

Table of Contents

	Page
SUMMARY	1
INTRODUCTION	2
LEGAL DESCRIPTION OF THE PROPERTIES	2
LOCATION, ACCESS, AND PHYSIOGRAPHY	4
EXPLORATION HISTORY	4
REGIONAL GEOLOGY	6
EXPLORATION PROGRAMME	11 11
RESULTS	15 15
Geochemistry	16
Mineralisation	18 19
CONCLUSIONS AND RECOMMENDATIONS	20

List of Appendices

- Appendix I Geochemical Analyses
- Appendix II Rock Sample Description
- Appendix III Check Analyses for Au
- Appendix IV Drill Logs
- Appendix V Statement of Expenditures
- Appendix VI Statement of Qualifications

List of Figures

Following Page

		<u>a-</u>
Figure 1	Location Map	2
Figure 2	Location of Properties	2
Figure 3	Pilot Property Claim Map	2
Figure 4	Plan View and Cross Section of PLT-3	19

List of Tables

Page Table 1 List of Claims 3 Table 2 Summary Statistics of Geochemical Analyses 14

List of Maps

Map 1 Pilot Property, Walker Ridge Compilation, 1992

SUMMARY

Work performed on the Pilot property in 1992 consisted of detailed prospecting, lithogeochemistry, and diamond core drilling, concentrating on the Walker Ridge area. The presence of disseminated and fracture controlled Au-Cu mineralisation associated with pyrite, chalcopyrite and bornite in the granodiorite was confirmed.

The best intersections are

- 10m at 4 g/t Au, 0.12% Cu in surface chip samples
- 10.5m at 1 g/t Au, 0.16% Cu in drill core

Grab samples reached over 100 g/t Au and over 3% Cu in three locations.

Results to date show that the Pilot property has the potential to host bulk-tonnage porphyry-style Au-Cu mineralisation and further work is recommended.

This mineralisation has now been observed over an area of about 700m by 400m along the contact of the granodiorite with Bridge River cherts.

INTRODUCTION

The Bridge River Camp is the largest past producer of gold in British Columbia with a total production from 1900 to 1978 of 130 t of gold, 99% of which came from the Bralorne-Pioneer deposit. The area is easily accessible and has good infrastructure (Figure 1).

Considering the past production of the Bralorne-Pioneer mine and the similarity of this deposit with those found in the Archean Superior Province of the Canadian Shield or in the Mother Lode Belt in California, it appears that the Bridge River Camp offers a good potential for mesothermal gold vein deposits.

In October 1990, Cogema acquired from X-Cal Resources Ltd. five properties in this camp: Anderson Lake, Pilot, Truck-Paymaster, Waterloo, Tyax.

In 1991, Cogema carried out an exploration programme on all five properties (Figure 2). In 1992, it returned four properties to X-Cal Resources Ltd. and continued its exploration programme on the Pilot property where positive results had been obtained.

LEGAL DESCRIPTION OF THE PROPERTY

The Pilot property consists of 27 contiguous claims (99 units, 16.5 square kilometres). Except for Pilot Ext 4 and 5, they were acquired by COGEMA Canada Ltd. from X-Cal Resources Ltd. in 1990. Pilot Ext 4 and 5 were located by Cogema early in 1991 to cover the probable extension of the Bralorne lineaments. The claims are shown on Figure 3 and listed in Table 1.

