GEOPHYSICAL REPORT ON THE KECHIKA PROPERTY RAR 1 AND 4 CLAIMS N.T.S. 94L/11, 12 & 13 LIARD MINING DIVISION by D.G.F. Leighton, P.Geo., F.G.A.C. December 15, 1992

SUB-RECORDER RECEIVED				
JAN 21 1993				
M.R. #\$				

LOG NO:	FEB 0 1 1993	RD.
ACTION.		
Ĺ		
FILE NO:		

B R A N C H R E P O R T

0 G I C A L S S M E N T

GEOL Asse

GEOPHYSICAL REPORT ON THE

KECHIKA PROPERTY

RAR 1 AND 4 CLAIMS

N.T.S. 94L/11, 12 & 13

Lat. 58°43'00", Long. 127°31'00"

KECHIKA RIVER - TERMINUS MOUNTAIN AREA

LIARD MINING DIVISION

NORTHERN BRITISH COLUMBIA

FORMOSA RESOURCES CORPORATION

FORMOSA RESOURCES CORPORATION

D.G.F. Leighton, P.Geo., F.G.A.C.

December 15, 1992

Owners: Golden Rule Resources Ltd. Andrew G. Harmon Garth E. Johnson Operator: Formosa Resources Corporation 22,746

CONTENTS

Summary	1
Introduction	1
Property	2
Location, Access and Physiography	2
Claims	2
History	2
Geology	3
Regional Geology	3
Property Geology	3
Mineralization	6
Geophysical Survey	6
Procedure	7
Results	7
Conclusions	8
References	9
Cost Statement	10
Certificate	11

ILLUSTRATIONS

Figure	1.	Location Map		2
Figure	2.	Claims Map		4
Figure	3.	Radiometric Survey	Results	pocket

APPENDICES

Appendix I Radiometric Survey Data

KECHIKA PROPERTY

SUMMARY

The Kechika project involves yttrium and rare earth element exploration on the RAR and REE claims in the Liard Mining Division of north central British Columbia.

The property consists of 7 claims (129 units) owned by A. Harman, G. Johnson and Golden Rule Resources Ltd. Formosa Resources Corporation, as operator, has been managing exploration programs on these claims since 1988.

The property is located in the Kechika Ranges of the Cassiar Mountains, west of the Rocky Mountain Trench and 150 km southeast of Watson Lake. Access is by helicopter.

The property covers a complex suite of alkaline igneous rocks hosted by Middle Paleozoic carbonates, tuffs and sandstones. This sedimentary and igneous rock package is exposed in a fault slice within Lower Paleozoic phyllites.

In 1988, high grade yttrium mineralization was found on the RAR 7 claim. A 1989 program delineated the main mineralized zone ("Ridge Zone") and a number of lesser targets. The Ridge Zone covers about 200 x 50 metres and encompasses numerous pods of high-grade mineralization.

The 1992 program described in this report comprised a grid controlled radiometric survey over part of the RAR 1 & 4 claims.

INTRODUCTION

In 1988 Formosa Resources Corporation entered into an option agreement with prospectors Andy Harman and Garth Johnson and Golden Rule Resources Ltd. respecting their Kechika property, an yttrium-rare earth prospect located in north central B.C. As operator, Formosa carried out exploration programs during the 1988 through 1990 field seasons.

In August, 1992, this program was continued by the writer using a helicopter on a part-time basis and working from an old campsite on the RAR 5 claim. The objective was systematic evaluation of an area largely neglected previously -- the RAR 4 claim (where radioactive boulders had been found earlier) -- by conducting a grid controlled radiometric survey. The region covered comprised 2.46 km² and involved 17.1 line kilometres, an area of very thick "buck brush".

R WR. MINERAL GRAPHICS LTD.

PROPERTY

Location, Access and Physiography

The Kechika property is at 58⁰43' N and 127⁰31' W. Elevations range from 1180 to 2373 metres, mostly above tree line; the area described in this report straddles "Camp Creek" at about 1500 metres ASL. Exposure is almost nonexistent here.

Access is by air from Dease Lake, 160 kilometres to the west, or from Watson Lake, Yukon, 150 kilometres north of the property. The nearest airstrip is at Terminus Mountain in the Rocky Mountain Trench, 20 kilometres to the east. Small float planes can land on Colt Lake, eight kilometres east of the main showings. From staging points, the property is accessed by helicopter.

