LOG NO:	DEC 1 6 1992	RD.
ACTION.		****

TRENCHING, DIAMOND DRILLING AND GEOCHEMICAL REPORT

.

FILE NO:

on the

MURPHY, MAGGIE, LC ONE, M 2 to M 6

AND

GOLDDROP 1 TO 4 CLAIMS

Princeton Area Similkameen Mining Division

92H-7E (49°20' N. Lat., 120°38' W. Long.)

for

MURPHY SHEWCHUK

Keremeos, B.C. VOX 1NO (Owner and Operator)

by

GRANT F. CROOKER, B.Sc., P.Geo. Consulting Geologist

> GEOLOGICAL BRANCH NovembArS \$928 SMENT REPORT

TABLE OF CONTENTS

		Page
	SUMMARY AND RECOMMENDATIONS	1
1.0	INTRODUCTION	3
	1.1 General 1.2 Location and Access 1.3 Physiography 1.4 Property and Claim Status 1.5 Area and Property History	3 3 3 3 4
2.0	EXPLORATION PROCEDURE	7
3.0	GEOLOGY AND MINERALIZATION	8
4.0	DIAMOND DRILLING	9
5.0	TRENCHING	10
6.0	GEOCHEMISTRY	10
	6.1 Soil Sampling	10
7.0	CONCLUSIONS AND RECOMMENDATIONS	11
8.0	REFERENCES	12
9.0	CERTIFICATE OF QUALIFICATIONS	13

APPENDICES

.

...

Appendix I - Certificates of Analysis Appendix II - Drill Logs Appendix III - Cost Statement

ILLUSTRATIONS

PAGE

.

FIGURE

.

Location Map Drill Hole Locations Soil Geochemistry, Cu, Zn follows page 10

SUMMARY AND RECOMMENDATIONS

The Goldrop Property is located 16 kilometers southwest of Princeton, near Whipsaw Creek in southern British Columbia. The property consists of 8 modified grid claims and 4 two post claims totalling 72 units.

The property is mainly underlain by Upper Triassic Nicola Group volcanic and sedimentary rocks. A body of mainly porphyritic diorite of unknown dimensions occurs in the area of the 1992 drilling.

Mineralization in the area of the Golddrop 1 to 4 claims consists of calcite veinlets and carbonate altered zones with minor silicification. The zones are generally 0.5 to 1.5 meters in width and contain pyrite, sphalerite and minor chalcopyrite along with weakly anomalous gold values.

During 1988, 1989 and 1990 four BQ diamond drill holes totalling 581.09 meters were drilled on the Golddrop 1 to 4 claims. These drill holes intersected a number of carbonate altered zones with varying amounts of pyrite, sphalerite and chalcopyrite. The best intersections from the drilling are given below.

DDH	Intersection	Width	Au	Zn	Cu
No.	(m)	(m)	ppb	ppm	ppm
88-1 88-2 88-2 89-1 89-1 89-1 89-1	74.85-75.46 121.62-122.12 122.83-123.43 126.48-126.98 104.27-105.18 105.18-105.79 107.62-108.23 108.23-110.06	0.61 0.50 0.60 0.50 0.91 0.61 0.61 1.83	1225 365 445 5590 40 45 150 145	1369 91226 85063 76357 630 6186 8.85% 80000	87 2481 2438 4039 158 371 4000 7700
DDH	Intersection	Width	Au	Zn	Cu
No.	(m)	(m)	ppb	%	%
90-1	93.60-94.21	0.61	65	0.82	0.51
90-1	130.23-130.83	0.60	30	0.012	0.007
90-1	131.80-132.30	0.50	50	0.032	0.013
90-1	133.03-134.76	1.73	75	0.36	0.015
90-1	137.80-138.60	0.80	20	3.19	0.128
90-1	138.92-140.65	1.73	40	0.27	0.030

The 1990 program also established a grid over a portion of the Golddrop 1 to 4 claims and a VLF-EM survey and soil sampling were carried out. The soil geochemical sampling delineated two copper and three gold anomalies north of the area of drilling.

The 1992 program was carried out south of Whipsaw Creek along the common boundary of the LC One and M-3 claims. The program consisted of diamond drilling, trenching, and establishing a small grid and carrying out soil sampling.

Three diamond drill holes (177.12 meters) tested an area which had given surface assays in the order of 0.25% copper. The copper mineralization is related to narrow (0.26-1.69 meters) zones of fracturing and weak silicification containing up to 25% pyrite and 1% chalcopyrite within a porphyritic diorite.

The mineralized zones within the drill holes were assayed for gold and copper with disappointing results. All gold values were less than 0.001 ounces per ton and the highest copper value was 0.25% over 1.10 meters.

Three small trenches were blasted in areas with epidote alteration and pyrite. No assays were taken from trenches.

A small grid was established several hundred meters south of the legal corner post of the M-5 amd M-6 claims. Twemty-five soil samples were collected and geochemically analyzed by 32 element ICP. Copper and zinc each gave three weakly anomalous values but no significant geochemical anomalies were defined.

Recommendations are as follows:

1) A grid should be established for several kilometers east of the 1992 drilling. Geological mapping and prospecting should be carried out over the grid. Soil sampling should be carried out in areas with copper mineralization.

2) All mineralized outcrops exposed in the trenches and along the road east of the 1992 drilling should be sampled in a systematic manner. This may involve additional trenching.