Table 1

List of Claims

	<u>Reco</u>	<u>rd No.</u>	Lot	No. of	Loc.	
<u>Claim Name</u>	Old	<u>New</u>	<u>No.</u>	<u>Units</u>	Year	Expiry Date
Pilot:				_	_	
Pilot Extension	2224	228457		20	1982	13 Dec. 1993
Pilot Extension #2	2244	228468		20	1982	29 Dec. 1992
Pilot Extension #3	2252	228470		16	1983	10 Jan. 1994
Pilot A	2568	228540		1	1983	19 Aug. 1994
Pilot Ext 4	4595	229418		16	1991	06 Mar. 1994
Pilot Ext 5	4596	229419		5	1991	06 Mar. 1994
Gold Pass #1	2080	228423	6999	1	1982	23 Jul. 1994
Gold Pass #2	2083	228426	7000	1	1982	23 Jul. 1994
Gold Pass #3	2793	228588	7001	1	1984	07 Feb. 1994
Gold Pass #4	2794	228589	7002	1	1984	07 Feb. 1994
Gold Pass #5	2726	228557	7003	1	1984	18 Jan. 1994
Gold Pass #6	2730	228561	7004	1	1984	18 Jan. 1994
Gold Pass #7	2727	228558	7005	1	1984	18 Jan. 1994
Gold Pass #8	2728	228559	7006	1	1984	18 Jan. 1994
Gold Pass #9	2729	228560	7007	1	1984	18 Jan. 1994
GLG #1	2084	228427	1322	1	1982	23 Jul. 1994
GLG #2	2085	228428	1323	1	1982	23 Jul. 1994
GLG #3	2082	228425	5688	1	1982	23 Jul. 1994
GLG #4	2086	228429	1324	1	1982	23 Jul. 1994
GLG #5	2087	228430	1325	1	1982	23 Jul. 1994
GLG #7	2088	228431	1326	1	1982	23 Jul. 1993
GLG #8	2089	228432	1327	1	1982	23 Jul. 1993
GLG #9	2090	228433	1328	1	1982	23 Jul. 1993
GLG	2230	228463	1340	1	1982	17 Nov. 1993
Ypres #9	2905	228594	5686	1	1984	18 Jun. 1994
Ember	2906	228595	5687	1	1984	18 Jun. 1994
Ypres Fraction	2081	228424	5689	1	1982	23 Jul. 1994

Bralorne Project 1992

LOCATION, ACCESS, AND PHYSIOGRAPHY

The Pilot mineral claim is located in the Bridge River Mining Camp at latitude 50°53'N, longitude 122°55'W in NTS Map Area 92J/15W. The centre of the property lies 3.5 kilometres northwest of Gun Lake.

The southeast portion of the claim is accessible by the Gun Lake Road which goes southwest around Mount Zola then north along the northwest shore of Gun Lake approximately 10.5 kilometres from Goldbridge, B.C. The northeast zone is accessible by the Slim Creek logging road which branches north from the Carpenter Lake Road approximately 1 kilometre west of the Gun Creek Bridge. These two areas are connected by a cat road built by X-Cal in 1985.

Two major drainages, Walker Creek and Pilot Creek, form large Cirques on the western half of the Pilot property. At elevations up to 2,400 metres, this area is characterized by minimum alpine vegetation on precipitous rock exposures and talus slopes.

The eastern half of the property is mainly forest covered with a minimum elevation of 1,150 metres. Outcrops are restricted to the creek levels and occur sporadically in tree cover.

EXPLORATION HISTORY

Exploration in the area began in 1917 when the Ypres group of 18 claims were staked by Messrs. O. Fergusson and C. Walker. In 1931, the property was acquired by Gun Lake Gold Mines Ltd., transferred to Cariboo-Bridge River Gold Properties in 1933 and then acquired by Pilot Gold Mines Ltd., Vancouver, B.C. in 1934. This company developed the extensive underground workings known as the Pilot Mine. Bralorne Project 1992

The workings involve drifts, crosscuts, and one shallow winze totalling 1,500 metres of underground workings on a series of quartz veins occurring in a north trending shear zone. Assays up to 11 g/t have been reported from this underground development programme (Cairnes, 1937).

Recent work on the Pilot claim group consists of:

1983	• geological mapping and prospecting at 1:2,500 in the vicinity of the Pilot Mine workings (53 rock samples analyzed) and at 1:12,500 by traverses, mainly on the ridge top in the northwestern part of the property (52 rock samples and 15 heavy mineral stream sediments analyzed)
1985	 grid in the southeast part of the property: 200-metre line spacing, 25-metre stations, about 20 line kilometres soil sampling at 25-metre spacing VLF (EM 16) survey geologic mapping of the grid area at 1:5,000, locally 1:2,000 12 kilometres of access roads 3,700 metres of trenching; 522 rock samples
1986	 diamond drilling: two holes of 137 and 152 metres along the "Pilot Shear Zone"
1991	 geological mapping and prospecting at 1:10,000 scale of the whole property grid (200m lines) in the eastern part of the property, mainly on claim Pilot Ext. 4 Mag-VLF survey (12.5m stations) soil geochemistry (50m stations) moss-mat stream geochemistry

- 5 -

REGIONAL GEOLOGY

A good summary of the regional geology is given in Leitch (1990) and is reproduced in part hereunder.

