LOG NO:	DEC 1 5 1992	RD.
ACTION.		
ł		
FILE NO:		

ASSESSMENT REPORT

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL

TCHENTLO LAKE PROPERTY

MINERAL CLAIMS: LAKE 11, 12 AND 13

OMINECA MINING DIVISION, BRITISH COLUMBIA NTS 93N/2 LATITUDE 55° 10' N, LONGITUDE 124° 40' W

SUE ALUMULA RECEIVED 200 0 7 14 92 MR.#_____\$____ VANCOUVER, B.C. CLAIM OWNER AND OPERATOR WESTMIN RESOURCES LIMITED

REPORT BY

TERRY L. TUCKER, B.Sc. PROJECT GEOLOGIST WESTMIN RESOURCES LIMITED

DECEMBER 2, 1992 GEOLOGICAL BRANCH ASSESSMENT REPORT

22,672

RPT/92-016

District Geologist, Prince George Off Confidential: 93.10.21 ASSESSMENT REPORT 22672 MINING DIVISION: Omineca PROPERTY: Tchentlo Lake LAT 55 10 00 LONG 124 44 00 LOCATION: UTM 10 6114494 389583 NTS 093N02E CLAIM(S): Lake,Wil OPERATOR(S): Westmin Mines Tucker, T.L. AUTHOR(S): 1992, 56 Pages **REPORT YEAR:** COMMODITIES SEARCHED FOR: Gold, Copper Triassic-Jurassic, Takla Group, Volcanics, Sediments, Intrusives **KEYWORDS:** Alteration WORK DONE: Geological, Geochemical, Geophysical GEOL 625.0 ha 18.1 km IPOL Map(s) - 6; Scale(s) - 1:500018.1 km MAGG Map(s) - 3; Scale(s) - 1:500020 sample(s) ;ME ROCK SOIL 31 sample(s) ;ME

TABLE OF CONTENTS

Page

1.0	SUMMARY AND RECOMMENDATIONS							
2.0	INTRODUCTION2.1Location and Access2.2Physiography and Climate2.3Property Status and Ownership2.4History of Exploration2.5Objectives of the 1992 Exploration Program	2 2 5 7 7						
3.0	GEOLOGY3.1Regional Geology3.2Property Geology3.3Mineralization and Alteration	7 7 9 9						
4.0	 1992 EXPLORATION PROGRAM 4.1 Grid Establishment 4.2 Geological Mapping and Prospecting 4.3 Geochemistry 4.3.1 Sampling Procedures 4.3.2 Analytical Techniques 4.3.3 Description and Discussion of Results 4.4 Geophysics 4.4.1 Program 4.4.2 Results 	12 14 14 15 15 15 15						
5.0	CONCLUSIONS	23						
6.0	REFERENCES	24						

LIST OF APPENDICES

- Appendix A Statement of Qualifications
- Appendix B Summary of Field Personnel
- Appendix C Statement of Expenditures
- Appendix D Analytical Techniques
- Appendix E Rock and Soil Sample Descriptions and Results
- Appendix F Scott Geophysics Ltd. Logistical Report Induced Polarization, Resistivity, and Magnetometer Surveys - Tchentlo Property, Fort St. James Area, B.C.
- Appendix G 1992 Assessment Filing

LIST OF TABLES

Page

Table 1	Claim Summary	5
Table 2	Pit 1 - Rock Sample Results	12
Table 3	Soil Geochemistry	19
Table 4	Geophysical Surveys	21
Table 5	IP Anomalies	23

LIST OF FIGURES

Page

Figure 1	Location Map, Scale 1:7,500,000	3
Figure 2	Topographic Map, Scale 1:50,000	4
Figure 3	Claim Map, Scale 1:50,000	6
Figure 4	Regional Geology, Scale 1:1,000,000	8
Figure 5	Moose Grid - Geology and Sample Location Map, Scale 1:10,000	10
Figure 6	Pit 1 - Soil Profile, Scale 1:10	11
Figure 7	Pit 2 - Soil Profile, Scale 1:10	13
Figure 8	Pit 3 - Soil Profile, Scale 1:10	17
Figure 9	Pit 4 - Soil Profile, Scale 1:10	18
Figure 10	Moose Grid - Geophysical Anomalies - West Area, Scale 1:5,000	22
Figure 11	Moose Grid - Geophysical Anomalies - East Area, Scale 1:1,000	25
Figure 12	Moose Grid - Compilation Map, Scale 1:10,000	26

1.0 SUMMARY AND RECOMMENDATIONS

The 1992 field program commenced on September 23, 1992 and continued through to October 12, 1992. During this period work concentrated on the Moose area where mapping, grid establishment, geophysics (induced polarization, magnetometer) and geochemical sampling was done.

The Moose grid was established and consists of 17.6 km of flagged and cleared line. Four test pits were dug and detailed sampling and mapping was completed. The geophysical survey consisted of 18.05 km of IP and mag surveys. Twenty rock and 31 soil samples were taken.

The IP survey identified a >10 m V/V chargeability anomaly which has been traced for over 400 m and is open to the northwest along strike (see Figures 10 and 12). The anomaly averages 250 m in width and is evident in separations n = 1 - 5.

The chargeability anomaly correlates with the fringes of a magnetic high (>59,250 nt) which was identified by a 1989 airborne geophysical survey. The anomaly also parallels a 1961 government airborne mag high anomaly.

In addition, soil samples in the area have been found to return up to 3,720 ppm copper, but the validity of the soil results is in question. This is due to the fact that the property is underlain by an unknown thickness of glacio-fluvial derived gravels and sands. It is estimated that the gravels are generally 2 to 3 m in thickness. Rock float samples in the area have returned up to 455 ppb gold and 1,950 ppm copper. The Hogem Batholith is exposed on the extreme northern edge of the Moose grid. Samples of this generally return up to 25 ppb gold and 358 ppm copper as background values.

A 75 m wide chargeability anomaly (>10 m V/V) has also been identified on the eastern edge of the Moose grid. The anomaly correlates with a low lying swampy area. See Figures 11 and 12 for location.

Followup of the westernmost IP anomaly is warranted. Coincident high soils (>100 ppm copper), high airborne magnetic anomaly (>59,250 nt) and the strong IP results of this season are encouraging. The exploration program should consist of a surface IP survey to determine the western extent of the anomaly. Trenching could be attempted but the likelihood of reaching bedrock is poor. The gravels would be very unstable and it is unlikely that one could safely enter a trench if it did reach bedrock. A geophysical program to determine overburden thickness should be carried out before any trenching is attempted.

If results of the extended IP survey are encouraging an exploration fly drill could be mobbed in at a reasonable cost to test the anomaly.

2.0 INTRODUCTION

2.1 Location and Access

The Tchentlo Lake property is located in north-central British Columbia, 80 km north of Fort St. James on the south shore of Tchentlo and Chuchi Lake (Figure 1). The claims are situated within NTS map sheet 93N/2 and are centred approximately 55° 10' N latitude and 124° 40' W longitude.

Vehicle access to the area is by 120 km of gravel road north of Fort St. James to the north shore of Chuchi Lake. The property can then be reached by boat or barge across Chuchi Lake. Pacific Western Helicopters have a base at Tchentlo Lake Lodge and provides an alternate to the boat crossing. Floatplanes could also be used to Chuchi Lake or Alexander Lake (named Tamasgale Lake on the 1:250,000 Manson River map sheet) from either Vanderhoof (150 km) or Fort St. James (90 km).

The 1992 exploration program was based out of a helicopter supported fly camp on the eastern shoreline of Alexander Lake. A system of jeep roads was established on the property in the 1960's. These roads were used for access to the property from camp. A small amount of work clearing deadfall would bring these roads to a standard suitable for vehicles.

2.2 Physiography and Climate

Topography is gently rolling, forested uplands with elevations ranging from 900 to 1,500 m (Figure 2). Glacial till and fluvial gravels blanket most of the property. Thicknesses are estimated to average 3 m and range up to 30 m. Areas of good outcrop are restricted to ridges and hill tops. Numerous areas are poorly drained and are commonly swampy.

The property is tree covered with fir, balsam, spruce and pine. Vegetation density varies from open pine flats to densely wooded patches with alder undergrowth.

Climate is characterized by cold snowy winters and warm, wet summers. Snow accumulations normally exceed 2 m. The field season generally begins in June and can continue to the end of October.

2.3 Property Status and Ownership

The Tchentlo property is located within the Omineca Mining Division and consists of 22 contiguous four-post mineral claims totalling 341 units (Figure 3). The claims are 100% owned by Westmin Resources Limited. Details of the claims are outlined in Table 1.

