

Slocan Mining Division
NTS 82K/5\&12, 82L/8\&9
Latitude $50^{\circ} 30^{\prime}$ Longitude $118^{\circ} 00^{\prime}$

Owner \& Operator: Teck Corp. \#600,200 Burrard st. Vancouver , B.C. V6C 3L9

GEOLOGICALBRANCH ASSESSMENTREPORT

 22,

2

4
G. Evans

November 1992
Kamloops, B.C.

ARIS SUMMARY SHEET

District Geologist, Nelson
Off Confidential: 93.09.03
ISSESSMENT REPORT 22664
MINING DIVISION: Slocan

```
PROPERTY: Arrow
_OCATION: LAT 50 30 00 LONG 118 00 00
    UTM 11 5594484 429077
    NTS 082K05W 082K12W 082L08E 082L09E
    Arrow 1-4
)PERATOR(S): Teck Corp.
AUTHOR(S): Evans, G.
REPORT YEAR: 1992, 92 Pages
`OMMODITIES
SEARCHED FOR:
KEYWORDS: Precambrian-Mesozoic,Shuswap Metamorphic Complex,Deformation
    Faults,Intrusives,Massive sulphides,Pyrite,Sphalerite,Galena
JORK
DONE: Geological,Geochemical,Geophysical,Physical
    GEOL 1375.0 ha
    Map(s) - 1; Scale(s) - 1:10 000
    LINE 26.3 km
    MAGG 22.3 km
    Map(s) - 6; Scale(s) - 1:10 000
    ROCK 150 sample(s) ;ME
SOIL 500 sample(s) ;ME
    Map(s) - 5; Scale(s) - 1:10 000
TREN 1023.0 m 11 trench(es)
    Map(s) - 11; Scale(s) - 1:250,1:200,1:100
RELATED
REPORTS: 17979,19243
IINFILE: 082LSE027
```

PAGE

1. Introduction 1
2. Location \& Access 1
3. Topography and Vegetation 1
4. Claims 1
5. Previous Work and History 2
6. 1992 Work 3
7. Geology 4
a) Regional Geology 4
b) Property Geology 4
8. "Ledge" Horizon \& Mineralization 7
9. Soil Geochemistry 8
10. Magnetometer Survey 9
11. Trenching 10
12. Conclusions and Recommendations 2017
13. References $2 x 15$
LIET OF FIGURES
Following Page
Figure 1: Property Location Map 1
Figure 2: Claịm Map 1
Figure 3: Regional Geology 4
Figure 4: Property Geology In Pocket
Figure 5: Zn in Soils Map In Pocket
Figure 6: Pb in Soils Map In Pocket
Figure 7: Ag in Soils Map. In Pocket
Figure 8: Mn in Soils Map In Pocket
Figure 9: Ni in Soils Map.Figure 10 A \& B: Total Field Magnetic Values In Pocket
Figure 11 A \& B: Magnetometer Survey (Line Profile) In Pocket
Figure 12 A \& B: Magnetometer Survey (Contour)... In Pocket
APPENDICES
Appendix I: Statement of Qualifications
Appendix II: Cost Statement
Appendix III: Certificates of Analysis (Soils)
Appendix IV: Analytical Procedures
Appendix V: Trench Diagrams \& Rock Chip Descriptions
Appendix VI: Certificates of Analysis (Trench Samples)

During 1992, a program of geological mapping and sampling was carried out over the property with concurrent establishment of a grid used for soil sampling and a magnetometer survey. This work has been compiled at 1:10,000 with widespaced coverage of the entire property. Late in the summer of 1992 a trenching program was conducted to expose more of the mineraliztion outlined during the first phase .

This property was staked to cover previously outlined Shuswap style $\mathrm{Zn}-\mathrm{Pb}-\mathrm{Ag}$ mineraliztion on strike with the Big Ledge deposit as part of a larger regional program .

This report describes the present program and results.

2. LOCATION AND ACCESS (Fig.1)

The Arrow claim block is located near the west shore of Arrow Lake approximately 65 kilometers south of the community of Revelstoke ($82 \mathrm{~K} / 5 \& 12,82 \mathrm{~L} / 8 \& 9$) $5030^{\prime} \mathrm{N}$ and 11800^{\prime} West. The property can be accessed via. Highway \#23 south of Revelstoke and then taking the Shelter Bay logging road a further 18 kilometers south . At this point follow the Limekiln spur road for 3.1 kilometers to the Odin road which accesses much of the property.

3. TOPOGRAPHY AND VEGETATION

The property is located west of the Upper Arrow Lake and along the eastern side of the Monashee mountain range. The eastern portion of the property is located along the western shore of Arrow lake at an elevation ranging from 500-1100 meters. The western portions of the property are located to the west of Pingston creek along the base of the hill below Empress Lake with a maximum elevation of 1300 meters .

Vegetation consists of fir and cedar forest with open underbrush at lower elevations, changing to sub-alpine spruce forests at upper elevations. The main land use has been extensive logging . Rainfall is moderate-high in this area which is generally snow covered from October to April.
4. CLAIMS (Fig. 2)

The Arrow claim group is located in the Slocan Mining Division and consists of 55 contiguous units. The property is owned by Teck Corporation of Vancouver. The pertinent data is included in the following table :

t:2,000,000
LOCATION MAP

Flg. 1

ARROW CLAIM GROUP

Claim Name	Record *	No. of Units	Record Date	Expiry Date *	
Arrow 1	304358	20	$09 / 07 / 91$	$09 / 07 / 96$	
Arrow 2	304359	20	$09 / 07 / 91$	$09 / 07 / 96$	
Arrow 3	305089	15	$10 / 05 / 91$	$10 / 05 / 96$	
Arrow 4	305090	1	$10 / 04 / 91$	$10 / 04 / 96$	
TOTAL $=55$ units					

* Expiry Date upon acceptance of this report .

5. PREVIOUS WORK and HISTORY

The property was staked on the basis of known Shuswap Zn -$\mathrm{Pb}-\mathrm{Ag}$ style mineraliztion existing on open ground. Mineralization has been explored in this area since the 1890 's when the Big Ledge mineralization was identified near Empress Lake . Various groups worked portions of this mineralized horizon from the 1890's through 1928 including Consolidated Mining and Smelting Co., as underground work and trenching as well as diamond drilling .

In 1947 Cominco consolidated much of the area and actively explored the area which including drilling from 1947 - 1966 . Since then several companies have explored peripheral areas including the Arrow property . These companies include :

1977- Metallgesellschaft and Cyprus Anvil Mining Corp . Mapped the geology in the area of tha Arrow claims.

1980-1981- Esperanza Explorations conducted geochemical , geological and geophysical surveys in the area of the Arrow claims .

1988-1989- Noranda conducted geochemical and geological surveys over select portions of Arrow claims .

1991- Teck Corp. had the property staked .

The following work was completed on the property :

1) Compassed and flagged grid lines spaced 300 meters apart with stations every 25 meters . Total of $26.25 \mathrm{Km}{ }^{\prime} \mathrm{s}$ of grid lines.
2) Soil samples collected every 50 meters along the lines and analyzed for 30 element ICP. Total of 500 soil samples.
3) A magnetometer survey over the two main grid areas with readings taken at 25 meter stations. Total of 22.3 Km 's of mag.
4) Geological mapping of the property at $1: 10,000$ scale.
5) Trenching several of the outlined target areas . 11 Trenches for a total of 1023 meters . Trenches mapped and sampled . 150 rock samples taken.

7.

GEOLOGY
a) REGIONAL GEOLOGY (Fig. 3)

This area has seen a wide range of regional mapping with Bulletin 195 by J.E. Reesor and J.M. Moore (1:50,000 scale) providing the foundation along with more recent work by Sharon Carr and Ian Duncan adding further refinement. The area is largely underlain by Shuswap metamorphic rocks intruded by Eocene granodiorites and pegmatites .

The Shuswap metamorphic rocks belong to the Proterozoic Mesozoic amphibolite grade complex. Ages of the rocks in the area of the property are poorly understood but recent work by S.Carr suggests much of the thick sequence correlates with the Gold Range assemblage which hosts the Big Ledge deposit which maybe of Cambrian age .

This region is located on the southern margin the ThorOdin Dome and is seperated from the high grade central gneiss complex by the Slate Mtn. Shear zone and the Monashee decollement. These structures were active during the peak of metamorphism resulting in active thrusting and later denudation of rocks in the area of the Arrow claims over migmatites and granitic gneisses in the core of the Thor-Odin dome.

Rocks of the Gold Range assemblage form a thick overlying sequence consisting of quartzites, marbles, pelites and biotite gneisses as well as amphibolites in various proportions. These rocks have a complex structural history with at least three phases of folding and several stages of faulting . Metamorphism in this area is dominated by sillimanite-almandine-orthoclase facies. It is believed the pegmatite dyke swarms and various granodiorite to monzonite intrusives are related to the Eocene Ladybird Pegmatite formed during the unroofing of the complex.
b) PROPERTY GEOLOGY (Fig. 4)

Greater than 80% of the surface of the Bull property is covered with overburden so that outcrop is limited to cliff faces , road cuts and resistant ridges. Only brief mapping was carried out in the time available and plotted on a 1:10,000 base map covering as much of the property as time permitted.

LEGEND

UPPER CRUSTAL ZONE

政 MIDDLE JURASS
 grenodiorte

From Carr, 1989

- PALEOZOIC - LOWER JURASSIC STRATIFIED ROCKS:

MIDDLE CRUSTAL ZONE
†7 LATE PALEOCENE - EARLY EOCENE LADYBIRD ORANTTE SUITE: blothe granite, quartz monzonite, leucocratic pegmatite (atso Includes arees with

LATE CRETACEOUS WHATSHAN BATHOLTH (Includee Cariboo Creek stock): hornblende blotite bearing K-feldapar megacryatic quartzPROTEROZOIC - MESOZOIC AMPHIBOLIE FACIES METAMORPHIC ROCKS: FA = Fawn Lake aseemblage; $O A=$ Oold Range atsemblage

BASEMENT ZONE

. ${ }_{3}^{3}$ PROTEROZOIC CRYSTALLINE BASEMENT AND LATE PROTEROZOIC (i) CAMBRIAN COVER GNEISSES

GEOLOGIC CONTACT; MAPPED, COMPILED FROM PUBLISHED MAPS, ASSUMED

22
LOW - MODERATE ANGLE EOCENE NORMAL. FAULT (PEGS ON
HANGING WALU)

$* * * * *$ STEEP EOCENE NORMAL FAULT; SENSE OF DISPLACEMENT UNCERTAIN $\frac{6}{6}$ LTHOPROBE LINE

CF. BEAVEN FAULT
CHERAMMLEFAULT
CRF COLUMBLA AIVER FAULT
GCSZ GWULM CREEK SHEAR ZONES
MD MONASHEE DECOHEMENT
OF MONASHEE DECOLLEMENT
$\begin{array}{ll}\text { SLRZ } & \text { SIOCANAN LAKE FAUEY-EAGLE } \\ \text { SIONE } \\ \text { SSZ } & \text { SLATE MOUNTAINL SHEAR ZONE }\end{array}$ SLATE MOUNTAIN SHEAR ZONE VALKYR SHEAR ZONE

REGIONAL GEOLOGY

Fig. 3

The property is dominated by biotite-sillimanite schists with lesser quartzites, marbles and calcsilicates. The NW corner of Arrow 1 is underlain by extremely mafic garnet bearing amphibolites believed to belong to the Proterozoic Fawn Lake assemblage. These rocks display intense deformation believed to relate to the Slate Mtn. shear zone.

Overlying this sequence is the Fawn Lake assemblage which displays less deformation. This assemblage strikes E-W to N-S with generally moderate to shallow dips to the south or east . The stratigraphy on the property consists of approx. 60\% biotite-sillimanite schists (probably a pelitic mud with a tuffaceous mafic volcanic component as a protolith) interbedded with quartzites and amphibolites as well as the occassional marble unit . No tops evidence are preserved and using the "Ledge " horizon as a marker horizon no fold duplications are indicated.

Along the southern edge of Arrow $1 \& 2$ large sill like bodies of pegmatite and Ladybird intrusives have flooded into the amphibolites and biotite schists without disturbing their orientations. The rest of the property has generally less than 10\% Ladybird intrusives . In several places small Tertiary lamprophyre dykes were located with little or no metamorphism indicating they postdate all other events.

Several styles of folding are evident on the property on an outcrop scale. Compositional layering is very close to being paralell to bedding with isoclinal folds common along this axial plane . Limited lineation measurements indicate a shallow easterly plunge . Carr believes there are several stages of folding along this orientation related to the peak of metamorphism . Later broad folds can be seen along Upper Arrow Lake, warping the sequence on a 10-50 meter scale.

Faulting along the foliation is common with no true sense of offset . Late stage faults are apparent along $N-S$ trends ie. Pingston Creek with a left lateral offset which in part maybe a rotational movement.

SHUSWAP ROCK UNIT DESCRIPTIONS

These units are subdivided into general ages but Shuswap rocks are ordered by lithology with no stratigraphic order:

SHUSWAP ROCKS (Proterozoic - Mesozoic)
Unit la) - Masive Amphibolite -A medium-coarse grained groundmass dominated by amphiboles with lesser amounts of biotite and plagioclase . Commonly contains varying amounts of $.5-2.0 \mathrm{~cm}$ almandine garnets in layered amphibolites.

Unit 1b) - Amphibolite w/ Calc-silicate Laminations - The same amphibolite unit as la) with alternating bands of quartzites with diopside - tremolite and actinolite . Laminations generally on a one centimeter scale or less .

Unit 1c) - Amphibolite w/ Biotite Schist - The protolith of this unit is likely a mixture of mafic tuffs and pelitic sediments. The resultant metamorphic rock is a mixture of medium grained amphibolites containing an equal amount of micas (both biotite and muscovite) . This rocktype commonly contains sillimanite aggregates .

Unit 2) - Biotite Schist - Well laminated biotite with lesser muscovite bearing schists . Can contain quartzite laminations and occasionally 0.5 cm . almandine garnets . Commonly the surface is strongly gossanous due to the high iron content and trace amounts of disseminated pyrite and pyrrhotite are present -

Unit 3) - Biotite Gneiss - Matrix is dominated by finely laminated medium grained white - grey quartzite with 20-30\% biotite schist laminations varying in thickness from 0.5-10.0 cm.

Unit 4) - Quartzite - Medium grained quartzite grains form beds $10-20 \mathrm{~cm}$. in thickness , which display bedding with preferential weathering of certain beds due to change in grain size and carbonate content . Color varies from white to buff or a grey color . Minor rutile , biotite and muscovite grains are present .

Unit 4a) - Quartzite w/ Flake Graphite - Dull grey colored fine grained quartzite with trace-20\% disseminated flake graphite grains . Commonly contains 2-10\% disseminated pyrite and pyrrhotite with trace amounts of disseminated sphalerite .

Unit 4b) - Quartzite w/ Calcsilicate Laminations - Medium grained quartzite takes on a light green color with diopside in the matrix . Occasional laminations of calcsilicates consisting of diopside, tremolite and actinolite . Calcsilicates contain minor grains of rutile, muscovite and biotite .

Unit 5) - Marble - Marble units normally appear as grey massive weathered units grading to dark grey with increasing graphite component . Calcite grains are $1-3 \mathrm{~mm}$ and bedding is usually apparent with graphitic beds or minor calcsilicate laminations . Occasionally flake graphite disseminations are present within the marble.

Unit 5a) - Calcsilicates +/- Marble - These rocks are a pale green color with beds and pods of marble preferentially eroded - The calcsilicates consist of impure quartzites containing diopside, amphiboles, biotite with minor rutile and muscovite.

JURRASSIC ROCKS (above Columbia and Okanogan Faults)
Unit 6) - Argillite - Graphitic argillite and phyllite with strong slaty cleavage . Bedding is preserved with interbedded graywackes common .

Unit 6a) - Mafic Volcanics - Pervasive chlorite alteration to various mafic volcanic units with a strong schistosity developed . Remnant textures include laminated tuffs, vesicular flows and lappili tuffs .

TERTIARY LADYBIRD LEUCOGRANITE SUITE

Unit 7) - Pegmatites - Coarse grained dykes sills and small plugs of pegmatites are common throughout all rocktypes. Normally the rock is dominated by $0.5-1.0 \mathrm{~cm}$. crystals of quartz, alkali feldspars and plagioclase . Varying lesser amounts of biotite, muscovite and tourmaline are also present.

Unit 7a) - Ladybird Granites - These form fine to medium grained stocks and plutons . Compositionally these rocks range from granite to quartz monzonite . Minerals consist of plagioclase alkali feldspar and quartz with access muscovite biotite and occasionally garnet .

EOCENE DYKES

Unit 8) - Lamprophyre Dykes - Occassional unaltered extremely mafic dykes are present . Matrix is a dark brown fine grained biotite , amphibole and mafic minerals with ocassional vesicles and calcite filled amygdules.

8. " LEDGE " HORIZON \& MINERALIZATION

The " Ledge " horizon is a distinctive quartzite package that hosts the $\mathrm{Zn}-\mathrm{Pb}-\mathrm{Ag}$ mineralization accross the width of the property . This horizon can be traced for 1500 meters trending $N E$ on the west side of Pingston Creek and for a further 2500 meters through the central portion of Arrow $1 \&$ 2 again trending NE . The horizon where exposed is surprisingly consistent with a 40 meter true thickness.

A distinctive quartzite containing 2-20\% flake graphite and trace to 10% disseminated sulphides ($p y, p o, s p$) is the dominant lithology with lesser massive sulphides, calcsilicates , marbles and rare biotite-sillimanite schists

This horizon contains $5-75 \%$ sections of massive sulphides consisting of pyrrhotite, pyrite, sphalerite, galena and trace amounts of chalcopyrite. These multiple horizons have been the focus of previous work to assess the economic mineral potential. Generally near the sulphide zones the quartzite has a calcsilicate component and occasionally thin marble units are present. While the thickness of this horizon is unusually large, in many respects it is a typical Shuswap style $\mathrm{Zn}-\mathrm{Pb}-\mathrm{Ag}$ system . The sulphides appear crudely zoned with Pb dominant sections associated with narrow marble horizons. The most common form of mineralization is massive fine grained-medium grained pyrrhotite with disseminated pyrite and sphalerite. The highest grade Zn mineralization appears related to medium grained semi-massive sulphides consisting of sphalerite and pyrite . Normally the graphitic and calcsilicate rich quartzites also contain 0.1-3.0 \% disseminated Zn .

Alteration is essentially absent (minor barite, muscovite) which supports a possible syngenetic origin for this system which maybe a form of sed-ex $\mathrm{Zn}-\mathrm{Pb}$ system. Footwall and hangingwall units show no obvious alteration with no mineralization present supporting a stratiform origin of the mineralization. The true thicknesses of the sulphide mineralization are often difficult to estimate due to the dip slope nature of of the horizon exposed on the property as well as the mineralization having undergone the same intense deformation as the host rocks .
9. BOIL GEOCHEMISTRY (Figs. 5-9)

Samples were collected along 14 lines spaced at right angles to the stratigraphy every 50 meters for a total of 500 samples . Samples were collected from the B horizon which varied in depth from $25-80 \mathrm{~cm} ' s$ and sample details were noted at each site.

Samples were sent to Echo-Tech Labs Laboratories Ltd. in Kamloops B.C. and were analyzed for the 30 element ICP package . This package includes $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Pb}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}$, $\mathrm{Mn}, \mathrm{Mo}, \mathrm{V}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Bi}, \mathrm{As}, \mathrm{Sb}, \mathrm{Ba}, \mathrm{Al}, \mathrm{K}, \mathrm{Na}, \mathrm{Sr}, \mathrm{Sn}, \mathrm{w}, \mathrm{La}$, $\mathrm{Y}, \mathrm{B}, \mathrm{P}, \mathrm{Ti}$, and U . See the appendix \#IV for details of the analytical procedure .

Results were put through a preliminary statistical package to determine useful elements which were plotted on the maps included in this report. These include $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Mn}$ and Ag .

SOIL STATISTICS FOR THE ARROW PROPERTY

PERCENTILE	Zn (ppm)	pb (ppm)	Ag (ppm)	Mn (ppm)	Ni (ppm)
Minimum	12	<2	$<.2$	46	5
75%	121	10	.2	361	24
95%	291	18	.2	927	58
Maximum	1398	1022	.6	2907	453

Zinc outlines the "Ledge" horizon in both the western grid, to the west of Pingston creek (LOE-L12E) and along the eastern portion of the eastern grid area (L27E-L42E) . The soils reflect the horizon quite clearly (200-1398 ppm zn range) with a general dispersion to the south reflecting down slope and dispersion along glacial movement to the south .

Lead shows a weak correlation with zinc with the most pronounced anomalies almost directly above the horizon (ie. LOE and L33E with Pb values in the 276-1022 ppm range). This corresponds to both the lower Pb content in the mineralization and the lower mobility of lead in carbonate rich soils. Silver showed up as being incredibly uniform low values with only four spot anomalies over the background of .2 ppm Ag

Nickel shows several anomalous areas which in general do not correspond to $\mathrm{Zn}-\mathrm{Pb}$ anomalies except L42E ie., the elevated Ni values may in part be related to elevated Ni values within the amphibolites in the areas to the south of the ledge horizon. . Mn has several large anomalous areas which in part include the ledge horizon (LOE-L9E as well as L 36 E and L42E). Mn also idicates anomalous areas in several regions (particularly the southern portion of the eastern grid) underlain by biotite-amphibolite schists reflecting their high primary? Mn content .

Other elements not plotted but which appear to correspond with the $\mathrm{Pb}-\mathrm{Zn}$ anomalies include $\mathrm{Cd}, \mathrm{Fe}, \mathrm{V}, \mathrm{Ba}$ and possibly As and P.

10. MAGNETOMETER SURVEY (Figs 10 A\&B - 12 A\&B)

Magnetic surveys have proved quite effective at locating Shuswap style mineralization including previous surveys over the Big Ledge.

In 1992 a Geometrics Model G-816 portable proton magnetometer was used on the western and eastern grid lines with multiple readings taken at every 25 meter station (Total of 22.3 Km 's along both the west and east grids) . For drift corrections base station points were established and daily and hourly corrections were made where necessary .

Plots were made of these recce grids (Figs. 11 \& 12) with a background of approximately 57,500 gammas. From this a contrast of as much as $2000+$ gammas has been seen over pyrrhotite bearing massive sulphide zones but the magnetic anomalies do not show a direct relationship with the massive sulphides. In several cases massive po-sp zones do not have a signifigant magnetic signature. In other instances ie. L9E and LL2E magnetic anomalies with values of $2000+$ gammas are not related to sulphides but rather amphibolites and calcsilicates which contain disseminated magnetite . More subdued anomalies (200-500+ gammas) in the northern portion of the eastern grid correspond to amphibolite units .

11. TRENCHING (Appendix V for Trench Maps \& Sample Description)

During the latter part of August and early September 12 trenches were completed for a total of 1023 meters (See Fig. 4 for location).
Trenches 3A, 3C, 3F, 4, 5C, 7, 8, 9, 10, and 11 encountered the "ledge" horizon with various grades . A brief summary of each trench is included in the following section :

TRENCH \# 1
LOCATION- (N.End a $9+50 \mathrm{E}, 1+50 \mathrm{~S}$ and trends S . for 79 meters)
Trench \# 1 tested a strong magnetic anomaly located at $1+50 \mathrm{~S}$ on L9E . The magnetic anomaly appears related to amphibolites and calcsilicates with disseminated magnetite rather than the "ledge" horizon. This sequence forms the structural hangingwall to the mineralization and consists of mixed amphibolites, calcsilicates and quartzites interbedded on $10 \mathrm{~cm}-2$ meter intervals. Zn soil anomalies are present above this trench and are likely related to massive sulphide float boulders (ie. \#708A- 3.14\% Zn) encountered in the trench. Trace to 1% po and py were seen in the amphibolites but only trace amounts of Pb and Zn were present in the rock sampling (Max. 158ppm Pb and 365 ppm Zn) . 19 rock chip samples collected were collected (series \# 41701-719) .

TRENCH \# 2
LOCATION- (N.End e 8+50E, 0+30S and trends \& 160 for 175 meters - for a total of 122 meters)

Trench \# 2 tested the same magnetic and soil geochemical anomalies with similar results to trench \# 1. Again the magnetic anomaly appears related to amphibolites and calcsilicates with disseminated magnetite as well as 3\% disseminated po . Several massive sulphide boulders were encountered along the length of the trench and likely are the source of the soil geochemical anomaly . 36 rock chip samples were collected over the length of the trench with no signifigant base metal values (series \# 41720-755).

TRENCH \# 3A, 3C, and 3F
These trenches opened up mineralization exposed along an old cat trail between L9E and L12E north of Sunshine Creek. Much of the exposed mineralization is along the dip slope so true thicknesses are difficult to estimate.

TRENCH \# 3A
LOCATION-(Intersection of Tee in trench @ L12E, 4+25N w/ 47 meters trenched .)

This. trench uncovered a portion of the ledge horizon approximately 10 meters in true thickness. At least two and possibly three massive sulphide sections were exposed within sugary quartzite containing disseminated sulphides and flake graphite . 15 rock chip samples were collected (series \# 41827-841) . Values in individual samples ranged as high as $4.5 \% \mathrm{Zn}, .45 \% \mathrm{~Pb}$ and 4.9 ppm Ag . Fifteen rock chip samples were taken (series 41827-41841).

TRENCH \#	WIDTH	TRUE WIDTH	GEOLOGY	Ag g/t	Pb\%	Zn $\%$
3A	10.2 m	5.4 m	Qtz. \& MS	3.3	0.2	3.0
other \because	2.0 m	1.1 m	MS	1.6	0.1	4.5
other	6.3 m	-2.8 m	Qtz \& MS	2.8	0.3	2.4

TRENCH \#3C
LOCATION- (Center of trench 11E, 3+25N - w/ 30 meters trenched)

The trench was located along an old skid trail and exposed a section of the "ledge" horizon. Again much of the exposure is dip slope but it is estimated a true width of six meters was exposed. At least two massive sulphide horizons were exposed within quartzites with the highest values from these strongly oxidized zones being $2.22 \% \mathrm{Zn}, .46 \% \mathrm{~Pb}$ and 4.3 ppm Ag . Eight rock chip samples were taken (series 41819-41826) .

TRENCH *	WIDTH	TRUE WIDTH	GEOLOGY	Ag g / t	Pb\%	Zn $\%$
3 C	10.0 m	6.0 m	Qtz. \& MS	2.4	0.2	1.2
		\vdots				
other	8.0 m	4.0 m	MS	3.5	0.1	2.1

TRENCH \#3F
LOCATION- (NE end of trench a 9+20E, 1+30N w/ 28 meters of trenching)

This trench exposed the upper section of the "ledge" horizon with a thin sliver of the hangingwall biotite sillimanite schists exposed in the SW corner of the trench . Massive po, sp lenses are exposed within mineralized quartzites which are mixed with calcsilicates. The highest grades were found in diopside bearing quartzites with stringers and disseminations of py, sp with maximum values of $3.22 \% \mathrm{Zn}, .69 \% \mathrm{~Pb}$ and 24.5 ppm Ag . This trench is estimated to have exposed the upper 8.2 meters (true thickness) of the "ledge" horizon at this location. The Pb and Ag values are higher than usual in this trench and are likely related to the higher carbonate component. Twelve rock chip samples were taken (series 4180641817)

TRENCH \#	WIDTH	TRUE WIDTH	GEOLOGY	Ag g/ t	Pb\%	Zn $\%$
$3 F$	11.5 m	8.2 m	Qtz \& MS	11	0.5	2.1
includes	3.5 m	2.5 m	Qtz. W/ dissem	25	0.7	3.2

TRENCH \#4
LOCATION- (@ Sulphide Exposure 8+70E, 0+80N w/ a total of 105 meters of trenching .)

This trench was planned to expose the horizon near mineralized subcrop . Unfortunately overburden was much thicker than anticipated and only a large block of massive sulphides was exposed in the entire 105 meters of trenching. The massive sulphides consist of massive po,py,sp and ga with maximum values of $3.4 \% \mathrm{Zn}, 1.7 \% \mathrm{~Pb}$ and 13 ppm Ag over a surface width of 3.4 meters. Three rock samples were taken (41761,62 and TR-4-6)

TRENCH \#	WIDTH	TRUE WIDTH	GEOLOGY	Ag g/t	Pb\%	Zn \%
4	3.7 m	$?$	MS	3.0	0.3	1.4
4	3.4	$?$	MS	13	1.7	3.4
4	Zone	$?$	MS	11	1.4	3.2

TRENCH \#5A
LOCATION- (N. end a $2+90 \mathrm{E}, 0+20 \mathrm{~S} \mathrm{w} / \mathrm{a}$ total of 15 meters of trenching.)

