GEOLOGICAL BRANCH ASSESSMENT REPORT

22,726

GOVERNMENT AGENT'S OFFICE RECEIVED

JAN 1 1 1993

NEW WESTMINSTER, B.C.

 \square N

TRENCHING LOG NO: (JAN 1 5 1993 RD.

DIAMOND DRILL AGION.

AND

GEOPHYSICAL SURVEKENO.

ON THE

LUSTDUST PROPERTY

OMINECA MINING DIVISION

BRITISH COLUMBIA

CLAIMS:

MV1, MV2, WOW #1, M, L, P, AIR,

INK, HOGEM

NO. OF UNITS:

77

N.T.S.

93N/11W

LATITUDE:

55°34'N

LONGITUDE:

125°25'W

OWNER:

ALPHA GOLD CORPORATION

6018 Marguerite St.

Vancouver B.C.

AUTHOR:

DARREL JOHNSON P.Geo.

DATE:

JANUARY 11 1993

TABLE OF CONTENTS

Summary	Page	1
Conclusions		1
Recommendations		1
Introduction		
Location and Access		2
Claim Status		2
History		3
Geology		
Regional Geology and Mineral Occurrences		3
Property Geology		4
Mineralization		5
1992 Work Programme		7
Grid Preparation		7
Trenching		7
Diamond Drilling		7
Analytical Work		8
Geophysical Surveying		8
Exploration Potential		9
References	i	0
Statement of Qualifications Darrel L. Johnson	1	1

APPENDICES

Statement of Expenditures	Appendix	I
Assay Certificates and Geochemical Reports	Appendix	II
Sample Number Lists	Appendix	III
Diamond Drill Core Logs	Appendix	IV
Table of Drill Hole Locations	Appendix	V

MAPS

LOCATION AND ACCESS	Figure 1	After Page 2
CLAIMS	Figure 2	After Page 2
REGIONAL GEOLOGY	Figure 3	After Page 3
1992 WORKINGS	Figure 4	After Page 7
DRILL HOLE PLAN	Figure 5	In Pocket
VLF EM PROFILES	Figure 6	In Pocket
SECTION 17+05 N	Figure 7	In Pocket
SECTION 16+80 N	Figure 8	After Page 7
SECTION 16+60 N	Figure 9	After Page 7
SECTION 16+20 N	Figure 10	After Page 7
SECTION 15+80 N	Figure 11	After Page 7
SECTION 15+50 N	Figure 12	After Page 7
SECTION 15+30 N	Figure 13	After Page 7
SECTION 15+15 N	Figure 14	After Page 7
SECTION 15+00 N	Figure 15	After Page 7
LONGITUDINAL SECTION	Figure 16	In Pocket

SUMMARY

Contract personnel were active on Alpha Gold Corporation's 'Lustdust' zinc/gold property north of Fort St. James B.C. from July 4 through September 23, 1992. Work concentrated on the 'L' mineral claim in the vicinity of the 4b massive sulphide zone and included bulldozer and excavator trenching, diamond drilling of 30 holes totalling 1520m (4986ft), core and rock sampling, linecutting and geophysical surveying. Limestone hosted massive sulphides carry zinc values up to 32.08% with gold values to 11.1 g/t (0.325 opt).

Limited trenching and geophysical work were completed on the No. 3 Zone on the MV $-\ 1$ claim.

This work indicates excellent potential to extend both the massive sulphide mineralization in the 4b Zone and the No. 3 oxide zone. Potential for discovery of new zones of either massive sulphide or oxide mineralization is also considered excellent.

The limited scope of the 1992 programme did not allow exploration of either the silver rich No.1 Zone or the apparently highly oxidized No. 2 Zone.

CONCLUSIONS

Trenching and diamond drilling on the 4b Zone showed continuous massive sulphide mineralization over a strike length of 155m. A strong distinct geophysical (VLF EM) anomaly suggests a northern continuation of this mineralization for at least an additional 110m beyond any drill testing.

A second VLF anomaly (Plateau anomaly) 250m southwest of the 4b combines broad areas of high field strength response with wide but distinct dip angle crossovers over a 220m strike length.

Bulldozer work late in the season exposed oxide mineralization 50m north and 70m south of the main No. 3 zone exposure.

RECOMMENDATIONS

The 4b Zone should be traced to the north, as indicated by recent VLF EM work, and to depth, by closely spaced diamond drilling.

The large VLF EM anomaly (Plateau) southwest of the 4b Zone, outlined by the 1992 survey, is probably best tested by a highly mobile track mounted reverse circulation (R.C.) drill riq.

The No.3 zone including strike extensions should be tested by a major R.C. drilling programme.

The tightly spaced (20m x 5m) VLF EM survey undertaken in 1992 should be extended from the No1. Zone to Canyon Creek (4a Zone?). Detailed magnetometer work should respond well to pyrrhotite rich massive sulphide zones and is highly recommended.

INTRODUCTION

Location and Access

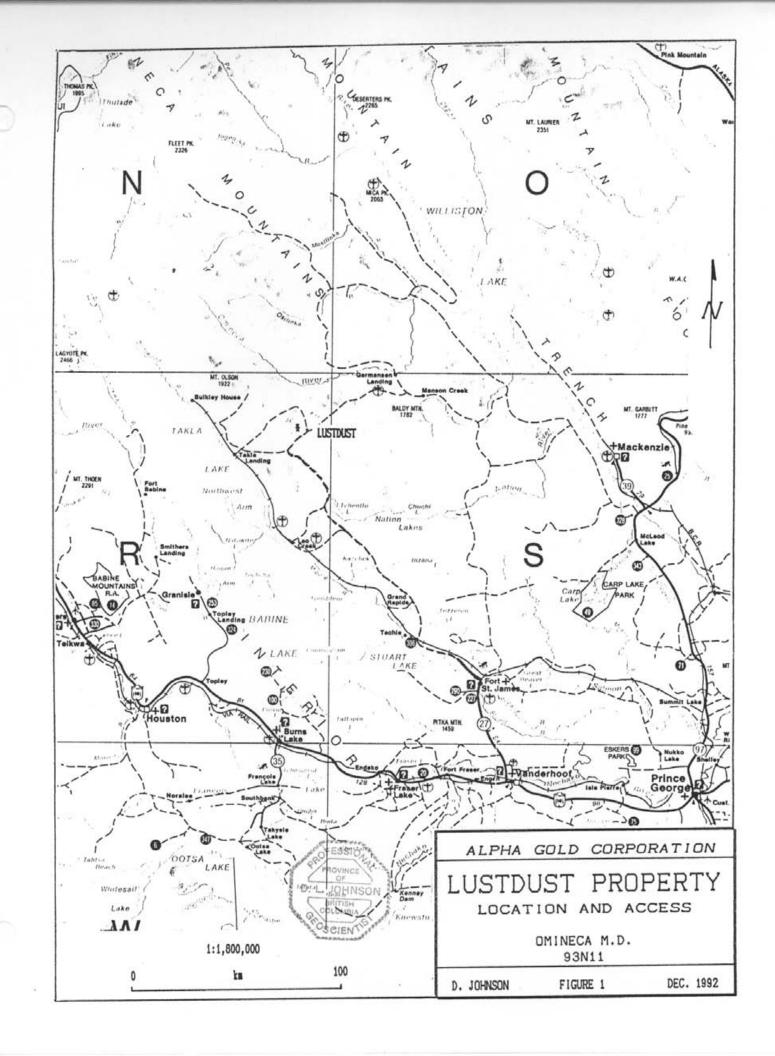
As shown on Fig. 1, the Lustdust property is located in central B.C. 150 km northwest of Fort St. James, 36km ENE of Takla Landing.

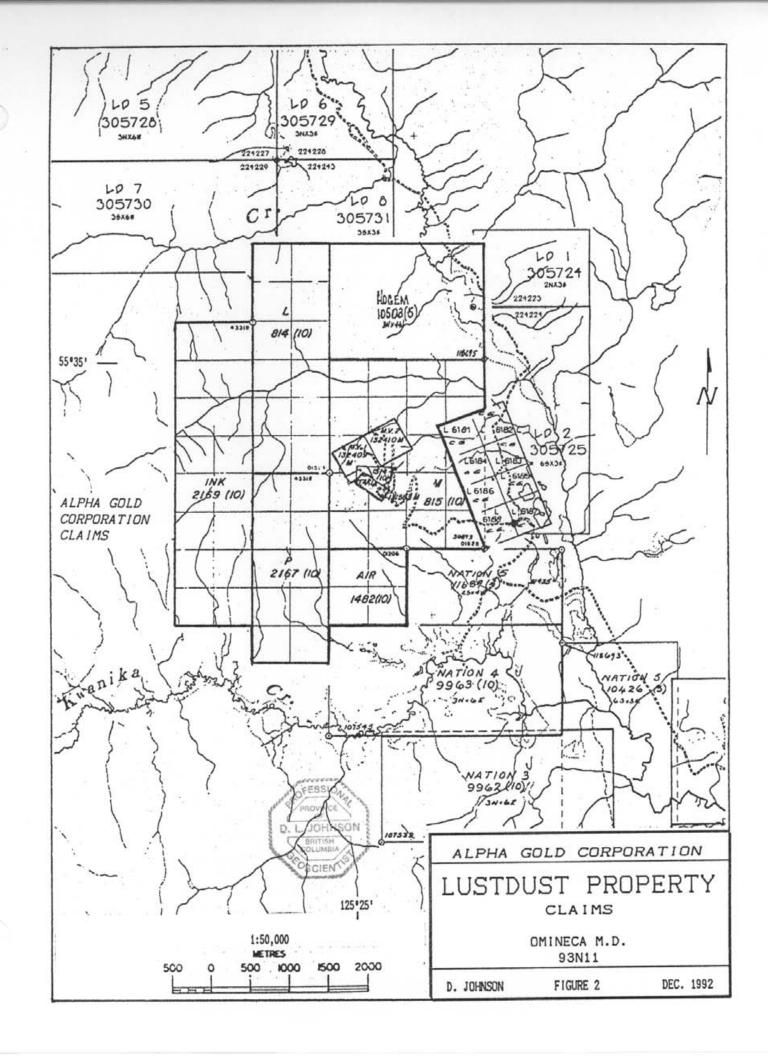
Excellent road is access provided by the Leo Creek Forest Service Road, the Driftwood FSR and the 1930's vintage Takla Landing - Manson Creek road and Silver Creek road. The 200km from Fort St. James to Lustdust can be driven comfortably in less than 3 hrs. Most roads on the property were constructed by previous operators and required only minor upgrading by Alpha in 1991 and 1992.

Terrain is moderately rugged, with elevations ranging from 1000m to 1525m, but is rarely extreme enough to restrict access road construction. Work in 1992 ranged from 1350 to 1450m elevation.

Lower elevations are forested with widely spaced lodgepole pine. Spruce and balsam are common above 1200m, although these are often deformed and rotten with little commercial value. Underbrush is not thick enough deter field work.

The long dry summer of 1992 was a notable and pleasant exception to the typical northcentral B.C. climate of cool rainy summers and long snowy winters. Patchy snow remained at higher elevations into July and new snow began to accumulate again in late September.


A trailer camp was established at the junction of the Silver Creek road and property road, 1km north of the Takla - Manson road.


Claim Status

The Lustdust property (Fig.2) totals 77 units (gross), comprised of full size and fractional 'two post' claims surrounded by 'four post' claims as described below and shown on Fig. 2:

CLAIM NAME	RECORD NO.	UNITS	EXPIRY DATE
M.V. 1	132409	1 (2 post)	20 09 2002
M.V. 2	132410	1 "	20 09 2002
Wow 1	1514	1 "	20 10 2002
L,	814	12	17 10 2002
M	815	20	17 10 2002
Air	1482	4	11 10 2002
P	2167	10	25 10 2002
Ink	2169	16	23 10 2002
Hogem	10503	12	21 05 2001
	TOTAL	77 Units	

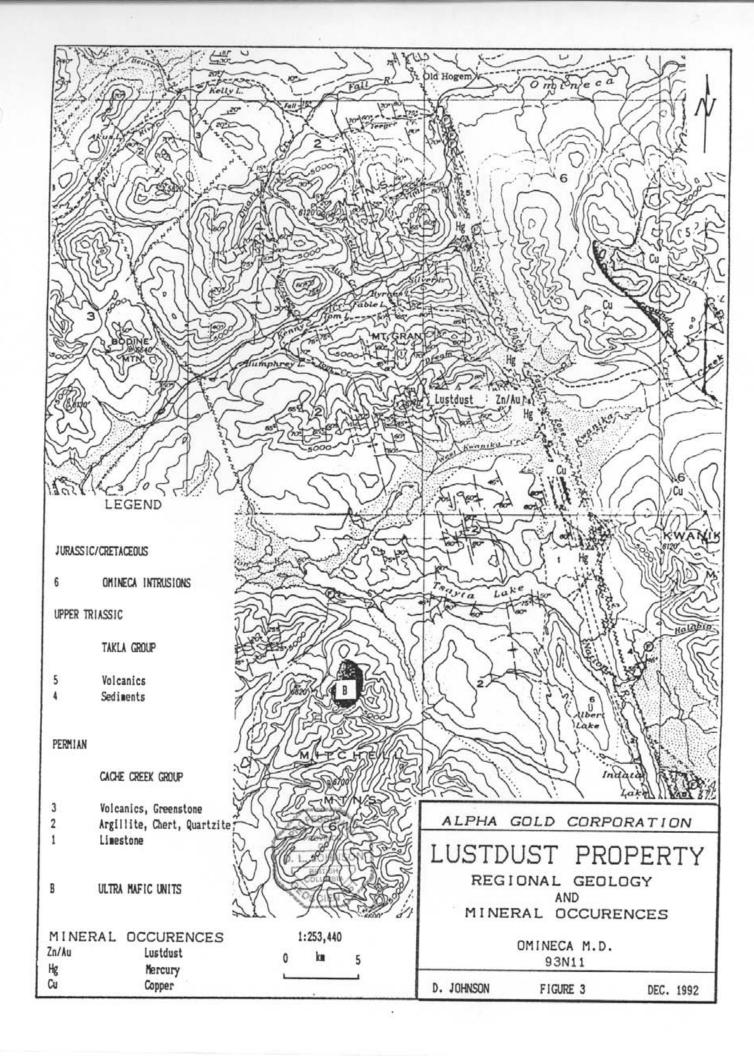
All claims are in the Omineca Mining Division and are owned 100% by Alpha Gold Corporation subject to underlying agreements. Expiry dates shown are after application of work described in this report.

History

The Lustdust has been explored by numerous groups, including Bralorne Mines, Takla Silver Mines and Anchor Mines since discovery of the No.1 Zone in 1944. Most early work concentrated on the No.1, with trenching, drifting and diamond drilling from surface and underground. The 2,3 and 4b Zones, although recognized as early as 1952, received less attention until 1979 when Granby Mining Corp. drilled three holes totalling 615m on the 4b. This was followed in 1980 and 1981 by major programmes of geochemistry, geophysics and drilling by Noranda Exploration on both the 4b and a large area peripheral to the known occurrences. Work by Granby and Noranda is well described in assessment reports.

GEOLOGY

Regional Geology and Mineral Occurrences


The Lustdust occurs at the eastern edge of a belt of Permian 'Cache Creek' Group sediments and lesser volcanics. This belt, up to 30km wide, extends northwesterly - southeasterly for several hundred kilometres parallel to the Stuart-Trembleur-Takla Lake system. This package has an apparent minimum thickness of 3km and consists of thick massive but discontinuous limestone strata, overlain? by a mixed assemblage of chert and argillite plus lesser andesitic volcanics. Tight folding along northwest southeast axes has affected all formations and is most evident as extreme crumpling of the chert/argillite units. This sedimentary package is bounded on the east by Upper Jurassic? intrusive rocks of the Hogem batholith north of Tchentlo Lake and by Upper Jurassic 'Takla' Group volcanics and sediments further south.

The dominant structural feature of the region is the Pinchi Fault Zone. This is a major regional feature which is evident throughout much of the B.C. interior and which, in the Lustdust area, forms the eastern contact of the Cache Creek belt.

Mineral occurrences are concentrated along the Pinchi Fault and in the intrusive rocks to the east of it. In particular, mercury (cinnabar) showings, including ex-producers Pinchi Lake and Bralorne Takla are found from the Omineca River in the north to Fort St. James in the south. East of the fault, porphyry type copper and copper/gold occurrences are more common. One of the most recently explored of these is the Swan, located near the junction of Kwanika and West Kwanika creeks, 5km southeast of Lustdust.

Placer gold is being mined on a small scale from Kenny Creek, 13 km north of Lustdust.

Regional geology and mineral occurences are shown on Fig.3.

PROPERTY GEOLOGY

Detailed geological mapping was not a discrete component of the 1992 programme. This section will therefore be unfortunately brief, based on observations made during other aspects of field work.

Limestone

Massive clean grey/white limestone is well exposed along the main access road from near the Bralorne Takla mine site at 1000m elevation to the 4b Zone at 1400m. Although bedding is indistinct, subtle banding and jointing suggests a general northerly (340°) strike and steep (+75°) westerly to vertical dip. Microveinlets of calcite are common.

Chert/Argillite/Phyllite

The limestone is overlain? west of the 4b Zone by a mixed assemblage of chert/argillite/phyllite. This package is highly crumpled and foliated. Although original textural features have been largely obliterated, foliation observed in outcrops and trenches generally dip steeply west, although local variations and 'rolls' are common. Chert is the most readily recognizable unit, although individual fragments are rarely larger than fist-sized.

Limey and chloritic sections are common, in places grading into chlorite schist. Graphitic partings are common, although total graphite content is not high.

The economically important limestone/argillite contact is generally distinct in drill core but often difficult to pinpoint in trenches. This is attributed to the apparent near surface slumping of the argillite assemblage over the massive limestone, as observed in Trench 6. This phenomenon might be expected to very effectively mask geochemical response.

Greenstone

A highly chloritic volcanic unit (greenstone dyke?) cutting the limestone is exposed in trenches and drill access trails from 16+20N to 17+05N. Commonly about 1m wide, this unit trends 310° and dips steeply westerly.

Skarn

Narrow (<1m) intersections tentatively identified as garnet diopside skarn were cut at depth in DDH 92-12 and 92-13.

Intrusives

At least three varieties of intrusive dykes and/or small plugs are evident.

Feldspar porphyry and aplite dykes were exposed in trenches on lines 12+00N and 13+00N. A small, very blocky fractured granodiorite plug was exposed by trenching at 12+00N, 21+40W. A very similar appearing unit outcrops between lines 16+40 and 16+80, near 22+00W, about 50m west of the 4b Zone.

MINERALIZATION

There are four main mineralized zones, No.1, No. 2, No.3 and 4b, currently recognized on the Lustdust property. These semiparallel, en echelon, northerly trending zones extend discontinuously over 1.5km. Another zone designated 4a is believed to outcrop on the south wall of Canyon Creek, 400m north of the 4b, but was not examined in 1992 and is not well documented.

Work in 1992 concentrated on the 4b which has been traced by drilling for 155m along strike and to 42m below surface.

The 4b Zone consists of heavy to massive pyrrhotite, pyrite and sphalerite with less common arsenopyrite, stibnite, rare cinnabar and possibly rare bornite. Galena is conspicuously and curiously absent. Transported limonite/ferricrete gossan is developed downslope of outcrops.

