LOG NO:	DEC 0 7 1992	RD.	
ACTION.			
FILE NO:		:	-
		_	ł

ANCHPORT

ند ک

∞ ∝

C A L E N T

> 2 2

3

0 0

O L S E

して

. - ۲۰۰۲ و -

GEOLOGY, GEOCHEMISTRY AND GEOPHYSICS REPORT

ON THE

BLACKWATER-DAVIDSON PROPERTY

Omineca Mining Division

British Columbia

NTS: 93F/2

Latitude: 53° 11'N

Longitude: 124° 48'W

For

Granges Inc.

Ву

Gordon J. Allen, P. Geol

November, 1992

SUMMARY

A program of geological mapping, stream sediment sampling, linecutting, soil sampling and concurrent IP, magnetic and VLF-EM surveys were conducted on the Blackwater-Davidson property between July 13 and September 4, 1992.

Exposure on the property is very poor, but it appears to be largely underlain by felsic to intermediate or mafic pyroclastic and flow rocks and argillite of the Upper Cretaceous to Tertiary Ootsa Lake Group. It is possible that in the northeast corner of the property, Ootsa Lake Group rocks are overlain by andesite to basalt flows of the Oligocene to Miocene Endako Group. Rocks of the Ootsa Lake Group generally strike northeast to east and dip gently to the northwest or north. An open northeast-trending antiform may occur in the northwest part of the property. Northeast-trending faults (right lateral strike-slip) cross the entire property.

Mineralization occurs on the property at two locations; on the Pem grid and 3.5 km west of the Pem grid on "Kaolinite" creek. The "Kaolinite" creek showing consists of traces of disseminated pyrite, sphalerite and arsenopyrite(?) in weakly altered felsic volcanic rocks adjacent to a kaolinite altered tuff. Samples contained no anomalous amounts of precious metals.

Mineralization on the Pem grid consists of sporadic zones with disseminated pyrite, sphalerite, tetrahedrite, arsenopyrite, etc. in a phyllic to potassic altered intercalated sequence of intermediate and felsic pyroclastic rocks.

A zone of high resistivity forms a rough bulls eye in the southwest part of the Pem grid. Chargeability highs occur peripheral to the core of the resistivity anomaly. Both the gold and silver zones occur within this ring of high chargeabilities.

A very strong chargeability anomaly on the Deb grid may be related to a graphitic argillite unit, but warrants drill testing to be sure.

Soil sampling on the Pem grid confirmed the existence of a coincident base metal and silver anomaly as outlined in previous programs. The anomaly is closed on all sides except for a narrow dispersion train down a creek to the northeast. Gold-in-soil anomalies occur sporadically within an east-west trending belt south of the multi-element anomaly described above. This non-coincident distribution of gold and other metals may indicate a zonation of metals in bedrock.

One or more types of stream sediment samples were collected from almost every significant drainage on the property. Commonly, a sieved sample for heavy mineral separation, a panned moss mat and an untreated moss mat sample were collected at the same site in order to compare the effectiveness of the techniques. It appears that the untreated moss mat samples had the highest background levels of metals and are the most reliable and cost-effective sample type.

Anomalous levels of metals were found in the streams draining the Pem grid and on "Kaolinite" creek below the showing. A gold anomaly occurs on a small creek flowing north from the Pem grid. A sample with anomalous amounts of silver and manganese was collected from a creek draining the southeast flank of Mount Davidson. No outcrop was located in these last two areas noted and the sources of the anomalies are not known.

A work program consisting of grid expansion, soil geochemistry, geophysics and diamond drilling is recommended. Zones of high chargeability should be the first priority drill targets.

1992 BLACKWATER-DAVIDSON EXPLORATION PROGRAM

TABLE OF CONTENTS

<u>Page</u>

SUMM	IARY		i,
1.0	INTR	ODUCTION	1 .
1.1	Prog	ram Objectives and Work Completed	1
	1.2	Location and Access	1
	1.3	Property Ownership and Claim Information	1
	1.4	Previous Work	2 /
	1.5	Logistics	3 /
2.0	GEOL	OGY	4
	2.1	Regional Geology	4
	2.2	Economic Setting 2.2.1 Capoose Prospect 2.2.2 Wolf Prospect 2.2.3 Equity Silver Mine	5 5 5 6 6
	2.3	Property Geology 2.3.1 General Discussion 2.3.2 Stratigraphy 2.3.3 Lithology 2.3.4 Structure 2.3.5 Mineralization	6 7 9 2 11 12
	2.4	Geology Of The Pem Grid 2.4.1 Geology 2.4.2 Alteration in the Pem Grid Area 2.4.3 Mineralization in the Pem Grid Area	13 13 14 14
	2.5	Geology Of The Deb Grid	15 /
3.0	PETR	OGRAPHIC STUDIES	15 /
4.0	WHOL	E ROCK GEOCHEMISTRY	17
5.0	SOIL	GEOCHEMISTRY	18 /
	5.1	Pem Grid Soil Geochemistry	18
	5.2	Deb Grid Soil Geochemistry	19

iii

				iv	
				<u>Page</u>	
6.0	STRE	AM SEDIMENT GEOCHEMISTRY		19 /	
	6.1	Sampling Procedures	19	20	
	6.2	Comparison of Results of Different Stream Sediment Sampling Techniques		20 7	
7.0	GEOP	HYSICAL SURVEYS		23 /	
	7.1	Magnetic Susceptibility Survey	23	24	
	7.2	IP Survey 7.2.1 Pem Grid IP Survey 7.2.2 Deb Grid IP Survey		24 24 24	
	7.3	VLF-EM Survey 7.3.1 Pem Grid VLF-EM Survey 7.3.2 Deb Grid VLF-EM Survey		25 25 25	
8.0	DISC	USSION AND CONCLUSIONS		25	
9.0	RECO	MMENDATIONS		26	
10.0	O STATEMENT OF QUALIFICATIONS				
BIBL	IOGRA	РНҮ		297	

LIST OF FIGURES

Location Following Pg. 1 1a Location Map Following Pg. 1 1b Location Map (Road Access) Following Pg. 1 2 Claim Map (1:50,000)Following Pg. 4 / Regional Geology Map (1:250,000) 3a Legend to Accompany Figure 3a Following Pg. 4 / 3b General Geology of The Blackwater-Davidson 4 Following Pg. 7 / Property and Area 5 Stratigraphy of the Blackwater-Davidson Following Pg. 7 / Property Property Geology Map, NW Sheet (1:10,000) In pocket 6 7 Property Geology Map, NE Sheet (1:10,000) In pocket Property Geology Map, SW Sheet (1:10,000) In pocket 8 Property Geology Map, SE Sheet (1:10,000) In pocket 9 Sample Locations and Analyses, NW Sheet (1:10,000) In pocket 10 Sample Locations and Analyses, NE Sheet (1:10,000) In pocket 11 Sample Locations and Analyses, SW Sheet (1:10,000) In pocket 12 Sample Locations and Analyses, SE Sheet (1:10,000) In pocket 13 Pem Grid Geology, Rock Sample Locations and 14 Analyses, and Drill Hole Location Plan (1:5,000) In pocket Deb Grid Geology, Sample Locations and Analyses 15 (1:5,000)In pocket / SiO, vs Na,0 + K,0 Plot of rocks from the 16 Blackwater-Davidson and Capoose properties Follow. Pq. 17 / TiO, vs Zr Conserved Constituent Scatter Plot Follow. Pg. 17 🟸 17 Pem Grid Soil Geochemistry, Gold (1:5,000) In pocket 18a

18b Pem Grid Soil Geochemistry, Silver (1:5,000) In pocket

18c Pem Grid Soil Geochemistry, Lead (1:5,000) In pocket

v

18d	Pem Grid Soil Geochemistry, Zinc (1:5,000)	In pocket
18e	Pem Grid Soil Geochemistry, Manganese (1:5,000)	In pocket
18f	Pem Grid Soil Geochemistry, Arsenic (1:5,000)	In pocket
19a	Deb Grid Soil Geochemistry, Gold (1:5,000)	In pocket
19b	Deb Grid Soil Geochemistry, Silver (1:5,000)	In pocket
19c	Deb Grid Soil Geochemistry, Lead (1:5,000)	In pocket
19d	Deb Grid Soil Geochemistry, Zinc (1:5,000)	In pocket
19e	Deb Grid Soil Geochemistry, Manganese (1:5,000)	In pocket
19f	Deb Grid Soil Geochemistry, Arsenic (1:5,000)	In pocket
20	Pem & Deb Grids Magnetic Susceptibility Followi	.ng Page 24
21a	Pem And Deb Grids Chargeability Plan Followi	ng Page 24
21b		ng Page 24
22a	Pem And Deb Grids Resistivity Plan Followi	.ng Page 24
22b	Pem And Deb Grids Resistivity Plan (Colour Balanced With Pem Grid Enhanced) Followi	.ng Page 24 /
23	Pem Gríd IP Plan (1:5,000)	In pocket
24	Pem Grid Resistivity Plan (1:5,000)	In pocket
25a-	-25#1 Pem Grid Pseudosections; 0W - 2000W (1:5,000)	In pocket /
26	Pem Grid VLF Profiles; Annapolis (1:5,000)	In pocket
27	Pem Grid VLF Profiles; Hawaii (1:5,000)	In pocket
28	Pem Grid Contoured Magnetic Susceptibility Plan	In pocket
29	Deb Grid IP Plan (1:5,000)	In pocket
30	Deb Grid Resistivity Plan (1:5,000)	In pocket
31a-	-31j Deb Grid Pseudosections; OW - 1500W (1:5,000)	In pocket
32	Deb Grid VLF Profiles; Annapolis (1:5,000)	In pocket
33	Deb Grid VLF Profiles; Hawaii (1:5,000)	In pocket ,

vi

34 Deb Grid Contoured Magnetic Susceptibility Plan In pocket

APPENDICES

Appendix	I	Statement of Expenditures
Appendix	II	Rock Sample Descriptions
Appendix	III	Certificates of Analysis
Appendix	IV	Whole Rock Geochemistry
Appendix	v	Petrographic Reports 🗸

1.0 INTRODUCTION

1.1 Program Objectives and Work Completed

The 1992 Phase I exploration program was designed to better define the zones of known mineralization on the Pem grid and to map and prospect the entire property to put the mineralized zone into a broader geological context.

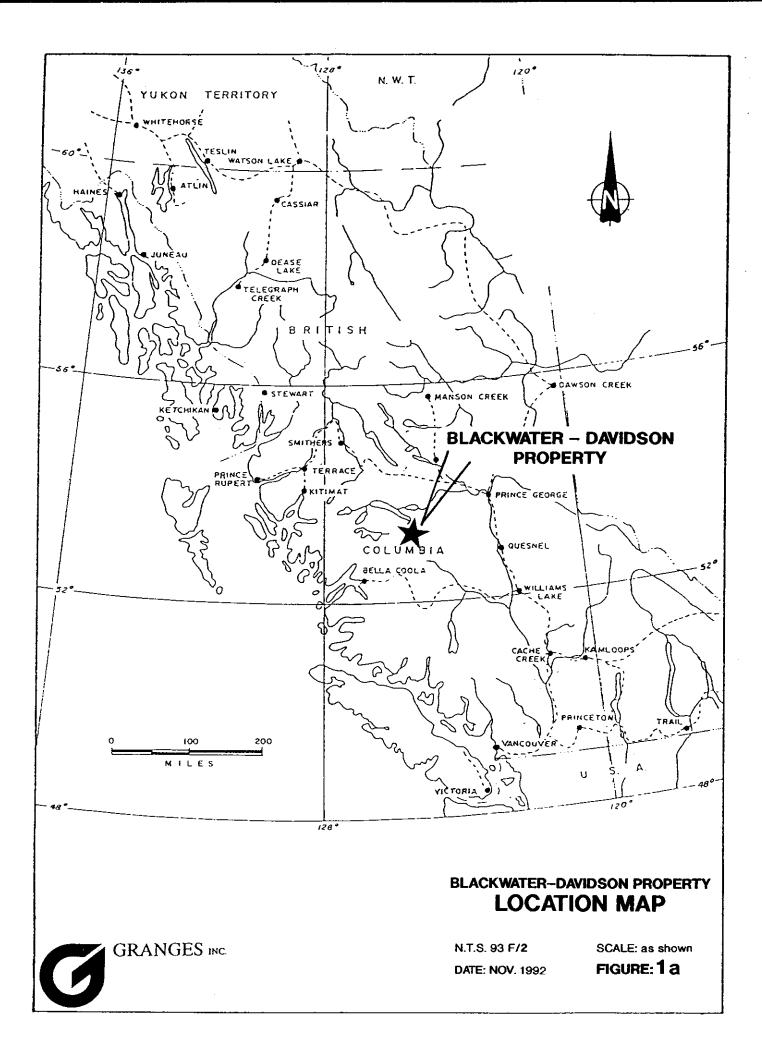
A total of 58.8 km of line was cut and/or rehabilitated on the Pem and Deb grids. Subsequently, 955 soil samples ('B' horizon, where available) were collected at 50 m x 100 m spacings on all new and previously unsampled lines.

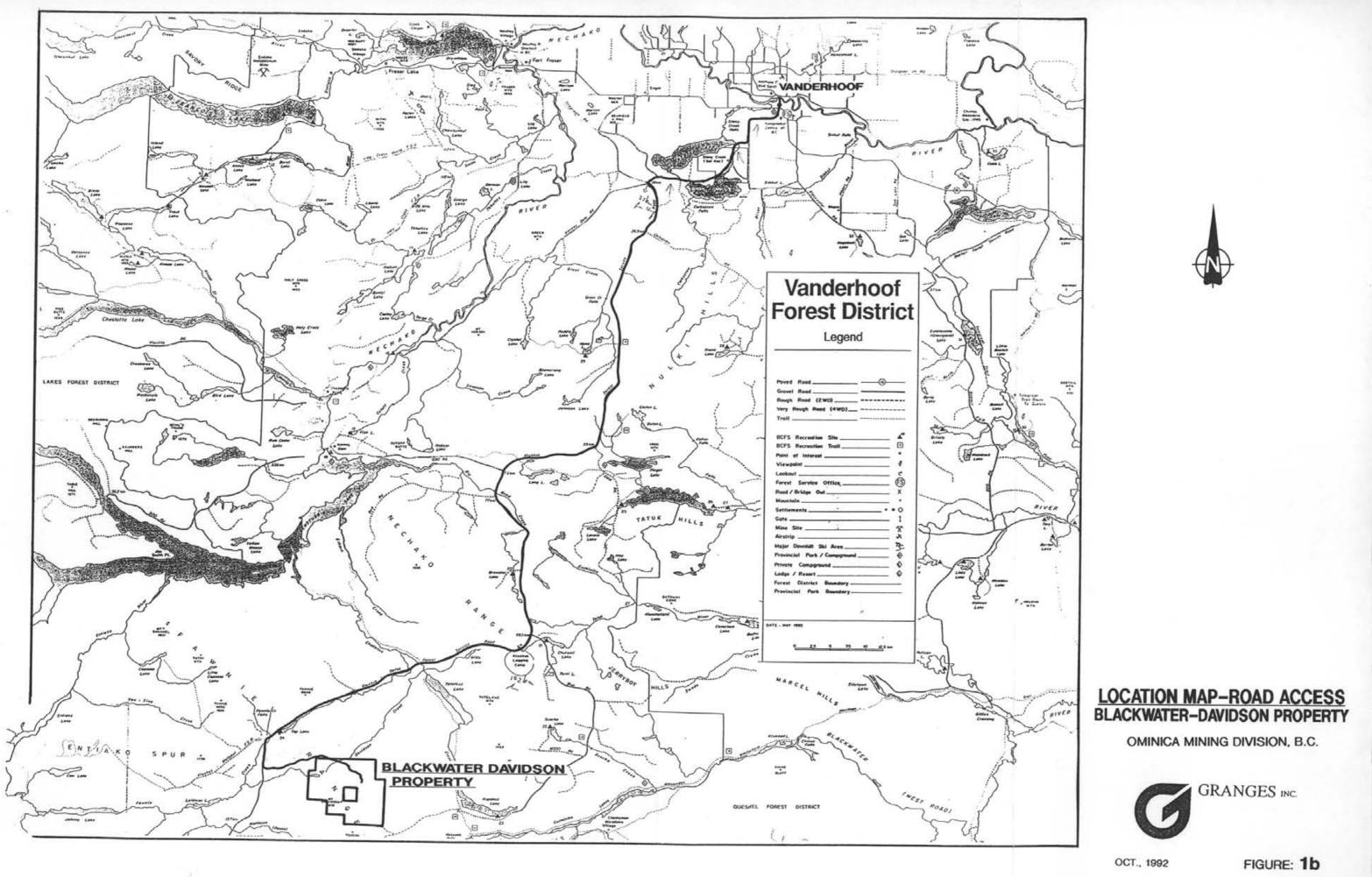
A property-wide stream sediment sampling program was conducted. A total of 14 samples for heavy mineral separation, 13 panned concentrates and 8 untreated moss mat and "standard" silt samples were collected.

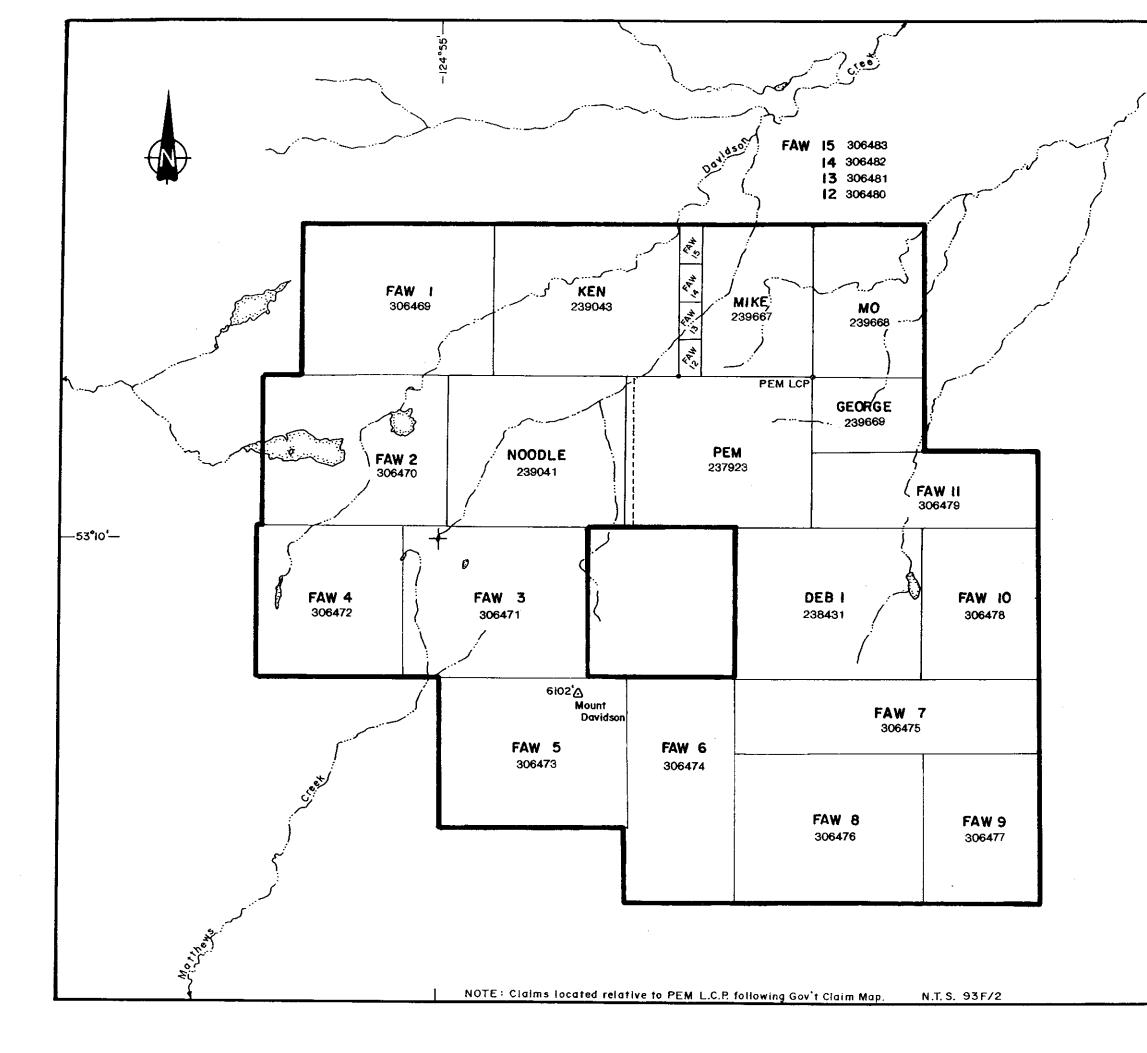
Approximately 6000 hectares of the claims were mapped at a scale of 1:10,000. During the coarse of this mapping, 40 rock samples were collected for ICP analysis. A total of 20 rock samples were sent for whole rock analysis. Thin sections (18 in all) were also made from most of these samples.

A summary of all samples collected during the program is included in Appendix III.

Concurrent IP, magnetic and VLF-EM (two stations) surveys were conducted over 50 km of line on the Pem and Deb grids.


1.2 Location and Access


The property is accessed from Vanderhoof via the all-weather Kluskus main logging road (Figure 1b). At km 146.5 on the Kluskus road, a 4-wheel drive road heads off to the east for approximately 17 km to the camp. Driving time from Vanderhoof to the property is between 3 and 4 hours.


1.3 Property Ownership and Claim Information

The Blackwater-Davidson property is wholly-owned by Granges Inc. It consists of 22 claims totalling 304 units.

Claim information is summarized in the following table. Expiry dates shown are as a result of assessment work covered by this report:

CLAIM MAP BLACKWATER-DAVIDSON PROPERTY

+

45

OMINICA MINING DIVISION, B.C.

1:50,000

PROJECT NO.: 120 OCT. 1992

> O SCALE

FIGURE: 2

5000 metres

<u>Claim No.</u>	<u>Claim Name</u>	<u>Clm.Size </u> [<u> Jnits Due Date</u>
238431	Deb No.1	20	June 19/95
239667	Mike	12	Aug. 31/95
239668	Мо	12	Aug. 31/95
239669	George	6	Aug. 31/95
306471	Faw 3	20	Nov. 18/95
306472	Faw 4	20	Nov. 18/95
306479	Faw 11	12	Nov. 19/95
306473	Faw 5	20	Nov. 21/95
306469	Faw 1	20	Nov. 22/95
306474	Faw 6	18	Nov. 22/95
306480	Faw 12	1	Nov. 23/95
306481	Faw 13	1	Nov. 23/95
306482	Faw 14	1	Nov. 23/95
306483	Faw 15	1	Nov. 23/95
306470	Faw 2	20	Nov. 24/95
306475	Faw 7	16	Nov. 24/95
306476	Faw 8	20	Nov. 24/95
306477	Faw 9	12	Nov. 24/95
306478	Faw 10	12	Nov. 24/95
237923	Pem	20	Mar. 18/98
239041	Noodle	20	Oct. 23/98
239043	Ken	20	Oct. 31/98
	<u>Total Units:</u>	<u>304</u>	

1.4 Previous Work

This area was included in a reconnaissance regional silt sampling program conducted by Granges in 1973. A series of anomalous lead, zinc and silver values in stream sediment samples lead to subsequent soil sampling and eventually the staking of the Pem claim in 1977. Between 1973 and 1984, several geophysical and soil geochemistry surveys were conducted on the property. Geophysical surveys did not define any obvious drill targets. Between 1985 and 1987, a total of 31 diamond drill holes and 34 reverse circulation holes were drilled targeting soil geochemistry anomalies. Two apparently separate zones of mineralization (the "gold" zone and the "silver" zone) were partially outlined by these drilling programs.

The more detailed summary of previous work programs conducted on the property shown below has been extracted from a report by Haynes (1990):

1973 Results of the Tahtsa regional silt survey for porphyry copper mineralization, located anomalous silver, lead and zinc in the Mt. Davidson area. A wide spaced soil sample survey was carried out northeast of Mt. Davidson.

- Sept.'76 Soil sample and ground magnetometer surveys followup of 1973 soil results.
- Mar. '77 Staking of the Pem claim. Pulse EM survey on the Pem claim.

Nov.-Dec.

- 1979 Vector Pulse EM survey on the Pem claim.
- Feb. '81 Helicopter EM and magnetometer survey.
- June '81 Staking of the Deb #1 claim.
- Aug. '81 Horizontal Loop EM survey on the Deb #1 claim.
- Nov. '81 Reconnaissance mapping Mt. Davidson area.
- July '82 Soil sample and ground magnetometer surveys on the Pem claim.
- July '83 Hammer seismic survey.
- Sept.'84 Hand trenching and VLF survey on the Pem claim.
- Aug. '85 Winkie drilling (21.64 m) on the Pem claim. Holes Dav 1-2.
- Sept.'85 Diamond drilling (485.38 m) on the Pem claim. Holes Dav 3-8.
- Oct. '85 Staking of the Noodle and Ken claims.

July-Aug.

1986 Construction of access road.

Sept.'86 Percussion drilling (1524 m) on the Pem claim. RC 1-34.

July-Nov. 1987 Diamond drilling (2724.61 m) on the Pem claim. Holes 9-31.

Aug. '87 Staking of Mike, Mo and George claims.

In November of 1991, the Faw 1-15 claims (194 units) were staked peripheral to the older claim blocks.

1.5 Logistics

The 1992 program was conducted out of Westar Timber's temporary Malaput camp at Kilometer 142 on the Kluskus road. Office, supply and accommodation tents were set up adjacent to

3

Westar's camp. Part of the crew slept in tents, and part in the camp bunkhouse trailer. All meals were taken in Westar's camp.

Travel time from the camp to the property was one hour.

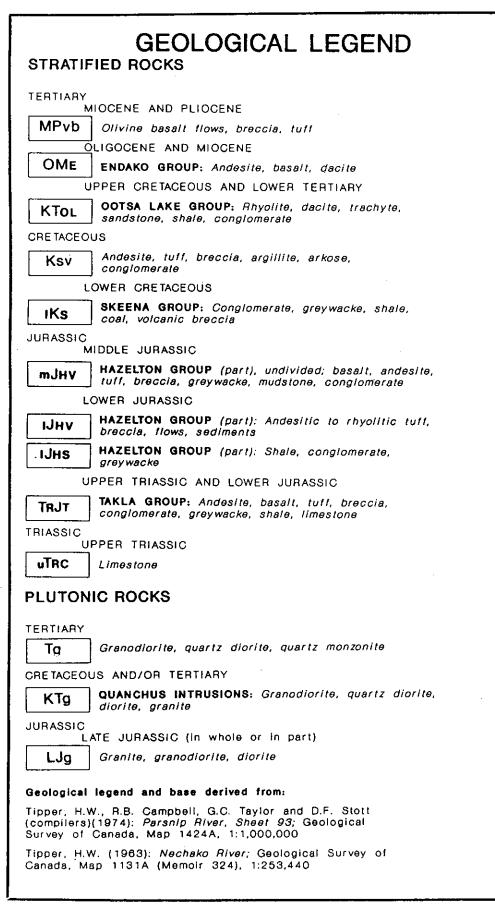
2.0 GEOLOGY

2.1 <u>Regional Geology</u>

The Blackwater-Davidson property is in Stikinia Terrane, an allochthonous oceanic arc within the Intermontane Belt (Andrew, 1985; Monger, et al, 1982).

Only limited regional government mapping has been conducted in the property area. This overview of the regional geology is based largely on a map compiled by Tipper, Campbell, Taylor and Stott (1974; Parsnip River, Map 1424A), data from which was subsequently used to construct a geological base for the mineral inventory map (Figure 3).

The region is largely underlain by rocks of the Lower to Middle Jurassic Hazelton Group. This group of rocks has been sub-divided into a lower sedimentary unit, a middle unit of andesitic to rhyolitic volcanic rocks, and an upper unit of intercalated mafic to intermediate volcanic and sedimentary rocks.


These rocks have been intruded by stocks of the Upper Cretaceous to Eocene (Tipper, et al, 1974) Quanchus Intrusions which range in composition from granite to diorite.

Overlying and probably in part crosscutting the Hazelton Group are rocks of the Upper Cretaceous to Tertiary Ootsa Lake Group. This group consists largely of felsic volcanic rocks intercalated with lesser amounts of intermediate volcanic and sedimentary rocks.

These rocks, which now appear to occur in isolated patches due to partial cover by younger overlying andesite flows and olivine plateau basalts, may have formed a relatively continuous cover along a northwest-trending belt over 300 km long. Volcanic rocks in the Ootsa Lake Group are probably coeval with the Quanchus Intrusions and may be their extrusive equivalents. It is felt that these volcanic rocks formed, at least in part, in caldera settings (Andrew, 1985).

Overlying all of the above mentioned rocks are andesitic to basaltic flows of the Oligocene and Miocene Endako Group.

To accompany Figure: 3a

The youngest rocks in the region are extensive flows of Miocene and Pliocene olivine basalt, possibly oceanic in origin.

2.2 <u>Economic Setting</u>

The Blackwater-Davidson property is located 15 km southwest of the Capoose prospect and 30 km east of the Wolf prospect (Figure 3). The Equity silver mine lies 145 km northwest of the property, within the same terrane.

Ages of these deposits or prospects fall within the range of ages of the Quanchus Intrusions. Much of the mineralization in the region, therefore, is probably genetically linked to this group of intrusions.

2.2.1 Capoose Prospect

The Capoose property covers a large low-grade silver prospect with an estimated reserve of 28.3 million tonnes grading 36.0 g/t silver and 0.30 g/t gold (Haynes, 1990). Mineralization in two of the three zones consists of disseminated pyrite, sphalerite, galena, chalcopyrite and arsenopyrite.

2.2.2 Wolf Prospect

The Wolf prospect is a classic near-surface (100 m) epithermal system hosted in Eocene Lutitian (50-42.1 ma) rhyolites of the Ootsa Lake Group (Andrew, 1985). Host rocks have been hydrofractured and cemented with opaline chalcedony, cut by bladed quartz veins (pseudomorphs after calcite, apparently indicative of boiling), and flooded with dark blue-grey chalcedony. "Electrum, native silver and silver sulphosalts occur as inclusions in and adjacent to pyrite" (Andrew, 1985) although no metallic minerals are visible in hand specimen. Rocks from the Wolf property are visually similar to those from the McLaughlin mine in California.

2.2.3 Equity Silver Mine

The Equity Silver deposit occurred in three zones. The main ore zone was estimated to contain 21.6 million tonnes grading 109 g/t silver, 0.35% copper and 0.85 g/t gold.

Disseminated and fracture-related sulphides occur within an argillically altered dust tuff of the Upper Jurassic to Cretaceous Gossly sequence (Pease and Schroeter, 1984). Mineralization is thought to be related to emplacement of a quartz monzonite stock (dated at 58 ma) which caused fluid circulation within favourable permeable units.

Mineralization consists primarily of pyrite, chalcopyrite, tetrahedrite, pyrrhotite, arsenopyrite, sphalerite and galena, with minor native gold, bournonite, boulangerite and jamesonite.

2.3 Property Geology

2.3.1 General Discussion

The mineralized zone and surrounding area on the Pem grid has very little outcrop. This program was designed to put the mineralized zones in some sort of geological context by mapping the surrounding area and projecting lithology and structure into the centre.

Distribution of the lithologic groups is roughly as shown on the Parsnip River map sheet (Map 1424A, Tipper, et al, 1974; and Figure 3).

West of the property, well bedded argillite, siltstone, sandstone and intermediate tuff strike north and dip moderately to the east. One graded bed located near the Kluskus road indicates stratigraphic tops are up to the east. One outcrop of sandstone with abundant belemnites and pelecypods was located on the property access road. These types of fossils are typical of the Lower to Middle Jurassic Hazelton Group.

The Ootsa Lake Group consists of intercalated felsic to intermediate flow and volcaniclastic rocks. One outcrop of argillite was located on the Deb grid.

Units are generally massive, but rare bedded tuff or tuffaceous sediment, unit contacts, and flow banding indicate that the stratigraphy is gently dipping generally to the north or northwest.

In the northeast part of the property there are a few exposures of unaltered, massive amygdaloidal, medium to coarse grained feldspar phyric andesitic to basaltic flow rocks. These may be Tertiary Endako Group or younger flows overlying the Ootsa Lake Group.

On the peak of Mount Davidson is a unit of tuff breccia with large blocks of feldspar porphyry.

On the northwest-trending ridge, including the peak of Mount Davidson, two phases of northwest-trending mafic to intermediate dykes cut quartz-feldspar crystal tuff of the Ootsa Lake Group. One phase is feldspar phyric and the other is feldspar-mafic (probably hornblende) phyric.

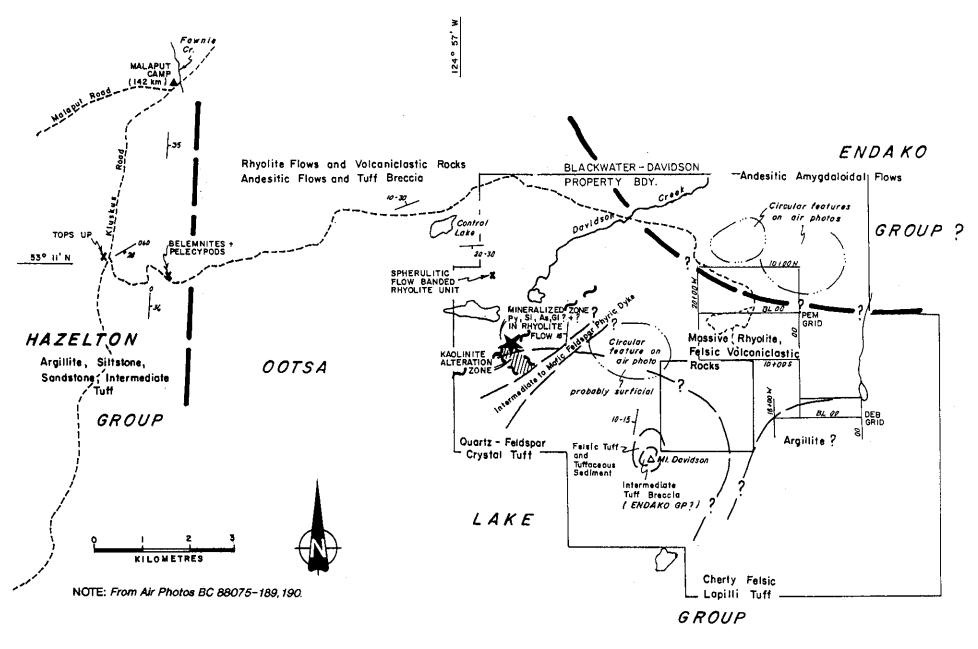
Unit lithology descriptions are included in Section 2.3.3.

2.3.2 <u>Stratigraphy</u>

A stratigraphic column of the property area is shown in Figure 5.

The oldest rocks in the area are interbedded sediments and intermediate to mafic tuff of the Middle Jurassic Hazelton Group. These rocks are exposed on the east side of the Fawnie Creek valley and are in apparent angular unconformable contact with rocks of the Ootsa Lake Group approximately 6 km west of the property boundary (Figure 4).

Exposure of the Ootsa Lake Group is largely restricted to the alpine ridges in the west part of the property and the stratigraphy is consequently unclear.


Overlying the argillite is a thick sequence of lithology) intercalated felsic (predominant to intermediate flow and volcaniclastic rocks. Felsic rocks range from massive siliceous flows to coarse volcaniclastic rocks with distinctive flow banded Intermediate rocks include massive flows, fragments. lapilli tuff and possibly flow breccia. This sequence of units hosts the mineralization on the Pem grid and the showing on "Kaolinite" Creek.

Above the sequence of volcanic rocks described above is a distinctive, thick (300 m+) massive unit of quartzfeldspar crystal to lithic tuff.

Overlying the quartz-feldspar crystal tuff near the peak of Mount Davidson, is a thin unit of subaqueous thinly bedded tuffaceous sediment and tuff.

Apparently overlying these tuffaceous sedimentary rocks on the peak of Mount Davidson, is a tuff breccia unit with large blocks of feldspar phyric andesite or basalt.

In the northeast part of the property, a unit of amygdaloidal feldspar phyric andesite or basalt flow rocks may be intruding into or overlying rocks of the Ootsa Lake Group.

GENERAL GEOLOGY BLACKWATER-DAVIDSON PROPERTY AND AREA

FIGURE: **4** G.A./OCT. 1992

STRATIGRAPHY BLACKWATER-DAVIDSON PROPERTY AREA

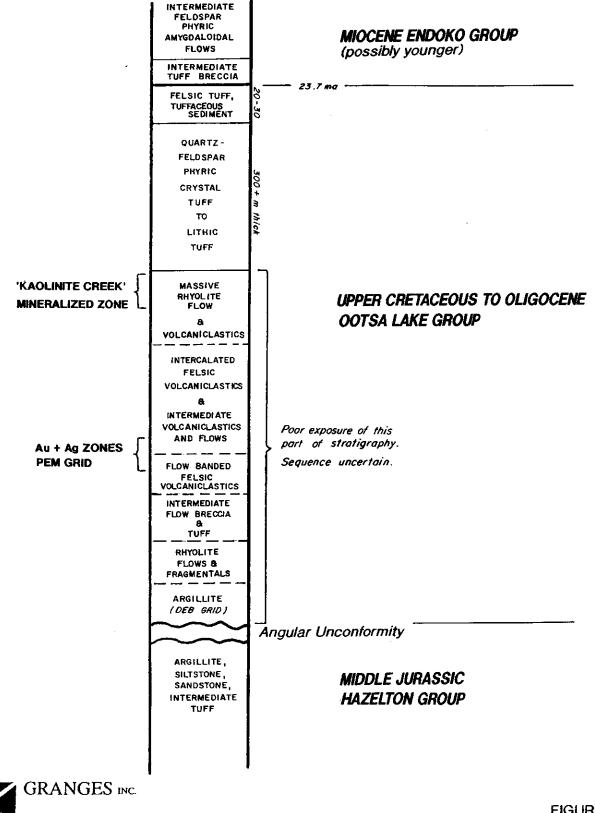


FIGURE: **5** G.A./OCT. 1992 In the southwest part of the property, several northeast-trending dykes are similar in appearance (except for the amygdules) to the flow rocks described above.

2.3.3 Lithology

The following lithologic units are listed in rough stratigraphic order, from oldest to youngest (assuming the pile is not overturned). Exposure on the property is poor and the sequence presented is undoubtedly incomplete and oversimplified. Topographic features referenced are shown in Figures 6 through 9. Numbers and letters in parentheses are unit codes used in Figures 6 through 9, 14 and 15.

<u>Ootsa Lake Group</u>

Intercalated Argillite And Felsic Tuff (7J, 3A)

Argillite was observed in only one location on the property, in one small outcrop on the Deb Grid. It is thought to be the lowest unit in the sequence located to date. The argillite is black, silty, poorly bedded to massive and contains up to 1% very fine-grained disseminated pyrite. Some irregular elongated bodies up to 8 mm wide by 2 cm (+) long could be worm burrows.

Immediately adjacent to the argillite is a unit of dark blue-grey massive fine-grained siliceous felsic tuff or siliceous siltstone. Some parts contain up to 5% finegrained disseminated pyrite.

Rhyolite (?) Flow Breccia (?) And Tuff (3H, B-D)

This unit outcrops on the north slope of a steep hill south of 'Control Lake' on and west of the Faw 1 claim.

On a weathered surface the rock has a fragmental texture with an average fragment size of roughly 1 cm, but ranging up to 10 cm. Fragments are typically grey to jasper-coloured fine-grained and siliceous, hosted in a thinly laminated possibly flow-banded matrix. Parts of the unit have a dark grey to maroon hematitic silicic fine-grained groundmass with 15% subhedral feldspar prisms to 2 mm (average 1-2 mm), and up to 20% 1-2 mm quartz amygdules with jasper rims. It is not clear if these are fragments or part of the main body of the unit. Some parts are apparently trachytic feldspar phyric flows with a hematitic groundmass. In one location irregular quartz-filled vugs up to 2 cm wide with jasper rims occur.

The unit is probably an intercalated sequence of flow breccia and lapilli tuff. (It appears to be intermediate in composition, but whole rock data indicate a rhyolite composition (sample 24622)).

Flow Banded Rhyolite Lapilli Tuff (Mineralized Unit In Grid Area) (5D.fv)

Flow banded rhyolite lapilli tuff occurs on the hill top south of 'Control Lake' on the Faw 1 claim, along 'Kaolinite Creek', and adjacent to the 'Silver Zone' on the Pem claim. It is a white weathering rhyolite lapilli tuff to tuff breccia with a grey cherty groundmass and 30-50% angular flow banded fragments up to 20 cm (average 2-5 cm). In the grid area and along Kaolinite Creek the fragments are strongly kaolinite altered although the matrix is siliceous (possibly suggesting that silicification and/or quartz flooding is a secondary alteration).

Massive To Flow Banded Rhyolite Flow (Mineralized Unit Along 'Kaolinite Creek') (5Gw(f))

Massive rhyolite on the property ranges in colour from white to light greenish-grey with an aphanitic siliceous groundmass, 5-10% less than or equal to 0.5 mm euhedral to subhedral prism-shaped feldspar phenocrysts, and rarely up to 10% 1-2 mm euhedral quartz phenocrysts (possibly a separate unit). The unit ranges from massive to distinctly flow banded.

Along 'Kaolinite Creek' the unit is weakly mineralized with disseminated pyrite, sphalerite, arsenopyrite, possibly galena, and a dark grey-black sulphide with perfect cleavage.

Spherulitic Rhyolite Flow (5Gd)

In one location south of 'Control Lake' a very distinctive light greenish-grey poorly flow banded siliceous rhyolite contains up to 70% 1-2 cm spherules composed of a radiating white mineral (probably feldspar). Spherules are not common on the property.

Cherty Felsic Lapilli Tuff (3Ds)

This unit is a white weathering grey rhyolite lapilli tuff with grey cherty angular felsic fragments averaging less than 2 cm in diameter. Flow banded fragments are locally abundant.

Andesitic Flow (2Gw(z))

Andesitic flow rocks were observed in only one location north of 'Control Lake.' The unit has a medium greybrown siliceous aphanitic groundmass with 10% stubby to prismatic feldspar phenocrysts to 2 mm (average < 1 mm), and 5% fine-grained hornblende phenocrysts. The top of this unit has dark greenish-grey aphyric fragments in a light blue-grey matrix and could be an auto breccia.

<u>Quartz-Feldspar Phyric Crystal Tuff To Lithic Tuff</u> (3B-Cx)

This unit is relatively wide-spread, covering most of the southwest part of the claim block. It appears to dip gently to the west or to be flat-lying, and is at least 300 m thick.

The unit consists of a massive medium to coarse-grained crystal tuff composed of a light grey fine-grained siliceous matrix hosting 25% <1 mm stubby subhedral feldspar crystal fragments, 15% <1-3 mm subrounded to euhedral quartz crystal fragments, and <5-25% lithic fragments ranging from <1 mm to 20 cm (averaging <2 cm). Lithic fragments are generally dark grey to brown aphanitic intermediate volcanic rocks, less commonly fine to coarse-grained feldspar porphyry, and rarely flow banded felsic volcanic rock.

Interbedded Intermediate to Felsic Tuff, Tuffaceous Sediment, and Chert (2-3 Abs, T)

This unit was observed near the peak of Mt. Davidson and is probably less than 30 m thick. It is composed of interbedded white weathering feldspar crystal tuff (some with up to 20% 1-2 mm quartz grains), fine to mediumgrained tuffaceous sandstone, and thinly laminated chert (rarely jasper). In some places the unit includes thin intervals of intermediate feldspar phyric tuff breccia.

These rocks are probably transitional between the preceding and following units.

Interbedded Intermediate Tuff Breccia and Tuffaceous Sediment (2E, 2T)

Blocky tuff breccia was observed only on or near the peak of Mt. Davidson. The tuff breccia consists of angular lithic fragments up to 30 cm (average 1-15 cm) in a tuffaceous matrix. Lithic fragments are of two main types. The more common lithic fragments have a brown to maroon fine-grained matrix hosting 30% 1-5 mm euhedral prismatic to anhedral rounded feldspar phenocrysts. A second type of fragment has a greenish-grey groundmass with 15-20% 1 mm - 1 cm euhedral feldspar phenocrysts and minor amounts of hornblende.

Lithic tuff in the unit is interbedded with lesser amounts of thinly bedded sandy tuff and black chert. Bedding strikes generally northerly and dips gently to the west. The sediments have been scoured by the tuff breccia.

Fragments of feldspar porphyry in the tuff breccia are similar in appearance to feldspar phyric dykes which cut the quartz-feldspar crystal tuff unit. They are also similar to feldspar phyric amygdaloidal flows which outcrop on the north part of the property and are thought to be part of the Miocene Endako Group. It is possible, therefor, that this unit is transitional between the Ootsa Lake Group and the younger Endako Group.

Endako Group (?)

<u>Amygdaloidal Feldspar Phyric Andesite Flow</u> (2Gaw)

This unit outcrops on 'Big Culvert Creek' and suboutcrops on the main access road east of 10+00W. It has a brown to greenish-grey fine-grained groundmass hosting distinct greenish-white euhedral prismatic phenocrysts up to 1 cm in length (averaging 4-6 mm), and 10-15% spherical to flattened chlorite and calcitefilled vesicles up to 3 mm long.

2.3.4 <u>Structure</u>

As mentioned in previous sections, the property is cut by a series of northeast-trending faults. The mineralized area on the Pem grid is located in a faultbounded block roughly 5.75 km wide. The showing on Kaolinite Creek is in the same block (Figure 4). In addition to the linear structures described above, two roughly circular features were identified in the northwest part of the Pem grid from air photos (Figures 4, 7). These features are apparently underlain by Tertiary mafic to andesitic flows, but exposure is poor in the area.

2.3.5 <u>Mineralization</u>

Sulphide mineralization on the Pem grid is associated with kalonitic and silicic alteration of the host felsic and intermediate volcanic rocks. These rocks also have strong manganese staining on fracture surfaces and rarely, stringers of a dark blue-grey manganese mineral. During property-wide mapping, particular attention was paid to alteration and manganese staining.

Outside of the Pem grid, only one area on the property was located with significant alteration. On the south side "Kaolinite" (Figures of Creek 4 and 6) approximately 3.5 km west of the Pem grid, limonitic weathering and manganese stained guartz crystal tuff is kaolinite altered in a roughly 400 m wide panel between two probable northwest-trending faults. The rock has a light brownish-grey, soft kaolinitic groundmass, hosting brown to white altered feldspar crystal fragments, 20% masses to 5 mm of light green waxy propylitically altered lithic fragments(?), and 10-15% unaltered guartz (Appendix II, samples 24626-24630). No sulphide mineralization was noted in the unit.

Immediately underlying this unit are rhyolite lapilli tuff and massive rhyolite flow (? hypabyssal intrusive) rocks. The flow rocks, which predominate, are white to pale bluish or greenish-grey with $5\% \le 1$ mm feldspar phenocrysts, 1-5% fine grained disseminated pyrite, traces to 1% disseminated fine grained, red-brown sphalerite, and traces of arsenopyrite. A few analyses of rock samples from this area are shown below:

"Kaolinite" Creek Showing

Sample <u>No.</u>	Au ppb	Ag ppm	dq mqq	Zn ppm	As ppm	Mn ppm
24631	3	0.9	693	1121	2	351
24632	5	0.6	208	302	14	1321
24633	1	0.1	35	625	13	879
24634	5	0.1	131	250	8	86

Analysis confirm the presence of sphalerite and suggest that traces of galena also probably occur. A polished thin section description of 24633 (C. Leitch, Appendix V) indicate that the rock is a felsic volcanic or a high level intrusion. It also mentions the presence of sphalerite, pyrite, rutile and possibly chalcopyrite. The lack of anomalous arsenic in the sample suggests that the rutile was misidentified in the field as arsenopyrite.

The thin section study of sample 24633 indicates that the rock has undergone only mild carbonate, sericite and quartz alteration. This type of phyllic alteration is associated with the mineralization on the Pem grid, but there the intensity of alteration is much greater. The Kaolíníte Creek area warrants a closer look because it could be peripheral to a stronger alteration zone.

One sample (24615) of manganese-stained rhyolite on the access road in the Faw 1 claim, did not contain anomalous amounts of precious or base metals.

2.4 Geology of the Pem Grid

2.4.1 <u>Geology</u>

Only a few small isolated outcrops and suboutcrops occur on the Pem grid, most of which are located between 12+00W and 16+00W peripheral to and south of the silver zone (Figure 14). These outcrops are felsic tuff to lapilli tuff and felsic flow-banded volcanic rock. No structural information was obtained from these outcrops. Glacial striae trend 044°. Glacial movement was apparently from southwest to northeast (Tipper, 1963).

J. Caelles (1991) relogged the available core.

Only minimal work was done on the drill core during the 1992 program. Drill hole Dav-11, which intersected two gold-bearing zones (14.28 Au/T over 6.3 m and 48.3 g/T over 1.3 m), was quickly relogged and samples (24601-24612) from the major units sent for whole rock analyses (Appendix IV) and thin section studies (Appendix V).

Thin section work on the core samples confirms that this area is underlain by an intercalated sequence of predominantly fragmental mafic to felsic volcanic rocks. In core the felsic rocks appear to be strongly altered and the more mafic rocks to be relatively unaltered. In thin section, however, it appears that the entire sequence is strongly altered.

Alteration is discussed in more depth in the following section.

2.4.2 Alteration in the Pem Grid Area

From the eastern side of the gold zone to the western limit of drilling is a distance of approximately 900 m. All rocks in this area as seen from drill core and the few outcrops and suboutcrops near the silver zone, are intensely altered. The limits of this zone of alteration are not defined.

Along a drill access road near 15+00W, several suboutcrops occur. The predominant rock type is a felsic lapilli tuff with distinct flow-banded fragments which are largely altered to a soft white kaolinite-rich material. The matrix appears to be composed mostly of fine-grained quartz, with rare small quartz crystallined vugs. In some cases, very small veinlets of quartz cut across kaolinitized fragments and merge imperceptibly with the siliceous matrix.

Dark red-brown garnets occur both in the matrix and in the fragments. In some cases, fragments up to 5 cm across are largely replaced by garnet. Similar patches of red-brown garnets occur in altered felsic rocks on the Capoose property.

Thin section studies were done on a suite of rocks from the Dav-11 drill core (samples 24601 to 24612, Appendix V). The hole is located in the gold zone roughly 600 m east of the quartz-clay-garnet altered rock described above. "Alteration in this (Dav-11) suite is generally strong to intense, mainly phyllic (sericite-quartzchlorite) in type, but grading into mafic potassic, with the addition of significant chlorite and secondary biotite..." (Leitch, 1992). Although in drill core the more intermediate to mafic rocks appear to be less altered than adjacent felsic units, thin section studies show that all rock types have undergone moderate to intense alteration.

2.4.3 Mineralization in the Pem Grid Area

Previous drilling programs on the Pem grid have partially outlined two apparently discrete zones of mineralization. The "gold" zone as outlined by J. Caelles (1991) consists of a steeply-dipping zone up to 70 m across with sporadic intervals containing greater than 1 gram of gold per tonne. The "silver" zone is interpreted to be a relatively flat-lying body up to 70 m thick containing an estimated 6 million tonnes grading 37 g/tonne Ag and 0.05 g/tonne Au (Caelles, 1991). It is open at depth and to the north.

Both the gold and silver zones appear to cross lithologic boundaries.

Mineralization in drill core (as noted by Harris (1987) and others) consists of up to 5% combined disseminated and fracture-related sphalerite, pyrite, tetrahedrite, galena, arsenopyrite, pyrrhotite, chalcopyrite and boulangerite. On surface in the silver zone area, the most prominent sulphide is sphalerite, with lesser amounts of very fine-grained disseminated pyrite and traces of fine-grained grey sulphides.

2.5 Geology of the Deb Grid

Only one outcrop was located on the Deb Grid. It consists of interbedded(?) argillite and felsic tuff. The argillite is black and massive with 1-2% very fine-grained pyrite. Rare 5-8 mm wide rod-like bodies distinguished by a slightly lighter colour than their host could be worm burrows.

The felsic tuff (or possibly a siliceous siltstone) has a dark blue-grey fine-grained siliceous groundmass with angular fragments to 1 mm and 3-4% fine-grained combined disseminated and lesser amounts of fracture related pyrite.

3.0 PETROGRAPHIC STUDIES

A total of 17 thin sections and 1 polished thin section were studied during this program. Of these, 10 were from drill hole Dav-11 in the Pem grid "gold" zone, 1 was from a suboutcrop of quartz-kaolinite altered rock near the silver zone, 4 were from outcrops outside of the alteration zone and 4 were from outcrops on the Capoose property. All petrographic reports were done by C. Leitch (Appendix V).

The series of samples from drill hole Dav-11, were taken to confirm the lithology of the host to the "gold" zone. Hole Dav-11 intersected a sequence of mafic to felsic fragmental volcanic rocks intercalated with minor felsic and intermediate(?) flow (non-fragmental) rocks.

All rocks have undergone strong to intense phyllitic (sericite-quartz-chlorite) alteration, with some units grading into mafic potassic (chlorite, secondary biotite and possibly secondary K-feldspar) alteration.

One sample (24607) contained clasts of massive pyrrhotite with minor chalcopyrite, suggesting the possible occurrence of a volcanogenic massive sulphide deposit somewhere on this stratigraphic horizon.

Sample 29621 was collected from an outcrop south of "Control" Lake in the northwest part of the property (Figure 10). In the field, parts of the unit appear to be grossly bedded. Amygdaloidal sections are apparent sporadically throughout. No distinct fragments were noted. It was felt that the unit was possibly a flow breccia or tuff. The thin section indicates only that it is a chalcedony and zeolite amygdular intermediate volcanic (whole rock data suggest a rhyolite composition, possibly due to quartz in amygdules).

Samples 24622 (Figure 10) and 24705 (Figure 12) were collected from units of quartz-feldspar crystal tuff with lithic fragments. The rocks are visually very similar. Sample 24622 was collected from an outcrop in the extreme northwest part of the property and sample 24705 was collected from south of the peak of Mt. Davidson, a separation of roughly 8 km. Both In thin section they rocks are a felsic fragmental volcanic. but differences in feldspar are similar in texture, composition indicate that sample 24622 may be rhyolite and 24705 may be a rhyodacite. It is probable that both rocks are from the same unit and slight compositional variations may be due to fractionation during eruption. Sample 24622 from the northwest "has undergone mild clay-sericite and carbonate alteration". Sample 24705 has undergone mafic potassic (green biotite) alteration.

Sample 24633 is from a sulphide-bearing fine-grained feldspar phyric massive rhyolite flow on the south side of "Kaolinite" Creek (Figure 10). This area has the only significant (although very low grade) sulphide mineralization located on the property to date outside of the Pem grid. The sample is a felsic (possibly dacitic) extrusive or high level intrusive rock. It has undergone only mild alteration as indicated by minor amounts of carbonate, sericite and some secondary guartz.

Samples 24635 through 24638 were collected from the main mineralized zone just north of the old camp on the Capoose property (Figure 3). They are tentatively designated units 6 through 9 from K. Andrew's map (Andrews, 1985) of the area. These samples were collected to compare lithology, alteration and mineralization with mineralized rocks from the Blackwater-Davidson property.

The most significant difference is that mineralized rocks on the Blackwater-Davidson property are felsic fragmentals, whereas those at Capoose are flows or intrusions. Both suites of rocks have undergone strong phyllic (sericite and quartz) alteration. The altered felsic rocks at Capoose contain pyrrhotite, pyrite and sphalerite, as well as euhedral to anhedral masses of brown garnet. Large masses of dark brown garnet do occur in kaolinitic silicified fragmental felsic rocks on the Blackwater-Davidson property, but not apparently within the gold (or silver?) zones. No garnets were observed in any sulphide-bearing rock on the Blackwater-Davidson property.

In her studies of the Capoose property, Andrew (1985) felt that the garnets in the felsic rocks were primary. From a brief visit to the property during this program, it appears garnets occur fine-grained euhedral crystals that as disseminated throughout a host, as well as in irregular brown masses several milimeters in diameter. These masses of garnet are similar in habit to garnet seen on the Blackwater-Davidson property, and in both cases are probably products of In his petrographic studies of the Capoose metasomatism. suite, Leitch comments that the fine-grained euhedral garnets appear to be replacing mafic phenocrysts and are probably, therefore, secondary as well.

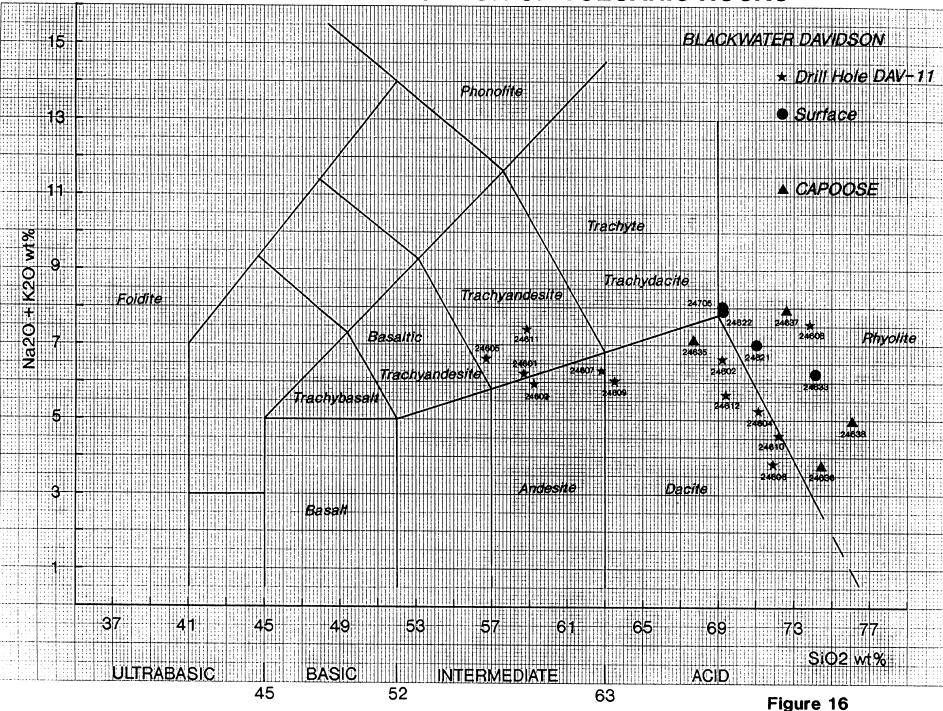
4.0 WHOLE ROCK GEOCHEMISTRY

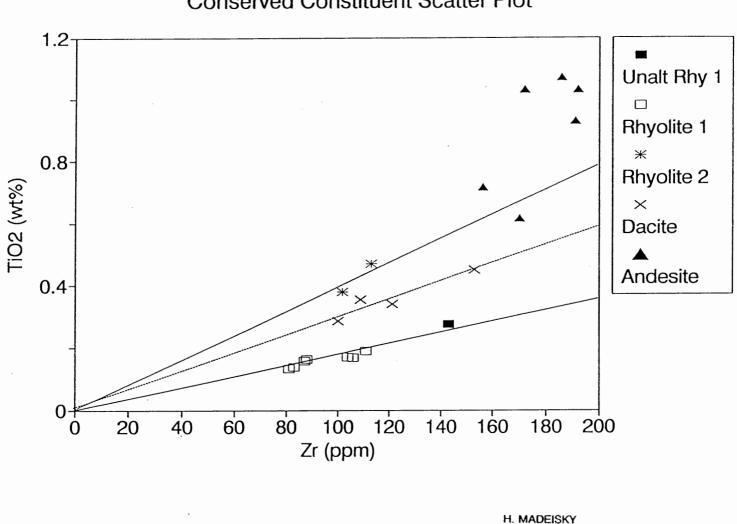
A total of 20 rock samples were sent for comprehensive whole rock analysis, results of which are included in Appendix IV. Twelve of these are from drill hole Dav-11, 4 are from widely separated outcrops on the Blackwater-Davidson property, and 4 are from the Capoose property. Most samples included in the thin section study have had whole rock analyses.

The following table compares field names, thin section names and some lithogeochemistry of the same samples.

Potassium levels appear to be elevated in the altered zones, supporting Leitch's observation of mafic-potassic alteration in thin sections of these rocks.

A plot of $Na_2O + K_2O$ vs SiO_2 is presented in Figure 16. The fields in this plot categorize rocks on the basis of chemistry and indicate a protolith name assuming that no alteration has taken place. Metasomatism will shift composition plots, possibly indicating an erroneous protolith name.


Preliminary results from a study by Hans Madeisky (unpublished internal report for Granges, 1992) include a few scatter plots of elements which are normally conserved during magmatic fractionation and metasomatism. A plot of TiO_2 vs Zr (Figure 17) suggest that there may be four populations of rocks in the analyzed suite.


1992 BLACKWATER- DAVIDSON WHOLE ROCK ANALYSES

SAMPLE NO.	LOCATION	DEPTH	FIELD NAME	T.S. NAME	Na2O	K2O	Na2O+K2O	SIO2	W.R. NAME
24601	DAV-11	24.99m (82')	INT, FLOW	INT. TUFF	1.72	4.54	6.26	58.7	Trachyandesite
24602	DAV-11	28.65m (94')	INT, TUFF	FELSIC VOLCANIC	0.27	6.41	6,68	69.2	Dacite
24603	DAV-11	35,05m (115')	INT. FLOW	INT-MAFIC TUFF	0.23	5.75	5,98	59,2	Andesite
24604	DAV-11	43.89m (144')	FEL, TF-LT	FELSIC? TUFF	0,18	5.09	5.27	71.1	Dacite
24605	DAV11	58.83m (193')	INT. FLOW	MAFIC-INT FLOW?	0.88	5.74	6.62	56.7	Trachyandesite
*(Au) 24606	DAV11	64.62m (212')	FEL. TF-LT (Au Z	lone)	0.01	3.81	3.82	71.9	Dacite
24607	DAV-11	80.16m (263')	INT-FEL LT	MAFIC-INT? TUFF	0.1	6.23	6.33	62.8	Andesite
24608	DAV-11	96.93m (318')	INT-FEL LT		0.11	7.48	7,59	73,8	Rhyolite
24609	DAV-11	106.38m (349')	INT. LT	MAFIC-INT LAPILLI	0,17	5.88	6.05	63.5	Dacite
*(Au) 24610	DAV-11	109.42m (359')	FELTF (Au Zone))	0.07	4.51	4,58	72.2	Dacite
24611	DAV-11	114.15m (375')	M-INT FLOW	ALTERED VOLCANIC	0.12	7.31	7.43	58.8	Trachyandesite
24612	DAV-11	128.02m (420')	FEL, LT	INT-FELSIC LT	0,22	5.47	5.69	69.4	Dacite
24621	W OF FAW 1		INT FL-BX?	INT AMYG VOLC	4.17	2.85	7.02	71.1	Rhyolite
24622	W OF FAW 1		Q-FXLTF	FELSIC FRAGMENTAL	4.15	3.71	7.86	69,2	Rhyolite
24705	FAW 5		Q-FXLTF	FELSIC FRAGMENTAL	4,22	3,76	7,98	69.2	Rhyolite
24633	FAW 2		RHY FLOW	FELSIC FLOW (INTR?)	2.00	4.23	6.23	74.2	Rhyolite
24635	CAPOOSE		Q-G RHY FLOW	QFP	0,21	6,92	7.13	67.6	Dacite
24636	CAPOOSE		GAR. RHY FLOW	FELSIC VOLC	0.01	3.76	3.77	74.4	Rhyolite
24637	CAPOOSE		RHYOLITE	FELSIC VOLCANIC	0.12	7.80	7.92	72.6	Rhyolite
24638	CAPOOSE		Q-G RHY	FELSIC FLOW (INT?)	0.01	4.93	4,94	76.1	Rhyolite

CHEMICAL CLASSIFICATION OF VOLCANIC ROCKS

Blackwater - Davidson Project Conserved Constituent Scatter Plot

FIGURE: 17

NOV. 1992

5.0 SOIL GEOCHEMISTRY

Results from previous exploration programs indicate that soil geochemistry is an effective tool for identifying zones of mineralization. Several geophysical surveys were conducted on the property, but no discrete targets were defined. Soil geochemistry anomalies were eventually drill tested and the gold and silver zones consequently discovered.

In preparation for an expanded soil geochemistry survey, the old grids were rehabilitated and expanded.

The previously partially cut Pem grid extended from 0+00W to 18+00W and from 5+00N to 5+00S. New cutting expanded this grid to 20+00W and from 10+00N to 10+00S, covering most of the Pem claim. A total of 48 km of crosslines, baselines and tielines were cut and/or rehabilitated on the Pem grid. An additional 10.8 km of line was cut and rehabilitated on the Deb grid to the southeast of the Pem grid. Included in the 10.8 km is a 1.2 km line extending south from the Pem grid tieline 10+00S at 0+00W to connect the two grids.

Linecutting and line rehabilitation totalled 58.8 km on the Pem and Deb grids. Crosslines were run true north-south at 100 m intervals and picketed every 25 m using a tight chain to measure intervals. East-west tie lines were cut at 10+00N and 10+00S on the Pem grid and at 3+75N on the Deb grid to get more accurate control of the shape of the grids.

A total of 955 soil samples ("B" horizon where available) were collected on the two grids. Of these, 616 were collected on the Pem grid and 339 from the Deb grid. Samples were collected at 50 m intervals along lines 100 m apart in areas not previously sampled. Three lines (9, 11 and 13W) on the Pem grid were sampled at 25 m intervals across the part of the old grid which was previously sampled as a check on outlined anomalous zones.

Samples were sent to Acme Labs in Vancouver for 30-element ICP and gold (FA/AA) analyses. Of these, 187 were also analyzed for mercury. Certificates are included in Appendix III.

5.1 <u>Pem Grid Soil Geochemistry</u>

Contoured plots of gold, silver, lead, zinc, manganese and arsenic-in-soil from the Pem grid are shown in Figures 18a through 18f. The larger numbers on the silver, lead and zinc plots in the central part of the Pem grid (Figures 18b, 18c and 18d) are data from soil samples collected in 1976. Lines 9, 11 and 13W were sampled at 25 m intervals to check results obtained in 1976. The results from the two surveys (at least for silver, lead and zinc) appear to be comparable and the same anomalous zones have been outlined by both data sets.

The silver, lead and zinc plots define large roughly coincidental east-west trending anomalous zones between 18+00W and 0+00W, from 4+00S to 5+00N. This zone of coincident anomalies is closed to the west, north and south and tapers to a single station anomaly on 0+00W near a creek draining the central part of the zone.

Manganese and arsenic anomalies are smaller, but coincidental with the central part of the silver-lead-zinc anomalous zone.

Gold anomalies occur sporadically distributed in an east-west trending zone predominantly south of the five element coincident anomaly discussed above.

The silver zone, which is open to the northeast, occurs in the western part of the five element soil anomaly. It is roughly coincidental with the largest and strongest part of the silver-in-soil anomaly. This may indicate that the best part of the silver zone has already been defined, but similar mineralization probably occurs sporadically throughout the broad soil anomaly, most of which has not been drill-tested.

The gold zone lies to the south of the five element soil anomaly, but is partly coincident with a gold-in-soil anomaly (Figure 35).

5.2 <u>Deb Grid Soil Geochemistry</u>

Contoured plots of gold, silver, lead, zinc, manganese and arsenic-in-soil from the Deb grid are shown in Figures 19a through 19f.

All elements are in substantially lower concentrations than on much of the Pem grid. Anomalies are generally one sample in extent and sporadically distributed across the grid. It is possible that overburden is effectively masking bedrock geochemistry in this area.

Some parts of the grid have elevated manganese levels suggesting that there may be some alteration of bedrock in the vicinity, however, there appear to be no exploration targets on the Deb grid as defined by soil geochemistry.

6.0 STREAM SEDIMENT GEOCHEMISTRY

6.1 <u>Sampling Procedures</u>

A property-wide stream sediment sampling program was conducted. At most sites several types of samples were collected to determine which method was the best at identifying drainages with anomalous metal content. Sieved were collected for heavy (-36 mesh) samples mineral separation. At the same sites, other types of samples collected included: panned concentrates of sediment from moss mat, untreated sediment from moss mat, and standard silt samples (i.e. an untreated grab of the finest sediment available in the stream channel). A total of 14 samples for heavy mineral separation, 13 panned concentrates and 5 untreated silt and moss mat samples were collected.

6.2 Comparison of Results of Different Stream Sediment Sampling Techniques______

One or more types of stream sediment samples were collected from almost every significant drainage on the property. Results are presented in Figures 10 through 14. Analyses for six elements for the various types of samples are presented below:

Silt Samples

Sample No.	Type	<u>Au</u>	Aq	<u>Pb</u>	<u>Zn</u>	<u>Mn</u>	<u>As</u>
BD-Silt 1	Moss mat	7	0.6	19	103	1865	61
BD-Silt 2	Regular	9	0.9	21	136	711	61
BD-Silt 3	Regular	6	1.0	17	99	1343	52
BD-Silt 4	Moss mat	<u>14</u>	0.1	9	76	1164	22
BD-Silt 5/	Moss mat	175	0.5	29	<u>364</u>	941	22
5	(Rerun)	754	0.4	<u>33</u>	358	930	23
BD-Silt 6	Regular	3	0.1	7	53	385	7
BD-Silt 7	Moss mat	2	<u>1.4</u>	22	101	<u>2413</u>	61
BD-Silt 8	Moss mat	6	1.6	12	<u>550</u>	<u>2364</u>	<u>77</u>
Values cons	idered anom	. ≥10	≥1.0	<u>≥</u> 30	<u>></u> 150	<u>></u> 2000	<u>></u> 75
Panned_Conc	<u>entrates</u>						
BD-Pan 1		6	0.2	22	<u>309</u>	568	<u>21</u>
BD-Pan 2		1	0.1	9	52	295	2
BD-Pan 3		2	0.2	<u>39</u>	69	244	11
BD-Pan 4		1	0.1	9	50	517	2
BD-Pan 5		1	0.1	7	47	430	2
BD-Pan 6		1	0.1	4	49	541	2
BD-Pan 7		8	0.1	9	57	648	19
BD-Pan 8		3	0.1	9	56	<u>981</u>	15
BD-Pan 9		4	0.1	6	73	484	16
BD-Pan 10		2	0.1	2	50	512	7
BD-Pan 11		1	0.1	7	64	<u>986</u>	10
BD-Pan 12		6	0.3	8	<u>348</u>	<u>3698</u>	116
BD-Pan 13		6	0.1	5	52	626	14

		21				
Values considered	anom. ≥10	<u>></u> 1.0	<u>></u> 30	<u>></u> 100	<u>≥</u> 750	<u>></u> 20
<u>Heavy Mineral Conc</u>	<u>entrates</u>					
BD-H1	5	0.1	19	82	942	1
BD-H2	4	0.1	8	51	949	1
BD-H3	5	0.1	23	76	636	1
BD-H4	<u>70</u>	0.1	5	50	704	1
BD-H5	10	0.1	18	55	846	1
BD-H6	<u>15</u>	0.1	<u>122</u>	<u>335</u>	<u>1304</u>	1
BD-H7	<u>15</u> 7	0.1	3	46	659	1
<u>Sample No. Type</u>	<u>Au</u>	<u>Aq</u>	Pb	<u>Zn</u>	Mn	<u>As</u>
<u>Sample No. Type</u>	<u>Au</u>	<u>Ad</u>	Pb	<u>Zn</u>	<u>Mn</u>	<u>As</u>
<u>Sample No. Type</u> BD-H8 (no sample)	<u>Au</u>	<u>¥</u> d				
	1	<u>Aq</u> 0.1	1	54	509	<u>As</u> 1
BD-H8 (no sample)	1 2		1 <u>82</u>	54 <u>126</u>	509 968	1
BD-H8 (no sample) BD-H9	1 2 10	0.1	1	54 <u>126</u> 58	509 968 995	1 1 1
BD-H8 (no sample) BD-H9 BD-H10	1 2	$0.1 \\ 0.1 \\ 0.1 \\ 9.2$	1 <u>82</u>	54 <u>126</u>	509 968	1
BD-H8 (no sample) BD-H9 BD-H10 BD-H11	1 2 10 2 5	$0.1 \\ 0.1 \\ 0.1 \\ 9.2 \\ 0.1$	1 <u>82</u> 1	54 <u>126</u> 58 89 84	509 968 995	1 1 1 1
BD-H8 (no sample) BD-H9 BD-H10 BD-H11 BD-H12	1 2 10 2	$0.1 \\ 0.1 \\ 0.1 \\ 9.2$	1 <u>82</u> 1 <u>44</u>	54 <u>126</u> 58 89 84 84	509 968 995 <u>1728</u> <u>1543</u> 903	1 1 1 1 1
BD-H8 (no sample) BD-H9 BD-H10 BD-H11 BD-H12 BD-H13	1 2 10 2 5	$0.1 \\ 0.1 \\ 0.1 \\ 9.2 \\ 0.1$	$1\\ \underline{82}\\ 1\\ \underline{44}\\ 1$	54 <u>126</u> 58 89 84	509 968 995 <u>1728</u> 1543	1 1 1 1
BD-H8 (no sample) BD-H9 BD-H10 BD-H11 BD-H12 BD-H13 BD-H14	1 2 10 2 5 5 5 <u>280</u>	$0.1 \\ 0.1 \\ 0.1 \\ 9.2 \\ 0.1 \\ 0.1 \\ 0.1$	1 <u>82</u> 1 <u>44</u> 1 1	54 <u>126</u> 58 89 84 84	509 968 995 <u>1728</u> <u>1543</u> 903	1 1 1 1 1

These tables were constructed to facilitate picking of threshold values. No statistical work was done to establish the listed thresholds, and they are admittedly probably somewhat high. Analyses considered anomalous have been underlined both in the tables and the figures. Sample sites with "significant" anomalies have been flagged with a star.

Samples within the groups in the following table were collected at or near the same site:

Sample No.	Туре	<u>Au</u>	<u>Aq</u>	<u>Pb</u>	<u>Zn</u>	<u>Mn</u>	<u>As</u>
BD-H6	Heavy	<u>15</u>	0.1	<u>122</u>	<u>335</u>	<u>1304</u>	1
BD-Pan 1	Pan. Conc.	6	0.2	22	<u>309</u>	568	<u>21</u>
BD-Silt 5	Moss mat	<u>175</u>	0.5	29	<u>364</u>	941	22
BD-Silt 5(R	e) " "	754	0.4	<u>33</u>	358	930	23
BD-H7	Heavy	7	0.1	3	46	659	1
BD-Pan 2	Pan. Conc.	1	0.1	9	52	295	2
BD-Silt 6	Regular	3	0.1	7	53	385	7
BD-H9	Heavy	1	0.1	1	54	509	1
BD-Pan 4	Pan Conc.	1	0.1	9	50	517	2
BD-Pan 5	Pan Conc.	1	0.1	7	47	430	2
BD-H10	Heavy	2	0.1	<u>82</u>	<u>126</u>	968	1
BD-Pan 3	Pan Conc.	2	0.2	39	69	244	11

21

<u>Sample No.</u>	Type	<u>Au</u>	<u>Aq</u>	<u>Pb</u>	<u>Zn</u>	<u>Mn</u>	<u>As</u>
BD-H12	Heavy	2	$\frac{9.2}{0.1}$	<u>44</u>	89	<u>1728</u>	1
BD-Pan 7	Pan Conc.	8		9	57	648	19
BD-H13	Heavy	5	0.1	1	84	1543	1
BD-Pan 8	Pan Conc.	3	0.1	9	56	<u>981</u>	15
BD - H14	Heavy	5	0.1	· 1	84	903	1
BD-Pan 9	Pan Conc.	4	0.1	6	73	484	16
BD-Pan 12	Pan Conc.	6	0.3	8	348	<u>3690</u>	<u>116</u>
BD-Silt 8	Moss mat	6	<u>1.6</u>	12	<u>550</u>	2364	<u>77</u>
BD-H15	Heavy	<u>280</u>	0.1	20	76	<u>1255</u>	1
BD-Pan 13	Pan Conc.	6	0.1	5	52	626	14

The tables above indicate that the metal content in the various types of samples collected was highest (at least for the 6 elements listed) in the moss mat and regular silt samples, with the possible exception of gold. It appears that something in the panning and heavy mineral separation processes is removing background levels of metal from the samples. This is most notable for arsenic and silver, but is also apparent for manganese, lead and zinc. Gold is sporadic in all sample sets, but the panned concentrates failed to identify any sites with anomalous levels of gold.

It is tentatively concluded, therefore, that moss mat samples are as good as, or better than, heavy mineral concentrates for identifying drainages carrying anomalous amounts of metal.

The most outstanding stream sediment anomaly on the property is on "Moose Horn" Creek (Figure 11), which drains the Pem grid area. It was also found to be anomalous from sampling conducted in 1973 and interest in the area was initiated because of it. Samples BD-H6, Pan 1 and Silt (moss mat) 5, were collected from this creek during this program. The heavy mineral concentrate, panned concentrate and moss mat samples all contained anomalous amounts of zinc. Only the heavy and the moss mat samples were anomalous in lead and gold. Sample BD-H6 contained 15 ppb Au (marginally anomalous), but BD-Silt 5 contained 754 ppb Au. The source for this anomaly is probably on the Pem grid.

Sample BD-H4 was collected from a drainage north and west of "Moose Horn" Creek. It contained 70 ppb Au. This grid drains the extreme northwest part of the Pem grid, but no known mineralization occurs in the area.

22

Samples BD-H10 and BD-Pan 3 were collected from "Kaolinite" Creek (Figure 10). Both samples contained weakly anomalous amounts of lead. The heavy mineral concentrate contained marginally anomalous amounts of zinc. These samples were collected down-stream from a pyritic felsic unit with sphalerite and traces of galena. Several rock samples from this showing (24631-24634) contained anomalous amounts of lead and zinc, but no precious metals.

Sample BD-H12 was collected from a creek draining the southeast flank of Mount Davidson (Figure 13). It contained anomalous levels of silver (9.2 ppm), lead and manganese. A geological interpretation of the property (Figures 4 and 9) suggest that the area is underlain by felsic volcanic rocks (possibly the same unit hosting the Pem grid mineralization), and quartz-feldspar crystal tuff. No outcrop was found in the area and the cause of the anomaly is not known.

Samples BD-Pan 12 and BD-Silt 8 (moss mat) were collected from a creek at 20+25W, 6+85N on the Pem grid (Figure 14). Both samples were anomalous in manganese and arsenic, but only the moss mat indicated a coincident silver and zinc anomaly. Again, it appears that the moss mat is preferable to the panned concentrate sample. This anomaly is of particular interest because it drains a zone of high chargeability which is scheduled for drill-testing in an upcoming drill program (proposed hole BD92-A, Figure 35).

Samples BD-H15 and BD-Pan 13 were collected on the same creek as the samples described above at roughly 19+10W, 0+05N on the Pem grid. The heavy mineral concentrates contained 280 ppb Au and anomalous manganese. In contrast, the panned sample was not anomalous in any element. Angular float found less than 100 m upstream contained anomalous amounts of gold, silver, lead, zinc and arsenic (rock samples 24641 to 24643). Above these sample sites the creek drains along an interpreted fault and across a zone of high resistivity. Underlying lithology is not known.

7.0 GEOPHYSICAL SURVEYS

A total of 50 km of concurrent magnetic, IP and VLF-EM (two stations) surveys on the Pem and Deb grids were conducted by Pacific Geophysical Limited of Vancouver. Surveys were carried out by a six-man crew between August 17 and September 4, 1992. Paul Cartwright was the field operator.

7.1 <u>Magnetic Susceptibility Survey</u>

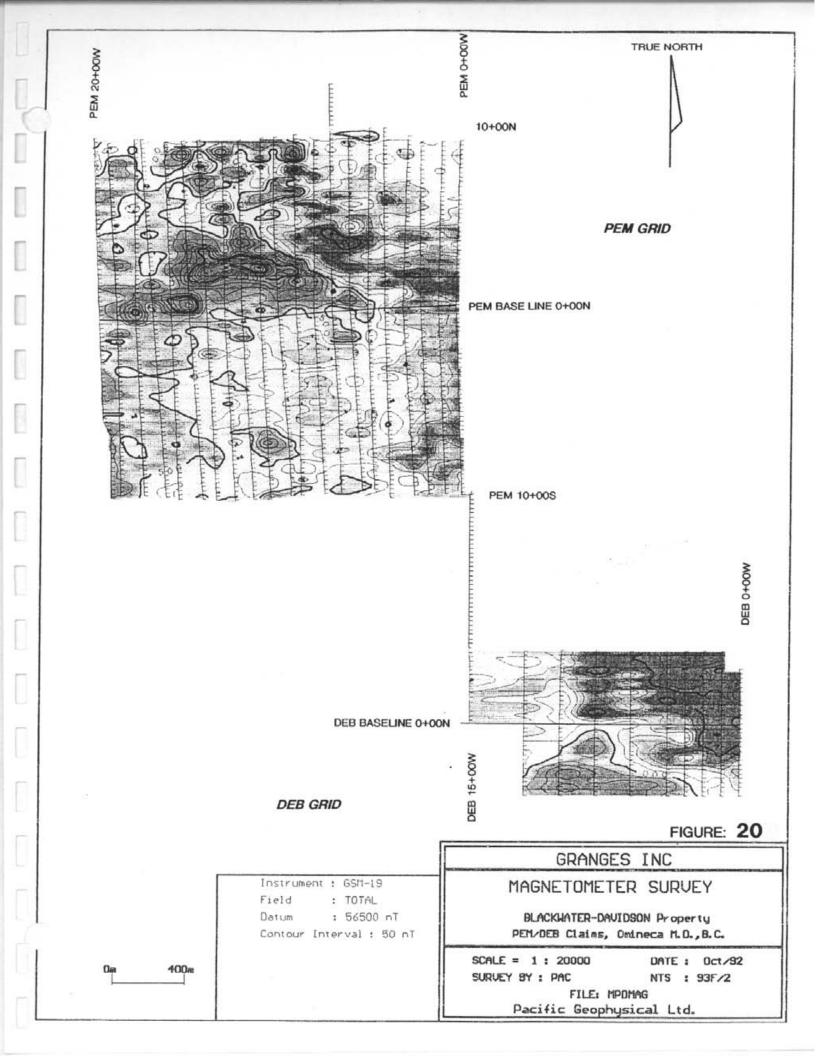
Total field magnetic susceptibility surveys were conducted on both the Pem and Deb grids. A 1:20,000 contoured plot of the magnetic data for both grids is presented in Figure 20a. Plots of magnetic data at 1:5000 are included in Figures 28 and 34.