TABLE 1								
CLAIM SUMMARY								
Claim Name	No. of Units	Tenure No.	Record Date	Expiry Date				
Lake 1	15	240216	December 16, 1988	December 16, 1994				
Lake 2	8	240217	December 15, 1988	December 15, 1994				
Lake 3	20	240218	December 16, 1988	December 16, 1994				
Lake 4	20	240219	December 15, 1988	December 15, 1994				
Lake 5	12	240406	February 21, 1989	February 21, 1994				
Lake 6	10	240407	February 20, 1989	February 20, 1994				
Lake 7	20	240408	February 21, 1989	February 21, 1996				
Lake 8	12	240410	February 20, 1989	February 20, 1994				
Lake 9	12	240318	March 4, 1989	March 4, 1996				
Lake 10	20	240319	March 4, 1989	March 4, 1996				
Lake 11	20	240320	March 4, 1989	March 4, 1996				
Lake 12	20	240321	March 3, 1989	March 3, 1998				
Lake 13	18	240503	April 26, 1989	April 26, 1994				
Lake 14	20	240976	July 16, 1989	July 16, 1994				
Lake 15	16	240977	July 16, 1989	July 16, 1996				
Lake 16	20	241094	August 3, 1989	August 3, 1996				
Lake 17	20	241095	August 4, 1989	August 6, 1996				
Lake 18	10	241096	August 9, 1989	August 9, 1996				
Lake 19	12	241632	March 4, 1990	March 4, 1997				
Lake 20	2	241633	March 4, 1990	March 4, 1999				
Lake 21	16	241634	March 4, 1990	March 4, 1997				
Lake 22	18	241635	March 4, 1990	March 4, 1998				
Total	341							

2.4 History of Exploration

- 1961 Government regional airborne magnetic survey (flight lines spaced 0.8 km apart).
- 1966 to 1972 West Coast Mining and Exploration and Boronda Exploration Corporation Limited conducted geochemical and geophysical exploration for porphyry copper deposits.
- 1983 Regional stream sediment and water geochemical survey. Joint Canada, British Columbia program.
- 1989 to 1991 Westmin Resources Limited carried out an airborne Mag-VLF-HEM survey (1989), multi-element stream sediment and soil geochemistry (1989 to 1991), geological mapping (1989 to 1991), trenching (1990) and geophysics (1991).

2.5 Objectives of the 1992 Exploration Program

An airborne geophysical survey conducted in 1989 outlined an area of coincident high magnetics (>59,250 nt) and >2 calculated weight percent magnetite content. Geochemical followup of this anomaly in 1991 outlined a coincident area of anomalous soil geochemistry. Soil samples returned over 100 ppm copper and ranged up to 3,720 ppm copper. This anomaly is referred to as the Moose area and is located northeast of Alexander Lake on the Lake 11 mineral claim. The primary objective of the 1992 exploration program was to conduct an induced polarization/magnetics survey over the Moose area in order to determine if the source of the anomalies could be inferred by an anomalous response from ground geophysics. Several test pits and soil profiles in road cuts were sampled in order to determine the source of the copper soil anomalies.

3.0 GEOLOGY

3.1 Regional Geology

Tchentlo Lake is situated within the central portion of the Quesnel Trough, a 30 to 60 km wide by 1,300+ km long volcanic assemblage, which extends northwestward from the southern B.C. border (49th parallel) to the Stikine River in northern B.C. (Figure 4). The boundaries of the trough are regional faults in some areas. The Trough comprises alkalic and calc-alkalic volcanic and deep water sedimentary rocks of Upper Triassic to Jurassic age (Rossland, Nicola, Takla and

\++++++++++	
++++++++++++++++++++++++++++++++++++++	
LORRAINE X+++	i jage i
	·
	م کرکی ب
Pcc +++ TAKLA	
H++ RAINBOW	
MANSON SEE	
King with the second se	3
TSAYTAL + + + + KWANIKA/VALLEAU	
TAKLA LAKE ++++ PROPERTY	K ~ "" ··· ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
LANDING TO K++++ WUDLEAU	
INDATA T THE PROPERTY	
TAKLA TCHENTLO (BP-Digger)	
(VKookaburra) + ++++++	
3	
Por CHENTLO LAKE CHUCH	
PROPERTY	
	United Lincoln BP
	(Placer-Dome) Msm
	AS
	$\wedge \wedge \wedge \vee \wedge \vee \wedge \vee$
Pcc/Fr	
when the second	\rightarrow
I I and the second with the	,
1 12 min 1 min 1	
Level 2 the	ub 🖌
CRETACEOUS	PORT ST. JAMES
Granodiorite, quartz monzonite	
	l) Proc N
UPPER TRIASSIC - LUWER JURASSIC	
Hogem Batholith	
Hogen Batholith	
Hogen Batholith	
Hogen Batholith Takle volcanics PALAEOZOIC	
Hogem Batholith Takla volcanics PALAEOZOIC PY Permian - Ning Creek volcanics	
Image: Initial Solution Image: Hogen Batholith Image: Takle volcanics PALAEOZOIC Image: Permian - Ning Creek volcanics Program Permian - Cache Creek Group	WESTMIN Westmin Resources Limited
Hogem Batholith Takle volcanics PALAEOZOIC Py Permian - Ning Creek volcanics Pc Permian - Cache Creek Group Mer Mississippian - Slide Mountain Assembl.	WESTMIN Westmin Resources Limited MINING DIVISION
Hogem Batholith Takla volcanics PALAEOZOIC Pv Permian - Nina Creek volcanics Pc Permian - Cache Creek Group Mer Mississippian - Slide Mountain Assembl. Prs Cambrian to Devonian sediments	WESTMIN Westmin Resources Limited MINING DIVISION Work By R.W. Lone Dave Drafted January, 1991
Hogem Batholith Takla volcanics PALAEOZOIC PV Permian - Nina Creek volcanics Pc Permian - Cache Creek Group Men Mississippian - Slide Mountain Assembl. Ps Cambrian to Devonian sediments m Wolverine Metamorphic Complex	WESTMIN Westmin Resources Limited MINING DIVISION Work By R.W. Lana Deal Free Contract January, 1991 Deal Free Regional Geological SETTING Date Revised
Hogem Batholith Takla volcanics PALAEOZOIC PY Permian - Nina Creek volcanics Pc Permian - Cache Creek Group Mer Mississippian - Slide Mountain Assembl. Pro Cambrian to Devonian sediments m Wolverine Metamorphic Complex Vb ultrabasic racks	WESTMIN Westmin Resources Limited MINING DIVISION MINING DIVISION Work 6v TCHENTLO LAKE PROPERTY Date 70 REGIONAL GEOLOGICAL SETTING Date Regional GEOLOGICAL SETTING
Hogem Batholith Takle volcanics PALAEOZOIC PY Permian - Nina Creek volcanics Pc Permian - Cache Creek Group Mer Mississippian - Slide Mountain Assembl. Ps Cambrian to Devonian sediments m Wolverine Metamorphic Complex ub ultrabasic rocks 0 20 40 km	WESTMIN Westmin Resources Limited Mining Division Work 6v TCHENTLO LAKE PROPERTY Januery, 1991 TCHENTLO LAKE PROPERTY Detived 6v REGIONAL GEOLOGICAL SETTING Revenue Revenue Figure Figure
Hogem Batholith Takle volcanics PALAEOZOIC PV Permian - Nina Creek volcanics Propermian - Cache Creek Group Man Mississippian - Slide Mountain Assembl. Property Cambrian to Devonian sediments m Wolverine Metamorphic Complex ub ultrabasic rocks X significant prospert	WESTMIN Westmin Resources Limited MINNING DIVISION Work By TCHENTLO LAKE PROPERTY Date Grafted TCHENTLO LAKE PROPERTY Date Grafted By REGIONAL GEOLOGICAL SETTING Date Revised By REGIONAL GEOLOGICAL SETTING NTS. Notes By By By By NTS. Humbula By By By

Stuhini Groups), which are intruded by comagmatic plutons. The potential for porphyry gold-copper deposits in this environment is good, especially in areas of well developed structural control.

3.2 Property Geology

Tchentlo Lake property is mainly covered by thin to thick glacial till, which ranges from well drained to boggy (Figure 5). Outcrop or subcrop exposure averages about 3% to 5%. The best exposures are in the western, southwestern and northeastern corners of the property. The underlying geology is mapped and/or interpreted to consist of 20% alkaline (to calc-alkaline) Takla Group volcanic and sedimentary rocks and 80% comagmatic intrusive rocks of the Hogem Batholith. The Hogem rocks appear comprised of relatively large elongate-shaped plutons in the west, and a mixture of small- to medium-sized elongate-shaped plutons in the east. The plutons are clearly aligned in a northwest direction, parallel to regional scale structure in the area. The property is also cut by strong north and northeast-trending structures which appear to control alteration/mineralization but largely post-date initial plutonism. Weak to strong propylitic alteration is common on the property. Potassic and pyrite rich phyllic alteration also occurs in the easternmost portion of the property.

The Takla/Hogem contact has been mapped east of the Moose area on the 1991 Jean Marie grid. The contact is sinuous and irregular. Volcanic rocks occur as outliers surrounded by plutonic rock and intrusive apophyses occur in the volcanics. Takla Group rocks comprise mainly structureless, aphyric andesite and subordinate siliceous volcaniclastic siltstone and wacke. Hogem rocks consist primarily of equigranular monzodiorite. Monzodiorite and Takla rocks are cut by small bodies (up to 100 by 400 m) of crowded plagioclase porphyritic monzonite, porphyritic diorite and equigranular granodiorite.

3.3 Mineralization and Alteration

Several float boulders from Test Pit 1 (Figure 6) were analyzed in order to determine the source of the high copper results in the soils. These results are outlined in Table 2.