Massive sulphide mineralization occurs very consistently at the limestone argillite contact. The notable exception is in holes 92-40 and 92-41 where the main sulphide lens is hosted in argillite a few metres into the hanging wall.

Sulphides are generally well segregated, with sharp transitions from massive pyrrhotite into pyrite and from pyrite into sphalerite in a few centimetres. A notable exception to this observation is a 4.0m section in DDH 92-20, from 6.8 to 10.8m which appeared to be massive pyrrhotite, but when split was seen to contain abundant medium crystalline sphalerite. This section graded 9.7% In over 4.0m

Individual minerals display distinct textures and modes of occurrence. Pyrrhotite is readily identified by its very fine grain size, bronzey colour and strong magnetism. Pyrite is brassier in colour and often occurs as medium to coarse grained clots, up to 5cm in diameter, within massive pyrrhotite. Sphalerite at Lustdust is a very distinct lustrous blue/black colour and generally occurs as distinct grains and near complete crystals up to 1cm across. Arsenopyrite is very silver-white, often forming clean distinct near perfect cubes. Stibnite, which increases in abundance towards the south, occurs as classic coarse needles, often intergrown with coarse angular clots of sphalerite.

'Stringer' type mineralization is found in the hanging wall argillites as veinlets, crosscutting and conformable bands, random lenses up to 10cm in diameter and as cement between cherty fragments. Stringer mineralization is mostly pyrrhotite with

occasional well rounded pyrite clasts. There is an apparent relationship between massive and stringer mineralization, with the stringer mineralization thicker and more abundant overlying the thickest, richest massive mineralization.

Cinnabar was positively identified only in a 2cm brecciated, vuggy 'epithermal looking' quartz vein in DDH 92-37. This is likely an overprint feature, possibly related to the Bralorne Takla deposit located 2.5km to the east.

The lack of alteration adjacent to massive mineralization is emphasized by knife sharp sulphide/limestone contacts, both on the flanks of the zone and with barren horses common within the zone. The most abundant accessory mineral is chlorite, which occurs as solid fist sized lumps in the centre of an 8.3m massive sulphide intersection in DDH 92-15. Chlorite (sericite?) pyrite schist is exposed on the eastern (footwall) side of mineralization in Trench 3. Calcite is common both as veinlets and as massive inclusions in the zone, as in DDH 92-20. Vein quartz is rare. Pervasive silicification of limestone horses within massive mineralization is common.

Gold values up to 11.1 g/t (0.325 opt) were encountered in high sulphide trench and core samples. Exact mode of occurrence of gold and its relationship to zinc mineralization is not understood although there does appear to be an inverse relationship between the two, with gold occurring in areas of low zinc and vice versa. Analysis of all samples by multi element ICP techniques should be undertaken to determine any relationship of gold to arsenic, antimony or other accessory minerals.

The highly oxidized No.3 zone was explored by Alpha in 1991 and is well described in the 1991 summary report by J. Rotzien. Zinc values of 9.86% over 25.2m were intersected in DDH 91-1. An 18m section of DDH 91-2 returned gold values of 5.95g/t with silver grades of 31.8g/t.

The No.1 and No. 2 Zones were not covered by the 1992 programme and have not been seriously explored since 1968. The No. 1 appears to be a shear hosted sulphide rich vein?, 1 to 2m wide. Mineralization has been traced semi continuously by surface drilling and underground work over a strike length of at least 400m. Grades of 4.45g/t (0.13opt) Au and 23.4 opt Ag are reported over 2m widths.

The No. 2 oxide zone is poorly exposed in three trenches. No detailed descriptions are available.

1992 WORK PROGRAMME

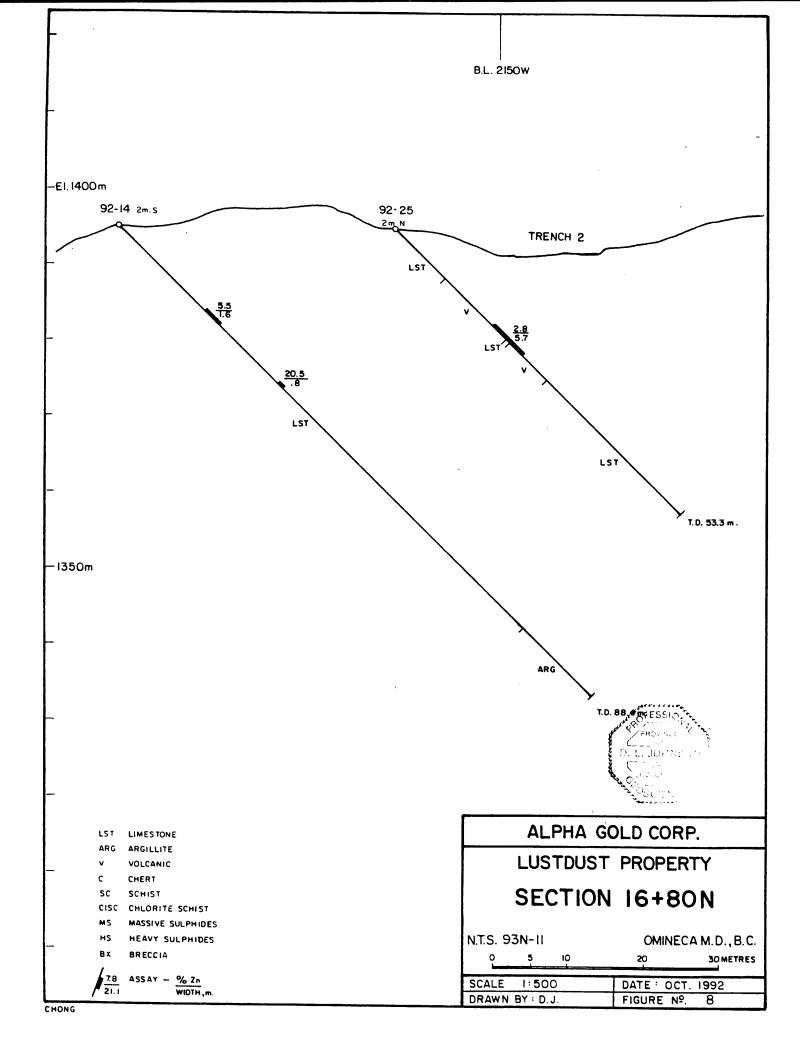
GRID PREPARATION

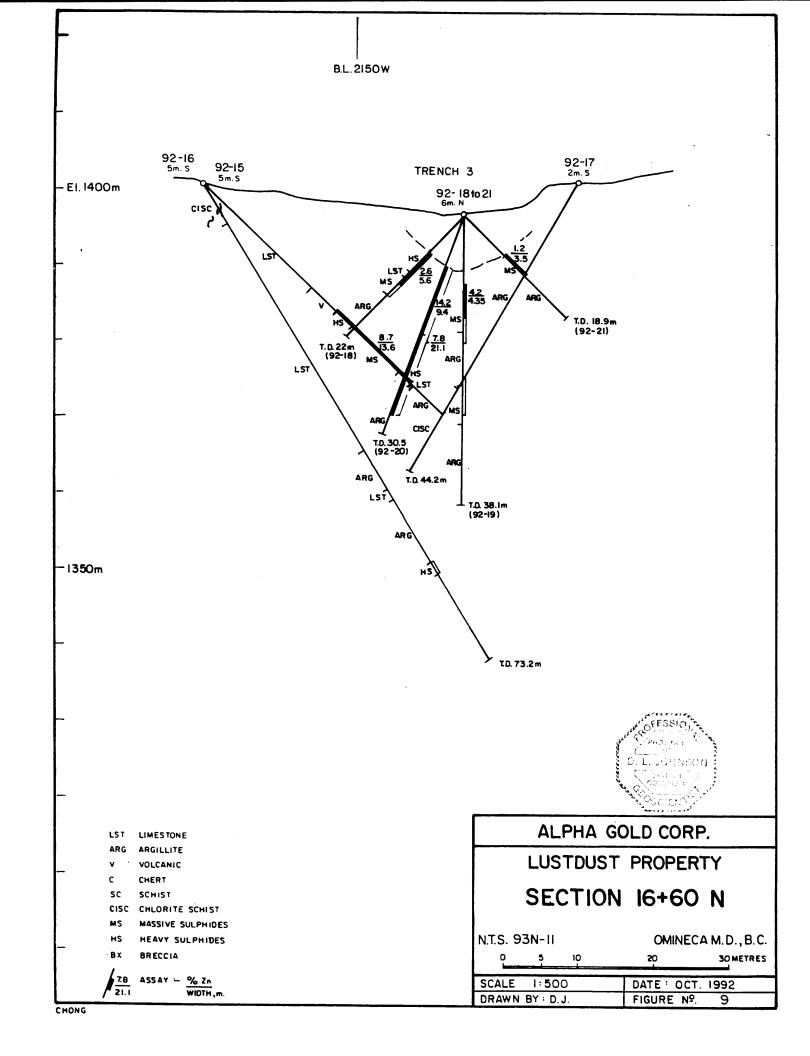
Portions of old grid lines, presumably form the Granby work in 1979, were found throughout the area worked. These were, however, incomplete and could not be utilized for the 1992 programme. A new baseline originating from L16+00N, 21+50W, one of the few identifiable old stations, was cut from 11+20N to 18+60N and marked at 20m intervals. This provided control for location of drill holes and trenches and subsequent geophysical work.

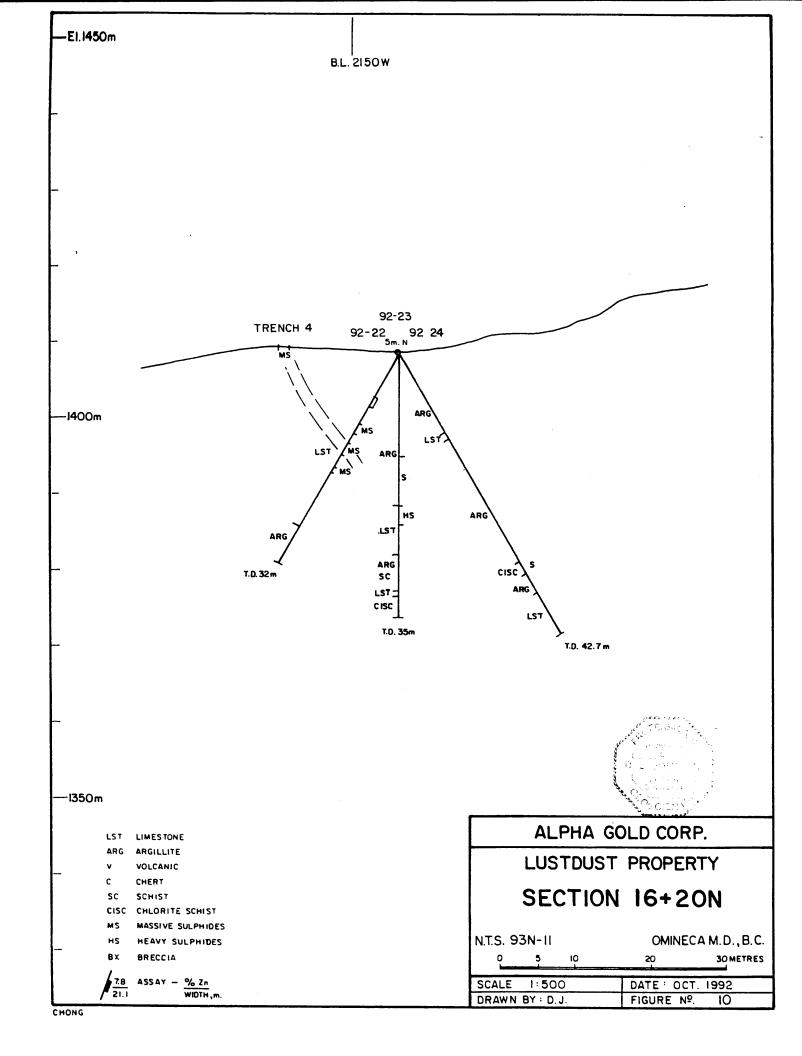
TRENCHING

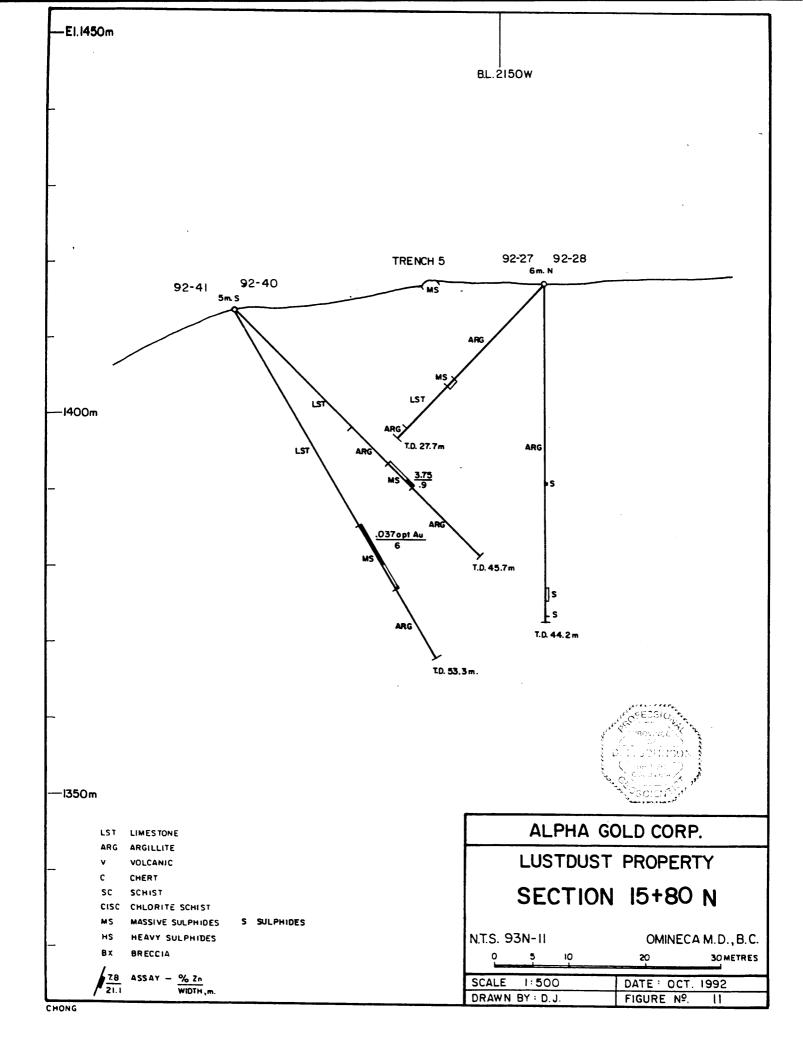
Bulldozer work from July 6 to 9 exposed massive sulphide mineralization in six trenches extending over a strike length of 160m on the 4b Zone and at two sites north of the 4b. Twenty three chip samples (LDT 001 to 023) of massive sulphides from these trenches yielded zinc values up to 32.08% over a width of 1m, with gold values up to 11.1 g/t (0.325 opt).

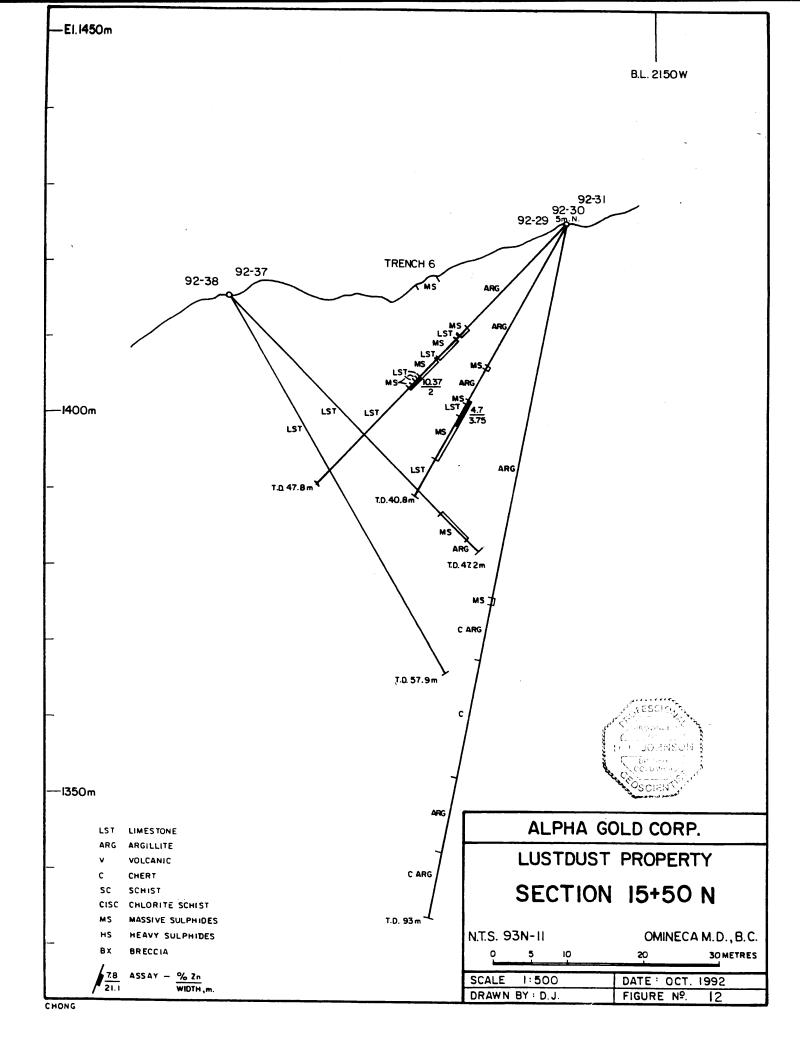
Excavator trenching was completed in early August north and south of the 4b Zone. This work tested new areas as well as improving exposure in the July bulldozer trenches. Trenches on Lines 1200N, 1300N and 1420N attempted to expose a southerly extension of the 4b Zone. A pit at 1200N - 21+40W, 350m south of the 4b, tested a 3000+ppm. zinc soil geochemical anomaly outlined by a previous operator. A grab sample (LDT 024) of limestone hosted sulphide mineralization from this pit assayed 4.18 g/t (0.122 opt) Au, 2.58 opt Ag and 10.93% Zinc. This showing has not yet been explored further.