This trench tested a magnetic anomaly in what turned out to be well into the footwall biotite-sillimanite schists . Minor marbles and quartzites were encountered but no signifigant mineralization is present . No rock samples were taken .

TRENCH \#5B
LOCATION- (N. end a $2+90 \mathrm{E}, 0+55 \mathrm{~S}$ / a total of 13 meters of trenching.)

This trench again encountered the biotite-sillimanite schists in the footwall of the "ledge" horizon . No mineralization was encountered and no samples were taken.

TRENCH \#5C
LOCATION- (N. end e $2+90 \mathrm{E}, 0+95 \mathrm{~S}$ w/ a total of 72 meters of trenching.)

This trench intersected the main "ledge" horizon with an apparent horizontal width of 31 meters.. Both immediate hangingwall and footwall to this horizon were exposed and consist of biotite-sillimanite schists. The horizon consists dominantly of quartzites with disseminated graphite and sulphides and varying amounts of diopside.

Mineralization is present as disseminated and veinlets of sp throughout the horizon but two main intervals of massive to semi-massive sulphides were exposed in the trench . Zone "A" is the southernmost zone from 31-42 meters and consists of semi-massive sulphides (20-40\%) py $>$ po with sp and ga associated with diopside rich quartzite with occasional 10-30 cm . marble beds. Surrounding quartzites contain 1.0-3.2 \% Zn with the semi-massive sulphides containing up to $6.8 \% \mathrm{Zn}, .2 \%$ Pb and 7.6 ppm Ag . Zone "B" from 50-57 meters consists of massive sulphides dominated by po with lesser amounts of py, sp , and ga . Maximum values in this zone are up to $7.7 \% \mathrm{Zn}$, $.35 \% \mathrm{~Pb}$ and 5.9 ppm Ag .

In general foliation suggests an E-W strike with a dip of approximately 45 degrees to the south for this sequence but portions of the package eg. zone "A" indicate a vertical dip with a shallow easterly plunge. In trench 5C 41 rock chip samples were collected (series \# 41763-41803) .

TRENCH \#	WIDTH	TRUE WIDTH	GEOLOGY	Ag g/t	Pb\%	Zn $\%$
5C Zone A	9.7 m	-9.7 m	Diop. Qtz. W/ MS	2.7	0.1	2.4
includes	1.0 m	1.0 m	semi-mass sp	7.6	0.2	6.8
5 C Zone B	8.6 m	$\sim 8.6 \mathrm{~m}$	MS \& Diop. Qtz.	2.6	0.1	2.1
includes	2.2 m	2.2 m	MS Po \& Sp	2.9	0.1	5.6
includes	0.7 m	0.7 m	Semi MS	2.6	0.1	7.7
5 C	1.3 m	1.3 m	Qtz.	0.6	-	0.8

TRENCH \#6 was placed 50 meters to the east of trench 5C but could not reach bedrock and was abandoned.

TRENCH \#7
LOCATION- (The SE end of the trench is located @ L39E, and $0+88 \mathrm{~N}$ W/ 115 meters trenched .)

The trench encountered an E-W striking and shallow southerly dipping sequence of quartzites containing 5-40\% flake graphite with trace -5% disseminated po and py . This sequence underlies a Zn soil anomaly and is believed to be the "ledge" horizon . Very little mineralization was seen in the sequence and of 12 rock chip samples taken (TR 7 1-12 series) only sample TR-7-2. had any values with . 3\% Zn .

TRENCH \#	WIDTH	TRUE WIDTH	GEOLOGY	Ag g / t	Pb\%	Zn $\%$
7	4.5 m	3.0 m	Qtz	0.4	-	0.3

TRENCH \#8
LOCATION- (N. end of trench @ $41+95 \mathrm{E}, 4+10 \mathrm{~N}$ w/ 71 meters trenched .)

The trench again uncovered weakly mineralized graphitic bearing quartzites of the "ledge" horizon similar to Trench \#7 - The sequence strikes to the NE in this area with a shallow dip to the $S E$ which is almost dip-slope. Only 7 rock chip samples were taken (TR-8-1 to 7), with the maximum value of $1.22 \% \mathrm{Zn}$.

TRENCH *	WIDTH	TRUE WIDTH	GEOLOGY	Ag g/t	Pb\%	Zn $\%$
8	7.0 m	2.0 m	Quartzite (Graph)	0.2	-	0.1
8	3.0 m	-1.0	Semi-MS (py)	0.3	-	1.2

TRENCH \#9
LOCATION- (N. end of trench e $27+25 \mathrm{E}, 0+08 \mathrm{~S}$ w/ 125 meters trenched .)

The trench uncovered a large section of biotite-sillimanite schists in the footwall of the "ledge" horizon. Towards the south end of the trench the "ledge" horizon was encountered for a short distance . Narrow ${ }^{*} 1$ meter lenses assayed as much as $4.5 \% \mathrm{Zn}, .45 \% \mathrm{~Pb}$ and $4.9 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ but most of the horizon is covered in deep overburden . 11 rock chip samples were taken (series 41842-41852) .

TRENCH \#10
LOCATION- (N . end of trench @ $28+75 \mathrm{E}, 0+10 \mathrm{~N}$ w/ 75 meters trenched .)

This trench was placed paralel to trench \# 9150 meters along strike to the east. The trench again uncovered a large section of the structural footwall which consists of biotite sillimanite schists . Unfortunately the "ledge" horizon was covered by deep glacial outwash deposits and could not be exposed in this trench . No rock samples were taken.

TRENCH \#11

LOCATION- (W. end of trench \& $30+05 \mathrm{E}, 0+60 \mathrm{~N}$ w/ 126 meters trenched .)

This trench uncovered a large section of the "ledge" horizon along strike 12 massive sulphide sections were uncovered within graphitic and calcsilicate rich quartzites. The mineralization is often near dip slope and complex structures including isoclinal folds were encountered. For these reasons it is felt that several of these horizons are replications of the same horizon.

26 rock chip samples were taken (series 41871-896) with only low values eg. maximum values of $1.74 \% \mathrm{Zn}, .15 \% \mathrm{~Pb}$ and 4.8 ppm Ag . It is estimated that the maximum true thickness of the sequence exposed in this trench is approximately 15 meters .

TRENCH *	WIDTH	TRDE WIDTH	GEOLOGY	Ag g / t	Pb\%	Zn $\%$
11	63 m	$>15 \mathrm{~m}$	Qtz. \& MS	1.5	-	0.8

12. CONCLUBIONS AND RECOMMENDATIONS

The Arrow property covers a package of stratigraphy which correlates to stratigraphy hosting shuswap type $\mathrm{Pb}-\mathrm{Zn}$ mineraliztion known as the "ledge" horizon. This horizon was outlined over 4.5 km 's of strike length on the property with mapping , soil sampling (Pb, Zn anomalies) and erratic magnetic anomalies. This was followed up by a trench program which exposed the horizon in several locations.

The "ledge" horizon is a persistent horizon which averages 40 meters in true thickness and is dominated by mineralized graphite bearing quartzites with lesser amounts of massive sulphides, calcsilicates and marbles. Zn is the dominant commodity with values in the $0.5-8.0 \%$ range with lesser amounts of Pb and Ag . Mineralized sections can attain greater than 30 meter true thicknesses and the moderate to shallow dip makes this an attractive open pit target.

To determine the economic potential a diamond drill program should be conducted . The most promising area from work to date is the area along the west grid. Issues that need to be resolved include structures controlling mineralization and primary? metal zonation.

REFERENCES

S. Carr	Implications of Ladybird granite in the Thor-Odin - -Pinnacles area, pp. 79 ,GSC 89-1E Current Research
I. Duncan	The Evoloution of the Thor-Odin Gneiss Dome and Related Geochronological Studies, PhD @ U.B.C. , 1982
G. Gill	Geological/Geochemical Survey onthe Pingston Group of Claims, BCDM AR\# 19,243 \& 17,979 1989, 1988
P. Read	G.S.C.-O.F.\# 464 Lardeau - West Half
J.E. Reesor and	G.S.C. Bulletin \#195 Petrology and structure of
J.M. Moore Jr.	Thor-Odin Gneiss Dome ,Shuswap Metamorphic Complex

APPENDIX 1

statement of qualifications

STATEMENT OF QUALIFICATIONS

I , Graeme Evans , do certify that:

1) I am a geologist and have practiced my profession for the last ten years .
2) I graduated from the University of British Columbia , Vancouver, British Columbia with a Bachelor of Science degree in Geology (1983).
3) I was actively involved and supervised the Arrow program and authored the report herein.
4) All data contained in this report and conclusions drawn from it are true and accurate to the best of my knowledge.
5) I hold no personal interest, direct or indirect in the Arrow property which is the subject of this report .

Gramme Evans
Project Geologist
November , 1992

APENDIX II

Cost statement
STATEMENT OF EXPENDITURE

1. GEOLOGY \& TRENCH MAPPING
Fred Daley (Exploration Manager) 1 Day @ $\$ 311.20$ /day $\$ 311.20$
Graeme Evans (Project Geologist)23 Days e $\$ 271.15 /$ day(July 4-12, Aug 12-18, Sept1-7) \$6236.45
Hugh Stewart (U.B.C. Eng. Student) 40 Days a $\$ 195.75$ /day (July 4-12, Aug 14- Sept 7) \$ 7830.00
2. SOIL SURVEY \& GRID WORK
Discovery Consultants Crew (3 Men) 18 Man Days + Vehicles + Accom. \$ 7792.75
3. ANALYTICAL COSTS
500 Soil Samples for 30 element ICP
e Eco-Tech Labs \$7.28/sample \$ 3640.00
150 Rock Chip samples for 30 element ICP e Eco-Tech Labs $\$ 10.30 /$ sample \$ 1545.00
54 Rock samples assayed for $\mathrm{Zn}, \mathrm{Pb}, \mathrm{Ag}$@ Eco-Tech Labs $\$ 26.00 /$ sample $\$ 1404.00$
4. TRANSPORTATION
40 Days e $\$ 70$ /Day $\$ 2800.00$
5. FOOD \& ACCOMMADATION
63 Man Days a \$ 60/day $\$ 3780.00$
6. TRENCHING
J.D. 690 of H.J. Ready Mix of Revelstoke 105 hrs . $\$ 90 / \mathrm{hr}$ \$ 9450.00
7. MAP PROCESSING \& REPORT
Drafting, Compilation etc.
Steve Archibald 10 days $@ \$ 180.00 /$ day \$ 1800.00
Report Writing \& Preparation
Graeme Evans 8 Days e $\$ 271.15 /$ day \$ 2169.20
Prints, copies \& materials $\$ 525.00$

APENDIX III

Certificate of Analysis (Soils)

Date of Report：22－Jul－92
Project 319
ARROH
Soil Saapling Results
1992
Reference：92etk－305，92etk－310
 ppe ppa ppa ppa ppa ppa \＆q $\%$ jppa ppe ppa ppe ppa ppe

LOE	$10+00 \mathrm{~N}$	57	＜1	4	＜0．2	26	7	0.07	0.34	3.81	411	1	． 51	10	26	＜5
L OE	$9+50 \mathrm{~K}$	97	＜1	2	＜0．2	43	43	0.45	1.92	4.07	320	く1	102	28	151	＜ 5
LOE	$9+\mathrm{OON}$	73	（1）	8	＜0．2	20	11	0.12	0.27	3.93	187	1	63	13	36	5
Loe	$8+50 \mathrm{M}$	106	＜1	6	＜0．2	29	24	0.13	0.76	3.87	264	＜1	71	29	55	く5
L OE	$\mathrm{O}+\mathrm{OON}$	128	＜1	10	＜0．2	13	15	0.21	0.43	2.96	466	1	40	12	23	＜ 5
L OE	$7+50 \mathrm{~N}$	68	＜1	12	＜0．2	18	10	0.10	0.59	3.70	268	1	56	22	36	5
L OE	$7+00 \mathrm{~N}$	69	＜1	6	＜0．2	23	22	0.42	0.58	2.66	546	＜1	42	26	41	＜5
Loと	$6+50 \mathrm{M}$	42	＜1	12	＜0．2	20	12	0.12	0.30	4.07	76	1	60	14	35	＜5
LoE	$6+00 \mathrm{~N}$	40	＜1	12	＜0．2	13	5	0.10	0.10	2.71	136	＜1	40	9	7	＜5
L OE	$5+5011$	71	＜1	6	＜0．2	27	22	0.11	0.59	4.71	222	3	53	21	37	＜ 5
L OE	$5+00 \mathrm{~N}$	56	＜1	2	＜0．2	15	16	0.22	0.60	3.10	163	＜1	50	14	38	＜
Loe	$4+50 \mathrm{M}$	84	＜1	6	＜0．2	20	21	0.12	0.65	2.90	168	1	51	18	48	＜
L OE	$4+$ OON	66	＜1	10	＜0．2	20	13	0.08	0.39	2.90	118	＜1	43	14	24	＜5
L OE	$3+50 \mathrm{M}$	114	＜1	10	＜0．2	34	46	0.29	2.21	3.89	164	＜1	61	30	478	5
L OE	$3+$ OON	27	＜1	4	＜0．2	14	5	0.06	0.08	2.50	65	＜1	24	6	8	＜ 5
LOE	$2+50 \mathrm{~N}$	66	＜1	4	＜0．2	25	30	1.36	0.32	2.47	272	1	31	15	14	＜ 5
L OE	$2+$ OON	91	＜1	16	＜0．2	28	8	0.18	1.16	4.48	218	2	84	17	57	＜5
LoE	$1+50 \mathrm{M}$	52	＜1	10	＜0．2	20	10	0.07	0.33	5.02	351	1	64	12	36	5
L OE	$1+\mathrm{OON}$	77	＜1	10	＜0．2	23	11	0.33	1.32	7.64	185	＜1	165	25	86	10
L OE	$0+50 \mathrm{M}$	137	＜1	8	＜0．2	45	46	0.17	0.97	4.24	614	1	68	21	54	（5
LOE	$0+005$ BL	76	＜1	4	＜0．2	17	10	0.23	0.33	3.03	1264	2	44	19	28	＜ 5
LOE	$0+505$	71	＜1	4	＜0．2	10	16	0.24	0.43	2.71	141	＜1	37	13	24	＜5
LOE	$1+005$	105	＜1	6	＜0．2	8	9	0.18	0.41	2.71	823	4	44	12	20	＜5
LoE	$1+50 \mathrm{~S}$	＋5776\％	＜1	540	＜0．2	11	13	0.22	0.13	11.41	810	9	194	14	18	10
LOE	$2+005$	1387	＜1	276	＜0．2	22	16	0.17	0.28	6.64	125	15	295	日	29	＜5
LoE	$2+505$	113	＜1	4	＜0．2	11	11	0.34	0.57	2.57	180	＜1	47	12	29	＜
LOE	$3+005$	H35	＜1	8	＜0．2	12	15	0.18	0.55	3.22	144	1	61	13	34	＜5
LoE	$3+505$	\％913	＜1	8	＜0．2	10	13	0.15	0.48	3.06	124	1	59	12	30	5
LoE	$4+005$	117	＜1	8	＜0．2	11	14	0.09	0.54	4.23	132	1	65	14	37	＜5
L．OE	$4+505$	187.	＜1	10	＜0．2	9	12	0.13	0.38	2.60	172	＜1	39	15	25	＜ 5
L OE	$5+005$	142	1	4	＜0．2	10	15	0.13	0.47	2.54	142	＜1	43	14	27	＜5
LoE	$5+505$	129	＜1	8	＜0．2	12	9	0.19	0.18	3.85	623	＜1	42	21	29	＜ 5
L OE	$6+005$	150	＜1	10	＜0．2	22	18	0.16	：0．63	3.29	312	＜1	51	17	35	＜5
L OE	$6+505$	132	＜1	4	＜0．2	9	12	0.10	0.35	2.01	255	＜1	32	11	19	＜ 5
LoE	$7+005$	88	＜1	2	10.2	17	21	0.17	0.42	2.39	263	＜1	42	17	22	＜ 5
LoE	1＋50S		＜1	10	＜0．2	9	13	0.28	0.44	3.01	125	＜1	51	13	28	＜ 5
L OE	$8+005$	77	＜1	6	＜0．2	32	22	0.73	0.55	2.57	142	＜1	36	13	31	＜ 5
L OE	$8+505$	59	＜1	4	＜0．2	23	22	0.14	0.62	2.42	165	＜1	39	15	33	＜ 5
LOE	$9+005$	62	＜1	8	＜0．2	11	7	0.10	0.19	3.08	94	1	45	9	23	＜ 5
LOE	$9+505$	109	＜1	8	＜0．2	25	14	0.15	0.47	3.18	987	1	58	14	30	く

Final
page la

Project 319
Soil Sampling Results (part 2)

 ppe ppa ppa $\quad z \quad z \quad z \quad z \quad$ ppa ppa ppa ppa ppa ppe ppa $\quad z \quad$ ppa

	$10+00 \mathrm{~N}$	<5	<5	85	5.16	0.20	0.01	6	<20	<10	<10	17	$\therefore 2$	1370	0.23	<10
LoE	$9+50 \mathrm{~N}$	<	5	160	5.31	0.48	0.03	18	<20	<10	<10	21	6	680	0.30	<10
LOE	$9+\mathrm{OON}$	< 5	<5	80	4.70	0.15	0.01	7	<20	<10	<10	20	<2	1150	0.29	<10
LOE	$8+50 \mathrm{H}$	<5	< 5	105	4.02	0.24	<0.01	12	<20	<10	<10	22	<2	540	0.30	<10
LOE	$8+$ OON	<	< 5	100	5.79	0.09	0.01	15	<20	<10	<10	19	2	1560	0.24	<10
LOE	$7+50 \mathrm{~N}$	5	<5	95	2.60	0.35	<0.01	15	<20	<10	<10	24	<2	700	0.32	<10
L OE	$7+$ OON	< 5	<5	70	4.25	0.12	0.01	16	<20	<10	10	23	<2	350	0.19	<10
LoE	$6+50 \mathrm{~N}$	<5	< 5	60	3.27	0.05	<0.01	7	<20	<10	<10	23	<2	360	0.29	<10
L OE	$6+$ OON	5	<5	50	2.12	0.04	0.01	10	<20	<10	<10	18	<2	460	0.25	<10
LoE	5 + 50 N	15	5	75	2.81	0.26	<0.01	-	<20	<10	10	17	<2	920	0.20	<10
LOE	$5+$ OON	5	< 5	45	1.93	0.15	<0.01	9	<20	<10	<10	17	<2	260	0.22	<10
LOE	$4+50 \mathrm{~N}$	< 5	<5	75	3.48	0.12	0.01	8	<20	<10	<10	21	<2	270	0.25	<10
LOE	$4+$ OON	<5	5	60	5.10	0.07	<0.01	7	<20	<10	<10	19	<2	740	0.23	<10
LoE	$3+50 \mathrm{~N}$	< 5	< 5	80	4.72	0.08	<0.01	11	<20	<10	<10	28	<2	510	0.41	<10
LOE	$3+$ OON	<5	<5	45	5.97	0.02	<0.01	8	<20	<10	<10	15	<2	1600	0.18	<10
LoE	$2+50 \mathrm{~N}$	< 5	< 5	55	3.83	0.04	0.04	166	<20	<10	<10	12	. 2	3290	0.09	<10
10 E	$2+$ OON	10	5	120	2.56	0.46	0.01	19	<20	<10	10	32	<2	370	0.43	<10
LOE	$1+50 \mathrm{~N}$	15	5	70	2.88	0.19	<0.01	6	<20	<10	<10	21	<2	1680	0.31	(10
$10 E$	$1+$ OON	20	5	185	3.13	1.25	<0.01	21	<20	<10	<10	52	<2	1610	0.80	<10
LOE	$\mathrm{O}+\mathrm{SOH}$	5	5	200	4.64	0.44	0.01	13	<20	<10	10	22	<2	840	0.28	<10
LOE	$0+005 \mathrm{BL}$	<5	<5	60	3.02	0.13	0.01	14	<20	<10	10	19	4	1040	0.19	<10
L OE	O+50S	< 5	<5	80	3.55	0.11	0.01	10	<20	<10	<10	15	<2	560	0.19	<10
LOE	$1+005$	<	<5	85	2.90	0.13	0.01	9	<20	<10	<10	17	<2	690	0.23	<10
LOE	$1+505$	55	<	385	1.15	0.10	<0.01	15	<20	(10	<10	9	<2	2790	0.16	10
LOE	$2+005$	30	<5	1130	1.25	0.08	<0.01	14	<20	<10	<10	7	<2	1590	0.11	<10
LOE	$2+505$	<	<5	110	2.25	0.12	0.01	12	<20	<10	10	17	<2	250	0.19	<10
LOE	$3+005$	5	<5	95	2.38	0.12	0.01	-	<20	<10	10	19	<2	200	0.23	<10
LoE	$3+505$	< 5	<5	85	2.09	0.10	<0.01	7	<20	<10	10	18	<2	160	0.22	<10
LOE	$4+005$	5	<5	85	2.58	0.14	0.01	6	<20	<10	10	22	<2	210	0.31	<10
L OE	$4+505$	<5	< 5	100	3.87	. 0.11	0.01	9	<20	(10	<10	17	<2	460	0.20	<10
L OE	$5+005$	<	<5	95	3.14	0.13	0.01	-	<20	<10	(10	16	<2	440	0.20	<10
LoE	$5+505$	< 5	<	85	4.47	0.06	<0.01	12	<20	<10	<10	17	<2	1250	0.22	<10
LOE	$6+005$	<5	5	85	3.88	0.11	0.01	11	- 20	<10	<10	19	<2	1180	0.25	<10
LOE	$6+505$	< 5	<5	80	2.19	0.08	0.01	7	<20	<10	10	14	<2	300	0.17	(10)
LOE	$7+005$	5	<5	55	1.87	0.12	0.01	8	<20	<10	10	12	<2	740	0.13	<10
LOE	$7+505$	<5	<5	70	3.17	0.09	0.01	21	<20	<10	<10	15	<2	510	0.19	<10
L OE	$8+005$	< 5	<5	70	3.86	0.11	0.01	13	<20	<10	10	15	<2	480	0.16	<10
LOE	$8+505$	<5	< 5	120	2.65	0.20	0.01	8	<20	<10	10	15	<2	200	0.17	<10
L OE	$9+005$	<5	< 5	75	6.51	0.04	0.01	9	<20	<10	<10	15	<2	1080	0.20	<10
LOE	$9+505$	<	<	100	5.41	0.06	0.01	14	<20	<10	(10)	17	<2	2250	0.21	<10

final
page 2a

Project 319
Soil Sampling Results (part 2)

Sample ID		$\begin{gathered} \mathrm{Sb} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \text { Ba } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Al}_{4} \\ \hline \end{gathered}$	$\begin{aligned} & k \\ & z \end{aligned}$	$\begin{gathered} \mathrm{Na} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \mathrm{Sr}_{\mathbf{r}} \\ \mathrm{ppq} \end{gathered}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{pp} \end{array}$						$\begin{gathered} \mathrm{Ii} \\ \text { \% } \end{gathered}$	${ }_{\text {U }}$
LOE $10+005$	<	<5	165	5.11	0.05	0.01	17	<20	(10	10	22	$\chi 2$	510	0.21	<10
L 3E $10+$ OON	<	<5	60	3.51	0.05	0.01	11	<20	<10	10	16	<2	520	0.16	<10
L 3E $9+50 \mathrm{~N}$	<5	<	55	4.33	0.06	0.01	7	<20	<10	<10	16	2	700	0.20	<10
L 3E $9+$ OON	<	< 5	80	3.04	0.11	0.01	10	<20	<10	10	23	<2	510	0.24	<10
L $3 \mathrm{E} \mathrm{B} \mathrm{+} 50 \mathrm{~N}$	<5	5	65	3.67	0.10	0.01	10	<20	<10	<10	16	<2	2340	0.21	<10
L 3E 8 + OOK	<5	<	95	4.78	0.11	0.01	10	<20	<10	<10	17	<2	840	0.21	<10
L 3E $7+50 \mathrm{~N}$	5	<5	70	2.47	0.11	0.01	11	<20	10	10	21	2	800	0.26	<10
L 3E $7+$ OON	< 5	< 5	100	4.15	0.17	0.01	15	<20	<10	10	19	<2	1260	0.19	<10
L 3E $6+50 \mathrm{~N}$	<5	5	75	2.80	0.10	0.01	21	<20	<10	10	20	2	530	0.18	(10
L 3E $6+$ OON	<	<5	85	3.33	0.14	0.01	9	<20	<10	10	22	2	300	0.22	<10
L 3E 5 + 50 N	<	<	75	2.28	0.15	0.01	10	<20	<10	10	14	<2	210	0.16	<10
L 3E 5 + OOM	< 5	<5	165	4.19	0.46	0.01	13	<20	<10	<10	26	<2	510	0.35	<10
L 3E $4+50 \mathrm{~N}$	<5	<5	65	7.31	0.07	0.07	157	<20	<10	10	17	4	1570	0.11	<10
L 3E 4+ OON	<	<5	115	3.51	0.20	0.01	20	<20	<10	10	20	<2	690	0.25	<10
L 3E 3 + 50N	<5	5	80	3.10	0.11	0.02	21	<20	<10	10	26	. 2	390	0.21	<10
L 3E 3 + 00 N	< 5	<5	85	2.24	0.14	0.01	12	<20	10	10	17	<2	480	0.17	<10
L 3E $2+50 \mathrm{~N}$	5	<5	90	2.51	0.24	<0.01	6	<20	<10	<10	23	<2	1080	0.32	(10
L 3E $2+$ OON	<	<5	65	3.87	0.07	<0.01	6	<20	<10	<10	17	<2	1240	0.21	<10
L3E $1+5 \mathrm{ON}$	<	<	90	3.42	0.10	0.01	9	<20	<10	<10	20	<2	1620	0.24	<10
L 3E 1 + OON	< 5	< 5	65	2.62	0.10	<0.01	7	<20	<10	10	25	<2	380	0.22	<10
L3E O + 50N	(5	<5	85	4.04	0.10	0.01	9	<20	<10	10	22	<2	1000	0.21	<10
L 3E $0+$ OOS BL	< 5	5	130	5.76	0.06	0.01	11	<20	<10	10	23	2	920	0.27	<10
L3E $0+505$	5	<	90	4.73	0.02	0.01	8	<20	<10	<10	13	2	690	0.18	<10
L 3E 1+00s	<5	5	55	2.09	0.11	<0.01	6	<20	<10	<10	23	<2	240	0.32	<10
L 3E 1+50S	<	<5	40	2.83	0.07	<0.01	4	<20	(10	<10	15	<2	570	0.20	<10
L 3E $2+005$	< 5	<5	70	2.54	0.11	0.01	6	<20	(10)	(10	13	<2	490	0.15	<10
L 3E $2+505$	5	<	40	1.24	0.11	<0.01	6	<20	<10	<10	13	<2	420	0.16	<10
ᄂ3E 3 + OOS	< 5	< 5	135	2.79	0.38	0.01	12	<20	<10	10	21	<2	450	0.24	<10
L 3E 3 + 50S	<5.	<	55	3.12	0.07	0.01	7	<20	<10	(10	14	<2	990	0.18	<10
L 3E 4+00S	<5	<5	95	1.92	0.17	0.01	12	<20	<10	10	15	<2	470	0.19	<10
L3E 4+50S	<	<	90	3.17	0.14	0.01	9	<20	<10	<10	16	<2	590	0.20	<10
L 3E 5 + OOS	<	5	90	3.01	0.20	0.01	11	<20	<10	<10	16	<2	460	0.19	(10
L $3 \mathrm{E} 5+50 \mathrm{~S}$	<	<5	185	4.89	0.35	0.01	43	<20	<10	20	36	<2	1550	0.18	<10
L 3E $6+005$	<5	<5	60	0.94	0.06	0.01	66	<20	(10	<10	7	<2	550	0.05	<10
L 3E 6+505	<	<	30	1.28	0.05	<0.01	6	<20	<10	<10	8	<2	540	0.09	<10
L3E 7 + 00S	<	<5	55	4.45	0.02	0.02	36	<20	<10	<10	10	<2	610	0.13	<10
L 3E 7 + 505	<	<5	35	2.53	0.03	<0.01	6	<20	<10	<10	10	<2	700	0.11	<10
L 3E $8+005$	<	< 5	60	3.30	0.05	0.01	13	<20	<10	(10	12	<2	810	0.14	<10
L 3E 8 + 50S	<5	<	60	2.63	0.10	<0.01	6	<20	<10	10	14	<2	320	0.17	<10