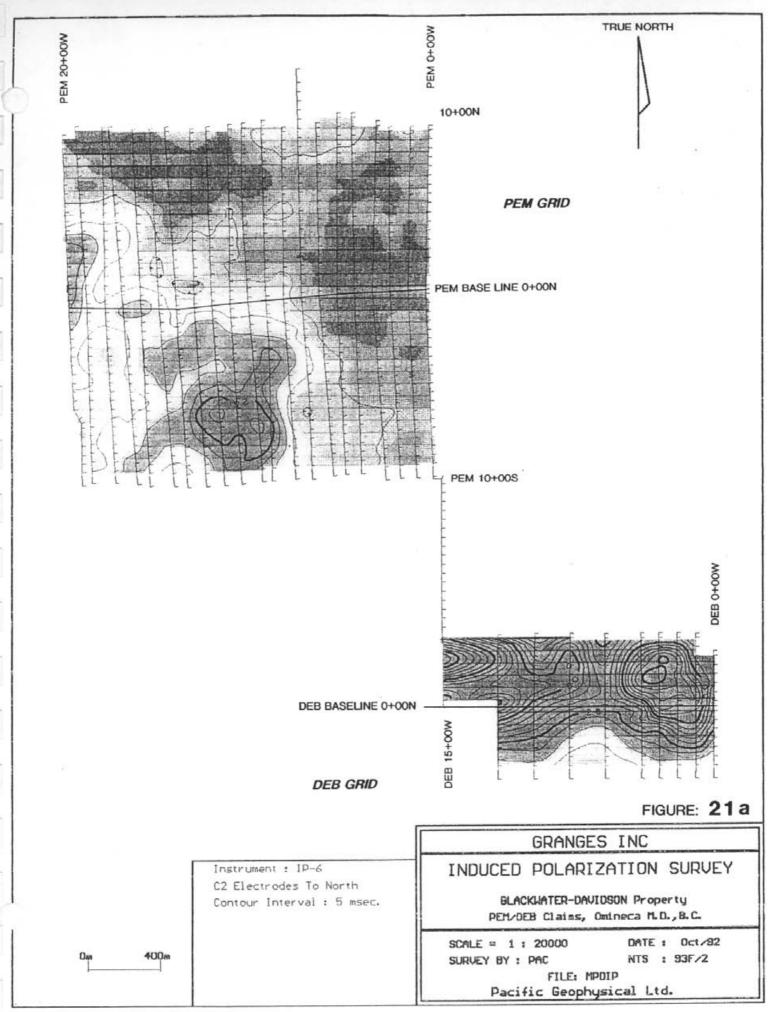
Magnetic susceptibilities have a range of approximately 1100 nT. It is not known what lithology corresponds to the high and low magnetic features. A prominent high magnetic susceptibility feature on the Pem grid trends east-west and could be a dyke or magnetic volcanic unit. The intercalated felsic and intermediate volcaniclastic units in the silver and gold zones have an intermediate magnetic signature. The magnetic low features on the two grids could be correlative with sedimentary rocks.

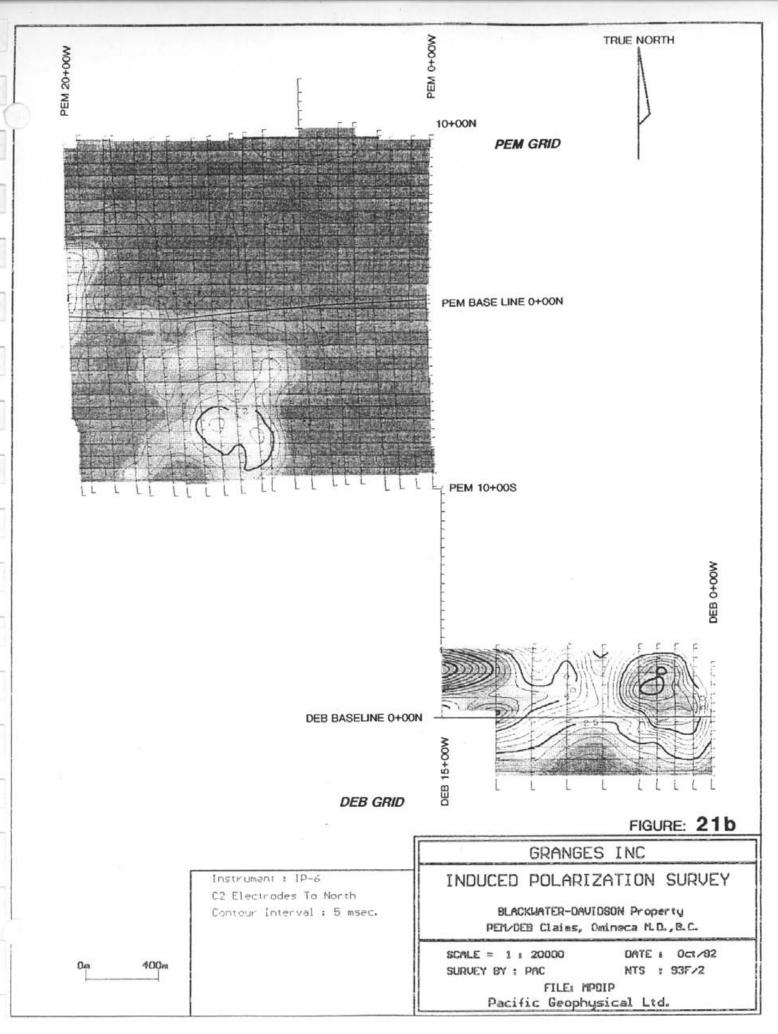
7.2 <u>IP Survey</u>

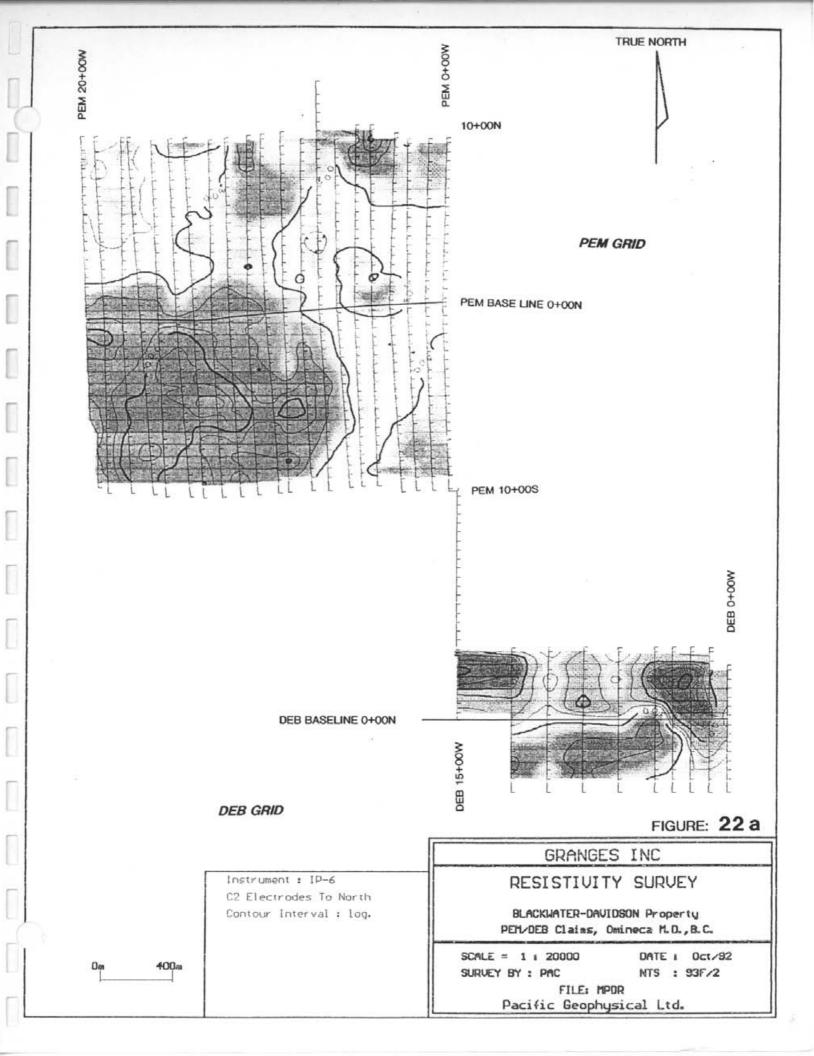
Line 9+00W on the Pem grid was surveyed with a time domain system using both a dipole-dipole and pole-dipole array (n = 50), to see which array produced a better response. Both defined the same chargeable and resistive zones and the rest of the survey (on both the Pem and Deb grids) was conducted using a pole-dipole array.

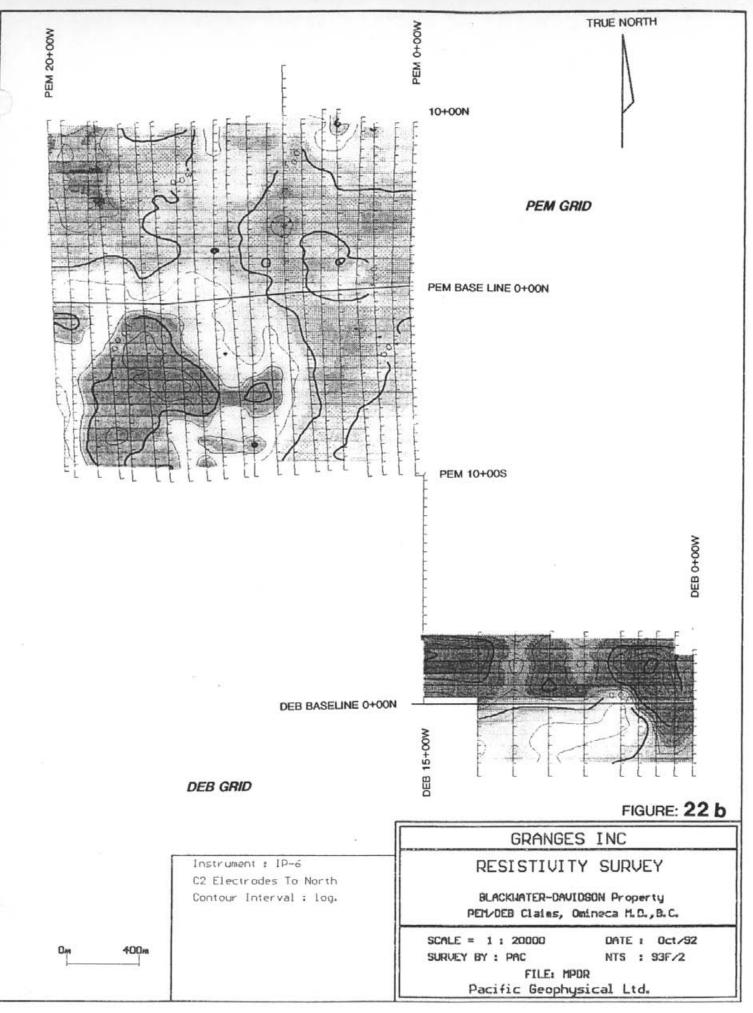
7.2.1 Pem Grid_IP_Survey


Ten point filter plans of chargeability or IP for the Pem grid are shown in Figures 21a, 21b (1:20,000) and 23 (1:5000). Resistivity plans are shown in Figures 22a, 22b (1:20,000) and 24 (1:5000). Pseudosections are included as Figures 25a-25v.


Chargeability on the Pem grid is generally higher in the southwest part. Within this area, several zones of higher chargeability occur roughly peripheral to a large zone of high resistivity.


7.2.2 Deb Grid IP Survey


In comparison to the Pem grid, almost the entire Deb grid is a very strong chargeability anomaly with values up to 212 ms, compared to a high of 36 ms on the Pem grid. This chargeable zone on the Deb grid is coincident with an area of low resistivity. It appears to strike east-west and is divided into two parts by an interpreted northwest-trending fault.


Paul Cartwright (Pacific Geophysical Ltd.) feels that such high chargeabilities are probably related to graphitic sedimentary rocks. Exposure is very poor, but argillite does occur in the vicinity. It is interesting to note, however, that the magnetic susceptibility in the area of the highest chargeability (western part) is

similar to that of the gold zone and the area could be largely underlain by volcanic rocks.

7.3 <u>VLF-EM Survey</u>

A VLF-EM survey was conducted on the Pem and Deb grids using two different stations in an attempt to couple with geological features in a large range of possible attitudes. The stations used were Annapolis at 21.4 KHz and Hawaii at 23.4 KHz.

Raw profile of the VLF-EM data are shown in Figures 26 and 27 for the Pem Grid and 32 and 33 for the Deb Grid.

7.3.1 Pem Grid VLF-EM Survey

On the Fraser-filtered plot of the Hawaiian frequency data, vague east-northeast trending features up to 400 m wide may be related to stratigraphic units.

Within the vague east-northeast features are more prominent east-west and northwest-trending features. It is unclear what these features are related to. Paul Cartwright (Pacific Geophysical Ltd.) warned that all of these anomalies are very weak and could be related to surficial features such as thicker deposits of watersaturated clay.

7.3.2 Deb Grid VLF-EM Survey

The VLF-EM surveys on the Deb grid show a prominent east-west trending feature roughly coincident with a chargeability anomaly. This feature may be outlining a stratigraphic unit or possibly a unit contact.

8.0 DISCUSSION AND CONCLUSIONS

In spite of paucity of outcrop, a plausible geological framework of the Blackwater-Davidson property has been established. The property is largely underlain by a generally gently east to north-dipping sequence of predominantly felsic volcanic and minor sedimentary rocks of the Ootsa Lake Group. Younger flood basalt or andesite may overlie the Ootsa Lake Group in the northeast part of the property.

The Ootsa Lake Group has been cut by a series of northeasttrending (probably steep right lateral strike slip) faults. Mineralization on the Pem grid occurs within a roughly 6.5 km wide fault-bounded block. The only other significant (although weak) mineralization on the property occurs on Kaolinite Creek, 3.5 km west of the Pem grid, within the same rough stratigraphic interval and the same northeast-trending fault block hosting the gold and silver zones. Geophysics on the Pem grid has provided a great deal of insight into the possible structure, alteration and mineralization in the grid area.

A zone of high resistivity forms a rough bulls eye in the southwest part of the grid. Chargeability highs occur peripheral to the core of the resistivity anomaly.

A broad zone of sporadic gold-in-soil anomalies on the Pem grid is in part coincidental with a large area of high chargeability roughly 500 m across.

An IP anomaly on the Deb grid has chargeabilities almost an order of magnitude greater than those on the Pem grid. It is probably related to a different sort of geological feature than any seen in the drill-tested zones to the northwest. It may be graphitic argillite, but the area warrants a drill hole.

The most favourable exploration targets on the property as defined by the IP survey are for the most part unclosed and untested. The grids should be expanded and the anomalies drill-tested.

9.0 RECOMMENDATIONS

The following work program is recommended:

- 1 25 km of line cutting to expand coverage of the PEM and DEB grids.
- 2 22 km of IP, Mag, and VLF-EM (2 stations) surveys.
- 3 Soil sampling on the new lines (total approximately 450 samples).
- 4 750 m (2500') of priority one diamond drilling.
- 5 900 m (3000') of priority two diamond drilling.
- 6 Relog old core and split intervals previously unsampled.
- 7 Locate and survey in all LCPs, drill holes, and several grid points (using G.P.S.).
- 8 Clean-up of camp area and road right-of-way from previous programs.

Parts of this work proposal are detailed below:

GRID EXPANSION

- Lines 21, 22, 23, 24 and 25+00W on the Pem grid from 10+00S to 10+00N.
- Lines 2, 4, 6, and 8+00W on the Pem grid from the 10+00S tie _ line to 30+00S.
- Lines 1+00W and 1+00E on the Pem grid from the Pem 10+00S tie line to the Deb grid base line (roughly 1266 m each).
- Line 3+00E on the Pem grid from the 10+00S tie line to the northern extent of the Deb grid (roughly 866m to Deb 12+00W, 4+00N).
- Line 15+00W on the Deb grid from BL to 30+00S Pem tieline (roughly 750 m).

The lines laid out above total 22.15 km. In addition to this, a total of 2.6 km of tie lines and base lines would be needed. All of these lines total 24.75 km.

DIAMOND DRILLING

The following proposed drill holes are targeting both chargeability highs and precious metal-in-soil anomalies.

<u>Hole Number</u>	Location_	<u>Dip</u>	<u>Azimuth</u>	<u>Depth (m)</u>
BD92-A	Pem; 20W, 2+50N	-60	180	150
BD92-B	Pem; 10W, 6+50S	-60	180	150
BD92-C	Pem; 11W, 4+25S	-50	180	150
BD92-D	Pem; 12W, 5+75S	-50	180	150
BD92-E	Deb; 15W, 3+50S	-60	180	<u>150</u>
	Total			750 m

<u>Hole Number</u>	Location	<u>Dip</u>	<u>Azimuth</u>	<u>Depth (m)</u>
BD92-F BD92-G BD92-H BD92-I BD92-J	Pem; 5W, 4+50S Pem; 9W, 1+50S Pem; 9W, 0+25N Pem; 9W, 6+75S Pem; 11W, 3+25S	-45 -45 -55 -50	180 180 180 180 180	100 150 100 150 100
BD92-K BD92-L	Pem; 15W, 6+00S Pem; 15W, 7+50S Total	-55 -50	180 180	150 <u>150</u> 900 m

10.0 STATEMENT OF QUALIFICATIONS

- I, Gordon J. Allen, do hereby certify;
- I am a graduate in geology of the University of British Columbia (B.Sc. 1975)
- 2) I have practised as a geologist in mineral exploration for seventeen years.
- 3) I am a member in good standing of the Association of Professional Engineers, Geologists, and Geophysicists of Alberta.
- 4) Opinions, conclusions and recommendations contained herein are based on fieldwork and research performed by or overseen by me between June 17 and November 9, 1992.
- 5) I own no direct, indirect, or contingent interests in the subject property, or shares or securities of Granges Inc.

Sandon J. Allen

Vancouver, B.C.

November 9, 1992

٠

GORDON J. ALLEN, P. GEOL.

BIBLIOGRAPHY

- Andrew, K.P.E. (1985) Geology and Genesis of the Wolf Precious Metal Epithermal Prospect, and the Capoose Base and Precious Metal Porphyry-Style Prospect, Capoose Lake Area, Central British Columbia. Unpublished M.Sc. Thesis, U.B.C.
- Blackwell, J.D. (1988) Davidson J.V.-Pem Summary. Unpublished Cominco Ltd. Report, 7 pp, 1 appendix, 8 plates.
- Caelles, J. (1991) Report on the 1991 Re-logging of Diamond Drill Core and Review of available data on the Blackwater-Mt. Davidson Property. Unpublished internal report for Granges Inc.
- Cyr, J.B.; Pease, R.B. and Schroeter, T.G. (1984) Geology and Mineralization at Equity Silver Mine. Economic Geology, 79, 947-968.
- Harris, J.F. (1987) Petrographic Examination Mt. Davidson drill core samples. Unpublished Granges Inc. report, 18 pp.
- Haynes, L. (1990) Summary Report: Mt. Davidson Property. Unpublished Granges report, 19 pp, 6 figures.
- Haynes, L. (1990) Summary Report: Capoose Property. Unpublished Granges Inc. report, 2 vols., 10 plates.
- Leader, J.J. (1986) Technical Report on Blackwater-Davidson Property, Mount Davidson Area, Omineca Mining Division, B.C.
- Lumley, W.E. (1981) Geophysical Report Horizontal Loop EM Survey Deb 1 claim, Mt. Davidson area, Omineca Mining Division, B.C.
- Monger, J.W.H., Price R.A. and Tempelman-Kluit, D.J. (1982) Tectonic Accretion and the Origin of the two Major Metamorphic and Plutonic Belts in the Canadian Cordillera. Geology, Vol. 10, pp. 70-75.
- Madeisky, H. (1992) Blackwater-Davidson Project, Pearce Element Ratio (PER) Analysis. Unpublished internal report for Granges Inc.
- Sheldrake, R.F. (1981) Report on a Helicopter EM and Magnetometer Survey, Natalkuz Lake projects, Omineca Mining Division, B..C.
- Tipper, H.W. (1962) Map 1131A: Geology Nechako River, B.C. GSC Map.
- Tipper, H.W. (1963) Nechako River Map-area. GSC Memoir 324, 59 pp, 5 plates, one map.

Tipper, H.W.; Campbell, R.B.; Taylor, G.C. and Stott, D.F. (compilers) (1974) Parsnip River, Sheet 93; Geological Survey of Canada, Map 1424A, 1:1,000,000.

Weekes, S. (1986) Mt. Davidson Project

- White, G.E. (1980) Geophysical Report on a Vector Electro-Magnetometer Survey, Mt. Davidson Area, Omineca Mining Division, B.C.
- Wojdak, P.J. and Sinclair, A.J. (1984) Equity Silver Silver-Copper-Gold deposit: Alteration and Fluid Inclusion Studies. Economic Geology, 79, 969-990.
- Zbitnoff, G.W. (1983) Geochemical, Geophysical Report Pem claim, Omineca Mining Division, B.C.
- Zbitnoff, G.W. and Laite, A.L. (1988) Diamond Drilling Report on Pem Claim, Nechako Hills area, Omineca Mining Division, B.C.
- Zbitnoff, G.W. and Williams, J.J. (1985) Work Report on Pem Claim, Omineca Mining Division, B.C.

C:WP51\B-D\BLACKDAV.N26

APPENDIX I

STATEMENT OF EXPENDITURES

APPENDIX I

STATEMENT OF EXPENDITURES TO AUGUST 31, 1992

..

.

Geological Survey	\$ 22,979
Geophysical Survey (Pacific Geophysical Ltd.)	30,500
Linecutting and soil sampling	23,475
Accommodation in camp (Westar Timber Ltd.)	10,257
Analytical Costs (Acme Analytical Laboratories Ltd.)	14,136
Helicopter (Northern Mountain Helicopters)	4,757
Field Supplies (Deakin Equip., Neville Crosby Ltd.)	2,178
Equipment Rental (trucks, chain saws, radios) (Redhawk Rentals Ltd., Lone Trail Prospecting Ltd.)	7,668
Miscellaneous (mob-demob, travel, fuel, maps)	<u>\$ 8,027</u>
Total costs to August 31, 1992:	\$123,977

APPENDIX II

ROCK SAMPLE DESCRIPTIONS

.

■1 1

MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [ROCK SAMPLE TYPE:]] SOIL	[] OTHER	L		:
ROCK SAMPLE TYPE:	[] Сн		<u>-</u>			
GRAB [🖌] CHIP		ANNEL []	(SAMPLE WIDTH)	
OCCURRENCE SIZE: 2c)m (+) Exp	POSURE				
ROCK NAME: CHER-	TY ARGILLI	TE AND	SILTSTONE			
SAMPLE DESCRIPTION:			lock Forming Minerals, Min			
angillite and a in lighter - 4	<u>ailtatone.</u> L) ptv 107. Grad	fin - grand	pynhoti tu tope	ti	8998388998 94,409499 8 82,440,440
B		00/25SE			.	
DESCRIPTION BY:	G.A.			<u></u>		
ANALYSES: Au	Ag	As Cu	Othe	er		
Geochemical				<u> </u>		
Assay	<u></u>		<u> </u>	<u> </u>		

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

J

Icr

SAMPLE NO.:	TRAVERSE NO. AND/OR COLLECTOR:	LOCATION: PEM CLAIM DDH DAV-11		
24601	C.A.	82' (24.99m)	JULY 16/92	
MATERIAL SAMPLED: ROCK - OUTCROP { - FLOAT [] SILT []]	SOIL [] OTHER	CORE	
ROCK SAMPLE TYPE: GRAB [] CHI	LP [] CHANNEL	[] (SAMPLE WIDTH)	
OCCURRENCE SIZE:				
ROCK NAME: INT	ERMEDIATE FLOW	(?)		
SAMPLE DESCRIPTION	N: (If Rock, Include Colour, 7	exture, Rock Forming Minerals, Min	eralization, and Etc.)	
No sulphidu	to grunish - yr opparent.	ny fine - grained me	som from (?)	• •• • • • • • • • • • • • • • • • • •
			,	
·	· · · ·			
DESCRIPTION BY:	GA.			
ANALYSES:		<u>Oth</u> Cu	<u>er</u>	
Geochemical	Au Ag As	cu		
Assay			· · ·	
		к.		
WHOLE KOCK	+ THIN SECTION			
		· · · · · · · · · · · · · · · · · · ·]

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

SAMPLE NO.:	TRAVERSE NO.	LOCATION: DDH DAV-1		
24602	AND/OR COLLECTOR: C.A.	94 (28.65m) PEM CLAIM	JULY 16/92	
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [SOIL [] OTHER	Core	
ROCK SAMPLE TYPE: GRAB [-/] CHI	LP [] CHANNEL	[] (SAMPLE WIDTH)	
OCCURRENCE SIZE:				
ROCK NAME: DAG	LITIC TUFF (?)	- COUCE ZONE ?		
		Texture, Rock Forming Minerals, Mi		
<u>Silicified</u>	+ day altered.	Shrand to a day-	nich mille.	
to 2 mm	<u>Il que sulphides</u>	(1-22) in frach	us and mossie	น่าจากกระบบระบบระโดยสารสิทธิการจากกระบบระสร
		· · · · · · · · · · · · · · · · · · ·		
	·····	<u> </u>		
		·····		
DESCRIPTION BY:	с.,А.			
ANALYSES:	Au Ag As	<u>Oth</u> Cu	<u>ier</u>	
Geochemical				
Assay		<u> </u>	·	
When a Rock	AND THIN SEC	7 00		
		,,,,,		

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

SAMPLE NO.:	TRAVERSE NO. AND/OR COLLECTOR:	LOCATION: DAV- /	DATE COLLECTED:	
24603	G.A.	115' (35.05m) PEM CLAIM	JULY 16/92	
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [SOIL [] OTHER	CORE	
ROCK SAMPLE TYPE: GRAB [] CH	IP [] CHANNEL	[] (SAMPLE WIDTH)	
OCCURRENCE SIZE:				
ROCK NAME: ANT	DESITE FLOW (?)		
SAMPLE DESCRIPTIO		Texture, Rock Forming Minerals, M		
Dank le	rownish - grey to	blue - quy fine -	granned massive	
node. Lusa	1 1 11	602.		applemility and for constraints of the
·		_	· · · · · · · · · · · · · · · · · · ·	
·				
DESCRIPTION BY:		<u></u>		
	G.A.		her	
ANALYSES:	Au Ag As	Cu	<u>IICX</u>	
Geochemical				
Assay			·	

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

SAMPLE NO.:	TRAVERSE NO.	LOCATION: DAV- !!	DATE COLLECTED:
24604	AND/OR COLLECTOR: G.A.	144' (43.89m) PEM CLAIM	JULY 16/9:
MATERIAL SAMPLED: ROCK OUTCROP [- FLOAT [] SILT []]	SOIL [] OTHER	GRE
ROCK SAMPLE TYPE: GRAB [~] CHI	LP [] CHANNEL	[] (SAMPLE WIDTH)
OCCURRENCE SIZE:			
ROCK NAME: FE	LSIC TUFF TO	LAPILLI TUFF	
		Texture, Rock Forming Minerals, Min	
Midium 1	nown clay - rich	suble. chy atter	groundmass
with fragm	te of fine-grai	ind fileic volcomic	material to
1 cm (none)	, 0.5-2% dis		_ sphalinite
through t.			•
			,
· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>
DESCRIPTION BY:	G.A.		
		Othe	er
ANALYSES:	Au Ag As	Cu	
Geochemical	<u> </u>		
Assay			
WHOLE ROCK	AND THIN SECT	៱៰៷	

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

J

SAMPLE NO.: 24605	TRAVERSE NO AND/OR COLL G.A.	ECTOR:	1	58.83 m)	DATE COLLECTED:
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [other <u> </u>	ORZ
ROCK SAMPLE TYPE: GRAB [] CH1	P[]	CHANNEL	[] (SAM	PLE WIDTH)
OCCURRENCE SIZE:					
ROCK NAME:	UTERMED ATE	FLOW		· · · · · · · · · · · · · · · · · · ·	
SAMPLE DESCRIPTION	1: (If Rock, Inclu	de Colour, 1	exture, Rock Fo	rming Minerals, Mi	ineralization, and Etc.)
Bulatinhy	massine ma fragm	danke	guiniah-	guy an	heite to
duite S	m fragm	tel s	ectrine	2-47.	disseminated
and froature	- related	prite	· •		
<u> </u>					
· · · · · · · · · · · · · · · · · · ·	<u> </u>			<u>.</u>	
<u></u>			<u>,,,</u>	<u> </u>	
DESCRIPTION BY:	G.A.				
ANALYSES:	Au Ag	As	Cu	<u>0t</u> 1	her
Geochemical					
Assay				<u> </u>	
WHOLE ROCK	+ THIN	SECTION	J		

)

J

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

WR, TS

ه، در ارتوبوه، محرس

W.R. ONLY

19₅₅

estate entransition in the

. .

SAMPLE NO.: 24606	TRAVERSE NO. AND/OR COLLECT C.A.	ror: 2	CATION: DAV Log- 215' PEM CLAIM	· 11	DATE COLLECTED:
ATERIAL SAMPLED: COCK - OUTCROP [- FLOAT [] SILT []] SOIL	[] отнеі	x	CORE
ROCK SAMPLE TYPE: GRAB [] CH	LP [] CH	ANNEL []	(SAMPLE WID	гн <u>с</u> ́	<u>()</u>)
CCURRENCE SIZE:	UNIT 203.5-	226	Au	ZONE	<u> </u>
ROCK NAME: FE	SIC TUFF	To LAPI	LLI TUF	<u>F</u>	
	<u>N:</u> (If Rock, Include) unich - gruz				
	clay , quarty				
guz silica	- rich mate	mal. Son	<u>m ponte c</u>	harly	prograntal
	d - brown sph				
DESCRIPTION BY:	G.A.				<u></u>
ANALYSES:	Au Ag	As Cu		Othe	r
Geochemical					
WHOLE ROCK					

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

anasimphy maloophicanol

LOCATION: DAV-11 DATE COLLECTED: SAMPLE NO .: TRAVERSE NO. TS. - 263' (80.6m) WR - 263-271 (80-82.6) AND/OR COLLECTOR: JULY 16/92 24607 G.A. PEM CLAIM MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [SOIL [] OTHER CORE SILT [] J] ROCK SAMPLE TYPE: GRAB CHIP { } CHANNEL { } (SAMPLE WIDTH OCCURRENCE SIZE: UNIT 226-276 (68.88- 84.12. ROCK NAME: INTERMEDIATE TO FELSIC LAPILLI TUFF SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc. UNIT. haft VERY DISTINCTIVE FRACMENTAL my toim EL 32 DESCRIPTION BY: G.A. Other Çu ANALYSES: Au Ag As Geochemical Assay WHOLE ROCK + THIN SECTION

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

WHOLE POCK + THIN SECTION

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION DATE COLLECTED: LOCATION: DAV-H TRAVERSE NO. SAMPLE NO.: TS - 318' (96.93m) AND/OR COLLECTOR: JULY 16/92 24608 WR - 318- 326 (96-93-99.36-G.A. PEM CLAIM MATERIAL SAMPLED: SOIL [] OTHER CORF SILT [] ROCK - OUTCROP [1 - FLOAT) ROCK SAMPLE TYPE: (2.43m) CORF CHIP [] CHANNEL [] (SAMPLE WIDTH GRAB [🖌] OCCURRENCE SIZE: 276-343 (UNIT 84.12 - 104.55m) LAPILLI ROCK NAME: (FELSIE LAPIL, 3) FELSIC, TUFF ALTERED INTERMEDIATE 10 SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc. of clar gu gramed grow C 9 0 angeneration and the analysis and the 2 DESCRIPTION BY: G.A Other Cu ANALYSES: Ag As Au Geochemical Assay WHOLE POCK + THIN SECTION

)

LOCATION: DAV-11 T.S. - 349' (106.38-) WR - 343-354' (104.55-107.9) DATE COLLECTED: TRAVERSE NO. SAMPLE NO .: AND/OR COLLECTOR: 24609 JULY 16/92 G.A. CLAIM PEM MATERIAL SAMPLED: ROCK – OUTCROP [– FLOAT [SILT [] SOIL [] OTHER CORE]] ROCK SAMPLE TYPE: GRAB [🗸] CHIP [] CHANNEL [] (SAMPLE WIDTH OCCURRENCE SIZE: 3.35-343'- 354' (104.55- 107.90m = UNIT ROCK NAME: INTERMEDIATE LAPILLI TUFF SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc. Light guy 407. d gramed m da kana na pangangan 🖓 🛊 Pyn 4 0.3-1 cm DESCRIPTION BY: G.A Other ANALYSES: Au Ag As Cu Geochemical Assay WHOLE ROCK AND THIN SECTION

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

SAMPLE NO.:	TRAVERSE NO. AND/OR COLLECTOR:	LOCATION: 'DAV. 11 W.R 354-364'	DATE COLLECTED:
24610	G.A.	PEM CLAIM	JULY 16/92
MATERIAL SAMPLED: NOCK - OUTCROP [- FLOAT [SOIL [] OTHER	CORTE
ROCK SAMPLE TYPE: GRAB [1 CHII	P [] CHANNEL	[] (SAMPLE WIDTH)
CCURRENCE SIZE:	54'-364' (11	07.90- 110.95 m = 3	. 05 m)
ROCK NAME: FELS	IC TUFF	(GOLD ZONE)	
SAMPLE DESCRIPTION	: (If Rock, Include Colour,	Texture, Rock Forming Minerals, Mi	neralization, and Etc.
- Gradational C	ontact with above.	. Light quinish - q	my silicons,
day a pidate	altered with	vagne fragmente to	F. I. am. 27.
signite and	1-29 guy sulphi	ide tree pudamin	antly along
		esiminated sphalmite.	
Inolan . Faul			ď
		<u>,</u>	· · · · · · · · · · · · · · · · · · ·
(POLISHED THI	N SECTION DESOR	BED BY HAMERIS, 19	87)
		<u></u>	
DESCRIPTION BY:	C- A		
	1	<u>0tl</u>	ner
ANALYSES: A	u Ag As	Cu	
Geochemical			
Assay			
(WHOLE Rock	.)		

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

)

LOCATION: DAV - 11 TRAVERSE NO. DATE COLLECTED: SAMPLE NO .: THIN SECTION: 374.5' (14.15.) WR: 368-376'(112.17-14 (1)) AND/OR COLLECTOR: JULY 16/92 24611 G.A MATERIAL SAMPLED: OTHER CORE ROCK - OUTCROP [SILT [] SOIL []] - FLOAT ì ROCK SAMPLE TYPE: GRAB CHANNEL [] (SAMPLE WIDTH CHIP [] OCCURRENCE SIZE: (110.95 - 114.60 364-395 > 3.66 ~ UNIT ROCK NAME: (LAPILLI ?) MAFIC TO INTERMEDIATE FLOW SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) - In in - ground and amy oa 1-0 w 5 2 . DESCRIPTION BY: G.A Other ANALYSES: Au Ag As Çu Geochemical Assay WHOLE ROCK AND THIN SECTION

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

WR, TS

1983-1993-1993-1995-1997-1997-1997-1998

)

)

LOCATION: DAY !! SAMPLE NO.: TRAVERSE NO. DATE COLLECTED: T.S. - 420' (128.02m) W.R. - 406-420 (123.75-12 Prim CLAIM AND/OR COLLECTOR: oz) 24612 G.A. JULY 16/92 MATERIAL SAMPLED: CORF [] SOIL [] OTHER ROCK – OUTCROP [SILT - FLOAT [1 ROCK SAMPLE TYPE: GRAB CHIP [] CHANNEL [] (SAMPLE WIDTH OCCURRENCE SIZE: 395-457 EN.H. UNIT 120.40m -139.29- E.D.14. ROCK NAME: FELSIC LAPILLI TUFF SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc. t quy Ligh <u>mffin</u> Con quart fragments d and the state of the Pm 9. Cor DESCRIPTION BY: G A Other ANALYSES: Cu Au Ag As Geochemical Assay WHOLE AND THIN SECTION Poch

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

٦

				-
SAMPLE NO.:	TRAVERSE NO. AND/OR COLLECTOR:	LOCATION: - 146 ON KLUSK	DATE COLLECTED:	
24613	G.A.	Porto	JULY 18/92	
		(NOT ON CLAIM BL	-OCK)	ie.
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [SOIL [] OTHER		
ROCK SAMPLE TYPE: GRAB [1/] CH		L [] (SAMPLE WIDT	н)	
OCCURRENCE SIZE:	SEVERAL MATRES	(+) THICK	······································	
ROCK NAME:	TERMEDIATE TO THE	LSIC TUFF (?)	-
SAMPLE DESCRIPTIO	<u>N:</u> (If Rock, Include Colour,	. Texture, Rock Forming Miner	als, Mineralization, and Etc.)	2
hight grus	to blue-gray	silicione milium.	grained tiff	
		my fine- grained		2429429403034252694,~25423436295
(tuff?).	2-5% dissiminate	1 pynhotite. 3.	- • • • ,	
stringen up	to 2 mm pan	alled to bedding.	Stranghy gossener	
Galilione si	Il crops out ~	manley. Could be	a contact mundiget	
			<u></u>	
DESCRIPTION BY:	C- A .			
			Other	
	Au Ag As	Cu		
Geochemical			· · · · · · · · · · · · · · · · · · ·	
Assay				
4				1

SAMPLE NO.:	TRAVERSE NO. AND/OR COLLECTOR:	LOCATION:	DATE COLLECTED:	
24614	C-A.	PEN CLAIM	July 18/92	
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [*] SILT [] *] SUBOUTCHOP	SOIL [] OTHER		
ROCK SAMPLE TYPE: GRAB [/] CHI	LP [] CHANNEL	[] (SAMPLE WIDTH _)	
OCCURRENCE SIZE:	BLOCK ~ 30 mm x 2	ocm × 20cm		
ROCK NAME: F	LOW-BANDED RHY	OLITE		
SAMPLE DESCRIPTION	N: (If Rock, Include Colour,	Texture, Rock Forming Minerals	, Mineralization, and Etc.	
Angular	boat non some	Light belie -	guy thinky	-
laminated f	low banded ships	lite. Manganese	stand	-กร์เรียงสะบบรรณะเกณะกระสรรษศาสตร
1-270 dissus	minuted sulphide :			-
	- guy andere (and	inopynte)		-
	- guy prisma as	I migular massice	(4)	-
	- trace dark n	the perfect change	<u>.</u>	
	Marie anne M	a - mour september	<u> </u>	1
DESCRIPTION BY:	С-А.			
			Other	
ANALYSES: Geochemical	Au Ag As	Cu		
Assay			······································	
			·	
				- -

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

)

100

÷

)

)

)

SAMPLE NO.:	TRAVERSE NO AND/OR COLL		LOCATION: Access Roa	ON PROPERTY	DATE COLLECTED:
24615			· · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JULY 19
AATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [🗸] SILT	[]			
ROCK SAMPLE TYPE: GRAB [/] CH		CHANNEL	[] (SAMPI	LE WIDTH)
OCCURRENCE SIZE:	75m 13000	sure.			
ROCK NAME: R	HYOLITE FLO		INTRUSIO	<u>n</u>	
					eralization, and Etc.
Monganice	stained .	white	- hystite	flow on	intrusion
Musice fin	- grained	ground 3-49	. limenit	10% 1	intrusión. 1-2 min after limite
ulphides.	0			, ,	0
DESCRIPTION BY:	G-A.				
ANALYSES:	Au Ag	As	Cu	Othe	er
Geochemical	<u> </u>			<u> </u>	
Assay			. <u> </u>	,	·

100

1

an manipus and the main and a second second

MATERIAL SAMPLED: ROCK - OUTCROP [] SILT [] SOIL [] OTHER - FLOAT [/] NEAR SOURCE ROCK SAMPLE TYPE: GRAB [/] CHIP [] CHANNEL [] (SAMPLE WIDTH OCCURRENCE SIZE: ROCK NAME: COARSE - CRAINED FELSIC TUFF SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, Light blue - any to the annual - any fine - around infinite and the annual to the angular of	ECTED: 1 <i>9 /9<u>2</u></i>
GRAB [1] CHIP [] CHANNEL [] (SAMPLE WIDTH	
ROCK NAME: COARSE _ CRAINED FELSIC TUFF SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, Light Idue - gruy to the grunish - gruy fine - granned idicions groundmoss with white day - altered angular frequents to 3 mm (routy to 1 cm). Manganus and dimentic stained = 1.7 fine - grained dissummated pupits, 217. dale frown metallic minural with good charage (probable sphaluite) in massients 2 mm. Trace dash gruy sulph DESCRIPTION BY: G.A. ANALYSES: Au Ag As Cu Geochemical)
CAASE - CRAINED FELSIC (UFF SAMPLE DESCRIPTION: (IF Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, Light blue - grey to (t) grunish - grey fine - ground inclusions groundmans with white clay - altred angular fragments to 3 mm (nowly to 1 cm). Manganue and limentic stained = (7. fine - grained dissummated pryrite, >17. dashe frown metallic mineral with good clawroge (probal sophaluite) in masses to 2 mm. Traces dash grey sulph DESCRIPTION BY: G.A. ANALYSES: Au Ag As Cu Geochemical	
hight blue grey to the grunich grey fine grand allieure groundmons with white day - altered angular frequents to 3 mm (neuty to 1 cm). Manganer and liments stand. = 17 fine grained disseminated prysite, >17. dark frown metallic minued with good chowage (probable sphaluite) in masses to 2 mm. Trace dark grey sulph DESCRIPTION BY: G.A. ANALYSES: Au Ag As Cu Geochemical	
iliciona groundmons with white day- altered angular fragments to 3 mm (randy to 1 cm). Manganer and limentie stained = 17. fine- grained disseminated pupite, >17. darle frown metallic minued with good charage (probable sphalinite) in massing to 2 mm. Trace dark grey sulph DESCRIPTION BY: C.A. ANALYSES: Au Ag As Cu Geochemical	and Etc.
iliciana groundmoss with white day- altered angular fragments to 3 mm (randy to 1 cm). Manganer and limentie stained. = 17. fine- ground disseminated pupite, >17. darle from mitallie minued with good charage (probable sphalmite) in masses to 2 mm. Trace dark grey sulph DESCRIPTION BY: G.A. ANALYSES: Au Ag As Cu Geochemical	
fragmenta to 3 mm (rouly to 1 cm). Manganes and limentie stained = 17. fine-grained dissummated pupile, >17. dade frown metallie mineral with good charage (probable sphaluite) in masses to 2 mm. Trace dark guy sulph DESCRIPTION BY: G.A. ANALYSES: Au Ag As Cu Geochemical	
liminite stainid. = 17. fine-grained dissuminated pupite, >17. darle frown metallic minued with good chourage (probal sphalmite) in massiente 2 mm. Trace dark guy sulph DESCRIPTION BY: C.A. ANALYSES: Au Ag As Cu Geochemical	
≥17. darle frourn mitallie minural with good charrage (probal sphalmite) in massie to 2 mm. Trace dark guy sulph DESCRIPTION BY: C.A. ANALYSES: Au Ag As Cu Geochemical	
sphalmite) in massie to 2 mm. Trace dash guy sulph DESCRIPTION BY: C.A. ANALYSES: Au Ag As Cu Geochemical	
DESCRIPTION BY: C.A. ANALYSES: Au Ag As Cu Geochemical	Jy_
G.A. ANALYSES: Au Ag As Cu Geochemical	<u></u>
G.A. Other ANALYSES: Au Ag As Cu Geochemical	
ANALYSES: Au Ag As Cu Geochemical	
Geochemical	
Assay	
	<u> </u>

)

)

)

. Therefore and the second structure of the second s

)

)

ROCK - OUTCROP [x] SILT [] SOIL [] OTHER <u>SUDDUTCROP</u> - FLOAT [4] ROCK SAMPLE TYPE: GRAB [\] CHIP [] CHANNEL [] (SAMPLE WIDTH) OCCURRENCE SIZE: ROCK NAME: <u>RHYOL, TE</u> <u>TUPF</u> SAMPLE DESCRIPTION: (IF Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) Phydik crass-grained to legilli triff. <u>Bun-guy</u> fine-grained Allerine grandmase with 307. <i>Imm-2cm</i> aregular angular which <i>haddinitized frequente</i> . <u>Some</u> <i>flux</i> - bunding . <i>himonitic lunt m</i> grant sulfplick . DESCRIPTION BY: <u>C-A</u> . ANALYSES: Au Ag As Cu <u>Geochemical</u>						-
MATERIAL SAMPLED: MATERIAL SAMPLED: RACK - OUTCROP [*] SILT [] SOIL [] OTHER <u>SUDDUTCADP</u> - FLOAT [#] ROCK SAMPLE TYPE: GRAB [1 CHIP [] CHANNEL [] (SAMPLE WIDTH) OCCURRENCE SIZE: ROCK NAME: <u>RHYOL, FE</u> <u>TUPE</u> ROCK NAME: <u>RHYOL, FE</u> <u>TUPE</u> SAMPLE <u>DESCRIPTION</u> : (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) <u>Physick</u> <u>Crossal granulates</u> with <u>307</u> , <i>Imm</i> - <u>gran</u> <i>fim</i> - granul Alleines granularise with <u>307</u> , <i>Imm</i> - <u>2cm</u> angular angular which hashinityed fragmente. <u>Some</u> <i>flype</i> - bending . <i>Limenitic lust me</i> appaint sulphide . DESCRIPTION BY: <u>C.A.</u> ANALYSES: <u>Au</u> <u>Ag</u> <u>As</u> <u>Cu</u> <u>Geochemical</u>			TRAIL TO	DAVE CLAIM		
ROCK - OUTCROP [x] SILT [] SOIL [] OTHER <u>SUDDUTCROP</u> - FLOAT [4] ROCK SAMPLE TYPE: GRAB [\] CHIP [] CHANNEL [] (SAMPLE WIDTH) OCCURRENCE SIZE: ROCK NAME: <u>RHYOL, TE</u> <u>TUPF</u> SAMPLE DESCRIPTION: (IF Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) Phydik crass-grained to legilli triff. <u>Bun-guy</u> fine-grained Allerine grandmase with 307. <i>Imm-2cm</i> aregular angular which <i>haddinitized frequente</i> . <u>Some</u> <i>flux</i> - bunding . <i>himonitic lunt m</i> grant sulfplick . DESCRIPTION BY: <u>C-A</u> . ANALYSES: Au Ag As Cu <u>Geochemical</u>	24617		PENC	LAIM	JULY 19/92	-
GRAB [) CHIP [] CHANNEL [] (SAMPLE WIDTH) OCCURRENCE SIZE: RUCK NAME: RH70L, TE TUPF SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) Phydik Course- grained to langelan angular angular bending himmitic langelan angular bending fine- bending course course description BY: C-A ANALYSES: Au Ag As Cu		x] SILT []	SOIL []	other <u>5</u> J	BONTCROP	
RUCK NAME: <u>RH70LITE</u> <u>TUFF</u> <u>SAMPLE DESCRIPTION:</u> (If Rock, Include Colour, Texture, Rock Forming Mineralis, Mineralization, and Etc.) <u>Physlik conser-grained to legisli tuff.</u> <u>Bulu-gray</u> <u>fine-grained Ailicium grandmess with 307. 1mm - 2cm</u> <u>angular angular which bestinitzed fragmente</u> . <u>Some</u> <u>flavo-bending</u> . <u>himonitic but ne aggravet subfide</u> . <u>DESCRIPTION BY:</u> <u>C-A</u> . <u>ANALYSES:</u> <u>Au</u> <u>Ag</u> <u>As</u> <u>Cu</u> <u>Other</u>	ROCK SAMPLE TYPE: GRAB [/] CHI		[] (SAM	PLE WIDTH)	
NATION: (IF Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) SAMPLE DESCRIPTION: (IF Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) Phydite conser-grained to legislie tuff. Jine - grained Aileinen groundnesse with 307. Jonn - 2 cm angular angular which besolimitized fragmente. Some flace - bending himonitic besolimitized fragmente. Description BY: C.A. ANALYSES: Au Ag As Geochemical	OCCURRENCE SIZE:					
Phydite come grand to logilli tuff. Blue-guy fine-grand Ailicians grandmess with 30% 1mm - 2cm angular angular white bashinitized fragmente. Some flew-banding himonitic but no appoint sulphiles. DESCRIPTION BY: G.A. ANALYSES: Au Ag As Cu Geochemical	ROCK NAME:	RHYOL, TE TUFF		·····		
fine - graind Ailicians grandmass with 30% / mm - 2cm angular angular which basdinitized fragmente. Some flow - bending . himonitic but no appoint sulphide . DESCRIPTION BY: C.A. ANALYSES: Au Ag As Cu Geochemical	SAMPLE DESCRIPTIO	N: (If Rock, Include Colour,	Texture, Rock Fo	rming Minerals, Min	eralization, and Etc.	2
angular angular which bastinitized fragments. Some flow - banding . himonitic but ne appoint sulphide . DESCRIPTION BY: C.A. ANALYSES: Au Ag As Cu Other Geochemical	Physlite 1.				Blue-quy	
flow - banking . himonitic but no apparent subplide . DESCRIPTION BY: C.A. ANALYSES: Au Ag As Cu Geochemical	ano las an	· · · · · ·	1.5 . 1. 5			
Geochemical Other	flow - band	ing . himmitic 1	unt me .	U U	phile .	-
Geochemical Other					,	
Geochemical Other					······	-
Geochemical Other					·	
ANALYSES: Au Ag As Cu Geochemical	DESCRIPTION BY:	G A .				
	ANALYSES:		Cu	Othe	<u>er</u>	
Assay	Geochemical					
	Assay				·	

SAMPLE NO.:	TRAVERSE NO.	LOCATION: ON POAD,	DATE COLLECTED:	
_	AND/OR COLLECTOR:	9+08 w, 0+505		
24618	G.A.	PEN CLAIM	JULY 20/92	
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [] SILT []	SOIL [] OTHER		
ROCK SAMPLE TYPE: GRAB [] CHI	LP [] CHANNEL	[] (SAMPLE WIDTH)	
OCCURRENCE SIZE:				
ROCK NAME: FEL	SIC LAPILLI 7			·
SAMPLE DESCRIPTION	N: (If Rock, Include Colour,	Texture, Rock Forming Minerals, Mi	neralization, and Etc.)	
Abundant	angular gossenous			
Falsis lasil		me banded pragment	te to 5mm	
i di li	in a fine- arain		brown matrix.	anisan dahadi pangharang kangkarang dalam dahada
e +		lay attend but m	t had One	
Fragmente n			with good draw	¢.
fragment ~1	.5 cm wide with	A	aila grey mineral	
Alao a medium	- gruy minut with	- no chavage (ansu	- I	
Most fle	out in and mange	ance and timonite	stamed but	
only 2 price	(24618+19) with	significant sulphidis.	····	
DESCRIPTION BY:				
ANALYSES:	Au Ag As	Oth Cu	ner	
Geochemical				
Assay				
		· · · · · · · · · · · · · · · · · · ·		
1				
}				

)

)

·)

SAMPLE NO.:	TRAVERSE NO. AND/OR COLLECT	LOCAT FOR: 9+88w	ION: ON POAD, O+505,	DATE COLLECTED:]
24619	G.A.		PEM CLAIM	JULY 20/92	
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [] SILT [/]] SOIL [] OTHER		
ROCK SAMPLE TYPE: Grab [🗸] Ch'		IANNEL [] (SAMPLE WIDTH)	
OCCURRENCE SIZE:					
ROCK NAME:	ELSIC VOLCANI	c Pock			
SAMPLE DESCRIPTIO	<u>N:</u> (If Rock, Include (k Forming Minerals, Mi		
Midium lu	hur gung fime	υ,	ystelling film	whenie	4
of fildspon and		107. dissum	unt. Looks lit	a amaggingati	19999999999999999999999999999999999999
pyrite and a	- grug minud				
DESCRIPTION BY:					
	С.Д.	· <u></u>	Oth	er	
	Au Ag	As Cu			
Geochemical Assay				······································	
	·		<u> </u>		
					J

)

)

)

100

	The HEROCE NO	LOCATION	DATE COLLECTED	7
SAMPLE NO.: (0492-21)	TRAVERSE NO. AND/OR COLLECTOR:		DATE COLLECTED:	
24620	G.A.	·		
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [*] SILT []] <u>* Subarthop</u>	SOIL [] 07	HER	
ROCK SAMPLE TYPE:				
GRAB [V] CHI	LP [] CHANN	EL [] (SAMPLE W	IDTH	
OCCURRENCE SIZE:				
ROCK NAME: R	HYOLITE LAPILLI	TUFF		-
SAMPLE DESCRIPTION	N: (If Rock, Include Colou	r, Texture, Rock Forming N	linerals, Mineralization, and Etc	.)
hight grung	fine- grained a	iliciono groundances	hoting white	
clay-altered -1-2 cm). T	flow-bonded shy	solite fragmente	to 10 cm (average	station and the station and an and a station of the
in sotiline to	2 cm. Sponde	rally goosanous.		
Gannet	commonly myloci	g filin frage	monto in This area.	-
			· · · · · · · · · · · · · · · · · · ·	-
DESCRIPTION BY:	C 1			
	G.A.		Other	-
ANALYSES:	Au Ag As	Cu		
Geochemical				-
Assay	<u> </u>		· · · · · · · · · · · · · · · · · · ·	-
	*			

TS

)

WR, TS

SAMPLE NO.:	TRAVERSE NO. AND/OR COLLECTOR:	LOCATION: SOUTH OF CONTROL LAKE OFF	DATE COLLECTED:	
24621	G.A.	CLAIM BLOCK (WOFFMUI)	JULY 22/92	
MATERIAL SAMPLED: ROCK — OUTCROP [→ FLOAT [√] SILT []]]	SOIL () OTHER		
ROCK SAMPLE TYPE: GRAB [] CH		[] (SAMPLE WIDTH)	
OCCURRENCE SIZE:				
ROCK NAME:	TERMEDIATE FLOW TO	SPECCIA ?, TUFF ?		
SAMPLE DESCRIPTIO	<u>N:</u> (If Rock, Include Colour, T	exture, Rock Forming Minerals, Mine	eralization, and Etc.)	
Inhomogeneon	a, confiring outerop	0.0	marson himitite	
	man groundmose me	ith 15% sublided of	uldepon prisme	ารถึงสาวให้เหลือสาวการ
ande lamina	0 0	nding . Some questy - f	illed sings	
with jaopen.	nime (2 min - 2 cm		pochid	
Pirer sunt	for this aleting	a with intradictal	usa of tuff.	
		0.0		
DESCRIPTION BY:	G.A.	·		
ANALYSES:	Au Ag As	Cu	<u>r</u>	
Geochemical			·····	•
Assay		<u> </u>		
WHOLE ROCI	K, THIN SECTION			
	,			
1				

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

LOCATION: Noam+ of DATE COLLECTED: SAMPLE NO.: TRAVERSE NO. AND/OR COLLECTOR: CONTROL LANG. OFF JULY 23/92 CLAIM BLOCK W. OF FAW 1 24622 G-A MATERIAL SAMPLED: ROCK - OUTCROP [🗸] SILT [] SOIL [] OTHER - FLOAT] [ROCK SAMPLE TYPE: CHIP [] CHANNEL [] (SAMPLE WIDTH GRAB [1 OCCURRENCE SIZE: ROCK NAME: QUARTZ- FELDSPAR CRYSTIL TO LITHIC TUFF SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) crystal tall metric Compre Mu c. grainia trize 257. 51 <1-2mm 15% curs 20 10 たんに 30 m typ 5 su no DESCRIPTION BY: M It Davideon Ving distinct ūt. 4 GA. Other ANALYSES: Au Ag As Cu Geochemical Assay WHOLF ROCK, THIN SECTION.

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

WR, TS

and the second s

)

)

}

SAMPLE NO.:	TRAVERSE NO.	LOCATION:	ON DAVIDSON	DATE COLLECTE	ED:
(CA92-60) CA92-23	AND/OR COLLECTOR		. UP STREAM . KEN CLAIM	JULY 2	5
24623 MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [• ·	SOIL []	OTHER	I	
ROCK SAMPLE TYPE: GRAB [🗸] CH		INEL [] (SAMF	PLE WIDTH		
OCCURRENCE SIZE:					
ROCK NAME: SE-	DIMENTARY BR	ECCIA ?			
SAMPLE DESCRIPTIC	N: (If Rock, Include Col	our, Texture, Rock For	ming Minerals, Min	eralization, and	Etc.)
Milium gru	z milium - grai	nd fildepon c	upted tiff	(?) mit	K.
angular bloc	he and maillite	fragmente to	Flan (ar	· 0 ·	
Some aphan	the fine - grain	1 1 0	pyrite. T	0	4
Could be son	t d'a main	and zone.	papier :	m roue	
	· • • • • • • • • • •	<i></i>			
			<u> </u>		
DESCRIPTION BY:	GA .			<u></u>	
ANALYSES:	Au Ag A	s Cu	Othe	er	
Geochemical	nu ng n	5 UU			
Assay _					

)

)

ICP

SAMPLE NO .: 24624	TRAVERSE AND/OR CO	LLECTOR:	SOUTH OF	IN CREEK DAVIDSON CR.	DATE COL July		
MATERIAL SAMPLEI ROCK – OUTCROP – FLOAT):	<u>A.</u> []	SOIL []	OTHER			
ROCK SAMPLE TYPE GRAB [✓] C		CHANNEL	[] (SAMP	LE WIDTH)	
OCCURRENCE SIZE:	SUBROUNDED.	BAULDER					
ROCK NAME:	FELSIC LA			an a			
SAMPLE DESCRIPTI	LON: (IF Rock, Inc charty ful stain						
margonise	stain						евевере верение и политерия.
· · · · · · · · · · · · · · · · · · ·			······································				
			. <u>.</u>	······			
					-		
DESCRIPTION BY:	G.A.			· · · · · · · · · · · · · · · · · · ·			
ANALYSES: Geochemical	Au Ag	As	Cu	<u>Othe</u>	<u>r</u>		
Assay _				·			
							19

)

SAMPLE NO.: 24625	TRAVERSE NO. AND/OR COLLECTOR: CA.		: RIDGE NW PAVIDSON, 5 CLAIM	DATE COLLECTED: DATE COLLECTED: Auc. B, '92	
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [] SILT []	SOIL []	OTHER		M.
ROCK SAMPLE TYPE: GRAB [🗸] CHI	P [] CHANNEL	[] (SAM	PLE WIDTH)	
OCCURRENCE SIZE:	7-8m WIDE Zo,	N F			
ROCK NAME: ALT	TERED QUARTZ - 1	FELDSPAR	CRYSTAL	TURF	
	N: (If Rock, Include Colour,				
guy; probabilizon on fracture and	<u>a bulinite alters</u> focu. Some ung	tin . The	<u>, strujus</u>	himonitis in ana may	~~~@## ₽₽ ~~ \$6688986566 079
	- Pauring				
DESCRIPTION BY:	GA .				
ANALYSES: A Geochemical Assay	Au Ag As	Cu	<u>Oth</u>	<u>er</u>	

)

)

)

SAMPLE NO.: 24626	TRAVERSE NO. AND/OR COLLECTOR: C.A.	LOCATION: NORTH FACIN SLOPE OFF NW RID OFF MT. DAVIDSON FAW 2 CLAIM	DATE COLLECTED: $G \in A \cup G$, 1992	
	/] SILT []			
ROCK SAMPLE TYPE: GRAB [🗸] CHI	LP [] CHANNE	L [] (SAMPLE WIDTH)	
OCCURRENCE SIZE:	300m zone of	alteration		
POCK NAME	5 1	ELDSPAR CRYSTAL TU	<u>F</u> F	
SAMPLE DESCRIPTION	N: (If Rock, Include Colour	, Texture, Rock Forming Minerals,	Mineralization, and Etc.)	
Interesty al	tund quarty - fr	Hopen augstal tuff.	Only 10-15%	
1 11 1	1 2	no maltined, hight		ana na aominina ang ang ang ang ang ang ang ang ang a
1	U	ome fildepan chanage	/	
		a of light grun		
altration. Sp	andre mangament	and limonity stame	ig . Dr. sulflind	ee.
diamont.				
		······································	<u> </u>	
DESCRIPTION BY:	G.A.	,, _,, _		
ANALYSES:	Au Ag As	<u>Cu</u>	Other	
Geochemical	nd ng no			
Assay				
1				
L				l

)

)

)

(CP

SAMPLE NO.: 24627	TRAVERSE NO. AND/OR COLLECTOR: G.A.	LOCATION: As 24626 FAW 2 CLA	1 1. 0 1997	
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [/] SILT []]	SOIL { } OTHER	ι	
ROCK SAMPLE TYPE: GRAB [~] CHI	.P [] CHANNE	CL [] (SAMPLE WIDT	сн)	
OCCURRENCE SIZE:	m× 300 m alter	ation zone		
ROCK NAME: ALT	ERED QUARTZ-	FELDSPAR CRYST	ML_TUFF	
			rals, Mineralization, and Etc.	
A. 24626.	Propylitic patel	is probably altered	littre fragmente.	
				entropogiajang <mark>apagan</mark> opoga
		·····		
DESCRIPTION BY:				
	GA.		Other	
ANALYSES: A	Au Ag As	Cu		
Assay				

)

)

)

ICP

SAMPLE NO.: 24623	TRAVERSE NO AND/OR COLLI G-A.	ECTOR:	LOCATION: As 24626 Fm 2 CL	DATE COLL		
MATERIAL SAMPLED ROCK - OUTCROP (- FLOAT (i]so	DIL [] OTHER			
ROCK SAMPLE TYPE GRAB [] CH		CHANNEL (] (SAMPLE WIDTH)	
occurrence size:	00m× 300m	ALTERA	TON ZONE			
	2		LDSPAR CRYSTAL			
SAMPLE DESCRIPTIO	<u>)N:</u> (If Rock, Includ	e Colour, Text	ture, Rock Forming Minerals	, Mineralization,	and Etc.)	
Ac 24620	>					
						. And names of the second s
				<u> </u>		
	····					
DESCRIPTION BY:	C.A.					
ANALYSES:	Au Ag	As	Cu	Other		
Geochemical		<u> </u>				
Assay		<u> </u>		<u></u>		

-

)

)

J

LOCATION: NORTH SIDE OF NW RIDGE OFF MT. DAVIDSON TRAVERSE NO. DATE COLLECTED: SAMPLE NO.: AND/OR COLLECTOR: 24629 Auc. 9/92 G.A. FAW 3 CLAIM MATERIAL SAMPLED: SILT [] SOIL [] OTHER _____ ROCK - OUTCROP [/] - FLOAT ROCK SAMPLE TYPE: CHIP [] CHANNEL [] (SAMPLE WIDTH _) GRAB [,/] OCCURRENCE SIZE: SPORADIC 100m WIDE ALTERATION ZONE ROCK NAME: ALTERED QUARTZ - FELDSPAR CRYSTAL TUFF SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) basiniti alteration. Mr. stain. No sulphide As 24626. Strong DESCRIPTION BY: C.A Other Cu ANALYSES: As Au Ag Geochemical Assay

)

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

المعتقد المحيول المتباطع المحيوم والمحيد والمحتين المحتوي

LOCATION: Berow 24628, FAN 2 SAMPLE NO.: TRAVERSE NO. DATE COLLECTED: AND/OR COLLECTOR: 24630 CLAIM G-.A. AUG. 10 /92 MATERIAL SAMPLED: ROCK – OUTCROP [🗸] SILT [] SOIL [] OTHER - FLOAT [] ROCK SAMPLE TYPE: CHIP [] CHANNEL [] (SAMPLE WIDTH ____ GRAB [🖌] OCCURRENCE SIZE: 200 x 300 ALTERATION ZONE ROCK NAME: ALTERED QUARTZ- FELDSPAR CAYSTAL TUFF SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) Ac. 24626. No mangane stain DESCRIPTION BY: C.A. Other ANALYSES: Cu Au Ag As Geochemical Assay

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

)

ICP

A State State in a state of the

TRAVERSE NO. SAMPLE NO .: LOCATION: SOUTH SIDE DATE COLLECTED: KAOLINITE CR.', FMW 2 AND/OR COLLECTOR: 246 31 G.A. Aug. 10/92 CLAIM MATERIAL SAMPLED: 1 ROCK – OUTCROP [🗸 SILT [] SOIL [] OTHER - FLOAT [] ROCK SAMPLE TYPE: GRAB [/] CHIP [] CHANNEL [] (SAMPLE WIDTH OCCURRENCE SIZE: 100m esquere ROCK NAME: MASSIVE RITYOLITE FLOW SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) ite with chuty Pal <u>on</u> norma C_b DESCRIPTION BY: C.A. Other ANALYSES: Cu Au Ag As Geochemical Assay

)

)

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

ICP

)

)

)

SAMPLE NO.:	TRAVERSE NO. AND/OR COLLECTOR		South Side	DATE COLLECTE	D:
24632	G.A.		CLAIN	Aug 10/92	2
ROCK SAMPLE TYPE:)] <u>Suboutgrop</u>	SOIL [] <u>·NMAR Source</u> NEL [] (SAM			
GRAB [V] CH					<u>-'</u>
OCCURRENCE SIZE:	100 m minure	lized espose	<u>~~</u>		
ROCK NAME: RH	YOLITE LAPILLI	TUFF			
SAMPLE DESCRIPTIO	DN: (If Rock, Include Cold	our, Texture, Rock Fo	rming Minerals, Mir	eralization, and E	.tc.)
Blue - quy	silicumo to	white bad	initic felsi	c comer-gr	<u>terror</u>
to lapilli -	tiff with flow		ragnente s	sporadic	
darle grug x 2	the .	chavage.		g	
			······································	, 	
· · ·				<u></u>	
DESCRIPTION BY:	G.A.				
ANALYSES:	Au Ag As	Cu	Oth	er	
Geochemical					
Assay					

ICP

)

)

SAMPLE NO.:	TRAVERSE NO			S. SIDE	DATE COLLECTED:	
24633	AND/OR COLI G.A		KAOLINITE FAN	CA.', 2 CLAIM	Aug. 10/92	
MATERIAL SAMPLED: ROCK OUTCROP [- FLOAT [:					
ROCK SAMPLE TYPE: GRAB [//] CH		CHANNEL	[] (SAM)	PLE WIDTH)	
OCCURRENCE SIZE:	100 m bee	pame				
ROCK NAME:	<u> </u>		<u></u>			
SAMPLE DESCRIPTIC	<u>)N:</u> (If Rock, Inclu	de Colour, T	exture, Rock Fo	rming Minerals, H	Mineralization, and Etc.	X
Blue - on	y masure	aphanit	ic shydit	i <u>silia</u>	m. 57.	-
<1 mm fild pyrite. <1	upon phinoe	mate .	< 19. fin	<u>r - grained</u>	disseminated	jeser vedateriratististas estatist
popite. </td <td>17. red. brow</td> <td>- spha</td> <td>luiti in_</td> <td><<td>mens, trans</td><td></td></td>	17. red. brow	- spha	luiti in_	< <td>mens, trans</td> <td></td>	mens, trans	
answoppitt	in crystale ?	to 1mm	, train	black m	itallic sulphide	-
······	· ···· · · · · · · · · · · · · · · · ·				· • • • • • • • • • • • • • • • • • • •	-
	<u> </u>				·····	
DESCRIPTION BY:	<i>C</i> 0					
	G.A.	<u></u> .		01	ther	4
ANALYSES:	Au Ag	As	Cu	<u> </u>	. <u></u>	
Geochemical	<u> </u>			<u> </u>		
Assay _		. <u> </u>	<u> </u>			
						÷.

LOCATION: S. S.DE TRAVERSE NO. DATE COLLECTED: SAMPLE NO.: AND/OR COLLECTOR: 'KAOLINITE CR. 24634 G.A. Fre 2 CLAIM . 10/92 Ang MATERIAL SAMPLED: ROCK – OUTCROP [🗸] SILT [] SOIL [] OTHER - FLOAT [] ROCK SAMPLE TYPE: GRAB [/] CHIP [] CHANNEL [] (SAMPLE WIDTH OCCURRENCE SIZE: 100m rapes ROCK NAME: RHYOLITE FLOW SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) shyslite Aphanitic 3-57. fine - grame dia sta DESCRIPTION BY: C.A Other ANALYSES: Au Ag As \mathbf{Cu} Geochemical Assay

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

J

WR, TS

STRANSPORT STORES STRANSPORT

)

)

J

SAMPLE NO.:	TRAVERSE NO AND/OR COLL			UN: CAPOOSE,	DATE COLLECTED:
24635	G-A.			AREA	Aug. 1/92
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [√] SILT	[]	SOIL (] OTHER	
ROCK SAMPLE TYPE: GRAB [✓] CH		CHANNEL	[] (s	AMPLE WIDTH)
OCCURRENCE SIZE:					
ROCK NAME: UNI-	r (?) - Qu	ARTZ G	ARNET	RHYOLITE FL	ow
SAMPLE DESCRIPTIO	N: (If Rock, Includ	de Colour, '	Texture, Rock	: Forming Minerals, Mi	neralization, and Etc.
Midium of	un ophamite	<u>sili</u>	une che	ty ground	se with 3-5%.
spice of chile	itic mafines	, rau	_ fildy	on phinoenpt	E to I mm,
57. rounded	quarty my	pe to	<u>3 mm</u>	<u>Carriage «</u>	1 mm) and time- grained
57. rd-b	non gamet	in m	mostor 1	1 mm . 5% 1	tim - grained
dissiminated 1					<u> </u>
	• 		DARK C	pres SULPH	DE
				SPHALFRITE	
DESCRIPTION BY:	G A.				
ANALYSES:	Au Ag	As	Cu	Oth	er
Geochemical					
Assay	<u></u>				

DATE COLLECTED: SAMPLE NO.: TRAVERSE NO. LOCATION: CAPOOSE, AND/OR COLLECTOR: GAMP AREA Auc. 1 24636 G-A. MATERIAL SAMPLED: ROCK - OUTCROP [/] SILT [] SOIL [] OTHER - FLOAT 1 [ROCK SAMPLE TYPE: GRAB [/] CHIP CHANNEL [] (SAMPLE WIDTH [] OCCURRENCE SIZE: ROCK NAME: UNIT 7 (?) - CARNET RHYOLITE FLOW SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc. sugary trating hyplite guy fine - grand gamet < 1 mm to I cm. 7-107. m inno DESCRIPTION BY: G-A Other Cu ANALYSES: Au Ag As Geochemical Assay

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

WE, TS

approximately provident of the states of the

)

Ľ

WRTS

SAMPLE NO.:	TRAVERSE NO. AND/OR COLLECTOR:	LOCATION: CA-POOSE	, DATE COLLECTED:	
24637	G.A.	CAMP AREA	Ava.1	•
		SOIL [] OTHER		
ROCK SAMPLE TYPE GRAB [🗸] CH		[] (SAMPLE WIDTH)	
OCCURRENCE SIZE:				
ROCK NAME: U	NIT 8 (?) -	RHYOL ITE		
SAMPLE DESCRIPTIO	DN: (If Rock, Include Colour,	Texture, Rock Forming Minerals,	Mineralization, and Etc.)	ł
hight to	medium grung .	aphanitic silicions 59. dissuminated py	hydite.	
Trace red.	brow gamet.	5% dissuminated py	rite. 1-27.	\$255998999999999999999999999999999999999
dark gry s	ulphide.			
	· · · · · · · · · · · · · · · · · · ·			
		· · · · ·		ł
· · · · ·				
DESCRIPTION BY:	G.A.			
		<u>0</u>	ther	
ANALYSES:	Au Ag As	Cu		
Geochemical	····· ····· ·····			
		······································		

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

WR, TS

SAMPLE NO.:	TRAVERSE NO.	LOCATION: CAPOOSE	DATE COLLECTED:	
24638	AND/OR COLLECTOR:	CAMP AREA	Aug. 1/92	
MATERIAL SAMPLED: ROCK – OUTCROP [– FLOAT [· · · · · · · · · · · · · · · · · · ·	SOIL [] OTHER		
ROCK SAMPLE TYPE: GRAB [✓] CH		[] (SAMPLE WIDTH)	
OCCURRENCE SIZE:				
ROCK NAME: VN	1T 9 (2) - Qu	ARTZ- CARNET PO	RPHYRY	
		Texture, Rock Forming Minerals, Mi	,	
hight to	midium gring age	hanitic silicono gras	indinase hosting	
15% rounded	ginnally < 1 mm	quarty eyes and	7-10% rid -	- Alter Scholar - Alter - Alter & Andre
brown gam	it in massie to	. 3 mm (avrage 1-	2 mm).	
		·		
	· · · · · · · · · · · · · · · · · · ·			
	······			
DESCRIPTION BY:	G.A.			
ANALYSES:	Au Ag As	Oth Cu	<u>ner</u>	
Geochemical	nu ng na	<u>u</u>		
Assay		· · ·		

BLACKWATER -- DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

.)

)

SAMPLE NO.:	TRAVERSE NO AND/OR COLL		LOCATION:	DEB GRID	DATE COLLECTED:	
24639	G A			CLAIM	Aug. 16/92	
MATERIAL SAMPLED Rock — Outcrop — Float	: [/] SILT []	[]	SOIL []	OTHER		
ROCK SAMPLE TYPE GRAB [✓] CH		CHANNEL	[] (SAMP	LE WIDTH)	
OCCURRENCE SIZE:	- 5-7m	ExPOSUR	E (INTER	MITENT ALON	c STRILLE)	
ROCK NAME: A1	RGILLITE					
SAMPLE DESCRIPTIO					eralization, and Etc.)	
Fin- que	ind black	argill	it. Vag	ne broking	stubing ~	
Prite. Prolo	undra ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	U ·	- grained o rec. Some		Б. – фарральнартальны <mark>ло</mark> б насанан
wide bodies	- possibly	-		,,		
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	<u> </u>	
		· · · · · · · · · · · · · · · · · · ·				
	·····				<u> </u>	
DESCRIPTION BY:	GA .					
ANALYSES:	Au Ag	As	Cu	Othe	<u>2</u> r	
Geochemical		<u> </u>	<u> </u>	<u> </u>		
Assay _			<u> </u>			•

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

SAMPLE NO.:TRAVERSE NO.
AND/OR COLLECTOR:LOCATION: DEB GRID,
12 + 05 W, 0 + 70 NDATE COLLECTED:
12 + 05 W, 0 + 70 N24640G.A.DEB CLAIMAug. 16/92MATERIAL SAMPLED:
ROCK - OUTCROP [V]SILT []SOIL []OTHER

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

MATERIAL SAMPL ROCK - OUTCROP - FLOAT		SILT	[]	SOIL [] 0	THER		
ROCK SAMPLE TY GRAB [1/]		[]	CHANNEL	[](SAMPLE	WIDTH)
OCCURRENCE SIZ		EXPOSU	R=					
ROCK NAME:	FELSIC	TUFF						
SAMPLE DESCRIF				Texture, Roo <i>2</i> 4 639)		1 I A	neralization	, and Etc.
grained ai	ticiono	felin m 3- 4	tuff.	Aphanii - grain	<u>tii gro</u>	undernes.	with .	<u>ngulan</u> Some
programmer	hactures		Unit	in poes	illy a	silier	n sit	tetone.
<u>Sulphide</u>	contint	would) defin	tely a	use I	P repo	mer.	<u>, , , , , , , , , , , , , , , , ,</u>
	·····							
DESCRIPTION BY	" G	· A .						
ANALYSES:	Au	Ag	As	Cu		<u>0t1</u>	ler_	
Geochemical				. <u> </u>	- <u></u>			
Assay			. <u> </u>			<u></u> -		
1								

)

)

)

)

SAMPLE NO.:	TRAVERSE NO.	LOCATION: PEM GRID,	DATE COLLECTED:
24641	AND/OR COLLECTOR: G.A.	19+00W, 0+92 S PEN CLAIM	Aug. 19/92
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [] SILT []	SOIL [] OTHER	
ROCK SAMPLE TYPE: GRAB [√] CH	IP [] CHANNEL	[] (SAMPLE WIDTH)
OCCURRENCE SIZE:	2 ANGULAR BOULDA	RS UP TO 30 Cm x	50 cm x ?
ROCK NAME: FEL	SIC LAPILLI TUF	÷F	
SAMPLE DESCRIPTIO	N: (If Rock, Include Colour, T	exture, Rock Forming Minerals, Min	meralization, and Etc.
At hast 2 pice	a of some rock typ	a at site. Probably n	un source
Mottled midium	greg to medium blue	- grey and light grey.	silicified fim -
· /	· · · · ·	f. Frogrante up 30%.	
2 cm in diam	to. Some vaguely.	flow- banded. Most c	mmonly just
fine - grained any	stilling felsite. Minus	light with 3-5% fine -	grand dissimin
		2 mm) pyrite, and 2-	, ,
que sulphide	as above. Trace	inhibid brassy to gring	mismatric
enfortide in any	stale to 1 mm long.		<u></u>
DESCRIPTION BY:	G.A.		
ANALYSES:	Au Ag As	<u>Oth</u> Cu	er
Geochemical			
 Assay		<u></u>	
		· · · · · · · · · · · · · · · · · · ·	
Fragmente con minunal. P-ababel	monty pathy uplaced	lug a fine-grained pink	ish - brown
Some brossy	0 0 sulphides have a relation	twily good charage. Pd	yntite?

and the second s

SAMPLE NO.:	TRAVERSE NO. AND/OR COLLECTOR	LOCATION:	PEM GRID, 925	DATE COLLECTED:	
24642	G.A.	PEM C		AUG. 19/92	
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [] SILT []	SOIL []	OTHER		
ROCK SAMPLE TYPE: GRAB [🖌] CHI	.p [] CHAN	NEL [] (SAMP	LE WIDTH)	
OCCURRENCE SIZE:	BOULDER 1	5 cm x 20 cm x	- 20 cm		
ROCK NAME:	LSITE (INT	RUSION ?)			
	N: (If Rock, Include Cold				
Mitim to	darle blue - que submotilie and black spice	y fin - grain	d crystalli	e filite with	
5% fine- grai	and black spice	. Non magnetic	<u> </u>		alanaalah matalahan satat turu turu masada i
· · · · · · · · · · · · · · · · · · ·					
	····-				
DESCRIPTION BY:	G.A .	·			
ANALYSES:	Au Ag As	cu	Oth	er	
Geochemical			<u> </u>		
Assay			<u></u>		

)

)

SAMPLE NO.: 24643	TRAVERSE NO. AND/OR COLLE G.A	CTOR: 15	9+05W	PEM GRID 1+07 S CLAIM	DATE COLLECTED: Aug. 19/92	
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [] SILT (
ROCK SAMPLE TYPE: GRAB [🖌 CHI	[P [] (CHANNEL [] (SAMP)	LE WIDTH)	
OCCURRENCE SIZE:	LARCE ANCU	LAR BOUL	DER	1 m x 2 m	<u>× ?</u>	
	LS. NE (INTR					
SAMPLE DESCRIPTION Midium blu						
dissiminated py	shotite · 5%.	disseminated	black _	metallic osid	, (?). Bulmete	tu) naansa oo aanaanaanaa
Nonmagnetic.	Similar to 24	642				
					<u></u>	
DESCRIPTION BY:	G.A.					
ANALYSES: /	Au Ag	As Cu		<u>Othe</u>	<u></u>	
Assay					<u> </u>	

)

)

)

1

SAMPLE NO.:	TRAVERSE NO.	LOCATION: PEM GRID	DATE COLLECTED:	
24644	AND/OR COLLECTOR:	17+35W, 4+18S PEM CLAIM	AUG. 19/92	
MATERIAL SAMPLED: ROCK – OUTCROP [– FLOAT [-A			
ROCK SAMPLE TYPE: GRAB [√] CH]	LP [] CHANNEL	[] (SAMPLE WIDTH)	
OCCURRENCE SIZE:	BBLE - SUBROUNI	DED, 5cm × 10cm ×	20 cm	
ROCK NAME: FELS	S 17E			
SAMPLE DESCRIPTION	N: (If Rock, Include Colour,	Texture, Rock Forming Minerals, Min	neralization, and Etc.)	
Simdan	to 24641. Only	y one pine in cruck a	this location -	
Mont addles of	quarty - fuldopan c			anta a antipatra antipatritativa a antipatri
Mittles	light guy to bluis	h - guy fin - grained c	ystallin fileite.	
Cossanare. 1-		disiminated pyrite. Som		
to 2 mm. 3		my sulphide accuring		
1 cm - potch of	0 0	ide stain could be	grunochili	
27. fine - que	00 0 JU -	irant sphilints content. spres could be gam		
DESCRIPTION BY:	G.A.			
	······································	Oth	<u>er</u>	
ANALYSES: Geochemical	Au Ag As	Cu		
Assay	<u></u>		· · · · ·	
		<u> </u>		

)

SAMPLE NO.:	AN	AVERSE NO.	LOCATION: PEM GR	35m@2590 D from tcal	DATE COLLECTED: July 25th/92
24700 MATERIAL SAMPLI ROCK - OUTCROP - FLOAT	ED:	s Zawada silt []	SOIL []	· · · · · · · · · · · · · · · · · · ·	
ROCK SAMPLE TY GRAB [×]		[] CHANNEL	[] (SAMPL)	E WIDTH	>
OCCURRENCE SIZ	e: 2m³	<u>د</u>			
ROCK NAME: In	termediate	Flow.			
SAMPLE DESCRIP	<u>FION:</u> (If	Rock, Include Colour,	Texture, Rock Formi	ng Minerals, Mine	eralization, and Etc.)
- n/assivo	intermed.	te volcanic Kock	with feldger ph	mocayets The	enek is
_ weckly gos	SANDIS , K	at has no usible	sulfides . Weak	y magnetic.	Manganese .
staining is	quite	DERVASIVE ON LCO	there sinchage ,	at victually	non-exercit on
tresh surlow	e, poss hly	indicating a very	RITURAT MORGANIE	Foun 08 c per	ult of
geanduated		· · ·	0		
				<u></u>	
DESCRIPTION BY	:				
		·····		Othe	<u>r</u>
ANALYSES:	Au	Ag As	Cu		
		<u> </u>	<u> </u>	•	
Geochemical Assay		<u> </u>			
			<u> </u>		
				<u> </u>	
			<u> </u>	<u> </u>	
	<u></u>		<u> </u>		

45.5579.555

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

SAMPLE NO.:	TRAVERSE AND/OR CO			IN: PEM GI	1	DATE COLI	ECTED:		
24701	Ross ZAWAL)A	10 m W.	of sample # 24	700	Julya	54/92		
MATERIAL SAMPLE ROCK - OUTCROP - FLOAT		[]	SOIL [] OTHER _				.4 . • •	-1
ROCK SAMPLE TYP GRAB [y] (E: CHIP []	CHANNEL	[] (\$/	MPLE WIDTH			<u> </u>		
OCCURRENCE SIZE	: Dm²								
ROCK NAME: Fe	Isic Lapilli Tu:	f.f							-
	10N: (If Rock, Inc	1							
	as angular +								
corrected with	<u>k manganese s</u>	taining. F	Rogments o	RE Geokly	<u>to mock</u>	nately_		ଡ଼ଡ଼ୠ୶ୠୠୠୠ୶	.~2.9 <u>C.~285</u> 49559 6 24555
day alteri	o while the m	naticix ma	intains a	eclatively to	cesh loo	<u>k.</u>			
Occasional	acathour ou	4 sulfie	e (?) vuqs	- but no 1	usible_	51/ fides	ale		
found in th	he sample. T	The Jam	ole : s Nor	n-magnetic.					
					<u></u>				
	······							•	
DESCRIPTION BY:		, · · · · ·	<u> </u>						
					Other				
ANALYSES:	Au Ag	As	Cu		<u> </u>				
Geochemical	<u> </u>	<u> </u>		<u></u>		<u> </u>			
Assay	<u> </u>		. <u></u> -		·				
							ľ		

)

				1001						
SAMPLE NO.:		AVERSE NO		LOCAT PEN	ION: GRID		DATE COLL	ECTED:		
24702	7	ors ZAW	ADA		DAV 13		July 25	4		
MATERIAL SAMPLI ROCK - OUTCROP - FLOAT		SILT	[]	SOIL (ј от	HER				
ROCK SAMPLE TY	PE:									
GRAB [×]	CHIP	[]	CHANNEL	[](SAMPLE W	1DTH				
OCCURRENCE SIZE	e: Zm	2								
ROCK NAME: Fe	Jsic Coer	ese Tuff								
SAMPLE DESCRIPT	<u> []ON:</u> (If	Rock, Inclu	ude Colour,	Texture, Roo	k Forming M	inerals, Min	eralization,	and Etc.)		
- Rock is a	steengly	clay o	lteroo	making	the Rick	- Somewh	to frial	e		
Weakly 1									-	
grey uno								sular	964-559655599	4917555555555555555555555555555555555555
they was	<i>441111 - E 14<u>4</u> E</i>		<u> 29. 11/- AL</u>			<u> </u>				
- 7-100/										
								{		
				<u>.</u>		<u></u>		·····		
	<u></u>									
DESCRIPTION BY:	 :									
· ···· ····						Othe				
ANALYSES:	Au	Ag	As	Cu		<u> </u>				
Geochemical	<u> </u>				<u> </u>					
Assay		<u> </u>			- <u> </u>					•
										·
		1.100								

Λ.

