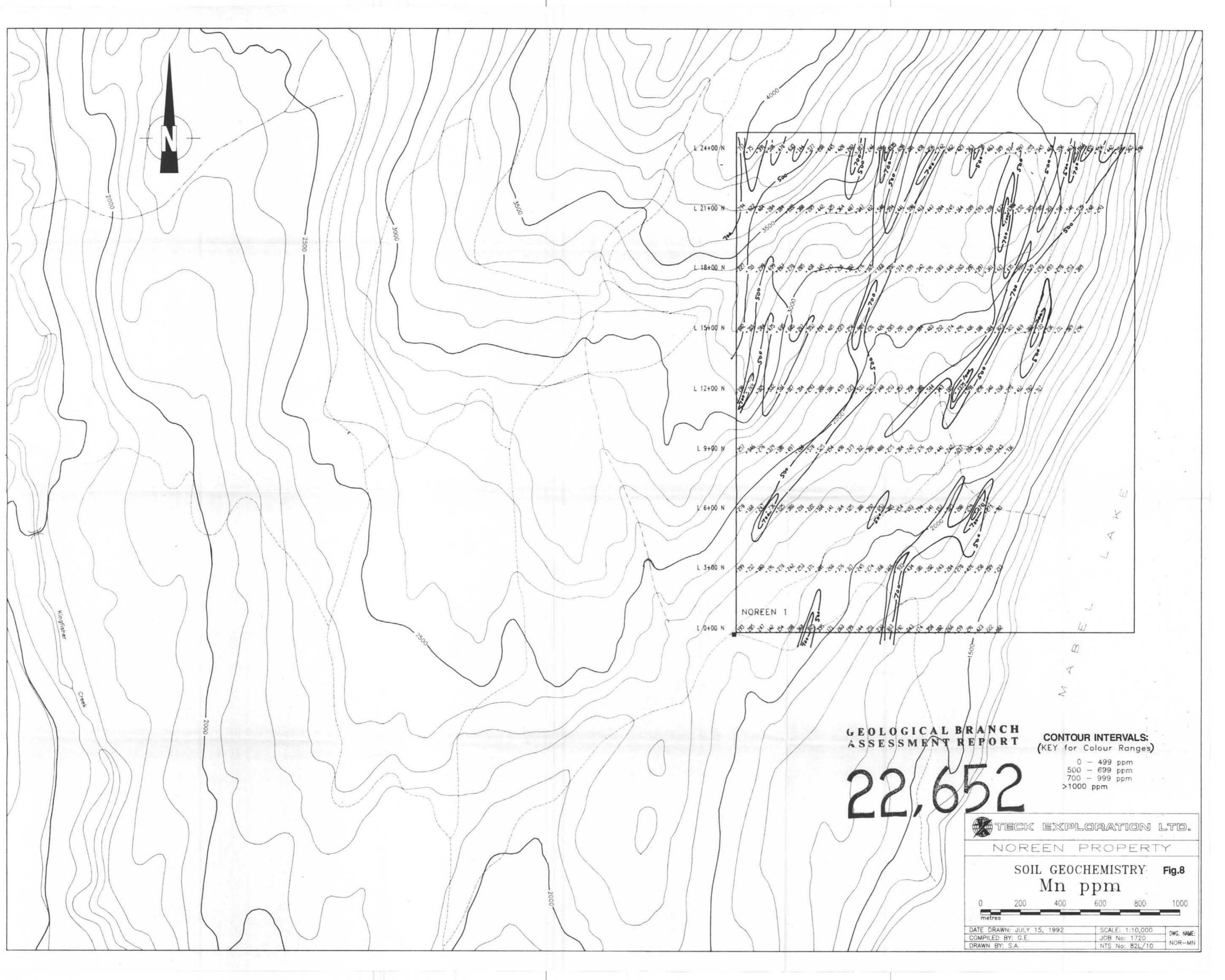
NOREEN

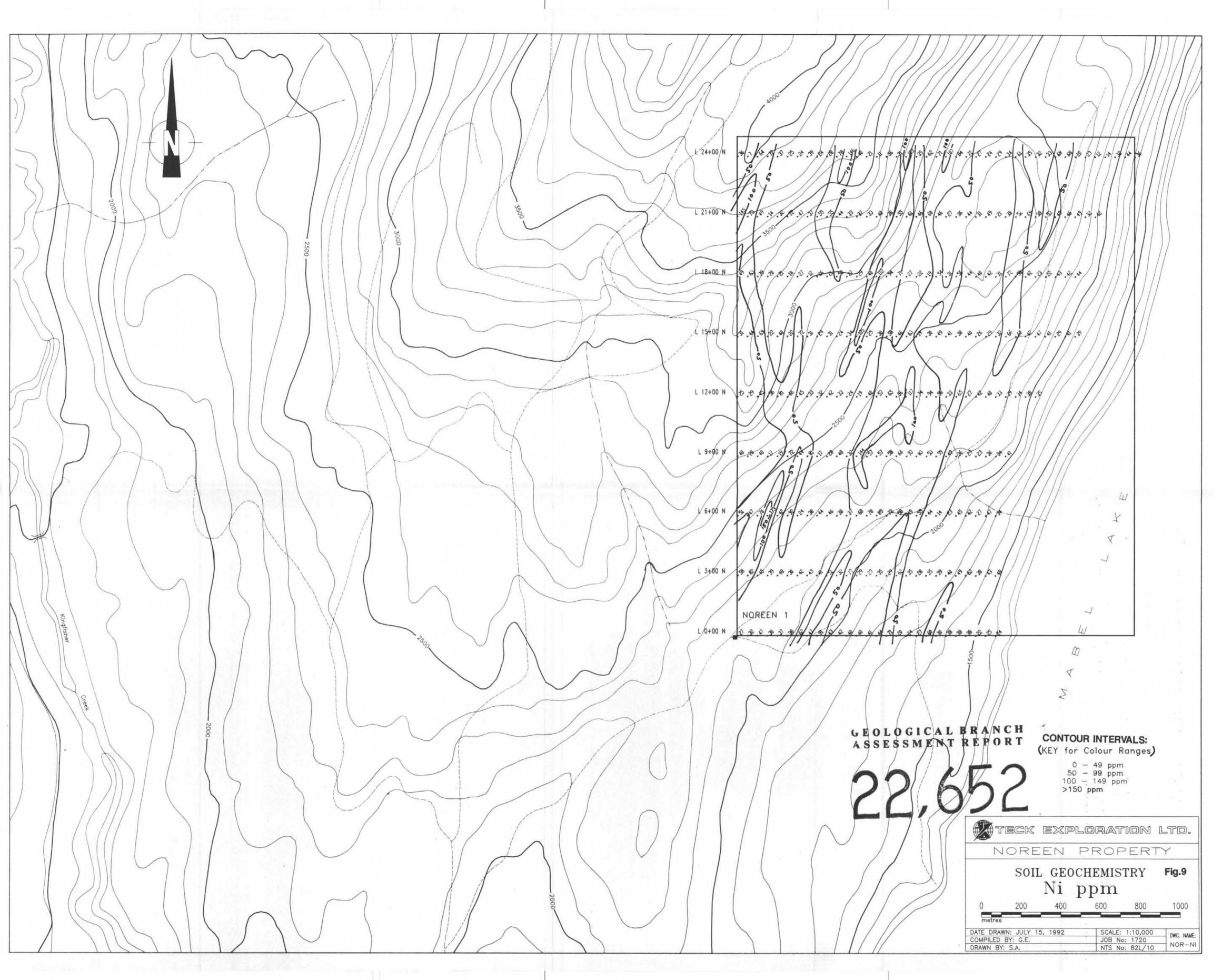
SAMPLES

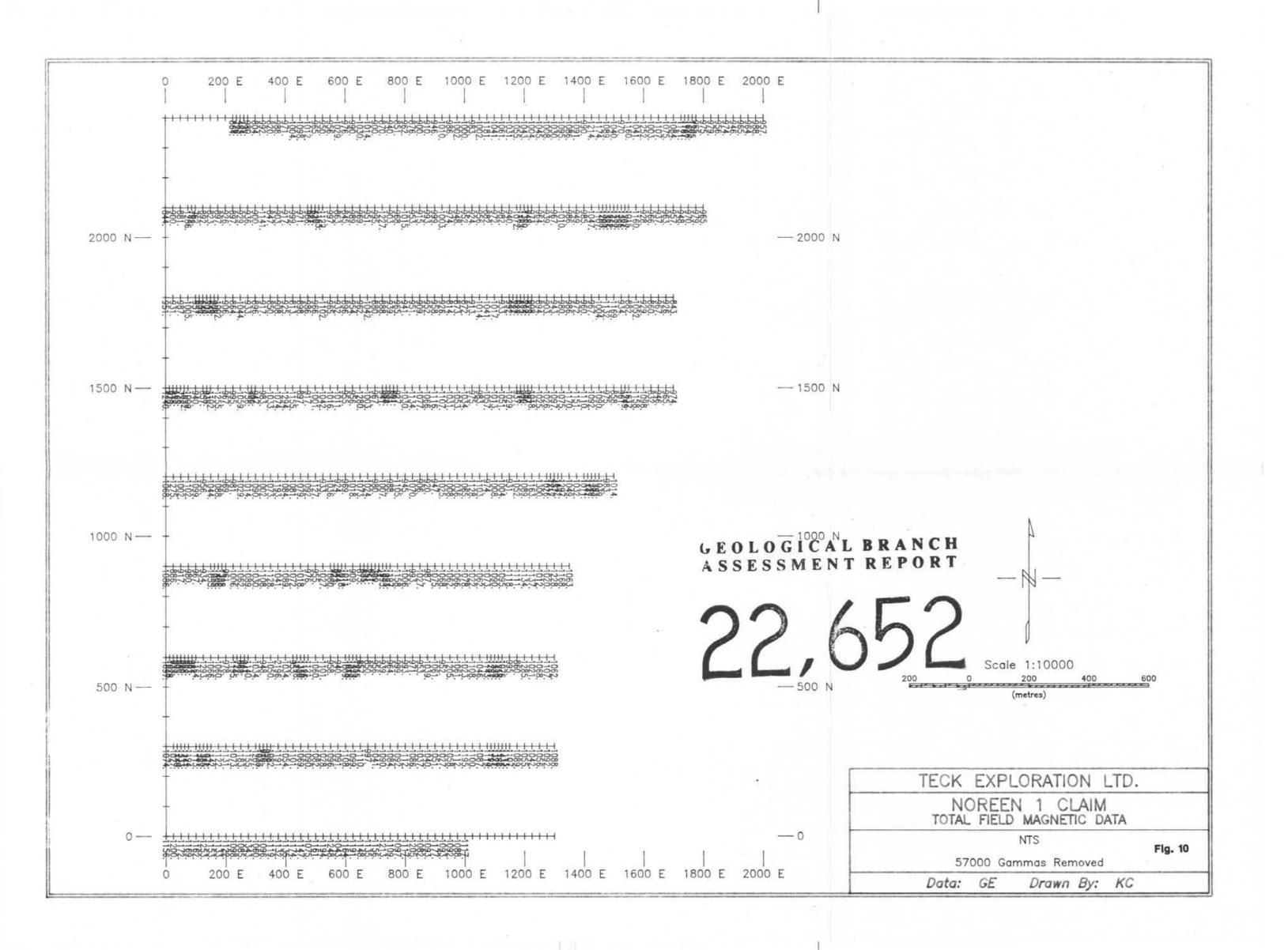
· · ·





£ 24+00/N L 21+00 N 1 15400 N L 12+00 N L 9+00 N 41 The Stat 1 6+00 N L 3+00 N NOREEN 1 13/5 TTD 2 GEOLOGICAL BRANCH CONTOUR INTERVALS: ASSESSMEENT REPORT KEY for Colour Ranges) 0 - 199 ppm 200 - 399 ppm 400 - 599 ppm >600 ppm TECK EXPLORATION LTD. NOREEN PROPERTY SOIL GEOCHEMISTRY Fig.5 Zn ppm 400 600 200 800 1000 metres DATE DRAWN: JULY 15, 1992 COMPILED BY: G.E. DRAWN BY: S.A. 
 SCALE:
 1:10,000
 DWG.
 NAME:


 JOB No:
 1720
 NOR-ZN


 NTS No:
 82L/10
 NOR-ZN