Date of Report：22－Jul－92
Project 319
ARROH

Soil Sappling Results
1992

Reference：92etk－305，92etk－310

L3E	$9+005$	31	＜1	2	＜0．2	14	10	0.05	0.17	1.53	47	＜1	$\bigcirc 28$	5	14	＜ 5
135	$9+50 S$	n／s	n／s	n／s	n / s	n／s	n／s	n／s	n／s．	n／s	n／s	n／s	n / s	n／s	n／s	n／5
135	$10+005$	74	＜1	14	0.2	10	7	0.06	0.15	2.45	118	1	32	7	12	＜5
L6E	$10+00 \mathrm{H}$	34	＜1	4	＜0．2	19	16	0.12	0.44	2.03	152	＜1	28	13	21	＜ 5
L 6E	$9+50 \mathrm{~N}$	44	＜1	4	＜0．2	15	18	0.11	0.42	2.10	179	＜1	28	14	23	＜ 5
L6E	$9+00 \mathrm{~N}$	68	＜1	10	<0.2	8	8	0.08	0.39	3.42	233	＜1	68	11	69	5
L6E	$8+50 \mathrm{~N}$	135	＜1	10	＜0．2	12	15	0.06	0.39	2.88	116	＜1	39	13	29	＜5
$16 E$	$8+00 \mathrm{~N}$	68	＜1	6	＜0．2	16	15	0.08	0.43	2.28	145	＜1	33	12	23	＜5
L6E	$7+50 \mathrm{~N}$	54	＜1	10	（0．2	15	9	0.06	0.36	3.08	175	1	56	11	28	5
L．6E	$7+00 \mathrm{M}$	68	＜1	14	＜0．2	13	9	0.11	0.33	4.00	155	1	66	14	27	5
L 68	$6+50 \mathrm{~N}$	171	＜1	26	＜0．2	13	10	0.20	0.51	3.42	166	2	51	15	25	5
L6E	6＋00N	95	＜1	14	＜0．2	11	10	0.21	0.21	4.12	149	1	50	13	20	5
L6E	$5+50 \mathrm{~N}$	58	＜1	4	＜0．2	14	23	0.16	0.69	2.90	131	＜1	45	17	44	＜5
L 6E	$5+\mathrm{OOH}$	51	＜1	4	＜0．2	12	17	0.20	0.54	2.75	119	＜1	42	14	37	＜5
L 6E	$4+50 \mathrm{~N}$	71	＜1	4	＜0．2	27	36	0.28	0.91	3.09	216	＜1	． 46	23	73	＜
L 6E	$4+\mathrm{OOH}$	101	＜1	12	＜0．2	33	33	0.43	1.10	3.92	725	（1）	52	23	52	5
L6E	$3+50 \mathrm{~N}$	100	＜1	12	＜0．2	49	29	0.36	0.46	3.77	253	＜1	54	23	26	5
L6E	$3+00 \mathrm{n}$	113	＜1	16	＜0．2	21	18	0.13	0.44	3.30	728	＜1	41	16	16	＜
L 6E	$2+50 \mathrm{~N}$	65	＜1	6	＜0．2	47	45	0.53	2.46	3.82	167	＜1	73	38	43	5
L 6E	$2+\mathrm{OON}$	52	＜1	2	＜0．2	8	14	0.12	0.39	1.94	184	＜1	28	12	21	＜
L 6E	$1+50 \mathrm{~N}$	49	＜1	8	＜0．2	11	13	0.12	0.28	2.04	188	＜1	29	14	15	＜ 5
L 6E	$1+00 \mathrm{~N}$	49	＜1	2	0.2	10	16	0.11	0.43	1.75	2378	＜1	26	11	21	＜
L．6E	$0+50 \mathrm{~N}$	69	＜1	6	＜0．2	7	14	0.23	0.51	2.63	153	＜1	36	13	26	＜5
L6E	$0+0058$	75	＜1	8	＜0．2	9	11	0.98	0.39	2.44	99	＜1	32	12	22	く5
L 6E	$0+505$	66	＜1	6	＜0．2	13	18	0.18	0.39	2.70	93	＜1	44	13	27	く5
L 6E	$1+005$	22II	く 1	10	＜0．2	21	30	0.27	1.08	4.13	215	1	67	22	52	5
L6E	$1+505$	$\cdots 27$	＜1	14	<0.2	19	19	0.17	0.34	3.67	322	1	61	15	18	く5
L6E	$2+005$	121	＜l	12	＜0．2	8	9	0.16	0.38	3.30	1687	＜1	47	15	10	5
16 E	$2+50 S$	224	＜1	24	<0.2	10	20	0.11	0.35	3.74	199	4	56	16	36	10
L6E	$3+\operatorname{OOS}$	140	＜1	10	＜0．2	14	28	1.40	0.35	2.82	1641	＜1	18	17	16	（5
L 6E	$3+505$	123	＜1	10	＜0．2	32	122	0.21	0.58	2.93	403	（1	38	20	32	＜5
L 6E	$4+005$	146	1	12	＜0．2	22	84	1.01	0.25	2.79	897	1	30	34	57	＜
L6E	$4+505$	98	＜1	10	0.2	14	24	0.08	0.21	2.71	428	＜1	43	16	20	＜5
L6E	$5+005$	130	＜1	14	＜0．2	15	37	0.20	0.42	2.97	452	＜1	36	21	49	＜5
L6E	$5+505$	103	＜1	14	＜0．2	21	30	0.14	0.32	2.59	196	＜1	34	16	19	く5
L6E	$6+005$	99	＜1	16	＜0．2	16	23	0.11	0.25	2.31	106	＜1	32	13	18	＜ 5
16 E	$6+50 S$	100	＜1	． 8	＜0．2	12	21	0.20	0.23	2.46	122	＜1	28	12	13	＜
L6E	$7+005$	69	＜1	4	＜0．2	17	17	0.18	0.36	2.05	164	＜1	28	12	18	＜5
L 6E	$7+505$	67	＜1	4	＜0．2	8	13	0.09	0.39	2.38	127	＜1	40	11	22	＜ 5

Project 319
Soil Sapling Results (part 2)
 ppa ppa ppa $\%$ \% $\%$ pps ppa ppa ppa ppa ppa ppa $\%$ ppa

L 3E 9 + 00S	<	<	20	0.94	0.03	<0.01	7	<20	(10	<10	8	$\therefore 2$	100	0.09	<10
L 3E 9 + 50S	n/s	$n / 5$	n/s	n/s	n/s	n/s	n/5	n/s.	$n / 5$	n/s	n/5	n/s	$n / 5$	n/s	n/s
L $3 \mathrm{E} 10+005$	< 5	< 5	55	4.40	0.04	<0.01	5	<20	<10	<10	13	<2	590	0.16	<10
L. $6 E 10+$ OON	<5	<5	50	1.60	0.08	<0.01	8	<20	<10	10	14	4	140	0.15	<10
L 6E $9+50 \mathrm{~N}$	<	<5	55	2.07	0.10	<0.01	7	<20	<10	10	14	4	250	0.13	<10
L6E 9 + OON	10	5	60	2.39	0.10	<0.01	6	<20	<10	<10	20	4	490	0.28	<10
L6E 8 + 50N	<5	<5	75	3.57	0.12	<0.01	6	<20	<10	10	17	4	420	0.20	<10
L6E $8+00 \mathrm{~N}$	<5	<5	60	2.96	0.11	<0.01	6	<20	<10	10	15	4	390	0.16	<10
L6E $7+50 \mathrm{~N}$	<5	<5	65	3.38	0.11	<0.01	6	<20	<10	<10	19	4	640	0.25	<10
L6E $7+00 \mathrm{~N}$	(5	<5	100	3.62	0.17	<0.01	9	<20	<10	10	21	6	600	0.28	<10
L 6E 6 + 50N	<	5	95	3.42	0.17	0.01	27	<20	<10	10	19	4	820	0.24	<10
L 6E 6 + OON	10	<5	95	2.42	0.16	0.01	12	<20	<10	10	22	<2	390	0.29	<10
L 6E $5+50 \mathrm{~N}$	<5	< 5	90	2.92	0.18	0.01	11	<20	(10	10	21	<2	150	0.22	<10
L6E 5 + OON	<5	<5	65	2.24	0.13	0.01	14	<20	<10	10	18	<2	180	0.19	<10
L 6E $4+50 \mathrm{~N}$	<5	<	55	3.20	0.10	0.01	16	<20	<10	10	21	- <2	290	0.24	<10
L. 6E $4+$ OON	< 5	5	140	6.72	0.29	0.02	35	<20	<10	10	28	2	1330	0.28	<10
L6E 3+50N	<5	<5	120	4.67	0.17	0.01	18	<20	<10	10	31	<2	1020	0.30	<10
L 6E 3 + OON	<	5	100	4.62	0.08	0.01	9	<20	<10	10	20	<2	1330	0.22	<10
L6E $2+50 \mathrm{~N}$	<	10	170	4.02	0.41	0.01	15	<20	<10	10	29	<2	1100	0.39	<10
L6E $2+$ OON	< 5	(5	70	2.19	0.12	<0.01	8	<20	(10	10	14	<2	410	0.14	<10
L 6E 1+50N	<5	<	85	2.94	0.09	0.01	11	<20	<10	10	19	<2	520	0.17	<10
L 6E 1 + OON	<5	< 5	85	1.53	0.14	<0.01	5	<20	<10	10	11	<2	800	0.12	<10
L6E $0+50 \mathrm{~N}$	<	<5	85	2.94	0.16	<0.01	10	<20	<10	10	18	<2	420	0.19	<10
L6E $0+0058 \mathrm{~L}$	<5	< 5	70	4.17	0.07	0.01	15	<20	<10	10	17	2	410	0.19	<10
L6E O + 50S	<	5	100	3.42	0.12	<0.01	8	<20	<10	10	16	<2	530	0.19	<10
L6E 1+00S	(5	5	135	4.60	0.18	0.01	12	<20	<10	10	22	<2	500	0.28	<10
L6E 1+505	<5	<	100	4.41	0.05	0.01	11	<20	<10	10	19	<2	1540	0.20	<10
L 6E $2+00 S$	<5	<	155	3.78	0.12	0.01	12	<20	<10	<10	21	<2	1360	0.27	<10
L6E 2+50S	<5	<5	80	3.52	0.09	0.01	9	<20	10	10	19	4	420	0.25	<10
L6E 3 + OOS	<	<5	90	4.77	0.05	0.10	383	<20	<10	10	8	2	1820	0.08	<10
L. $6 E 3+50 S$	<5	<5	65	4.21	0.13	0.01	22	<20	<10	10	21	<2	990	0.19	<10
L EE 4+00S	<	< 5	75	4.98	0.04	0.01	24	<20	<10	10	23	2.	2380	0.21	<10
L 6E 4+50S	<	<5	70	3.85	0.04	0.01	7	<20	<10	<10	18	<2	1400	0.22	<10
L6E S + OOS	<	<5	80	3.86	0.06	0.01	22	<20	<10	<10	14	<2	940	0.19	<10
L 6E 5 + 505	<	<5	75	4.30	0.07	0.01	11	<20	<10	10	24	<2	780	0.19	<10
L6E $6+00 S$	< 5	5	70	4.56	0.05	0.01	10	<20	<10	10	19	<2	740	0.18	<10
L6E 6+505	<5	<5	80	4.27	0.04	0.01	19	<20	<10	<10	13	<2	610	0.14	<10
L6E 7+00S	<	<	55	2.40	0.06	0.01	11	<20	<10	<10	11	<2	730	0.13	<10
[6E 7+50S	5	5	40	1.57	0.06	<0.01	7	<20	<10	10	12	<2	320	0.14	<10

final

Date of Report: 22-Ju1-92
Project 319
ARROH
Soil Sanpling Results
1992
Reference: 92etk-305, 92etk-310

L6E	$8+005$	47	<1	4	<0.2	10	12	0.11	0.26	2.27	108	<1	35	10	16	〈5
L6E	$8+505$	98	<1	4	<0.2	22	21	0.23	0.45	2.22	102	<1	29	13	21	< 5
L6E	$9+005$	34	<1	2	<0.2	7	7	0.38	0.21	1.48	60	<1	18	6	14	<5
L6E	$9+505$	46	<1	2	<0.2	6	8	0.08	0.25	1.75	86	<1	26	7	15	< 5
L6E	$10+\cos$	70	11	2	<0.2	16	15	0.19	0.43	1.83	137	<1	28	10	20	< 5
L9E	$10+\mathrm{OCH}$	72	(1	8	(0.2	13	5	0.07	0.30	3.18	125	1	44	10	17	5
L 95	$9+50 \mathrm{~K}$	48	<1	4	<0.2	12	5	0.12	0.71	2.97	108	<1	56	10	44	5
L9E	$9+$ OON	65	<1	6	<0.2	14	6	0.04	0.42	3.53	93	1	51	10	28	5
19	$8+50 \mathrm{~N}$	100	<1	12	<0.2	11	7	0.05	0.17	2.56	328	<1	41	13	15	5
L9E	$8+$ OON	91	<1	10	<0.2	42	27	0.15	0.55	. 2.74	440	1	40	53	28	< 5
L9E	$7+50 \mathrm{~K}$	57	<1	10	<0.2	11	7	0.05	0.19	2.85	149	1	40	12	18	<
L. 9	$7+$ OOH	89	<1	12	<0.2	10	13	0.20	0.32	2.94	669	<1	48	17	22	5
L9E	$6+50 \mathrm{~N}$	66	<1	6	<0.2	13	11	0.42	0.25	2.94	690	<1	35	15	19	<
L9E	$6+0 \mathrm{OH}$	106	<1	6	<0.2	24	27	0.47	0.70	3.44	647	<1	50	24	45	5
L9E	$5+50 \mathrm{~N}$	96	<1	4	<0.2	26	25	0.35	0.77	3.26	313	<1	50	19	38	<5
L 9	$5+$ OOM	71	<1	8	<0.2	19	23	0.41	0.66	2.62	357	<1	44	17	37	5
L9E	$4+50 \mathrm{~N}$	84	1	8	<0.2	24	25	0.45	0.76	2.92	454	<1	49	20	39	< 5
L 9E	$4+$ OOM	80	<1	12	<0.2	14	13	0.07	0.11	3.16	126	<1	51	13	23	5
L. 9	$3+50 \mathrm{~N}$	53	<1	12	<0.2	10	7	0.05	0.16	2.50	76	<1	35	7	13	<5
L9E	$3+$ OON	51	<1	12	<0.2	13	9	0.12	0.27	2.63	130	11	31	9	18	< 5
L 9 E	$2+50 \mathrm{~N}$	132	<1	10	<0.2	12	12	0.18	0.33	2.90	134	<1	41	13	21	<5
L 9	$2+$ OON	143	<1	14	<0.2	18	22	0.28	0.45	2.77	193	<1	38	23	25	< 5
L 95	$1+50 \mathrm{~N}$	\%	<1	30	<0.2	19	13	0.51	0.45	2.92	540	1	45	21	22	$\stackrel{5}{5}$
L 9E	$1+00 \mathrm{~N}$	122	<1	8	<0.2	20	21	0.22	0.75	3.50	182	<1	64	17	36	<
L9E	O+50N	91	<1	14	<0.2	9	8	0.06	0.28	3.54	108	1	47	11	23	5
L $9 E$	$0+$ OOS BL	74	<1	14	0.2	11	5	0.05	0.17	2.30	97	,	27	8	14	(5
L9E	$0+505$	137	<1	12	<0.2	8	12	0.14	0.28	2.93	487	<1	46	13	20	<
L9E	$1+005$	車2	<1	44	<0.2	30	41	0.71	0.96	4.12	274	<1	63	22	137	5
198	$1+505$	157	<1	10	<0.2	16	261	0.15	1.26	4.27	355	<1	50	41	197	5
L9E	$2+\operatorname{OOS}$	94	<1	18	0.2	7	15	0.11	0.10	2.76	368	1	28	14	12	<
L9E	$2+505$	615	<1	14	<0.2	72	74	0.29	0.87	3.02	516	<1	48	27	40	<5
L 9 E	$3+005$	318:	<1	14	<0.2	26	49	0.23	0.65	3.55	214	1	51	25	45	5
L9E	$3+505$	155	<1	20	<0.2	10	15	0.12	0.23	2.67	236	<1	3B	12	14	(5
L9E	$4+005$	142	<1	12	<0.2	11	15	0.09	0.36	2.93	164	<1	43	14	23	< 5
L9E	$4+505$	126	<1	14	<0.2	9	10	0.08	0.21	2.49	585	<1	40	11	15	<
L9E	$5+005$	135	(1	14	<0.2	9	20	0.10	0.37	2.70	233	<1	42	14	21	5
198	$5+505$	104	<1	12	<0.2	8	12	0.08	0.37	2.52	180	<1	44	12	23	<5
L9E	$6+005$	99	<1	8	<0.2	8	16	0.08	0.32	2.25	229	1	33	11	21	5
195	$6+50 S$	118	<1	8	<0.2	,	11	0.13	0.29	1.98	296	<1	28	9	15	<5

Final
page 4a

Project 319
Soil Sampling Results (part 2)

Saaple ID	$\begin{gathered} \text { As } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { Ba } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Al} \\ \% \end{gathered}$	$\begin{gathered} k \\ z \end{gathered}$	$\begin{gathered} \mathrm{Na}_{2} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \text { Sr } \\ \text { ppı } \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ \mathrm{ppa} \end{gathered}$	ppa	$\begin{gathered} \text { Ld } \\ \text { ppa } \end{gathered}$	$\begin{array}{r} Y \\ \text { ppa } \end{array}$	ppa	$\begin{gathered} P \\ p p a \end{gathered}$	$\begin{gathered} \mathrm{Ti} \\ \% \end{gathered}$	U ppa
L6E 8 + 00S	5	< 5	30	1.53	0.05	<0.01	7	<20	<10	(10	10	- 2	720	0.12	<10
L6E $8+505$	(s	5	45	2.14	0.05	0.01	11	<20	<10	<10	10	\cdots	670	0.11	<10
L6E 9+00S	<	< 5	25	2.01	0.04	<0.01	16	<20	(10	(10	11	<2	170	0.09	<10
L6E 9+50S	5	< 5	45	1.87	0.07	<0.01	6	<20	<10	(10	10	<2	560	0.11	<10
L6E $10+005$	<5	< 5	40	1.83	0.08	<0.01	9	<20	<10	<10	11	<2	690	0.11	<10
L9E $10+$ OON	< 5	< 5	75	5.09	0.10	0.01		<20	(10	(10	19	<2	790	0.24	<10
L 9E $9+50 \mathrm{~N}$	<	5	95	2.65	0.19	0.02	11	<20	<10	10	26	<2	210	0.30	<10
L9E $9+$ OON	<5	<5	90	4.90	0.24	0.01	6	(20	<10	<10	22	<2	970	0.29	<10
L 9E $8+50 \mathrm{~N}$	(5	< 5	65	3.05	0.05	0.01	6	<20	<10	(10	20	<2	770	0.25	<10
L9E 8 + OON	<5	< 5	80	4.75	0.14	0.01	10	<20	<10	<10	19	<2	730	0.19	<10
[9E 7+50N	<	< 5	60	4.79	0.06	0.01	6	<20	<10	<10	19	<2	940	0.23	<10
L9E $7+00 \mathrm{~N}$	<5	< 5	95	2.91	0.10	0.01	13	<20	<10	<10	21	<2	400	0.26	<10
L9E $6+50 \mathrm{~N}$	<5	< 5	95	4.26	0.07	0.01	21	<20	(10	<10	23	<2	790	0.19	<10
L9E 6 + OOK	< 5	< 5	115	4.32	0.21	0.01	21	<20	<10	10	26	12	650	0.24	<10
L 9E 5 + 50N	5	< 5	135	2.60	0.20	0.01	18	<20	(10	<10	17	<2	310	0.22	(10
L 9E 5 + OON	< 5	< 5	85	2.70	0.21	0.01	21	<20	(10	<10	19	14	430	0.20	<10
L 9E $4+50 \mathrm{~N}$	< 5	5	95	2.92	0.35	0.01	23	<20	<10	10	20	6	810	0.21	<10
L9E + + OON	5	< 5	90	3.08	0.11	<0.01	8	<20	<10	10	18	4	410	0.22	<10
L9E 3+50N	5	5	65	4.49	0.03	<0.01	6	<20	<10	10	16	4	920	0.19	<10
L9E 3+00N	(5	<5	65	5.95	0.05	<0.01	8	<20	<10	<10	17	4	1940	0.18	(10
L9E $2+50 \mathrm{~N}$	<5	<	90	3.71	0.10	<0.01	10	<20	(10	10	16	4	780	0.20	(10
L 9E $2+$ OON	<5	< 5	90	3.71	0.14	<0.01	18	<20	<10	10	21	4	410	0.20	<10
L9E $1+50 \mathrm{~N}$	<	< 5	90	2.95	0.12	0.01	21	<20	<10	20	31	4	430	0.23	<10
L 9E 1+00N	10	< 5	65	2.04	0.19	<0.01	9	<20	<10	20	20	4	650	0.25	(10
L9E O+50N	< 5	<	75	4.00	0.05	<0.01	6	<20	<10	10	20	4	1330	0.25	<10
L9E Ot OOS BL	<	< 5	50	5.28	0.03	<0.01	5	<20	<10	<10	15		820	0.18	<10
$19 \mathrm{E} 0+505$	5	<	70	2.40	0.07	<0.01	11	(20	(10	10	17	4	330	0.22	10
L gE 1+00S	5	< 5	90	3.29	0.14	0.01	41	<20	<10	10	24	4	550	0.25	<10
L9E 1+50S	10	<5	55	1.82	0.03	<0.01	9	<20	<10	10	13	4	650	0.19	<10
L9E 2+00S	< 5	<5	60	5.02	0.02	<0.01	8	<20	(10	<10	17	6	1270	0.22	<10
L 9E $2+505$	5	<	65	2.64	0.11	0.01	14	<20	<10	20	22	4	300	0.22	<10
L9E 3 + OOS	< 5	<5	80	3.11	0.15	<0.01	14	<20	<10	10	20	4	780	0.22	<10
L 9E 3 + 50S	< 5	<	75	4.07	0.06	<0.01	8	<20	<10	<10	17	4	950	0.22	<10
L9E 4+00S	5	<	80	3.60	0.08	<0.01	8	<20	<10	10	15	4	1300	0.20	<10
L9E 4+50S	<	<	75	2.77	0.07	<0.01	8	<20	<10	<10	18	4	910	0.23	<10
L 9E 5 + OOS	5	<	85	3.02	0.08	<0.01	9	<20	(10	<10	17	4	1650	0.22	<10
L9E 5 + 50S	5	<	70	2.00	0.09	<0.01	7	<20	<10	10	17	4	530	0.22	(10
L9E $6+005$	<	<	45	1.96	0.08	<0.01	6	<20	<10	10	12	4	930	0.15	<10
L9E $6+505$	5	< 5	35	1.29	0.07	<0.01	10	<20	<10	10	10	4	610	0.12	(10

Date of Report：22－Jul－92
Project 319
ARROH

Soil Saapling Results
1992

Reference：92atk－305，92etk－310
 pp』 pp：ppa pp』 pp』 pp』 \％\％\％\％．pp』 pp』 pp』 pp：ppa ppa

L 9E	$7+005$	134	＜1	14	$\langle 0.2$	9	12	0.10	0.30	2.45	153	＜1	43	13	18	5
L9E	$7+50 S$	157	＜1	14	＜0．2	13	22	0.14	0.28	2.33	296	＜l	30	16	25	＜ 5
L9E	$8+005$	89	〈1	12	＜0．2	8	14	0.12	0.29	2.50	191	＜1	42	14	19	＜ 5
L 9	$8+50 S$	79	＜1	12	＜0．2	7	9	0.10	0.12	1．92	77	＜1	28	8	9	＜ 5
195	$9+005$	28	＜1	2	＜0．2	6	8	0.05	0.18	1.49	67	＜1	29	6	12	＜5
L $9 E$	$9+505$	139	＜1	8	＜0．2	20	16	0.16	0.37	2.36	130	＜1	37	11	24	（S
L9E	$10+005$	72	＜1	14	＜0．2	7	8	0.06	0.25	2.44	128	1	34	9	15	5
LI2E	$7+00 \mathrm{~N}$	51	＜1	4	$\langle 0.2$	11	12	0.11	0.35	2.22	218	＜1	33	13	14	＜ 5
LI2E	$6+50 \mathrm{~N}$	65	＜1	8	＜0．2	9	9	0.10	0.40	3.29	387	＜1	81	15	17	5
LI2E	$6+00 \mathrm{H}$	57	（1	4	＜0．2	14	13	0.10	0.39	2.36	257	＜1	40	12	17	（5
L12E	$5+50 \mathrm{~N}$	35	＜1	8	＜0．2	10	10	0.08	0.25	2.32	94	＜1	37	9	15	＜ 5
LI2E	S＋00N	57	＜1	4	＜0．2	10	19	0.10	0.41	2.19	131	＜1	34	13	23	く5
L12E	$4+50 \mathrm{~N}$	55	＜1	8	＜0．2	11	13	0.12	0.26	2.49	186	＜1	41	13	18	5
LI2E	$4+$ OON	61	＜1	8	＜0．2	6	11	0.13	0.27	2.44	193	＜1	45	11	19	（5
L12E	$3+50 \mathrm{~N}$	98	＜1	8	＜0．2	11	13	0.12	0.49	2.66	248	＜1	51	12	23	＜5
LI2E	$3+$ OON	826	＜1	6	＜0．2	11	11	0.07	0.17	2.13	245	＜1	． 31	12	15	5
L12E	$2+50 \mathrm{~N}$	${ }^{2} 342$	＜1	12	＜0．2	10	14	0.14	0.40	2.37	156	＜1	34	10	22	＜
LI2E	$2+0 \mathrm{OH}$	74	＜1	4	＜0．2	4	7	0.09	0.25	1.48	148	＜1	23	7	14	＜ 5
L12E	$1+50 \mathrm{~N}$	115	＜1	8	＜0．2	25	30	0.27	0.68	3.87	240	2	74	17	43	5
Ll2E	$1+00 \mathrm{~N}$	196	＜1	10	＜0．2	17	26	0.19	0.50	3.19	346	＜1	47	19	26	＜ 5
L12E	$0+50 \mathrm{~N}$	98	＜1	8	＜0．2	12	27	0.82	0.41	3.18	466	＜1	35	17	24	＜ 5
LI2E	$0+005 \mathrm{BL}$	71	＜1	6	＜0．2	9	15	0.12	0.34	2.48	115	＜1	40	12	21	5
L12E	$0+505$	83	＜1	6	＜0．2	12	26	0.28	0.43	2.38	317	＜1	35	15	36	＜ 5
LI2E	$1+005$	104	＜1	6	＜0．2	11	18	0.12	0.40	2.47	557	＜1	43	11	26	＜ 5
LI2E	$1+505$	102	＜1	24	＜0．2	8	10	0.08	0.31	3.25	271	1	52	11	22	5
LI2E	$2+005$	102	＜1	6	＜0．2	3	11	0.09	0.42	1.86	253	＜1	30	10	20	＜ 5
LI2E	$2+505$	59	＜1	6	＜0．2	7	13	0.16	0.40	2.17	245	＜1	34	10	22	＜5
LI2E	$3+005$	61	＜1	10	＜0．2	7	13	0.21	0.21	2.30	261	＜1	31	12	14	5
L12E	$3+50 \mathrm{~S}$	66	＜1	6	＜0．2	10	13	0.10	0.39	1.95	147	＜1	31	10	20	＜5
LI2E	$4+$ OOS	108.	＜1	12	＜0．2	5	7	0.07	0.17	2.33	153	＜1	41	10	17	＜5
L．12E	$4+505$	127	＜1	12	＜0．2	8	12	0.10	0.33	2，30	． 253	＜1	37	11	19	＜5
LI2E	$5+00 S$	78	＜1	14	＜0．2	5	9	0.15	0.14	2.40	． 309	＜1	33	10	13	5
LI2E	$5+505$	74	＜1	18	＜0．2	7	9	0.11	0.24	3.00	136	＜1	49	11	19	5
LI2E	$6+00 S$	89	＜1	14	＜0．2	12	20	0.14	0.29	2.28	230	＜1	29	14	16	＜ 5
L12E	$6+50 S$	120	（1	10	＜0．2	12	12	0.16	0.22	3.14	977	＜1	41	12	16	＜5
LI2E	$7+005$	3	＜1	12	＜0．2	30	36	0.34	0.40	2.75	425	く1	36	15	24	＜ 5
LI2E	$7+505$	121	＜1	20	＜0．2	8	12	0.08	0.17	2.58	369	〈1	38	12	16	5
LI2E	$8+005$	90	＜1	－ 8	＜0．2	14	17	0.14	0.40	2.17	153	く1	31	12	22	＜ 5
LI2E	$8+505$	83	＜1	8	＜0．2	8	9	0.12	0.31	1.99	262	（1	34	9	19	＜5

