LOG NO:	DEC 2 3 1992	RD.
ACTION.		
a an		
FILE NO:		

ASSESSMENT REPORT

on the

1992 DIAMOND DRILLING PROGRAM

Clisbako 1 to 37 Claims

CARIBOO MINING DIVISION

NTS 93C/9E, 16E 93B/12W, 13W

Lat 52°43'N Long 124°03'W

FILMED

Owner and Operator:

Minnova Inc. 3-311 Water Street. Vancouver, B.C. V6B 1B8

> GEOLOGICAL BRANCH ASSESSMENT REPORT

Dave Heberlein. November, 1992. 1

CLUTER LIVER BELED FD CLUE 1 5 CD2 MIR.# _______S VANCOUVER, B.C.

TABLE OF CONTENTS

<u>Page</u>	No.
	· · · ·

.

1.	INTRODUCTION	1
	 1.1 General. 1.2 Location and Access. 1.3 Topography and Climate. 1.4 Property History. 	1 1 1 2
2.	CLAIMS	3
3.	GEOLOGY	4
4.	DIAMOND DRILLING	10
	 4.1 Program Summary. 4.2 Results. 4.2.1 Tufa Zone (CL-92-20) 4.2.2 West Lake Zone (CL-92-21, 22, 26 and 27) 4.2.3 West Pit Zone (CL-92-23, 24) 4.2.4 Beaver Pond Zone (CL-92-25) 4.2.5 South Zone (CL-92-28, 29, 30) 	10 11 11 13 14
5.	SUMMARY AND CONCLUSIONS	17
6.	REFERENCES	17

LIST OF APPENDICES

Appendix I	Statement of Costs.
Appendix II	Drill Logs and Analytical Results.
Appendix III	Statement of Qualifications.

LIST OF FIGURES

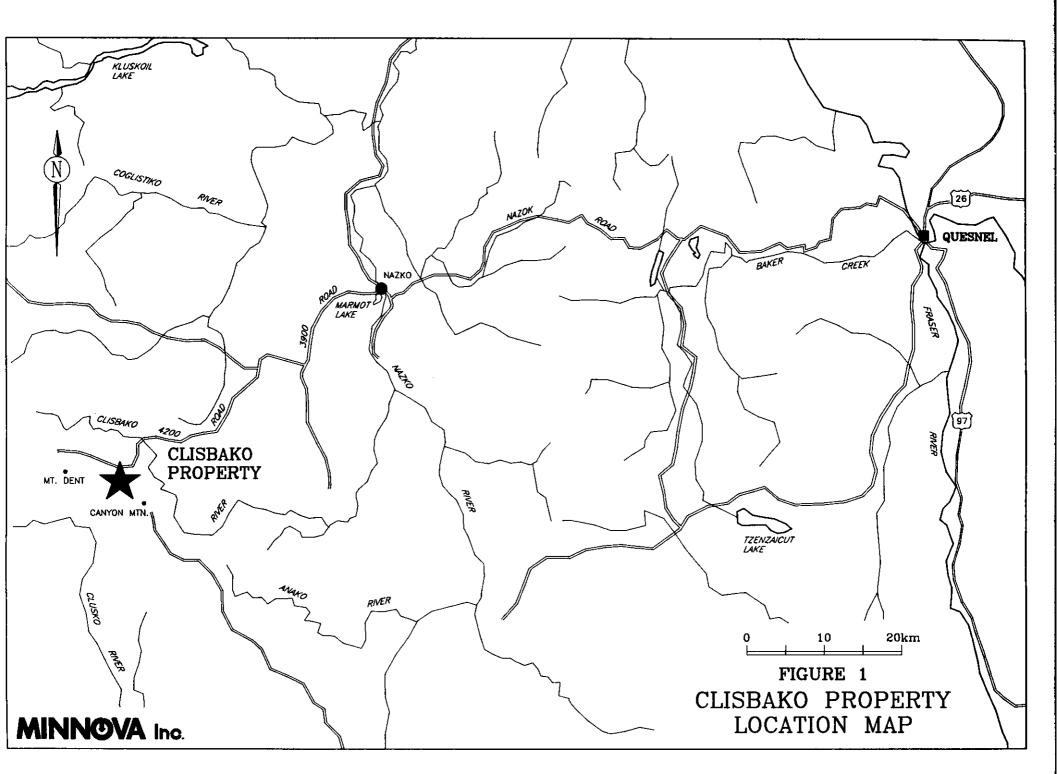
Following Page:

Figure 1.	Location Map.	1
Figure 2.	Claim Configuration	3
Figure 3.	Schematic Stratigraphic Section.	5
Figure 4.	Drill Hole Location Map.	in pocket

1. INTRODUCTION

<u>1.1 General:</u>

This report documents the results of an 11 hole, 1,357.9m diamond drilling program carried out on the Clisbako property between August 14th and September 10th, 1992. The program tested chargeability and resistivity anomalies identified by an IP survey carried out in late July and early August. Extensions to epithermal alteration zones identified in 1991 were also tested by the program.


<u>1.2 Location and Access (Fig. 1):</u>

The Property is located in central British Columbia about 105km west-southwest of Quesnel and approximately 40km southwest of the village of Nazko. It is centred at 52°43' North and 124°03' West.

Access to the claims is via the Michelle Creek and 4200 logging roads. The Michelle Creek or 3900 road as it is locally known, heads southwest from Nazko. At kilometre 27, the 4200 road branches off to the south and reaches the property boundary at kilometre 19. A spur road at kilometre 25 heads south to the grid area.

1.3 Physiography and Vegetation:

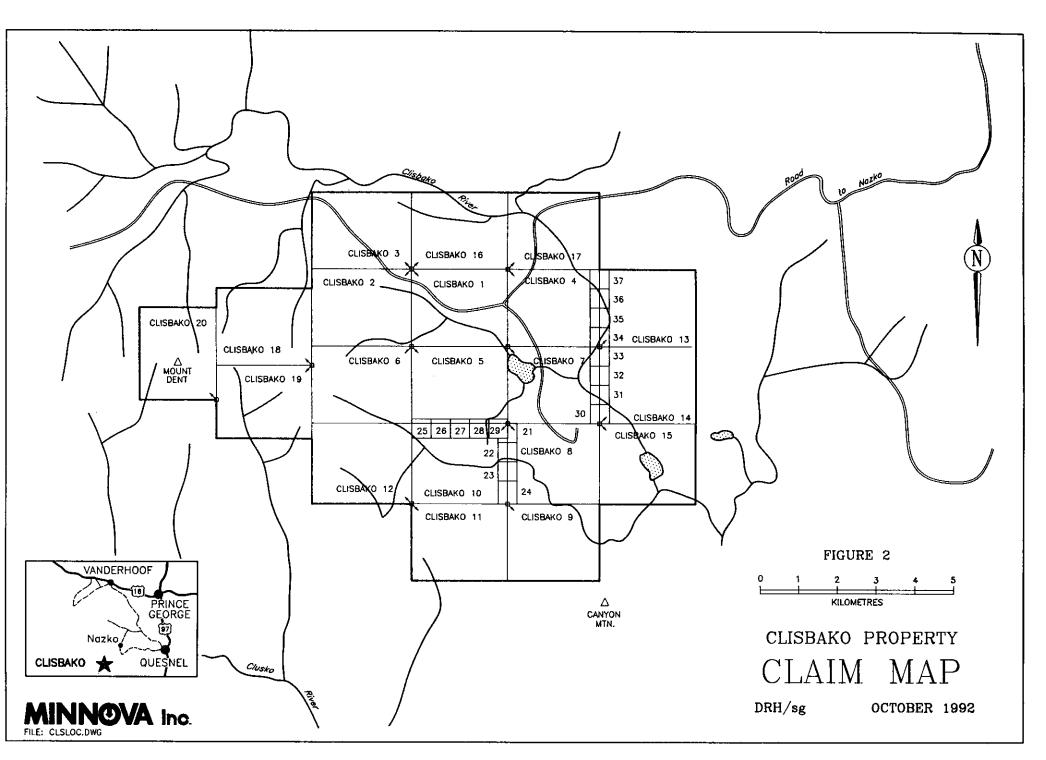
The claims form an irregular rectangular block covering an area of 10,925 hectares. East and northeast sides of the property are lowland areas typified by swampy meadows at the headwaters of the Clisbako River system. Central, south and western parts of the property are hilly with relief in the order of 250m and maximum elevations reaching 1675m at Mt. Dent near the west property

boundary. The hills form an east west divide between the Clisbako drainage to the north and the Clusko River drainage to the south.

Much of the claim area is forested, except where clear cut by recent logging. Lodgepole pine is the dominant species but black spruce and birch are abundant in low-lying and poorly drained areas. Grassy meadows occur along the major drainages in the east and north parts of the claim area. These are saturated for much of the year but dry out in late summer. Much of the central and southern parts of the property have been burned by forest fires in recent years. Three clear recent clear cuts and secondary logging roads provide access to the grid area.

Outcrop is sparse (<10%) and typically occurs in deeply incised creek channels, on hill tops and in road cuts. Much of the property is covered by a variable thickness stratified drift consisting mainly of fluvio-glacial sediments. A basal lodgement is present in places.

1.4 History:


Several major companies have carried out regional reconnaissance programs for uranium, oil and gas and epithermal Au-Ag in the region through the 1970's and early 1980's. There is no record or evidence of mineral exploration or mining activity in the claim area itself before 1990.

The closest mineral property to Clisbako is Rio Algom's OBOY prospect which is located about 4km northwest of the Clisbako 3 claim. Rio staked this property in the early 1980's and later carried out geological, geochemical and geophysical surveys and a 3000' diamond drilling program. Their target was a weak zone of quartz stockworking with anomalous Au values up to 300 ppb. The property is now inactive. Attention was focused on the claim area when zones or argillic alteration were noted during a regional reconnaissance program by Eighty Eight Resources Ltd. in the summer of 1990. Later follow-up prospecting identified areas of glacial outwash deposits containing abundant epithermal quartz float. This material was traced up-ice to its sources and the main showings were discovered. After staking the area, Eighty Eight Resources Ltd. immediately carried out a preliminary soil sampling and geological mapping program to determine the extent of the epithermal alteration zones.

Minnova Inc. optioned the property in the spring of 1991 and proceeded to fly an airborne magnetic and EM survey using the Dighem system. A field program consisting of trenching, geological mapping and rock sampling over the alteration zones was completed that summer and followed by a 19 hole 3023.7m diamond drilling program later in the fall of 1991. Results of the drill program are documented in an assessment report by D.R. Heberlein (1992).

2.0 CLAIMS

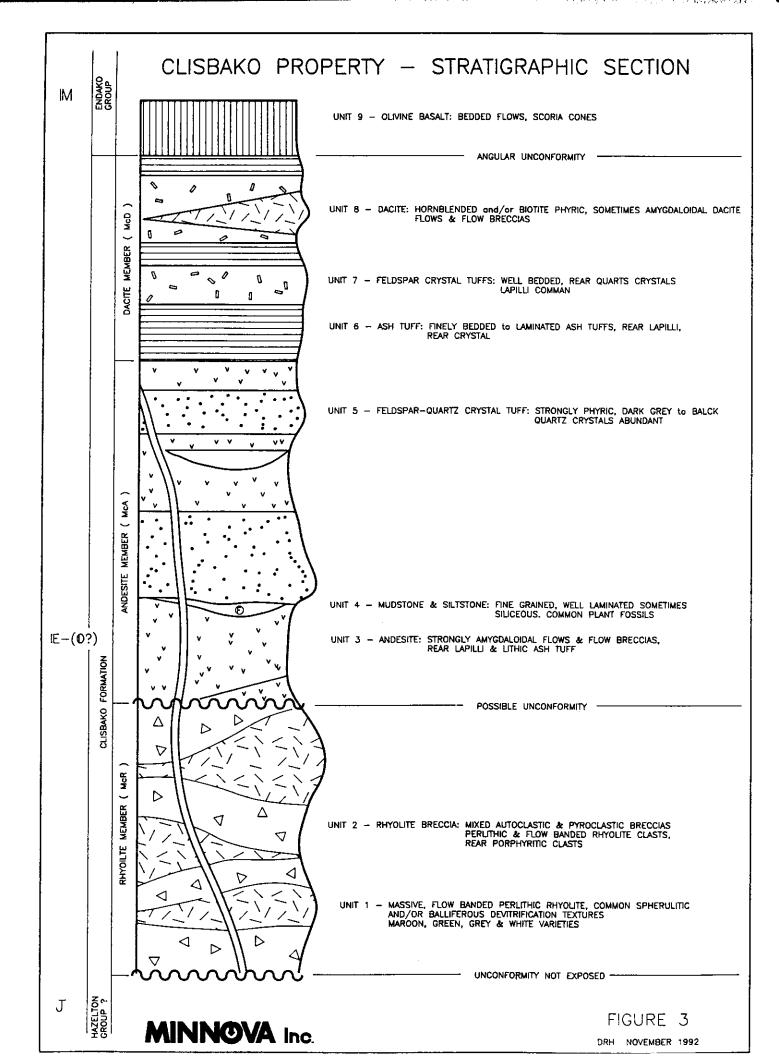
The Clisbako property consists of 20 MGS mineral claims and 17 two post claims that cover an area of 10,925 hectares. A list of the claims and their expiry dates is shown below.

TABLE 1. LIST OF CLAIMS

					_ • *
Claim		Record	Units	Record	Expiry [*]
		No.		Date	Date
	•				
Clisbako	1	206988	20	06-03-90	06-03-96
Clisbako	2	206989	20	06-08-90	06-08-96
Clisbako	3	206990	20	06-05-90	06-05-96
Clisbako	4	206991	20	06-03-90	06-03-96
Clisbako	5	206992	20	06-08-90	06-08-96
Clisbako	6	206993	20	06-08-90	06-08-96
Clisbako	7	206994	20	06-05-90	06-05-96
Clisbako	8	207022	20	06-23-90	06-23-96
Clisbako	9	207023	20	06-26-90	06-26-96
Clisbako	10	207024	20	06-27-90	06-27-96
Clisbako	11	207236	20	09-19-90	09-19-92
Clisbako	12	207250	20	09-20-90	09-20-92
Clisbako	13	207251	20	09-29-90	09-29-94
Clisbako	14	207252	20	09-29-90	09-29-94
Clisbako	15	207266	20	09-29-90	09-29-94
Clisbako	16	207416	20	04-18-91	04-18-96
Clisbako	17	207417	20	04-18-91	04-18-96
Clisbako	18	207418	20	04-23-91	04-23-95
Clisbako	19	207419	20	04-23-91	04-23-95
Clisbako	20	207420	20	04-22-91	04-22-95
Clisbako	21	310170	1	06-10-92	06-10-97
Clisbako	22	310171	1	06-10-92	06-10-97
Clisbako	23	310172	1	06-10-92	06-10-97
Clisbako	24	310173	1	06-10-92	06-10-97
Clisbako	25	310185	1	06-14-92	06-14-97
Clisbako	26	310186	1	06-14-92	06-14-97
Clisbako	27	310187	1	06-14-92	06-14-97
Clisbako	28	310188	1	06-14-92	06-14-97
Clisbako	29	310189	1	06-14-92	06-14-97
Clisbako	30	310190	1	06-15-92	09-15-97
Clisbako	31	310191	1	06-15-92	06-15-97
Clisbako	32	310192	1	06-15 - 92	06-15-97
Clisbako	33	310194	1	06-15-92	06-15-97
Clisbako	34	310195	1	06-15-92	06-15-97
Clisbako	35	310196	1	06-15-92	06-15-97
Clisbako	36	310197	1	06-15-92	06-15-97
<u>Clisbako</u>	37	310198	1	06-15-92	06-15-97

417 Units * Assuming acceptance of this assessment report.

3. GEOLOGY


Two ages of volcanic rocks underlie the Clisbako property. Oldest rocks, informally named the Clisbako formation, consist of a regionally extensive succession of felsic to intermediate flows and pyroclastic rocks. The age of these rocks is uncertain. Tipper (1968) assigns them a probable Paleocene to Eocene age and correlates them with the Ootsa Lake Gp. They underlie about 90% of the claim area and are well exposed along the hill tops between Mt. Dent and the Clisbako River.

Unconformably overlying the Clisbako formation is a 30 to 50m thick sequence of olivine basalt flows and locally abundant pyroclastic rocks belonging to the Miocene Endako Group. These rocks outcrop at the south east corner of the property near Canyon Mountain and underlie much of the low lands in the Clisbako River drainage.

<u>Stratigraphy:</u>

A schematic stratigraphic column for the Clisbako property is shown in Figure 3.

The Clisbako Formation is subdivided into three lithologically distinct members: the Rhyolite Member, the Andesite Member and the Member. The Rhyolite Member (Mcr) is the Dacite oldest stratigraphic unit. It outcrops mainly in the Mt. Dent area, but also as a north-south trending strip in the east central part of the property. Aphanitic to glassy rhyolite flows (Unit 1) are the dominant lithology, however feldspar phyric flows are also present but aerially insignificant. Most of the rhyolites are strongly flow banded and exhibit spectacular devitrification textures such as spherulites and ball textures. Perlites (after primary obsidian) are widespread. Individual flows vary from a few metres to several tens of metres in thickness. They commonly have autobrecciated tops and bases and grade laterally into unsorted, clast supported breccia deposits. Hematitic rhyolite breccias sometimes containing a variety of rhyolite clast types (Unit 2) separate the flows.

Incipient welding textures are present in these rocks suggesting that they are of pyroclastic origin.