The latest published geological map of the area (92J, 1:250,000) based on field mapping is by Woodsworth (1977). Table 2 gives the principal units based on recent mapping by Church (1987), Church et al. (1988), compilation of available data, and recent age dating.

The principal stratigraphic assemblages of the Bralorne area have traditionally been called the Bridge River (Fergusson) and Cadwallader groups, although the former should properly be called the Bridge River Complex. The Bridge River Complex contains the oldest known rocks of the map-area and has generally been assigned a Permo-Triassic age on the basis of its similar lithology to the Cache Creek Group and correlation to the Hozameen Group. The Permian age is supported by recent dating of the Bralorne diorite (284 \pm 20 Ma by K-Ar on hornblende and 270 \pm 5 Ma by U-Pb on zircons) which appears to intrude the Bridge River Complex. However, fossil evidence suggests a Triassic to Jurassic age.

The Bridge River Complex consists of great thicknesses (1000m or more) of ribbon chert and argillite with very minor discontinuous limestone lenses, and large volumes of basalt, some pillowed.

The Cadwallader Group, previously considered to be Upper Triassic (pre-Norian, or pre-225 Ma) age on the basis of conodonts recovered from limestone of the upper sedimentary part of the section, is also apparently intruded by the Bralorne diorite and thus may be at least partly Permian in age. Traditionally, the Cadwallader Group, as defined originally in the Bralorne area, has been subdivided into three formations: the lowermost sedimentary Noel Formation, the Pioneer Formation greenstones, and the upper Hurley Formation sediments. However, the distinction between the two sedimentary formations is often difficult to make and the

Cadwallader may be best divided into a lower volcanic unit (Pioneer Formation) and overlying sedimentary package (Hurley Formation). The contact is generally considered to be conformable. The Pioneer Formation has commonly been called "greenstone", but abundant volcanic textures are preserved in less altered areas within the Bralorne block. On the basis of their uniform colour index and chemical analyses, the rocks appear to be basalts and basaltic andesites.

Although the contact with the overlying sedimentary package was not mapped in detail, in the Bralorne block the volcanics seem to grade upward into finely interbedded green volcanic wackes and dark argillites of the Hurley Formation. Elsewhere a boulder and pebble conglomerate, sometimes containing limestone olistoliths, is often found at the base of the Hurley where it rests conformably on the Pioneer volcanics.

Triassic to Lower Jurassic sediments of the Tyaughton, Relay Mountain, and Taylor Creek Groups and Upper Jurassic to Tertiary volcanics and sediments occur mainly to the north of Carpenter Lake, outside of the main area of interest, but small patches of Tertiary volcanics occur along the north-west shore of Anderson Lake.

A recent volcanic ash deposit (2400y B.P.) covers much of the area and may reach 1.5 metres thick; it is thinner or absent on steep slopes.

Igneous rocks within the Bralorne block include Upper Paleozoic ultramafics and Bralorne intrusives, Mesozoic Coast Plutonic rocks. Tertiary Bendor intrusives, and dykes of Cretaceous-Tertiary age. Ultramafic rocks are common in the Bridge River camp, forming narrow serpentinized bodies that were probably emplaced as thrust slices of oceanic, upper mantle material. With the pillow basalts and radiolarian ribboned cherts of the Bridge River Complex, they form the trinity of a typical ophiolite package. The Shulaps ultramafic complex, which lies 30km to the northeast of Bralorne, is a much larger mass but may be of similar origin. The ultramafics in the Bralorne area range from dunite to pyroxenite, but peridotites are most common. They are usually partly to completely serpentinized, or altered to talc-antigorite-

- 7 -

tremolite-carbonate. In the Bralorne mine area they are intruded by the diorite and so must be Permian or older.

The Bralome intrusive suite includes the so-called "augite diorite" and "soda granite", which commonly occur together. Usually the contact between the two is highly complex, forming such an intimate mixture that it may be properly termed a variety of migmatite called agmatite. Although their isotopic dates are indistinguishable $(270 \pm 5 \text{ Ma by U-Pb on zircons})$, sharp contact relations and chill margins near Goldbridge demonstrate that the soda granite is the younger phase. These intrusives are exposed at intervals over a 40km strike length in a northwest trending belt parallel to and often confined by the ultramafic rocks. This belt stretches from Anderson Lake across the Bridge River valley to the lower reaches of Gun Creek.

