LOG NO:	rjan 1	5 1993	RD.
ACTION.			
<u></u>	···		م.
FILE NO:			

ASSESSMENT REPORT ON BORE HOLE ELECTROMAGNETIC SURVEY MURDER CREEK PROJECT, RAIN PROPERTY

Revelstoke Mining Division

NTS 82M/8E 51°26'N Latitude, 118°07'W Longitude

For

Bethlehem Resources Corp. Suite 700, 815 W. Hastings St., Vancouver, B.C.

J.L. LeBel, P.Eng. OreQuest Consultants Ltd.

December 7, 1992

GEOLOGICAL BRANCH ASSESSMENT REPORT

SUMMARY

A bore hole, time domain electromagnetic survey was conducted on the Rain Property owned and operated by Bethlehem Resources Corp. The purpose of the survey was to test the environs of five diamond drill holes for massive sulphide mineralization.

One hole (RN-92-2) on the Rain Property could not be logged because high water flow floated the logging apparatus. Anomalies in the other holes could be adequately explained by the known mineralization. One anomaly at 180 m in hole RN-92-1 showed a substantial increase in amplitude and size when logged with a transmitter offset to the south of the hole. This feature appears to indicate a significant conductor below hole RN-92-3 not explainable by the known mineralization.

Bore hole electromagnetic surveys are a powerful tool for finding mineralization away from drill holes. A large target can be found up to 200 m away. Any future holes on the Rain Property should also be logged by the time domain electromagnetic method.

TABLE OF CONTENTS

.

Page

Summary	
Introduction	1
Location and Access	1
Claim Status	2
Equipment and Survey Procedures	3
Results and Disscusion	3
Conclusions and Recommendations	8
Statement of Qualifications	
Certificate of Qualifications	
J.L. LeBel, P.Eng.	

Bibliography

•

LIST OF FIGURES

Figure	1	Location Map	Following	Page	1
Figure	2	Claim Map	Following	Page	2
Figure	3	Drill Hole Locations/Tx Loops	Following	Page	3
Figure	4a	GS-92-1 (Tx Loop 2) Log Scale	Following	Page	4
Figure	4b	GS-92-1 (Tx Loop 2) Linear Scale	Following	Page	4
Figure	5a	GS-92-1 (Tx Loop 3) Log Scale	Following	Page	5
Figure	5b	GS-92-1 (Tx Loop 3) Linear Scale	Following	Page	5
Figure	6a	GS-92-3 (Tx Loop 3) Log Scale	Following	Page	6
Figure	6b	GS-92-3 (Tx Loop 3) Linear Scale	Following	Page	6
Figure	7a	GS-92-3 (Tx Loop 2) Log Scale	Following	Page	6
Figure	7b	GS-92-3 (Tx Loop 2) Linear Scale	Following	Page	6
Figure	8a	GS-92-4 (Tx Loop 1) Log Scale	Following	Page	7
Figure	8b	GS-92-4 (Tx Loop 1) Linear Scale	Following	Page	7
Figure	9a	GS-92-5 (Tx Loop 4) Log Scale	Following	Page	7
Figure	9b	GS-92-5 (Tx Loop 4) Linear Scale	Following	Page	7

LIST OF TABLES

Table I Claim Information

.

Page 2

LIST OF APPENDICES

Appendix I Survey Data Appendix II Statement of Costs

INTRODUCTION

This report presents an interpretation of a bore hole electromagnetic survey conducted in a series of diamond drill holes on the Rain Property. The objective of the survey was to search for base metal massive sulphide mineralization away from and between the holes which had intersected a number of favorable semimassive sulphide/garnet alteration zones.

The field work was carried out between November 13-17, 1992 by OreQuest Consultants Ltd. under the supervision of the author. The Crone Digital Pulse Electromagnetic (DPEM) system used for the survey and a geophysicist/equipment operator were supplied by Scott Geophysics.

LOCATION AND ACCESS

The Rain property is located approximately 80 road kilometres north of Revelstoke within the northern Selkirk Mountains of southeastern B.C. (Figure 1). The property straddles the Downie Creek valley from approximately 1 kilometre north of the Sorcerer Creek confluence, southward for approximately 15 kilometres, and a portion of the property area covers the headwaters of Standard Creek. The property is centred at 51°26'N latitude and 118°07'W longitude, NTS map sheet 82M/8E.

Access to the lower elevations of the property areas is gained by travelling 67 kilometres north from Revelstoke on Highway 23

- 1 -

(Nakusp-Mica Creek Highway) then eastward along the Downie Creek logging road. The property lies between kilometre 15 and 29 along the Downie Creek logging road from which several branch roads to logged areas provide access to the lower elevations. The alpine portions of the property must be accessed by helicopter. The property is located 56 road km south of the Goldstream Mine and mill complex.

CLAIM STATUS

The Rain property consists of 15 mineral claims totalling 178 units (Figure 2) registered within the Revelstoke Mining Division, B.C. Pertinent claim information is listed in Table 1.

CLAIN	<u>{</u>	TENURE #	UNITS	<u>AREA(ha)</u>	LOCATION DATE	EXPIRY DATE
RAIN	1	248282	15	375	OCT 18/89	OCT 18/93
RAIN	2	248283	20	500	OCT 18/89	OCT 18/93
RAIN	3	248284	9	225	OCT 18/89	OCT 18/93
RAIN	4	248285	12	300	OCT 18/89	OCT 18/93
DROP	1	248425	18	450	SEP 24/90	SEP 24/93
DROP	2	248426	15	375	SEP 24/90	SEP 24/93
DROP	6	248430	6	150	SEP 25/90	SEP 25/93
DROP	7	248431	16	400	SEP 24/90	SEP 24/93
DROP	8	248432	20	500	SEP 25/90	SEP 25/93
DROP	9	248433	10	250	SEP 25/90	SEP 25/93
DROP	10	248434	15	375	SEP 25/90	SEP 25/93
DEER	1	248451	8	200	DEC 06/90	DEC 06/02
DEER	2	248452	6	150	DEC 05/90	DEC 05/02
DEER	3	248453	4	100	DEC 06/90	DEC 06/02
MIT	-	302917	4	100	AUG 08/91	AUG 09/03
			178	4450		

TABLE 1: CLAIM_INFORMATION

All of the work described herein was carried out on the Deer 3 claim and the current anniversary dates do not include eligible assessment credits earned from the work described herein.