Overlying the Rhyolite Member, possibly unconformably, is the Andesite Member (Mca). This package is bimodal, consisting of interbedded andesite flows (Unit 3) and thick, well bedded rhyolitic feldspar-quartz crystal tuffs (Unit 5). Andesites are exposed mostly in creek channels in the east-central claim area, south and west of the lake. They are characteristically strongly amygdaloidal and weather dark grey to olive green. Amygdules are filled by quartz, calcite and chlorite. Interflow sediments (Unit 4) composed of laminated siltstones and mudstones occur near the top of the andesite intervals. In at least one locality, they contain abundant broad leaf plant fossils.

Feldspar-quartz crystal tuff (Unit 5) separates the andesite flow sequences. Tuffs units are moderately well bedded on a 10 to 200 cm scale. They contain up to 25% grey to black quartz crystals (to 10mm) and 20% subhedral to euhedral alkali feldspar crystals in a felsic ash matrix. They are exposed over a wide area in the east central part of the property and south of the claims.

Overlying the Andesite Member is the Dacite Member (Mcd). It consists mostly of inter-bedded feldspar crystal tuff (Unit 6) and fine laminated ash tuff (Unit 7). A lack of quartz crystals is the main distinguishing feature between this unit and Unit 5. Rare massive to vesicular biotite and hornblende phyric dacite flows (Unit 8) are interspersed throughout the sequence. Steeply dipping bedded rocks of the Dacite member outcrop on the prominent hill 1km southwest of the lake.

Endako Group olivine basalts (Meb) unconformably overlie the Clisbako Formation. The contact is well exposed in a ravine on the north slope of Canyon Mtn at the south east corner of the claims. In this area a well preserved eruptive centre is exposed. Bedded scoria and agglutinate deposits mark the remnant of a cinder cone. Two basalt flows are fed by this centre. Abundant olivine in the form of dunite nodules (up to 15 cm in diameter) and large euhedral phenocrysts (to 10mm) characterize this unit.

Flat lying basalt flows also underlie the Clisbako river drainage in the northeast claim area. Although not exposed, their distribution is accurately defined by aeromagnetic data.

Structure:

North to north-northeast striking faults are the most prominent structures on the property. They dip moderately to steeply east and west (40 to 80°) and are responsible for extensive block faulting of the Clisbako Formation. Measured offsets range from a few metres to about 200 metres. Epithermal alteration is hosted by several of these faults.

Faulting has caused considerable rotation of the volcanic sequence, resulting in highly variable dips. For example, on the west part of the grid, units of the Dacite member dip steeply to vertically while at the North Zone bedding is nearly flat lying.

A shallow graben is defined by the north trending faults in the grid area. Epithermal style alteration at the North, Central, South, Gore and West Lake zones occur along these structures. The easternmost fault, the East Boundary Fault, hosts epithermal alteration intermittently over a length of 2km. The South, Trail and Central Zones occur along this structure.

Other structures include northwest and northeast trending linears which form conspicuous drainage patterns in the northeast claim area. They have no measurable offset and significance is not understood.

Epithermal Alteration:

Several occurrences of epithermal-style alteration are known in the east part of the property. They are all similar in style.

The zones are characterized by wide haloes of pervasive argillic alteration occurring in the hanging wall of the graben faults. Extensive stockworks of quartz, pyrite (± marcasite) veinlets occur throughout the argillic zones. Overall sulphide content averages about 0.5%.

Stockworks grade into areas of pervasive silicification close to the faults. These commonly contain irregular shaped bodies of hydrothermal breccia and banded veins.

Argillic alteration occurs up to 100m into the hanging wall of the source structures. Where several parallel structures occur close together, such as at the North Zone, the argillic zones coalesce into a single wide expanse. Silicification is more restricted, occurring as 1 to 25m wide zones along fault planes. Narrow subparallel silicified zones also occur in the footwall of the host structures.

Footwall alteration is less strong than hanging wall alteration. Argillic alteration is typical, however at some locations weak propylitization consisting mostly of chlorite and calcite veinlets is developed.

Alteration is well developed in a variety of host rocks. At the North, West Lake and Central zones alteration occurs in Unit 1 rhyolite and Unit 5 crystal tuff. At the South Zone strongest alteration is hosted by amygdaloidal andesite of Unit 3.

Geochemistry:

The alteration zones have a typical epithermal geochemical signature. Anomalous to highly anomalous values for Hg, As, Sb, Ba, Ag and Au are widespread. In the silicified zones Hg values reach levels of several thousands of ppb and As in the thousands of ppm. Anomalous Au values (in low hundreds ppb) and silver (to 77 ppm) occur in the silicified zones. Highest gold values occur in banded quartz veins and pyritic banded chalcedony veins. Values exceeding 1.0 g/t Au are rare and ore grades have not been seen to date.

4. DIAMOND DRILLING

4.1 Program Summary:

Eleven holes, totalling 1,357.9m were drilled on the Clisbako property between August 14th and September 10th, 1992. Drilling was performed by Frontier Drilling Ltd. of Langely, B.C., using a skidmounted Longyear Super 38 diamond drill and NQ rods. Drill core was logged by P. Thiersch and G. Duso at Minnova's core storage facility on the property (Fig. 4).

Drill core was routinely split in 2 metre sections (or less if lithology dictated) and half of the core was shipped to Minen Labs in North Vancouver for geochemical analysis. Gold was determined by fire assay with an AA finish and Ag, As, Ba, Cu, Pb, Zn and Sb by ICP. Mercury was determined by AA using the cold vapour technique.

Drill hole locations are shown in Figure 4 and summarized in the table below. All coordinates are in UTM grid units. Drill logs and analytical results are presented in Appendix 1.

HOLE	UTM EAST	UTM NORTH	ELEV,	AZM.	DIP	LENGTH
CL-92-20	429650	5841550	1293m	090°	-45°	132.6m
CL-92-21	429050	5841375	1320m	090°	-45°	76.8m
CL-92-22	429200	5841385	1314m	270°	-45°	156.7m
CL-92-23	428600	5841590	1335m	270°	-45°	185.Om
CL-92-24	428637	5841500	1345m	270°	−55°	168.6m
CL-92-25	429850	5841035	1345m	090°	-45°	101.2m
CL-92-26	429250	5841385	1310m	270°	−55°	76.2m
CL-92-27	429000	5841375	1320m	090°	-45°	121.Om
CL-92-28	429755	5839328	1292m	090°	-45°	154.5m
CL-92-29	429765	5839220	1290m	090°	- 55°	78.3m
<u>CL-92-30</u>	429755	5839328	1292m	<u>120°</u>	-55°	<u>107.0m</u>

TABLE 2. DIAMOND DRILL HOLE LOCATIONS

TOTAL 1,357.9m

4.2 Results:

Results of the drilling program are summarized below.

4.2.1 Tufa Zone:

Drill hole **CL-92-20** was drilled to test a strong chargeability anomaly identified beneath the Tufa Zone. It penetrated a complex sequence of Unit 1 perlite, rhyolite and rhyolite breccia. Alteration is weak throughout the hole, with pervasive argillization prominent in the lower half. Strongest clay alteration occurs between 92.6 and 99.0m, in a gougy fault zone. Zones of strong silicification occur between 66.2 and 72.6m and 105.6 to 132.6m.

The strong chargeability anomaly was not explained by this hole. Disseminated pyrite (3%) was intersected over a 50cm width between 96.2 and 98.3m; an insufficient quantity to produce the strong IP response.

4.2.2 West Lake Zone:

Four holes (CL-92-21, CL-92-22, Cl-92-26 and CL-92-27) were drilled into the West Lake Zone. They were designed to test a coincident resistivity and chargeability anomaly and the dip extension of a mineralized epithermal vein exposed in two trenches.

Hole **C1-92-21** collared in and followed a fault zone to a depth of 76.8m where the hole was abandoned. Core recovery averaged 50% throughout the hole. Recovered material consists mainly of clayrich fault gouge containing pebble sized clasts of rhyolite and vein material. Pyrite as disseminated subhedral grains occurs throughout the hole in amounts up to 2%.

Hole CL-92-22 was drilled to test the same target as CL-92-21. To avoid the fault the hole was collared 150m to the east of CL-92-21 and drilled in the opposite direction (270°).

A strongly argillized sequence of Unit 4 feldspar-quartz crystal tuff was encountered to a depth of 52.7m. Patchy silicification and moderate to strong argillic alteration with abundant quartz-pyrite stringers was noted throughout the interval. Intense silicification with zones of black-matrix breccia, jigsaw breccia and narrow quartz veins occurs between 52.7 and a fault zone at 108.9m. This alteration occurs at a major contact between Unit 4 and Unit 1. Strongly anomalous values for As (152-2492 ppm) and weak to moderately anomalous Hg values (up to 385 ppb) occur throughout the hole. Gold values are weakly anomalous (up to 23 ppb) in the most silicified intervals, and Ag is sporadically elevated through the entire hole.

Hole **CL-92-26** was drilled 50m east of CL-92-22, to test the alteration zone about 50m down dip. Unfortunately, as in hole CL-92-21, the hole followed a fault and was abandoned at 76.2m. Core recovered was mostly feldspar-quartz crystal tuff (15.2 to 62.2)

with moderate argillic and patchy silica alteration. Below the fault at 62.2m the hole remained in rhyolite breccia to the end of the hole.

Encouraging results were produced by hole **CL-92-27** which was drilled beneath CL-92-21. Strong alteration consisting of intense argillization, quartz stockworking and intermittent strong silicification was encountered between 58.8 and 75.6m. Zones of pyritic hydrothermal breccia occur from 62.2 to 63.9 and 70.7 to 75.6. Very high Hg values (1165 to 18,375 ppb) occur between 46.0 and 57.0m. Gold and Ag grades are very low with sporadic peaks up to 13.7 ppm Ag and 135 ppb Au.

4.2.3 West Pit Zone:

Two holes (CL-92-23 and CL-92-24) were drilled to test an area of high chargeability and resistivity values in the West Pit area. Trenching on this target failed to reach bedrock, however quartz breccia float and bright yellow clay was abundant in the subcrop.

Hole **CL-92-23** penetrated 30.8m of overburden. From 30.8m to 75m, a strongly argillized zone containing a well developed stockwork of quartz and pyrite was intersected. Narrow intervals of strong silicification are present in this interval (34.1 to 34.6m, 48.1 to 48.6m and 56.1 to 56.8m). From 75.0 to 89.7, a complex zone of stockworking and brecciation was encountered. Several narrow bodies of hydrothermal breccia are present in this zone. Alteration and mineralization are hosted by amygdaloidal andesite. A fault truncates the mineralization at 108.8m and juxtaposes Unit 1 rhyolite, which continues to the end of the hole.

No significant metal values were encountered in this hole.

CL-92-24 was drilled into the West Pit IP anomaly, 100m to the southeast of CL-92-23. Unit 4 crystal tuff with moderate to strong silicification was intersected from 9.1 to 100.4m. Most of the alteration occurs above 32.5m and is closely associated with several small faults. A clay-rich fault zone (100.8 to 107.7m) separates the crystal tuffs from perlitic, flow banded rhyolite. This unit continues to the bottom of the hole at 168.6m. Alteration below the fault is weak and no significant mineralization was observed in the rhyolite. No significant metal values were detected in the hole.

4.2.4 Beaver Pond Zone:

The Beaver Pond Zone was tested by hole **CL-92-25**. It lies at the south end of the West Lake Zone IP anomaly and is reflected at surface by three narrow breccia vein outcrops in the north bank of the North Zone creek channel.

Hole CL-92-25 collared in intensely argillized amygdaloidal andesite after 46.3m of casing. A well developed quartz-pyrite stockwork zone was penetrated from 46.3 to 56.3m. In this interval pyrite contents reach about 5%. Silicified fault breccia/ hydrothermal breccia occurs from 56.3 to 57.0m. The breccia lies in the hangingwall of a 2.8m (57.0 to 59.8m) wide quartz vein that occupies a major fault plane. Banded, bladed and breccia textures are present in this vein. Silicification and brecciation continue intermittently below the vein to a second fault at 61.5m. Below this the hole remains in rhyolite breccia to its end at 101.2m.

Alteration in the rhyolite consists mostly of pervasive argillization which decreases in intensity down hole. A narrow zone of silicification occurs between 71.3 and 71.6m where a small quartz vein occurs. No anomalous metal concentrations occur in this hole.

4.2.5 South Zone:

Three holes (CL-92-28, CL-92-29 and CL-92-30) were drilled at the South Zone. They were designed to test the west-dipping epithermal alteration zone, discovered in 1991 both along strike and down dip from the surface showings.

CL-92-28 collared in a well developed stockwork of quartzpyrite stringers hosted by amygdaloidal andesite. At 57.0m a clayrich fault plane separates the stockwork from silicified, black matrix hydrothermal breccia (58.0 to 69.3m). The breccia occupies a major fault contact between Unit 3 andesite in the hanging wall and Unit 1 and 2 rhyolite in the footwall. Rhyolites continue to the bottom of the hole at 154.5m.

Narrow, highly silicified zones cut the otherwise weakly altered rhyolite in several places (e.g., 71.2 to 72.0m and 75.6 to 81.0m).

Mercury and Arsenic are highly anomalous (up to 2720 ppb Hg and 610 ppm As) in the silicified breccia and in the overlying stockwork. Highest Au concentrations (294 ppb) occur in the black matrix breccia. Silver is most concentrated (10.5 ppm) at the upper contact of the breccia.

Hole **CL-92-29** was drilled 125m south of CL-92-29. It was drilled to test the South Zone structure 70m down dip from the surface exposure. Again it collared in strongly stockworked Unit 3 andesite which extends to 40.5m. From 40.5m to 44.2m the silicified black matrix breccia was intersected. The altered section is narrower and less well developed than it is in CL-92-28. Below the breccia, Unit 2 rhyolite breccia was present to the end of the hole at 154.5m. Very high Hg values (to 7,500 ppb) occur in the silicified breccia from 40.5 to 45.2m. Anomalous As concentrations between 307 and 835 ppm extend over a wider interval (40.5 to 48.8m) which straddles the breccia zone. The highest gold value of 164 ppb occurs in the stockwork zone near the upper contact of the breccia. Silver values are generally elevated (+1.0 ppm) but do not occur over coherent widths.

Hole **CL-92-30** was drilled from the same collar as CL-92-28 to test the epithermal alteration 70m down dip from the surface exposures, mid way between holes CL-92-28 and CL-92-29. A well developed silicified breccia zone with an overlying stockwork hosted by argillized andesite was intersected between 58.3 and 70.2m. The breccia interval (62.4 to 70.2m) contains a 50cm wide cross cutting banded and bladed vein at the footwall contact. Below the vein stockworking and silicification persist to 76.6m where there is a sharp contact with rhyolite. The hole remains in rhyolite to the end at 107.0m. Alteration intensity gradually diminishes down hole.

Elevated values for Au (to 228 ppb), Hg (to 2160 ppb), and As (to 764 ppm) occur near to upper contact of the breccia zone.

5. SUMMARY AND CONCLUSIONS.

The drill program was designed to test IP anomalies identified by a gradient array IP survey carried out early in the 1992 field season. It also set out to complete the testing of the west dipping epithermal breccia body discovered at the South Zone in 1991.

Results of the program are disappointing. Despite intersecting extensive widths of strong epithermal alteration in each target area, no significant precious metal values were detected. Nevertheless, strongly anomalous indicator elements such as Hg, As (and Sb) show that the system as a whole has a classic epithermal signature. It may yet have potential at depth. A near surface, open pit target has all but been eliminated by the 1991 and 1992 drilling programs in the grid area.

6. REFERENCES.

- Dawson, J.M., 1990; Geological and Geochemical Report on the Clisbako Property. Assessment Report.
- Heberlein, D.R., 1992; Diamond Drilling Assessment Report on the Clisbako Property, Cariboo Mining Division.

Tipper, H.W., 1968; Geology, Anahim Lake. GSC Geology Map 1202A.