Several workers in the Bralorne area have remarked on the unusual contact relationships of the diorite with the Pioneer volcanics. The diorite is not chilled against the volcanics, implying intrusion before significant cooling of the volcanic pile. These relations suggest that the Pioneer volcanics may be simply an extrusive expression of contemporaneous dioritic intrusions.

There are a large number of minor intrusives throughout the Bridge River camp, which are mainly dykes of various ages. However, in the light of recent mapping and isotopic dating in the Bralorne area, it is now clear that one group of dykes is early Late Cretaceous in age. These dykes are closely associated with mineralisation at Bralorne, and have traditionally been called "albitite". Dates obtained range from 91.4 ± 1.4 Ma by U-Pb on zircons from the highly altered, and therefore pre-mineral albitite dykes, to 85.7 ± 3 Ma by K-Ar on fresh hornblende in a late intra- to post-mineral green hornblende porphyry dyke. Other dykes, locally called feldspar porphyries, are present at the Minto and Congress properties. They give Early Tertiary whole-rock K-Ar ages of 67 to 69 ± 2 Ma, approximately in the middle of the range for Coast Plutonic activity. An Eocene magmatic event is also evident from lamprophyre dykes that cross-cut mineralized veins at Bralorne and are 43.5 ± 1.5 Ma by K-Ar on biotite, because this coincides with similar dates of about 45 Ma on the Rexmount porphyry, the Beece Creek and Lorna Lake

plutons, and dates as young as 42 Ma for plutons south of the Bendor pluton.

The eastern boundary of the Coast Plutonic Complex granitic rocks lies only 2km to 5km west of the Bralorne deposit. The age range for these intrusions spans the interval from early Late Cretaceous (80 Ma) to Lower Tertiary (59 Ma), with the youngest ages coming from isolated stocks such as the Bendor pluton, which occur as a swarm parallel to the margin of the Coast Plutonic Complex, some 2km to 3km to the east of Bralorne.

Many vein gold deposits of the Archean Superior Province in the Canadian Shield are found within a mafic volcano - clastic sedimentary - ultramafic rock assemblage, thought to have formed mainly on a oceanic, accreting plate margin. A similar setting is found in the Bridge River camp, where two main lithologic assemblages can be distinguished: one dominantly oceanic and the other dominantly island arc. The former is represented by the Permian to Jurassic Bridge River Complex which comprises basalts and associated clastic sedimentary rocks with thick accumulations of ribbon chert, and minor limestone. Alpine-type ultramafic rocks in lensoid to very elongated bodies are spatially associated with the stratified rocks and are thought to form part of the assemblage. The ultramafic rocks may mark the sites of major crustal shortening that were later focuses for major transcurrent movements. Such major crustal structures are also associated with many of the large mining camps of the Superior Province or the Yilgarn Block in Australia.

The island arc assemblage, represented by the Cadwallader Group of ?Permo-Triassic age, is composed of a basaltic andesite pile with minor felsic volcanics and an overlying volcaniclastic sedimentary sequence, again with minor limestone.

The Bridge River and Cadwallader terranes containing these two assemblages form small lozenge-like fault-bounded slices sutured between the Insular super-terrane on the west and the Intermontane super-terrane on the east.

- 9 -

The two major faults closely bounding the major ore-producing Bralorne-Pioneer block are marked in large part along their length by narrow sinuous serpentine bodies. These could represent the sites of former major crustal shortening that have been reactivated by later transcurrent faulting, so the emplacement of the ultramafics could have been as solid bodies. Movement on the faults may have been of the same sense as the Fraser fault system, i.e. right lateral.

Although the majority of the Bridge River Camp production comes from the Bralorne-Pioneer mine, there is a host of other prospects and occurrences which can be classified into four main groups:

- mesothermal ribboned Au quartz-veins: Bralorne-Pioneer
- transitional to epithermal Ag-Au-Sb-Ag veins: Congress, Minto
- epithermal Sb-Hg veins: Tyaughton, Yalakom area
- epithermal Au-Ag veins: Blackdome (north of the Yalakom fault and outside the Bridge River Group per se)

These occurrences form a chemical and thermal zonation, away from the Coast Plutonic Complex (Figures 8 and 9). Reserves have been published for a number of these occurrences:

	Tonnes	<u>g/t Au</u>
Bralorne-Pioneer	965,000	9.3
Congress	450,000	10.0
Reliance	454,000	6.0
Lucky Jem	112,000	20.6
Wayside	148,000	3.6
Mary Mac	60,000	7.4

EXPLORATION PROGRAMME

A 2km access road was pushed in on the south flank of Walker Ridge from 4,950 feet to 6,300 feet elevation to carry out trenching of a large Au-Cu geochemical anomaly.