Respectively submitted,

Consulting Geologist

Grant Crooker, B.Sc., P.Geo.,

1.0 INTRODUCTION

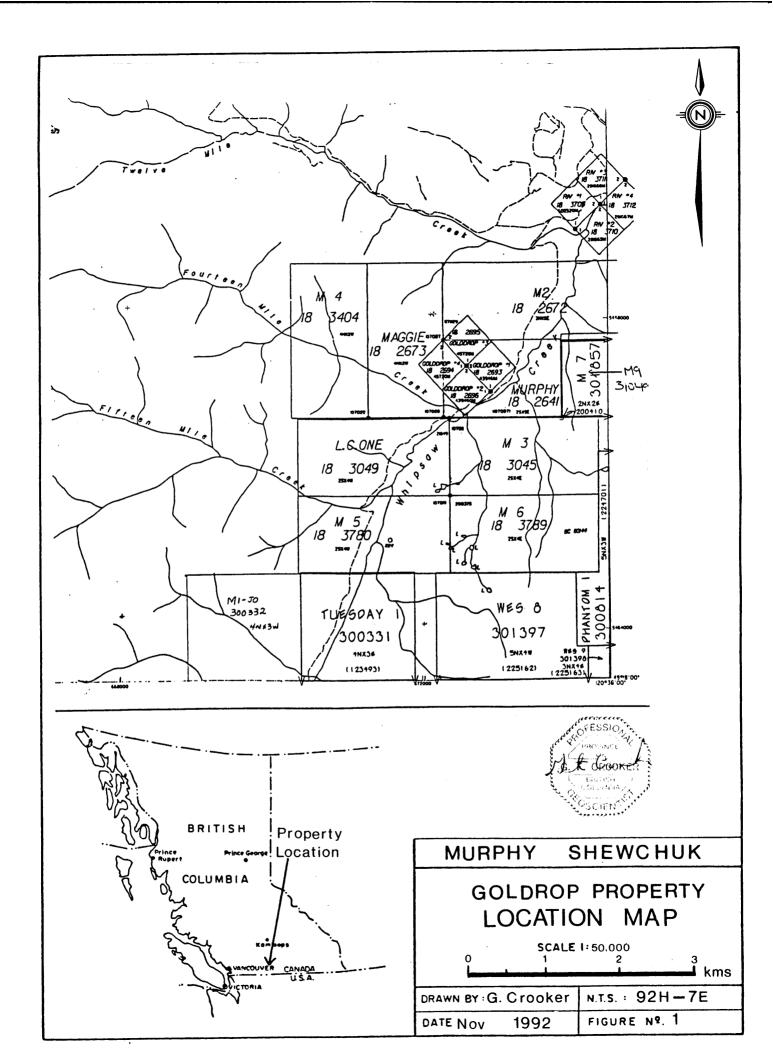
1.1 GENERAL

Diamond Drilling and trenching were carried out on the Goldrop Property during June and July of 1992. A grid was also established over part of the property and soil sampling carried out over the grid. Murphy Shewchuk supervised the drilling and carried out the field work while Grant Crooker was retained to prepare the report.

1.2 LOCATION AND ACCESS

The property (Figure 1) is located approximately 16 kilometers southwest of Princeton in the Whipsaw Creek area of southern British Columbia. The property lies between 49°19' and 49°21' north latitude and 120°36' and 120°39' west longitude (NTS 92H-7E).

Access is from the Hope-Princeton Highway turning off the highway at Whipsaw Creek. A good two wheel drive logging road passes through the property and several four wheel drive roads provide access to different areas of the property.


1.3 PHYSIOGRAPHY

The property lies along the eastern margin of the Cascade Mountains and elevation varies from 945 to 1460 meters above sea level. Topography varies from moderate to steep with Whipsaw Creek flowing northeasterly through the property.

Fir and spruce trees cover most of the property, with varying amounts of brush. The area is subject to heavy snowfalls in the winter.

1.4 PROPERTY AND CLAIM STATUS

The Goldrop Property (Figure 1) consists of eight modified grid claims and four two post claims covering 72 units in the Similkameen Mining Division. The Golddrop 1 to 4 claims are owned by Ken Huff of Princeton B.C., the Maggie claim by G.M. Lind of Cawston B.C., the LC One claim by Don Barker of Cawston B.C. and the Murphy and M2 to M6 claims by Murphy Shewchuk of Keremeos, B.C.

Claim	Units	Mining Division	Tenure No.	Record Date mdy	Expiry Date mdy
Murphy	10	Similkameen	249109	07/31/86	07/31/95*
Golddrop 1	1	Similkameen	249130	10/06/86	10/06/95*
Golddrop 2	1	Similkameen	249133	10/06/86	10/06/95*
Golddrop 3	1	Similkameen	249132	10/06/86	10/06/95*
Golddrop 4	1	Similkameen	249131	10/06/86	10/06/95*
M 2	10	Similkameen	249124	09/11/86	09/11/95*
M 3	8	Similkameen	249263	09/30/87	09/30/95*
M 4	8	Similkameen	249540	07/18/89	07/18/93
M 5	8	Similkameen	249916	09/27/90	09/27/95*
M 6	8	Similkameen	249925	10/02/90	10/02/95*
Maggie	8	Similkameen	249125	09/11/86	09/11/95*
LC One	8	Similkameen	249266	10/16/87	10/16/95*

Including the work credits from this report.

1.5 AREA AND PROPERTY HISTORY

The mining history of the Princeton area goes back to the late 1800's. Initial prospecting was for placer gold, with hard rock prospecting following shortly afterwards.

The Whipsaw Creek area also has a long history of mining. The copper deposits at Copper Mountain located seven kilometers east of the Golddrop property were first discovered by a trapper named Jameson in 1884. Production did not begin from Copper Mountain until 1925, and large scale production has continued to the present time, with the exception of a 23 year period from 1957 to 1970.

Nothing is known of the early history of the Golddrop property, although it was probably first discovered in the early 1900's. A caved adit and a number of hand trenches indicate work was carried out on the property during this time. During the 1970's the Huff brothers of Princeton carried out trenching and drilling on the property. Little is known of this work, but anomalous gold, copper and zinc values were reported from the drilling. This work was all carried out in the vicinity of the Golddrop 1 to 4 claims.

The property was restaked by the present owners in 1986. Diamond drilling was carried out on the Golddrop 1 to 4 claims during 1988 (two holes), 1989 (one hole) and 1990 (one hole).

Drill Hole No.	Bearing(°)	Angle(°)	Depth(m)
DDH-88-1	000°	-70°	115.24
DDH-88-2	0050	-59°	157.01
DDH-89-1	019°	-51°	148.17
DDH-90-1	000°	-70°	160.67

DDH-88-1 was drilled near Fourteen Mile Creek and intersected one narrow zone between 74.85 and 75.46 meters which gave 1255 ppb gold and 1369 ppm zinc.