APPENDIX I STATEMENT OF COSTS

STATEMENT OF COSTS

DRILLING (August 14 to September 25, 1992):

Contract Payment (Frontier Drilling Ltd.) 1,419.6m @ \$49.70/m\$	70,549.85
Reclamation (Grass Seed):	\$356.87

PERSONNEL:

Peter Thiersch (Project Geologist): 25 days @ \$ 180 /day	\$4,500.00
Greg Duso (Assistant): 25 days @ \$115/day	\$2,875.00
Nancy Kastelein (Cook): 25 days @ \$125/day	\$3,125.00

ANALYTICAL COSTS:

Geochemical	Analyses of	Drill Core	
for Ag, As,	Ba, Cu, Pb,	Sb, Zn, Au and Hg:	
172 samples	@ \$15.50 /s	ample	\$2,666.00

LOGISTICS:

Meals and Accomodation: 80 mandays @ \$25/day	\$2,000.00
Vehicle Rental: 25 days @ \$ 50/day	\$1,000.00
Travel Expenses:	\$380.00
Field Expenses: (Core Racks, Camp Equpment etc.)	\$2,484.50

SUPERVISION:

Dave Heberlein	(Senior Project	; Geologist):	
5 days @ \$250 /	′day		\$1,250.00

REPORT PREPARATION:

Dave Heberlein	
2 days @ \$250/day	\$500.00

TOTAL \$91,687.22

APPENDIX II DIAMOND DRILL LOGS AND ANALYTICAL RESULTS

HOLE NUMBER: CL-92	-20			MINNOVA INC. LL HOLE RECORD		IMPERIAL UNITS: MET	RIC UNITS: X
PROJECT NAME: 1 PROJECT NUMBER: 6 Claim Number: Location: T	67	PLOTTING COORD	NORTH: 41550.00N EAST: 29650.00E ELEV: 1293.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV:	0+ 0 1293.00	COLLAR DIP LENGTH OF THE HOLE START DEPTH FINAL DEPTH	: 0.00m
DATE STARTED: DATE COMPLETED: DATE LOGGED:	August 14, 1992 August 17, 1992 August 20, 1992	COLLAR GRID Collar Survey: No Multishot Survey: No Rqd Log: Yes	AZIMUTH: 90°0'0"	COLLAR ASTRONOMIC AZIMUTH: PULSE EM SURVEY: NO PLUGED: NO HOLE SIZE: NQ	90° 0' 0"	CONTRACTOR: FRONTIER DRILLING CASING: 10' LEFT IN HOLE CORE STORAGE: CAMP	

PURPOSE: TO TEST IP "PIPE" ANOMALY UNDER TUFA ZONE

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
-	-		-	-		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		· ·	-	-	-	-	
-	•	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	•	
-		-	-	-				-	-	:	
	-	-	-				-				
-	-	_	-	-				-		-	
_	-	-	-	-			-	-	_	-	
-	-	-	_	-				_			
-	-	-	-	-			-	-	-		
-	+	-	-	-		· ·	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		· ·	-	-	-		
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-] -	-	-	-	-	
•	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	

HOLE NUM	BER: CL-92-20			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 0.00 TO 10.40	«CASING»					
10.40 TO 17.40	«OVERBURDEN -BASALT»					
17.40 TO 26.60	«OXIDE ZONE -FB FS RHYO »	F.B. FS Phyric rhyolite.(Classic FB latite)	40	highly fractured, gougy,«ST ARG»		
26.60 TO 40.10	«TUFF BRECCIA»	green, coarse grained, heterolithic depositional breccia.1-10 cm frags of perlitic rhyolitic,welded tuff and crystal ash tuff in a tuffaceous, locally bedded matrix. Matrix supported. [36-38] «Fault zone»	65	Strongly fractured locally gougy«ST ARG » mottled green (chlorite) to black (he matite) alteration of frags and matrix.		
40.10 TO 44.50	«PERLITE»	Green, fine grained, classic perlitic rhyolite, locally intense, gives breccia like texture, upper contact is gougy- might be a fault.		«ST ARG»		
44.50 TO 45.20	«FAULT»	Grey coarse grained , 80% clay gouge zone.	65	«INT ARG»	Trace of sulphides.	
45.20 TO 66.20	«SPHEROIDAL RHYOLITE»	Green/maroon, fine grained, incredibly balliferous rhyolite, amazing density and size range from classic 1-3cm hematitic red balls to smaller <1cm trout spots. Many coalesce to form bands or cigar shapes. Perlitic texture is common between larger balls. Smaller spots often coalesce to become semi massive over 5-15cm larger balls commonly rimmed by white rind, in matrix, part of perlitic alterat ion which does not affect balls. Many smaller spot s are stretched and hollow- filled by py and chl and bright orange red mineral. These are the first true "lithophaysae" observed, look like amygdales but hematitic ball alteration surrounds the core. I'm now convinced that the balls are classic spheroidal alkali feldspar alteration accompanying devitrification. There chemistry is enriched in si lica and sodium relative to groundmass.	50	<pre>«PATCHY ARG» «d00 PROP» Pyrite doesn't exceed 1 or 2% but may b e responsible for I.P. chargeability allthough offset by 25m, this is the only sulphidic zone in the hole! Lower contact is gradational. [55.8-57.0] «lithophaysae» <5mm, stretched, filled by calcite.</pre>		

,

HOLE NUME	BER: CL-92-20			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
66.20 TO 72.60	«PERLITE»	Dark green, fine grained, classic perlitic net tex tured rhyolite, rare balls.		«ST SIL»		
72.60 TO 77.20	«PERLITE»	Pale green, fine grained, intense perlitic				
77.20 TO 87.80	«HEMATITE BRECCIA»	Green and red coarse grained depositional breccia of f.b. rhyolite and perlite frags, variably chlor itized in a red to black hematitic matrix.		«ST CHL»frags «ST HEM» matrix, weak calcite stringers «PATCHY ST ARG»		This is where I.P. anomaly should be!
87.80 TO 88.20	«FAULT»	70% CLAY GOUGE				
88.20 TO 96.20	«PERLITE»	Classic perlite with local breccia like textures. rare balls.		highly fractured «MOD-INT ARG»		
96.20 TO 99.00	«FAULT» «GOUGE»	Major fault zone 60% clay gouge. ¶97.8-98.3⊫ 90% clay gouge w∖ minor py		«INT ARG» «EXT ARG»	3% disseminated py	this is probably I.P. anomaly.
99.00 TO 105.30	«PERLITE»	Pale grey, fine grained, finely banded, f.b. rhyolite overprinted by perlitic textures.Flow banding most apparant in upper 2m. Bands <1cm at lower contact "islands" of glassy unperlitized rhyolite remain. These are more silicious, less ar gillic like underlying rhyolite unit.	25	«MOD ARG»		
105.30 TO 132.60	«FLOW BAND RHYOLITE»	Dark grey, fine grained glassy unaltered flow banded rhyolite. Upper perlite represents alter- ation (hydration) halo around fault. Darker the rock the more silicious upper contact w\ perlite is "patchy". Rhyolite is flow banded and has variable feldspar microcrystals. [111.9-112.2] «FAULT» [118.5-120.9] «FRACTURE ZONE» fractured and	45	«ST SIL» «PATCHY MOD ARG» minor calcite stringers.	trace of sulphides.	Contains bleached fracture zones.
		122.0-125.6 «RACTURE ZONE» bleached zone with 128.4-132.6 «RACTURE ZONE» some white clay. 124.4-132.6 «CALCITE VN» 3cm barren fracture fill.	20	«MOD ARG» flow bands are hematite hairlines with weak chloritic halos.		

HOLE NUMBER: CL-92-20

1

HOLE NUM	BER: CL-92-20			MINNOVA INC. DRILL HOLE RECORD		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
132.60 TO 132.70	«E.O.H.»					

x

LOGGED BY: PETER THIERSCH

PAGE: 4

HOLE NUMB	IOLE NUMBER: CL-92-20										AS	SAY SHE	ET		DATE:	: 11-December-1992
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	GEOC Fe %	HEMICA Pb ppm	sb ppm	Zn ppm	Au ppb	Hg ppb	s X		COMMENTS

HOLE NUMBER: CL-92	2-21			MINNOVA INC. Ill Hole Record		IMPERIAL UNITS:	METRI	C UNITS: X
PROJECT NAME: 1 PROJECT NUMBER: 6 CLAIM NUMBER: LOCATION: W		NO	RID: UTM RTH: 41375.00N AST: 29050.00E LEV: 1320.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV: COLLAR ASTRONOMIC AZIMUTH:	0+ 0 1320.00	LENGTH O S	COLLAR DIP: IF THE HOLE: TART DEPTH: INAL DEPTH:	-45° 0' 0" 76.80m 0.00m 76.80m
DATE STARTED: DATE COMPLETED: DATE LOGGED:	August 18, 1992 August 19, 1992 August 26, 1992	COLLAR SURVEY: NO MULTISHOT SURVEY: NO RQD LOG: YES	51n: 90 0. 0.	PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ	90 0 0	CONTRACTOR: FRONTIER D CASING: 10' LEFT I CORE STORAGE: CAMP		

PURPOSE: TO TEST IP ANOMALY AND VEINS FOUND IN TRENCH ALONG STRIKE TO SOUTH

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	2	-	-			-	-	:	-	
	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	•	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-				-	-		
-	-	-	-	-		-	-	-	-		
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	•	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	:	-				-	-	-	
-	-		-	-			-	-	-	-	
-	-	-	-	-		-	•	-	-	•	
-	-	-	-	-		-	•	-	-	-	

IOLE NUME	BER: CL-92-21		MINNOVA INC. DRILL HOLE RECORD	DATE: 11-December-1992				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS		
0.00 TO 25.90	«CASING»							
25.90 TO 28.00	«FAULT»	Oxide yellow iron stained fault gouge containing rounded sand to pebble sized heterolithic clasts. Some clasts silicified with veinlets visible, other clasts are grey chalcedony.	30	Strongly weathered and «MOD ARG» alt.	none	50% RECOVERY		
28.00 TO 31.80	«SILICIFIED FAULT»	Oxide yellow, same fault but dominated by angular clasts of grey and/or pyritic chalcedony and white-yellow quartz. Partly resilicified but highly fractured and very porous.	10	«MOD SIL»	«1% PYRITE»	50% RECOVERY		
31.80 TO 44.80	«GOUGE»	Pyritic quartz clasts, sand to pebble sized, in gouge matrix. Rare vein or breccia frag to 10cm		«INT ARG»	«1-2% PYRITE»	60% RECOVERY		
44.80 TO 76.80	«FAULT»	Most fault gouge washed away leaving clasts of hydrothermal quartz vein and breccia, and strongly argillized feldspar crystal tuff. [52.7-58.2] «TRICONE» No recovery. [76.7] Pink orange mineral stain - orp? hem?		«ST ARG»		20% RECOVERY		
76.80 TO 76.80	EOH							

HOLE NUMBER: CL-92-21

DRILL HOLE RECORD

LOGGED BY: GREG DUSO

PAGE: 2

HOLE NUMB	NUMBER: CL-92-21 ASSAY SHEET														DATE: 11-December-1992
Sample	From (m)	То (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	GEOC Fe X	HEMICAL Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	S X	COMMENTS
38084 38085 38086 38087 38088	26.00 32.60 35.70 40.20 43.20	32.60 35.70 40.20 43.20 52.70	3.10 4.50 3.00	2.6 5 3.8 2.7 11.9	152 170 484 59 151	324 154 179 1088 429	14 39 25 13 14	2.02 4.11 2.66 2.17 0.84	11 8 5 2 5	18 20 24 8 13	11 8 6 35 12	197 148 136 28 104	1620 5070 1200 715 505	0.22 5.19 2.86 2.37 0.66	
38089 38090	58.20 67.70	67.70 76.80		7.8 2.4	264 125	1256 202	14 6		6 7	44 19	18 12	109 58	1230 300	0.08 0.03	

HOLE NU	MBER: CL-	92-21							RQD	ASSAY	DATE: 11-December-1992
From (m)	To (m)	Length (L)	Sum Of Length S>= 0.00cm	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments	
0.00	0.00	0.00	0.00	0	0	0	0	0	0		

-

HOLE NUMBER: CL-92-22	n Dril	IMPERIAL UNITS: METRIC UNITS: X	
PROJECT NAME: 1992 PROJECT NUMBER: 667 CLAIM NUMBER: LOCATION: WEST LAKE ZONE	PLOTTING COORDS GRID: UTM NORTH: 41385.00N EAST: 29200.00E ELEV: 1314.00	ALTERNATE COORDS GRID: NORTH: 0+ 0 EAST: 0+ 0 ELEV: 1314.00	COLLAR DIP: -45° 0' 0" LENGTH OF THE HOLE: 157.60m START DEPTH: 0.00m FINAL DEPTH: 157.60m
DATE STARTED: August 17, 1992 DATE COMPLETED: August 19, 1992 DATE LOGGED: August 23, 1992	COLLAR GRID AZIMUTH: 270° 0' 0" Collar Survey: No Multishot Survey: No Rod Log: Yes	COLLAR ASTRONOMIC AZIMUTH: 270° 0' 0" PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ	CONTRACTOR: FRONTIER DRILLING CASING: 10' LEFT IN HOLE CORE STORAGE: CAMP

PURPOSE: TO TEST IP ANOMALY AND VEINS FOUND IN TRENCHING BEST ASSAY IN TRENCH 7g Au, 85g Ag

DIRECTIONAL DATA:

pth m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
54.50	-	-46° 0'	ACID	ок		-	-	-	•	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	•	-	
•	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
•	-	-	•	•		-	-	-	-	•	
-	-	-	•	•		-	-	-	-	•	
-	-	-	-	•		· ·	-	•	-	•	

HOLE	NUMBER:	CL-92-22
------	---------	----------

MINNOVA INC. DRILL HOLE RECORD

DATE: 11-December-1992

FROM TO	ROCK TYPE TEXTURE AND STRUCTURE		ANGLE TO CA		MINERALIZATION	REMARKS	
0.00 TO 27.40	«CASING»	Overburden.					
27.40 TO 33.50	«OXIDE ZONE -FXT»	Orange, strongly oxidized feldspar crystal tuff or ash flow. Looks tuffaceous but wavy banding in fg ash? layers suggest flowage. Textural variability suggests ash flow origin. beds a	35	«PATCHY SIL, ST FE OX» Strongly oxidized, variable patchy silicification along some 2-3cm beds.	«TRACE PYRITE» preserved in silicified patches, otherwise oxidized.		
33.50 TO 43.50	«QUARTZ STOCKWORK- FXT»	Orange and grey, weak to moderate grey-black quartz stockwork. Black sulphidic veinlets to 2cm generally <1cm. Host rock is feldspar crystal rich ash flow tuff with irregular bedding or flow laminations and rare lapilli frags <1cm, 5%, feldspars 1-6mm, 30%. [33.5 - 34.2] «Black Sulphidic Quartz Vein» 2cm wide	10	«MOD-ST ARG, PATCHY ST SIL»	<pre>«1-5% PY» in grey to black quartz veins and stringers «TRACE BLACK (SILVER?) SULPHIDE» along vein selvages. «5% pyrite»</pre>	Quartz stringers at low angle to core axis indicate drilling down dip.	
43.50 TO 46.90	«FAULT ZONE -LAPILLI TUFF?»	Grey-green, cg heterolithic breccia of <1cm-10cm angular frags of feldspar crystal tuff, aphanitic clay altered frags and grey quartz vein material. Looks like a lapilli tuff but gougey zones indicate a tectonic origin of overprint.		«ST-INT ARG, PATCHY SIL» Weak black quartz stockwork throughout interval.	<pre>«3% PYRITE» in broken stringers.</pre>		
46.90 TO 49.20	«FELDSPAR CRYSTAL-ASH TUFF»	Pale grey, mg tuffaceous interbed of feldspar crys tal ash tuff. Weak fabric at 90 to CA may be beddi ng or weak welding. fabric a	90	«MOD-ST ARG» Weak quartz-pyrite stringe rs. Increasing silicification to bottom of interval, accompanied by pervasive iron staining, feldspars clay altered.	<pre>«1-2% PYRITE» in quartz stringers. ***RUBY SILVER*** noted at 47.7m</pre>	Host rock is continous feldspar crystal tuff down to fault at 99.7m.	
49.20 TO 52.00	«LITHIC LAPILLI TUFF»	Pale grey, cg, silicified heterolithic lapilli tuf f of subrounded to angular frags of welded feldspa r crystal tuff, ash tuff and rare perlitic rhyolit e. 90% of frags <2cm, 10% up to 10cm, in a lithic crystal rich matrix. bedding contact stringers	35 20	«ST SIL» is pervasive but some frags re main strongly argillized. Weak to moderate stockworking increases down section	«1-3% PYRITE» mainly restricted to quar tz stringers. Patches of matrix are gre y and silicified but don't carry signif icant sulphide.	Upper contact is gradational, but fract ured and shows iron oxide halo above an d below contact.	
52.00 TO 57.00	«BLACK QUARTZ BRECCIA»	Black and white, cg monolithic hydrothermal brecci a of feldsper crystal ash tuff. Frags angular <1cm to 20cm, at least three phases of brecciation: frags of argillized wall rock, white to grey bande d quartz vein and wall rock and rebrecciated frags of same, cemented by black sulphidic fg quartz. Stockwork stringers of latest black quartz cut per iferal wall rock. Minor local ashy interbeds 1-2cm		<pre>«MOD-ST ARG FRAGS, INT SIL MATRIX» Fragments strongly argillized, some ove rprinted by strong silicification. Feldspars gone to green clay. Three narrow zones (<10cm) of strong ir on stained wall rock at 55.5, 56 and 56 .5m.</pre>	«3-10% PYRITE» in black quartz matrix a lso «TRACE BLACK SULPHIDE» probably aca nthite, sparsely disseminated throughou t, mainly visible in pre-sulphide bande d white to grey quartz. Black sulphide at 55.8m and 53.2m.		