Project 319

Soil Saapling Results (part 2)

Sanpl	E ID	$\begin{gathered} \text { As } \\ \text { ppi } \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { ppi } \end{gathered}$	$\begin{gathered} \text { 8d } \\ \text { pple } \end{gathered}$	$\begin{gathered} \mathrm{Al} \\ \% \end{gathered}$	$\begin{aligned} & k \\ & y \end{aligned}$	$\begin{gathered} \mathrm{Na}_{2} \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Sn } \\ \text { ppre } \end{array}$	$\begin{array}{r} H \\ \text { ppp } \end{array}$	$\begin{array}{r} \mathrm{Ld} \\ \cdot \mathrm{ppq} \end{array}$	Y ppe			$\begin{gathered} \mathrm{Ti} \\ \mathrm{Z} \end{gathered}$	¢ $\begin{array}{r}\text { ¢ } \\ \hline\end{array}$
L9E	$7+005$	5	<	70	2.05	0.09	<0.01	8	<20	<10	10	17	4	540	0.22	<10
L9E	$7+505$	< 5	< 5	85	3.57	0.08	0.01	11	<20	<10	<10	16	$\therefore 4$	1820	0.20	<10
L 9 E	$8+005$	5	<	80	2.39	0.08	<0.01	9	<20	<10	<10	16	4	660	0.21	<10
L9E	$8+50 S$	5	< 5	65	3.11	0.03	<0.01	8	<20	<10	<10	13	4	620	0.17	<10
L9E	$9+005$	5	<5	25	0.94	0.05	<0.01	5	<20	<10	10	9	4	170	0.11	<10
L9E	$9+505$	< 5	<5	55	1.91	0.09	<0.01	9	<20	<10	10	12	4	600	0.14	(10
L $9 E$	$10+005$	5	< 5	60	4.07	0.08	<0.01	6	<20	(10	<10	14	6	1250	0.17	<10
LI2E	$7+00 \mathrm{~N}$	5	(s	50	1.90	0.09	0.01	7	<20	<10	<10	13	<2	580	0.17	<10
L12E	$6+50 \mathrm{H}$	5	< 5	55	1.85	0.06	<0.01	6	<20	(10	<10	16	<2	770	0.22	(10
LI2E	$6+\mathrm{OON}$	< 5	<5	70	3.14	0.10	0.01	7	<20	<10	<10	14	<2	600	0.17	<10
L12E	$5+50 \mathrm{~N}$	< 5	<	55	3.18	0.06	<0.01	6	<20	<10	<10	13	<2	540	0.17	(10
LİE	$5+00 \mathrm{H}$	< 5	< 5	65	2.34	0.10	<0.01	8	<20	<10	<10	12	<2	620	0.15	(10
2 E	$4+5 \mathrm{ON}$	(5	<	75	3.60	0.07	0.01	9	<20	<10	<10	15	<2	870	0.20	<10
LI2E	$4+\mathrm{OOH}$	<5	<5	70	2.10	0.07	0.01	9	<20	<10	10	13	(2	400	0.16	<10
L12E	$3+50 \mathrm{~N}$	5	<	55	1.91	0.08	0.01	7	<20	<10	<10	13	<2	800	0.17	<10
L12E	$3+\mathrm{OON}$	< 5	< 5	45	3.84	0.04	0.01	7	<20	<10	10	20	- 2	1060	0.19	<10
2 E	$2+50 \mathrm{~N}$	<	<5	50	1.44	0.07	<0.01	6	<20	(10	10	12	<2	520	0.11	<10
LI2E	$2+00 \mathrm{~N}$	<5	< 5	30	1.08	0.05	<0.01	5	<20	(10	<10	8	<2	400	0.09	(10
L12E	$1+50 \mathrm{~N}$	<	<	190	4.68	0.22	<0.01	14	<20	<10	20	19	<2	590	0.20	<10
LI2E	$1+\mathrm{OON}$	<5	<	95	3.85	0.18	0.01	20	<20	<10	<10	18	<2	1210	0.23	(10
LI2E	O + 50N	<5	<	95	4.65	0.10	0.07	233	(20	<10	<10	12	<2	880	0.15	<10
LI2E	$0+005$ 日L	< 5	<5	85	2.58	0.07	0.01	11	<20	<10	<10	14	<2	360	0.17	<10
L12E	$0+505$	< 5	<	70	3.31	0.10	0.01	16	<20	<10	<10	15	<2	750	0.18	<10
LI2E	$1+00 \mathrm{~S}$	5	<5	75	2.10	0.10	<0.01	8	<20	<10	10	13	<2	500	0.14	<10
LI2E	$1+505$	5	<	70	2.73	0.08	0.01	8	(20	<10	<10	17	<2	950	0.23	<10
LI2E	$2+005$	< 5	<	55	1.38	0.13	<0.01	8	(20	<10	(10	12	<2	380	0.15	<10
L12E	$2+505$	<5	<5	75	2.21	0.13	<0.01	9	<20	<10	10	13	<2	620	0.15	<10
LL2E	$3+$ OOS	< 5	<	80	3.27	0.08	0.01	13	(20	<10	<10	17	<2	630	0.20	(10
L12E	$3+505$	<	<5	65	1.54	0.10	<0.01	7	<20	<10	<10	12	<2	310	0.13	<10
L12E	$4+005$	<5	<5	65	2.17	0.06	0.01	8	(20	<10	<10	13	<2	700	0.18	<10
L12E	$4+505$	<	< 5	90	2.48	0.10	0.01	10	<20	<10	<10	15	<2	510	0.19	<10
L12E	$5+005$	< 5	<	75	3.59	0.06	0.01	14	<20	<10	(10)	14	<2	770	0.19	<10
L12E	$5+505$	5	<5	70	3.56	0.06	0.01	10	<20	(10	<10	18	<2	890	0.25	<10
LI2E	$6+009$	<5	<	65	4.14	0.08	0.01	13	<20	<10	<10	17	<2	710	0.20	<10
L12E	$6+505$	<	<	120	4.29	0.08	0.01	15	<20	(10	<10	15	<2	1770	0.20	<10
L12E	$7+005$	< 5	<5	85	4.85	0.11	0.02	24	<20	<10	<10	19	2	960	0.22	<10
L12E	$7+505$	5	<5	60	2.75	0.09	0.01	9	<20	<10	<10	16	<2	1110	0.22	<10
L12E	$8+005$	<	(5	60	1.86	0.12	0.01	10	(20	(10	(10	12	<2	490	0.14	<10
L12E	$8+505$	5	< 5	55	1.66	0.10	0.01	9	<20	<10	<10	12	2	570	16	

Date of Report: 22-Jul-92

Project 319
ARROH
Soil Sappling Results
1992

Reference: 92etk-305, 92etk-310
 ppa ppa ppa ppa ppa ppa z

L12E	$9+005$	110	<1	10	<0.2	9	12	0.15	0.40	2.73	184	<1	48	13	26	5
LI2E	$9+50 \mathrm{~S}$	-202	<1	10	<0.2	11	22	0.21	0.43	3.27	222	<1	53	20	30	5
LI2E	$10+$ OOS	176	(1	18	<0.2	15	58	0.32	0.77	4.74	1101	<1	67	42	50	5
LISE	0+50S	40	<1	4	<0.2	8	11	0.21	0.18	1.95	105	<1	28	9	15	く 5
L15E	$1+005$	71	<1	6	<0.2	9	12	0.11	0.41	2.78	114	<1	38	11	19	5
LISE	$1+50 \mathrm{~S}$	48	<1	2	<0.2	11	12	0.17	0.25	1.79	581	<1	26	10	17	< 5
L15E	$2+005$	95	2	4	<0.2	9	14	0.14	0.35	2.17	137	<1	31	10	21	5
LISE	$2+505$	80	<1	4	<0.2	14	18	0.10	0.31	2.57	200	<1	35	13	21	(5
LI5E	$3+005$	61	<1	6	<0.2	26	20	0.12	0.42	2.21	104	<1	30	12	22	<5
LISE	$3+505$	160	<1	4	<0.2	17	32	0.11	0.52	3.10	286	<1	41	19	29	5
LI5E	$4+005$	142	<1	4	<0.2	16	26	0.71	0.49	2.93	587	1	31	15	30	5
LISE	4+50S	116	<1	4	<0.2	16	27	0.15	0.41	2.65	450	<1	36	15	27	<
L.15E	$5+005$	93	<1	6	<0.2	10	14	0.09	0.29	2.75	137	1	39	13	19	5
L2IE	$0+005$	32	<1	2	<0.2	5	5	0.32	0.12	1.41	242	<1	25	7	11	< 5
L2IE	$0+505$	74	<1	6	<0.2	17	21	0.20	0.41	3.35	225	1	46	16	34	5
L2IE	$1+005$	64	2	4	<0.2	8	16	0.12	0.30	2.17	361	<1	33	12	19	<
L21E	$1+505$	81	<1	8	<0.2	10	13	0.14	0.34	2.00	270	<1	32	10	18	< 5
L21E	$2+005$	65	<1	6	<0.2	12	12	0.26	0.31	1.93	368	<1	29	10	17	< 5
L2IE	$2+505$	37	<1	2	<0.2	14	11	0.27	0.43	1.70	239	<1	24	10	19	<5
L2IE	$3+005$	58	<1	4	<0.2	21	16	0.61	0.38	2.46	216	<1	34	13	23	< 5
L21E	$3+505$	72	<1	10	<0.2	15	18	1.09	0.41	2.34	299	<1	32	12	22	<
L2IE	$4+005$	82	3	4	<0.2	16	21	0.87	0.42	2.73	316	<1	31	13	28	5
L2IE	$4+505$	125	<1	10	<0.2	11	20	0.22	0.26	3.39	436	<1	44	16	22	5
L2IE	$5+005$	145	2	8	0.4	28	38	0.20	0.39	3.08	268	1	42	16	23	<
L24E	$8+00 \mathrm{~N}$	54	<1	<2	<0.2	3	9	0.10	0.15	1.75	186	<1	22	9	12	(
L24E	7+501	70	1	2	<0.2	16	30	0.25	0.50	2.74	221	<1	36	19	34	< 5
L24E	$7+00 \mathrm{~N}$	47	<1	2	<0.2	10	17	0.14	0.28	2.25	205	<1	31	12	19	< 5
L24E	6+50N	45	<1	<2	<0.2	9	9	0.11	0.15	1.72	344	<1	25	9	10	< 5
L24E	$6+$ OON	55	<1	2	<0.2	13	22	0.12	0.33	1.93	160	<1	28	14	24	<5
$124 E$	$5+50 \mathrm{~N}$	27	1	<2	<0.2	6	10	0.11	0.22	1.16	126	<1	17	7	13	<
L24E	$5+$ OON	39	<1	2	<0.2	5	9	0.12	0.19	1.28	155	<1	19	8	12	<5
L24E	4+50N	49	<1	6	<0.2	14	21	0.19	0.47	2.00	193	<1	31	13	29	< 5
L24E	$4+\mathrm{OON}$	49	<1	8	<0.2	8	13	0.11	0.31	1.90	122	<1	28	12	22	<5
L24E	$3+50 \mathrm{~N}$	69	<1	10	<0.2	15	22	0.19	0.41	2.47	172	<1	35	16	30	< 5
L24E	$3+$ OON	65	<1	8	<0.2	12	17	0.12	0.27	2.22	290	<1	32	13	20	(5
L24E	$2+50 \mathrm{~N}$	116	<1	14	<0.2	71	60	0.57	0.84	4.71	353	1	57	22	64	< 5
L24E	$2+$ OON	58	<1	8	<0.2	13	21	0.30	0.39	2.13	169	(1	28	13	21	<

Fiad

Project 319
Soil Sampling Results（part 2）

Sapple	ID	$\begin{gathered} A_{5} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Sb} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \text { Ba } \\ \text { ppa } \end{gathered}$	$\underset{\%}{A l}$	$\begin{aligned} & k \\ & z \end{aligned}$	$\begin{gathered} \mathrm{Ha} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{pp} \end{gathered}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppin} \end{array}$	$\underset{\text { ppt }}{\text { W }}$	$\underset{\text { ppa }}{\substack{\text { a }}}$	$\begin{array}{r} Y \\ p p \mathrm{y} \end{array}$	$\begin{array}{r} B \\ p p a \end{array}$	$\begin{gathered} p \\ p p \rrbracket \end{gathered}$	$\begin{gathered} \mathrm{Ti} \\ \% \end{gathered}$	U
L12E	$9+005$	5	＜5	75	2.41	0.12	0.01	13	＜20	＜10	＜10	16	＜2	． 1010	0.22	＜10
LI2E	$9+505$	5	＜	125	2.55	0.16	0.01	14	＜20	＜10	＜10	17	$\therefore 2$	1580	0.23	＜10
L12E	$10+005$	＜5	＜5	205	3.88	0.52	0.01	25	＜20	（10	＜10	31	＜2	690	0.43	＜10
LISE	$0+505$	＜ 5	＜5	70	2.44	0.06	＜0．01	14	＜20	＜10	10	12	＜2	470	0.12	（10）
LI5E	$1+005$	＜5	＜5	70	4．41	0.06	＜0．01	9	＜20	＜10	10	16	＜2	1520	0.19	＜10
LISE	$1+50 S$	＜5	＜5	60	2.15	0.08	0.01	11	＜20	＜10	10	11	（2	930	0.11	＜10
L15E	$2+005$	＜5	＜5	80	2.42	0.08	＜0．01	9	＜20	＜10	10	13	＜2	680	0.14	＜10
LISE	$2+50 S$	＜5	＜5	60	3.38	0.06	＜0．01	8	＜20	＜10	10	13	＜2	850	0.15	＜10
L15E	$3+005$	＜5	5	75	2.26	0.07	＜0．01	8	＜20	＜10	10	10	＜2	570	0.10	＜10
LISE	$3+505$	く5	＜5	105	3.03	0.14	＜0．01	9	く20	＜10	10	14	＜2	1040	0.16	＜10
L15E	$4+005$	＜5	＜5	110	4.75	0.10	0.01	40	＜20	＜10	20	27	2	1160	0.21	＜10
LISE	$4+50 S$	＜5	＜	70	2.42	0.06	＜0．01	13	＜20	＜10	10	11	＜2	850	0.12	＜10
LISE	$5+005$	＜5	＜	80	3.37	0.06	＜0．01	9	＜20	＜10	10	14	＜2	820	0.16	＜10
L2IE	$0+005$	<5	＜5	50	1.33	0.04	＜0．01	15	（20	＜10	10	11	＜2	170	0.08	＜10
L21E	$0+505$	＜5	＜5	75	3.31	0.11	0.01	16	＜20	＜10	10	15	$\cdot<2$	1080	0.17	＜10
L2IE	$1+005$	＜5	＜5	90	2.93	0.07	0.01	9	＜20	＜10	10	14	＜2	440	0.14	（10
L21E	$1+505$	＜5	＜ 5	125	2.26	0.09	＜0．01	9	＜20	（10	10	12	＜2	590	0.11	＜10
L21E	$2+00 S$	＜5	＜5	85	2.02	0.09	0.01	12	＜20	＜10	10	11	＜2	660	0.10	＜10
L21E	$2+505$	＜5	＜5	75	1.31	0.22	0.01	16	＜20	＜10	10	13	＜2	410	0.09	＜10
L2IE	$3+005$	＜ 5	＜5	125	2.60	0.10	0.01	35	＜20	＜10	20	15	＜2	600	0.11	＜10
L21E	$3+505$	＜5	5	85	3.00	0.11	0.02	38	＜20	＜10	10	15	＜2	940	0.11	＜10
L2IE	$4+005$	＜5	＜ 5	130	4.83	0.11	0.01	49	＜20	（10	20	24	2	730	0.19	（10
L21E	$4+505$	＜5	＜5	95	4.33	0.06	0.01	19	＜20	＜10	10	17	＜2	710	0.19	＜10
L2IE	$5+005$	く5	＜5	90	3.25	0.05	0.01	18	＜20	＜10	10	15	＜2	650	0.14	＜10
L．24E	$8+00 \mathrm{~N}$	＜5	＜5	75	1.73	0.04	＜0．01	11	＜20	（10	＜10	9	＜2	640	0.11	＜10
L24E	$7+50 \mathrm{~N}$	＜5	＜5	100	3.99	0.16	0.01	23	＜20	＜10	10	20	＜2	570	0.17	＜10
L24E	$7+00 \mathrm{~N}$	＜5	＜5	90	3.08	0.09	0.01	15	＜20	＜10	10	17	＜2	410	0.16	＜10
－L24E	$6+50 \mathrm{~N}$	く5	＜5	90	3.39	0.04	0.01	14	＜20	＜10	＜10	16	＜2	590	0.15	＜10
L24E	$6+00 \mathrm{~N}$	＜5	＜5	85	2.42	0.11	＜0．01	15	＜20	＜10	＜10	10	＜2	490	0.13	＜10
L24E	$5+50 \mathrm{~N}$	＜5	＜	45	1.07	0.06	＜0．01	12	＜20	＜10	＜10	7	＜2	260	0.07	＜10
L24E	$5+00 \mathrm{~N}$	＜5	＜5	55	1.19	0.06	＜0．01	11	＜20	＜10	＜10	7	＜2	430	0.08	＜10
L24E	$4+50 \mathrm{~N}$	＜	＜5	85	2.30	0.15	0.01	18	＜20	（10	10	14	＜2	290	0.13	＜10
L24E	$4+00 \mathrm{~N}$	＜5	＜5	75	2.58	0.07	0.01	12	＜20	＜10	（10	14	＜2	630	0.15	＜10
L24E	$3+50 \mathrm{~N}$	（5	＜ 5	100	3.78	0.13	0.01	21	＜20	＜10	＜10	18	（2	1060	0.19	＜10
L24E	$3+00 \mathrm{~N}$	＜	＜ 5	105	3.27	0.10	0.01	15	＜20	＜10	＜10	15	＜2	790	0.17	＜10
L24E	$2+50 \mathrm{~N}$	＜5	5	405	8.02	0.42	0.02	68	＜20	＜10	20	52	2	800	0.29	＜10
L24E	$2+00 \mathrm{~N}$	＜	＜	75	3.10	0.09	0.01	23	＜20	＜10	＜10	14	＜2	680	0.13	＜10

Date of Report: 22-Jul-92

Project 319
ARROH
Soil Sampling Results 1992

Reference: 92etk-305, 92etk-310

L24E	$1+50 \mathrm{~N}$	81	<1	16	<0.2	18	22	0.39	0.63	3.19	223	<1	39	16	26	<5
L24E	$1+$ OON	110	<1	16	<0.2	46	58	0.46	0.46	3.80	323	<1	11	19	43	<
L24E	$\mathrm{O}+5 \mathrm{OH}$	60	<1	10	<0.2	12	16	0.21	0.30	2.34	189	11	31	14	18	<5
L24E	$0+0058 \mathrm{BL}$	43	(1	6	<0.2	7	11	0.13	0.21	1.51	301	<1	22	9	12	(5
L24E	0+50S	75	<1	8	<0.2	13	16	0.15	0.33	2.07	220	(1)	30	13	17	< 5
1248	$1+$ OOS	43	<1	4	<0.2	5	10	0.07	0.17	1.47	136	<1	19	7	11	<
L24E	$1+505$	73	(1)	12	<0.2	12	13	0.15	0.22	2.46	141	4	36	12	15	<5
L24E	$2+$ OOS	96	<1	10	<0.2	17	19	0.13	0.21	1.90	100	1	28	11	13	(5
L24E	$2+505$	43	1	4	<0.2	7	6	0.08	0.18	1.23	129	(1)	17	6	9	<5
L24E	$3+005$	121	(1	12	0.2	13	12	0.10	0.31	2.05	190	<1	28	11	14	<
L24E	$3+505$	158	<1	10	0.2	7	11	0.10	0.25	2.10	657	<1	29	12	13	<5
L24E	$4+$ 00s	37	<1	<2	<0.2	3	7	0.09	0.15	0.82	78	<1	11	4	6	<
L24E	4+505	40	<1	2	<0.2	5	8	0.12	0.28	1.47	112	<1	24	7	15	<5
L24E	5+00s	28	<1	2	<0.2	4	7	0.10	0.13	1.04	52	<1	13	4	7	<
L24E	$5+505$	47	<1	10	<0.2	15	10	0.42	0.14	2.28	67	<1	22	12	11	<5
L24E	6+00s	87	<1	6	<0.2	23	27	0.37	0.44	2.55	501	1	34	15	23	< 5
L24E	$6+505$	167	1	10	0.6	27	16	0.37	0.20	1.79	2271	3	24	13	16	< 5
L24E	1+00s	112	<1	6	<0.2	10	16	0.31	0.35	2.09	165	<1	32	10	22	<
L24E	$7+505$	97	(1)	6	<0.2	17	26	0.50	0.46	2.91	266	<1	36	16	26	< 5
L24E	$8+005$	101	17	8	<0.2	14	20	0.22	0.43	2.28	525	<1	39	12	24	<5
L24E	$8+505$	78	(1	6	<0.2	9	14	0.27	0.25	1.86	226	<1	23	10	13	< 5
L24E	$9+005$	132	<1	24	0.2	20	31	0.56	0.39	3.67	1030	<1	30	17	25	5
L24E	$9+505$	115	<1	8	< 0.2	17	21	0.17	0.48	2.64	226	<1	42	13	26	< 5
L24E	$10+005$	87	<1	10	<0.2	14	20	0.07	0.22	2.38	571	<1	36	12	21	< 5
	$10+00 \mathrm{~N}$	39	<1	<2	<0.2	11	18	0.12	0.27	1.74	97	<1	25	11	19	<5
L27E	9+50N	52	<1	2	<0.2	11	20	0.19	0.41	1.77	146	<1	26	11	26	<
L27E	$9+00 \mathrm{~N}$	n/5	n/s	n/s	n/5	n/5	n/5									
L27E	$8+50 \mathrm{~N}$	44	<1	4	<0.2	13	17	0.19	0.39	1.90	219	<1	28	12	22	< 5
L27E	$8+$ OON	47	<1	10	<0.2	7	8	0.09	0.14	2.01	186	<1	29	10	11	5
L27E	$7+50 \mathrm{~N}$	67	<1	6	<0.2	13	26	0.16	0.29	2.43	145	<1	33	17	20	(5
L27E	$7+00 \mathrm{~N}$	36	<1	2	<0.2	10	15	0.14	0.27	1.71	97	<1	27	12	16	<5
L27E	$6+50 \mathrm{~N}$	68	<1	4	<0.2	16	26	0.30	0.46	2.22	527	<1	31	19	28	< 5
L27E	$6+00 \mathrm{~N}$	43	<1	4	<0.2	12	17	0.14	-0.27	1.97	165	<1	28	11	18	< 5
L27E	$5+50 \mathrm{~N}$	39	<1	6	0.2	9	9	0.07	0.17	2.01	211	<1	28	9	13	5
L27E	$5+00 \mathrm{~N}$	23	<1	<2	<0.2	4	8	0.08	0.14	1.18	84	<1	15	5	8	<5
L27E	$4+50 \mathrm{~N}$	38	<1	<2	<0.2	15	18	0.17	0.34	1.81	153	<1	24	11	19	<5
L27E	$4+$ OON	\%in	1	26	<0.2	15	24	0.41	0.39	2.89	746	<1	42	15	19	5
$127 E$	$3+50 \mathrm{~N}$	154	<1	14	<0.2	19	28	0.29	0.42	2.92	333	<1	43	17	23	5
127 E	$3+00 \mathrm{~N}$	101	<1	12	<0.2	10	14	0.07	0.43	3.90	415	<1	61	19	32	

Project 319
Soil Sanpling Results (part 2)
 pp» ppı ppa \% \& \& ppa ppa jpm jppa ppa ppa ppa \% ppa

L24E	1+50N	<	< 5	110	6.47	0.14	0.03	27	<20	(10	10	30	<2	990	0.24	<10
L24E	1+ OON	< 5	< 5	235	7.31	0.24	0.01	50	<20	<10	40	75	<2	2820	0.25	<10
L24E	O+50N	< 5	<5	85	4.33	0.08	0.01	16	<20	<10	(10	16	<2	580	0.20	<10
L24E	$0+$ OOS BL	< 5	< 5	50	1.65	0.06	0.01	9	<20	<10	<10	9	<2	670	0.10	<10
L24E	0 + 50S	<	< 5	70	2.46	0.06	0.01	11	<20	<10	<10	11	<2	750	0.13	<10
L24E	$1+$ OOS	< 5	<	30	1.59	0.03	<0.01	5	<20	<10	<10	6	<2	690	0.07	<10
L24E	$1+505$	<5	<	95	3.47	0.05	0.01	12	<20	<10	<10	14	<2	970	0.19	<10
L24E	$2+005$	< 5	< 5	75	1.87	0.04	0.01	9	<20	<10	<10	9	<2	310	0.10	<10
L24E	$2+505$	<5	<5	35	1.29	0.03	<0.01	6	<20	<10	<10	7	<2	510	0.07	<10
L24E	$3+$ OOS	< 5	< 5	75	3.12	0.05	0.01	8	<20	<10	<10	17	<2	610	0.16	<10
L24E	$3+505$	<	< 5	95	3.06	0.04	0.01	8	<20	<10	<10	14	<2	920	0.16	<10
L248	$4+$ OOS	<5	< 5	50	0.75	0.04	<0.01	6	(20	<10	<10	6	<2	370	0.03	<10
L24E	$4+505$	<5	<5	45	1.35	0.04	<0.01	7	<20	<10	10	8	<2	130	0.08	<10
L24E	5+00S	< 5	< 5	30	1.03	0.02	<0.01	8	<20	(10	<10	6	<2	230	0.06	<10
L24E	5+50S	<	< 5	95	4.79	0.03	0.01	23	<20	<10	10	27	<2	430	0.20	<10
L24E	$6+005$	< 5	<5	95	2.34	0.10	0.01	20	<20	<10	10	17	<2	450	0.11	<10
L24E	$6+505$	< 5	<	165	4.07	0.04	0.01	21	<20	<10	20	28	- 2	760	0.07	<10
L24E	$7+005$	<	< 5	110	2.11	0.07	0.01	14	<20	<10	10	10	<2	400	0.10	<10
L24E	$7+505$	5	<5	100	2.25	0.09	0.01	18	<20	<10	10	10	<2	480	0.09	<10
L24E	$8+005$	< 5	< 5	110	2.35	0.08	0.01	12	<20	<10	10	11	<2	810	0.11	(10
L24E	$8+505$	<	<5	70	2.11	0.04	0.01	25	<20	<10	<10	10	<2	540	0.10	<10
L24E	$9+005$	< 5	< 5	90	4.19	0.04	0.02	73	<20	<10	<10	18	2	920	0.13	<10
L24E	$9+505$	< 5	< 5	95	2.31	0.07	0.01	15	<20	<10	10	13	<2	360	0.13	<10
L24E	$10+005$	<5	< 5	75	4.23	0.04	0.01	7	<20	<10	<10	15	<2	1510	0.18	<10
L27E	$10+00 \mathrm{~N}$	<	< 5	75	1.75	0.09	<0.01	11	<20	<10	10	9	<2	280	0.10	<10
L27E	$9+50 \mathrm{H}$	<5	< 5	95	2.06	0.13	0.01	20	<20	<10	<10	11	<2	270	0.12	(10
L27E	$9+00 \mathrm{H}$	n/s	n/5	n/5	n/5	n/5	n/5	n/5	n/s	n/5	n/5	n/5	n/s	n/5	n/5	n/5
L27E	$8+$ SON	< 5	<5	65	1.71	0.14	0.01	14	<20	<10	10	12	<2	360	0.11	<10
L27E	$\mathrm{B}+00 \mathrm{~N}$	<5	<	80	2.85	0.05	0.01	10	<20	(10	<10	16	<2	610	0.18	<10
L27E	$7+50 \mathrm{~N}$	< 5	<	125	3.13	0.08	0.01	15	<20	<10	<10	13	<2	330	0.15	<10
L27E	$7+00 \mathrm{~N}$	<	< 5	60	1.46	0.05	0.01	10	<20	<10	<10	9	<2	180	0.10	<10
L27E	$6+50 \mathrm{H}$	< 5	<5	105	3.39	0.15	0.01	25	<20	<10	10	15	<2	530	0.13	<10
L27E	$6+00 \mathrm{~N}$	<	<5	70	2.08	0.05	<0.01	11	<20	<10	<10	10	<2	450	0.11	<10
L27E	$5+50 \mathrm{~N}$	< 5	<5	55	3.34	0.04	<0.01	9	<20	<10	<10	13	<2	830	0.16	<10
L27E	$5+00 \mathrm{~N}$	< 5	< 5	30	1.34	0.03	<0.01	7	<20	<10	<10	6	<2	290	0.06	<10
1278	$4+50 \mathrm{~N}$	< 5	< 5	45	1.81	0.05	0.01	13	<20	<10	<10	10	<2	600	0.10	<10
L27E	$4+\mathrm{OON}$	< 5	< 5	105	5.19	0.08	0.01	16	<20	<10	10	28	2	2280	0.22	(10
L27E	$3+50 \mathrm{~N}$	< 5	(5	200	5.39	0.10	0.01	17	<20	<10	<10	22	2	1190	0.23	<10
L27E	$3+\mathrm{OON}$	5	<	120	2.57	,										