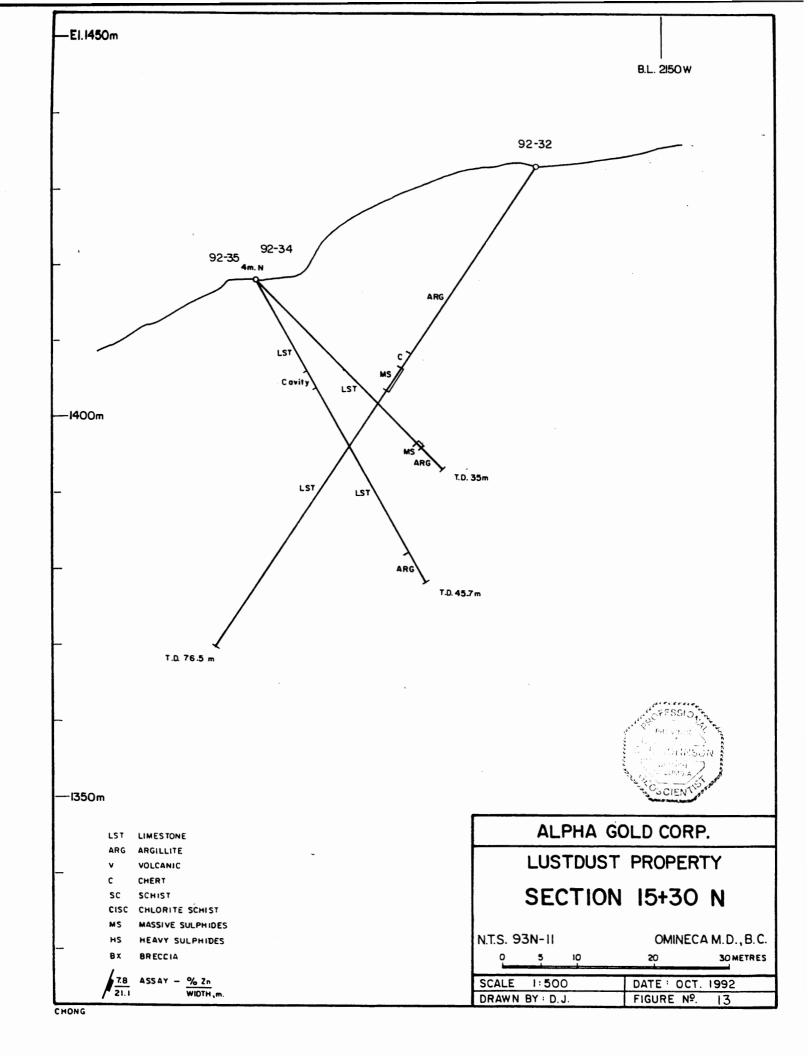

Trenches and sample sites are shown on Figs. 4 & 5 . Assay and analytical results are attached as Appendix II; sample locations and widths are listed in Appendix III

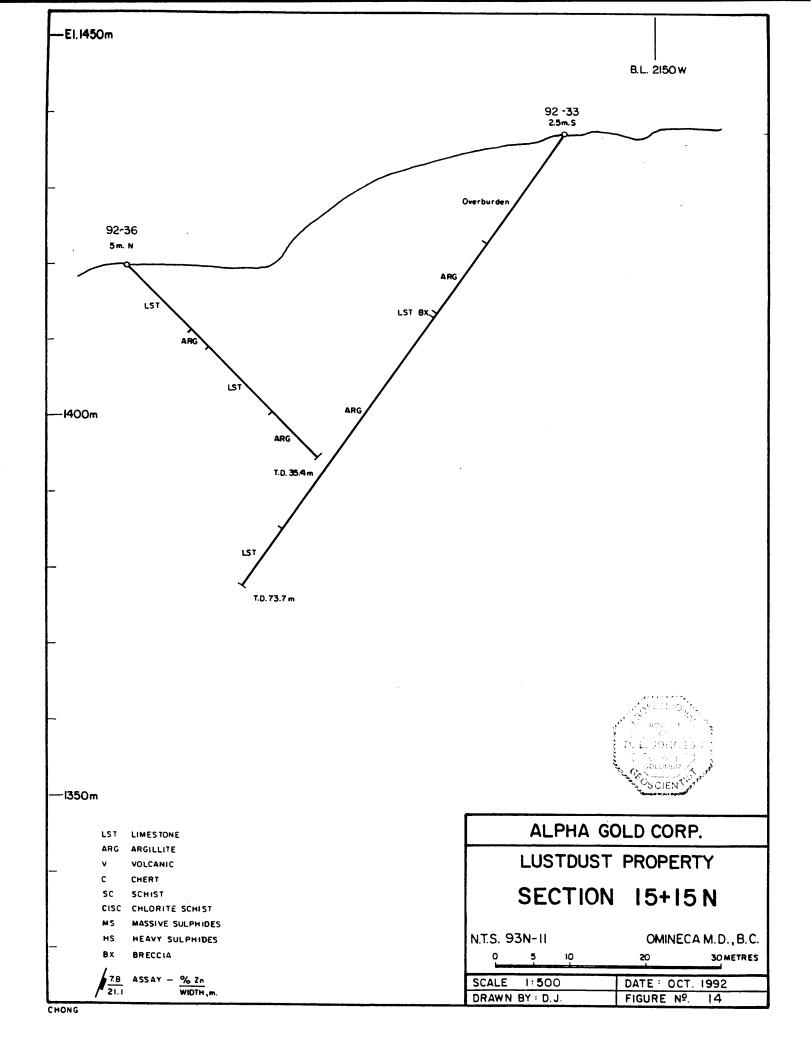

DIAMOND DRILLING

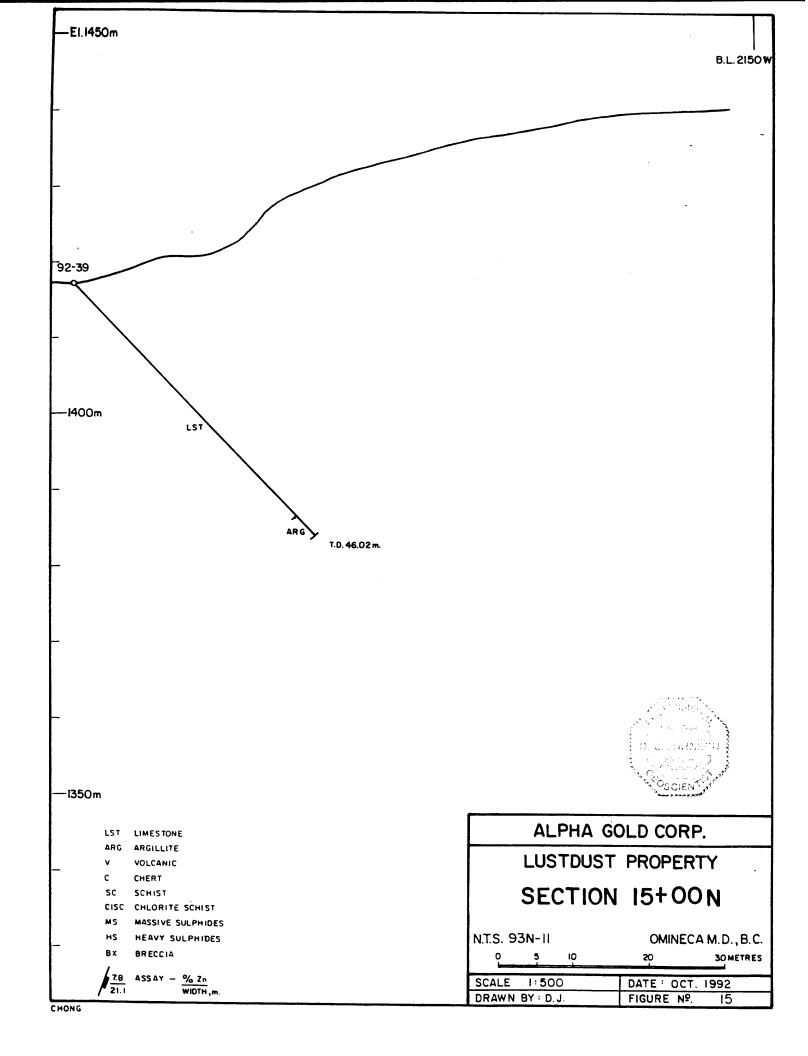

Diamond drilling was contracted by Triangle Drilling using a unitized '38' rig and NQ hardware recovering 47.6mm core. The crew arrived on site July 29 and commenced drilling July 31. Thirty holes, numbered 92 -12 through 92 - 41, totalling 1520m (4986ft) were completed August 25 and all drill personnel and equipment left the property August 27.


Drilling tested the 4b Zone and explored for extensions along strike to the south. Holes are located on 9 sections extending from 15+00N to 17+05N. Massive sulphide mineralization exposed in trenches was intersected in 21 of the 30 holes, with the deepest intersection 42m below surface.









Notable drill intersections include:

DDH 15	From	24.4m	To 38m	Width 13.6m	8.68% Zinc
DDH 20		6.8m	27.9m	21.1m	7.8 % Zinc
DDH 29		27.9m	29.9m	2.Om	10.37% Zinc
29		18.9m	21.7m	2.8m	2.57 g/t Gold
					(0.075 opt)
DDH 30		26.4m	30.15m	3.75m	4.7% Zinc
DDH 41		32.9m	38.9m	6.Om	1.27 g/t Gold
					(0.037 opt)

Mineralized intersections were photographed prior to splitting and sampling.

Core is stored near 16+00N, 19+80W.

Drill holes locations are shown on Fig. 4. Cross sections and one longitudinal section are included as Figures 7 through 16. Core logs are attached as Appendix IV.

ANALYTICAL WORK

Assays and analytical work on both trench and core samples were performed by Bondar Clegg & Company Ltd in North Vancouver B.C. A total of 40 samples were analyzed by 27 element induction coupled plasma (ICP) techniques incorporating HCL:HNO3 (3:1) extraction; 139 conventional zinc,gold,silver assays were performed and specific gravity determinations were performed on 5 selected massive sulphide samples.

GEOPHYSICAL SURVEYING

Approximately 12.5 km of VLF EM surveying were completed over eastwest grid lines, mostly at 20m spacing, covering the 4b Zone and extending 400m to the south. Readings were taken at 5m intervals. A Sabre model 27 receiver was used in conjunction with the Seattle transmitter. This close station spacing is appropriate to the tight, well defined massive sulphide zones found at Lustdust. The extra effort required, both in field work and data presentation, was definitely justified by the quality of information derived.

Interpretation of VLF EM results on the Lustdust property was greatly aided by areas of excellent exposure over which system performance could be evaluated. Test line 1550N over 'Trench 6' on the 4b Zone yielded distinct field strength and dip angle responses. Dip angles displayed a classic, sharp, 3 station negative - positive - negative crossover, with the actual 'zero' point corresponding exactly with the 94% field strength peak. This anomaly coincides directly with exposed massive pyrrhotite, pyrite, arsenopyrite, sphalerite mineralization and provides a reliable, readily identifiable sulphide signature.

The VLF EM work outlined two distinct high priority drill targets. The strongest anomaly indicates a northern extension of the 4b Zone of at least 110m to 1820N. Within this anomaly, a grab sample from a poorly exposed massive sulphide outcrop on Line 1760N gave a gold assay of 0.325 opt. Further north, an offscale field strength reading, conservatively recorded as 110%, coincides with a rusty contact between the favourable limestone host and overlying argillite sequence exposed on Line 1820N.

A second broad anomalous zone (Plateau) occurs on the western side of the survey area about 300m southwest of the 4b.

Four VLF test lines over oxide mineralization in the No. 3 Zone gave inconclusive results.

EXPLORATION POTENTIAL

The northern extension of the 4b Zone, as indicated by recent VLF EM work, is the most obvious exploration target. Depth potential of the 4b Zone is indicated by Granby holes 79 -3, which intersected 2.48m grading 19.8% zinc at 100m below surface and 79-2 which cut 1.51m of 5.6% zinc at 170m true depth. The poorly documented 4a Zone believed to outcrop in Canyon Creek 400m north of the 4b also suggests excellent potential for strike extension.

Oxide mineralization exposed by bulldozer work in 1992 indicates potential for substantial expansion of the No. 3 Zone to both the north and south. This is reinforced by several small oxide occurences, shown on a 1966 plan by Dolmage Campbell and Associates, extending for several hundred metres northerly from the main No. 3 exposure

The 'Plateau' VLF EM anomaly definitely requires testing.

Potential for discovery of new zones of either massive sulphide or oxide mineralization is considered excellent.

REFERENCES

- Armstrong. J. E. , G.S.C. Map 844 A , 1945
- Campbell, D. D., Summary Geological Report Takla Silver Mines Ltd., 1966
- James, D. H., Wilkinson, W. J., Geology and Geochemistry of the K, L, and M Mineral Claims, 1979. Assessment Report #7059
- Wilkinson, W. J. Diamond Drilling Report, L & M Mineral Claims, Lustdust Property. 1979. Assessment Report #7759
- Prest, S. E., Lustdust Assessment Report on Linecutting, Geological, Geophysical, Geochemical and Diamond Drill Work, 1980. Assessment Report #8669
- Leahey, M. H., Assessment Report: Grid Control, Geophysics, Geochemistry, Geology and Diamond Drilling On the Lustdust Property, 1981.Assessment Report #9937
- Rotzien, J., Drilling Report on the 1991 Exploration of the Lustdust Property, 1992.

STATEMENT OF QUALIFICATIONS

DARREL L. JOHNSON

- I, Darrel L. Johnson, resident of the City of Coquitlam, B.C. declare that:
 - 1. I hold a B.Sc. degree in geology, granted by the University of British Columbia in 1970;
 - 2. I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia;
 - 3. I have worked as a geologist in all phases of mineral exploration work throughout B.C. since 1970;
 - 4. I have conducted and interpreted VLF EM surveys with several models of equipment since 1967;
 - I personally performed or directly supervised all property work described in this report;
 - 6. I do not hold any interest in the Lustdust property or in the shares of Alpha Gold Corporation and do not anticipate acquiring such interest or shares.

Darrel Johnson P. Geo.

APPENDIX I

STATEMENT OF COSTS

ALPHA GOLD CORPORATION LUSTDUST PROPERTY 1992 PROGRAMME STATEMENT OF COSTS

ITEM COST

Trenching Hiram Enterprises TD25E bulldozer Coast Construction 225 excavator

17,000

Diamond drilling Triangle Drilling Ltd, 5,000 ft.,

including geological supervision, assays, camp costs, road and site preparation, tractor rental etc.

158,000

Geophysical survey Operator and assistant, linemarking,

instrument rental, camp costs, truck

rental etc.

5,000

TOTAL 180,000

APPENDIX II

ASSAY CERTIFICATES AND GEOCHEMICAL REPORTS

Certificate of Analysis

REPORT: V92-007		ITE)				G SERVICES DATE PRINTED: 23-JUL-92	
						PROJECT: NONE GIVEN	PAGE 1
NUMBER	ELEMENT UNITS	Au AG OPT- OPT		Zn PCT			
R2 LDT 001	<0	001 0.08	0.83				
R2 LDT 002		004 0.20					
R2 LDT 002		001 0.15	>15.00	16.47	,	•	
R2 LDT 003		004 0.24	4.04	10.47			
					"TR.1		
R2 LDT 005	0.	004 0.28	7.37				
R2 LDT 006		004 0.16	1.74				
R2 LDT 007	ا،0کی روزون	0.20	2.34	. h.,	13.44		
R2 LDT 008		008 0.16				•	•
R2 LDT 009		0.12	0.04		NORTH TR		
R2 LDT 010	θ.	325 0.12	0.13		CAVE		
R2 LDT 011	0.1	004 0.19	0.06		7R. 6		
R2 LDT 012		004 0.16	0.08		TR.5		
R2 LDT 013		039 0.43	0.49	THE COLUMN TWO IS NOT THE OWNER.			
R2 LDT 014		079 0.63	0.31		TR.4		
R2 LDT 015		028 0.55	12.76				
K2 L01 013			12.70		<u> </u>		
R2 LDT 016	0.1	0.63	>15.00	20.91	TA. 3		
R2 LDT 017	0.3	330 0.99	0.41				
R2 LDT 018	ຳ ງ:	179 0.94	1.87	MF 73			
R2 LDT 019		0.16	0.12				
R2 LDT 020	0.3	138 5.24	>15.00	32.08	TR.2		
R2 LDT 021		012 1.07	>15.00	23.78			
R2 LDT 021		028 . 0.87	13.72	75.10		_	
R2 LDT 023		0.24	1.16	· ,			
	υ*	•		•			
4 - 4,		•					· · · · · · · · · · · · · · · · · · ·
- September 19 - Sept		in the state of th	and the same	Name of the last	** .		**·
		-		•		√.	•
				•	-		
							. •

Registered Assayer, Province of British Columbia

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 34) 985-0681 Telex 04-352667

Certificate of Analysis

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

Ş	PEDNOT: NO2-0							DATE PRINTED: 28-AUG-92
	CEPOINTS FOR C	00940.4 (CO!	MPLETE)					PROJECT: NONE GIVEN PAGE 1
	SAMPLE JUMBER	ELEMENT UNITS	Au OPT	AG OPT	Zn PCT	Zn PCT	\$6 \$/6	
1	2 22524		0.006	0.90	1.03		· · · · · · · · · · · · · · · · · · ·	92-21
0	2 22525		0.010	0.26	1.46			parameters for the
C	2 22526		0.146	0.31	2.85		3.90	
D	2 22527		0 .039	0.20	2.48			92.18
D	2 22528		0.002	0.16	2.68			17.10
3	2 22529		0.006	0.20	2.48			
	2 22530		<0.001	0.32	2.99			
C	2 22531		0.006	0.46	6.85		4.10	
0	2 22532		0.016	0.34	2.91			
D	2 22533		0 .050	0.16	0.44			92.19
	2 22534		0.016	0.14	0.19			
	2 22535		0.006	0.10	0.66			
	2 22536		0.041	0.14	0.09			
	2 22537		0 .080 .0	0.06	0.18			Married State of the Control of the
	2 22538		0.016	0.40	13.20			
0	2 22539		<0.001	0.20	1.91			
	2 22540		0.002	0.34	>15.00	15.38		
	2 22541		0 .030	0.34	>15.00	19.72		
	2 22542		0.012	0.50	>15.00	16.89		
	2 22543		0 .02 2	0.80	>15.00	30.72		
	2 22544		0.030	0.14	4.95			
	2 22545		0.004	0.06	1.04			92-20
	2 22546		0.002	0.06	0.55			
	2 22547		0.002	0.32	11.10			
	2 22548		<0.001	0.26	5.13			
£.	2 22549		0.002	0.22	1.22			
	2 22550		0.004	0.26	0.80			
	2 22551		0.012	0.42	0.52			
	2 22552		0.002	0.16	1.23			
	2 22553		04032	0.36	3.08			72.22
	2 22554		02036	0.74	>15.00	28,92		

Pagintered Assessment Depuison of Arithmetical

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 4) 985-0681 Telex 04-352667

Certificate of Analysis

REPORT: V92-	01025.4 (COMPLETE)							TE PRINTED: 8-SEP- POJECT: NONE GIVEN	PAGE 1	
AMPLE NUMBER	ELEMENT AU UNITS OPT	AG OPT	Zn PCT	Zn PCT						
2 22555	<0.001	0.04	0.02		-					-
2 22556	0.002	0.04	0.02		1					
02 22557	0.004	0.04	0.01		72.23					
2 22558	0.002	0.06	0.01		72.13					
2 22559	0.018	0.08	<0.01	10000						
02 22560	0.004	0.06	<0.01				-			
2 22561	0:010	0.06	0.03							
2 22562	0.0234	3.12			72.24					
02 22563	0.006	0.60	0.07		100000000000000000000000000000000000000					
2 22564	0.004	0.14	3.40							
02 22565	0.002	0.08	0.10		72-12					
12 22566	0.002	0.06	0.43							
2 22567	<0.001	0.06	0.52		-					
02 22568	<0.001	0.06	0.60		92.25	716 2				
22 22569	0.002	0.06	0.24							
2 22570	0.006	0.18	2.52				/5 :	11 S 7 H		
02 22571	<0.001	<0.02	0.01		72.26	2.9. 1.	17-6	215 1-7	2.8 %2	2
12 22572	0.007	0.23	1.72				21.5	22.9 .7	A	
2 22573	0.064#	1.57	7.38					727 1.5	5.1/m	
2 22574	0u 075	0.18	0.14		92 . 27	725				E-71 W
2 22575	0.096	0.14	0.04							
2 22576	0.022	0.44	3.86				209	27.78		
2 22577	0.002	0.12	0.28		1		24.4	26.2 1.8		
2 22578	0.024	0.22	0.53		72-29			279 17		
2 22579	0:071	3.03	>15.00	29.31				28.14.24	10.37 %2	-n
2 22580	<0.001	<0.02	0.25				1	27-1 1-76	Zm	
2 22581	0:026	3.05	>15.00	26.78				27.9 .5	A - 67 -1	
2 22582	0:054#	0.90	7.83		0.000		26. 11	27.41 1	4.7 7.2, 3.75 m	L
2 22583	<0.001	0.06	0.14				27 1	28.85 / 15	3.25 m	
2 22584	0 :019 **	0.45	7.43		1		28 X	30.75 7.3	J	
2 22585	0.013	0.15	0.11	-	92-30					
2 22586	0.006	0.12	0.15							
2 22587	0.017	0.14	0.43							
2 22588	0.024	0.26	0.46		1					