)

)

SAMPLE NO.:	TRAVERS	SE NO. COLLECTOR:	LOCATION:	Pen Grid	DATE COLLE	CCTED:	
24703	Rossz		9005/9		July 25	th_	
MATERIAL SAMPLE ROCK - OUTCROP - FLOAT		л []	SOIL []	OTHER			
ROCK SAMPLE TYP GRAB [X] (CHANNEL	[] (SAMP	LE WIDTH			
OCCURRENCE SIZE	·						
ROCK NAME: 66	use Felsic T	utt.					
SAMPLE DESCRIPT	ION: (If Rock,	Include Colour,	Texture, Rock Form	ning Minerals, Mi	neralization, a	nd Etc.)	
The Rock	15 & CUAR	se felsic to	A with al	unclast free	gments that	!	
	<i>^</i> ,		is servite				0.5.5 mil
_pyrite is	observed in	hich exults	in a gosst	nas appenent	na to the		
			The rock is			and	
	1	· · ,	N.E. tron		1 1		
				·			
	······			<u> </u>			
			<u></u>				
DESCRIPTION BY:							
				<u>0th</u>	ner		
ANALYSES:	Au Ag	; As	Cu				
Geochemical	······································	······································	<u></u>			·	
Assay -			<u> </u>	. <u> </u>	<u> </u>	[
						1	
i							

)

)

1

SAMPLE NO.: TRAVERSE NO. LOCATION: DATE COLLECTED: AND/OR COLLECTOR: PEM GRID 24704 Ross ZAWADA 9005/900W MATERIAL SAMPLED: ROCK - OUTCROP [SILT [] SOIL [] OTHER 1 - FLOAT [۲] ROCK SAMPLE TYPE: GRAB [)] CHIP [] CHANNEL [] (SAMPLE WIDTH OCCURRENCE SIZE: GLARTZ-FeldSpar physic Lap. 11. Tutt ROCK NAME: SAMPLE DESCRIPTION: (If Rock, Include Colour, Texture, Rock Forming Minerals, Mineralization, and Etc.) wet semple is protolly float, found as large sngularweakly clay altered Subargular block. Lack appeares to The. وووقا والمحافظة والموالية والمحافظة وال appearing weakly gossanas on fresh some fenaments Rock is non- Maspelis SULFIDER are Nesent 4 V.S. hle SURDOR DESCRIPTION BY: Other ANALYSES: Cu Ag As Au Geochemical Assay

)

SAMPLE NO.: 777705	TRAVERSE AND/OR O R. Z.	OLLECTOR:	LOCATION: MT. DAVIOS	on Facts	DATE COLLECTED:	
MATERIAL SAMPLED ROCK - OUTCROP - FLOAT	:		SOIL []	OTHER	<i>a_i</i>	-
ROCK SAMPLE TYPE GRAB [X] CI		CHANNEL	[] (SAMPL	.E WIDTH)	
OCCURRENCE SIZE: ऽत्ट	1:10,000 Map.					
	aste - felds	ar phyri	i Tuff.			
		1	Texture, Rock Form	ing Minerals, Min	eralization, and Etc.	X
<u>P29204</u>	for who	le fich_		· · · · · · · · · · · · · · · · · · ·		_
						 Constant in a grad and a grad a gr Grad a grad a gra
		· ·				
· · · · · · · · · · · · · · · · · · ·						4
DESCRIPTION BY:			<u> </u>		<u></u>	
ANALYSES: Geochemical	Au Ag	As	Cu	Othe	<u>PF</u>	
Assay _			····		·	

)

)

SAMPLE NO.:		VERSE NO.	LOCATION	1:	DATE COLLEC	TED:
24707		LAWADA	FAW	3	Aug Bod	
MATERIAL SAMPLE Rock – Outcrop – Float	[]	SILT []	SOIL []	OTHER	<i>d</i>	
ROCK SAMPLE TYP GRAB [X]] CHANNI	EL [] (SAN	MPLE WIDTH)
OCCURRENCE SIZE	s: 5m²	of Angular	Shat			
ROCK NAME:	Puarte felo	spar phypic	tuff		· · · · · · · · · · · · · · · · · · ·	
				orming Minerals, Mi		
Tuff,	<u>s clay</u>	altined to	give it a	chamy whi	te colve un	t <u>L</u>
Minor mos	nganese	staining.	TRACE JULY	de possibly	<u>boenite</u>	in the second
or maybe	_ simply	wothered	pypite.	Basily some	eother ak	<u>ARU</u>
sulfide, br	Very 2	small + cou	let be many	anese . Mon-	Magnetic	
<u> </u>					• ·	
			·····		<u></u>	
DESCRIPTION BY	:					
· · · · · · · · · · · · · · ·				Oth	er	
ANALYSES:	Au	Ag As	Cu			
Geochemical		<u> </u>			<u> </u>	
Assay	<u> </u>		<u> </u>			

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

)

÷

SAMPLE NO.:		AVERSE NO		LOCAT	ION:		DATE COLL	ECTED:		
24708		D/OR COLI		FAW	3		Aug 8	of_		
MATERIAL SAMPLE ROCK - OUTCROP - FLOAT	ED:					THER	0			
ROCK SAMPLE TYP GRAB []]	CHANNEL	[](SAMPLE	WIDTH				
OCCURRENCE SIZE	I:									
ROCK NAME:	Soi/		· · · · · · · · · · · · · · · · · · ·							-
SAMPLE DESCRIPT										
- Reddisi 908820025	+ clay	alteres	stope a	LOPS O	<u>navs</u> <u>F</u> <u>30</u>	small x · Elev	5200 f	/	Biggseonnach	i se contractoria da se contractori Contractoria da se contractoria da s
				·	<u></u>					
							· · ·			
DESCRIPTION BY:	<u></u>		<u>, , , , , , , , , , , , , , , , , , , </u>				· · · · · · · · · · · · · · · · · · ·			
ANALYSES:	Au	Ag	As	Cu		Othe	er_			
Geochemical										
Assay						·		·		

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

SAMPLE NO.: 24709	TRAVERSE NO AND/OR COLL	ECTOR:	LOCATION: FAW 3	DATE COLLECTED:	
MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [] SILT	····	•		
ROCK SAMPLE TYPE: GRAB [入] CH		CHANNEL () (SAMPLE WIDT	.н)	
OCCURRENCE SIZE:	10 m ^e				-
ROCK NAME: Qu	antz-foldsprac 7	Physic Toff			
			1	mals, Mineralization, and Etc	.)
higher elustio	ins up to v	alley slope.	Et is moo	lemately clay	
altered with	50me, produce 2085 Anors 1	the service	ne no Visibi	e sulfides.	
			<u></u>		-
······································		·····	······································		-
DESCRIPTION BY:		<u> </u>	<u></u>	,,,,_,_,_,,,,,,,,,,,,,,,,,,	
ANALYSES: Geochemical	Au Ag	As (3u	<u>Other</u>	
Assay			······		-

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

SAMPLE NO.: 24710	TRAVERSE NO AND/OR COLL	LECTOR:	LOCATION: FAW 3 Kaolinie		DATE C	COLLECTED:		
A 4 770 MATERIAL SAMPLED: ROCK - OUTCROP [- FLOAT [- Faol <u>inile</u> OIL []	OTHER	Alug			
ROCK SAMPLE TYPE: GRAB 🔀 J CH	: IP []	CHANNEL	[] (SAMI	PLE WIDTH _	*** *** * * * * * * *)		
OCCURRENCE SIZE:	15m²		· · · · · · · · · · · · · · · · · · ·					
ROCK NAME:	15m² Quarte.	feldsper	Physic Tu	H				
SAMPLE DESCRIPTIO								
	the pock is			,	1 . 4			and the second second second
	Heretion bas	e allitero	ter muc	hot the	miginal	tenture	n (nakisu - munuka) (nakisu) D	1 Mary 9-9-4 (2009)
are very	time allouines	D	17 xtab	Trock	SUL Fide	S-Chat		
DESCRIPTION BY:								
ANALYSES:	Au Ag	As	Cu	-	Other_			
Geochemical		<u> </u>	<u> </u>		<u></u>			
Assay	······	<u> </u>	<u> </u>			•		

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

BLACKWATER - DAVIDSON PROJECT (120) : ROCK SAMPLE DESCRIPTION

)

)

			LOCATION	PEM GRID	DATE COLLE	07770	
SAMPLE NO.:		ERSE NO. OR COLLECTOR:			DATE COLLE	CIED:	
24711	Ross	ZAWADA	1900 W/1	ন'র	Aug 14	1/92	
MATERIAL SAMPLE ROCK - OUTCROP - FLOAT		SILT []	SOIL []	OTHER	0		:
ROCK SAMPLE TYP GRAB] CHANNEL	. [] (SAM	PLE WIDTH			
OCCURRENCE SIZE	:					i I	
ROCK NAME: Fin	e Graine	o Felsic Inte	usion (?)				
SAMPLE DESCRIPT	10N: (If Roc	k, Include Colour,	Texture, Rock Fo	A			
The ROC	Chyclen 450 3	blush-g	rey in cor	nt massil 1/cims 5-	e 4 Silica	<u>+</u>	
I COM	c is i	be "white	" put CAN	1/04M3 5-	8 10 SUL	Wer	an <mark>teresta</mark> e atta a constanta a
· · · · · · · · · · · · ·				······			
DESCRIPTION BY:		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	-, , ·		
ANALYSES:	Au	Ag As	Cu	Oth	er		
Geochemical	<u> </u>						
Assay					<u> </u>		

APPENDIX III

CERTIFICATES OF ANALYSIS

••

٠

BLACKWATER-DAVIDSON

1992 SAMPLE CHECKLIST

24613-24619 7 Acme 92BD-2 July 21 24601-24612 12 Xral 12939 Sej	ly 28 pt. 9
	pt. 9
24601-24605 5 C.L. Aug. 28 24607, 24609, 24611 3 C.L. Aug. 28 24612, 24620 (GA92-21) 2 C.L. Aug. 28	
92BD-3 July 27 24623, 24624 2 Acme 92-2216 Aug 24700-24704 5 Acme Acme <td>ıg. 10</td>	ıg. 10
92BD-4 July 27 24621, 24622, 24705 3 3 Xral,C.L. 12927 Sep	pt. 9
928D-5 July 27 BD-H1, BD-H2 2 MinEn 2V-0739-HJ1 Au	g. 31
92–BD6 July 30 BD Silt 5, 6 2 Acme 92–2333 Aug BD–Pan 1, 2 2 Acme	g. 18
92–8D7 July 30 8D–H3 – 8D–H7 5 MinEn 2V–0753–HJ1 Aug	g. 31
92-BD8 August 16 24625 - 24634 10 Acme 92-2642 August 16 24639, 24640 2 Acme <	g. 31
92-BD9 August 15 BD-H9 - 14 6 MinEn 2V1002	
92BD10 August 15 24633, 24635-24638 5 Xral 13168 Sep 24633 1 C. L. Sept. 7 24635-24638 4 C. L. Sept. 7	pt. 9
92-BD11 August 21 24641-24644, 24711 5 Acme 92-2739 Sep BD-Silt 8 1 Acme BD Pan 12-13 2 Acme Pem Soils 577 Acme	pt. 3
92BD12 August 21 BD-H15 1 MinEn 2V-0882-HJ1	
92-BD13 August 24 24645-24649 (Nasco) 5 Acme 92-2766 Sep	pt. 2
92-BD14 August 25 Pem Soils: 9W, 0-10S 39 Acme 92-2216R Sep Pem Soils: 9W, 11W, 13W 148 Acme 24623, 24624 2 Acme 24700 - 24704 5 Acme 5 Acme	pt. 2
TOTALS 40 955 8 13 14 20 17 1 194	

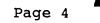
. . .						<u>Gr</u> 230	<u>an</u>	qes	In	c.	PRO	OJE	CT	92	e-BI	CS ()1 : 3E8	Fi	le	# 9	2-2			N	'JU	IL 3	50	199;	5				Æ	
SAMPLE#		Cu ppm			Ag ppm	Ni ppm		Mn ppm	Fe %	As ppm	U ppm p	Au opm p	Th opm p	Sr xpm	Cd ppm p	Sb E opm pp	i m pp	V Ca m %		La ppm							Na %		W W				
24600-x 24613-x 24614-x RE 24616-x 24615-x		45 10		1220		5 9	11 1 3	219 2428	2.77 3.42 .51 .86 .25	3 521 303		ND	1 5 6	63 22 6 8 1 22	.4 .3 2.9 2.0 .4	2 2 13 14 2	2 4 2 2	1 .92 3 .47 1 .02 1 .08 1 .02	087 004 028	5 7 9	18 10 4 18 5	.01 .02	15 28 35	.12 .01 .01	4 2 4	.88 .17 .28	.26 .10 .01 .01 .01	.10 .19 .21	1 1 1 1 1	2 2 2 2 2 2	1 1 1 1	1 1 7 49 5	
24616-X 24617-X 24618-X 24619-X STANDARD C/AU-R	1 4 44	47 19 21 27 56	28 1639 29	45 1526 29	4.9 1.7 14.4 1.0 7.5	3 6 22	1 1 10	47 96 91	.87 1.06 1.20 3.41 3.95	41 40 94	5 5 5	ND ND	1	4 8 41	.3 8.0 .3	2	2 5 2 5	2 .08 1 .01 2 .07 3 .60 7 .48	.000 .034 .10	5 10 10 1 4	7 61	.01 .01 .11	38 94 48	.01 .01 .44	3 3 2	.18 .25 .36	.01 .01 .01 .06 .07	.18 .23 .09	1 2 1 1 1	2 2 2 2 2	1	46 143 463 95 494	
					DATE					Ĺ	/	1	,								ł	·											

Δ					GEO	CHEM	ICAL	L ANA	LYSIS	CER	TIFI	ICATI	3			JG 1		••=			
	<u>G1</u>	:ange	es Inc 2	• PRO 300 - 88								Le #		and the first states of a	P	age	1				T
SAMPLE#		Pb Zr xpm ppr				2002 C 10 C 10 C		Th Sr ppm ppm	0000000000	Bi ppm pp					la Ti xm %		AL N %		T W ppm pp	l Hg n ppm	
24623-X	3 51	5 102			09 3.48		5 ND	4 15	.2 3			.096			30.01			3.26	1	2 1	6
24624-X 24700-X	2 4 2 7	9 22 11 483	The particular of the second secon		74 .51 28 2.71		5 ND 5 ND	7 103 9 41	.32 .52		1.95	.018 .052			6 .01			3.24	20000000	21 21	1
24701-X				8 985			5 ND	4 14	4.1 4			.046						3.19	0000000	2 1	1
24702-X			9 17.7 4				5 ND		2.6 15			.135							0000000	21	1
DE 0/704 V	4 7	7/ /5	/ .	0 10 05	10 2 07		E ND	/ 17	/ 4 7	· · · ·	1/ 00	0/4	17 17	25 -	71 01	7	75 0	3.19		5 1	4
RE 24701-X 24703-X	1 7 6 47 23		6 1.4 1 3.1	8 10 85 1 2 1	40 2.07 35 1.94	117 4	5 ND	4 13 12 21	4.1 3	21		.046 .120								2 1	26
24704-X	5 110 2	211 869	9 7.9	7 4 15	66 5.66	111	5 ND	5 14	1.7 12	83	.05	.121	12 24	.16 !	56 .18	2 1	.39 .0	1.80		31	
STANDARD C/AU-R	19 56	37 12	9 7.4 7	3 31 10	31 3.92	43 2	07	39 52	18.6 15	19 5	6.47	.089	38 57	.87 1	74 .09	34 1	.85 .0	6.15	11	22	479
	THIS LEACH ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	- D'. TOY	: C.1F	ONG .	I. WANG		TIFIFD	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	IN AS > 1	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	D. TOY	E, C.LE	ONG, 、	J.WANG		TIFIED	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	• D ′. TOYE	;, C.LE	ONG, 、	I . WANG		TIFIED	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	. D '. TOYE	E, C.LE	ONG, 、	J.WANG		TIFIED	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	. D'. TOYE	E, C.LE	ONG, 、	J.WANG		TIFIED	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	. D'. TOYP	E, C.LE	ONG, 、	J.WANG		TIFIED	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	.р [.] . тоун	E, C.LE	ONG, 、	J.WANG		TIFIED	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	. D '. TOY	:, C.LE	ONG, 、	J . WANG		TIFIED	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	• D ′. TOY	E, C.LE	ONG, 、	J . WANG		TIFIED	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	. D ² . TOYE	E, C.LE	ONG, 、	J . WANG		TIFIED	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	. р ′. точн	, C.LE	ONG, 、	J . WANG		TIFIED	B.C. /	ASSAYER
	ASSAY RECOM - SAMPLE TY Samples beg	MMENDED (PE: P1 ainning	FOR ROCK ROCK P2 'RE' are	AND COR TO P3 SO duplica	E SAMPL IL P4 S ite samp	ILT les.	CU PB Z AU**	AN AS > 1 ANALYSIS	BY FA/I	CP FROM	4 10 GN	M SAMPL	Ε.	. 0 ′. TOYP	E, C.LE	ONG, 、	J. WANG		TIFIED	B.C. /	ASSAYER

t

Page 2

SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As. U Au Th Sr. Cd Sb Bi V Ca. P. La Cr. Mg Ba Ti B. Al Na. K. W. Tl Hg Au**. ppm.ppm.ppm.ppm.ppm.ppm.ppm.ppm.ppm.pp	
····	hen	•
9W 00S	1 7 79 235 .9 4 5 437 2.10 35 5 ND 2 20 .2 3 5 42 .17 .027 10 16 .22 42 .11 3 1.03 .01 .04 1 2 1 27	
9W 25S	1 9 122 208 .1 5 4 648 1.81 37 5 ND 1 27 .4 2 2 37 .24 .025 14 13 .14 48 .08 2 1.05 .01 .06 1 2 1 336	
	1 11 79 208 .5 9 7 796 2.12 15 5 ND 1 34 .3 2 2 47 .30 .044 13 16 .23 64 .09 2 1.39 .01 .07 1 2 1 14	
9W 50S		
9W 75S		
9W 100S	1 13 39 283 1.0 10 7 529 2.21 11 5 ND 1 35 .5 2 4 43 .36 .035 13 18 .33 46 .15 2 1.56 .01 .05 1 2 1 13	
9W 125S	2 24 67 396 2.1 12 13 1733 2.91 20 5 ND 1 52 1.8 2 3 50 .43 .089 18 19 .33 76 .02 2 2.88 .01 .10 1 2 1 6	
9W 150S	1 13 51 183 .6 6 5 903 1.73 4 5 ND 1 33 .6 2 2 33 .26 .037 12 15 .25 54 .05 2 1.36 .01 .06 1 2 1 3	
9W 175S	1 11 65 166 .8 9 5 354 1.68 6 5 ND 1 24 .5 2 2 34 .23 .027 11 16 .31 43 .09 2 1.37 .01 .05 1 2 1 36	
	1 12 224 254 1.3 6 7 520 1.73 17 5 ND 1 27 .4 2 3 35 .22 .038 10 14 .27 47 .09 2 1.48 .01 .07 1 2 1 14	
9W 200S		
9W 225S	1 9 26 121 .6 6 6 277 2.97 6 5 ND 4 12 .5 2 2 48 .11 .155 7 20 .23 42 .12 3 3.19 .01 .03 1 2 1 13	
9W 275S	1 15 44 130 .5 9 8 321 2.54 9 5 ND 1 33 .3 2 2 46 .24 .062 13 21 .30 76 .13 3 2.13 .01 .06 1 2 1 34	
9W 325S	1 10 25 100 .1 7 6 278 3.38 6 5 ND 2 18 .3 2 3 68 .17 .057 8 20 .27 41 .29 2 1.33 .01 .05 1 2 1 3	
9W 350s	1 8 47 130 .3 9 5 315 2.07 5 5 ND 2 23 .3 2 3 42 .17 .029 9 16 .31 57 .21 3 1.32 .01 .06 1 2 1 5	,
9W 375S	1 7 42 61 .1 3 2 141 1.04 5 5 ND 1 13 .2 2 2 25 .11 .023 9 9 .08 37 .13 2 .94 .01 .04 1 2 1 143	
9W 3733 9W 400s	1 10 34 122 .3 5 6 219 2.55 12 5 ND 3 15 .2 2 3 46 .13 .059 9 16 .20 44 .15 2 1.53 .01 .05 1 2 1 21	
YW 4005		
9W 425S	1 8 35 60 .1 2 2 165 1.38 2 5 ND 1 14 .2 2 2 30 .10 .028 10 11 .10 42 .16 4 .91 .01 .04 1 2 1 3	
9W 450S	1 8 28 71 .3 3 4 152 1.89 7 5 ND 1 12 .2 2 2 37 .09 .052 8 15 .12 34 .13 2 1.63 .01 .04 1 2 1 45	
9W 475S	2 6 26 63 .2 2 4 139 3.23 8 5 ND 1 10 .4 2 5 55 .08 .111 8 16 .12 39 .12 2 1.68 .01 .04 1 2 1 18	,
9W 500S	1 7 31 80 .4 5 4 235 1.92 6 5 ND 2 15 .2 2 3 36 .12 .035 9 13 .19 37 .15 2 1.06 .01 .05 1 2 1 24	
9W 525S	1 9 30 63 2 2 3 137 1.60 2 5 ND 1 14 .6 2 5 32 .10 .030 10 11 .13 43 .15 6 .99 .01 .04 1 2 1 10	
7W J2J3		
9W 550S	1 9 41 170 .5 6 4 184 1.98 6 5 ND 2 12 .5 2 6 35 .10 .047 9 16 .15 47 .12 2 1.80 .01 .05 1 2 1 94	•
9W 575S	1 14 35 332 .5 8 6 242 3.07 11 5 ND 4 15 .8 2 6 55 .11 .065 10 19 .21 50 .17 2 2.30 .01 .04 1 2 1 7	,
9W 600S	2 9 21 80 .4 5 5 160 3.28 5 5 ND 2 12 1.6 2 2 50 .09 .078 8 19 .17 46 .13 2 2.27 .01 .05 1 2 1 18	\$
9W 625S	1 9 14 52 .2 3 5 153 3.08 6 5 ND 3 12 .2 2 2 57 .08 .075 9 18 .15 42 .16 2 1.93 .01 .04 1 2 1 16	ز
9W 650S	1 7 34 89 1 5 4 184 2.61 5 5 ND 1 12 .2 2 2 48 .09 .048 9 15 .19 46 .15 3 1.80 .01 .04 1 2 1 1	i i
7W 0503		
9W 675S	2 17 22 135 .3 13 8 323 3.16 9 5 ND 1 16 .4 2 4 48 .10 .067 9 20 .42 62 .10 3 2.43 .01 .10 1 2 1 3	j.
9W 700S	2 11 16 56 .5 5 6 197 2.52 8 5 ND 2 15 .2 2 2 47 .09 .056 10 17 .22 55 .14 7 1.69 .01 .06 1 2 1 5	
9W 725S	1 13 20 62 .4 6 6 233 2.16 8 5 ND 1 16 .2 2 3 44 .11 .048 10 17 .22 57 .13 2 1.24 .01 .07 1 2 1 196	ذ
9W 750S	1 10 17 76 .1 10 6 243 2.23 3 5 ND 1 16 .2 2 5 47 .13 .035 9 18 .31 43 .20 3 1.38 .01 .05 1 2 1 16	ذ
9W 775S	1 8 23 80 .2 7 6 265 2.12 2 5 ND 1 12 .2 2 7 49 .10 .034 8 16 .36 38 .18 2 1.30 .01 .07 1 2 1 1	I
9W 800S	1 10 15 56 2 6 5 193 2.80 3 5 ND 2 15 2 2 2 54 .12 .074 7 16 .20 48 19 3 1.24 .01 .04 1 2 1 11	
RE 9W 725S	2 10 25 64 .5 7 6 225 2.19 10 5 ND 1 15 .2 2 3 44 .10 .051 10 19 .22 51 .13 5 1.26 .01 .07 1 2 1 338	-
9W 825S	1 8 9 42 .1 4 5 166 2.77 9 5 ND 2 11 .2 2 3 55 .10 .080 7 16 .14 26 .15 4 1.23 .01 .05 1 2 1 7	_
9W 850S	2 9 11 59 .1 5 5 175 2.48 2 5 ND 2 13 .2 2 2 47 .11 .081 8 19 .18 39 .16 2 2.46 .01 .03 1 2 1 8	3
9W 875S	1 10 12 53 .4 8 6 175 2.44 2 5 ND 4 14 .2 2 2 49 .10 .057 8 19 .20 55 .17 2 2.20 .01 .04 1 2 1 1	i
00.0006	2 27 687 348 4.7 8 7 190 2.10 32 5 ND 6 14 .6 5 4 34 .06 .099 14 18 .15 55 .09 2 2.16 .01 .05 1 2 1 78	3
9W 900S		
9W 925S		
STANDARD C/AU-S	20 60 41 132 7.3 71 32 1064 3.97 40 22 7 41 53 18.6 14 19 60 .48 .091 40 59 .88 177 .09 37 1.89 .07 .15 11 2 3 52	•



Page 3

SAMPLE#	Mo	Cu	Pb) Z	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	ĸ	¥	τι	Hg	Au**	
	ppm	ppm	ppn) pr	om p	yom p	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	*	ррп	ррп) ppm	ppb	
9W 950S	1	10	17	, ,	34	3	5	- 3	171	1.37	· 4	5	ND	2	16	.2	2	3	32	. 15	.023	9	15	.12	46	.21	2	.76	.01	.06	1	2	: 1	26	
9W 975S	2	8	14	. 2	43	1	4				4	e	ND	1		.2	2	2			.055					.17		1.00			1	2	: 1	20	
9W 1000S	1	10	10) 5	50 🗄	1	6	5	160	3.26	4	5	ND	1	14	.2	2	2	64	.10	.064	8	21	.17	35	.14	2	2.38	.01	.05	1	2	2 1	9	

Sample type: SOIL.

																			Ca															
	ррт	ppm	ppm	ppm	ppm	ppm p	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	۲ 🕺	% p	pm p	pm	%	opm	%	ppm	%	%	%	ppm	ppm	ppm	ppb	
											_					-	-						40										-	
BD SILT 1																			.32														(
BD SILT 2	2	12	21	136	.9	7	5	711	1.65	61	16	ND	1	58	.3	2	2	24	.53 🔋	073	19	13.	21	68	.04	3	1.26	.01	.07	1	2	1	9	
BD SILT 3	4	11	17	- 99	1.0	12	8	1343	1.96	52	5	ND	1	78	.6	2	2	28	.51 🖗	098	18	14 .	.24	97	.03	4	2.17	.01	.08	1	2	1	6	
BD SILT 4	3	9	9	76	.1	9	9	1164	2.28	22	5	ND	1	35	.3	2	6	37	.29	057	12	14 .	25	62	.08	2	1.15	.02	.09	1	2	1	14	
STANDARD C	20	60	38	137	7.1	71	31	1074	4.05	42	22	7	38	53	18.9	13	21	58	.49	091	39	59	89	182	.09	35	1.91	.07	.15	11	2	2	-	

Sample type: SILT.

P: GRANGES J: BLACKWAT N: GORDON A	ER-DAV											N-EN T 15TI (604	+ ST.,	, NORT	TH VAN		R, B.(c. v7I		2		•	SEP	-	4 19	92			FILE MINER		C: 7	./ uo/
AMPLE	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI	CA %	CD PPM	CO PPM	CU	FE %	K %	LI	MG %	MN PPM	MO	NA %	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH	TI	V PPM	ZN	GA PPM	SN PPM P	W C	R AU	FIR
Ю-Н1 D-Н2		1.66 1.38			86 50	.1 .1	17 19	1.93 1.60	.1 .1	12 13	14 9	3.78	.05 .03	85	.37 .38	942 949	1	.01 .01	10 1	1830 890	19 8	1	150 126	1	3404 3893	107.2	82 51	1	53	3 2		
						<u> </u>																										
			- <u></u>																			<u></u>										
		<u> </u>							<u>.</u>						<u>.</u>																	,

			<u></u>																				ł		·							
							<u> </u>								<u></u>	<u></u>		<u> </u>		. .												
																													<u> </u>			

ACME ANA	ICF	LL	ABOR	RATO	RIES	LTI).	8	52 1	5. H	(AST)	INGS	ST.	VAN	cou	VER	B.C	. v	'6A 1R	5	PHO	NE (é	604)25	3-31	58 F	AX (6	ί	:53-1	716 1
AA									G	EOC	HEM	ICA	AL A	NAL	YSI	S C	ERT	IFI	CATE					۵U	G 2 () 199	2	A	A
T T				<u>Gra</u>	<u>nqe</u>	<u>s I</u>	<u>nc.</u>		OJE	CT	BLA		VATE	R-DA		DSO	<u>N</u> sub		е # d by: G			I	age :	1					TC ·
														<u></u>	<u></u>					<u></u>	-								
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	-	Au ppm	Th ppm		Cd ppm		Bi ppm	V ppm	Ca %	P La % ppr		Mg %	Ba 1 ppm	fi %ippi	m %	Na %	к %	M A ppm	.u** ppb
BD SILT 5	1	10	29	364	.5	13	8	941	2.59	22	5	ND	3	29	1.1	2	2	45	.32 .0	1.791			57 .(0. COM	2 1.07	.03	.11	1	175
BD SILT 6 RE BD SILT 5	1	4 10	7 33	53 358	.1 .4	7 12	4 8		1.13 2.48	7 23	5 5	ND ND	1 3	36 29			2 2	27 43	.39 .0 .32 .0	ATR I			47 .(56 .(N 446	2 .72 2 1.08		.04 .11	1	3 754

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 SILT P2 PAN CONC. AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

:

Page 2

AMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca 💦 P	La	Cr	Mg	Ba 🛛 Tĩ	В	Al	Na	K 🔣 🖌 Au
	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	% ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	% %	ppm	ppm	%	ppm 🏾 🎗	ppm	%	%	% ppm p
DPAN 1	1	9	22	309	.2	10	7	568	2.34 21	5	ND	4	27	.5	3	2	45	.31 .049	12	19	.32	49 10	- 3	.96	.03	.10
D PAN 2	1	8	9	52	•1	6	4	295	2.16 2	5	ND	2	- 44	.2	2	2	52	.45 .033	16	23	.22	32 18	3	.74	.04	.09
E BD PAN 1	1	11	22	306	<u> </u>	10	7	551	2.34 19	6	ND	3	27	.6	2	3	46	.31 .048	12	19	.32	44 .10	4	.94	.03	.10 1

:

COMP: GRANGES PROJ: BLACKWAT ATTN: GORDON A	ER-DA												I ST.,	NORT	H VAN		R, B.	c. v7		2		SEP	- 4	4 199	92	* HE			DATE	V-0753-H : 92/08/ (ACT:F3	/31
SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	JFE 4 %	K %	LI PPM	MG %	MN PPM	MO	NA %	NI PPM	P PPM	PB PPM	SB SR PPM PPM	TH PPM	TI PPM	V PPM	ZN	GA PPM F	SN PPM P	W CA	AU-FIRE	
BD - H3 BD - H4 BD - H5 BD - H5 BD - H6 BD - H7	.1 .1 .1 .1	1.03 1.29 1.55 1.79 1.67	1 1 1 1	9 11 11 13 12	64 63 70 129 45	.1 .1 .1 .1 .1	12 17 14 16	1.32 1.57 1.59 1.74 2.10	.1 .1 .1 .1 .1	13 15 13 19 13	12 11 11 25 10	2 6.01 1 6.85 1 4.96 5 7.53 0 5.23	.03 .04 .04 .05 .03	4 5 8 8 5	.43 .35 .38 .63 .36	636 704 846 1304 659	1 1 1 1	.01 .01 .01 .01 .01	1 1 5 1	990 1020 990 1090 1090	23 5 18 122 3	1 90 1 109 1 112 1 136 1 166	1 1 1 5	2561 3432 2813 3007 3694	163.7 195.8 146.8 198.2 170.3	76 50 55 335 46	1 1 1 1	2 3 3 6 3	4 20 5 28 4 23 5 37 5 42		
																													<u> </u>		
																								.							
												<u> </u>																	.		-
			<u>.</u>																								<u></u>				_
				<u></u> .															<u> </u>					• • • • • • • • • • • • • • • • • • •							
					•														<u></u>							<u>.</u>					
		• · · ·											•	<u></u>																	_
																								· · ·							
									<u></u>																						

•

•

•

A	GEOCHEMICAL ANALYSIS CERTIFICATE SEP - 2 1992
Т	<u>Granges Inc. PROJECT BLACKWATER-DAVIDSON</u> File # 92-2642 Page 1 2300 - 885 W. Georgia St., Vancouver BC V6C 3E8 Submitted by: GORDON ALLEN
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
DB L1800W 400N DB L1800W 350N DB L1800W 300N DB L1800W 250N DB L1800W 200N	3 8 18 55 .4 6 5 181 1.43 8 5 ND 9 17 1.3 3 5 27 .10 .045 10 14 .18 51 .09 2 1.30 .01 .05 3 1 7 15 18 70 .2 8 10 805 1.77 12 5 ND 3 72 2.0 3 3 39 .51 .051 15 17 .33 80 .06 2 1.81 .02 .06 2 5 3 13 13 80 .2 8 8 681 1.82 6 5 ND 1 53 .9 2 2 33 .41 .042 13 15 .28 75 .08 3 1.83 .02 .05 1 3 2 9 19 63 .1 8 6 33 5 ND 1 26 .4 2 2 37 <t< td=""></t<>
DB L1800W 150N DB L1800W 100N DB L1800W 050N DB L1800W 000N B.L. DB L1800W 050S	1 3 14 40 .2 2 3 252 1.05 5 5 ND 1 29 .2 2 5 23 .24 .026 9 9 .11 38 .09 2 .78 .01 .05 1 22 1 4 13 33 .1 5 4 171 1.02 3 5 ND 1 18 .2 2 4 21 .14 .016 9 11 .17 38 .10 2 .95 .01 .04 1 1 1 4 17 42 .2 4 3 180 1.15 5 5 ND 1 30 .2 2 2 2 1 .22 .032 10 11 .21 40 .09 3 1.11 .01 .05 1 1
DB L1800W 100S DB L1800W 150S DB L1800W 200S DB L1800W 250S DB L1800W 300S	1 5 15 35 .1 4 3 165 1.49 18 5 ND 1 10 .2 2 2 9 .031 9 12 .10 41 .09 2 1.08 .01 .05 1 2 1 20 15 122 .2 14 8 378 3.15 40 5 ND 1 57 .2 2 2 5.2 .41 .047 10 25 .52 .84 .10 2 2.71 .03 .11 1 1 1 1 7 20 68 .5 7 4 211 1.52 12 5 ND 1 34 .2 2 4 30 .26 .032 11 17 .29 45 .08 2 1.61 .02 .08 1 1 1 8 17 62 .1 7 5 346 1.64 12 5 ND 1 18 .2 2
DB L1800W 350S DB L1800W 400S DB L1700W 400N DB L1700W 350N DB L1700W 300N	1 14 13 73 .1 8 7 574 2.29 12 5 ND 1 42 .2 2 2 43 .34 .033 11 19 .31 62 .12 2 1.47 .01 .08 1 1 1 21 22 135 .6 15 155 1054 3.42 31 9 ND 1 65 .2 2 2 57 .48 .062 13 23 .56 90 .08 2 3.31 .02 .10 1 22 1 5 15 32 .1 2 2 179 .97 4 5 ND 1 15 .2 2 2 1.12 .018 9 8 .08 33 .09 3 .60 .01 .04 1 1 1 1 6 13 54 .2 5 5 214 1.73 6 5 ND 1 23 .2 2
DB L1700W 250N DB L1700W 200N DB L1700W 150N DB L1700W 100N DB L1700W 050N	1 5 15 41 .2 4 3 171 1.18 2 5 ND 1 21 .2 2 24 .18 .021 9 12 .17 37 .10 2 1.03 .01 .04 1 1 1 5 12 43 .3 5 4 155 1.22 2 5 ND 1 27 .2 2 2 3.19 .032 9 11 .18 44 .07 2 1.13 .01 .04 1 2 1 5 20 32 .2 3 2 110 1.24 2 5 ND 2 13 .2 2 3 26 .10 .018 8 10 .09 37 .11 2 1.33 .01 .03 1 1 1 7 13 45 .5 8 4 176 1.08 4 5 ND 2 25 .9 2 4 20 .17
RE DB L1700W 200N DB L1700W 000N B.L. DB L1700W 050S DB L1700W 100S DB L1700W 150S	1 8 14 44 .3 6 4 155 1.26 5 5 ND 1 28 .2 2 3 23 .19 .033 9 11 .19 45 .08 2 1.13 .01 .05 1 3 1 9 16 48 .8 5 4 131 1.50 8 5 ND 1 22 .2 2 2 2.2 1.1 10 .13 43 .05 2 1.70 .01 .04 1 1 1 8 13 48 .1 4 5 288 1.33 14 5 ND 1 27 .2 2 3 27 .20 .018 11 13 .20 56 .09 2 1.16 .01 .06 1 1 1 15 14 106 .2 10 8 873 2.43 23 5 ND 1 44 .2 2 2 1.33 <
DB L1700W 200S DB L1700W 250S DB L1700W 300S DB L1700W 350S DB L1700W 400S	1 10 15 80 .2 7 6 280 2.24 9 5 ND 1 21 .2 2 2 46 .18 .020 8 20 .21 46 .12 2 1.08 .01 .06 1 1 1 7 8 46 .1 6 4 253 1.70 4 5 ND 1 27 .2 2 3 36 .24 .025 10 16 .10 45 .09 2 .61 .01 .06 1 1 1 12 18 98 .3 8 6 251 2.72 23 5 ND 1 24 .2 2 2 42 .17 .049 7 18 .27 73 .12 2 2.353 .02 .13 1 1 1 2 20 108 .5 15 9 1084 2.65 36 12 ND 1 71 .2 2
DB L1600W 400N DB L1600W 350N STANDARD C/AU-S	1 3 10 39 .1 3 4 218 1.44 2 5 ND 2 15 .2 2 4 31 .14 .014 9 13 .20 29 .14 2 .94 .01 .04 1 1 1 5 18 35 .1 5 3 165 1.17 3 5 ND 1 21 .2 2 2 25 .16 .013 9 11 .17 35 .15 2 .89 .01 .03 1 5 18 57 41 134 7.3 71 32 1059 3.96 43 19 7 39 52 17.8 14 20 57 .49 .084 36 59 .94 182 .09 34 2.01 .07 .14 11 48

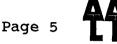
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 TO P10 SOIL P11 SILT/P12 PAN CON P13 ROCK AU** ANALYSIS BY FA/ICP_FROM 10 GM SAMPLE.

Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: AUG 19 1992 DATE REPORT MAILED: 40 31/92 SIGNED BY. D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Page 2

ACHE ANALYTICAL																															ACHE ANAL	YTECAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	IJ	Au	Th	Sr	Cd	Sb	Bi	V	Са	P	La	Cr	Ma	Ba	τi	В	AL	Na	ĸ	¥ Au*	*	
					ppm r			ppm		ppm r					-000000000						ppm			ppm			%	*		an pp		
· · · · · · · · · · · · · · · · · · ·	1			<u></u>		<u>·</u> ·	•						<u></u>	<u> </u>				<u>.</u>			<u></u>	<u></u>				·						
DB L1600W 300N	3	9	10	57	.2	7	4	231	1.91	2	5	ND	10	16	.2	2	2	36	.13	.028	10	15	.24	38	. 13	2 1	.41	.01	.05	2	5	
DB L1600W 250N	1	7	6	37		6	4	232		8	5	ND	4	21	.5	2	5			.023				35			.92			1	1	
RE DB L1600W 000N B.L.	3	14	17		.2	12	8	333		39		ND	5	16	.4		2			.064				74			.24		595.	1	1	
DB L1600W 200N	1	6	15	44	.2	6		207		6	5		3	14	3		2			.034	<u> </u>			45			.47			<u> </u>	1	
DB L1600W 150N	2	-		42	.4	5	4	165		11		ND	6	8	.7		2			.084				31			.79		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0000	1	
55 21000 N 1901	-	Ŭ				-	-	105	2.00		-		Ŭ			-								5.			,				•	
DB L1600W 100N	2	10	9	63	.2	5	5	225	2.63	34	5	ND	3	13	.3	2	3	42	. 10	.058	9	18	10	50	14	2 1	.45	.01	.07	1	4	
DB L1600W 050N	1	7	12	52		9	4	260		12		ND	3	13	.2					.020		16					.22			4	5	
DB L1600W 000N B.L.	2	•		101	3			322				ND	4	16	.3					.064			.33				5.07				1	
DB L1600W 050S	2			70		9		256				ND		11	.2					.157				37			2.35			00000	1	
DB L1600W 100S		18			1.1			322				ND	2	27	.6		2			.068				70			2.69		-000		2	
DB LIBOUW 1003	6	10	21	121		13	0	222	6.74		5	NU	2	21	••	2	۲	47	. 2 1	.000	11	24	. 51	70		~ ~		.01	.00		2	
DB L1600W 150S	2	13	1/	58	.2	7	F	191	2 0/	14	5	ND	2	25	.5	2	2	52	17	.156	7	21	21	40	10	2 3	2.42	01	_∩∡ [©]	4	4	
	3			148	100.000	•		2560		00000000		ND		101			2			.112				134			.47			1	3	
DB L1600W 200S	1									43 5				26	1.0		2			.023					00000000				202		5 4	
DB L1600W 250S		-	19	43	.1	2		456 235		00000000		ND	1				_			a far an		11 16					.91		2040		4	
DB L1600W 300S	3	-	11	44	.3	6				16		ND		15	.9		2			.043							1.21				4 5	
DB L1600W 350S	2	13	7	60	.2	4	4	215	1.83	12	2	ND	1	35	.2	2	2	24	. 24	.027	12	12	.25	40	• 10	2	1.26	.01	.02		2	
DB L1600W 400S	1	3	10	40	.1	2	3	261	1 17	6	5	ND	1	28	.4	2	2	23	.23	.018	10	12	. 15	35	10	2	.93	02	<u>04</u>	1	1	
DB L1500W 050S	i	-	13	58	.5	8	4	242		21	5	ND	i	19	.3		2			.061			.25			_		.01			1	
DB L1500W 0503	2		13		.2	6	7	359		18	5	ND	4	11	.4		2			.181				32			3.37		12.22		Ś	
DB L1500W 150S	1		15	51		3		236			-	ND	1	20	.2					.035							.98				1	
DB L1500W 150S	1	-	9			8	4		1.39					17	.3		2			.029				40			1.36				2	
DB 11000 2003	'	U	,	50		0	-	205	1.37		2	NU	5	• •		2	~	20			10		. 17	40		-	1.50		••• 8		6	
DB L1500W 250S	2	5	7	44	.2	2	4	178	1.96	10	5	ND	5	7	.2	2	2	35	.07	.060	6	16	. 15	21	.10	2	1.95	.01	.03	1	1	
DB L1500W 300S	1	3	12	28	.3	1	ż	146	.92	4	5	ND	3	13	.2					.016		11			.13		1.24			1	2	
DB L1500W 350S	1		18			1	1	160	.71	3	5	ND	1	9	.2		4			.013			.08		11	_	.56		223	1	3	
DB L1500W 400S	2		7			ż	1		1.12		5		1		.2					.014		14			40000000		.50			1	1	
DB L1400W 400N		11		103	1000			8836				ND	1	62	.9		2			.094				160	2000.000		3.28				1	
		••	•			•••	20				-		•			-	-		• • •												•	
DB L1400W 350N	2	6	9	43	.2	2	5	631	2.07	15	5	ND	1	16	.3	2	2	40	.13	.042	8	15	.16	46	.09	2	1.21	.01	.04	1	4	
DB L1400W 300N	1	3	12	32		1	3	192	1.77	10	5	ND	1	11	.4	2	2	36	.10	.039	7	13	.10	28	.08	2	1.19	.01	.04	10	5	
DB L1400W 250N	1	4	18			2	2	146	.86	3	5.	ND	1	16	.2	2	2	21	.11	.014	9	9	.12	30	.11	2	.66	.01	.04	1	4	
DB L1400W 200N	2	6	15	34	.3	7	3	195	1.19	5	5	ND	1	14	.2	2	4	29	.09	.021	10	16	.12	31	.13	2	.66	.01	.05	1	3	
DB L1400W 150N	3	22	16	107	.6	20	7		1.66		7	ND	1	129	1.5		2	30	.69	.042	10	16	.22	55	.06	2	1.33	.01	.09	1	1	
DB L1400W 100N	3	4	7	28	.1	1	2	167	1.03	7	5	ND	1	15	.2		2	24	.11	.017	8	11			.08	2	.48	.01	.05	1	2	
DB L1400W 050N	1	7	15	41	.5	2	4	248	1.70	12	5	ND	1	13	.2	2	2	32	.09	.033	9	15	.14	45	.09	2	1.25	.01	.06	1	1	
DB L1400W 000N B.L.	1	12	22	55	.4	10	6	285	1.82	13	- 5	ND	1	30	.3	2	2	35	.19	.024	13	17			.10	2	1.89	.01	.07	1	1	
DB L1400W 050S	3	10	13	52		3	5	200	3.14	20	5	ND	- 4	11	.4		5	55	.10	.167	7	21	. 19	29	.12	2	2.30	.01	.07	1	1	
DB L1400W 100S	4	9						2673			5	ND	1		.8		2			.051	Q			98		2	1.35	.02	.10	1	6	
	.	,	,										-			Ţ.	-						-	_			-	_				
DB L1400W 150S	2	6	15	39	.1	3	6	472	1.45	10	5	ND	1	16	.2		2			.019		12	.17	48	.11	2	.98	.01	.05	1	5	
DB L1400W 200S	2					7		237			5	ND	3	11	.2	2	3	38	.09	.027	7	19	.19	53	.10	2	1.74	.01	.05	1	6	
STANDARD C/AU-S	19	59	39	138	7.5	72	32	1087	3.96	43	21	7	38	53								61	.93	182	.09	33	1.94	.07	.14	10 4	8	
······			_		2020-00-								•••••								· · · · · ·				a de contra de					<u>u::://</u>		


ACHE ANALYTICAL																														ACHE ANAL	TICAL
SAMPLE#	Mo	Cu	Pb	7n	Ag N	li Co	o Mr	Fe	As		Au	Th	Sr	Cd	Sb I	Bi	v	Са	P	La	Cr	Ma	Ba 8	Ti	B	AL	Na	ĸ	W Au	**	
oran EEn					pom pp				ppm					ppm p										X pp				% p			
		- F F	- -		<u>5533</u>	FF-							-										-	2000 F F		·			<u> </u>	<u></u>	·····
DB L1400W 300S	2	9	17	53	.4 1	1 3	3 206	1.21	7	5	ND	3	24	.7	2	2	22.	.28	.033	15	17.	27	74	08	31.	10.	.02	.07	1	1	
DB L1400W 350S	1	10	11	27	.5	6 1	95	.73	2	5	ND	2	15	.4	2	2	15 .	.09	.028	10	8.	.06	85	05	2.	76.	.02	.06	1	1	
DB L1300W 400N	2		12	39		9 2	2 99			8	ND		14	.6	2					10	8.	.06	88		3.				2	5	
DB L1300W 350N	1		13	37	00050000			1.11		5	ND		15	.2	2				.023		13		38		2 1.				1	1	
DB L1300W 300N	2	-	17				125				ND		21	.2	2				1000 A. 1000 A. 1000		10		43		2.			- 10 A 1997	1	6	
DD LIDOOR DOOR	-	-				-				-		•			-	-						• • •								•	
DB L1300W 250N	1	0	12	53	.1 1	15 2	> 131	2.50	3	5	ND	3	11	.2	2	2	45	07	.068	0	30	24	47	13	2 2.	53	02	.05		4	
DB L1300W 200N	1		14	42	00.00000			1.93		5	ND	-	13	.2	2				.050		17		28	0000000	21.				i	1	
DB L1300W 150N	Ż	-	16	36	ACCOURS - 1			1.77		-	ND	-	12	:2					.039		12		23		2 1.			. 200	4	1	
DB L1300W 100N	1	-			.2 1			2.16		-	ND	3		.4					.044				30		2 1.					2	
DB 1300W 050N			11	30				5 1.29			ND	1	8	.2	2				.043				27		2.				4	2	
DB LISUON USUN	'	2		50	. . .	2	1 132	1.27	6	2	NU		•	• 4	2	٤.	24 .	.00	.043	'		.00	CI 3	.00	c .	(4)	.01	.04		2	
DD 1 170011 00011 D 1	1	7	45	67				2.26	5	5	ND	2	10	.5	2	2	77	10	.099	•	14	12	33	44	21.	50	02	07	4	1	
DB L1300W 000N B.L.		-	15 14	57 75				2.20		5		_			2						18		65		21.					2	
DB L1300W 050S				75 84						-	ND		27	.6																1	
DB L1300W 100S			20		.3 1) 1.42		7	ND		52	.5	2						23		55		21.						
DB L1300W 150S	1		14	38		-	1 80			5	ND		54	.7	2				.029						2.					1 17	
DB L1300W 200S	1	4	8	24	.1	4	1 150	.92	2	5	ND	1	8	.2	2	2	21.	.09	.014	y	10	.07	26	.09	2.	40	.02	.02		17	
DD 1 130011 3500	1	F	10	43	.3	7	1 41'			7	ND	1	20	.3	2	2	0	25	.052	7	8	٥/	69	02	3.	5/	02	00		4	
DB L1300W 250S	2	5			STATISTICS.	-				7	ND	1	28	10000000000000000	2								80		31.				ż	1	
DB L1300W 300S	2		12	49 39			2 142	2 1.21		6	ND	-	20	.4	6				.057						21.				3	1	
DB L1300W 350S													29	.3	-								66		2 1.				1	7	
DB L1300W 400S	2	10		90	.3			3 2.10			ND		29 44	.5	2 2				.031 .046	14	25	. 30	121	00						1	
DB L1200W 400N	1	18	У	107		00	6 557	2.59) 15	5	ND	1	44	••	2	2	4/ 4	• 20	,040	14	47	. 39	161	. UX	2 2.		.05	• 10 🔮		1	
DD 1 120011 750N	2	20	7	139	.7 2	54 ·	7 190	2.79	20	6	ND	1	63	.8	4	2	<u>ر</u>	15	.058	14	70	5/	117	07	4 2.	25	02	17	1	5	
DB L1200W 350N	3	20 8	11	59				1.66	4000000000	7	ND		40	.2	2				.027				76		2 1.					2	
DB L1200W 300N	2	-			.3 2				1000000	5	ND		40 34	.2	2				.033						3 2.					1	
DB L1200W 250N	_	12		76 35	46666666			5 2.12	10100-000	5			20	.2	2				.020				39		3 .			223	1	3	
DB L1200W 200N	1	5	11		10.00.000	_		2 1.07	4444444	5	ND	1	20		2				.023				26					- 1 - 60	1	1	
DB L1200W 150N	1	11	6	27	.1	5	1 16	1.37	' 2	2	ND		y	.2	2	2	30	.09	.025	0	13	• • • •	20		3.	.07	.02	.07		•	
DB 1 12001 1001	1	10	10	50	.3	.	2 31	2 2.68	5	5	ND	4	9	.2	2	2	17	10	.147	0	20	16	27	12	32.	04	02	07		2	
DB L1200W 100N	1	10 5	5	27	.3		1 18				ND		10	.2	ź				.023		20		24	NUNUNUNU	2 .					2	
DB L1200W 050N		5	-	40	10007077426	-		4 1.32	1717-1717-1717-1717		ND	-	13	.2	2				.025				51		2.			00	1940) 1940)	8	
DB L1200W 000N B.L.	1	6	6 8			-		1.52			ND		14	:2	2				.044				52		3.			200	1	2	
DB L1200W 050S	2	-	_	43 69		•		1 2.02			ND		21	:2	2				.057				73		2 1.					5	
DB L1200W 100S	2	11	10	09	.1	10	3 30	1 2.02		2	NU	I	21	• 6	2	5	50	. 25		0	"	. 30	15		2 1.	. 10	.02	•••		,	
DR 112001 1500	2	4	10	27	.1	1	1 22	7 1.10) 2	5	ND	1	12	.2	2	2	22	11	.026	٥	12	20	51	07	3.	58	01	<u>م</u>		1	
DB L1200W 150S	3	5	10 8	27 27	.1			4 .76			ND		25	.2	2				.025				58		2			55	1	1	
DB L1200W 200S	1	5	7	43	.3			+ .70 5 1.30			ND		13	:2	2				.025						2				1	1	
RE DB L1200W 000N B.L.	1	5 16	22	43 66	.5			1 1.40			ND		74	1.6	2				.067						3 1.				1	1	
DB L1200W 250S								1 1.40 3 1.82			ND		33	.6	ź				.052						3 1.				4	6	
DB L1200W 300S	6	24	21	71	• •	0 1	4 4 1 9	5 1.04	•	2	NU	•	22	•0	2	4	33	. 23	.076	16	17	• 6 1	102		J	. 00	.02	.00		0	
NR 112001 7500	1	E	٥	33	.1	4	1 18	4.89) 2	5	ND	1	17	.2	2	2	10	14	.019	o	11	10	50	08	2	57	02	.07	i i	8	
DB L1200W 350S		5	9 11		0.00000000			+ .0: 1 .68			ND	1	33	:2					.053				85		3					11	
DB L1200W 400S	17	59	70	129	7.5	71 7	J 112 1 102	1 .00 7 7 0/	(<u>)</u>	20	7	7.9	55	10 0	15	20	54	51	093	78	58	01	100	08	5 2	01	.02	17	10	50	
STANDARD C/AU-S	11	20	20	120	1.32	<u>()</u>	1 105	3 3.90) (19 44)	20		20	21	17.U	12	20	74	101	•003	20	70	.71	170		2 6		.00	. 17	19		

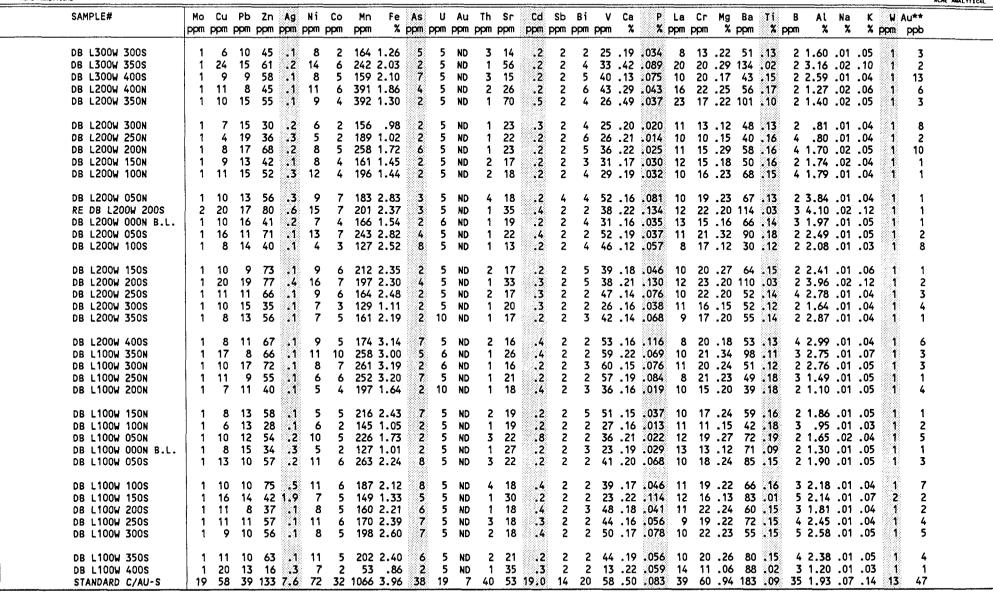
ACHE ANALYTICAL	ACRE ANAL YIICAL	
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	-
DB L1100W 400N DB L1100W 350N RE DB L1100W 100N DB L1100W 300N DB L1100W 250N	3 11 10 101 .3 14 4 254 2.52 7 5 ND 4 29 .8 2 2 47 .25 .037 9 23 .27 70 .10 2 1.30 .02 .11 1 8 1 9 9 41 .1 9 2 133 1.73 2 5 ND 1 15 .2 2 2 31 .11 .056 8 20 .12 44 .08 2 .99 .02 .03 1 7 2 8 12 37 .1 7 2 173 1.74 2 5 ND 2 12 .2 2 3 36 .10 .026 8 16 .07 38 .15 2 .67 .02 .04 1 9 1 8 14 34 .2 10 2 201 .99 .93 .08 2 .85 .02 .05 1 <	
DB L1100W 200N DB L1100W 150N DB L1100W 100N DB L1100W 050N DB L1100W 000N B.L.	1 7 7 37 .4 6 2 342 1.35 4 5 ND 2 11 .2 4 2 30 .14 .040 8 17 .13 27 .11 3 .65 .02 .09 1 9 2 5 7 32 .1 7 2 117 1.53 4 5 ND 2 8 .2 2 2 35 .07 .026 8 13 .07 28 .13 2 .73 .01 .05 1 5 2 6 9 42 .2 7 2 183 1.77 2 5 ND 3 12 .2 2 3 37 .11 .027 9 16 .07 37 .15 2 .66 .02 .06 1 5 ND 2 8 .2 2 3 35 .08 .016 8 15 .07 18 .14 2 .54 .02 .05 <td></td>	
DB L1100W 050S DB L1100W 100S DB L1100W 150S DB L1100W 200S DB L1100W 250S	2 16 18 67 .4 19 5 574 1.82 9 5 ND 1 51 .5 2 2 37 .46 .023 21 19 .22 42 .09 2 1.31 .02 .07 1 3 2 10 5 37 .1 7 2 158 1.23 2 5 ND 1 19 .5 2 2 27 .18 .019 7 14 .05 83 .08 3 .34 .02 .08 1 3 1 9 12 83 .3 11 3 230 1.29 3 5 ND 1 66 .6 2 2 26 .60 .034 10 24 .29 71 .09 3 1.05 .01 .07 1 6 1 7 11 49 .3 5 3 116 .99 3 5 ND 1 43 .4 2 2	
DB L1100W 300S DB L1100W 350S DB L1100W 400S DB L1000W 400N DB L1000W 350N	2 6 14 34 .4 5 1 198 .74 2 5 ND 1 19 .5 2 2 16 .19 .021 10 9 .05 52 .07 3 .51 .02 .06 1 1 3 19 16 69 .7 8 5 479 .91 3 5 ND 1 175 1.4 2 2 17 1.39 .052 58 9 .16 108 .03 3 1.16 .02 .07 1 1 1 4 10 23 .2 5 1 169 .86 2 5 ND 2 14 .2 2 2 .13 .019 10 10 .09 32 .10 2 .57 .02 .05 1 6 1 4 14 25 .1 4 1 93 1.18 3 5 ND 2 12 .2 30 .12 .0	
DB L1000W 300N DB L1000W 250N DB L1000W 200N DB L1000W 150N DB L1000W 100N	1 6 17 39 .2 5 2 197 .93 3 5 ND 3 16 .4 2 3 21 .15 .012 9 11 .13 38 .13 2 .62 .02 .08 1 4 1 11 8 44 .3 13 4 188 1.68 9 5 ND 4 17 .2 2 2 30 .14 .031 9 19 .22 49 .11 2 1.41 .03 .06 1 3 2 7 10 28 .1 7 2 141 1.32 2 5 ND 2 9 .2 2 3 33 .08 .018 8 17 .10 34 .13 2 .59 .02 .05 1 5 2 7 14 50 .2 12 .14 .10 1 60 .4 2 2 27 .52 .019 11	
DB L1000W 050N DB L1000W 000N B.L. DB L1000W 050S DB L1000W 100S DB L1000W 150S	2 10 15 53 .3 13 4 428 1.52 3 5 ND 2 22 .2 2 3 32 .18 .014 12 20 .29 29 .10 2 1.21 .02 .06 1 3 1 7 11 55 .2 10 3 247 1.31 3 5 ND 2 16 .2 2 2 30 .14 .015 10 18 .21 39 .12 2 .76 .02 .06 1 4 2 8 16 47 .3 8 10 1324 1.51 4 5 ND 1 29 .3 2 2 33 .26 .026 11 16 .10 91 .09 2 .52 .02 .10 1	
DB L1000W 200S DB L1000W 300S DB L1000W 350S DB L1000W 400S DB L900W 400N	1 4 14 39 .2 8 2 155 1.00 5 5 ND 3 22 .2 2 2 2.0 .012 9 16 .21 39 .13 2 .76 .02 .08 1 2 2 18 16 66 .3 6 3 381 1.08 2 6 ND 1 322 .6 2 2 20 .22 .067 11 12 .08 106 .07 2 .79 .02 .10 1 1 3 9 19 56 .5 12 3 196 1.41 5 6 ND 1 17 .3 2 3 28 .13 .036 13 18 .20 47 .07 2 1.43 .02 .09 1 2 3 8 16 64 .7 8 8 403 1.90 17 5 ND 2 35 .3 2 2	
DB L900W 350N DB L900W 300N STANDARD C/AU-S	2 8 14 64 .3 11 3 180 1.69 4 5 ND 2 28 .5 2 2 33 .22 .027 14 17 .19 51 .09 2 1.14 .02 .05 1 1 3 8 7 43 .6 9 3 165 2.03 8 9 ND 4 10 .2 3 2 46 .08 .025 9 21 .17 41 .14 .2 .89 .01 .09 2 1 19 60 41 133 7.6 75 31 1060 3.96 42 20 7 40 52 19.0 15 21 57 .50 .086 39 61 .94 183 .09 34 1.94 .08 .16 11 48	

SAMPLE# P La Cr Mg Ba Ti B Al Na Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca K 4.4** DOM DOM DOM DOM % % pom pom % pom % pom INCO MOC MOC MOC MOC MOC MOC MOC % DOM DOM DOM DOM DOM % % % pom pob DB 19004 250N 27 .20 45 .13 2 12 21 68 .4 10 6 212 3.25 5 ND 7 12 .2 5 2 64 .13 .205 8 2 3.30 .01 .05 8 3 DB 1900W 200N 5 17 41 .4 7 3 176 1.22 2 5 ND 3 30 .3 4 3 32 .26 .029 15 16 .13 56 .16 2 .91 .01 .06 5 1 1 53 .3 4 3 5 ND 4 14 .2 2 DB L900W 150N 2 10 15 6 210 2.05 2 41 .12 .087 11 22 .17 42 .14 2 1.70 .01 .05 1 3 2 3 28 DB L900W 100N 2 10 30 55 .5 4 7 217 2.38 5 ND .5 2 2 38 .18 .078 16 16 .13 55 .07 2 3.57 .01 .05 2 6 14 27 2 2 23 .2 DB 1900W 050N 5 2 2 3 128 .88 5 ND 2 2 22 .14 .016 10 9 .09 74 13 1 2 .67 .01 .04 4 .3 DB 1900W 000N B.L. .2 9 15 58 8 6 265 1.96 3 5 ND 3 26 4 2 46 .21 .021 10 30 .28 51 .23 2 1.21 .02 .05 5 1 1 35 60 135 .8 64 7417 4.67 39 5 ND 1.2 2 2 105 .91 .049 27 25 .53 147 .09 DB L900W 050S 14 40 1 110 7 2 4.44 .02 .10 1 RE DB 1900W 250S 2 11 6 80 .1 13 8 558 2.27 8 5 ND 2 34 .2 2 3 50 .30 .024 10 23 .43 58 .17 2 1.81 .02 .07 1 5 4 17 .2 26 .32 67 16 DB L900W 100S 2 12 13 82 .5 9 8 900 3.14 14 5 ND 2 2 61 .20 073 9 2 1.60 .02 .07 1 1 2 207 .35 2 2 DB L900W 150S 1 10 6 58 1 6 5 ND 1 153 .4 2 5 .99 .086 26 3 .08 118 .01 2 .53 .01 .06 4 DB L900W 200S .2 2 31 .24 .029 2 1 3 795 1.33 5 1 26 7 23 56 5 4 ND 2 10 16 .14 71 .12 5 .66 .01 .06 1 DB L900W 250S 2 9 15 86 1 11 8 383 2.38 3 5 ND 2 34 .2 4 2 52 .32 .026 10 24 .47 54 .19 2 1.84 .02 .08 1 4 DB L900W 300S 21 83 9 11 549 2.23 13 5 ND 39 .2 2 2 48 .32 .034 14 24 .33 66 .12 3 13 .4 1 4 1.76 .02 .07 1 1 2 7 DB L900W 350S 4 13 22 109 1.4 9 2037 1.56 10 5 ND 1 69 .5 5 32 .53 .070 8 14 .18 247 .05 4 1.88 .01 .11 1 2 DB L900W 400S 17 62 1 7 6 236 3.23 12 5 ND 4 15 .2 5 2 73 .16 .075 3 2 8 9 25 .23 49 .20 2 1.59 .01 .07 1 DB L800W 400N 27 20 173 1.1 28 12 1095 3.39 28 5 ND 89 .2 2 2 57 .70 .080 22 26 .49 173 .06 2 4.94 .02 .10 1 1 47 .49 .039 DB L800W 350N 2 20 22 113 1.2 15 9 457 2.35 13 5 ND 2 61 .8 6 2 20 24 .40 83 .10 2 2.78 .02 .06 1 1 3 12 3 2 116 .80 ND 1 .2 2 2 19 .09 .013 11 9.05 30.07 DB L800W 300N 1 13 24 .4 4 12 2 .40 .01 .04 1 1 DB 1800W 250N 3 12 18 165 .83 2 5 ND 1 11 .2 2 2 21 .08 .011 11 8.04 16.10 2 .42 .01 .03 1 1 1 1 4 .2 8 5 ND 5 .2 2 5 DB L800W 200N 8 15 51 9 6 204 2.41 14 50 .14 .066 10 23 .18 43 .15 1 1. 1 2 2.12 .02 .04 DB L800W 150N .2 2 29 .17 .025 1 5 20 46 .6 8 4 183 1.24 10 5 ND 4 21 2 12 14 .20 57 .13 2 1.42 .02 .04 10 18 .16 33 .14 DB L800W 100N 9 19 54 .3 7 6 320 2.02 10 5 ND 4 15 .2 3 2 42 .14 .039 2 1.69 .02 .05 3 1 .2 13 31 3 2 128 1.09 27 5 ND 1 13 2 2 25 .10 .017 9 11 .04 37 .07 DB L800W 050N 1 6 1 2 .51 .01 .03 1 9 18 .15 43 .22 DB L800W 000N B.L. 2 7 14 52 .1 7 5 196 2.48 5 ND 3 12 .2 2 2 55 .11 .032 2 1.64 .01 .03 1 1 7 25 65 .2 5 193 2.46 5 5 2 24 .2 2 2 55 .17 .035 11 19 .18 67 .24 DB L800W 050S 2 5 ND 2 1.70 .01 .05 1 1 3 12 27 79 .2 7 DB L800W 100S 3 11 8 337 2.15 3 5 ND 1 41 2 2 53 .31 .024 13 17 .28 75 .17 2 1.91 .02 .06 DB 1800W 150S 15 24 82 .7 12 8 361 2.18 5 5 ND 1 43 .4 5 3 50 .33 .030 15 26 .33 60 .15 2 1.74 .02 .06 3 1 8 92 .7 18 22 1047 3.05 2 2 2 71 .71 .035 20 28 119 12 5 ND .2 23 27 .51 90 .14 4 2.87 .02 .07 1 3 DB L800W 200S 6 2 5 ND 1 21 .2 2 2 24 .19 .014 9 10 .12 44 .08 2 DB L800W 250S 6 14 39 .1 1 3 188 1.05 2 .85 .01 .05 1 1 32 .1 2 5 1 13 .2 2 6 36 .12 .034 8 13 .07 44 .11 DB L800W 300S 1 9 10 3 4 183 1.49 ND 2 .62 .01 .04 1 4 DB L800W 350S 18 13 58 .5 5 4 548 .91 14 5 ND 51 .4 2 2 17 .47 .087 37 11 .11 57 .02 2 1.90 .02 .05 1 1 5 3 2 5 29 .2 2 2 18 .23 .023 1 DB L700W 400N 9 15 46 3 187 .68 ND 1 14 12.12 60 .09 4 .62 .01 .05 2 1 5 35 2 2 33 .32 .035 DB L700W 350N 1 10 17 75 .4 12 7 280 1.59 2 ND 4 .5 13 24 .37 62 .16 3 1.61 .03 .08 1 3 5 59 .7 2 4 51 .49 .022 19 24 .39 59 .14 2 12 20 85 .1 11 11 831 2.14 17 ND 1 2 1.95 .02 .07 1 1 DB L700W 250N 2 32 .07 .010 11 12 .07 32 .12 3 3 9 3 DB 1700W 200N 8 9 23 .2 1 3 175 1.20 5 ND .3 2 .51 .01 .04 1 3 1 .2 DB L700W 150N 9 22 1 1 2 200 .53 2 5 ND 1 19 2 4 15 .13 .011 11 7 .04 63 .07 2 .41 .01 .03 1 6 1 6 5 5 ND 4 12 .3 2 2 40 .12 .051 8 18 .15 36 .12 3 1.41 .01 .03 DB L700W 100N 1 7 16 52 1 7 4 260 1.90 1 5 20 59 42 137 7,7 73 29 1109 3.96 39 18 7 40 53 18.9 15 21 62 .50 .087 40 62 .92 183 .09 34 1.99 .07 .14 10 47 STANDARD C/AU-S

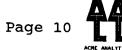
Page 6

ACHE ANALYTICAL																			<u> </u>													ACHE ANALYTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	В	AL	Na	к	W A	u**	
	ppm	ppm	ppm	ppm	ppm	ppm .	ppm	ppm	*	ppm	ppm	ppm	ppm	ррп	pom	ppm	ppm	ppm	%	*	ppm	ppm	ž	ррт	%	ppm		*	%	opm	ppb	
······································	-						·																								<u> </u>	
DB L700W 050N	2	7	8	48		9		213					12		.5			40		.033				37			1.30			2	2	
DB L700W 000N B.L.	1	7	12	58	•1	6			2.40		5	ND	4	21	.6	2	2	49		.046	7	18	.17	55	. 19	2 '	1.06	.01	.04	1	4	
DB L700W 050S		11	14	79		8		265			5	ND	4		.4	2	2	64		.093				60		2 7	2.10	.02	.06	1	3	
DB L700W 100S	1	11	16	68	.4	10		272				ND		46	.9	2		43		.073						2	1.87	.01	.06	1	28	
DB L700W 150S	1	9	13	47		5	4	215	1.38	2	5	ND	2	18	.2	2	2	29	.14	.017	8	14	.24	39	.13	2	1.13	.01	.04	1	2	
							_				_					_	_															
DB L700W 200S	1	30			1.8	15	5		1.02			ND		115	.6	2	2	19		.104				91			2.99				3	
DB L700W 250S	2	21	2	77	.6	6	2	54	.17		6	ND	1		.8	2	2	6		.094			.06		.01		.65			1	4	
DB L700W 300S	1	17		128		3	1	72				ND		57	.5	2	2	9		.082				21			.55			1	14	
DB L700W 350S	2	11				2	1	44	.15			ND		64	.3		2		.75	700000000				10	2000/02/02/02	_	.47			1	1	
DB L700W 400S	2	7	2	66	.3	3	1	213	.26	19	5	ND	1	85	.2	2	2	5	1.00	.148	7	3	.11	10	.01	3	.36	.03	.02	1	6	
							-				-		-			_	_									-					-	
DB L600W 400N	1	2	16	90	.1	10		267		0.0000000000	5	ND		18	.3				.17				.23		.12		2.57			1	5	
DB L600W 350N	1	7	12	56	1	9	6		2.24		5	ND		14	.4		2	43		.061		24			.12		2.12				4	
DB L600W 300N		5	15	32	1	2			.65		5	ND	1		.2			19		.018				58	3000-040-		.60			1	2	
DB L600W 250N	1	7	13	77		11	5		1.80		5	ND		27	.2			34		.050					000000000		1.45				4	
DB L600W 200N	2	7	7	37	1	5	3	184	1.72	2	5	ND	1	15	.4	2	2	40	.12	.020	9	19	.09	39	. 15	2	.52	.01	.05	1	54	
	1	0	10	74		•	F	202	2 14	-		ND	7	77		2	2	50	20	07/	10	~~	31	0/	40	2	4 / 4	02	07		E	
DB L600W 150N	2	11	19	76		9	5		2.16		6	ND		33 20	.4	2	2	50		.034					1000000000		1.41				5	
DB L600W 100N	1		14	61	.1	8			2.16	100 A 100	5 5	ND ND		33	.2 .2			45 32		.050		20			.14	-	1.20			4	5	
DB L600W 050N	2	12 9	15	65 61		10 3		190 313				ND	2	21	.2		2	62	10	.086				63			1.88				3	
DB L600W 000N B.L. DB L600W 050S	1			35	.1	4		180						25	.2	2		21		.046							1.27				2	
DB LOUUW 0503	1	Ģ	13			4	2	100	. 70		,	NU	2	25	*	-	٤.	£ 1	. 20	* ****	15	1.3	• 6 6	50	• • •	2	1.21	-01	.04		2	
DB L600W 100S	1	10	2	83	.3	3	1	15	.12	2 6	5	ND	1	61	.2	2	2	7	. 46	.090	9	3	. 04	45	01	4	.40	.01	.02	1	2	
DB L600W 150S	1	12	2	79	.4	2	1	46	.24		Ś	ND	1		.3		2	7		114			.03		.01		.70			1	6	
DB L600W 200S	1	8	2		.3	1	1	114			5			49	.3		2	9		.157				34			.69				6	
DB L600W 250S	1		2		20100100	ż	1	87			-	ND		56	.2			8		.153				43			.57				7	
RE DB L500W 200N		7		56		9			1.68			ND	4		.2			36		.035							1.22			38 1	Å.	
		•				-	-	• • •								-										-			• • •			
DB L600W 300S	1	13	4	52	.5	3	1	225	.62	2 18	5	ND	1	66	.3	2	2	15	.91	.240	12	6	.10	43	.01	3	.88	.01	.01		3	
DB L600W 350S	7	19	6	60	.6	5	4	433	.59) 16	5	ND	1	117	.3	2	2	14	1.61	.264	25	9	.18	118	.01	4	1.80	.02	.03	1	6	
DB L600W 400S	3	19	6	75	1.1	6	5	284	1.23	5 27	5	ND	1	81	.6	2	2	20	.81	.232	14	10	.13	125	.01	3	1.99	.02	.05	1	11	
7 N DB L500W 400S	1	7	15	50	.2	5	3		1.13		5	ND	1	23	.2	2	2	27	.23	.026	9	15	.16	54	.13	4	.70	.01	.06	1	3	
DB L500W 350N	2	7	19	84	.2	7	6	832	2.79	> 8	5	ND	5	19	.4	2	2	52	.23	.317	6	21	.20	94	.10	2	3.71	.01	.05	1	1	
																-											_					
DB L500W 300N	1	17		107	.3			1162						71	.3			52		.043				114			3.03			1	7	
DB L500W 250N	1	3	19	41		4	3		1.08				2		.2			25		.031				37			.79			1	7	
DB L500W 200N	1	-	10			9			1.6		5			21	.2					.029				43			1.17			1	3	
DB L500W 050N	1	-	15					346						32					.26							_	1.49			1	6	
DB L500W OOON B.L.	1	8	15	60	.2	6	4	215	1.23	3 2	5	ND	2	31	.2	2	2	27	,28	.021	10	15	.22	59	.13	3	1.15	.01	.06	1	6	
		_					~				-		_			_	-		~ r				~~	F /		•		~	~~		,	
DB L500W 050S	1		14		20000000	1	2		.69			ND	2					19		.018			.08		.11		.68			88. 2	4	
DB L500W 100S								252				ND				2	2		.30								1.50				3	
STANDARD C/AU-S	20	62	40	154	1.4	/1	52	1082	5.90	5 42	19		- 39	22	10.2	14	19	- 00	.50	.084	40	DI	. 75	102	+09	22	1.94	.07	. 14	ાપ	48	

Page 7


.