Claims

CLAIM NAME	UNITS	RECORD NO.	EXPIRY DATE*
RAR 1	20	3363	Aug. 06, 1995
RAR 4	20	3366	Aug. 06, 1995
RAR 7	20	3690	Oct. 28, 1998
REE 2	15	3924	Mar. 09, 1993
REE 7	18	3928	Mar. 09, 1993
REE 8	20	3929	Mar. 09, 1993
RAR 5	16	3367	Aug. 06, 1995

The Kechika property (now) consists of seven contiguous claims as follows:

The claims are registered in the name of Golden Rule Resources Ltd., a Calgary, Alberta company.

HISTORY

During the late 1950's, government geologists noted fluorite and copper showings on what are now the RAR mineral claims. In 1968 rare earth mineralization was discovered on the property by Andy Harman and Barry Watson. Claims were staked in 1985 and 1987 by Harman and agents for Golden Rule Resources Ltd.

In 1986, Golden Rule Resources Ltd. carried out a mapping and stream sediment sampling program. Then, in 1988, the B.C. Ministry of Energy, Mines and Petroleum Resources examined the alkaline igneous rocks and fluorine geochemistry of the area and Formosa completed a program that included sampling of known REErich zones and re-mapping of areas of interest

^{*} Upon acceptance of this report.

A 1989-90 program, involving radiometric surveys and trenching, delineated a mineralized zone ("Ridge Zone") and a number of minor mineralized areas.

GEOLOGY

Regional Geology

The Kechika Property claims cover part of a 35 to 40 kilometre wide belt underlain by Precambrian and Cambrian to Middle Paleozoic rock. This belt is bounded to the north and east by the Burnt Rose and Northern Rocky Mountain Trench strike-slip fault systems and to the south and west by the Kechika Fault.

Southwest of the Burnt Rose Fault, a broad open antiform with a northwest trending axis exposes Precambrian rocks correlative with the Ingenika Group and quartzites of lower Cambrian age that belong to the Atan Group. Along the southwestern limb of the antiform, the quartzites are in contact with a thick section of phyllites, marbles and blocky weathering dolostones of probable Middle and Upper Cambrian and Ordovician age assigned to the Kechika Group. Chlorite, sericite, sericite-graphite and calcareous phyllites are all present within this succession.

A fault bounded panel containing tuffs overlain by dolostones, limestones, and quartzites, is present within the Kechika Group phyllites. This sequence is probably of Mid-Paleozoic age and can thus be correlated with the Sandpile Group. The cherts, tuffs and limestones in the fault panel outline an overturned antiform. The alkaline rocks are present in the tuff-chertcarbonate-sandstone thrust panel and in a small klippe northeast of the north end of the belt.

Property Geology

The Kechika property is underlain by alkaline igneous rocks hosted by mid-Paleozoic carbonates, sandstones and tuffs correlative with the Sandpile Group. These are exposed in a fault slice, with lower Paleozoic phyllites of the Kechika formation present on either side of the bounding faults.

The Cambro-Ordovician Kechika Group consists predominantly of phyllites, calcareous phyllites and marbles. The phyllites and calcareous phyllites are mainly silver and grey to pinkish-buff weathering, extremely fissile and have one to two centimetre thick buff to light grey marble interlayers. Locally, buff to grey marbles and phyllitic marbles predominate. Some layers of light green weathering, chloritic phyllite and grey weathering graphitic phyllite are also present. One to two metre thick orange to rusty weathering dolostone beds are also found locally. Rocks correlative with the Ordovician and Silurian Sandpile Group are present within the fault bounded slice on the property. At the south end of the property thinly laminated tuff and cherty tuffs, which locally contain thin marble interbeds, are found. Near the top of this section, white to grey crystalline limestone beds become increasingly abundant; the highest part of this section consists of massive carbonates.

In the center of the property, thick-bedded dolostones with chert nodules, thin chert layers and rare intraformational conglomerate beds are exposed above the northeast bounding fault. The tuff package at the south end of the property projects beneath this dolostone package. The thick-bedded dolostones are overlain by dolostones, sandy dolostones and subordinate thin white micaceous Fossiliferous limestones overlie the dolostones. quartzites. Some horizons have dark grey and white laminations of algal Grey argillaceous limestones or thick-bedded buff origin. weathering dolostones with thin fossiliferous layers overlie the main macrofossil zone and are in turn overlain by grey and buff medium-bedded to laminated dolostones. Black siltstones, argillites and black guartzose siltstones overlie the dolostones and are locally interbedded with the carbonates and with phyllitic rocks of igneous protolith. The carbonate package is 400 metres thick.