Detailed mapping, prospecting, as well as detailed chip and grab rock sampling was carried out on Walker Ridge and along the access road. Two soil geochemistry lines, 200m apart, 50m stations, extend the old grid to the west.

The programmed trenching was not carried out as the above work showed the source of the geochemical anomaly to be higher up on the ridge in an area of abundant outcrop and difficult access for trenching equipment.

A small drill programme was carried out in the fall using a Gopher drill; it was only partly successful, producing one 84.4m hole and two that were abandoned at 7.6m and 11.3m, respectively.

Statistics:	Geochemistry	Soils	59 samples
		Rocks	229 samples
		Core	66 samples
	Drilling	103.3m	
	Road	2.0km	

Geochemical Procedure

The following sample types were collected: rocks and soils.

Soil samples were taken below the Bridge River Ash, a Recent white pumiceous horizon which

blankets most of the area and varies in thickness from a few centimetres to one metre or more; the horizon collected would be equivalent to a B horizon.

All samples were analyzed by Acme Analytical Laboratories Ltd. in Vancouver. Sample preparation included:

- for rocks crushing and pulverizing 250 g to -100 mesh
- for soils drying and sieving to -150 mesh

Two types of analyses were carried out on all samples:

- Au by wet extraction and atomic absorption (A.A.): a 50-gram sample is ignited at 600°C, digested with hot aqua regia, extracted by MIBK (methyl isobutyl ketone), and analyzed by graphitic furnace A.A.
- multi-elements by wet extraction and inductively coupled plasma spectometry (ICP): a 0.5-gram sample is digested with 3 ml 3-1-2 HCl-HNO₃-H₂O at 95°C for one hour and is diluted to 10 ml with water. This extraction may be incomplete for certain mineral forms of Mn, Fe, Sn, Ca, P, La, Cr, Mg, Ba, Ti, B, W, Na, K, Al.

The detection limits are:

- Au (A.A.): 0.3 ppb
- Multi-element:
 - Ag: 0.1 ppm
 - Cd, Co, Cr, Cu, Mo, Mn, Ni, Sr, Zn, W: 1 ppm
 - As, Au, B, Ba, Bi, La, Pb, Sb, Th, V: 2 ppm

- 12 -

- U: 5 ppm
- Al, Ca, Fe, K, Mg, Na, Ti: 0.01%
- P: 0.001%

Appendix I lists all the geochemical results by sample type. In these tables, Au is given in ppb; Ca, Mg, Fe, P, Ti, Al, Na, K in percent; Wt/g (the weight of the -150 fraction of soils) in grammes, and all others in ppm; Au by ICP has been omitted. The results given as "detection limit" should read "at or below the detection limit".

A 50-gram aliquot was used for Au by A.A. to improve the detection limit together with a finer fraction than usual (-150 mesh) for soils to decrease the nugget effect, i.e., improve the representativity of soil samples. Going from 10 grams of -80 mesh to 50 grams of -150 mesh material decreases the potential nugget effect by a factor of 25.

All geochemical analyses were processed using the Techbase database management system and its application programmes. Statistics were calculated for the main elements (Table 2).

A description of all the analyzed rock samples is given in Appendix II.