DDH-88-2 was drilled in the general vicinity of the 1970's drilling and intersected several zones of calcite veining and carbonate alteration with anomalous gold, zinc and copper values. The mineralized zones occur between 121.62 and 128.08 meters.

DDH-89-1 was also drilled on the main zone and intersected the main zone between 104.32 and 110.06 meters. Zinc and copper values were highly anomalous but gold was very low. A summary of the best drill intersections is given below.

DDH	Intersection	Width	Au	Zn	Cu
No.	(m)	(m)	ppb	ppm	ppm
88-1	74.85-75.46	0.61	1225	1369	87
88-2	121.62-122.12	0.50	365	91226	2481
88-2	122.83-123.43	0.60	445	85063	2438
88-2	126.48-126.98	0.50	5590	76357	4039
89-1	104.27-105.18	0.91	40	630	158
89-1	105.18-105.79	0.61	45	6186	371
89-1	107.62-108.23	0.61	150	8.85%	4000
89-1	108.23-110.06	1.83	145	80000	7700

DDH-90-1 was also drilled on the main zone and intersected three distinct zones of mineralization. The upper zone (93.60-94.21) consists of an 0.60 meter wide zone of calcite with 10% pyrite and 1% sphalerite. The middle (130.23-134.76) and lower (137.80-140.65) zones again consist of calcite with varying amounts of pyrite and sphalerite. However within the lower two zones, 0.50 meter wide carbonate altered intervals are separated by similiar sized widths of barren andesite. The middle zone contains three mineralized intervals while the lower zone contains two mineralized intervals.

The 1990 drilling gave lower gold, copper and zinc values than those from 1988 and 1989. The best mineralized intersections are summarized below.

DDH No.	Intersection (m)	Width (m)	Au ppb						
90-1	93.60-94.21	0.61	65	0.82	0.150				
90-1	130.23-130.83	0.60	30	0.012	0.007				
90-1	131.80-132.30	0.50	50	0.032	0.013				
90-1	133.03-134.76	1.73	75	0.36	0.015				
90-1	137.80-138.60	0.80	20	3.19	0.128				
90-1	138.92-140.65	1.73	40	0.27	0.030				

The information from the three drill holes indicates the mineralized zone is striking east-west and dipping steeply south.

During 1990 a small grid was also established on the Golddrop 1 to 4 claims and soil geochemical and VLF-EM surveys were carried out over the grid. The VLF-EM survey delineated a number of conductors but no causes were apparent for them.

Several soil geochemical anomalies were outlined by the soil sampling. A weak copper anomaly occurs 200 meters east of the drilling on the main zone and may represent an extension of this zone. Several coincidental copper-gold anomalies occur in the northeast portion of the grid. The program covered by this report consisted of trenching, drilling three BQ diamond drill holes (177.12 m), and establishing a small grid and taking 25 soil samples.

GRID PARAMETERS

-main baseline direction N-S along 1E -survey lines perpendicular to baselines -survey line separation 50 meters -survey station spacing 50 meters -survey total - 1.0 kilometer

GEOCHEMICAL SURVEY PARAMETERS

-survey line separation 50 meters -survey sample spacing 50 meters -survey totals - 1.0 kilometer - 25 soil samples collected -25 soil samples analyzed geochemically by 32 element ICP -10 drill core samples assayed for Au and Cu -soil sample depth 5 to 15 centimeters -soil samples taken from brown B horizon

The soil samples were sent to Chemex Labs Ltd., 212 Brooksbank Avenue, North Vancouver, B.C. for geochemical analysis. Laboratory technique for geochemical analysis consists of preparing samples by drying and crushing to minus 150 mesh. A 32 element ICP analysis was then carried out on the samples.

The drill core samples were sent to Eco-Tech Laboratories Ltd., 10041 East Trans Canada Hwy, Kamloops B.C. for assay.

Copper and zinc soil geochemical results were plotted on figure 3 at a scale of 1:2500.

3.0 GEOLOGY AND MINERALIZATION

The property lies along the western margin of the Intermontane Belt of southern British Columbia. Upper Triassic Nicola group volcanic and sedimentary rocks underlie most of the property. The volcanic succession includes massive flow units, coarse to very fine-grained pyroclastic units and some pillow lavas. These rocks are generally andesite to basaltic andesite in composition. The sedimentary succession includes siltstone, argillite, conglomerate and some reefoid limestone.