At the north end of the property the grey fossiliferous limestone horizon is overlain by interbedded buff dolostones and white and pink quartzites.

The Ordovician to Silurian Sandpile Group on the property outlines a large northwest-plunging antiform. Sandpile strata are in fault contact to the northeast and southwest with Cambro-Ordovician Kechika Group rocks. The northeast bounding fault is shallowly dipping to the southwest and apparently has had normal movement along it, as younger strata are present in the hangingwall. The southwest bounding fault is moderately to steeply southwest dipping and also appears to be a thrust placing older rocks over younger rocks. North to northeast transverse faults are present.

Alkaline igneous rocks occur in four main areas of the property. In the south, dark green intrusive mafic syenites with good igneous textures predominate. These syenites contain some leucocratic zones and are brecciated along their margins. Peripheral to the main intrusive body, numerous small sills, dykes and metasomatic alteration zones are present.

A complex diatreme containing a number of breccia phases, related tuffs and breccia dykes crops out near the centre of the belt of alkaline igneous rocks. These rocks weather greenish silver to rusty orange and are weakly to well foliated. The main diatreme is exposed in Camp Creek at 1560 metres elevation. The diatreme breccia pipe contains xenoliths of sedimentary and igneous rock and rare chrome spinel xenocrysts, in a pale green carbonate-rich tuffisitic matrix. Quartzite and carbonate rock fragments dominate the xenolith population; some autoliths, rare syenite fragments and some black argillite clasts are also present. The breccia matrix consists of carbonate minerals, potassium feldspars, minor muscovite and locally, chrome micas.

Tuffs outcrop on ridges near the centre of the property immediately north of the main diatreme and south of Boreal Lake. These pyroclastics are rusty orange to silver-green weathering with a pale green fresh surface, very similar in appearance to some of the dykes. They are conformable with the host carbonate succession and are interbedded with agglomerates and trachytes.

At the north end of the property, a thick sequence of alkaline igneous rocks is exposed. It consists mainly of a complex sequence of pale green to orange to buff weathering agglomerates and tuffs, buff and grey aplite layers, white weathering quartzfeldspar-carbonate-sericite rocks and sedimentary interlayers.

To the northeast of the property, alkaline rocks are exposed in a klippe. Dark green mafic syenites are present at the base of the exposed sequence and are structurally overlain by feldspar porphyritic, biotite and/or sericite-rich fine-grained syenites.

A large area underlain by conformable igneous rocks, including the main mineralized Ridge Zone, is present immediately northwest of the diatreme. It consists of a complex, southwest dipping homoclinal sequence of sheared igneous rocks.

The base of the sequence is composed of pale green to pale orange weathering, variably calcareous rocks that locally contain rare chrome spinels. These rocks are interlayered with a minor grey aplitic trachyte and buff weathering, fine to coarse breccias interlayered with fine-grained laminated beds. Graded layers are present locally. The coarse breccias and the bases of the graded beds consist of lithic fragments 1-3 cm across in welded tuff containing flattened pumice and altered crystals. Fine-grained carbonate-rich material is present at the top of the graded beds. This part of the section is interpreted as comprising a series of fine-grained locally calcareous tuffs, crystal and lapilli welded tuffs, with some interlayered sedimentary material and sills.

This sequence is overlain by white to buff and pinkish weathering rocks containing varying amounts of quartz, feldspar, apatite, carbonate and sericite. Yttrium mineralization occurs within this white weathering horizon related to phosphate-rich areas. This unit is generally strongly lineated and displays a mylonitic fabric. These rocks are interpreted as trachytic or syenitic tuffs or flows with a minor sedimentary component.

Near the top of this sequence, dark green mafic syenites that grade from medium-grained igneous textured rocks to foliated chlorite schists near their margins are present. The mafic syenites are intrusive into the white weathering quartz-feldsparapatite-carbonate-sericite sequence and are now present as megaboudin.