- 2 -

		~~~
DROP 100 DEER 2 DROP 9 DROP 9 DEER 3 C T RAIN 2 DEER 3 RAIN 2 DEER 7 RAIN 2 RAIN 2 DEER 7 RAIN 2 DEER 7 RAIN 2 RAIN 2 RAIN 4 RAIN 4 RAI	KCEFIELD CEFIELD	
DROP 1 DROP 2		50
a chricefield east and		مر,
	OREQUEST BETHLEHEM RESOURCES CORP. Figure 2 RAIN PROPERTY	
0 2000 4000 metres	CLAIM MAP Revelstoke Mining Division British Columbia NTS 82M/8E August 1991	Y3

#### EQUIPMENT AND SURVEY PROCEDURES

A Crone digital PEM receiver, and a Crone 2000 watt PEM transmitter were used for the downhole PEM survey. Time reference between the two was maintained by a sync cable link.

Readings of the primary pulse and the axial component of the secondary magnetic field (at 20 time channels) were read at 5 meter interals using a standard Crone borehole probe.

The survey data was archived, processed, and plotted using a Toshiba 3200 microcomputer utiliziing Crone PEM softwares.

On the Rain Property four, roughly 200 m square transmitter (Tx) loops were used as shown in Figure 3.

#### **RESULTS AND DISCUSSION**

The results of the survey are presented in profile format for each hole and each loop. Two plotting methods are used: a linear scale to 10 nT/sec followed by log scale thereafter and a strictly linear scale. The linear/log scale presentation is preferable because even small amplitude anomalies that become insignificant on a linear scale are discernable. Unfortunately, the Crone plotting software only allows 3-decades of log scale which clips or limits some of the high amplitude responses recorded by the survey.

- 3 -



Rain Property

Hole RN-92-1 (Tx Loop 2)

Hole RN-92-1 has a broad negative off-hole response centered at 140 m or so. The reason why this feature gets wider on later channels is not clear. The anomaly would appear to indicate a conductor about 50 m from the hole. The numerous garnet/semimassive sulphide zones in RN-92-2 above RN-92-1 provide an acceptable explanation.

In-hole anomalies are evident at 180 m, 205 m and 222 m. The feature at 180 m is 7-channels and correlates with a "4 cm wide pebbly 10% pyrite zone". The anomaly at 205 m is also only 7channels and correlates with a broken-gouge zone with up to 5% pyrrhotite. The principal anomaly occurs between 215 m and 240 m. This anomaly is a wide negative peak with a subsidiary positivecentered 222 m on early channels. The positive decays gradually with increasing channel. This feature is the anomaly expected from an intersection close to the edge of a conductor with the conductive feature located at 222 m at the subsidiary peak. The hole intersected a semi-massive sulphide zone between 219.1 and 227.15 m to explain the anomaly with the interval between 219.1 m and 228.8 m averaging about 25% massive pyrrhotite.

#### Hole RN-92-1 (Tx Loop 3)

Hole RN-92-1 was relogged with Tx loop 3 located to the south of the hole (Figure 3). The same features observed in RN-92-1 with

- 4 -

Client	Figure 4a	Hole	: RN-92-1
Grid	: RAIN	Tx Loop	: 2
Date	: Nov 14, 1992	File name	: RN921.PEM

Data Scaled by Factor of 1.00 Z COMPONENT dBz/dt nanoTesla/sec - 20 channels



Client	: OREQUEST Figure	4b Hole	: RN-92-1
Grid	: RAIN	Tx Loop	: 2
Date	: Nov 14, 1992	File name	: RN921.PEM

Data Scaled by Factor of 1.00

Z COMPONENT dBz/dt nanoTesla/sec - 20 channels

Scale: 1:1250

Unit Scale: 1cm = 2000 n



Tx loop 2 are present when the hole was relogged with Tx loop 3 but with significant differences.

A weak 4 or 5-channel off-hole response at 110 m correlates with the broad anomaly at 140 m with loop 2. This feature occurs at a limestone-dark banded phyllite contact.

A relatively weak anomaly at 180 m with Tx loop 2 becomes a strong 20-channel off-hole anomaly with Tx loop 3. This indicates that the conductor responsible for the response lies somewhere under Tx loop 3 rather than Tx loop 2. Distance of the conductor from RN-92-1 is minimal and the response indicates a dip toward the bottom of the hole.

The weak feature in RN-92-1 with Tx loop 2 at 205 m is not present with Tx loop 3 to indicate this weak conductor underlies Tx loop 2 only.

The anomaly between 210 m and 235 m in hole RN-92-1 with Tx loop 2 is also evident in a similar way with Tx loop 3. This feature is a complex in-hole response. Its presence here suggests that this conductor extends considerably to the south of RN-92-1.

#### Hole RN-92-2

Hole RN-92-2 could not be logged because the strong flow of water from it prevented the logging probe from going down the hole.

- 5 -

#### EXPLORATION LTD CRONE GEOPHYSICS & SCOTT GEOPHYSICS LTD BOREHOLE PEM

Client	: OREQUEST	Figure 5a	Hole	:	RN-92-1
Grid	: RAIN		Tx Loop	:	3
Date	: Nov 15, 1992		File name	:	RN921S.PEM

Data Scaled by Factor of 1.00 Z COMPONENT dBz/dt nanoTesla/sec - 20 channels Scale: 1:1250 +10³ +102 -10³ -10² -10 +10 **<**R() 150 28m 25m 30m 35a 48m 45m 50m 55a 60a 19 65a 70m 75ø 80a 85m 90m 95ta off 100m Hole 105m 110m 1150 120m 125m 130m 135m 140m 145m 156a 155**u** 160m 165m 179a 175m off 180m Hole 185m 190e 195m 200a 205m 210m 215m 228m In Hole 225m 239a 235# 24Øø 245m 250m ╶<del>╺┠╺┠╶┠╶┠╶┨╶┨╶┨╶┨╶┨╺┨</del>┯╌┨ 255m 260m 265m 270m 275m 2800 285m 290m 295m

L 300m

Client	:	OREQUEST	Figure 5b	Hole	:	RN-92-1
Grid	:	RAIN		Tx Loop	:	3
Date	:	Nov 15, 1992		File name	:	RN921S.PEM

Data Scaled by Factor of 1.00 Z COMPONENT dBz/dt nanoTesla/sec - 20 channels Unit Scale: Scale: 1:1250 Unit Scale: 1cm = 50 n



This was an unfortunate situation because this hole intersected 7 separate sulphide zones.

#### Hole RN-92-3 (Tx Loop 3)

The main anomaly on hole RN-92-3 consists of a broad positive with a sharp negative peak at 60 m. This is a classic response of an in-hole anomaly at the centre of a conductor. This anomaly correlates with a semi-massive sulphide/garnet zone intersected by the hole.

There is a weak response at 40 m that is obscured by the plotting method that correlates with another semi-massive sulphide/garnet zone. The weakness of this response shows the zone to be small.

There is a weak 8-channel anomaly at about 67 m which correlates with another semi-massive sulphide zone. A subtle 'offhole' response is evident at 90 m. This anomaly comes in after channel 12 being obscured on earlier channels by adjacent features. Nothing in the hole adequately explains this feature although it occurs near the contact between limestone and dark banded phyllite.

#### Hole RN-92-3 (Tx Loop 2)

Hole RN-92-3 was also logged with Tx loop 2 located to the north. These results are the mirror image of the results with Tx loop 3. This behaviour is consistent with the opposite direction

- 6 -

Client	: OREQUEST	Figure 6a Hole	:	RN-92-3
Grid	: RAIN	Tx Loop	:	3
Date	: Nov 15, 1992	File name	:	RN923C.PEM



#### CRONE GEOPHYSICS & E.PL_RA_IC D 1 LTD SCOTT GEOPHYSICS BOREHOLE PEM

Client	: OREQUEST	Figure 6b	Hole Tx Loop	: RN : 3	-92-3
Date	: Nov 15, 1992		File name	: RN	923C.PEM