IOLE NUM	BER: CL-92-22			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		thick are well bedded at 25. bedding Upper contact appears conformable. Latest quartz phase is vuggy white and barren.	25			
57.00 TO 67.20	«QUARTZ STOCKWORK»	Grey patchy moderate to strong black quartz+pyrite stockwork stringers with local jigsaw breccias con taining a second phase of fg grey quartz and less often a third phase of vuggy white crystaline quar tz. Hosted by bedded weakly welded feldspar crysta l tuff. vitric shards welded into planes a Feldspars 2-4mm 15-20% in vitric shard rich matrix [59.9-59.2] «Quartz Breccia» Stockwork blowout, jigsaw breccia as above. [61.4-62.1] «Quartz Breccia» as above. [61.4-64.5] «Oxide Zone-Quartz Vein» Fe stained hanging wall to 2cm qtz vn [66.0-66.5] «Quartz Breccia» as above.	30	*400 ARG» alteration of wall rock. Strongly stockworked and brecciated are as are moderately silicified. feldspars altered to green clay.	«3-5% PYRITE» in mm black quartz string ers and as mm selvages and fragment rim s in local breccias. Occurs only in fir st phase quartz, accomapnied by. «TRACE BLACK SULPHIDE»	Veins at low angle to core axis.
67.20 TO 69.10	«QUARTZ BRECCIA»	Black to grey, cg monolithic hydrothermal breccia of same welded crystal ash tuff. Angular frags <1c m to 30cm, almost clast suported, locally jigsaw. Three phases evident: silicification and pyritizat ion of wall rock fragments, intense brecciation and d cementation by pyrite rich black quartz, then mi nor brecciation and vuggy cementation by barren gr ey quartz.		«ST ARG, ST SIL» wall rock frags have been strongly argi llized, bleached, then overprinted by s trong silicification and patchy pyrite.	«3-10% PYRITE» as mm selvages rip ps an d blebs within the matrix. Also occurs as sil-py replacement in altered frags.	Trace grey sulphides may occur with pyr ite along vein selvages.
69.10 TO 78.20	«QUARTZ STOCKWORK»	Moderate grey to black quartz stockwork stringers with minor blowout jigsaw breccias. Both carry abu ndant fg pyrite, some frags are also pyritic. Paragenesis is: sil-py alteration and brecciation, cementation by pyrite rich grey quartz mixed with black sulphidic? quartz, lesser brecciation and ce mentation by vuggy grey barren quartz. \$76.3-77.1\$ #Pyrite Breccia> black sulphidic? qtz		generally 440D-ST ARG» alteration of wa ll rock, with patchy 4400 SIL» overprin t, feldspars gone to pale green clay, some breccia frags are silicifed and py ritic. Minor white clay in late vugs	«3-10% PYRITE» in black quartz stringer s and blowout breccias. Opaque black qu artz may carry black sulphide?	
78.20 TO 87.50	*OXIDE ZONE *	Orange-brown oxidation halo around fault, overprin ts weak bull quartz stockwork. 179.3-81.11 «Fault» Oxidized gouge.		«ST FE OX» Strong fe stained feldspars.	«TRACE GREY SULPHIDE» remains, all pyri te has been leached.	
87.50 TO 99.70	«QUARTZ STOCKWORK»	Orange to grey, weak to moderate quartz stockwork with patchy late fe oxide overprint. Minor blowout breccias carry abundant pyrite. Smokey quartz line s vein walls and appears to replace mm selvages within the wall rock. This is followed by grey pyr ite rich quartz, then late white bull quartz. Oxid		generally «ST ARG, W SIL» alteration with late fracture controlled «PATCHY F E OX» 88.5-89.5 «Oxide Zone» 90.5-91.0 «oxide Zone»	«3-5% PYRITE» in quartz stringers and b reccias. purple irridescent bladed sulp hide noted at 89.4m, black opaque sulph idic? quartz at 92.0m	Smokey quartz and opaque black quartz a re new observations.

HOLE NUM	BER: CL-92-22			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		e zones are late fracture controlled. 89.5-90.5 «Pyritic Quartz Breccia»				
99.70 TO 108.90	«FAULT ZONE»	Wide zone of fracturing and brecciation, pale grey gouge 60%		«INT ARG»	<pre>«1% PYRITE» in disrupted qtz stringers</pre>	
108.90 TO 113.90	«RHYOLITE BRECCIA»	Hixed interval of green and red chloritic and hema titic flow breccia, perlite and minor gougy fractu re zones.		«ST CHL, HEM, PATCHY ST ARG»	«TRACE PYRITE» in late clay filled frac tures.	
113.90 TO 133.00	«FLOW BAND RHYOLITE»	Pale green relatively homogenous interval of flow banded rhyolite, banded accentuated by red hematit e, late fractures filled by white clay and calcite banding @6 132.0-132.1 wQuartz Breccia» drusy	80	<pre>wNOD HEM, CHL» hematite occurs as alter ation of flow bandes, chlorite as halos around late fractures. wST SIL»</pre>	«TRACE PYRITE» in late fractures. «3% PYRITE»	This breccia suggests that faulting is syn rather than post mineralization, al lowing some leakage into footwall rhyo.
133.00 TO 137.30	«PERLITE - SPHERULITES »	Pale green fg perlitic rhyolite with scarce spheru lites averaging 5cm.		<pre>wHOD SIL» minor late fractures coated w ith white clay.</pre>		
TO 157.60						
137.30 TO 157.60	«RHYOLITE» EOH	Very pale green, mixed interval of perlite, hemati tic breccia and flow banded rhyolite. minor late f ractures. flow bands a	70	≪MOD ARG≫ minor clay in late fractures.	«TRACE PYRITE» with clay.	

LOGGED BY: PETER THIERSCH

.

HOLE	NUMBER :	CL-92-22
HOLL	NONDERI	

ASSAY SHEET

DATE: 11-December-1992

																DATE:
ample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	8a ppm	Cu ppm	GEOC Fe %	HEMICAL Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s x		СОММ
8001	28.00	30.00	2.00		749	172	5	1.44		16	11	72	755			
8002	30.00	32.00	2.00	3.6 5.7	485	267	12	0.99	10 8	8	9	106	1085			
8003 8004	32.00 33.50	33.50 35.50	1.50 2.00	11.4 5.9	1198 538	578 433	12 28	1.26 1.28	9 11	27 21	10 8	220 216	2445 2095			
8005	35.50	37.50	2.00	7.9	1091	718	13	1.71	7	25	11	385	2850			
8006	37.50	39.50	2.00	2.5	427	490	17	1.55	13	7	4	148	1585		1	1
88007	39.50	41.50 43.50	2.00	5	890	690	22	1.66	7	32	6 4	198	1730			
58008 58009	41.50 43.50	45.00	2.00 1.50	7.6	2492 789	560 295	51 28	1.97 1.29	14 5	85 16	7	399 103	1030 675			
8010	45.00	46.90	1.90	4	784	155	20	1.83	15	25	4	124	640			
8011	46.90	49.20	2.30	6.9	521	229	16	1.3	7	13	6	100	2230			1
58012 58013	49.20 51.00	51.00 52.00	1.80 1.00	22.4 3.8	424 215	342 559	10 18	1.25	5 8	11 14	6 2	59 47	845 705			
8014	52.00	53.00	1.00	8.3	605	767	29	1.81	9	31	3	136	2435			
8015	53.00	54.00	1.00	5.8	697	468	44	1.95	10	27	5	149	1045			1
8016	54.00 55.00	55.00	1.00	7.6	895	532	39	1.98	5 8	52 47	35	226 159	2515			1
58017 58018	56.00	56.00 57.00	1.00 1.00	7.6 14.6	739 1050	341 1074	47 43	1.93 1.96	ŝ	61	7	248	2450 3780			
58019 58020	57.00 58.00	58.00 59.00	1.00 1.00	2.7 4.5	409 721	614 323	12 13	1.04 1.37	8 12	22 41	19 24	71 94	735 615			
							13	1.37	12			74	615			I
58021 58022	59.00 60.00	60.00 61.00	1.00 1.00	1.5 2.3	160 191	238 545	11 12	0.96 1.01	9 10	12 14	24 6	20 24	320 425	1.13		
8023	61.00	62.50	1.50	3.3	340	323	10	1.12	11	21	4	68	870	1.17		
8024 8025	62.50 64.50	64.50 66.00	2.00 1.50	2.8 3.9	152 344	550 463	11 34	0.71 1.14	10 11	21 21	4 23	35 52	1555 1010	0.54 1.29		
																1
38026 38027	66.00 67.20	67.20 69.10	1.20 1.90	7.3 4.8	553 1271	341 514	19 13	1.4 1.85	12 13	35 51	10 20	69 160	830 1310	1.55 2.13		
58028	69.10	71.10	2.00	3.3	383	356	14	1.11	12	23	5	49	1000	1.26		
38029 38030	71.10 73.10	73.10 75.10	2.00 2.00	3.7 2.3	388 204	408 462	15 15	1.4 1.05	13 10	24 13	4 3	50 35	845 430	1.64 1.18		
8031	75.10	76.30	1.20	4	299	1002	8	1.27	11	21	2	76	865	1.47		1
38032	76.30	77.10	0.80	8.6	768	215	19	5.75	7	48	10	129	2160	6.28		
8033 8034	77.10 78.20	78.20 81.20	1.10 3.00	3.5 2.1	484 351	1389 867	18 5	1.44 1.06	8 10	18 49	3 12	68 47	555 235	1.72 0.08		
8035	81.20	83.20	2.00	5.8	628	1290	5	1.54	13	32	16	41	495	0.05		
8036	83.20	85.20	2.00	3.1	359	207	3	1.03	8	19	12	13	215	0.03	I	1
58037	85.20	87.50	2.30	7.8	446	1234	97	1.15	12	20	3	138	1450	1.24		
38038	87.50	88.50	1.00	3.3	641	905	4	1.8	9	46	17	45	155	0.05		I

HOLE NUMBER: CL-92-22	
-----------------------	--

HOLE NUME	ILE NUMBER: CL-92-22 ASSAY SHEET														DATE: 11-December-1992		
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe X	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s X			
38039 38040	88.50 89.50	89.50 90.50		24 7.5	564 385	1526 374	5 84	1.5 1.26	12 11	44 17	14 3	104 49	1345 935	0.07 1.33			
38041 38042 38043	90.50 92.50 94.50	92.50 94.50 96.50	2.00	2.4 2.6 2.3	505 295 397	1101 584 552	21 10 26	1.01 1.06 0.59	10 11 7	39 34 18	6 5 4	78 135 118	610 575 395	0.75 0.85 0.54			

HOLE NUMBER: CL-92-	-23			MINNOVA INC. LL HOLE RECORD		IMPERIAL UNITS:	METRIC UNITS: X
PROJECT NAME: 19 PROJECT NUMBER: 66 Claim Number: Location: We	57		GRID: UTM NORTH: 41590.00N EAST: 28600.00E ELEV: 1335.00		GRID: ORTH: 0+ 0 EAST: 0+ 0 ELEV: 1335.00		COLLAR DIP: -45° 0' 0" OF THE HOLE: 185.00m START DEPTH: 0.00m FINAL DEPTH: 185.00m
DATE STARTED: DATE COMPLETED: DATE LOGGED:	August 23, 1992 August 25, 1992 August 26, 1992	COLLAR GRID AZ COLLAR SURVEY: NO MULTISHOT SURVEY: NO RQD LOG: YES	IMUTH: 270° O' O"	COLLAR ASTRONOMIC AZI PULSE EM SURVEY: NO PLUGED: NO HOLE SIZE: NQ	MUTH: 270° O' O''	CONTRACTOR: FRONTIER CASING: NONE CORE STORAGE: CAMP	DRILLING

PURPOSE: TO TEST IP ANOMALY, UNDER TEST PITS WHICH DID NOT REACH BEDROCK, BUT RECOVERED HYDROTHERMAL

DIRECTIONAL DATA: EXPLOSION BRECCIAS.

)epth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
137.20	-	-46° 0'	ACID	ок		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	•	
•	-	•	-	-		-	-	-	-	•	
	-	-	-	-			-	-	-	-	
-			-	-			-	-		-	
-	-	-	-	-		-	-	-	-	-	
	-	-	-	-		-		-	-	-	
-	-	•	-	-		-	-	-	-		
-	-	•	•	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	•		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		•	•	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	•	-	-		-	-	-	-	-	
-	-	-	-	•			-	-	-	-	
-	-	•	-	•		-	-	-	-	-	
•	-	-	-	-			-	-	•	-	
•	-	-	-	-			-	•	•	-	
-	-	:	-	-			•	-	-	-	
-	-	:	-	-		1 :	:	-	-	-	
-	-		-	-		.	-	-	-	•	
-	•		-	•			-	-	-	•	
	-	-	-	-		1			-	-	

•

HOLE NUM	BER: CL-92-23			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 30.50	«CASING»					
30.50 TO 30.80	«OVERBURDEN »	FB rhyolite				
30.80 TO 32.20	«WACKE»	Reworked,volcanically derived epiclastic, poorly bedded a	50 70			
32.20 TO 75.00	«STOCKWORK- FAULT ZONE»	Strong qtz stockworking in wide fault and fracture zone. Host is exceptionally amygdaloidal andesite flow breccia (frags 2-20 cm). Dense amygdules mm-2 cm in size lined with drusy white qtz stock- work veins of grey to black qtz are moderately pyritic. Minor blow out breccias occur locally, stockwork veins disrupted by latest faulting. Interval is extensively sheared and gougy. Widest competent interval is approx. 2 m		<pre>«ST-INT ARG» -interval is intensely argillically altered, approx. 40% is sheared and gougy -intense argillization decreases down section</pre>	«3-5% pyrite» -in black quartz stringer and breccia	Fault movement has been syn and post mineralization as demonstrated by broken stockwork veins in gougy zones and silicified gouge fragments within stockwork breccias
		134.1-34.61 «black qtz bx» -indistinct frags, barren white qtz argillic wall rock and minor blue opal frags in grey f.gr. qtz matrix, 2 or 3 phases of brecciation		 34.1-34.6 «int sil»	34.1-34.6 «1-3% py»	
		<pre>136.0-37.21 «grey qtz bx vein» -2 phase, white qtz and w/r indistinct frags cemented by grey f.gr. qtz as above</pre>		∮36.0-37.2 ⊨ ≪int sil≫		
		437.9-38.24 «FAULT» -gouge zone		 37.9-38.2 ≪int arg≫		
		439.7-42.8 «FAULT» -gouge zone		39.7-42.8 «int arg»		
		43.7-44.8 «Amyg Ande» а 30-40 deg. -competent interval of massive, weakly amygdal- oidal andesite	30	43.7-44.8⊧ ≪mod arg≫		
		48.1-48.8 «black qtz bx vein», 2 phase, indistinct white qtz frags, minor pyrite	30	 48.1-48.8 ≪int sil≫	48.1-48.8 ≪1% ру»	
		56.1-56.8		 56.1-56.8 «int sil	56.1-56.8 «5% py»	

LE NUMI	BER: CL-92-23			MINNOVA INC. DRILL HOLE RECORD		DATE: 11-December-1992
From To	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		<pre>«black qtz bx vein», single phase? "swirly" grey to black qtz bands, locally fibrous with green tinge</pre>			-in black qtz and within amyg frags	
		64.5-66.1 -competent interval of weakly amyg andesite	60	∮ 64.5-66.1 ⊧ ≪mod arg»		
		173.8-74.1 «FAULT» -gouge				
75.00 TO 89.70	«STOCKWORK- BRECCIA»	Colour: black and grey Intensely silicified wall rock hosts strong black quartz stockwork and minor breccias veins, <1 cm @ veins @ Host rock is intensely silicified, heterolithic lapill tuff (or possibly fault breccia)	15 50 90	≪int sil» -rare frags remain strongly argillized	-1-3% visible py in black quartz	Heterolithic breccia frags suggest hos is lapilli tuff, but apparent qtz vein frags suggest fault breccia
		This interval is cut by later grey to white chalcedonic qtz breccia veins carrying significant black (silver?) sulphide				
		<pre>177.5-78.8 + «QTZ BRECCIA» -white to grey chalcedonic qtz veins cut black qtz stockwork, white qtz shows minor banding and one instance of bladed calcite replacement</pre>		¶77.5-78.8⊫ «int sil, æb. fe ox»	<pre>177.5-78.81 «tr black sulphide» -significant black (silver) sulphide in white quartz is distinctly post pyrite</pre>	
		83.4-84.0 «QUARTZ BRECCIA» -white vuggy, e.g. bull qtz	30	 83.4-84.0 «int sil» abundant fe oxide	-none	-barren
		86.0-86.5 «QUARTZ BRECCIA» -black quartz jigsaw breccia plus later 2 cm f.gr. grey qtz vein lacking obvious sulphide	60	 86.0-86.5 ⊧ «int sil»	<pre>486.0-86.51 «1-3% py, tr blk sulphide» -in black qtz matrix, trace black sulphide in early grey qtz frags</pre>	-very similar to CL-91-22
		<pre>189.1-89.7 «QUARTZ BRECCIA» -fg qtz cuts earlier black qtz stockwork bx</pre>		 89.1-89.7 ≪int sil≫	- none	Later f.gr. grey qtz similar to previous interval, looks barren
39.70 TO 29.70	«STOCKWORK»	Moderate black quartz stockwork, veins <1 cm. Minor blowout jigsaw breccias		«st sil, st arg»	«1-3% py» in black qtz stringer	
, ,,,,		Host is apparently silicified fault gouge, very grungy, argillized, over printed by silicification black qtz and stockwork		-late 1-2 cm f.gr. grey qtz veins		

MINNOVA INC.

.

HOLE NUME	BER: CL-92-23			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		97.7-99.7 «QUARTZ BRECCIA» -f.gr. white to grey qtz "vein" is more like qtz flooded and replaced wall rock, fragments are washed out and indistinct. Quartz is moderately vuggy, grey patches, may be sulphidic		¶97.7-99.7⊧ «int. sil»	197.7-99.71 «tr py + mc» -in patchy grey quartz	
99.70 TO 102.60	«FAULT»	-90% clay gouge shear fabric @ 50-70 deg to c.a.		«int. arg»	«trace py»	
102.60 TO 103.80	«SILICIFIED FAULT BRX»	Colour: grey to black Grain size: c.gr. Angular to rounded, intensely silicified wall rock and rebrecciated pyritic quartz frags in a coarse pyrite rich black quartz matrix. Lithology of fragments - indeterminate		«int sil»	«3-5% pyrite» C.gr. euhedral cubes in quartz matrix and quartz frags	
		103.3-103.6 «PYRITIC BRECCIA» -strongest concentration of pyrite in fault breccia		∤103.3-103.6∤ «int sil»	∮103.3-103.6∳ «10-15% ру»	
103.80 TO 104.80	«SILICIFIED FAULT BRX»	Colour: pale green Grain Size: c.gr. Silicified fault gouge comprised of balliferous rhyolite, 1-2 cm balls actually form 50% of the fragments, the rest are subrounded <1 cm rhyolite clasts -contact (qtz vein) @ 40-60 deg		«st. sil» -rock was once intensely argillized and gougey, now overprinted by st. silicification	«1-3% py» in late qtz stringers	Upper and lower contacts are sharp and occupied by a banded qtz-py vein 1 cm wide in both cases
104.80 TO 108.80	«Stockwork»	Colour: buff Weak quartz stockwork stringers with banded pyrite Host rock is spherulitic flow banded rhyolite brx, probably still part of the upper fault breccia rather than depositional		«st. sil» overprints moderate argillic alteration	<pre>«1-3% pyrite» -in late <1 cm grey quartz stringers</pre>	Spherolite contact decreases downstream suggesting balls are an alteration feature in fault zone.
108.80 TO 139.20	«RHYOL ITE»	Colour: pale green Strongly altered grungy non-descript looking rhyolite, locally perlitic or flow brecciated		«ST ARG, ST CHL» -obscures original textures	<pre>«1% pyrite» -in sporadic late vuggy qtz fracture fill</pre>	
139.20 TO 151.50	«RHYOLITE BRECCIA»	Colour: pale green Same grungy alteration but primary textures now evident as classic flow banded rhyolite breccia		«MOD ARG, ST. CHL»		

MINNOVA INC.