Registered Assayer, Province of British Columbia

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 24) 985-0681 Telex 04-352667

Certificate of Analysis

REPORT: V92-	01052.4 (CO	MPLETE)				PROJECT: NONE GIVEN	PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	Au OPT	AG OPT	Zn PCT			
D2 22589 D2 22590 D2 22591 D2 22592 D2 22593		0.004 0.018 0.024 <0.001 0.028	0.32 0.74 0.68 0.06 0.81	0.10 1.20 0.06 0.84 1.74	92.32		
D2 22594 D2 22595 D2 22596		0.002 0.002 0.002	0.14 0.12 0.10	0.01 0.08 <0.01	72-37		
							-

Registered Assaver, Province of British Columbia

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 "14) 985-0681 Telex 04-352667

Certificate of Analysis

REPORT: V92-	01070.4 (COMPLETE)				PROJECT: NONE GIVEN PAGE 1
SAMPLE NUMBER	ELEMENT AU UNITS OPT	AG OPT	Zn PCT		
D2 22597 D2 22598 D2 22599 D2 22600 D2 22601	0.006 0.002 0.004 0.002 0.044	0.22 0.16 0.02 0.12 0.18	0.10 1.20 0.02 3.75 2.25	92-40	32.15 33 05 . 9 32.1 34.4 1.5
D2 22602 D2 22603 D2 22604 D2 22605 D2 22606	0.059 0.020 0.024 0.008 <0.001	0.22 0.18 0.14 0.18 0.06	0.61 0.08 0.03 0.06 0.10	72.41	34.4 35.9 1.3 .037 × Au 35.9 37.4 1.5 6 m
D2 22607	0.026	0.24	0.36		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 § 985-0681 Telex 04-352667

Geochemical Lab Report

			7			_ DA	ITE_PRINT	ED: 29-JUL	-92		
REPORT: V92-0	0741.0 (COMPLETE)				PR	ROJECT: 1	IONE GIVEN	,	PAGE 1A	i	
SAMPLE NUMBER	ELEMENT Ag UNITS PPN	Cu PPM	Pb PPM	Zn PPM	Mo PPM	N† PPM	Co PPM	Cd PPN	Bi PPM	As PPN	Sb PPM
R2 LDT 001	<0.2	765	62	7948	3	15	20	51.1	31	352	52
R2 LDT 002	<0.2	1344	86	>20000	11	12	32	251.4	65	1916	99
R2 LDT 003	0.7	1165	46	>20000	16	7	18	987.8	82	369	36
R2 LDT 004	1.9	1514	200	>20000	10	11	13	261.6	83	1146	163
R2 LDT 005	3.9	345	1590	>20000	14	6	4	471.7	128	1299	1388
R2 LDT 006	<0.2	1106	528	15836	5	20	12	130.6	52	>2000	460
R2 LDT 007	1.8	591	2538	>20000	6	10	8	122.4	64	906	>2000
R2 LDT 008	<0.2	1519	66	5223	2	23	19	41.8	45	>2000	62
R2 LDT 009	<0.2	887	46	523	<1	20	21	<1.0	31	<5	34
R2 LDT 010	<0.2	843	166	1248	<1	19	12	<1.0	25	>2000	168
R2 LDT 011	<0.2	1948	223	642	<1	112	52	<1.0	36	377	135
R2 LDT 012	<0.2	1963	58	910	<1	20	20	<1.0	44	>2000	75
R2 LDT 013	5.2	1150	393	5240	2	17	14	<1.0	128	>2000	429
R2 LDT 014	13.2	3059	987	3368	<1	15	18	<1.0	289	>2000	975
R2 LDT 015	7.9	1304_	184	>20000	19	82	36	767.4	115_	>2000	83
R2 LDT 016	13.4	1137	. 302	>20000	22	41	23	1316.3	196	>2000	129
R2 LDT 017	14.9	438	682	4318	15	18	10	<1.0	251	>2000	319
R2 LDT 018	20.9	1074	886	17311	21	17	15	7.4	303	>2000	285
R2 LDT 019	<0.2	1678	118	1413	<1	15	64	<1.0	48	>2000	113
R2 LDT 020	>50.0	11523	786	>20000	21	8	4	1818.8	601	1041	238
R2 LDT 021	23.0	746	717	>20000	18	13	15	1376.3	309	>2000	563
R2 LDT 022	21.6	1448	987	>20000	17	12	15	875.0	276	>2000	793
R2 LDT 023	0.5	1569	193	11705	5	34	25	66.1	75	>2000	188

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 131 985-0681 Telex 04-352667

Geochemical Lab Report

DATE PRINTED: 29-JUL-92 REPORT: ¥92-00741.0 (COMPLETE) PROJECT: NONE GIVEN PAGE 18 Te Cr ٧ Sn Al SAMPLE ELEMENT Fe Mn Ва La Ħφ PPN PPM PPN PCT PCT PPN PPM PPM PPN PCT NUMBER UNITS PPM R2 LDT 001 >10.00 278 <10 5 26 10 <20 <20 0.21 0.13 <1 2 <20 140 0.12 0.06 R2 LDT 002 >10.00 303 <10 24 2 <1 22 <20 1633 0.07 0.06 R2 LDT 003 >10.00 747 18 3 5 <1 3 36 7 72 <10 <20 **<1** 0.12 0.13 R2 LDT 004 >10.00 233 43 <20 528 0.17 **R2 LDT 005** >10.00 454 <10 7 <1 0.06 **R2 LDT 006** >10.00 372 <10 32 3 <20 42 <1 0.20 0.15 R2 EDT 007 >10.00 590 <10 5 28 7 <20 <20 <1 0.08 0.19 R2 LDT DO8 >10.00 87 <10 5 33 8 <20 <20 <1 0.31 0.31 <20 21 0.29 0.23 **R2 LDT 009** >10.00 <10 24 <1 384 11 >10.00 <10 5 <20 <20 2.03 **R2 LDT 010** 132 24 2 1.14 35 <10 3 31 3 <20 <20 ⟨1 0.11 0.01 R2 LDT 011 >10.00 R2 LDT 012 >10.00 <10 3 34 2 <20 <20 0.09 0.02 102 <1 **R2 LDT 013** >10.00 217 <10 3 38 <20 <20 <1 0.20 0.07 **<**1 **R2 LDT 014** <2 53 <20 <20 0.12 0.03 >10.00 68 <10 ⟨1 <1 **R2 LDT 015** >10.00 727 <10 <2 50 3 <20 1315 <1 0.23 0.14 16 37 2 21 >2000 0.17 **R2 LDT 016** >10.00 982 3 <1 0.09 **R2 LDT 017** >10.00 359 <10 <2 69 <20 <20 0.30 0.12 <1 1 <2 0.09 **R2 LDT 018** >10.00 160 <10 54 <20 <20 <1 0.33 <1 <2 **R2 LDT 019** >10.00 34 <10 50 <1 <20 <20 <1 0.07 0.03 **R2 LDT 020** >10.00 1822 52 3 24 >2000 <1 0.05 0.16 29 34 >2000 >10.00 1751 <1 <20 **1** 0.06 0.08 R2 LDT 021 **R2 LDT 022** >10.00 909 21 <20 1381 2 34 <1 <1 0.07 0.01 **R2 LDT 023** >10.00 57 <10 28 <20 <20 **(1** 0.06 <0.01 <1

Bondar-Clegg & Company Ltd. 130 Pemberton Avc. North Vancouver, B.C. V7P 2R5 1) 985-0681 Telex 04-352667

Geochemical Lab Report

REPORT: V92-00741.0 (COMPLETE)

PROJECT: NONE GIVEN PAGE 1C

	KEPUKI: Y9Z-Z	10/41-0 (COM	(PLCIC)		J			PROJECT: NONE STYER	LUGE IL
	SAMPLE Number	ELEMENT UNITS	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM		
	R2 LDT 001		5.84	<0.01	0.02	27	2		
	R2 LDT 002		0.12	<0.01	0.01	<1	1		
	R2 LDT 003		1.24	<0.01	<0.01	<1	<1		
	R2 LDT 004		0.73	<0.01	0.04	4	<1		
-	R2 LDT 005		7.56	<0.01	0.02	32	<1		
,,,,,	R2 LDT 006		2.03	<0.01	<0.01	10	8		
	R2 LDT 007		8.88	<0.01	0.01	30	3		
	R2 LDT 008		0.10	<0.01	0.07	2	1		
	R2 LDT 009		2.83	<0.01	0.02	15	2		
	R2 LDT 010		0.18	<0.01	0.85	2	22		
	R2 LDT 011		0.03	<0.01	<0.01	<1	<1		
	R2 LDT 012		0.03	<0.01	<0.01	<1	<1		
!	R2 LDT 013		0.77	<0.01	0.01	6	3		
	R2 LDT 014		0.09	<0.01	0.01	1	3		
	R2 LDT 015	<u>. </u>	0.06	<0.01	0.02	1	2		
	R2 LDT 016		0.04	<0.01	0.02	<1	1		
	R2 LDT 017		0.04	<0.01	0.05	3	8		
	R2 LDT 018		0.04	<0.01	0.06	1	5		
	R2 LDT 019		0.19	<0.01	<0.01	2	<1		
	R2 LDT 020		0.48	<0.01	<0.01	3	2		
	R2 LDT 021		0.24	<0.01	<0.01	2	2		
	R2 LDT 022		0.05	<0.01	<0.01	2	2		
	R2 LDT 023		0.03	<0.01	<0.01	2	<1		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 1) 985-0681 Telex 04-352667

Certificate of Analysis

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

									DATE	E PRINTED: 21-AUG-92		
REPORT: V92-	00921.4 (COMPL	ETE)							PRO.	JECT: NONE GIVEN	PAGE 1	
SAMPLE NUMBER	ELEMENT UNITS	Au OPT	AG OPT	Zn PCT	Zn PCT							
₹2 LDT024 ₹2 LDT025 R2 LDT026))>).122).002).001	2.58 0.32 0.04 0.24	10.93 2.76 0.04 0.07		12N	· ·					
)2 22501)2 22502		0.002 0.001	0.04	0.05		92 12						
72 22503 72 22504 72 22505 72 22506 72 22507)> (0.001 0.001 0.004 0.002 0.001	0.05 0.04 0.18 0.12 0.06	0.48 0.66 7.91 2.17 0.01		92.13	:					
D2 22508)2 22509)2 22510 D2 22511)2 22512	() () ()	0.002 0.008 0.012 0.046 0.032	0.12 0.08 0.26 0.78 0.66	5.47 0.08 0.56 0.14 >15.00	20.49	91-14	17-6 18-5 25-45	/5.5 /7.5 26.25	1			
D2 22513 D2 22514 D2 22515 D2 22516 D2 22517	<0 0 0	0.016 0.001 0.008 0.022 0.010	0.12 0.10 0.11 0.16 0.14	0.05 0.02 0.81 0.54 1.42			44.6 -74.7 27.4 -27	75.6 27	.7			
12 22518 02 22519 02 22520 12 22521 02 22522	0 0 0	0.0 58 0.0 20 0.0 26 0.006 0.004	0.69 0.88 0.64 0.24 0.14	>15.00 >15.00 4.94 >15.00 1.68	25.10 20.83 24.72	92.15	30.1 : 31.7 33.2 34.45 34.75	33.2 3 4. 45 35.75	1 5 1.25 1.3		. ^	29 APT AU. 7.05
12 22523	<0	0.001	0.04	0.02		72-16						

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

			· · · · · · · · · · · · · · · · · · ·		_				DATE PRIN	IED: 21-AU	G-92			
	REPORT: V92-0	10921.0 (CO	IPLETE)						PROJECT: I	NONE GIVEN		PAGE 1A		
	SAMPLE NUMBER	ELEMENT UNITS	Ag PPM	Cu PPM	Pb PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	Sb PPM	
	R2 LDT024		>50.0	272	2101	>20000	12	13	5	981.9	40	>2000	643	
	R2 LDT025		3.0	174	112	>20000	11	15	5	518.7	20	>2000	211	
	R2 LDT026		<0.2	131	24	368	4	10	10	<1.0	10	421	6	
	D2 22501		<0.2	1508	71	645	<1	16	23	<1.0	32	304	<5 24	
	D2 22502		<0.2	228	50	470	<1	60	6	<1.0	8	887	34	
	D2 22503		<0.2	408	33	4971	3	137	18	24.2	19	82	14	
	D2 22504		<0.2	328	28	6730	2	135	25	37.1	22	23	13	
l	D2 22505		1.1	201	2215	>20000	10	7	6	507.0	40	1514	1745	
	D2 22506		<0.2	414	962	>20000	5	14	6	121.0	40	>2000	828	
	D2 22507		<0.2	668	28	88	<1	16	9	<1.0	19	<5	<5	
	D2 22508		<0.2	455	55	>20000	9	3	8	325.7	36	842	28	
	D2 22509		0.3	87	20	748	<1	<1	2	<1.0	6	>2000	28	
	D2 22510		<0.2	806	390	5880	<1	8	13	20.1	40	>2000	313	
	D2 22511		14.6	182	175	1430	<1	7	10	<1.0	44	>2000	74	
	D2 22512		13.5	589	314	>20000	9	11	7	1189.7	91	145	168	
	D2 22513		<0.2	396	64	448	<1	5	35	<1.0	20	>2000	103	
	D2 22514		<0.2	687	33	154	<1	26	23	<1.0	22	1290	19	
	D2 22515		<0.2	229	112	7965	5	110	40	32.3	31	>2000	69	
	D2 22516		<0.2	1084	438	5764	<1	16	32	<1.0	129	>2000	383	
	D2 22517		<0.2	528	208	15097	4	9	28	48.3	73	>2000	160	
	D2 22518		29.9	484	329	>20000	13	5	8	1446.9	350	1302	160	
	D2 22519		21.1	331	211	>20000	14	6	9	1125.3	323	>2000	83	
	D2 22520		12.5	406	212	>20000	7	8	15	258.7	220	1667	63	
	02 22521		6.7	253	140	>20000	13	8	9	1443.8	107	795	43	
	D2 22522		3.2	281	127	16645	21	34	20	88.4	32	>2000	116	
	D2 22523		<0.2	297	28	229	12	24	22	<1.0	б	>2000	80	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 14) 985-0681 Telex 04-352667

REPORT: V92-	00921.0 (CC	IMPLETE)						PROJECT: N	ONE GIVEN		PAGE 18	
SAMPLE NUMBER	ELEMENT UNITS	Fe PCT	Mn PPM	Te PPM	8a PPM	Cr PPM	V PPM	Sn PPM	W PPM	La PPM	A1 PCT	Mg PCT
R2 LDT024		>10.00	952	22	3	31	<1	22	755	<1	0.07	0.01
R2 LDT025		>10.00	901	<10	3	38	19	<20	<20	17	2.31	0.37
R2 LDTO26		9.40	1373	<10	23	47	25	<20	<20	2	0.69	0.09
D2 22501		>10.00	250	<10	8	4	2	<20	<20	<1	0.06	0.17
D2 22502		8.14	331	<10	95	180	113	<20	<20	23	2.58	3.28
D2 22503		8.29	594	<10	119	166	101	<20	<20	11	3.01	2.85
D2 22504		7.47	631	<10	65	108	59	<20	<20	9	2.03	1.74
D2 22505		>10.00	755	19	8	15	7	<20	361	<1	0.11	0.41
02 22506		>10.00	765	<10	17	20	7	<20	<20	<1	0.13	0.49
D2 22507		>10.00	441	<10	20	10	19	<20	<20	1	0.58	0.66
D2 22508		>10.00	946	12	2	1	7	<20	40	3	<0.01	0.09
02 22509		3.42	461	<10	10	3	11	<20	<20	1	0.01	0.21
02 22510		>10.00	499	<10	<2	10	2	<20	<20	<1	0.02	0.16
D2 22511		>10.00	101	<10	<2	23	<1	<20	<20	<1	0.02	0.12
D2 22512		>10.00	1164	26	<2	3	3	<20	1765	1	<0.01	0.04
D2 22513		>10.00	384	<10	6	13	<1	<20	<20	<1	0.02	0.14
D2 22514		>10.00	294	<10	14	29	13	<20	85	<1	0.43	0.40
D2 22515		9.09	664	<10	60	146	71	<20	<20	30	1.98	2.70
D2 22516		>10.00	208	<10	<2	6	<1	<20	<20	<1	0.03	0.08
D2 22517		>10.00	274	<10	3	31	<1	<20	<20	<1	0.05	0.14
D2 22518		>10.00	1146	193	2	20	3	24	>2000	<1	0.03	0.12
D2 22519		>10.00	1012	152	3	29	23	24	1876	<1	0.27	0.41
D2 22520		>10.00	465	44	<2	21	2	24	161	<1	0.02	0.17
D2 22521		9.03	1888	53	7	17	16	<20	>2000	<1	0.22	1.23
D2 22522		8.24	468	17	40	61	37	<20	<20	10	0.62	1.18
D2 22523		9.85	119	<10	23	55	39	<20	<20	10	1.08	1.30

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 '4) 985-0681 Telex 04-352667

REPORT: V92-0	0921.0 (CO	PLETE)					PROJECT: NONE GIVEN	PAGE	10
SAMPLE NUMBER	ELEMENT UNITS	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM			
R2 LDT024 R2 LDT025 R2 LDT026 D2 22501 D2 22502		0.23 0.66 >10.00 0.19 1.87	<0.01 <0.01 <0.01 <0.01 0.01	0.02 0.01 0.01 0.01 1.54	3 8 3 18 29	2 32 7 <1 8			
D2 22503 D2 22504 D2 22505 D2 22506 D2 22507		6.15 >10.00 6.20 >10.00 5.49	0.08 0.06 <0.01 <0.01 <0.01	1.25 0.31 0.09 0.08 0.19	77 98 42 58 26	5 2 <1 <1 1			
D2 22508 D2 22509 D2 22510 D2 22511 D2 22512		>10.00 >10.00 3.44 1.01 5.45	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	34 111 14 6 14	7 <1 <1 <1 <1			
D2 22513 D2 22514 D2 22515 D2 22516 D2 22517		7.33 0.51 7.29 0.82 0.44	<0.01 <0.01 0.02 <0.01 <0.01	<0.01 0.06 0.18 <0.01 <0.01	31 10 56 5	<1 2 9 <1 1			
D2 22518 D2 22519 D2 22520 D2 22521 D2 22522		0.81 0.70 0.44 3.54 1.62	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 0.03 <0.01 0.03 0.26	11 9 5 29 34	<1 2 <1 2 10			
02 22523		0.74	<0.01	0.33	40	7			