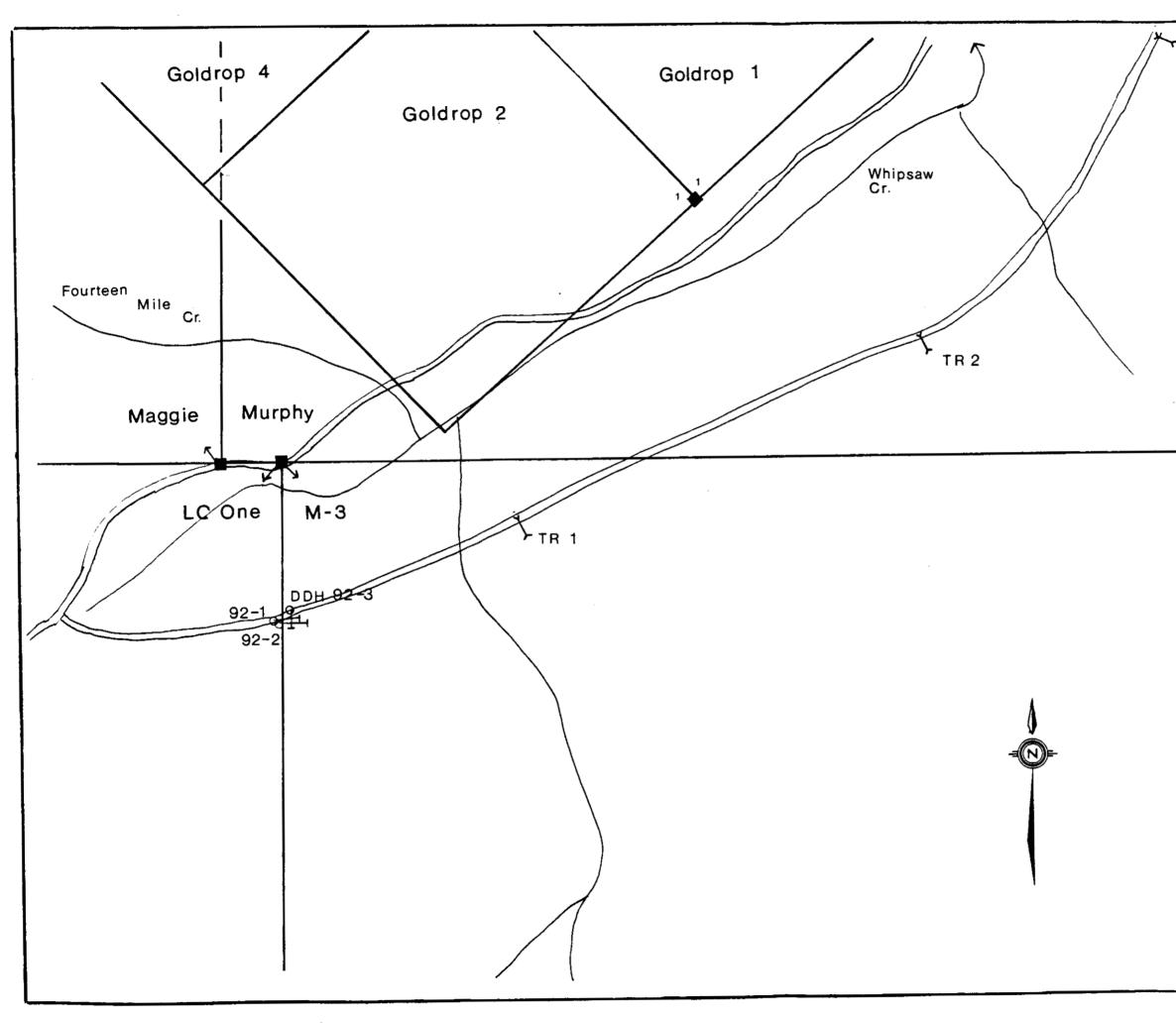
A body of generally porphyritic diorite underlies the area of the 1992 diamond drilling. The dimensions of this body are unknown at this time.

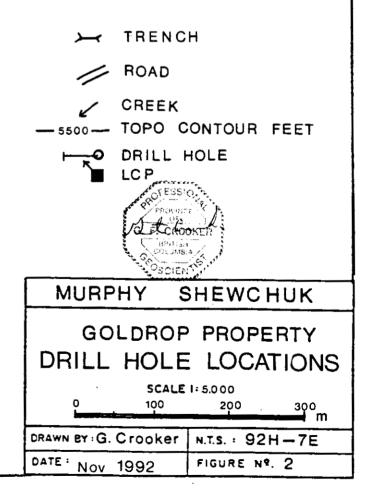
Mineralization in the vicinity of the Golddrop 1 to 4 claims, as outlined by drilling consists of calcite veinlets and carbonate altered zones with minor silicification containing pyrite, sphalerite and minor chalcopyrite. Anomalous gold values are also associated with the mineralization. The carbonate altered zones consist of a series of narrow (0.5 m) calcite veins with barren zones of andesite between them.

In the vicinity of the 1992 drilling the mineralization consists of fractured and weakly silicified zones in the porphyritic diorite. The zones are generally less than 1 meter in width and contain up to 20% pyrite and minor amounts of chalcopyrite. The highest copper assay has been 0.25% and no anomalous gold values have been obtained from the zones.

Skarn mineralization containing disseminated chalcopyrite outcrops along the road east of the 1992 drilling. Samples of this material have given up to 0.189% Cu and 160 ppb gold.

4.0 DIAMOND DRILLING


Diamond drilling was carried out on the property during June of 1992. Three holes (Figure 2) totalling 177.12 meters were drilled. Core recovery ranged from 76% to 82%, with poorer recovery in the broken, upper portions of the holes. The drill core is stored at the residence of Mr. Murphy Shewchuk at Keremeos, B.C.. A summary of the pertinent data is given in below.


Drill Hole Number	Bearing (°)	Angle (°)	Core Rec (%)	Depth (m)
DDH-92-1	083°	-65°	82%	82.31
DDH-92-2	090°	-51°	76%	57.92
DDH-92-3	180°	-52°	81%	36.89

The holes were drilled to test an area which gave surface assays in the order of 0.25% copper. The copper mineralization is related to a body of porphyritic diorite which contains narrow (0.26-1.69 meters) zones of fracturing and weak silicification. Concentrations of pyrite range up to 25% with up to 1% chalcopyrite.

The mineralized zones were assayed for gold and copper with disappointing results. All gold values were less than 0.001 ounces per ton and the highest copper value was 0.25%. A summary of the mineralized intercepts are given below.

DDH No.	Intersection (m)	Width (m)	Au (oz/t)	Cu (%)
92-1	19.24-20.93	1.69	<.001	0.18
92-1	21.32-21.84	0.52	<.001	0.20
92-1	31.20-31.46	0.26	<.001	0.06
92-2	6.70-7.80	1.10	<.001	0.25
92-2	18.59-19.52	0.93	<.001	0.05
92-2	19.79-20.35	0.56	<.001	0.11
92-2	28.30-29.18	0.88	<.001	0.06
92-2	29.18-30.18	1.00	<.001	0.05
92-3	15.85-17.07	1.22	<.001	0.22
92-3	31.09-32.08	0.99	<.001	0.04

5.0 TRENCHING

Three trenches were drilled, blasted and excavated east of the 1992 drilling (figure 2). The trenches were all located in areas of epidote alteration and pyrite. No assays were taken from the trenches.

The dimensions of the trenches are as follows: Trench 1, 6 m x 2 m x 1.2 m, Trench 2, 3 m x 2 m x 1.2 m, Trench 3, 3m x 2 m x 1.2 m.