HOLE NUME	BER: CL-92-23			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
151.50 TO 185.00	«RHYOLITE BRECCIA»	Colour: green and red Hematitic matrix rhyolite breccia. Flow banded and perlitic frags. Minor late calcite fracture fill		«W. ARG» «MOD CHL HEM» -classic, fizzy propylitic alteration	«trace diss. py»	
		E.O.H.				

IOLE NUMB	ER: CL-9	2-23									AS	SAY SHE	ET		DATE: 11-December-1992
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	GEOC Fe X	HEMICAL Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s %	COMMENTS
38059 38060 38061 38062	0.00 32.00 34.10 36.00 37.90	0.00 34.10 36.00 37.90 39.70	0.00 2.10 1.90 1.90 1.80	1.9 2.2 2.9 2	212 146 371 214	115 74 46 54	27 16 19 21	3.77 2.57 2.89 3.14	12 5 11 10	17 17 29 25	82 47 56 52	58 36 81 82	1040 910 2500 1480	3.93 2.77 3.35 3.7	
8063 8064 8065 8066 8067	46.10 48.10 48.80 51.80 53.90	48.10 48.80 50.30 53.90 56.10	2.00 0.70 1.50 2.10 2.20	1.3 0.8 1.9 2.4 2.4	283 143 447 635 1195	44 38 48 44 120	18 10 18 23 15	3.12 1.55 3.44 3.28 3.04	7 5 7 7 12	25 11 28 30 49	58 28 63 63 77	51 26 42 92 118	1685 700 1555 1780 955	3.38 1.55 3.78 3.74 3.28	
8068 8069 8070 8071 8072	56.10 56.80 60.00 62.00 64.50	56.80 58.90 62.00 64.50 66.10	2.50	1 1.7 1.5 1.6 0.9	265 742 482 278 466	29 59 59 67 61	10 20 16 15 21	1.78 3.07 3.68 2.77 2.92	5 10 11 10 12	16 28 15 9 14	32 62 48 41 65	50 88 83 116 87	625 1075 525 345 410	1.96 3.34 4.11 3.15 3.07	
58073 58074 58044 58045 58046	66.10 68.10 75.00 77.50 78.80	68.10 70.00 77.50 78.80 80.80	1.90 2.50 1.30	1.8 1.6 1.5 1.7 2.1	718 695 102 94 252	52 42 50 98 108	24 26 13 10 13	3.09 2.89 0.46 0.58 0.81	11 11 6 8 12	17 13 5 6 10	61 60 22 14 16	97 84 61 36 33	335 285 325 395 755	2.93 2.24 0.31 0.3 0.65	
8047 8048 8049 8050 8051	80.80 82.70 83.40 84.00 86.50	82.70 83.40 84.00 86.50 87.50	0.60 2.50	1.2 1.2 2.4 1.2 1.8	195 132 45 156 164	85 94 57 85 83	11 9 8 10 21	0.74 0.64 0.39 0.69 0.97	8 9 5 9 9	6 3 2 4 6	21 32 9 18 17	25 24 38 28 37	650 185 65 435 450	0.61 0.49 0.14 0.34 0.41	
8052 8053 8054 8055 8056	87.50 89.10 89.70 91.70 93.70	89.10 89.70 91.70 93.70 95.70	0.60 2.00 2.00	1.9 1.2 1.6 1.7 0.9	87 114 178 150 154	87 34 65 52 43	19 6 11 12 7	0.93 0.63 0.92 0.69 0.73	7 6 13 9 13	6 4 3 3	23 20 30 25 29	24 38 30 16 19	185 200 215 125 90	0.17 0.23 0.72 0.64 0.65	
8057 8058 8075 8081 8082	102.60 103.80		2.00 1.20 1.00	1 1.7 19.6 1.4 1	56 116 189 100 137	46 84 69 57 68	21 27 86 22 18	0.43 0.87 2.32 1.04 1.56	6 6 13 10 11	2 6 7 5 5	34 21 50 31 44	10 5 82 27 30	45 40 25 110 85	0.3 0.59 2.42 1.18 1.88	
8083	106.80	108.80	2.00	2.3	231	65	31	1.08	12	10	61	124	95	1.25	I

HOLE NUMBER: CL-92	-24		IMPERIAL UNITS:	METRIC UNITS			
PROJECT NAME: 1 PROJECT NUMBER: 6 CLAIM NUMBER: LOCATION: W		PLOTTING CO	ORDS GRID: UTM NORTH: 41500.00N EAST: 28650.00E ELEV: 1345.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV:		LENGTH OF Sta	LLAR DIP: -55° 0' THE HOLE: 168.60 RT DEPTH: 0.00 AL DEPTH: 168.60
		COLLAR GR	ID AZIMUTH: 270° 0' 0"	COLLAR ASTRONOMIC AZIMUTH:	270°0'0"		
DATE STARTED: DATE COMPLETED: DATE LOGGED:	August 26, 1992 August 27, 1992 August 29, 1992	COLLAR SURVEY: NO MULTISHOT SURVEY: NO RQD LOG: YES		PULSE EM SURVEY: NO Plugged: No Hole Size: Ng		CONTRACTOR: FRONTIER DRI CASING: 10' LEFT IN CORE STORAGE: CAMP	

PURPOSE: TO TEST IP ANOMALY ALONG STRIKE,

SOUTH OF CL-92-23

68.5058° 0' ACID OK	nomic uth d	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
		-58° 0'	ACID	ОК		-	-	-	-	-	
		-	-	-		-	-	-	-	-	
		-	-	-		-	-	-	-	-	
		-	-	•		-	-	-	•	-	
		-	-	-		-	-	-	-	-	
		-	-	•		-	-	-	-	-	
		-	-	-		-	-	-	-	-	
· ·				•		•	-	-	-	-	
		-	-	-		-	-	-	-	-	
		-	-	•		-	-	-	-	-	
		•	-	-		-	-	-	-	-	
		•	-	•		-	-	-	-	-	
		-	-	-		-	-	-	-	-	
		-	-	-		-	-	-	•	-	
· ·				-		-	-	-	•	-	
			-			-	•	-	-	•	
			•			· ·	-	-	-	•	
		-	-	-		-	-	-	-	-	
		-	-	-		1]	-		-	-	
		-	-	-			-	-	-	-	
		-	-	-			-	-		-	
		-	-				_	-	-	-	
· · · · · · · · · · · · · · · · · · ·			-				•		-	-	
		-	-	-		-	-	-	-	•	
		-	-	-		1 -	•	-	-		
		-	-	-		· ·	-	-	-		

HOLE NUM	BER: CL-92-24	DATE: 11-December-1992				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 9.10	«CASING»					
9.10 TO 23.90	«FQXT»	Orange, coarse grained, moderately silicified, oxidized FQXT with recrystalization of qtz eyes.	45	Patchy mod-strong silicification and weak argillic alteration. «m-s Sil»	Trace of sulphides. Pyrite cubes <1mm.	
23.90 TO 24.40	«GOUGE»	White clay gouge with silicified clasts and minor broken vein material.		Strong arg alt. «S. arg»		
24.40 TO 27.70	«FQXT»	This interval is more silicified and fractured and grades into an aphanitic ash tuff.	30	Some druzy vugs, mod-strong silicifctn and mod arg alt. «m-s sil; m arg»	Trace of pyrite.«py tr»	
27.70 TO 28.50	«FAULT»	Oxidized gouge with silicified clasts. Pyritic stockworking.		«sil clasts»	«Py stwk - 1-2%»	
28.50 TO 32.30	«HYDROBRX»	Orange, grey, white, highly fractured, oxidized black matrix brx. Minor post brx druzy qtz veins. 129.4-29.71 intense silicification. 32.25-32.31 wFAULT»		Strong silicification. «s.sil» «i.sil»	«1-2% ру»	
32.30 TO 32.60	«ASH TUFF»	Grey fine grained ash tuff with some welding textures. The occasional subhedral qtz eye and 5% green clay altered feldspar frags <4mm. This unit grades into FQXT.	60	Silicification increases with depth. «m.sil»	Trace of pyrite as cubes <1mm. «Py tr»	This ash tuff unit seems to have hosted the mineralization.
32.60 TO 100.40	«FQXT»	Grey to orange xtal tuff. Silicified throughout with variable intensity. Patchy oxidized intervals in the more fractured zones. Grain size varies from aphanitic to feldspars 1.5cm long. Druzy fracture surfaces and partly healed fractures common with occasional qtz veinlet. Grades into ash tuff at bottom of this interval. 37.5-42.3 oxidized fracture zone. 66.2-74.0 oxidized fracture zone. 77.6-77.7 small fault. 85.4-86.0 silicified fault bx.» 92.0-95.4 «oxidized fracture zone.»		37.5-42.3 «Oxidized Fracture Zone» 66.2-74.0 «Oxidized Fault Zone» 85.4-86.0 «s.sil - Fault Bx» 92.0-95.4 «Oxidized Fault Zone»		

MINNOVA INC.

HOLE NUMB	BER: CL-92-24			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK Type	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
100.40 TO 100.80	«FAULT»	Top 20cm is silicified and flooded with fine grained pyrite. Bottom half is white and gougy and grades into FBR.	60	Strong arg alt. «s.arg»	«1-2% ру»	FQXT/FBR contact.
100.80 TO 107.00	«FAULT ZONE»	Highly fractured perlitic and flow banded rhyolite with intermittent 10-30 cm gouge zones and local black qtz healed fault bx.				
107.00 TO 168.60	«RHYOLITE»	Green rhyolite with flow banding and perlitic textures. Flow breccias. hematitic matrix breccias and minor faults throughout. Mod arg alt. 116-118 «fault zone» 122-126 «fault zone» 153-155 «flow breccia» 159-165 «hematitic breccia»				
168.60 TO 168.60	«EOH»					

HOLE NUMB	DLE NUMBER: CL-92-24 ASSAY SHEET								DATE: 11-December-1992						
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	GEOC Fe X	HEMICAL Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s X	COMMENTS
38076	23.70	25.70	2.00	0.2	43	95	6	0.67	7	3	19	22	70	0.01	
38077	25.70	27.70	2.00	0.7	- 77	101	6	0.97	13	2	18	33	85	0.59	
38078	27.70	29.70	2.00	1.8	174	206	19	2.36	7	5	50	79	110	0.76	
38079	29.70	32.30	2.60	1	62	587	14	0.92	5	2	21	39	135	0.16	
38080	32.30	34.30	2.00	0.5	66	82	10	1.09	18	1	25	26	55	0.47	

HOLE NUMBER: CL-92-25			MINNOVA INC. LL HOLE RECORD		IMPERIAL UNITS: METRIC UNIT	is: x
PROJECT NAME: 1992 PROJECT NUMBER: 667 CLAIM NUMBER: LOCATION: POND ZONE		41035.00N 28950.00E 1345.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV: COLLAR ASTRONOMIC AZIMUTH:	0+ 0 1345.00	COLLAR DIP: -45° O LENGTH OF THE HOLE: 101.2 START DEPTH: 0.0 FINAL DEPTH: 101.2	20m 20m
DATE STARTED: August 28, 1992 DATE COMPLETED: August 29, 1992 DATE LOGGED: September 1, 1992	COLLAR SURVEY: NO MULTISHOT SURVEY: NO ROD LOG: YES		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ	90 0 0.	CONTRACTOR: FRONTIER CASING: 10' LEFT IN HOLE CORE STORAGE: CAMP	

PURPOSE: TO TEST IP ANOMALY AND VEIN EXPOSED IN CREEK

)epth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
101.20	-	-47" 0"	ACID	ок		-	-	-	-	-	
-	-	-	-	-		-	-	•	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	•	•	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		•	-	:	-	•	
-	•	-		-				-		•	
-	-	-	-	-				-	-		
	-	-	-	-			-	-	-		
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-		
-	-	-	-	-		-	-	-	-		
-	-	-	-	•		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		4 -	-	-	-	•	
-	•	-	-	-		-	-	-	-	•	
•	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	•	-		· ·	-	-	-	-	
-	-	-	-	-			-	-	-	-	

OLE NUM	BER: CL-92-25			MINNOVA INC. Drill Hole Record	DATE: 11-December-1992	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 46.30	«CASING»					
46.30 TO 56.30	«Stockwork Fault zone»	Colour: yellow and grey Amygdaloidal andesite fault zone, 40% gouge. Mod. white to grey qtz stockwork with abundant pyrite Paragenesis difficult to see but appears that white qtz is later, and vague bladed textures suggest calcite replacement veins a Post mineral faulting has disrupted more than one half of the stockwork stringers	45	«INT. ARG» abundant yellow-green clay in amygdules and late fractures	«1-5% PY» -in late stringers and in earlier broken qtz stringers	Syn and post mineralization. Fault movement
56.30 TO 57.00	«SILICIFIED FAULT BRECCIA»	Colour: grey -<2 cm angular argillic wall rock frags cemented by grey f.gr. qtz		«ST ARG, MOD SIL» -alteration of wall rock	«1-3% PY» -mainly replacing wall rock frags	
57.00 T0 59.80	«QUARTZ VEIN»	Colour: light grey Grain Size: f.gr. Broken interval of what looks like massive f.gr. white qtz vein. On closer inspection several different textures become apparent. At least half of the interval is totally silica replaced wall rock, which might have been a bedded crystal tuff or wacke. Half of the "vein" has a fibrous texture, suggesing replacement of calcite blades, breccia textures of white sil wall rock/qtz in black qtz matrix are minor and rather washed out. Smokey brown calcite disseminated locally. Banded, black sulphidic quartz a 58.4 m is most interesting feature, black bands are visibly sulphidic and separate fibrous white qtz from apparent silicified wall rock breccia		<pre>«Int sil» -of wall rock, possible replacement of bladed calcite</pre>	«tr black sulphide» -barren of pyrite, but trace black sulphide in banded sutures a 58.4 m	
59.80 TO 61.50	«SILICIFIED FAULT BRECCIA»	Colour: dark grey Grain Size: c.gr. Intensely silicified and pyritic fault breccia frags, 22 cm of sil rock and qtz vein material. Rare white banded qtz vein frags differs from above interval in sulphide and wall rock content		«int sil»	«5-10% py» -in grey qtz bx matrix	

HOLE NUM	BER: CL-92-25			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
61.50 TO 62.30	«FAULT»	-90% clay gouge	45	wint arg»	-trace pyrite»	
62.30 TO 70.40	«RHYOLITE BRECCIA»	Colour: grey green Grungy interval of fracture gougey breccia consisting of perlitic and flow banded rhyolite [63.8-65.0] «hematitic breccia»		«str. int. arg» «mod chl» -locally gougy		
70.40 TO 73.50	«SIL ZONE»	<pre>[65.0-65.2] «fault» Silicified perlitic rhyolite. Interval hosts 2x 2cm black qtz healed wall rock microbreccia a [71.3-71.6] «black qtz vein» and [72.6-72.9] «wht. qtz bx» -white c.gr. bull qtz heals a wall rock breccia of 1-2 cm angular frags matrix supported</pre>	60	«mod sil» أ11.3-71.6 «int sil»	«tr py» 71.3-71.6 «1-2% sulphide»	
73.50 TO 101.20	«RHYOLITE BRECCIA»	Colour: grey green Mixed highly fractured locally gougy interval of perlitic and flow banded rhyolite. Minor feld- spar phyric interval between 74-77m [80.0-85.6] «Fault» Gouge		«st int arg» -mod chl	«tr py»	
	E.O.H.	· .				