These rocks are overlain by breccia. To the north, this breccia consists of predominantly clasts in a very fine-grained buff to light grey, pumice fragment-rich matrix. To the south, the breccia is rusty weathering and contains subrounded fragments in a carbonate-rich matrix. In both areas the breccia is heterolithic, containing sedimentary and igneous rock fragments; notably absent within the fragment suite are mafic syenites. Fluorite and pyrite are common accessory minerals in the breccias, disseminated within the matrix and replacing fragments. In places, a buff-weathering, aplitic feldspar porphyritic trachyte structurally overlies the breccias, and clasts of this trachyte are present within the breccias. The trachytes are interpreted as having been flows or sills; the breccias are volcanic tuff breccias with a matrix that varies laterally from lapilli tuff to fine-grained calcareous tuff.

This sequence is overlain by a second buff to white weathering feldspathic unit. It is similar to the mineralized whiteweathering quartz-feldspar-carbonate-sericite-apatite unit; however, it does not contain as much sericite, carbonate or apatite and is more massive than the lower unit. To the north, this unit is in fault contact with Lower Paleozoic phyllites; at the south, it interfingers with black siltstones and is overlain by a pale to medium green weathering medium-grained igneous flows or sills of uncertain affiliation.

MINERALIZATION

Yttrium mineralization occurs within white weathering feldsparquartz-carbonate-sericite mylonites, in carbonatites, and to a lesser extent in some syenites and trachytic dykes. In general, heavy rare earths are associated with the yttrium mineralization. There is a clear correlation between yttrium mineralization and radioactivity.

GEOPHYSICAL SURVEY

Exposures are almost nonexistent in the lower (elevation) parts of the RAR 1 & 4 claims, however, early prospecting had indicated the occurrence of radioactive boulders with anomalous rare-earth values. It was determined therefore that a radiometric survey might be an economical method of searching for the bedrock source of this material.

Procedure

A grid was established over the region thought to be a potential source area for mineralized boulders. The location selected is in Camp Creek valley bottom. For control, a baseline was established running northwest along the side of Camp Creek. A short tie line was put in designed to provide additional control. Lines run in a northeast direction at 200m intervals starting from Colt Lake valley (see figure 3A). The grid was cut out and "chained" using a Topofil to survey in stations which were marked with flagging at 25 metre intervals. Scintillometer readings were taken at 25 metre intervals. The area involved is covered by thick buck brush.

The survey instrument employed was a Series II Saphymo-Stel SPP2NF scintillometer (Serial No. 2892). Readings were recorded in a surveyor's field book and subsequently transferred to an electronic data base for computer analysis.

Results

Results are provided in Appendix I. Data has been contoured at 10 counts-per-second intervals to facilitate interpretation using a GEOSOFT INC. (1992) universal contouring program (figure 3B in pocket). On this map the central "low" corresponds to an area underlain by mid-Paleozoic dolomites and limestone. The "high" at the east ends of lines 0+00 through 12+00 north reflect a band of mafic syenites. Intermediate values which form a subparallel belt near the baseline represent Cambrian phyllites.

CONCLUSIONS AND RECOMMENDATIONS

The Kechika property contains potentially economic concentrations of yttrium and rare earth elements. The main showing, located on the RAR 7 claim, is referred to as the Ridge Zone (Pell, 1988).

The survey work completed on the RAR 4 (and RAR 1) claim did not target any new potential source areas of economic rare-earth mineralization and no further work is recommended on these particular mineral claims. The so called "Fluorite Shears" found on the RAR 4 claim that have been discribed by Fox (1987) are located "off grid" and are no longer considered to be a viable exploration target.

REFERENCES

Fox, Michael (1987)
Geological and Geochemical Report on the RAR 1-9, REE 1-8,
and REO 1 and 2 mineral claims; Assessment Report dated
January, 1987 (Revised - May, 1987).

Leughton, D.G. & Culbert, R.R. (1989) Geological Report on the Kechika Property; RAR 1-9, REE 1-8, and REO 1-2 Claims dated March 9, 1989.

Pell, Jennifer (1988)

The Kechika Yttrium and Rare-Earth Prospect; B.C Ministry of Energy Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1988-1.

Pell, Jennifer (1990)

Geological and Trenching Report on the Kechika Property; RAR 1,4,6,& 8 and REE 1,2,7,&8 Claims dated December 15, 1990.