Scale: 1:1250





Client	: OREQUEST	Figure 7a Hole	:	RN-92-3
Grid	: RAIN	Tx Loop	:	2
Date	: Nov 15, 1992	File name	:	RN923.PEM

Data Scaled by Factor of 1.00 Z COMPONENT dBz/dt nanoTesla/sec - 20 channels





Client	: OREQUEST	Figure 7b Hole	:	RN-92-3
Grid	: RAIN	Тх Loop	:	2
Date	: Nov 15, 1992	File name	:	RN923.PEM

Data Scaled by Factor of 1.00 Z COMPONENT dBz/dt nanoTesla/sec - 20 channels Scale: 1:1250 Unit Scale: 1cm = 2000 n



of the primary field outside loop 2 but is significant because it means the conductors in and around RN-92-3 do not extend under Tx loop 2. The off-hole anomaly at 90 m detected with Tx loop 3 is also present with this Tx loop.

#### Hole RN-92-4 (Tx Loop 1)

The survey in hole RN-92-4 shows a 10-channel anomaly consisting of relative positive peak and a negative peak at 105 m. This feature occurs at the contact between dark banded phyllite and tan phyllite where 2-3% disseminated pyrite and pyrrhotite are reported. The modest amplitude and restricted size of this anomaly indicate a small weak conductor.

#### RN-92-5 (Tx Loop 4)

Two anomalies are present in hole RN-92-5; a 20-channel negative peak at 97 m and another 20-channel anomaly at 110 m that reverses sign from negative to positive at channel-14.

Both of these features indicate in-hole intercepts of restricted size with the hole being at the edge of the conductor at 92 m and closer to the middle of the conductor at 110 m. The conductors correlate with the two semi-massive sulphide intercepts in the hole.

- 7 -



.

Client	:	OREQUEST	Figure 8b	Hole	:	RN-92-4
Grid	:	RAIN		Tx Loop	:	1
Date	:	Nov 14, 1992		File name	:	RN924.PEM

Data Scaled by Factor of 1.00 Z COMPONENT dBz/dt nanoTesla/sec - 20 channels

Scale: 1:1250

The Carbon and the second s

Unit Scale: lcm = 2000 n

over series





Client	: OREQUEST	Figure 9b Hole	: RN-92-5
Grid	: RAIN	Tx Loop	: 4
Date	: Nov 15, 1992	File na	me : RN925.PEM

Data Scaled by Factor of 1.00 <u>z COMPONENT dBz/dt nanoTesla/sec - 20 channels</u> Scale: 1:1250 Unit Scale: 1cm = 2000 n



#### CONCLUSIONS AND RECOMMENDATIONS

All the holes on the Rain Property with the exception of RN-92-2 were successfully logged. Hole RN-92-2 was making so much water that the logging tool would not go down the hole. To log the hole, the probe would have to be pushed until the weight of the wire was sufficient to counteract the water flow. Failure to log RN-92-2 was disappointing because 7 favorable semi-massive sulphide/garnet zones were intersected in the hole.

Most of the anomalies recorded by the survey in the other holes can be adequately accounted for by the observed mineralization. One anomaly at 180 m in RN-92-1 creates a much larger response when logged with Tx loop 3 located to the south of the hole to suggest that the conductor extends in that direction to the south and increases significantly in conductivity. Since the conductors observed in hole 92-3 do not appear to extend under Tx loop 2, this conductor would appear to be a new feature not explained by the mineralization in hole 92-3. The off-hole anomaly at 90 m in hole 92-3 may be the off-hole expression of this conductor. Drilling to test this conductor under hole RN-92-3 is recommended.

The bore hole electromagnetic method is a powerful tool for detecting massive sulphides away from a drill hole. Depending on target size a 200 m radius of detection can be expected. In areas of restricted vehicle access like the Rain Property a new 3-axis

- 8 -

logging tool will assist in determining the direction to a conductor and eliminate the need for multiple transmitter loops required for single axis receiver coils.

.

#### CERTIFICATE of QUALIFICATIONS

I, J. L. LeBel, of 2684 Violet Street, North Vancouver, British Columbia hereby certify:

- I am a graduate of the Queens University (1971) and the University of Manitoba (1973) and hold a BSc. degree in geological engineering and a MSc. degree in geophysics.
- 2. I am a Professional Engineer registered with the Association of Professional Engineers of British Columbia, Vancouver, British Columbia.
- I have been employed in mining exploration with various companies since 1972.
- 4. The information contained in this report was obtained from on site supervision of the work and knowledge of the area from other Bethlehem projects.
- 5. I own no direct, indirect shares or securities of Bethlehem Resources Corp. and do not expect to receive any contingent interests in the Rain Property.
- 6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

DATED at Vancouver, British Columbia, this 7th day of December, 1992.

#### BIBLIOGRAPHY

.

CAVEY, G., RAVEN, W. 1992: Report of Diamond Drilling on Murder Creek Project Rain Property, Revelstoke Mining Division for Bethlehem Resources Corp., OreQuest Consultants Ltd.

APPENDIX I

.

.

SURVEY DATA

Client	OREQUEST	Hole	: RN-92-1
Grid	RAIN	Tx Loop	: 2
Date	Nov 14, 1992	File name	: RN921.PEM

## Data Scaled by Factor of 1.00

.

\$ .....

......

Station Cmp	Gains	ZTS	Delay	Stack	Ovid	Rdgt	PP	1	2	3	4	5	6	1	8	9	10	11	12
15m Z	4 N7 1	1525.5	90	512	PP	95	52690	13460	11700	10210	8691	7253	5940	4746	3708	2830	2155	1641	1259
20m Z	4 M7 3	1525.5	90	512	PP	94	43120	13230	11550	10080	8555	7141	5843	4655	3604	2728	2070	1562	1192
25m Z	4 87 1	L525.5	90	512	PP	93	38330	13090	11450	10010	8501	7079	5765	4582	3511	2659	1984	1492	1130
30m Z	4 17 1	1525.5	90	512	PP	92	35900	13030	11390	9984	8482	7053	5743	4533	3466	2587	1914	1423	1075
35m Z	4 1 7 1	1525.5	90	512	PP	91	34610	13010	11450	10020	8511	7072	5735	4509	3415	2529	1851	1360	1018
40m Z	4 17 1	1525.5	90	512	PP	90	33770	13130	11520	10110	8590	7131	5772	4515	3387	2480	1794	1300	965
45m Z	4 1 1	1525.5	90	512	PP	89	33330	13280	11730	10280	8756	7248	5835	4540	3378	2442	1743	1247	912
50m Z	4 N7 1	1525.5	90	512	PP	88	32930	13490	11980	10510	8968	7418	5957	4593	3387	2416	1698	1194	862
55 <b>m Z</b>	4 1.7 1	1525.5	90	512	PP	87	32640	13890	12350	10840	9253	7638	6113	4701	3433	2415	1669	1155	817
60m Z	4 17 1	1525.5	90	512	PP	86	32370	14270	12760	11250	9622	7946	6331	4835	3496	2426	1646	1117	775
65 <b>m</b> Z	4 17 1	1525.5	90	512	66	85	32140	14750	13300	11740	10080	8323	6629	5029	3606	2470	1540	1086	737
70m Z	4 1 7	1525.5	90	512	PP	84	31920	15410	13940	12400	10660	8810	7004	5284	3755	2524	1650	.1064	699
75 <b>m Z</b>	4 MT 1	1525.5	90	512	PP	83	31630	16080	14710	13160	11360	9404	7470	5617	3941	2619	1676	1052	669
80m Z	4 117 1	1525.5	90	512	PP	82	31390	16860	15570	14060	12210	10140	8046	<del>6</del> 023	4202	2749	1718	1048	641
85m Z	4 87 1	1525.5	90	512	PP	81	31100	17600	16500	15060	13190	11010	8755	6539	4521	2919	1787	1057	619
90m Z	4 11 1	1525.5	90	512	PP	80	30740	18310	17470	16200	14340	12070	9629	7180	4935	3145	1883	1079	603
95 <b>n</b> Z	2 1 7 1	L525.5	90	512	<b>PP</b>	79	30210	18720	18290	17270	15570	13240	10610	7917	5416	3408	2002	1112	589