Date of Report：22－Jul－92
Project 319
ARROW

Soil Salipling Results 1992

Reference：92ett－305，92etk－310
 ppa ppa ppa ppa ppa ppa z \＆z

L27E	$2+50 \mathrm{~N}$	96	＜1	6	＜0．2	15	23	0.19	0.60	3.11	392	＜1	． 51	19	31	5
L27E	$2+\mathrm{OON}$	100	＜1	4	＜0．2	25	30	0.26	0.25	3.09	137	＜1	38	16	23	5
L27E	$1+50 \mathrm{~N}$	93	＜1	6	＜0．2	21	21	0.18	0.48	2.79	147	＜1	44	19	26	＜5
L27E	$1+00 \mathrm{~N}$	33	＜1	2	＜0．2	5	8	0.13	0.18	1.60	86	＜1	25	7	13	＜ 5
L27E	$\mathrm{O}+5 \mathrm{ON}$	101	＜1	2	＜0．2	21	27	0.42	0.36	2.16	770	＜1	26	14	20	＜5
L27E	$0+00 \mathrm{C} 8 \mathrm{~L}$	60	11	2	＜0．2	9	12	0.09	0.27	1.69	107	＜1	26	10	14	＜ 5
L27E	$0+505$	186	2	6	＜0．2	24	28	0.44	0.53	2.55	309	＜1	35	17	26	く5
L27E	$1+005$	59	＜1	8	＜0．2	8	10	0.09	0.17	2.18	272	（1	30	11	12	5
L27E	$1+505$	－247	1	18	＜0．2	17	16	0.26	0.35	1.88	112	く1	28	11	17	＜ 5
L27E	$2+00 S$	47	＜1	＜2	＜0．2	3	7	0.16	0.13	0.79	46	＜1	10	4	5	く5
L27E	$2+50 S$	96	＜1	18	＜0．2	9	10	0.33	0.22	1．60	436	＜1	26	8	13	〈5
L27E	$3+005$	105	1	14	＜0．2	11	13	0.28	0.30	1.84	267	＜1	35	9	18	＜5
L27E	$3+50 S$	167	1	4	＜0．2	13	19	0.31	0.42	2.22	351	＜1	33	12	24	＜5
L27E	$4+005$	41	＜1	＜2	＜0．2	11	8	0.42	0.19	1.35	99	く1	18	5	11	＜ 5
L27E	$4+505$	23	＜1	＜2	＜0．2	11	8	0.25	0.25	1.10	130	＜1	16	6	11	＜5
L27E	$5+$ OOS	16	＜1	＜2	＜0．2	10	9	0.21	0.21	0.95	88	＜1	． 12	7	9	＜ 5
L27E	$5+50 S$	74	＜1	2	＜0．2	6	8	0.14	0.21	1.41	81	＜1	21	6	12	く5
L27E	$6+00 S$	33	＜1．	＜2	＜0．2	10	8	0.32	0.23	1.01	103	＜1	17	6	10	＜5
L27E	$6+50 S$	47	1	6	$(0.2$	7	8	0.16	0.15	2.11	62	＜1	33	8	13	＜5
L27E	$7+00 S$	54	＜1	4	0.2	15	18	0.10	0.22	2.07	120	＜1	28	9	16	＜5
L27E	$7+505$	67	＜1	6	＜0．2	24	26	0.22	0.60	2.97	187	＜1	50	15	38	＜ 5
L27E	$8+005$	67	＜1	8	＜0．2	14	14	0.13	0.25	2.23	254	1	34	12	19	5
L27E	$8+50 S$	97	＜1	6	＜0．2	15	27	0.14	0.44	2.62	174	＜1	41	15	27	5
L27E	$9+005$	45	2	4	＜0．2	3	8	0.08	0.15	1.44	104	＜1	23	5	11	＜
L27E	$9+505$	139	1	10	0.4	37	211	0.64	0.29	2.76	766	1	26	14	44	＜ 5
L27E	$10+005$	132	＜1	8	＜0．2	18	41	0.21	0.39	2.88	515	＜1	40	16	29	＜
L30E	$10+00 \mathrm{~N}$	58	＜1	4	＜0．2	10	12	0.08	0.19	1.98	149	＜1	27	12	14	＜5
L3OE	$9+50 \mathrm{~N}$	51	（1	6	＜0．2	14	14	0.15	0.30	2.20	201	＜1	29	14	18	＜
L30E	$9+00 \mathrm{~N}$	29	＜1	2	＜0．2	8	11	0.11	0.23	1.45	119	＜1	21	9	13	く5
L30E	$8+50 \mathrm{H}$	53	＜1	6	＜0．2	4	9	0.11	0.18	1.75	371	＜1	27	8	14	＜5
L30E	$8+0011$	82	（1	8	＜0．2	6	11	0.12	0.19	2.04	574	＜1	28	11	15	く5
L30E	$7+50 \mathrm{~N}$	62	＜1	8	<0.2	14	19	0.12	：0．25	2.29	621	＜1	32	18	19	＜ 5
L30E	$7+00 \mathrm{~N}$	110	＜1	14	＜0．2	12	25	0.29	0.45	2.94	1282	＜1	43	18	29	5
L30E	$6+50 \mathrm{~N}$	45	＜1	2	＜0．2	18	18	0.07	0.29	2.10	94	＜1	30	11	20	＜ 5
L30E	$6+00 \mathrm{~N}$	39	＜1	8	0.2	10	10	0.08	0.13	2.10	157	＜1	32	10	10	く5
L30E	$5+50 \mathrm{~N}$	24	＜1	＜2	＜0．2	11	12	0.12	0.19	1.25	91	＜1	17	7	12	＜
L30E	$5+00 \mathrm{~N}$	72	＜1	． 6	0.2	14	14	0.11	0.15	1.81	203	＜1	24	10	12	＜5
L30E	$4+5011$	76	＜1	4	＜0．2	13	25	0.15	0.34	2.15	335	＜1	33	16	26	＜ 5
L30E	$4+$ OON	47	＜1	4	＜0．2	17	20	0.18	0.33	2.22	198	＜1	33	13	20	＜5

Project 319
Soil Sampling Results（part 2）

Sapple ID	As	St	Ba	Al	．${ }^{\text {k }}$	Na	Sr	Sn	H	La	γ	8	P	Ti	U
	ppo	ppa	pp：	$\%$	\％	4	ppm	ppm	pp¢	－ppı	ppa	ppo	ppı	$\%$	ppı

L27E	$2+50 \mathrm{~N}$	5	＜5	105	2.62	0.11	0.01	13	＜20	＜10	＜10	16	＜2	990	0.21	＜10
L27E	$2+\mathrm{OON}$	＜	＜ 5	195	6.58	0.13	0.01	24	＜20	＜10	10	30	$\therefore 2$	1500	0.24	＜10
L27E	$1+50 \mathrm{~N}$	＜ 5	く5	95	3.53	0.10	0.01	13	＜20	＜10	＜10	18	＜2	730	0.22	＜10
L27E	$1+00 \mathrm{~N}$	＜5	＜ 5	45	1.35	0.03	＜0．01	8	＜20	＜10	＜10	8	＜2	440	0.09	＜10
L27E	$0+50 \mathrm{~N}$	＜5	＜ 5	125	3.99	0.09	0.01	20	＜20	＜10	10	30	＜2	910	0.16	＜10
L27E	$0+00 N B L$	＜	＜	90	1.94	0.07	＜0．01	9	＜20	<10	＜10	13	＜2	330	0.12	＜10
L27E	$0+505$	＜5	く5	185	2.62	0.17	0.01	21	＜20	＜10	20	23	＜2	150	0.16	＜10
L27E	$1+005$	＜	＜	85	3.03	0.06	0.01	9	＜20	＜10	10	17	＜2	540	0.17	＜10
L27E	$1+505$	＜5	く5	130	1.46	0.05	0.01	12	＜20	＜10	10	13	＜2	560	0.08	＜10
L27E	$2+005$	＜5	＜	30	0.73	0.03	<0.01	7	＜20	＜10	＜10	6	＜2	410	0.02	＜10
L27E	$2+505$	＜5	＜5	75	1.62	0.06	0.01	15	＜20	＜10	10	10	＜2	660	0.08	＜10
L27E	$3+005$	く	＜	95	1.92	0.06	0.01	13	＜20	＜10	10	11	<2	720	0.10	＜10
L27E	$3+505$	＜ 5	＜5	175	2.72	0.10	0.01	20.	＜20	＜10	10	14	＜2	690	0.13	（10
L27E	$4+005$	＜	く5	45	1.34	0.04	＜0．01	16	＜20	＜10	10	10	＜2	290	0.06	＜10
L27E	$4+505$	＜5	＜5	45	0.82	0.10	0.01	13	＜20	＜10	10	8	＜2	430	0.05	＜10
L27E	5＋00s	く5	＜5	25	0.71	0.10	0.01	9	＜20	＜10	10	7	＜2	530	0.04	＜10
L27E	5＋505	＜5	く5	50	1.43	0.04	＜0．01	9	＜20	＜10	10	9	－<2	450	0.07	＜10
L27E	$6+005$	＜5	＜ 5	90	0.83	0.07	0.01	16	＜20	＜10	10	8	＜2	450	0.05	（10
L27E	$6+505$	＜5	＜	60	3.00	0.03	0.01	10	＜20	＜10	10	15	＜2	350	0.14	（10
L27E	$7+005$	＜5	＜5	55	1.81	0.04	＜0．01	8	＜20	＜10	10	8	＜2	450	0.07	＜10
L27E	$7+505$	（5	＜ 5	95	2.89	0.14	0.01	17	＜20	＜10	20	16	＜2	390	0.16	110
L27E	$8+005$	＜ 5	＜5	85	3.37	0.06	0.01	11	＜20	＜10	10	21	<2	1150	0.16	＜10
L27E	$8+505$	＜5	＜ 5	120	3.21	0.10	0.01	11	＜20	＜10	20	18	＜2	630	0.17	＜10
L27E	$9+005$	＜ 5	＜5	30	1.10	0.02	＜0．01	7	＜20	＜10	＜10	6	＜2	920	0.06	＜10
L27E	$9+505$	＜	＜ 5	140	4.01	0.07	0.01	37	＜20	＜10	60	64	＜2	460	0.16	＜10
L27E	$10+005$	<5	＜	170	2.93	0.07	0.01	15	＜20	＜10	10	12	＜2	2380	0.13	＜10
L30E	$10+00 \mathrm{~N}$	＜ 5	＜5	60	2.30	0.05	0.01	8	＜20	＜10	＜10	12	＜2	530	0.14	＜10
L30E	$9+50 \mathrm{~N}$	＜ 5	＜ 5	85	2.82	0.07	0.01	12	<20	＜10	＜10	15	＜2	590	0.15	（10
L30E	$9+00 \mathrm{~N}$	＜	＜ 5	60	1.69	0.04	0.01	11	く20	＜10	＜10	9	＜2	410	0.08	＜10
L30E	$8+50 \mathrm{~N}$	＜5	＜5	60	1.95	－ 0.05	0.01	9	＜20	＜10	＜10	11	＜2	710	0.12	＜10
L30E	$\mathrm{B}+00 \mathrm{~N}$	＜	＜5	60	2.50	0.06	0.01	9	く20	＜10	＜10	11	＜2	1960	0.14	＜10
L30E	$7+50 \mathrm{~N}$	＜5	＜5	95	4.67	0.09	0.01	12	＜20	＜10	10	23	2	1090	0.19	＜10
L30E	$7+00 \mathrm{~N}$	5	く5	125	3.18	0.14	0.01	21	＜20	＜10	＜10	17	＜2	1030	0.21	＜10
L30E	$6+50 \mathrm{~N}$	5	く5	45	2.26	0.07	＜0．01	8	＜20	＜10	＜10	12	＜2	570	0.11	＜10
L30E	$6+00 \mathrm{~N}$	＜5	＜5	75	4.29	0.03	0.01	9	く20	＜10	＜10	19	＜2	640	0.19	＜10
L30E	$5+50 \mathrm{~N}$	＜S	＜ 5	40	1.14	0.03	＜0．01	8	＜20	＜10	（10）	7	＜2	190	0.06	＜10
L30E	$5+00 \mathrm{~N}$	＜	＜	65	3.28	0.05	0.01	10	く20	く10	＜10	15	＜2	620	0.15	＜10
L3OE	$4+50 \mathrm{~N}$	＜	＜ 5	65	2.09	0.07	0.01	10	＜20	＜10	＜10	12	＜2	430	0.15	＜10
L30E	$4+00 \mathrm{~N}$	5	く	80	3.89	0.07	0.01	14	＜20	＜10	10	18	＜2	590	0.16	＜10

final
page 9

Date of Report: 22-Jul-92
Project 319
ARROH
Soil Sanpling Results
1992
Reference: 92etk-305, 92etk-310

L30E	$3+50 \mathrm{~N}$	78	<1	8	<0.2	7	9	0.07	0.27	2.69	287	<1	48	14	12	5
L30E	$3+00 \mathrm{~N}$	83	<1	6	<0.2	21	22	0.12	0.31	2.84	376	<1	46	20	22	<5
L30E	$2+50 \mathrm{~N}$	34	<1	<2	<0.2	13	24	0.13	0.31	1.34	98	<1	19	11	24	< 5
L30E	$2+$ OOH	97	11	2	<0.2	21	34	0.25	1.71	4.95	1945	<1	48	25	38	5
L30E	$1+50 \mathrm{~N}$	84	<1	4	<0.2	14	20	0.19	0.40	2.58	798	<1	37	15	18	<5
L308	$1+$ OOH	71	<1	6	0.2	16	12	0.08	0.18	2.38	270	<1	34	14	11	5
L30E	O+50N	423	<1	34	0.2	23	18	0.08	0.27	3.19	180	1	47	10	14	<5
L30E	$0+$ OON BL	-737.	1	20	<0.2	4	14	0.10	0.18	1.63	160	1	21	7	9	<
L30E	0+50S	33	1	<2	<0.2	10	B	0.13	0.19	0.97	96	<1	12	5	8	<5
L30E	$1+005$	149	<1	10	<0.2	13	13	0.16	0.29	2.19	183	<1	32	12	16	5
L30E	$1+505$	38	<1	<2	<0.2	8	8	0.21	0.21	1.19	87	<1	16	7	12	<5
L30E	$2+005$	81	1	2	<0.2	7	10	0.17	0.33	1.69	112	<1	27	8	19	(5
L30E	$2+50 S$	64	(1	4	<0.2	11	10	0.40	0.33	1.92	121	<1	29	8	19	< 5
L30E	$3+$ OOS	93	1	6	<0.2	6	11	0.10	0.20	1.72	711	<1	25	10	15	<
L30E	$3+505$	73	3	6	<0.2	8	14	0.23	0.33	2.06	139	<1	30	10	20	< 5
L30E	$4+$ OOS	79	2	4	<0.2	10	15	0.40	0.34	2.30	141	1	34	12	22	<
L30E	4+50S	91	1	14	<0.2	18	17	0.84	0.41	2.56	875	1	38	12	27	<5
L30E	$5+$ 00S	64	1	6	<0.2	13	16	0.39	0.39	2.17	196	(1	33	11	23	<5
L30E	$5+505$	81	4	6	<0.2	16	39	0.39	0.40	2.23	116	<1	37	11	27	<5
L30E	$6+005$	72	<1	6	<0.2	19	47	0.42	0.32	2.24	106	<1	32	11	26	<5
L30E	$6+505$	102	<1	8	<0.2	23	75	0.24	0.44	5.87	363	1	60	32	51	10
L30E	7+00S	93	4	6	<0.2	13	14	0.13	0.24	1.77	98	<1	28	9	15	<5
L30E	$7+505$	134	1	6	<0.2	17	29	0.14	0.37	2.34	380	<1	36	14	24	<5
L30E	$8+005$	58	1	8	<0.2	7	10	0.07	0.15	1.97	219	<1	31	7	16	<5
L30E	$8+505$	96	<1	10	<0.2	19	18	0.11	0.18	2.37	286	(1)	31	13	13	5
L30E	$9+005$	78	3	8	<0.2	19	28	0.18	0.40	2.59	872	<	37	14	28	5
L30E	$9+505$	53	1	4	<0.2	18	21	0.11	0.37	2.08	152	<1	29	11	22	<5
L30E	$10+005$	102	<1	6	<0.2	15	24	0.21	0.43	2.28	732	<1	34	14	26	<5
	$10+00 \mathrm{~N}$	58	<1	2	<0.2	6	12	0.11	0.22	1.50	182	<1	21	9	13	<5
L33E	$9+50 \mathrm{~N}$	113	<1	4	<0.2	11	18	0.14	0.24	2.65	385	<1	36	17	21	< 5
L33E	$9+$ OON	51	<1	2	<0.2	16	22	0.36	0.47	2.23	201	<1	30	14	28	<5
L33E	$8+50 \mathrm{~N}$	85	<1	6	<0.2	9	17	0.33	0.27	2.40	471	<1	30	13	16	5
L33E	$8+$ OOH	52	<1	4	<0.2	18	26	0.32	0.53	2.38	286	<1	32	14	30	<5
L33E	7+50N1	29	<1	<2	<0.2	10	11	0.11	0.22	1.35	103	<1	17	9	12	<
L33E	$7+\mathrm{OON}$	47	<1	4	<0.2	7	13	0.10	0.24	1.81	175	(1)	27	11	16	<5
-33E	6+50N	41	<1	6	<0.2	16	15	0.12	0.23	2.33	126	<1	30	17	16	<5
L33E	$6+\mathrm{OON}$	33	<1	<2	<0.2	9	13	0.15	0.24	1.44	105	<1	18	8	14	<5
L33E	$5+50 \mathrm{~N}$	65	<1	2	<0.2	14	19	0.22	0.32	2.34	103	<1	32	13	20	< 5
L33E	$5+$ OON	31	(1	2	<0.2	10	12	0.19	0.24	1.49	112	<1	22	8	14	〈5

Soil Sampling Results（part 2）

Sample ID	As	Sb	Ba	Al	K	Na	Sr	Sn	W	Ld	Y	B	p	Ti	U
	ppı	ppa	ppm	\％	\％	$\%$	pp：	ppı	ppa	ppi	ppe	ppa	ppı	\％	ppa

L30E	$3+50 \mathrm{~N}$	5	＜5	80	2.85	0.05	0.01	7	＜20	（10	＜10	19	＜2	1480	0.25	＜10
L30E	$3+$ OON	＜5	く5	85	3.30	0.07	0.01	9	＜20	＜10	＜10	15	$\therefore<2$	1890	0.19	＜10
L30E	$2+50 \mathrm{~N}$	＜5	く5	45	1.10	0.07	＜0．01	7	＜20	＜10	＜10	6	＜2	300	0.07	＜10
L30E	$2+$ OON	く5	5	135	3.54	0.13	0.01	12	＜20	＜10	＜10	18	2	800	0.23	＜10
L30E	$1+50 \mathrm{~N}$	＜5	＜ 5	100	4.96	0.07	0.01	16	＜20	＜10	10	31	＜2	1070	0.24	＜10
L30E	$1+00 \mathrm{~N}$	＜ 5	＜ 5	90	4.76	0.05	0.01	9	（20	＜10	＜10	22	＜2	1250	0.23	＜10
L30E	$0+50 \mathrm{~N}$	＜5	＜5	235	3.61	0.05	0.01	9	＜20	＜10	10	19	＜2	1170	0.15	＜10
L30E	O＋00N 8L	く	＜ 5	160	1.40	0.03	＜0．01	7	＜20	＜10	＜10	6	＜2	550	0.06	＜10
L30E	$0+505$	＜ 5	＜ 5	35	0.79	0.05	＜0．01	7	＜20	＜10	＜10	6	＜2	380	0.04	＜10
L30E	$1+005$	＜ 5	＜	110	3.47	0.08	0.01	12	＜20	＜10	10	19	＜2	840	0.16	＜10
L30E	$1+505$	＜ 5	く5	95	1.00	0.07	0.01	10	＜20	＜10	10	8	＜2	150	0.06	＜10
L30E	$2+005$	（5	＜ 5	85	1.57	0.09	＜0．01	10	＜20	＜10	10	10	＜2	410	0.09	＜10
L30E	$2+50 S$	＜ 5	＜ 5	115	1.70	0.08	$\langle 0.01$	24	＜20	＜10	10	11	く2	580	0.10	＜10
L30E	$3+005$	く5	＜	55	1.99	0.06	0.01	9	＜20	＜10	10	11	＜2	1310	0.12	＜10
L30E	$3+505$	＜5	＜ 5	85	2.06	0.09	＜0．01	13	＜20	＜10	10	13	＜2	560	0.12	＜10
L30E	4＋00S	＜ 5	＜	85	3.02	0.07	0.01	19	＜20	＜10	10	17	＜2	360	0.13	＜10
L30E	$4+505$	＜ 5	く5	160	3.20	0.14	0.01	38	＜20	＜10	20	20	－＜2	590	0.15	＜10
L30E	$5+005$	＜	＜	120	2.43	0.09	0.01	24	＜20	＜10	10	15	＜2	480	0.13	＜10
L30E	$5+505$	＜ 5	＜ 5	195	2.55	0.09	0.01	24	＜20	＜10	10	13	＜2	210	0.12	＜10
L30E	$6+00 S$	く	＜	110	2.90	0.07	0.01	26	＜20	＜10	10	15	＜2	420	0.12	＜10
L30E	$6+505$	5	＜5	80	3.39	0.02	0.01	14	＜20	＜10	10	16	＜2	3070	0.20	＜10
L30E	$7+005$	＜ 5	（5	65	1.89	0.04	＜0．01	10	＜20	＜10	＜10	10	＜2	620	0.10	＜10
L30E	$7+50 S$	＜5	く5	90	1.90	0.05	＜0．01	12	＜20	＜10	10	9	＜2	770	0.10	＜10
L30E	$8+005$	＜ 5	（5	55	1.69	0.03	＜0．01	9	＜20	＜10	10	6	＜2	590	0.05	＜10
L30E	$8+505$	く5	＜5	95	4.90	0.04	0.01	12	＜20	＜10	20	28	＜2	920	0.21	＜10
L30E	$9+005$	く 5	＜ 5	105	3.30	0.05	0.01	13	＜20	＜10	10	15	＜2	1380	0.16	＜10
L30E	$9+505$	＜5	〈5	65	2.34	0.05	＜0．01	9	＜20	＜10	10	12	＜2	850	0.11	＜10
L30E	$10+005$	＜ 5	＜ 5	105	1.99	0.07	＜0．01	15	く20	＜10	10	12	＜2	450	0.13	＜10
L33E	$10+00 \mathrm{~N}$	＜5	＜5	50	1.38	0.07	＜0．01	9	＜20	＜10	＜10	8	く2	810	0.09	＜10
L33E	$9+50 \mathrm{H}$	く	＜ 5	90	4.57	0.08	0.01	13	＜20	＜10	＜10	15	＜2	2830	0.19	＜10
L33E	$9+00 \mathrm{~N}$	〈5	＜5	115	2.71	0.14	0.02	39	＜20	＜10	10	11	＜2	540	0.12	＜10
L33E	$8+50 \mathrm{~N}$	＜5	＜	105	4.34	0.08	0.01	20	＜20	＜10	＜10	15	2	2590	0.18	＜10
L33E	$\mathrm{B}+\mathrm{OON}$	＜	＜ 5	70	3.45	0.12	0.01	21	＜20	＜10	10	23	＜2	490	0.17	＜10
L33E	$7+50 \mathrm{~N}$	＜	く5	35	1.28	0.04	＜0．01	8	＜20	＜10	＜10	7	＜2	380	0.06	＜10
L33E	$7+$ OON	＜5	＜ 5	50	1.62	0.05	＜0．01	8	＜20	＜10	＜10	9	＜2	480	0.11	＜10
L33E	$6+50 \mathrm{~N}$	く5	く	80	3.46	0.06	0.01	11	＜20	＜10	10	21	＜2	510	0.20	＜10
L33E	$6+00 \mathrm{~N}$	＜5	＜5	30	1.40	0.04	＜0．01	9	＜20	＜10	10	7	＜2	330	0.06	＜10
L33E	$5+50 \mathrm{~N}$	く5	＜ 5	70	2.73	0.07	0.01	12	＜20	＜10	＜10	12	＜2	400	0.14	＜10
L33E	$5+\mathrm{OON}$	＜	＜ 5	70	1.51	0.05	0.01	9	＜20	く10	10	9	＜2	240	0.08	（10

Soil Saapling Results
1992
Reference: 92etk-305, 92etk-310

L33E	$4+50 N$
L33E	$4+00 N$
L33E	$3+50 N$
L33E	$3+00 N$
L33E	$2+50 N$
L33E	$2+00 N$
L33E	$1+50 N$
L33E	$1+00 N$
L33E	$0+50 N$
L33E	$0+00 N$
L33E	$0+50 S$
L33E	$1+00 S$
L33E	$1+50 S$
L33E	$2+00 S$
L33E	$2+50 S$
L33E	$3+00 S$
L33E	$3+50 S$
L33E	$4+00 S$
L33E	$4+50 S$
L33E	$5+00 S$
L33E	$5+50 S$
L33E	$6+00 S$
L33E	$6+50 S$
L33E	$7+00 S$
L33E	$7+50 S$
L33E	$8+00 S$
L33E	$8+50 S$
L33E	$9+00 S$
L33E	$9+50 S$
L33E	$10+00 S$
L36E	$10+00 N$
L36E	$9+50 N$
L36E	$9+00 N$
L36E	$8+50 N$
L36E	$8+00 N$
L36E	$7+50 N$
L36E	$7+00 N$
L36E	$6+50 N$
L36E	$6+00 N$

40	<1	4	<0.2	8
51	<1	6	<0.2	8
51	<1	2	<0.2	13
48	<1	<2	<0.2	7
54	<1	2	<0.2	19
62	<1	2	<0.2	15
44	<1	<2	<0.2	8
49	<1	2	<0.2	13
82	<1	<2	<0.2	20
489	1	6	<0.2	10
1265	2	1022	0.2	22
=335:	1	12	<0.2	5
183	<1	4	<0.2	7
41	1	6	<0.2	3
81	<1	10	<0.2	13
72	<1	10	<0.2	7
205**	2	14	<0.2	11
85	2	6	<0.2	10
70	<1	4	<0.2	9
34	2	<2	<0.2	8
70	1	6	<0.2	6
76	2	8	<0.2	10
115	1	6	<0.2	20
85	1	4	<0.2	34
90	1	8	<0.2	30
117	<1	6	<0.2	30
110	<1	4	$\langle 0.2$	29
111	<1	4	<0.2	32
95	<1	4	<0.2	9
111	<1	2	<0.2	13

10
11
$0.12 \quad 0.15 \quad 2$

Final
page 10d

Project 319
Soil Sampling Results (part 2)