COST STATEMENT

STATEMENT OF COSTS (1992 Kechika Work Program)

Wages and Professional Fees D. G. Leighton - August 1 to August 30* 30/days @ \$300/day	\$9,000
Truck Rental (4X4) Fifteen days @ \$40/daymo	600
Helicopter Charter	4,000
Instrument Rental (SPP2NF scintillometer) One month @ \$400/mo	400
Meals and accommodation 30 man days @ \$30/man/day	900
Contract Engineering Charge 15% of Fees	1,350
SURVEY TOTAL	<u>\$16,250</u>

* Including travel between property from Vancouver

- 11 -

CERTIFICATE

CERTIFICATE OF QUALIFICATION

I, Douglas G.F. Leighton, do hereby certify that:

- 1. I am a Consulting Geologist with offices at 3806 254th Street, Aldergrove, B.C., VOX 1A0.
- I am a graduate of the University of British Columbia, B.Sc., (1968).
- 3. I am a Fellow in the Geological Association of Canada.
- 4. I am a registered Professional Geoscientist of the Province of British Columbia.
- 5. I have practiced my profession as a Geologist since 1968.
- 6. I personally conducted the exploration program on the Kechika property described in this report for Formosa Resources Corporation.
- 7. I have not received, nor do I expect to receive, any interest, direct or indirect, in the Kechika Property, or in the securities of Formosa Resources Corporation of Golden Rule Resources Ltd.
- 8. I hereby consent to the publication of this report for purposes of a Prospectus or Statement of Material Facts.

Dated at Vancouver, British Columbia, this 15th day of December, 1992

Douglas G.F. Leighton, P.Geo FaetishA SCIEN

APPENDIX I

Kechika Property Geophysical Data (1992 Work Program)

	EAST	<u>NORTH</u>	CPS	BAST	<u>NORTH</u>	CPS
		1		775	200	100
LINE	•	10	1 3 5	775	200	100
	25	0	135	735	200	100
	20	0	140	720	200	105
	50	0	140	675	200	105
	100	0	135	650	200	105
	125	0	140	625	200	110
	150	0	135	600	200	115
	175	0	125	575	200	135
	200	0	145	550	200	100
	225	0	135	525	200	100
	250	0	135	500	200	120
	275	0	135	475	200	130
	300	0	140	450	200	135
	325	0	140	425	200	155
	350	0	125	400	200	135
	375	0	125	375	200	140
	400	0	175	350	200	170
	425	0	140	325	200	165
	450	0	140	300	200	140
	475	0	135	275	200	140
	500	0	125	250	200	135
	525	0	120	225	200	135
	550	0	100	200	200	145
	575	0	105	175	200	135
	600	0	135	150	200	145
	625	0	110	125	200	135
	650	0	110	100	200	135
	675	0	100	75	200	140
	700	0	110	50	200	155
	725	0	105	25	200	135
	750	0	115	0	200	135
	775	0	115	LINE	3N	
	800	0	125	0	400	140
	825	0	135	25	400	140
	850	0	100	50	400	135
	875	0	145	75	400	140
	900	0	160	100	400	135
	925	0	200	125	400	135
	950	0	175	150	400	135
	975	0	135	175	400	140
	1000	0	175	200	400	140
LINE		2N		225	400	140
	1000	200	180	250	400	140
	975	200	205	275	400	125
	950	200	165	300	400	165
	925	200	165	325	400	165
	900	200	165	350	400	135
	875	200	140	375	400	130
	850	200	140	400	400	135
	825	200	135	425	400	135
	800	200	105	450	400	135

<u>east</u>	NORTH	<u>CPS</u>	EAST	NORTH	CPS
476	400	100	275	600	140
4/3	400	100	275	600	140
500	400	125	200	600	135
525	400	105	225	600	135
550	400	105	200	600	135
575	400	140	150	600	135
625	400	135	125	600	140
650	400	110	100	600	140
675	400	95	75	600	135
700	400	105	50	600	140
725	400	110	25	600	145
750	400	110	0	600	165
775	400	135	LINE 5	5N	
800	400	135	0	800	135
825	400	160	25	800	140
850	400	110	50	800	130
875	400	160	75	800	145
900	400	180	100	800	145
925	400	200	125	800	135
950	400	150	150	800	140
975	400	180	175	800	160
1000	400	185	200	800	140
41	1		225	800	140
1000	600	135	250	800	110
975	600	135	275	800	110
950	600	210	. 300	800	110
925	600	185	325	800	105
900	600	185	350	800	115
875	600	135	375	800	100
850	600	105	400	800	100
825	600	105	425	800	100
800	600	105	450	800	105
775	600	100	475	800	100
750	600	110	500	800	100
725	600	100	525	800	110
700	600	100	550	800	105
675	600	100	575	800	105
650	600	95	600	800	105
625	600	90	625	800	110
600	600	100	650	800	100
575	600	105	675	800	105
550	600	65	700	800	105
525	600	110	725	800	110
500	600	100	750	800	100
475	600	100	775	800	125
450	600	105	800	800	105
425	600	110	825	800	100
400	600	105	850	800	170
375	600	105	875	800	190
350	600	110	900	800	175
325	600	125	925	800	210
300	600	125	950	800	210