LOGGED BY: PETER THIERSCH

HOLE NUMBER: CL-92-25							AS	SAY SH	EET		UALE: 11-December-1992			
(m) (m) (m)		Length (m)	As ppm	Ba ppm	Cu ppm	GEOC Fe X	HEMICAL Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s X	S X COMMENTS	
0.00	0.00	0.00	PPM	PPM	PPM	PPM	x	PPM	PPM	PPM	PPB	PPB	x	x
46.30	47.90	1.60	1.9	533	124	50	2.45	4	14	60	41	690	2.75	5
47.90	49.90	2.00	1.5	361	170	40	2.36	4	4	38	30	520	2.2	2
49 .9 0	52.00	2.10	1.4	457	157	44	2.96	7	9	73	36	610	2.51	1
52.00	54.00	2.00	2.7	691	188	46	2.88	6	13	123	51			
								5	10					
								2	د د	57				
			24.7					- 3	4	8				
59.80	61.50	1.70	4	270	45	17	1.27	6	13	20	56	110	1.3	5
61.50	62.30	0.80	1	187	73	14	1.6	7	7	46	9	75	1.71	
62.30	64.20	1.90	0.8	283	173	20	1.39	27	6	78	50	60	0.92	/2
71.30	73.30	2.00	0.6	326	150	27	1.13	3	2	41	41	50	0.34	4
	From (m) 0.00 0.00 46.30 47.90 52.00 54.00 54.00 54.00 54.00 57.00 59.80 61.50 62.30	From (m) To (m) 0.00 0.00 0.00 0.00 40.00 0.00 40.00 0.00 52.00 54.00 54.00 56.00 57.00 57.00 59.80 61.50 61.50 62.30 64.20 64.20	From (m) To (m) Length (m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 47.90 1.60 47.90 2.00 52.00 2.10 52.00 54.00 2.00 54.00 56.00 2.00 57.00 1.90 59.80 2.80 59.80 61.50 1.70 61.50 62.30 0.80 62.30 1.90	From (m) To (m) Length (m) Ag ppm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.00 0.00 0.00 1.60 47.90 49.90 2.00 1.5 49.90 52.00 2.10 1.4 52.00 54.00 2.00 2.7 54.00 56.00 2.00 1.9 57.00 59.80 2.80 24.7 59.80 61.50 1.70 4 61.50 62.30 0.80 1 62.30 64.20 1.90 0.8	From (m) To (m) Length (m) Ag ppm As ppm 0.00 0.00 0.00 ppm ppm 0.00 0.00 0.00 ppm ppm 0.00 0.00 0.00 ppm ppm 47.90 49.90 2.00 1.60 1.9 533 47.90 49.90 2.00 2.10 1.4 457 52.00 54.00 2.00 2.7 691 54.00 56.00 2.00 2.6 635 56.00 57.00 1.00 1.9 289 57.00 59.80 2.80 24.7 34 59.80 61.50 1.70 4 270 61.50 62.30 0.80 1 187 62.30 64.20 1.90 0.8 283	From (m) To (m) Length (m) Ag ppm As ppm Ba ppm 0.00 0.00 0.00 0.00 PPH PPH PPH 0.00 0.00 0.00 1.60 1.9 533 124 47.90 49.90 2.00 1.5 361 170 49.90 52.00 2.10 1.4 457 157 52.00 54.00 2.00 2.6 635 130 54.00 56.00 2.00 1.9 289 99 57.00 59.80 2.80 24.7 34 22 59.80 61.50 1.70 4 270 45 61.50 62.30 0.80 1 187 73 62.30 64.20 1.90 0.8 283 173	From (m) To (m) Length (m) Ag (m) As ppm Ba ppm Cu ppm 0.00 0.00 0.00 0.00 PPM PPM PPM 0.00 0.00 0.00 1.60 1.9 533 124 50 47.90 49.90 2.00 1.5 361 170 40 52.00 54.00 2.00 2.7 691 188 46 54.00 56.00 2.00 2.6 635 130 27 56.00 57.00 1.00 1.9 289 99 16 57.00 59.80 2.80 24.7 34 22 11 61.50 62.30 0.80 1 187 73 14 62.30 64.20 1.90 0.8 283 173 20	From (m) To (m) Length (m) Ag (m) As ppm Ba ppm Cu ppm Fe ppm 0.00 0.00 0.00 0.00 ppm ppm ppm x 0.00 0.00 0.00 0.00 ppm ppm ppm x 0.00 0.00 0.00 1.9 533 124 50 2.45 47.90 49.90 2.00 1.5 361 170 40 2.36 49.90 52.00 2.10 1.4 457 157 44 2.96 52.00 54.00 2.00 2.7 691 188 46 2.88 54.00 56.00 2.00 2.6 635 130 27 2.85 56.00 57.00 1.00 1.9 289 99 16 1.34 57.00 59.80 2.80 24.7 34 22 11 0.27 59.80 61.50 1.70 4 2	From (m) To (m) Length (m) Ag (m) As ppm Ba ppm Cu ppm Fe ppm Pb ppm 0.00 0.00 0.00 0.00 PPH PPH PPH PPH X PPH 0.00 0.00 0.00 1.9 533 124 50 2.45 4 47.90 49.90 2.00 1.5 361 170 40 2.36 4 990 52.00 2.10 1.4 457 157 44 2.96 7 52.00 54.00 2.00 2.6 635 130 27 2.85 5 56.00 57.00 1.00 1.9 289 99 16 1.34 2 57.00 59.80 2.80 24.7 34 22 11 0.29 3 59.80 61.50 62.30 0.80 1 187 73 14 1.6 7 61.50 62.30 0.80	From (m) To (m) Length (m) Ag (m) As ppm Ba ppm Cu ppm Fe ppm Pb ppm Sb ppm 0.00 0.00 0.00 0.00 PPH PH <	From (m) To (m) Length (m) Ag (m) As (m) Ba (m) Cu ppm Fe ppm Pb ppm Sb ppm Zn ppm 0.00 0.00 0.00 0.00 0.00 0.00 ppm PPH PH PH PPH PH PH	From (m) To (m) Length (m) Ag (m) As (m) Ba (m) Cu ppm Fe ppm Pb ypm Sb ypm Zn ppm Au ppm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ppm PPH PH PPH PH PH <td>From (m) To (m) Length (m) Ag (m) As (m) As ppm Bs ppm Cu ppm Fe ppm Pb ppm Sb ppm Zn ppm Au ppm Hg ppm 0.00 0.00 0.00 0.00 0.00 PPH PPH PPH X PPH PH PH<td>From (m) To (m) Length (m) Ag (m) As (m) Ba ppm Cu ppm Fe ppm Pb ppm Sb ppm Zn ppm Au ppm Hg ppm 0.00 0.00 0.00 0.00 0.00 0.00 PPH PH PH PH PH PH PH PH</td></td>	From (m) To (m) Length (m) Ag (m) As (m) As ppm Bs ppm Cu ppm Fe ppm Pb ppm Sb ppm Zn ppm Au ppm Hg ppm 0.00 0.00 0.00 0.00 0.00 PPH PPH PPH X PPH PH PH <td>From (m) To (m) Length (m) Ag (m) As (m) Ba ppm Cu ppm Fe ppm Pb ppm Sb ppm Zn ppm Au ppm Hg ppm 0.00 0.00 0.00 0.00 0.00 0.00 PPH PH PH PH PH PH PH PH</td>	From (m) To (m) Length (m) Ag (m) As (m) Ba ppm Cu ppm Fe ppm Pb ppm Sb ppm Zn ppm Au ppm Hg ppm 0.00 0.00 0.00 0.00 0.00 0.00 PPH PH PH PH PH PH PH PH

ASSAY SHEET

DATE: 11-December-1992

HOLE NUMBER: CL-92-26	DRI	IMPERIAL UNITS: METRIC UNITS: X	
PROJECT NAME: 1992 PROJECT NUMBER: 667 CLAIM NUMBER: LOCATION: WEST LAKE ZONE	PLOTTING COORDS GRID: UTM NORTH: 41385.00N EAST: 29250.00E ELEV: 1310.00	ALTERNATE COORDS GRID: NORTH: 0+ 0 EAST: 0+ 0 ELEV: 1310.00	COLLAR DIP: -55° 0' 0" LENGTH OF THE HOLE: 76.20m START DEPTH: 0.00m FINAL DEPTH: 76.20m
DATE STARTED: August 30, 1992 DATE COMPLETED: August 30, 1992 DATE LOGGED: September 1, 1992	COLLAR GRID AZIMUTH: 270° 0' 0" COLLAR SURVEY: NO MULTISHOT SURVEY: NO RQD LOG: NO	COLLAR ASTRONOMIC AZIMUTH: 270° 0' 0" PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NG	CONTRACTOR: FRONTIER CASING: 10' LEFT IN HOLE CORE STORAGE: CAMP

PURPOSE: TO TEST IP ANOMALY AND VEINS EXPOSED IN TRENCHES

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
76.20	-	-52* 0*	ACID	ОК		-	-	•	-	-	
-	-	-	•	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	,
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	•	-	
-	-	-	-	-		-	-	-	•	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		•	-	-	:	-	

IOLE NUMI	BER: CL-92-26			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992		
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS		
0.00 TO 15.20	«CASING»							
15.20 TO 62.20	«FQXT»	Classic feldspar-quartz crystal tuff. Quartz eyes 4-6mm, 5%, feldspars 3-8mm 30%, fairly homogenous, interval is strongly fractured and oxidized, moder ately leached and vuggy. 422.1-23.24 «Red Ochre» on late fractures. 32.8-33.0 «Fault» 39.7-40.0 «Fault» 53.5-53.6 «Fault» 40.3-62.2 «FAULT ZONE» 80% Gouge.		<pre>«HOD ARG, WEAK SIL» Rock is uniformly argillized throughout locally weakly silicified, some fractur es are partially healed by quartz. «INT ARG»</pre>	none	Sample taken for XRD.		
62.20 TO 109.20	«RHYOLITE BRECCIA»	Grungy green interval of mixed flow banded and perlitic rhyolite frags and hematitic breccias, strongly fractured and locally gougey. d62.2-64.5] «FAULT BRECCIA» 80% Gouge matrix to rhyolite clasts.	-	«ST-INT ARG» 30% gouge. «INT ARG»	none			

LOGGED BY: PETER THIERSCH

.

HOLE NUMBER: CL-92-26	ASSAY SHEET	DATE: 11-December-1992
Sample From To Length (m) (m) (m)	GEOCHEMICAL Ag As Ba Cu Fe Pb Sb Zn Au Hg S ppm ppm ppm ppm % ppm ppm ppb %	COMMENTS

HOLE NUMBER: CL-92-27		NNOVA INC. Hole Record	IMPERIAL UNITS: METRIC U	NITS: X
PROJECT NAME: 1992 PROJECT NUMBER: 66780 CLAIM NUMBER: LOCATION: WEST LAKE	PLOTTING COORDS GRID: UTM NORTH: 41375.00N EAST: 29000.00E ELEV: 1320.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV:	0+ 0 START DEPTH:	° 0° 0" 1.00m 0.00m 1.00m
DATE STARTED: August 28, 1992 DATE COMPLETED: August 29, 1992 DATE LOGGED: September 4, 1992	COLLAR GRID AZIMUTH: 90° 0' 0" Collar Survey: No Multishot Survey: No Rod Log: No	COLLAR ASTRONOMIC AZIMUTH: " PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NG	90° 0' 0" Contractor: Frontier Drilling Casing: 10 Feet Left in Hole Core Storage:	

PURPOSE :

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
121.00	-	-47° 0'	ACID	ок		-	-	-	•	-	
-	-	-	-	•		-	-	-	•	-	
-	-	-	-	-			•	-	-	-	
•	-	-	-	-		-	-	-	-	-	
-	-	•	•	-		-	•	-	-	-	
•	-	-	•	-			-	-	-	-	
•	-	-	-	-		-	-	-	-	•	
	-	-	-	•		-	-	-	-	-	
-	-			-			-	-	•		
-		-	-	-			-	-	-		
		-	-					-	-		
-		-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-			•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	•	-			-	-	-	-	
-	-	•	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	•	
•	-	-	•	-		-	•	-	-	-	
-	•	-	-	-			•	-	-	-	
•	-	-	-	•		-	-	-	-	•	
•	-	-	•	-		1 -	-	-	-	•	
•	-	-	-	-		1 .	-	•	-	-	
•	-	-	-	-		-	-	-	-	-	
-	•	•	-	•			•	-	•	-	

ole numi	BER: CL-92-27			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS	
0.00 TO 39.60	«CASING»		-				
39.60 TO 46.00	«FQXT»	Colour: orange Grain Size: m.gr. Classic FQXT, 5% rounded qtz eyes, 30% fsp, moderately fractured and oxidized		«ST FE OX» «MOD ARG» Strongly oxidized ?? only slightly bleached	none		
46.00 TO 58.80	«FAULT»	Wide zone of extreme shearing and gouge, 95% clay gouge. Rare prserved clasts of strongly argillized FOXT and fsp ash tuff. Veins and shearing pretty much perpendicular to c.a.	90	«INT-EXT ARG»	«1-3% PY» in broken sheared qtz-py stringers		
58.80 TO 60.00	«SILICIFIED FAULT ZONE»	Intensely silicified wall rock and fault breccia with possible hydrothermal brecciation component Massive f.gr. grey to black qtz cements silicified wall rock. (fsp crystal ash tuff) and less f.gr. white bull qtz fragments Interval is approx 50% sil w/r 50% bx. Single later qtz stringer <1 cm wide cuts bx and has black vein selvages which might carry black sul- phide		«INT SIL»	«1-5% py» in black qtz bx matrix «tr black sulphide»		
60.00 TO 60.40	«FAULT»	95% clay gouge		«EXT ARG»	none		
60.40 TO 62.20	«STOCKWORK BRECCIA»	Colour: grey and black Grain Size: c.gr. Strong stockwork to jigsaw breccia of black sulphidic qtz cementing angular clasts of silic- ified wall rock (fault gouge/breccia) and rare white to grey qtz vein material. Interval is moderately fractured, minor gouge @ 62.0 m -bx veins @	10	«ST INT SIL»	«3-5% py» in black quartz breccia matrix «trace black sulphide» occurs sporadically along vein selvages	2 phase brecciation to produce clasts of qtz vein and wall rock	
62.20 TO 63.90	«BLACK QTZ BRECCIA»	Colour: grey to black Grain Size: Intensely silicified multiphase hydrothermal-fault breccia. Clasts of silicified fault gouge wall rock, f.gr. grey quartz with abundant pyrite. 50% of matrix is black quartz, maybe 20% is later		«INT SIL»	<pre>«1-3% py» as irregular clots and disseminations in grey qtz and silicified wall rock «1-2% black sulphide» in late vuggy crystaline qtz vein @ 62.8</pre>	Paragenesis -wall rock silicification and barren f.gr. grey qtz, brecciation and cementation by sulphidic f.gr. grey qtz. Rebrecciation and cementation	

OLE NUME	ER: CL-92-27			DRILL HOLE RECORD	DATE: 11-December-1992		
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS	
		white vuggy quartz that is generally barren, but locally carried significant black sulphide.				by grey/clear qtz, evolving to white/ clear crystalinge qtz carrying no pyrite but locally 1-2% black sulphide	
63.90 TO 70.70	«Stockwork Fault zone»	Wide zone of faulting with 50% gougy zones over- prints moderate black qtz stockwork carrying minor pyrite 463.9-64.21 «GOUGE» 50% broken qtz vn frag 467.1-67.61 «GOUGE» -90% clay	40	«ST INT ARG» «PATCHY MOD SIL» generally strongly argillized wall rock with local fault gouge and patchy silicification assoc. with stockwork veinlets	«1-3% py» in black quartz stringers and breccias. Pyrite is f.gr., sporadic and occurs as vein selvages and rimming fragments		
70.70 TO 75.60	«BLACK QTZ BRECCIA»	Colour: black and white Multiphase hydrothermal breccia overprints tectonic breccia. Hydrothermal breccia consists of black f.gr. almost opaque sulphidic qtz cementing angular frags (<1 cm to 20 cm) of earlier white f.gr. banded qtz-ccd-adularia and silicified wall rock fragment. Tectonic bx consists of extremely altered host rock fault gouge/breccia, probably a fsp crystal/ash tuff. Now silicified, this fault gouge forms the host rock for the hydrothermal breccia. Breccia varies from jigsaw, clast supported to matrix supported. 80% of clasts are silicified fault gouge. 20% white qtz frags		«INT SIL» overprints previously intensely argillized wall rock fault gouge	<pre>«1-2% py» is visible as local vein selvages and fragment rims. Black qtz probably contains finely disseminated pyrite «tr grey sulphides» observed only in white quartz</pre>	Paragenesis Tectonic brecciation, st. argillic alteration of FXT fault gouge, silic- ification of same to form competent rock. Hydrothermal brecciation and cementation by banded white qtz-ccd-adularia. Rebrecciation and cementation by black sulphidic qtz. Black sulphide only visible in white qtz (early and late) so difficult to nail down its timing	
		72.7-73.3 «black qtz vein» -massive fragment poor section of black qtz breccia		 72.7-73.3 ≪Int sil≫	 72.7-73.3 ≪1X py≫ visible	75.5 sample for KD also 81.6 for sulphide ID, adularia ID and fluid inclusions	
75.60 TO 84.40	«Stockwork FB Rhyo»	Colour: pale grey Weak to moderate stockwork of black sulphidic qtz. Stringers generally <1 cm with minor micro blowouts <3 cm. Host rock is flow banded feldspar phyric rhyolite (classic FB Latite). All fsp gone to clay, flow bands commonly silicified		<pre>«MOD-ST ARG» overprinted by «PATCHY SIL» 82.9-84.4} «bleached zone. str. arg»</pre>	«1-3% py» easily visible in grey qtz stringers as vein selvages and irregular "swirls", locally up to 5%		
		FB a Vns a 70-80 deg	25 70				

MINNOVA INC.