6.0 GEOCHEMISTRY

5.1 SOIL SAMPLING

1

Twenty-five soil samples were sent for 32 element ICP analysis.

Background and anomalous values for copper and zinc were chosen as follows:

ELEMENT	BACKGROUND	ANC	MALOUS	
Cu ppm	29.7	2	45	
Zn ppm	86.0	≥	129	

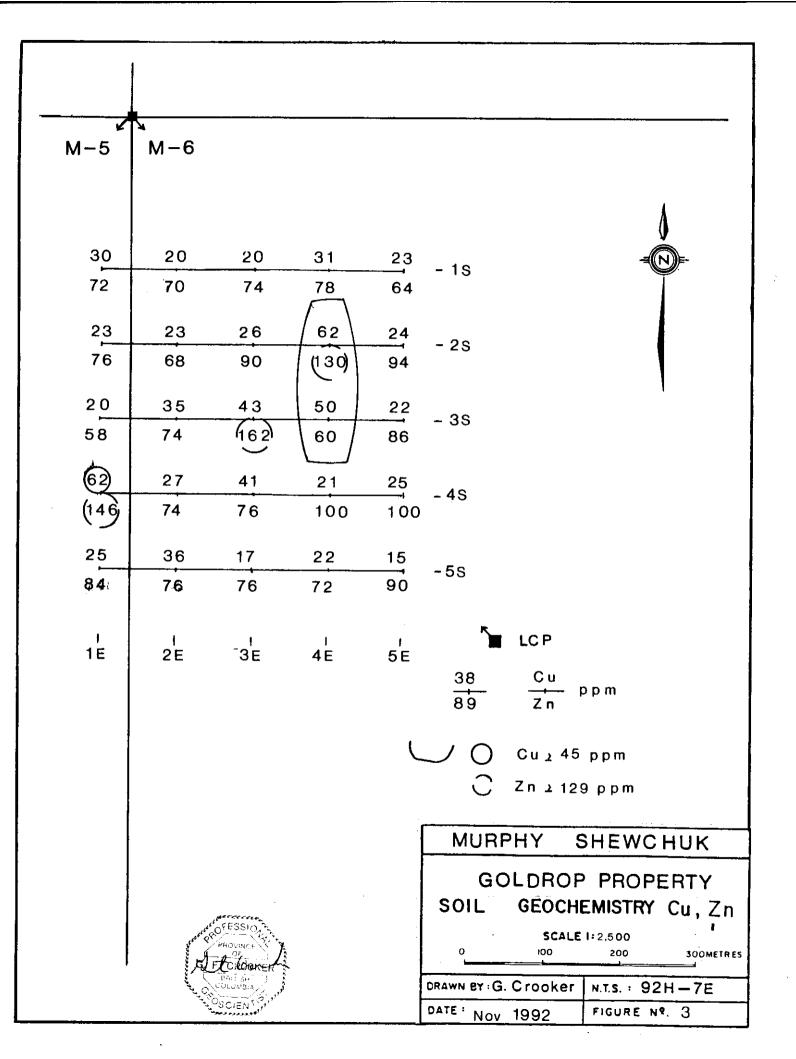
Copper

...

.

.

•


Copper values ranged from 15 to 62 ppm and three samples were considered anomalous.

Two of the anomalous samples are side by side on lines 2 south and 3 south at 4 east. The other anomalous sample is at 4 south and 1 east.

Zinc

Zinc values ranged from 58 to 162 ppm and three samples were considered anomalous.

All three of the anomalous samples are single sample anomalies although two of them are coincidental with anomalous copper values.

•

٣

÷.

en . .

7.0 CONCLUSIONS AND RECOMMENDATIONS

The 1992 program was carried out south of Whipsaw Creek along the common boundary of the LC One and M-3 claims. The program consisted of diamond drilling, trenching, and establishing a small grid and carrying out soil sampling.

Three diamond drill holes (177.12 meters) tested an area which had given surface assays in the order of 0.25% copper. The copper mineralization is related to narrow (0.26-1.69 meters) zones of fracturing and weak silicification containing up to 25% pyrite and 1% chalcopyrite within a porphyritic diorite.

The mineralized zones within the drill holes were assayed for gold and copper with disappointing results. All gold values were less than 0.001 ounces per ton and the highest copper value was 0.25% over 1.10 meters.

Three small trenches were blasted in areas with epidote alteration and pyrite. No assays were taken from trenches.

A small grid was established several hundred meters south of the legal corner posts of the M-5 amd M-6 claims. Twemty-five soil samples were collected and geochemically analyzed by 32 element ICP. Copper and zinc each gave three weakly anomalous values but no significant geochemical anomalies were defined.

Recommendations are as follows:

1) A grid should be established for several kilometers east of the 1992 drilling. Geological mapping and prospecting should be carried out over the grid. Soil sampling should be carried out in areas with copper mineralization.

2) All mineralized outcrops exposed in the trenches and along the road east of the 1992 drilling should be sampled in a systematic manner. This may involve additional trenching.

Respectively submitted,

Grant Crocker, B.Sc., P.Geo., Consubring, Geologist

8.0 REFERENCES

B.C.D.M.: G.E.M., 1970 (pp379, 384); 1971 (pp272); 1973 (pp24, 158); 1974 (pp115); 1975 (ppE70).

B.C.M.M., Annual Report for 1966.

Crooker, G.F., (July 1988): Diamond Drilling Report on the Murphy, Maggie, M 2, M 3 and Golddrop 1 to 4 Claims, Princeton Area, Similkameen Mining Division, for Murphy Shewchuck.

Crooker, G.F.. (June 1990): Diamond Drilling Report on the Murphy, Maggie, M 2, M 3 and Golddrop 1 to 4 Claims, Princeton Area, Similkameen Mining Division, for Murphy Shewchuk.

Crooker, G.F., (February 1991): Geochemical, Geophysical and Diamond Drilling Report on the Murphy, Maggie, M 2, M 3 and Golddrop 1 to 4 Claims, Princeton Area, Similkameen Mining Division, for Murphy Shewchuk.