	<u>BAST</u>	NORTH	CPS		<u>EAST</u>	NORTH	CPS
	075	000	165		175	1200	140
	975	800	105		200	1200	140
	1000	, 000	205		200	1200	100
LINE	1000	1000	225		225	1200	115
	075	1000	225		230	1200	100
	975	1000	190		300	1200	100
	950	1000	190		325	1200	115
	925	1000	230		350	1200	105
	900	1000	190		375	1200	105
	075	1000	195		400	1200	100
	000 005	1000	225		425	1200	100
	800	1000	165		450	1200	105
	775	1000	215		475	1200	100
	750	1000	180		500	1200	105
	725	1000	175		525	1200	100
	700	1000	180		550	1200	105
	675	1000	135	· · · · · · · · · · · · · · · · · · ·	575	1200	125
	650	1000	125		600	1200	115
	625	1000	120		625	1200	125
	600	1000	110		650	1200	105
	575	1000	100		675	1200	115
	550	1000	100		700	1200	115
	525	1000	105	•	725	1200	160
	500	1000	100		750	1200	175
	475	1000	105		775	1200	180
	450	1000	105		800	1200	200
	425	1000	105		825	1200	220
	400	1000	100		850	1200	175
	375	1000	100	·	875	1200	175
	350	1000	100		900	1200	210
	325	1000	115		925	1200	160
	300	1000	105		950	1200	235
	275	1000	100		975	1200	190
	250	1000	100		1000	1200	200
	225	1000	125	LINE	81	1	
	200	1000	100		500	1400	105
	175	1000	140		475	1400	100
	150	1000	155		450	1400	105
	125	1000	140		425	1400	100
	100	1000	140		400	1400	105
	75	1000	135		375	1400	105
	50	1000	135		350	1400	110
	25	1000	140		325	1400	95
	0	1000	135		300	1400	100
LINE	7 N	I			275	1400	100
	0	1200	155		250	1400	100
	25	1200	155		225	1400	110
	50	1200	140		200	1400	90
	75	1200	155		175	1400	100
	100	1200		· · ·	150	1400	100
	125	1200	130		125	1400	115
	150	1200	135		100	1400	140

	<u>East</u>	NORTH	CPS	EAST	<u>North</u>	CPS
	75	1400	140	75	2000	155
	50	1400	160	100	2000	140
	25	1400	135	125	2000	140
	0	1400	145	150	2000	105
LINE	9 N	Γ		175	2000	105
	0	1600	140	200	2000	110
	25	1600	135	225	2000	110
	50	1600	125	250	2000	110
	75	1600	140	275	2000	100
	100	1600	140	300	2000	100
	125	1600	145	325	2000	105
	150	1600	115	350	2000	100
	175	1600	135	375	2000	105
	200	1600	115	400	2000	100
	225	1600	95	425	2000	100
	250	1600	100	450	2000	105
	275	1600	100	475	2000	100
	300	1600	100	500	2000	100
	325	1600	105	LINE 12	2N	
	350	1600	105	500	2200	105
	375	1600	100	475	2200	105
	400	1600	100	450	2200	110
	425	1600	105	425	2200	100
	450	1600	110	400	2200	105
	475	1600		375	2200	105
	500	1600	105	350	2200	110
LINE	10	N		325	2200	105
	500	1800	105	300	2200	105
	475	1800	105	275	2200	
	450	1800	110	250	2200	95
	425	1800	100	225	2200	100
	400	1800	100	200	2200	105
	375	1800	105	175	2200	110
	350	1800	100	150	2200	105
	325	1800	105	125	2200	100
	300	1800	110	100	2200	110
	275	1800	135	75	2200	140
	250	1800	115	50	2200	135
	225	1800	95	25	2200	140
	200	1800	100	0	2200	135
	175	1800	105	LINE 13	IN	
	150	1800	115	0	2400	140
	125	1800	135	25	2400	135
	100	1800	140	50	2400	135
	75	1800	135	75	2400	135
	50	1800	140	100	2400	135
	25	1800	145	125	2400	105
	0	1800	140	150	2400	110
INE	11	N		175	2400	110
	0	2000	140	200	2400	100
	25	2000	145	225	2400	100
	50	2000	150	250	2400	105