Table 2

SUMMARY STATISTICS OF GEOCHEMICAL ANALYSES

λ.	Rock Sample	s (grabs and short	chip samples)				
	-	Au	λg	Cu	РЪ	Zn	As
	Number	99	9 9	99	99	99	99
	Mean	4620.861	3.765	2024.56	9.97	65.47	2093.402
	Std Dev	18576.53	19.292	6218.01	22.29	76.45	14131.15
	Variance	345087557	372.2	38663701	497	5845	199689394
	Maximum	111000	189.1	38719	207	664	99999
	Minimum	3	0.1	18	2	1	2
	Range Cook Nor	110997	189.0	38701	205	663	99997
	COEI VAR	402.0147	512.4537	307.1298	223.5733	116.7648	675.0321
	Modian	102 0	1.9389	624.9339	2.2402	7.6837	1420.2340
	Freutan	103.0	0.30	246.5	5.0	53.5	22.5
	Kurtosis	24 3905	0.9/04	4.54/3	/.1363	5.9268	6.7158
	Notes:	1446ppb when a	03,0050 Waluding the the	20.5898	58.9332	40.2732	43.5499
	Motes.	2. 75ppm when exc	luding the two s	ee samples with >999	SIUUPPM AU.		
в.	Rock Sample	s (5m chips)	•_	.	-	_	
	Number	109	100	Cu	PD	Zn	As
	Mean	361 17	0 466	250 (1	109	109	109
	Std Dev	999 56	1 1 7 9	575 50	9.70	50.60	58.32
	Variance	999117	1.1/3	221201	2,19	17.03	145.39
	Maximum	7338	11.6	3611	1 3	127	21139
	Minimum	3	0.1	30		28	1010
	Range	7335	11.5	3581	11	99	1014
	Coef Var	276.7524	253.0755	160.0609	45,9862	33.6639	249.2954
	Std Err	95.7404	0.1130	55.1313	0.2097	1.6314	13,9260
	Median	99.5	0.20	160.0	5.0	47.0	9.0
	Skewness	5.5457	7.8856	3.6439	0.7586	2.5630	4.1998
	Kurtosis	32,4286	70.1803	14.9650	0.7880	7.4077	19.7592
с.	Rock Talus	Samples					
		Au	λg	Cu	₽Ь	Zn	λs
	Number	21	21	21	21	21	21
	Mean	111.81	0.338	199.48	7.29	73.62	44.86
	Varianco	11040	0.136	105.77	2.90	15.12	29.28
	Mayimum	11949	0.0	11188	8	229	857
	Minimum	350	0.0	417	14	112	113
	Range	346	0.1	249	12	24	13
	Coef Var	97.7666	40.2827	53.0259	39 7674	20 5202	65 2201
	Std Err	23.8539	0.0297	23.0818	0.6323	3 2995	6 2800
	Median	115.0	0.30	214.0	7.0	71 5	39 0
	Skewness	0.7690	0.6470	0.4042	0.6077	1.0396	0.8948
	Kurtosis	-0.5099	-0.2964	-0.8977	0.3090	0.4022	-0.4360
р.	Soil Sample						
		Au	λα	Cu	Pb	Zn	Åg
	Number	59	59	59	59	59	59
	Mean	195.22	0.290	261.02	6.66	70.76	60.97
	Std Dev	229.81	0.216	224.78	4.48	22.36	171.78
	Variance	52811	0.0	50528	20	500	29507
	Maximum	1134	1.2	986	22	129	1268
	Papage	1122	0.1	14	2	18	2
	Coof Var	117 7141	74 2500	972	20	111	1266
	Std Err	29 9182	0 0291	20 2642	0 5025	31.5977	281.7573
	Median	137.5	0.20	191 5	6.0	2.9109	22.3634
	Skewness	1.6804	1.6530	1 3025	1 3524	-0 2449	6 0600
	Kurtosis	3.2398	3.7524	1.4129	1.5230	0.2641	38,7769
_							
x.	Core Sample.	3 7.11	10	<i>C</i>	D L		_
	Number	66	66	54 54	22 24	2 n	As
	Mean	413.71	1.014	16.5.1.39	20.79	60 49	17 20
	Std Dev	642.68	1.523	1307.54	42.59	32.75	10.20
	Variance	413039	2.3	1709665	1813	1139	15/1
	Maximum	5000	9.1	8810	273	198	209
	Minimum	31	0.1	128	2	26	2
	Range	4969	9.0	8682	271	172	207
	COEL Var	155.3450	150.2752	126.8972	204.8556	55.7913	228.2993
	Sta Err	/9.1086	0.1875	160.9472	5.2419	4.1538	4.8326
	Skewness	200.0 5 6560	U.5U 2 A775	64/.0	7.0	49.5	3.0
	Kurtosis	36.6315	12.9849	3.9984 18.8618	4.1009	2.4081	3.5056
<u></u>				10.0010	10,00002	V. Z / //	12.4745

RESULTS

Geology

The property is underlain by intrusives of the Coast Plutonic Complex, Bridge River Group sediments, Bralorne Diorite, and ultramafics (serpentine, listwanite).