Sampl	e 10	$\begin{gathered} A_{5} \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Sb} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \text { 日a } \\ \text { ppe } \end{gathered}$	$\begin{gathered} \mathrm{Al} \\ \mathrm{y} \end{gathered}$	$\begin{aligned} & k \\ & z \end{aligned}$	$\begin{gathered} \mathrm{Na} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Sn} \\ \text { ppa } \end{array}$	$\underset{\text { ppı }}{n}$	$\begin{array}{r} \mathrm{La} \\ . \mathrm{ppa} \end{array}$	ppa	ppa	$\begin{array}{r}\text { ppa } \\ \hline \text { pa }\end{array}$	Ti $\%$	U ${ }_{\text {U }}$
L33E	$4+50 \mathrm{~N}$	<	<5	65	3.80	0.04	0.01	12	<20	<10	(10	16	<2	970	0.17	<10
L33E	$4+\mathrm{OON}$	< 5	< 5	55	2.20	0.05	<0.01	11	(20	<10	<10	9	$\therefore 2$	640	0.10	<10
L33E	$3+50 \mathrm{~N}$	<	<5	105	3.77	0.09	0.01	18	<20.	<10	10	14	<2	560	0.15	<10
L33E	$3+$ OON	< 5	<5	40	1.54	0.06	<0.01	11	<20	<10	10	8	<2	450	0.08	<10
L33E	$2+50 \mathrm{~N}$	<5	<5	195	3.23	0.09	0.01	34	<20	<10	<10	13	<2	440	0.13	<10
L33E	$2+\mathrm{OON}$	<5	<5	150	2.67	0.09	0.02	30	<20	<10	10	13	<2	200	0.13	<10
L33E	$1+50 \mathrm{~N}$	<5	<5	80	1.90	0.06	0.01	11	<20	<10	10	9	<2	620	0.10	<10
L33E	$1+\mathrm{OOH}$	<5	<5	85	2.85	0.08	0.01	15	<20	<10	<10	12	<2	600	0.14	<10
L33E	$\mathrm{O}+50 \mathrm{~K}$	<5	<5	85	3.50	0.21	0.03	23	<20	<10	<10	15	<2	1410	0.18	<10
L33E	$0+$ OON BL	<5	<5	120	3.07	0.09	0.01	13	<20	<10	<10	14	<2	530	0.15	<10
L33E	0+50S	35	< 5	315	1.99	0.05	<0.01	23	<20	<10	40	11	<2	5460	0.11	10
L33E	$1+005$	<	<5	. 75	1.93	0.03	<0.01	8	<20	<10	<10	9	<2	770	0.10	<10
L33E	$1+505$	<5	< 5	90	1.43	0.04	<0.01	9.	<20	<10	10		<2	310	0.07	<10
L33E	$2+005$	<5	<5	25	1.08	0.02	<0.01	6	<20	<10	<10	6	<2	810	0.06	<10
L33E	$2+505$	<	<	85	5.27	0.07	0.02	65	<20	<10	10	19		1240	0.17	<10
L33E	$3+005$	< 5	<5	50	2.87	0.03	<0.01	9	<20	<10	(10	12	<2	960	0.14	<10
L33E	$3+505$	<5	<5	85	3.60	0.09	0.01	22	<20	<10	10	14	2	1070	0.16	<10
L33E	4+00S	<5	< 5	80	2.10	0.06	<0.01	10	<20	<10	10	11	<2	600	0.11	<10
L33E	$4+505$	<5	<5	75	2.01	0.04	<0.01	8	<20	<10	<10	9	<2	500	0.08	<10
L33E	$5+$ OOS	<5	<	35	1.07	0.03	<0.01	8	<20	<10	<10	5	<2	320	0.05	<10
L33E	$5+505$	<5	<5	55	1.71	0.04	<0.01	9	<20	<10	<10	10	<2	610	0.10	<10
L33E	6+00s	<5	< 5	60	2.65	0.05	<0.01	11	<20	<10	10	12	<2	1610	0.14	<10
L33E	$6+505$	< 5	<	135	2.49	0.09	0.01	20	<20	<10	10	14	<2	1720	0.17	<10
1338	$7+005$	(5	< 5	140	3.61	0.07	0.01	18	<20	<10	10	18	<2	1770	0.17	<10
L33E	$7+505$	<5	<5	65	1.29	0.04	0.01	13	<20	<10	10	17	<2	360	0.16	<10
L33E	$8+005$	<	< 5	165	2.60	0.09	0.01	14	<20	<10	<10	14	2	1100	0.17	<10
133 E	B+50S	< 5	<5	165	2.39	0.14	0.01	27	<20	(10	<10	16	<2	650	0.21	<10
$\stackrel{L 33 E}{ }$	$9+005$	< 5	< 5	230	2.14	0.13	0.01	26	<20	<10	<10	15	<2	1000	0.18	<10
133 E	$9+505$	< 5	<	115	1.85	0.05	<0.01	13	<20	<10	<10	9	<2	2170	0.12	<10
L33E	$10+005$	<	<	85	4.43	0.05	0.01	14	<20	<10	<10	15	<2	2050	0.18	<10
$\stackrel{136 E}{ }$	$10+00 \mathrm{~N}$	< 5	<	15	0.71	0.03	0.01	9	<20	(10	<10	7	<2	250	0.03	<10
L36E	9+50N	<5	<5	100	3.05	0.13	0.02	29	<20	<10	10	23	<2	320	0.14	<10
L36E	$9+00 \mathrm{~N}$	<5	<	30	1.02	0.04	<0.01	7	<20	<10	<10	7	<2	130	0.07	<10
136 E	$8+50 \mathrm{~N}$	<	<5	85	3.17	0.08	0.01	11	<20	<10	<10	11	<2	1790	0.14	<10
L36E	$8+00 \mathrm{~N}$	<5	<5	70	1.84	0.12	0.01	12	<20	<10	<10	14	<2	190	0.12	<10
L36E	$7+50 \mathrm{~N}$	< 5	< 5	65	1.31	0.06	<0.01	10	<20	<10	<10	6	<2	200	0.07	<10
L36E	$7+$ OON	<5	<	110	2.67	0.08	0.01	23	<20	(10	<10	13	<2	990	0.17	<10
L36E	$6+50 \mathrm{~N}$	<5	<5	85.	3.66	0.05	0.01	11	<20	<10	<10	13	<2	1380	0.19	<10
L36E	$6+$ OON	<5	<	35	1.03	0.05	0.01	13	<20	<10	<10	11	<2	130	0.07	<10

final
page 11

Date of Report: 22-Jul-92
Project 319
ARROH
Soil Sampling Results
1992
Reference: 92etk-305, 92etk-310
 ppa ppa ppa ppa ppa ppa z

$136 E$	$5+50 \mathrm{~N}$	16	<1	<2	<0.2	6	7	0.25	0.21	0.90	106	(1)	13	5	9	<
L36E	$5+\mathrm{OOH}$	53	<1	2	<0.2	12	14	0.35	0.44	1.93	162	<1	$\bigcirc 31$	10	22	<
L36E	$4+50 \mathrm{~N}$	60	<1	2	<0.2	13	17	0.26	0.38	1.98	171	<1	30	12	19	< 5
L36E	$4+$ OON	37	<1	<2	<0.2	8	12	0.21	0.32	1.55	117	<1	24	10	17	<
L36E	$3+50 \mathrm{~N}$	47	<1	<2	<0.2	10	18	0.14	0.38	2.20	131	<1	33	12	26	(5
L36E	$3+00 \mathrm{~N}$	66	<1	2	<0.2	6	9	0.11	0.20	1.38	266	<1	18	8	10	< 5
136 E	$2+50 \mathrm{~N}$	60	<1	2	<0.2	14	10	0.15	0.40	2.22	265	<1	31	11	16	<
136 E	$2+$ OON	35	<1	<2	<0.2	7	8	0.10	0.21	1.19	160	<1	16	6	10	<
L36E	$1+50 \mathrm{~N}$	15	<1	<2	<0.2	8	7	0.21	0.18	0.90	112	<1	12	4	8	く5
L36E	$1+\mathrm{OOH}$	54	<1	<2	<0.2	10	10	0.17	0.24	1.59	160	<1	22	7	11	< 5
L36E	O+50N	\%64*	1	6	<0.2	10	16	0.29	0.31	2.62	1729	<1	35	15	19	<
L36E	$0+$ OON BL	664	2	2	0.2	31	44	0.21	0.12	2.10	213	2	26	13	10	< 5
$136 E$	$0+505$	289	2	12	<0.2	11	15	0.51	0.25	2.54	750	1	31	13	19	<
L36E	$1+005$	237	2	8	<0.2	39	37	0.67	0.92	4.68	551	1	68	26	39	<
$136 E$	$1+505$	60°	41	<2	<0.2	7	8	0.14	0.24	1.78	103	4	26	8	12	<5
$136 E$	$2+005$	${ }^{6} 210$	<1	8	<0.2	10	46	0.34	0.34	2.69	972	<1	33	15	59	<5
L36E	$2+505$	76	<1	<2	<0.2	12	17	0.26	0.23	2.95	340	(1	34	13	14	< 5
L36E	$3+005$	94	<1	6	<0.2	14	21	0.18	0.31	2.17	728	5	34	10	19	< 5
L36E	$3+505$	110	(1)	<2	<0.2	17	22	0.20	0.36	2.49	362	<1	35	13	21	< 5
1365	4+00s	109	<1	<2	$\langle 0.2$	21	66	0.82	0.22	3.85	354	1	45	25	29	(5
L36E	4+505	73	<1	<2	<0.2	19	33	0.17	0.38	2.22	158	<1	30	13	22	<
L36E	5+00S	82	<1	6	<0.2	32	107	0.26	0.35	2.41	357	<1	33	21	25	< 5
L36E	$5+505$	${ }^{5} 305^{-}$	1	2	0.4	15	93	1.40	0.23	1.95	202	<1	20	8	25	< 5
L36E	$6+005$	141	<1	8	<0.2	11	38	0.33	0.32	2.33	673	<1	35	17	29	< 5
L36E	6+505	${ }^{4} 298$.	1	32	<0.2	31	50	0.50	1.03	6.23	2175	1	86	27	59	
L36E	$7+$ oos	54°	<1	2	<0.2	12	20	0.30	0.31	1.57	228	<1	22	I	21	<5
L36E	$7+505$	60	<1	2	<0.2	10	19	0.14	0.18	1.97	187	<1	27	13	16	<
L36E	$8+005$	121	<1	2	<0.2	10	12	0.14	0.22	2.34	300	<1	33	11	17	<5
L36E	$8+50 \mathrm{~S}$	122	<1	<2	<0.2	11	12	0.15	0.23	2.39	322	<1	33	11	17	< 5
L36E	$9+005$	157	<1	<2	<0.2	15	20	0.25	0.45	2.67	745	<1	39	15	24	<5
L36E	$9+505$	67	<1	<2	0.2	9	14	0.15	0.21	1.71	110	<1	22	9	12	<5
L36E	$10+005$	42	<1	<2	<0.2	13	33	0.38	0.41	1.63	158	<1	22	10	20	<5
	$10+00 \mathrm{~N}$	124	<1	4	<0.2	15	29	0.29	0.43	4.14	1498	<1	56	21	31	<5
L39E	9+50K	157	<1	<2	<0.2	32	47	0.88	0.94	4.14	283	<1	63	24	42	< 5
L39E	$9+$ ONN	147	<1	<2	<0.2	26	36	0.54	0.50	3.97	358	<1	49	23	36	<5
1398	$8+50 \mathrm{~N}$	58	<1	<2	<0.2	11	29	0.23	0.33	1.56	266	<1	22	9	20	<
L39E	$8+00 \mathrm{~N}$	48	<1	<2	<0.2	5	10	0.18	0.33	1.51	235	<1	23	9	17	< 5
1395	$7+50 \mathrm{~K}$	63	<1	<2	<0.2	7	12	0.13	0.27	1.85	97	<1	28	8	18	<
L39E	$7+$ OON	44	<1	<2	<0.2	5	8	0.16	0.24	1.24	198	<1	19	7	13	

Project 319
Soil Sampling Results（part 2）

Sample ID	As	Sb	Bd	${ }^{\text {al }}$	k	Ma	Sr	Sn	H	La	Y	8	p	It	U
	ppı	ppa	pp	\％	2	$\%$	ppı	ppı	ppa	ppa	ppe	ppe	ppa	2	ppı

L36E	$5+50 \mathrm{~N}$	＜5	〈5	40	0.75	0.06	0.01	13	＜20	＜10	＜10	6	＜2	280	0.04	＜10
L36E	$5+00 \mathrm{~N}$	＜5	5	100	1.86	0.13	0.01	19	＜20	＜10	＜10	12	\％2	240	0.14	＜10
L36E	$4+50 \mathrm{~N}$	＜5	＜ 5	85	2.43	0.10	0.01	21	＜20	＜10	＜10	12	＜2	450	0.14	＜10
L36E	$4+\mathrm{OON}$	＜5	＜	50	1.60	0.07	0.01	14	＜20	＜10	＜10	10	＜2	170	0.10	＜10
L36E	$3+50 \mathrm{~N}$	く5	＜5	60	2.01	0.06	＜0．01	10	＜20	＜10	＜10	10	＜2	200	0.14	＜10
L36E	$3+00 \mathrm{~N}$	＜5	＜ 5	45	1.57	0.05	＜0．01	8	＜20	＜10	＜10	7	＜2	520	0.09	＜10
L36E	$2+50 \mathrm{~N}$	＜	＜5	60	2.71	0.07	0.01	10	＜20	＜10	＜10	13	＜2	1680	0.15	＜10
L36E	$2+$ OON	＜5	＜5	20	1.27	0.03	＜0．01	6	＜20	＜10	＜10	6	＜2	710	0.06	＜10
L36E	$1+50 \mathrm{~N}$	＜5	＜5	25	0.69	0.06	0.01	11	＜20	＜10	＜10	6	＜2	230	0.04	＜10
L36E	$1+\mathrm{ON}$	く	＜5	25	1.17	0.03	＜0．01	7	＜20	＜10	＜10	6	＜2	880	0.05	＜10
L36E	O＋50N	＜ 5	＜5	150	3.53	0.10	0.01	13	＜20	＜10	＜10	15	＜2	1650	0.18	＜10
L36E	$0+$ OON BL	＜5	＜5	295	4.14	0.02	0.01	12	（20	（10	10	26	＜2	270	0.19	＜10
L36E	0＋50S	＜5	＜ 5	240	4.15	0.07	0.01	21	＜20	＜10	（10	11	2	3880	0.16	＜10
L36E	1＋OOS	5	＜5	125	2.95	0.02	0.01	32	＜20	＜10	＜10	7	＜2	2280	0.09	＜10
L36E	$1+505$	＜ 5	＜5	65	2.81	0.05	0.01	8	＜20	（10	＜10	9	＜2	1630	0.12	＜10
L36E	$2+005$	＜5	＜ 5	140	3.14	0.06	0.01	21	＜20	（10	＜10	13	＜2	1730	0.18	＜10
L36E	$2+505$	＜5	＜5	115	5.40	0.04	0.01	22	＜20	＜10	＜10	17	＜2	1530	0.22	（10
L36E	$3+005$	＜5	＜	55	2.20	0.07	＜0．01	14	＜20	20	＜10	10	4	1200	0.14	＜10
L36E	$3+505$	＜	（5	85	3.34	0.08	0.01	16	＜20	＜10	（10	13	＜2	1080	0.17	＜10
L36E	$4+$ cos	＜5	＜ 5	100	5.51	0.05	0.01	67	＜20	＜10	＜10	18	＜2	4360	0.21	＜10
L36E	4＋505	＜5	＜ 5	75	2.19	0.08	＜0．01	14	＜20	（10	＜10	9	＜2	250	0.11	＜10
L36E	$5+005$	＜ 5	＜ 5	115	3.00	0.08	0.01	20	＜20	（10	＜10	12	＜2	1300	0.16	＜10
L36E	$5+505$	＜ 5	＜ 5	100	2.72	0.04	0.01	60	＜20	＜10	10	44	＜2	6130	0.11	＜10
L36E	$6+005$	5	＜	145	2.00	0.07	0.01	18	＜20	＜10	＜10	13	＜2	1490	0.17	＜10
L36E	$6+505$	15	＜ 5	500	5.68	0.41	0.01	51	＜20	＜10	＜10	24	2	3500	0.36	（10
L36E	7＋00S	＜5	＜5	55	1.82	0.07	0.01	17	＜20	＜10	＜10	8	＜2	730	0.10	（10）
L36E	$7+505$	＜	＜ 5	70	2.53	0.04	＜0．01	18	＜20	＜10	＜10	10	＜2	1290	0.12	（10）
L36E	$8+005$	＜5	（5	95	3.54	0.06	0.01	13	＜20	＜10	＜10	14	＜2	3110	0.18	（10
L36E	B +505	＜	＜5	100	3.68	0.06	0.01	14	＜20	＜10	＜10	14	＜2	3300	0.18	＜10
L36E	9＋00S	＜5	＜	165	3.09	0.18	0.01	22	＜20	＜10	＜10	15	＜2	2560	0.22	＜10
L36E	$9+505$	＜	＜5	65	2.99	0.04	0.01	13	＜20	（10	＜10	14	$\stackrel{1}{2}$	1130	0.13	＜10
L36E	$10+005$	＜	＜	115	1.54	0.07	0.01	27	＜20	＜10	＜10	9	＜2	260	0.08	＜10
	$10+00 \mathrm{~N}$	5	＜5	210	4.30	0.20	0.01	20	＜20	＜10	＜10	16	＜2	1510	0.23	＜10
L39E	$9+50 \mathrm{~N}$	5	＜ 5	145	5.31	0.13	0.04	30	＜20	＜10	＜10	21	2	1920	0.21	＜10
L39E	9＋00N	5	＜	235	6.54	0.25	0.02	31	＜20	＜10	＜10	29	2	1070	0.27	＜10
L39E	$8+50 \mathrm{H}$	5	＜5	70	1.62	0.11	0.01	13	＜20	＜10	＜10	8	＜2	250	0.09	＜10
L39E	$\mathrm{B}+00 \mathrm{~N}$	＜5	＜ 5	60	1.62	0.11	0.01	12	＜20	＜10	＜10	8	＜2	500	0.10	＜10
L39E	7＋50N	＜ 5	＜	80	1.92	0.08	＜0．01	10	＜20	（10	＜10	8	＜2	740	0.10	（10
L39E	$7+00 \mathrm{~N}$	5	（5	60	1.28	0.07	＜0．01	10	＜20	＜10	＜10	7	＜2	390	0.08	（1）

Date of Report: 22-Jul-92
Project 319
ARROW
Soil Sampling Results
1992
Reference: 92etk-305, 92etk-310

L39E	$6+50 \mathrm{~N}$	39	<1	<2	<0.2	9	12	0.20	0.26	1.79	98	(1	26	10	16	< 5
L39E	$6+00 \mathrm{H}$	22	(1	<2	<0.2	14	13	0.19	0.29	1.47	104	(1	22	9	15	< 5
L39E	$5+50 \mathrm{~N}$	40	<1	<2	<0.2	9	13	0.22	0.28	1.96	100	<1	29	11	17	<5
L39E	$5+\mathrm{OON}$	61	(1	<2	<0.2	17	15	0.20	0.31	2.50	113	<1	33	14	18	< 5
L39E	$4+50 \mathrm{~N}$	54	<1	<2	<0.2	7	11	0.16	0.30	1.74	298	<1	25	10	17	<
L39E	$4+0 \mathrm{OH}$	76	<1	<2	<0.2	10	15	0.11	0.21	2.76	184	2	38	14	18	< 5
L39E	$3+50 \mathrm{~N}$	27	<1	<2	<0.2	7	9	0.20	0.31	1.27	95	<1	20	7	14	<5
L39E	$3+0 \mathrm{ON}$	77	<1	2	<0.2	8	15	0.14	0.29	2.21	200	<1	30	12	17	<
L39E	$2+50 \mathrm{~N}$	70	<1	<2	<0.2	13	17	0.14	0.23	2.29	420	<1	28	11	15	<5
L39E	$2+00 \mathrm{~N}$	98	<1	6	<0.2	13	16	0.27	0.40	1.83	376	<1	29	11	20	<5
L39E	$1+50 \mathrm{~N}$	物?	<1	2	<0.2	13	44	0.20	0.36	2.01	222	<1	45	11	19	<
L39E	$1+00 \mathrm{~N}$		<1	<2	0.2	15	22	0.13	0.32	2.07	122	<1	31	12	19	<5
L39E	O+50N	140	<1	2	0.6	11	24	0.10	0.23	2.34	355	<1	34	13	14	<
L3\%	$\mathrm{O}+\mathrm{OON} \mathrm{PL}$	60	<1	<2	<0.2	5	8	0.15	0.20	1.32	165	<1	19	6	11	<
L39E	O+50S	2420	<1	10	<0.2	15	26	0.44	0.34	3.42	528	<1	44	18	25	<5
L39E	$1+$ OOS	124	(1	2	<0.2	12	18	0.21	0.41	2.11	525	<1	33	11	25	<5
L39E	$1+505$	95	<1	2	0.2	9	20	0.20	0.35	2.11	201	<1	29	11	18	<5
L39E	$2+$ OOS	63	<1	6	<0.2	16	16	0.28	0.43	2.01	536	11	32	10	24	(5
L39E	$2+505$	102	<1	10	<0.2	13	24	0.63	0.39	2.16	430	<1	31	12	24	<5
L39E	$3+005$	104	<1	4	<0.2	8	20	0.16	0.17	2.18	548	<1	29	11	14	<
L39E	3+50S	56	(1	4	<0.2	11	17	0.25	0.37	1.87	261	11	28	9	23	<5
L39E	4+00S	48	<1	<2	0.4	10	14	0.42	0.14	2.20	74	<1	29	9	12	<5
L39E	4+505	90	<1	6	<0.2	10	26	0.19	0.32	2.15	468	<1	30	12	20	<5
L39E	$5+$ 00S	133	<1	8	<0.2	16	38	0.30	0.54	2.55	308	<1	40	17	35	<
L39E	$5+50 S$	93	<1	4	<0.2	19	28	0.24	0.58	2.82	221	<1	42	15	36	<
L39E	$6+005$	114	<1	6	<0.2	13	24	0.23	0.39	2.25	610	<1	32	15	23	<
L39E	$6+505$	103	<1	8	<0.2	18	28	0.30	0.63	2.73	494	<1	43	17	36	く5
L39E	$7+$ OSS	141	<1	8	<0.2	21	30	0.39	0.30	2.53	356	<1	33	14	19	(5
L395	$7+50 S$	63	<1	4	<0.2	13	33	0.24	0.38	2.34	159	1	34	13	27	<5
L39E	$8+005$	38	<1	<2	<0.2	9	15	0.30	0.38	1.63	102	<1	24	8	21	<
L39E	$8+505$	n/s	n/5	n/s	n/s	n/s	n/5	n/5	n/5	n/s	n/s	n/5	n/5	n/s	n/5	n/s
L39E	$9+005$	31	<1	2	<0.2	10	14	0.34	0.40	1.69	111	<1	26	9	22	<
L39E	$9+505$	130	<1	10	<0.2	20	37	0.24	0.31	2.57	695	<1	34	15	23	< 5
L39E	$10+005$	60	<1	4	<0.2	14	28	0.22	:0.35	2.13	133	<1	30	12	24	< 5
	$10+00 \mathrm{~N}$	99	<1	<2	<0.2	23	15	0.26	1.59	8.48	2876	1	32	17	16	15
L42E	$9+50 \mathrm{~N}$	75	<1	6	<0.2	13	29	0.24	0.26	3.37	241	(1	43	17	20	5
L42E	$9+00 \mathrm{~N}$	170	<1	8	<0.2	60	70	0.92	0.97	5.82	1429	1	65	28	69	5
142 E	$8+5 \mathrm{OH}$	63	(1)	6	<0.2	24	21	0.15	0.39	2.59	190	1	38	14	24	< 5
L42E	$8+$ OON	92	(1)	12	<0.2	87	25	0.34	1.10	4.09	428	<1	75	30	31	5

Project 319
Soil Sampling Results (part 2)

L39E	$6+50 \mathrm{~N}$	<5	<5	105	2.63	0.07	0.01	17	<20	<10	(10	13	<2	570	0.13	(10
L39E	6+00N	5	<	60	1.32	0.08	0.01	13	<20	<10	<10	7	$\therefore<2$	200	0.08	<10
L39E	5+50N	<5	<5	95	2.63	0.09	0.01	13	(20 ${ }^{\circ}$	(10	<10	10	<2	380	0.13	<10
L39E	5+00N	< 5	< 5	110	4.76	0.10	0.01	18	<20	<10	<10	19	<2	1180	0.20	(10
${ }_{\text {L39E }}$	$4+50 \mathrm{~N}$	5	< 5	60	1.85	0.10	0.01	11	<20	<10	<10	9	<2	490	0.11	(10
L39E	$4+\mathrm{OOH}$	5	(5	80	4.56	0.07	0.01	12	<20	<10	<10	16	2	1880	0.21	<10
L39E	$3+50 \mathrm{~N}$	<5	<	40	1.18	0.08	0.01	15	<20	<10	<10	7	<2	250	0.08	<10
L39E	$3+0 \mathrm{OK}$	5	<	90	2.23	0.07	<0.01	11	(20)	(10	<10	9	$\langle 2$	1760	0.14	<10
L39E	$2+50 \mathrm{~N}$	<5	<5	85	3.40	0.06	0.01	11	<20	<10	(10	13	<2	1650	0.16	<10
L39E	$2+00 \mathrm{~N}$	5	<5	75	1.64	0.12	0.01	14	<20	<10	<io	9	<2	400	0.11	<10
L39E	$1+50 \mathrm{~N}$	<	<	480	2.45	0.10	0.01	13	<20	<10	<10	10	<2	490	0.12	<10
L39E	$1+\mathrm{OON}$	5	< 5	90	2.38	0.07	<0.01	9	<20	<10	<10	10	<2	730	0.10	<10
L39E	O+50N	(5	<5	110	3.31	0.05	0.01	9	<20	<10	<10	11	<2	1150	0.17	<10
L39E	$0+$ OON BL	5	<5	45	1.34	0.04	<0.01	8	<20	<10	<10	6	<2	1400	0.07	(10
L39E	0+505	5	<5	190	3.15	0.09	0.01	19	<20	<10	<10	7	<2	1920	0.10	(10)
L39E	$1+$ OOS	5	<5	150	1.89	0.11	<0.01	16	<20	<10	<10	8	<2	1230	0.10	(10
L39E	$1+505$	<5	<5	155	2.75	0.08	0.01	16	<20	<10	<10	12	<2	820	0.14	<10
L39E	$2+005$	5	$\stackrel{5}{5}$	220	1.95	0.16	<0.01	23	<20	<10	<10	10	<2	690	0.11	<10
L39E	$2+505$	<	<	120	2.47	0.10	0.01	37	<20	<10	<10	10	<2	440	0.12	<10
L39E	$3+005$	5	<5	105	2.92	0.06	0.01	14	<20	<10	(10	12	<2	1200	0.16	<10
L39E	$3+505$	5	<5	85	1.78	0.12	<0.01	17	<20	<10	<10	8	<2	570	0.09	(10
L33E	4+00s	5	15	70	5.08	0.03	0.01	26	(20	(10	(10	13	${ }^{1}$	1610	0.17	<10
L39E	$4+505$	5	< 5	150	2.48	0.09	0.01	14	<20	<10	<10	9	<2	1040	0.13	<10
1398	$5+005$	5	< 5	170	2.70	0.11	0.01	17	<20	<10	10	13	<2	910	0.14	<10
L39E	$5+505$	5	< 5	140	2.87	0.15	0.01	15	<20	<10	10	14	<2	1330	0.14	<10
L39E	6+00s	5	<5	155	2.99	0.11	0.01	15	<20	<10	10	16	<2	1210	0.15	<10
L39E	$6+505$	10	< 5	180	2.50	0.26	0.01	20	<20	<10	10	14	<2	770	0.14	<10
L39E	$7+005$		< 5	125	3.14	0.08	0.01	25	<20	<10	10	15	<2	1440	0.14	<10
L39E	$7+505$	5	< 5	135	2.47	0.11	0.01	16	<20	<10	10	16	<2	680	0.15	<10
L39E	$8+005$	5	<	95	1.49	0.07	<0.01	22	<20	<10	10	10	<2	110	0.09	<10
L39E	$8+505$	n/5	n/5	n/s	n/s	n/s	n/s	n/5	n/5	n/5	n/s	n/5	n/s	n/s	n/s	n/s
L39E	$9+005$	<	<	90	1.55	0.08	0.01	25	<20	(10	10	11	<2	100	0.10	(10)
139 E	$9+505$	10	<5	160	4.22	0.10	0.01	18	<20	(10	10	16	2	3570	0.17	<10
L39E	$10+005$	5	< 5	115	2.12	0.06	0.01	15	<20	<10	10	13	<2	280	0.11	<10
142 E	$10+00 \mathrm{~N}$	15	5	135	6.10	0.03	0.01	14	${ }^{20}$	(10	30	28	4	1860	0.21	<10
L42E	$9+50 \mathrm{~N}$	5	< 5	145	5.39	0.09	0.01	15	<20	(10)	10	18	<2	2570	0.23	(10
L42E	$9+00 \mathrm{~N}$	5	< 5	430.	7.68	0.48	0.01	43	<20	(10	40	39	2	540	0.21	(10
L42E	$8+50 \mathrm{~N}$	5	<5	130	3.41	0.09	0.01	15	<20	(10	10	13	<2	330	0.16	<10
L42E	$8+00 \mathrm{~N}$	5	5	155	4.65	0.16	0.01	18	<20	(10	10	26	<2	1060	0.33	<10