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 '4) 985-0681 Telex 04-352667

 			A DIVISI	ON OF INC	CHCAPE INSPI	ECTION & TE	STING SERV _DA	ICES TE PRIN	TED: 20-AUG	5-92		
REPORT: V92-0	00940.0 (COM	PLETE)							NONE GIVEN		PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	Ag PPM	Cu PPM	Pb PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	Sb PPM
 D2 22528 D2 22533 D2 22538 D2 22543		<0.2 <0.2 4.3 22.7	1109 802 1347 533	35 43 92 316	12190 3084 >20000 >20000	2 12 8 21	4 11 6 3	14 9 18 9	139.9 8.8 826.7 1874.9	72 37 108 235	380 >2000 >2000 >2000	20 69 47 130
D2 22548		1.3	1499	62	16569	8	6	18	262.3	94	160	31
D2 22553		5.4	1432	556	13618	3	7	10	189.5	169	>2000	486
										APP-BANK		
									4.449-11			

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 `1) 985-0681 Telex 04-352667

				A DIVISI	ON OF INCE	ICAPE INSPI	ECTION & TE	STING SERV	ICES	ED: 20-AUG	02		
	REPORT: V92-	00940.0 (CC	OMPLETE)							ONE GIVEN	- 97	PAGE 18	
, and 11	SAMPLE NUMBER	ELEMENT UNITS	Fe PCT	Mn PPM	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM	La PPM	A1 PCT	Mg PCT
	D2 22528 D2 22533 D2 22538 D2 22543 D2 22548		9.88 >10.00 >10.00 9.41 >10.00	1558 3341 894 2648 603	<10 <10 <10 34 <10	2 5 <2 <2 <2	24 52 28 51 11	13 <1 <1 <1 <1 3	<20 <20 <20 <20 <20	<20 <20 1101 >2000 102	<1 <1 <1 <1 <1	0.02 0.23 0.05 0.04 0.04	1.04 1.18 0.13 0.25 0.43
	D2 22553		>10.00	343	<10	10	37	<1	<20	<20	<1	0.11	0.24
										4.4			
	77.					AV							

										1.0 V V V V V V V V V V V V V V V V V V V			

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5

'4) 985-0681 Telex 04-352667

Geochemical Lab Report

			A DIVI	SION OF INCH	ICAPE INSPI	ECTION & TEST	TING SERVICESDATE_PRINTED: 20-AUG-92		
REPORT: V92-	-009 40. 0 (COM	IPLETE)					PROJECT: NONE GIVEN	PAGE 1C	
SAMPLE NUMBER	ELEMENT UNITS	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM			
D2 22528 D2 22533		5.31 3.69	<0.01 <0.01	<0.01 0.08	42 48	<1 7			
D2 22538 D2 22543 D2 22548		0.27 0.97 0.72	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	2 11 4	<1 2 <1			
D2 22553		1.39	<0.01	0.03	13	2			
		· • · · · · · · · · · · · · · · · · · ·							

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue North Vancouver, B.C. V7P 2R5

Geochemical Lab Report

(604) 985-0681 c: (604) 985-1071

st (604) 985-1071										_		
REPORT: V92-	01052.0 (COM	IPLETE)							ED: 4-SEF ONE GIVEN		PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	Ag PPM	Cu PPM	Pb PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	Sb PPM
D2 22589 D2 22590 D2 22591 D2 22592 D2 22593		3.6 16.8 15.9 <0.2 20.4	1449 1461 1464 7 1420	476 4546 594 38 2555	656 6770 356 5538 8729	<1 <1 <1 2 <1	4 2 5 3 4	10 23 14 2 22	<1.0 108.1 <1.0 32.7 180.6	162 172 383 27 261	>2000 >2000 >2000 299 >2000	497 >2000 869 66 >2000
D2 22594 D2 22595 D2 22596		<0.2 <0.2 <0.2	1410 1326 1014	70 113 84	66 568 56	<1 <1 <1	5 4 4	5 4 4	<1.0 <1.0 <1.0	105 96 149	>2000 >2000 >2000	308 511 851
					and a second			30.00				
		PL										

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue North Vancouver, B.C. V7P 2R5

TH: (604) 985-0681 X: (604) 985-1071

Geochemical Lab Report

DATE PRINTED: 4-SEP-92 PROJECT: NONE GIVEN PAGE 18 REPORT: V92-01052.0 (COMPLETE) Te Cr SAMPLE ELEMENT Mn Ва Sn A1 Mg Fe La PPM PPM PPM PPM PCT NUMBER UNITS PCT PPM PPM PPM PPM PCT 9 <10 6 <1 <20 <20 <1 0.03 0.06 D2 22589 >10.00 138 9 0.03 D2 22590 149 <10 4 <1 <20 263 0.02 >10,00 <1 D2 22591 >10.00 259 <10 7 15 <1 <20 <20 <1 0.06 0.04 <10 13 35 <20 0.05 5.50 02 22592 4.53 8721 23 <20 8 D2 22593 196 <10 <2 7 <1 <20 <20 <1 0.02 0.02 >10.00 147 <10 <2 4 <1 <20 <20 <1 <0.01 0.02 02 22594 >10.00 <0.01 0.01 02 22595 >10.00 118 <10 <2 11 <1 <20 <20 <1 D2 22596 >10.00 98 <10 4 27 <1 <20 <20 <1 0.01 0.02

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue North Vancouver, B.C.

North Vancouve V7P 2R5

> 1: (604) 985-0681 3: (604) 985-1071

Geochemical Lab Report

DATE PRINTED: 4-SEP-92 REPORT: V92-01052.0 (COMPLETE) PROJECT: NONE GIVEN PAGE 1C Y SAMPLE ELEMENT Сa Na K Sr PPM PPM NUMBER UNITS PCT PCT PCT D2 22589 0.16 <0.01 <0.01 2 <1 D2 22590 0.31 <0.01 <0.01 2 <1 2 D2 22591 <0.01 <0.01 <1 0.09 02 22592 <0.01 <0.01 3 >10.00 199 <1 02 22593 0.07 <0.01 <0.01 <1 D2 22594 0.04 <0.01 <0.01 <1 <1 D2 22595 0.07 <0.01 <0.01 <1 <1 <0.01 <0.01 D2 22596 0.04 <1 <1

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 '04) 985-0681 Telex 04-352667

Certificate of Analysis

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V92-	00921.5 (COM			THE HAST ECTION CONTRACT	DATE PRINTED: 17-AUG-92 PROJECT: NONE GIVEN	PAGE 1
SAMPLE Number	ELEMENT UNITS	\$6 \$/G		11.18.1888		
D2 22501 D2 22503 D2 22508 D2 22511 D2 22518		4.30 3.00 3.30 4.80 4.10				
			A Paragraphic Control of the Control			

Descriptored Account Province & Pritich Columbia

APPENDIX III

SAMPLE NUMBER LISTS

LUSTDUST PROPERTY

1992 SAMPLE NUMBER LIST

						_	
Sample #	DDH	From	То	Sample #	DDH	From	To
22501	92-12	33.8	35.35	22548	92-20	20.9	22.4
22502	92-12	66.4	67.9	22549	92-20	22.4	23.9
22503	92-12	67.9	69.4	22550	92-20	23.9	25.3
22504	92-12	69.4	71.8	22551	92-20	25.3	26.8
22505	92-13	46.15	47.5	22552	92-20	26.8	27.9
22506	92-13	47.5	48.1	22553	92-22	13.7	15.4
22507	92-13	48.1	49.8	22554	92-22	17.1	18
22508	92-14	16	17.6	22555	92-23	13.7	15.3
22509	92-14	17.6	18.5	22556	92-23	15.3	16.8
22510	92-14	18.5	19.5	22557	92-23	16.8	18.3
22511	92-14	25.45	26.25	22558	92-23	18.3	20.1
22512	92-14	29.8	30.6	22559	92-23	20.1	21.3
22513	92-14	44.6	45.25	22560	92-23	21.3	22.8
22514	92-14	74.7	75.6	22561	92-24	32.5	33.6
22515	92-15	24.4	27.4	22562	92-24	33.6	35.3
22516	92-15	27.4	29	22563	92-24	35.2	36.6
22517	92-15	29	30.1	22564	92-22	6.7	8
22518	92-15	30.1	31.7	22565	92-22	10.6	12.2
22519	92-15	31.7	33.2	22566	92-22	12.2	13.7
22520	92-15	33.2	34.45	22567	92-25	21.4	22.4
22521	92-15	34.45	35.75	22568	92-25	22.4	23.8
22522	92-15	35.75	38	22569	92-25	25.9	23.8
22523	92-16	58.2	60.4	22570	92-26	18.2	19.6
22524	92-21	7.3	9.3	22571	92-26	19.6	21.5
22525	92-21	9.3	10.8	22572	92-26	21.5	22.4
22526	92-18	6.7	8.2	22573	92-26	22.4	23.9
22527	92-18	8.2	9.8	22574	92-27	17.37	18.44
22528	92-18	9.8	11.3	22575	92-29	18.9	20.9
22529	92-18	11.3	12.3	22576	92-29	20.9	21.7
22530	92-19	8.75	10.2	22577	92-29	24.4	26.2
22531	92-19	10.2	11.6	22578	92-29	26.2	27.9
22532	92-19	11.6	13.1	22579	92-29	27.9	28.14
22533	92-19	13.1	14.6	22580	92-29	28.14	29.4
22534	92-19	14.6	16	22581	92-29	29.4	29.9
22535	92-19	21.2	22.45	22582	92-30	26.4	27.4
22536	92-19	22.45	24.3	22583	92-30	27.4	28.85
22537	92-19	24.3	25.9	22584	92-30	28.85	30.15
22538	92-20	6.8	8	22584	92-30	30.15	31.5
22539	92-20	8	9.5	22586	92-30	31.5	32.8
22540	92-20	9.5	10.8	22587	92-30	32.8	34
22541	92-20	10.8	12.1	22588	92-30	34	35.4
22542	92-20	12.1	13.4	22589	92-32	32.4	34
22542	92-20	13.4	14.8	22590	92-32	34	35.6
22544	92-20	14.8	16.2	22591	92-34	30.2	31.3
22545	92-20	16.2	18	22592	92-37	37	37.5
22546	92-20	18	19.5	22593	92-37	40.2	41.45
22547	92-20	19.5	20.9	22594	92-37	41.45	42.7
	- 						

LUSTDUST PROPERTY

1992 SAMPLE NUMBER LIST Page 2

22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607	92-37 92-37 92-40 92-40 92-40 92-41 92-41 92-41 92-41 92-41 92-41	42.7 43.95 28.8 29.95 30.9 32.15 32.9 34.4 35.9 37.4 38.9 39.9 40.6	43.95 45.1 29.95 30.9 32.15 33.05 34.4 35.9 37.4 38.9 39.6 40.6 42.1	LDT 020 LDT 021 LDT 022 LDT 023 LDT 024 LDT 025 LDT 026	Trench 2 Trench 2 Trench 2 Trench 2 12N 2140W Sulphide 12N 2140W Oxide Rusty Intrusive 1950N
Trench Sa	mples				
22609 22610 22611 22612 22613 22614	Zone 3 Zone 3 Zone 3 Zone 3 Zone 3 Zone 3	N. end S. Trench S. Trench S. Trench S. Trench S. Trench	2.5m 4 m 4 m		
LDT 001 LDT 002 LDT 003 LDT 004	Trench 1 Trench 1 Trench 1 Trench 1	East Side			
LDT 005 LDT 006 LDT 007 LDT 008	Trench 1 Trench 1 Trench 1 Trench 1	West Side			
LDT 009	N. Trench				
LDT 010	Cave				
LDT 011	Trench 6				
LDT 012	Trench 5				
LDT 013 LDT 014	Trench 4 Trench 4				
LDT 015 LDT 016 LDT 017 LDT 018	Trench 3 Trench 3 Trench 3 Trench 3				

LDT 019 Trench 2

APPENDIX IV

DIAMOND DRILL CORE LOGS

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92

ZONE

4b

COORDINATES N 1710

W 2201

AZIMUTH 095

DIP - 4.5 TD 270 FT 80.3 M

STARTED 30

COMPLETED Aug 1 72 LOGGED Aug 2/92 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE NO	FROM	TO	WIDTH
0	4.6	Casing/Overburden				
4.6	5-5	BRUNEN LIMESTIME RUBBLE				
5.5	33.8	LIMESTONE			1	
5.5	6.4	CRIMELED TEXTURE	· •	ŀ		
6.4		UXIDIZED BREAK				
6.4	10.8	LIMESTONE, DARK GROY WITH DARK STRINGERS BANDING Q 60° TO GRE Axis	·			
9.4	10	DROLON SECTION, FRANCE PLANES @ 75-80° TO CHE DE SUME CLAY - FLAT FAIRT?				
10 8	12.2	MIME PYPITE AS CLOTS and Strimers up To				
		4 mm wire 90° to one mis, often conformable to hedding. Some Silica Coment between Limes rune classes				
13.7		Fine, < imm clay/chlorite seems. Chy or				
		fault gouge @ 600 to Cue oris. Some				
		brecciation in limestone, brusen fragments, recemental	, , , ,			
17.2		Calcite canaded fractures, write pyrite on Slip face, 65° to one this, semi parallel to Luminations (hedding?) in frimessine				
		Suithede stringers parallel to has ding				
27 A		QUARTE SHEATS' WHE py intermed pyrobotile. Oxydiaed Sulphides				
30.2	31.6	Broken Section, 45° to Cure Ava	e jarit			
31.6	33.5	banding is limestone much more construct				
33.8	3 5 .35	1.55 m gas of measure susphides Pyrhotite, 759. Pyrite 23%, as a mular closs Miner (1-270) SOURCERITE, POSSING RARE	22501	33.8	35.35	1.55
		Throughour . of minto suchide there is a 2 cm				
		Core axis, then back into pyrohotic en guarte. Lower	e.			
		contact is vuggy quarte stringe- (Clam) then clayer, greeky (graphitic??) swarp				

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 12 pg 1 of 2

ZONE

4b

COORDINATES

N

W

ELEV

AZIMUTH

DIP

TD

FT

M

START	ED	COMPLETED LOGGED	BY	Darrel	Joh	nson
FROM	TO	DESCRIPTION	SAMPLE NO	FROM	TO	WIDTH
35.5	62.3	limestone				
39.4	39.6	Broken zone with wayy sulphides				
39.8	29.	Figer Gires glob of supplides				
42	41	Broken				
45		Broken limestone, commented, some subshide between classes			'	
48		Limeg closes (90%) in modely motors with pyrite and pyrihetita		·		
53.8	60.3	Chart fragmonds with supphide stringers, In limestone				
603	60.7	Fine, gray vulcance? dyke				
60.7	60.9	BURATE VEW				
60.9	61.5	MURRY LIMETURE BREEZE, SILICIEIRO SECTIONS	·			
61.5	66.9	Increasing Success, hairline mud seams, minor tyrite				
66.4	67.1	Brechatted zone, quarte fragments, silverfied limestone Possible diopeide, fine amorphous brown garnet SKARN? Heavy Sulphide				
66.7		Amm crystal of dark metallic -magnetite??? within pyrite				
67.1	67.7	Mudstone, bedded 45°% Care Aris. Pyrite, Pyrihitite along bedding and crosscutting <3 mm				
67.7	67.8	Muddy Shear.	22502	66.41	67.9	1.5
67. b	70.8	Mudstone, bedding 80° To Gore aris. Classes and crosscutting stringers of pyrite/pyrhotite. Skarny Section Some areas of heavy suphides with hand-sized patches of op to 50% pyrite/ pyrchotite, mimor zine. Heavy Suphide	22502 12503	67.9	£9. 4	1.5
66.4	70.7	Heavy Sulphido:				
70.8	82.3	Medium/ fine grained mudature with limestone partings and inclusions. Low sulphid contem	22504	69.4	0.8	1 - A
(Y) 2		FIC OF LAND				
			4	-		

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

ZONE 4b

COORDINATES

N 1704

AZIMUTH 270°

DIP -45 TD

305 FT 92.9 M

STARTED August 2 92

COMPLETED Augus 3 LOGGED Agos 3 BY Darrel Johnson

FROM	то	DESCRIPTION	SAMPLE NO	FROM	TO	WIDTH
0	1.6	Casing - Overburdon				
4.6	26.3	Limostone				
4.6	23.4	Massive grey limerrane, broken, oxidized fractures mottled limerone				
26.3	29.2	Derse, had gray /gram unit (Volcare??) with				
		Minor limosture inclusions and calcire vainters (3 mm) Sub parallel to Core Axis.				
29.2	30.1	Wavey bunder, conty limerone				
30.1	45.1	Dense, harder grey/green volcame unit. Massive Pyrrhotile in calcite Prringer @ 37.3				
45.1	45.4	Motiles, Spory Limestone				
45.4	4556					·
45.4	45.52	Quartz Vein, 120 mm.			·	
		Let. Se Po. P.				
		B. Summy Sum				
45.56	46.15	Limestone				
46.15	49.8	Hann Sud and an	00			ı
		Henry Sulphides in Skarny zone - Pyrchotite, Sphalerite, overte lumbel months texture	22505	46.15	47.5	1.35
		Sphalerite, pyrite, Irregular mitter texture Horses of barren limestone < 30 cm. Two varieties of pyrihotite, - brassy / brunzey	22506	47.5	48.1	1.4
49.8		Sharp, broken contact of 450 TO CA.	22507	48.1	49.8	1.7
428	88	Limoy argillite				
88	92.9	Black, weatly Lines angillite				
		The state of the s	* * * * * * * * * * * * * * * * * * *			
912						
929		END & HOLE				

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 4/4

ZONE

4b

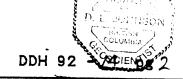
COORDINATES N /678

W 2099.7 ELEV 1375

AZIMUTH

270

DIP -45 TD 290 FT 88.4M


STARTED As 1 92

COMPLETED A. 592 LOGGED A. 692 BY Dannel Joh

FROM	70	completed Ay 592 LOGGED		Darre	7	7
FROM	TO	DESCRIPTION	SAMPLE NO	FROM	TO	WIDTH
0	1.61	Broken, oxidized limestone		l		
16	17.6	Sulphide zone, centret at 45°/cA. 3 cm	22508	16	17.6	1.6
		Dand of pyrohotite with pyrite clots: 15	22509	17.6	18.5	.9
		Irray vlar masses of sphalevite / pyrrhotite In chilere to 16.85	22510	18.5	19.5	1
		Massive pyrohotite/sphalerite to 17.26				
	·	15 cm Limeston hose, then heavy pyrotrotite mottled with weak sphatente to 17.6				
17.6	18.5	Limestume horse, sparse pyrite on tracture, FIST SIZED clut of pyrohotite at 18 - 18.15				,
/8.5	19.5	Massive pyrrhotite flanked hyzine rich sections 17cm in Top, 24cm inbittom. Spholerite masses, 1cm diameter, with				
		Agrite, andely hunded of 450 To Core axis				
19.5	25, 45	•		•		
25.45	26.25	Solid Sulphido, warse pyrinatite, with calcito	22511	25.45	26.25	. 8
26.25	24.8	Massive limestone				
29.8	30.6	Sulphide zone - Bocm of solld sulphide po 30%, Sphil 40, p, 30; followed by	22512	29.8	30.6	.8
		50 cm of calcite with 70% sulphides SPAIL 50%, po 30% py 20%. Uppor contact of 45° TO C.A.	·			
30.6	42.6	Mussive limestone, isolated blebs of po, py				
		as at 40.5, where a hairline fracture at 20° N C.A fattens to 1.5cm				
42.6	44.65	Limestone. Sulphide content increases,				
		gonerully as tracture fillings athornule to CA				
44.65	44.9	MASSIVE pyrhotite with comprise closs	22513	44.6	45.24	.65
45.1	45.25	possibly some assemply, te cubos,				