LEGENO . 441.8 TRAIL SPOT HEIGHT ----- \bigcirc HORIZONTAL CONTROL LAKE (追い CEEEK aes . INDEFWITE CREEK 1992 GRID ROAD $\Delta_{(246)}^{92TTTROU} = Rock grab sample$ (Aupped)(Aupped)(Aupped)(Cupped)(Cupped)(Cupped)(Cupped)(Cupped)(Cupped)(Cupped)(Cupped)- Soll sample O PIT 3 - Pit Location (see figures 6-9 for detail) 092TTTROIB - Rock float sample. - OUTCROP - < mappable Size X - OUTEROP (- Geological boundary ____ \$ 486539 - 1991 rock sample (124) (Auppb) LITHOLOGIES UPPER TRIASSIC - LOWER JURASSIC - Phase 1 - Hogem BATNOLITH 8 7 DIORITE CROWDED PLAGIOCLASE PORPHYRITIC MONTONITE 6 EquiGRA NUL AR MONZODIOIZITE - 62 MONZONITE - 66 MONZOGABBRO - 6C DIURITE - 6d 5 PYIZO KENITE UPPER TRIASSIC - TAKLA GROUP PROXENE PORPHYRITIC ANDESITE Z ANDES ITIC TUFE D SILICEOUS VOLCANICLASTIC SILETONE /WACKE 200 340 /00 metres WESTMIN RESOURCES LTD. TCHENTLO LAKE PROPERTY MOOSE GRID GEOLOGY AND SAMPLE LOCATION MAP MINE CODE PROJECT 6201 WORK PLACE NUMBER 93N/2 DRAWN BY DATE 14/11/42 SCALE DRAWING NO. REV. FIGURE 5 APPROVED

Location on Moose GRID (1992) 10340N 10295E	1990 sa 34too - геtu samp	mple 5 16+50 h rned 1 ple depti	I Оррь Ал, h 15ст	37200	рт (.	5
SAMPLE NUMBER AU CU	PROFILE	DESCR	IPTION			
92777 5004 <5 1560 92777 R001 (48ppm Hb) 115 1475 92777 R002 85 142 92777 R003 50 155 92777 R004 (154ppm th) 170 80 92777 R005 110 93 92777 R006 190 133 92777 5002 55 2330 92777 5002 55 548 92777 R007 95 148 92777 R008 260 81	ROSA ROSA ROSA ROSA ROSA ROSA ROSA ROSA	dark blac 100% org angular to dark bla 80% or angular t reci/ k water t well sor and gra	ik anic mat subround ganic ma o eubrounde contact orown c ted fluvia uels. (201	ter ecl cobble tter cl cobble lay lay -1 sands m - 30 cm	 < (< 3<	Ocm)
92 TTTROOI 92 TTTROOI 92 TTTROOI 92 TTTROO2 92 TTTROO2 92 TTTROO2 92 TTTROO3 92 TTTROO3 92 TTTROO4 92 TTTROO4 92 TTTROO5 92 TTTROO5 92 TTTROO5 92 TTTROO6 92 TTTROO6 92 TTTROO7 92 TTT	r py (magnetic) m Thor Fine (magnetic) m Thor Fine (magnetic) andesite por pyrite. lark green		<u>LE</u> soilsample rock sample	<u>GEND</u> -9277 - 92777	7500 K 00 7	3
92TTTROOB (magnetic)	nzudrorite.	WESTM ΡΙΤ Ι 10 340 N	MIN RESOURCE - Soil f 10295E -	SLTD. PROFILE Moose	GRIO	
0 10 20 30 40 50 Centimetres	WORK PLACE DRAWN BY APPROVED		11/92 SCALE 1.10	MINE C DRAWING NO.	ODE	REV.

TABLE 2							
PIT 1 ROCK SAMPLE RESULTS							
Sample No.	Depth (cm)	Au (ppb)	Cu (ppm)	Mo (ppm)			
92TTTR001	10	115	1,475	48			
92TTTR002	12	85	142	1			
92TTTR003	15	50	155	1			
92TTTR004	17	170	80	1			
92TTTR005	10	110	93	<1			
92TTTR006	17	190	133	<1			
92TTTR007	75	95	148	<1			
92TTTR008	80	260	81	<1			

Rock sample 92TTTR001 returned gold and copper values similar to the soils at that depth. These rocks have been transported at an unknown distance and their significance is uncertain.

A number of angular float boulders up to 30 cm long were found along the road in the area of 10400E, 10340N. The rocks were very limonitic and completely clay altered. It appears as if this ferricrete has not travelled a great distance. The sample (92TTTR009) returned 455 ppb gold, 4.8 ppm silver and 1,950 ppm copper.

Test Pit 2 (Figure 7) is located in a road pit at 10340N, 10425E. Three chip samples were taken of a coarse-grained monzodiorite. The outcrop is highly clay altered, medium-grey to red with several large patches (<20 cm) of fresher monzodiorite. Samples toward the surface became increasingly copper rich, revealing that a secondary concentration of copper has occurred just below and within the B soil horizon.

4.0 1992 EXPLORATION PROGRAM

Fieldwork on the Tchentlo Lake property was carried out between September 23 and October 12, 1992. The work consisted of establishing the Moose grid, conducting an induced polarization and magnetometer survey, test pitting of soil and geophysical anomalies, geological mapping and prospecting.

				_							
Location on Mod	SE GRIR	>		Ŕ) 0 A	to Cu	ر				
(1997) 102401	101125-										
(11-) 1034010	107276										
SAMPLE Number A.	C										
طمم	ppm	r									
927775007 15	28		\sim		$\left[\right]$	dark	61.	ek.			
		\sim		7 >	K	10076	0 0	gan	(C		
	100	\bigcirc	\bigcap			Ted	lbr	•	_	•1	
921115006 10	170	\frown	$\mathcal{O}_{\mathcal{A}}$			with	- TO	und	ed 1	monzaul	- @
		\bigcirc				cob	ble	S			
927775005 15	519			I F	4	brig	htr	و د ا	soil	(Bhoriza	~)
					•	Ŭ)
92TTTR013 <5	207					C	ho	(17	ton		
-rock very broken	K NO	(. /								
brown; biotite,	(Sericite)?										
						Cou	15	ć	gre	ained	
		~				ma	5 ~ C	C (1) (Je	outero	ŕ.
		$\langle \rangle$				hig	hl	; a	He	red	
						me	div) ~ .g	104	to brow	nlied
92 TTT RO14 <5	132					<u>A</u>	ter	•••			1
- Tusty red brown			\frown			De	Art	Ч 	6-	J Inige	$\frac{1}{2}$
altered monzonite.						рт Го				zuenja:	÷
						10	Cog	N 170 ;	اطن	e outer	°P
			$\overline{}$			Ŵ	τh	lin	n on i	itic alt	reed
	F	-				M	0n 7	on	te	gs ma	
	\rightarrow	-	\langle						,		
92TTT RO15 <5	78						E.		<u></u>	GEND	
monzonite	>						Son	1 sa	impl	e 92777	5005
ROAD	r						* *		17		Í
					10.00						
			 γ		2		50		S LTC PRO). FILE	
L	I		10	340	N	10429	ΓE -	- <i>m</i> c	005E	SRID	
0 10 20 30	40 50			UMBER	0477	, .	-	10041 F	100000		
centimetre	5		APPROVED	\overline{r}	UAIE	1/11/9	2	IS IN	URAWI	170. 7	HEV.
			I I				1	· · · · · ·	1	•	1

4.1 Grid Establishment

A grid was established over the Moose area during the 1992 field season. The Moose grid (Figure 5) consists of 17,600 m of uncorrected flagged line. Topography in the area is insignificant to the length accuracy of the lines. An existing jeep road was used for reference and location of the cross lines. The road is approximately perpendicular to the lines and stations were marked on the road with a metal tag and flagging. Cross lines were placed using a compass, hip chain and topofill and are orientated at 040° (declination of 24° W). The lines are well flagged with pink flagging and stations were marked every 50 m with a tyvex tag and pink and blue flagging. The lines have been partially cleared to aid in the geophysical survey.

The lines were tied in on the north using Line 30+00S which was cut and chained in 1990. This, along with an accurate airphoto, has provided good control of line position. Existing Line 0+00 was geophysically surveyed from 39+50S to 22+00S. This line was cut and chained in 1990.

4.2 Geological Mapping and Prospecting

The 1992 prospecting and mapping program was concentrated in the Moose area. Mapping was done at a scale of 1:10,000. The Moose grid and airphoto were used for mapping control and plotted on a 1:10,000 geology map. The limited geology obtained is illustrated in Figure 5.

The Moose area is predominantly underlain by a thick cover of till and glacio-fluvial gravels. The only outcrop found was on the north end of Lines 10400E, 10600E and 10800E. These rocks were Upper Triassic to Lower Jurassic Hogem Batholith consisting of an equigranular monzodiorite to diorite.

4.3 Geochemistry

4.3.1 Sampling Procedures

A total of 20 rock and 31 soil samples were collected on the Tchentlo Lake property during the 1992 field season.

Sampling consisted of select grab sampling of mineralized and/or altered rock. All sites were marked with a tyvex tag and flagging. Control for samples was obtained by 1:10,000 airphotos and reference to known grid locations.

Soil test pits were dug at four separate sites. Separate samples were taken of all soil horizons which were exposed. Several anomalous soil sample sites from 1990 were resampled. A grub hoe and shovel were used to collect B horizon material. All samples were placed in kraft paper envelopes and labelled. Sample sites were marked with a tyvex tag and flagging. Control was obtained by a 1:10,000 airphoto and reference to known grid locations.

4.3.2 Analytical Techniques

All of the samples were sent to Chemex Labs in North Vancouver, B.C. for analysis. This analysis comprised fire assay with atomic absorption finish for gold and a seven element ICP package (Ag, Cu, Pb, Zn, As, Sb, Mo). Analytical techniques used by Chemex are detailed in Appendix D.