HOLE NUME	BER: CL-92-27			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
84.40 TO 84.70	«FAULT»	Gougy FB rhyolite		«INT ARG»		
84.70 TO 94.00	«STOCKWORK FB RHYO»	Colour: grey Grain Size: f.gr. Weak to moderate stockwork as above but increased silicification of host rhyolite. Black qtz stringers carry slightly more pyrite than above interval Fb's a 20-30 deg Vns a Two hydrobreccias a 485.1-85.44 +black qtz bx> 193.4-93.64 +black qtz bx>	20 80	85.1-85.4 «INT SIL» 93.4-93.6 «INT SIL»	85.1-85.4 ≪5% руж 93.4-93.6 ≪5% руж	
94.00 TO 101.20	«FAULT ZONE Stwk»	Strongly altered locally gougy hanging wall fracture zone to fault below. Ninor broken qtz- py stockwork stringers		«ST INT ARG»	<pre>«1-2% py» in broken qtz stringers</pre>	
101.20 TO 107.60	«FAULT»	Colour: grey Major gouge zone with 20% intensely argillized fb rhyo frags		«EXT ARG»	«trace py»	
107.60 TO 111.00	«RHYOLITE BX»	Colour: grey Strongly argillized autoclastic flow bx, frags strongly perlitized	-	«INT ARG»	none	
111.00 TO 121.00	«PERLITIC» E.O.H.	Strongly argillized perlitic rhyolite		«ST ARG»	«tr pyrite»	

HOLE NUMB	OLE NUMBER: CL-92-27 ASSAY SHEET													
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	GEOC Fe X	HEMICAL Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s X
38102 38103 38104 38105 38106	44.00 46.00 48.00 50.00 53.00	46.00 48.00 50.00 53.00 55.00	2.00 2.00 3.00	0.1 0.7 4.1 0.5 0.3	220 264 45 24 576	427 208 879 201 252	3 107 156 161 60	0.73 6.34 1.6 5.45 5.84	1 3 7 2 3	4 10 53 33 28	6 11 12 15 16	49 65 57 53 135	165 4000 2275 4485 18375	0.03 5.46 1.81 5.38 5.53
38107 38108 38109 38110 38111	55.00 57.00 58.80 60.00 62.20	57.00 58.80 60.00 62.20 63.90	1.80 1.20 2.20	1.3 1.6 6.3 5.1 13.7	56 9 249 154 70	236 130 66 64 32	18 15 10 12 12	4.11 3.93 1.29 1.51 0.47	1 1 5 8 7	1 1 5 4	7 5 36 30 23	30 26 92 55 80	2670 1165 55 1295 45	4.38 4.1 1.36 1.53 0.39
38112 38113 38114 38115 38116	63.90 64.90 67.10 69.10 70.70	64.90 67.10 69.10 70.70 72.70	2.20 2.00 1.60	1.9 3.5 2.8 1.6 5	134 288 117 183 183	42 41 74 58 42	9 12 15 10 15	0.56 1.02 0.76 0.61 0.73	8 9 5 10 7	5 19 3 8 11	21 23 22 45 25	56 75 39 39 42	190 625 505 380 600	0.52 1 0.67 0.6 0.72
38117 38118 38119 38120 38121	72.70 73.60 75.60 77.60 79.60	73.60 75.60 77.60 79.60 81.40	2.00 2.00 2.00	2.9 4.4 10.4 2.5 1.8	119 150 228 220 213	22 34 67 87 87	7 7 9 13 7	0.6 0.74 0.87 0.75 0.8	5 4 97 99 11	6 10 12 7 10	25 61 108 140 36	23 28 32 24 22	275 805 1400 755 1025	0.52 0.59 0.83 0.64 0.75
38122 38123 38124 38125 38126	81.40 82.90 84.70 86.70 88.70	82.90 84.70 86.70 88.70 90.70	1.80 2.00 2.00	7.5 1.6 5.1 3.2 3	451 240 427 206 147	554 47 73 135 163	10 7 9 9 9	1.59 0.91 1.69 0.96 0.77	10 8 14 13 9	25 7 19 7 4	34 41 37 37 30	64 27 53 26 14	2235 765 1655 835 680	1.59 1 1.75 0.94 0.8
38127 38128	90.70 92.50	92.50 94.00		1.7 1.7	126 210	57 58	7 7	0.67 0.76	9 10	2 7	25 32	17 22	365 1045	0.6 0.93

HOLE NUMB	BER: CL-9	2-27									GEOC	CHEM. SH	IEET		DATE: 11-December-1992
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	8a ppm	Cu ppm	Fe X	Pb ppm	Sb ppm	Zn ppb	Au ppb	Hg ppb	S X	
	0.00	0.00	0.00											·····	

¥

HOLE NUMBER: CL-92-28		MINNOVA INC. Drill Hole Record	IMPERIA	AL UNITS: METRIC UNITS: X
PROJECT NAME: 1992 PROJECT NUMBER: 667 CLAIM NUMBER: LOCATION: SOUTH ZONE	PLOTTING COORDS GRID: UTM NORTH: 39328 EAST: 29755 ELEV: 1292			COLLAR DIP: -50° 0' 0" LENGTH OF THE HOLE: 154.50m START DEPTH: 0.00m FINAL DEPTH: 154.50m
DATE STARTED: September 2, 1992 DATE COMPLETED: September 3, 1992 DATE LOGGED: September 5, 1992	COLLAR GRID AZIMUTH: 90° 0 Collar Survey: No Multishot Survey: No Rod Log: Yes	0' 0" COLLAR ASTRONOMIC AZIMUTH: PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ	CONTRACTOR :	FRONTIER DRILLING 10' LEFT IN HOLE CAMP

PURPOSE: TEST IP ANOMALY AND TRENCHES

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
154.50	•	-52* 0'	ACID	ок		-	-	•		-	
-	•	-	-	-		•	•	-	-	-	
-	•	-	-	-		-	•	-	-	-	
-	•	-	-	-		•	-	-	-	-	
-	•	-	-	•			-	-	-	-	
-	-	- '	-	•		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	•	-	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	•	-	-		- 1	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	•	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	•	-	-		- 1	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		- 1	•	-	-	-	
-	-	-	-	-		-	-	•	-	-	
-	-	•	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-			· ·	-	-	-	•	
-	-	-	-			-	-	-	-	•	
-	-	-	-	•		.	-	-	-	-	
-	-	_		-			_	-		-	

OLE NUME	BER: CL-92-28			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 42.70	«CASING»					
42.70 TO 57.00	«QUARTZ STOCKWORK»	Moderate to strong stockwork of pyritic quartz. Stringers generally <1cm, about 30% of interval is tight jigsaw breccia. 2 phases of quartz: early pyritic grey quartz, later white to blue quartz is barren. 1st phase stringers have .5cm sil halo in wall rock. Host is sparsely amygdaloidal andesite, with only 5-10% <5mm amygs filled by clay, chlorite or qtz.		<pre>«MOD-ST ARG» alteration of wall rock. Narrow .5cm envelopes of silicification around quartz stringers. 42.7-46.31 «ST-INT ARG»</pre>	«1-3%PY» in grey quartz stringers, no black sulphides observed.	Small amounts of smokey brown calcite also noted, occurs between 1st and 2nd phase of quartz @ 51.1m, 51.3m, 51.6m.
57.00 TO 58.00	«FAULT»	Grey gougy highly fractured interval, with abund- ant broken quartz vein and sil wall rock clasts.	40	«ST-INT ARG»	«TRACE PY»	
58.00 TO 69.30	«BLACK QUARTZ BRECCIA»	A wide zone of intense silicification. 3 types of breccia are recognized: Upper 3rd is hydrothermal breccia of amyg andesite, grading down into tecton ic fault breccia. Fault was intensely argillized a and gougy at one time, but is now intensely silici fied and rebrecciated. Lower 3rd of interval is obvious pyroclastic breccia, silicified and hydro thermally rebrecciated Overprinting hydrothermal breccia consists of a chaotic jumble of grey to black banded aphanitic quartz or chalcedony, pyritic quartz and silici- fied wall rock, and white crystalline quartz. Aprox. 50% of interval is sil w/r, 30% grey to black pyritic quartz, 10% late vuggy quartz.		«INT SIL»	«1-3% PY» irregularly distributed in grey quartz breccia matrix, as pyritic quartz clasts and in rare qtz stringers	3 breccia types: fault breccia at con- tact between andesite flow and pyro- clastic breccia, all silicified and overprinted by hydrothermal brecciation This demonstrates relationaships btwn fault conduits for hydrothermal silicif ication for ground preparation for hydr othermal brecciation and mineralization Paragenesis is confusing but seems to be: grey-black banded chalcedony, cut by pyritic grey quartz, cut by white vuggy crystalline quartz. This is sim- ilar to most other breccias intersected elsewhere on the property.
69.30 TO 71.20	«TUFF BRECCIA»	Polymictic pyroclastic breccia. Frags angular to subrounded aphanitic ash tuff, perlite, flow band rhyolite feldspar phyric rhyolite, rare quartz vein frags. Green [69.3-69.5] «FAULT BRECCIA» Abundant quartz vein frags suggest tectonic origin although clay rich gouge is lacking.	-	«INT SIL» «INT SIL»	trace pyrite	
71.20 TO 72.00	«SIL FAULT»	Grey, intensely silicified pyritic fault zone. Intensely argillized wall rock frags composed of fault gouge and perlitic rhyolite. Interval includes 2cm grey ccd vein with black mm selvages and minor pyrite. Late white vuggy quartz veinlets are barren.		«INT SIL»	«1% PYRITE»	

DLE NUMB	ER: CL-92-28			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
72.00 TO 75.60	«RHYOLITE»	Green, weakly stockworked perlitic rhyolite. Grey quartz stringers plus late vuggy white barren qtz.		«MOD ARG, WEAK SIL»	«TRACE PY» in weak grey quartz veinlets	
75.60 TO 79.00	«QUARTZ STOCKWORK»	Grey green, moderately stockworked perlitic rhyo- lite. Strongly fractured, sheared and locally gougy, with patchy quartz flooding.		«MOD-ST ARG, PATCHY SIL» 476.0-76.74 «30% GOUGE»	<pre>«1-2% PYRITE» in early grey quartz.</pre>	Interval represents hangingwall frac- ture zone associated with fault below.
79.00 TO 81.80	«STOCKWORK BRECCIA»	Strongly stockworked and brecciated partially healed fault zone. Strongly fractured and locally gougy. Early pyritic quartz, minor black quartz, and abundant barren white vuggy quartz.		«MOD-ST ARG, PATCHY SIL» 20% gougy patches 480.5-81.84 «50% Gouge»	«1-3% PYRITE» in early grey quartz stringers and breccia fillings.	
81.80 TO 92.70	«TUFF BRECCIA»	Green and brown relatively fresh rhyolite tuff breccia, with 5-30cm frags of FB rhyolite and lesser perlite. Sparse late calcite fracture fill. Gradational lower contact.		«WEAK ARG»		Pyroclastic block tuff breccia.
92.70 TO 93.40	«LAPILLI TUFF BRECCIA»	Interbed of tuff breccia with heterolithic frags 1-5cm, FB rhyolite, perlite, ash tuff. Gradational upper contact.		<pre>wHEAK ARG> variable degree of alter- ation of clasts.</pre>	none	
93.40 TO 96.30	«FELDSPAR Porphyry»	Classic feldspar porphyry rhyolite, with 20% plag ghosts in vaguely banded aphanitic matrix. Mafics not obvious. Contacts @	80	«MOD SIL»	None	Interbreccia Lava flow?
96.30 TO 100.90	«TUFF BRECCIA»	Similar to previous intervals, gradational from lapilli dominant frgas in upper metre to block sized frags below.	-	«WEAK ARG»	trace py	
100.90 TO 136.20	«RHYOLITE FLOW»	Green and red, aphanitic, a discrete rhyolite flow with minor autoclastic breccia at upper contact. Interval shows some pretty wild flow banding and perlitic textures, with hematitic and chloritic matrices producing vivid red and green coloration.		<pre>«MOD PROP» Moderate propylitic alt. Weak calcite stringers throughout. Gen- erally pretty fresh, almost glassy loca lly.</pre>	Trace pyrite disseminated throughout.	
136.20 TO 154.50	«TUFF BRECCIA»	Green, mixed pyroclastic interval of interbedded crystal ash tuffs, lapilli tuffs and block breccias. Generally fining upwards to laminated sandy crystal ash tuffs. Cobbles of FB rhyolite dominate in lower 1/2 of interval.		«WEAK ARG»	Trace pyrite.	

MINNOVA INC.

HOLE NUMB	E NUMBER: CL-92-28										AS	DATE: 11-December-1992			
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	GEOC Fe %	HEMICAL Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s *	COMMENTS
38137 38138 38139 38140 38141	44.70 48.70 50.70 52.70 54.70	46.70 50.70 52.70 54.70 57.00	2.00 2.00 2.00	0.1 1.7 1.3 1.7 1	67 610 407 457 266	347 192 161 102 103	20 20 21 17 19	3.53 3.84 3.9 4.05 3.7	7 8 2 2 3	1 11 9 2 1	62 61 74 70 71	7 25 40 57 54	565 1670 1710 2445 755	2.36 3.96 3.76 3.41 3.21	
38142 38143 38144 38145 38146	57.00 58.00 60.00 62.00 63.00	58.00 60.00 62.00 63.00 64.00	2.00 2.00 1.00	10.5 2.4 2.2 3.7 2.4	354 232 238 233 211	377 146 114 100 80	19 14 12 13 12	2.74 2.75 2.26 1.86 2.02	8 5 4 5 6	34 22 16 17 17	64 46 38 37 24	49 80 93 189 114	2720 680 495 545 535	3.05 2.97 2.43 1.76 2.05	
38147 38148 38149 38150 38151	64.00 65.00 66.00 67.00 68.00	65.00 66.00 67.00 68.00 69.30	1.00 1.00 1.00	1.9 1.2 1.1 1.9 2.2	191 213 187 325 330	148 61 76 78 75	11 11 9 13 12	1.67 1.27 1.11 1.68 1.98	1 2 4 2	24 7 6 8 7	29 25 30 40 27	78 79 54 163 294	800 190 145 125 300	1.8 1 0.73 1.57 1.74	
38152 38153 38154 38155 38155 38156	69.30 71.20 72.00 74.00 75.60	71.20 72.00 74.00 75.60 77.10	0.80 2.00 1.60	1.5 2.5 0.3 0.3 0.5	104 204 38 4 61	165 108 158 197 228	27 25 60 65 28	1.44 1.53 2.11 1.76 2.01	2 18 1 1 3	1 3 1 1	41 68 52 43 59	61 65 17 9 18	130 100 75 60 180	0.75 1.2 0.56 0.17 1.06	
38157 38158 38159 38160	77.10 79.00 79.90 81.80	79.00 79.90 81.80 83.80	0.90 1.90	3.7 3.1 0.6	168 332 43	277 237 204	30 15 48	1.07 1.17 1.25	8 9 15	5 10 1	31 28 40	40 42 14	300 235 60	0.72 0.82 0.48	

HOLE NUMBER: CL-92-29		MINNOVA INC. DRILL HOLE RECORD	IMPERIAL UNITS:	METRIC UNITS: X
PROJECT NAME: 1992 PROJECT NUMBER: 667 CLAIM NUMBER: LOCATION: SOUTH ZONE	PLOTTING COORDS GRID: UTM NORTH: 39220 EAST: 29765 ELEV: 1290 COLLAR GRID AZIMUTH: 90° 0	5.00E EAST: D.00 ELEV:	0+ 0 1290.00	COLLAR DIP: -50° 0' 0" OF THE HOLE: 78.30m START DEPTH: 0.00m FINAL DEPTH: 78.30m
DATE STARTED: September 3, 1992 DATE COMPLETED: September 4, 1992 DATE LOGGED: September 5, 1992	COLLAR SURVEY: NO Multishot survey: No RQD LOG: YES	PULSE EM SURVEY: NO Plugged: No Hole Size: Ng	CONTRACTOR: FRONTIER CASING: 10' LEFT CORE STORAGE: CAMP	

PURPOSE: TO TEST IP ANOMALY AND TRENCHES

78.30	-	-50° 0' - - - - - - - - - - -	ACID 	OK - - - - - - - - - - - - -		- - - - - - - - - - - - -		- - - - - - -	- - - - - - - - - - - -	-	
	-	- - - - - -		- - - - -			• • • • •	-	• • • • •	- - - - -	
-	-	- - - -					-	-	• • • •	• • • •	
- - - - - - - - - - -	-	- - - -				- - - - - - -	-	-		-	
- - - - - - - -		-	- - - - -	-		- - - - -	-	-	- - - -	• • •	
- - - - - - -	-	-		-			-	-		-	
- - - - -	-	-	• • • •	-			-		-	-	
•	-	-	-	-			-		-	-	
	-		-	-		· ·	-	-	-		
-	-	-	-	:				-			
-	-	-	-			· ·	•	-	-	-	
-	-			-		-	-	-	-	-	
•		-	-				-	-	-	-	
	-	-	-	-			-	-		-	
	-		-	-			-	-		-	
-		-	-	-			-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-				-	-	-	_	
-	-	_	-	-			-	-	-	-	
-	-	-				1.	-	-	-	-	
-	-	-	-	-			-	-	•	-	
-	-	-	-	-		.	-	-	-	-	
-	-	-	-	-		- 1	-	-	-	•	
•	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	•	

LE NUMB	ER: CL-92-29			DRILL HOLE RECORD		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 33.50	«CASING»					
33.50 TO 40.50	«AMYG ANDE»	Grey, fg, sparsely to moderately amydaloidal andes ite, amygs filled by quartz and clay. Sparse grey to white quartz stockwork veinlets to 2cm, 1st phase grey sulphidic quartz with 1-2mm bands of fg py along selvages; then 2nd phase band ed white quartz and adularia? with no visible sulphides. veins a [39.4-39.9] «FAULT»	45 55	«MOD-ST ARG» (33.5-33.8) «INT ARG» «INT ARG»	«1-3% PYRITE» overall, in grey to white quartz stringers, locally to 5% as fg wavy bands along vein selvages and rimming frags.	
40.50 TO 44.20	«QUARTZ-PY BRECCIA»	Grey, cg, highly sulphidic quartz healed wall rock breccia. Wall rock is amydaloidal andesite, com- prising clasts <1cm-25cm in size, all strongly arg illized, generally NOT silicified. Looks to be only a 2 phase breccia, mainly tectonic with silica healing. 1st phase grey quartz with very abundant pyrite forming bands along vein selvages up to 1cm thick; then after minor re-brecciation, healing by blue-white relatively barren quartz.		Wall rock and frags are generally «ST ARG» and only locally weakly silicified.	«10-20% PYRITE» overall, locally semi- massive (50%) as botroidal 1cm bands al ong vein walls or rimming frags. Interval LACKS any trace of black qtz or black sulphide.	1st phase pyrite and 2nd phase quartz both show 2-4mm bands suggesting that conduits in clast supposted breccia were open and system was quiescent.
44.20 TO 47.50	«AMYG ANDE»	Grey weakly stockworked, strongly argillized inter val of amygdaloidal andesite. Stockwork stringers <1cm carry abundant pyrite in fg grey quartz, while later blue-white quartz is barren. veins a	90	«ST-INT ARG»	«1% PY» in early grey quartz.	Similar paragenesis to previous interval.
47.50 TO 50.90	«BLACK QUARTZ BRECCIA»	More typical of the pyritic black quartz breccias seen in other holes, this interval is nearly 80% massive black quartz, obviously pyritic, with 10% late vuggy white bull quartz and a single banded grey ccd vein or fragment a 50.7m. Rare blue quartz noted a48.0m.		«INT SIL»	«3-5% PYRITE» fg, disseminated in black quartz breccia matrix also less frequen tly as mm blebs and blades.	No obvious black sulphide.
50.90 TO 51.90	«FAULT»	Grey intensely argillized, gougy, sheared, rhyolite breccia, 60% clay gouge.	40	«INT ARG»	«TRACE PY»	
51.90 TO 78.30	«RHYOLITE BRECCIA»	Grey-green, fg, mixed interval of FB rhyolite, and perlite fragments in a mainly hematitic matrix, generally strongly fractured, and locally gougy.		«ST-INT ARG»		
		53.9-57.6 «Fault Zone» 60% clay gouge.		«INT ARG»		

HOLE NUME	BER: CL-92-29			MINNOVA INC. DRILL HOLE RECORD		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		69.2-69.5 «Fault» Gouge. 64.0-64.3 «Fault» Gouge. 72.3-72.7 «Fault» Gouge.				
		EOH.				