Preto, V.A., (1972): Geology of Copper Mountain, B.C.D.M. Bulletin 59.

Rice, H.M.A. (1947): Geology and Mineral deposits of the Princeton Map-Area, B.C., Geological Survey of Canada, Memoir 243.

9.0 CERTIFICATE OF QUALIFICATIONS

•

I, Grant F. Crooker, of Upper Bench Road, Keremeos, in the Province of British Columbia, hereby certify as follows:

- 1. That I graduated from the University of British Columbia in 1972 with a Bachelor of Science Degree in Geology.
- 2. That I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
- 3. That I am a member of the Canadian Institute of Mining and Metallurgy.
- 4. That I am a Fellow of the Geological Association of Canada.
- 5. That I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (No. 18,961).
- 6. That I have no direct or indirect interest, nor do I expect to receive any interest directly or indirectly in the property.

Dated this \mathcal{R}^{bEh} day of $\mathcal{W} \vee \mathcal{V}$, 1992, at Keremeos, in the Province of British Columbia.

ROOKFR

Grant Crooker, B.Sc., P.Geo., Consulting. Geologist Appendix I

~

,

416

÷

CERTIFICATES OF ANALYSIS

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy . Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CERTIFICATE OF ASSAY ETK 92-315

PLACER DOME INC. 1440 HUGH ALLEN DRIVE KAMLOOPS, B.C. V1S 1L8

ATTENTION: ROB PEASE

SAMPLE DESCRIPTION: 10 CORE SAMPLES RECEIVED JULY 14, 1992

ET#		DESCRIPTION	Au (g/t)	Au (oz/t)	Cu (%)	
****	=====					
1	-	MX #1 1	<.03	<.001	.18	
2	-	MX #1 2	<.03	<.001	.20	
3	-	MX #1 3	<.03	<.001	.06	7
4	-	MX #2 1	<.03	<.001	.25	
5	-	MX #2 2	<.03	<.001	.05	
6	-	MX #2 3	<.03	<.001	.11	
7	-	MX #2 4	<.03	<.001	.06	
8	-	MX #2 5	<.03	<.001	.05	
9	-	MX #3 1	<.03	<.001	.22	
10	-	MX #3 2	<.03	<.001	.04	

ECO-TECH LABORATORIES LTD. FRANK J. PEZZOTTI, A.Sc.T. B.C. CERTIFLED ASSAYER

÷ !

SC92/PLACER1

.

To: SHEWCHUK, MURPHY

S.10, C.9, R.R. #1 KEREMEOS, BC V0X 1N0

Page Number :1-A Total Pages :1 Certificate Date: 13-NOV-92 Invoice No. :19224365 P.O. Number : Account GN

٦

4

1

1

Project : Comments:

			·								CERTIFICATE OF ANALYSIS				SIS	A9224365					
SAMPLE	PREP CODE		λg ppm	A1 %	λs ppa	Ba ppm	Be ppm	Bi DD m	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppa	Fe %	Ga ppn	Hg ppm	X %	La ppm	Mg %	Nn. ppm.	Mo ppm
18 12 18 22 18 32 18 42 18 52	205 2 205 2 205 2 205 2 205 2	34 34 34	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.37 1.83 1.77 2.37 2.16	< 2 < 2 < 2 < 2 < 2 2 2	140 140 130 160 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 < 2 < 2 < 2 < 2	0.44 0.62	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 6 10 8	43 37 33 41 61	30 20 20 31 23	2.44 2.40 2.32 2.76 2.55	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.14 0.13 0.12 0.18 0.15	< 10 < 10 < 10 < 10 < 10 < 10	0.42 0.41 0.43 0.58 0.51	515 375 645 575 440	< 1 < 1 < 1 < 1 < 1 1
25 11 25 21 25 31 25 41 25 41 28 51	205 2 205 2 205 2 205 2 205 2 205 2	34 34 34	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.82 1.97 2.33 3.52 2.19	8 6 < 2 < 2 < 2 < 2	140 140 150 260 180	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 2 2 2	0.69 0.56 0.81	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 6 11 8	51 47 35 40 44	23 23 26 62 24	2.75 2.87 2.47 2.97 2.49	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 1 < 1	0.16 0.16 0.13 0.20 0.17	< 10 < 10 < 10 10 < 10	0.50 0.55 0.40 0.72 0.51	540 475 470 545 425	1 1 < 1 < 1 1
38 12 38 22 38 32 38 42 38 52	205 2 205 2 205 2 205 2 205 2 205 2	34 34 34	0.2 0.2 0.2 < 0.2 0.2	1.91 2.34 3.10 2.28 1.85	< 2 6 < 2 < 2 < 2 < 2	140 150 240 170 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 6 < 2 < 2 2 2	0.81 0.82 0.89	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 12 12 12 12 8	46 61 53 47 47	20 35 43 50 22	2.35 3.39 3.18 3.46 2.39	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 3 < 1	0.17 0.23 0.26 0.18 0.18	< 10 < 10 10 10 < 10	0.43 0.78 0.65 0.95 0.46	550 410 1430 615 715	1 1 1 < 1 < 1
48 12 48 22 48 32 48 42 48 52	205 2: 205 2: 205 2: 205 2: 205 2: 205 2:	34 34 34	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.34 2.02 2.69 1.89 2.27	< 2 < 2 12 < 2 4	270 170 150 160 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 6 < 2 < 1	0.56 0.79	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 7 16 8 6	48 42 56 59 61	62 27 41 21 25	3.15 2.65 3.57 2.30 2.47	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1	0.14 0.17 0.28 0.18 0.17	10 < 10 10 < 10 < 10	0.74 0.49 0.73 0.41 0.46	285 510 570 385 475	< 1 1 1 < 1 < 1
58 12 58 22 58 32 58 42 58 52	205 2 205 2 205 2 205 2 205 2 205 2	34 34 34	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.07 2.87 1.64 1.80 1.90	< 2 8 < 2 < 2 < 2 < 2	150 220 130 150 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.84 0.47 0.53	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 10 6 8 6	53 45 30 51 55	25 36 17 22 15	2.76 2.79 2.16 2.41 2.03	< 10 < 10 < 10 < 10 < 10 < 10	1 1 < 1 < 1 < 1 < 1	0.21 0.17 0.16 0.16 0.12	< 10 10 < 10 < 10 < 10	0.59 0.54 0.33 0.40 0.31	610 945 490 440 515	< 1 < 1 < 1 < 1 < 1 1
														C	ERTIFIC		γl	ai	Ð	Ma	J

;

.