4.3.3 Description and Discussion of Results

A compilation of all sample descriptions and geochemical results can be found in Appendix E. Rock sample locations and results are plotted on Figure 5. Detailed soil sampling of test pits and results are found on Figures 6 to 9.

Several of the 1991 anomalous soil samples were retested and descriptions of the sampled material recorded. This would allow for comparison of results and a means to determine the validity of the sample. Table 3 compares 1992 with 1991 results. A short discussion on the significance is also noted.

The 1992 soil sample results reveal that in several locations, the black organic A horizon in the Moose area has been enriched in copper and gold. Results of soils in this area are questionable considering the thick overburden depths (0 to 30 m) and unknown origin for these fluvial sands and gravels.

4.4 Geophysics

4.4.1 Program

During the 1992 field program a geophysical survey was carried out on the Moose grid. The survey consisted of 18.05 km of induced polarization and magnetometer. Details of the lines covered by the geophysical surveys are outlined in Table 4.

The work was subcontracted to Scott Geophysics Ltd. with an office at 4013 West 14th Avenue, Vancouver, B.C. A detailed logistical report from Scott Geophysics is reproduced in its entirety in Appendix F.

4.4.2 Results

Results of the Scott Geophysics IP/mag survey outline a very good chargeability anomaly striking across the grid and is open to the west beyond Line 9600E (Figure 10). Anomalous responses are defined as having a chargeability of >10 m V/V and ranging up to 19 m V/V.

M005EGRID 10875E LOCATION ON MOOSE! 1990 sample 1990 Sample 34+005 15+50 W GRID 10300N 10390E 10500N Ippb As, 2530ppm Cu 327005 11+50 W 10-15cm depth. Sample number and results. 197ppm Cy darkblack 1 ppb Au. 92TTT5008 85% organic SAMPLENUMBER and result 10 ppb Au Rolf brown red 2320ppmCu 927775012 soil with ථ 2.2 ppm Ag < 5ppb Au watertable angular 152ppmCu 24 ppm Mo \bigtriangledown boulders 92TTTR016 of monzodiorite (montodiorite) (brown clay 92TTTSOOG 45 ppb Au horizon? 25ppho Au 132 ppm Cu 394 ppmCu. LOCATION ON MOOSE 1990 SAMPLE ROAD CUT Moose GRip GRID 10330N10505E TEST PIT 3. 32 toos 12 toow 10790E Ippb Au 10520N 264/ppm (s (dep th 10-15cm) redtogrey 92TTT SO13 Soil rodbrown 927775010 suil. transported < 5ppb Au with rounded Ole organics monzonite 235ppm (u 35ppb AJ boulders 49ppm CU 0 0 grey well 0 0 Sorteel gravel with LEGENO. RUCK - 92TTTROIG 50,-1- 92TTT5009 92TTTSOII angular to 0 rounded pebbles 0 30 40 10 20 0 20ppb Au Centimetres. to 3cm 112 ppm Cu WESTMIN RESOURCES LTD. Pit 3 and others -SOIL PROFILES MINE CODE WORK PLACE NUMBER SCALE DRAWING NO. REV. DRAWN BY TET. DATE 1/11/92 8 APPROVED 1:10 ROAD

MooseGRio Moose Grid. 1992 1990 sample 1990 sample 32 to 05, 13 too W 32+005 15+00 N 10725E 10470N 10501E Ipp b Au 10 490 N 70ppb Au .د.Cسمو 288 260ppmCu (40cm clepth) Sample number andresult (25cm depth) 92TTT 5014 darkblack. black 92775016 10 pp to Au 30 Toorganics 85% organics 15 pp 6 As 422ppmCu 616 ppm Cu. 921775015 brown clay greybrown 927775017 L5ppbAu 10 pph Au clay. 240 ppm (u 335 ppm Cu chargeability anomaly (1992) Moose TEST PIT 4 GRio 10000E 10490N Aulppb) Culppm) dark black 92777,5018 <5 36. 80% organics 5% organics rustyred/brown. 927775019 25 46 « 10 cm rounded pebbles 82 <5 927775020 brown fine grained silts 92TTTR017 79 25 monzocliorite pebbles to scale well sorted grawel. \mathcal{O} 927775021 <5 121 mottled grey fred class andesite pebbles WESTMIN RESOURCES LTD. Pit 4 927775022 25 137 andothers EIm^Q Suil PROFILES WORK PLACE NUMBER MINE CODE DATE 11192 DRAWN BY REV. SCALE DRAWING NO. 10 20 30 Centimeti 1:10 APPROVED

	TABLE 3 SOIL GEOCHEMISTRY								
		1992 Resul	ts	1991 Results					
Location	Au (ppb)	Cu (ppm)	Depth (cm)	Au (ppb)	Cu (ppm)	Depth (cm)	Notes		
Pit 1									
10340N, 1 0295E	<5 <5 <5 <5	1,560 2,330 548 1,085	20 40 60 85	10	3,720	15	The 1991 sample and 1992 samples at 20 and 40 cm were taken of black 100% organic material. Three rocks that were found in this material were anomalous in gold and copper. They have been transported for an unknown distance. 1992 samples at 60 and 85 cm are in transported gravels of unknown origin. (Figure 6)		
Pit 2									
10340N, 10425E	15	519	40	Area o	of anomalous	a results.	This sample was taken at true B horizon. The source bedrock returned gold/copper results lower than the B horizon. There has been secondary enrichment in the B horizon. (Figure 7)		
10300N, 10390E	10 <5	2,320 394	40 65	1	2,530	20	Samples in 85% organics. Significance is questionable. (Figure 8)		
10500N, 10875E	<5	152	50	1	197	10-15	Float boulders in soil assayed similar to the soil. Has been transported an unknown distance. (Figure 8)		
10520N, 10790E	<5	235	30	1	264	10-15	Taken of good soil with no organics. Appears to be approximately the same as results obtained in Pit 2. Suggests bedrock source nearby and enrichment in soil. (Figure 8)		
10490N, 10725E	10 <5	422 240	30 42	70	260	25	Original 1991 sample in organics. A poor sample and results are unreliable. Sample at 42 cm probably represents an enriched horizon over bedrock. (Figure 9)		

TABLE 3 SOIL GEOCHEMISTRY								
	1992 Results			1	1991 Result			
Location	Au (ppb)	Cu (ppm)	Depth (cm)	Au (ppb)	Cu (ppm)	Depth (cm)	Notas	
10470N, 10501E	15 10	616 335	30 50	1	288	40	The 1992 sample at 30 cm is in black organics and therefore unreliable. The sample at 50 cm probably represents an enriched horizon over bedrock. (Figure 9)	
Pit 4				•				
10490N, 10000E	<5 24 <5 <5 <5	36 46 82 121 137	10 30 60 100 120	Area of airborne magnetic high.		agnetic	This pit was dug to determine the source of the 1992 IP anomaly located over this area. Only coarse grain gravels and silts of unknown origin were found. (Figure 9)	

TABLE 4							
GEOPHYSICAL SURVEYS							
Line	IP/Mag	Length (m)					
9600E	10000N to 11250N	1,250					
9800E	9800N to 11250N	1,450					
10000E	9750N to 11000N	1,250					
10200E	9700N to 11000N	1,300					
10300E	9900N to 11000N	1,100					
10400E	9950N to 11650N	1,700					
10500E	9900N to 11000N	1,100					
10600E	10000N to 11500N	1,500					
10700E	9800N to 11000N	1,200					
10800E	10000N to 11500N	1,500					
10900E	10000N to 11000N	1,000					
11100E	10050N to 11000N	950					
11300E	10000N to 11000N	1,000					
0+00	39+50S to 22+00S	1,750					
Total		18,050					

2

μ

*

A summary of anomalous chargeabilities is outlined in Table 5.

	TABLE 5	
Line	Anomaly Location	Width
	(Chargeability >10 m V/V)	(m)
9600E 9800E	10300N to 10600N 10400N to 10600N	300 200
10000E	10350N to 10600N	250
0+00	32+75S to 32+00S	50 75

Lines 10400E, 10600E and 10800E were extended to the north in order to determine the IP response in an area where overburden is thin or non-existent. In this area chargeabilities were all below 5 m V/V. Outcrop in this area is coarsegrained monzodiorite with minor diorite in areas. With this information more confidence was gained in the geophysical survey results. The thick overburden was thought to be causing the low chargeability responses but it has been shown this is the background response of the monzodiorites on the Moose grid.

In the eastern part of the grid a 75 m wide chargeability anomaly was defined along the 1991 baseline (Figure 11). The anomaly correlates with a low lying swampy area from 32+75S to 32+00S.

5.0 CONCLUSIONS

The Tchentlo Lake property lies within the Quesnel Trough in north-central British Columbia. The property is underlain by Takla Group alkaline to calc-alkaline volcanic and sedimentary rocks and comagmatic intrusive rocks of the Hogem Batholith.

During September and October 1992, work was concentrated on the Moose area where grid establishment, geophysics (IP and magnetometer), geological mapping and geochemical sampling was done. A compilation of significant results of the 1992 program and previous programs is found on Figure 12. In total, 31 soil and 20 rock samples were collected.