100m Z	2 M7 1	1525.5	90	512	PP	78	29970	18730	18900	18370	16930	14650	11870	8879	6050	3776	2179	1172	586
105m Z	4 1 7	1525.5	90	512	PP	77	29470	17380	18400	18690	17840	15840	13020	9814	6697	4156	2368	1238	587
110m Z	4 187 1	1525.5	90	512	PP	76	28760	18560	18570	18130	16840	14710	12030	9111	6308	3999	2345	1240	571
115m Z	2 N7 I	1525.5	90	512	PP	75	28510	20870	20410	19630	18000	15620	12730	9599	6612	4164	2388	1225	518
120m Z	2 M7 J	1525.5	90	512	PP	74	28480	22450	21950	21020	19190	16580	13440	10080	6885	4274	2394	1162	417
125m Z	2 N7 1	1525.5	90	512	PP	73	28330	23650	23040	21950	19890	17060	13740	10240	6956	4270	2338	1066	297
130m Z	2 17 1	1525.5	i 90	512	PP	72	28070	22910	22460	21250	19110	16240	12960	9627	6577	3976	2160	911	150
135m Z	3 A7 3	1525.5	i 90	512	PP	71	27680	22240	21260	19790	17550	14850	11870	8835	5989	3640	1903	717	-25
140m Z	3 NT 1	1525.5	i 90	512	PP	70	27060	21140	19890	18280	16120	13600	10880	8121	5510	3323	1678	537	-186
145m Z	3 AT 1	1525.5	i 90	512	PP	69	25960	20850	19370	17610	15400	12930	10340	7718	5231	3132	1528	406	-298
150m Z	3 M7 1	1525.5	90	512	PP	68	24250	20440	18910	17080	14880	12490	10030	7541	5166	3135	1553	430	-289
155m Z	3 k7 1	1525.5	90	512	PP	67	21340	19140	17770	16210	14250	12160	9997	7763	5569	3617	2031	853	55
160m Z	3 MT 1	1525.5	90	512	PP	66	17320	14970	14130	13220	12040	10720	9245	7605	5877	4220	2767	1581	716
165m Z	3 <u>k7</u> 1	1525.5	90	512	2P	65	11700	12790	12770	12640	12310	11710	10790	9544	8022	6379	4769	3307	2102
170m Z	4 M7 1	1525.5	i 90	512	PP	64	9210	9812	10010	10150	10190	9974	9442	8598	7434	<del>6099</del>	4703	3389	2276
175m Z	5 M7 1	1525.5	90	512	<u>99</u>	63	9957	4392	4469	4639	4809	4881	4765	4459	3953	3275	2538	1818	1202
180m Z	6 N7 I	1525.5	5 90	512	PP	62	9479	693	899	1199	1590	1857	2018	2035	1889	1638	1302	935	622
185m Z	6 A7 ]	1525.5	90	512	PP	61	8220	2666	2472	2432	2399	2364	2246	2048	1783	1453	1115	787	520
190m Z	5 17 1	1525.5	5 90	512	PP	60	6851	3627	3447	3159	2991	2711	2438	2112	1721	1350	994	702	474
195 <b>m Z</b>	5 A7 I	1525.5	5 90	512	PP	59	5491	3824	3592	3346	3062	2732	2367	1972	1564	1173	851	605	428
200m Z	5 N7 (	1525.5	5 90	512	PP	58	4148	3449	3296	3086	2793	2470	2101	1704	1315	969	693	488	349

LUVA U	- 111		***	••			· · · ·											
205m Z	6 A7 1525.5	90	512	PP	57	2548	1400	1088	740	378	63	-169	-297	-286	-181	-29	108	199
210m Z	7 17 1525.5	90	512	PP	56	1187	1229	1188	1080	920	733	553	396	283	218	184	162	145
212m Z	7 &7 1525.5	90	512	99	55	500	525	472	427	327	214	108	41	5	-4	7	21	33
215m %	6 M7 1525.5	90	512	PP	54	-765	-793	-868	-910	-948	-992	-993	-973	-907	-767	-634	-480	-360
217m Z	6 A7 1525.5	90	512	PP	53	-1296	-1464	-1498	-1505	-1536	-1540	-1559	-1572	-1528	-1452	-1314	-1128	-923
220m Z	7 #7 1525.5	90	512	PP	52	-493	-580	-595	-633	-664	-692	-726	-759	-781	-779	-760	-702	-609
222m Z	7 17 1525.5	90	512	PP	51	-418	-336	-315	-300	-276	-245	-211	-173	-137	-118	-143	-220	-339
225 <b>m</b> Z	7 N7 1525.5	90	512	PP	50	-641	-579	-542	-494	-447	-388	-335	-271	-221	-186	-174	-178	-181
227m Z	7 N7 1525.5	90	512	<b>P</b> P	49	-631	-568	-543	-490	-445	-388	-339	-287	-236	-196	-160	-145	-149
230m Z	7 17 1525.5	90	512	PP	48	-484	-434	-409	-385	-341	-300	-255	-214	-169	-134	-102	-90	-92
232m Z	7 17 1525.5	90	512	PP	47	-361	-320	-294	-278	-242	-215	-182	-152	-118	-90	-70	-53	-46
235m Z	7 17 1525.5	90	512	PP	46	-163	-143	-128	-122	-101	-85	-67	-48	-33	-17	-6	-5	1
240m Z	7 17 1525.5	90	512	PP	45	157	133	126	131	118	118	114	107	107	105	97	87	75
245m Z	7 M7 1525.5	90	512	PP	44	412	374	359	346	324	305	288	259	235	200	170	153	141
250m Z	7 &7 1525.5	90	512	PP	43	654	613	580	548	497	468	424	372	325	286	255	218	185
255m Z	7 17 1525.5	90	512	PP	42	844	793	753	709	661	<del>6</del> 03	542	483	423	367	311	258	232
260m Z	7 17 1525.5	90	512	<b>?</b> ?	41	1014	936	884	839	775	707	632	558	489	417	360	306	259
265 <b>n</b> Z	7 17 1525.5	90	512	PP	40	1162	1032	1003	943	877	790	700	613	526	457	403	348	297
270m Z	7 N7 1525.5	90	512	PP	39	1268	1161	1089	1017	942	865	779	698	611	527	430	361	323
275m Z	6 A7 1525.5	90	512	PP	38	1352	1255	1194	1128	1054	<del>9</del> 60	856	749	647	536	444	385	344
280m Z	6 A7 1525.5	90	512	PP	37	1444	1300	1258	1162	1079	975	871	761	661	568	481	411	349
285m Z	6 M7 1525.5	90	512	PP	36	1508	1377	1307	1234	1129	1032	921	807	688	583	493	419	357
290m Z	6 A7 1525.5	90	512	PP	35	1561	1426	1353	1272	1167	1057	932	813	698	596	510	432	361
295 <b>m</b> Z	6 A7 1525.5	90	512	PP	34	1604	1438	1372	1274	1181	1068	958	830	712	601	509	439	366
300m Z	6 A7 1525.5	90	512	PP	33	1618	1454	1395	1291	1194	1080	964	845	728	620	514	420	370

Client	:	OREQUEST	Hole	:	RN-92-1
Grid	:	RAIN	Тх Lоор	:	2
Date	:	Nov 14, 1992	File name	:	RN921.PEM

## Data Scaled by Factor of 1.00

Station Cmp	13	14	15	16	17	18	19	20
15m Z	969	748	577	438	333	252	188	135
20m Z	918	705	541	414	316	237	177	129
25m Z	865	665	509	391	298	226	168	122
30m Z	815	624	479	366	280	212	160	116
35m Z	769	588	447	345	262	198	150	110
40m Z	722	548	418	319	243	186	140	102
45m Z	677	509	386	293	224	171	129	95
50m Z	630	470	355	267	203	156	117	87
55m Z	589	433	321	243	184	141	106	79
60m Z	549	396	291	214	162	124	94	70
65m Z	507	359	256	188	141	106	81	61
70m %	469	321	222	158	116	87	67	51
75m 2	429	782	187	126	89	67	52	30
90m 7	105	242	140	03	63	46	25	20
90m 2	250	6 T 6 300	107	55	20	7V 11	10	49 15
0J11 2 00- 7	202	150	101	91 10	JU _2	22 5	10	10
	JZJ 805	130	03	10	-0	-3	-2	ر د
Yon Z	285	113	10	-28	-40	-35	-24	-12
100m Z	254	61	-38	-78	-83	-68	-47	-27
105m Z	218	10	-95	-135	-131	-104	-73	-44
110m Z	180	-43	-153	-189	-176	-141	-97	-60
115m Z	99	-130	-239	-264	-239	-185	-129	-78
120m Z	-12	-245	-348	-358	-312	-240	-165	-101
125m Z	-144	-373	-466	-456	-389	-295	-200	-122
130m Z	-290	-515	-582	-556	-463	-345	-233	-141
135m Z	-446	-657	-704	-649	-529	-389	-258	-155
140m Z	-599	-779	-806	-717	-573	-414	-271	-161
145m Z	-696	-859	-851	-742	-579	-411	-266	-154
150m %	-684	-837	-819	-702	-538	-374	-237	-135
155m Z	-408	-614	-649	-560	- 629	-296	-185	-100
150m 7	130	-199	_310	-314	-957	-179	-109	-51
166- 4 1008 2	1100	200	012 J13	J19 40	4J1 _91	_17 _17	-10	. JI
1030 L	1411	דגנ גענ	22J	40 171	-71	-21	-10 -10	2
1/UND 2	1411	111	282	1/2	/4	51	25	29
1/5m Z	/08	383	176	79	34	19	19	25
180m Z	364	Z16	109	55	36	26	24	29
185 <b>n</b> Z	327	188	114	66	44	36	34	32
190m Z	321	197	120	88	59	47	40	38
195m Z	284	189	133	95	70	52	43	37
200m Z	249	182	131	97	69	52	40	33

			-					
205m Z	219	202	162	122	85	60	41	30
210m Z	122	93	74	50	39	27	17	13
21 <b>2m Z</b>	23	14	7	3	6	5	4	6
215m Z	-287	-223	-181	-136	-90	-55	-27	-9
217m Z	-752	-628	-520	-395	-261	-145	~68	-22
220m Z	-544	-452	-369	-290	-210	-144	-90	-49
222m Z	-453	-510	-490	-429	-329	-240	-156	- 90
225m Z	-212	-247	-251	-240	-212	-166	-117	-71
227m Z	-157	-170	-183	-179	-161	-129	-92	-56
230m Z	-91	-96	-109	-113	-101	-84	-61	-34
232m Z	-53	-62	-73	-76	-72	-60	-42	-24