Soil Sapling Results

Reference: 92etk-305, 92etk-310

Project 319
Soil Sampling Results（part 2）

Saiple	2 10	$\begin{gathered} \text { As } \\ \text { pp: } \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { 日a } \\ p p a \end{gathered}$	$\begin{gathered} \mathrm{Al} \\ \% \end{gathered}$	$\begin{array}{r} x \\ z \end{array}$	$\begin{gathered} \mathrm{Ka} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \text { Sr } \\ \text { pp: } \end{gathered}$	$\begin{array}{r} \text { Sn } \\ \text { ppe } \end{array}$	$\begin{array}{r} \text { W } \\ \text { pp』 } \end{array}$	Lapı	$\begin{array}{r} Y \\ \text { ppi } \end{array}$	$\begin{array}{r} \text { 日 } \end{array}$	$\begin{gathered} p \\ p p \mathrm{e} \end{gathered}$	$\begin{array}{r} \mathrm{Ti} \\ \% \end{array}$	U ppa
L42E	$7+50 \mathrm{~N}$	10	＜5	195	5.21	0.17	0.01	18	＜20	＜10	10	20	2	1380	0.23	＜10
L42E	$7+00 \mathrm{~N}$	5	＜5	100	4.04	0.06	0.01	17	＜20．	＜10	＜10	18	＇ 2	1600	0.22	＜10
L42E	$6+50 \mathrm{~N}$	5	＜5	70	1.79	0.10	0.01	16	＜20	＜10	10	11	＜2	240	0.10	＜10
L42E	$6+00 \mathrm{~N}$	5	＜ 5	135	3.89	0.09	0.01	16	＜20	＜10	＜10	15	＜2	5060	0.18	＜10
L42E	$5+50 \mathrm{~N}$	＜ 5	＜5	80	2.35	0.10	0.01	18	＜20	＜10	10	13	＜2	330	0.12	（10
L42E	5＋00N	5	5	255	7.34	0.30	0.01	41	＜20	＜10	40	41	2	860	0.22	＜10
L42E	$4+50 \mathrm{~N}$	10	＜5	125	2.00	0.13	＜0．01	26	＜20	＜10	10	15	＜2	770	0.12	＜10
L42E	$4+\mathrm{OOH}$	5	＜ 5	170	4.90	0.02	0.01	10	＜20	＜10	＜10	16	2	1760	0.19	＜10
L42E	$3+50 \mathrm{~N}$	5	＜5	925	4.92	0.18	0.02	36	＜20	＜10	30	33	2	530	0.18	＜10
L42E	$3+\mathrm{OOH}$	10	5	350	5.17	0.12	0.01	16	く20	＜10	10	22	2	3100	0.26	＜10
L42E	$2+50 \mathrm{~N}$	25	＜5	110	5.66	0.02	0.01	7	＜20	＜10	＜10	20	2	2110	0.24	＜10
L42E	$2+00 \mathrm{~N}$	10	5	80	3.27	0.06	0.01	14	＜20	＜10	＜10	20	＜2	1650	0.25	＜10
L42E	$1+50 \mathrm{~N}$	10	5	105	6.00	0.05	0.02	65	＜20	＜10	＜10	16	2	2600	0.17	＜10
L42E	$1+00 \mathrm{H}$	10	＜5	95	3.12	0.04	0.01	9	＜20	＜10	＜10	16	＜2	1460	0.19	＜10
142E	$0+50 \mathrm{~N}$	15	＜5	65	2.32	0.07	＜0．01	32	＜20	＜10	20	16	＜2	830	0.04	＜10
L42E	$0+005 \mathrm{BL}$	＜5	＜5	95	5.34	0.08	0.03	78	＜20	＜10	10	15	2	1840	0.16	＜10
L42E	$0+505$	＜5	＜5	140	4.78	0.08	0.01	30	＜20	＜10	＜10	18	＜2	2260	0.21	＜10
L42E	$1+005$	＜5	＜ 5	75	8.65	0.04	0.01	27	＜20	＜10	20	45	2	1220	0.29	＜10
L42E	$1+505$	＜5	＜5	105	5.51	0.04	0.01	23	＜20	＜10	＜10	22	＜2	1480	0.24	＜10
L42E	$2+005$	＜5	＜5	105	7.62	0.05	0.01	27	＜20	＜10	＜10	22	2	3410	0.26	＜10
L42E	$2+505$	＜5	＜5	80	4.43	0.17	0.06	80	＜20	（10	＜10	16	2	1270	0.18	＜10
L42E	$3+005$	＜ 5	（5	100	7.47	0.08	0.01	34	＜20	＜10	50	64	2	1160	0.27	＜10
L42E	$3+505$	く	＜5	100	6.16	0.06	0.01	29	＜20	＜10	10	31	＜2	2270	0.24	＜10
L42E	$4+005$	＜	5	125	5.72	0.07	0.01	17	＜20	＜10	＜10	22	＜2	2950	0.27	＜10
L42E	$4+505$	＜5	＜5	90	7.07	0.03	0.01	13	＜20	＜10	＜10	24	＜2	3240	0.28	＜10
L42E	$5+005$	＜5	＜	275	5.91	0.13	0.01	33	＜20	＜10	10	21	＜2	790	0.21	＜10
L42E	$5+505$	＜5	＜5	130	4.12	0.05	0.01	22	＜20	＜10	＜10	21	＜2	3710	0.22	＜10
L42E	$6+005$	＜ 5	5	165	4.71	0.08	0.01	21	＜20	＜10	10	23	2	2670	0.26	＜10
L42E	$6+50 S$	＜5	＜5	130	6.52	0.08	0.01	21	＜20	＜10	10	27	2	2110	0.28	＜10
L42E	$7+005$	＜5	＜	135	5.95	0.13	0.01	33	＜20	＜10	＜10	26	2	2260	0.32	＜10
L42E	$7+505$	＜	＜ 5	110	5.25	0.06	0.01	17	＜20	＜10	10	21	＜2	1310	0.24	＜10
L42E	$8+005$	＜5	＜5	160	4.70	0.17	0.01	27	＜20	＜10	10	21	2	1880	0.26	＜10
L42E	$8+505$	＜5	5	120	3.87	0.21	0.02	24	＜20	＜10	10	27	＜2	630	0.33	＜10
L42E	$9+005$	＜5	＜5	140	3.30	0.09	0.02	44	＜20	＜10	10	14	＜2	1550	0.18	＜10
L42E	$9+505$	＜5	5	105	3.91	0.08	0.04	45	＜20	＜10	10	18	2	1550	0.24	＜10
L42E	$10+005$	＜	（5	125	5.79	0.06	0.01	18	＜20	（10	10	21	く2	4240	0.25	＜10

Project 319
ARROW

Soil Sampling Results
1992

Reference: 92etk-305, 92etk-310

Sapple 10	\ln ppe	$\begin{gathered} \text { Cd } \\ \text { ppa } \end{gathered}$	Pb ppa	Ag ppa	Cu ppः	Mi ppa	$\begin{gathered} C_{i} \\ \% \end{gathered}$	Mg $\%$	$\begin{array}{r} \mathrm{f} \\ Z \end{array}$	hin ppп	Ho_{0}	$\begin{array}{r} V \\ \text { VDP } \end{array}$	Co	Cr ppa	Bi ppe
															ppe

STATS:

Check Analysis:

L OE	$1+00 \mathrm{~N}$	73	<1	12	<0.2	22	12	0.32	1.28	7.50	176	1	161	24	84	10
135	$2+00 \mathrm{~N}$	78	<1	10	<0.2	16	9	0.07	0.32	2.89	367	<1	38	16	22	< 5
L6E	$1+505$	ver	<1	16	<0.2	18	18	0.17	0.32	3.48	305	1	- 57	14	17	(5
L 9E	$6+005$	99	<1	6	<0.2	8	16	0.09	0.35	2.31	242	<1	34	12	21	< 5
L12E	$8+505$	95	<1	6	<0.2	9	11	0.13	0.34	2.32	288	<1	39	11	21	5
L24E	$2+00 \mathrm{H}$	56	<1	8	<0.2	13	21	0.28	0.38	2.07	157	11	28	12	21	<5
L27E	$4+50 \mathrm{~N}$	77	1	4	<0.2	13	26	0.15	0.34	2.11	337	<1	31	16	27	<5
L27E	$8+005$	67	<1	6	<0.2	13	14	0.13	0.25	2.23	257	<1	34	11	19	5
L33E	$2+505$	84	1	12	<0.2	13	19	0.45	0.28	2.93	282	<1	32	15	17	5
L36E	$4+00 \mathrm{~N}$	40	<1	<2	<0.2	8	13	0.21	0.32	1.56	129	<1	24	10	17	<
L39E	$1+505$	91	<1	2	<0.2	9	19	0.19	0.35	2.02	186	<1	28	11	18	<5
L42E	$3+005$	117	1	14	0.6	38	80	0.52	0.31	2.95	133	<1	33	13	21	<5
L42E	$3+505$	78	1	10	0.8	66	72	0.60	0.13	3.10	284	1	36	15	19	5

Standard:

STANDARD 1991	72	<1	12	1.2	84	23	1.90	1.01	4.02	697	<1	78	20	63	<5
STANDARD 1991	65	<1	12	1.0	75	22	1.77	0.93	3.72	642	<1	73	19	60	<5
STANDARD 1991	62	<1	12	1.0	74	22	1.72	0.94	3.77	637	<1	75	19	61	<5
STAMDARD 1991	65	<1	10	1.0	80	23	1.81	0.95	3.88	673	<1	78	20	64	<5
STAMDARD 1991	70	<1	10	1.2	85	24	1.93	1.09	4.22	730	<1	80	21	66	<5
STANDARD 1991	62	1	8	1.0	75	22	1.76	0.95	3.85	654	<1	75	20	62	<5
STANDARD 1991	62	<1	10	1.0	75	22	1.78	0.97	3.87	663	<1	76	20	62	<5
STANOARD 1991	66	<1	10	1.2	82	23	1.86	1.00	3.90	683	<1	78	20	63	<5
STANDARD 1991	62	1	8	1.0	75	22	1.76	0.95	3.85	654	<1	75	20	62	<5

Final
page 15a

Project 319
Soil Sampling Results (part 2)

Sample 10	$\begin{gathered} \text { As } \\ \text { pp: } \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \text { ppa } \end{gathered}$	$\begin{array}{r} \mathrm{Al} \\ \mathrm{Z} \end{array}$	$\begin{array}{r} \cdot k \\ Z \end{array}$	$\begin{array}{r} \mathrm{Ha} \\ \mathrm{Z} \end{array}$	$\begin{gathered} \mathrm{Sr} \\ \text { ppit } \end{gathered}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppan} \end{array}$	$\begin{gathered} \text { H } \end{gathered}$	$\begin{gathered} \text { La } \\ \text { pp: } \end{gathered}$	$\begin{array}{r} Y \\ \text { pp』 } \end{array}$	$\begin{array}{r} B \\ p p \end{array}$	$\begin{array}{r} p \\ p p a \end{array}$	$\begin{array}{r} \mathrm{ri} \\ \mathrm{q} \end{array}$	ppa
STANDARD 1991	50	5	125	1.84	0.36	0.01	60	<20	<10	10	15	2	640	0.12	(10
STAMDARD 1991	55	5	130	1.89	0.38	0.01	66	<20.	<10	<10	14	8	'650	0.12	<10
STAMDARD 1991	60	5	130	1.88	0.36	0.01	63	<20	(10	10	15	2	650	0.12	<10
STAMDARD 1991	55	5	120	1.84	0.36	0.01	58	<20	<10	<10	13	2	600	0.12	<10
STAMDARD 199]	50	5	125	1.87	0.37	0.01	62	<20	<10	<10	14	8	640	0.11	<10
STAMDARD 1991	60	5	115	1.79	0.35	0.01	58	<20	<10	<10	12	2	600	0.11	<10

ARROW - Recce Soils - Pb histogram

4th Bar 168 oz
Date: 22-Tul-92

ARROW - Recce Soils - Ni histogram

Date: 22-Tul-92

APPENDIX IV

Analalytical Procedures

GYOCAEMTCAL MABORRTORY MFNFODS

SANPLE PRRPRRANIOR (BTANDARD)

1. 8oil or sediment: samples are dried and then sieved through 80 mesh sieves.
2. Rock, Core: 8amples dried (if necessary), crushed, riffled to pulp size and pulverized to approximately -140 mesh.
3. Humus/Vegatation: The dry sample is ashed at 550 C. for 5 hours.

H. MURDPR of MMATSIS

All methods have either canmet certified or in-house standards carried through entire procedure to ensure validity of results.

(a) ICP Packages (6,12,30 element).

Oigestion	Finish
Hot Aqua Regin	ICP

(b) ICP - Total Digestion (24 element).

Digestion

Hot: : HCLO4/ENO3/EF ICP
(c) Atomic Absorption (Acid Soluble)

Ig*, Cd*, Cr, Cot, Cu, Fe, Pb*, Hn, Mo, Mi*, In.

Digestion

Eot Aqua Regia
(d) Whole Rock Analyses.

Digestion

Lithium Metaborate fusion

Minish
atomic absorption * 2 Background corrected

Finish
------ICP
2. Antimony

Digestion	Finish
Hot aqua regia	ICP

3. Arsenic

Digestion

Hot aqua regia
4. Barium

Digestion

Lithium Hetaborate
ICP
5. Beryllium

Digestion

Hot aqua regia
6. Bismath

Digastion

Hot aqua regia
7. Chromium

Digestion
--a---an-
Sodium Peroxide Fusion
8. Plourine

Digestion

Uithim Metaborate Fusion

Finish
--me...
atomic Absorption
(Backgromid Corrected)

Pinish

Atomic absorption

Pindsh

Ion selective Electrode

ECD-TECH LABORATORIEB LTD

ASSAYING \& ENVIRONMENTAL TESTING
10041 East Trans Canade Hwy., Kembocps, B.C. V2C 213 (604) 673-5700 Fex $673-4!$
9. Gallium

Digestion

Hot HCl $04 /$ HNO $03 / \mathrm{HF}$
10. Germanium

Digestion

Hot HCLO4/HMO3/HF
11. Mercury

Digeation
Hot aqua regia
12. Phosphorus

Digestion

Lithim Metaborate Fusion
13. Selenium

Digestion

Hot aqua regia
14. Tollurium

Digestion

Hot aqua regia
Potassium Bisulphate Fusion

Finish

Atomic absorption

Pinish
----.
Atomic Absorption

Finish
Cold vapor generation A.A.8.

Finish
--ー-®--
ICP Einish

Pinish
----ب.---
Hydride generation A.A.s.

Finish

Hydride generation - A.A.S. Colorimetric or I.C.P.

APPENDIX V

Trench Diagrams \& Rock Chip Descriptions

TRENCH \#1

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION
no.	meters	
41701	12.0-13.4	50\% Quartzite, 50\% Bio. Schist w/1\% po dissem.
702	13.4-13.9	Massive Quartzite
703	13.9-15.2	Graphitic Bio. Schist w/ 30\% Quartzite \& 2\% po. dissem
704	15.2-20.1	Quartzite w/ 5\% graphite
705	21.1-23.2	Amphibolite w/ garnets \& tr.-1\% po.
706	24.5-28.5	Mixed amphibolite \& quartzite (graphitic) w/tr. po.
707	29.5-32.7	80\% graphitic quartzite \& 20\% amphibolite beds
708	32.7-37.6	Amphibolite w/ lam calcsilicates \& quartzite
708A	Float	Oxidized massive sulphides po,py and sp .
709	40.7-43.4	Laminated amphibolite and calcsilicates
710	43.4-46.8	Biotite \& Sillim. schist w/ 1-2\% dissem. po.
711	48.6-50.0	Amphibolite \& calcsilicates w/ 1\% po
712	50.0-55.0	Laminated quartzite w/ 10\% amphibolite lam
713	55.0-59.3	Laminated amphibolite, quartzite and calcsilicates
714	59.3-63.9	as \#713
715	63.9-65.8	as \#713
716	65.8-68.4	Laminated amphibolite \& quartzite
717	68.4-71.8	as \#716
718	71.8-73.2	80\% quartzite w/ 20% amphibolite
719	73.8-77.4	as \#718

TRENCH \#2 ROCK DESCRIPTIONS

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION
no.	meters	
41720	$0.5-1.8$	banded amphibolite \& calcsilicate
721	$3.3-6.3$	lam. quartzite \& calcsilicates
722	$6.3-8.6$	amphibolites \& calcsilicates w/ 3\% dissem po
723	$8.6-10.6$	quartzite
724	$13.2-14.6$	biotite schist w/ garnets
725	$10.6-15.2$	biotite schists \& calcsilicates
726	$15.2-15.6$	calcsilicates
727	$15.6-24.6$	Massive amphibolite w/ 1\% po dissem
728	$25.0-31.3$	as \#727
729	$31.6-33.4$	laminated quartzite
730	$33.4-34.8$	amphibolites \& calcsilicates w/ tr po dissem
731	$34.8-36.0$	gossanous weathered calcsilicates
732	$36.0-39.9$	biotite- garnet schist w/ 10\% quartzite
733	$39.9-46.5$	Amphibolite \& calcsilicates w/ 10\% quartzite beds
734	$46.5-50.0$	biotite-garnet schist w/ 40\% quartzites
735	$52.0-56.9$	as \#734 w/ only 20\% quartzites
736	$56.9-60.1$	as \#734 w/ 10\% amphibolite lam
737	$121.0-125.0$	as \#734 w/ 20\% amphibolite
738	$125.0-127.4$	50% amphibolite \& 50\% biotite-garnet schist
739	$127.4-130.0$	as \#738 w/ 10\% calcsilicates
740	$130.0-135.0$	banded amphibolite \& calcsilicate
741	$135.0-139.6$	as \#740
742	$139.6-142.9$	as \#740
743	$143.7-146.9$	as \#740 dominated by amphibolites
744	$136.9-137.3$	laminated quartzite
$137.3-150.0$	as \#740	
74		
73		

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION
no.	meters	
746	$150.0-152.9$	as \#740
747	$152.9-154.3$	calcsilicates \& biotite schist
748	$154.3-155.5$	banded amphibolite \& calcsilicates
749	$155.5-159.4$	as \#748 w/ tr dissem po
750	$159.4-161.9$	Quartzite
751	$161.9-163.1$	calcsilicates \& quartzite
752	$163.1-164.4$	biotite-garnet schist
753	$164.4-168.6$	amphibolites w/ 20\% laminated calcsilicates w/ 1% dissem. po
754	$170.1-175.0$	amphibolite w/ 1\% dissem po
755	$175.0-178.9$	amphibolite w/ 30\% biotite-garnet schist

TRENCH 3A ROCK DESCRIPTION

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION	Zn \%	Pb \%	Ag
no.	meters		(ppm)	(ppm)	(ppm)
41827	47.7-44.1	Graphitic quartzite w/2\% py minor muscovite \& biotite	(2084)	(210)	. 4
. 828	44.1-42.8	Massive -Semi-massive Po w/ sp zones to 35%.	2.23\%	. 27%	3.2
829	42.8-41.3	White-grey quartzite w/ 2-3\% dissem py \& po	0.73\%	. 18%	1.6
830	41.3-39.3	Grey graphitic quartzite w/23\% py and tr-1\% sp dissem.	2.32\%	. 34%	3.2
831	39.3-37.8	Massive- Semi-Mass. Po w/ 20\% quartzite ,sp 1-10\% CGr	3.86\%	. 29%	3.0
832	37.8-36.3	Graphitic quartzite w/ 10-20 cm pods of massive po,sp	0.80\%	.08\%	0.9
833	36.3-32.0	Massive sulphides in quartzite w/ 40% po, 10% py \& 5% sp w/ trace ga.	4.50\%	.07\%	1.6
834	32.0-28.9	Graphitic quartzite w/tr dissem py	1.31\%	.03\%	0.8
835	9.1-11.5	White-grey graphitic quartzite	(3419)	(330)	0.6
836	11.5-13.8	Semi-Mass. to massive po in quartzite w/ up to 10% sp pods and minor py dissem.	3.58\%	. 13%	2.9
837	16.2-18.9	Weathered semi-massive po w/5-15\% pods of sp \& py in graphitic quartzite	2.91\%	. 45%	4.9
838	18.9-21.0	Semi-massive sulphides po w/ 5\% sp and 2-3\% py	3.34\%	.18\%	2.3
839	21.0-24.9	Graphitic quartzite w/ 5-10\% sp \& tr. ga	2.02\%	.03\%	1.0
840	28.9-26.6	Biotite rich quartzite w/5-10\% dissem sp,tr ga	($>1 \%$)	(224)	0.8

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION	$\mathrm{Zn} \%$	$\mathrm{~Pb} \%$	Ag
no.	meters		(ppm)	(ppm)	(ppm)
841	$26.6-29.0$	Massive sulphides 65\% po , 5-10\% sp and 5\% py in quartzite	3.53%	$.16 \%$	3.2

TRENCH 3C

SAMPLE	INTERVAL.	GEOLOGICAL DESCRIPTION	$\mathbf{Z n} \%$	Pb \%	Ag
no.	meters		(ppm)	(ppm)	(ppm)
41819	10.0-4.6	Grey lam. quartzite w/ dissem py \& sp	0.96\%	.05\%	1.8
820	4.6-4.0	50\% quartzite \& 50\% massive sulphides w/ dissem py \& sp	1.32\%	.17\%	3.2
821	4.0-3.0	Calcsilicate rich quartzite w/ 5% py dissem \& tr. py	1.10\%	. 46%	3.9
822	2.0 m's	50\% massive po w/ 5\% py,sp \& 50\% calcsilicate rich quartzite $\mathrm{w} / \mathrm{tr} \mathrm{sp}$	2.11\%	.06\%	2.6
823	5.0 m's	Graphitic \& biotite rich quartzite w/ 2\% py, sp	(1783)	(266)	0.8
824	2.0 m's	60\% weathered massive po w/5\% py, sp \& 40\% quartzite	0.74\%	.02\%	1.7
825	$6.4 \text { m's }$ near strike	70% massive po w/ 6\% py,sp \& 30\% diopside rich quartzite	2.22\%	.13\%	4.3
826	3.5 m's near strike	90\% massive po w/ 5\% py,sp \& 10% quartzite w/ py, po, sp dissem.	2.06\%	.02\%	2.7\%

TRENCH 3F ROCK DESCRIPTIONS

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION	Zn \%	Pb \%	Ag
no.	meters		(ppm)	(ppm)	(ppm)
41806	2.5 m's	50% biotite lam. quartzite \& 50% quartzite w/5\% py stringers	(1783)	(2842)	12.2
807	4.0 m's panel	60% weathered quartzite w/ py stringers \& 40\% massive po w/ 8\% py, sp	(3928)	(968)	3.0
808	4.6 m's panel	60\% massive po w/ 10\% py, sp \& 40% quartzite $\mathrm{w} / 10-$ 15\% py stringers	0.69\%	.09\%	3.1
809	2.5 m 's panel	massive po w/ 20\% diopside rich quartzite and $10 \% \mathrm{py}$, sp	1.10\%	.69\%	7.3
810	2.5 m's	diopside rich quartzite w/ 15% py and sp dissem	1.20\%	.24\%	4.9
811	4.6 m's	diopside rich quartzite w/ 15% py \& $2-3 \%$ sp dissem.	3.22\%	.67\%	24.5
812	1.0 m's	diopside rich quartzite $w /$ 10% py \& 5% sp dissem.	1.97\%	.11\%	5.3
813	3.5 m s panel	30% diopside rich quartzite 70\% massive po w/ 5\% py,sp	>1\%	(722)	5.2
814	4.2 m's	Graphitic quartzite w/ 2% dissem py	(3373)	(2212)	1.2
815	. 8 m 's	Weathered ferrocrete cap in diopside rich quartzite	(1742)	(616)	1.4
816	3.5 m's	Graphitic \& biotite quartzite w/ 2\% dissem py	(258)	(44)	0.6
817	2.0 m's	Biotite-sillimanite schist w/ garnets (Hangingwall)	(215)	(8)	<. 2
818	4.6 m's panel	50% diopside rich quartzite \& 50% massive po w/ 10% py, sp	1.95\%	.23\%	5.6

TRENCH 5C ROCK DESCRIPTIONS

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION	Zn \%	Pb \%	Ag
no.	meters		(ppm)	(ppm)	(ppm)
41763	27.1-27.6	Amphibolite w/ bio-sill. schist	(1706)	(340)	. 2
764	29.2-31.3	as above w/ occasional quartzite lamination	(859)	(54)	< 2
765	32.3-34.0	Lam. grey quartzite w/ minor graphite \& up to 10% py, po, sp as dissem	3.24\%	.11\%	4.8
766	34.0-35.0	as \#765	2.34\%	.16\%	3.6
767	35.0-36.0	as \#765	1.58\%	.02\%	1.3
768	36.0-37.0	as \#765	1.09\%	.03\%	0.8
769	37.0-38.0	as \#765	1.74\%	.02\%	1.1
770	38.0-39.0	quartzite as \#765 w/ lenses of massive sp w/ py	6.79\%	.16\%	7.6
771	39.0-40.0	diopside rich quartzite w/ 1520\% po, py , sp	0.54\%	.08\%	2.1
772	40.0-41.0	diopside rich quartzite \& marble w/ 15-20\% sp pods w/ minor po, py	3.42\%	. 19%	1.7
773	41.0-42.0	diopside quartzite w/ pods of semi-massive sp w/ py	1.78\%	. 30%	2.3
774	1.5 m's	diopside rich quartzite w/5$15 \%$ po, py \& 5-10\% sp w/ ga	1.03\%	.58\%	2.6
775	1.0 m	diopside rich quartzite w/ 15% po, py \& tr. sp	1.38\%	.08\%	1.6
776	42.0-43.6	diopside rich quartzite w/1$5 \% \mathrm{py}$, po and laminated biotite schist	0.09\%	.02\%	0.2
777	43.6-44.9	50% diopside quartzite w/ pods of mass. sp 50\% mixed pegmatite \& quartzite	0.77\%	.04\%	0.6

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION	Żn \%	Pb \%	Ag
no.	meters		(ppm)	(ppm)	(ppm)
778	44.9-47.9	50% quartzite w/ 2% py, po, sp and 50% biotite schist	(7343)	(338)	0.4
779	47.9-50.0	Biotite shist strongly faulted $\mathrm{w} /$ hematite on fractures	(3509)	(164)	0.2
780	50.0-50.7	diopside rich quartzite w/2\% py, po	0.49\%	.02\%	0.5
781	50.7-52.1	Massive po w/ 5\% fgr sp	3.32\%	.17\%	5.9
782	52.1-54.3	Quartzite w/ graphite \& sericite 2\% po, py	0.18\%	.03\%	0.4
783	54.3-54.6	diopside rich quartzite $w /$ 35% ga minor py, sp	1.00\%	.32\%	3.0
784	-54.6-55.3	Semi-massive sp > po w/ minor py	7.72\%	.10\%	3.6
785	55.3-56.8	massive fgr po w/ py \& sp blebs	4.66\%	.09\%	3.2
786	2.1 m's	as \#785	4.91\%	. 10%	4.5
787	1.2 m's	diopside rich quartzite w/ up to $40 \% \mathrm{sp}$ \& py	1.48\%	. 35%	3.2
788	1.4 m's	as \#787 w/ up to $30 \% \mathrm{sp}$ \& py	0.54\%	.03\%	0.4
789	56.8-58.6	60\%.diopside quartzite w/5\% po,py,sp \& 40\% biotite schist	0.14\%	.02\%	0.3
790	58.6-62.0	diopside quartzite w/5\% py,po,sp	(175)	(28)	<. 2
791	62.0-64.3	50\% bio-sill schist 50% diopside quartzite $w / 5 \%$ py,po,sp	(97)	(16)	<. 2
792	64.3-65.6	bio-sillimanite schist	(106)	(10)	< 2
793	68.8-71.0	mixed 50\% quartzite 50\% biosill schist	(70)	(8)	<. 2
794	71.3-74.3	90% bio-sill schist 10% diopside quartzite	(96)	(6)	<. 2