		ACHE ANALYTICAL
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V	
	ppm	% % ppm ppm % ppm % % % ppm ppb
DB L500W 150S	1 19 13 102 .1 16 6 256 2.33 7 5 ND 2 37 .3 2 2 37	.35 .047 14 25 .42 108 .12 3 2.76 .04 .12 1 17
DB L500W 200S	1 6 13 70 2 13 5 229 2.12 6 5 ND 2 37 2 2 2 41	
DB L500W 250S	1 15 5 68 9 9 2 61 .80 14 5 ND 1 27 .2 2 2 21	
DB L500W 300S		
DB L500W 350S	1 6 12 53 .2 10 4 212 1.49 6 5 ND 2 16 .2 2 2 30	.18 .028 10 17 .25 48 .14 2 1.41 .03 .08 1 7
DB L500W 400S		.16 .049 12 15 .14 69 .07 2 1.72 .02 .08 1 6
DB L400W 400N		.29 .028 13 20 .30 90 .15 2 1.66 .03 .04 1 14
DB L400W 350N		
DB L400W 300N		.66 .040 15 22 .40 118 .12 3 2.39 .03 .10 1 1
DB L400W 200N	1 15 16 73 .7 15 5 224 2.23 7 7 ND 1 51 .3 2 2 38	.38 .069 15 22 .30 129 .05 2 3.40 .03 .12 1 7
DB L400W 150N	1 9 13 67 .1 12 7 392 2.00 6 5 ND 2 31 .2 2 2 38	.25 .033 11 24 .36 98 .13 2 2.19 .03 .09 1 14
DB L400W 100N		and the second
DB L400W 050N	1 6 14 75 .5 8 5 232 3.65 7 6 ND 3 19 .2 2 2 64	
DB L400W OCON B.L.		.20 .022 11 11 .13 45 .18 2 .95 .02 .05 1 7
DB L400W 050S	1 10 14 68 2 12 5 207 2.75 8 5 ND 5 16 2 2 2 44	
55 E400W 0505		
DB L400W 100S	1 7 17 72 .5 14 7 217 2.60 8 5 ND 6 18 .3 2 2 42	.17 .077 12 19 .26 80 .14 3 3.02 .03 .09 1 8
DB L400W 150S		.18 .021 10 10 .13 37 .12 2 1.04 .02 .05 1 1
DB L400W 200S	1 5 15 41 .1 8 3 196 1.44 5 5 ND 3 20 .2 2 3 30	.19 .020 10 15 .23 44 .17 2 1.22 .02 .05 1 1
		.28 .124 16 18 .19 108 .02 2 2.97 .03 .12 1 8
DB L400W 250S		
DB L400W 300S	1 5 4 43 .1 3 1 111 .48 3 5 ND 1 136 .5 2 2 9	1.06.056 4 6.11 67.02 3 .43.02 .06 1 1
DD 1 (0011 7500		15 037 11 0 11 54 00 3 1 70 03 05 1 0
DB L400W 350S	1 4 17 38 .1 4 2 127 .81 2 5 ND 1 19 .2 2 2 18	.15 .023 11 9 .11 56 .09 2 1.38 .02 .05 1 8
DB L400W 400S	1 7 15 51 .3 7 3 165 2.82 10 5 ND 3 15 .3 2 2 51	.14 .101 10 19 .15 44 .14 2 2.65 .02 .05 1 5
DB L300W 400N		.37 .049 10 23 .19 87 .13 3 1.10 .03 .09 1 4
DB L300W 350N		.49 .217 24 30 .34 195 .03 2 5.94 .03 .11 1 19
DB L300W 300N	6 17 14 58 .8 13 21 3601 4.50 144 5 ND 1 44 .8 2 2 68	.37 .198 28 18 .19 163 .02 3 3.02 .02 .07 1 8
DB L300W 250N	1 5 13 41 .1 7 4 239 1.39 4 5 ND 2 24 .2 2 2 30	
DB L300W 200N		.17 .032 11 16 .21 57 .15 3 1.59 .02 .04 1 1
DB L300W 150N	1 10 15 62 .5 7 5 283 1.98 5 5 ND 2 24 .2 2 2 41	
DB L300W 100N		.14 .012 11 8 .09 30 .16 2 .85 .02 .04 1 1
DB L300W 050N	1 8 19 50 .1 7 4 201 1.49 3 5 ND 3 18 .2 2 2 32	.19 .018 11 15 .25 53 .20 2 1.52 .03 .05 1 12
}		
DB L300W 000N B.L.	1 9 15 38 .6 9 4 178 1.47 2 5 ND 3 17 .2 2 2 33	.18 .029 11 16 .24 73 .19 2 2.36 .02 .06 1 2
DB L300W 050S	1 6 17 52 .7 5 2 144 2.65 7 5 ND 5 14 .2 2 4 45	.14 .116 9 16 .11 39 .12 3 3.27 .02 .05 1 2
DB L300W 100S	1 5 20 56 .2 8 4 171 2.09 3 5 ND 4 17 .2 2 4 40	.18 .046 11 17 .20 60 .16 3 2.61 .02 .05 1 12
RE DB L300W 100N		.13 .012 10 8 .09 30 .16 2 .85 .02 .04 1 5
DB L300W 150S	1 10 17 52 3 10 4 204 1.79 7 5 ND 4 19 .2 2 3 33	
DB 1300W 200S	1 6 16 36 .2 6 3 294 1.02 2 5 ND 2 28 .2 2 2 22	.23.020 13 11.15 71.13 3 1.17.02.05 1 1
DB L300W 250S		12 .023 11 9 .11 45 .12 2 1.25 .03 .05 2 1
STANDARD C/AU-S	18 60 40 134 7.5 77 31 1062 3.96 43 22 8 40 53 18.7 15 21 58	
STARDARD C/AU-S		



Page 9

SAMPLE#	Mo ppm	Cu	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba Ti ppm %	B A ppm	l Na % %		W A ppm	
				PP	EE.	PP-11	PP	PP		. F F	FF	- FF				F F		1-1											
DB LOOW 200N	1	7	12	55	.1	8	5	180	1.88	6	5	ND	2	18	.2	2	3	39	.24	.041	8	19	.21	56 .14	3 1.3	3.01	.03	1	1
DB LOOW 150N	1	4	10	34	.2	- Ž	4	342		8	6	ND	2	15	.3	2	3	43	.14	.054	7	15	.09	38 .13	2.7	8.01	.03	1	2
RE DB LOOW 100S	1	6	10	48	.3	10	5	168	1.63	5	5	ND	3	17	.2	2	3	30	. 19	.040	8	16	.21	49 .12	2 1.7	4 .01	.05	1	1
DB LOOW 100N	1	4	13	30	.2	3	3	152		2	5	ND	1	16	.2	2	2	26	.14	.023	9	10	.11	38 .13	2.6	5.01	.04	1	1
DB LOOW 050N	1	5	14	32	1	4	3	162		2	5	ND	1	14	.2	2	2	23	.13	.018	8	10	.16	41 .13	2.8	7 .01	.04	1	1
		-	• •			•	-			888 T.	-		-																
DB LOOW COON B.L.	1	7	8	47	.1	7	8	411	1.81	8	5	ND	2	19	.2	2	4	33	.16	.035	8	16	.19	67 .13	2 1.1	2 .01	.05	1	1
DB LOOW 050S	1	Ŕ	19	45	.3	8	5	164		6	5	ND	4	15	-4	2	2	32		.037	9	15	.20	52 .13	2 1.4	6 .01	.04	1	1
DB LOOW 100S	1	7	10	49	.2	Ř	5	169			5	ND	2	17	2	2	4	30		.039	8	16	.22	44 .12	2 1.7	2.01	.04	1	i
DB LOOW 150S		10	17	75	• 5	8	8	204		5	5	ND	3	12	5	2	2	51		.090	, Q	21	.24	46 .17				1	6
DB LOOW 200S		10		58	•7	Ř	6	206		7	5	ND	2	12	2	2	2	46		.079	7	18	.19	43 .13					2
DB 2000 2003	•	10	,	50		U	Ŭ	200	2.30		-		-			-	-		•••=		•		• • • •						-
DB L00W 250S	1	11	13	54	2	8	6	260	1 78	Q	5	ND	2	19	2	2	2	38	10	.037	8	17	.24	55 .16	2 1.3	8 .01	.04	1	2
					<u>े</u> र्	ž	ÿ			Ē	É	ND	2	16	100000000000000000000000000000000000000	2	2	26		.027	_	14	.21	48 .13	2 1.				7
DB LOOW 300S			12	40	.2	0	4		1.19	2	2		2		<u> </u>	5	2	20			7	4.7							7
DB LOOW 350S	1	12	14	57	.4	9	6	168	2.23	>	5	ND	5	19	.4	2	2	40		.037	8	17	.28	65 .11	4 2.0				ີ
DB LOOW 400S	1	9	7	42	.3	- 4	- 3	130	1.77	6	5	ND	- 3	11	.2	2	- 4	36	.11	.064	8	17	.14	38 .11	3 1.9				7
STANDARD C/AU-S	20	59	41	133	7.3	71	32	1075	3.96	41	19	7	41	53	18.9	14	21	59	.50	.083	39	61	.94	183 .09	35 1.9	4.07	′.14 ∃	11	49

SAMPLE#	Mo ppm	Cu ppm	РЪ ppm	Zn Ag ppm ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca P % %	La ppm	Cr ppm	Mg %	Ba Ti ppm %	BAL ppm %	Na %	К Х р	WiAu** komi pok	
PEM 00W 1000S	1	11	23	85 .5	14	5	322	2.20	8	5	ND	1	28	.5	2	3	38	.21 .047	13	22	.32	87 .13	2 1.60	.02	.07	1 2	,
PEM 00W 1050S	1	7	13	50 .3	8	Ĩ.	238		8	5	ND	ż	12	.2	5	2	55	.13 .105	9	22	.18	46 .18	2 1.25	.01	.06		z
PEM 00W 1100S	1	ż	13	19 .1	4	1	90		4	5	ND	2		.2	2	2	24	.06 .028	11	-9	.05	19 .11	2 .71	.01	.05	1	
PEM 00W 1150S	1	5	11	42 .1	7	2	175		6	5	ND	3	17	.2	4	2	41	.13 .056	9	15	.14	33 .13	2 1.15	.02	.07	2	2
PEM 00W 1200S	1	6	12	35 .1	6	3	160		5	5	ND	3	12	.2	3	3	39	.09 .046	10	15	.14	27 .13	2 1.36	.02	.05	40.000	3
PEM 00W 1250S	1	1	6	13.1	2	1	63	.33	2	5	ND	1	7	.2	2	2	10	.05 .010	10	5	.02	18 .06	2.34	.01	.03	1,	4
PEM 00W 1300S	1	8	11	54 .1	8	3	165	2.16	2	5	ND	4	15	.4	2	3	37	.10 .076	9	17	.16	37 .13	2 2.43	.02	.04	i i	9
PEM 00W 1350S	1	11	9	62 .1	8	3	214	2.45	8	5	ND	4	18	.2	2	2	37	.19 .086	9	17	.21	45 .11	2 2.63	.02	.07	110770	8
PEM 00W 1400S	1	8	12	46 .1	7	3	183	1.97	5	5	ND	3	15	.2	3	2	36	.12 .043	9	15	.19	39 .15	2 1.15	.02	.05	1	1
PEM 00W 1450S	1	8	15	52 .2	7	3	190	1.52	2	5	ND	3	17	.2	2	2	32	.14 .026	11	14	.18	41 .17	2 1.01	.02	.07	1	6
PEM 00W 1500S	1	3	14	27.1	4	1	109	.82	2	5	ND	1	13	.2	2	2	20	.09 .015	10	8	.07	28 .12	2.63	.01	.04	1	6
PEM 00W 1550S	1	10	12	64 .4	10	4	199	1.81	2	5	ND	3	16	.2	2	2	31	.12 .041	11	15	.24	44 .13	2 2.31	.02	.04	1	4
PEM 00W 1600S	1	11	15	52 .2	9	4	204	1.81	3	5	ND	2	14	.2	2	2	35	.12 .024	10	17	.27	31 .18	2 1.26	.02	.06	1	5
PEM 00W 1650S	1	10	21	112 .1	11	5	306	1.99	2	5	ND	2	23	.2	2	2	39	.20 .027	10	17	.38	38 .21	2 1.48	.02	.06	1	2
PEM 00W 1700S	1	7	12	37 .1	6	3	174	1.38	3	5	ND	2	15	.2	2	2	29	.12 .014	10	12	.16	29 .15	2.90	.02	.05	1	2
PEM 00W 1750S	10	39	17	111 1.0	21	15	3776	2.83	41	8	ND	1	130	1.2	2	2	59	1.08 .203	32	34	.39	193 .03	2 4.41	.04	.11	1	2
PEM 00W 1800S	1	7	13	40.2	6	2	172	1.81	4	5	ND	1	12	.2	2	2	34	.09 .056	8	13	.10	35 .11	2 1.96	.02	.04	1	1
PEM 00W 1850S	1	8	2	62 .2	4	1	31	.12	2	5	ND	1	41	•4	2	3	6	.32 .089	9	3	.03	29 .01	2.45	.02	.01 🛞	1	4
PEM 00W 1900S	1	10	2	91 .2	5	2	142	.45	- 4	5	ND	1	120	.3	2	2		1.00 .060	7	4	.06	38 .01	2.31	.03	.01 🛞	1	5
PEM 00W 1950S	2	5	12	28.3	5	1	103	.68	2	5	ND	1	10	.2	2	2	15	.10 .023	7	8	.09	31 .07	2 1.12	.02	.05	1	2
RE PEM 00W 1750S	11	38	17	108 .8	19	15	3647	2.74	39	5	ND	1	128	1.0	2	2	58	1.04 .194	31	32	.38	191 .03	2 4.32	.04	.10	1	1
PEM 00W 2000S	1	6	11	33.3	7	2		.87	2	6	ND	1	17	-2	2	2	18	.14 .026	10	10	.15	42 .08	2.99	.02	.07	1	1
PEM 00W 2050S	1	3	13	21 .1	4	1	117	.95	2	5	ND	1	11	.2	2	2	24	.09 .022	8	8	.04	22 .12	3.65	.02	.04	1	1
PEM 00W 2100S	1	5	10	23 .3	5	1	119	.99	5	5	ND	2	9	.2	2	2	23	.06 .020	9	10	.07	30 .09	2.67	.02	.05	1	5
PEM 00W 2150S	1	8	16	50.1	9	3	187	2.15	7	5	ND	2	13	.2	2	2	41	.10 .042	9	14	.17	45.15	2 1.46	.02	.06	1	2
PEM 00W 2200S	1	6	18	30 .1	4	1	147	.88	4	5	ND	1	13	.2	2	2	21	.11 .018	8	9	.11	25.11	2.74	.02	.06	1	5
PEM 00W 2250S	1	7	14	38.2	5	2			8	5	ND	2	11	.2	2	2	34	.09 .035	9	11	. 10	41 .10	2 1.16	.02	.06	2	6
PEM 00W 2266S	1	13	19	78.1	9	4	264		10	5	ND	2	25	.2	2	2	43	.20 .026	9	18	.29	56 .12	2 1.37	.02	.07	1	4
24708-X	6	22	42	131 _3	9	6			140	5	ND	4	55	.2	5	2	15	.16 .043	21	6	. 14	93 .01	2 1.78	.02	.16	1	2
STANDARD C/AU-S	19	60	39	132 7.4	77	31	1070	3.96	41	19	7	39	52	18.5	15	21	58	.52 .085	39	59	.93	183 .08	34 1.94	.08	.16	11 4	8

ACHE ANALYTICAL																		······								METTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe As	U	Au	Th	Sr Cd	Sb	Bi	٧	Ca P	La	Cr	Mg	Ba Ti	B A	l Na	ĸ	. W	Au**
	ppm	% ppm	ppm	ppm	ppm	ppm ppm	ppm	ppm	ррп	% %	ppm	ррп	%	ppn %	ppm	<u>% %</u>	*	ppm	ppb							
_							-			405				-	•	24	0/ 070	35	22	74	440 07		5 07	46		
BD SILT 7	4	27	22	101	1.4	13	8	2413	2.21 61	125	2	1	74 .6	്	2	26			22	.31	110 .03				4	2
RE BD SILT 7	5	27	20	100	1.2	13	8	2426	2.21 57	125	2	1	75 .6	2	2	26	.88 .070	35	22	.31	111 .03	2 2.1	8.03	. 15	1	-

Page 11

Page 12

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni	Co ppm	Mn	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr Co ppm pp	89	Bi	V ppm	Ca P % %	La pom	Cr ppm	Mg %	8a ppm	Ti %		l Na % %		Au**
	PPm	PP"	ppii			pp	ppin	PP		PP	PP···	PP	PP	<u>יזה "ייזי</u>	<u> </u>	PP			<u> </u>	PP		-FF		FF			<u>, 777</u>
BD-PAN-3	7	27	39	69	.2	17	4	244	1.58	11	5	ND	5	35 .	2 2	2	22	.53 .020	12	51	.22	45	.06	2.7	2.09	.17 1	2
BD-PAN-4	10	20	9	50	1	28	10	517	5.55	2	5	ND	4	80 💽	72	5	122	.78 .037	25	47	.30	73	.30	4 1.1	9.20	.21 1	1
BD-PAN-5	7	16	7	47	1	19	10	430	4.64	2	5	ND	3	49	22	2	107	.54 .038	17	64	.30	50	.23	2.9	3.09	.13 1	1
RE BD-PAN-6	4	8	7	47	.1	15	7	535	2.35	2	5	ND	4	30 .	22	5	40	.33 .032	11	21	.33	61	.10	2 1.0	8.10	.17 1	1
BD-PAN-6	5	9	4	49	.1	16	7	541	2.36	2	5	ND	4	30.	22	2	39	.33 .032	11	20	.34	60	.10	2 1.'	0.10	.17 1	1
BD-PAN-7	8	12	9	57	.1	17	4	648	1.41	19	5	ND	4	18	2	2	19	.19 .014	8	59	.18	34	.07	4.0	5.10	.16 1	8
BD-PAN-8	8	14	9	56	.1	25	8	981	3.19	15	5	ND	3	49	22	2	58	.49 .033	8 12	31	.33	81	.16	2 1.2	3.16	.25 2	3
BD-PAN-9	8	13	6	73	.1	20	9	484	2.57	16	7	ND	3	41 🔒	22	6	43	.48 .047	12	56	.38	96	.13	2 1.3	2.12	.22 1	4
BD-PAN-10	5	7	2	50	.1	14	4	512	1.65	7	6	ND	3	27	2 2	2	25	.25 .020	12	18	.21	64	.08	5.9	3.09	.17 1	2
BD-PAN-11	5	7	7	64	.1	17	6	986	1.89	10	5	ND	2	28 .	32	3	27	.26 .028	13	39	.31	98	.04	2 1.1	7 .07	.18 1	1
STANDARD C/AU-R	20	56	37	134	7.3	72	32	1062	3.96	42	22	7	40	52 18.	5 15	21	58	.49 .084	39	61	.94	182	.08	34 2.0	1.07	.14 10	479

ACHE ANALYTICA

Granges Inc. PROJECT BLACKWATER-DAVIDSON FILE # 92-2642

Page 13

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K % (W AL	 ∪** 0pb
		<u> </u>																				····									
24625-X	4	6	- 3	9	.1		1	82	.50	1	5	ND	13	5	.2	2	2	1	.01	.006	10	4	.02	16	.01	2	.38	.04	.08 🔅	1	3
24626-X	4	2	6	17		- 4	2	1362	.99	6	5	ND	13	12	.2	2	2	2	.03	.010	8	6	.02	32	.01	2	.33	.05	.13 🔅	1	1
24627-X	3	- 4	24	18	.1	5	1	124	.44	12	5	ND	13	3	.2	2	2	1	.02	.003	9	9	.01	8	.01	6	.36	.04	.13 🗄	1	6
24628-X	3	2	7	18	.4	7	2	76	.71	9	5	ND	14	3	.2	2	2	3	.03	.013	8	6	.03	11	.01	4	.31	.04	.12	1	Ř
24629-X	3	2	7	16	.1	1	1	84	.48	38	5	ND	16	3	.2	3	2	1	.03	.005	10	5	.04	5	.01	Ĺ	.43	.03	.13	1	8
	-	-	•			•	•	04			-			-		5	-					-		-		-			•••		0
24630-X	7	6	28	13	.2	7	1	62	.45	9	5	ND	14	z	.2	2	2	1	.02	.007	11	9	.01	15	.01	6	.36	.05	.13	6666 666 4 6	0
	0				S10005441345	5					÷		4.4		200002000	5				1000000000000	10	, , , , , , , , , , , , , , , , , , ,			007000000	Š	.26		- 1 600		ž
24631-X	, Y		693	1121	.9	2		351	.38	, ,	2	ND	11		8.01	42	2		.11	.007	19	2	.01	34	.01	2		.03	.16		2
24632-X	6	2	208	302	.6	2	2	1321	.58	14	5	ND	12	9	3.3	12	2	1	.06	17 T 17 T 17	23	5	.02	76	.01	2	.31	.03	.17 🛛		5
24633-X	4	5	35	625	1	6	2	879	.60	13	5	ND	7	25	5.1	2	2	1	.23		17	8	.03	45	.01	5	.29	.03	.18 🔅		1
24634-X	3	3	131	250	.1	6	1	86	.40	8	5	ND	9	6	.2	2	2	1	.05	.008	22	6	.01	- 39	.01	4	.32	.03	.17 🖉		5
	1																														
24639-X	5	75	10	131	.3	118	20	194	3.78	2	5	ND	4	24	.5	2	2	70	.14	.028	7	82	1.37	108	.15	7	2.86	.06	.88	1	3
24640-X	2	81	7	27	.3	76	14	173	1.70	13	5	ND	1	367	.2	2	Ā	27	4.65	0.000000000	3	23	.31	120	.09		5.63	.36	.14	2	2
24707-X	1	17	10	41	1	. ĭ		143	.74	<u>ج</u>	5	ND	12	13	.2	5	2	5	.16	10022-200	13		.05	48	.01	5	.57	.04	.14 🖗		2
24709-X			31	23	•;	5	2	304	.91	35	5	ND	12	2	.2	2	2	ž	.05		6		.03	22	.01	ś	.35	.05	.14		5
	4	2			.4	2	2			22	2		12	2		2	2	5			7	°,			1	2					,
RE 24634-X	3	د	135	244	•1	6		81	.42	2	2	ND	y	0	.2	2	2	1	.05	.008	23	6	.02	49	.01	د	.33	.04	.19	89 1	4
	l _										-		-			•	•		~~		~					-					-
24710-X	3	20	6	45	•1	11	6	525	1.74	5	5	ND	7	27	.2	2	2	26	.92	2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 -	21	16		89	.02	- 3	.47	.07	.20		5
STANDARD C/AU-R	19	58	- 38	134	7.4	71	32	1051	3.96	39	17	7	39	52 (19.2	14	19	57	.49	.084	38	60	.93	182	.08	35	1.99	.07	.14 💮	10 4	470

OMP: GRANGES ROJ: BLACKWA1 TTN:		IDSON	(120)								I -EN T 15TH 9 (604)9	ST., N	ORTH	VANCO (604	UVER,)988-	B.C. 4524	V7M												* *	ATE: * (1002-H 92/09/ (ACT:F3
SAMPLE NUMBER BD-H09 BD-H10 BD-H11	AG PPM .1 .1 .1	.75 .83	AS PPM 1 1	В РРМ 25 13 16 18 12	BA PPM 53 88 85 44	BE PPM .1 .1 .1	BI PPM 13 16 23	CA % .71 .79 .96 1.23 1.13	CD PPM .1 .1 .1 .1	CO PPM 20 24 29 23 31	CU PPM 14 18 19	% 9.21 13.12 ≻15.00	.03 .04 .04	LI PPM 6 8 6	.54 .49 .84	968 995	1 1 1	.01 .01 .01	1	1290 1100 1330	1 82 1	1 1 1	51 65 68	12	2606 3774 5346	293.9 404.2 499.4	54 126 58	1 1 1	1 1 2		CR / PPM 43 66 67 72	NU-FIRE PPB 1 2 10 2 5
BD-H12 BD-H13 BD-H14	9.2	1.23 <u>1.24</u> 1.34	1 1 1	18 12 11	111	.1 .1 .1	41 <u>33</u> 31	1.23 <u>1.13</u> 1.21	.1 .1 .1	23 31 28	20 32	9.79 >15.00 14.57	.04		.36 .50 .47			.01 .01 .01	1	1100 <u>1370</u> 1480	44 1 1	1	91 82 82	16	6803	269.6 461.7 424.8	89 84	1	9 3 5	9	72 80 50	2 5 5
																														<u> </u>		
																											,					
						,								<u> </u>											<u> </u>							<u></u>
				<u></u>																				,, <u> </u>								
																																
																		<u></u>			<u> </u>	<u></u>				<u></u>				<u> </u>		
										·······										<u></u>												
																											<u></u>					

, <u>,</u>

ACME AND	'ICAI				IES nges		nc.	PRO	52 E. GE DJEC 5 W. G	OCH T E	iemi Blac	CAI	AI	NALY R DZ	(SIS	3 CI	ERTI <u>I</u> F	FIC	САТ) > #	e 92-	·273	9	.SE		8 1		FA:	E ((253	-1716 AA
MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B ppm	Al %	Na %	К %р	W Au** oni ppb
0W 1000N 0W 950N 0W 900N 0W 850N 0W 850N	4 4 4 1 1	17 15 10 11 7	15 13 16 16 10	283 229 117 78 50	.7 .5 .3 .5 .1	14 13 8 7 6	5	1170 1532 926 360 460	1.65 2.14 1.51	29 21 30 8 6	5 6 5 5 5	ND ND ND ND ND	1 1 1 1	84 88 45 38 28	2.9 2.0 .6 .4 .2	2 2 2 2 2	2 2 4 2 2	37 29 27 35 27	.76 .34 .30	.085 .064 .058 .058 .022	24 24 16 14 10	21 18 15 14 13	.25 .27 .13 .12 .19	127 107 84 69 70	.05 .07 .05 .06 .08	2 2 2	2.36 1.69 1.16 1.22 1.01	.03 .03 .02 .02 .02	.07 .09 .05 .06 .04	1 1 1 20 1 8 1 8 1 10
OW 750N OW 700N OW 650N OW 600N OW 550N	1 1 1 1	6 20 7 5 15	15 17 9 13 19	67 460 93 33 369	.5 1.1 .2 .5 2.7	3 15 7 2 17	8 3 1	280 1760 169 88 347	2.61	4 29 9 4 27	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	20 113 20 12 94	.2 1.5 .3 .2 2.3	2 2 2 2 2 2	2 2 2 2 2	21 59 51 28 38	.89 .18 .10	.026 .064 .067 .040 .119	10 27 9 11 17	9 22 20 13 24	.10 .34 .15 .07 .28	41 195 43 32 142	.09 .04 .10 .08 .03	2 2 2	.64 3.68 1.94 1.32 4.62	.01 .02 .01 .01 .03	.06 .12 .05 .05 .14	1 1 1 5 1 2 1 10 1 ε
OW 500N OW 450N OW 400N OW 350N OW 300N	1 1 1 1 1	6 11 17 10 7	14 24 21 18 14	50 351 390 120 88	.4 .8 2.2 .2 .1	4 13 19 10 6	6 5	96 1080 318 396 226	2.50 1.73	5 33 24 17 14	5 6 5 5 5	ND ND ND ND	1 1 1 2 1	16 51 92 40 45	.2 1.9 2.2 .4 .4	3 2 2 2 2 2	2 2 2 2 2	29 29 38 41 30	.45 .74 .35	.047 .058 .114 .045 .043	11 13 16 18 15	13 22 26 20 14	.08 .28 .31 .25 .16	40 113 155 72 71	.07 .06 .03 .12 .07	2 2 2	1.52 3.19 5.26 1.47 1.60	.01 .03 .03 .02 .02	.05 .15 .16 .08 .05	1 5 1 8 2 14 1 2 1 2
0W 250N 0W 200N 0W 150N 0W 100N 0W 050N	1 1 1 1	8 5 7 6	17 15 9 10 12	138 45 32 56 33	.4 .4 .1 .4 .1	9 5 8 4	4 2 3 2	445 105 154 301 365	1.59 .96 .95 1.10 .61	12 3 2 4 2	5 5 5 5 5	ND ND ND ND ND	1 2 1 1 1	56 34 17 66 45	.5 .2 .2 .6 .9	2 2 2 2 2	2 2 2 2 2 2	34 19 21 20 14	.27 .19 .47	.039 .040 .026 .055 .025	17 15 11 16 17	17 11 11 13 10	.25 .13 .14 .15 .06	84 66 32 96 70	.08 .09 .09 .06 .04	2 2	1.61 1.09 .71 1.04 .66	.03 .02 .02 .02 .02	.08 .05 .05 .12 .04	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20W 00 BL 20W 050S 20W 150S 20W 200S 20W 250S	1 1 1 1 1	15 4 5 8 6	49 14 19 17 12	152 51 50 53 48	1.1 .4 .2 .3 .1	16 4 5 7 7	8 2 3 4 2	134 290 523	2.36 .95 .98 1.43 1.08	19 3 2 5 2	5 5 5 5 5	ND ND ND ND	1 3 1 4 2	77 18 26 34 24	1.6 .2 .4 .3 .2	2 2 2 2 2	2 2 2 2 2 2	35 20 24 35 22	.16 .21 .32	.095 .017 .014 .026 .024	17 11 13 15 11	21 9 10 17 13	.26 .13 .13 .20 .19	183 34 55 61 48	.04 .12 .12 .14 .10	2 2 2	4.60 .90 .98 1.11 .99	.02 .02 .02 .02 .02	.11 .05 .05 .08 .06	1 4 1 4 1 1 1 1
E L20W 050S 20W 300S 20W 350S 20W 400S 20W 450S	1 1 1 1	4 23 14 4 9	14 16 20 13 12	51 116 116 47 82	.6 .3 .2 .6	4 16 18 6 11	12 8 2		2.29 2.62 .93	2 4 7 2 3	5 5 5 6	ND ND ND ND ND	4 1 1 1	18 124 48 25 44	.2 .8 .4 .2 .4	3 2 2 2 2	2 2 2 2 2 2	20 33 45 18 30	1.00 .37 .19	.016 .085 .051 .020 .042	11 26 14 11 13	8 20 23 10 17	.12 .38 .42 .13 .30	139 60	.08	3 2 2	.84 3.07 3.07 .99 1.93	.02 .03 .03 .02 .02	.07 .11 .14 .05 .10	2 2 1 1 1
0W 500S 0W 550S 0W 600S 0W 650S 0W 700S	1 1 1 1	9 7 24 25	15 15 13 19 14		.2 .2 .2 1.0 .6	12 8 9 17 21	5 3 10	700 439 144 468 507	1.25	4 2 2 7 9	5 5 9 5	ND ND ND ND	3 1 2 1		.3 .2 .2 1.3 1.4	2 2 2 2 2	2 2 2 4	36 27 28 58 60	.23 .25 .55	.039 .027 .024 .061 .075	17 12 11 16 15	18 13 16 25 25		69 53 147	.10 .14 .08	2 2 2	1.36 1.22 1.13 3.16 4.50	.02	. 15	1 1 2 2 1 2 1
20W 750S 20W 800S FANDARD C/AU-S	1 1 17	6 11 59	13 18 37			8 11 74	5	369	1.66 1.94 3.96	4 13 42	5 5 22	ND ND 7	4 1 39	30 35 53			2 2 19	38 40 59	.27	.043 .044 .085	13 14 40	16 19 60	.28	89		2	.78 1.60 1.95	.02	.07	1 1 1 10 4
		THIS ASSA - SA	S LEA	CH IS COMME TYPE	PARTI NDED A P1 1	AL FOR RO	DR MN DCK AI 5 SOII	FE SIND COL	D WITH R CA P RE SAMI SILT/I ate sam	LA C PLES P18 P	CR MG IF CU PAN CO	BA TI PB Z	E B W ZN AS	AND 1 > 1%,	LIMITE , AG > AU**	D FOF 30 F ANALY	R NA K PPM & (SIS E	AND AU > BY FA/	AL. 1000 (ICP)	AU DE PPB FROM 1	TECTI	ION LI	LE.	BY IC	PIS	3 PPM	•			
DATE REC	EIVE	D:	AUG	24 19	92 1	DATE	REI	PORT	MAI	LED	: >	Śęp	tз	192	_ s:	IGNE	D BY		\cdots	····	1.D.T	OYE,	C.LE	ONG,	J.WAN	G; CE	RTIFIE	D B.C	. ASSAY	ERS

Granges Inc. PROJECT BLACKWATER DAVIDSON FILE # 92-2739

Page 2

SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm		Ni ppm	Co ppm	Mn ppm	Fe As % ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd pom	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B	Al %	Na %	ĸ	W Au ppm p	1 * *
L20W 850S	1	10	12	78	.1	11	7	510	2.19 5	5	ND	2	72	.6	2	2	48	.47	.051	16	20	.31	97	.10	2	2.39	.03	.06		10
L20W 900S	1	10	14	80	2010 C C C C C C C C C C C C C C C C C C	12	8	563		5	ND	2	53	.2	2	ž	47		.054	17	20	.32		.12		2.20	.03	.08		8
L20W 950S	1	23	10	115		18		903		5	ND	1	95	.9	2	2	74		.096	17	22	.48		.04		3.85	.03	.11		5
L20W 1000S	1	14	16	97		14		643			ND	1	126	.4	2	2	48		.071	20	18	.36		.05		3.25		.10	1	4
L19W 1000N	1	5	16	37		8	4	206			ND	ż	35	.2	2	2	31		027	13	14	.19		.11		.95	.02	.07	i	2
L19W 950N	1	6	24	45	.3	7	3	254	.98 2	5	ND	2	42	.2	2	2	23	.29	.026	13	12	.13	80	.08	2	1.07	.02	.06	1	1
L19W 900N	1	6	16	113	.4	5	2	104	.88 3	5	ND	1	45 🖉	.4	2	2	19	.30	.033	18	11	.11	74	.06	2	1.19	.02	.06	1	4
L19W 850N	1	16	12	333	1.5	17	6	655	2.59 11	9	ND	2	62	.6	3	2	54		.091	13	23	.33	120	.04	2	3.56	.02	.13	1	4
L19W 800N	1	6	10	59	.1	9	5	301	1.69 7	5	ND	2	26	.2	2	5	38	.29	.043	13	16	.21	54	.14	2	1.02	.02	.03		1
RE L19W 550N	1	5	16	79		8	3	191		5	ND	1	24	.2	2	2	30		.033	12	14	.17	58	.09		1.32		.06	1	ż
L19W 750N	1	5	16	54	.6	7	3	119	1.50 8	8	ND	4	19	.2	3	2	35	.19	.035	15	18	.17	41	.13	2	1.16	.02	.07	1	4
L19W 700N	1	4	14	56	.4	6	2	97	.70 3	5	ND	2	16	.2	2	2	19	.16	.013	11	9	.08	36	.11	2	.59	.02	.06	1	4
L19W 650N	1	2	16	45		4	2		1.32 6	5	ND	1	13	.2	2	3	37		,030	13	11	.10		.10		.94	.02	.05	1	5
L19W 600N	1	9	11	65	Cologe and a second state	12	3	123		5	ND	2	13	.2	2	2	32		.036	11	17	.20	43	.08		1.52	.02	.05	1	1
L19W 550N	1	6	16			7	3	203			ND	1	23	.2	2	2	31		.034	13	15	.17	62	.09		1.39	.02	.06	1	3
L19W 500N	1	3	11	107	.5	4	2	105	.82 4	5	ND	3	18	.2	2	2	19	.18	.020	11	9	. 15	33	.11	2	.74	.02	.05	1	3
L19W 450N	1	8	15	182	.3	6	2	193	1.11 16	5	ND	1	40	.7	2	2	27	.34	.015	15	11	.12	62	.09	2	1.18	.02	.08	1	1
L19W 400N	1	22	13	399	2.4	8	11	1733	.97 22	5	ND	1	114 🖉	6.0	2	2	13	.86	.079	25	9	.10	145	.02	2	1.15	.02	.10	1	10
L19W 350N	1	19	15	297	.6	8	4	334	.97 13	5	ND	1	77	3.9	2	2	18	.60	.048	25	13	.12	121	.04	2	1.18	.02	.08	1	3
L19W 300N	2	11	17	93	.7	13	5	285	2.08 6	9	ND	2	45	.3	2	2	41	.29	.068	12	18	.27	98	.07	2	2.73	.02	.10	1	9
L19W 250N	1	14	18	163	.4	10	7	590	2.11 20	5	ND	1	60	.8	2	2	45	.48	.038	17	19	.29	105	.11	2	1.77	.03	.11	1	4
L19W 200N	1	8	19	133	.2	10	5	450	1.78 13	5	ND	3	45	.6	2	2	41	.43	.048	16	18	.27	68	.16		1.23	.04	.07	1	8
L19W 150N	1	6	19	139	.4	8	4	314	1.58 14	9	ND	- 4	28	.3	2	2	39	.27	.029	13	16	.23	62	.15	2	1.26	.03	.08	1	1
L19W 100N	1	8	18	180		9	4	325	1.59 20		ND	3	38	.8	2	2	37	.36	.040	15	17	.25	68	.13		1.22	.03	.09	1	6
L19W 050N	1	5	18	166	•	8	4	424	1.72 29	5	ND	2	48	.6	2	2	43	.40	.032	12	15	.22	74	.13	2	1.26	.02	.08	1	2
L19W 00 BL	1	5	16			8		316	1000007-76		ND	2	36	.3	2	2	32		.029	12	14	.23		.12		1.19	.03	.06	1	1
L19W 050S	1	7	17			9		436	10.000444440		ND	2	48	.3	2	2	40		.037	15	16	.25	78	.11		1.57	.03	.08	1	1
L19W 100S	1	10	16	93	1.1.1.1.1.1.T.T.T.L.1.	12	12	1667	2.54 18	6	ND	2	56	-8	2	2	55	.47	.052	17	19	.30	96	.12	2	1.69	-03	.10	1	1
L19W 150S	1	8	11			8		264			ND	1	38	.3	2	2	34		.040	13	16	.22	67	.13	2	1.24	.03	.05	1	2
L19W 200S	1	8	15	77	'.2	11	8	453	2.55 22	5	ND	2	43	.3	2	2	60	.36	.043	15	22	.29	77	.11	2	1.44	.03	.06	1	.1
L19W 250S	1	10	15		10000000000000	12		414	2000-000 C	-	ND	1	63	.4	2	3	58		.053	14	20		112	.07		2.28	.03	.11	1	1
L19W 300S	1	11	16			12	6	513		-	ND	1	84	.6	2	2	41	.64	- 300000700	15	19	.26		.05		2.66	.02	.12	1	1
L19W 350S	1	8	16	- 79	• .4	10	6				ND	1	48	.3	2	2	33		.040	14	18	.24	118	.09		1.51	.03	.08	1	4
L19W 450S	1	6	16		200000000000000000000000000000000000000	8	3	181			ND	1	40	.2	2	2	24		.025	13	14	.16	84	. 15		1.50	.03	.07	1	5
L19W 500S	1	10	13	59) .1	11	5	271	1.69 2	5	ND	1	35	.2	2	2	36	.28	.031	12	17	.31	90	.13	2	1.65	.02	.06	1	6
L19W 550S	1	10	16		2010-00-00-00-00-00-00-00-00-00-00-00-00-			452			ND	1	42	.2	2	2	37		.035	14	17	.28		.11		1.92	.02		1	5
L19W 600S	1	10	12					242		6	ND	1	33	.2	2	2	38		.026	10	17	.30	74	.14		1.65	.02		1	6
STANDARD C/AU-S	18	63	40	136	5 7.5	78	32	1084	3.96 43	21	7	39	53 1	19.1	15	21	60	.50	.087	41	61	.90	184	.09	34	1.96	.08	.16	11	52

Page 3

SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr C ppm pp	d Sb ni ppni		V ppm	Ca %		La ppm	Cr ppm	Mg %	Ba Ti ppm %	-	Al %	Na %		W Au**
L19W 650S	1	7	18	57	.1	8	4		1.61	2	5	ND	1	35 .	2 2		41	.27		11	16	.28	77 .22		1.26	.02	.02	1 1
L19W 700S	1	11	21	84	.3	11	7		2.22	4	5	ND	1		42		45	.41	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	14	18	.37	108 .13		1.91	.04	.11	1 1
RE L19W 900S	1	8	10	46		7		208		2	5	ND	1		22		37		.020	9	14	.23	34 .18		1.13	.02	.04	1 1
L19W 750S	1	7	12	54	1 _	7		261		2	5	ND	1		42		37		.025	12	15	.24	59 ,16	2	1.01	.02	.03	1 1
L19W 800S	2	33	31	396	.9	18	9	1932	2.57	49	8	ND	1	200 11.	32	2	46	1.51	.080	30	19	.50	280 .04	2	3.10	.03	.14	1 3
L19W 850S	2	37	62	243	.7	17	9	1028	2.71	78	6	ND	1	100 3.	92	2	52	.77	.082	33	24	.41	179 .08	2	2.72	.03	.12	1 22
L19W 900S	1	6	13	48	.1	7	3	216	1.71	2	5	ND	1	20 .	22	2	38	. 19	.021	10	15	.24	34 .18	2	1.16	.02	.03	1 3
L19W 950S	2	11	21	82	.3	11	5	179	1.57	3	5	ND	1		2 2	2	31	.51	.092	16	18	.26	94 .05	2	2.68	.02	.08	1 3
L19W 1000S	1	10	18	73	.3	8	4	279	1.34	5	5	ND	1		42		27		.048	22	15	.23	93 _10		1.52	.03		1 1
L18W 1000N	1	5	16	103	.1	7	3	182		7	5	ND	1		2 2		36		.029	12	16	.19	47 .12		1.16	.02	.02	î i
L18W 950N	1	8	16	91	.4	11	7	224	2.69	11	8	ND	4	14 .	33	3	47	13	.150	10	20	.19	42 .10	3	3.27	.02	.06	2 1
L18W 900N	1 1	8	21	66	.2	11	ż		2.26	10	5	ND	3		2 2	2	43		.073	10	21	.19	51 .11		2.21	.02	,05	1 2
L18W 850N	1	5	17	42	.3	5	2	163		9	6	ND	3		2 4	_	38		.074	12	13	.11	27 .09		1.57	.01	000000	2 1
L18W 800N	2	7	14	57	1	9	2		2.04	8	5	ND	3		2 2		39		.067	9	18	.19	38 .11		1.88	.02	1000000	1 6
L18W 750N	1	7	19	96	.3	-	3	339		8	ś	ND	1		2 2		44		.088	11	18	.16	49 .08		2.11	.02	.06	1 1
L18W 700N	1	4	16	60	.2	5	2	00	1.53	10	5	ND	4	13 .	2 2	2	35	11	.029	10	13	.11	41 .07		1.35	.02	.04	1 7
L18W 650N		6 8	16		.8	9	2		1.70	7	5	ND	1		6 2		33		.065	19	13	.14	99 .08		1.32	.02	.04	1 1
		3	12		.1	4	1			3	5	ND	1		2 2		27		.030	11	11	.10	29 .08		.78		.08	1 2
L18W 600N		6							1.29	1.	-		1	17 88	5 5		37		.030				2000/00/02			.01	45.57554.53	986 TT
L18W 550N		13	15 19	82 270	•1	4	6	112		6	5 5	ND ND	1		22 82		22		00000000000	11	12 13	.09	58 .12		1.02	.02	.04	1 1
L18W 500N		15	19	270	.6	'	0	004	1.28	•	2	NU	•	,	0 2	2	22	.40	.052	18	13	.14	114 ±04	4	1.99	.02	.09	
L18W 500S	1	8	16		•1		8		1.71	3	5	ND	1		2 2		40		.032	12	18	.24	60.16		1.25	.03	.05	1 7
L18W 550S	1	8	12		•1	8	6		2.13	3	5	ND	3		2 2		49		.054	15	19	.23	54 .20		.87	.04	.05	1 7
L18W 600S	1	8	14	65	.1	9	5		1.66	4	5	ND	1		3 2		37		.042	14	19	.26	00000000000		1.29	.03	.06	1 1
L18W 650S	1	8	17		•1	8			1.73	2	5	ND	1		2 2		38		.021	11	16	.25			1.37	.02	.04	1 1
L18W 700S	1	6	15	42	.1	4	2	146	1.26	2	5	ND	1	23	32	3	29	.20	.027	10	12	.10	40 .12	2	.89	.02	.04	1 1
L18W 750S	1	6	19		.4		2		1.13	2	5	ND	1		2 2		27		.035	13	12	.12			1.00	.02	.05	1 14
L18W 800S	1	6	14		.2		3		1.75	2	5	ND	1		2 2		40			10	15	.17	31 .17		.96	.02	.03	1 1
L18W 850S	2	17	29		.8		6		2.43	19		ND	1		7 3				.073	12	21	.33	000000000		2.58	.02	000000	22
L18W 900S	1	7	15	52	- 1	7	3	212	1.66	3	5	ND	1		2 2				.025	9	15	.26		2	1.27	.02	.04	1 1
L18W 950S	1	6	15	52	.1	8	3	199	1.73	3	5	ND	1	19	.2 2	2	38	.19	.026	10	16	.25	42 .15	2	1.49	.02	.05	1 14
L18W 1000S	1	6	15	45	.1	6	3	183	1.38	3	5	ND	1	22	.2 2	3	31	.19	.019	9	14	.24	43.14	2	1.43	.02	.05	1 1
L17W 1000N	1	4	15				2		1.58	3		ND	1		.2 2		35			9	14	.14			1.52	.02	.01	1 16
L17W 950N	1	5	13	84	.1		_		1.12	- 4	5	ND	1		2 2				.016	10	11	.15			.91	.02	.01	1 5
L17W 900N	1	7	23		.3		_		2.43	16	5	ND	1		2 2				.048	9	18	.17	0000000	6	2.86	.02	.03	2 2
L17W 850N	1	9	17		.2				2.46	18	5	ND	1		2 2				.049			.34	AA6663A50	-	1.74	.03	.09	1 3
117W 800N	1	3	14	43	.1	6	z	137	1.06	4	5	ND	1	20	.2 2	2	24	24	5 .040	12	12	.21	37.14	2	.88	.02	.04	1 3
L17W 750N	2	21	17		1.1	0			2.74	12		ND	1	20002	2000) .117		22		000000000	8	4.54	.03	.18	3 22
	1				202200000				4.26	23	5	ND	1						.129		30		200 .04	•	5.63	.03	.10	1 2
L17W 700N STANDARD C/AU-S		25 60	22	139	1.1				3.96	- 00000000000		7	38		669.90				.090				183 .09		1.95			11 52
STANDARD C/AU-S	20	00	41	1.74	1	. 19	٦٢	1073	J.70	336 7.6 3	20			JJ 17	<u> </u>	21					02	.71	105 .07		1.75		•••	

Granges Inc. PROJECT BLACKWATER DAVIDSON FILE # 92-2739

Page 4

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As opm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba Ti ppm %		Al %	Na %	. 000000	W Au** m ppb
L17W 650N L17W 600N L17W 550N L17W 550N L17W 500N L17W 500S	1 1 1 1 1	3 6 5 5 6	13 13 8 12 15	70 123 63 96 63	.3 .5 .2 .3 .3	4 7 5 7 8	2 2 4 3	88 145 98 277 187	1.23	4 11 7 4 6	5 7 5 5 6	ND ND ND ND ND	2 3 1 4 2	19 22 9 14 29	.2 .2 .2 .2 .2 .3	2 3 2 2 3	2 2 2 2 2	16 33 24 25 29	.20 .07	.014 .046 .042 .025 .041	9 11 9 10 12	8 14 12 13 15	.11 .17 .11 .20 .20	29 .10 45 .09 40 .06 37 .11 67 .13	2 2 2	.69 1.38 1.90 1.06 1.17	.01 .02 .01 .02 .02	.04 .06 .04 .06 .07	1 63 1 20 1 9 1 12 1 10
L17W 550S L17W 6600S L17W 650S L17W 700S L17W 750S	1 1 1 1	11 5 4 6 8	14 15 14 18 38	67 52 88 44 121	.1 .2 .2 .4 .3	10 6 5 5	3 3 2	407 153 163 129 208	1.21 1.24 1.78	7 3 3 2 3	5 5 5 5	ND ND ND ND	1 2 2 1	37 20 19 13 22	.2 .2 .2 .2 .8	2 2 2 2 2	2 2 2 2 2 2	43 28 28 36 26	.18 .17 .12	.053 .012 .009 .040 .019	13 9 9 9 10	20 12 12 12 12	.27 .20 .21 .13 .18	69 .10 34 .15 38 .14 39 .13 54 .12	2 2 2	1.41 .79 .82 1.19 .95	.03 .02 .02 .01 .01	.04 .04 .05 .02 .03	1 11 1 13 1 10 1 10 1 70
L17W 800S L17W 850S L17W 900S L17W 950S L17W 950S L17W 1000S	1 1 1 1 1	4 5 4 18 4	21 13 14 13 12	43 42 44 66 47	.3 .2 .1 .9 .1	4 5 13 6	2	129 110 107 185 333	1.64 1.72 1.75	4 2 4 25 4	5 5 5 5	ND ND ND ND ND	1 1 1 1	14 12 13 105 39	.2 .2 .2 .3 .2	2 2 2 2 2	2 2 2 2 2 2	30 35 32 30 30	.10 .12 .62	.030 .044 .072 .168 .021	9 8 9 16 8	11 13 14 16 13	.13 .11 .12 .26 .28	28 .13 27 .11 44 .08 63 .01 37 .12	2 2 2	.92 1.27 1.41 2.74 1.15	.01 .01 .01 .03 .02	.04 .04 .03 .08 .04	1 11 1 7 1 10 1 10 1 7
L16W 1000N L16W 950N L16W 900N L16W 850N L16W 850N	1 1 1 1	6 5 4 7	14 15 16 17 13	45 42 56 38 67	.1 .2 .1 .6 .3	9 6 8 3 9	3 2 5 2 4	99	200	5 8 2 15 8	5 5 5 5 5	ND ND ND ND	2 3 1 5 1	22 17 36 10 21	.2 .2 .2 .2 .2	2 3 2 4 2	2 2 2 2 2	28 33 26 34 36	.13 .27 .07	.040 .024 .029 .069 .029	12 12 11 11 9	16 13 14 11 14	.24 .13 .21 .10 .21	58 .12 33 .13 77 .09 35 .07 62 .09	2 2 2	1.05 .83 1.52 1.50 1.83	.02 .01 .02 .01 .02	.04 .05 .06 .04 .04	1 10 1 5 1 10 1 3 1 7
L16W 750N L16W 700N L16W 650N L16W 600N L16W 550N	1 1 1 1	4 2 3 4	7 11 14 14 10	36 24 22 88 49	.4 .1 .1 .2 .2	5 2 1 3 4	3 1 1 2 2	62 60 101	1.37 .61 .49 .88 1.45	5 3 2 2 2	5 5 5 5 5	ND ND ND ND	2 1 2 1 3	10 12 11 20 8	.2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	25 13 15 18 26	.09 .08 .17	.041 .017 .010 .019 .052	7 9 11 9 7	12 6 5 10 13	.14 .06 .04 .13 .11	44 .07 30 .05 24 .08 41 .09 35 .07	2 2 2	1.64 .74 .58 .98 2.03	.01 .01 .01 .01 .02	.04 .02 .03 .04 .02	1 9 1 9 1 6 1 4 1 17
RE L16W 750N L16W 500N L16W 500S L16W 550S L16W 600S	1 1 1 1	4 1 7 5	7 11 14 24 22	36 35 35 121 57	.2 .2 .1 .2 .2	4 1 5 9 6	2 1 2 5 3	51 138	1.39 .41 1.24 1.79 1.38	3 2 2 13 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	10 13 16 57 15	.2 .2 .2 .3 .2	2 2 2 2 2	2 2 2 2 2	24 10 26 33 28	.11 .17 .45	.042 .011 .024 .054 .018	7 8 9 12 9	12 5 12 16 13	.14 .04 .17 .29 .25	45 .07 20 .08 34 .15 87 .07 39 .13	2 2 2	1.75 .48 1.05 2.12 1.14	.01 .01 .02 .02 .02	.01 .02 .01 .04 .04	1 7 1 5 1 11 1 101 1 21
L16W 650S L16W 700S L16W 750S L16W 800S L16W 850S	1 1 1 1	7 7 6 4 4	16 16 16 17 16	70 57 66 38 50	.5 .3 .1	5 3	3 3 1	144	2.85 2.45 1.09	5 3 10 3 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	14 14 11 16 15	.2 .2 .2 .2 .2	2 2 2 3	3 2 2 2 2	35 51 41 27 36	.11 .10 .14	.059 .056 .094 .025 .026	9 9 8 9 9	15 16 15 10 12	.26 .18 .20 .10 .17	39 .16 36 .11	2 2 2	2.48 1.31 2.82 .84 1.00	.02 .01 .01 .01 .01	.04 .04 .05 .02 .04	1 7 1 26 1 9 1 181 1 13
L16W 900S L16W 950S L16W 1000S STANDARD C/AU-S	1 4 1 18	6 14 7 59	14 14 11 38	51	.7	7	9 4	186 1097 219 1065	2.98 2.23	3 68 2 40	14 5	ND ND ND 7	1 1 1 39	28 88 22 53	.3	2 4 2 15	2 2 2 21		.62 .18	.020 .073 .030 .086	16 10	16	.31 .46 .28 .95	46 .16	2 2	1.19 3.16 1.51 1.95	.02 .02 .02 .08	.02 .12 .03 .17	1 14 1 10 1 5 11 47

Page 5

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	Р %	La ppm	Cr ppm	Mg %	Ba Ti ppm %	-	Al %	Na %	11 00000000	Au** ppb
L15W 1000N L15W 950N L15W 900N L15W 850N L15W 850N	1 1 1 1 1	8 10 14 8 8	16 11 14 10 14	43 69 59 61 36	.2 .3 .1 .1	7 12 8 10 5	2 4 2 3 1	106 159 122 137 89	2.50 3.43	5 5 10 2 6	5 5 5 5 5	ND ND ND ND	5 3 4 2 3	14 18 17 16 14	.3 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2 2	41 47 60 32 44	.15 .12 .14	.064 .124 .057	13 10 11 11 11	15 19 18 15 13	.11 .21 .16 .19 .08	40 .09 53 .11 50 .10 75 .10 41 .11	5 6 4	2.09 1.96 2.96 2.13 1.40	.01 .02 .01 .02 .01	.04 2 .06 1 .05 1 .04 1 .03 1	6 8 10 2 1
L15W 750N L15W 700N L15W 650N L15W 600N L15W 600N	1 1 1 1 1	5 7 8 6 4	13 13 13 10 11	31 33 63 83 113	.2 .3 .5 .1 .4	4 5 7 8 6	1 1 2 3 2	141 139		2 2 3 2 2	5 5 5 5 5	ND ND ND ND	1 4 3 1 3	25 11 12 19 22	.2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	17 37 48 42 20	.08 .11 .15	.019 .048 .150 .048 .022	12 11 12 12 11	8 12 16 16 11	.10 .07 .14 .18 .15	52 .08 32 .08 40 .10 52 .12 32 .09	4 5 4	.91 1.46 2.04 2.01 .89	.02 .01 .02 .02 .02	.06 1 .04 1 .05 1 .03 1 .05 1	4 6 3 4
L15W 500N L15W 500S L15W 550S L15W 600S L15W 650S	1 1 1 2 1	13 10 6 13 19	12 17 27 28 43	275 63 52 124 163	.6 .3 .1 .2 .3	12 10 9 14 6	4 2 9	326 255 178 1121 229	2.05 1.33 2.24	2 2 2 21 8	5 5 5 5 5	ND ND ND ND	1 4 3 1 1	52 21 18 91 100	.4 .2 .2 .3 2.4	2 2 2 2 2	2 2 2 2 2	25 43 31 49 24	.19 .16 .58	.041 .038 .024 .092 .057	14 12 11 20 14	17 17 15 22 12	.23 .28 .21 .34 .15	76 .06 54 .17 39 .16 116 .07 61 .04	5 3 3	1.90 1.85 1.39 3.00 1.13	.03 .02 .02 .03 .02	.08 1 .07 1 .05 1 .07 1 .06 1	1 15 8 2 324
L15W 700S L15W 750S L15W 800S L15W 850S L15W 900S	1 1 1 1 2	10 7 9 4 12	20 18 21 17 17	75 65 137 36 73	.2 .4 .2 .3 .1	9 7 14 6 14	2 5 1	526	1.20 2.20 .90	2 2 9 3 3	5 6 5 7 5	ND ND ND ND	1 2 1 2 1	25 24 52 16 17	.2 .3 1.0 .2 .2	2 3 2 3 2	2 2 2 2 2	44 31 58 27 64	.18 .36 .13	.033 .016 .034 .013 .051	12 12 13 11 13	17 13 26 10 27	.19 .20 .51 .15 .34	43 .16 35 .16 70 .16 32 .17 60 .16	2 3 2	1.02 .96 2.17 .85 1.72	.02 .02 .03 .02 .02	.06 1 .07 1 .08 1 .06 1 .10 1	11 8 711 12 9
L15W 950S L15W 1000S L14W 1000N L14W 950N L14W 950N	2 1 1 1 1	13 12 8 8 9	18 15 17 18 16	51 62 59 48 53	.2 .2 .1 .1 .3	9 9 8 5 7	3 3	218 217 210 120 138	2.41 2.65	2 4 6 8 24	5 5 5 5 5	ND ND ND ND	1 1 3 3 4	18 22 16 15 15	.2 .2 .2 .2 .2	2 3 2 2 2	4 2 2 3	35 59 52 44 60	.16 .11 .09	.057 .070 .105 .049 .091	12 10 13 14 13	14 18 19 14 19	.20 .15 .14 .10 .13	61 .12 70 .10 49 .12 36 .11 41 .11	3 3 3	1.31 1.07 2.66 1.48 2.36	.02 .02 .02 .02 .02	.10 1 .09 1 .03 1 .01 1 .05 1	10 11 3 1 1
L14W 850N L14W 800N L14W 750N L14W 750N L14W 700N L14W 650N	1 1 1 1 1	8 6 5 7 6	17 16 16 15 18	73 42 55 50 40	.1 .1 .2 .3 .3	9 4 7 6 5	3 1 2 1 1	107 165	1.96 1.17 2.47	7 7 2 5 2	5 5 5 6	ND ND ND ND	3 3 4 6 1	20 13 28 11 20	.2 .2 .2 .2 .2	2 2 2 2 2	2 2 2 2 2	51 46 31 54 20	.08 .26 .08	.068 .042 .014 .157 .027	12 12 13 11 13	17 11 12 17 8	.19 .07 .20 .08 .09	53 .12 43 .11 56 .15 35 .11 35 .08	2 2 3	2.17 1.43 1.04 2.71 .75	.02 .02 .02 .02 .02	.03 1 .01 1 .05 1 .03 1 .08 1	6 5 9 11 2
RE L14W 850N L14W 600N L14W 550N L14W 500N L14W 500S	1 1 1 1	8 3 6 5 11	17 16 22 22 53	33		5	1 5 1	112 358 150		7 2 2 2 7	5 5 5	nd Nd Nd Nd	5 1 1 2 1	21 19	.2 .2 .2 .2 .2	4 2 2 2 2	2 2 2 2 2	52 18 25 25 51	.11 .14 .14	.067 .013 .022 .016 .067	15	17 7 10 10 16	.19 .05 .12 .08 .16	51 .12 30 .11 48 .10 30 .15 36 .16	2 2 5 2	2.09 .51 1.05 .77 1.18	.02 .02 .02 .02 .02	.06 1 .03 1 .05 1 .05 1 .05 1	4 1 8 4 61
L14W 550S STANDARD C/AU-S	1 21	8 59			.5 7.4	8 71			1.67 3.96	3 41		ND 7	2 40		.2 19.0		3 21	40 57		.045				61 .17 172 .10		1.69 1.96		0.0000000	31 53

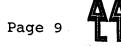
Page 6

ACHE ANALYTICAL

MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	v ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к % р	W Au pm p
4w 600s	1	8	27	78	.4	7	4	189	1.82	8	5	ND	1	12	.6	2	2	38	.11	.054	9	14	.22	40	.11	2	2.19	.01	.05	1
4W 650S	1	11	19	86	.3	9	7	474	1.98	19	5	ND	1	69	.4	2	2	40		,067	22	20	.29	116	.05		2.53	.02	.06	1
4W 700S	1	8	14	85	.4	8	5	168	1.39	9	5	ND	1	65	.6	2	2	24	.40	.103	19	19	.23	108	.02		2.40	.02	.05	1
L14W 900S	1	11	11	68	.1	10	8	475	2.52	10	5	ND	1	26	.2	2	2	60		.028	10	21	.42		.12		2.25	.02	.07	1
4W 750s	1	20	21	126	.2	12		306		5	5	ND	1	52	.5	2	2	45		.051	15	22	.29	117	.05		3.00	.01	.08	1
W 800S	1	8	18	72	.1	9	4	215	1.47	3	5	ND	1	26	.3	2	2	32	.22	.029	10	18	.31	56	,13	2	1.54	.02	.07	1
W 850S	1	8	23	59	.1	7	3	173	1.33	5	5	ND	1	19	.2	2	2	30		.037	11	13	.22	40	.12		1.13	.01	.04	1
W 900s	1	10	12	66	.1	10		478		9	5	ND	1	24	.2	2	2	59		.027	10	20	.41		.12		2.17	.02	.06	1
W 950S	1	8	8	42	.1	4		202		3	5	ND	1	17	.2	2	2	37		.062	7	12	.15		.11		1.08	.01	.06	4
W 1000N	1	8	10	69	.1	7		173		3	5	ND	2	13	.2	2	2	56		.116	7	15	.19		.17		2.33	.01	.03	1
W 950N	1	8	6	72	.2	6	4	132	2.37	2	5	ND	2	11	.2	2	2	44	11	.102	7	10	.16	33	.11	2	2.62	.01	.03	1
900N	1 1	6	9	54	.2	4	3		3.17	5	5	ND	1	12	.2	2	2	51		.128	8	12	.10	35	.10		1.94	.01	.03	1
W 850N	1 1	10	10	65	1	7	5		2.90	ž	5	ND	ż	13	.2	2	2	54		.095	8	16	.19		.15		2.13	.01	.03	4
W 800N	1	9	5	70	1	9	6		3.07	2	5	ND	2	14	.2	2	2	55		.129	10	16	.23	64	.11		2.45	.01	.03	i
750N	1	6	ž	58	:1	6	5	122		3	5	ND	3	10	.2	2	2	38		.045	8	9	.14	47	.10		1.87	.01	.03	1
700N	•	9	14	59	.2	7	4	10/	2.32	,	5	ND	4	11	,	2	2	40	04	.103	7	10	.14	79	.08	7	5 /1	01	07	
4 650N		. 7	14	56	.3		3		2.32	2	5	ND	ž	25	.2 .2					.200	8	10	.14	38 54	55555555555		2.41	.01	.03	1
		•				4	3		2.40	2	6	ND		25 14	.2	2	2	45 38			8	-			.05		3.21	.01	.03	
W 600N		12 7	14		1	-	4 7			4			4 7	14		2	2			.171	-	7	.11	51	.07			.01	.03	
W 550N		2	7	41 12	1	6	3		1.76	1000000000	5	ND	3		.2	2	2	31		.068	8	10	.12	32	.08		1.60	.01	.03	1
W 500N		2	Ŷ	12	•	1	1	44	.38	2	5	ND	I	8	•4	2	2	11	.00	.012	11	3	.02	23	.06	2	.50	.01	.03	
W 475N	1	7	14	65	•1	6	3			3	5	ND	2	23	.2	2	2	24		.011	8	10	.18	31	.09		1.11	.01	.03	1
W 450N		4	20	27	.1	3	2	128	.83	2	5	ND	1	16	.2	2	2	22		.013	2	8	.10	30	.16	2	.81	.01	.03	
W 425N	1	4	10	36	1	5	2	109	.77	2	5	ND	1	11	.2	2	2	16		.013	7	8	.13	36	0.0000-0.000		.99	.01	.04	1
W 400N	1	4	16	34	.1	3	1	91	.56	2	5	ND	1	13	.2	2	2	15		.020	9	6	.08	39	.04		1.06	.01	.04	1
W 375N	1	6	12	75	.2	8	2	116	1.48	2	5	ND	1	12	.2	2	2	26	.11	.027	8	12	.15	66	.06	2	2.11	.01	.04	1
W 350N	1	4	23	83	.2	4	1	91	.72	2	5	ND	1	12	.2	2	2	17		_013	8	7	.10	32			.79	.01	.03	1
W 325N	1	4	21	143	.5	4	1	95	.80	2	5	ND	1	11	.2	2	2	19		.012	7	7	.11	22	.08	2	.70	.01	.03	1
W 300N	1	4	21	146	.6	2	1	62	.59	- 4	5	ND	1	18	.2	2	2	14		.021	10	4	.05	33			.62	.01	.04	1
W 275N	1	4	22	159	.9	2	1	70		2	5	ND	1	18	.6	2	2	14		.013	11	5	.05	26	0.000.00000		.59	.01	.03	1
W 250N	1	12	34	629	.8	10	4	522	1.69	14	5	ND	1	37	1.0	2	2	32	.31	.037	11	16	.34	70	.06	2	1.67	.01	.07	1
W 225N	1	9	128	421	1.0	5	3		1.23	16	5	ND	1	26	.6	2	2	25		.038	14	8	.10	56			1.18	.01	.06	1
W 200N	.1	7	14	98	.2	5	2		2.07	5	5	ND	1	9	.2	2	2	38		.110	7	9	.09	41			1.31	.01	.03	1
W 175N	1	4	21		.3		1	65		2	5	ND	1	14	.2	2	2	13		.016	10	3	.03	22			.47	.01	.03	1
SW 150N	1	8	46		1.3		2		.70	5	5	ND	1	22	.6	2	2	15		.016	11	7	.09	36	.04		.85	.01	.04	1
W 100N	1	10	142	677	2.7	9	3	335	1.24	48	5	ND	1	29	1.1	2	2	25	.27	.034	10	14	.20	46	.07	2	1.31	.01	.06	1
W 075N	1	3	125	107	6.7	1	1	91	.31	30	5	ND	1	10	.2	2	2	10		.012	9	3	.03	20	.07		.45	.01	.03	1
3W 050N	1	5	67	344	5.4	4	1	102	.68	15	5	ND	1	16	.6	2	2	15	.16	.021	9	7	.13	29	.08	2	.76	.01	.04	1
ANDARD C/AU-S	18	59	38	131	7.6	70	31	1033	3.96	38	18	7	40	52	19.0	15	19	56	.52	.087	38	56	. 92	182	08	33	1.99	.07	. 14 🖉	10

Granges Inc. PROJECT BLACKWATER DAVIDSON FILE # 92-2739

Page 7


SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm		Co ppm	Mn ppm	Fe / % pj	s Mipi			Th pm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	Р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К % р	W Au** pm ppb
L13W 025S	1	10	67		5.1	6		953		9		ND	2	18	1.4	3	2	27		.033	13	18	.14	24	.10		1.02	.02	.05	1 11
L13W 050S	1	6	65	475	6.7	5	2			5	-	ND	3	14	.3	4	2	25		100000000000000000000000000000000000000	9	14	.15	25	.12	2	.97	.02	.05	1 9
L13W 075S	1	3	66	179	1.7	3		138		2	-	ND	2	11	.2	3	2	24			10	9	.11	17	.13		.70	.02	.06	1 11
L13W 100S		15	67	818 1856	2.0	5		2054 9562		2000		ND	1	15 17	.9 2.0	3 4	2 2	27 25		.030	11	13	.16	22	.11		1.07	.01	.06	1 52
L13W 125S		16	182	1020	2.5	10	3	7202	1.97 4	4	2	ND	I	17	2.0	4	2	25	. 12	.024	16	15	.13	21	.06	2	.95	.01	.07	1 481
L13W 150S	1	6	30	108	.4	3	1	193	1.99	8	5	ND	1	10	.3	2	2	38	.08	.032	9	14	.08	29	.09	2	1.66	.02	.04	1 6
L13W 175S	1	8	64	188	2.9	5	2	260	2.75	6	5	ND	3	10	.2	2	2	45	.09	.049	10	17	.15	29	.11		1.95	.02	.04	1 15
L13W 200S	1	5	86	127	.4	2	1			8		ND	1	13	.3	2	2	22	.09	.028	12	7	.06	63	.07	2	.77	.01	.04	1 24
L13W 225S	1	10	41		.2			259		5		ND	1	19	.2	2	2	40		.028	11	15	.24	65	.12		1.34	.02	.06	1 17
L13W 250S	1	8	24	134	.3	6	3	238	2.42	1	5	ND	1	12	.3	2	2	43	.12	-036	9	15	.17	44	.12	2	1.33	.01	.05	1 6
L13W 275S	1	8	21	160	.4	7	3	167	2.01	0	5	ND	3	13	.3	2	2	37	.13	.033	10	17	.19	57	.12	2	2.19	.02	.04	1 8
L13W 300S	i	9	19	79	.4	8		159		1	-	ND	2	15	.3	2	2	49		.056	9	18	.19	59	.12		2.20	.02	.04	1 5
L13W 325S	1	7	33	54	.1	7	2			0	-	ND	2	13	.2	ž	2	51		.071	8	16	.15		.14		2.34	.02	.03	1 4
L13W 350S	1	18	162	247	1.4	8	4	226	1.58	3	5	ND	1	46	2.0	2	2	30	.38	.074	16	14	.17	94	.06	2	1.96	.02	.07	1 1
L13W 375S	1	5	26	118	.4	4	2			4	7	ND	1	19	.4	3	3	27	.19	.023	11	11	. 15	35	. 13	2	.85	.02	.06	2 1
L13W 400S	1	8	11	80	.4	8	3	169	2.21	7	6	ND	2	12	.3	2	2	38	. 13	.099	9	17	.21	36	.10	٦	2.99	.02	.05	1 1
L13W 425S	1	8	47	126	.3		3			2		ND	2	15	.2	2	2	49		.062	ģ	20	.22	42	.13		2.58	.02	.06	1 49
L13W 450S	i	4	24	68	៍រ៍			311		7	-	ND	1	13	.2	2	2	53		.058	9	14	.17		.16		1.23	.01	.04	1 5
L13W 475S	1	6	14	75	.3			152	60000	2	5	ND	1	14	.2	2	3	38		.085	8	16	.17		.12		2.38	.02	.03	1 4
L13W 500S	1	13	42		.1	10		675	30,000	57	5	ND	1	15	.9	2	2	66		.081	10	22	.33		. 15		2.27	.01	.18	1 52
L13W 550S	1	7	29	96	1.0	7	7	281	2 22	5	5	ND	1	13	.2	2	2	41	. 11	.049	10	17	.26	47	.17	2	1.97	.02	.08	1 20
L13W 600S	1	8	13	69	.1		3		2.53	5	6	ND	5	11	.2	2	2	43		.073	8	18	.18	38	12	-	3.95	.02	.03	1 4
L13W 650S	1	11	12	84	.2	· ·	3			1	5	ND	4	11	.2	2	ž	34		.073	9	18	.21			_	2.66	.02	.05	1 21
L13W 700S	1	5	16	41	.1		2		1.50	5	5	ND	1	10	.2	2	3	30		.036	9	11	.14	36	.13	2	1.48	.01	.03	1 2
L13W 750S	1	5	22		.1		2		1.47	4	5	ND	1	12	.2	2	2	32	.11	.025	9	13	.18	35	_ 15	2	1.24	.01	.04	1 11
L13W 800S		9	11	66	.1	8	6	591	1 00	1	5	ND	1	49	.2	2	2	39	41	.054	15	19	.25	70	.11	2	1.39	.03	.07	1 1
L13W 850S		11	15	76	1	6		689		7	5	ND	1	62	:2	2	2	38		.058	17	22	.28	86	.10		1.65	.03	.07	1 3
L13W 900S		16	17		.4			1080		9	5	ND	1	72	.3	2	2	59		.075	13	21	.48	116	.05		3.29	.02	.11 🖉	1 1
L13W 950S	1	19	15		.5			815		28	6	ND	1	58	.2	2	2	74		.080	10	26	.67		.06		4.19	.02	.13	2 3
L12W 1000N	1	7	12		.3				2.62	7	5	ND	3	12	.2	2	2	45		.131	9	18	.17	47	.10	2	2.54	.02	.03	1 483
1 1 211 05 01	4	4	1/	50	.2	5	3	174	3.29	9	5	ND	3	14	.2	2	2	62	11	.059	11	17	.14	58	.12	2	1.80	.02	.04	1 8
L12W 950N		6 8	14 10	59 61	.1		3		2.97	9 5	5 5	ND	2	17	.2	2	2	51		.039	9	19	.21	53	.11		2.01	.02	.04	1 2
L12W 900N		8	10			6 L	-		3.29	5	5	ND ND	1	25	.2	2	2	54		.074	9	19	.13	70	10000000000		3.22	.01	.04	1 6
L12W 850N L12W 800N		9	13		.0				3.05	8	5	ND	1	29	.2	2	2	53		.039	9	18	.16	81	.10		1.65	.02	.03	1 1
L12W 750N	1	7	10		:1				1.78	2	5	ND	i	16	.2	2	2	36		.021		19	.05	47			.72	.01	.04	15
							_				_		-			_	_				-							~ ~	<u> </u>	
RE L12W 900N	1	7	12				3		2.79	7	5	ND	1	17	.2	2	2	48		.082	9 10	19	.19	50 54			1.82	.01	.02 .02	1 3 1 5
L12W 700N	1	8	10		201000.000		2		1.17	2	5 20	ND 7	40	28	.2	2 14	2 21	22		.013		12	.12 .93		.06		1.95	.01 .08		10 47
STANDARD C/AU-S	18	61	38	133	7.3	75	21	1001	3.96	42	20		40		10.0	14	21	50	.49	.002	40	00	.73	104			1473			<u>''' ('''')</u>

ANALYTICAL																																ACHE ANALYTICA
SAMPLE#			Pb ppm		n Ag n ppm			Mn ppm		As ppm		Au ppm p			Cd ppm p				Ca %						Ti % pp		Al %		K %	W Au*		lg xb
14211 (50)	7							120		99995	_								8		10	20	47									
L12W 650N L12W 600N	2	0 A	11		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	9 8	6 5		2.49	7 6	7 6	ND	14 6	13	.5 .3	2 3			.08 . .08 .				.13				2.30			3 2 1	-	5 10
L12W 550N	2	4	15		20020000	7	-	190		7	-	ND	5	13	.2	3		41	.09	050							2.62					15
L12W 500N	1	5	14		100 x 0000	8			2.32	9	7	ND	5	22	.2	3			.11				.14		5 C - C - C - C - C - C - C - C - C - C		2.20			1		10 10
L12W 500S	1	6	40			4			1.70	7	•	ND	1	15	.7	ž			.11								.02					5
	· ·	-				•	-				-		•			-	-				,		•••			- '					•	
L12W 550S	1	7	17	72	.4	5	4	158	2.52	8	5	ND	2	10	.4	2	2	45	.09	070	8	18	.17	46	.14	2 1	.88	.01	.04	1 1	12 !	50
L12W 600S	2	5	18	68	3.5	6	4	143	2.31	13	5	ND	2	11	.2	2	3	43	.11 🖁	049	8	17	.20	44	.12	3 3	5.06	.01	.04	1	4 8	35
L12W 650S	1	7	17	50).3	4	4	126	1.85	5	5	ND	1	11	.2	2			.10						0.000 0.00		2.91			1	5 8	30
L12W 700S	1	6	15	65	.3	5	5	140	2.13	18	5	ND	1	10	.2	2			.09						200.0000		.92			1 '	18	35
L12W 750S	1	- 4	19			5	3	117	1.82	7	5	ND	2	11	.2	2			.08 .								.18			1	1	25
L12W 800S	1	6	13	50).2	5	5	157	2.52	9	5	ND	2	12	.2	2	3	44	.10	072	8	17	.19	52	.13	2 2	2.49	.01	.04	1	2	35
L12W 850S	1	6	20	34	2	6	3	121	1.67	4	5	ND	1	10	.2	2	2	36	.08	042	9	15	.10	46	.10	2 1	1.10	.01	.05	1	2	25
L12W 900S	1	3	15	30) .2	5	3	109	1.43	3	5	ND	1	11	.2	2			.11 🕴			13	.12	30	.13	2 1	1.04	.01	.04	1	1 :	25
L12W 950S	2	7	16			6			1.46	2	5	ND	1	65	.3	2	2	30	.49	067	9	16	.24	90	.05	2 1	1.36	.01	.06	1	1 3	25
L12W 1000S	1	7	9	41	.2	7	5	140	2.54	5	5	ND	1	14	.2	2	2	47	.14 🖁	115	7	18	.16	32	.10	3 2	2.39	.01	.03	2	5	20
																			2000													
L11W 1000N	1	6	17			6	4		1.61	9	5	ND	1	29	.2	2			.25 🛔				.14			-	1.23			1		55
L11W 950N	2	8	9			12			3.09	9	5	ND	4	18	.3	2	2	51	.16	040	9		.21			3 1	1.84	.01	.03	a da anti-anti-		55
L11W 900N	1	6	11		20000000				1.99	- 4	5	ND	1	18	.2	2			.16				,18			2 '	1.16	.01	.03			20
L11W 850N	1	9				8			2.37	3	5	ND	1	40	.2	2			.43						STATISTICS.	-	1.12			<pre>ccccccccc</pre>		20
L11W 800N	1	8	7	89) .1	6	5	163	2.37	2	5	ND	1	38	.3	2	3	45	.25	026	10	27	.15	88	.06	3 '	1.29	.01	.04	1	2 2	25
											_		_			_	_		8							_					_	_
L11W 750N	2	14			 5675658 	8	7		3.69	4	5	ND	3	21	.2	2	2		.15				.21				2.00			1		5
RE L11W 950N	1	7					7		3.21	7	5	ND	2	17	.2	2			.15				.19			_	1.94			1		0
L11W 700N	1		11				6		2.14	4	5	ND	1	42	.2	2	2		.23				.20				1.50					20
L11W 650N	1				-	7			3.12		5	ND	4	17	.2	3			.14								3.03					55
L11W 600N	2	8	13	90).1	10	7	171	3.41	11	5	ND	4	12	.2	2	2	52	.11	.094	7	20	.18	47	.12	6 7	2.99	.01	.04	1	1 !	55
		-	47				7	455	2 84		5		5	9		,	2	12	00	171		10			~	~ .		01	~		•	55
L11W 550N		<u>'</u>	13 9			4			2.81	9 4	5	ND ND	2	12	.2 .2	4	2		.08.				.16		.09 .10		2.69					55
L11W 500N	1	3	-			7	6		1.85	5		ND	3	10	.2	2			.08				.16				1.65					55
L11W 475N		-			1000000000	4			2.02	5		ND		11	.2	2 2			.08				.15		7000000	_	1.50			1		5 15
L11W 450N	1	6 5							2.16		5	ND		10	.3	2			.09						1.	-	2.38			4		+5 55
L11W 425N		2	21	147			5	234	2.10	6	5	NU	2	10	•••	4	2	رد	.07	102	7	17	.13	40	• • • •	51	2.30	.01	.04		4 1	
L11W 400N	1 1	6	31	158	3.6	8	5	460	1.92	7	5	ND	2	13	.2	2	2	32	.11	040	10	15	.14	60	.08	2	1.37	.01	.04	4	1	35
L11W 375N		6			- 2000000		4		1.56	7		ND	3	35	.2	2	2		.29				.19		alaharaharahara		1.29		.04	1		25
L11W 350N		11							2.22		5	ND	1	35	.3	2			.34								2.24			1		55
L11W 325N	1	17			B 1.3				2.58			ND	1	49	.8	2			.53								2.61			i i	_	45
L11W 300N	1		23		5 1.5				1.34		5		1		1.0	3			.43								1.56			1	•	45
	'		20			ŕ	-	/			-		•	••		-	-	- ·			•••					-						
L11W 275N	1	10	20	528	8 2.3	7	4	238	1.18	8	5	ND	1	27	.5	3	2	22	.29	.034	11	13	.21	49	.05	2	1.29	.01	.06	1	2	45
L11W 250N	1	5			4 2.8		4	380		1000 CONTRACTOR	5	ND	1	20	.4	3											1.22			1	19	25
													10												.09						47 15	

ACHE ANALYTICAL									.																				ACH	HE ANALYTICAL
SAMPLE#	Mo Cu	Pb	Zn	Ag	Ni	Co Mi	n Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	B	AL N	la	KW	Au**	Hg	
	ppm ppm	ppm	ppm	ppm	ppm p	ypm pp	n %	ppm	ppm	ppm (ppm p	pm	ррт	ppm p	pm	ppm	%	*	ppm	ppm	× 1	pm	% р		%	%	% ppm	ppb		
							·																						·	
L11W 225N	1 5			1.0	8		9 1.54			ND	2		.3			29		.037					100.000 C	3 2.3			00000100	37	60	
L11W 200N	1 6			3_1	5		5 1.05		5	ND		13	.4		2			.022		10		48		21.				1	55	
L11W 175N	1 8			2.3	5		3 2.97	141-141-0-0-0-0-0-	5	ND	3		.3					.046			.09			3 1.	92.0	01.0)4 1	21	145	
L11W 150N	1 6			3.5	9		3 1.32			ND		10	.2					.022						2 2.3	37.0	01.0)5 1	4	60	
L11W 125N	1 4	60	296	1.9	5	2 17.	3.76	19	5	ND	1	14	.2	2	2	17	.13	.019	11	8	.08	33	.04	31.	18.0	01.0)4 1	6	45	
	1																													
L11W 100N	1 11	121	274	2.3	7	3 24	5 1.32	22	5	ND	2	21	.6		2	34	.17	.024	13	17	.12	42	.26	2 1.	04.0	01.0)5 1	3	40	
L11W 075N	2 20	348	996	5.6	9	11 950			5	ND	1	40	9.9	7	2	33	.42	.056	17	10	.18	125	.03	6 1.	90.0	01 .1	10 1	32	60	
L11W 050N	2 9	202	193	2.5	5	4 73	3 2.58	123		ND	1	9	.6	4	2	40	.10	.051	10	10	.10	37	.06	2 1.	52.0	01.0	04 1	12	80	
L11W 025N	1 8	131	367	.7	5	4 76	5 1.98	131	5	ND	1	13	.7	3	2	39	.12	.025	11	10	.12	39	.04	3 1.	10.0	01.0)5 1	118	35	
L11W 00 BL	1 27	160	1120	7.3	16	6 204	2 2.62	249	5	ND	1	81	5.2	4	2	34	1.00	.111	23	23	.30	114	.02	2 3.	20.0	01.1	10 1	25	150	
L11W 025S	1 15	164	589	1.0	9	6 130	9 2.77	103	5	ND	2	39	2.7	2	2	51	.36	.036	15	18	.27	65	.10	4 1.	68.0)1 .0	07 1	17	45	
L11W 050S	1 13	167	522	11.4	9	5 203	5 1.93	146	7	ND	1	24	2.3	2		33		.032		15		65		6 1.	95.0	01.0	07	244	75	
L11W 075S	1 9	157	285	1.0	5	3 45	1 1.65	50	5	ND	1	21	.7	2	2	33	.19	.031	13	8	.12	57	.06	3 1.	25.0	01.0	07 1	53	35	
L11W 100S	1 15	151	545	1.7	12	11 164	5 4.28	59	5	. ND	1	33	1.0	2		64	.27	.075	14	23	.44	97	.11	2 2.	44 .0	01.4	11 1	13	40	
L11W 125S	1 7	119	221	.9	6	3 42	0 1.60	15	5	ND	3	25	.6		2	34	.22	.024	12					5 1.	21 .0	01.0	06 1	23	25	
L11W 150S	1 14	170	354	.7	7	11 128	4 3.00	31	5	ND	1	27	1.6	2	2	53	.20	.065	15	16	.22	78	.07	31.	75.0	01.0	08 1	10	55	
L11W 175S	1 11		317	.5	8		5 2.38	1012 Contractor 2010	5	ND	1	39	2.2		2			.041		16			.07	2 1.				40	35	
L11W 200S	1 8	28	188	.2	5	3 21				ND	1		3.0			51		.028			.08			2.			1000	1	40	
L11W 225S	1 13		598	.2		7 105				ND			1.6			50		.038			.31		.10	2 1.			2055-55265	4	50	
L11W 250S	1 8		98	1		4 32				ND			.2					.031						2 1.				10	30	
					•				-		•			-	-															
L11W 275S	1 8	29	72	.4	5	3 16	1 1.48	2	5	ND	1	22	.5	2	2	35	.15	.039	11	12	.14	55	.11	2 1.	12.0	D1 .0	05 1	24	40	
L11W 300S	1 7		166		8		7 1.82		5	ND	1		1.0			45		.023			.35			2 1.			20000000	5	20	
L11W 325S	1 8		47	1	5		2 1.53		5	ND	1	13	.6			37		.034						ž.			 Statistics 	6	25	
L11W 350S	1 17		185	.7	9		2 2.01	100000000000000		ND	1		2.9			40		.053						2 2.			(20) (20) (20)	7	40	
L11W 375S	1 8		61	.1			1 2.08			ND	1	16	.7					.036			.10		and the second second	3.			20000000	122	30	
			• ·		•				-		•			-	-				-											
L11W 400S	1 12	200	117	.6	7	6 79	9 2.09	3	5	ND	1	22	1.5	2	2	38	.13	.059	11	14	.16	116	.07	2 1.	32 .0	01 -	10 1	68	65	ê Ni
L11W 425S	1 10		114	.5	7		9 3.50		5		2	12	.4			69		.074			.18			4 2.				13	45	
L11W 450S			154	.9			7 2.90	1000000000		ND	2	13	.5					.040	9		.25			4 1.				528	45	
RE L11W 350S	1 16		179	.6	9	10 73				ND	1	54	2.7			39		.050						2 2.				14	35	
L11W 475S	1 17	-	199		11		9 4.43			ND	2	15	.6		2			.080			.32			4 2.					25	
					••			1743	-		-	•-			_															
L11W 500S	1 8	19	79	.2	5	3 23	5 2.23	7	5	ND	1	13	.4	2	2	48	.09	.039	10	15	.10	41	.13	41.	03 .	01 .	05 1	148	20	
L11W 550S	1 8		50	.1	6		2 1.87		5	ND	1	14	.2		_			.032			.17			2 1.				11	20	
L11W 600S	1 5		34	1	-		6 1.14		5	ND	1	13	.2	2		30		.021	-		.09		.15	2.		01			20	
L11W 650S	1 6		70	.7	5		5 1.74		5	ND	ż		.2			33		.055			.13			2 2.			60000000	18	60	
L11W 700S	1 6		50				7 2.62			ND	1	11	.3	2	2			.075			.14		- C.	2 2.				3	50	
									-		•	•••			-				•	•					•			-		
L11W 750S	1 8	3 12	49	1	6	3 24	2 2.58	2	5	ND	1	14	.2	2	2	42	. 10	.086	8	12	.16	50	11	31.	81 .	01 .	04 1	2	50	
L11W 800S	1 9		39			2 15				ND	ż		.2		2			.051			.19			5 1.				2	30	
STANDARD C/AU-S	18 57																											_	1600	
CIANDARD CIAO S						5. 100		. Contractor																		•	4976.6			

Page 10

ACHE ANALYTICAL																																	ACHE ANALYTICAL
SAMPLE#					Ag ppm			Mn ppm		As ppm p								V ppm			La ppm				Ti %			Na %	К %		Au** ppb	Hg ppb	
L11W 850S L11W 900S L11W 950S L11W 1000S L10W 1000N	3 1 1 1 2	7 8 3 9 8	12 11 12	23 64	.3 .1 .2	9 5 11	3 4 1 5 4	219 107 220	1.73 1.81 1.35 2.19 2.41	2 2 2 7 6	5 5 5 5 5	ND ND ND ND ND	1 1 3 3	14 13 12 14 28	.2 .2 .2 .2 .2	2 2 2 2 4	2 2	42 37 42	.10 .08 .11	.029 .039 .018 .133 .034	9 9 8	21 11 17	.20 .07 .22	50 28 46	.14	2 2 2	.95 .99 .76 2.75 1.18	.03 .02 .02	.06 .01 .04	1 1 1 2 1	16 8 5 6 11	90 50 25 85 25	
L10W 950N L10W 900N L10W 850N L10W 800N L10W 750N	1 1 1 2 1		23 14 18	51 76	.1 .1 .2	12 11 6 12 10	7 2 4	1072 397 129 128 266	3.06 1.66	3 3 2 8 2		ND			.4 .3 .2 .2 .2			56 36 53	.41 .12 .12	.032 .056 .026 .094 .017	15 10 12	26 13 24	.25 .14 .17	111 62 93	.07 .10 .07	2 2 2	2.07 1.80 1.13 2.17 1.40	.03 .03 .03	.05 .03 .05	11111	6 9 2 9 7	45 30 25 55 20	
L10W 700N L10W 650N L10W 600N RE L10W 550S L10W 550N	1 1 2 1 2	9 7 14 4	16 19 48	110 41	.4 .1 .2	7 14	6 1	184 251 153	1.82 3.28 2.47 .93 2.24	2 11 2	5 5 5 5 5 5	ND ND ND	3 4 1	16 18 21 15 13	.2 .3 .2 .2 .2	4 6 2	2	70 44 30	.15 .11 .10	.046 .092 .140 .022 .100	9 13 11	9	.16 .20 .07	40 62 37	.16	2 2 2	1.04 2.30 2.88 1.00 2.81	.02 .03 .02	.04 .05 .03	1 2 1 1	8 4 5 176 9	35 50 60 30 80	
L10W 500N L10W 500S L10W 550S L10W 650S L10W 700S	1 1 1 2 1		22 43 27	99 37 53	.5 .3 .3	7	_	212 145 138	1.18 3.07 .90 2.95 2.01	10 2 13		ND		31 17 14 12 14	.3 .6 .2 .4 .2	2	2	54 28 60	.13 .09 .08	.014 .108 .021 .069 .028	11 11 10	20 9 21	.23 .07 .12	51 36 37	. 12 . 14 . 15 . 13 . 22	2 2 2	1.06 2.02 .95 1.92 1.15	.02 .02 .02	.06 .04 .06	1 1 1 1 1	11 16 165 22 8	25 50 40 50 35	
L10W 750S L10W 800S L10W 850S L10W 900S L10W 950S	1 1 2 1 1	2 3 7 8 9	14 14 12	31 38 2 43	.1 .4 .1	2 5 6	3	129 148 147	.80 1.67 2.09 2.58 2.36	2 2 4	5 5 5	ND ND ND ND	1 1 1	13 14 12 15 15	.2 .2 .2 .2 .2	2 2 2	2 2 2 2 2	48 44 51	.12 .08 .11	.014 .017 .077 .068 .061	9 10 8	12 14 17	.14 .16	24 41 49	.16	2 2 2	.84 .93 1.53 1.85 2.34	.02 .02 .02	.02 .06 .03	1 1 1 1 1	12 8 55 8 10		
L10W 1000S L9W 1000N L9W 950N L9W 900N L9W 850N	1 1 1 1		14 24 18	56 119 3 116) .1) .5	6 17 12	3 7 7	227 190 1574 813 189	3.20 2.28	14 5	5 8 5	ND ND ND ND ND	1 3 1	22 38 107 64 26	.2 .2 .8 .4 .2	2 2 2	2	27 58 47	.28 .90 .60	.042 .013 .068 .026 .054	10 35 12	13 26 21	.17 .34 .28	62 175 109	.12 .09 .05 .09 .13	2 2 2	1.48 .88 3.75 2.06 2.30	.03 .04 .03	.03 .11 .06	1 1 1 1 1	9 9 3 10 7	40	
L9W 800N L9W 750N L9W 700N L9W 650N L9W 600N	1 1 1 1 2	ć	11 10 10 11	60 0 81 8 83) .2 .1 .2	10 9 7	5 5 4	211	2.52	4 5 8	5	ND ND	1 2 3	30 19 15 17 14	.2 .2 .2 .2 .2	2 2 3	2 2 2	44 65 40	.12 .14 .12	.110 .103 .182 .100 .049	9 8 9	20 18 17	.18 .17 .14	65 40 45	.07 .08 .18 .10 .12	2 3 2	2.50 2.63 4.06 2.81 2.27	02. 02. 02.	.04 .03 .05	1		85 70	
L9W 550N L9W 500N STANDARD C/AU-S	1 1 19	8 9 60	18	3 100 3 118 0 130	3 .2	11	5	319	2.16 2.22 3.96		5 5 22	ND ND 7	2 2 39	22	.2 .4 18.8	2	2	36	.18	.104 .076 .086	10	18	.17	73	.09	2		.02	.05	1	11	50 40 1600	l i