4b

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

ZONE

COORDINATES

Ν

ELEV

AZIMUTH

DIP

TD

FT

M

START	ED	COMPLETED LOGGED	В	Y	Darre	l Joh	nson
FROM	то	DESCRIPTION	SAMPLE	NC	FROM	то	WIDTH
45.25	48.7	Massive grap limostume, colotte et magers at 60° to CA					
48.7	5 1.8	Muddy, Pyritic "hed", very fine grained					
51.8	5 2	Time, dark grained sediment hronze class and bods of sulphides					
52	5 3	Grey limestone					
53	53.2	Fulded sulphile med heds					
5 3.2	74.7	Limestone with interhedded mid at 40 ms0 to					
74.5		Small clast of reddish sulphides	ļ				
74.7	75.2	Solid pyrchotite with apparent hedding at 45° to C.A. Very fine graines, sift, souty sulphide, (black streak) as Beds, 5% at Tutol sulphides. Quartz fragments	22514		74.7	75-6	.9
75.2	75.6	30% sulphides, with 4cm band of solid pyrthotite at bottom of section. Also bands of atsenopyrite, 10 mm, partially crusicutting	·				
75.6	88.4	Limey Argillise; booking at 450 to C.A. Pyrhutite both conformable and Cross cotting.					
77.4	77.7	Graphitic Shears, pertings					
79.2		1 cm held heavy Sulphides					
224		END of Hule					

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92

ZONE 4b

COORDINATES

N 1655

w 2130 ELEV MCC.5

AZIMUTH

270

DIP - 45

TD /4/5 FT 4/4.2 M

STARTED Aus 5 92 COMPLETED Aus 692 LOGGED Aux 7 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE NO	FROM	ТО	WIDTH
0	16.4	WAVEY BANNED LIMESTONE				
8-1		Fulded, foulted, addite healed section				
13.7		I cm band of pyrohetite, 45° TO C.A., Chlorite filled fractures				
6.4	19.81	ARGILLACIONS LIMESTURE	· .			
17.25		Brecciated, healed limestone, coloiteverns withfine supplier (Pyrite??). Blue/green mineral (Tale?) on fracture parallel to C.A				·
18		Azurine ?? un fractures				
9.81	29,4	Circen chloritic Tuff, with calcite Veinlets Pyrite heds and fracture contings. Felly beds fine grey/brown, at 60° to C.A.				
24.4		Phemocrycked highly aftered CALCITE AND EPIDONE Strang Fault				
24.4	27.4	Sulphide rich graylgreen volcance. Pyrhotite, Sphalerite, arsenupyrite as beds and distinct grains. Very Silicious	22515	24.4	27-4	3
27.4	35.7					
		in the state of th	•			
27.4		Pyrhotite, minor Sphaterite	12516		29	1.6
29	30.1	Myrite clots and blebs, often angular, To I cm diameter, grading into solid pyrite	22517	29	30 - 1	1-1
30.1	30.6	Sphalerize 85% Pyrite 10% Calene 3%.	22518	30.1	31.7	1.6
30.6	31.7	Coarsely bonded pyrite/sphale.ing at 45°70 C.A.				
31.7	32.2	Massive Sulphides, Sphalerite 60% Brite 40%	22519	31.7	33.2	1.5
32.2	32.4	Fist sized blocks of chlorite with sphalorite and pyrite.				
32.4	32.8	Massive Sulphide Pyrite 75% Sphalerite 25%		_		·

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92

ZONE

4b

COORDINATES

Ν

W

ELEV

AZIMUTH

DIP

TD

FT

M

STARTE	ED	COMPLETED LOGGED	В	'	Darrel	Joh	nson
FROM	то	DESCRIPTION	SAMPLE	NO	FROM	то	WIDTH
31.8		2 cm chlorite Seam					
32.8	33.1	Miras masice suplato					
33.1	33.75	Pyrite 60% Sphalerite 40%					
3 3.75		Quarte vein?? 5% disseminuted Sphialevite					
34.07	34.42	Pyrite 75%, Sphulerite 25%, Pyrite 25%, Sphulerite (Course) 55% Quart	22520	5	33-2	ſ	
3 41.412	35.3	Pyrit c 25 70, Sphalenize (Course) 55% Quarte	22521		34.45	35.75	1.3
35.3	35.4	Query Go 70 Spholenite 40%			İ		
35.4	35.45	Heavy sphalenie				<u> </u>	
35.45	35.75	Banded, pyritec, Silicious rock			ł		
35.75	37.2	Silicitied limestone with pyrita, pyrihotite clots and hels	22522	2	35.75	38	2.25
37.2	37.4	Coarse, Vuggy massive sughites					
•		Sphalerice 20%, Pyrchotice 80%				·	
37.4	38	Suiphide rich grey/ green volcanic, as					
,		from 24.4 To 27.4					
					•		
38	38.3	Limestone					
38.3	38.5	Querry vain					
38.5	43	Augillaceous Limerrone					·
40	42.7	Broken argillite					
42.7	44.2	Broken angitito, possibly weakly graphitic					
414.2		END OF HOLE					
		·					
		·					
,				ı			
				ļ	l		
			·		.		

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - /6 PEN

ZONE

4b

COORDINATES N /655

w 2/30 ELEV /4m.5

AZIMUTH

270

DIP - 60 TD 245 FT 73.2 M

AUG 6 1992 COMPLETED A

FROM	TO	DESCRIPTION	SAMPLE	NO	FROM	то	WIDTH
0	5.8	Chloritic Danded unit with high aftered inclusions - Chlorite Echiet - theatien at 30° to core as is					
4		Fault rubble					
5.8	13.7	Gradational contact into limestune					
6.6		2-3 mm closs of pyrahotise					
13.7	41.1	Banded limestone. Durk partings, Purillel to Cure ares, largely supplied (Po)			·		
18		Planar features at 20° to C.A. Prohotite, Chlorite on Partings					
41.1		Bedding 30° TO Cure Aris					
41.1	47.2	Plate, graphitic argillite/mudstone					
47.2		Limestone					
48.7		Pyrchotite, Chulcypyrite?? vein at.20° roca					
48.7	50	Comphetic argillite		ı			ŧ
50		Brecciutted limesture purtially comented by pyrohotite					
52	58.2	Broken griphitic, chluritic angillito			•		
58.2.	60.4	Heavy pyrahotite as patches, fracture fillings and heds	22523		58.2	60.4	1.8
58.8		Solid chlorite, as inhole 15					
60.4	74.7	Bruken limes argillite - possibly graphitic					
72.5		2 cm band of pyrahotite crosscutting					
74.7		END OF HOLE	· .				

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

4b

COORDINATES

N 1658 W 2179 ELEV 1955

AZIMUTH

ZONE

099

DIP -60°

TD 145 FT 44.2 M

Aug 7 1862 COMPLETED Avg 792 LOGGED Aug 9 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE	NU	PROF	TO	WIDTH
0	13	Graphitic / Immy argillite, Bodding at 45° TO CA					
		Cherry Scotton 9 m	. *				
13	15.2	Argillaceous limestone with chloritic fretures					
15.2	31.5	Cherry Phyllite					
15.8		Band of mossive pyrhotore, 3.5cm, 500 TOCA					
18.2		3-4 cm pyrahotize band	·				
ر ۱۹. و		Pyrohutite Lens				•	
19.3		Pyrhotite / Pyrite vein					
19.3	٥٤	Budly broken chan, some pyrohotita/pyrite			·		
22		Vuggy band of pyrchotite/pyrine at 45° TO CA					
23		Broken, healed chart, loss of chlunte, sevene on					
73.8		froctures and as marrix Massive pyrahetite, pyrite, Sphalevite, 15cm			•		
3/-5	44.2	Chloritic phyllite or Chlorite School					
33.7		SILICIFIED TONE			,		
40.2		Seriettic, broken zone					
41.5	43	Chert					
43	44.2	Plates of chlorite school					
					·		
44.2		END UF HOLE					
.*			·				

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 -)

ZONE

4b

COORDINATES N /666 W 2/64 ELEV 139%

AZIMUTH

090

DIP - 450 TD

72 FT 22 M

STARTED

Aug 1 1992 COMPLETED Aug 8 92 LOGGED Aug 10 BY Darrel Johnson

FROM	то	DESCRIPTION	SAMPLE	NO	FROM	TO	WIDTH
0	6.7	CASING OVERRULDEN					
6.7	12.6	Massive Suphide zone					
6.7	7.3	PyrhoThe 15% Pyrite 35%	22526		6.7	8.2	1.5
ı.		Sphalerite 10% white Imposine 40%	22527	i	8.2	9.8	1.6
7.3	7.9	MIVED Ayerhotile (30%) /Ayerte (30%) in	22528		9.8	11.3	1.5
7.9	8.2	Mussive pyrite, pyrahotite, sphalerite, Vuggy.					
გ . 2_	8.4	Very fine pyrohotite,					
8.4	8.5	Coorse gphalorite un imerone entact with					
8.5	7.14	Pyrchotire, Myerre Messive pyrchotine, disseminated clots (forgonomis?) of pyrite, Vuggy pyritelquarts vein					
9.14	9.9	Culcine and Sphalerite					
9.9	10.7	Limestone with 20% fine pyrahotite and spholorite					
10.7	11	Limestone with integular closs and masses of prochetite, course sphalerite, take chalcopyrite, Epidate om fractures			•		
"	11.3	Youry course substante and fine pyrhotire discreet masses, not mixed. Limestone his groomish tinge - epidite in dispute	22529		11 - 3	12.3	1
11		Mission quality symbologide citystals on Vug in time symbologie in pyrokotne					
//.3	12.3	Pyrhothe with coarse sphilerte; wormy terture in limerrue, Culcine crystals.					
/2.3		Sharp contact					
		LIMITE ARGULITE	· .	-			
12.3	21.95	Bundod and mothed Limey any illire					
٦1.95		END OF HOLE					

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 19schpg

ZONE

4b

COORDINATES

1666 N

2164. ELEV 1376

AZIMUTH

DIP

TD

125

FT 38.1 M

Aug & 1969

COMPLETED Avg 9: LOGGED Avg /O BY Darrel Johnson

90

FROM	то	DESCRIPTION	SAMPLE NO	FROM	TO	WIDTH
٥	6.7	OVERBURDEN / CASING				
6.7	14.9	Massive Sulphides				
8,75	10.2	Mussive pyrahotite, some coarse spholarite	22530	8.75	10.2	1.45
v. 2	11. 6	Prochetite, Sphalerite, Yallow Czinc!) oxiDe	22531	10.2	11.6	1.4
13. 1	14.6	Mussive pyrchotite, Some course tobalaire, mine ersenpyrite, Quante vein 14- 14.6	12532	11.6	13.1	1.5
14.9	22.2	Limos and illere	22533	13.1	14.6	1.5
22.2	25	Massive sulphides - Sulphide mid@ 23.75, 25	22534	14.6	16	1.4 2.2
2.5	25.6	1 -	22536	22.45	24.3	1.8
25.6	25.9	Greenstone with heavy surphides, surphide much	22537	24.3	25.9	
25.9	27.4	Chlorite Schist.	·			
27.4	38.1	Graphine and illite		•		
				•		

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 -20 pg / 64/

ZONE

4 b

COORDINATES N 1666 W 2 164 ELEV 1276

AZIMUTH 095°

DIP - 70° TD /10 FT 30.5 M

STARTED August 1992 COMPLETED Aug 10 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0	6.7	Overburden / Casing	12538	6.8	۵	1.2
6.7	27.9	Massive Suphide	22539	8	9.5	1-5
6.7	8	Pyrahotire, Sphalevite, Pyrite	22540	9.5	10.8	1.3
8	9.5	Pyrcholite, Sphalerite, Quartz	22541	10.8	12.1	1.3
9.5	/o.8.	Pyrahotne, Sphalerite, Quartz	22542	12.1	13.4	1.3
10.7		Sulphide Mud	22543	13.4	14.8	1.4
10.8	12.1	Quarte Verm, heavy suphides - Po/arsempyrite	22544	14.8	16.2	1.4
12.1	13.4	Prite Sphalerite, less promhotite	22545	16.2	18	1.8
13.4	14.8	Mossive Sulphides - Sphulerite pyrite, Vugs with yellow- green oxide	22546	18	19.5	1.5
141.8	16.2	M.S. Quarte very with socialerite.	22547	,	20.9	1-4
	. 9	M.S. Quarte vein with sphalerite, assemy, nite	22548	20.9	22.4	1.5
16.2	18	Broken grantsy zone, less suchtide	22549	22.4	23.9	1.5
18	19.5	Broken quarte/calcite vein with pyrite, arsenupyrite, pyrahotite, Lassi sphulerite	22550	23.9	25.3	1.4
19.5	000		22551	25.3	26.8	1.5
-		Massive Sphilerite, Pyrchotite, Pyrite.	22552	26.8	27.9	1.1
20.9		Pythotne, coarse sphalerite		•		
22.4	23.9	Mussive pyrhotite, coarse clots of sphalerite				
23.9	25.3	Massive Pyrihetite, assemplyeite, pyrite, minor Sphalerite				
25.3	26.8	Massive pyrakotite				
26.8	27.9	Massive pyrobotite. Very Sharplower contact. Random Linganail sized clots of sphalerite				
27.9	30.5	Chloritic, weakly places (NOT SCHISTOSE) / immestone, STringer & upplicles. Lower contact sharp chloritic freetune at 30° to				
30.5		END UF HOLE				
						·

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 21 pg

ZONE

4b

COORDINATES

1666 W 2164 ELEV 1275

AZIMUTH 270

DIP - 45 TD 62 FT /8.9 M

STARTED AUG 9 1912.

COMPLETED Aug 9 LOGGED Avg 10 BY Darrel Johnson

STARTE	D FIOR	c, 9 1992, COMPLETED A US 9 LOGGED,	4 v4 10 BY	,	7	
FROM	TO	DESCRIPTION	SAMPLE NO	FROM	TO	WIDTH
0 7.3	7.3 8.8	Pyrahitite 85%, Pyrite 15%	22524	7.3 9.3	9 ·3 10.8	2.
8.8	w.8	Pyrite 70%, py akutre 10%, Sphalorite 15%. Quarte chlorite zone at 9.1 - 9.4	2323	7. >	10.0	7.5
10.8	13.7	Sharp broken, any vian contest, into cherity any illite. Ovanty verm				
13.7	15.8	More distinctly banded/hedded cherty argillite. Bands sub parallel to Core axis Aprilation in stringers, 1-2 mm, and cluts to 2 Gm				
15.8 163	17.0	Provide vein, 4 cm, or 50° to core axis				
17	18.9	Cherry Arginite, minor sphalerite at 17				
/ \$.3		END OF HOLE				
•						
			·			

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 12 PE

ALPHA GOLD CORPORATION

ZONE 4b COORDINATES N /625

W 2156 ELEV 11/05

AZIMUTH 090°

DIP - 60 TD /05

FT 32.

M

STARTE	ED Aur	COMPLETED A VI. 10 LOGGED	AU4 10 BY	Darrel	Joh	nson
FROM	то	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0	5	Casing and Overburden				
5	6.9	Broken, comeded, silverfied limestone, chloritic fractures. Voggy vaim? with fine, (.5mm) assemppyine? cubes at 5.3. Cross cutting quarts stringers (1-2 mm) with fine suphides				
6.9	8.0	SKARN? 1 PNE gream, Silicious, Bunds/ layers of sulphide at 70° to Core axis minon Sphalcrite, pyrite, arsenopyrite Poscible CINNABAR AT 7.6	22564 22565 22566	10.6		1.3 1.6 1.5
&	12.3	Dark banded, lime, argillite				
123	13.7	Stringer 3 one, crosscotting bands of Supplice				
13.7	15.7	Massive pyrhotite, pyrite, random blebs of sphalerite	22553	/3.7	15.4	
15.7	17.1	Mussive limestone horse		•		
17-1	18	Massive sphulerite and pyrite, Loss Pyrihotite. Very coarse zinc	2.2554	17.1	18	
18	26.4	Massive limestone				
26.4	28	Llard grey/green Volcanie with some				
78	32	Limey argillite				·
32		END OF HOLE				

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 23 pg

of |

ZONE

4b

COORDINATES N /625

ELEV 1408

AZIMUTH

DIP - 90°

TD 115 FT 35 M

COMPLETED AUG // LOCGED AUG 12 BY

STARTE	ED AL	completed A v4 // LOGGED A	Aug 12 BY 1	Darrel	John	nson
FROM	TO	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0	3.04	Casing				
3-04	20.2	argillaceous limerous, graphitic partings				
13.7	20.2	Purtogo and lenses to I cm Thick	22555	13.7	<i>15</i> .3	1.6
14		SILICIOS breccia	22556	15.3	1	1.5
20.2	22.75	Heory to Mossive Surphide; pyrchotite	22557	16.8	18.3 20.1	1.5
		Heory to Mossive Surphide; pyrchotite with very miner sphalente, some guarty Abrupt lown contect	22558		21.3	1.2
22.15	23./	Stringer gone similar to 13.7 to 20.2	22559		22.8	1.5
23-/	26.8	Broken, Silicious zone, abundant chlorite/ grouphite? on shears and partings				
26.8	30	Limey, variably silicified augillite.				
30	3/.3	Chlorite Schist				
3 1.3	31.8	Museive, silicities limestone				
31.8	35	Chlorite Schist		•	·	
35		END UF HOLE				
				•		

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 24

ZONE

4b

COORDINATES N /625

W 2156 ELEV 1-108

AZIMUTH

270°

DIP - 60 TD 140

FT 42.7 M

STARTED AUG. 11 1992 COMPLETED AUG. 12 LOGGED AUG. 12 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
. 0	3	Casing and Overholden				·
3	12	Cherry argillite - chloritic, weakly graphitic				
12	13	Mussive Imestone, Silicitied Charconting,				
,		culphide filled fractures				
13	32	Limney argillite	·			
32	33.6	Chlorite schist, crosscriting suphide Stringers	22561	32.5	ľ	1-1
33.6	3 3.9	Massive pyrabotite, flanked by stibulite only grante. Grades rapidly into coarse	22562	33.6	ľ	1-7
		Fyrshorte, pyrite in highly chloritic matrix	22563	35.3	36.6	1.3
		Po Stibuite				
		QTA				
224	34.0					
33.9	34.9	Heavy pyrhotite/pyrite in brown Silicious zone		•		
34.9	35.2	Massive pyrahotite				
3 5. 2	35.3	Highly chloritic				
3 5. 3	36.6	STRINGER ZONE, PYTTHOTUTE, STIRNITE,			·	
		MINOR Spuncer CTE				
36.6	42.7					
41.2		arsenopyrite cubes, ssmm				
42.7		END OF HOLE.				
			·			
÷						
				•		
	1	1				