HOLE NUMB	ER: CL-92	2-29									AS	SAY SH	EET		DATE: 11-December-1992
	·	•.					_		HEMICAL		-				COMMENTS
Sample	From (m)	То (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe X	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	\$ X	
38129	38.50	40.50	2.00	0.1	89	176	22	5.17	1	1	97	12	720	3.35	
38130	40.50	42.50	2.00	2.6	442	101	21	12.16	1	49	59	51	7500	13.7	
38131	42.50	44.20	1.70	4	835	60	23	8.4	2	45	75	164	5120	10	
38132	44.20	45.70	1.50	0.6	307	57	20	4.29	2	6	97	40	490	3.79	
38133	45.70	47.50	1.80	1.2	459	61	19	4.56	2	8	91	32	650	4.37	
38134	47.50	48.80	1.30	3.1	591	68	14	4.03	7	44	262	67	1275	4.38	
38135	48.80	50.90	2.10	3.9	291	62	14	2.09	4	30	62	63	640	2	
38136	50.90	52.90	2.00	0.5	102	58	33	1.83	7	1	68	28	185	0.74	

HOLE NUMBER: CL-92-30		MINNOVA INC. LL HOLE RECORD	IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: 1992	PLOTTING COORDS GRID: UTM	ALTERNATE COORDS GRID:	COLLAR DIP: -50° 0' 0"
PROJECT NUMBER: 667	NORTH: 39328.00N	NORTH: 0+ 0	LENGTH OF THE HOLE: 107.00m
CLAIM NUMBER:	EAST: 29752.00E	EAST: 0+ 0	START DEPTH: 0.00m
LOCATION: SOUTH ZONE	ELEV: 1292.00	ELEV: 1292.00	FINAL DEPTH: 107.00m
	COLLAR GRID AZIMUTH: 120° 0' 0"	COLLAR ASTRONOMIC AZIMUTH: 120° 0' 0)"
DATE STARTED: September 4, 1992	COLLAR SURVEY: NO	PULSE EM SURVEY: NO	CONTRACTOR: FRONTIER DRILLING
DATE COMPLETED: September 5, 1992	Multishot survey: No	Plugged: No	CASING: 10' LEFT IN HOLE
DATE LOGGED: September 6, 1992	RQD Log: Yes	Hole Size: Ng	CORE STORAGE: CAMP

PURPOSE :

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Connents
61.00	-	-50° 0'	ACID	ОК		-	•	-	-	•	
-	-	•	-	-		-	-	•	-	-	
-	•	-	•	-		-	-	-	-	•	
-	-	-	-	•		- 1	•	-	•	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	•	
-	•	-	-	-		-	-	-	:	•	
-		-	-	-				-		-	
_		-	-	-			_	-	-	-	
	_	-		_				-	-	-	
-	-	-	-	-			-	-		-	
-	-	-	-	-		-	-			•	
-	-	-	-	-		-	-	-		-	
•	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
•	•	-	-	-		-	•	-	-	-	
-	-	-	•	•		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	-	
•	-	•	-	•		-	-	•	-	•	
•	-	-	-	•		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	-	

IOLE NUMB	BER: CL-92-30			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 18.30	«CASING»					
18.30 TO 24.70	«AMYG ANDE»	Locally gougy, densely amygdaloidal andesite flow breccia. grey green.		«ST-INT ARG, MOD CHL-CAL»	None	Autoclastic flow breccia.
24.70 TO 28.00	«QUARTZ STOCKWORK»	Intensely argillized gougy wall rock hosts broken fg grey quartz stockwork. Quartz is multibanded grey, brown, and blue-white. Occurs as hydro- thermal and fault breccia matrix, mainly as round- ed chunks in gouge of recent faulting.		«ST-INT ARG»	«1% PYRITE» in grey quartz breccia.	Fault zone.
28.00 TO 28.60	«FAULT»	90% clay gouge.				
28.60 TO 40.50	«ANDESITE BRECCIA»	Grey-green, strongly argillized amygdaloidal andesite breccia, looks auto or pyroclastic, but is healed by dull grey pyritic quartz. Frags variably amygdaloidal, interval is strongly frac- tured and locally gougy.		«ST ARG, MOD CHL, CAL» «PATCHY SIL» Frags are strongly argillized, amygs filled by chl+cal, matrix preferential- ly silicified.	«1% PYRITE» in sil breccia matrix.	
40.50 TO 42.50	«FAULT»	70% clay gouge. Minor broken qtz vein frags.		«INT ARG»		
42.50 TO 46.40	«QTZ-CAL STOCKWORK»	Relatively competent interval of fg grey quartz and white cg calcite filling hydro jigsaw breccias		«ST ARG»	Early quartz carries «1-2% PYRITE» Later calcite is barren.	Minor brown calcite noted.
46.40 TO 46.90	«FAULT»	70% clay gouge.	<u> </u>			
46.90 TO 57.20	«ANDESITE BRECCIA»	Grungy interval of strongly argillized andesite breccia, with minor silicified zones preserved. Typical fault halo.		«ST-INT ARG, PATCHY SIL» Silicification increases down section, mainly as amyg filling and healing breccia matrices.	Trace py.	Hanging wall to fault.
57.20 TO 58.30	«FAULT»	80% clay gouge.		«INT ARG»		

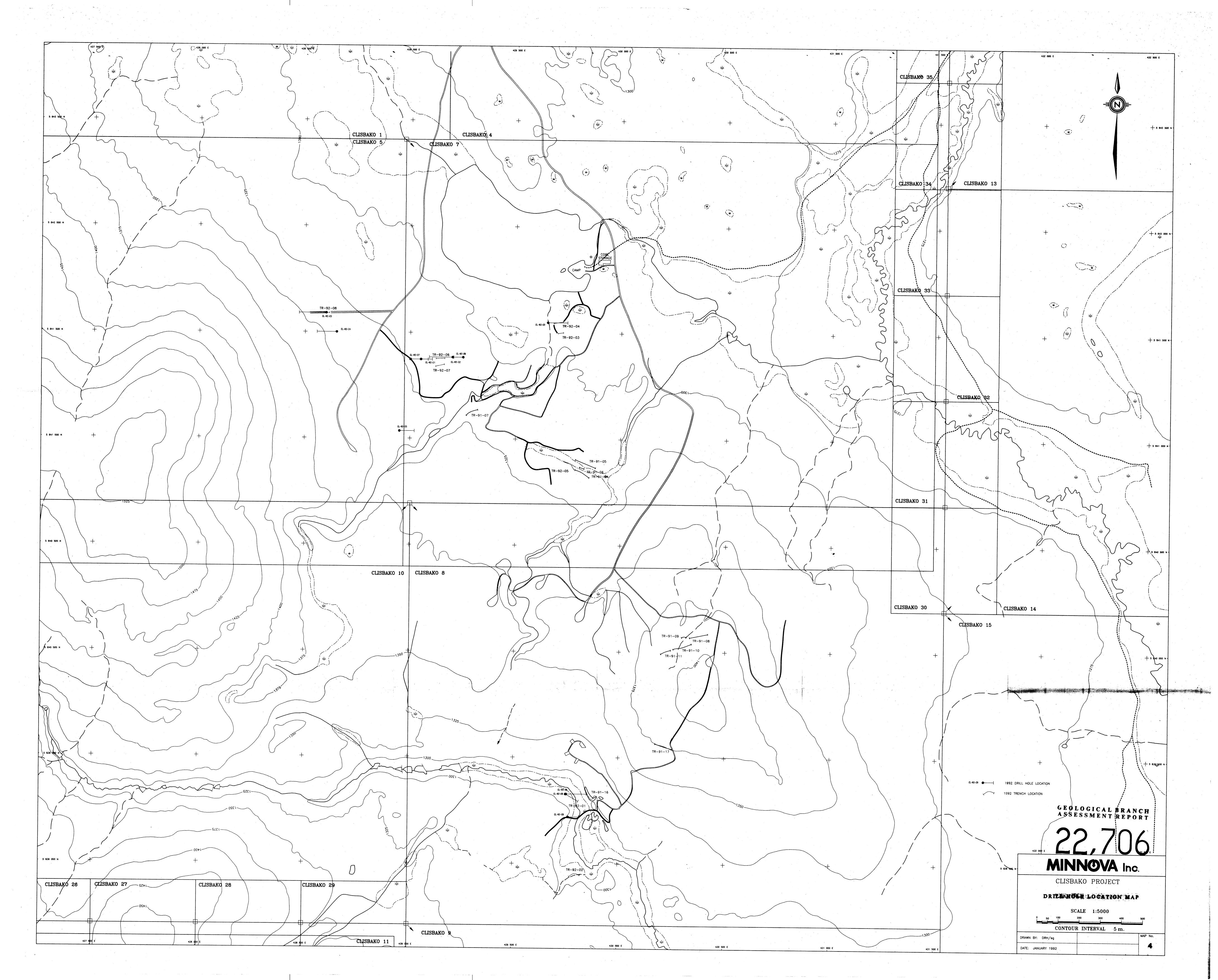
.

DLE NUME	BER: CL-92-30			MINNOVA INC. Drill Hole Record		DATE: 11-December-1992
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
58.30 TO 62.40	«QTZ-PY STOCKWORK»	Strong stockworking of intensely silicified primary breccia of amygdaloidal andesite. Grey quartz stringers <1cm carry abundant pyrite. Late vuggy quartz veinlets are barren. Andesite is ex- tremely amygdaloidal, most <1cm long, flattened at 1:4. veins @	20 40 70	Wall rock was first strongly argillized amygs filled by clay, then overprinted by strong silicification. «ST SIL»	<pre>«2-5% PYRITE» in grey quartz stringers.</pre>	Suspected adularia at 60m, ppt with late vuggy crystalline quartz.
62.40 TO 70.20	«SILICIFIED BRECCIA»	Intensely silicified fault breccia. Contact btwn amyg andesite and underlying perlitic rhyolite. Major multiphase hydrothermal overprint as re- brecciation of sil fault gouge, deposition of fg grey to black locally pyritic quartz and after repeated brecciation, final healing by vuggy cg crystalline white to clear quartz. Clasts include silicified pyritic wall rock, pyritic grey or blac k quartz and massive white to brown qtz.		«INT SIL» Intensely silicified hydro- thermally overprinted fault breccia.	«1-2% PYRITE» irregularly distributed in early fg quartz stringers or replace ing silicified wall rock frags or as frags of above in late white quartz matrix.	Some late vuggy quartz veins show drip textures indicating vertical dip of vns
		463.3-66.2] «Quartz Vein» Nassive white quartz breccia vein, not distinctly separate or even crosscutting, but rather just white quartz domin- ant, with patches of smokey brown calcite, similar to hydrocarbon rich brown qtz at McLaughlin.		«INT SIL»	«Trace Balck Sulphide» noted as irreg- ular disseminations in white quartz. May also be present in black quartz but is not visibly obvious. No significant pyrite.	Smokey brown calcite a 64.0m, 65.6m.
		469.7-70.2] «BANDED VEIN» Beautiful multi-banded quartz-chalcedony-adularia vein. See original field log for sketch. Interval actually consists of 3 such veinlets 2-4 cm wide, showing the same paragenetic sequence: pyritic qtz, grey qtz, adul, grey ccd, microbreccia, comb qtz, pyritic qtz.		«INT SIL»	«Trace Pyrite» in grey ccd.	Sawn sample to K. Dunne.
70.20 TO 76.60	«QUARTZ STOCKWORK»	Strong quartz stockwork, weak pyrite, with patchy quartz flooded fault breccias and/or stwk blowouts Veinlets are dominantly late vuggy white quartz. Early quartz is only weakly sulphidic.		«ST ARG» overprinted by «PATCHY SIL»	«1% PYRITE» in grey quartz stringers. Possible black sulphide in black quartz -adularia 1cm banded vein @76.3m	Another example of hydrothermal breccia tion overprinting fault brecciation.
76.60 TO 100.10	«RHYOLITE BRECCIA»	Rhyolite flow breccia with mixed angular frags, rather washed out and indistinct, 1-30cm, of perlite, FB rhyolite, and minor hematitic (black) microbreccias. Interval is shot through with qtz and later calcite microstringers, both barren.		«ST ARG» is pervasive. «PATCHY SIL» accompanies quartz healing of faults and fractures.	«Trace pyrite»	

HOLE NUM	BER: CL-92-30			MINNOVA INC. Drill Hole Record	DATE: 11-December-1992		
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE		ALTERATION	MINERALIZATION	REMARKS	
100.10 TO 102.70	«FAULT»	Partially quartz healed fault contact btwn rhyo breccia and underlying porphyry. Fault gouge and b breccia has been 80% resilicifed, leaving only 20% clay gouge. Lower contact is occupied by a fg black quartz healed breccia.		«INT ARG» is progressively silicified toward the lower contact where «INT SIL» dominates.	«1% PYRITE» euhedra disseminated in fault gouge.		
102.70 TO 107.00	«FELDSPAR PORPHYRY»	Classic feldspar porphyry rhyolite flow with aphanitic groundmass hosting 20-30% 2-4mm plag- ioclase phenos.		«4400 SIL»	«Trace Pyrite» disseminated euhedra.	obvious flow rock, probably andesitic b chemistry, WR sample taken, 2PCLW056	

LOGGED BY: PETER THIERSCH

HOLE NUMBER: CL-92-30 ASSAY S											SAY SH	EET		DATE:	DATE: 11-December-1992	
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	GEO Fe X	CHEMICAL Pb ppm	sb ppm	Zn ppm	Au ppb	Hg ppb	s X		COMMENTS
38176 38177 38178 38179 38180	24.70 29.60 42.50 44.40 47.50	27.70 31.70 44.40 46.40 49.50	3.00 2.10 1.90 2.00 2.00													
38161 38162 38163 38164 38165	56.50 58.30 60.30 62.40 63.30	58.30 60.30 62.40 63.30 64.30	1.80 2.00 2.10 0.90 1.00	2.8 4 4.4 4.7 1.2	424 764 600 626 112	71 133 212 132 275	30 20 20 23 7	3.37 3.84 3.62 2.84 0.96	9 10 10 10 3	11 19 19 47 17	79 59 36 17	69 228 100 134 16	590 1130 610 2100 1290	3.41 3.7 3.5 2.96 0.86		
38166 38167 38168 38169 38170	64.30 65.30 66.20 67.20 68.20	65.30 66.20 67.20 68.20 69.20	1.00 0.90 1.00 1.00 1.00	1.2 0.9 0.6 1.4 1.4	96 71 88 143 278	37 34 18 51 78	6 6 8 10	0.97 0.68 0.69 0.94 1.11	5 3 1 6	6 6 7 5 9	13 11 14 36 39	40 35 23 79 114	285 275 245 155 75	0.58 0.31 0.34 0.5 0.87		
38171 38172 38173 38174 38175	69.20 70.20 72.20 74.20 76.60	70.20 72.20 74.20 76.60 78.60	1.00 2.00 2.00 2.40 2.00	1.3 0.5 0.5 1.2 0.4	204 95 95 146 14	217 63 70 67 140	14 35 13 57 124	0.97 1.2 1.36 1.63 2.13	4 9 5 2	6 1 1 1	28 42 52 48 43	84 28 20 39 10	70 65 45 85 65	0.6 0.34 0.51 0.81 0.41		


APPENDIX III STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, David Heberlein of 12221 Makinson Street, Maple Ridge, B.C. certify that:

- I graduated from the University of Southampton, England 1. with a B.Sc (Honours) Degree in Geology in 1980.
- I graduated from the University of British Columbia with 2. an M.Sc Degree in Geology in 1985.
- I have practised my profession continuously since my 3. graduation.
- I am a Fellow of the Geological Association of Canada 4. (F5050).
- I am a Registered Professional Geoscientist of the 5. Province of British Columbia.
- I am currently employed by Minnova Inc. as a Senior 6. Project Geologist.
- Work described in this report was carried out under my 7. direct supervision.

Date: <u>December 15, 1992</u> Signature: -