NALYTICAL																											· .				AC	CHE ANA
SAMPLE#	Mo ppm p					a Ni n ppm		Mn ppm		As Sppm		Au ppm			Cd ppm p	Sb i pm pi		V C pm			.a C om pp			Ti %	B ppm	Al %			⟨W %ppm	Au** ppb	Hg ppb	
	4					- -	, ,	477	4 07				,	10	.5	2	2	32.0	<u>م</u>	- 1	10 1	/ 1		07		1 21	.02	07		15	60	
L9W 475N	1	8	11				3		1.97			ND	4	12		2								2047740								
L9W 450N	1	4	29			50 T.			1.74				1	14	.2	2		30.1	50000	0.000 Miles		1.0		.07			.04			9	40	
L9W 425N	1	6	27				3		1.42				2	32	.4	2					11 1			.10	2 · · ·		.02			19	20	
L9W 400N	1	5	17	50) 📑	3	· 1	118	.89				1	19	.2	2		20.1				9.1		.10	e		.05		1007.000.000	11	15	
L9W 375N	1	5	35	257	7.6	55	- 3	1008	1.09	> 8	5	ND	1	30	.9	2	2	22.3	0.0	23 1	10 1	0.1	3 51	.08	2	.91	.02	.06	5 1	9	30	
L9W 350N	1	5	45	199	9 1.0) 6	5 3	324	1.82	2 11	5	ND	2	12	.4	3	2	33.1	1.0	49 ⁻	11 1	7.1	3 48	.07	2	1.73	.05	.06	5 1	6	55	
L9W 325N	1	6	40	212	2.9	95	53	249	1.11	9	5	ND	1	26	1.1	2	2	23.2	7 .0	23 '	11 1	1.1	3 50	.08	2	.92	.02	.07	7 👘 1	8	30	
L9W 300N	1	6	41	29/	4 1.5			274	1.20) 7	5	ND	2	26	.4	2			3.0	39 [·]	13 1	5.2	0 54	.11	2	1.05	.02	.04	4 1	13	25	
L9W 275N	1	1		58			-			100000		ND	1	18	.5	2		14 .1				6.0		.05			.02			7	15	
	1	6			, i.e				1.61			ND			4	3		27 .1						07	÷		.08		00000.0	8	70	
L9W 250N	I	0	40	205	7 1.C) 7	د ·	101	1.01	10		NU	5	15	• •	2	2	21 .1	J .U	+ /			0 04		-	2.30		.0.		0	70	
L9W 225N	1	7	41	169).3	33	i 3	458	2.09) 9	<i>δ</i> 5	ND	1	12	.3	2	2	39.1	0.0	50 [·]	11 1	5.1	1 42	.07	2	1.56	.01	.02	2 1	6	45	
L9W 200N	1	6	56	261	1.6	53	53	878	1.55	5 37	5	ND	1	12	.5	4	2	33.1	1.0	31 ′	12 1	3.1	1 42	.05	2	1.16	.20	.07	7 1	5	30	
L9W 175N	1	13	45	15	7 2.1	1 4	• 3	275	2.26	5 24	5	ND	1	10	.4	2	2	38.1	0.0	56 '	13 1	4.1	8 41	.04	2	1.44	.01	.05	5 1	8	35	
L9W 150N		17			5.3				2.46	- 20A A A A		ND	2		1.8	2		41 .2				4.2		.08	22	2.47	.02	.00	6 1	16	180	
L9W 125N					s 1.2	Tee in			1.97			ND	1	36	2.0	4		33 .3						.03	50		.04		ber and the	68	50	
L9W 125N	2	14	110	500	J 1.46	. U	, 4	1055	1.71				•	50		-	-				•••••		5 1-					•••			20	
L9W 100N	1	9	108	54	7 4.7	79	> 4	2042	2 1.56	5 39	2 5	ND	1	34	4.3	2	2	29.4	1.0	33 ⁻	16 1	6.2	6 66	.06	2	1.64	.03	.08	8 1	100	45	
L9W 075N	1	10	128	47	3 3.3	3 5	i 3	972	2 1.67	7 78	3 5	2	1	34	1.5	2	2	26 .4	4 .0	36	14 1	3.2	0 52	2 .03	2	1.44	.01	.08	8	446	55	
L9W 050N			114		2,0000				1.96		000		1	34	1.6	2			.9 .0			3.1		.03			.03			40	30	
L9W 025N	1		106		1000 Mar				3 1.31		NO 1		1	36	1.0	2		28 .3						07			5 .02		101010101010		20	
		-			00000				2.12				3		ž	2		36 .1				6.1		5 11	at - 1		.02			9	50	
L8W 950N	1	7	12	6	U .		2	101	2.12	:		NU	2	12	• 6	2	2	50.	i i i	.	7 1	0.1	0 30	,	-	1.7.	.02		-	,	50	
L8W 900N	1	9	13	7	3	1 9	94	180	2.69	9 5	55	ND	4	14	.2	2	2	43 .	4.0	73	11 1	9.2	5 43	5 .10	2	1.67	.02	.0	7 1	3	25	
L8W 850N	1	11	21	8	8	18	3 3	135	5 3.00) 2	25	ND	3	15	.4	2	2	47 .	1 🗊	44	10 2	0.1	6 49	.07	2	2.70	5.01	.04	4 1	3	40	
L8W 800N	1	17		-	205020	1 15			\$ 4.03		25		2		.3	2	2	70 .	8.1	41	10 2	2.2	9 60) .16	2	4.00	5.02	.03	3 1	4	60	
L8W 750N		10	. –		000007				3.01		2 5		4		.2	2		48 .				1.2		.09	NO.	2.6	.02	.0	5 1	1	55	
		8							5 3.76		5 5		4	16	.2	2			6	000000	1Ó Z			2 13			5.01			ż	60	
L8W 700N	1	0	19	0	•	L C	3 4	102		,	, , 	ND	4	10		2	2	. 0		00	10 2		0 4			2.40		.0		-	00	
L84 650N	1	11	22	2 82			0 4	350	3.01			ND	3		.2	2	-		16 .1	20000		8.1		5,08	33 —		7 .01		100000000	4	40	
RE L8W 850N	1	12	22	2 9	3.4	4 8	34	143	5 3.15	; 7	25	ND	5	16	.3	2	2	50 .	11 🔝	50			7 50			2.8	9.02	2.00	6 1	5	45	
L8W 600N	1	15	14	12		4 13	37	167	7 3.21	1 87	2 5	ND	5	19	.2	2	2	49 .	16 🖪	81	14 2	5.2	3 94	.04	2	3.2	1.02	.0	7 1	2	50	
L8W 550N	1	23		14	- 20000				1 2.70			ND	1	68	1.2	2	2	46 .	75.0	43	18 2	6.3	5 162	2 .04	2	2.4	2.02		9 1	2	45	
L8W 500N	li	-9		10					3 2.80				3		.7	2		44						1000 C 100	60-		9.02		100.0000	3	45	
LOW JUUN	i i	7	61	10.		- ·						NU	2			-	-		•••••			- • •			-					-		
L8W 500S	1	9		2 18					1 1.75				1	33	2.0	2	-		21 .0	5797255		6.2		5.12	26 - 2		3.02			9	20	
L8W 550S	1	11	31	1 5	7 📑	96	64	209	9 1.51	1 🐯	27		1	23	.9	3	-			10.755		2.1		5.09	- w		4 .01			4	50	
L8W 600S	1	10	32	2 7	9	1 5	95	245	5 2.10) 📰	35	ND	1	19	.6	2	2	41 .	14 .0	24	11 1	8.3	0 5	3.16	5 2	1.5	3.02	2.0	7 1	18	20	
L8W 650S	1	8							7 3.50	1000000	4 7	'ND	4	11	.5	5	2	63 .	10 .0	77	10 1	8.1	8 4	1 17	2	2.7	6.01	.0	7 1	1	70	
L8W 700S	1	5					4 ²		1 1.49	- 20000A	25		1	13	.2	2		35.				2.1	1 3	5 .14			2.01			1	25	
	1									- 200			-						. 8		•								-			
L8W 750S	1	7	44			- T- C	73		1 3.28		65	ND	3		.5	2		57.					6 4				9.01			146	50	
	1	9	14	46	3 .	2 6	63	, 227	7 2.23	3 🛒	25				.2 18.8	2		50.									9.02			4	30	
L8W 800S	()																														1700	

SAMPLE#	Mo ppm	Cu ppm	Рb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr Cd ppm ppm		Bi ppm	V ppm	Ca P % %		Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K N X ppr	/Au** 1 ppb
L8W 850S	2	17	51	145	.2	10	5	280	2.11	6	5	ND	1	20 2.2	2	2	37	.11 .098	14	19	.23	86	.05	2 2	2.11	.01	.08 1	12
L8W 900S	1	8	17	96	1	8	4	248		4	5	ND	1	13 .5	2	2	63	.12 .051	8	20	.21	57	.13	_		.01	.06	13
L8W 950S	1	9	14	50	<u>_</u> 1	5	ż			2	5	ND	1	14 .5	2	2	34	.10 .030	10	12	.11	65	.08			.01	.04	
L8W 1000S	2	80	42	421	2.1	17		1076		0000000000	-		1										Sector and a				- T T T (2)4 4667	8
	· -									92	2	ND	-	73 6.4	2	2	45	.45 .138		18	.32	66	.02			.01	.06	6
L7W 950N	1	12	19	76	.4	8	4	145	2.78	2	5	ND	3	15.2	2	2	42	.12 .254	10	15	.18	54	.08	4 2	.60	.01	.03 1	1
L7W 900N	1	14	11	76	.3	10	6	168	3.35	2	5	ND	2	22 .2	2	2	49	.13 .210	10	24	.21	84	,06	2 2	.57	.01	.05 1	1
L7W 850N	1	6	16	60	.2	7	4		3.65	2	5	ND	2	14 .2	2	2	74	.13 .105		15	.16	39	.15		.32	.01	.03	Î i
L7W 800N	i	9	19	80	.4	10	Ä		3.88	2	5	ND	3	15 .2		2	67	.15 .177		15	.18	50	.14			.01	.04	1 7
L7W 750N				112		13		336		6	-					-			<u>0-</u>								- T T T (MORDON)	
		12	14		.2						5	ND	2	18 .2		2	68	.17 .103	6	20	.27	62	.28		5.18	.01	.04	1 1
L7W 700Ń	1	10	18	83	.1	9	5	164	2.54	2	5	ND	2	18 .2	2	2	45	.14 .070	11	18	.23	94	.08	2 2	2.38	.01	.05	12
L7W 650N	1	11	13	100	.2	10	6	424	3.06	2	5	ND	3	22 .2	2	2	48	.16 .174	8	14	.17	58	.09	2 3	8.08	.01	.04	1 1
L7W 600N	1	8	16	73	.1	8	4		2.40	Ā	5	ND	1	21 .2		2	39	.13 .093		16	.11	64	.04		.75	.01	.04	1 1
L7W 550N	1	6	23	76	1	6	4		1.37	2	ś	ND	ż	26 .2		2	21	.30 .011			.12	67	.10		.95	.01	.04	i i
	1	7		63	10000	7	3			2	5							0,000000					200000000					
L7W 500N	1 .		22				2		1.20			ND	2	20 .2		2	26	.22 .014			.17	51	.10		1.11	.01	.03	1 4
L7W 500S	1	9	19	63	.3	8	4	202	2.17	2	5	ND	1	30.2	2	2	46	.17 .045	13	16	.19	77	.11	4	i.68	.01	.06	13
L7W 550S	1	7	35	64	1	6	2	248	1.43	2	5	ND	1	24 .3	2	2	35	.22 .016	11	14	.20	55	.23	2 '	1.07	.01	.04	1 67
L7W 600S	1	6	71	115		9	5		1.83	2	5	ND	1	34 ,3		2	40	.28 .018	11	17	.38	75	.15	2 4	.69	.01	.04	1 192
L7W 650S	1	11	20	67	.3	9	5	-	3.72	2	5	ND	1	20 .2	. –	2	68	.18 .080	X1 1 1		.28	44	.27		.78	.01	.04	1 3
L7W 700S		6	19	46	1	6	- Á		2.33	3	ś	ND	1	14 .2		2	53	.11 .033		17	.13	38	.15		1.14	.01	.04	1 5
										1999 - State State - State Sta	5		1						0								20.000.000	799 T
L7W 750S		15	18	185	.7	8	4	209	2.11	27	2	ND	1	49 2.1	2	2	41	.36 .108	13	17	.21	58	.04	2 6	2.19	.01	.06	1 35
L7W 850S	1	12	27	146	.3	12	5	309	3.40	5	5	ND	2	15 .2	2	2	65	.14 .057	10	27	.33	44	.18	6 '	1.65	.01	.07	1 10
L7W 900S	1	4	17	42	1	4	2	137	1.77	2	5	ND	1	14 .2	2	2	40	.11 .050	8	13	.11	38	.13	2 '	1.09	.01	.04	1 3
L7W 9505	1	5	8	33	.1	5	2		1.96	2	5	ND	1	10 .2		2	49	.08 .020	9	19	.06	27	.11		.82	.01	.04	1 1
RE L7W 750S	1	15	20	189	.7	8	4		2.15	28	5	ND	1	50 2.1	2	Ž	42	.37 .109	50 C	18	.21	59	.04		2.24	.01	.06	1 5
		7	31			-					-		i	10 .2					89 B				2000000000					
L7W 1000s			21	46	.2	6	3	218	1.81	2	6	ND	I	10 .2	2	2	44	.08 .034	11	19	.10	53	.11	2	1.03	.01	.05	1 7
L6W 950N	1	9	28	65	.5	7	5	180	3.68	2	5	ND	4	12 .2	2	2	57	.10 .356	9	16	. 15	52	.08	3 !	5.06	.01	.04	1 18
L6W 900N	1	8	21	75	.2	8	4	156	3.32	5	5	ND	- 4	10 .2	2	2	56	.11 .164	9	15	.17	34	.11	3 3	5.31	.01	.03	1 6
L6W 850N	1	8	24	65	.3	6	4	173	3.67	2	5	ND	5	9.2	2	2	60	.08 .275	8	16	.12	30	.09	41	4.69	.01	.03	1 5
L6W 800N	1	6	30		.3	10	9		2.87	21	5	ND	3	10 .2		Ž	47	.09 .112	00			-	.10		2.89	.01	.04	1 12
L6W 750N	l i	ŏ	19	61	.3	8	á		2.19	-4	ś	ND	3	14 .2		2	40	.10 .055					.10		1.80	.01	.04	1 12
LOW / JUN	1	,	17	01		Q	4	1.7.5	2.17		,	NU	J	14	-	٤.	40	. 10 . 092			• • • •	00		_	1.00	.01	.04	1 I G
L6W 700N	1	7	25	71	.2	9	4	191	1.46	2	5	ND	2	24 .2		2	29	.20 .019	11				.11		1.30	.01	.03	19
L6W 650N	1	8	29	110	.4	10	5	140	3.39	24	5	ND	3	23 .2	2	2	67	.21 .032	9	20	.16	57	.11	5 1	2.25	.01	.03	1 7
L6W 600N	1	ŝ	23	57	.4	4	2		1.85	5	5	ND	1	13 .2		2	35	.11 .071	11			42	.07		1.47	.01	.03	1 6
L6W 550N	1	8	27	82	.2	12	5		1.84	3	5	ND	3	18 .2		2	35	.16 .024					.11		1.67	.01	.04	1 4
L6W 500N	1	6	23		.5		2		1.13	2	5	ND	2	32 .2	2	ົ້	25	.27 .010	60 C				.12		.85	.01	.03	1 8
LOW JUUN	'	0	23	10	••	2	2	200	1.13	4	3	NU	2	عد ،د	۷ ک	2	25	.21 .011	i ⊆	11	•12	50	• 14	2	.0,	-01	.05	1 O
L6W 500S	1	5	32		.2		2	158	1.02	2	5	ND	1	32 .2		2	27	.26 .022					.12		.86	.01	.06	12
L6W 600S	1	13	18	224	.2	7	- 4	256	1.25	11	5	ND	1	78 7.6	2	2	25	.51 .053	25	13	.17	80	.08	2	1.39	.01	.05	1 16
	18	56	37		100000000000000000000000000000000000000		70		3.96	37		7	39	52 19.0	S	19	56	.51 .087			.90		.08			.07	.14 1	1 48

Page 13

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	0.0000	WAu** mppb
L6W 650S	1	8	22	341	.2	7	3	183	1.28	13	5	ND	3	36	2.4	2	2	27	27	.023	12	14	.18	45	.13	2	1.24	.02	.05	1 8
L6W 750S		6	33	57	.2	7	1	120	.84	2	5	ND	1	36	.9	2	2	20		.029	10	12	.09	47	.12		.92	.02	.05	2000 T
L6W 800S		8	14	82	្បា	6	2	241		5	5	ND		13	.5	2	2	35		.032	9	13	.18	48	a a sharan a				20000	1 12
L6W 850S		-		93	:4	10	4	237		5	-		1	15		2		49							.09		1.11	.02	.10	1 1
	2	13	27				•				6 5	ND	•		.5		2			.042	11	25	.21	56	.13		1.26		.11	1 18
L6W 900S	2	8	21	51	•1	8	3	158	1.75	3	2	ND	1	15	.2	2	2	34	.15	. 038	9	14	.20	34	.13	2	1.69	.02	.05	1 6
L6W 950S	1	18	28	162	1.0	16	7	333	3.69	18	5	ND	1	49	1.6	2	2	47	.30	.096	12	20	.36	81	,04	2	3.01	.02	.09	1 8
L5W 950N	1	5	12	41	.2	5	2	122	2.51	7	5	ND	4	9	.2	2	2	45	.08	.086	8	16	. 10	22	.10	3	2.08	.02	.04	2 3
L5W 900N	1	6	16	58	.2	8	3	141	2.67	5	5	ND	3	11	.2	2	2	43	.10	.090	9	19	.17	47	.09		2.58	.01	.05	1 9
L5W 850N	1	4	16	49	.1	7	2	137		4	5	ND	2	13	.2	2	2	41		.078	9	15	.12	34	.09		2.40	.02	.02	1 5
L5W 800N	l i	10	17	60	.3		-	166		7	5	ND	4	11	.2	2	2	42		.092	10	20	.18	55	.07		1.90	.02	.05	1 7
		10		00			-	100			-		-			-	2	46	.07	1076	10	20	. 10	22	•••	-	1.70	.02		
L5W 750N	1	11	21	121	.7	11	4	120	2.33	4	5	ND	3	13	.2	2	2	37	.11	.085	11	18	.17	82	.06	2	2.75	.02	.05	1 5
RE L5W 500N	1	9	27	108	.8	8	4	158	2.73	8	5	ND	3	11	.2	2	2	46	.10	.108	10	20	.14	43	.09	3	2.51	.02	.05	1 1
L5W 700N	1	7	23	77	.1	9	4	213	1.38	2	5	ND	1	33	.2	2	2	28	.24	.014	11	15	.24	62	.10	2	1.09	.02	.05	1 13
L5W 650N	1	7	26	79	.6	8	3	118		9	5	ND	4	12	.2	4	2	44		.073	11	20	.12	41	.11		2.47	.01	.05	1 2
L5W 600N	l i	11	22	72	.5	11	4	183		4	5	ND	3	10	.2	ż	2	48		.116	10	23	.21	48	.10		2.56	.02		1 2
	'		~ ~ ~	15		• •	-	105	2.76		2	ND	5	10	• -	2		40	.00		10	23	• 2 1	40	• 1•	2	2.50	.02	.05	1. C
L5W 550N	1	11	22	72	.1	14	5	153		4	5	ND	1	20	.2	2	2	38		.054	10	20	.26	81	.09		2.31	.02	.04	1 1
L5W 500N	1	8	28	110	.9	10	5	160		8	6	ND	3	11	.2	3	2	47	.10	.112	10	21	. 15	44	.09	2	2.60	.02	.05	15
L5W 500S	1	7	22	60	.1	6	4	185	2.73	4	5	ND	1	12	.3	2	2	51	.11	.055	10	18	.14	55	.11	2	1.96	.02	.07	1 372
L5W 550S	1	9	30	376	.1	10	3	178	1.38	4	5	ND	1	40	3.1	2	2	27	.33	.032	15	15	.24	65	.13	3	1.49	.02	.03	1 6
L5W 600S	1	5	38	75	.1	6	2	148	1.28	3	5	ND	1	14	.3	2	2	29	.14	.031	8	13	. 18	36	.14	2	1.33	.02	.04	16
L5W 650S	1	7	58	115	.3	8	3	216	1 40	4	5	ND	1	22	.6	2	2	29	22	.033	10	15	.27	52	.14	2	1.33	.02	.07	1 32
			27		100000000000	-	6	502		000000000000000000000000000000000000000	5		ź	54	2.4	2	2	37		.064	15	26	.27	104			2.04	.02	- F F F 100000	
L5W 700S		14			.6					15	-	ND													.13				.11	1 6
L5W 750S		4	24	55	.1	4	1	170	.95	2	5	ND	1	15	.4	2	2	23		.019	8	10	.10	47	.09		.73	.02	.05	1 101
L5W 800S	1	13	27		.3			367		17	5	ND	1	32	.5	2	2	40		.055	13	21	.29	65	.13		1.78	.03	.09	1 16
L5W 900S	1	12	22	148	.1	11	5	475	2.27	2	5	ND	1	51	.8	2	2	44	.36	.038	12	19	.35	84	2 08	2	2.00	.02	.08	19
L5W 950S	1	5	11	33	.1	4	2	138	1.55	2	5	ND	1	10	.2	2	2	37	.08	.012	12	16	.04	46	.11	3	.59	.02	.05	1 9
L5W 1000S	1	12	16	73	1	11	5	327	2,90	2	5	ND	1	18	.2	2	2	47	.16	.142	10	20	.20	56	.07	2	2.56	.02	.03	1 10
L4W 1000N	1	7	14	46	.2		2	173		3	5	ND	1	13	.2	2	2	54	. 12	.094	9	17	. 12	40	.12	2	1.52	.01	.04	1 6
L4W 950N	1	11	13	55	.2		-	151		5	5	ND	ź	9	.2	2	2	47		.094	9	21	.19	39	.11		2.20	.02	.04	1 8
L4W 900N	1	11	12	67	ា			1145		2	-	ND	2	24	.2	2	2	45		.214	11	23	.20	87	.08		1.91	.02	.05	1 5
L-+	1	11	• •	0,		10	,	1142	,,		-	NO	-				-		• • •	• • • • •	•••			0.		-				
L4W 850N	1	12	17	77	1		5	342		2	5	ND	2	14	.2	2	2	53		.175	10	24	.19	56	.08		2.74	.02	.04	1 14
L4W 800N	1	6	13	31	.1	3	2	259	1.31	2	5	ND	1	15	.2	2	2	28		.025	12	12	.06	46	.08		.69	.02	.05	1 1
L4W 750N	1	8	20	42	.5	7	2	119	2.47	2	5	ND	2	16	.2	2	2	38	.11	.081	12	17	. 12	51	.07		2.32	.02	.05	1 1
L4W 700N	1	6	23	36	.3	5	2	91	1.99	3	5	ND	2	12	.2	2	2	36	.10	.096	9	16	.12	42	.08	2	3.09	.02	.01	1 63
L4W 650N	1	7	24	48	.2		2		1.01	2	5	ND	1	24	.2	2	2	22	.22	.029	12	11	.17	58	.11	2	1.06	.02	.07	15
1/12 6000		17	10	67	1 Z	•	3	121	1 10	•	5	ND	4	92	E	2	2	20	07	.061	13	13	.18	91	.03	2	1.51	.02	.07	1 2
L4W 600N		13	15	82		(-			2		ND	1		.5		-			2000 C C C C C C C C C C C C C C C C C C					-0001000000		2.92			1 9
L4W 550N	1	14	24				7		2.57	2		ND	1		2	2	2	52		.055	12		.37		.06			.02	.07	00006 - 1
STANDARD C/AU-S	18	61	38	134	7.4	75	51	1074	3.96	41	21	7	40	25	18.8	15	20	59	.50	.086	40	00	.91	184	. 09	22	1.96	.08	.16	1 48

÷.

Granges Inc. PROJECT BLACKWATER DAVIDSON FILE # 92-2739

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr Cd ppm ppm		ßi ppm	V ppm	Ca P % %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	8 ppm	Al %	Na %	К %	W Au** ppm ppb
L4W 500N	1	5	32		.5	7	6	182		6	5	ND	9	17 .2		2	31	.15 .037	11	16	.21		.08	4 1.		.01	.03	2 3
L4W 500S	1	5	40	230	.2	8	7	518		7	5	ND	3	39 1.2	2	4	34	.34 .038	12	19	.30	80 🔅	. 13	31.	54	.02	.06	15
L4W 550S	1	2	36	108	.2	6	- 4	208	1.23	- 3	5	ND	3	24 1.0	2	2	25	.21 .023	9	12	.14	42 🔄	.13	5.	96	.01	.03	1 19
L4W 600S	1	24	47	241	1.6	14	9	534	2.77	22	5	ND	1	79 1.8	2	2	40	.56 .102	18	19	.37	141 🗐	.03	23.	90	.02	.09	1 11
L4W 650S	1	4	41	166	.2	8	6	395	1.61	8	5	ND	1	29 .5	2	3	31	.26 .025	8	15	.30	64	.13	41.	43	.02	.06	1 4
L4W 700S	1	2	33	99	.5	7	4	209		7	5	ND	1	16.3		2	25	.15 .025	8	12	. 19		.13	21.		.01	.06	1 15
L4W 750S	1	4	43	141	.1	8	4	220		9	5	ND	2	23 .3		4	27	.22 .023	9	15	.24		. 12	21.		.01	.05	1 19
L4W 800S	1	5	24	123	•1	8	5	365		6	5	ND	1	27 .4		2	35	.22 .029	11	15	.26	48	.11	21.	11	.01	.06	1 10
L4W 850S	1	8	32	103	-1	9	7	479		8	5	ND	1	29 .2	2	2	43	.21 .028	9	17	.31	51 🛞	.12	2 1.	53	.01	.06	1 13
L4W 900S	1	2	15	48	.2	3	3	168	1.77	4	5	ND	1	10 .2	2	2	39	.10 .042	8	14	.09	31	.10	21.	07	.01	.04	1 61
L4W 950S	1	6	17	61	.1	7	4	217		4	5	ND	1	19.2	2	2	33	.14 .021	11	16	.21		.13	21.		.01	.09	18
L4W 1000S	1	8	16	57	.3	10	6		1.49	- 4	5	ND	2	41 .7		2	29	.32 .030	11	16	.25		.10	31.		.01	.08	1 6
L3W 1000N	1	5	12	45	1	6	6	146	2.71	6	5	ND	2	14 .2	2	2	55	.11 .059	9	20	.12	53 🛞	. 10	21.	63	.01	.04	1 12
L3W 950N	1	4	12	- 49	. 1	6	5	137	3.07	5	5	ND	3	11 .2	2	2	53	.09 .138	8	18	.12	39	.11	2 1.	91	.01	.03	1 1
L3W 900N	1	15	29	96	1.5	13	17	1088	2.98	8	5	ND	1	44 .2	2	2	44	.25 .131	12	17	.22	188	.04	22.	65	.01	.08	1 4
L3W 850N	1	4	11	39	.2	3	4		1.88	5	5	ND	1	11 .2		2	37	.11 .067	9	15	.07		.08	21.		.01	.04	1 26
L3W 800N	1	4	18	53	.2	6	5		1.97	2	5	ND	3	12 .2	2	2	34	.09 .109		15	.14		.09	21.		.01	.04	1 1
L3W 750N	1	3	24	40	.3	4	4	175	.98	2	5	ND	1	36 .2		2	19	.25 .029	12	10	.11	102	.07	61.	03	.01	.04	15
L3W 700N	1	1	15	18		5	2	111	.43	2	5	ND	1	16 .2	2	3	11	.11 .025	10	5	.04	71	,03	5.	56	.01	.03	1 3
L3W 650N	1	7	11	96	1.0	13	9	346	2.97	2	5	ND	2	17.2	2	5	56	.17 .094	8	21	.25	70	.22	23.	69	.01	.03	1 11
L3W 600N	1	4	23	79	.4	8		136		5	5	ND	2	19.2		2	30	.16 .059	9	16	.15		.10	22.		.01	.04	15
L3W 550N	1	2	37	48		6	3	111	.86	4	5	ND	2	16 .2		2	20	.15 .014		10	.11		.12	2.		.01	.03	1 3
L3W 500N	1	2	40	78		7		1306		- 3	5	ND	1	27 .2		2	31	.19 .033	12	12	.14		.09	21.		.01	.05	1 7
RE L3W 700N	1	1	14	19		3	2	148	.44	2	5	ND	1	16 .2		2	11	.11 .025		5	.04		.03	3.		.01	.03	1 1
L3W 500S	1	18	50	167	.8	14	9	840	2.58	12	5	ND	1	83 1.6	2	2	45	.53 .052	20	19	.39	138	.05	23.	01	.01	.11	19
L3W 550S	1	29	32			18			3.06	21	5	ND	1	121 2.2		2	48	.85 .091	31	21	.48		.04	34.		.02	.11	1 2
L3W 600S	1	2	41	63	.3	4	4		1.05	5	5	ND	1	27 .6		2	26	.21 .020		11	. 14		.14	3 1.		.01	.04	1 132
L3W 650S	1	18	49	159		12	8	461		11	5	ND	1	98 1.4		2	39	.68 .057		19	.41		.05	42.		.02	.11	1 12
L3W 750S	1	6	30	73		7		235		3	5	ND	1	32 .4		3	33	.25 .016		15	.22		.15	31.		.01	.05	18
L3W 800S	1	15	32	139	.8	11	11	1104	2.58	15	5	ND	1	38 .9	2	3	47	.25 .073	19	18	.32	88	.08	22.	.97	.01	.07	1 9
L3W 850S	1	8	17	72		7	5		2.14	7	5	ND	2	20.2		2	36	.16 .045		16	.23		.11	2 1.		.01	.10	1 5
L3W 900S	1	9	17		.2	7	6		2.70	- 5	5	ND	2	14 .2		2	44	.11 .060		17	.21		.14	2 1.		.01	.07	1 8
L3W 950S	1	9	10			10	7		2.61	9	5	ND	1	11 .2			41	.10 .181	4)	18	.20		.09	22		.01	.07	1 1
L3W 1000S	1	15	29				5	246	1.99	11	5	ND	1	42 .6			36	.28 .039	•	17	.29		.08	32	.04	.02	.07	12
L3W 1050S	2	10	26	123	.3	12	10	670	2.86	11	5	ND	1	55 .2	2	2	48	.42 .053	12	21	.36	82	.11	52.	.46	.02	.07	1 1
L2W 919N	1	6	7	56			6		2.19	4	5	ND	2	16 .2			40	.19 .099	4	18			.08	2 1		.01	.05	1 4
L2W 900N	1	3	11	31	_1	3	3		1.56	2	5	ND	1	10 .2			34	.10 .032		12			.09	2		.01	.03	1 10
STANDARD C/AU-S	18	59	38	133	7.2	72	32	1066	3.96	41	21	7	39	52 18.9	<u>14</u>	21	58	.50 .084	38	60	.94	183	.09	35_1	.93	.07	.14	11 49

Page 15

ACHE ANALYTICAL

SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W Au*	
L2W 850N	2	4	20	54	.4	9	3	109	1.81	2	5	ND	13	11	.2	2	5	33	.09	.070	11	15	.11	47	.08	2	2.15	.01	.03	3	4
L2W 800N	2	5	21	60	.1	8	6	144	2.00	2	5	ND	6	12	1.6	2	2	35	.11	.078	11	17	.17	56	.09		1.92	.01	.04		4
L2W 750N	1	5	21	65	.6	6	4	152		3	5	ND	5	23	.2	2	2	40		.120	9	15	.09	56	.07		4.20	.01	.04	8606- 7 06	1
L2W 700N	1	6	25	71	.5	6	6	133		8	5	ND	2	28	.2	2	2	55		.141	8	19	.14		.12		2.51	.01	.04		3
L2W 650N	1	7	20	86	.8	4		179		3	5	ND	4	12	.2	2	4	39		.144	8	18	.19	46	.11		3.76	.01	.04		1
L2W 600N	1	5	30	77	.1	8	4	353	2.07	9	5	ND	1	20	.2	2	2	38	.16	.064	10	14	.13	84	.13	2	1.29	.01	.04	1	4
L2W 550N	1	5	31	77	.2	7	4	180	2.14	10	5	ND	1	14	.2	2	2	39	.13	.057	9	15	.14	46	.13		1.35	.01	.04	1	ġ
L2W 500N	1	5	33	142	.6	8	6	942		12	5	ND	1	19	.2	2	2	38		.069	10	15	19		.12		1.48	.01	.05	00000000	í
L2W 500S	1	11	41	119	.5	10	-	495		7	5	ND	1	41	.2	2	2	48		.039	12	20	.41	86	,13		1.89	.01	.08	20400000	18
RE L2W 750S	1	20	19	121	.5	9	10	603		8	5	ND	1	56	.4	2	2	52		.047	15	21	.39	83	108		2.59	.02	.07	202020-000	1
L2W 550S	1	12	28	113	.5	11	7	447	2 34	9	5	ND	1	43	.2	2	2	42	31	.041	12	19	.36	83	.09	2	2.54	.01	.08	1 10	19
L2W 600S	1	10	31	112	.2	8	•	719		10	5	ND	1	55	.7	2	7	40		.038	14	19	.36	77	.08		1.97	.01	.08	6499930g - 1 T	1
L2W 650S		8	27	90	.1	7		483		5	5	ND	4	38	.3	2	2	37		.020	10	16	.30	60	.14		1.39	.01	.05	0.000.000	18
L2W 700S	1	14	16	118	:4	11		498		13	5	ND	1	57		2	2	52		.034	13		.45	93			2.46				
L2W 750S	1	20	23	117	.6	14	11	601		9	5	ND	1	55	.2 .7	2	2	52		.034		21 21	.45	82	.10			.01	.07	1	3
L2W 7505		20	23	117	••	14	11	001	2.80		5	NU	I	22	•1	2	2	21	. 39	.047	14	21	.58	62	.08	2	2.51	.01	.07		1
L2W 8005	2	15	31	99	.7			1089		13	5	ND	1	47	.6	2	2	50		.056	16	18	.28	65	.07		2.22	.01	.06	1	3
L2W 850S	1	5	16	63	.1	6		217		2	5	ND		16	.2	2	2	33		.021	9	14	.19	34	.16		1.03	.01	.04		4
L2W 900S		5	12	69	.1	6		213		4	5	ND		15	.3	2	2	48		.055	9	17	.28	54	.14		1.73	.01	.08		2
L2W 950S	1 1	6	17	72	.2	4	4	157		5	5	ND	3	10	.2	2	2	39		.056	8	16	.15	36	.13		2.12	.01	.04		8
L2W 1000S	1	8	16	61	.1	7	5	189	2.86	2	5	NĎ	4	9	.2	2	2	49	.10	.153	8	18	.17	48	.12	2	4.49	.01	.04	1 1	10
L2W 1050S	1	11	10	70	.1	9	6		2.83	3	5	ND	1	15	.2	2	2	48		.092	9	21	.20	65	.13		1.47	.01	.06	1	1
L1W 917N	1	- 3	14	24	• 1	1	2	390		2	5	ND	1	11	.2	2	2	27		.027	9	9	.04	37	.10		.55	.01	.03	1	4
L1W 900N	1	5	15	38	.1	7	4	138		6	5	ND	2	11	.2	2	2	38		2058	8	14	.13	48	.09	2	1.48	.01	.03	1	6
L1W 850N	1	5	18	39	1	5	4	151	1.62	3	5	ND	2	16	.2	2	2	33		.032	9	11	.12	40	.11	2	.94	.01	.04	1	1
L1W 800N	1	3	20	22	.1	1	2	96	.62	2	5	ND	1	13	.2	2	2	16	.15	.020	10	6	.06	54	.09	2	.49	.01	.04	1	2
L1W 750N	1	7	21	60	.4	9	5	156		2	5	ND	1	14	.2	2	2	40		.080	9	17	.22	81	.14		2.12	.01	.04		1
L1W 700N	1	9	24	104	.2		7	219		8	5	ND	1	13	.2	2	2	49	.12	.089	9	18	.21	77	.12		3.35	.01	.04		33
L1W 650N	1	7	23	112	.2	11	8	251	2.60	9	5	ND	3	12	.2	2	2	47	.11	.076	9	20	.20	45	.14	2	2.06	.01	.04 🕺	1	3
L1W 600N	1	6	20	97	.2	8	6	190	2.52	8	5	ND	2	11	.2	2	2	46	.10	.092	9	20	.19	42	.14	2	2.22	.01	.03	1	1
L1W 550N	1	5	25	122	.2	9	6	246	2.29	2	5	ND	2	18	.2	2	2	43	.18	.062	9	16	.20	62	.18	2	1.74	.01	.04	1	9
L1W 500N	1	8	52	190	1.0	11	7	555	1.89	11	5	ND	5	23	.9	2	2	33	.25	.059	12	18	.25	75	.11	4	1.73	.01	.05	1 1	16
L1W 550S	i	19	29		1	8	7	397		13	5	ND	1	69	1.1	2	4	38		.041	21	21	.39	89	.10		1.80	.02	.14	ា	6
L1W 600S	2	18	51		.6			973		40	5	ND	1	54	.7	2	4	84		.069	9	25	.45		.07		2.98	.01	.09	1	4
L1W 650S	1	13	26		.5		3	132		6	5	ND	1	47	.7	2	2	20		.040	12	10	.08	66	.05		.91	.01	.05	1	1
L1W 700S	1	7	20				5	478		7	5	ND	1	30	3	2	2	38		.018	7	17	.32		.19		1.04	.01	.06	36333.55 AG	25
		•					-				-					_	-														_
L1W 750S	1	10	13					191		7	5 5	ND	1	19	.5	2	2	36		.044	9 7	18	.20		.11		1.44	.01	.04	1	25
L1W 800S		9	9		.2		6		2.96	10		ND 7	/0	17	.2	2	2	46		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		19	.21	39	.10		1.90	.01	.06	्र । बिन्नुन् ।	50
STANDARD C/AU-S	18	62	40	134	7.5	71	22	1064	3.90	42	20	7	40		18.1	14	21	58	.47	.085	39	60	.94	183	_ UY.	22	1.94	.07	. 14	11	20

Page 16

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca %	P	La	Cr	Mg %	Ba	Ti	В	Al %	Na	 Secondaria 	Au**
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	/0	%	ppm	ppm	~	ppm	%	ppm	<u>/</u> ^	%	% ppm	ppb
L1W 850s	2	6	8	67	.1	8	5	518	2 110	2	5	ND	6	18	.3	2	2	43	.21	.057	8	22	. 14	69	.12	5	.88	.01	.08 2	F
L1W 900S	1	ž	7	53	1	5		159		7	5	ND	2	21	.9	2	2	37	.17		ş	17	.09	45	.15	ź	.54	.01	.08 2	5
L1W 950S	1	5	10	73	1	í	5		3.05		5	ND	2	14	.2	2	2	49		.112	8	20	.18	38	.12	2		.01	.04 1	7
L1W 1000S	1	7	9	55	1	77	5	173		5	5	ND	3	11	.2	2	2	45		.097	9	19	.17	37	.14		1.78	.01	.05 1	3
L1W 1050S		7	15	67	1	10	7		3.46	é	6	ND	3	10	.2	2	2	60	.10		7	23	.29	39	.14		3.30			2
LIW 10505	2	'	1	01	•	10	1	219	5.40		0	NU	2	10	•4	2	2	00	.10	. 100	'	23	. 29	28	. 19	4 .	0.00	.01	.05 1	1
LOW 917N	1	1	18	43	.2	7	4	301	2.19	4	5	ND	2	14	.2	2	7	44	12	.072	٥	15	.12	44	.13	2	1.30	.01	.04 1	4
LOW 900N		'	13	43	:2	Ś	7	160		, T	5	ND	3	12	.2	ž	2	42		.067	ý	15	.12	43	.13		1.04	.01	.04 1	5
LOW 850N			13	54	.1	5	6		3.12	7	5	ND	2	16	.2	2	7	59		.100	<i>9</i>	20	.16	52	.14		1.31	.01	.05 1	2
LOW BOON		3	26	45	.3	7	3		1.37	<u>'</u>	5		1	15	.2	2	2	30		.053	10	12	.10	43	.12		1.25	.01	.04 1	5
LOW 750N		6	18	75	.2	9	_	216		E E	5	ND ND	ź	13	.2	2	2			.063	8		.17						0000000711	5
LUW / JUN	1	0	10	15	• 4	y	6	210	2.30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ر	NU	2	15	•2	2	2	49	.15	.005	0	18	• 17	47	.18	5 1	2.08	.01	.04 1	14
LOW 700N	1	7	23	51		6	1.	264	1 81	• •	5	ND	1	17	.2	2	2	41	.16	.047	0	13	.09	47	.14	7	1.11	.01	.04 1	
RE LOW 500S		5	16	62	.3	5	5		2.63	10	5	ND	4	23	.2	2	,	50		.072	7	18	.14	66	.11		2.53	.01	.04 1	- 1 F
LOW 650N		,	23	88	.7	11	7		2.34	8	5	ND	4	13	.2	2	2	44		.072	8	18	.14	50	.13		2.17	.01	.06 1	5
		4	32	132		11	ś		1.88	o E	5		2	14	.2	2	2	38		.062	-		.20				2.18		2010/02/2020	5
LOW 600N		6	50	199	.7	12	7		2.09	15	5	ND ND	2	19	.2	2	ź	30		.073	11 10	18 19		60	.13			.01	.04 1	8
LOW 550N		0	50	199	•	12	(391	2.09	12	5	NU	2	19	•4	2	2	51	• 19	.075	10	19	.21	63	. 12	2 (2.05	.01	.05 1	5
LOW SOON	1	7	48	186	.7	13	7	360	2.08	13	5	ND	2	19	.2	2	2	38	10	.057	11	18	.24	72	.13	2	2.02	.01	.05 1	3
LOW 500S		ر ۲	24	69	.5	6			2.64	15	6	ND	1	23	.2	1	3	50		.074	8	18	.15	67	.11		2.54	.01	.05 1	8
LOW 550S		6	11	53	.2	7	4		2.40	13	5	ND	4	14	.2	ž	2	46		.058	ş	18	.16	48	.11		1.63	.01	.07 1	-
		-			.4	-	42	1264		31	2		-		.2	2	2	75			13	23	.32	86	.11		2.72		2012/10/06/06	3
LOW 600S	2	14 9	24 29	98 76		9 9		250		21	5	ND ND	2	60 26	.6	2		34		.103	11	17	.30	55			1.79	.01 .01	.08 1	4
LUW 0505		9	29	10	•0	У	0	200	1.75		5	NU	2	20	••	2	2	54	. 21	.032		17	.30	22	•08	2	1.(7	.01	•••	10
LOW 7005	1	6	14	72	.3	10	4	343	1 01	6	5	ND	1	40	.2	2	2	40	32	.028	9	20	.41	63	.14	2	1.51	.01	.11 1	6
LOW 750S	1	7	6	38	.1	6	~		1.54	3	5	ND	1	15	.2	2	2	36		.028	10	17	.09	44	.10	2		.01	.06 1	3
LOW 800S		5	15	52		7	5		1.74		5	ND	1	26	.2	2	3	36		.051	9	15	.15	61	.12	_	1.16	.01	.05 1	
LOW 850S		2	16	51	.1	ģ	5		2.88	10	5	ND	z	11	.3	2	2	57		149	9	20	.17	48	.16		2.12	.01	.05 1	
LOW 9005		5	21	79		8	5		1.62	5	5	ND	2	28	.2	2	2	35		.025	10	16	.28	54	.21		1.38	.01	.04 1	2
LUW 7005		9	21	19	•	0	ر	174	1.02		J	NU	2	20	• 4	2	2	55	• 24	.023	10	10	. 20	54	× C 1	2	1.30	.01	.04	۲
LOW 9505	1	11	13	91	.2	13	13	1452	2 43	10	5	ND	1	67	.5	2	7	44	.51	.055	12	21	.54	109	.12	2	1.49	.02	.12 1	4
LOW 1000S	1	14	20	138		15		450		13	6	ND	1	63	.4	2	3	55		.088	13	28	.53	102	.12		2.44	.02	.08 1	1
LOW 1050S		12	18	108	1	17		983		11	5	ND	- 1	42	.4	2	2	55		.069	13	21	.67	71	.14		1.72	.02	.12 1	7
STANDARD C/AU-S	18	63	37	133	12222-022	72		1098		43	22	7	40		18.6	14	21	58		.083	40	60	.90	183	.08		1.93	.05	.14 10	52
STANDARD C/AU+S	10	03	51	201	1.4	12	32	1070	J.70	20 4 0)	۲۲.	<u> </u>	40	24	10.0	14		ەر		-000	40	00	.70	103	.00		1.7.3	.07	• 14 00 IV	75

ACHE ANALTTICAL																											MALTITUAL
SAMPLE#	Mo	Cu	Pb	Zn Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca P	La	Cr	Mg	Ba Ti	В	Al	Na	K W Au	
	ppm	ppm	ppm	ppm ppm	ррт	ppm	ppm	%	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	% %	ррп	ppm	%	ppm %	ppm	%	%	% ppm p	pb
BD SILT 8	2	16	12	550 1.6	17	15	2364 3	3.24	77	5	ND	1	118	3.8	2	2	55	.92 .104	18	18	.30	196 .03	2 ?	3.64	.02	.12 1	6

Sample type: SILT.

SAMPLE#									Fe As % ppm												•	Ba Tî ppm %		Al %	Na %	K WAu** % ppm ppb
BD-PAN 12	2	9	8	348	.3	10	17	3698 3	.34 116	5	ND	1	33	3.8	2	2	62	.25 .034	10	10	.21	139 .04	2 1	.37	.02	.09 1 6
BD-PAN 13	1	5	5	52	.1	9	5	626 1	.88 14	5	ND	3	20	.2	2	2	31	.20 .026	9	8	.20	51 .06	2	.74	.03	.08 1 6

Sample type: PAN CONC..

Page 19

SAMPLE#	Mo	Cu	I P	b	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Вi	V	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ	W /	Au**	Hg
	ppm	ppn	n pp	m	ppm	ppm	ppm	ppm	ppm	,	s ppn	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	ppb
	F	20	. 70		027	- 	E	7	204	07	25	F	ND	0		12.2	4	7		0/	.004	,	7	02	110	01	- -	24	01	1/		26	25
24641-X																																20	25
24642-X	1 .					1000	e							-				-			.132					7.000.000					10000000	13	5
2464 3 -X	2	- 50) 1	0	88	.4	28	22	891		100.007	S		-		10000000000000000					.131					STATUS					10.000.000	9	10
24644-X	7	57	' 6	54 1	659	1.5	1	- 4	70	1.12	20	5	ND	7	7	27.0	3	- 3	- 3	.04	.006	7	5	.03	132	.01	- 4	.24	.01	.13	7	19	80
24711-X	1	203	5 1	4	82	.4	35	46	496	5.64	- 24	5	ND	4	28	2.7	5	2	101	.50	.124	16	60	.79	38	.06	5	1.77	.03	.06	1	13	5
RE 24711-X	1	196	5 1	5	76	.6	32	44	493	5.53	5 16	5	ND	4	28	1.5	4	2	101	.50	.123	16	60	.79	35	.06	2	1.76	.03	.07	1	10	5
STANDARD C/AU-R	20	- 59	> 4	0	140	7.4	75	- 29	1080	3.90	5 42	23	7	41	53	18.6	14	21	61	.50	.084	40	61	.90	184	.09	- 36	1.99	.07	.14	10	479	1500

COMP: GRANGES PROJ: BLACKWA ATTN: GORDON	TER-DAVE											1518	st.,	NORT	H VAN	ICP COUVE	R, B.	C. V7		2						•	' H.M.	. SEP		DAT	E: 9	0882- HJ 2/09/1 CT : F31	7
SAMPLE NUMBER			AS		8A Dow	BE PPM	B1 PPM	CA	CD PPM	00	CU		ĸ	L I PPM		MN PPM			N1 PPM	P P PN	PB PPM	82 M99	SR	TH PPM	TI PPM							-FIRE	7
8D - H15		1.24	1	12	70	. 1	33					9.50			.29	1255		.02		1210						270.1	76	1	7	7	55	280	-
																								<u>.</u>	·····								11:02
												<u> </u>					<u></u>	.															MIN-EN UANC
	-									<u></u>																				<u>.</u>			I UANC.
						. <u>.,.</u> ,		••											<u></u>														-
																								. <u></u>									
 					<u> </u>						۔ سرب _ا ر م				<u> </u>															- <u></u>			
		- <u></u>												<u></u>		,,												····				411-111-1	604 980 9621 7
						<u> </u>															<u></u>				<u></u>								
																																	P.02
•			<u> </u>	<u></u>																	<u></u>									•			
															<u> </u>								· #										

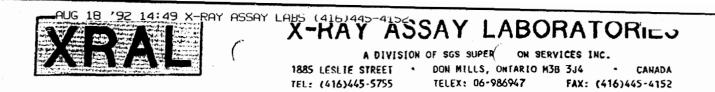
÷

ACME ANT	TICA:	I. I.A	BOR	ATOF	RIES ⁻		es]	Inc	52 Ē. GE • PF	OCH	EMI CT	CAL BLA	AN CKW	ALY	sis r d	CE AVI	RTI DSO	FIC <u>N</u>	ATE Fil	e #	92	-27				.58 4			1993	3-17 A A	716 A
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B	Al %	Na %	K %		Au** ppb
24645-X	7	89	5	257	.1	76	17		11.23	863	5	ND	1	9	1.6	7	2	33		.011	2		.01	40	.01	3	.24	.01	.04	1	36
24646-X	1	41	17 32	39 110			8 25	128 968			5	ND ND	1	121 70	.5	8	3	25		.058	4	23	.02 2.94		.01 .01		.34 1.18	.01 .01	.07	2	22
24647-X 24648-X	2	63 34	23	19			25	82		235	5	ND	1	38	.5	39	3	6		.007		27	.08		.01		.20	.01	.08	2	25 151
24649-X	Ī	14	13	58			2	123		 An an anna fan af an a 	5	ND	1	9	.8	2	2	14		.007		17	.01		.01		.20	.01	.07	2	
RE 24646-X	1	40	16	36	.3	32	8	127	6.12	606	5	ND	1	133	.6		2		.06	.059	4		.02							2	26
STANDARD C/AU-R	18	58	38	135	7.6		31	1043	3.96	42	18	7	37	52	18.7	14	19	57	.49	.084	38	59	.93	190	,08	35	1.99	.06	. 14	10	486
		THIS	S LEAC	CH IS	PARTI	AL FO	DR MN DCK AN	FE SI	D WITH R CA P RE SAMI YSIS B'	LA CR PLES I	≹MG B IF CU	A TI PB ZN	BWA AS>	ND L1 ► 1%,	MITED AG >	FOR 30 PF	NAK PM&A	AND A U > 1	L. /	AU DET PPB	ECTIC	N LI	AIT BY	I CP							

DATE RECEIVED: AUG 25 1992 DATE REPORT MAILED: Signed By Jolgs, D. Toye, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

SAMPLE#	Нд ррб	
9W 00S 9W 25S 9W 50S 9W 75S 9W 100S	15 15 55 35 40	
9W 125S 9W 150S 9W 175S 9W 200S 9W 225S	85 5 70 120	
9W 275S 9W 325S 9W 350S 9W 375S 9W 400S	50 30 30 20 30	
9W 425S 9W 450S 9W 475S 9W 500S 9W 525S	20 60 55 20 20	
9W 550S 9W 575S 9W 600S 9W 625S 9W 650S	55 45 75 55 25	
9W 675S 9W 700S 9W 725S 9W 750S 9W 775S	45 50 45 15 35	
9W 800S RE 9W 725S 9W 825S 9W 850S 9W 850S 9W 875S	30 45 45 60 60	
9W 900S 9W 925S STANDARD C	115 55 1550	

ACHE ANALYTICAL			ACHE ANALYTICAL
	SAMPLE#	Hg ppb	
	9W 950S 9W 975S 9W 1000S RE 9W 950S	30 35 65 35	



APPENDIX IV

~

•

WHOLE ROCK GEOCHEMISTRY

FACSIMILE COVER LETTER AUG 1 8 1992

PLEASE DELIVER THE FOLLOWING TO:

NAME :	BRUCE DOWNING
FIRM:	GRANGES INC.
FAX NO.	16046878699
FROM:	
DEPT.:	DATACENTER
TOTAL NUMBER OF	F PAGES INCLUDING COVER LETTER:2
PARTIAL REPORT	: [X] YES [] NO
DATE:1	8-AUG-92 PROJECT #: 120 BLACKWATER
REFERENCE #:	12939
IF YOU DO NOT REC	BIVE ALL PAGES, PLEASE CALL (416) 445-5755

COMMENTS (IF ANY):

AUG 18 '92 14:49 X-RHY HOOHI LHOU (110/100 1400

X-RAY ASSAY LABORATORIES 18-AUG-92 RE 7 ----- REF. 12939 PAGE 1

.

SAMPLE	LI PPM ICP	BE PPH ICP	NA % 1CP	NAZO % UR	MG % ICP	Mgo % Vr	AL X ICP	AL2O3 X VR	\$102 % UR	Р X 1СР	9205 UR
24601	25	1.2	.04	1.72	.76	1.65	1.77	17.1	58.7	. 18	••••••
24602	3	.5				_		13.1	69.2	.04	
24603	36	1.6						17.3	59.2	. 18	
24604	4	.6						13.4	71.1	.04	•
24605	32	1.5						16.9	56.7	.18	•
									71.9	<.01	
24606	1	.8						11.9			-
24607	36	1.5						15.5	62.8	.09	-
24608	<1	<.5						13.1	73.8	<.01	
24609	38	1.6	.03			.69		15.4	63.5	.07	•
24610	3	.8	.04	.07	-05	.36	.37	14.0	72.2	۰.01	-
24611	53	1.6	_04	. 12	.43	.95	2.60	16.4	58.8	.15	•
24612	S	.6	.03	.22	-02	.22	.31	12.9	69.4	-02	•
SAMPLE	K % 1CP	K20 % WR	CA % ICP	CAO % WR	SC PPM ICP	TI % ICP	T102 % UR	V PPM ICP	CR PPH ICP	CR203 X VR	NN % ICP
24601	.33	4.54	.41	.94	2.0	.02	1_07	46	47	<.01	•••••
24602	.29		.09	.35	<.5	<.01	,339		61	<.01	
24603	1.11		.42	.85	3.2	.07	1.03	53	52	<.01	
24604	.32		. 10	.36	<.5		.355		48	<.01	
								54	43		•
24605	.50		.41	.85	2.8	.04	1.03			<.01	
24606	.23		-02	.23	<.5	<.01	. 158		47	<.01	-1
24607	.63		.20	.53	1.4	.04	.615	41	29	<.01	-!
24608	.24		.01	.23	<.5	<.01	. 133		53	<.01	<.(
24609	.79	5.88	. 15	.48	1.8	-06	.716	40	44	<.01	
24610	.41	4,51	<.01	-22	<.5	<.01	. 163		46	<.01	ار
24611	1.40		.32	.68	3.7	. 14	.930		46	<.01	
24612	.29			.26	<.5	<.01	.285	S	55	<.01	
SAMPLE	NKO % UR	FE X ICP	FE203 %	CO PPM LCR.**	NI PPM	CU PPM ICP	2 н РРИ 1СР	AS PPH ICP	SR PPM ICP	Y PPM XRF	ZR PPP XRF
24601	.87	4.00	7.46	31	39	72.3	7070.	18	19.4	<2	186
24602	.21		2.37	6	7		12700.	5	12.6	<2	121
24603	.80		8.92	22	26	54.7	1220.	24	24.2	<2	172
24604	.33		2.68	6	4	66.5	9210.	30	12.1	<2	109
				9	10	50.9	316.	<3	12.9	5	192
24605	1.23	5.28	9.37								87
24606	- 13	3.28	5.83	6	<1	208.	757.	70	7.6	<2	
24607	.83	4.95	9.00	7	29	68.5	3690.	20	55.0	<2	170
24608	.04	.60	1.51	3	1	75.1	3480.	114	2.7	3	81
24609	.61	4.55	8.04	8	39	95.4	7260.	126	32.5	<2	156
24610	.08	1.67	3.89	7	1	298.	2110.	240	2.0	<2	88
4611	.90	5.66	10.2	15	14	\$0.0	2700.	28	17.2	<2	191
4612	.27	1.58	3.21	2	2	130.	12200.	132	17.3	<2	100
AMPLE	MO PPM ICP	AG PPH ICP	CO PPM	SN PPH ICP	SB PPM	BA PPM ICP	и Ррк 1ср	PB PPH ICP	BI PPM ICP	LOI % WR	SUM 7 WR
	- 	 .	• • • • • • • • • •	• • • • • • • • - •		2 8	<10	488	<3	4.00	98.
4601	3	2.7	14	<10						2.40	95.
4602	6	13.1	63	<10	17	27	<10	2690	9		
4603	2	1.0	2	<10	<5	39	<10	30	<3	3,70	99.
	6	9.5	52	<10	9	19	<10	2410	<3	2.80	96.
4604		1.2	<1	<10	6	30	<10	19	<3	3,95	98.
4604	3				134	9	<10	471	25	4.40	98.
4604 4605	3 /		ς	C III		,					
4604 4605 4606	4	6.4	5	<10		20	~10	57	۲۲ -	2 80	- QQ
4604 4605 4606 4607	4	6.4 2.1	21	<10	7	32	<10	57 1 0	3	2.80	
4604 4605 4606 4607 4608	4 1 12	6.4 2.1 1.0	21 27	<10 <10	7 10	23	<10	39	<3	1.85	98.
4604 4605 4606	4	6.4 2.1 1.0 3.6	21	<10	7 10 5	23 57	<10 <10	39 167	<3 4	1.85 2.80	98. 98.
4604 4605 4606 4607 4608 4609	4 1 12	6.4 2.1 1.0 3.6	21 27	<10 <10	7 10	23	<10	39 167 320	<3 4 4	1.85 2.80 3.90	98. 98. 99.
4604 4605 4606 4607 4608	4 1 12 6	6.4 2.1 1.0	21 27 43	<10 <10 <10	7 10 5	23 57	<10 <10	39 167	<3 4	1.85 2.80	99, 98, 98, 99,

FACSIMILE COVER LETTER SEP - 2 1992

PLEASE DELIVER THE FOLLOWING TO:

NAME:			BRUCE DOWNING		
FIRM:			GRANGES INC.	<u>.</u>	<u> </u>
FAX NO.			16046878699		
FROM:					
DEPT.: _			DATACENTER		
TOTAL NUMBER	OF PAGES	INCLUDING	COVER LETTER:	2	
PARTIAL REPOR	Υ Τ:	[] YES	[X] NO		
DATE:	01-SEP-92	2	PROJECT #:	120	
REFERENCE #:	<u></u>	12927			
IF YOU DO NOT R	ECEIVE ALL	PAGES, PLEA	SE CALL (416) 445-	-5755	

COMMENTS (IF ANY):

SEP 02 '92 15:03 X-KHY HSSHY LHUS (416)445-4152

X-RAY ASSAY LABORATORIES 01-SEP-92 LEPORT 20197 REF. 12927 PAGE 1 MG % SAMPLE AU PPB LI PPM BE PPM CO2 % NA PPN NA % NA20 % MGO 🛪 AL % AL203 % NA ICP ICP COULOM NA ICP ₩R. ICP WR. 1CP UR. ------ - - - - ------..... .01 29000 .56 24621 <2 <1 <.5 4.17 .05 .47 1.00 14.3 .48 24622 <2 S 1.2 .90 29000 .09 4.15 .11 .37 13.6 .01 30000 . 13 .61 1.13 24705 <2 29 4.22 .91 14.1 .6 SAMPLE s102 % Р % P205 % s %. κ % k20 % CA % CA 🔏 CAO % SC PPM SC PPM UR VR UR 1 CP NA ICP UR TCP LECO ICP NA -----_____ 71.1 .02 69.2 .05 .06 <.01 .16 2.85 1.5 .22 1.93 2.21 <.5 24621 .13 .02 . 19 .9 .92 1.81 7.38 24622 3.71 1.4 24705 69.2 .96 . 16 <.01 .57 3,76 1.1 .29 2.16 8.13 3.4 MNO % FF203 % SAMPLE 71 % X SOIT V PPM CR PPM CR PPM CR203 % MN % FE 🟅 FF % ICP ICP 102 **HR** 1 CP **WR** NA ICP **U**R **W**R NA -----. ----. -----. - - - -60 <.01 .02 .09 1.38 .07 .277 5 85.0 .55 24621 1.98 . 10 .381 18 46 96 <.01 .06 24622 <.01 120. 1.85 1.44 2.75 01.> 01. .05 2.25 24705 . 14 .468 130. 103 - 11 1.93 3.31 CO PPH CO PPM NI PPM NI PPM CU PPM ZN PPM ZN PPM AS PPH AS PPH SE PPM BR PPM SAMPLE NA ICP NA 1CP 1CP NA 1 CP NA 100 NA NA . -----..... ----. - - - - - -. 2 8 3.4 8 <50 50 <1 5.0 24621 2.5 <1 13.7 16 <1 24622 7.5 6 <50 8 18.8 60 45.5 9 <3 3.8 8.8 24705 70 46.7 4 <3 <1 4.6 <50 11 12.7 - 6 Y PPM SAMPLE RB PPM SR PPM SR PPM Y PPM ZR PPM ZR PPM MO PPM MO PPM AG PPH AG PPH ICP ICP ICP 102 NA XRF XRF NA NA ICP NA -----..... - - - - - - - - -. 2.8 9.5 5 <2 24621 100 500 28.0 <2 143 7 .3 24622 200 <100 23.6 - 4 8.3 102 13.5 6 7 <2 .3 14.3 5 9 <2 24705 190 300 6.3 113 15.8 6 .1 SAMPLE CD PPM SN PPM S8 PPM S8 PPM CS PPM BA PPH BA PPM LA PPM CE PPN ND PPM SM PPN ICP ICP ICP NA ICP NA NA NA NA NA NA . -----. --------. - - - - -. 24621 <1 <10 5.1 <5 35.4 1100 62 25.9 47 17 2.87 17.7 37 17 3.59 24622 <1 <10 1.7 <5 4.4 033 82 3.96 24705 <1 <10 .8 <۶ 4.2 720 33 20.1 41 19 W PPH IR PPB SAMPLE YB PPM LU PPM HE PPM TA PPM U PPM PB PPM BI PPM EU PPM TB PPM NA NA ICP ICP NA NA NA NA NA NA ICP - - - -. - - - - . -----. - - - - - - - -<3 24621 1.17 .17 4.6 1.0 <1 <10 <5 12 .65 .3 1.6 .5 .25 <S 9 <3 24622 .56 1.75 3.8 <1 <10 <۲ 24705 .5 .24 4.0 1.5 <1 <10 <5 <2 -61 1.61 SAMPLE ТН РРМ U PPM LOI % SUM % **WR U**R NA NA 5.5 2.35 24621 11.0 99.6 7.8 24622 12.0 2.65 99.0 24705 .85 13.0 9.1 99.5

H.5

X-RAY ASSAY LABORATORIES

A DIVISION OF SGS SUPÈR.ISION SERVICES INC. 1885 LESLIE STREET • DON MILLS, ONTARIO M3B 3J4 • CANADA TEL: (416)445-5755 TELEX: 06-986947 FAX: (416)445-4152

CERTIFICATE OF ANALYSIS

REPORT 20434

TO: GRANGES INC. ATTN: BRUCE DOWNING 2300 - 885 W. GEORGIA STREET VANCOUVER, BRITISH COLUMBIA V6C 3E8

CUSTOMER No. 1984

DATE SUBMITTED 31-Aug-92

OCT 1 4 1992

REF. FILE 13168-T6

5 ROCKS

Total Pages 9

BLACKWATER-DAVIDSON Proj. 120

	METHOD	DETECTION L	IMIT			METHOD	DETECTION LIN	TIM
AU PPB	NA	2.		SR	PPM	NA	100.	
LI PPM	ICP	1.		SR	PPM	I CP	.5	
BE PPM	I CP	.5		YI	PPM	XRF	2.	
CO2 %	COULOM	.01		YI	PPM	ICP	.1	
NA PPM	NA	50.		ZR	PPM	XRF	3.	
NA %	I CP	.01		ZR	PPM	I CP	.5	
WRMAJ %	WR	.01		MO	PPM	NA	2.	
MG %	ICP	.01		MO	PPM	ICP	1.	
AL %	ICP	.01			PPM	NA	2.	
Р%	1 CP	.01		AG	PPM	ICP	.1	
S %	LECO	.01			PPM	ICP	1.	
К %	ICP	.01			PPM	ICP	10.	
CA %	NA	.2			PPM	NA	.1	
CA %	ICP	.01		SB	PPM	ICP	5.	
SC PPM	NA	.01		CS	PPM	NA	.5	
SC PPM	ICP	.5			PPM	NA	50.	
ТІ %	I CP	.01		BA	PPM	ICP	1.	
V PPM	I CP	2.		LA	PPM	NA	.1	
CR PPM	NA	.5		CE	PPM	NA	1.	
CR PPM	I CP	1.		ND	PPM	NA	3.	
MN %	ICP	.01			PPM	NA	.01	
FE %	NA	.005		EU	PPM	NA	.05	
FE %	ICP	.01			PPM	NA	.1	
CO PPM	NA	.5		YB	PPM	NA	.05	
CO PPM	ICP	1.			PPM	NA	.01	
NI PPM	NA	50.		HF	PPM	NA	.2	
NI PPM	I CP	1.			PPM	NA	.5	
CU PPM	ICP	.5		W F	PM	NA	1.	
ZN PPM	NA	20.		W F	PPM	ICP	10.	
ZN PPM	ICP	.5		IR	PPB	NA	5.	
AS PPM	NA	1.		HG	PPB	WET	5.	
AS PPM	ICP	3.		PB	PPM	ICP	2.	
SE PPM	NA	1.		BI	PPM	ICP	3.	
BR PPM	NA	.5		TH	PPM	NA	.2	
RB PPM	NA	10.		UF	PPM	NA	.1	

DATE 29-SEP-92

CERTIFIED BY Jean H.L. Opdebeeck, General Manager

REPORT 20434

REF.FILE 13168-T6

1

PAGE 1 OF 9

_	SAMPLE	AU PPB	LI PPM	BE PPM	CO2 %	NA PPM	NA %	MG %	AL %	Р%	S %
	24633	2	<1	.6	.41	14000	.05	.02	.34	<.01	.18
	24635	42	11	1.4	.06	1900	.08	.35	2.59	.06	. 19
	24636	69	<1	<.5	<.01	430	.02	.01	.39	<.01	.15
	24637	22	<1	<.5	<.01	1400	.02	<.01	- 28	<.01	.81
	24638	5	<1	<.5	<.01	680	.02	.01	-42	<.01	.07

X-RAY ASSAY LABORATORIES 1885 Leslie Street Don Mills Ontario M3B 3J4. (416)445-5755 Fax (416)445-4152 Tix 06-986947 Member of the SGS Group (Société Générale de Surveillance)

· · · · ·	•
XR	AL

REPORT 20434

REF.FILE 13168-T6

PAGE 2 OF 9

SAMPLE	К %	CA %	CA %	SC PPM	SC PPM	TI %	V PPM	CR PPM	CR PPM	MN %
 24633	.29	<.3	.28	2.27	<.5	<.01	<2	270.	164	.11
24635	.40	1.6	1.38	3.87	.8	.03	24	280.	174	. 14
24636	.28	<.2	.02	2.24	<.5	<.01	<2	270.	193	.13
24637	.28	<.2	<.01	2.91	<.5	<.01	2	190.	114	.02
24638	.36	<.3	.02	2.73	<.5	<.01	<2	360.	242	-09

REPORT 20434

REF.FILE 13168-T6

PAGE 3 OF 9

SAMPLE	FE %	FE %	CO PPM	CO PPM	NI PPM	NI PPM	CU PPM	ZN PPM	ZN PPM	
 24633	.889	.52	1.2	<1	<50	1	4.8	590	626.	
24635	2.03	1.73	3.3	2	<50	4	14.6	830	871.	
24636	1.45	.31	.7	<1	<50	2	3.9	50	21.8	
24637	1.20	.94	.9	<1	<50	3	65.2	30	18.3	
24638	.791	.35	.9	<1	<50	3	6.3	140	107.	

ĺ

REPORT 20434

REF.FILE 13168-T6

PAGE 4 OF 9

	SAMPLE	AS PPM	AS PPM	SE PPM	BR PPM	RB PPM	SR PPM	SR PPM	Y PPM	Y PPM
-	24633	18	16	<1	4.0	140	<100	30.1	<2	4.5
	24635	41	35	<1	3.7	220	<100	28.9	<2	2.5
	24636	290	33	<1	4.5	150	<100	1.8	<2	1.3
	24637	8	6	<1	3.2	230	<100	2.0	<2	2.1
	24638	150	156	<1	2.5	140	<100	3.8	<2	3.8

X-RAY ASSAY LABORATORIES 1885 Leslie Street Don Mills Ontario M3B 3J4 (416)445-5755 Fax (416)445-4152 Tlx 06-986947 Member of the SGS Group (Société Générale de Surveillance)

REPORT 20434

REF_FILE 13168-T6

E

SAMPLE	ZR PPM	ZR PPM	MO PPM	MO PPM	AG PPM	AG PPM	CD PPM	SN PPM
24633	106	16.4	10	8	<2	<.1	4	<10
24635	153	3.7	7	6	<2	.3	4	<10
24636	104	9.7	9	8	<2	2.2	<1	<10
24637	111	8.9	4	4	<2	2.2	<1	<10
24638	83	7.5	13	12	<2	.1	<1	<10

REPORT 20434

REF.FILE 13168-T6

1

SAMPLE	SB PPM	SB PPM	CS PPM	BA PPM	BA PPM	LA PPM	CE PPM	ND PPM
24633	8.9	<5	12.2	970	43	29.2	52	18
24635	4.4	<5	4.7	2100	109	25.5	47	17
24636	1.7	<5	2.2	240	23	23.6	41	14
24637	2.0	<5	2.7	2200	57	24.8	45	16
24638	7.4	7	2.6	440	71	35.5	65	24

ĺ

REPORT 20434

REF.FILE 13168-T6

PAGE 7 OF 9

	SAMPLE	SM PPM	EU PPM	TB PPM	YB PPM	LU PPM	HF PPM	TA PPM	W PPM	W PPM
-	24633	2.85	.64	.3	1.07	.17	3.5	1.0	<1	<10
	24635	2.85	.82	.3	1.27	.20	4.5	.5	<1	<10
	24636	2.01	.42	.3	.96	. 14	3.4	.9	<1	<10
	24637	2.48	.54	.3	1.10	.17	3.6	.7	10	<10
	24638	3.98	.31	.4	1.66	.26	3.0	1.4	<1	<10

REPORT 20434

REF.FILE 13168-T6

PAGE 8 OF 9

SAMPLE	IR PPB	HG PPB	PB PPM	BI PPM	TH PPM	U PPM
24633	<5	206	20	<3	12.0	4.9
24635	<5	<5	32	<3	8.9	4.4
24636	<5	7	20	<3	5.3	2.3
24637	<5	<5	60	<3	10.0	4.4
24638	<5	<5	25	<3	7.1	4.4

REPORT 20434 REFERENCE FILE 13168

PAGE 9 of 9

 SAMPLE \ %	\$102	AL203	CAO	MGO	NA2O	K20	FE203	MNO	T102	P205	CR203	LOI	SUM	
 24633	74.2	13.5	.67	.22	2.00	4.23	1.43	.17	.168	.03	.04	1.70	98.4	
24635	67.6	15.2	2.45	.98	.21	6.92	3.17	.90	.450	.17	.03	1.35	99.4	
24636	74.4	13.1	.36	.33	<.01	3.76	2.36	1.93	.170	.03	.03	2.10	98.6	
24637	72.6	13.4	.28	.24	. 12	7.80	1.73	. 19	. 189	.04	.02	1.65	98.3	
24638	76.1	12.3	.41	.24	<.01	4.93	1.27	1.48	.138	.03	.05	1.65	98.6	

XRF W.R.A. SUMS INCLUDE ALL ELEMENTS DETERMINED. FOR SUMMATION, ELEMENTS ARE CALCULATED AS OXIDES

APPENDIX V

-

•

PETROGRAPHIC REPORTS

PETROGRAPHIC REPORT ON THIRTEEN THIN SECTIONS

Report for: Gordon Allen Aug. 28, 1992 Granges Inc. 2300-885 West Georgia St. Vancouver, B.C. V6T 224. Invoice attached

Samples submitted: 24601, 2, 3, 4, 5, 7, 9, 11, 12 from DDH DAV-11; (GA92-21; 29621, 24622, 24705. (24620) 24621

SUMMARY:

)

The samples from DAV-11 are mainly fragmental maficintermediate volcanics (24601, 03, 04, 07, 09) but there are some finely (24611) to coarsely (24605) porphyritic flow rocks and also some more felsic variants (24602, 12). Most were probably andesite to basaltic andesite in composition, and were composed of plagioclase and mafic (?pyroxene) phenocrysts before severe alteration. Only two (24602 and 05) do not show clear fragmental textures.

Alteration in this suite is generally strong to intense, mainly phyllic (sericite-quartz-chlorite) in type (24601, 02, 03, 04, 12) but grading into mafic potassic with the addition of significant chlorite and secondary biotite in some samples (24604, 05, 07, 09, 11). There may be minor amounts of ?ankeritic carbonate. Sulfides, mainly pyrite (generally partly altered to limonite) are noted in 24602, 04, 07, 09, and 12; pyrrhotite and minor chalcopyrite in 07 appear to occur as <u>clasts</u> of massive sulfide; there may be sphalerite in 12.

Sample GA-92-21 is an intensely quartz-sericite altered ?felsic fragmental somewhat like 24602 and 12, containing an unidentified isotropic mineral in some clasts. Sample 29621 is an ?intermediate porphyritic volcanic characterized by abundant calcic andesine phenocrysts and amygdules of quartz, chalcedony and ?zeolite. Both 24622 and 24705 are much more felsic, fragmental volcanics characterized by quartz, K-feldspar and plagioclase phenocrysts or shards and variable clasts composed mainly of plagioclase microlites, in an altered matrix. K-feldspar may be sanidine in 24622 but orthoclase in 24705, and the plagioclase may be albite in 24622 but oligoclase in 24705; alteration is to ankeritic carbonate and sericite in 24622, but to green secondary biotite in 24705.

> Craig H.B. Leitch, Ph.D, P.Eng. (604) 921-8780 or 666-4902

Angeiling

24601: SERICITE-CHLORITE-QUARTZ ALTERED, FINELY PORPHYRITIC FRAGMENTAL INTERMEDIATE VOLCANIC ROCK

This sample comes from drill core DAV-11 82'. The rock is mildly magnetic, dark grey-green, and finely porphyritic. It is scratched by steel, but does not react to cold dilute HCl. In thin section, the modal mineralogy is roughly:

Sericite45%Chlorite25%Quartz (partly secondary?)15%Opaque (?Fe-Ti oxides: hematite, magnetite)10%Limonite3%Sphene (?)2%Zircon (?)tr

This is a moderately altered rock, consisting largely of relict crystals of plagioclase and a mafic mineral, now altered to sericite and chlorite-sericite respectively, in a felsic groundmass. There is a suggestion of a vague fragmental texture, with perhaps 50% subrounded to subangular clasts up to 2 cm diameter that are slightly darker (richer in sericite and chlorite, poorer in quartz) than the matrix separating them.

Former plagioclase phenocrysts were euhedral and up to 2 mm long. They are pseudomorphed by fine (10 μ m) flakey sericite, lesser limonite and minor quartz and chlorite.

Former mafic phenocrysts were less euhedral but larger, up to 3 mm in diameter. These somewhat rounded patches consist of quartz, opaques, sericite and chlorite. More common are fine (<0.5 mm) eu- to subhedral patches of chlorite and lesser sericite that may represent a different mafic mineral

The groundmass consists of quartz, both as small clear ?shards up to 0.1 mm long and extremely fine $(10-20 \ \mu\text{m})$ anhedral grains, mixed with sericite and chlorite, between them. Quartz also forms larger subhedral domains up to 0.5 mm across that poikilitically enclose all other minerals. These may be secondary, although they appear to be more common in the clasts and therefore suggest such "silicification" was pre-brecciation.

Opaques form subhedral crystals up to 0.5 mm diameter as well as abundant 20 μ m grains in the matrix. They are probably mostly Fe oxides such as martite (hematite after magnetite), and imply a mafic to intermediate protolith. 24602: INTENSELY QUARTZ-SERICITE (± SULFIDE) ALTERED ?FELSIC VOLCANIC ROCK CONTAINING ?CLASTS OF CHALCEDONIC QUARTZ

From DAV-11 94', this rock is a pale buff- to beigegreen, fine-grained, strongly altered and fractured ?volcanic with rare ?sulfides and minor Fe-oxides. Large (to 0.7 cm) fragments are present, and the rock is characterized by 1-2 mm rounded ?spheroids or relict phenocrysts of quartz and ?feldspar. There is no reaction to a magnet or dilute HCl; the rock is mainly harder than steel. In thin section, the mineralogy is approximately:

Quartz (partly chalcedonic)60%Sericite30%Opaque (mainly Fe-Ti oxides; minor sulfide)5%Carbonate (?dolomite or ankerite)2%Chlorite2%Sphene (?), rutile, leucoxene1%

This rock has been intensely and pervasively quartzsericite altered, so that its original texture is hard to distinguish. What appear to be clasts of extremely finegrained, chalcedonic silica are up to 1.5 mm across; they are set in a fine, strongly sericite-quartz altered matrix which has a disrupted texture (orientations of sericite foliations trend in random directions).

The ?clasts consist mainly of feathery-textured ?chalcedony (birefringence slightly less than quartz) as anhedral, spindly grains to 50 μ m long. In places there are minor amounts of sericite, mainly as fractures crossing the "clasts", quartz as anhedral crystals to 50 μ m, chlorite flakes to 30 μ m diameter, and patches of carbonate up to 0.5 mm across composed of anhedral crystals up to 50 μ m long. The lack of reaction of the carbonate suggests dolomite or ankerite, although the amount is so small that it is hard to be sure. Opaques are also found in the clasts, usually associated with the carbonate.

The matrix consists of very fine sericite as subhedral flakes rarely over 20 μ m in diameter, cementing anhedral irregular quartz grains up to 0.1 mm across and scattered opaques up to 0.5 mm across. Some opaque grains are associated with relatively coarse (up to 0.1 mm) chlorite and quartz, suggesting these are secondary (possibly sulfide or limonite after sulfide). Traces of relics of former Timinerals, such as ?sphene and rutile or leucoxene, are also present. Coarse secondary quartz also grows as haloes or coronas on brown, chalcedonic clasts.

This is a complex sample: it could have been a ?felsic volcanic containing spherulitic chalcedony that has been intensely quartz-sericite (± minor sulfide) altered. However, the presence of iron oxide grains distributed similarly to those in the sample from 82', and the proximity to that sample, suggest that it could merely be a highly altered version of 24601. Field relations will have to be the guide.

1

)

24603: SERICITE-CHLORITE-QUARTZ-?BIOTITE ALTERED FRAGMENTAL INTERMEDIATE TO MAFIC VOLCANIC

From DAV-11 at 115'; intensely altered, fine-grained, buff- to olive green rock cut by a network of fine grey microfractures. Speckled by fine oxides that are not magnetic; very rare, fine sulfides possible. Similar in general appearance to 24601, with vaguely fragmental texture (approx. 50% subrounded clasts to ?1 cm) and light green mafic relics to 1.5 mm long. In thin section, the minerals are roughly:

Sericite	45%
Quartz (partly secondary)	35%
Chlorite	10%
Opaques (Fe-Ti oxides)	5%
Biotite (?secondary)	3%
Carbonate (?ankerite or dolomite)	1%
Apatite	<1%

The fragmentary nature of this rock is clearly seen in thin section, where the clasts are angular to subangluar, up to 1 cm across, and rather scattered (30-40% of the rock). The clasts consist of euhedral relics of ?plagioclase and mafic crystals up to 2 mm long in a matrix of crystalline quartz that poikilitically encloses other alteration products such as sericite, chlorite and opaques. Former Plagioclase crystals are pseudomorphed by fine flakes of sericite and chlorite-biotite mixture ("hydrobiotite") all about 10-25 μ m in diameter. The distribution of the hydrobiotite (cores and rims of phenocrysts) suggests it has been pseudomorphed by limonite in 24601. Mafic crystals have square to rectangular outlines rarely to 1.5 mm long; the shape suggests pyroxene rather than amphibole as a precursor. They are pseudomorphed by chlorite and hydrobiotite plus minor opaques, carbonate and quartz. Some of the opaques replacing mafics can be seen to be sulfide (?pyrite) in hand specimen. Secondary quartz between the phenocrysts forms subhedral crystals up to 0.7 mm diameter; subhedral patches of opaques, probably aggregate crystals of Fe-Ti oxides, are up to 0.25 mm and have minor apatite associated as 20-100 μ m crystals.

The matrix to the clasts is composed of completely sericitized ?plagioclase phenocrysts or shards, shards of quartz, and fine Fe-Ti oxides in a finely ?comminuted (10-20 μ m) matrix of the same. Microfractures are difficult to recognize, but consist mainly of quartz and sericite (?± some opaques) in zones up to 0.15 mm thick that cross both matrix and clasts.

This may have been a mafic-intermediate fragmental volcanic such a an andesite or basaltic andesite. Alteration is principally phyllic (quartz-sericite-chlorite). The significance of the hydrobiotite is not clear, but it is possible that it represents a transition to mafic potassic alteration as seen for instance at porphyry copper deposits in the Phillipines or at Island Copper.

144 (43.89m)

24604: INTENSELY QUARTZ-SERICITE-CHLORITE ALTERED FRAGMENTAL VOLCANIC WITH MINOR OXIDIZED SULFIDES

From DAV-11 at unknown depth, this sample is light grey-green with obvious fragments (clasts are of varied lithologies including quartz-rich, finely porphyritic and greenish mafic-rich). There is also scattered in situ limonite which appears to be after sulfide (?pyrite). A few dark brown patches look like sphalerite but are strongly magnetic. Pyrite and ?other dark sulfides are seen along fractures, now partly coated by jarosite. There is no reaction to cold dilute HCl. In thin section, the minerals are approximately (a polished surface would be required to identify opaques):

Sericite (muscovite and ?illite)	35%
Quartz (partly secondary)	35%
Chlorite	20%
Opaques (?limonite, pyrite, magnetite)	7%
K-feldspar (?orthoclase)	2%
Sphalerite	<1%
Apatite	<1%

Fragments in this rock are angular, varied and rarely over 1 cm long; they comprise about 40% of the rock. The most common type consist mainly of fine (25 μ m) sericite with lesser quartz as subhedral crystals up to 0.25 mm long, possibly partly formed as veins, with some opaques (?sulfides) in them. Other clasts are recognizably volcanic, containing euhedral phenocrysts of ?plagioclase and mafics up to 1 mm long pseudomprhed by sericite and chlorite, plus coarse (up to 0.5 mm) crystals of quartz, possibly phenocrysts, and smaller opaque crystals, possibly after sulfides. Other clasts are composed of fine sericite and ?clay or hydrobiotite, plus opaques; they look more Chlorite is found as large flakes to 0.2 mm diameter mafic. in some almost entirely pure clasts, or as ? extremely fine flakes of 10 μ m size making up most of other clasts. There are rare clasts that are composed of coarse K-feldspar or quartz and opaques. The K-feldspar is clear and could be secondary; the low negative 2V suggests orthoclase.