On the Moose grid, an area of high chargeability was defined from Lines 10200E to 9600E. The anomaly averages 250 m in width and is located within and on the flanks of an airborne magnetic high. Soil samples from the area are anomalous (>100 ppm copper), although the validity of these samples is in doubt due to the extensive thicknesses of overburden and their glacio-fluvial origin.

A 75 m wide chargeability anomaly was found on an old baseline on the eastern edge of the Moose grid. The anomaly coincides with a low lying swampy area and its significance is unknown.

6.0 **REFERENCES**

Hattie, Ian E. and Ron W. Lane (1990). Year End Report 1990. Tchentlo Lake Property. Westmin Resources Limited for Byron Resources Ltd.

Lane, Ron W. (1990). Technical Property Report, Tchentlo Lake (TL) Property. Nation Lakes Project. Westmin Mines Ltd. for Byron Resources Ltd.

Wojdak, Paul J. (1992). Assessment Report. Geology, Soil and Silt Geochemistry, Linecutting and Induced Polarization Survey. Tchentlo/Wil Property. Westmin Resources Limited.

LEGENO **↓ 961.8** SPOT HEIGHT TRAIL ------ \bigcirc HORIZONTAL CONTROL LAKE (違う CREEK INDEFNITE CREEK ALY . 1992 GRIA ROAD SYMBOLS CHARGE ABILITY Anomaly (710mu(u) WESTMIN 1992 AIRBORNE MAGNETIC ANOMALY WESTMIN 1989 (> 59250 nt) Soil GEOCHEMICAL ANONALY Boranda Exp Corp 1966-72 (7100ppm Cu.) GOVERNMENT AIRBANE MAG HIGH 1961 VLF-EM Conductor Borander Exp Corp (1966-72) - Rock sample lo cation and results Aupple / Cuppm Δ - soil sample 0 WESTMIN 1989-91 (>100 ppm () (au ppm) 300 200 100 metres WESTMIN RESOURCES LTD. TCHENTLO LAKE PROPERTY MOOSE GRID MINE CODE PROJECT 6201 WORK PLACE NUMBER 93N/2 DRAWN BY DATE 14/11/92 REV. SCALE DRAWING NO. APPROVED FIGURE 12 000

APPENDIX A

.

~

*

.....

.

.

..

*

~

.

STATEMENT OF QUALIFICATIONS

,

APPENDIX A

STATEMENT OF QUALIFICATIONS

I, Terry L. Tucker, of 640 Crystal Court, in the City of North Vancouver, in the Province of British Columbia, do hereby certify that:

- 1. I am a graduate of the University of Alberta, Edmonton, Alberta (1989) with a Bachelor of Science degree (specialization in Geology).
- 2. I have been a practising geologist in Canada, Australia and Papua New Guinea since 1987.
- 3. I was employed by Westmin Resources Limited of P.O. Box 49066, The Bentall Centre, #904 1055 Dunsmuir Street, Vancouver, B.C., V7X 1C4 for the duration of time I worked on this project.
- 4. I personally supervised the 1992 field program from September 23 to October 12, 1992 on the Tchentlo Lake property as described in this report.
- 5. I am the author of the report entitled "Geological, Geochemical and Geophysical Report on the Tchentlo Lake Property, Omineca Mining Division, B.C." dated November 30, 1992.
- 6. I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of Westmin Resources Limited, in respect of services rendered in the preparation of this report.

DATED this 30th day of November, 1992 at Vancouver, British Columbia.

Respectfully submitted.

Terry L. Tucker, B.Sc. Project Geologist

APPENDIX B

-

٠

.

•#

SUMMARY OF FIELD PERSONNEL

,

APPENDIX B

.

....

.

e

.

SUMMARY OF FIELD PERSONNEL

Name	Position	Sampler Code
Terry L. Tucker	Project Geologist	TT
Sara H. Howson	Geographer	SH
Andrew J. Turner	Geologist	AT

RPT/92-016

APPENDIX C

•

-

н.--

~

.

-

STATEMENT OF EXPENDITURES

APPENDIX	C					
STATEMENT OF EXP	ENDITURES					
APPENDIX C STATEMENT OF EXPENDITURES Cost Pre-field (maps, reports, permitting) \$ 1,397 Field program \$ 1,397 Field program 11,880 Camp costs 9,614 Transportation 3,850 Fixed wing and travel 3,850 Truck 1,100 Helicopter (6.4 hours) 5,632 Geochemical analyses (31 soil, 20 rock) 1,122 Geophysics 14,509						
Pre-field (maps, reports, permitting)	\$ 1,397					
Field program Personnel Camp costs Transportation Fixed wing and travel Truck Helicopter (6.4 hours) Geochemical analyses (31 soil, 20 rock) Geophysics	11,880 9,614 3,850 1,100 5,632 1,122 14,509					
	47,707					
Post-field	3,190					
Total	\$52,294					

.

....

.

APPENDIX D

.

~

**

~

.

ANALYTICAL TECHNIQUES

CERTIFICATE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 . J: WESTMIN MINES LTD.

P.O. Box 49066, The Bentall Centre VANCOUVER, BC V7X 1C4

A9223120

1

3

Comments: ATTN: TERRY L. TUCKER

A9223120	ANALYTICAL PROCEDURES											
	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT						
couver, BC. 2.	983 2118 2120 2123 2128 2131 2136 2140	31 31 31 31 31 31 31 31	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock As ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock Mo ppm: 32 element, soil & rock Mo ppm: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 2 1 1 1 2	10000 200 10000 10000 10000 10000 10000						
ON	2141 2149	31 31	Sb ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES ICP-AES	2	10000 10000						
RIPTION												
mesh charge												
-												

WESTMIN MINES LTD.

Project: 6201 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 22-OCT-92.

	SAM	PLE PREPARATION	
CHEMEX	NUMBER SAMPLES	DESCRIPTION	
201 229	31 31	Dry, sieve to -80 mesh ICP - AQ Digestion charge	

CERTIFICATE

٠

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

A9223119

I'O: WESTMIN MINES LTD.

P.O. Box 49066, The Bentall Centre VANCOUVER, BC V7X 1C4

A9223119

,

1 1 1 1 1

Comments: ATTN: TERRY L. TUCKER

		ANALYTICAL PROCEDURES									
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPE						
983 2118 2120 2123 2128 2131 2136 2140 2141 2149	20 20 20 20 20 20 20 20 20 20	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock As ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock Mo ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.2 2 1 1 2 2 2 2 2 2	10000 200 10000 10000 10000 10000 10000						

WESTMIN MINES LTD.

Project: 6201 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 22-OCT-92.

	SAMPLE PREPARATION										
CHEMEX	NUMBER SAMPLES	DESCRIPTION									
205 274 229	20 20 20	Geochem ring to approx 150 mesh 0-15 lb crush and split ICP - AQ Digestion charge									

APPENDIX E

~

ROCK AND SOIL SAMPLE DESCRIPTIONS AND RESULTS

PROJECT: Area: Collector:	TCHENTLO L MOOSE GRII Terry L. 1	LAKE PROPERTY - 6201 D Tucker/ Sally Howson		RESU NTS: Date	ILTS PI	OTTED BY: 93N/2 October 19	TLT 92				
SAMPLE Number	DATE	LOCATION	HORIZ	ON Depth	OR gan I Z	ICS Colour	RESIDUAL	SLOPE	MOIST	NOTES	
92TTTS001	13 OCT 92	PIT 1-65 to 88 cm(3720	 Cu)¦	88	; 0	BROWN		; 0	HOD	lgrid location -	;
92TTTS002	13 OCT 92	(PIT 1 - 55 to 65 cm	1	65	1 0	RED/BROWN	IT	: 0	IMOD	10295E/10340N	ł
92TTTS003	13 OCT 92	PIT 1 - 22 to 55 cm	t F	: 55	: 80	BLACK	1T	: 0	IWET	Igrid location -	;
921115004	13 OCT 92	PIT 1 - 0 to 22 cm	1A	1 22	: 100	BLACK	IT.	: 0	INET	10295E/10340N	l
92TTTS005	19 OCT 92	PIT 2 - 40 to 42 cm	18	1 42	: 0	RED	I R	; 0	I DRY	10425E/10340N	ł
92TTTS005	19 DCT 92	1917 2 - 10 to 40 cm	ł	: 40	: 20	RED/BROWN	۲.	; 0	(MOD	10425E/10340N	:

.

•

-

•

-

.

.