235m Z	-1	-17	-31	-32	-39	-29	-20	-1
240m Z	58	42	31	18	7	6	10	14
245m Z	113	92	72	56	40	37	30	31
250m Z	154	135	103	86	69	58	51	44
255m Z	201	158	135	111	93	75	62	53
260m Z	227	190	159	128	107	89	73	59
265m Z	247	209	176	145	120	99	81	66
270m Z	265	224	191	157	129	107	87	70
275m Z	281	241	198	165	139	110	90	74
280m Z	297	249	205	174	140	118	93	74
285 <b>m</b> Z	303	252	214	178	143	119	95	77
290m Z	303	259	215	181	146	119	96	76
295 <b>n</b> Z	311	256	221	181	147	120	95	76
300m Z	317	257	219	178	148	121	94	75

Client	:	OREQUEST	Hole	:	RN-92-1
Grid	:	RAIN	Tx Loop	:	3
Date	:	Nov 15, 1992	File name	:	RN921S.PEM

Station Cmp	Gains	ZTS	Delay	Stack	Ovld	Rdg		1	2	3	4	5	6	7	8	9	10	11	12
15m Z	5 N7 1	521.0	90	512	PP	124	-5281	420	264	151	18	-89	-180	-241	-310	-340	-361	-341	-305
20m Z	5 M7 1	521.0	90	512	PP	123	-5061	343	269	135	21	-97	-166	-237	-304	-340	-362	-343	-313
25m Z	5 A7 1	521.0	90	512	PP	122	-4828	353	238	131	24	-70	-150	-228	-302	-334	-361	-349	-318
30m Z	5 A7 1	521.0	90	512	PP	121	-4566	303	233	134	47	-42	-130	-222	-284	-332	-351	-349	-323
35m Z	5 A7 1	521.0	90	512	PP	120	-4300	298	245	150	60	-14	-109	-199	-269	-320	-344	-347	-322
40m Z	5 M7 1	521.0	90	512	PP	119	-4037	318	249	179	96	7	-83	-176	-243	-302	-336	-344	-323
45m Z	5 &7 1	521.0	90	512	PP	118	-3751	328	283	200	125	34	-48	-138	-224	-283	-329	-339	-320
50m Z	6 A7 1	521.0	90	512	PP	117	-3465	348	314	250	167	78	-10	-95	-194	-258	-311	-327	-317
55m Z	6 87 1	521.0	90	512	PP	116	-3167	368	347	296	225	128	38	-57	-154	-238	-290	-318	-311
60m Z	6 A7 1	521.0	90	512	PP	115	-2861	374	358	323	260	181	97	-11	-118	-202	-271	-302	-303
65m Z	6 A7 1	521.0	90	512	PP	114	-2554	398	401	366	315	240	149	43	-74	-167	-245	-287	-295
70m Z	6 A7 1	521.0	90	512	PP	113	-2238	398	428	408	370	300	210	101	-20	-130	-215	-268	-281
75 <b>n</b> Z	6 M7 1	521.0	90	512	PP	112	-1917	400	438	441	426	367	277	164	33	-83	-182	-245	-267
80m Z	7 17 1	521.0	90	512	PP	111	-1601	364	437	466	471	431	351	235	100	-33	-142	-217	-251
85m Z	7 87 1	521.0	90	512	PP	110	-1272	303	390	462	501	489	422	309	169	23	-100	-187	-229
90m Z	7 17 1	521.0	90	512	PP	109	-944	217	318	429	505	531	493	390	238	89	-51	-151	-204
95m Z	7 17 1	521.0	90	512	<b>PP</b>	108	-595	98	214	365	504	582	570	474	331	158	6	-108	-173
100m Z	7 17 1	521.0	90	512	PP	107	~250	11	117	282	487	615	653	581	430	250	75	-56	-137
105m Z	7 17 1	521.0	90	512	pp	106	82	43	137	294	525	711	783	725	568	365	166	9	-93
110m Z	6 A7 1	521.0	90	512	PP	105	393	838	974	1177	1403	1519	1481	1286	977	653	355	131	-14
115m Z	6 A7 1	521.0	90	512	PP	104	761	842	1044	1269	1469	1567	1515	1326	1029	706	411	184	34
120m Z	7 17 1	521.0	90	512	PP	103	1138	1088	1183	1299	1399	1448	1392	1231	981	698	434	220	73
125m Z	6 A7 1	521.0	90	512	PP	102	1481	1385	1373	1389	1415	1409	1338	1185	964	704	463	262	118
130m Z	6 A7 1	521.0	90	512	PP	101	1797	1637	1592	1557	1493	1436	1341	1194	965	733	490	303	165
135m Z	6 A7 1	521.0	90	512	55	100	2040	1482	1449	1427	1392	1338	1246	1099	907	697	500	329	198
140m Z	6 A7 1	521.0	90	512	PP	99	2210	1786	1684	1587	1474	1363	1231	1070	890	<del>69</del> 5	512	349	229
145m Z	6 A7 1	521.0	90	512	<b>P</b> P	98	2304	1960	1837	1693	1532	1375	1218	1047	872	696	528	375	254
150m Z	6 M7 1	521.0	90	512	PP	97	2212	1931	1826	1683	1515	1345	1178	1012	846	685	533	394	266
155m Z	6 A7 1	521.0	90	512	PP	96	1916	1654	1644	1559	1422	1267	1106	958	811	667	530	393	278
160m Z	7 NT 1	521.0	90	512	PP	95	1338	1151	1122	1067	994	914	837	760	679	588	485	382	301
165m Z	7 M7 1	521.0	90	512	<b>6</b> 8	94	491	721	709	705	676	649	624	609	580	546	494	430	343
170m Z	7 17 1	521.0	90	512	PP	93	518	306	286	298	312	340	373	386	402	398	378	336	279
175m Z	7 N7 1	521.0	90	512	<b>P</b> P	92	1256	-438	-377	-276	-153	-46	35	96	142	167	172	157	131
180m Z	6 A7 1	521.0	90	512	PP	91	1616	-785	-693	-574	-407	-283	-178	-89	-30	4	22	38	39
185m Z	7 17 1	.521.0	90	512	PP	90	1394	-263	-307	-260	-190	-125	-69	-18	16	35	47	48	38
190m Z	7 <b>N</b> 7 1	.521.0	90	512	₽P	89	1151	92	5	-7	-12	5	26	48	45	57	49	50	51
195m Z	7 87 1	521.0	90	512	PP	88	951	260	186	135	101	82	68	65	66	66	64	55	40
200m Z	7 A7 1	521.0	90	512	PP	87	768	406	316	249	180	137	104	82	67	62	58	54	46
•		•••													• •				

								~ • •					~1	с. СО	~ C (		<b>л</b>	10
205m Z	7 AF 1521.0	90	512	PP	36	460	523	493	319	281	191	129	103	60	94	22	61	55
210m Z	7 A7 1521.0	90	512	PP	85	399	375	358	311	256	200	154	118	91	76	64	57	52
212m Z	7 A7 1521.0	90	512	PP	84	370	321	299	265	227	189	151	122	101	84	69	54	48
215m Z	7 A7 1521.0	90	512	PP	83	419	377	357	355	313	285	228	196	160	127	103	78	52
217m Z	7 A7 1521.0	90	512	PP	82	276	335	356	353	368	370	367	363	349	328	296	254	203
220m Z	7 A7 1521.0	90	512	PP	81	118	61	84	91	112	117	98	102	106	89	80	65	54
222m Z	7 N7 1521.0	90	512	PP	80	25	24	18	14	1	-13	-31	-46	-60	-75	-82	-86	-86
225m Z	7 A7 1521.0	90	512	PP	79	-6	-30	-23	-13	-14	-7	-2	6	6	8	8	7	4
227m Z	7 A7 1521.0	90	512	PP	78	3	14	23	19	17	9	9	10	15	21	22	18	18
230m Z	7 M7 1521.0	90	512	PP	11	11	-13	-25	-3	-4	3	12	12	16	17	22	31	26
232m Z	7 17 1521.0	<del>9</del> 0	512	PP	76	15	10	6	16	16	19	23	20	21	19	23	30	38
235m Z	7 A7 1521.0	90	512	PP	75	20	5	19	16	25	24	32	28	29	27	26	38	42
240m Z	7 MT 1521.0	90	512	PP	74	49	26	16	28	26	33	34	36	32	33	37	43	41
245m Z	7 M7 1521.0	90	512	PP	73	65	30	45	44	49	42	44	46	45	48	47	44	44
250m Z	7 N7 1521.0	90	512	25	72	92	83	61	68	57	55	51	48	51	47	51	52	51
255m Z	7 AT 1521.0	90	512	PP	71	108	87	76	79	71	64	63	50	51	53	57	59	52
260m Z	7 N7 1521.0	90	512	PP	70	107	99	79	85	75	78	73	71	64	54	49	57	59
265m Z	7 A7 1521.0	90	512	PP	69	123	89	81	76	72	74	61	60	60	65	68	63	55
270m Z	7 N7 1521.0	90	512	PP	68	130	98	90	89	85	73	63	65	54	59	63	68	58
275m Z	7 M7 1521.0	90	512	PP	67	134	103	104	83	85	79	76	72	62	61	62	61	62
280 <b>n</b> Z	7 A7 1521.0	90	512	25	66	143	117	120	97	97	91	79	78	73	70	61	60	65
285m Z	7 17 1521.0	90	512	PP	65	138	121	105	100	92	88	82	75	72	68	67	69	59
290m Z	7 A7 1521.0	90	512	PP	64	150	141	118	123	102	98	85	81	73	66	64	67	67
295 <b>n</b> Z	7 A7 1521.0	90	512	PP	63	155	133	118	113	102	92	85	74	69	65	61	70	66
300m Z	7 N7 1521.0	90	512	PP	62	147	125	102	99	90	89	78	11	72	71	70	62	61

Client	:	OREQUEST	Hole	:	RN-92-1
Grid	:	RAIN	Tx Loop	:	3
Date	:	Nov 15, 1992	File name	:	RN921S.PEM

205m Z	56	50	41	<u>3</u> 4	30	21	16	9	
210m Z	42	35	31	27	23	20	15	10	
212m Z	39	29	25	23	21	20	15	10	
215m Z	35	17	11	9	11	15	14	11	
217m Z	142	80	37	15	8	14	15	12	
220m Z	41	26	17	14	14	13	14	9	
222m Z	-93	-79	-60	-39	-20	-8	-2	-1	
225m Z	7	4	5	5	5	5	4	1	
227m Z	22	14	17	15	10	9	6	2	
230m 2	25	32	24	21	17	14	10	6	
232m Z	28	33	26	24	19	16	11	7	
235m Z	35	34	30	29	23	19	13	9	
240m Z	35	42	35	32	27	21	17	12	
245m Z	44	43	38	35	28	24	18	14	
250m Z	49	43	43	37	32	24	19	15	
255m Z	49	46	45	39	34	26	21	16	
260m Z	53	52	45	40	34	28	22	16	
265m Z	54	54	47	41	35	28	23	17	
270m Z	53	56	48	42	35	29	22	17	
275 <b>m</b> Z	56	54	51	42	37	30	24	17	
280m Z	60	50	55	41	37	32	24	18	