The matrix consists of secondary quartz as anhedral interlocking grains mostly concentrated at the margins of the sericitic clasts, plus fine-grained quartz and sericite.

Opaques form large crystals up to 1 mm across, some with cubic outlines suggestive of pyrite. Most opaques consist of red to red-brown limonite that probably pseudomorphs former sulfides, but some could be magnetite or other Fe-Ti oxides. One grain with extreme relief and isotropism suggests an Fe-poor sphalerite. Rare fine apatite crystals are associated with some opaques.

This is a similar fragmental to 24601 and 3 but with more varied lithlogies in the clasts; alteration is principally phyllic (quartz-sericite-pyrite) but with a hint of potassic if the K-feldspar is secondary. The rock may originally have been more felsic than 24601/3.

J

Page 5

24605: SERICITE-CHLORITE-BIOTITE-QUARTZ ALTERED, COARSELY PORPHYRITIC MAFIC-INTERMEDIATE VOLCANIC

From DAV-11 at 193': a dark grey-green, highly altered porphyritic volcanic rock cut by abundant stringers and replacements of fine pyrite and by narrow dark and rare light-coloured fractures. The rock is not magnetic and does not react to cold dilute HCL. In thin section, the modal mineralogy is roughly:

Sericite	25%
Chlorite	25%
Biotite (secondary)	15%
Quartz	15%
Opaque (mainly pyrite; limonite)	10%
?K-feldspar (groundmass)	7%
Carbonate (?dolomite or ankerite)	3%
Apatite	<1%

The texture of this rock before strong phyllic-potassic (quartz-sericite-chlorite-biotite) alteration is still clear, with coarse plagioclase and smaller mafic phenocrysts set in a fine-grained groundmass.

Plagioclase phenocrysts were euhedral, up to 3.5 mm long, and composed about 30% of the rock. They are now pseudomorphed by fine (10-20 μ m) sericite with minor carbonate as subhedral crystals to 50 μ m (high relief, no reaction to acid, Fe-staining or replacement by limonite suggests dolomite or ankerite).

Euhedral relic mafic sites are up to 2 mm across, with squarish outlines suggestive of former pyroxene. These sites are pseudomoprhed by fine $(10-25 \ \mu\text{m})$ chlorite, secondary biotite, and opaque. Sericite and minor quartz and apatite may also be present in these sites; apatite forms fine euhedra to 50 μm long. The proportions of chlorite and biotite vary from place to place.

The groundmass consists of fine-grained $(5-30 \ \mu\text{m})$ alteration minerals that include subhedral quartz, flaky sericite, chlorite, and biotite, opaques and possibly some feldspar that may be potassic to judge by its non-reaction to sericite. If the character of this feldspar is important to the exploration program (i.e. is it indicative of potassic alteration), I recommend staining of the cut slabs by sodium cobaltinitrite.

Heaviest replacement of original minerals is found along the dark sulfide-rich fractures, and these sulfides are closely associated with both chlorite and biotite, as well as sericite; in places, euhedral carbonate to 0.1 mm is found. This suggests that the biotite is in fact secondary and related to sulfide introduction.

The precursor rock appears to have been a coarsely porphyritic mafic-intermediate volcanic (depending on relative abundances of primary quartz, plagioclase and ?Kfeldspar). If there is K-feldsapr in the groundmass, it could be primary or secondary; however, (mafic) potassic alteration is clearly indicated by the secondary biotite. Most quartz appears secondary; there is no phyric quartz.

1

24607: INTENSELY SERICITE-CHLORITE-BIOTITE-QUARTZ ALTERED FRAGMENTAL ?INTERMEDIATE-MAFIC VOLCANIC ROCK WITH ?CLASTS OF MASSIVE SULFIDE (PYRHOTITE-CHALCOPYRITE)

From DAV-11 at 263', this appears to be a fragmental rock containing pale-coloured (?sericitic) and dark (?chloritic) clasts to 2.5 cm long in a purplish-grey matrix. There are rare clasts to 1.5 cm long that appear to be massive pyrrhotite with minor chalcopyrite, although this cannot be confirmed in thin section in theabsence of a polished surface. Irregular vein-like areas of greenish sericite cut the rock. The rock is weakly to locally strongly magnetic, probably due to pyrrhotite, but does not react to cold dilute HCl even after powdering in spite of a brown stain on the outside of the rock. Mineralogy in section is:

Sericite	25%
Chlorite	25%
Biotite (secondary)	25%
Quartz (secondary)	20%
Opaque (pyrrhotite, limonite)	3%
?Carbonate (ankerite)	2%
Semi-opaque (?rutile, leucoxene)	<1%
Apatite	tr

This is an intensely, thoroughly altered rock that nevertheless preserves the original fragmental texture. Clasts are up to 5 mm in diameter, and are subrounded to angular, comprising about 60-70% of the rock. They range from green and chloritic to brown and biotitic to pale, sericitic and rarely quartz-limonite after sulfide.

Sericitc clasts consist of 15-25 μ m flakes of muscovite with lesser subhedral quartz to 75 μ m long and spots of a higher relief mineral (20 μ m size) that may be carbonate. Chloritic clasts are composed of subhedral chlorite to 50 μ m in diameter intimately mixed with lesser biotite to 20 μ m diameter, and euhedral to subhedral quartz crystals to 0.2 mm long plus irregular opaques to 2 mm long. Biotitic clasts consist of finely (5-15 μ m) brown biotite with minor euhedral chlorite to 25 μ m, quartz to 50 μ m, and opaque blebs to 0.1 mm. Rare euhedral apatite crystals are up to 75 μ m long.

The matrix consists mainly of fine $(20-30 \ \mu\text{m})$ sericite and lesser subhedral quartz, with scattered clots of biotite, chlorite, and opaques plus minor semi-opaque ?rutile or leucoxene).

The precursor appears to have been a fragmental ?maficintermediate volcanic, strongly phyllic-potassic altered (to quartz-sericite-chlorite-biotite). If the massive sulfides do form clasts as they appear to, there could be the possiblity of discovering a massive sulfide lens in the vicinity. 24609: HIGHLY QUARTZ-SERICITE-CHLORITE ±BIOTITE ALTERED COARSE HETEROLITHIC FRAGMENTAL VOLCANIC; MINOR SULFIDE

From DAV-11 at 349', a coarse variegated fragmental volcanic rock with angular clasts up to 3 cm long ranging from dark brown to green to pale green, in a white matrix. There are minor sulfides, which are magnetic, indicating probable pyrrhotite, and limonite. There is no reaction to HCl; in thin section the mineralogy is approximately:

Sericite	35%
Quartz (mainly secondary)	35%
Chlorite	15%
Biotite (secondary)	5%
Opaque (mainly limonite)	5%
?Carbonate (dolomite or ankerite)	3%
Semi-opaque (rutile or leucoxene)	1%
Apatite	<1%

The largest clasts in this rock are porphyritic volcanic rock, composed of plagioclase and ?mafic phenocrysts to 2 mm long pseudomorphed by sericite and minor ?dolomitic or ankeritic carbonate, now partly altered to limonite, plus biotite, quartz and opaques, in a matrix of 10-25 μ m quartz, sericite, opaques, semi-opaque (?rutile or leucoxene) and opaques (?limonite after sulfide).

Other clasts are dark green (matted 25 μ m chlorite and lesser pale brownish biotite flakes, plus minor subhedral 0.2 mm quartz); fine (0.05 mm) anhedral quartz and interstitial sericite; and coarser (0.1 -0.2 mm) quartz, limonite (after ?sulfide), chlorite, minor biotite, ?carbonate.

The matrix consists of strongly secondary, anhedral interlocking 5-25 μ m quartz and interstitial sericite; there may be some remnant feldspar. The quartz is coarser around patches of sericite.

Some clasts are cut by networks of thin (0.1-0.2 mm) quartz veinlets; these veins end at the clast boundaries, implying veining and alteration before fragmentation. However, both fragments and matrix are also cut by thin limonite-sericite-chlorite fractures.

The alteration in this sample is intense, but more phyllic (less biotite) than 24607. The host rock appears to be similar to other rocks in the suite, a mafic-intermediate volcanic fragmental composed of clasts from porphyritic volcanics similar to some other samples (e.g. 24601, 24605). 24611: QUARTZ-CHLORITE-BIOTITE-SERICITE ALTERED, ?AUTO-BRECCIATED PORPHYRITIC VOLCANIC, POSSIBLY CONTAINING MEGACRYSTIC K-FELDSPAR

From DAV-11 at 374.5', a dark grey-brown ?volcanic rock with scattered euhedral relict phenocrysts to 2.5 mm long, but otherwise massive-appearing. Not magnetic, no reaction to cold dilute HCL. In thin section, the modal mineralogy is roughly:

Quartz (mainly secondary)	30%
Chlorite	25%
Biotite (secondary)	20%
Sericite	15%
K-feldspar (?) (primary phenocrysts)	5%
Opaque	5%
Apatite	<1%
?Allanite	tr

In thin section, this is a fragmental rock but the clasts and matrix are similar enough to suggest an autobrecciated ?flow rock. Clasts seem to fit roughly together (therefore do not appear to have moved far) and form about 70% of the rock. Clasts consist of mainly finely porphyritic volcanic rock, characterized by <1 mm (rarely 1.5 mm) euhedral ?mafic relics and rare larger ?K-feldspar relics to 3 mm long. The former are pseudomorphed by 25 μ m chlorite and biotite, and rare 20-50 μ m sericite (muscovite). The latter are composed of rims of mainly sericite, with cores of chlorite, biotite and quartz or ?relic feldspar. It is not possible to identify these feldspars with certainty, but in view of the strong alteration in this sample and the general sericitzation of plagioclase in this suite, plus the large size of the crystals ("megacrysts"), it is possible that they were originally K-feldspar. In some altered ?mafic sites, Opaques form subhedral grains to 1 mm diameter; the association with secondary quartz suggests these may be Rarely, euhedral 0.15 mm crystals with pleochroic sulfides. haloes surrounding them in chlorite may be allanite (epidote containing radioactive U/Th and REE).

The groundmass to the phenocrysts consists of anhedral to subhedral interlocking secondary quartz to 0.1 mm diameter, with interstitial sericite, chlorite and biotite. Opaques form subhedral grains to 0.1 mm diameter; these may have originally been primary Fe- or Ti oxides. Rare euhedral apatite crystals are up to 0.15 mm long.

The matrix to the clasts is similar to the clasts but slightly less dark, i.e. more quartz-sericitic; it may be more altered than the clasts. It contains similar altered phenocrysts to the clasts, with the addition of a few quartz ?phenocrysts or shards up to 0.3 mm long. This suggests the matrix could also be slightly more felsic than the clasts, which appear to be mafic-intermediate (basaltic andesite, but possibly alkalic due to the ?K-feldspar) in composition. 24612: INTENSELY QUARTZ-SERICITE ALTERED FELSIC-INTERMEDIATE ?VOLCANIC FRAGMENTAL MINERALIZED WITH PYRITE AND ?SPHALERITE

From DAV-11 at unspecified footage; pale buff-beige coloured, highly altered fragmental volcanic (or ?hydrothermal breccia) with minor sulfides including pyrite and ?sphalerite. A crackling of fine dark fractures is also probably sulfide, possibly mainly pyrite. The rock is not magnetic and does not react to cold dilute HCl. In thin section, the mineralogy is approximately:

Quartz (mainly secondary)	50%
Sericite	35%
Biotite (secondary; bleached)	7%
Feldspar (?mainly K-feldspar)	5%
Opaques (pyrite, limonite)	3%

Clasts in this specimen are angular, varied in lithology, and range up to at least 2.5 cm diameter. They comprise about 50% of the rock (i.e. matrix-supported). Most of the clasts are composed of variable amounts of quartz and sericite, with no internal structure preserved; a few are of recognizable porphyritic volcanic rock, similar to 24611 with scattered large phenocryst relics to 1 mm long, possibly after feldspar. The matrix, however, is a little more crystalline, apparently mainly quartz and feldspar about 0.15 mm long largely altered to sericite, suggesting this could be clast of a high-level intrusive similar in composition to 24611.

In the majority of the clasts, quartz forms anhedral interlocking slightly sutured grains dusted by inclusions of fluid and sericite, either about 0.05-0.1 or 0.25-0.5 mm in diameter. Quartz is concnentrated in the cores of the clasts, and is fringed by opaque where the quartz is coarse. The outer layer of the clasts is composed of fine sericite.

Opaques form subhedral crystals to aggregates up to 1 mm across; most appears to be limonite. No sphalerite can be recognized in transmitted light.

The matrix to clasts consists mainly of secondary quartz and lesser sericite; the quartz is coarsest in patches at the centers of matrix areas. There are shards (broken phenocrysts) of quartz and ?K-feldspar up to 0.7 mm scattered in the matrix.

Note the absence of chlorite and scarcity of biotite, plus the presence of phyric quartz and ?K-feldspar in this phyllic (quartz-sericite) altered rock, perhaps implying a more felsic original composition than the others from this drill hole. The sulfide mineralization, apparently including ZnS, is of note in its abundance and style. A polished surface would be required to confirm the presence of sphalerite.

Page 11

GA92-21: INTENSELY QUARTZ-SERICITE ALTERED, ?FELSIC FRAGMENTAL VOLCANIC CONTAINING ?SPHALERITE OR ?GARNET

Light grey-buff fragmental volcanic, containing varied clasts ranging from very fine-grained, flow-banded ?felsic to finely porphyritic ?intermediate. One clast is distinctly stained by Fe oxides and contains a dark brown, unusual mineral that is harder than steel, with a chonchoidal fracture. This clast is slightly magnetic; the rock shows no reaction to cold dilute HCL. In thin section, the modal mineralogy is roughly:

Quartz (secondary)	50%
Sericite	458
Unknown (?garnet, ?sphalerite, ?spinel)	3¥
Opaque (?Fe-Ti oxides)	28

This rock consists of about 50-60%, mainly 3-5 mm but occasionally 3-5 cm subrounded to subangular clasts in a highly altered matrix. The majority of the clasts are composed of relatively coarse, distinctly secondary quartz and sericite, some with variable amounts of an unidentified isotropic mineral. Some clasts consist entirely of this mineral (ti is the hard, conchoidal-fracturing brown mineral seen in hand specimen). Other clasts consist of extremely fine-grained (10 μ m) quartz and minor sericite (these are the flow-banded ?rhyolite seen in hand specimen).

The main clast type contains anhedral to subhedral interlocking clear quartz crystals up to 0.3 mm diameter, with patches, foliae, and relict crystals pseudomorphed by sericite. Texture of these clasts might better be described as spherulitic than porpyhyritic, suggesting more felsic protolith than the intermediate-basic porphyries encountered in the DAV-11 suite. The clasts are crossed by sericitic fracture planes in places; these fractures are not evident in the matrix. Rare quartz veins up to 0.2 mm thick cross the fine ?rhyolite clasts but do not appear to cut the matrix.

The matrix is difficult to separate from the clasts in section, but appears to be composed of guartz and sericite plus minor fine $(5-50 \mu m)$ opaque to semi-opaque material that is probably Fe-Ti oxides such as leucoxene, sphene or rutile.

The unidentified isotropic mineral has high relief, a slight brown colour, and occurs as anhedral to ?subhedral masses up to 4 mm across. It lacks any zoning or crystal shape characteristic of garnet and the characteristic dodecahedral cleavage of sphalerite. Rare rectangular parting suggests it might be a spinel. It is difficult to say why the brown areas would be magnetic. A polished section and SEM analysis would be necessary to confirm this, if the geochemistry (not available at time of writing) does not suggest any other possiblity.

29621: QUARTZ-CHALCEDONY-?ZEOLITE AMYGDULAR, ?INTERMEDIATE VOLCANIC WITH ANDESINE PHENOCRYSTS IN A SERICITIC MATRIX

Purple and pale greenish volcanic rock characterized by fine grey phenocrysts and larger white amygdules that are harder than steel and do not react to cold dilute HCl. The purplish-brown material generally surrounds these white amygdules. The rock is not appreciably magnetic. In thin section, the modal mineralogy is approximately:

Quartz (partly secondary)	30%
Plagioclase (calcic andesine)	20%
Clay-sericite	20%
?Zeolite	15%
Chalcedonic quartz (amygdules)	5%
Chlorite, hydrobiotite	5%
Opaque (limonite, Ti oxides: ?sphene)	5%
Zircon	tr

Plagioclase forms euhedral phenocrysts up to 1.5 mm long that are clear and unaltered. They display complex oscillatory zoning that does not however vary much in composition from core to thin rims. The composition is calcic andesine, from about An_{47} (core) to An_{42} (rim) based on extinction angles of Y^010=28 to 23°, Z^001=33 to 28°.

The larger, white amygdules are filled by quartz as anhedral, interlocking, sutured and undulose-extinguishing grains up to 0.3 mm diameter. Many are filled with needlelike crystals up to 0.25 mm long that appear pseudomorphed by sericite; their original identity is not clear, but they have a radial pattern. The margin of these amygdules is composed of a layer of clear, finer quartz and dusty chalcedony (the purplish-brown zones in hand sample). Other amygdules consist of feathery, bladed euhedral crystals up to 1 mm long, with parallel extinction, low first-order birefringence and relief lower than quartz. These properties fit the zeolites, such as natrolite or thomsonite but positive identification would require X-ray analysis.

There are scattered, small mafic phenocrysts that are mostly replaced by chlorite and lesser brownish biotite or hydrobiotite, plus minor opaques and ?sphene. The elongate shape of these relics (euhedral, up to 1.5 mm long) suggests they were more likely to have been amphibole than pyroxene.

The matrix consists largely of fine $(5-15 \ \mu\text{m})$ sericite possibly after feldspar, and ?quartz. Opaques include cubic crystals of ?limonite after pyrite up to 0.5 mm across. There are rare euhedral zircon crystals to 75 μm long.

The presence of amphibole rather than pyroxene, and calcic andesine, suggest an intermediate volcanic protolith for this slightly (clay-sericite) altered, highly amygdular ?flow rock.

24622: FELSIC FRAGMENTAL VOLCANIC (?QUARTZ-SANIDINE-ALBITE PHYRIC RHYOLITE), MINOR CARBONATE-SERICITE-?QUARTZ ALTERED

Light brown, fragmental volcanic rock containing scattered angular clasts to 1 cm diameter and abundant white (feldspar) and grey (quartz) phenocrysts and shards, plus brwon limonitized mafic relics of 1-2 mm size. There is minor reaction to cold dilute HCl after scratchin; the rock is harder than steel, and some parts are mildly magnetic. In the thin section, the modal mineralogy is roughly:

ily:
20%
15%
20%
15%
15%
5%
5%
3%
2%
<1%
tr

Euhedral quartz phenocrysts are abundant in this rock, up to 2 mm diameter. They are clear and unstrained, but show evidences of resorption at their margins, and are crossed by thin fractures or veinlets of secondary silica and sericite. Feldpar phenocrysts include both K-feldspar and plagioclase. The K-feldspar is possibly sanidine: the crystals are euhedral, up to 1.5 mm diameter, and with a small 2V of less than 40°. The crystals show minor alteration to sericite, clay, and include plagioclase crystals. Plagioclase forms eu- to subhedral crystals up to 2 mm long with polysynthetic twinning extinction angles Y^010 up to 17° and relief similar to K-feldspar indicating albite compositions. Most crystals are heavily altered to clay, in contrast to the K-feldspar.

Mafic ?relics are up to 1.5 mm long, and are subhedral patches of carbonate and sericite plus opaques. The carbonate is generally iron-stained; with its lack of reaction, it may be ankeritic. Subhedral crystals up to 1 mm across are found, as are aggregates of smaller anhedral crystals. Opaques are eu- to subhedral and up to 0.3 mm across; they may be mainly hematite (?martite) and limonite. Minute crystals of apatite up to 0.1 mm long are associated.

Rounded ?fragments or ?amygdules are variably filled with quartz, carbonate, or a feathery bladed mineral with low relief that may be a zeolite (similar to that seen in 29621), plus opaque oxides. The clasts or amygdules are rounded and up to 1.5 mm diameter. The groundmass of clasts is variable, formed of microlites of plagioclase, or quartz and feldspar in spherulitic texture, plus limonite. Matrix to the clasts is very fine-grained quartz (partly secondary, up to 50 μ m size), ?feldspar and sericite plus minor limonite. The original composition of this rock appears to be felsic, possibly rhyolitic; it has undergone mild claysericite and carbonate alteration. 24705: FELSIC FRAGMENTAL VOLCANIC (ORTHOCLASE-OLIGOCLASE-QUARTZ PHYRIC ?RHYODACITE, ALTERED TO GREEN BIOTITE

Dark grey-purplish fragmental volcanic rock containing abundant white feldspar and lesser grey quartz phenocrysts, plus common subrounded clasts to less than 1 cm diameter. The rock is strongly magnetic but shows no reaction to cold dilute HCl; it is mainly harder than steel. In thin section, the mineralogy is approximately:

Feldspar	phenocrysts (K-feldspar: ?orthoclase)	20%
-	(Plagioclase: ?oligoclase)	15%
	groundmass (mainly plagioclase)	20%
Quartz	phenocrysts	15%
~	groundmass	10%
Green bio	otite (secondary)	15%
	Fe-ti oxides: magnetite, limonite)	38
Clay-seri		28

Feldspar phenocrysts are euhedral and up to 2 mm long. They include both K-feldspar and plagioclase; the former may be orthoclase (2V about 60-70°) and the latter may be oligoclase (An₂₇: extinction Y^010 about 10°, relief positive compared to K-feldspar). Both suffer minor clay alteration, but the plagioclase, although fractured, is relatively clear and displays original compositional zoning. K-feldspar contains inclusions of plagioclase.

Quartz forms euhedral phenocrysts and broken shards up to 1.5 mm diameter that are clear, relatively unfractured, and mainly lack any evidence of resorption.

Mafic relict phenocrysts are smaller, up to 1 mm long, with subhedral to euhedral outlines. They are pseudomorphed by fine flakey green secondary biotite up to 0.1 mm diameter and opaques. Opaques are eu- to subhedral, up to 0.5 mm across, and may include magnetite and limonite.

Fragments are variable in composition, ranging from clasts rich in plagioclase pohenocrysts and a groundmass of plagioclase microlites to clasts with a matrix composed of 50% opaques to clasts composed of K-feldspar phenocrysts in a matrix of secondary green biotite.

The matrix to the fragments consists of secondary quartz, green biotite, and minor opaque (?limonite).

This is similar to 24622 in its phenocryst makeup (quartz, K-feldspar, plagioclase, minor mafic relics) but Kfeldspar may be orthoclase, plagioclase oligoclase rather than albite, indicating a slightly less felsic rock, perhaps a rhyodacite. Also, the alteration is distinct, being mafic potassic (green biotite). However, there does not appear to be any sulfide associated with this alteration.

PETROGRAPHIC REPORT ON FIVE THIN SECTIONS

Sept. 7, 1992

Report for: Gordon Allen Granges Inc.

Granges Inc. 2300-885 West Georgia St. Vancouver, B.C. V6T 224.

Your reference: letter dated August 24, 1992. Invoice included with report dated Aug 28, 1992.

Samples submitted: 24633, 24635-24638.

24633: MILDLY SERICITE-QUARTZ ALTERED, FINELY ALBITE PORPHYRITIC FELSIC VOLCANIC OR HIGH-LEVEL INTRUSIVE

Fine-grained, light grey-green homogeneous volcanic rock characterized by small (1 mm) white ragged phenocrysts. Sulfides are not evident in hand specimen. The rock is not magnetic and mainly harder than steel; some of the phenocrysts react to cold dilute HCl. In a polished thin section, the mineralogy is approximately:

Feldspar phenocrysts (plagioclase: albite)	10%
groundmass (?mainly plagioclase)	60%
Quartz (groundmass)	15%
Sericite (after feldspar)	10%
Carbonate (calcite)	3%
Opaque (pyrite, pyrrhotite)	2%
Sphalerite	<1%
Sphene, rutile	<1%

Feldspar phenocrysts are euhedral to subhedral, and up to 1 mm long; in places they are glomeratic to 2 mm across. They are mainly clear, but altered partly to completely in places to carbonate and sericite. Extinction angles Y^{010} of 14° and relief lower than quartz indicate albite composition about An₅. Carbonate replacing plagioclase forms subhedral crystals up to 0.5 mm across; reaction to HCl indicates it is mostly calcite. Sericite forms very fine flakes of 5-15 μ m diameter.

There are also microphenocrysts (?) of opaque that are mostly pyrite, as fine euhedral cubes to 0.25 mm diameter, and rare pyrrhotite, as subhedral grains to 0.1 mm long. In places, these are surrounded by sphene up to 0.3 mm long, generally with fine (25 μ m) inclusions of euhedral rutile. At the centers of some carbonate replacements, there are subhedral crystals of sphalerite up to 0.25 mm across with deep red-brown internal reflections indicating a moderately high Fe content, some with fine (5 μ m) inclusions of ?chalcopyrite. Sphalerite (and rutile) also appear to pseudomorph former ?mafic phenocrysts up to 0.4 mm long.

The groundmass consists of small (0.1-0.2 mm long) ragged anhedral quartz crystals or groups of crystals set in a mass of subhedral to anhedral crystals of alkali feldspar

(?plagioclase) that are mainly partly altered to fine sericite. Relief less than quartz suggests it is also albitic; if it is important to distinguish it from Kfeldspar, staining by sodium cobaltinitrite is recommended. Minor rutile and limonite is also found in the groundmass.

This is a felsic igneous rock that could be an extrusive volcanic or a high-level intrusive (?dyke) rock, possibly of dacitic composition. It is mildly altered to carbonate, sericite and possibly a little seocndary quartz, plus minor pyrite. 24635: QUARTZ-BIOTITE-CHLORITE-SERICITE-GARNET ± CARBONATE-EPIDOTE-PYRRHOTITE ALTERED, QUARTZ-FELDSPAR PORPHYRY

Grey, altered finely porphyritic volcanic rock characterized by small white altered feldspar sites and dark mafic sites, cut by irregular fractures and vein-like areas with magnetic sulfide (pyrrhotite) surrounded by bleached areas. In thin section, the mineralogy is approximately:

Quartz (largely secondary)	35%
(phenocrysts)	58
Feldspar (?plagioclase, possibly albitic)	35%
(K-feldspar, phenocrysts)	2%
Biotite (secondary)	5%
Sericite	5%
Chlorite	5%
Opaque (pyrrhotite, trace sphalerite)	3%
?Garnet	38
Carbonate (calcite)	28
Epidote	<1%
Sphene, apatite	tr

Where least altered, this rock consists of scattered small quartz, K-feldspar and relict ?plagioclase feldspar and mafic phenocrysts in a crystalline groundmass, suggesting a ?rhyodacitic porphyry. Quartz phenocrysts are highly resorbed, with coronas of secondary silica and feldspar, sub- to euhedral and up to 1 mm in diameter. K-feldspar phenocrysts are euhedral, up to 1.5 mm long, and are replaced at their margins by fine sericite, some opaques, and rare chlorite. Feldspar relics are also up to 1 mm long (although they are glomeratic up to 3/5 mm in places), euhedral, and replaced by finely matted secondary alkali feldspar (30-50 μ m), secondary biotite and lesser sericite $(20 \ \mu\text{m})$, minor quartz (to 0.1 mm), and rare garnet (0.2 mm) and chlorite (to 30 μ m). Relict mafics are less euhedral, up to 0.7 mm long, and are replaced by secondary biotite, garnet, opaques, and minor sericite, quartz and chlorite,] Garnet crystals are euhedral and up to 0.2 mm diameter. The groundmass consists mainly of alkali feldspar, probably mostly albitic plagioclase (but staining tests would be required to confirm this) as ragged, anhedral, highly interlocked crystals about 0.1- 0.2 mm long with minor sericite, chlorite, and opaques of 15-40 μm diameter. Secondary quartz is common in places as anhedral irregular interlocking grains to 0.15 mm across. Apatite forms fine euhedral elongate prisms up to 0.1 mm long mixed with plagioclase in silicified areas.

Strongly altered areas, generally central to the silicified areas, consist of coarser secondary quartz (to 0.4 mm), eu- to subhedral garnet crystals to 0.5 mm but aggregating to 3 mm, anhedral opaques (pyrrhotite) to 0.7 mm, and minor epidote (subhedral, to 0.05 mm), carbonate (calcite, to 0.05 mm), Fe-chlorite (25 μ m), subhedral red-brown (moderate Fe) sphalerite as subhedral crystals to 0.1 mm, plus traces of sphene (subhedral, 30 μ m) and apatite (euhedral prisms, to 75 μ m long).

24636: INTENSELY SERICITE-QUARTZ ALTERED ?FELSIC VOLCANIC ROCK, WITH PATCHES OF BROWN ?GARNET OR SPHALERITE

Light grey-buff, strongly altered ?felsic rock containing common brown patches of ?limonite up to 0.5 cm across. A vaguely preserved texture suggests a formerly porphyritic rock overprinted by areas of intense sericitization. The rock is mainly hard and siliceous, nonmagnetic and unreactive to cold dilute HCl. In thin section, the modal mineralogy is:

Sericite	50%
Quartz (secondary)	40%
Isotropic mineral ?garnet or sphalerite)	10%
Limonite (brown stain)	<1%

In thin section, the rock consists of swirling areas of intense sericite and secondary quartz, hosting patches of a brown, isotropic mineral. Most of the sericite is as very fine $(5-20 \ \mu\text{m})$ flakes, interstitial to secondary quartz as anhedral to subhedral grains up to 0.1 mm diameter. Where the secondary quartz is coarser 0.25 mm), some sericite forms euhedral flakes up to 0.1 mm diameter. Some of the patches of coarser quartz appear to be replacing former phenocrysts (sub- to euhedral outlines, to 1.5 mm long). Many of these areas have plucked out during section preparation, leaving holes or vugs.

The identity of the isotropic, high relief mineral that forms the brownish patches in this rock is uncertain. The patches are irregular in outline and up to 3.5 mm diameter, composed of a variably brown, isotropic mineral, quartz, minor opaque (?limonite), sericite, and vugs. Individual crystals of the isotropic mineral are anhedral and up to 1 mm diameter. Away from the patches, this mineral is clear (not stained brown) and has sub- to euhedral polygonal outlines that strongly suggest garnet. Within the patches, however, the variable brown colour and anhedral character do not look like garnet. Sphalerite (very low iron variety) would be a possibility, but the absence of cleavage does not support this. If geochrmistry is available for this rock, a substantial Zn content would confirm sphalerite; failing this, I suspect this mineral is garnet. Note that garnet has also been tentatively identified in 24635 and GA-92-21.

)

Minor limonite staining found in the rock appears to be transported, as opposed to the in situ limonite found rarely in the patches of isotropic mineral.

The precursor to this rock is not clear, but general indications are of a felsic-?intermediate volcanic rock (note however, that quartz-sericite alteration can also affect a mafic rock in much the same way). The garnets are unusual, although certain epithermal bulk-tonnage Au-Ag prospects in B.C. (e.g. Wolf, Capoose in central B.C.) are known to contain them as an alteration phase. 24637: INTENSELY QUARTZ-SERICITE ALTERED, BRECCIATED ?FELSIC VOLCANIC ROCK, WITH MINOR PYRITE AND ?GARNET

Light grey-white, siliceous, brecciated, intensely altered ?felsic rock somewhat similar to 24636. Whiter areas appear to be associated with fractures crossing the rock. Sulfide (mainly pyrite, but with traces of a dark phase) are common as disseminated patches to 2 mm across; limonite is developed on the outside of the rock in response to weathering of pyrite. There are rare brownish patches similar to those seen in 24636. The rock is not magnetic and does not react to HCL. In thin section, mineralogy is:

Sericite	50%
Quartz (secondary)	45%
Opaque (?pyrite)	3%
Isotropic mineral (?garnet)	1%
Limonite	<1% ·
Zircon	tr

Most of this rock is composed of swirling areas of secondary quartz with interstitial, fine sericite. Much of the quartz is in the form of anastamosing, highly irregular veins up to 0.5 mm thick, composed of anhedral grains with signs of strain (undulose extinction, sutured boundaries). Other areas of similar quartz up to 1 mm diameter may be relict quartz phenocrysts. Sericite forms mainly 5-25 μ m flakes between quartz grains, but locally with coarser quartz it forms coarser euhedral flakes to 0.15 mm diameter. In places there are patches of mainly fine sericite with subhedral outlines, up to 1 mm long, that could represent former feldspar phenocrysts.

)

Scattered through the rock are patches of opaque, probably mainly pyrite, as eu- to subhedral crystals up to 1 They are surrounded by fringing subhedral quartz mm long. crystals up to 0.1 mm diameter, occasionally containing minor fine ?epidote as subhedral crystals to 25 μ m long, and an isotropic mineral with high relief (?garnet) as euhedral crystals to 0.1 mm diameter. Irregular patches of a similar isotropic mineral are also found up to 2.5 mm across. This mineral is similar to that found in 24635 and 24636; it varies from faintly brownish and anhedral in places, to rarely clear and euhedral. It may be garnet. Zircons are euhedral and up to 0.1 mm long; they are scattered through the altered matrix of the rock. Limonite is present along and near several thin fractures along the outer skin of the rock; some is in situ from the oxidation of ?pyrite.

The texture of this specimen is interesting, in many places appearing to be a breccia formed of highly quartzsericite or sericite altered, angular to subangular clasts up to 7 mm across in a somewhat coarser quartz ± sericite matrix. Some of the larger clasts themselves appear fragmental, implying multiple episodes of brecciation or fragmentation of a volcanic fragmental. The original composition of the rock is difficult to be sure of; it likely was felsic, to judge from the possible quartz and feldspar phenocrysts. 24638: QUARTZ-FELDSPAR PORPHYRITIC, SPHERULITIC FELSIC VOLCANIC OR HIGH-LEVEL INTRUSIVE, WITH PATCHES OF ?GARNET

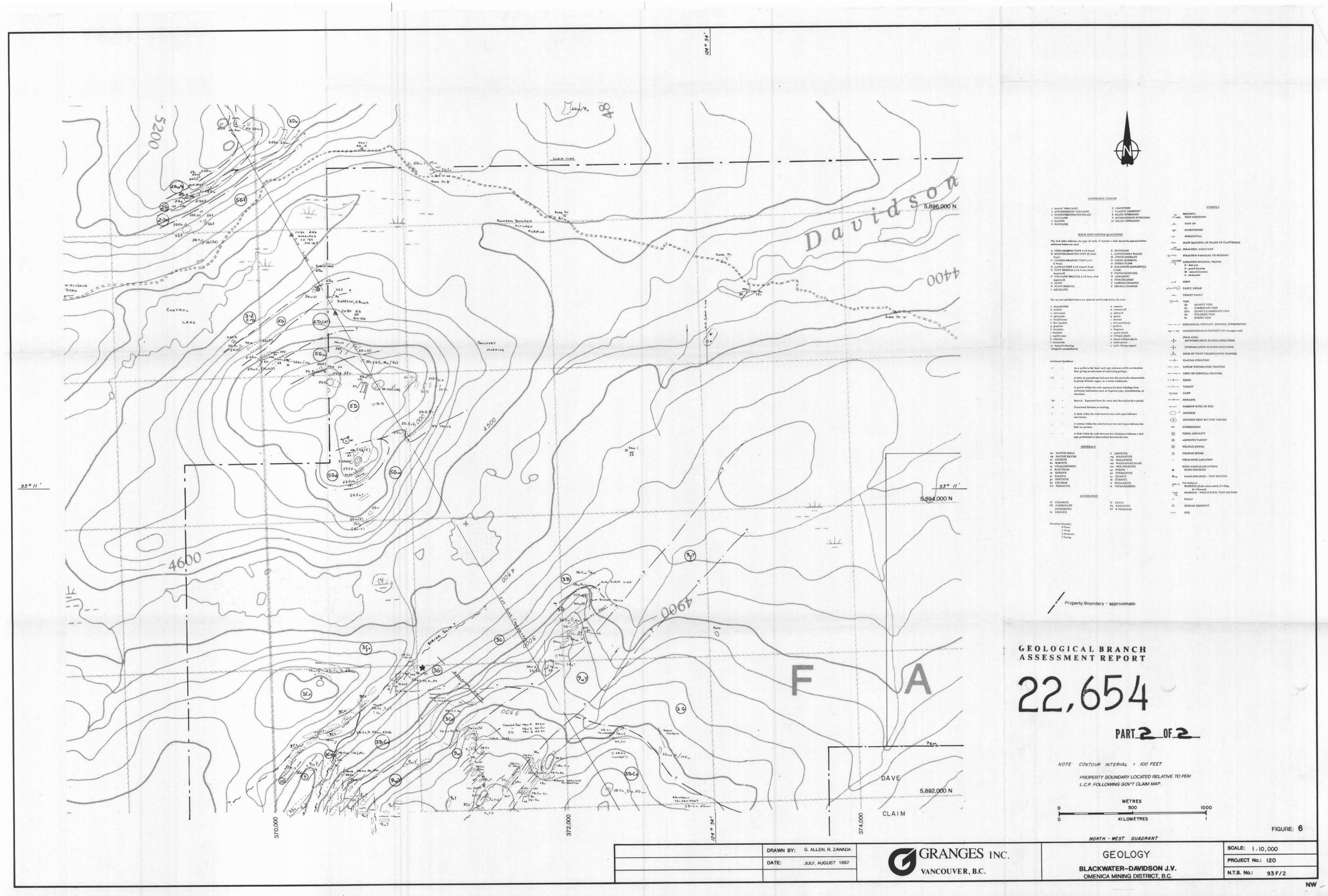
Light grey-buff, highly altered porphyritic ?felsic volcanic rock containing rounded patches of brownish mineral similar to those seen in 24636. Both matrix and patches are harder than steel; quartz and relict white feldspar phenocrysts are visible. The rock is not appreciably magnetic. In thin section, the mineralogy is:

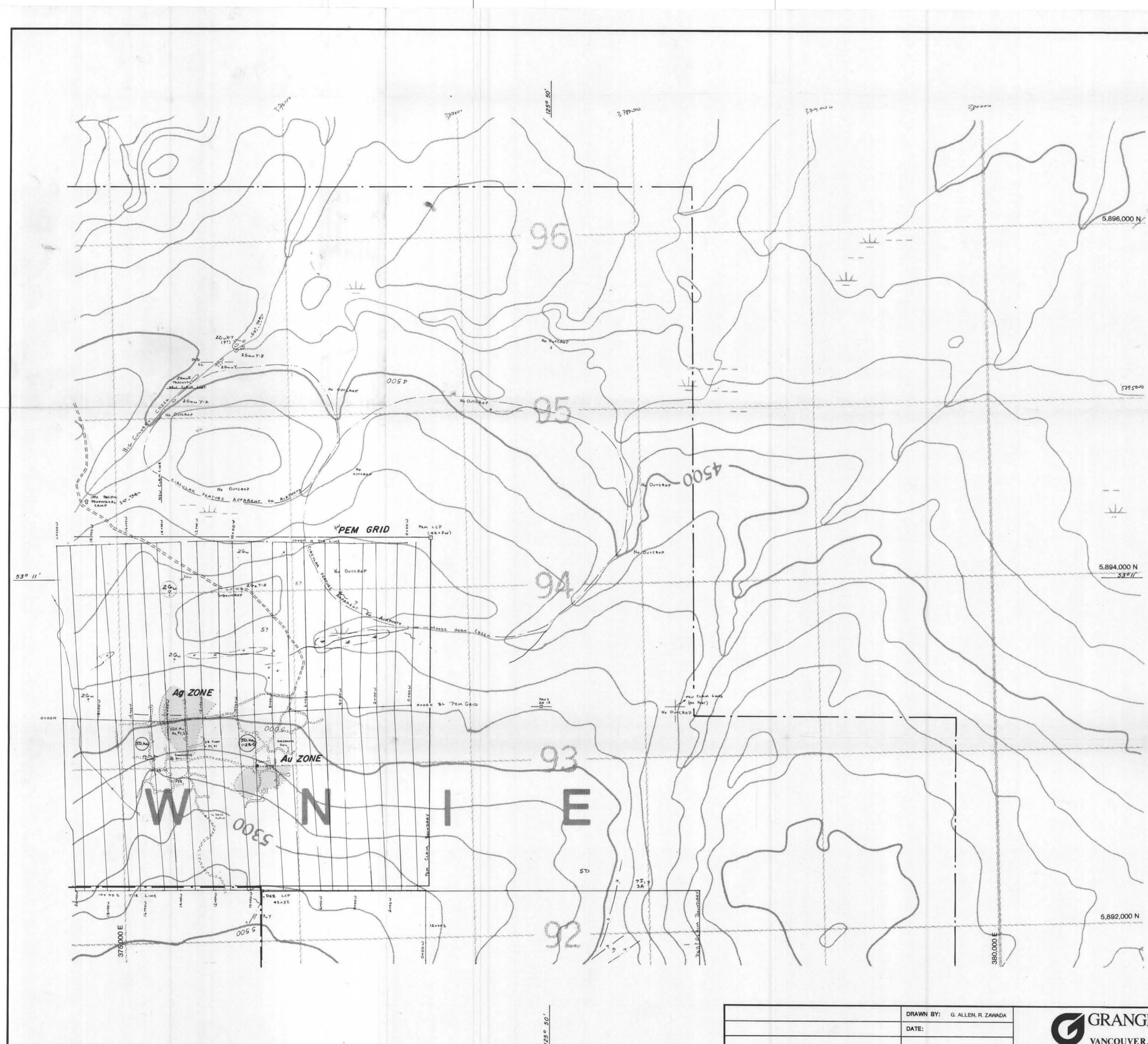
Relict alkali feldspar (sericitized)	40%
Sericite (mainly after feldspar)	20%
Quartz (groundmass)	20%
(phenocrysts)	15%
Isotropic mineral (?garnet)	5%
Opaque (limonite)	<1%

This rock consists of quartz phenocrysts and patches of an isotropic mineral, possibly ?garnet, in a spherulitic matrix of alkali feldspar. There are traces of limonite, partly in situ (?after sulfide) in the patches of ?garnet.

Quartz forms euhedral to subhedral, embayed (resorbed) phenocrysts and broken shards up to 2 mm in diameter, altered in places to sericite or including/rimmed by sericite. Most phenocrysts, as are the patches of ?garnet, are surrounded by a corona of feldspar (white in hand specimen) that is slightly less sericitized than the matrix.

The patches of high-relief, isotropic mineral are pale brown in hand specimen and section, anhedral to rarely ?subhedral in outline, and lack cleavage. They are tentatively identified as garnet, as found in 24635, 36, and 37. Some show minor alteration to sericite, and most include small crystals of quartz and traces of limonite.


Small patches of coarser (to 50 μ m) sericite plus minor opaque (limonite) with an- to subhedral outlines, up to 0.7 mm long, appear to be relict mafic crystals, of presently indeterminate type. There also clearly were feldspar phenocrysts, up to about 1 mm long, originally present. Most of these are now completely pseudomorphed by sericite and probably were formerly plagioclase (about 15% of the rock). A few (<5%) are still partly clear and may be relict K-feldspar crystals.


The matrix is rather coarsely crystalline for a volcanic rock, consisting mainly of 0.2-0.3 mm diameter radiating spherulites of ?alkali feldspar, all more or less sericitized. Small (50 μ m) anhedral to rarely subhedral crystals of quartz are sprinkled throughout, mainly interstitial to the feldspar spherulites, mixed with fine flakes of sericite averaging about 10-20 μ m in diameter. Rare grains of opaque (limonite) to 25 μ m diameter are scattered through the matrix.

This appears to be a felsic ?volcanic or high-level intrusive (dyke) rock, possibly rhyodacitic in original composition, altered to sericite and patches of ?garnet plus traces of limonite.

Craig H.B. Leitch, Ph.D, P.Eng (666-4902)

Ob Brildy

DRAWN BY: G. ALLEN, R. ZAWADA	GRA
DATE:	
	VANC

LITHOLOGY LEGEND 6 LIMESTONE

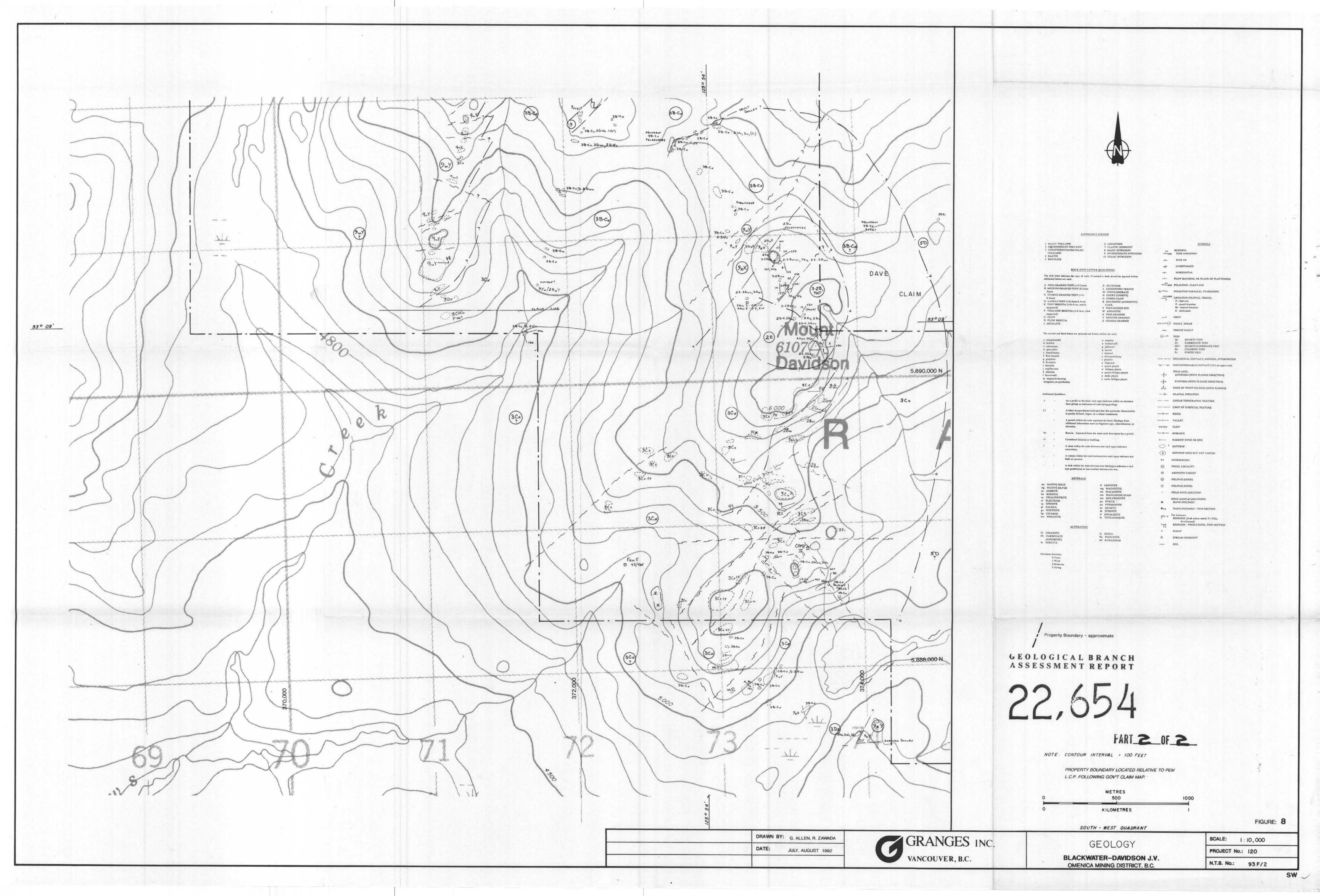
2 17 3 U V		LCANIC IATE VOLCANIC ENTIATED FELSIC	6 LIMESTONE 7 CLASTIC SEDIMENT 8 MAPIC INTRUSION 9 INTERMEDIATE INTRUSI 10 FELSIC INTRUSION		
5 R	HYOLITE				
		BOCK UNIT LETTE	R QUALIFTERS		
The soldie	first litter i innel lettere	ndicates the type of mick; if on are used.	nisted a deals should be inserted before		
		NED TUFF (< 0.5mm)	K SILTSTONE		
	EDIUM-GI	RAINED TUFF (0.5mm	L SANDSTONE / WACKE M CONGLOMERATE		
C O	OARSE-GR	RAINED TUFF (>2-	N CHERT (CHERTY)		
DL	APILLI TU	IFF (>6.4mm6.4cm)	O DEBRIS FLOW R DOLOMITIC (ANKERITIC)		
ET	UFP BREC	CLA (>6.4 cm; matrix	CARB.		
	OLCANIC	BRECCIA (>6.4cm; elas	T TUFFACEOUS SED. W APHANITIC		
	(banoqa	2010 1 2 2 1 3 - 1 200 2 2 - 2 2 2 2 2	X FINE-GRAINED		
G P	LOW BREA	CCIA	Y MEDIUM-GRAINED Z COARSE-GRAINED		
1 13	GILLAE				
73×+	iccand and (bird letters are optional and for	duer define the rock.		
	redahidal		n matery		
b be	d-Sed keroinue		o welded tuff p pillowed		
d apt	hertelitic		4 querts		
	· banded		e sheartd e silicous/cherty		
	philip		t phyllinic.		
	masitic		u fragment		
i hor	illectours		v quarte phyria • faldspar phyric		
& shi			a quarta-foldapar phyric		
	cocretic agnetita data	it.e	y matic phyric z matic-feldspar phyric		
	тейс, по ру				
Addis	onal Qualif	iere:			
		Talls Internet and a second	an a		
	2	Bost giving an indication of	k type indicates rubble or abundant (underlying geology,		
0	-191	A letter in perentheses indu is posely defined, vegue, or	cates that this particular characteristic r a minor constituent.		
		A period within the code se additional information such afteration.	permes the basic lithology from as fregment type, mineralitation, or		
84	18	Benocia. Separated from th	e main rock description by a period.		
47	1411	Crevelated foliation or bade	fing.		
1	180	A slesh within the code ber weccesing.	were two muck types indicates		
•	19	A commu within the code b both are present.	etween two mek types indicates that		
•		A dash within the unde bere type gradational or intermed	reen two fitbologies indicates a rock fate between the two.		
		MINERALS			
	ATTVE G		E INCOUTE		
	ATTVE SU		6 LIMONITE mg MAGNETITE		
A A	ZURITE		. MALACHITE		
	ORNITE HALCOPY	RITE	eve MANGANESE STAIN eve MOLYBDENITE		
I EL	ECTRUM		P7 PYRITE '		
	ALENA		PO FYRRHOTTE		
10 0	OETHITE		42 QUARTZ		
C C	INABAR.		J SPHALERITE		
any B	IEMATITE		& TETRAHEDRITE		

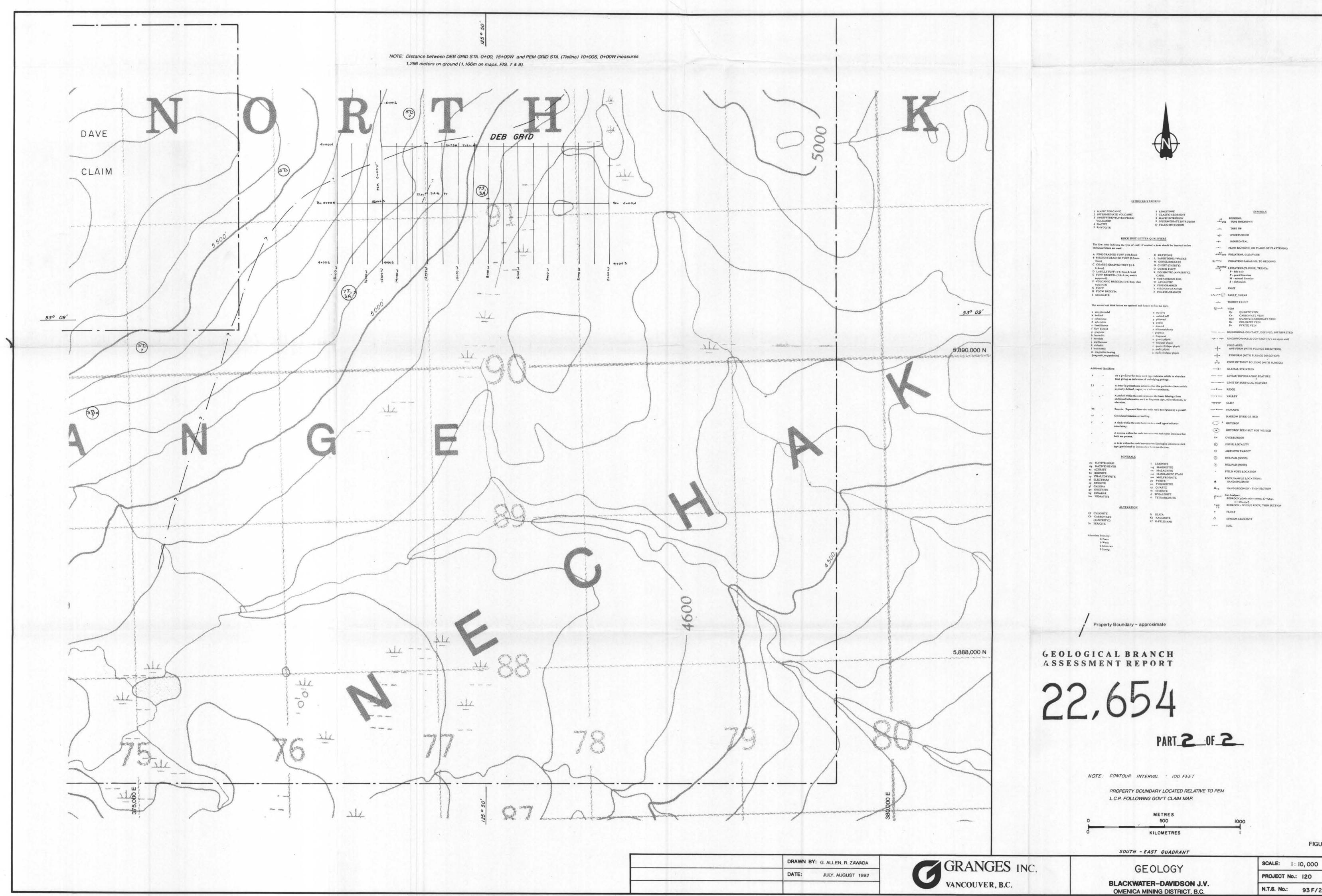
ALTERATION

SF SILJCA K4 KAOLINITE K7 K-FELDSPAR

CI CHLORITE Co CARBONATE (ANNERITIC) Se SERICITE

Aberetion Learnaity: Or Trace L-Waak 2. Modereta 3. Simong

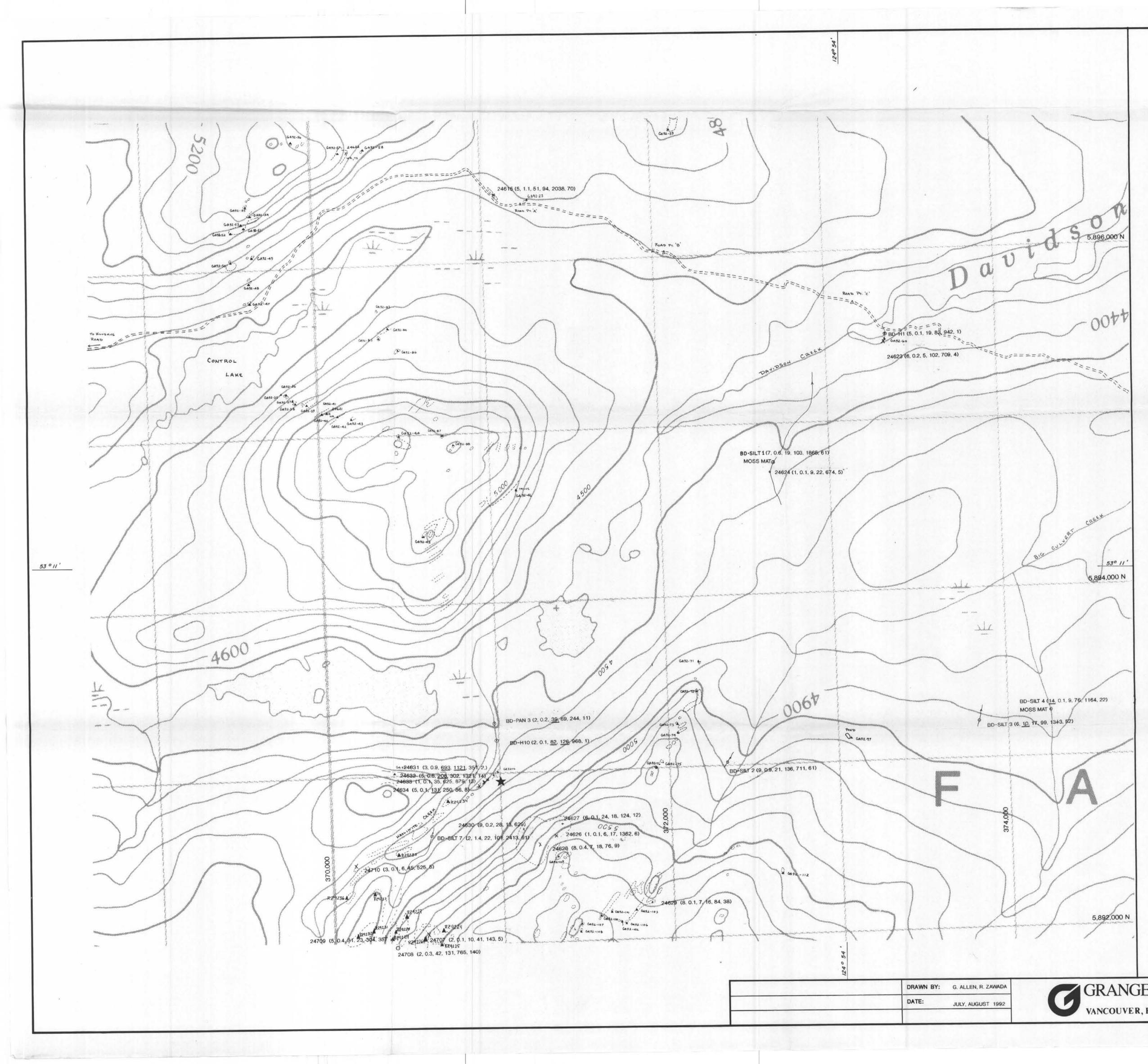

5895000


	SYMBOLS
1000	BEDDING: TOPS UNKNOWN
	TOPS UP
+	OVERTURNED
-+-	HORIZONTAL
-	FLOW BANDING, OR FLANE OF FLATTENING
12000	POLIATION, CLEAVAGE
di ma	POLIATION PARALLEL TO BEDDING
145,080	LINEATION (PLUNGE, TREND): P - food sais P - peeral lineation M - minard lineation 3 - slictonaida
-	THIOL
and the	FAULT, SHEAR
-	THRUST FAULT
ę-+	VEN QV QUARTZ VEN CV CARBONATE VEN QCV QUARTZ-CARBONATE VEIN II- CIILORITE VEIN PV PYRITE VEN
	GEOLOGICAL CONTACT; DEFINED, INTERPRETED
· · · · ·	UNCONFORMABLE CONTACT ('U's no upper unit)
+	FOLD AXES: ANTIFORM (WITH PLUNGE DIRECTION)
+	SYNFORM (WITH FLUNGE DIRECTION)
2	ZONE OF TIGHT FOLDING (WITH PLUNGE)
\rightarrow	GLACIAL STRIATION
	LINEAR TOPOGRAPHIC PEATURE
	LIMIT OF SURFICIAL FEATURE
-*-	RIDGE
	VALLEY
11117	CLIFF
	MORAINE
	NARROW DYKE OR BED
0.	OUTCROP
\odot	OUTCROP SEEN BUT NOT VISITED
ov	OVERBURDEN
0	POSSIL LOCALITY
Θ	AIRPHOTO TARGET
0	HELIPAD (GOOD)
	HELIPAD (POOR)
	FIELD NOTE LOCATION
	ROCK SAMPLE LOCATIONS: HAND SPECIMEN
Ars	HAND SPECIMEN - THEN SECTION
Tr-2	For Analyses: BEDROCK (Greb unless noted; C - Chip, H = Chennel)
***	BEDROCK - WHOLE ROCK, THIN SECTION
+	FLOAT

- + FLOAT ∆ STREAM SEDIMENT
- --- SOIL

Property Boundary - approximate GEOLOGICAL BRANCH ASSESSMENT REPORT 22,654 PART 2 OF 2 NOTE CONTOUR INTERVAL = 100 FEET 5,892,000 N PROPERTY BOUNDARY LOCATED RELATIVE TO PEM L.C.P. FOLLOWING GOV'T CLAIM MAP. METRES 500 1000 KILOMETRES FIGURE: 7 NORTH - EAST QUADRANT . SCALE: 1:10,000 ANGES INC. GEOLOGY PROJECT No .: 120 BLACKWATER-DAVIDSON J.V. OMENICA MINING DISTRICT, B.C. OUVER, B.C. N.T.S. No.: 93 F/2

NE



	DRAWN BY: G. ALLEN, R. ZAWADA	
	DATE: JULY, AUGUST 1992	
ADDED IN A DESCRIPTION OF A		V/

PROJECT No.: 120 N.T.S. No.: 93 F/2

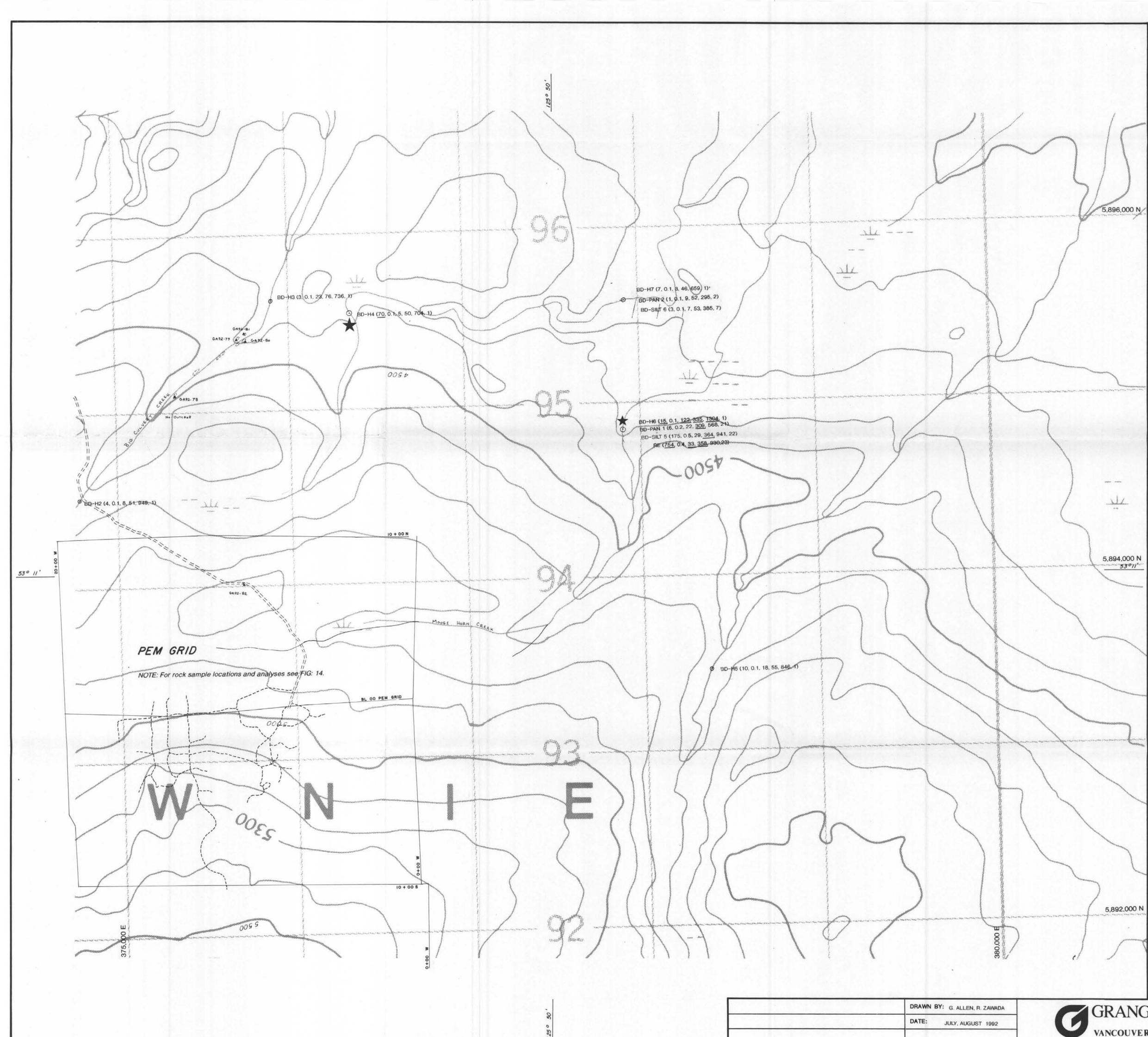
FIGURE: 9

LEGEND

	LIMIT OF SURFICIAL FEATURE
	RIDGE
-v-	VALLEY
TITTE	CLIFF
	MORAINE
-	NARROW DYKE OR BED
01	OUTCROP
3	OUTCROP SEEN BUT NOT VISITED
Qv	OVERBURDEN
0	FOSSIL LOCALITY
0	AIRPHOTO TARGET
•	HELIPAD (GOOD)
1961	HELIPAD (POOR)
	FIELD NOTE LOCATION
	ROCK SAMPLE LOCATIONS: HAND SPECIMEN
A.s	HAND SPECIMEN - THIN SECTION
ern-2	For Analysis: BEDROCK (Greb unless model; C = Ohip. H = Octoorf)
****	BEDROCK - WHOLE ROCK, THIN SECTIO
	ILOAT
0	STREAM SEDIMENT
	SOIL

Sample Analysis Sequence Au ppb, Ag ppm, Pb ppm, Zn ppm, Mn ppm, As ppm

* ANOMALOUS VALUE


GEOLOGICAL BRANCH ASSESSMENT REPORT

22,654 PART_COF_Z

NOTE: CONTOUR INTERVAL = 100 FEET

	0	METRES 500	1000	
	0	KILOMETRES		FIGURE: 10
		NORTH - WEST QUADRANT		
ES INC.		SAMPLE LOCATIONS AND ANALYSES		SCALE: 1 . 10,000
LA INC.		AND ANALI SES		PROJECT No .: 120
B.C.		ACKWATER-DAVIDSON J.V. MENICA MINING DISTRICT, B.C.		N.T.S. No.: 93 F/2

NW

LEGEND

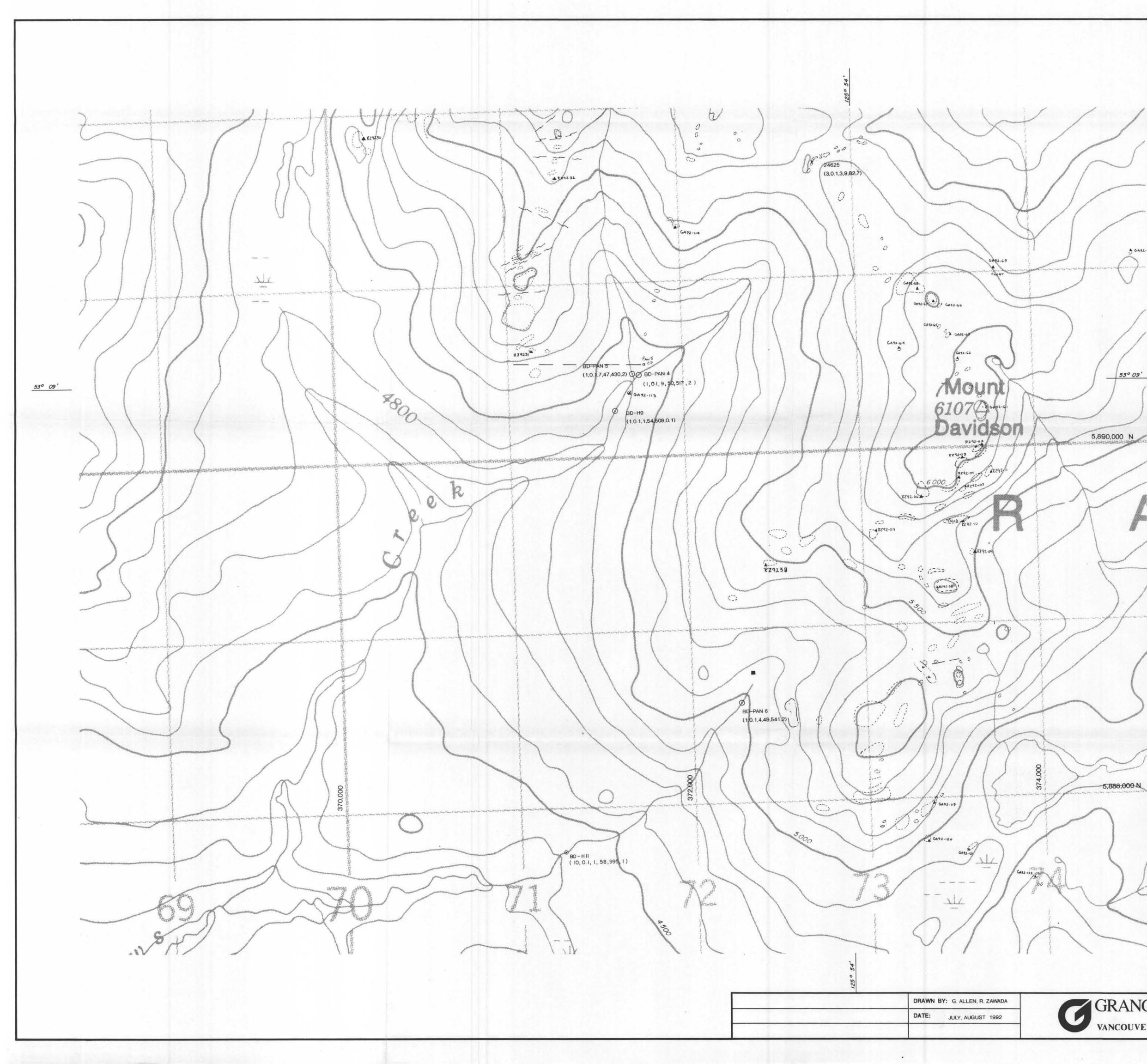
	SYMBOLS
	LINEAR TOPOGRAPHIC FEATURE
	LIMIT OF SURFICIAL FEATURE
	REDGE
Y	VALLEY
TITT	cutt
	MORADIE
	NARROW DYKE OR BED
0	OUTCROP
(1)	OUTCROP SEEN BUT NOT VISITED
ØY	OVERBURDEN
ø	POSSIE LOCALITY
.0	AIRPHOTO TARGET
0	HELIPAD (GOOD)
- (B)	HELIPAD (POOR)
÷	FIELD NOTE LOCATION
	ROCK SAMPLE LOCATIONS: HAND SPECIMEN
Ars	HAND SPECIMEN - THIN SECTION
1.9-2	For Andyers: BEDROCK (Grob values noted; C = Orip, H = Channel)
****	BEDROCK - WHOLE ROCK, THIN SECTION
	FLOAT

A STREAM SEDIMENT --- 504.

Sample Analysis Sequence

Au ppb, Ag ppm, Pb ppm, Zn ppm, Mn ppm, As ppm

* ANOMALOUS VALUE


GEOLOGICAL BRANCH ASSESSMENT REPORT

22,654 PART_2_OF_2_

NOTE CONTOUR INTERVAL = 100 FEET

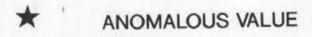
.

	METRES 500		1000		
	6	KILOMETRES			
					FIGURE: 11
		NORTH - EAST QUADRANT			
RANGES INC.	SAMPLE LOCATIONS			SCALE: I:	10,000
it it to have inte.		AND ANALYSES BLACKWATER-DAVIDSON J.V. OMENICA MINING DISTRICT, B.C.		PROJECT No.	: 120
NCOUVER, B.C.	1 m 2			N.T.S. No.:	93 F/2

5 CA92-

mont

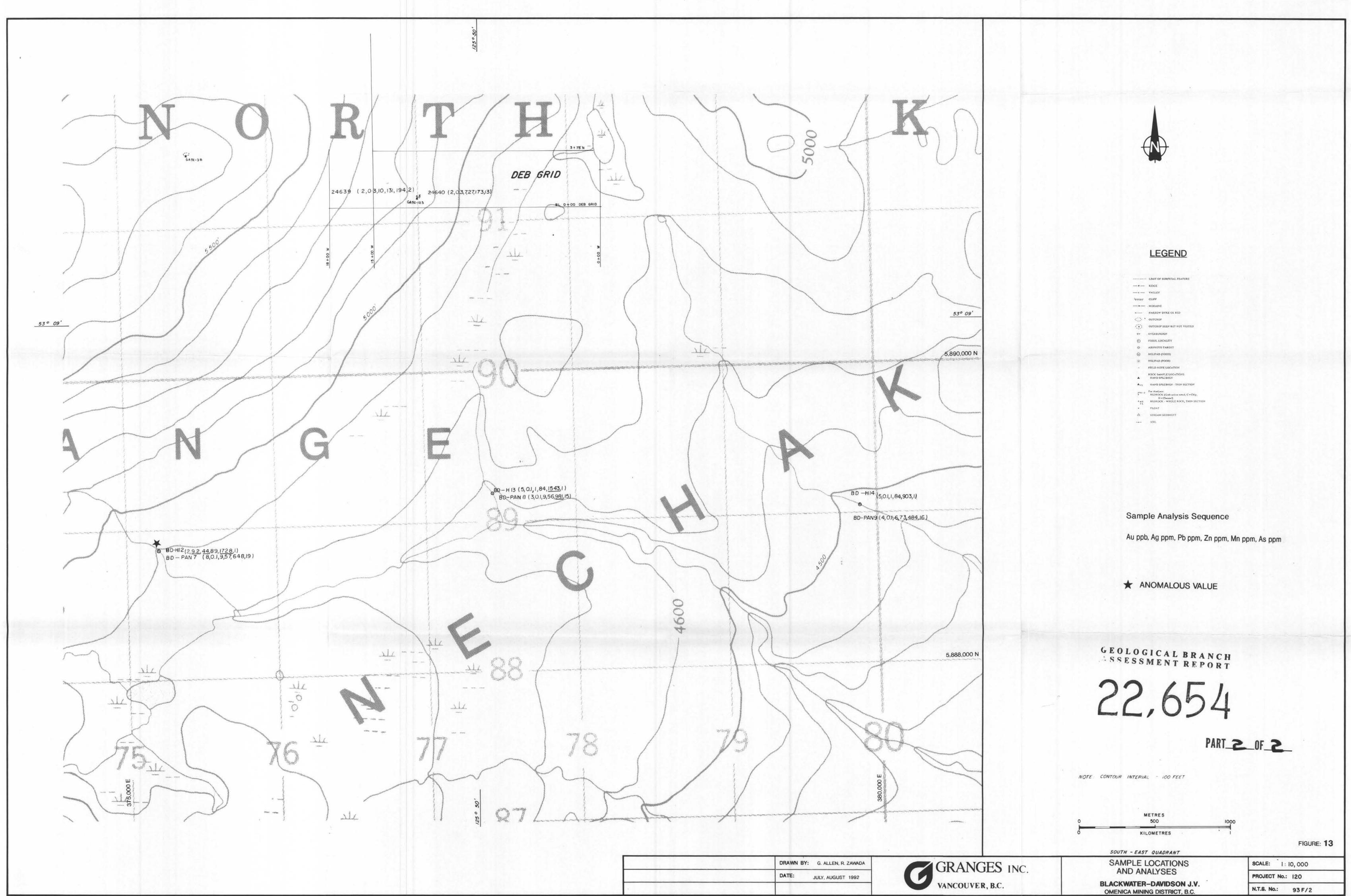
LEGEND

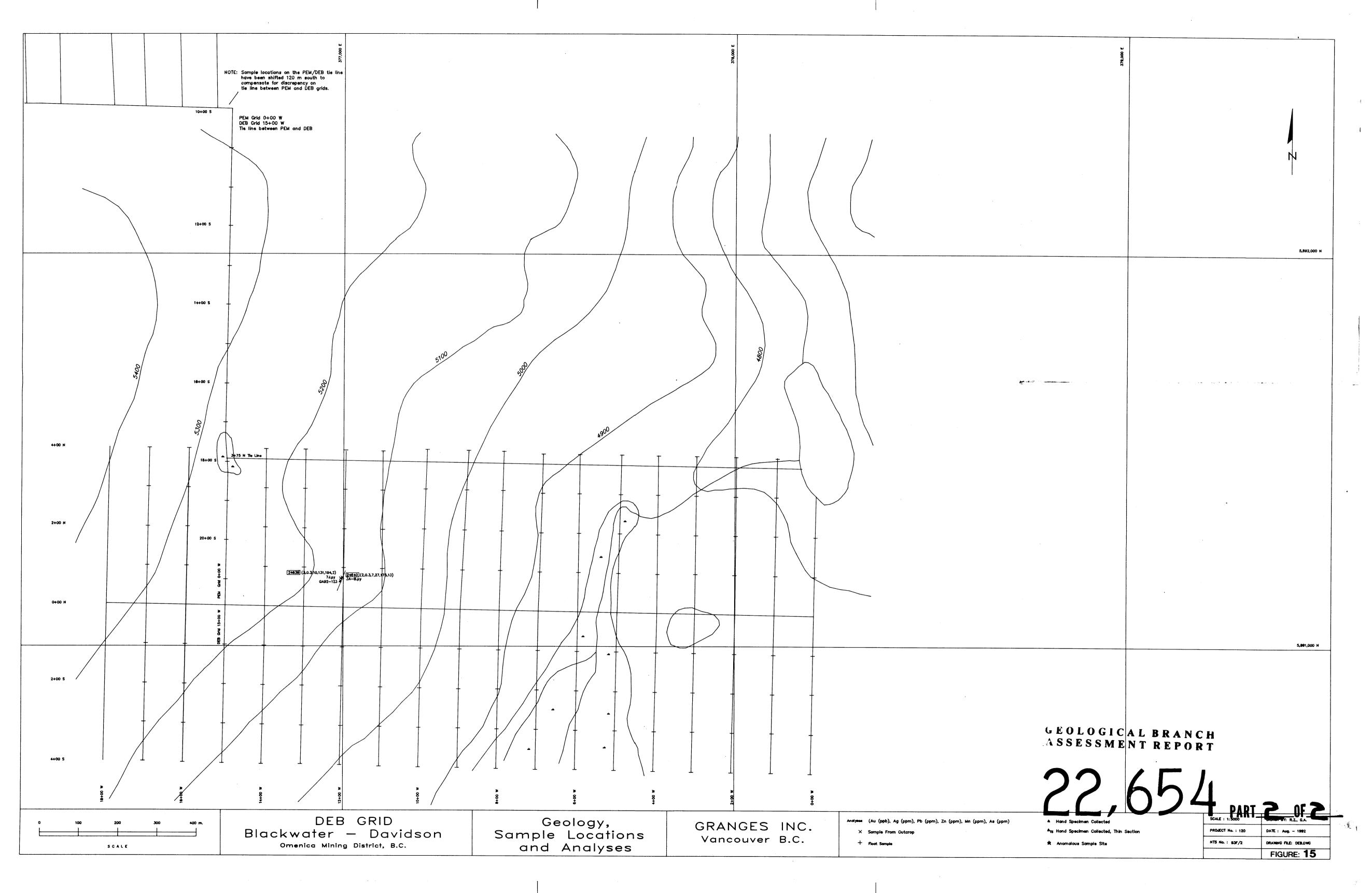

A STREAM SEDDNEST

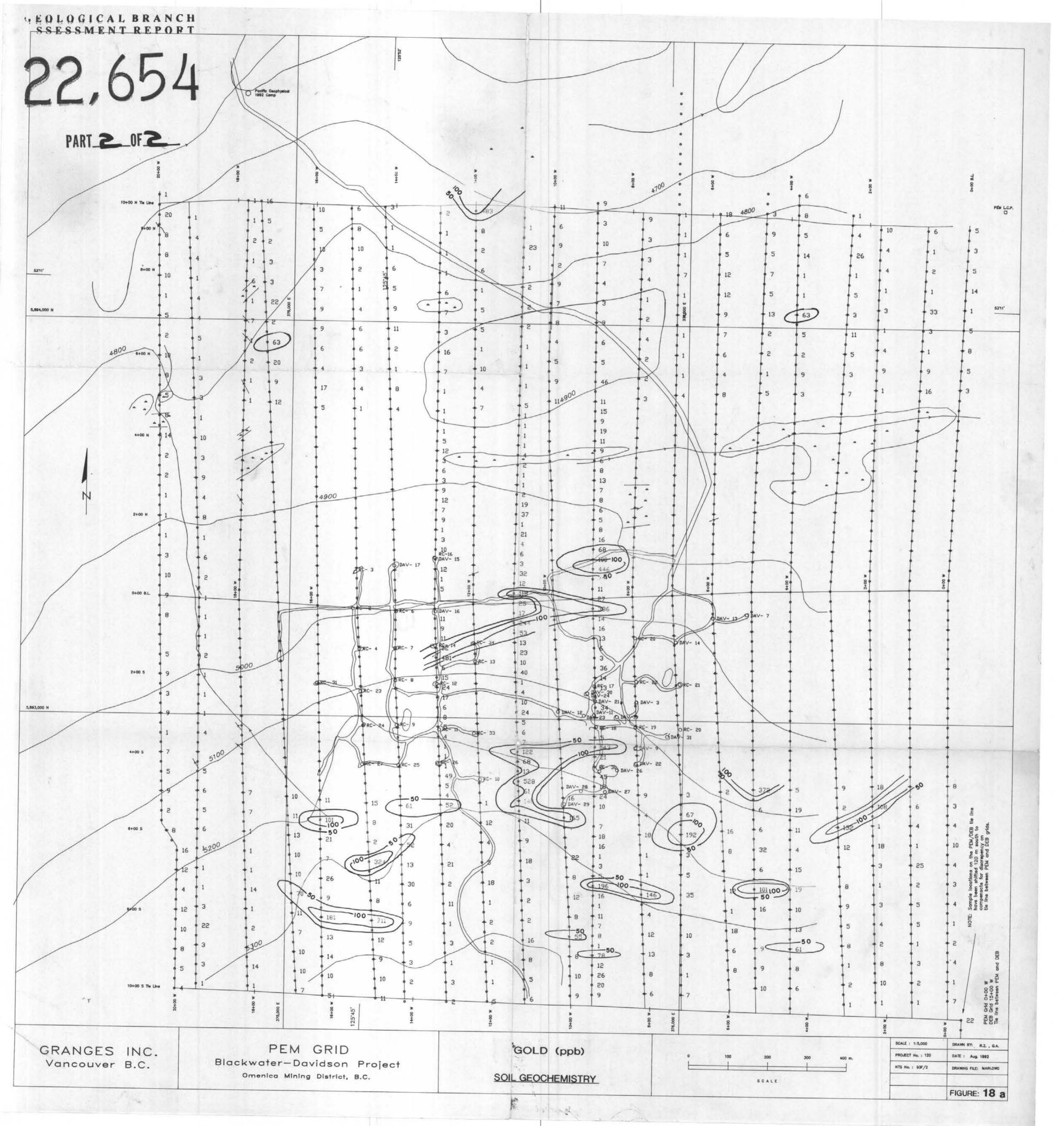
---- 500.