The structural trend appears to be generally NW-SE although bedding and foliation visible in the sediments and serpentine are quite variable. The contact of the Coast Plutonic Complex and Bridge River Group is intrusive where visible with relatively little contact metamorphic effect. The sediments are somewhat recrystallized and hornfelsed: the chert becomes sugary and the argillite more massive and harder; but this effect remains thin, a few decametres. The sediments are predominantly chert, locally pyritic, for example in the road/trench east of sample localities 082R and 083R; argillite constitutes the remaining (about 30%).

The Bralorne Diorite is fine to medium grained, sometimes slightly foliated and consists mainly of plagioclase and pyroxene (diallage according to Cairnes, 1937); it is more mafic than the typical Bralorne Diorite. It occurs in one main body along Sumner Creek but crops out in a few locations further north towards Gun Creek.

The ultramafics occur mostly as serpentine, sometimes with listwanite (277R, 278R).

The Coast Plutonic Complex consists of granodiorite for the most part varying from coarse to fine-medium grained. Some of the border facies on the east end of Walker Ridge and along the contact in the centre of the old grid are dioritic and rather fine grained. It is cut by fracture systems with carbonate alteration and occasionally quartz veinlets; most are oriented at N40-60/70-80S and N90-100/60-70S.

Geochemistry

1. Soils

Table 2 gives statistics for the grid soil samples. Their Au and Cu results are plotted on Map 1. They are anomalous mainly on L800N from 1300E to 2900E with two gaps at 1750-1800E and 1950E which correspond to poor samples (contaminated by Bridge River Ash: low Ni and Fe contents). On line 1000N the anomaly stretches from 1450E to 2300E with gaps caused by poor or no samples (on the rock slide) at 1600E to 1750E, 1850E to 2000E, and 2150E to 2200E.

Three soil sections were sampled along the road in an area shown as anomalous on the earlier work (old L29). They are strongly anomalous in Au and Cu, as expected, but show little vertical variation over 1.3m depth below the Ash layer.

2. Talus

Two types of talus samples were taken: in the 1st Cirque, the material available was too coarse for sieving to -150 mesh and it was processed as a rock sample; in the 2nd Cirque, fines were collected and samples were treated as soils. The analyses show three populations. To the east, sample 1269 to 1273 and 1281 to 1284R are low in Au and Cu, but high in Ba, Ni, and Mn; they correspond to material derived from Bridge River sediments (chert and argillite). In the western half of the 1st Cirque and the eastern part of the 2nd Cirque, the samples are anomalous in Au and Cu. In the centre of the 2nd Cirque, samples 1076 to 1078 are low in Au, slightly anomalous in Cu, but low in Ba, i.e. intrusive derived.

3. Rocks

Continuous 5m chip samples were taken along the lower part of the road where outcrop is abundant and on the eastern end of Walker Ridge where high Au and Cu values were

obtained in 1991 on each side of the rock slide that occurs on the south flank (Map 1; App. 1).

Along the road, the samples taken in Bridge River sediments (mostly chert) are low in Au (3-82ppb), anomalous in Cu (48-838ppm), As (90-617ppm), Sb (3-39ppm), as well as high in Ba (102-252ppm) and Ni (28-314ppm). The granodiorite chip samples further up the road are higher in gold, up to 385ppb but mostly in the 30-80ppb range, low in Cu (30-150ppm); some samples have high As and Sb.

On the ridge, three zones have anomalous Au and Cu averaging 338, 378, and 752ppb Au and 228, 400 and 1007ppm Cu respectively for the chip sampling, and contain grab samples with over 100 g/t Au with Cu over 3%.

Several chip samples contained more than 1 g/t Au, resampling confirmed some of these:

<u>1st Sample</u>	<u>Au ppb</u>	2nd Sample	<u>Au ppb</u>
1043	6426	1087	7338
1044	1896	1088	472
1022	3702	1350	587
1259	1092	1351	290
1292	1470	-	-

The average of 1043/1087, 1044/1088 is 10m at 4.03 g/t Au across the structure.

<u>Grab samples</u> were collected within the area of chip sampling as well as further west along Walker Ridge. Of the 99 grab samples analysed, 14 are between 1 and 10 g/t Au, and six above 10 g/t Au (17, 21, 33, 102, 106, 111 g/t Au); all of these also have high Cu, generally >0.1%, and four samples have >1% Cu.

Most samples have the same metallogenic association: Au-Cu-Ag; As may be anomalous, up to 962ppm with the highest Au value (111 g/t). Zn, Pb, Mo, W, Bi, Sb may be slightly anomalous.