285m Z	61	56	51	41	40	31	24	19	
290m Z	55	57	51	44	40	32	25	18	
295m Z	56	57	48	45	38	32	24	19	
300m Z	61	52	54	46	39	30	26	19	

Client	:	OREQUEST	Hole	:	RN-92-3
Grid	:	RAIN	Tx Loop	:	2
Date	:	Nov 15, 1992	File name	:	RN923.PEM

## Data Scaled by Factor of 1.00

Station Cmp	Gains	ITS	Delay	Stack	Ovld	Rdg	PP	1	2	3	4	5	6	1	8	9	10	11	12	
10m Z	2 M I	L <b>4</b> 98.5	90	512	PP	30	-43520	-36280	-34750	-32950	-30450	-27230	-23440	-19160	-14670	-10490	-6991	-4404	-2737	
15m Z	2 M7 1	1498.5	90	512	PP	29	-40750	-24350	-22430	-20410	-18130	-15740	-13370	-11040	-8825	-6861	-5223	-3923	-2935	
20m Z	4 87 1	1498.5	90	512	<b>PP</b>	28	-36680	-18070	-16640	-15300	-13840	-12380	-10960	-9566	-8200	-6926	-5758	-4697	-3734	
25m Z	4 17 1	1498.5	90	512	PP	27	-31890	-16430	-15500	-14610	-13660	-12650	-11620	-10530	-9381	-8219	-7057	-5902	-4777	
30m Z	4 17 1	1498.5	90	512	PP	26	-26450	-15630	-15180	-14730	-14160	-13500	-12730	-11850	-10840	-9718	-8516	-7242	-5943	
35m Z	3 17 1	1498.5	90	512	PP	25	-20460	-14140	-14260	-14310	-14270	-14070	-13680	-13090	-12260	-11240	-10030	-8676	-7221	
40m Z	3 A7 I	1498.5	90	512	PP	24	-13690	-17200	-16360	-15610	-14970	-14680	-14620	-14520	-14140	-13350	-12160	-10650	-8958	
45m Z	3 17 1	1498.5	90	512	PP	23	-9257	-14500	-15450	-16170	-16720	-16990	-17010	-16710	-16030	-14950	-13520	-11780	-9857	
50m Z	3 NT 1	1498.5	90	512	PP	22	-5788	-14260	-15200	-15820	-16050	-15990	-15740	-15300	-14650	-13810	-12770	-11490	-9974	
55 <b>m</b> Z	3 N7 1	1498.5	90	512	PP	21	-1927	-12860	-13180	-13290	-13160	-12900	-12590	-12270	-11940	-11610	-11230	-10690	-9884	
57m Z	3 N7 I	1498.5	90	512	PP	20	-418	-12130	-12500	-12310	-11820	-11280	-10790	-10420	-10200	-10120	-10110	-10030	-9663	
60 <b>m</b> Z	3 M7 1	1498.5	90	512	PP	19	-4701	-4089	-2464	-7	2899	5035	5508	4032	881	-3012	-6613	-9118	-10120	
62m Z	3 N7 I	1498.5	90	512	PP	18	353	-1605	-2447	-3423	-4529	-5473	-6176	-6673	-7112	-7656	-8334	-8974	-9290	
65m I	3 17 1	1498.5	90	512	PP	17	1452	-626	-994	-1410	-2050	-3073	-4538	-6261	-7921	-9157	-9821	-9913	-9481	
67 <b>m</b> Z	3 M7 I	1498.5	90	512	PP	16	1972	41	-254	-684	-1514	-2821	-4497	-6296	-7895	-9009	-9553	-9566	-9081	
70m Z	3 NT 1	1498.5	90	512	PP	15	2005	-58	-529	-1345	-2588	-4175	-5837	-7364	-8545	-9224	-9409	-9155	-8519	
75 <b>m I</b>	4 17 1	1498.5	90	512	PP	14	-389	-2364	-3048	-3808	-4695	-5511	-6160	-6639	-6936	-7068	-7047	-6862	-6450	
80m Z	4 1/7 1	1498.5	90	512	PP	13	-1323	-4324	-5209	-5994	-6687	-7115	-7251	-7160	-6899	-6554	-6185	-5805	-5343	
85m Z	4 87 1	1498.5	90	512	PP	12	-3332	-6120	-6482	-6551	-6431	-6142	-5773	-5359	-4936	-4570	-4296	-4096	-3872	
90m Z	4 17 ]	1498.5	90	512	PP	11	-6007	-8356	-8367	-7974	-7418	-6763	-5867	-4743	-3585	-2711	-2300	-2261	-2371	
95m Z	5 N7 1	L498.5	90	512	PP	10	-4403	-4634	-4662	-4659	-4610	-4437	-4091	-3600	-3033	-2554	-2279	-2212	-2230	
100m Z	5 M J	1498.5	90	512	PP	9	-1076	-1336	-1437	-1531	-1627	-1674	-1684	-1674	-1669	-1723	-1859	-2062	-2220	
105m Z	5 N7 1	1498.5	90	512	<b>P</b> P	8	1019	934	922	802	687	600	489	359	117	-260	-764	-1334	-1811	
110m Z	5 17 1	1498.5	90	512	PP	1	1297	1306	1352	1340	1376	1263	1140	900	526	68	-420	-921	-1456	
115m Z	5 M7 3	1498.5	90	512	<b>PP</b>	6	1606	2122	2249	2350	2423	2529	2448	2247	1749	1005	167	-541	-989	
120 <b>m</b> Z	5 147 1	1498.5	90	512	PP	5	2162	2854	2907	3118	3187	3210	3065	2797	2278	1572	727	-152	-695	
125m Z	5 M 1	1498.5	90	512	25	4	2435	2755	2891	3066	3057	2927	2772	2443	1970	1273	594	65	-392	
130m Z	5 M7 J	1498.5	90	512	PP	3	2695	2649	2817	2794	2807	2626	2411	2152	1815	1427	937	381	-67	
135 <b>n</b> Z	5 A7 1	1498.5	90	512	PP	2	2747	2758	3186	2831	2868	2757	2557	2427	2056	1669	1126	660	404	
140m Z	5 17 1	1498.5	90	512	PP	1	3509	3701	3546	3515	3419	3348	3188	3002	2733	2357	1871	1450	1020	

.

1

Client	:	OREQUEST	Hole	:	RN-92-3
Grid	:	RAIN	Tx Loop	:	2
Date	:	Nov 15, 1992	File name	:	RN923.PEM

Station Cmp	13	14	15	16	17	18	19	20
÷								
10 <b>m</b> Z	-1767	-1182	-752	-400	-139	24	99	116
15m Z	-2165	-1534	-997	-557	-234	-30	69	101
20m Z	-2852	-2051	-1351	-782	-365	-100	37	88
25m Z	-3692	-2678	-1784	-1055	-521	-179	4	76
30m Z	-4643	-3404	-2296	-1380	-702	-267	-30	66
35m Z	-5721	-4247	-2893	-1761	-914	-361	-64	60
40m Z	-7153	-5346	-3663	-2235	-1158	-463	-92	61
45m Z	-7823	-5795	-3917	-2339	-1171	-435	-57	89
50m Z	-8215	-6298	-4379	-2665	-1339	-483	-45	115
55m Z	-8680	-7071	-5187	-3299	-1721	-650	-86	124
57m Z	-8838	-7462	-5635	-3666	-1943	-746	-109	130
60m Z	-9601	-7843	-5389	-2931	-1056	10	414	446
62 <b>n</b> Z	-8985	-7867	-6031	-3871	-1934	-610	55	261
65m Z	-8530	-7070	-5232	-3300	-1639	-510	63	245
67 <b>n</b> %	-8118	-6693	-4942	-3137	-1593	-538	13	201
70m %	-7491	-6093	-4470	-2838	-1466	-522	-18	168
75m 2	-5745	-4746	-3515	-2271	-1205	-453	-36	133
90m 7	-4719	-3973	-7960	-1956	-027	-170	_10	197
95m 4	-2610	-2061	-1115	1010	-761	_172	14	127
90788 5 00m 7	-JJIZ	-2304	-1610	-199J	-101	-213	13	120
3VIII 6 05- 4	-1160	-1010	-1404	-1041	-001	-16)	50	172
338 6 100- F	-2100	1710	1694	-700	-013	-101	00	143
105m #	-2230	-2020	-1044	-11//	-039	-201	-41 _117	11
T TCAT	-2005	-1909	-1041	-1188	-141	-221	-111	24
11011 2	-1/68	-1602	-1405	-1022	-635	-321	-94	28
115m Z	-1349	-1427	-1189	-919	-593	-321	-107	2
120m Z	-988	-1062	-999	-783	-522	-287	-110	-12
125m Z	-727	-754	-824	-595	-462	-252	-117	-16
130m Z	-310	-503	-563	-488	-369	-234	-102	-36
135m Z	97	-244	-307	-419	-313	-207	-130	-39
140m Z	577	145	-111	-272	-313	-233	-154	-63

Client	:	OREQUEST	Hole	:	RN-92-3
Grid	:	RAIN	Tx Loop	:	3
Date	:	Nov 15, 1992	File name	:	RN923C.PEM

Stat	ion Cmp	Gains	ZTS	Delay	Stack	0vld	Rdgt	PP	1	2	3	4	5	6	7	8	9	10	11	12	
	10m Z	1 17 1	1498.5	90	512	PP	60	93660	69150	64730	60730	55540	49190	41910	33860	25520	17920	11750	7435	4913	
	15m Z	1 87 1	1498.5	90	512	PP	59	87960	48990	44410	40060	35210	30180	25270	20520	16070	12290	9306	7139	5679	
	20 <b>m</b> Z	3 N7 1	1498.5	90	512	PP	58	80470	36120	32120	28900	25510	22280	19270	16490	13940	11740	9887	8337	7039	
	25m Z	3 87 1	1498.5	90	512	PP	57	71970	31390	28620	26330	23970	21710	19550	17470	15470	13580	11840	10210	8697	
	30m Z	3 M7 1	1498.5	90	512	PP	56	62390	28740	26890	25430	23940	22410	20860	19250	17550	15800	14040	12260	10490	
	35m Z	3 NT 1	498.5	90	512	<u>pp</u>	55	52180	24780	24020	23520	23020	22370	21560	20540	19270	17770	16080	14230	12290	
	40m Z	3 17 1	498.5	90	512	PP	54	40750	29050	26530	24580	23150	22330	21930	21590	20990	19980	18500	16630	14490	
	45m Z	2 N7 1	498.5	90	512	PP	53	32730	28900	26490	25110	24310	23930	23680	23350	22710	21610	20010	17990	15700	
	50m Z	3 A7 1	498.5	90	512	PP	52	24840	17360	15330	14610	14870	15880	17160	18310	18960	18950	18330	17230	15740	
	55m Z	3 17 1	498.5	90	512	PP	51	17270	12920	12350	12400	12820	13530	14350	15110	15680	15970	15990	15760	15200	
	57 <b>m</b> Z	3 A7 1	498.5	90	512	PP	50	13760	14340	13710	13540	13510	13640	13840	14060	14260	14440	14620	14770	14720	