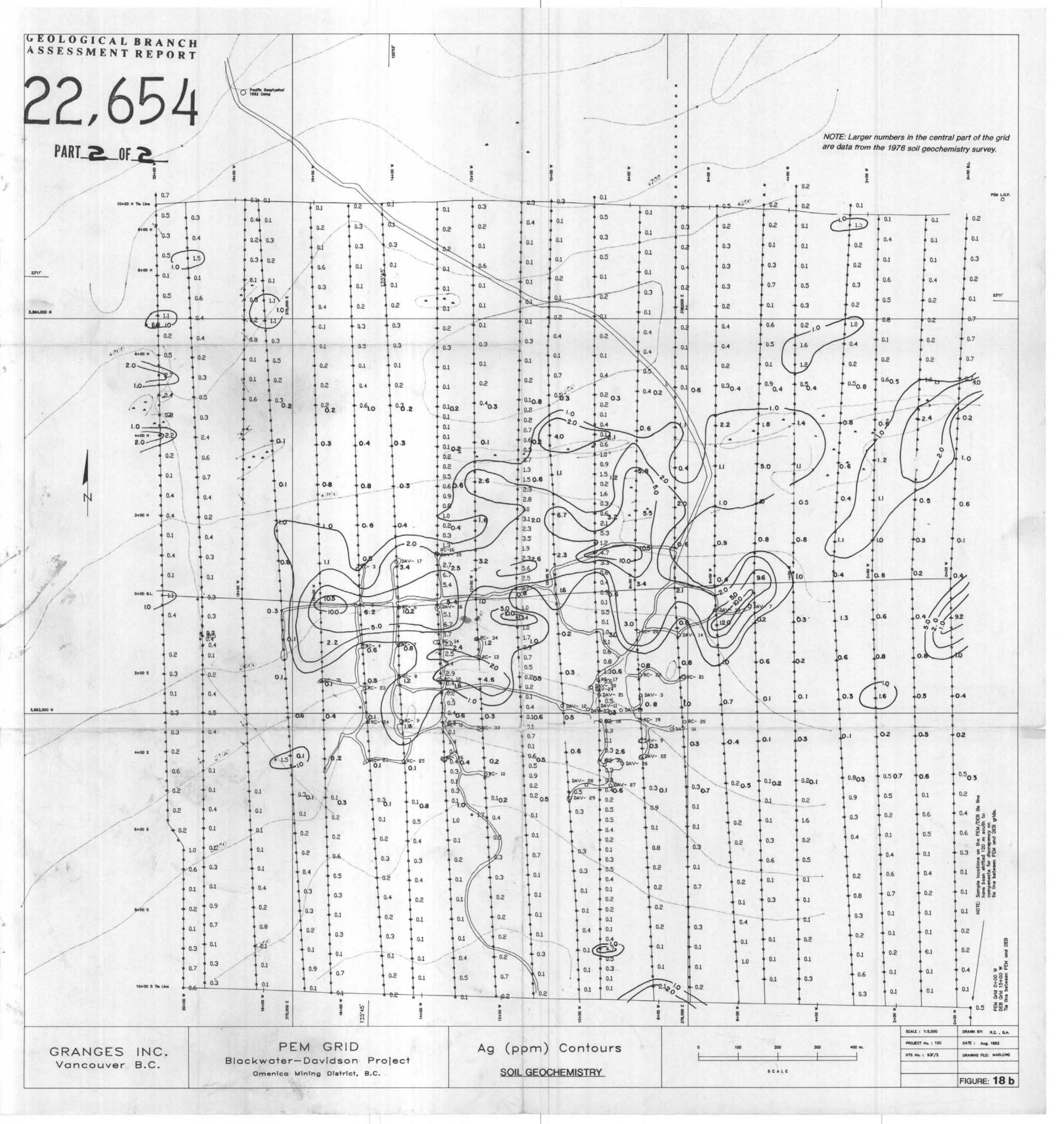
Sample Analysis Sequence

Au ppb, Ag ppm, Pb ppm, Zn ppm, Mn ppm, As ppm

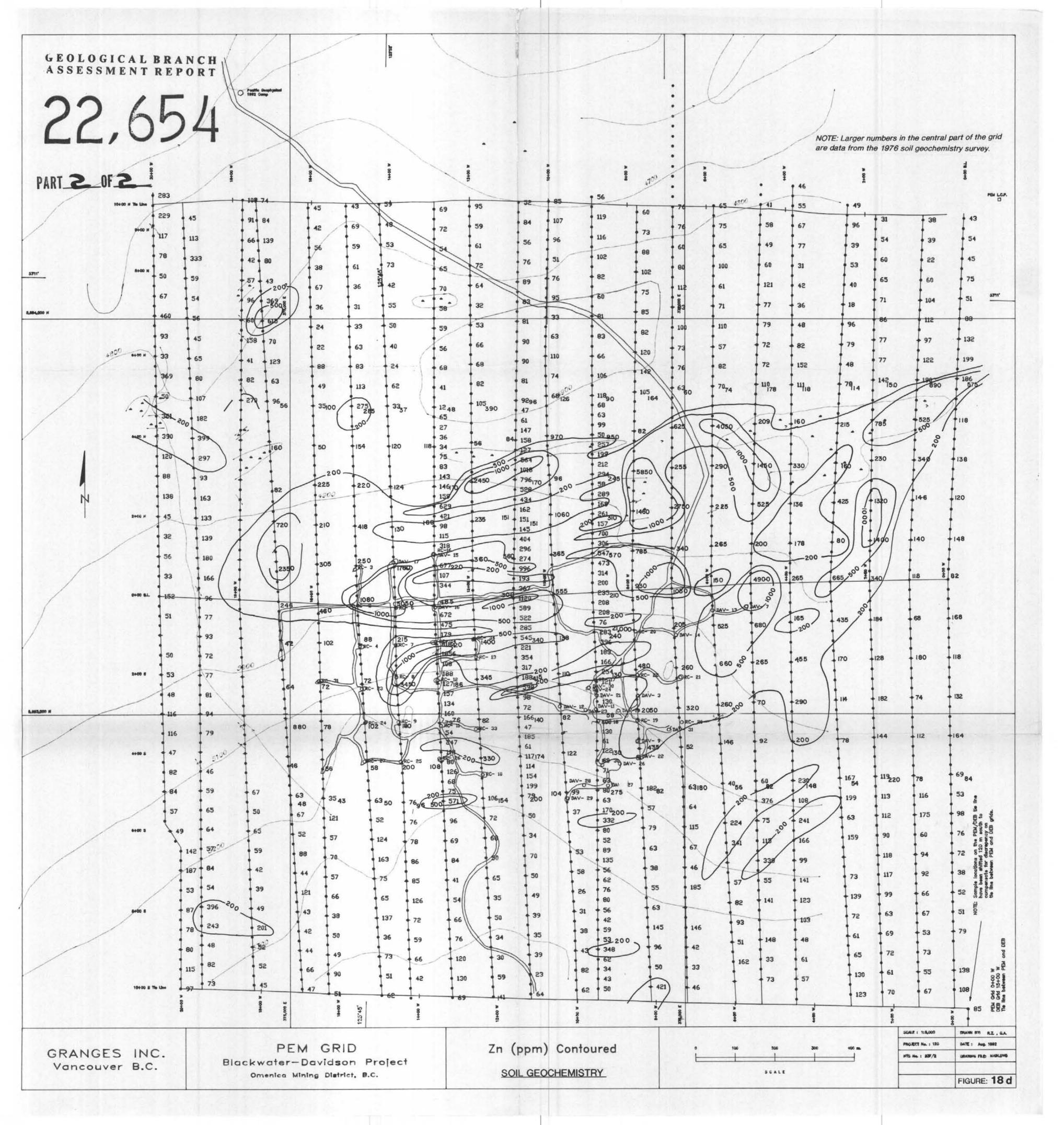

PART_2_OF_2_

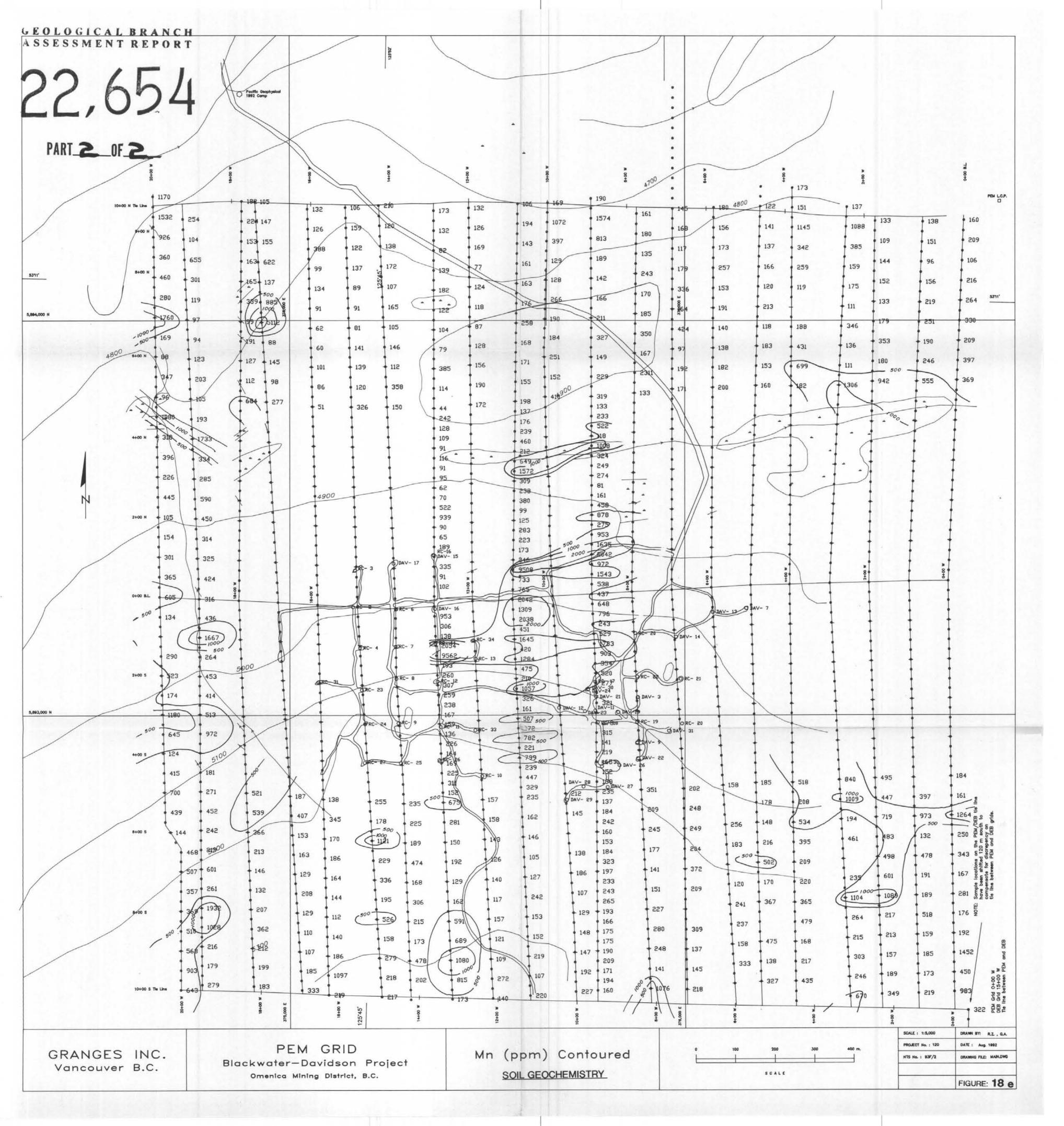

GEOLOGICAL BRANCH ASSESSMENT REPORT 22,654

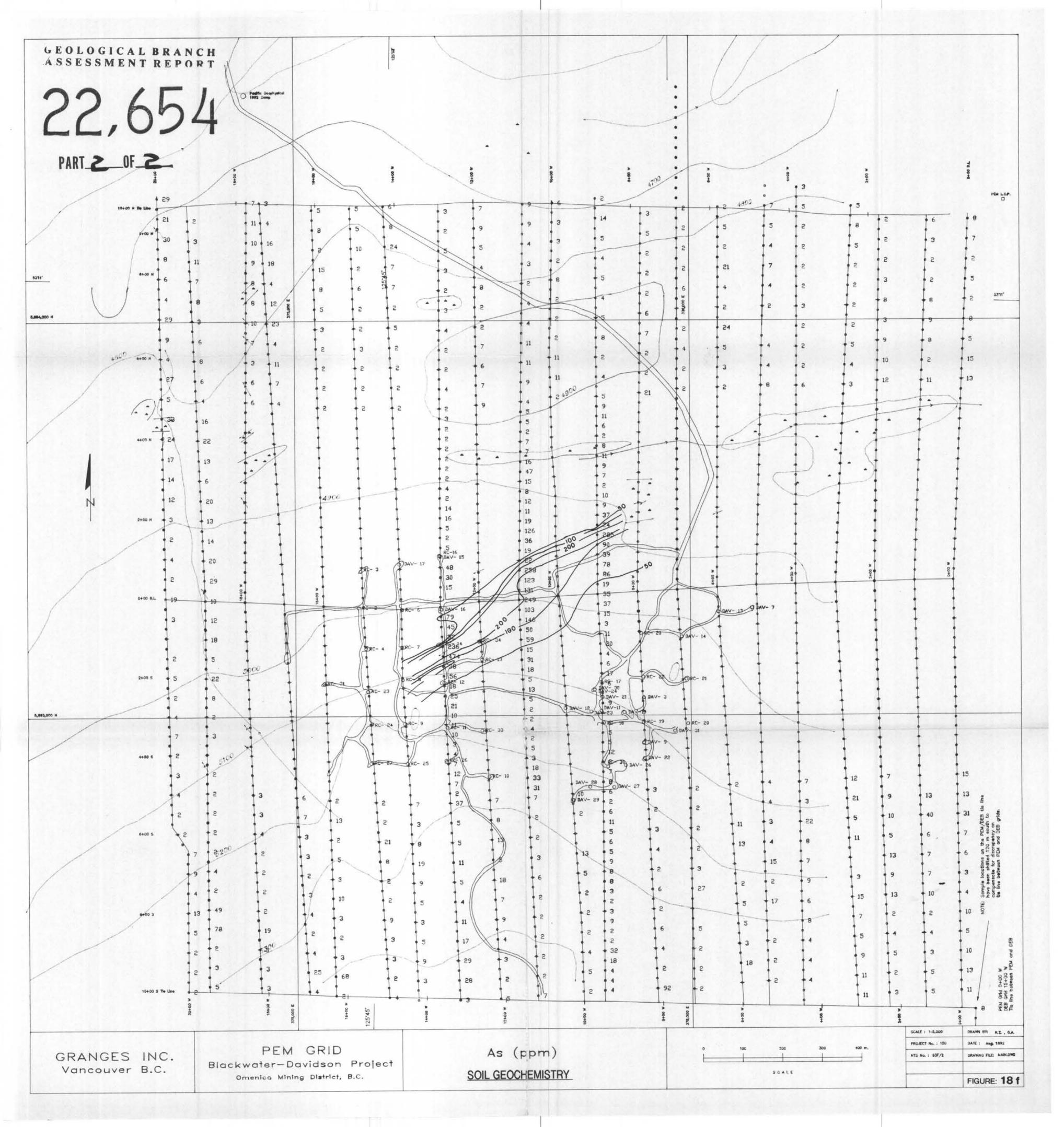

NOTE CONTOUR INTERVAL = 100 FEET

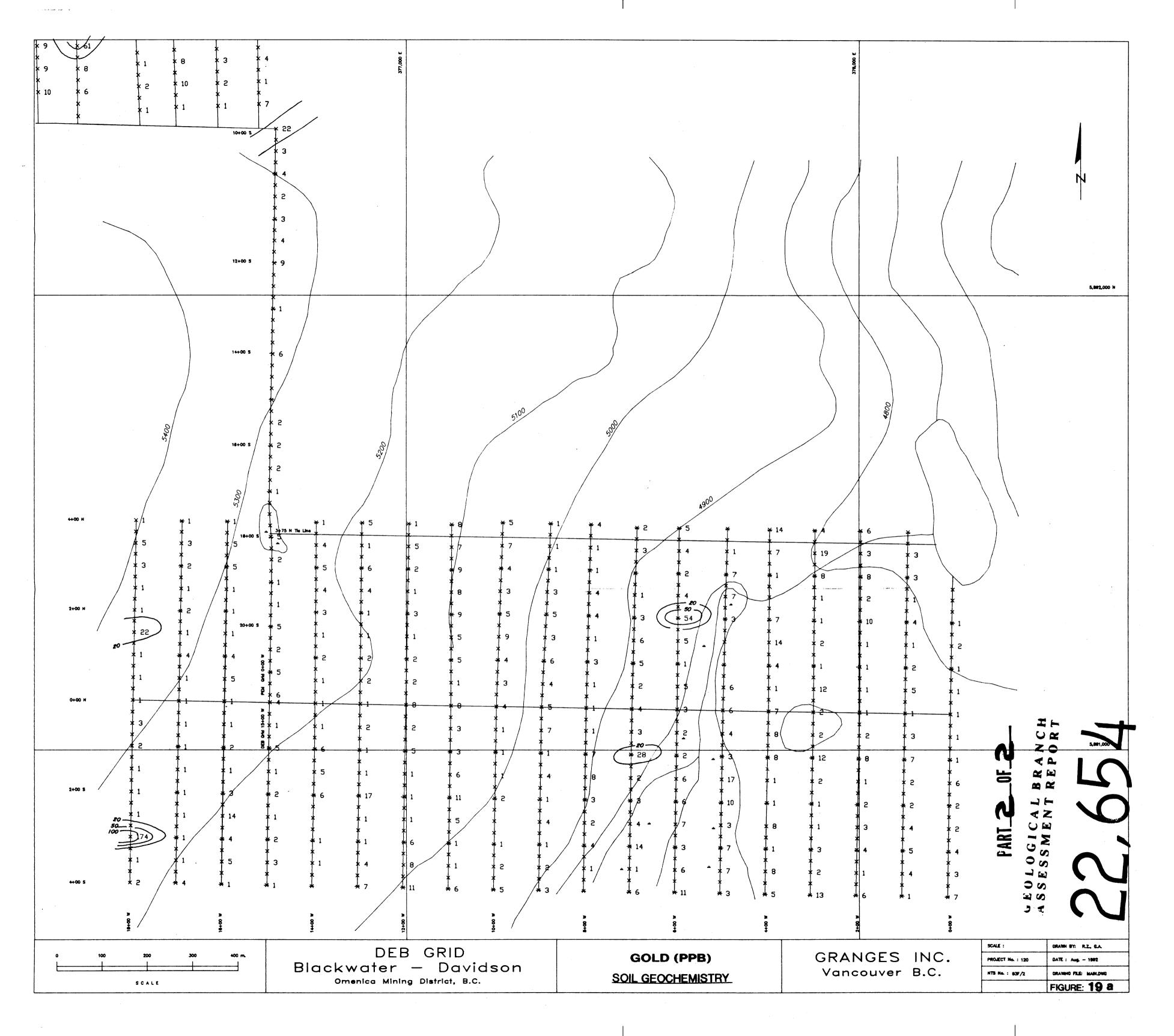

and a product of the second data and a second data and	0	METRES 500	1000	
김 사람을 통하게 가 집안 것	0	KILOMETRES	i	
집 사람이 전망하지 않는 것 같은 것				FIGURE: 12
and the second	and the second second	SOUTH - WEST QUADRANT	and the	
GRANGES INC.	SAMPLE LOCATIONS			SCALE: 1:10,000
		AND ANALYSES		PROJECT No.: 120
ANCOUVER, B.C.		LACKWATER-DAVIDSON J.V. OMENICA MINING DISTRICT, B.C.		N.T.S. No.: 93 F/2

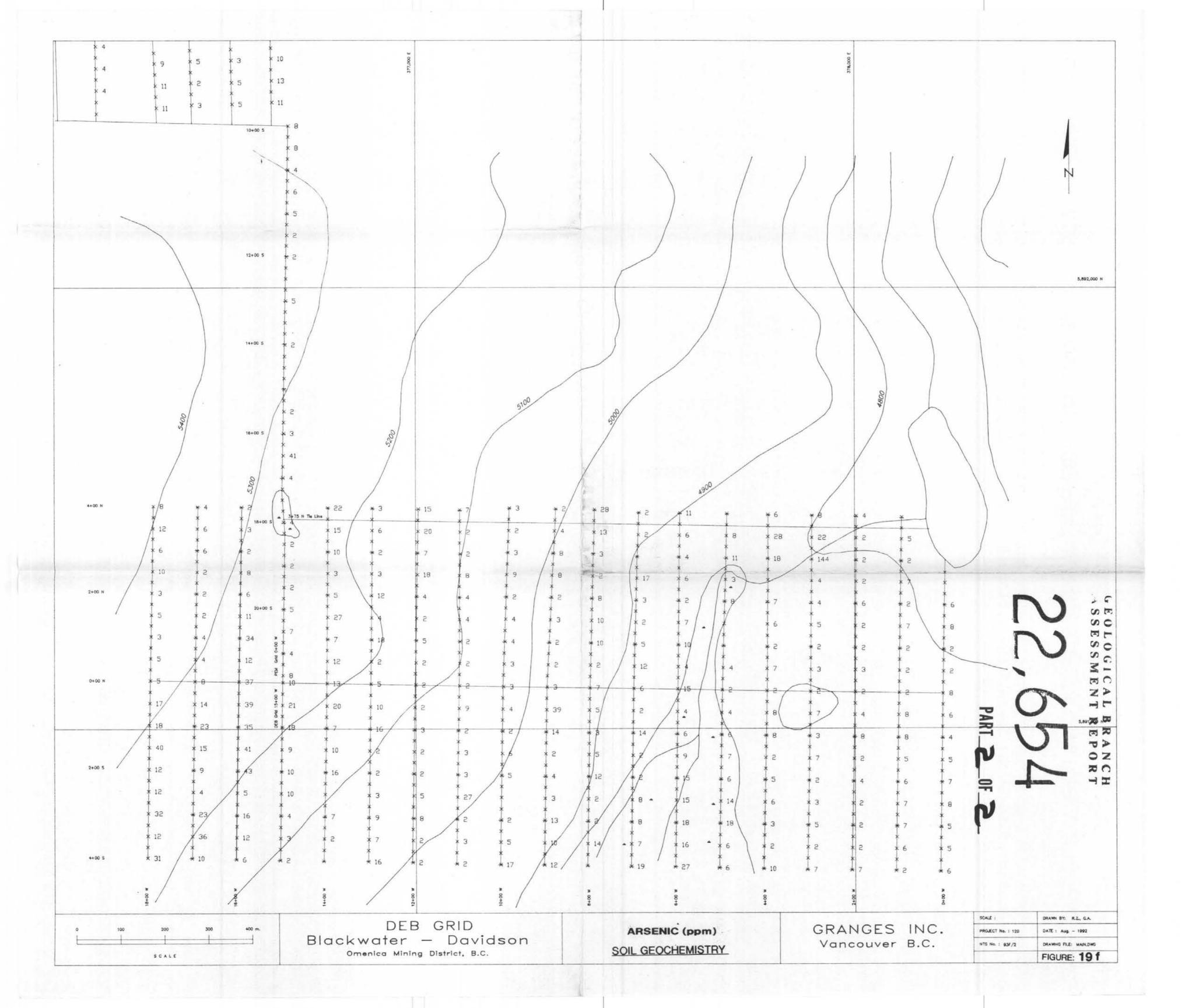


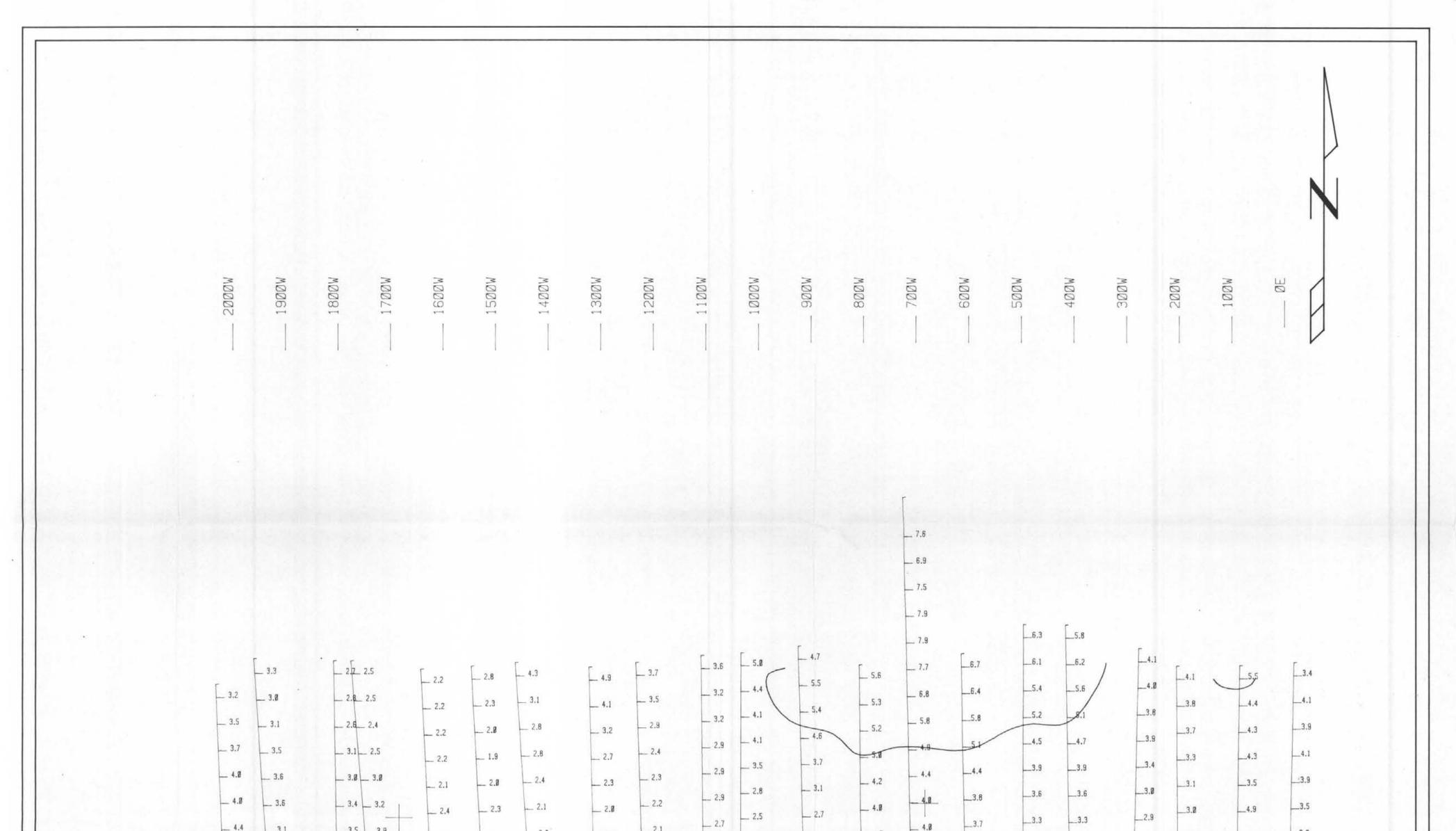

DRAWN BY: G. ALLEN, R. ZAWADA	1
DATE: JULY, AUGUST 1992	

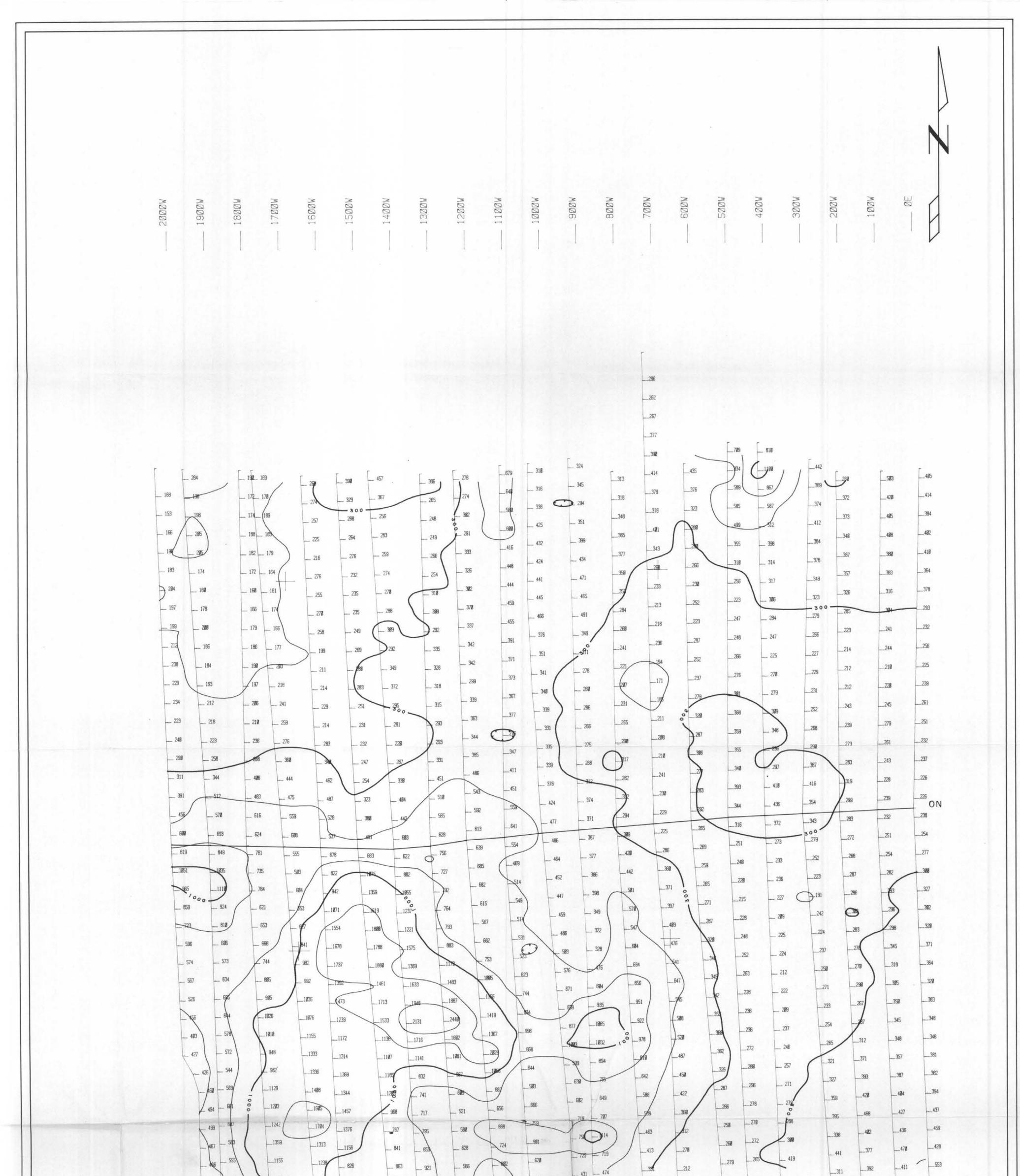


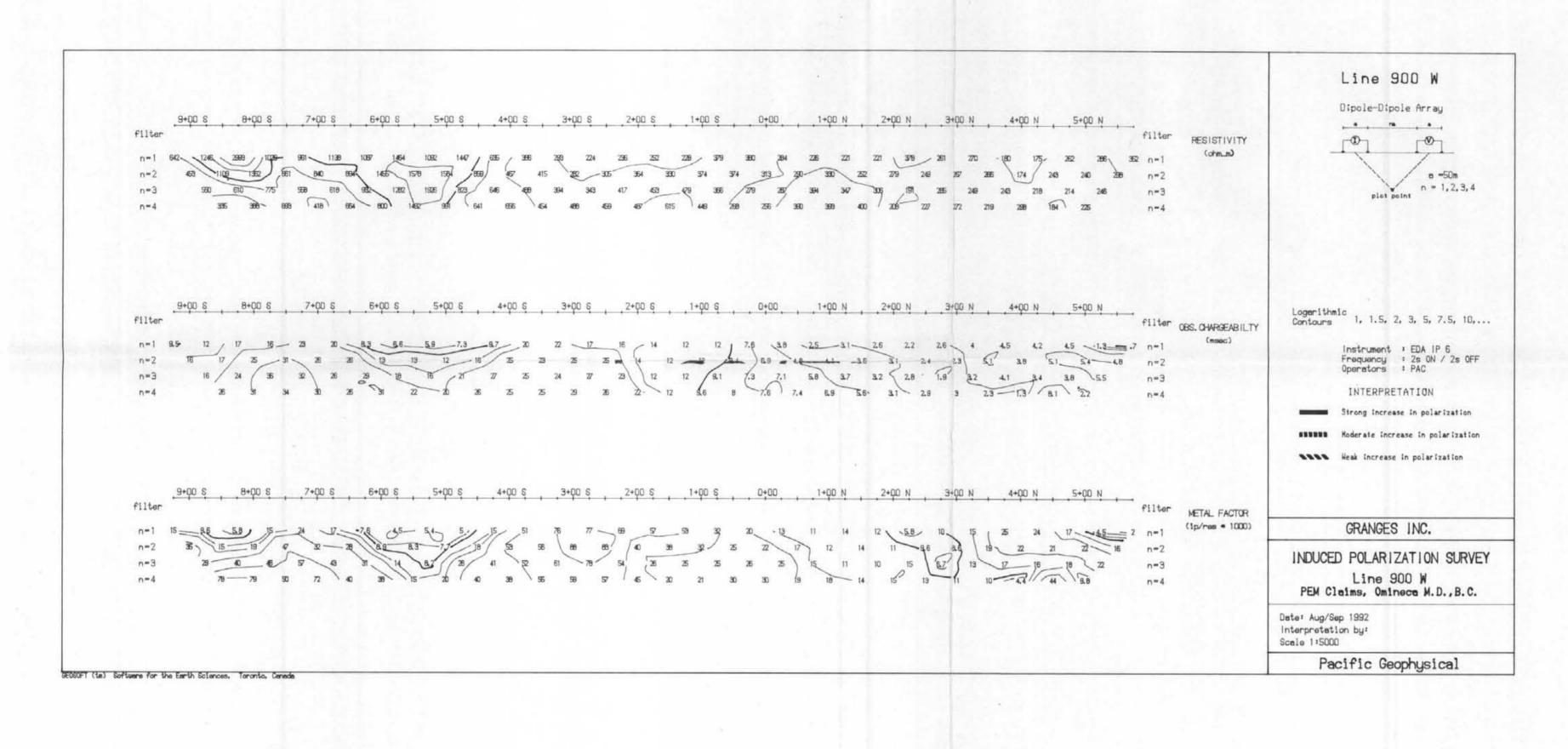






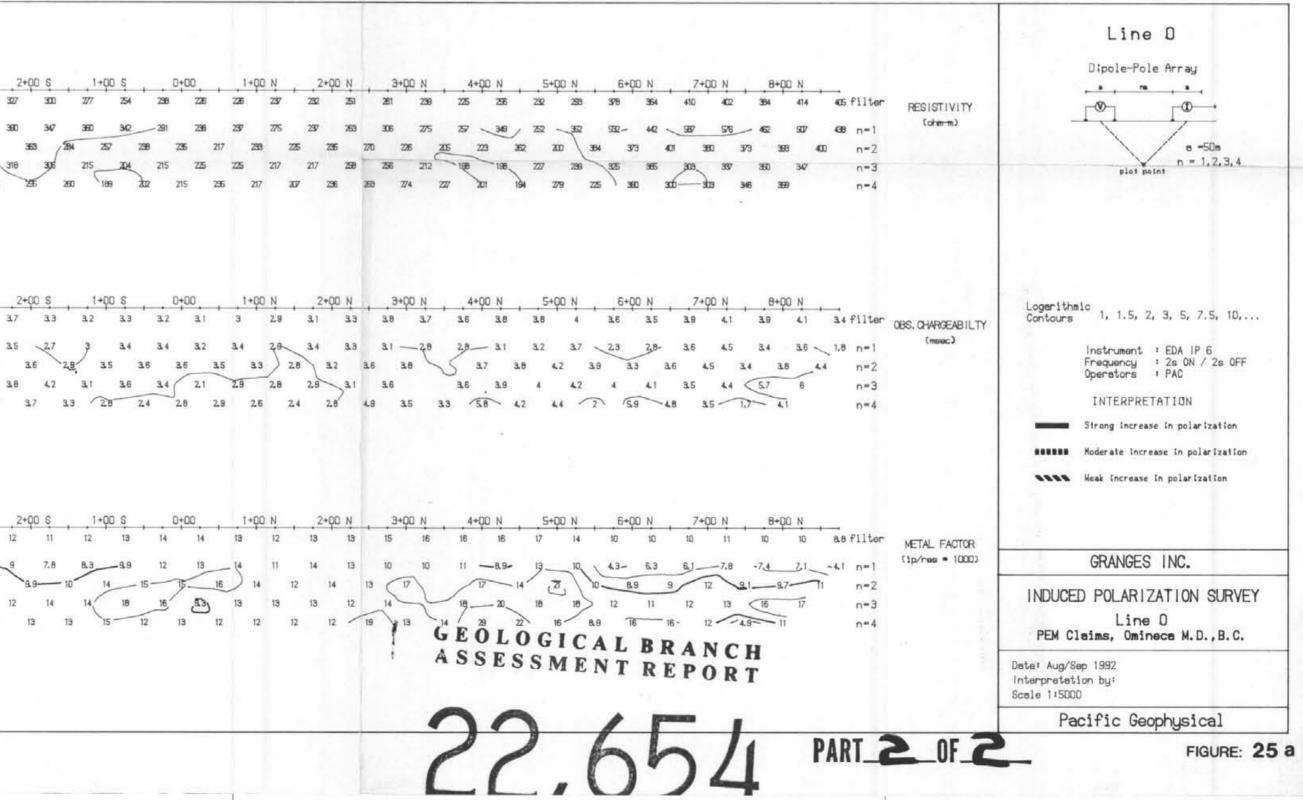






_____ 3.5 _____ 3.9 4.4 ____ 3.1 4.8 ____ 2.1 ____ 2.8 ____ 2.5 ____ 2.5 _ 4.8 ____3.6 ____3.7 _ 3.8 ____3.0 ____ 3.8 ____ 2.8 ____3.2 ____3.7 2.5 ____ 3.2 __4.1 4.7 _____ 3.8 4.3 4.4 5.8 _ 2.5 ____ 2.9 _ 4.5 __4.0 ___ 2.3 3.1 ____3.5 ____3.1 _____ 3.6 3.3 ____3.4 ____3.0 ___3.2 _ 4.4 _4.2 5.7 _ 6.4 4.4 5.0 _ 2.9 3.0 ____ 2.3 ____3.8 3.6 5.2 ____3.7 ____3.1 _ 4.4/ _ 4.8 ____3.7 ____3.4 ____2.9 -5.3 ____3.9 __ 5.9 4.7 ____ 3.1 6.6 _____ 7.5 _____ 8.1 _ 5.5 ____3.8 _ 7.1 2.9 ____ 3.0 4.3 ____3.6 ____3.2 5.1 4.2 ____3.6 ___3.5 ____3.0 5.1 ____3.8 ___ 8.1 ____ 4.5 4.5 9,5 18.8 10 0 - 4.8 4.2 ____3.6 8.3 4.7 ____ 2.8 ____3.2 4.2 _ 4.6 4.2 ____3.4 ____3.4 ____2.9 _ 5.4 ____3.6 ____12.2 . 4.4 _14.1 __11.5 _11.5 5.1 3.8 ____ 4.5 __3.7 .____ 8.7 _____3.1 _ 4.3 4.0 _ 4.3 ___3.1 ___3.0 _ 6.4 2.8 ____3.6 _ 5.1 __18.3 ____ 3.5 ___ 5.3 4.3 4.0 ___3.8 8.4 5.5 ___3.1 4.1 4.8 _ 3.5 ___2.7 ____2.6 2.7 _ 6.3 ____3.6 __23.8 ____ 3.6 _20.0 __13.1 12.0 6.4 ____ 3.6 ____ 7.5 _ 7.4 __3.3 _ 5.2 _3.8 ____ 3.5 ____3.5 _____ 3.9 2.5 _2.7 _ 7.3 2.5 ____3.1 ___ 5.8 25.6 _ 3.2 __11.7 _____19.4 18.1 9.2 ____ 3.8 6.9 ____ 7.2 ____3.1 4.7 2.6 ____ 3.8 2.2 - 4.2 2.2 - 4.1 2.3 ____2.5 3.8 6.9 _25.2 _17.\$ 18.1 ____ 3.9 8.7 9.1 __ 4.6 - 6.1 L ___ 7.8 - 43 2.9 _2.7 4.2 ____2.3 ____ 3.9 ___2.4 2.5 _24.6 2.3 _ 5.8 ____3.1 6.5 15.5 .8 ____ 3.9 - 7.2 _ 7.3 _ 7.3 ___ 5.3 5.5 ____3.0 - 41 _2.4 ____2.1 _ 4.9 2.6 2.6 5.8 ____2.2 2.9 6.8 _25.3 _13.2 _ 4.2 8.3 8.4 18.8 _ 3.8) __ 5.9 _ 7.4 4.6 _____3.1 ___2.5 _ 5.3 ____2.1 _ 5.8 2.7 ____2.4 ON 6.1 ____2.1 _ 6.3 ____3.6 _24.8 __12.5 9.8 ____ 3.4 _11.1 __12.9 5.5 ____3.2 6.5 6.4 ____2.8 __2.5 __ 7.3 2.5 2.3 7.7 2.3 ____7.6 3.3 _27.0 12.6 ____ 3.8 _10.4 - 6.2 _ 7.8 _17.1 ______13.1 ____3.3 __ 7.8 7.7 __3.0 _2.7 8.5 2.5 2.1 8.8 2.1 9.7 ____3.3 __12.9 _11.5 __ 4.6 ___16.3 _16,1 7.9 _13.1 _____3.2 9.5 ____3.5 9.5 ___3.3 9.8 2.7 2.3 ____2.3 _____14.3 ____3.5 _17.5/ __12.2 - 8.5 18.8 _13.4 12.5 _ 9.5 13.4 ____3.4 3.3 __11.1 ____3.5 _____12.9 ____2.7 ____2.8 2.3 _____12.5 _17.9 3.8 15.2 -18,8 _ 9.1 _10.1 9.3 __14.3 _____20.0 ___12.2 __13.4 ____3.7 12.4 ____3.7 _13.4 ___3.6 _14.9 _2.7 __3.0 3.1 _15.8 _17.4 4.7 _13.8 ____ 9.6 8.1 __ 5.3 9.4 _____13.2 _____19.4 14.8 __14.6 ____3.7 __16.2 ____3.8 __16.8 ____3.7 3.2 _______16.3 ____3.5 _17.1 4.2 16.6 5.1 _ 8.5 _11.5 ____ 7.1 9.2 15.8 _____19.0 11.0 __15.4 ._____.19.5 ____3.4 ____3.2 81.9 ____3.4 ____3.4 __18.0 4.8 _4.6 Q_19.9 __17.9 02 ____6.6 __15.4 8.3 _18.8 6.8 1.1 9.5 __17.5 __15.1 _18.0 ___3.5 ____3.3 ____21.9 __3.4 _17.9 ___3.5 ____3.9 __17.6 15.3 9.8 _ 7.8 7.5 _18.8 18.8 15.1 _115 __16.3 18.1 _16/5 _____15.8 __3.6 ____3.4 ___3.6 28.8 ____3.6 ____3.9 __15.8 1.5.1 _7.7 _11.0 _18.8 - 7.2 __18.8 10.2 13.1 __17.1 11.9 _______14.3 _14.8 ____3.6 ____3.3 _19.7 ____3.8 ____3.8 ____21.0 ____3.7 __17.3 4.7 __19.0 6.9 7.6 9.9 _____12.1 __16.0 ___ 8.1 16.7 _13.8 4.0 _12.8 ____3.5 __17.5 4.8 ____3.8 _21 8 1- 8. 1 , t ____3.9 _4.9 9.5 8.1 ____22.8 9.8 __6.1 __18.5 28.6 6.2 4.2 14.7 9.7 _4.0 ____3.9 4.3 17 2 4.5 _22. _____22,9 4.6 _5.6 8.7 8.7 ____ 8.3 __5.7 9.5 39.7 __13.4 14.6 8.5 5.2 ____3.9 4.1 4.7 18. _4.8 27.1 _5.2 _____26.0 6.0 8.0 9.1 _ 7.5 9.8 _5.7 ______10.5 144 4.9 _4.3 _15.9 _ 7.8 4.6 __5.0 21.3 ____5.3 _28.8 6.7 7.6 _6.2 ___5.5 _18.0 18.1 ___5.8 __12.6 ___16.7 _4.3 5.1 __16_8 8.3 4.7 4.8 _5.2/ _ 6.3 _ 8.2 6.1 _27.5 __10.9 29.9 6.9 ______18.7 5.8 14.8 ___17.4 _17.1 24.5 5.6 4.4 9.8 4.4 4.6 26.9 15.0 __6.3 __11.4 24.8 7.0 L_16.8 _ 6.5 -__11.6 _6.5 _27.4 _____15.7 _22.1 ______16.7 _4.7 18.7 _ 5.3 ___3.8 4.1 20 18.5 25.5 4.9 _____29:6 6.1 __11.9 _____23.0 __12.5 __6.9 _ 7.4 -6.4 16.6 21.6 __14.2 __4.7 18.7 _ 7.2 4.1 123/0 3.5 27 1 4.4 - 8.6 - 9.8 __11.4 6.8 __6.7 15.3 _24.2 _6.5 _16.6 ___11.9 __11.4 __4.6 9.7 _ 7.3 4.8 -22,0 ____3.9 _18.1/ 4.8 9.7 - 8.5 -11.8 __6.5 __5.9 __6.1 15.8 _13. 9.6 _18.3 ____5.0 _4.3 9.7 5.6 -4.8

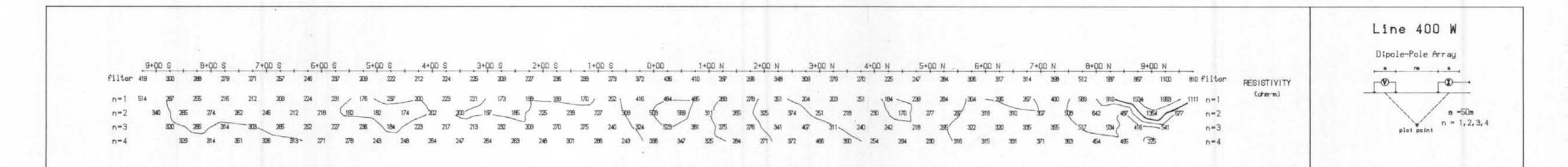
	GEOLOGICAL E ASSESSMENTI	
	22,6	54
		PARTOF GRANGES INC.
	Instrument : IP-6 C2 Electrode To North Contour Interval : 5.0 msec	INDUCED POLARIZATION SURVEY BLACKWATER-DAVIDSON Property PEM Claims, Omineca M.D.,B.C.
	10 Point Filter Presentation	SCALE = 1 : 5000 DATE : Aug/Sept/92 SURVEY BY : PAC NTS : 93F/2 FILE: MPIP Pacific Geophysical Ltd.



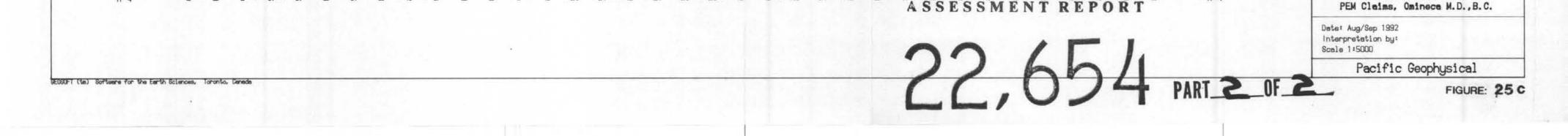
GEOLOGICAL BRANCH **ASSESSMENT REPORT** 22,654 PART 2 OF 2 GRANGES INC. RESISTIVITY SURVEY Instrument : IP-6 BLACKWATER-DAVIDSON Property C2 Electrode To North Contour Interval : log. PEM Claims, Omineca M.D.,B.C. DATE : Aug/Sept/92 SCALE = 1 : 5000 10 Point Filter Presentation SURVEY BY : PAC NTS : 93F/2 FILE: MPR Pacific Geophysical Ltd.

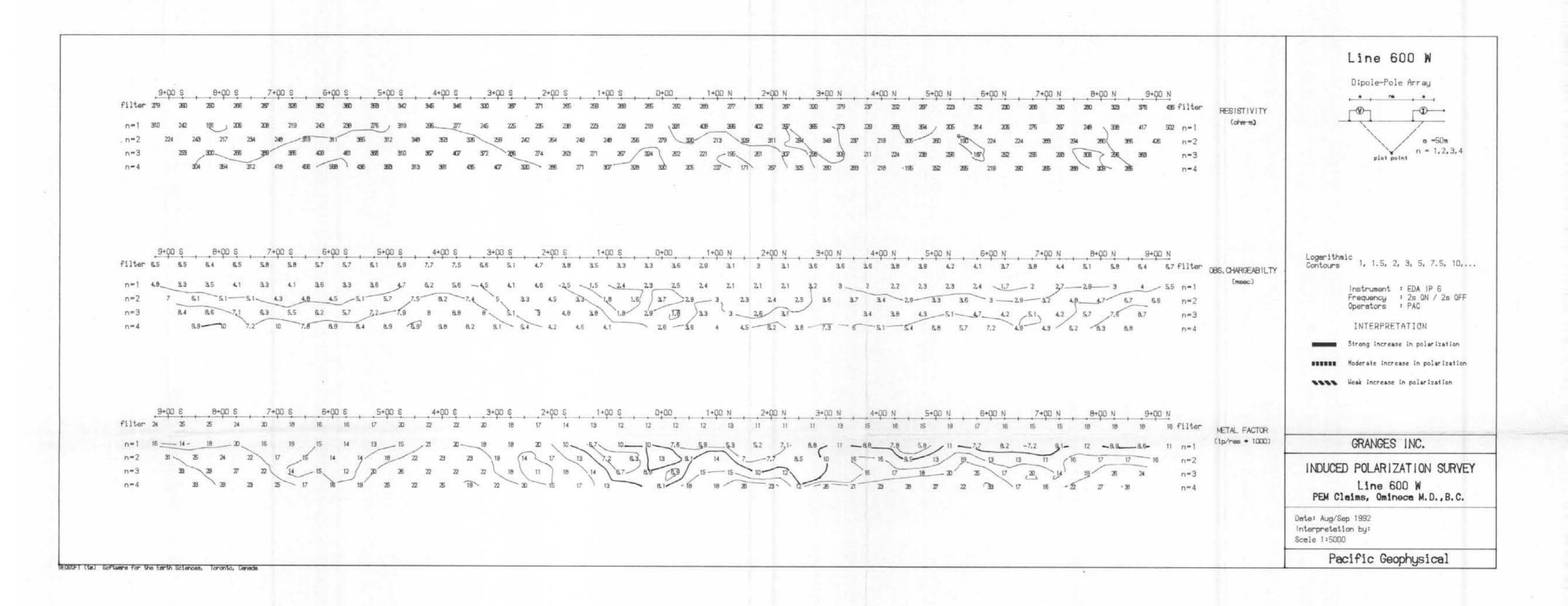
9+00 S 8+00 S 7+00 S 6+00 S 5+00 S 4+00 S 3+00 S 2+00 S 1+00 S 0+00 1+00 N 2+00 N 3+00 N filter 93 428 459 457 394 392 298 226 226 237 790 751 761 320 302 327 300 777 320 364 254 n=1 644 43 452 360 342 353 Œ 352 390 347 - 291 238 237 775 306 473 331 363 257 238 n=2 235 n=3 366 / 270 266 318 305 215 204 215 225 307 305 725 217 n=4 - 297 340 NA 290 265 260 189 215 25 37 296 7+00 S 6+00 S 5+00 S 4+00 S 9+00 S 8+00 S 3+00 S 46 47 47 44 43 43 38 4 4 36 36 35 34 37 37 33 32 33 32 31 3 29 31 33 38 37 36 38 38 4 35 35 39 41 39 41 34 filter OBS. CHARGEABILTY filter 5 n=1 47 47 -51 51 42 35 33 27 33 39 27 35 29 28- 35 35 27 3 34 34 32 34 29 34 33 31 -28 28 31 32 37 23 28- 36 45 34 36 1.8 n=1 n=2 45 38 42 44 39 39 34 31 35 33 36 42 38 36 41 36 29 35 36 36 35 33 28 32 36 38 37 38 42 39 33 36 45 34 38 44 n=2 6 36 41 43 48 48 44 35 35 36 42 4 35 38 42 31 36 34 21 29 28 29 31 36 36 39 4 42 4 41 35 44 57 6 n=3 59 46 51 52 5 51 7.6-7.9 47 4 1.6 33 42 37 37 33 28 24 28 29 26 24 28 49 35 33 58 42 44 2 59 48 35 17 41 n=4 9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 1+00 N 2+00 N filter 9.4 11 10 11 11 11 11 11 11 11 11 10 9.9 11 12 12 11 12 13 14 14 13 12 13 13 15 16 n=1 7.3 12 9.3 9.5 9.6 9 8.7 8.5 9.4 7.8 7.9 7.9 6.4 7.4 10 9 7.8 8.3 12 13 n=2 86 88 84 (11 11 89 11 13 12 99-10 14 15-15-16 10 9.2 10-8.2 9.3 13 14 12 11 11 12 11 15 13 12 16. 12 6.2 10 15 14 1 18 **53** 13 13 13 12 BS / 12 13 12 12 16 n=3 14 26 16 12 .6.2-12 12 12 12 19 13 13 12 13 14 14 13 18 14 13 12 n=4 13 13

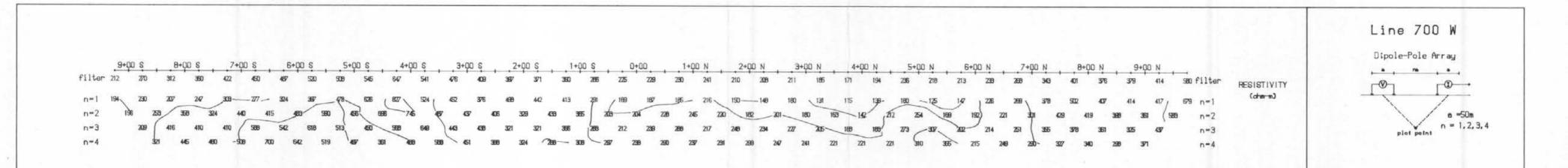
SEOSOFT (ta) Software for the Earth Sciences, Toronto, Canada



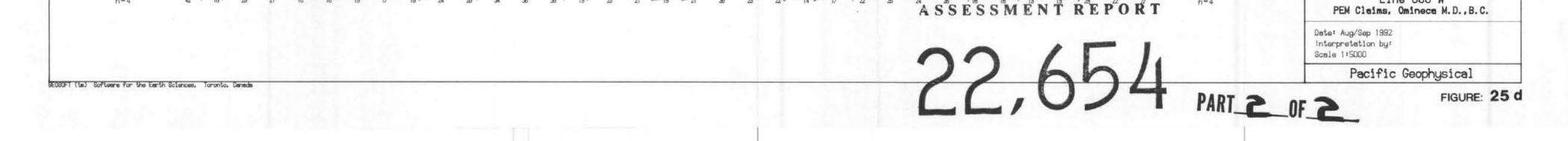
9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 1+00 N 2+00 N 350 305 318 345 238 236 238 282 254 251 282 238 228 243 251 279 filter 411 470 436 477 404 387 357 348 345 n=1 408 453 330 321 328 361 314 351 _ 335 - 288 218 284 357 328 261 325 276 243 376 302 232 220 242 306 272 278 n=3 289 (305 305 420 477 458 424 339 331 335 324 229 222 232 252 238 450 • 422 426 424 366 398 399 277 268 304 377 317 290 239 9+00 \$, 8+00 \$, 7+00 \$, 6+00 \$, 5+00 \$, 4+00 \$, 3+00 \$, 2+00 \$, 1+00 \$, 0+00 , 1+00 N , 2+00 N filter 43 4 41 38 44 47 46 41 39 35 33 34 33 32 38 37 34 35 3 28 25 24 27 26 3 31 n=3 41 35 36 38 51 55 46 39 4 32 33 32 33 32 42 42 (21) 35 22 22 (1,9) 22 23 24 33 n=4 46 36 63 56 67 68 58 43 47 42 35 33 27 36 42 37 5 2⁴ 24 27 21 28 24 22 3 9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 1+00 N 2+00 N 3+ filter 10 8.6 9.3 8.9 11 12 13 12 11 10 11 11 9.9 11 13 13 13 14 12 12 11 11 11 9.9 11 13 13_ 8.6 8.9 12 050FT (ta) Software for the Earth Sciences, Toronto, Canada 9+00 \$, 8+00 \$, 7+00 \$, 6+00 \$, 5+00 \$, 4+00 \$, 3+00 \$, 2+00 \$, 1+00 \$, 0+00 , 1+00 N , 2+00 N , 3+00 \$, 1+00 \$, 0+00 , 1+00 N , 2+00 N , 3+00 \$, 1+00 \$, 0+00 , 1+00 N , 2+00 N , 3+00 \$, 0+00 \$, n=1 409 412 396 465 398 309 318 255 773 246 319 269 -317 331 365 347 352 776 261 275 770 297 243 309 291 234 n=2 376 327 482 309 374 372 336 255 247 259 282 259 257 275 255 252 275 280 279 338 329 245 239 230 2 n=3 359 376 47 511 411 398 350 258 278 288 289 290 256 261 284 221 274 284 270 (309 359 350 230 249 725 105 340 448 538 423 398 342 282 280 285 286 247 257 308 270 247 288 271 287 307 348 228 286 245 2 n=4 ¥3 , <u>9+00 \$</u>, <u>8+00 \$</u>, <u>7+00 \$</u>, <u>6+00 \$</u>, <u>5+00 \$</u>, <u>4+00 \$</u>, <u>3+00 \$</u>, <u>2+00 \$</u>, <u>1+00 \$</u>, <u>0+00</u>, <u>1+00 N</u>, <u>2+00 N</u>, 3+0 filter 4 39 35 41 46 48 5 47 43 4 39 36 34 34 37 36 35 33 27 25 21 21 23 22 35 4 n=1 4 41 28 38 36 31 34 32 35 28 35 33 32 35 42 44 4 38 3 27 22 24 23 26 28 37 n=2 38 38 29 4 49 48 44 37 34 3 33 33 3 4 38 4 34 32 24 22 1.8 22 21 2 26 33 n=3 29 37 38 52 57 52 56 44 43 35 24 34 36 34 (25) 38 32 27 24 25 2 24 22 1.8 25 n=4 54 34 42 62 84 5 63 55 48 7.2 33 27 35 32 41 1.3 45 1.8 26 22 21 3 1.1 9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 1+00 N 2+00 N 3+0 filter 10 10 8.8 8.8 11 12 13 15 15 15 13 13 12 12 12 13 12 12 13 12 12 8.7 8.8 7 6.8 8.3 8.2 14 16 SEOSOFT (te) Software for the Earth Sciences, Toronto, Canada

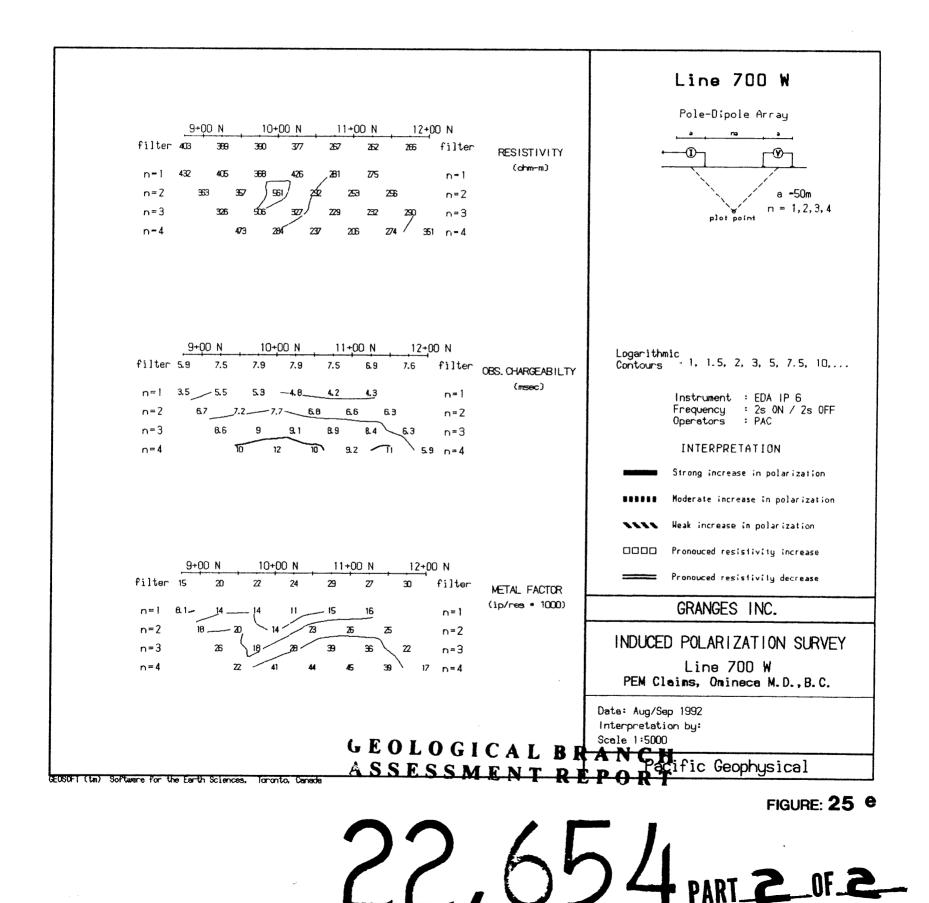

$\frac{N}{220} + \frac{4+00}{240} + \frac{5+00}{244} + \frac{5+00}{244} + \frac{5+00}{364} + \frac{5+00}{366} + \frac{7+00}{366} + \frac{8+00}{405} + \frac{8+00}{405} + \frac{5}{200} + \frac{5}{200} + \frac{7}{200} + \frac{5}{200} + \frac{5}$	Line 100 W Dipole-Pole Array
$\frac{N}{31} + \frac{4+00}{32} N + \frac{5+00}{36} N + \frac{6+00}{35} N + \frac{7+00}{35} N + \frac{8+00}{35} N + \frac$	LTY Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10 Instrument : EDA IP 6 Frequency : 2s ON / 2s OFF Operators : PAC INTERPRETATION Strong increase in polarization Moderate increase in polarization Weak increase in polarization
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	INDUCED POLARIZATION SURVEY Line 100 W PEM Claims, Omineca M.D.,B.C.
	Date: Aug/Sep 1992 Interpretetion by:
	Scale 1:5000
	Pacific Geophysical Line 200 W
212 212 214 225 286 326 357 367 340 373 372 280 filter RESISTIVITY 135 178 225 254 340 377 404 412 397 400 417 232 n=1 (ohmma) 136 174 201 171 245 330 328 379 321 320 247 n=2 259 219 185 135 245 324 357 347 329 386 332 n=3	Pacific Geophysical Line 200 W Dipole-Pole Array
212 212 214 223 286 326 337 357 340 373 372 280 filter RESISTIVITY 135 178 225 254 340 377 404 412 397 400 417 232 n=1 (ohmma) 136 174 201 171 245 330 383 379 321 321 450 247 n=2 259 219 185 135 245 324 357 347 329 368 332 n=3	Pacific Geophysical Line 200 W Dipole-Pole Array
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Line 200 W Dipole-Pole Array
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Line 200 W Dipole-Pole Array
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pacific Geophysical Line 200 W Dipole-Pole Array Image: Contract of the second
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pacific Geophysical Line 200 W Dipole-Pole Array

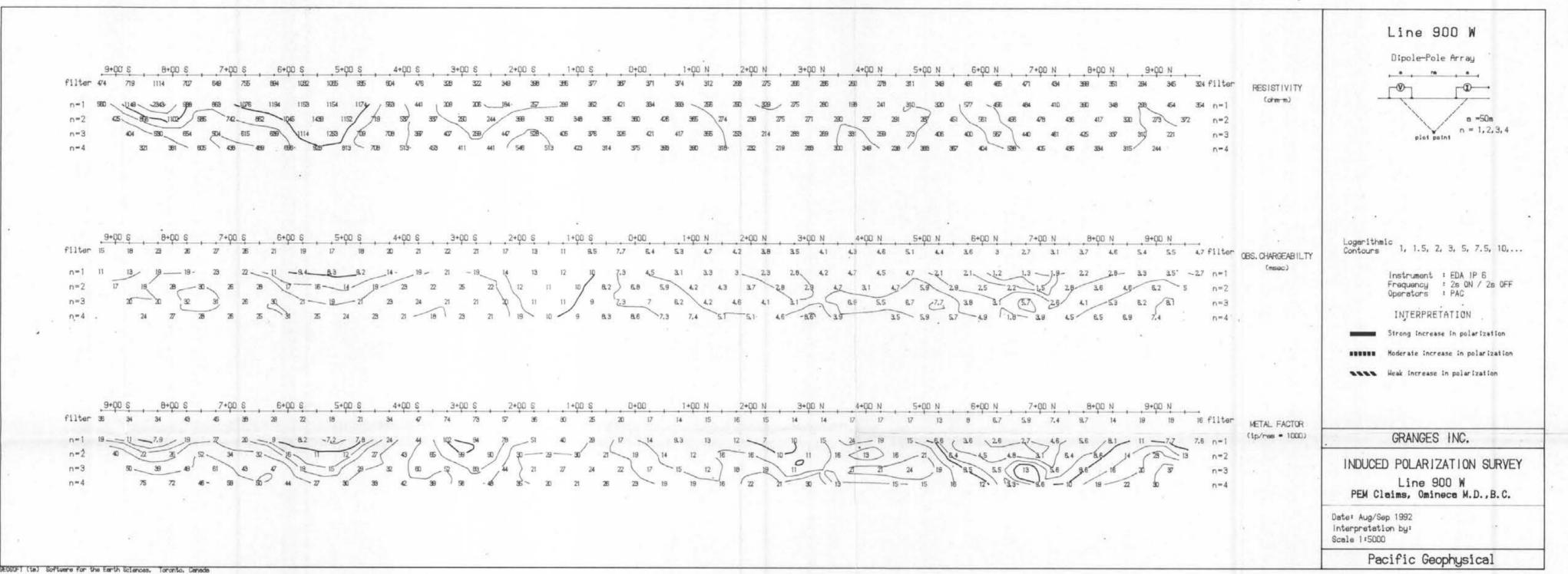

				-				-																	-		-		_		1		
filter 3 n=1 28 n=2 n=3 n=4	94 11 441 360 363	9+00 S 336 / 299 414 3 330 307 3	417 305 417 10 451 300 81 316	S + 5 389 5 720 7 338	_7+00 \$ 327 321 235 289 		6+00 \$ 5 254 5 251 221 224 304	, <u>, 5</u> 238 234 230 230	+00 S 271 351 216 2 213 246 2	, 4+00 250 ∠ 251 53 222 268 268 231	287 2 249 2 249 2 249 2 224 2 268	- 3+00 \$ 224 242 ∑5 225 ∑2 199 243	2+ 2 191 2 194 209 209 209 224 280 2	200 S 223 207 208 207 206 777 204	1+00 S 252 77 217 24 265 260 32 319	79 348 79 388 334 5 334 - 265	0+00 354 417 352 35 25 30 30	1+00 416 30 218 358 358 77 316	N 28 387 28 377 20 348 34 448 34 420	2+00 N 0 288 1 207 202 384	3+00 252 217 269 205 266 255 335-	N +	4+00 N 9 227 8 230 201 2 1 229 289 2	5+00 285 35 210 25 25 20	N	6+00 N 349 310 347 370 417 368 371	7+00 N 378 38 381 37 0 350 345 40 8 400	8+04 4 412 2 427 432 373 1 395 357 429	374 395 313 342 363 424 414 448	9+00 N 442 fil 462 n= 418 n= n=	•1 (•2 •3	ISTIVITY ahan-mu)	Line 300 W Dipole-Pole Array
filter 4 n=1 3 n=2		9+00 S 4.4 2.9 3.7 4	. 8+00 49 36	S	7+00 S 52 53 55 4	4.8	6+00 S 4.5 3.8 3.8	, 5- 3.8 3.1 3.3	+00 S 3.8 4.1 3.5 3	4+00 36 32	3.5 3.7 3.7 3.2	3+00 S 34 32 37 4 35	2.7	-33/	1+00 S 2.7 2. 2.7 2. 2.6	3 2.4	27	2.9	2.4 2.5 2.3 1.8	8 2.8	2.9	31 3 35 3	4 36 2 36	37	3.4 3.2 2.7 2.1	2.9	3 3. - 2 2.	2.8	3.8 . 4 2.6 _2.9	41 fil	-1 (MARGEAB ILTY (meac)	Logarithmic Contours 1, 1.5, 2, 3, 5, 7,5, 10 Instrument : EDA 1P 6 Frequency : 2s ON / 2s 0
n=3 n=4			3.8 6	5 1 67	56 67 62	5.6 6.8	4.2	4	34 47	3 52	4 3	29 <u>3</u> 3			26 21 27			28	1.1 2.5 2.5		26 28 28 29	1	4 3.9 4.3	31 28 47	27 25 41	29 3 3 38 41	-31 33	36 33 4.1 4 5.1	4747 64	τ2 h= h=	3		Frequency : 2s ON / 2s O Operators : PAC INTERPRETATION Strong increase in polarization Moderate increase in polarization Weak increase in polarization
filter W	94 6 12 4 62	9+00 S 19	8+00 13	S	7+00 8 16 17 15 14	18	6+00 s 17	, 5+ 16 13	+00 S 14 12	4+00 15) 8 15 - 15	3+00 8 15 13 16 - 14	, 2+1 14	00 S , 13	1+00 S 11 a.	3 7.6	0+00 7.8 5 —	.1+00 6.7	N 63 81 61 85	2+00 N 1 10	+ + 11 13	N 14 1: 19 11	4+00 N 5 16 5 16 ~	, 5+00 14	N , E 13 10 81 - 67	6+00 N , 8.4	7+00 N 7.9 8.7	8+00 9 84 9 6.6	0 N 10 10	9+00 N 93 fil ~89 n=	(Ip/re	L FACTOR	GRANGES INC.
n=2 n=3 n=4	4 14 16-	13	3 12 12 7 19	12 13	17 16 17 17	16 19	17 19 72	16 17 21	16 1 16 19	3 18) 17 18 11	17 13 15 12	16 12 7.8 B	16 11 11 <	88 83 85	6.3 7.6 10	8.1 7.	3 44	25 67	19 83 85	101 129.9 129.5	16 1	20 15	17 14 16 12 24	17 10.	7,2 6.5 7,2 7,2 7,2	5 7.7 9 8.7 12	8.3 8.9 10 11 12	11 11	- 10 . n= n=	.э		INDUCED POLARIZATION SUR Line 300 W PEM Claims, Omineca M.D.,B.C
																																	Date: Aug/Sep 1992 Interpretation by: Scale 1:5000
																									×								Pacific Geophysical


. .

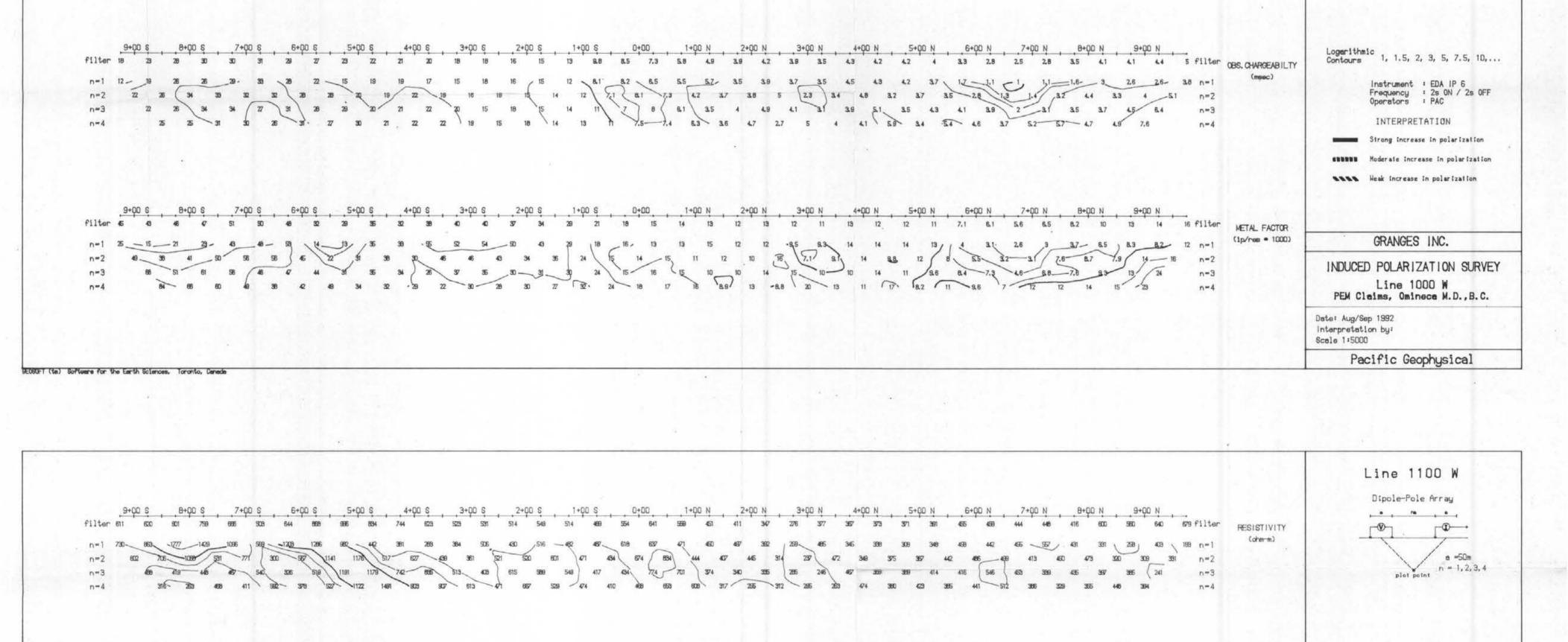
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10, Instrument : EDA IP 6 Frequency : 2s ON / 2s OFF Operators : PAC INTERPRETATION Strong increase in polarization
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GRANGES INC. INDUCED POLARIZATION SURVEY Line 400 W PEM Claims, Omineca M.D., B.C.
	Date: Aug/Sep 1992 Interpretation by: Scale 1:5000 Pacific Geophysical
9+00 \$ 9+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 1 20 \$ 20 \$ 20 \$ 20 \$ 20 \$ 20 \$ 20 \$	Dipole-Pole Array
$n=4 \qquad z_{5} z_{5} $	Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10, Instrument : EDA 1P 6 Frequency : 2s ON / 2s OFF Operators : PAC
n=3 7.7 a = 7.7 a = 7.7 7.4 7.	Uperators I PAC INTERPRETATION Strong increase in polarization Moderate increase in polarization Weak increase in polarization GRANGES INC.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INDUCED POLARIZATION SURVEY Line 500 W PEM Claims, Ominaca M.D., B.C.