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION	Zn \%	Pb \%	Ag	
no.	meters		(ppm)	(ppm)	(ppm)	
795	$74.3-75.3$	biotite-sillimanite schist	(73)	(4)	$<.2$	
796	$75.3-76.8$	diopside rich quartzite w/ 5\% po	(41)	(8)	$<.2$	
797	$76.8-78.0$	diopside quartzite	(69)	(16)	$<.2$	
798	$78.0-79.6$	as \#797 w/ 5\% po w/ tr sp	(35)	(8)	$<.2$	
799	$79.6-85.0$	50% bio-sill schist \& 50\% bio lam quartzite	(23)	(4)	$<.2$	
800	$85.0-87.7$	as \#799	(46)	(10)	$<.2$	
801	$87.7-89.9$	bio-sill schist w/ aimandine garnets	(56)	(4)	$<.2$	
802	$89.9-91.7$	intercalated quartzite \& bio-sill\|	 schist	(53)	(6)	$<.2$
803	$91.7-96.2$	as \#802	(66)	(4)	$<.2$	

TRENCH \#7 ROCK DESCRIPTIONS

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION	Zn \%	Pb \%	Ag
no.	meters		(ppm)	(ppm)	(ppm)
TR-7-1	$0-6.0$	Laminated quartzite w/ 20\% graphite	(514)	(24)	1.4
TR-7-2	$6.0-11.0$	Laminated quartzite w/ 5-10\% graphite and 3-4\% dissem po	(2736)	(74)	0.4
TR-7-3	$12.5-17.5$	Quartzite w/ 40\% graphite and 1\% dissem py	(727)	(110)	1.0
TR-7-4	$27.0-33.0$	Quartzite w/ 40\% flake graphite \& 2-3\% dissem py	(547)	(38)	0.6
TR-7-5	$39.0-42.6$	Graphitic quartzite w/ 30\% graphite, 1\% py \& 0ccas 5cm marble bed	(219)	(176)	0.6
TR-7-6	$43.0-47.0$	Graphitic quartzite 40\% graphite, 2\% py	(309)	(42)	0.4
TR-7-7	$50.0-56.0$	Graphitic oxidized quartzite w/ 30\% graphite, 2\% py	(143)	(18)	0.6
TR-7-8	$56.0-62.0$	Black graphitic quartzite w/ 50% graphite , tr py	(208)	(30)	0.8
TR-7-9	$94.0-97.0$	as \#8 w/ occas. 1cm po vnit	(391)	(158)	0.2
TR-7-10	$97.0-105$	carb. \& silicd. quartzite w/ up to 15\% dissem py	(90)	(28)	$<.2$
TR-7-11	$111 .-126$.	Grey quartzite w/ 40\% graphite \& 3\% dissem py	(136)	(6)	0.6
TR-12	$126-133$	 $2 \% ~ p y ~$	(146)	(10)	0.2

TRENCH \#8 ROCK DESCRIPTIONS

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION	$\mathrm{Zn} \%$	$\mathrm{~Pb} \%$	Ag
no.	meters		(ppm)	(ppm)	(ppm)
TR-8-1	$132-124$	Quartzite w/ 10-15\% graphite	(866)	(56)	0.2
TR-8-2	$124-121$	Diopside rich quartzite w/35\% py \& chlorite altn.	1.22%	$.02 \%$	0.3
TR-8-3	$121-115$	Laminated quartzite w/ 15\% graphite \& 2-3\% dissem py	(1011)	(78)	0.2
Tr-8-4	$115-90$	as \#3 but w/ 40\% graphite	(122)	(24)	$<.2$
TR-8-5	$90-80$	as \#3 w/ 30\% graphite \& 2\% po vnlts	(180)	(36)	$<.2$
TR-8-6	$80-75$	as \#3 w/ 25\% graphite	(154)	(68)	$<.2$
TR-8-7	$75-70$	Black graphitic argillite - Jurrasic?	(263)	(30)	$<.2$

TRENCH \#11 ROCK DESCRIPTIONS

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION	Zn \%	Pb \%	Ag
no.	meters		(ppm)	(ppm)	(ppm)
41870	4.7-5.5	Weathered massive po w/ dissem sp	(516)	(600)	2.6
871	5.5-9.6	Lam. quartzite w/ graphite \& 2\% po	(65)	(18)	< 2
872	12.7-16.7	Graphitic \& diopside rich quartzite w/ 1\% po	(50)	(34)	0.6
873	18.8-26.9	graphitic oxidized quartzite w/ 3\% py,po	(132)	(38)	0.6
874	26.9-29.7	oxidized quartzite w/ 15\% massive po pods	(677)	(76)	0.6
875	29.7-32.4	50% oxidized quartzite 50% massive po w/ 1-2\% sp	0.71\%	.01\%	1.8
876	32.4-33.5	same as \#875	1.15\%	. 01	1.6
877	33.5-35.0	oxidized graphitic quartzite w/ 2\% py,po vnlts	(873)	(58)	0.4
878	35.0-37.6	same as \#877	(113)	(32)	0.6
879	37.6-43.2	same as \#877	(95)	(38)	0.4
880	44.6-48.5	same as \#877 w/ some diopside rich quartzite			
881	48.5-54.7	as \#880	(63)	(40)	0.6
882	54.7-65.1	as \#880	0.88\%	.04\%	0.7
883	66.1-67.1	massive po w/ blebs of py,sp	(1471)	(24)	3.4
884	70.1-76.2	diopside rich quartzite w/ 2\% py dissem	1.32\%	.01\%	0.9
885	76.2-79.3	as \#884	0.87\%	. 15%	4.0
886	79.3-82.3	diopside quartzite w/ 20% pods of massive po w/ py,sp	1.42\%	.13\%	4.0

SAMPLE	INTERVAL	GEOLOGICAL DESCRIPTION	Zn \%	Pb \%	Ag
no.	meters		(ppm)	(ppm)	(ppm)
887	$82.3-84.8$	oxidized graphitic quartzite w/ 5\% po, py	(2967)	(74)	0.2
888	$84.8-94.5$	as \#887 w/ 25\% massive po pods w/ 5\% sp,py	(1732)	(32)	0.8
889	$94.5-96.3$	50\% oxidized graphitic quartzite , 50\% massive po w/ minor sp,py	(3437)	(290)	1.0
890	$96.3-100.5$	Graphitic quartzite w/ 3\% py,po	0.92%	$.07 \%$	1.8
891	$102 .-109.2$	Graphitic quartzite w/ 30\% massive po w/ 5\% py,sp	(1069)	(198)	0.4
892	$109.2-113.5$	90\% graphitic quartzite w/ strong ferrocrete \& 10\% massive po tr sp	0.76%	$.03 \%$	0.8
893	$113.5-115.6$	40\% quartzite 60\% massive po w/ 5\% dissem py.sp	1.74%	$.01 \%$	1.2
894	$115.6-120.4$	as \#893 w/ 2-3\% dissem sp	1.70%	$.01 \%$	1.1
895	$120.4-122.6$	weathered quartzite w/ 10\% mass po pods	0.75%	$.02 \%$	1.2
896	$122.6-126.0$	quartzite w/ graphite and diopside \& 15\% massive po pods w/ minor py,sp	(1137)	(176)	0.8

APPENDIX VI

Rock Analyses \& Assays

$$
\begin{gathered}
\\
\ddots \\
\ddots
\end{gathered}
$$

$\because:$

16-11745		¢. 1	2.35	15	4	125	<	2.14	1		11	32	3.22	.56	c11	. 1	313	-1	14	31	1731		5	<20	16	. 31	(11)	6	(10	24	19
47-11746	-	(.2	3.42	¢	6	115	<	3.65	\&		151	- 45	2.16	. 12	<11	1.02	111	1	. 26	11	1381	2	<s	(20)	193	. 23	(11	53	c10	20	14
15. 1174	-	4.2	1.96	5	2	121	<	1.38	1	41	111	62	(1.35	. 11	(1)	1.08	(1)	1	. 13	112	331	22	(s	(20	31	. 19	<11	56	c10	19	151
4. - 1174	-	¢. 2	3.16	15	2	11	¢	2.15	4	32	1	4	1.14	. 35	(1)	. 52	111	3	. 29	51	42	11	<s	(21)	4	. 18	(11)	53	c10	15	12
$50 \cdot 1179$	-	¢. 2	2.06	15	2	15	(5	1.19	4	31	160	12	1.14	. 25	c11	1.04	312	4	11	16	536	<2	c	<20	4	. 20	(10	6	<10	1	6
51 - 41750		¢.2	. 61	(5	¢	35	(5	. 39	4	J	101	1	. 19	. 12	21	. 11	102	4	. 01	1	190		${ }^{5}$	<21	24	. 11	(11)	5	(10	6	12
52-11951		<. 2	5.10	(S	1	11	<	5.19	1	23	15	54	2.11	. 31	10	. 39	351	\%	. 38	11	1110		(s	(21)	24	. 26	(10	19	(10	25	51
53 - 11752		4.2	. 19	15	<2	114	*	11	11	*	19	13	1.33	. 21	21	. 16	161	3	. 12	11	320		(s	<20	11	. 09	(10	25	(10	10	33
54 - 11753		c. 2	1.6	15	<	145	4	. 17	1	32	156	6	1.56	. 11	410	1.31	111	2	. 15	59	1550		<	<20	13	. 32	<10	127	(10	2	55
55 - 11754		<. 2	1.26	<	2	10.	¢	1.33	1	22	181	36	1.4	. 26	<11	1.09	211	1	. 06	13	1046	2	${ }^{5}$	<21	22	. 25	(10	6	(10	1	32
55-11759	-	$(.1$	3.16	19	6	14	<	3.46	11	21	14	19	3.17	H	11	1.15	313	<1	. 21	10	13810		(5	<28	213	. 30	<10	13	(10	25	53
57 - 2729	22080	336.	1.84	11	?	35	く	. 15	1	36	(1)10	0000	13.13	. 13	11	. 33	236	1	(.01	2	${ }^{10}$	4	(5	<21	1	. 03	10	29	(10	1	1052
56-27300	-	<. 2	. 70	(5	1	11	<	15	4	2	11	124	1.14	. 11	<10	4.11	1201	1	. 08	1	310		10	<20	501	. 02	(10	1	(10	17	11

$\stackrel{\text { enn }}{2 \rightarrow 2 n}$
${ }^{232 n a z}$

1075: © : L288 7mi
) = GRMPR tim
sc/ftcrinls
ico-tich aromporiss Lfo. mink J. PR280mi. 1.se.9 B.C. Certified Assarer

IRENCH $^{\#}{ }_{2}$ mendrater

wonl Lest rias cimim mi.
remoops, B.c. Inc 2r

mates, B.L.
W2020

Pravect 4 (7t)

为

 1001 BMT TIIS COM ETI．
 ［1MCORS，B．C．V2C 233
 PMOIS－SP1－573－5900

 1 355， 272 Victoria street
 cimoors，i．c．
 RC 212

ittintor：gieve rvis
plosict I：1719

： 212	Descitifiol				عnexze															288ks	3Exesx	sexsz				218xze	28sx			84385xx＝
1	1186%	12.2	1.16	11	＜2	51	25	． 25	11	12	113.	138	12.35	． 31	（11）	． 93	18	14	.11	23	1714	2412	＜ 5	21	5	． 01	41	350	（11	21763
2	11001	3.1	1.21	75	＜2	11	＜	． 51	19	16	112	134	315	． 21	（11）	． 14	11	17	． 11	15	5331	968	＜ 5	（2）	12	． 15	21	229	＜11	33921
J	11818	3.1	1.15	55	12	55	5	． 13	11	21	61	102	11.52	． 29	（11）	． 43	11	11	． 01	42	2211	761	15	（21	1	． 15	21	211	＜11	45855
1	41839	1.2	1.11	55	＜2	65	15	． 71	14	19	115	18	215	． 19	（11）	． 29	111	11	． 11	13	2318	011	15	＜20	1	． 15	11	141	＜11	19411
5	11110	4.1	． 13	55	＜2	61	15	． 16	25	11	18	28	315	． 21	（11）	． 26	211	11	． 11	25	2571	1951	＜ 5	＜20	5	． 16	21	163	＜11	131084
6	41811	1.6	1.43	50	＜2	61	5	1.61	9	11	11	57	14．35	． 06	11	.14	210	16	． 12	12	4054	114	45	＜20	23	． 14	21	161	＜11	51191
1	11812 Trenc	24.1	1.14	51	＜2	11	65	2.11	69	11	61	61	H15	． 23	（11）	． 11	133	13	． 14	25	8614	5161	（5	12	12	． 15	21	11	11	$21) 10098$
1	41813 ／ 35	5.2	． 13	11	＜2	111	21	． 11	34	15	11	136	315	． 15	（10	． 61	226	11	． 11	35	3714	712	（5）	$(21$	1	． 14	11	151	（1）	（1）10801
）	11814	1.2	． 11	11	＜2	45	15	1.15	1	1	218	15	3.31	． 21	11	1.15	226	12	． 13	14	3021	2212	$(5$	（21	59	． 15	（1）	21	＜11	3313
11	－ 41615	1.1	1.71	41	＜1	61	5	1.55	3	16	11	53	13.17	． 15	11	． 35	226	21	． 13	38	2111	616	$(5$	（21）	38	． 14	21	14	＜11	31112
11	11816	． 6	2.11	（5	＜2	91	＜ 5	1.62	1	11	111	16	2.11	． 11	10	． 71	294	13	． 12	34	2161	14	15	＜20	31	． 15	（11）	135	＜10	12251
12	－ 41817 ل	8.2	2.52	5	＜2	18	＜	． 11	＜1	21	115	15	5.65	． 25	11	1.11	361	2	． 11	36	511	1	$(5$	（21		． 11	（11）	33	＜11	6215
11	－ $11118 \sqrt{2} 34$	5.2	1.14	55	（2	65	15	． 68	4	13	43	14	315	． 35	（1）	． 21	112		． 11	21	3194	1811	$(5$	$(21$	5	.05	21	11	＜11	711010
14	－ 11819 F	1.1	1.19	41	＜2	45	45	1.18	23	16	11	114	11.28	． 11	11	． 13	224	18	． 12	39	2311	411	（5	$(21$	16	． 17	11	116	＜11	8173
15	－ 11821	3.2	1.35	45	$\langle 2$	55	5	2.11	31	16	59	116	13.76	． 11	11	1.13	151	10	． 11	21	112	1418	（5）	（21	32	． 17	11	218	＜10	19 310110
16	11121 Tre	3.1	1.12	51	$\langle 2$	68	5	2.58	21	15	54	126	14.16	． 11	21	1.98	113	6	． 01	25	9371	3151	（5	＜11	51	． 66	11	122	（1）	21.1806
11	118223	2.6	1.61	31	12	51	（5）	1.64	51	21	64	146	11.65	． 11	11	1.12	305	11	． 12	25	6118	111	く	＜11	25	． 11	11	218	（11	11 31140
11	－ 41223	． 1	1.53	11	2	101	$(5$	． 36	5	）	155	31	3.58	． 31	21	． 85	191	22	． 13	31	1201	265	く5	＜21	26	． 11	（11）	339	（1）	12171
19	－ 11121	1.6	2.16	35	2	11	（5	2.11	21	21	19	199	13.65	． 11	31	1.12	291	11	． 11	3	11141	112	（S．	＜11	65	． 16	21	218	（11	16542
20	11825 V	4.2	1.31	55	12	65	5	1.71	51	21	51	163	315	． 13	13	1.23	313	15	． 01	31	5630	1195	く 5	＜21	13	． 01	21	214	（1）	$12>1010$

I.C. Certiliad issum

$$
\begin{array}{r}
.71 \\
1.15
\end{array}
$$

.32 .87

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING
10041 East Trans Canada Hwy.. Kamioops. B.C. V2C 2 J 3 (604) 573.6700 Fax 573 -4657

SEPTEMBER 22, 1992
CERTIFICATE OF ASSAY ETK 92-464

TECK EXPLORATION LTD.
\# 350, 272 VICTORIA STREET
KAMLOOPS, B.C.
V2C 2A2
ATTENTION: GRAEME EVANS / FRED DALEY
SAMPLE IDENTIFICATION: 81 ROCK samples received SEPTEMBER 8, 1992
PROJECT: 1719

ET\#		$\begin{array}{r} A G \\ (g / t) \end{array}$	$\begin{array}{r} A G \\ (0 z / t) \end{array}$	$\underset{\sim}{\mathrm{PB}}$	$\begin{gathered} \text { ZN } \\ (\%) \end{gathered}$	- Tr\# ${ }^{\text {\# }}$
7	-TR-8-1	. 3	. 01	. 02	1.22	- Tr\# 8
14	- 41828	3.2	. 09	. 27	2.23	$\left\{\begin{array}{l} \\ \\ T H 3 A\end{array}\right.$
15	- 41829	1.6	. 05	. 18	. 73	
16	- 41830	3.2	. 09	. 34	2.32	
17	- 41831	3.0	. 09	. 29	3.86	
18	- 41832	. 9	. 03	. 08	. 80	
19	- 41833	1.6	. 05	. 07	4.50	
20	- 41834	. 8	. 02	. 03	1.31	
22	- 41836	2.9	. 09	. 13	3.58	(
23	- 41837	4.9	. 14	. 45	2.91	
24	- 41838	2.3	. 07	. 18	3.34	
26	- 41839	1.0	. 03	. 03	2.02	
27	- 41841	3.2	. 09	. 16	3.53	
38	- 41852	2.9	. 09	. 14	3.24	
39	- 41853	1.0	. 03	. 11	1.09	
	- 41875	1.8	. 05	. 01	. 71	
62	- 41876 \%	1.6	. 05	. 01	1.15	
67	- 41882	. 7	. 02	. 04	. 88	
	- 41884	. 9	. 03	. 01	. 1.32	TR* ${ }^{*}$
70	- 41885	4.0	. 12	. 15	. 87	TR II
71	- 41886	4.8	. 14	. 13	1.42	
75	- 41890	1.8	. 05	.07	. 92	
	- 41892	. 8	. 02	. 03	. 76	
78	- 41893	1.2	. 04	. 01	1.74	
79	- 41894	1.1	. 03	. 01	1.70	
80	- 41895	1.2	. 04	. 02	. 75	
SC92/TECK1719						

ECD-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING
10041 East Trans Canada Hwy. Kamloops. B.C. V2C $2 J 3$ (604) 573.5700 Fax 573.4557

SEPTEMBER 17, 1992

```
CERTIFICATE OF ASSAY ETK 92-442
```


TECK EXPLORATION LTD. \# 350, 272 VICTORIA STREET
KAMLOOPS, B.C.
ATTENTION: GRAEME EVANS / FRED DALEY
SAMPLE IDENTIFICATION: 29 ROCR samples received SEPTEMBER 3, 1992
---------------------- PROJECT: 1719

ET\#		$\begin{array}{r} \text { AG } \\ (\mathrm{g} / \mathrm{t}) \end{array}$	$\begin{array}{r} \text { AG } \\ (0 z / t) \end{array}$	$\begin{gathered} \text { PB } \\ (\%) \end{gathered}$	$\begin{gathered} \text { ZN } \\ (\%) \end{gathered}$	
				= =	= = =	
3	- 41808	3.1	. 09	. 09	. 69	1
4	- 41809	7.3	. 21	. 69	1.10	
5	- 41810	4.9	. 14	. 24	1.20	Trench
7	- 41811	24.5	. 71	. 67	3.22	3 f
8	- 41812	5.3	. 16	. 11	1.97	\pm
13	- 41818	5.6	. 16	. 23	1.95	4
14	- 41819	1.8	. 05	. 05	. .96	
15	- 41820	3.2	. 09	. 17	1.32	
16	- 41821	3.9	. 11	. 46	1.10	Trench
17.	- 41822	2.6	. 08	. 06	2.11	3 C
19	- 41824	1.7	. 05	. 02	. 74	
20	- 41825	4.3	. 13	. 13	2.22	
21	- 41826	2.7	. 08	. 02	2.06.	\downarrow

SC92/TECK1719
B.C. Certified Assayer

SEPTEMBER 4, 1992

CERTIFICATE OF ASSAY ETK 92-433

TECK EXPLORATION LTD. * 350, 272 VICTORIA STREET

KAMLOOPS, B.C.

ATYENTION: GRAEME EVANS

SAMPLE IDENTIFICATION: 24 ROCK samples received SEPTEMBER 2, 1992

ET*				$\begin{array}{r} A G \\ (0 Z / t) \end{array}$			\#5C
			=memam				
1	-	41765	4.8	. 14	. 11	3.24	
2	-	41766	3.6	. 11	. 16	2.34	
3	-	41767	1.3	. 04	. 02	1.58	
4	-	41768	. 8	. 02	. 03	1.09	
5	-	41769	1.1	. 03	. 02	1.74	
6	-	41770	7.6	. 22	. 16	6.79	
7	-	41771	2.1	. 06	. 08	. 54	
8	-	41772	1.7	. 05	. 19	3.42	
9	-	41773	2.3	. 07	.30	1.78	
10	-	41774	2.6	. 08	. 58	1.03	
11	-	41775	1.6	. 05	. 08	1.38	
12	-	41776	. 2	. 01	. 02	. 09	
13	-	41777	. 6	. 02	. 04	. 77	
14	-	41780	. 5	. 02	. 02	. 49	
15	-	41781	5.9	. 17	. 17	3.32	
16	-	41782	. 4	. 01	. 03	. 18	
17	-	44783	3.0	. 09	. 32	1.00	
18	-	\$1784	2.6	. 08	. 10	7.72	
19	-	41785	3.2	. 09	. 09	4.66	
20	-	41786	4.5	. 13	. 10	4.91	
21	-	41787	3.2	. 09	. 35	1.48	
22	-	41788	. 4	. 01	. 03	. 54	
23	-	41789	. 3	. 01	. 02	. 14	
24	-	41790	<. 1	<. 01	. 01	$<.01$	

HOTE: < = LESS THAN

2400 E 2800 E 1

3600 E
3200 E
|

1000 N-
500. N -

1000 s -

GEOLOGICALBRANCH
$-1000 \mathrm{~N}$
$-500 \mathrm{~N}$
-0
$-1000 \mathrm{~s}$
$-500 \mathrm{~s}$

22,664

Scale 1:10000

ASSESSMENTREPORT

 (metres)2400 E
2800 E
3200 E
3600 E

4000 E
3200 E
3600 E

TECK EXPLORATION LTD

LEGEND	
eocene drkes	srubois
[8] Lamprophyro oykes	[-] contocts
LaOYbiRd intrusives	m foults
[7a] Granodiorite - Monzonito	[m] Normal Foult
[7] Pogmatio	m. Trust fault
JURASSIC ROCKS	m. Shear Zone
6] Angilito	[] Lineation
[Ga] Nafa Volconics	[d] Joints
SHUSWAP METAMORPHIC ROCKS	[6] Follition, Bodding
SEOMENTS	[*) Asoulinal Antiorm
[5a] Calc-Stllcates $+1-$ Morble	X Symform
5] Martle +/- Groptite Lominations	
46) Quarzito with Calk-Silloote Bads	(x) lyocinal symiom
[a] Suartzite with Fioke Graphito (5-20x)	
4] Ouortzito +/- 20: Biotito Sohist Lominations	
[J] Plotio Gnoigs (ougrtzito yith	
[2] Eiotite Schist:	
mafic vaccavics	
T6. Amphiboito with Briotite Schist (to 50:50)	
[16] Amphiboitto with Coic-Silicato Lominations	
[10 Masaive Anphibolito	
mineralization	
[] Dlesaminated Suphidas	
- \(
) Seml-Massive Suiphides	
E8, Masslve Suiphides	

GEOLOGICALBRANCH ASSESSMENTREPOP

22,664

PIAN MAD Of
TRENCH $\neq 3 \mathrm{~A}$

gocene prkes
8 Lomproohyre Dykes
Ladrairo intrusives
[7a] Granodiorito - Menzonite
12 Pogmatite
JURASSIC ROCKS
[6] Argilite
[e] Mafio Volicanics
SHUSWAP METANORPHIC ROCKS
SEOMENTS
50] Colt- Slicates +/-Marble
[5] Narble +/-Grophite Lominations
[46] Quartaito with Colc-silicoto Beds
[40] Quartzito with Floke Grophto (s-20z)
[4] Quartaite $+/-20 \times$ Blotito Schist Lominations
(3) Alotite Gneiss (Quartzito syith
[2] Biothe Schist
manc voccanics
(1c) Amphitionte with Biotite Schist (to 50:50)
(ib) Amphiboito with Calk-Slloato Lominotions
Ta Massivo Amphiboite
mineralization
[7]) Disseminotod Suiphides
Somi-Massive Suiphide.
2. Massive Suphides

GEOLOGICALBRANCH ASSESSMENT REPORT

22,664

KRAMLOOPS. BRITISH COLUMBI
PIAN MAP O
TRENCH \#3F

eocene dress
[Lomprophyre Dykes
udybiro intrusives
[79] Granodiorito - Monzonito
[7] Pegmotito
JURASSIC ROCKS
[6] Argilite
(6a) Mafic Volicanics
SHUSWAP METAMORPHIC ROCKS
SEDMENTS
(5a) Cale-Sillcates +1 - Marb
[5] Morble +1-Grophite Lominations
(16] Quorzzito with Calc-Slicote Bods
(ta) Quertzito with Flake Graphite ($5-20 \pi$)
(1) Quarrzite $+/-20$ Biotte Schist Laminations
(3) Biofte Cneiss (Courtaito yith
[2] Biotite Schist
mafic valganics
[Tc] Amphiboifte with Blotite Schist (to 50:50)
(1b) Amphibolite with Cale-Stlicoto Leminations
[Ta Massive Amphiborite
minerauzation
Q. Disseminated Suiphides

Semi-Nassive Sulphida
2S Massive Sulphides

GEOLOGICALBRANCH

ASSESSMENTREPOR ${ }^{\text {T}}$
22,664

LEGEND	
EOCENE DTKES	srupols
[8] Lomprophyre aykes	[-] Contocts
lapreiro intrusives	m. Fauts
[79] Granociorito - Monzonito	Mr Normal Fout
[7] Pegmatite	Mm Thrist Foult
JURASSIC ROCKS	Shear zone
6] Argilito	< Linootion
6a] Mafic Voleanics	4 Joints
SHusWAP Metamorphic rocks	[) Follation, Bedding
SEOMENTS	[x. Isoolinal Antiorm
S5. Caik-Sillcotes +/-Martio	(X) smintom
5] Marbie $+1 /$ Graphite Leminations	[\times] Isoclinal symform
46) Quartzito with Calc-Sllfoto Bods	
40 Ouarkite with Fiake Grophite (5-205)	
4. Quartzite $+/ / 20$ siotite Sohist Laminations	
2] Biotite Schist	
naic volanics	
[fc] Amphibolite with Biolito Schist (to 50:50)	
(ib) Amphiboito with Caic-Silloste Laminations	
(ta) Massive Amphibolita	
mineralization	
C.] Disseminoted Suphides	
F1 Somi-Massive Suphides	
T- Mossive Suiprides	

GEOLOGICAL BRANCH
ASSESSMENTTREPORT
22,664

ARFOMLOOS PROPERT
PI.AN MAP of TRENCHES 5A \& 5B

EOCENE DXKES
uoverifo intrususives
[70] Granodioito - Monzonitit
Jueassic rocks
[6] Argilite
Shuswap netuuopehic rocks
seduents
Calk-Sllucotes +1-Martio
(4) Martio +1 Graphito Lominationg
(10) ouartitio with fioko Grophtle is-

- uorrzto $+/-20 x$ Biotito Schist
[2] Bioticte Schial
watic volcanics
[7c] Amphibe
(1c) Amphibolit with Biotito Schise (tic
(10) Massive Amphibofito