	60 <b>m</b> Z	3 A7 1	498.5	90	512	PP	49	10470	14080	13150	11130	8375	5954	4607	4620	6029	8498	11460	14280	16220	
	62m Z	3 AT 1	498.5	90	512	<b>PP</b>	48	5867	9061	9997	11180	12590	13870	14720	15030	14900	14720	14810	15220	15690	
	65 <b>n</b> Z	3 A7 1	.498.5	90	512	PP	47	4934	7771	8163	8661	9337	10190	11230	12340	13420	14360	15090	15560	15620	
	67m Z	3 A7 1	498.5	90	512	PP	46	4389	7163	7422	1756	8314	9211	10430	11840	13240	14410	15230	15610	15470	
	70 <b>m</b> Z	3 A7 1	498.5	90	512	PP	45	4544	7474	7938	8574	9490	10570	11720	12840	13810	14540	14970	15050	14690	
	75m Z	3 A7 1	.498.5	90	512	PP	44	7719	10460	10920	11340	11790	12160	12440	12620	12720	12750	12700	12510	12080	
	80m Z	3 A7 1	498.5	90	512	<u>P</u> P	43	7600	11090	11540	11910	12230	12450	12580	12600	12510	12330	12030	11620	11010	
	85m Z	3 17 1	498.5	90	512	PP	42	8412	11430	11690	11880	12070	12170	12180	12060	11790	11360	10820	10220	9554	
	YOR Z	4 87 1	498.5	90	512	PP	41	8915	12230	12290	12170	12080	12020	11860	11510	10930	10220	9442	8713	8033	
	9590 Z	4 87 1	498.5	90	512	PP	40	6491	8172	8419	8593	8875	9082	9217	9228	9076	8778	8359	7878	7358	
1	NUME Z	4 8/ 1	498.5	90	512	22	39	3209	4535	4699	4966	5239	3533	1886	5155	6461 4850	1699	6757	6778	6701 FR64	
1	10- g	4 6/ 1	498.5	90	51Z	22 22	38	1005	2092	2542	23/6	2/01	5045	5455	3873	4350	4809	51/9	5476	5/64	
1	1011 2 15	4 87 1	C, 62P.	90	517	rr pp	31	321	1010	1909	1810	2013	2331	204/	50.52	5449	3900	4514	1041	4934	
1	1381 & 10	4 8/ 1	400.5	90 00	512	17 10	30	144	1017	1204	1170	1/14	1930	2201	2470	2110	3031	3445	3808	4243	
1	208 6 15. 4	1 A / 1	470.0 400 E	7U 00	517	rr m	24	-10	040	939 010	1110	1174	1023	1001	2009	2234	2931	20/1	3333	2000	
1	2011 6 2011 6	* 6/ 1	400 E	7V 0.0	517	rr DD	34 22	-23	090 696	013	300	11/5	1040	1000	1409	1243	1700	2403	2030	J124 1670	
1	3050. U	- 1 A/ 1	100 E	3V 00	J12 514	רר מט	JJ 20	-03	520	034	020	505	10/1	1285	1400	10/1	1400	2043 1710	2333	20/0	
1	JJ11 4	4 AI 1	C.0CF.	7V 00	217	11 DD	32 21	-82	23/	319	342	534 211	103	648	995	1158	1402	1/12	2025	2271	
1	1010 2	3 M/ 1	438.2	90	215	25	31	-29	101	242	328	411	455	PT3	192	486	1257	1400	1/16	1930	

:

Client	:	OREQUEST	Hole	:	RN-92-3
Grid	:	RAIN	Tx Loop	:	3
Date	:	Nov 15, 1992	File name	:	RN923C.PEM

Station Cmp	13	14	15	16	17	18	19	20
*********								
10m Z	3664	3029	2529	2011	1501	1069	733	484
15m Z	4670	3866	3119	2407	1768	1241	843	553
20m Z	5892	4823	3810	2888	2091	1453	973	630
25m Z	7259	5889	4607	3454	2473	1699	1123	717
30m Z	876]	7090	5524	4113	2919	1981	1291	812
35m Z	10320	8374	6520	4837	3408	2286	1469	911
40m %	12240	9961	7758	5731	4000	2646	1673	1021
45m 2	13290	10840	8431	6196	4797	2807	1759	1064
50m 7	13890	11710	9101	6947	4911	3124	1927	1147
55m 8	14190	12550	10300	7075	5543	3224	2175	1259
57m 5	14910	10000	10000	9500	5001	2051	2210	1220
J!R 6	16710	15510	19950	0503	5301	2012	2313	1000
00ML & 61- F	10/20	13310	12000	3301	0233	J01J	2101	1200
028 G	12020	19/20	11000	3141 0010	0123	42VJ	2991 4170	1963
60ML &	10030	10120	11000	0713	0293	2242	2310	1331
0/11 Z	140/0	10120	10320	044 <i>!</i>	3749 22749	3849	2328	1340
/010 2	15/50	17210	10150	1833	0000	0666	2255	1323
75m Z	11260	10010	8402	1869	4787	3242	2065	1254
80m. Z	10130	8943	7493	5903	4353	3003	1949	1206
85 <b>n</b> Z	8733	7685	6477	5152	3857	2712	1802	1141
90m Z	7331	6523	5559	4508	3443	2480	1688	1098
95 <b>m Z</b>	6785	6103	5275	4336	3363	2458	1695	1116
100m Z	6448	6004	5344	4488	3540	2618	1811	1186
105 <b>m Z</b>	5896	5584	5189	4456	3567	2683	1874	1235
110m Z	5052	4967	4604	4046	3303	2511	1796	1210
115m Z	4415	4381	4187	3713	3094	2425	1740	1189
120m Z	3733	3915	3663	3500	2847	2232	1698	1150
125m Z	3330	3447	3316	3028	2646	2142	1603	1114
130m Z	2870	3036	3009	2862	2480	2011	1553	1084
135 <b>m Z</b>	2530	2750	2804	2712	2424	1988	1507	1088
140m Z	2410	2601	2834	2745	2470	2026	1528	1059

Client	:	OREQUEST	Hole	:	RN-92-4
Grid	:	RAIN	Tx Loop	:	1
Date	:	Nov 14, 1992	File name	:	RN924.PEM

Station Cmp	Gains	27S	Delay	Stack	Ovld	Rdgt	PP	1	2	3	4	5	6	7	8	9	10	11	12
15m Z	3 11 1	1525.5	90	512	PP	32	80800	29390	9369	-3291	-9833	-10650	-8799	-6245	-3927	-2278	-1245	-687	-410
20m Z	4 M7 ]	L525.5	90	512	<b>PP</b>	31	61320	1993	-2394	-4488	-5189	-4895	-4181	-3304	-2412	-1681	-1111	-732	-488
25m Z	<b>4 N7</b> 1	1525.5	90	512	PP	30	50720	-13480	-12440	-10920	-9066	-7271	-5610	-4133	-2901	-1947	-1265	-818	-541
30m Z	4 17 1	L525.5	90	512	PP	29	44590	-15550	-13590	-11510	-9346	-7361	-5639	-4133	-2912	-1963	-1290	-838	-563
35m. Z	<b>4 1</b> 7 1	1525.5	90	512	PP	28	40750	-12710	-11220	-9485	-7703	-6118	-4731	-3531	-2546	-1765	-1202	-814	-558
40m Z	5 N7 1	1525.5	90	512	PP	27	38060	-8724	-7863	-6746	-5538	-4475	-3552	-2760	-2067	-1501	-1069	-758	-539
45m Z	6 A7 1	1525.5	90	512	PP	26	35940	-4808	-4563	-4035	-3420	-2886	-2418	-1985	-1591	-1233	-936	-694	-511
50m Z	7 N7 1	1525.5	90	512	<b>P</b> P	25	34190	-1472	-1707	-1684	-1587	-1501	-1422	-1308	-1173	-992	-804	-630	-477
55m Z	6 M7 1	1525.5	90	512	PP	24	32500	1353	675	304	-30	-331	-573	-735	-807	-778	-683	-560	-436
60m Z	5 A7 I	1525.5	90	512	PP	23	31030	3545	2630	1929	1257	644	121	-268	-497	-600	-576	-499	-399
65m Z	5 M7 ]	1525.5	90	512	PP	22	29560	5362	4198	3264	2309	1433	704	132	-257	-441	-487	-445	-361
70m Z	5 A7 I	1525.5	90	512	<b>PP</b>	21	28190	6860	5532	4394	3201	2105	1184	454	-51	-319	-412	-395	-327
75m Z	5 <b>N</b> 7 1	1525.5	90	512	PP	20	26890	8170	6688	5375	3954	2678	1578	716	115	-224	-356	-357	-300
80m Z	3 N7 1	1525.5	90	512	PP	19	25600	9303	7716	6218	4617	3150	1903	919	234	-158	-313	-330	-278
85m Z	3 M7 1	1525.5	90	512	PP	18	24340	10220	8574	6931	5183	3549	2159	1070	311	-120	-293	-313	-264
90m Z	3 M7 J	525.5	90	512	<b>PP</b>	17	23200	10970	9242	7512	5623	3851	2337	1155	335	-121	-299	-316	-261
95m Z	3 17 1	1525.5	90	512	PP	16	22100	11410	9620	7888	5929	4072	2461	1191	316	-159	-332	-335	-271
100m Z	3 17 1	525.5	90	512	<u>66</u>	15	21120	13080	11380	9582	7511	5391	3444	1814	641	-16	-287	-325	-267
105m Z	3 M7 1	525.5	90	512	PP	14	19930	12160	9935	7734	5501	3523	1940	779	53	-291	-380	-340	-259
110m Z	3 17 1	.525.5	90	512	PP	13	18940	12700	10760	8724	6481	4413	2686	1360	463	-31	-226	-257	-213
115m Z	3 M7 1	525.5	90	512	PP	12	17940	12280	10510	8615	6509	4534	2859	1542	615	82	-157	-216	-191
120m Z	3 NT 1	525.5	90	512	PP	11	17010	11760	10120	8312	6358	4495	2897	1624	704	155	-104	-181	-169
125m Z	3 M7 1	525.5	90	512	PP	10	16170	11220	9692	8023	6167	4411	2896	1668	768	217	-56	-150	-150
130m Z	3 87 1	525.5	90	512	PP	9	15350	10730	9254	1121	5981	4324	2881	1701	827	275	-8	-116	-129
135m Z	4 17 1	525.5	90	512	PP	8	14540	10250	8863	7431	5788	4222	2856	1721	873	326	36	-84	-108
140m Z	4 N7 1	525.5	90	512	<b>PP</b>	1	13800	9783	8492	7138	5599	4125	2823	1742	917	375	81	-49	-85
145m Z	4 87 1	525.5	90	51Z	PP	6	13090	9316	8124	6876	5415	4026	2792	1753	956	423	123	-17	-63
150m Z	4 17 1	525.5	90	512	<b>PP</b>	5	12440	8933	7775	6616	5241	3937	2764	1764	994	470	165	17	-37