*****••

WESTMIN RESOURCES LIMITED

NUMBER	DATE		LOCATION		DE	PTH		7	COLOUR		r sli	OPE	MOIST	NOTES	
92TTTS001	13 OCT	92	IPIT 1-65 to 88 cm(3720C	1)¦	!	88	1	0	: BROWN		1	0	HOD	lgrid location -	;
92TTT5002	13 OCT	92	(PIT 1 - 55 to 65 cm	1	ł	65	1	Ú	RED/BROWN	IT	1	0	IMOD	10295E/10340N	ł
92TTT5003	13 OCT	92	IPIT 1 - 22 to 55 cm	t }	;	55 :	ļ	80	BLACK	!T	1	0	IWET	lgrid location -	ł
92TTT5004	13 OCT	92	(PIT 1 - 0 to 22 cm	I A I	ł	22	1	100	BLACK	IT.	ł	0	INET	10295E/10340N	ł
92TTTS005	19 OCT	92	IPIT 2 - 40 to 42 cm	18	ł	42	ł	0	RED	I R	1	Û	: DRY	10425E/10340N	ł
92TTTS005	19 OCT	92	(PIT 2 - 10 to 40 cm	1	;	40	;	20	RED/BROWN	IT	ł	0	HOD	10425E/10340N	ł
92TTTS007	19 OCT	92	(PIT 2 - 0 to 10 cm	I A I	ł	10	;	100	BLACK	18	;	0	: MOD	10425E/10340N	ł
92TTT5008	19 OCT	92	2530 ppm Cu 15+50W/34S	1A -	ł	70	!	100	BLACK	IT	1	10	IWET	10390E/10300N	ł
92TTTS009	19 OCT	92	2530 ppm Cu 15+50W/34S	1	1	75	!	Û	BROWN	i T	1	10	WET	10390E/10300N	ł
92TTTS010	19 OCT	92	(PIT 3 - 0 to 53cm(100 C	u):	ł	53	1	5	RED/GREY	IT	;	5	I DRY	10505E/10330N	ł
92TTTS011	19 OCT	92	PIT 3 - 53 to 135 cm	1 1	11	35	;	0	IGREY	1 T	;	5	: DRY	10505E/10330N- GRAVEL	ļ
92TTTS012	19 OCT	92	1325/1150W - 197 ppm Cu	: B	;	50	;	0	BROWN/RED	IT	1	5	IMOD	ITILL	ł
92TTT5013	19 OCT	92	1325/1200W - 264 ppm Cu	1 B	1	35	!	5	RED/BROWN	11	12N		I DRY	10790E/10520N - GRAVEL	ł
92TTT5014	19 OCT	92	:32S/13W - 260 ppm Cu	ł A	ł	30	i	30	BLACK	IT	ł	0	HOD	ORIG SOIL 25cm DEEP	ł
92TTTS015	19 OCT	92	1325/13W - 260 ppm Cu	18	ł	40	;	0	BROWN	i T	1	0	IMOD	CLAY BELOW ABOVE	ł
92TTTS016	19 OCT	92	1325/15W - 288 ppm Cu	!A	ł	35	ļ	10	BLACK	1T	1	0	IWET	10501E/10470N	;
92TTTS017	19 OCT	92	1325/15W - 288 ppm Cu	: B	;	50	ł	0	IGREY/BROW	IT	1	0	HOD	10501E/10470N	1
92TTTS018	19 OCT	92	(PIT 4 - 0 to 20 cm	łA	ł	20	ŧ 1	70	IBLACK	1T	15E		I MOD	10000E/10490N	ł
92TTTS019	19 OCT	92	IPIT 4 - 20 to 35 cm	1 B	ł	35	1	5	RED	lT	15E		I DRY	10000E/10490N	;
92TTT5020	19 OCT	92	PIT 4 - 35 to 85 cm	ł	ł	85	ł	0	BROWN	IT.	15E		1 DRY	10000E/10490N	ł
92TTTS021	19 OCT	92	PIT 4 - 85 to 115 cm	;	11	15	1	0	GREY	1T	15E		I DRY	10000E/10490N	i
92TTT5022	19 OCT	92	PIT 4 - 115 to 125 cm	;	11	25	1	0	GREY/RED	IT.	15E		IDRY	10000E/10490N	i
92TTT5023	110 OC1	92	ROAD	;	t J	70	ł	0	RED/BROWN	IT	15E		I DRY	19650E/10450N - GRAVEL	ł
92TTT5024	110 001	F 92	ROAD	i	11	00	ł	0	IGREY	łT	15W		IDRY	19725E/10450N - GRAVEL	ł
92TTTS025	110 001	F 92	ROAD	ł	11	.68	ł	0	IGREY	¦T	1	0	IDRY	19785E/10400N - GRAVEL	ł
92TTT5026	110 OCT	F 92	1	¦ B	ł	40	1	0	RED	I T	110	Ε	DRY	19800E/10450N	ł
92TTTS027	110 001	r 92	t	8	;	20	;	0	RED	I T	11N		: DRY	19800E/10500N	ł
92TTT5028	110 001	r 92	8 1	B	ł	25	ł.	0	RED/BROWN	IIT	11N		l DRY	19800E/10550N	1
92TTTS029	110 OC1	r 92	1	1 B	ł	20	i	5	GREY	l T	ł	0	I DR Y	19800E/10600N	:
92TTT5030	110 001	r 92	OLD BASELINE	¦ B	ł	42	!	0	BROWN	17?	12S		MOD	EDGE OF PINE FLAT	ł
92TTT5031	110 001	92	OLD BASELINE	l B	;	20	ł	0	RED	17?	1 2 N		HOD	INORTH TO LOW AREA AND IP	1

SOIL SAMPLE DESRIPTIONS

WESTMIN RES	GOURCES LIMITED		ROCK SAMPLE DES	CRIPTIONS	
PROJECT: Area: Collector:	TCHENTLO LAKE - 6201 MOOSE GRID Terry L. Tucker		RESULTS PLOTTED NTS: Date:) BY: 93n/2 October 1992	TLT 2
SAMPLE NUMBER	LOCATION NOTES	DATE	ROCK TYPE	SAMPLE WIDTH TYPE (m)	l Description
92TTTR001 92TTTR002 92TTTR003 92TTTR004 92TTTR005 92TTTR006 92TTTR007 92TTTR008 92TTTR009 92TTTR010 92TTTR010 92TTTR011 92TTTR012 92TTTR013 92TTTR014 92TTTR015	rocks 1-6 taken from float in soil (0-20cm) in test pit 1 located at 10295E/10340N rocks 7/8 taken from test pit 1 (65-88cm) 10400E/103#0N 10400E/11250N 10550E/11600N 11100E/10650N samples 13-15 taken from test pit 2 @ 10425E/10340N	3 OCT 92 4 OCT 92 4 OCT 92 9 OCT 92	Monzodiorite Monzonite Monzodiorite Andesite Andesite Andesite Monzodiorite Ferricrete Monzodiorite Monzodiorite Monzonite Monzonite Monzonite Monzonite Monzonite	FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT CHIP 0.3 CHIP 0.1	hbld to 10%, 3mm stringer of py/tr cpy. more siliceous than above, minor tr py massive coarse grained, tr cpy?,magnetic K intrusive minor f.g. mafics,magnetic dark green with 0.5% py sericite altered med green volc minor py dark green epidote altered volcanic coarse grained and magnetic limonitic float on road large angular blder, minor ser, py alt up to 5% biotite to 1 cm minor epidote/py 2cm vein, angular very altered, abundant biotite/ sericite rusty red brown, very altered weathered black minor limonite
92TTTR016 92TTTR017 92TTTR018 92TTTR019 92TTTR020	32+00S/11+50W 10000E/10490N 9600E/10700N 10800E/11500N 2350S/B.L.	9 OCT 92 9 OCT 92 10 OCT 92 10 OCT 92 9 OCT 92	Monzodiorite Monzodiorite Diorite Andesite Monzonite	FLOAT FLOAT Float Grab Float	angular/ unaltered limonite with biotite to lcm/ tr py subcrop possible tr cpy, pyroxene site of 91 sample 486524. 5% biotite

.

~

-

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 fo: WESTMIN MINES LTD.

,

P.O. Box 49066, The Bentall Centre VANCOUVER, BC V7X 1C4

7

Project : 6201 Comments: ATTN: TERRY L. TUCKER

CERTIFICATE OF ANALYSIS

·· •

,

,

Page Number :1 Total Pages :1 Certificate Date: 22-OCT-92 Invoice No. :19223120 P.O. Number : Account :GP

•

1 - 1

A0000400

									NAL 1313	A92	23120	
SAMPLE	PRE	IP)E	Au ppb FA+AA	Ag ppm	As ppm	Bi ppm	Cu ppm	Hg ppm	Mo ppm	ppm Pb	Sb ppm	Zn ppm
92TTTS001 92TTTS002 92TTTS003 92TTTS004 92TTTS005	201 2 201 2 201 2 201 2 201 2 201 2	29 29 29 29 29 29	<pre>< 5 < 5 < 5 < 5 < 5 15</pre>	< 0.2 < 0.2 0.6 0.4 0.2	16 26 6 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1085 548 2330 1560 519	< 1 < 1 < 1 < 1 < 1 < 1	1 1 2 2 < 1	12 6 6 4 2	2 < 2 < 2 < 2 < 2 < 2	60 78 56 52 56
92TTTS006 92TTTS007 92TTTS008 92TTTS009 92TTTS010	201 2 201 2 201 2 201 2 201 2 201 2	229 229 229 229 229 229	10 15 10 < 5 35	< 0.2 < 0.2 2.2 0.2 0.2	20 4 8 14 14	<pre>< 2 < 2</pre>	198 28 2320 394 49	<pre>< 1 < 1</pre>	<pre>< 1 < 1 24 24 < 1 </pre>	12 6 16 12	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	62 48 42 46 60
92TTTS011 92TTTS012 92TTTS013 92TTTS014 92TTTS015	201 2 201 2 201 2 201 2 201 2 201 2	229 229 229 229 229 229	20 < 5 < 5 10 < 5	1.0 0.2 < 0.2 2.6 0.4	16 14 20 10 4	<pre>< 2 < 2</pre>	112 152 235 422 240	<pre>< 1 < 1</pre>	< 1 < 1 < 1 4 1	28 8 8 4 6	< 2 < 2 < 2 < 2 < 2 < 2	40 50 58 36 52
92TTTS016 92TTTS017 92TTTS018 92TTTS019 92TTTS020	201 2 201 2 201 2 201 2 201 2 201 2	229 229 229 229 229 229 229	15 10 < 5 25 < 5	2.8 0.2 < 0.2 < 0.2 < 0.2 < 0.2	42 20 16 28 22	< 2 < 2 < 2 < 2 < 2 < 2 < 2	616 335 36 46 82	<pre>< 1 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	3 1 < 1 1 < 1	12 20 10 4 10	<pre>< 2 < 2</pre>	54 80 36 54 44
92TTTS021 92TTTS022 92TTTS023 92TTTS024 92TTTS025	201 2 201 2 201 2 201 2 201 2 201 2	229 229 229 229 229 229	<pre>< 5 < 45</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	30 30 8 20 22	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	121 137 62 106 96	<pre>< 1 < 1 < 1 1 < 1 < 1 < 1 < 1 < 1</pre>	<pre>< 1 < 1</pre>	8 4 6 8 14	< 2 2 < 2 < 2 < 2 < 2 < 2	48 54 44 48 48
92TTTS026 92TTTS027 92TTTS028 92TTTS029 92TTTS030	201 2 201 2 201 2 201 2 201 2 201 2	229 229 229 229 229 229 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 35</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	12 14 6 6	< 2 2 < 2 < 2 < 2 < 2 < 2	85 55 27 21 95	<pre>< 1 < 1 < 1 < 1 < 1 2 < 1 </pre>	<pre>< 1 < 1</pre>	8 4 8 8 4	2 < 2 < 2 < 2 < 2 2 2	122 40 42 44 46
92TTTS031	201 2	229	< 5	< 0.2	6	< 2	34	< 1	< 1	6	2	64