1

: . 1. N. N. N. N. ÷ 1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

CERTIFICATION:

i

Т

. :

1 +

-

ì į

> į 1 •

> ÷

: ۲ ł

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: SHEWCHUK, MURPHY

S.10, C.9, R.R. #1 KEREMEOS, BC V0X 1N0

Page Number : 1-B Total Pages : 1 Certificate Date: 13-NOV-92 Invoice No. : 19224365 P.O. Number : GN Account

1

۲.

Project	
Comme	ints:

						<u> </u>					CE	RTIFI	CATE	OF A	NALYSIS	A9224365
SAMPLE	PREP		Na %	Ni ppa	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr pp n	Ti %	T1 pp n	U Dýma	V DDaa	W	žn ppm	
12 22 32 42 52	205 23 205 23 205 23 205 23 205 23	34 34 34	0.08 0.04 0.03 0.04 0.09	16 13 12 17 13	330 800 600 430 310	6 8 2 4 2	2 2 2 2 2 2 2	4 4 6 5	66 40 61 75	0.14 0.12 0.12 0.11 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 61 60 62 64	< 10 < 10 < 10 < 10 < 10 < 10	72 70 74 78 64	
12 22 32 42 52	205 23 205 23 205 23 205 23 205 23	34 34 34	0.04 0.04 0.07 0.06 0.04	13 15 15 36 16	510 560 420 310 880	4 6 8 2	4 4 < 2 2	6 4 8 5	63 58 56 104 55	0.14 0.16 0.13 0.13 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	79 81 55 60	< 10 < 10 < 10 10 < 10	76 68 90 130 94	
1x 2z 3z 4z 5z	205 23 205 23 205 23 205 23 205 23 205 23	34 34 34	0.04 0.04 0.04 0.04 0.04	13 21 28 31 14	400 610 400 580 820	4 6 8 12 6	< 2 4 < 2 2 < 2	4 8 9 4	54 79 98 115 53	0.12 0.15 0.14 0.10 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	59 95 68 82 58	< 10 < 10 10 < 10 < 10	58 74 162 60 86	
1E 2E 3E 4E 5E	205 23 205 23 205 23 205 23 205 23 205 23	34 34 34	0.06 0.04 0.02 0.06 0.07	27 15 25 16 18	440 620 950 520 1110	8 6 14 6 4	4 < 2 2 < 2 < 2 < 2	9 5 9 4 4	94 55 82 62 49	0.14 0.12 0.09 0.13 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 63 84 58 58	< 10 < 10 < 10 < 10 < 10 < 10	146 74 76 100 100	
112 22 33 42 52	205 23 205 23 205 23 205 23 205 23	34 34 34	0.05 0.07 0.03 0.06 0.08	17 21 14 13 11	630 290 470 550 320	6 10 8 4 8	2 2 2 2 2 2 2	6 7 3 4 3	68 99 43 58 54	0.13 0.14 0.11 0.13 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 64 54 63 48	< 10 < 10 < 10 < 10 < 10	84 76 76 72 90	
		1														
																Thai OMa

Appendix II

.

,

Leve-

٣

DRILL LOGS

PROPERTY Golddrop

Diamond Drill Record

.

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	1	
]	

HOLE No. 92-1Sheet No. 1Lat.Total Depth.82.31 mSectionDep.-65°Logged By. Grant CrookerDate BegunJune 1992Bearing083°ClaimDate Finished June1992Elev. CollorCore SizeBQ

h

:

3

•

DEPTH	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH of SAMPLE	Cu %	
0-3.96	Casing						
3.96-4.52	dark green porphyritic diorite with 1 to 3						
	mm porphyritic hornblende, tr py						
	3.98 4 mm calcite veinlet @ 30°						
4.52-5.27	porphyritic diorite with 1 to 10 mm fractures	· — ······					
	@ 10°, with epidote and minor 1 to 3 mm						
	angular grey quartz fragments						
5.27-14.02	fg, dark green gabbro with 1 to 3 mm fractur-						
	es with epidote						
	9.14-9.24 weak fractring with epidote and						
	moderate silicification						
	11.85 1 to 2 mm fractures with quartz, 10% py						<u> </u>
	13.12-13.71 3 to 10 mm white calcite veinlets						ļ
	@ 80°-90°, chlorite alt						
14.02-82.31	porphyritic diorite with random subangular				ļ		
	fragments of more basic intrusives up to 10			ļ			
	cm in diameter						
	16.82-17.01 light green epidote alteration			ļ	<u> </u>	ļ	ļ
	fracturing with weak silicification, epidote,	MX#1 1	19.24	20.93	1.69 m	0.18	L
	up to 15% py, ½% cpy			ļ	ļ		
		<u></u>		<u>L</u>	<u> </u>		

92-1

DEPTH	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH of SAMPLE	Cu %	
· · · · · · · · · · · · · · · · · · ·	fracturing with weak silicification, up to	MX#1 2	21.32	21.84	.52	0.20	
	20% py			[
	22.63-22.71 fracturing, 10% py, tr mal				· · · ·	•	<u> </u>
	22.91-22.98 5 cm silicified zone @ 45°, 10% p	y					
	28.51 1 cm quartz vein & fracture zone @ 30°						
	moderate silicified zone, minor calcite, 1 to	MX#1 3	31.20	31.46	.26	0.06	
·	10% py			1			
	32.63-33.13 fracture zone with py						
	33.72-34.75 fracture zone with py						
	56.09-82.31 random 1 to 2 mm fractures with						
	hem, calcite, 1% py				1		
	73.76 5 cm section with anhydrite? veinlets				1		
	@ 15°				1		
	End of Hole						
				ļ	ļ		
			ļ				
				1			
					T		Ì
				1			
· · · · · · · · · · · · · · · · · · ·							1
					1		
		[
<u> </u>		1	1		1		[
		<u> </u>	1-				
				1		<u> </u>	