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

ZONE 4b

COORDINATES

1682 W 2136.5 ELEV 1375

270" AZIMUTH

N

DIP -45 TD 175 FT 53.3 M

STARTED AUG 12 1992 COMPLETED AUG 13 LOGGED AUG 14 BY Darrel Johnson

FROM	то	DESCRIPTION	SAMPLE NO	FROM	TO	WIDTH
0	3	Casing and Overbuiden				
3	9.4	A STATE OF THE STA				
9.4	18.3	Fine questionen volcance with beds, Stringers and blebs of sulphide	·	·		
/ 8.3	21	Same volcance as 904-18.3, with limeature closes and calcine Veining				
21	21.4	Limestone				
21.4	28.3	Gray green Weames, as above, with abundant	22567	1	22.4	
		pyrihitite /pyrite as veims, angular to rounded clots, beds and stringers	22568	22.4	1	
		Course Sphalerite clas at 21.4, 21.8,	22569	25.9	27.2	1.3
22.3	22.9	29.4, 23.6 60 cm of broken, sugary, massive pyrrhutite/ Pyrite				
22.9	28.3	Stringer Type mineralization				
28.3	30	Limestona:				
30	53.3	Argillaceon limestone				
41.3		Supplied Clot	·			
53.3		END OF HOLE	+ ,			
			* *			
				•		

DIAMOND DRILL HOLE LOG

LUSTDUST PROPERTY

4b ZONE

ALPHA GOLD CORPORATION

COORDINATES

N 1704 W 2135

ELEV /386

AZIMUTH 270

DIP -45 TD 166 FT 50.9 M

STARTED AUG 13

COMPLETED Av., /3 LOGGED Av4/4/ BY Darrel Johnson

ROM	то	DESCRIPTION	SAMPLE I	וסא	FROM	то	WIDT
0	1.2	Casing and Orienhorden					
1.2		Limestone, variable colour, and terrire, partially re capitalized					
18.2		5.7 m SupHIDE ZONE	· •				
18.2	19.8	Heavy to Massive, Coarse Sphaleruse and Pyrite in limestone CARNET	0 1670		18.2	196	1-
18.9	0.6	CHARLET, DIPPSIDE L.	22570	- 1	19.6	ļ	
			22571	1	21.5		_
215	23.9	Coarse sphalerite, pyrite, minor pyrchotize in limestone. Sphalerite dominant	22572	1	22.4	1	
	! ! !	22.3 TO 22.6. Total sulphide content	272/2		~~ 1		′
	i	Ary Macrous Imerion of Imey dagillite					
42	44	Sen: Mussive limestone					
44.2	50.9	Sami Mossive l'investure	·		•		
TNO							
50.9		END OF HOLE					
i					•		
					•		
			÷ .				
•					•		

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 27 pg (7) of 1

ZONE

4b

COORDINATES N /586.5

W 2156

ELEV

AZIMUTH 090

DIP - 45

TD

91 FT 27.7 M

A LOGGED Aug 17 BY Darrel Johnson

STARTE	ED Aux	UST 14 1992 COMPLETED A VA 14 LOGGED	H 03 17 BY	Darrel	Johi	son
FROM	TO	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0	2.43	Casing and Overburden				
2.43	17.4	Argillite package				ı
2.43	7.6	Very Sicienus				
7.6	13-1	Argillite				
9.4		2-3 contens of pyrahotite				
13-1	17.37	Charry argillite				
17.22		I regular mass of pyrahetite, partially of fracture filling	·			
17.37	18.44	1.07m of mossive py rahotite, with classif pyrite up to 2 cm diameter.	22574	17.37	18.44	1-07
18		Band of very course are supported, bordered by sphalerite, crosscute main sulphide body				
18.44		Lower contact with/imestone is kajor Sharp, marked by Imm band of sphilerite				
18.44	27.1	Limestume Very Silicious at suppliede contact, decreasing down hole.				
19.8		.5 cm Quartz Vein				·
27.1	77.7	Argillaceous limesture				
27.7		END OF HOLE				
				•		

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 28 pg./

ZONE

4b

COORDINATES

N 1586

W 2156 ELEV /4/1/

AZIMUTH

DIP - 90° TD 145 FT 44.2 M

STARTED Aug 15 1992 COMPLETED Aug 15 LOGGED Aug 17 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0	5-5	Casing and Overburden				
5.s :	25.9	Cherty angillite broken, commuted by Colcite. General fabric parallel to core axis Chert appears "strained"				·
25.9		Pyrohotise es STRIAGER and Irregular CLOS				
25.9 35.05	35.05 36.6	Limey Angillite Limey Angillite with chert lenso				
36.6	41-1	Increasingly sicions/ chony broken amillite				
41-1	44.2	Chlaritic/graphitic orgillite	·			
44.2		ENP OF HOLE				
				•		
				·		

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

o e e despesa de ma<mark>st</mark>ibliosopo, e la como e e e e e

DDH 92 +29

ZONE

4b

ALPHA GOLD CORPORATION

COORDINATES N 1555

W 2138 ELEV 14125

AZIMUTH 090

DIP - 45° TD /55 FT 47.2.M

STARTED Aug. 14

COMPLETED A 64 15 LOGGED A 64 18 BY Darrel Johnson

FROM	то	DESCRIPTION	SAMPLE	NO	FROM	то	WIDTH
0	149	Casing and Overburden					
14.9	16.8	Broken "Poker Chip" angillite. May be				·	
16.8	18.9	Broken, heacciated Cherry assillite - Few	·				
ì		Nedding. parollel? Ayanhotite stringers of 18.5					
18.9		Broken Contact					
18.7	29.7	Sulphide Zone					
18.9	20.25	Fine Bronger pyenhotite with durk souty Stroops Sphalerite?? Cluts (1-2 mm) of Pyrite. Fine stringers and disseminations of arsenupyrite within pyenhotite					
20.25	2.08.8						
		share ciais of spinion if I free in the	22575		18.9	20.88	
20.88	21.34	Massive Sulphides pyrohotite, cluts of lying, 5cm of sphiterite et bottom of	22576		20.88	21.7	
		Section	22577	:	24.4		
21.34	24.4	Horse, partially silicified limestone. Some oxidation on factores. Isolated section of course of	22578			27.9 28.4	
		sphilestel fine prote of 21.9. stibute needles,	22580		•	29.4	
24.4	27.9	Mussive, bronger prophetite, with coarse. Sphelerite at upper (8cm) and Lower (10cm) contacts. Protect cluts commen incentive of	22581		29.4	2:9-9	
27.9	28	Section.		.			
28	28.42	Kimestone Massive coarse sphulerite (45%), stibuita (45%) mmor pyrite, plus muddy gwylgreen nun metallic (Sericite?)	·				
28.42	29.4	Mussive, partially silicities lime stone					
29.4	1	Coarse massive sphurerite (45%) und Stibuito (45%) in quarty matrix					
29.72	47.2	Mussive limestome END OF HOLE					
47.2		END OF HOLE	•		•		•

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 -30

ZONE

4 b

COORDINATES

N 1555 W 2138 ELEV 1445

AZIMUTH

090

DIP - 60° TD 134 FT 40.8 M

STARTED A UCIOST 15 COMPLETED A UG 16 LOGGED AUG 18 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0	13.4	Casing and Overburden				
13.4	15.2	Cherry argillite				
15.2	21.3	Limey anyillite	ŧ.		1	
20.7		Pyrchotic stringer				
21.3	21.8	(35%) 3 misny stringers of sphalente (5%) Stibnite (4%) and assemplate (370)				
21.8	26.4	Well laminated limey angillite				
26.4	27.14	Very fine brongey pyrchotite, grading into	22582	26.4	27.4	1
		Very fine brongey pyrahutite, grading into Stringers, then coarse sphalerite and stibuite, then to pyrite matrix horring sphalerite and	22583	27.4	28.85	1.45
		57 15m 17 e	22584	28.85	30.15	1.3
27.14		Massive limesture horse				
28.85		Massive supplied				
28.85	79.4	Stibulte (40%) sphalerite (35%) pyrite (25%) as coarse urregular clots. Fish sign of limesture in setim of 29.3				
29.4	35.4	Massive pyrobotite	22585	30.15	31.5	1.35
2 9.8 30.15		Sphalerite clot - 1cm diameter	22586	31.5	32.8	1.3
30.5		Spholorite Stringer crusscutting	22587	32.8	34	1.2
35.4		Lower contact munked by . 6 cm of dense green non-metallic	,			
35-4	40.8	Limestone - musicine; partly recrystulized, Oxidizes foretunes to bottom	22588	34	35.4	1.4
40.8		END OF HOLE				
				•		
			i			

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

ZONE 4b

COORDINATES N 1555 W 2138 ELEV 1425

AZIMUTH 090

DIP - 80° TD 305 FT 92.9 M

STARTE	D AUG	UST 18 COMPLETED A UK 19 LOGGED A	10,21 BY	Darrel	Joh	nson ————
FROM	то	DESCRIPTION	SAMPLE NO	FROM	το	WIDTH
0	12.8	Casing and Overbuiden				
12.8	25.9	Broken, cherty argillite, laminations 450/eA				
25.9	34	More massive, Lighly silicious				
32.8		Icm bund of missive sulphide, 60°/CA in				
3 4	50.4	Very Silicious, well luminated amillire				
5 0.4	51.2	Henry sulphide in silicious matrix - sugary py, ite, arsenupy nie, sphalerite as discreet 1-2mm cluts and rotted crystals Minerals intergrown - pyrite surrounded by arsenapyrite; sphalerite as discreed grains and agliomerations. Mud souns with fine and coarse sulphides. Clysillite and chert deformed and contarted	·			
		Sulphides conform to luminations and flow around fragments.				
51.2	58.7	Cherry argillire				
54.7		Gen massive arsonopyrite		•		
58.7	74.5	Mussive black and white chert, occasional chloritic partings	. ·			
745	1	Bluck argillise				
77.1		pyrchotite long with quarty inclusion				
84.5		Massive cherry assillite				
929		END OF HULE				
			·			

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 33

ZONE

4b

COORDINATES

N 1530 W 2134

ELEV 1432.5

AZIMUTH 090 DIP -55 TD 25/ FT 76.5 M

STARTED AUGUST 19/92 COMPLETED AUG 20 LOGGED Aug. 21 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE NO	FROM	TO	WIDTH
0	10.4	Casing and Overburden				
10.4	30	Sult gray /black any illite	·			
30	32.4	Massive cherry argillite. Sulphide stringers at 29.1, 30.5				
32.4	35.7	Massive Sulphide - upper contact sharp, conformuble to laminae -	22589	32.4	34	1.6
_		Argillite of poly Py?} Poly Pyrchotice	22590	j	35.6	1.6
		Mainly pyrhotite, minor pyrite, as clots or upper contact, random lem comes throughout, Pyrite Cuber heavilly corroded and etched by pyrhotite			·	
33.5	-	Fine dark metallic				
34.45		Very course sphalerite, stibuite, in Pyrrhotize matrix.				
35.%	35-7	Lower control zone	•			
		Pyrohotite Sybaria Find				
		S (2n7 Ayrite				
	·	Irregular lower contact will limesture Some corrosion of limesture				
35.7	76.5	1				
76.5		END OF HOLE	·			

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 -33

ZONE 4b

COORDINATES N /5/2.5 W 2.138 ELEV /437

0900 AZIMUTH

*DIP -55° TD 242 FT 73.7 M

STARTED AUGUST 20 COMPLETED AUGUS LOGGED Aug 22 BY Darrel Johnson

	HU4	COMPLETED A 64.27 LOGGED A				·
FROM	то	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0 /	6.5	Casing and Overbroken				
16.5 1	7.7	Limestone Choulder??)				
17.7 18	8.6	Angilline				
18.6 1	9.8	Argillite Pehbles				
19.8 2	3.2	Mud - Limes fragments				
23-1 2	9.3	Liming argillites				
29.3 2	9.6	Massive Limestone				
29.6 20	9.72	Biecciatted, quartz commuted limesture	·			
24.72 6	-4.3	Amillite				
39		First sized lump of mixed pyrite, etibnite,			-	·
64.3		Percil line contact.				
64.3 7	73.7	Barren movine limerrume, oxidizal		•		

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 34 pg | 6.1

ZONE

4b

COORDINATES N 1534/ W 2093 ELEV 1418

AZIMUTH 270°

DIP -45 TD 115 FT 35.05M

STARTED AUGUST 21 92 COMPLETED Aug 22 LOGGED Aug 22 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE	NO	FROM	то	WIDTH
0	4.3	Casing and Overburden					
4.3	30.2	Limestone					
19.6							
23.2 23.8		Very ruity, open, perous fonctures	,				
30.2	31.3	Massive Suiphide -pyrahotilo with minur pyrate Lower context at suiphide zone is	22591		30.2	31.3	1.1
		Sirelihed was above 15cm, at about 10 to core axis. Massive pyranetite is in Sharp contact with parous pyrate, which thins out gradually into very cherry ansillite					
3/.3	35.05	Cherry argillise					
35.05		END OF HOLE			•		
				·			
					ı		

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 -35

ZONE

4b

COORDINATES

N 1534

W 2073 ELEV 1418

AZIMUTH 270°

DIP - 60° TD /50 FT 45.7 M

STARTED Aug. 22 92 COMPLETED Aug 23 LOGGED Aug 23 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0	3.66		, '			
3.66	41.4	Limestume				
13.7		OPEN SPRE, 2.5m	٠ ,			
41.4	41.5	contact zone - black, nubbeng mud.				
		Dues not resemble either graphire or supplied.				
411.5	- 45.7	Cherry argillite			}	
			·	·		
45.7		END OF HOLE				
			·			
				•		
					·	
		•				
			·			
			·			
					٠	
				•		

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 -36

ZONE 4b

COORDINATES N /520 W 2090 ELEV 1420

AZIMUTH 270°

DIP -60° TD //6 FT 35,4 M

STARTED AVG 23

COMPLETED Avc. 23 LOGGED Avc. 24 BY Darrel Johnson

FROM	то	DESCRIPTION	SAMPLE NO	FROM	TO	WIDTH
.0	3.05	Casing		·		
3-05	12.2	Macoure limestone				
12.2	15.3	Limey aryillite				
15'.3	27.3	Clean, massive limestone, porous upon fractures at 19, 21.2, 23.7		·		
27.3 17.3	35.4	Circulational contact with aheay arjulite - No Suiphide zone Cherry argillite				
35.4		END OF HOLE			·	
				•		
						,

COORDINATES N /550 W 20935 ELEV 1416

AZIMUTH 270°

ZONE 4b

DIP -45° TD 155 FT 47.2 M

STARTED And 13 COMPLETED Out 1/2 LOGGED Aug 26 BY Darrel Johnson

STARTI	ED /\ ,	COMPLETED Voj 7 / LOGGED /	·	,	Joni	nson
FROM	TO	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0	3.05	Caring				
3-05	32.5	Clean massive limestone. Parous froutures et 10, 16.4, 17.7				
3 2,-5	35.2	Darker greg limestone				
35.1		3.5 cm lens of missive, porous, Pyr-hotite and pyrite				
35-2	37	Cirry limestone				
37	3 7.∙5	Overty breeze with command lots of open vugs very "epithermal" Lioring	22592	37	37.5	•5
37.5	40.2	Circy limestone				
40.2	45.1	Massive Surphides - mustly	22593	40.2	411.45	1.25
		Possibly assenopy-ITE mearbottom of	22594	41.45	42.7	1.25
		Section	22595	42.7	43.95	1-25
45-1	45.2	Muddy gray controt zone	22596	43.95	45.1	1-15
45.2	46-4	Badly backen grey/black argillite	,			
464	46.9	1-leavy sulphides, munity pyrohotite, in				
		charg angillite				
46.9	47.2	Broken, grey argillita				
47-2		END OF HOLE				

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 -38

ZONE

4b

COORDINATES N /550

w 2013.5 ELEV 1416

AZIMUTH 278

DIP -60 TD 190 FT 57.9 M

STARTED Aug. 23 92

COMPLETED Aug 24 92 LOGGED Aug 24 BY Darrel Johnson

FROM	то	DESCRIPTION	SAMPLE	NO	FROM	то	WIDTH
0	3.05	Casing and Overbuden					
3.05	7.97	Barran musice limestone					
7.9	10	Soft, modely gray 16 lack sediment with					
٠.		Seams of Sericine					
10	15.4	Massive limestune					
15.4	20.6	Serience laminated unit, with					
		limerrone "eyes"					
20.6	25.2	Massive Imeriane					
23.3	24.3	2 cm calcire Vein, parullel ro core axis					
25.2	25.7	Very fine, pyrite rich sericitic rock					
		- Pyrilic scriette Schist					
25.7	26.4	Massive limestone					
26.4	33	Chloride/Sericite Schist					
33	45.5						
45.5	5 3.3	schier?) with finger sized limestone					
		closes. Bunds of very fine prehotite	•				
		and prise parallel to laminae, lots					
		of epidite - alteres volcance??					
5 3.2	57.9	Charty argillite. Pyrahot the filling					
56.15	57.9	Massive chest					
57.9		END OF HOLE					
2 / • 7		END OF HOLF					

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

ZONE 4b

COORDINATES N 1503

W 2057 ELEV 1417

AZIMUTH

270°

DIP -45° TD 151 FT 46.02 M

STARTED A 2 11 1992 COMPLETED A 09 24 LOGGED A 09 27 BY Darrel Johnson

FROM	TO	DESCRIPTION	SAMPLE NO	FROM	TO	WIDTH
0	3.05	Casing				
3.05	42.6	Limorrane				
2.6	·	Sharp contact with limey argillite Limey argillite END OF HOLE				
12.6	46.02	Limey arguillite				
46.02		END OF HOLE				
•					·	
			,			
			·	•		
				,		
			·			
				ŧ .		
	·					
			,			
				,		
						[

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 40 pg | of |

ALPHA GOLD CORPORATION

ZONE 4b

COORDINATES N 1575 W 2115 ELEV 1413.7

AZIMUTH 270!