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 io: WESTMIN MINES LTD.

P.O. Box 49066, The Bentall Centre VANCOUVER, BC V7X 1C4 Page Nummer :1 Total Pages :1 Certificate Date: 22-OCT-92 Invoice No. :19223119 P.O. Number : Account :GP

1

.

.

1

Project : 6201 Comments: ATTN: TERRY L. TUCKER

					(CERTIFICATE OF ANALYSIS A9223119							
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	As I ppm I	Bi ppm	Cu ppm	Hg ppm	Mo ppm	Pb ppm	Sb ppm	Zn ppm		
92TTTR001 92TTTR002 92TTTR003 92TTTR004 92TTTR005	205 27 205 27 205 27 205 27 205 27 205 27	4 115 4 85 4 50 4 170 4 110	1.8 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2 4 6 4 4	<	1475 142 155 80 93	< 1 < 1 < 1 < 1 < 1	48 1 1 < 1	30 20 16 24 14	2 2	100 42 46 154 88		
92TTTR006 92TTTR007 92TTTR008 92TTTR009 92TTTR010	205 27 205 27 205 27 205 27 205 27 205 27	4 190 4 95 4 260 4 455 4 25	< 0.2 < 0.2 < 0.2 4.8 < 0.2	6 4 < 2 22 < 2	< 2 < 2 < 2 < 6 < 2	133 148 81 1950 358	<pre>< 1 1 < 1 < 1 < 2</pre>	<pre>< 1 < 1 < 1 < 1 6 < 1</pre>	22 8 14 14 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	92 72 50 180 56		
92TTTR011 92TTTR012 92TTTR013 92TTTR014 92TTTR015	205 27 205 27 205 27 205 27 205 27 205 27	$ \begin{array}{ccccccc} 4 & 10 \\ 4 & 10 \\ 4 & < 5 \\ 4 & < 5 \\ 4 & < 5 \\ \end{array} $	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	4 2 < 2 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	246 158 207 132 78	< 1 < 1 < 1 < 1 < 1 < 1	<pre>< 1 < 1</pre>	6 14 4 8 4	<pre></pre>	54 36 46 52 78		
92TTTR016 92TTTR017 92TTTR018 92TTTR019 92TTTR020	205 27 205 27 205 27 205 27 205 27 205 27	4 < 5 4 25 4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	6 < 2 2 2 < 2	<	132 79 24 151 113	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 1	8 8 4 8 10	2 2 2 2 2 2 4 4 4 4 2 4 4 4 4 4 4 4 4 4	48 28 30 60 60		
						10 ⁻⁰ -							
										ļ			

CERTIFICATION:

ſ	·										
	9500E			10000E		·	10500E		•		
			•		• •					•	
			•			+58319 ⊭+58578				• • •	
		•				+59279 +59749		i.			
500N	-					+58954 +58836	·				
11		•	×	/		+59075 +59130	, I	+58937		+59091	
			3			+59272 +59077		+59254	· · ·	+58946	
		. ,				+59239		+58940		+59480	
			,			+59391 +58980		+58442		+58954	
		. · · ·				+59067 +60316		+59101		+59165	
						+59 743 +58304		+58912 +59596		+59517 +59879	
	• •	+ 59139	+59240			++58901 ++59652		+59120 +58982		+59268	
		+ 59397 * + 59426	+59282 +59465			+58807 +58964		+58663 +59064		+59113 +59047	
		+ 59823 + 59738	+ 59345 + 59579			+58839 +58872		+59307 +59365		+59213 +59264	
000		+59837 +59673	+ 59366 + 59636			+59 468 +59935	 -+-	+59571		+58602	
11(+59167 +58813	+59119 +59455	+58733 +58524 +58729 +58997	+59075 +59102 +583 +59144 +59354 +603	83 +59738 51 +61074	+59611 +60523	+59500 +59210	+59127 +58918	+58996 +58983	
		+59470 +58910	+59103 +58471	+ 59074 + 58675 + 58448 + 58832	+59168 · +59228 +595 +59796 +59734 +603	97 +59471 23 +60249	+60198 +59667	+58827 +58740	+59140	+58495	
		+ 58083 + 57653	+ 57792 + 58094	+ 59498 + 59427 + 59450 + 59441	+59573 +59593 +589 +59423 +58958 +596	33 +59341 03 +59608	+59552	+58472 +59390	+58492	+58300	
	1	+ 58052 + 56671	+58161 +58571	+59178 +58556 +58304 +58440	+58203 +57975 +591 +58124 +58329 +590	78 +58698 08 +58340	+58527 +58659	+58984 +58868	+57897 +58388	+57979	
		+56516 +60254	+ 58790 + 59413	+58626 +58455 +58445 +58608	+58365 +58271 +586 +58354 +58335 +579	15 +58170 95 +59221	+58668	+58180 +57840	+58936 +58766	+58690 +58811	
		_+60467 +64780	+ 59628 + 59293	+ 58806 + 58865 + 58829 + 58692	+58291 +58684 +583 +58810 +59025 +588	22 +59432 17 +59018	+58066 +59501	+58641 +58709	+58644 +59335	+58950 +59219	
		+ 6499 1 + 63908	+ 58906 + 58704	+ 58766 + 58802 + 58815 + 58964	+58948 +59105 +586 +58489 +58599 +586	02 +58829 55 +58854	+59015 +58824	+58889 +59016	+59286 +58776	+58711 +59014	
		+59881 +63377	+ 58724 + 58770	+ 58357 + 58357 + 58197 + 59202	+587.58 +58715 +586 +58803 +59012 +591 +59012 +591	56 +58554 38 +58866	+58891 +58612	+58401 +59364	+58697 +58646	+58849 +58556	
		+ 62574 + 61801	+ 59209	+ 587/3 + 58768 + 58772 + 59043 + 59222	+59048 +59106 +593 +59228 +59341 +595 +59309	37 +58843 20 +58959	+58918 +58893	+58873 +58704	+59320 +58705	+58706 +58836	
1 500N		+62951 +61996	+ 59512 + 58830	+ 59295 + 59294 	+59380 +59380 +59374 +59505 +59505 +59502	05 +58770 48 +58620	+58704 	+58363 +58059	+58276 +58589	+58993 +59096	
10		+ 60908 + 63297	+ 59203 + 65594	+ 59858 + 60480 + 61147 + 62440	+59567 +588 +59879 +59647 +589	49 +59298 03 +5925 3	+59065 +58760	+59266 +58843	+58682 +59360	+59541 +59343	
		+61115 +62057	+ 62555 + 61 4 1 0	+ 62789 + 62459 + 60467 + 59863	+59415 +591 +59296 +59087 +589 +58917	54 +58835 45 +58634	+59149 +59426	+58885 +59214	+59704 +58546	+59016 +59186	
		+61952 +59901	+ 59816 + 61515	+59705 +59162 +59160 +59048	+58703 +589 +59089 +59245 +592 +59441	+4 +59395 35 +60808	+59334 +59404	+59084 +58349	+58162 +58781	+58876 +58598	
		+ 59547 + 59087	+ 62620 + 59712	+ 59049 + 59199 + 59004 + 58731	+58788 +592 +59143 +59352 +5935 +59187	15 +59582 52 +59568	+58164 +58234	+58454 +58129	+58891 +58284	+59125 +59276	
		+58957 +58934	+ 59073 + 58607	+58468 +58477 +58536 +58541	+59470 +585 +59022 +58495 +582 +57982	27 +57818 32 +58096	+58103 +61454	+57919 +58470	+60016 +59526	+58860 +58067	
		+58910 +58883	+ 58616 + 58471	+ 58500 + 58518 + 58439 + 58453	+58403 * +586 +58540 +58619 +583: +58540	14 +58306 53 +58427	+59329 +59285	+58718 +58827	+58517 +58581	+58150 +58432	
		+59162 +59117	+ 58534 + 58565	+ 58458 + 58420 + 58485 + 58485	+58708 +588 +58750 +59254 +588 +59202	33 +58966 50 +58398	+58700 +58722	+58669 +58903	· +58247 +58478	+58845 +58337	
		+ 58944 + 58850	+ 58579 + 58559	+ 58633 + 58726 + 58816 + 58871	+59298 +589 +60476 +60380 +584 +59561 +584	59 +58982 78 +59410	+58485 +58463	+58486 +58188	+58533 +58563	+59455 +58474	
		+58842 +58688	+ 58555 + 58586	+59010 +58903 +58803 +58716	+59168 +584 +58752 +585 +58664 +584 +589190 +585	98 +58403 13 57 +58620	+59008 +59524	+58290 +58879	+58438 +58581	+58170 +58116	
10000		+ 58641 + 58659	+ 58614 + 58739	+ 58720 + 58631 5 8607 5 8582	+59744 +592(+59994 +603 +60192 +605 +59831 +604	5 +59022 9 11 +59043	+59267 <mark>-5</mark> 8308	+59255 +58252	+58398 +58118	+58073 +58439	
10		1.7	+ 58846 + 58963	+ 58565 + 58536 + 58602 + 58519	+59609 +602 +59249 +602 +59132 +602 +59132 +602	04 +59413 74 72 +58499	+58086 +58210	I	+58504 +58380	+58480	
		600E	+58893 +58825	+ 58487 + 58487 + 58533 + 58523	+58713 +586 +58512 +584 +58467 +5839 +58348	9 11 19	+58735 +58244	600E	+58468 +58308	Ш	
			+58750 +58651	+ 58552 + 58508 + 58439	+58253 +58426 +58445 +58430	400E			+58622 +59075	1080	
			+ 58496		+58305 U +58366 O +58180 O +58069 M)500E		+ 5934 2 + 59603	لــ	
			OO E	+57812 +58139	+58088 O +58058 577 +58062 +58049				+59676		
			986	+58137 +58233 +58162 +58246	+58040 +58046 +58030		•	•	OE		
			·	+58309 +58310 +58333 +58314	· - 1.1				107C	4	
)200E				l		
				000E	* پ 						
35001	+			Ŭ +							
						• 					
									•		
1	9500E			10000E			10500E				