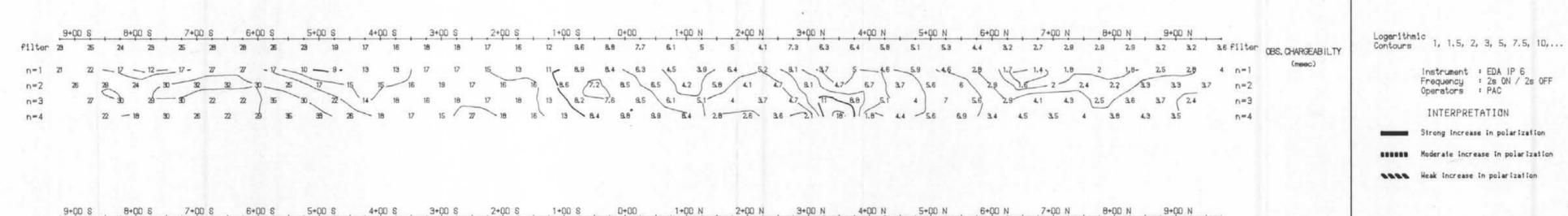


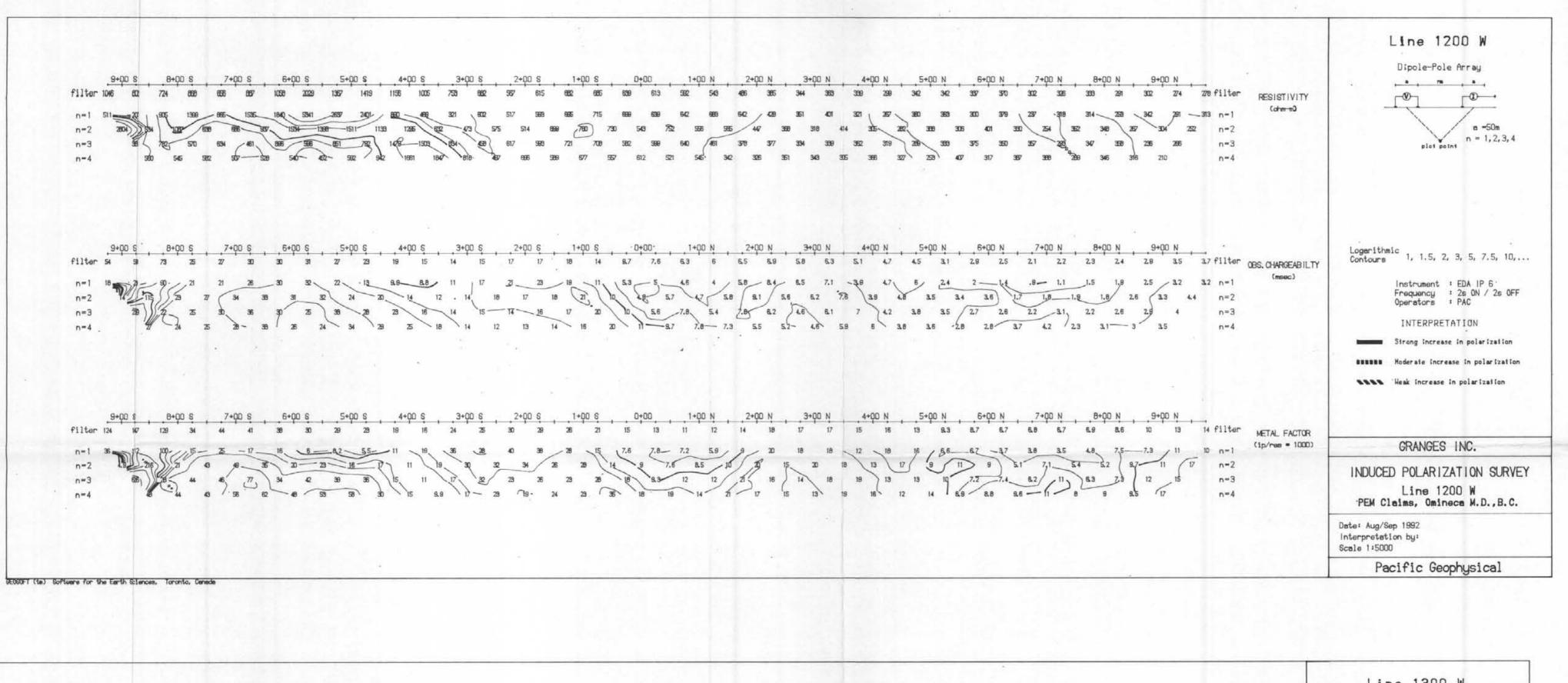


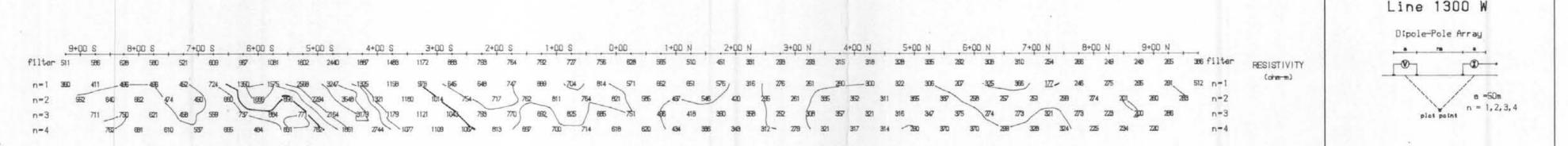


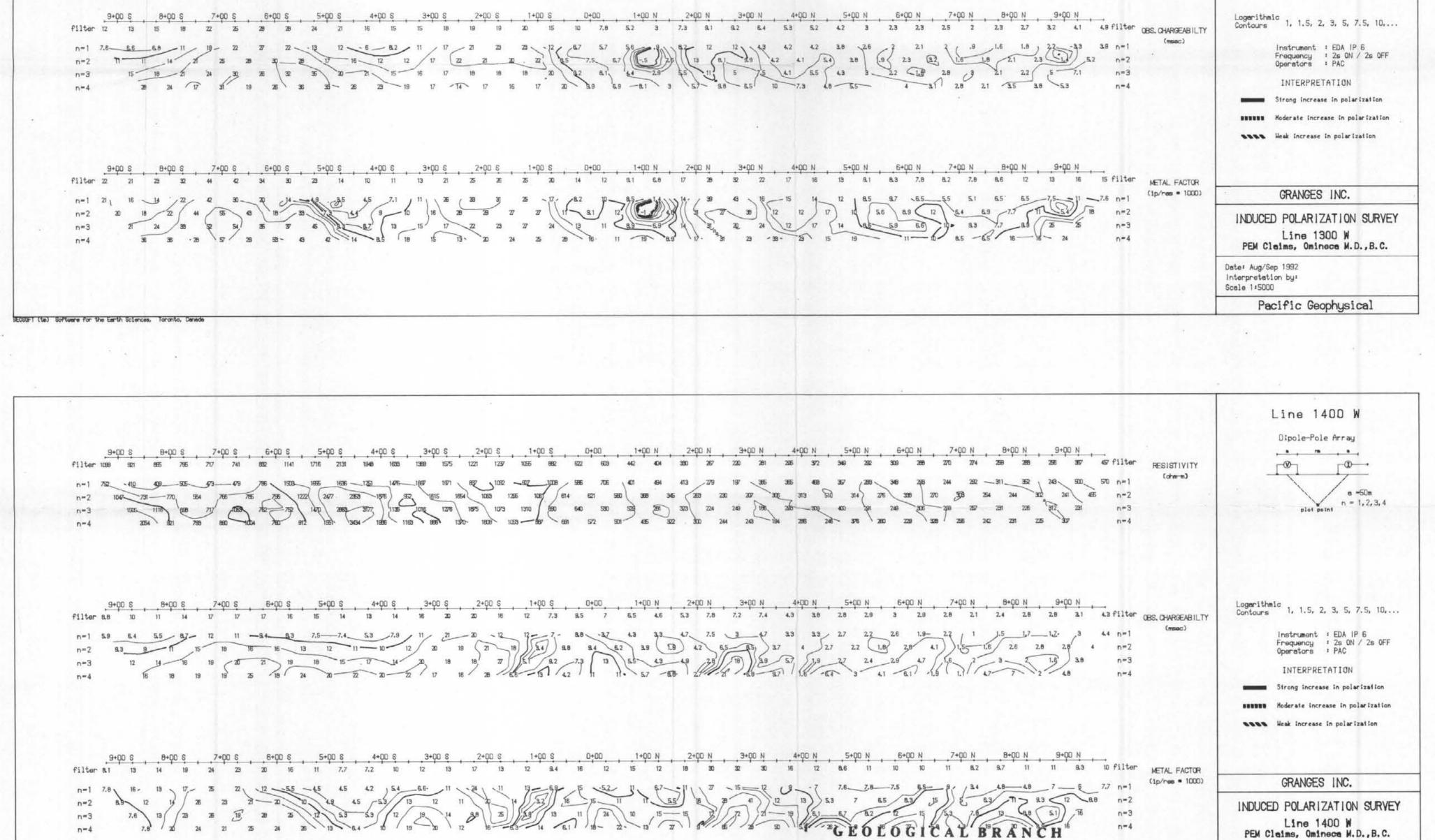
$\frac{9+00\ \$}{11\ tor\ 56}\ \frac{7+00\ \$}{7,3}\ \frac{6+00\ \$}{7,2}\ \frac{5+00\ \$}{5,2}\ \frac{6+00\ \$}{5,2}\ \frac{5+00\ \$}{5,2}\ \frac{4+00\ \$}{5,2}\ \frac{3+00\ \$}{5,2}\ \frac{2+00\ \$}{5,4}\ \frac{1+00\ \$}{1,0}\ \frac{2+00\ \$}{5,4}\ \frac{3+00\ \$}{5,4}\ \frac{3+00\ \$}{5,4}\ \frac{4+00\ \$}{5,4}\ \frac{5+00\ \$}{5,4}\ \frac{4+00\ \$}{5,4}\ \frac{5+00\ \ast}{5,4}\ \frac{5+00\ \ast}{5,$	Logerithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10, Instrument : EDA IP 6 Frequency : 2s ON / 2s OFF Operators : PAC INTERPRETATION Strong increase in polarization Moderate increase in polarization
$\frac{9+00\ \$}{11\ ter\ 26\ 26\ 24\ 17\ 13\ 12\ 8.9\ 9.9\ 13\ 16\ 17\ 22\ 23\ 7\ 13\ 24\ 18\ 16\ 17\ 15\ 19\ 17\ 16\ 18\ 18\ 19\ 27\ 24\ 20\ 17\ 18\ 18\ 19\ 13\ 13\ 16\ 18\ 19\ 13\ 13\ 16\ 17\ 15\ 13\ 13\ 16\ 18\ 19\ 13\ 13\ 16\ 17\ 15\ 13\ 13\ 16\ 18\ 19\ 13\ 13\ 16\ 18\ 19\ 13\ 13\ 16\ 18\ 19\ 13\ 13\ 14\ 18\ 16\ 17\ 12\ 26\ 13\ 17\ 16\ 18\ 18\ 18\ 18\ 18\ 18\ 18\ 18\ 18\ 18$	GRANGES INC.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INDUCED POLARIZATION SURVEY Line 700 W PEM Claims, Omineca M.D.,B.C.
	Date: Aug/Sep 1992 Interpretation by: Scale 1:5000
Software for the Earth Sciences, Toronto, Cenede	Pacific Geophysical


9+00 8 8+00 8 7+00 8 6+00 8 5+00 8 5+00 8 5+00 8 4+00 8 3+00 8 2+00 8 1+00 8 0+00 1 5+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 9+	CONTRACTOR OF THE OWNER	Line 800 W Dipole-Pole Array
$\frac{9+00\ \$}{11\ tor\ a7} \frac{9+00\ \$}{a7} \frac{8+00\ \$}{11\ 11\ a8} \frac{5+00\ \$}{a3} \frac{5+00\ \$}{7.6} \frac{5+00\ \$}{a7} \frac{4+00\ \$}{12\ 10\ 16\ 16\ 16\ 16\ 16\ 15\ 12\ a5\ 7.8\ 62\ 56\ 59\ 54\ 45\ 59\ 54\ 45\ 45\ 45\ 59\ 53\ 45\ 44\ 54\ 55\ 53\ 45\ 44\ 42\ 55\ 53\ 45\ 44\ 42\ 55\ 52\ 52\ 52\ 52\ 52\ 52\ 52\ 52\ 5$		Logarithmic Contours 1. 1.5, 2, 3, 5, 7.5, 10, Instrument : EDA IP 6 Frequency : 2s ON / 2s OFF Operators : PAC INTERPRETATION Strong increase in polarization Moderate increase in polarization Heak increase in polarization
$\frac{9+00\ \$}{11\ tor\ 39} \xrightarrow{100\ \$} $	2TOR	GRANGES INC. INDUCED POLARIZATION SURVEY

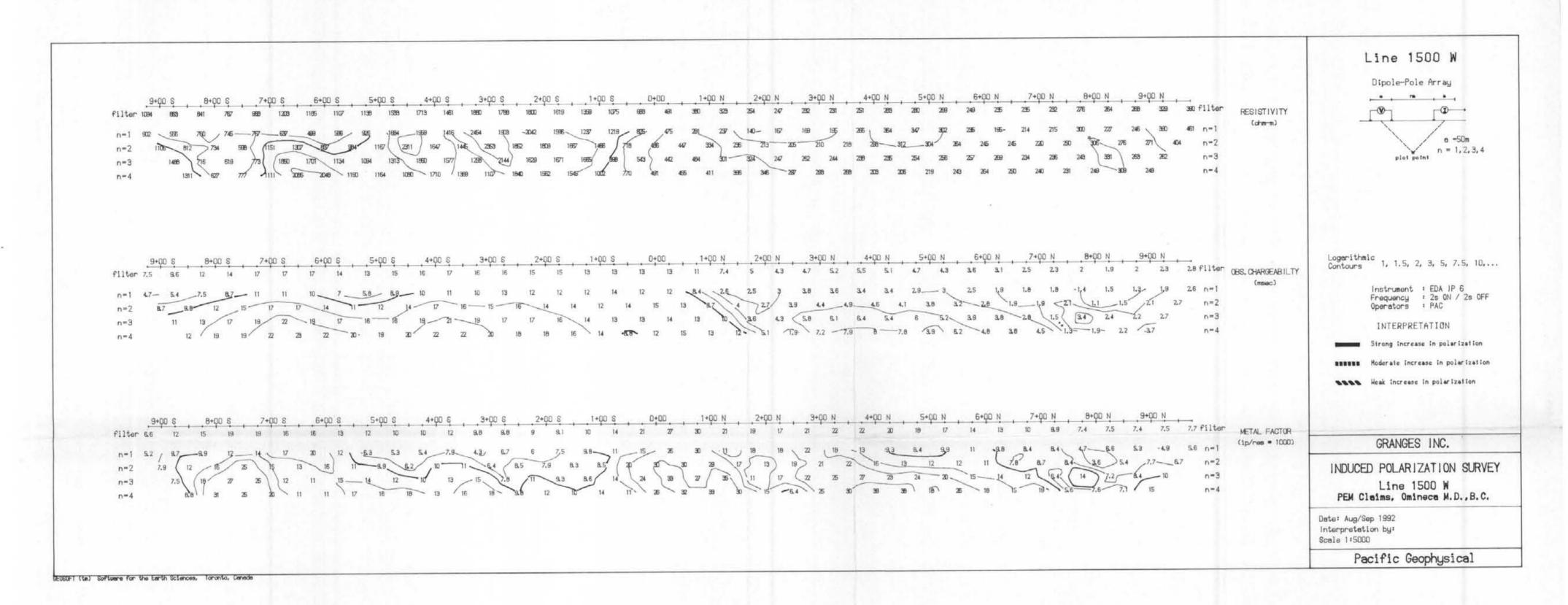


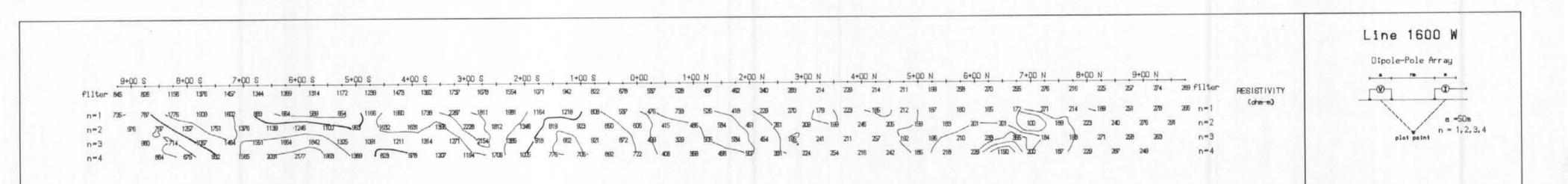


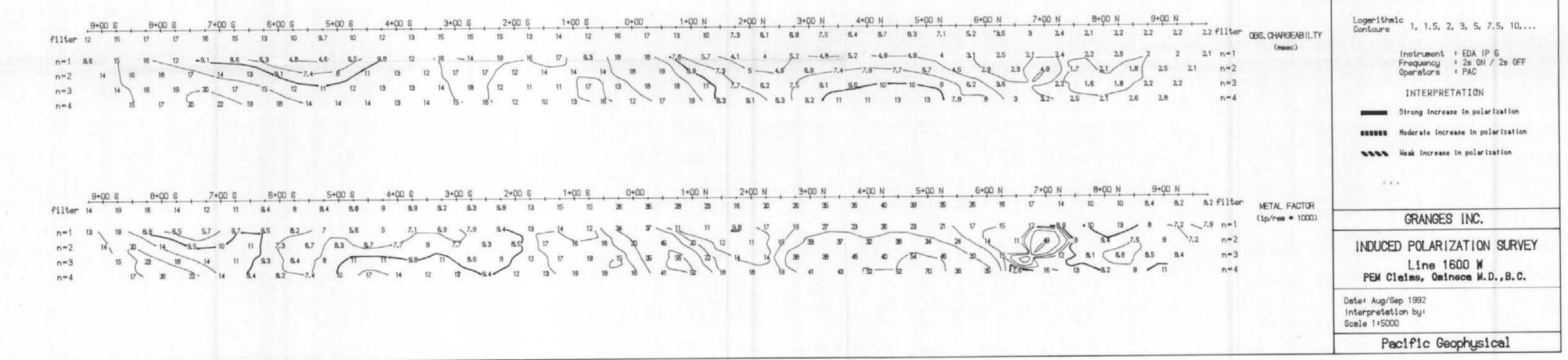


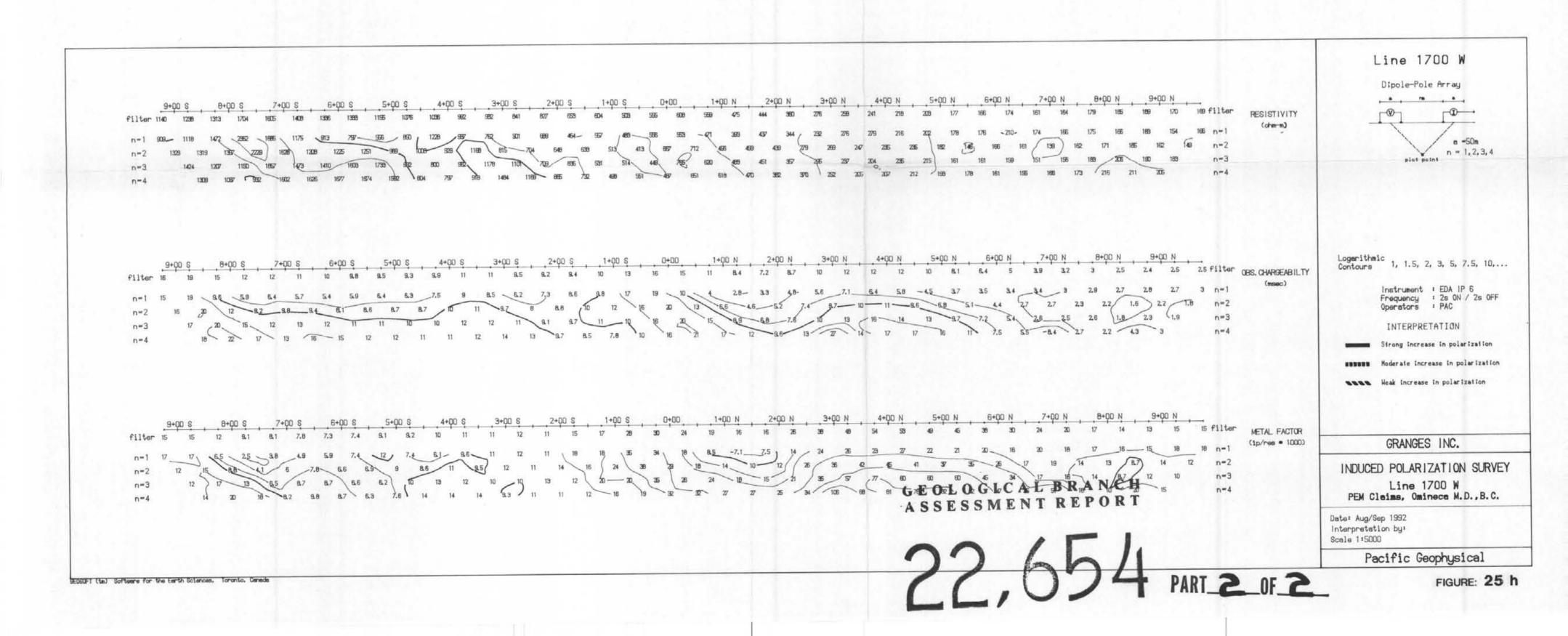


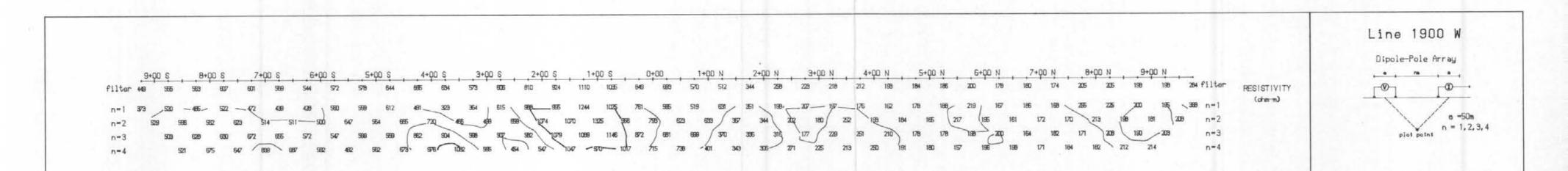
9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 1+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 14 9.9 7.1 6.4 6.9 7.3 7.3 9.3 8.5 15 filter METAL FACTOR 12 28 20 20 17 filter 12 46 42 45 45 60 55 39 28 24 25 -30 20 16 13 11 11 12 14 38 æ 34 29 24 (1p/res = 1000) GRANGES INC. 13 ⁷ 11 n=2 8,7- 13 31 32 46 54 97 9.9 9.6 n=1 29____ 3.8 26 -- 9.6 22 / 88, 10 33 16 32 41 - 72 (B) 18 15) 53 32 26 18 17 13 7.8 9.5 14 38) 19 48-53 47 42 28 23 n=2 INDUCED POLARIZATION SURVEY 53 81 13 /14 17 19 68 55 71 41 - 20 - 21 '28) जे. 14 45 88n=3 65 63 67 32 45 24 18 87 12 11 57 81 -9.9 n=3 150 Line 1100 W 67 20 0=4



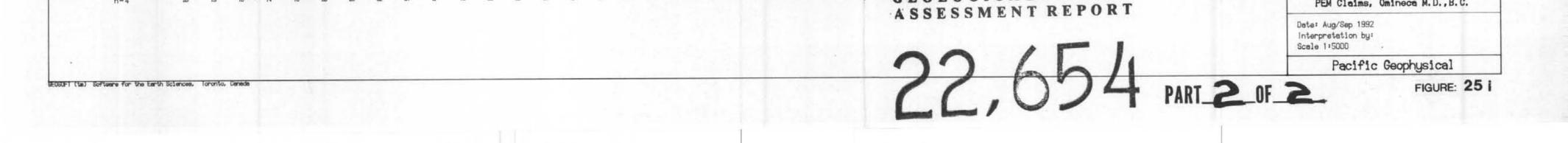








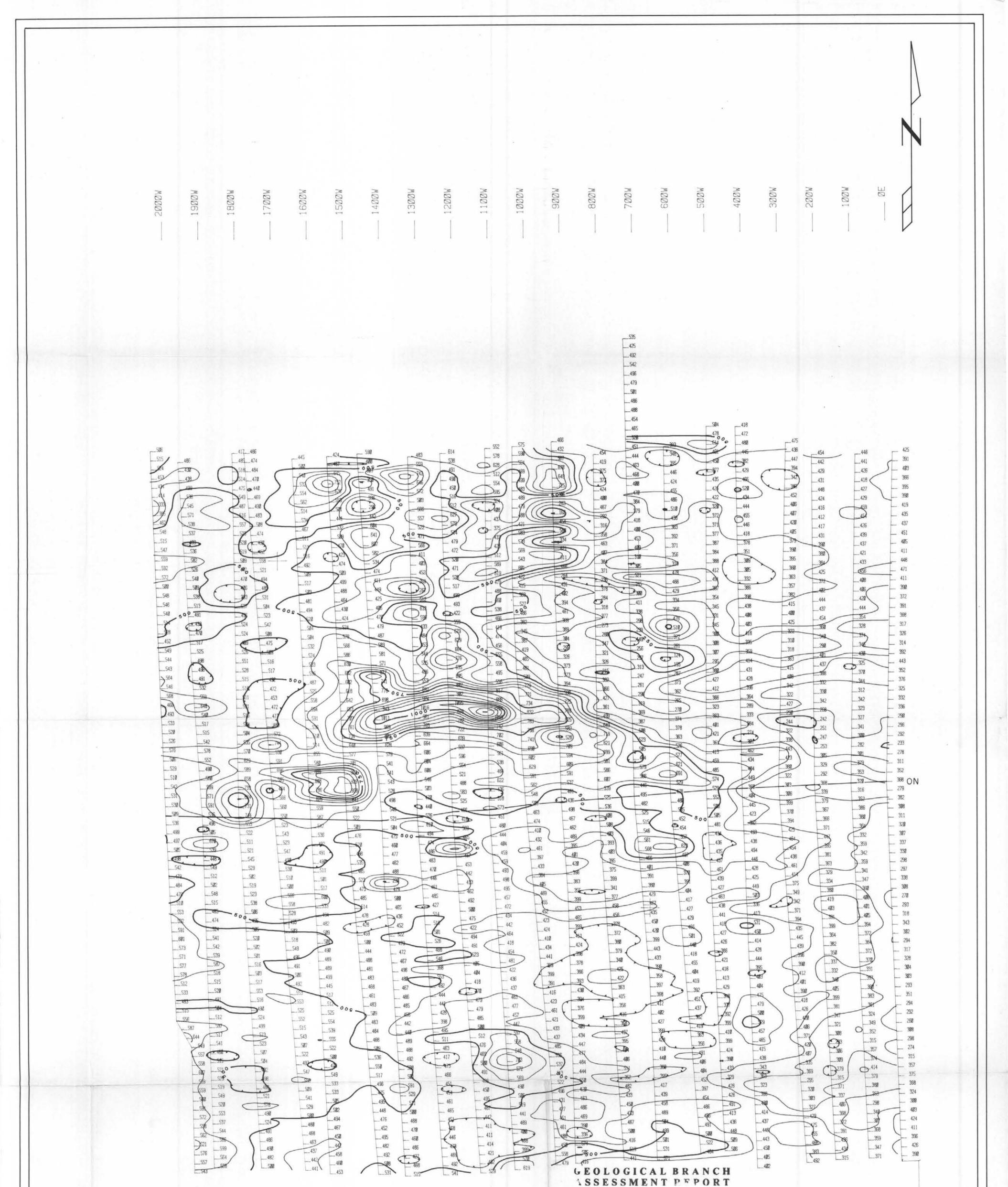
GEOSOFT (ten) Software for the Earth Sciences, Toronto, Canada



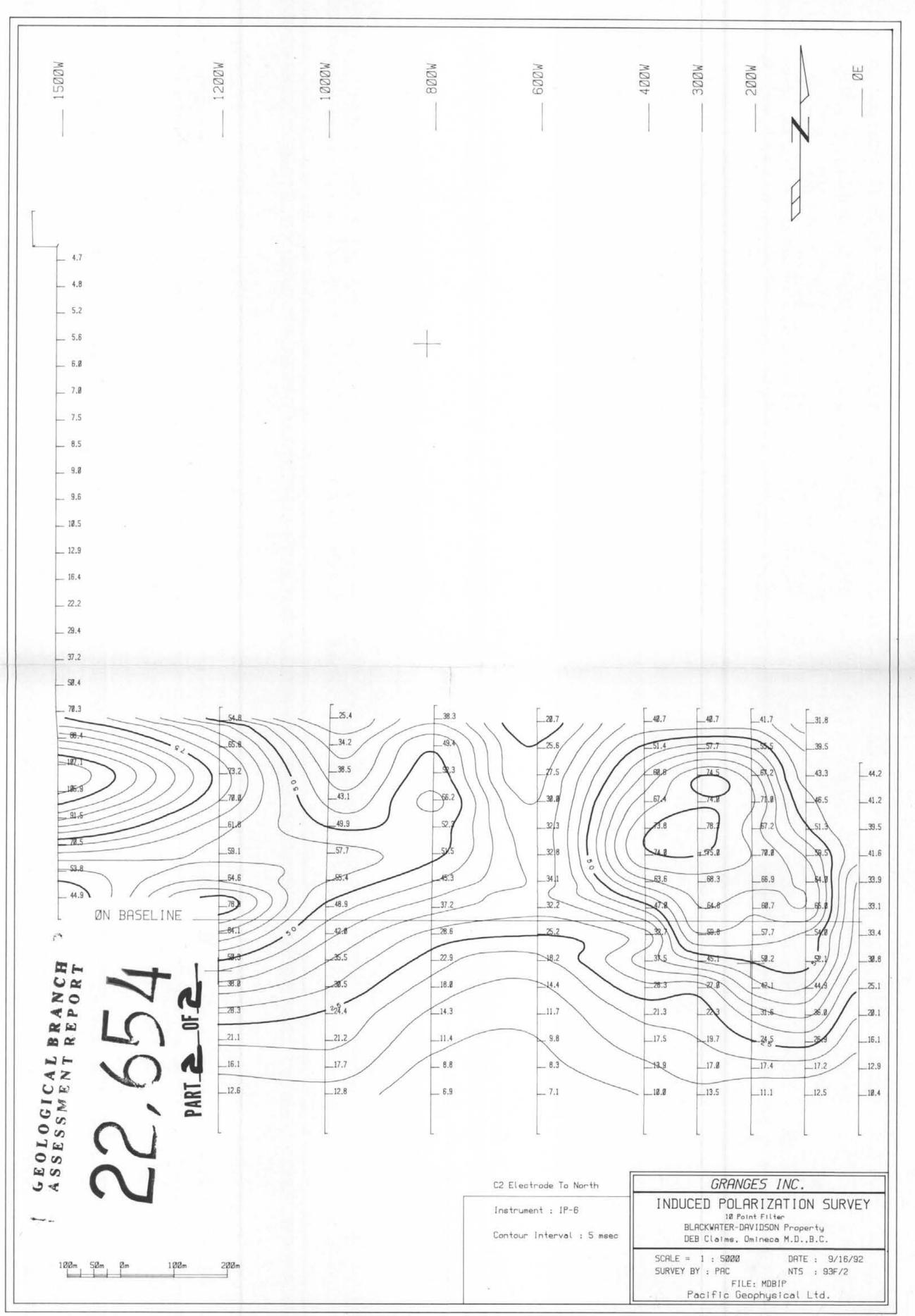
	Line 1800 W Dipole-Pole Array
9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 \$ 3+00 \$ 2+00 \$ 0+00 \$ 1+00 \$ 3+00 \$ 2+00 \$ 0+00 \$ 1+00 \$ 0+	
n=1 1029 1029 1636 1346 1332 1073 780 829 669 771 980 951 536 469 683 952 186 987 609 520 581 280 771 980 951 536 469 683 952 186 987 609 520 581 280 770 171 189 189 191 201 194 179 156 151 177 189 199 172 184 205 n=1 n=2 1213 1302 1823 1204 1241 1030 887 909 1176 1057 669 709 887 545 789 694 918 740 70 601 980 425 720 223 185 197 212 181 184 175 171 144 190 187 180 178 180 180 180 180 180 180 180 180 180 18	a =50m n = 1,2,3,4
9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 \$ 1+00 \$ 2+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 2+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 2+00 \$ 3+00 \$ 2+00 \$ 3+00 \$ 2+00 \$ 3+00 \$ 2+00 \$ 3+00 \$ 2+00 \$ 3+	Y Logarithmic 1, 1.5, 2, 3, 5, 7.5, 10
n=1 <u>82</u> <u>7.8</u> <u>67</u> <u>88</u> <u>7.7</u> <u>7.8</u> <u>7.3</u> <u>63</u> <u>62</u> <u>51</u> <u>45</u> <u>42</u> <u>38</u> <u>42</u> <u>53</u> <u>59</u> <u>7.1</u> <u>89</u> <u>85</u> <u>48</u> <u>32</u> <u>35</u> <u>43</u> <u>48</u> <u>56</u> <u>69</u> <u>6</u> <u>43</u> <u>39</u> <u>34</u> <u>32</u> <u>32</u> <u>31</u> <u>42</u> <u>31</u> <u>35</u> <u>28</u> <u>36</u> <u>33</u> <u>n=1</u> (meac) n=2 <u>12</u> <u>12</u> <u>12</u> <u>13</u> <u>14</u> <u>14</u> <u>13</u> <u>13</u> <u>28</u> <u>36</u> <u>33</u> <u>n=1</u> (neac)	Instrument : EDA IP 6 Frequency : 2s ON / 2s OF Operators : PAC INTERPRETATION
	Strong Increase in polarization BBBBBB Moderate increase in polarization BBBBBB Heak increase in polarization
9+Q0 & 8+Q0 & 7+Q0 & 6+Q0 & 5+Q0 & 4+Q0 & 3+Q0 & 2+Q0 & 1+Q0 & 0+Q0 & 3+Q0 & 3+Q0 & 5+Q0 & 6+Q0 & 7+Q0 & 8+Q0 & 9+Q0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &	
filter 10 10 81 10 88 9.7 10 8.5 8.7 7.8 8.4 8.8 9.2 10 11 13 12 15 16 16 14 17 23 37 50 62 63 50 40 32 26 22 20 16 16 15 16 14 filter METAL FACTOR	GRANGES INC.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INDUCED POLARIZATION SURV Line 1800 W PEM Claims, Omineca M.D.,B.C
	Date: Aug/Sep 1992 Interpretation by: Scale 1:5000
	Pacific Geophysical

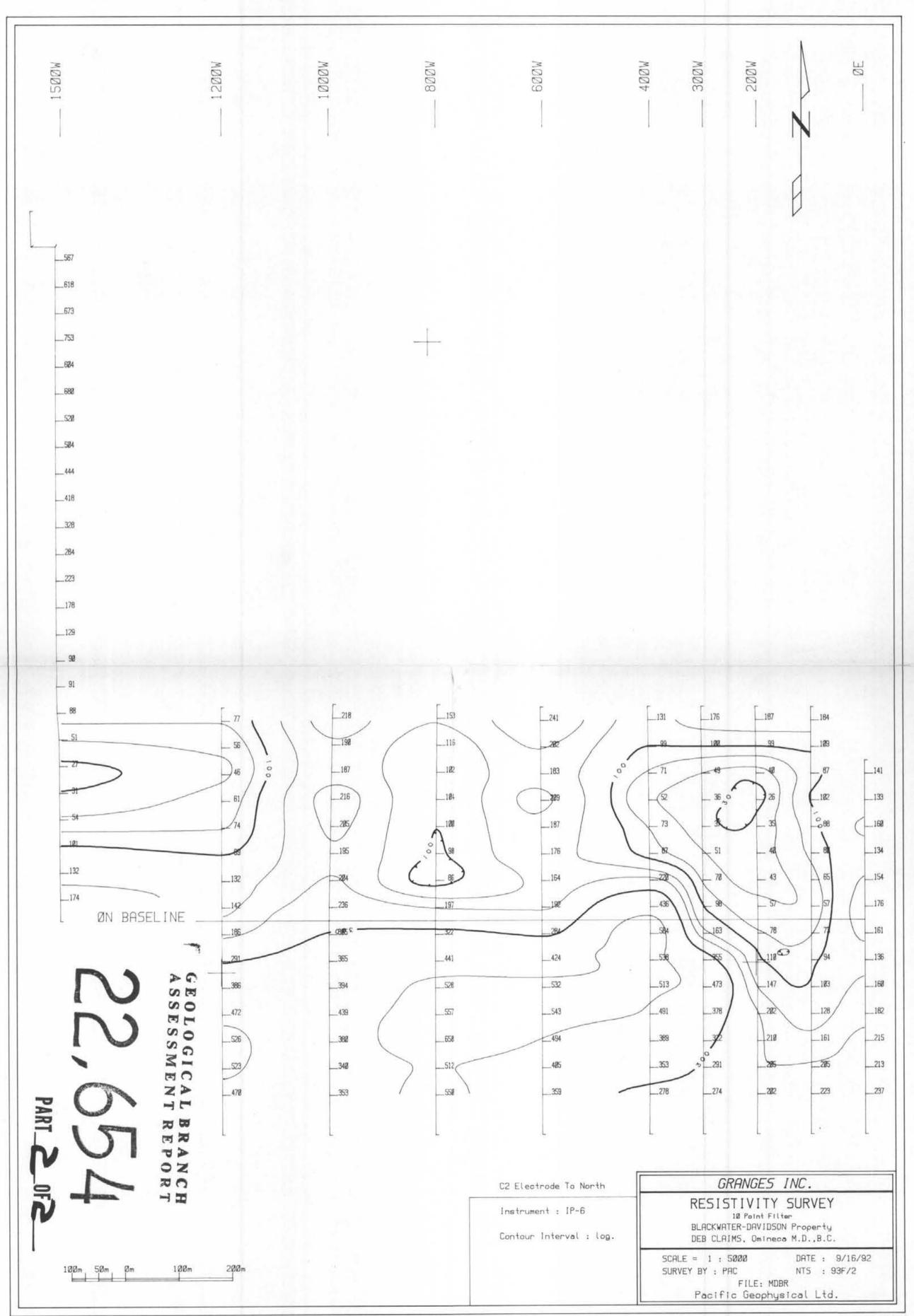
9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 1+00 N 2+00 N 3+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00	Logarithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10,
$n=1 \ 5 \ 4.9 \ 4.8 \ 5.6 \ 5.3 \ 4.5 \ 4.5 \ 4.5 \ 6.5 \ 7.7 \ 9.5 \ 11 \ 10 \ 7.6 \ 6.2 \ 6.4 \ 8.2 \ 8.4 \ 8.$	Instrument : EDA IP 6 Frequency : 2s ON / 2s OFF Operators : PAC INTERPRETATION Strong increase in polarization Moderate increase in polarization Heak increase in polarization
9+00 \$ 8+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 1+00 N 2+00 N 3+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 9+00 N 10 10 10 10 10 10 10 10 10 10 10 10 10	GRANGES INC.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INDUCED POLARIZATION SURVEY Line 1900 W PEM Claims, Omineca M.D.,B.C.
	Date: Aug/Sep 1992 Interpretation by: Scale 1:5000
	Pacific Geophysical

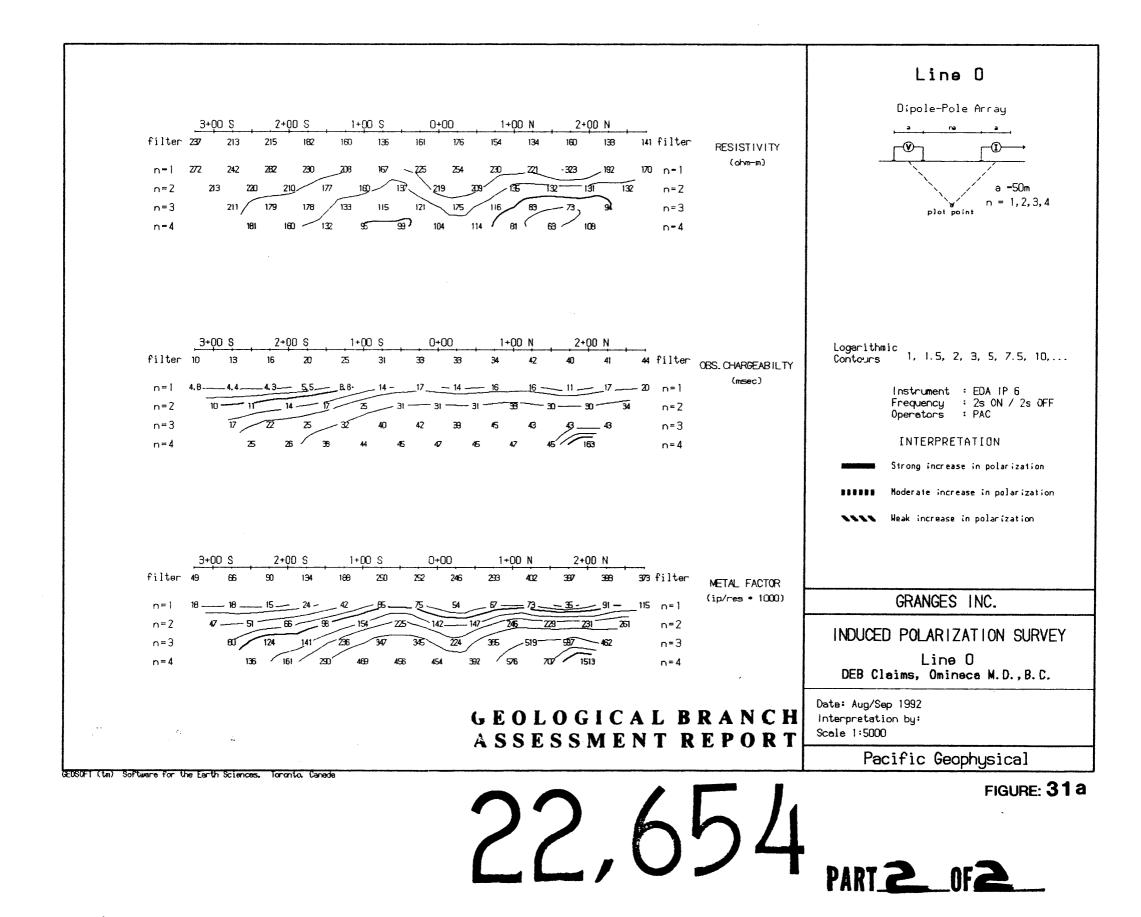
9+00 \$ 9+00 \$ 7+00 \$ 6+00 \$ 7+00 \$ 6+00 \$ 5+00 \$ 4+00 \$ 3+00 \$ 2+00 \$ 1+00 \$ 0+00 1 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 9+00 N filter as es	Line 2000 W Dipole-Pole Array
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Logerithmic Contours 1, 1.5, 2, 3, 5, 7.5, 10, Instrument : EDA 1P 6 Frequency : 2s ON / 2s OFF Operators : PAC INTERPRETATION Strong increase in polarization Moderate increase in polarization
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GRANGES INC. INDUCED POLARIZATION SURVEY Line 2000 W

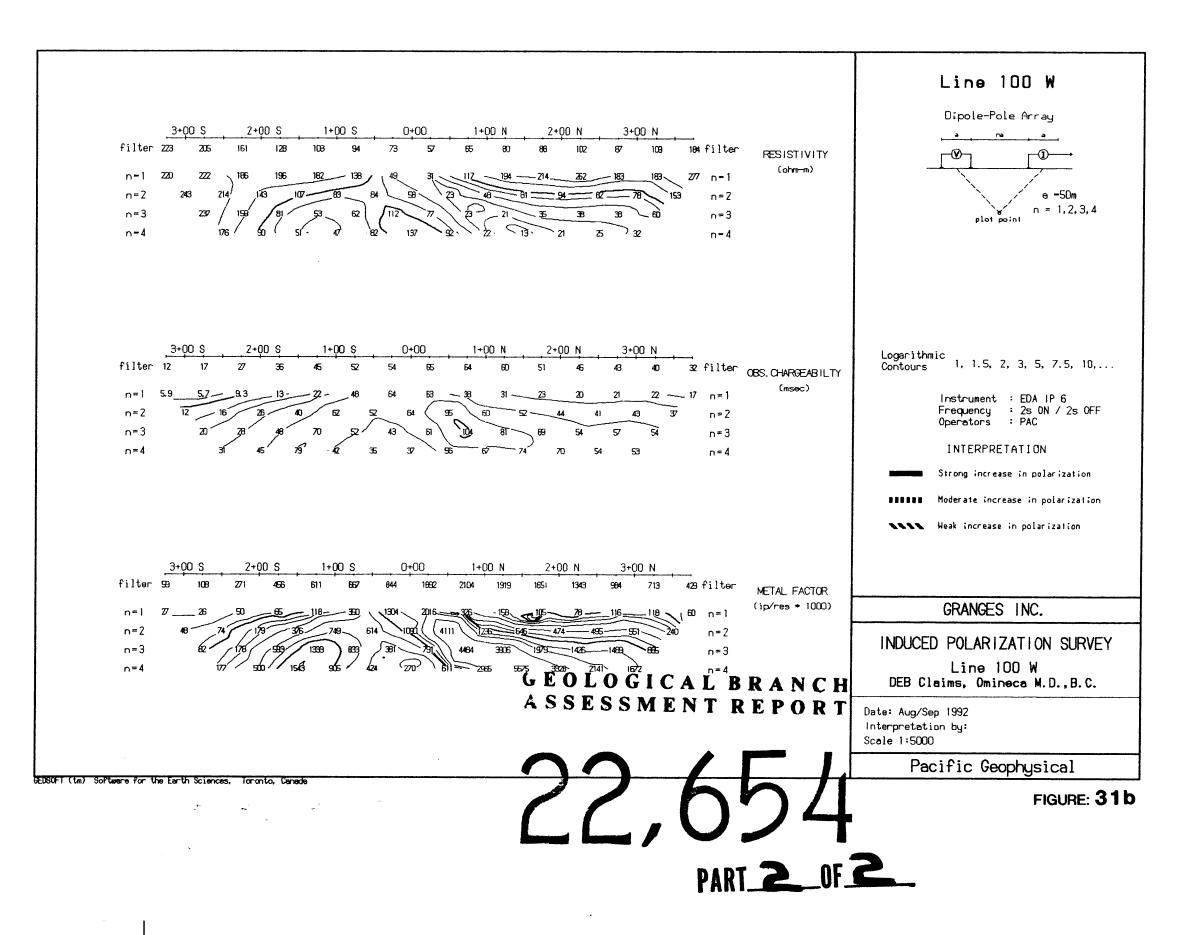

2000W	1700V	1600W	1500W	1300W	1100W	1000V	BODW	- 700W	BODW	400W	MØDE	ZØØW	IDD
	7 82 1 8 2 -1 6 82 -1 6 82 -1 6 82 -1 8 91 -2 91 -8 122 -2 91 -8 122 -2 8 -2 122 -2 123 -2 133 -2 13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$18 - 7 \\ 13 - 7 \\ 14 - 7 \\ 12 - 3 \\ 15 - 5 \\ 17 - 8 \\ 28 - 5 \\ 13 - 2 \\ 19 - 4 \\ 19 - 4 \\ 27 - 8 \\ 14 - 2 \\ 19 - 4 \\ 27 - 8 \\ 14 - 2 \\ 19 - 4 \\ 27 - 8 \\ 14 - 2 \\ 19 - 4 \\ 27 - 8 \\ 10 - 8 \\ 10 - 8 \\ 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 -1 -2 2 10 21 21 21 21 21 21 21 21 21 21 21 21 21	-14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -15 -17 -2 -27 -14 -16 -7 -7 -8 -7 -8 -7 -8 -12 -	$\begin{array}{c}4\\\\8\\\\-2\\\\12\\\\-2\\\\12\\\\-2\\\\12\\\\-2\\\\-3\\\\-3\\\\-3\\\\-4\\\\-5\\\\6\\\\3\\6\\\\6\\\\3\\6\\\\7\\\\7\\\\7\\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2 3 3 3 3 3 3 -1 3 -1 3 -1 3 -1 3 -1 1 -2 1 -1 3 -1 -2 -1 -2 -1 -2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

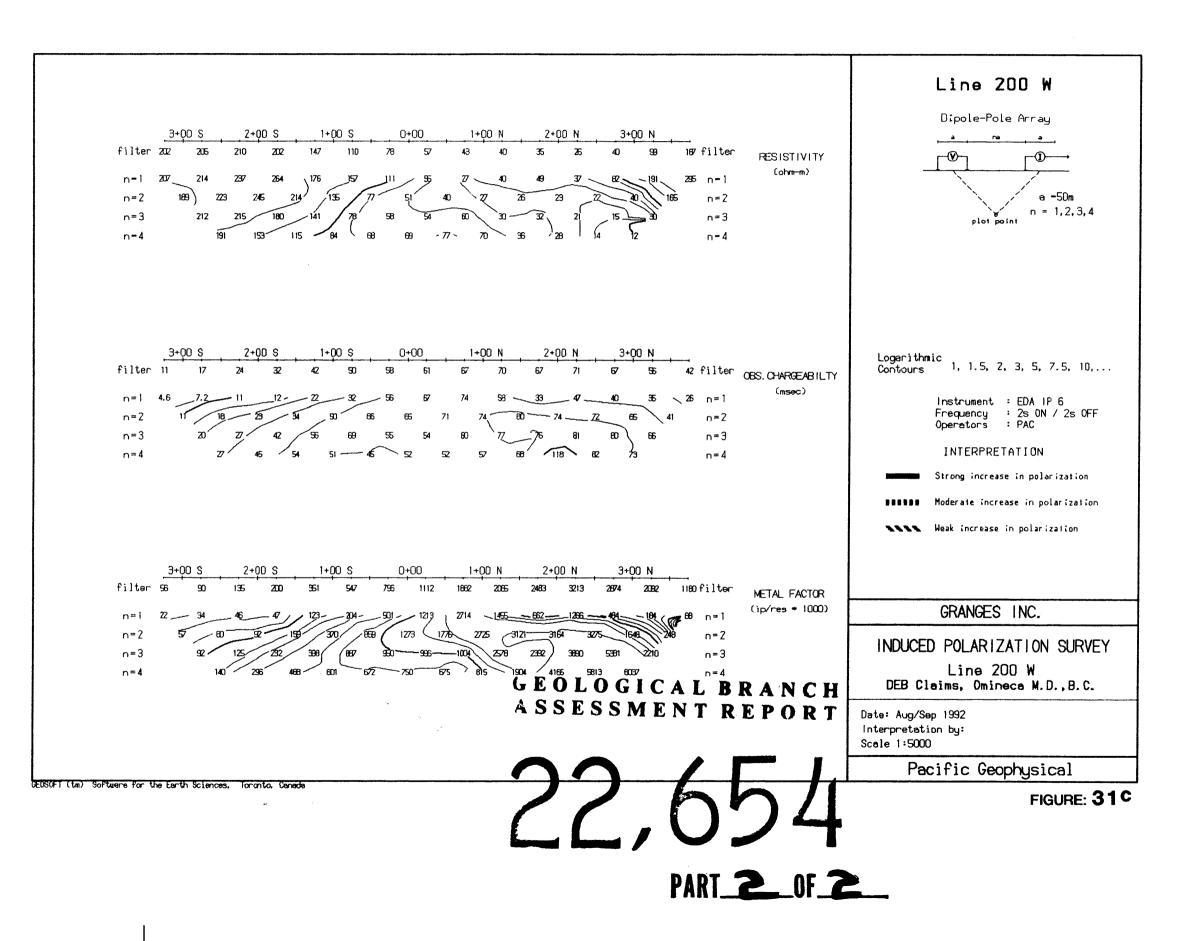
12 L 8 18 -3 0 L -5 4 L 1 5 L 8 -6 -3 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 8 4 1 5 L 9 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 -5 -6 13 4 -3 15 4 -2 11 4 -3 11 4 1 12 8 E t GEOLOGICAL BRANCH ASSESSMENT REPORT 22,654 PART_2 OF_2 GRANGES INC. VLF-EM SURVEY Instrument : G5M-19 Vertical Scale Inphase/Quad : 1cm = 25% BLACKWATER-DAVIDSON Property Tx Location : NSS Annapolis. Md. PEM Claims, Omineca M.D.,B.C. In-phase : _ Proper X-Over DATE : Aug/Sept/92 SCALE = 1 : 5000 Quadrature : ... SURVEY BY : PAC NTS : 93F/2 FILE: VPAP FREQ.: 21.4 khz 2001 Pacific Geophysical Ltd. FIGURE: 26

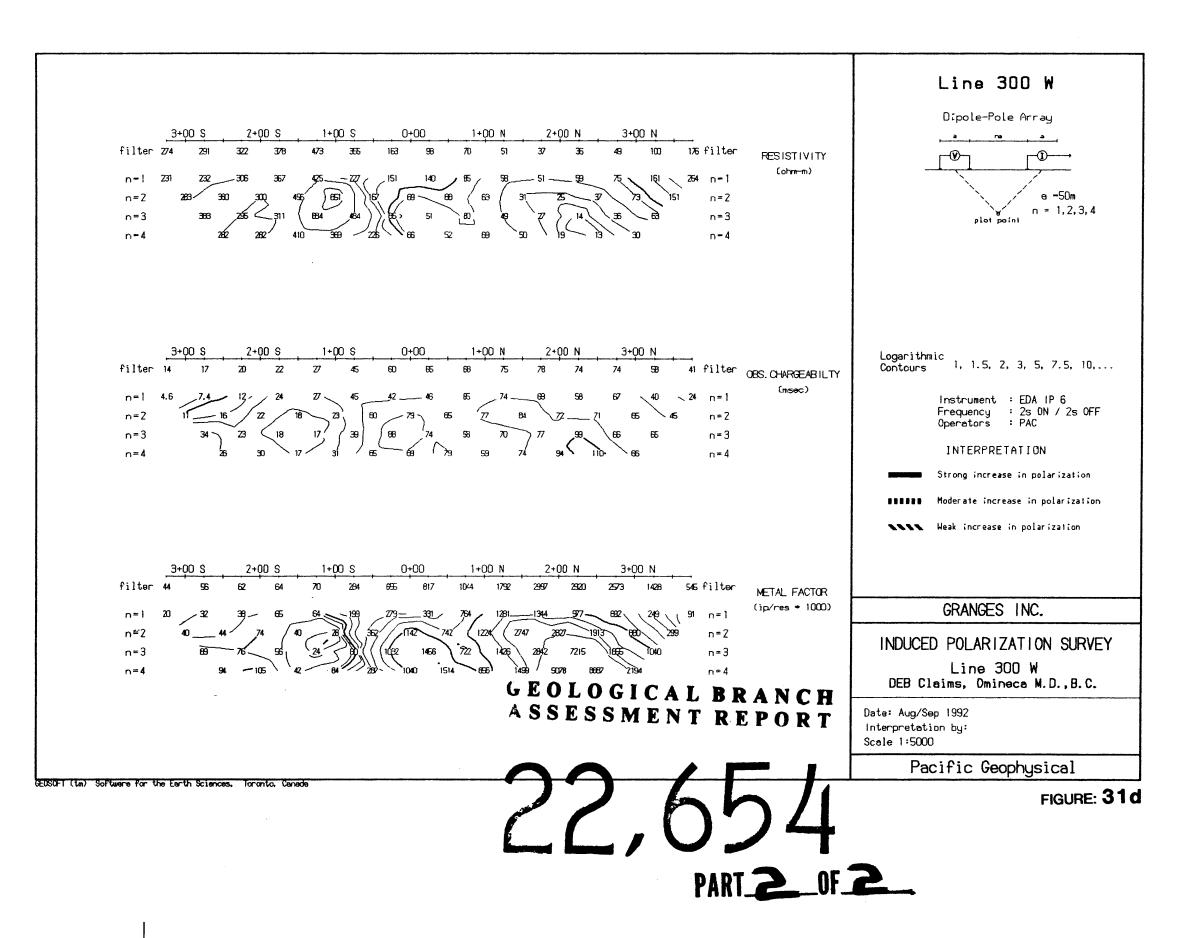

200W	1800W	1600W 1500W 1400W	1300W	1100W	MØØ6	M00M	MØØ	500W	WQQE	100W	T
$ \begin{array}{c} 5 \\ 6 \\ 7 \\ 6 \\ 7 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 9 19 7 6 4 9 6 12 11 5 5 7 5 3 4 9 19 19 19 19 19 19 19 19 19 19 19 19 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 -25 -213 -323 $-32323-323-1-1-2$

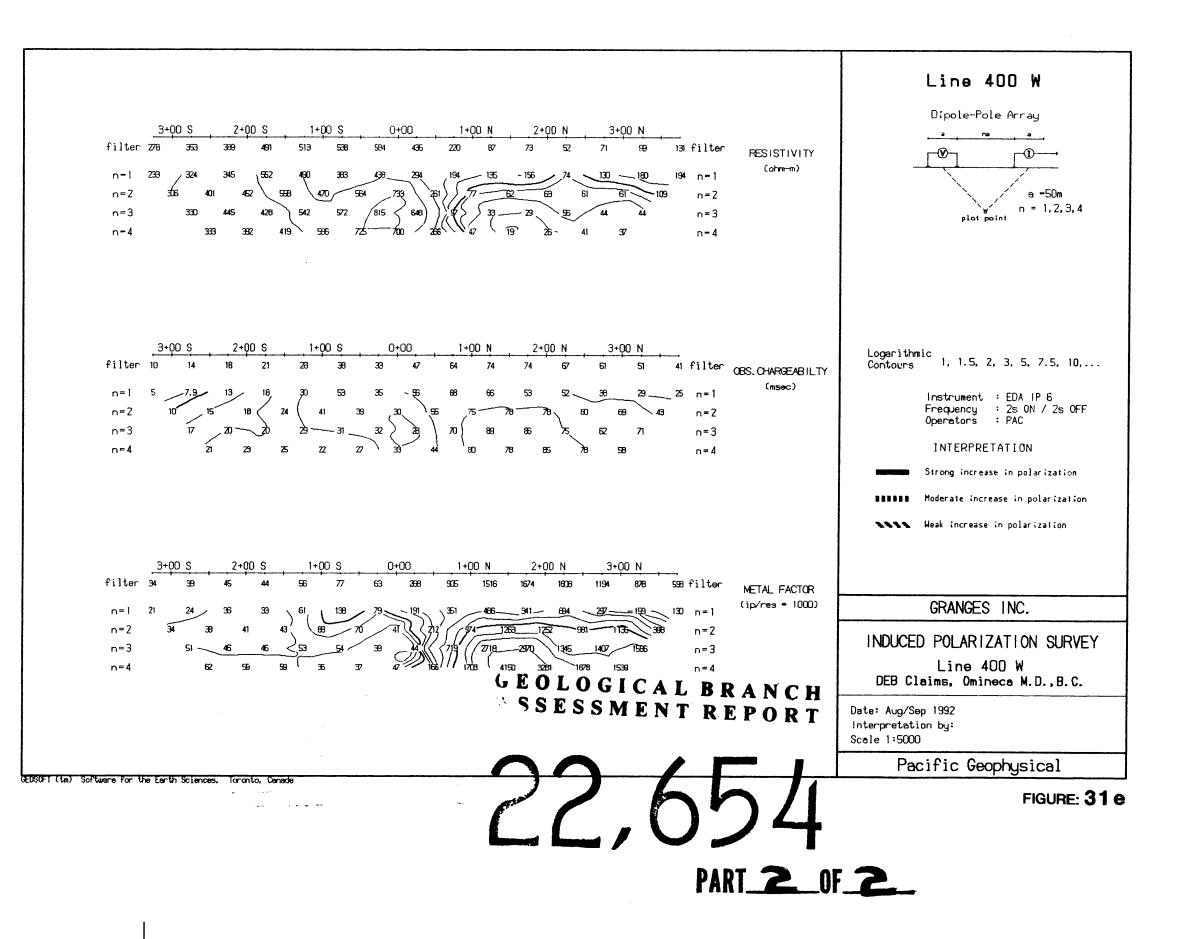

	1 -2 4
	2 4 -3
1 -4 -3 -5 -4 -5 -5 -1 -5 -1 -6 -5 -7 -5 -7 -5 -7 -5 -7 -5 -7 -5 -7 -5 -7 -5 -7 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	
	a - a a - s
7 3 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2
2 4 4 6 7 8 9 6 4 8 2 2 3 7 5 4 2 9 5 4 6 4 3 1 1 3 4 4 4 5 5 5 7 7 7 6 7 8 19 11 2 13 19 19 19 19 19 19 19 19 19 19 19 19 19	3 4
-5 -4 -2 2 3 4 3 2 3 4 3 2 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 -1 -2 -2 -2 -2 -3 -3 -2 -2 -3 -3 -2 -5 	2 14
4 2 4 4 4 5 1 5 1 5 1 5 5 4 1 8 7 5 5 4 1 8 7 5 5 6 7 5 1 8 7 6 7 5 1 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 9 2
	6 3
$\begin{array}{c} 2 \\ 5 \\ 1 \\ 4 \\ -5 \\ 1 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -11 \\ -12 \\ -12 \\ -1 \\ -1$	4 -4
18 -4 5 -6 -6 -6 -6 -6 -7 -6 -6 -6 -7 -6 -7 -7 -6 -7 -7	-4 (1
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
7 - 4 $8 - 5$ $3 - 3$ $1 - 4 - 2$ $- 2 - 2$ $- 2 - 2$ $- 2 - 2$ $- 2 - 2$ $- 2 - 2$ $- 2 - 2$ $- 2 - 2$ $- 2 - 2$ $- 2 - 2$ $- 2 - 2$ $- 2 - 2$ $- 3 - 2$ $- 4 - 3$ $- 2 - 2$ $- 4 - 3$ $- 4 - 4$ $- 4 - 2$ $- 4 - 4$	5 - 1
8 - 7 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - - 13 - -	11 -1 -4 8 -1 -5
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	A 4 -1 X 4 -4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 17 15
5 4 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 <td>18</td>	18
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	12 5
8 9 1 -4 1 -1 1	12

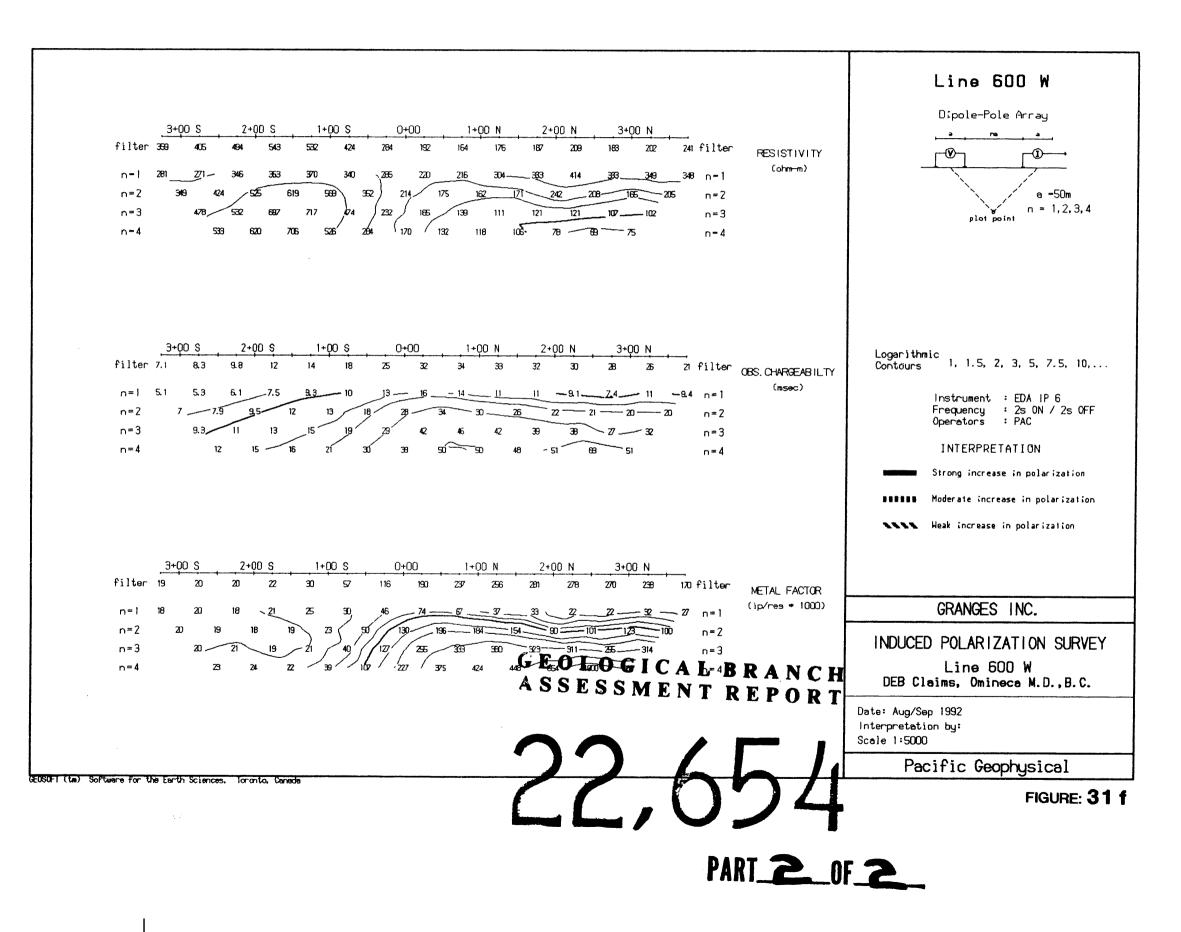

 $\frac{12}{12} - \frac{2}{15} - 5 \\
\frac{17}{12} - \frac{2}{15} - 5 \\
\frac{15}{14} - \frac{1}{22} - \frac{2}{15} - 5 \\
\frac{15}{14} - \frac{1}{22} - \frac{2}{15} - \frac{1}{15} - \frac{1}{14} - \frac{1}{15} - \frac{1$ GEOLOGICAL BRANCH ASSESSMENT REPORT 22,654 PART 2 OF 2 GRANGES INC. VLF-EM SURVEY Instrument : GSM-19 Vertical Scale Inphase/Quad : 1cm = 25% BLACKWATER-DAVIDSON Property Tx Location : NLK Hawaii PEM Claims, Omineca M.D.,B.C. Proper X-Over In-phase : _ DATE : Aug/Sept/92 Quadrature : SCALE = 1 : 5000 NTS : 93F/2 SURVEY BY : PAC FREQ.: 23.4 khz FILE: VPHP 200m 100m 50m 0m Pacific Geophysical Ltd.

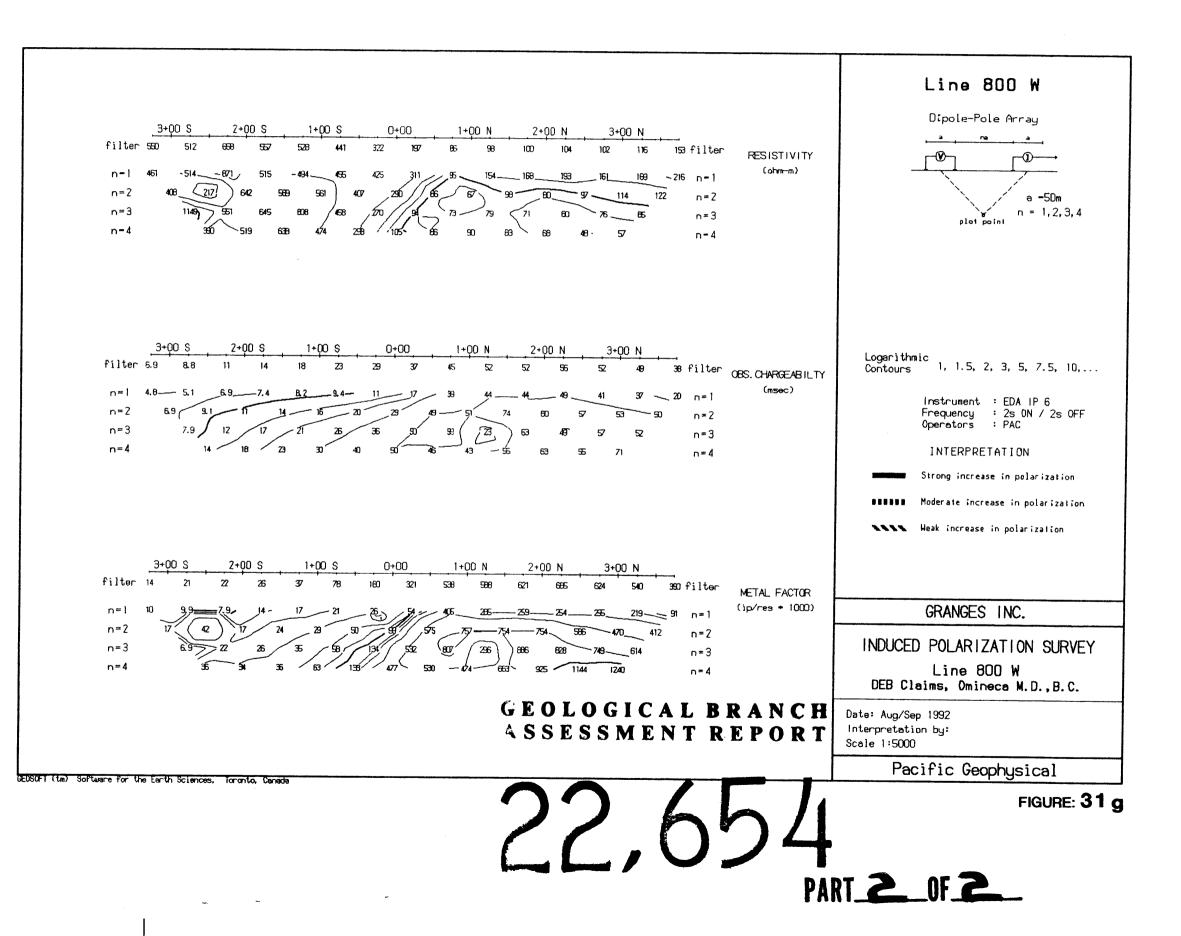


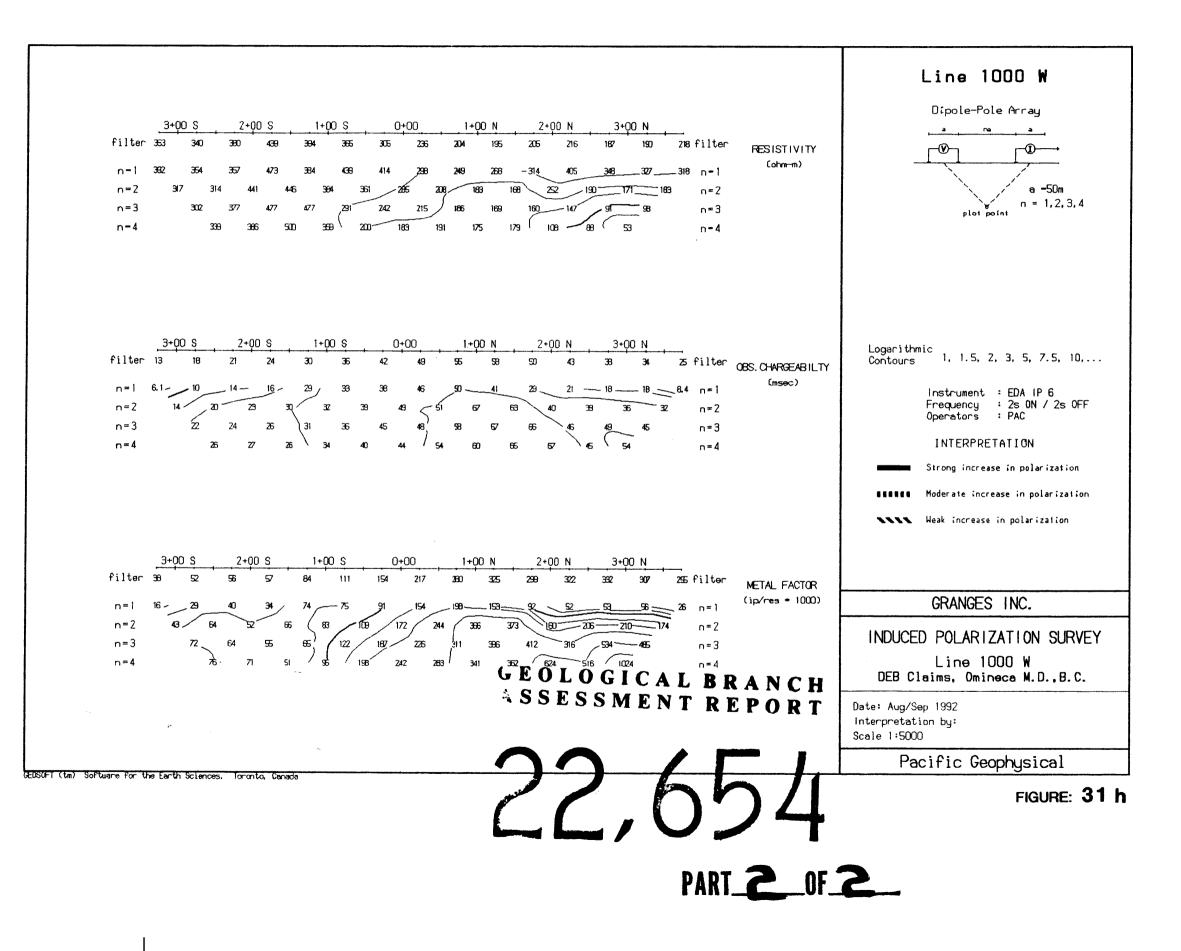

396 426 398 ___359 ___347 ___371 458 ___485 GEOLOGICAL BRANCH **ASSESSMENT PEPORT** 22,654 PART_2 OF_2 GRANGES INC MAGNETOMETER SURVEY : GSM-19 Instrument : TOTAL Field BLACKWATER-DAVIDSON Property : 56500 nT Datum PEM Claims, Omineca M.D.,B.C. Contour Interval : 50nT SCALE = 1 : 5000 DATE : Aug/Sept/92 NTS : 93F/2 SURVEY BY : SJM&ACS FILE: MPMAG Pacific Geophysical Ltd.

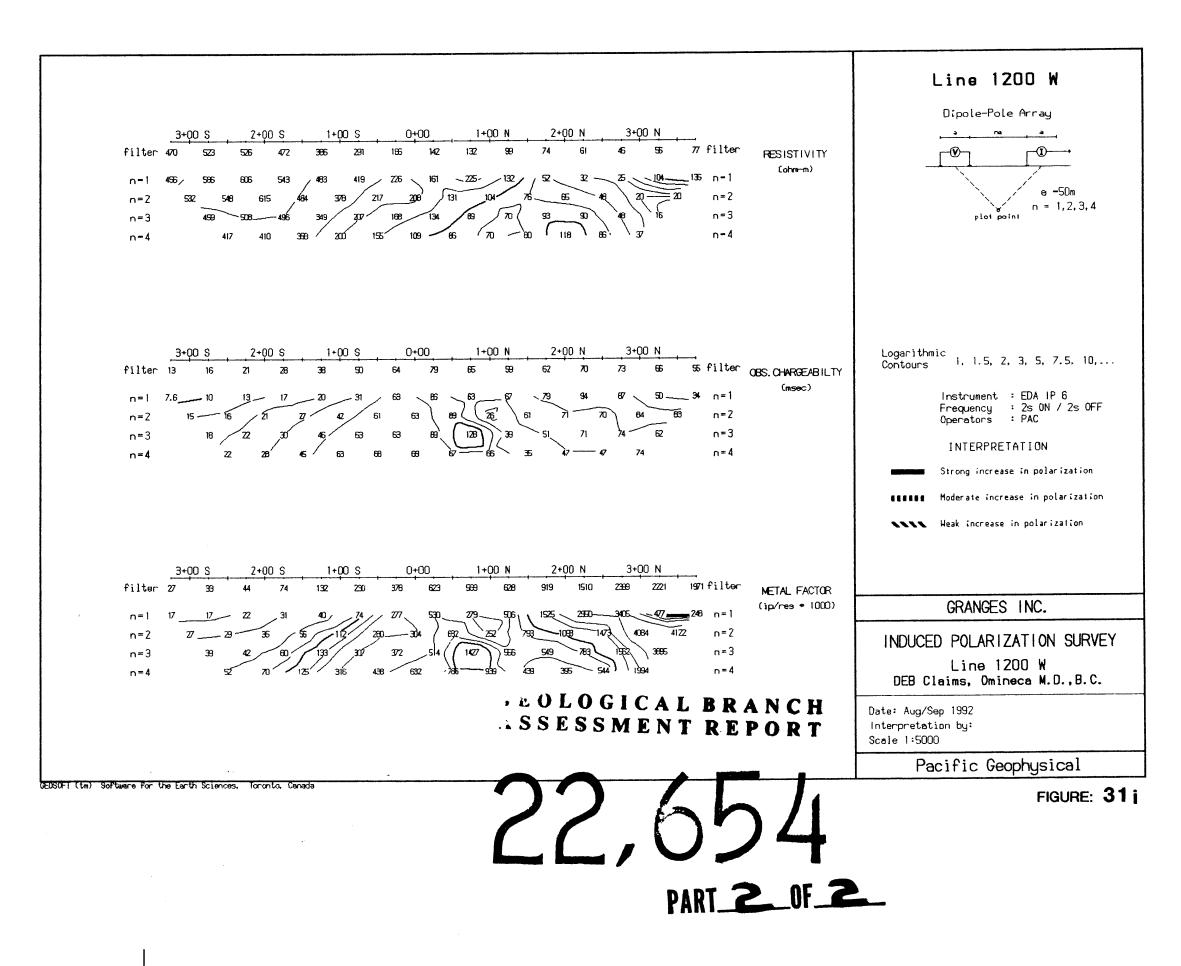




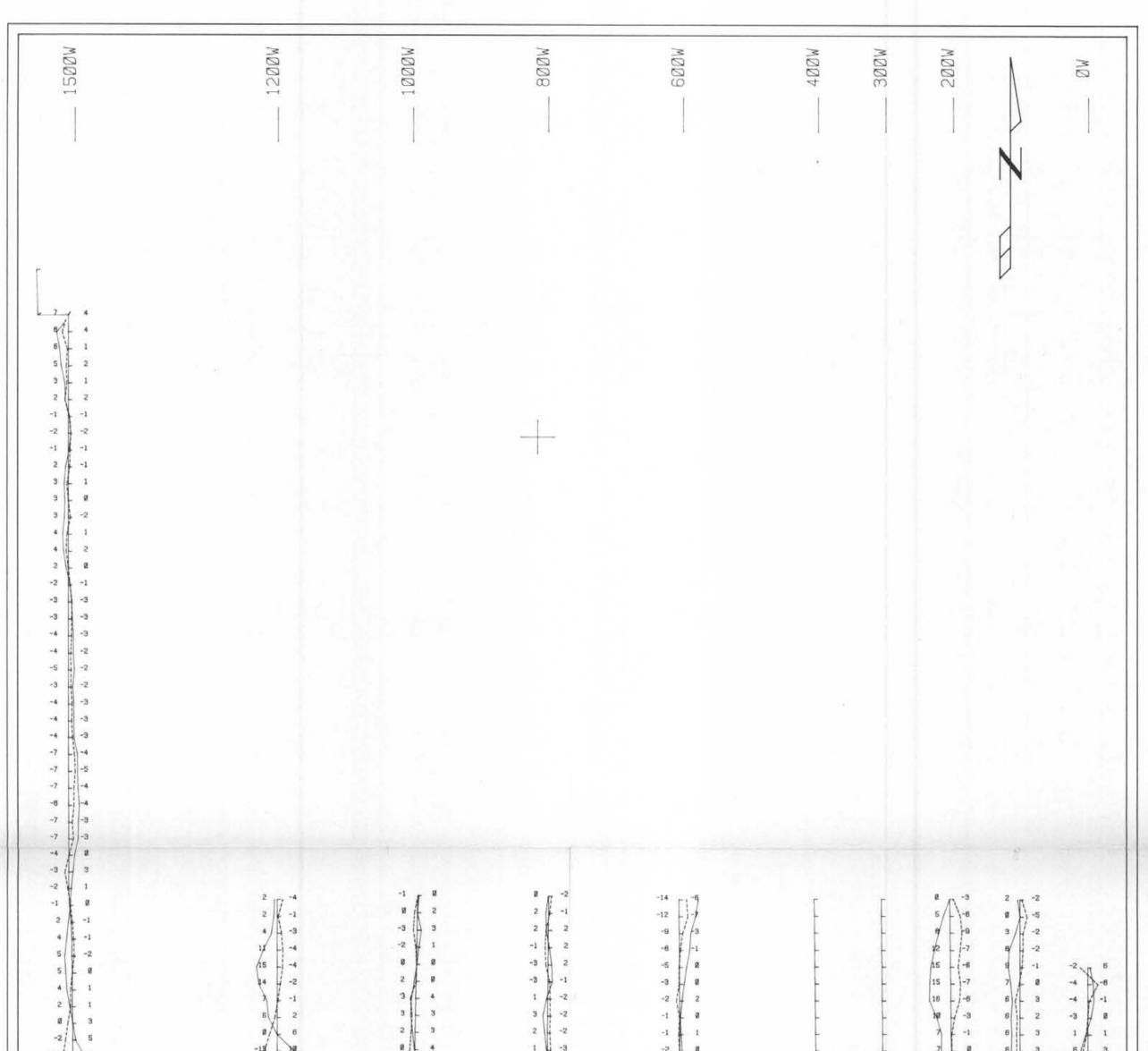


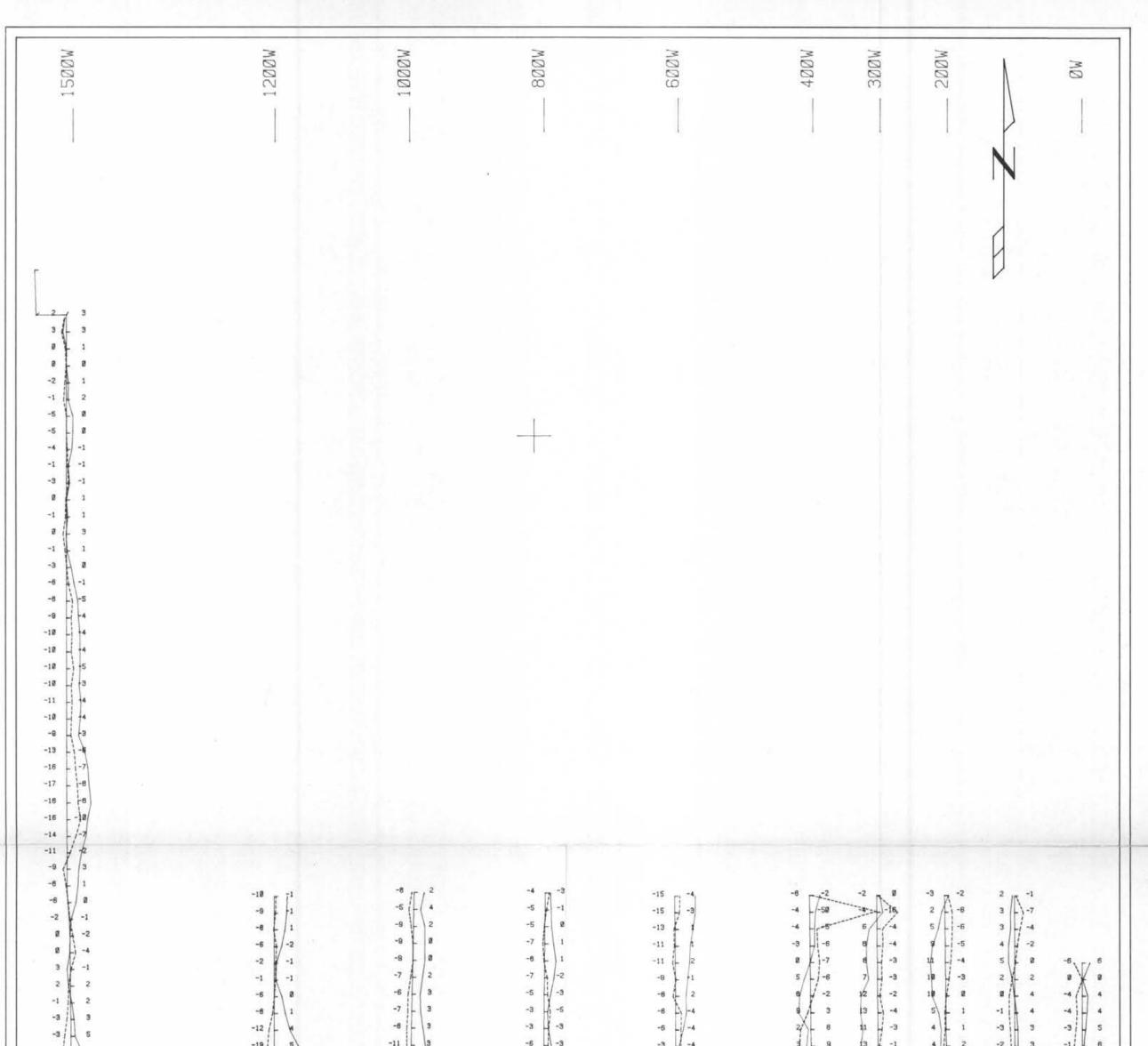




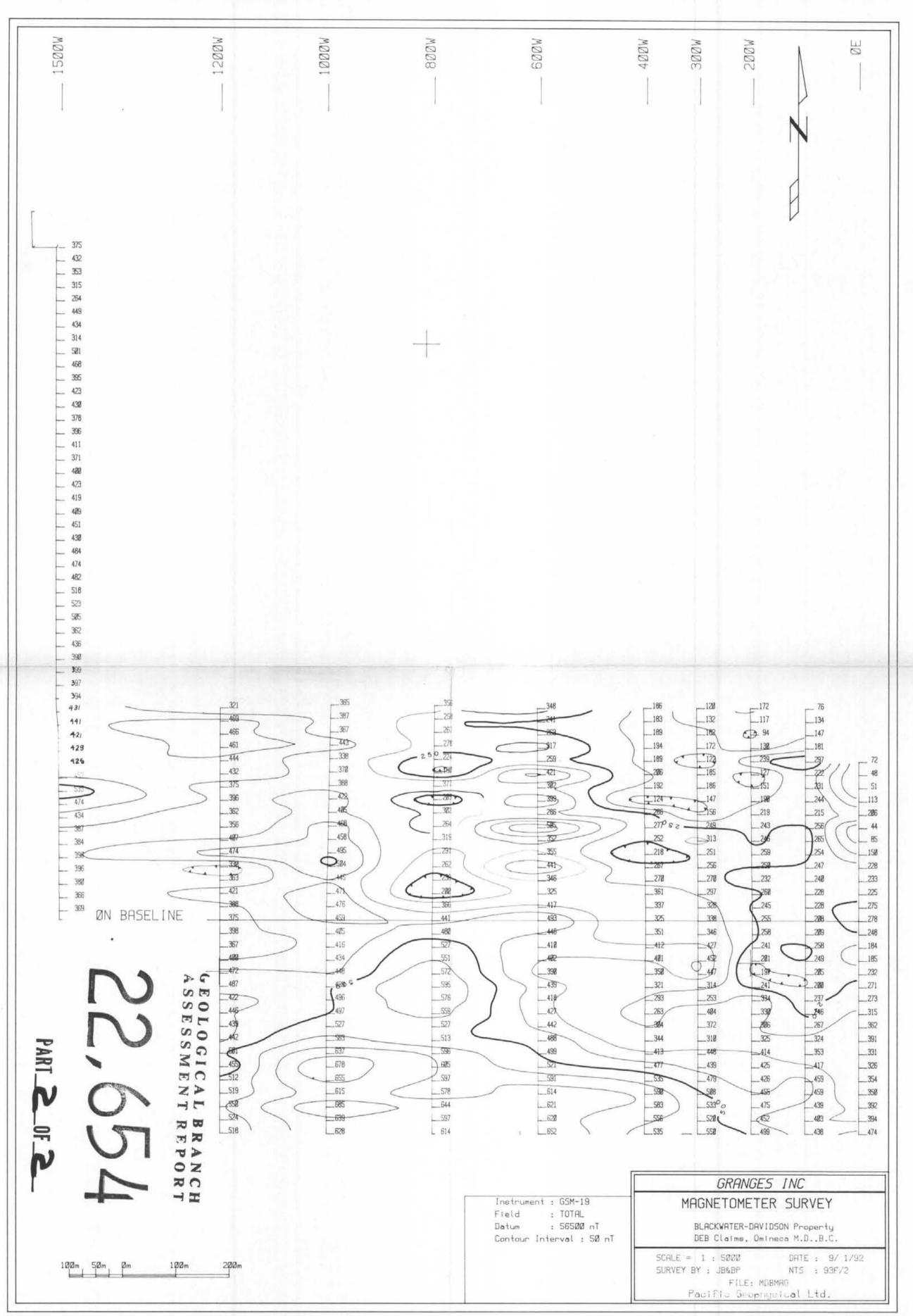







1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N 11+00 N 12+00 N filter 174 132 101 54 27 31 51 86 91 90 129 178 223 284 378 418 5D4 520 680 604 753 673 618 557 filter n=1 130 Q7 . 18 . - 62 -251 - 204 298 35 455 429 952 516 889 -775 1357 -972-1166 1 781 686 999 n=1 n=2 240 632 = 90-349 448 579 927 626 £2 651 965 n=7n=3 H) 417 410 398 - 524 466 n=3 n=4 218 338 313-25 390 777-121 de. n-4 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N 11+00 N 12+00 N . filter 45 54 70 92 105 107 88 70 50 37 72 29 16 13-9.6 8.5 7.5 5.6 4.8 10 9 7 6 5.2 n=1 136 48 67 4.8--4.9-- 52 -4.8 6.1 5 4.1 3.9 3.9 4.1 n=1 n=2 114 65 57 53 47 -52 4.2 4.8 n=2 n=3 31 54 120 7.1 5.3 8.9 6 5.9 81 5.7 n=3 ã1 n=4 12 62 -18 57 12 69 97 6.4 n=4 1+00 N 2+00 N 3+00 N 4+00 N 5+00 N 6+00 N 7+00 N 8+00 N 9+00 N 10+00 N 11+00 N 12+00 N filter 323 591 1610 4218 9154 11K 9479 7398 4147 1787 666G 300 138 75 45 30 24 21 13 15 13 10 8.7 8.2 8.4 filter n=1 370. 1007 .3337 7636 3335 11 11 -89 8.7 7.5_ 6.2 5.7 -4.5. 35 6.8 n=1 -51 n=2 AD. 6816 19K 440-12 64 8.5 n=2 54 n=3 6220 ax 12 785 1309 - 21 --n=3 n=438 125 6374 160 3281 1800 44 3-72 15 n=4 GEOLOGICAL BRANCH ASSESSMENT REPORT

GEOSOFT (tm) Software for the Earth Sciences. Toronto, Canada



-18/-7 -11/-18/-7 -13/-18/-18/-18/-114/-8 -14/-9 -14/-14/-14/-14/-14/-14/-14/-1	-14 - 18 -14 - 8 -14 - 9 -9 - 1 -2 - 1 83 4 - 6 -6 -6	$ \begin{array}{c} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 8 8 8 2 1 1 2 1 1 - 4 1 - 5 8 - 7 8 - 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ASSESSMENT REP DATE	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	200m		E Ver Tx	strument : G5M-19 -t. Scale Inph./Quad: 1cm=25% Location : NSS Annapolis. Md -phase : adrature :	GRANGES VLF-EM Inphase/Quad. BLACKWATER-DAVI DEB Claims, Omi SCALE = 1: 5000 SURVEY BY : JB/BP FILE: Vdap Pacific Geoph	SURVEY Profilee DSON Property Ineca M.D.,B.C. DATE : 9/23/92 NTS : 93F/2 FREQ.: 21.4 KHz.

- - - - - - - - - - - - - - 	BASELINE	-19 - 5 -17 - 3 -15 - 1 -14 - 1 -13 - 2 -14 - 8 -15 - 5 -26 - 18	-11 - 3 -11 - 3 -13 - 3 -14 - 3 -16 - 2 -14 - 6 -11 - 1 -7 - 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3 -4 8 -2 3 -1 4 -1 6 -1 6 -2 4 -3 4 -3 4 -3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
PART_2	SSESSMENT REPO	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
er N	RT			Æ	Instrument : GSM-19 Vert. Scale Inph./Quad: 1cm=25% Tx Location : NLK Havaii	GRANGES INC VLF-EM SURVEY Inphase/Quad. Profiles BLACKWATER-DAVIDSON Property		
	100m 50m 0m 100m	200m		Proper X-Over	In-phase : Quadrature :	DEB Claims, Omineca M.D.,B.C. SCALE = 1: 5000 DATE : 9/23/92 SURVEY BY : JB/BP NT5 : 93F/2 FILE: Vdhp FREQ.: 23.4 KHz. Pacific Geophysical Ltd.		