DIP -415° TD 150 FT 45.7 M

STARTED Aug 2 H COMPLETED Aug 25 LOGGED Aug 26 BY Darrel Johnson

FROM	то	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0	2.1	Casing				
2.1	21.9	Mussive limostone				
21.9	28.8	Mottled "lumpy" grey / black charty,				
28.8	30.9	Museire Sulphide				
2 8·8	29	Very time pyrahotites	22597	28.8	29.95	1.15
29	30.3	Course supplied, more pyrite, minon Spheler, te, both as scattered course grains and I comband at 45° toca \$30.15	22598	29.95	30.9	- 95
30.3	30.9	Massive suiphide increase in pyrite content - coaise and Vuggy . Sphalenite as 1-2 cm scattered grains				
30.9	32.2	Horse of slightly cherry angillite	22599	30.9	32.15	1.25
32.2	32.9	Heavy (70%) pyrhotite, pyrite, Sphilerite in limestume matrix	22600	32.15	33.05	.9
32.9	33.5	Soft limey argillite with 10%? arseropy rive as discover, fine cubes	·	•		
3 3.5	3 4	Heavy arsenopyrire in argillite	÷			
341	45.7	Typical broken, luminuted argillite				
45.7		END UF HOLE				
				·		
		•				

DIAMOND DRILL HOLE LOG LUSTDUST PROPERTY

DDH 92 - 4/ pg / of /

ZONE 46 COORDINATES N 1575 W 2115 ELEV 1413.7

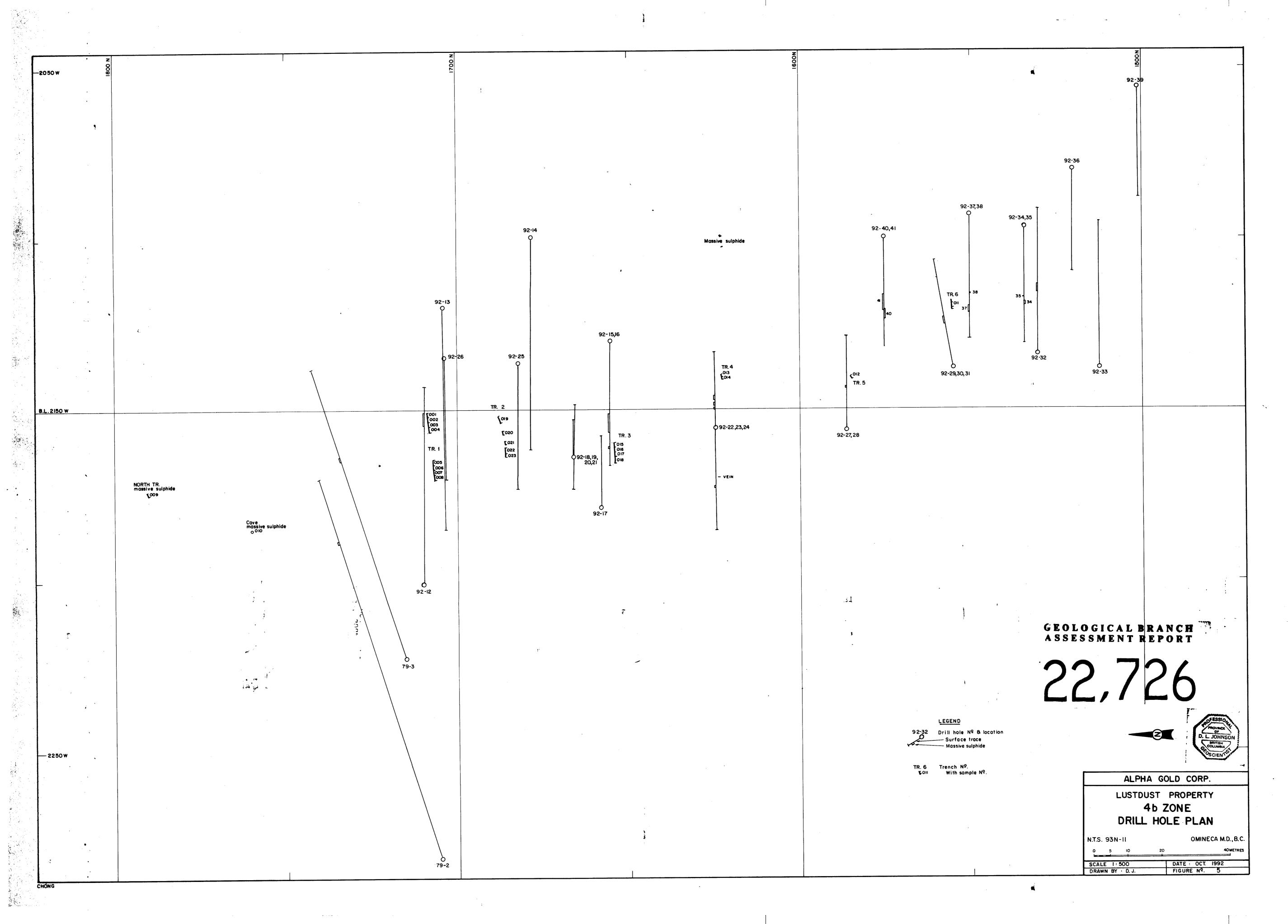
AZIMUTH 270" DIP ~60" TD 175 FT 53.3 M

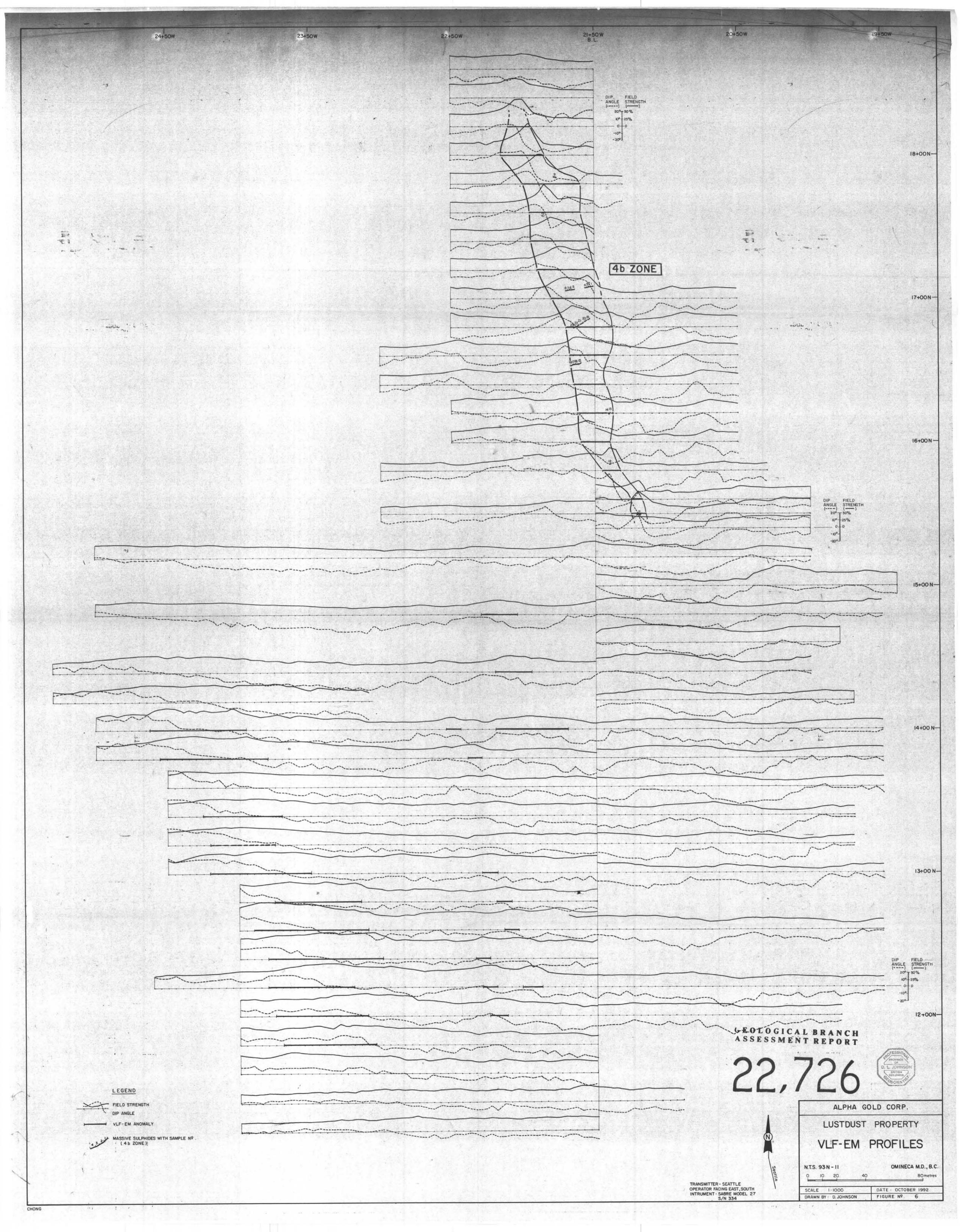
STARTED

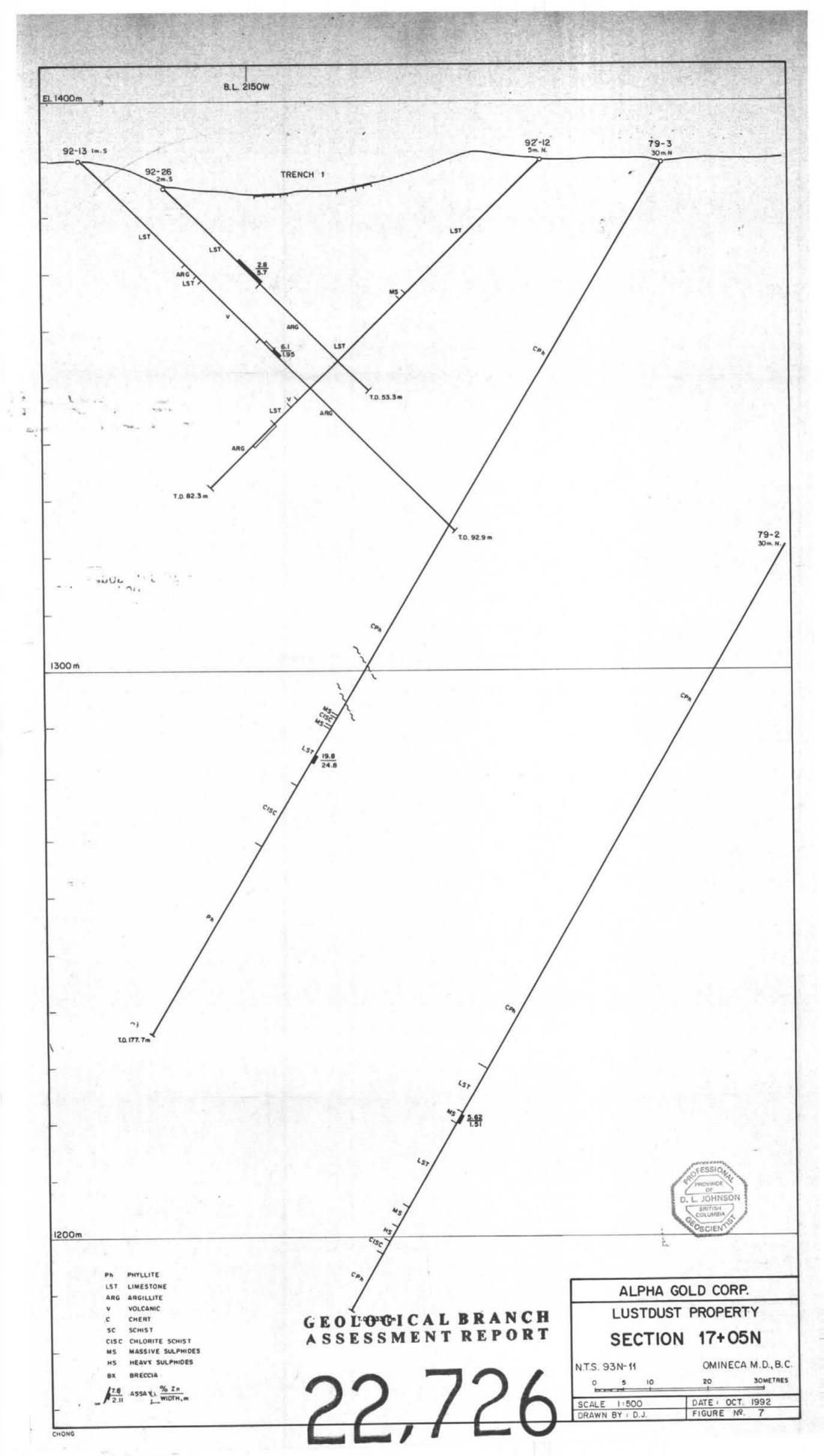
Aug 25 1992 COMPLETED Aug 26 LOGGED Aug 26 BY Darrel Johnson

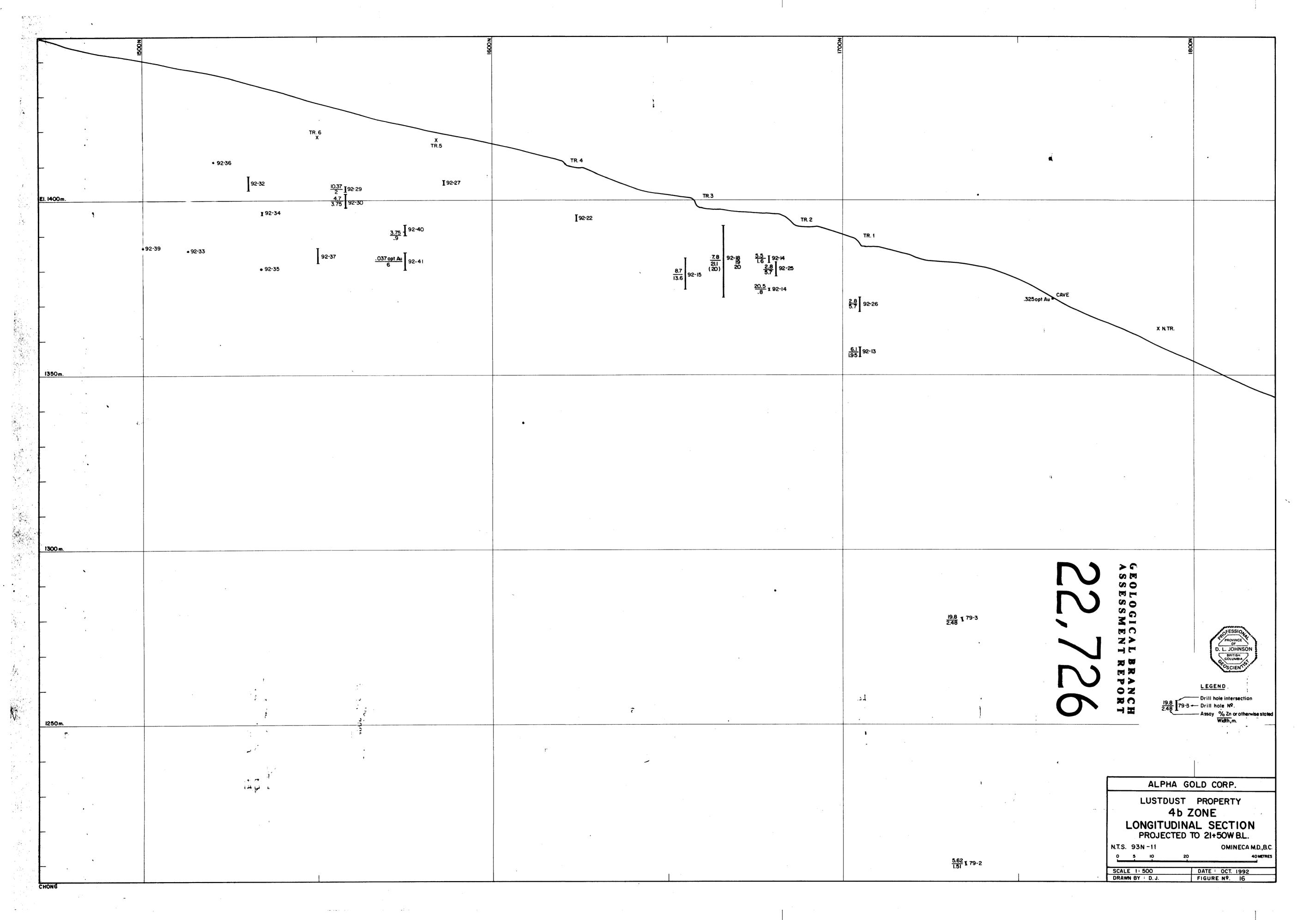
SIAKII		COMPLETED A 592 COGGED	, DI	varre		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
FROM	то	DESCRIPTION	SAMPLE NO	FROM	то	WIDTH
0	4.6	Casing and Overborden				
4.6	15.5	Massive grey limes rome	,			
15.5	16.9	Darker grey limestone				
16.9	32.9	Muscive gray limestone				
32.9	42.1	Massive Sulphide zome,				
32.9	33.2	Mussive brongey syrrhotore (60%) py-ite (40%)	22601	32.9	34.4	1.5
33.2	33.8	House of Chart with finger eiger class of Sphalonite	22602	34.41	35.9	1.5
33.8	34.3	Massive sulphiden - pyrhutite, pyrite Clots, some sphalerite near contact with then T	·			
34.3	35.2	As above, but very course grained				}
35.2	38.35	Time massive pyrhotite with 6-9 mm	22 603	3 <i>5</i> . 9	37.4	1.5
			2604	37.4	38.9	1.5
38.35	38.8	Vuggy Pyrite	22605	38.9	39.6	7
38.8	39.6	Mussive fine grained pyrihotite, pyrite, arsenary rite	. •			
	40.6	Horse of limey augillite	22606	39.6	40.6	/
40.6	42.1	Brunzing Pyrchotite, Sub angular Pyrite clasts to 1.5 cm diameter, in	22607	40.6	42.1	1.5
		Carbon et e lens. Hourline carbonute Veinlets				
42.1	42.6	Mottley cherry argillite				•
42.6	43-1	Vuggy quartz vein.				
43.1	53.3	Typical limey/cherry/laminated argillite				
53.3		END OF HOLE				
		- MINERACIZATION IN HOLES 40 +41 15 IN ARGILLITE PARKAGE RATHER THEN LIMESTONE.		•		

APPENDIX V


TABLE OF DRILL HOLE LOCATIONS




ALPHA GOLD CORP


LUSTDUST DRILL HOLE SUMMARY 1992

DDH NO	NORTH	WEST	AZIMUTH	DIP	ELEV m	TD (m)	TD(ft)	COMMENTS
92-12	1710	2201	090	-45	1389.9	82.3	270	Tr 1
92-13	1704	2120	270	-45	1389.9	92.9	305	Tr 1
92-14	1678	2100	270	-45	1395	88.4	290	Tr 2
92-15	1655	2130	270	-45	1400.5	44.2	145	Tr 3
92-16	1655	2130	270	-60	1400.5	73.2	245	Tr 3
92-17	1658	2179	090	-60	1400	145	44.2	Tr 3
92-18	1666	2164	090	-45	1396	22	72	Tr 3
92-19	1666	2164		-90	1396	38.1	125	Tr 3
92-20	1666	2164	090	-70	1396	30.5	100	Tr 3
92-21	1666	2164	270	-45	1396	18.9	62	Tr 3
92-22	1625	2156	090	-60	1408	32	105	Tr 4
92-23	1625	2156		-90	1408	35	115	Tr 4
92-24	1625	2156	270	-60	1408	42.7	140	Tr 5
92-25	1682	2137	270	-45	1395	53.5	175	Tr 2
92-26	1704	2135	270	-45	1385	50.6	166	Tr 1
92-27	1586	2156	090	-45	1417	27.7	91	Tr 5
92-28	1586	2156		-90	1417	44.2	145	Tr 5
92-29	1555	2138	090	-45	1425	47.2	155	TR 6
92-30	1555	2138	090	-60	1425	40.8	134	Tr 6
92-31	1555	2138	090	-80	1425	92.9	305	Tr 6
92-32	1530	2134	090	-55	1432.5	76.5	251	S. End
92-33	1512	2138	090	-55	1437	73.7	242	S. End
93-34	1534	2093	270	-45	1418	35	115	E. Side
93-35	1534	2093	270	-60	1418	45.7	150	E. Side
92-36	1520	2080	270	-45	1420	35.4	116	E. Side
92-37	1550	2094	270	-45	1416	47.2	155	Tr 6
92-38	1550	2094	270	-60	1416	57.9	190	Tr 6
92-39	1503	2057	270	-45	1417	46	151	E. side
92-40	1575	2115	270	-45	1413.7	45.7	150	Tr 5/6
92-41	1575	2115	270	-60	1413.7	53.5	175	Tr 5/6
	1	I			1			