155m Z	4 17 1	525.5	90	512	PP	4	11800	8540	7460	6357	5069	3835	2718	1767	1021	510	204	48	-16
160 <b>m</b> Z	4 87 1	525.5	90	512	PP	3	11200	8146	7155	6115	<b>490</b> 1	3736	2672	1763	1047	546	240	78	7

ł

-----

÷

Client	: OREQUEST	Hole	:	RN-92-4
Grid	: RAIN	Тх Lоор	:	1
Date	: Nov 14, 1992	File name	:	RN924.PEM

							~~~~~	
Station Cmp	13	14	15	16	17	18	19	20

15 m Z	-275	-193	-135	-92	-59	-37	-23	-13
20m Z	-334	-235	-164	-111	-71	-46	-27	-16
25m Z	-367	-256	-179	-120	-79	-50	-31	-18
30m Z	-387	-272	-188	-127	-84	-52	-33	-20
35 n Z	-393	-277	-194	-131	-87	-55	-35	-20
40m 7	-386	-275	-195	-133	-88	-56	-35	-21
45m 7	-373	-270	-189	-131	-87	-57	-35	-22
50m 7	-355	_257	-191	-126	-95	-51	-15	-21
55011 2 5504 7	-170 -170	_940	-170	_110	-01 -01	ري 19_	_2J _2J	_10
	-201	-230	-150	-111	-00	-JZ	- 39	-20
	-302	-222	-133	-111	-10	-17	-00	-21
65m Z	-211	-203	-146	-103	-10	-46	-31	-19
70m Z	-252	-184	-132	-93	-64	-43	-28	-18
75m Z	-229	-169	-121	-85	-58	-40	-26	-17
80m Z	-213	-154	-110	-76	-54	-37	-25	-16
85m Z	-200	-143	-100	-70	-48	-33	-23	-15
90m.Z	-194	-136	-94	-65	-46	-32	-22	-14
95 m Z	-196	-134	-90	-62	-43	-29	-20	-14
100m Z	-194	-132	-88	-60	-42	-29	-20	-13
105m 2	-182	-121	-80	-55	-38	-26	-19	-12
110m 7	-156	-109	-72	-50	- 25	-25	-17	-12
110H 4	-147 -147	-06 -100	-13	-JV _AC	-JJ _22	-23	-17	-11
11JH 6 190- 7	-130	-70	-00	-40	-33	-11	-17	-11
125m 2	-132	-32	-04	-44	-32	-22	-17	-12
12382 2	-119	-86	-61	-42	-30	-22	-16	-11
130m Z	-107	-79	-57	-42	-30	-22	-15	-11
135m Z	-94	-71	-53	-39	-29	-21	-15	-11
140m Z	-79	-63	-48	-36	-28	-20	-14	-10
145m Z	-67	-56	-45	-33	-26	-20	-15	-11
150m Z	-51	-45	-38	-30	-24	-19	-14	-10
155m Z	-36	-37	-33	-27	-23	-18	-14	-10
160m Z	-23	-28	-27	-23	-20	-16	-14	-9

Client	:	OREQUEST	Hole	:	RN-92-5
Grid	:	RAIN	Tx Loop	:	4
Date	:	Nov 15, 1992	File name	:	RN925.PEM

Station Cr	φ (Sains	ZTS	Delay	Stack	Ovld	Rdg	PP	1	2	3	4	5	6	7	8	9	10	11	12	
20m Z	Ę	5 M 7 J	521.0	90	512	PP	153	146600	1320	1860	2803	3662	4074	4076	3759	3152	2348	1624	1033	664	
25 m Z	3	8 A7 1	.521.0	90	512	P P	152	135600	31790	28030	24910	21800	18670	15680	12690	9727	7000	4728	2944	1815	
30m Z	1	2 1 1	521.0	90	512	PP	151	124100	51360	45860	40640	35170	29800	24730	19810	15080	10840	7348	4698	2831	
35m Z]	. 1.7]	521.0	90	512	PP	150	110800	65560	58210	51770	44610	37800	31330	25080	19100	13780	9376	6030	3736	
40m Z]	N7 1	521.0	90	512	PP	149	101100	73850	65190	57770	49720	42120	34950	28010	21370	15430	10550	6842	4294	
45m Z]	N7 1	521.0	90	512	PP	148	91050	74380	67510	61120	53520	46070	38790	31570	24510	18040	12540	8261	5238	
50m Z]	N7 1	.521.0	90	512	PP	147	81560	74530	68990	62990	56130	48940	41750	34450	27110	20240	14270	9510	6081	
55 m Z]	. A 7 1	521.0	90	512	PP	146	72740	65170	61250	57020	51750	46090	40080	33700	27040	20570	14780	10040	6548	
60m Z]	A7 1	521.0	90	512	PP	145	64680	60950	57710	54290	49810	44960	39600	33650	27270	20980	15270	10530	6969	
65 n Z	1	. 17 1	521.0	90	512	P P	144	57520	55390	53430	50950	47620	43470	38560	32900	26740	20640	15130	10540	7081	
70m Z]	N7]	521.0	90	512	PP	143	50840	50890	50070	48730	46470	43070	38540	33030	26860	20760	15270	10710	7275	
75m Z	2	A7 1	521.0	90	512	P P	142	43700	44780	44400	43810	42480	40110	36550	31840	26350	20720	15520	11120	7691	
80m Z	2	N7 1	521.0	90	512	PP	141	37210	39070	38970	38650	37680	35860	33050	29260	24720	19930	15310	11240	7958	
85m Z	2	A7 1	521.0	90	512	PP	140	32310	34280	34260	34010	33290	31870	29660	26620	22870	18780	14710	11000	7922	
90m Z	2	1 17 1	521.0	90	512	PP	139	29200	31140	31040	30860	30310	29280	27590	25140	21940	18240	14400	10780	7723	
92 m Z	2	17 1	521.0	90	512	P P	138	30330	32020	31850	31560	30960	29880	28120	25510	22040	18020	13880	10070	6971	
95 m Z	2	1 M 1	521.0	90	512	PP	137	31780	33140	33030	32840	32360	31210	29080	25760	21350	16460	11780	7903	5143	
97n Z	(X7 1	521.0	90	512	P 2	136	23420	25690	25750	25760	25660	25290	24420	22840	20430	17350	13920	10570	7697	
100m Z	4	N7 1	521.0	90	512	PP	135	17830	20310	20430	20590	20710	20720	20450	19710	18330	16300	13810	11120	8591	
102 m Z	3	N7 1	521.0	90	512	PP	134	15230	17660	17870	17980	18190	18300	18210	17800	16840	15320	13300	11010	8722	
105m Z	3	A7 1	521.0	90	512	P ?	133	11820	13970	14090	14230	14380	14480	14510	14330	13840	12950	11670	10090	8376	
107m Z	4	N 7 1	521.0	90	512	25	132	8412	10060	10190	10310	10420	10510	10540	10490	10270	9812	9069	8102	7053	
110m Z	4	M 1	521.0	90	512	PP	131	4222	5170	5275	5376	5461	5510	5529	5527	5536	5567	5617	5678	5723	
112m Z	4	N7 1	521.0	90	512	PP	130	6587	8313	8479	8665	8865	9058	9238	9427	9624	9744	9657	9238	8452	
115m Z	3	A7]	.521.0	90	512	PP	129	5941	7811	7984	8230	8509	8825	9165	9520	9866	10100	10060	9605	8682	
117m Z	4	M7 1	521.0	90	512	PP	128	5504	7289	7486	7681	7962	8251	8571	8940	9303	9563	9553	9128	8257	
120 m Z	4	M7 1	521.0	90	512	PP	127	5301	6849	6982	7170	7377	7564	7762	7970	8204	8391	8400	8074	7341	
122m Z	4	A7 1	521.0	90	512	PP	126	4173	5645	5758	5956	6158	6423	6697	7022	7385	7707	7832	7606	7009	
125m Z	4	N7 1	521.0	90	512	PP	125	3310	4690	4798	4991	5220	5486	5811	6162	6593	6987	7215	7090	6582	

2.

.....

÷

ł

Client	:	OREQUEST	Hole	:	RN-92-5
Grid	:	RAIN	Tx Loop	:	4
Date	:	Nov 15, 1992	File name	:	RN925.PEM

Station Cmp	13	14	15	16	17	18	19	20
20m Z	489	427	412	395	358	296	233	169
25 m Z	1149	797	619	515	431	343	260	187
30n Z	1751	1148	824	636	501	390	289	203
35n 7	2306	1486	1029	766	586	440	320	222
40m 7	2687	1740	1197	876	657	488	353	241
45m 7	3280	210£	1425	1018	747	546	200	264
50m 9	3030	2104	1640	1166	121	510	120	203
JUH 6 55m v	J02V 4100	4333 970F	1010	1133	09V 09C	4V3 ((7	127	201
JOIN L	4100	2103	10//	1213	920	00/	506 500	311
bum z	4009	2958	2005	1415	1018	731	800	536
65m Z	4672	3107	2139	1522	1099	789	547	361
70 m Z	4857	3283	2284	1643	1190	856	592	386
75 m Z	5223	3572	2505	1802	1308	936	644	418
80m Z	5514	3831	2713	1965	1425	1016	698	449
85m Z	5585	3928	2812	2047	1496	1065	726	465
90m Z	5396	3763	2689	1963	1435	1026	697	442
92m Z	4718	3225	2297	1688	1256	9 10	622	396
95m Z	3442	2509	1966	1571	1214	885	599	372
97m Z	5475	3921	2875	2135	1568	1110	737	453
100m Z	6421	4761	3537	2614	1897	1315	860	515
102m 7	6700	5069	3815	2839	2056	1423	913	542
105m 7	6727	5385	4225	3286	2437	1698	1085	629
107m 2	6062	5214	4505	3823	3075	2263	1477	844
130m 7	5691	5546	5000	4616	3765	2760	1797	1013
11941 û 11944 V	JUJI 7201	JJ70 6167	J222 4017	2747	J10J	1004	1111	2011
112 0 6 115- #	1971	0101	9321	3141 3400	2033	1004	1111	020
11578 2	/4/1	6003	4621	3400	2584	1008	301	331
117 n Z	7035	5693	4378	3232	2269	1511	944	549
120m Z	6314	5158	4012	3004	2149	1461	932	558
122m Z	6094	4988	3930	2945	2128	1463	944	569
125m Z	5769	4777	3772	2864	2082	1445	944	573

APPENDIX II

.

STATEMENT OF COSTS

STATEMENT OF COSTS

Work Done: Bore Hole Electromagnetic Survey

Claim: Deer 3

•

NTS: 82M 18E

Mining Division: Revelstoke

Work Period: November 12 - December 31, 1992

Costs:

\$10,306.43
706.27
684.80
15.26
1,564.55
\$13,276.31