9950N 10000N 10050N 10100N 10150N 10200N 10250N 10300N 10350N 10400H 10450N 10500N 10550N 10600N 10550N 10700N 10750N 10800N 10850N 10900N 10950N 4 n m PR-12 \$ 5.51 4.53 4.03 4.34 5.71 4.19 3.86 3.78 3.25 4.87 4.21 3.75 - 4.13 / 9.28 9.80 7.5 50 JAMES AREA, LTD. 3.50 5.80 5.46 4.42 5.29 5.85 6.04 8.31 9.94 9.18 8.34 1.81 3.21 5.28 3.03 6.08 6.84 4.89 6.52 5.86 5.77 5.03 6.69 6.54 6.66 6.82 5.64 6.65 8.49 0.13 9.84 6.31 5.85 7.10 7.99 7.35 6.46 5.95 5.20 5.64 6.99 7.57 7.18 7.58 8.06 7.19 6.30 5.52 6.76 50 4 -HF 4.55 5.27 8.21 8.92 7.31 6.69 4.67 5.78 6.15 7.42 7.62 8.47 8.96 7.24 6.70 6.14 6.61 RESOURCES 50 5 -Ua C ST. J/ ZC outh of receiving AA BR FORT SUR PROPERTY, FU the is **OLOGICAL** SESSMENT 9950N 10000W 10050N 10100N 10150N 10200N 10250N 10300N 10350W 10400N 10450N 10500N 10550N 10500N 10550N 10700W 10750N 10900N 10650N 10900N INDUCED POLARIZ GEOPHYSICS LTD. TMIN electroc la for 300 500 750 1000 727 235 533 891 50 443 581 832 0ct/92 S TCHENTLO 885 999 WE 712 (393 725 568 0 557 485 529 550 735 23 \$13 7,00 592 584 4 -392 437 ž 605 833 756 596 583 828 515-392 5 5 3 -LINE: 10300E £

10050H 10150H 10150H 10250H 10250H 10350H 10350H 10400H 10450H 1050H 1050H 10550H 1050H 1050H 1050H 1050H 1050H 1050H 1050H 1050H 11050H 1050H Contour B IPR-12 6.18 3.70 3.76 3.24 2.97 3.51 4.39 3.96 4,03 3.64 3.67 3.66 3.35 50 5.92 4.39 3.93 4.10 6.23 7.25 3.57 3.58 3.42 4.41 4.40 3.12 4.49 3.36 75 1 - 5.79 6.42 AREA, LTD. 4.84 4.23 6.78 4.13. 4.13 5.93 5.40 5.44 3.98 TIT 4.26 4.59 4.26 4.09 4.43 3.82 5.68 4,17 50 7.42 6.58 -Dipole Array) Sointres: Il Puise Rate: 10 electrodes meaca ofter si 6.71 A00 5.00 3.08 3.24 5.66 180 4.7 6.39 4.82 5.87 6.21 476 3.98 4.48 4.61 4.32 4.44 4.01 50 7.14 7.27 5.57 7.08 3 -6.05 777 5.66 540 4.20 5.35 6.31 5.58 6.42 6.78 5.46 4.88 4.62 5.53 5.32 4.52 3.46 4.62 4.88 4.48 4.54 4.53 4.42 4.23 3,99 JAMES 4.71 4.01 50 6.28 7.22 5.86 4 -WESTMIN RESOURCES 6.24 6.91 7.21 7.38 6.27 5.17 4.49 6.37 5.55 6.31 6.63 8.43 5.92 5.49 .5.44 5.82 5.44 5.07 4.13 4.99 5.08 4.79 4.51 5.34 4.85 4.70 4.25 4.96 50 10400E SURVEY (Polereceivir 1050 ST. 690 to FORT PROPERTY, F(LINE: DUCED POLARZANION S 8 2 10100N 10150N 10200N 10250N 10300N 10350N 10400N 10450N 10500N 10550N 10500N 10550N 10500N 10550N 10800N 10850N 10850N 10850N 10850N 11500N 1150N Contour lave -8 200 300 500 750 1000 1500 INDUCED I الل) 917 728 723 967 378 546 650 825 1188 1080 615 50 882 851 TCHENTLO 617/ 570 452 428 324 641 50 674 935 579 5 50 532 527 415 368 628 622 614 4 -SCOTT 곀 50 5 -10400E LINE:

9950N 10000N 10050N 10100N 10150N 10200N 10250N 10300N 10300N 10400N 10450N 10500N 10500N 10500N 10500N 10700N 10700N 10800N 10800N 10800N 1 B.C -12

BASON 9900N 9950N 10000N 10050N 10100N 10150N 10200N 10200N 10300N 10350N 10400N 10450N 10500N 10500N 10600N 10650N 10700N 10800N 10850N 10900 Contour level JAMES AREA, B.C. -Dipole Array) Scintrax: IPR-12 Pulse Rate: 2 sec ng electrodes meaca ofter shutoff 2.5 -2.70 2.97 2.57 CHURCEABILTY (millivolta/volt) 50 RCES LTD. 50 3.48 3.51 2.56 50 3 -50 4 -50 5 -3.29 2.98 × 3.18 DOE 1050 (Pole

9800N 9850N 9800N 9850N 10000N 10050N 10100N 10150N 10200H 10250N 10300N 1050N 1050N 10500N 10500N 10650N 10650N 10700N 10750N 10800N 10850N 10800H 10850N 10800H 10850N 0000H 10850N 0000H 10850N 0000H 10850N 0000H 10850N

JAMES AREA, B.C. 5 7.5 10 12.5 15 17.5 IPR-12 -4.83 4.12 4.06 3.95 4.27 4.64 4.26 4.00 6.87 WESTMIN RESOURCES LTD. \$.77 4.53 8.52 1.73 3.67 -Dipole Array) Scintrex: A 4.23 3.50 1000 -5.22 4.26 50 4.91 and a after 634 9.10 9.47 7.73 11.02 9.07 5.84 3.74 3.77 3.98 4.57 172 4.61 50 4 ast 11.00 8.60 9.03 15.26 \$1.35 2.56 8.47 18,93 5.00 4,78 5.47 4.81 4.43 50 5 LINE: 10000E INDUCED POLARIZATION SURVEY (POIN-DI OCL/92 OCL/92 south of receiving rel 690 to 1050 m ST. electrode la a ICHENTLO PROPERTY, 10600N 10650N 10700N 10750N 10800N 10850N 9950H 10000N 10050N 10100N 10150N 10200N 10250N 10300N 10350N 10400N 10450N 10500N 10550H 200 300 500 277 236 337 4 344 673 421 615 437 620 575 375 457 461 248 182 21 320 251 281 623 397 550 528 639 183 456 331 356 326 231 328 275 337 427 573 739 364 Cha 479 481 461 259 274 4 -413 390 SCOTT \$37 489 335 404 to -448 263 219 248 50 5 10000E LINE:

OLOGICAL SESSMENT E S

DV

10100M 10150M 10200M 10250N 10300N 10350N 10400N 10450N 10500M 10550N 10600M 10850N 10700N 10750N