,

•

\$

٠

PROPERTY Golddrop

Diamond Drill Record

	DIP TEST	
	An	gle
Footage	Reading	Corrected
	1	

•

ž

٠

•

DEPTH	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH of SAMPLE	Cu %	
0-4.7	Casing						
[•] 4.7-19.52	fg, grey, porphyritic diorite, random rusty						
	fractures, traces py						
	fractured, silicified? diorite, up to 20% py	MX#2 1	6.70	7.80	1.10 m	0.25	
	9.32-11.15 rusty fractures, 1 to 2% py along						
	fractures and disseminated			L			
	12.68 1 cm calcite veinlet parallel to core						
	16.46 10 cm calcite veinlet @ 90°, tr py						
	fractured and silicified diorote, up to 15%	MX#2_2	18.59	19.52	0.93 m	0.05	
	ру						
	porphyritic diorite, 1 to 5% py	MX#2 3	19.79	20.35	0.56 m	0.11	
19.52-25.47	diorite becoming more porphyritic, with occas						
	ional fragments of other intrusives up to 5			ļ	L		
	cm in diameter		ļ				
25.47-26.19	light grey dyke with angular fragments of			<u> </u>			
	diorite up to 5 cm in diameter				ļ		
26.19-57.92	fg, green porphyritic diorite						<u></u>
	fractured and weakly silicified diorite, epid	MX#2 4	28.30	29.18	0.88 m	0.06	
	ote, 4 to 10% py				<u> </u>		
	fractured and weakly silicified diorite,	MX#2 5	29.18	30.18	1.00 m	0.05	
	epidote, up to 10% py	<u> </u>	<u> </u>				

9'z-2

.

DEPTH	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH of SAMPLE		
	36.18 weak random fractures with light brown						
	anhydrite?, epidote, trace pyrite						
	39.80 1 to 2 cm light brown anhydrite? and					•	
	calcite veinlets parallel to core						
	41.04 1 cm light brown anhydrite? veinlet @						
······	15°						
	44.85 1 cm light brown anhydrite? and white						
	calcite veinlet @ 15 °			<u> </u>			
	47.0-47.75 epidote alteration			ļ			
	48.15 5 cm zone of fracturing with pyrite						
<u></u>	and epidote						
	48.30 2 cm epidote veinlet @ 30°					u	
<u></u>	51.86 1 cm calcite veinlet and 5 cm anhydrite						
	veinlet @ 60°						
57.92	Enf of Hole						
			l				
							
<u></u>							
<u> </u>							
				[

2

PROPERTY____Golddrop

Diamond Drill Record

DIP TEST									
	Angle								
Footage	Reading	Corrected							
	ł								

HOLE No.92-3Sheet No1		Totol Depth. 36.89 m Logged By. Grant Crooker
Section June, 1992 Date Begun	Dep52 180 Bearing	Claim
Date Finished June 1992		Core SizeBQ

1 k 1 k

DEPTH	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH of SAMPLE	Cu %	
0-3.50	Casing						
3.50-36.89	dark grey, porphyritic diorite, occasional						
	random, rusty fractures, minor calcite, epidot	e					
	also random subrounded fragments of more mafi	c					
	intrusives up to 15 cm in diameter						
	8.72-8.92 rusty, serecite altered sediment?						
	bedding @ 20°						
	14.83-15.40 trace disseminated py						
	15.85-17.07 fractured, weakly silicified	MX#3 1	15.85	17.07	1.22 m	0,22	
	diorite, 5 to 25% py, trace cpy						
	17.76 5 mm calcite veinlet @ 45°, trace py						
	18.01 2 cm quartz-calcite veinlet @ 25°, 1%						
	py, 2% cpy, mal						
	18.01-18.97 5 cm calcite veinlet parallel to						
	core				ļ		
	22.75 1 cm calcite veinlet @ 70° 22.0-30.0 fractures have light brown anhydrit	e?					
	hematite						
·	fractured, weakly silicified diorite, 10 to	MX#3 2	31.09	32.08	0.99	0.04	
	15% py	ļ			ļ		ļ
36.89	End of Hole						

Appendix III

,

.

COST STATEMENT

COST STATEMENT

SALARIES

•

٠

. ادنو

pe ..

- Grant Crooker, Geologist Nov. 13, 14, 19, 24, 1992 4 days @ \$ 400.00/day	ŝ	1,600.00
 Murphy Shewchuck, Field Assistant July 5-8, 14, 15, 1992 days @ \$ 150.00/day 		900.00
 Jules Holm, Field Assistant July 5-8, 1992 4 days @ \$ 100.00/day 		400.00
MEALS AND ACCOMODATION		
- Murphy Shewchuck - 6 days @ \$ 60.00/day		360.00
- Jules Holm - 4 days @ \$ 60.00/day		240.00
TRANSPORTATION		
 Vehicle Rental July 5-8, 14, 15, 1992 6 days @ \$ 60.00/day 		360.00
- Gasoline		100.00
DRILL COSTS		
- Longyear 38 diamond drill 177.12 meters @ \$ 75.00/meter		13,284.00
TRENCHING COSTS		
- Backhoe 5 hours @ \$ 60.00/hour		300.00
- Compressor 1 day @ 80.00/day		80.00
- Jack Leg, drill steel, bits etc. 8 hours @ \$ 50.00/hour		400.00
- Powder, caps, fuse etc.		400.00
SUPPLIES		
- Hipchain thread, flagging, geochem bags, etc.		15.00

GEOCHEMICAL ANALYSIS

.

-

 25 soil samples, 32 element ICP @ \$ 10.06/sample 	251.50
 10 drill core, assay Au, Cu @ \$ 21.13/sample 	211.30
PREPARATION OF REPORT	

- Secretarial, reproduction, telephone, office overhead etc. <u>400.00</u> Total \$ 19,301.80

.