	<u>EAST</u>	<u>NORTH</u>	CPS	<u>B</u>	AST	NORTH	<u>CPS</u>
	275	2400	105		275	2800	100
	300	2400	110		300	2800	100
	325	2400	110		325	2800	105
	350	2400	100		350	2800	115
	375	2400	100		375	2800	105
	400	2400	100		400	2800	100
	425	2400	100		425	2800	110
	450	2400	105		450	2800	100
	475	2400	115	•	475	2800	100
	500	2400	100		500	2800	105
LINE	1	14N			525	2800	110
	0	2600	140		550	2800	110
	25	2600	140		575	2800	105
	50	2600	145		600	2800	195
	75	2600	100	·	625	2800	95
	100	2600	110		650	2800	105
	125	2600	105		675	2800	105
	150	2600	105		700	2800	105
	175	2600	105	LINE		16N	
	200	2600	100		700	3000	105
	225	2600	110		675	3000	100
	250	2600	110		650	3000	115
	275	2600	105		625	3000	100
	300	2600	110		600	3000	100
	325	2600	115		575	3000	110
	350	2600	105		550	3000	105
	375	2600	110		525	3000	105
	400	2600	105		500	3000	105
	425	2600	100		475	3000	100
	450	2600	95		450	3000	95
	475	2600	105		425	3000	100
	500	2600	100		400	3000	105
	525	2600	105		375	3000	100
	550	2600	115		350	3000	100
	575	2600	100		325	3000	110
	600	2600	105		300	3000	110
	625	2600	105		275	3000	115
	650	2600	110		250	3000	125
	675	2600	95		225	3000	100
	700	2600	110		200	3000	100
LINE]	1 5 N			175	3000	100
	0	2800	140		150	3000	95
	25	2800	140		125	3000	95
	50	2800	125		100	3000	130
	75	2800	135		75	3000	135
	100	2800	135		50	3000	130
	125	2800	105		25	3000	135
	150	2800	105		0	3000	140
	175	2800	115	LINE		17N	
	200	2800	110		700	3200	110
	225	2800	95		675	3200	95
	250	2800	100		650	3200	115

-

<u>E.</u>	<u>Ast</u>	<u>North</u>	<u>CPS</u>		EA	ST	<u>NORTH</u>	CPS
					'		• • • • •	
	625	3200	105		· •	25	3400	105
	600	3200	120		6	50	3400	95
	575	3200	125		. t	100	3400	95
	550 505	3200	120		1	00	3400	105
	525	3200	115					
	200	3200	105					
	4/5	3200	100					
	400 495	3200	90					
	420	3200	100					
	400 375	3200	110					
	3750	3200	105					
	325	3200	105					
	300	3200	105					
	275	3200	105					
	250	3200	100					
	225	3200	120					
	200	3200	115					
·	175	3200	110					
	150	3200	115					
	125	3200	140					
	100	3200	135					
	75	3200	140					
	50	3200	140					
	25	3200	125					
	0	3200	135					
LINE	- 18N							
	0	3400	140					
	25	3400	140					
	50	3400	140					
	75	3400	115					
:	100	3400	125					
	125	3400	105					
	150	3400	105					
	175	3400	105					
:	200	3400	95					
:	225	3400	95	•				
:	250	3400	90					
:	275	3400	115					
:	300	3400	105					
:	325	3400	105					
	350	3400	95					
:	375	3400	100					
	400	3400	100					
4	425	3400	110					
4	450	3400	105					
	475	3400	95					
!	500	3400	95		4 · · · ·			
!	525	3400	100					
ļ	550	3400	110					
!	575	3400	110					
(500	3400	115					

.....