Two samples are different (BR1086R and 1089R): high in gold (21 and 17 g/t Au), very high in As (>10%), high in Sb, Ag, and Cu; they correspond to a small but massive arsenopyrite vein.

High values are found mostly in the areas where chip sampling was done and reflects (in part only) sample density; they are also found around the 1066 zone on the west ridge of 1st Cirque.

Mineralisation

The best results on chip sampling and most of the high Au grab samples on the east end of Walker Ridge correspond to sulphides occurring as rusty siliceous fracture coatings which may widen to form quartz-pyrite-chalcopyrite and/or bornite veinlets up to 3-5cm thick. Narrow zones (5cm) of bleaching form the selvage of these veinlets which have only been observed in the granodiorite. Some dissemination of sulphides occurs into the granodiorite along the joints.

The average trend of these joints and veinlets is about N70/70-80S but the mineralisation does not penetrate the Bridge River sediments which outcrop less than 50m east of the 1043-1044 zone as hornfelsed cherts.

Carbonate altered shears form brown weathering recessive saddles all along Walker Ridge; they have various orientations (N20/90, EW/20N, N105/45N, N45/90), are usually 1-5m wide, and frequently contain narrow quartz veinlets (1-10mm) at the centre; they are usually unmineralised, rarely exceeding 100ppb Au.

One significant exception is sample 1066, a 2cm quartz veinlet in such a carbonate altered shear which contains coarse visible gold. The gold bearing sample was not sent for analysis, but a sample taken directly underneath assayed 106 g/t Au with relatively low Cu (0.3%). Several 0.5-1m wide shears occur at this locality; they trend approximately EW to N70 with shallow but variable dip (20-60N).

A third type of mineralisation consists of two occurrences of narrow (5cm) arsenopyrite veins; one is located some 90m west of the 1043/1044 zone (two samples grade 21 and 17 g/t Au and more than 10% As) and one, which was not sampled, another 400m to the west on the ridge.

The Au-Cu association, the granodiorite host, and the fracture-controlled as well as dispersed habit of the main mineralisation suggest a porphyry-Cu style of mineralisation, albeit in a peripheral (or sommital) part of a system. Alteration is very subtle; most of the granodiorite is fresh with some of the hornblende retrograded to actinolite; carbonate alteration is restricted to shears and narrow selvages along quartz-sulphide veinlets and joints.

Drilling

The drill programme, initiated late in the season, suffered from inadequate (underpowered) equipment which could not penetrate zones of carbonate alteration and fracturing.

One drill hole reached 277 feet (84.4m). A second hole was stopped after encountering difficulties at 25 feet and upon restarting again at 37 feet.

Hole PLT-3 was collared in outcrop and drilled at a 315° bearing and 45° dip; end of hole dip was 42° (acid test). It cuts equigranular hornblende-biotite-granodiorite from top to bottom, medium grained in the upper half and coarser grained, more leucocratic in the lower half (Figure 4). Quartz filled joints are more abundant in the medium grained granodiorite averaging about

ſ

Γ

5 joints per metre. Carbonate alteration and bleaching occurs mainly in the coarse grained granodiorite.

The core was sampled and analysed from top to bottom in 1.5m increments except where geological features dictated otherwise. The weighted average grade for the whole hole is 0.38 g/t Au and 0.09% Cu. The best intersection is from 51.4 to 61.9m: 10.5m at 1 g/t Au and 0.16% Cu, including 0.8m at 5 g/t Au and 0.9% Cu.

As shown in Figure 4, if the 1043/1044 zone strikes at N70/70-80S, it would cut the drill hole at about the location of the best mineralisation. However, the paucity of quartz filled joints and of quartz-sulphide veinlets in the core, together with subtle differences in chemistry (Ca, V, Ni, Cr) suggest the possibility that the 1043/1044 zone was not intersected in the drill hole.

CONCLUSIONS AND RECOMMENDATIONS

Soil sampling, prospecting, and lithogeochemistry confirmed the presence of Au-Cu mineralisation on surface on Walker Ridge with 10m at 4 g/t Au and 0.12% Cu in chip samples across a quartz sulphide veinlet swarm, grab samples with over 100 g/t Au and 3% Cu and coarse visible gold in outcrop; all mineralisation is in granodiorite.

Drill confirmed the presence of mineralisation with 10.5m at 1 g/t Au and 0.16% Cu and of widespread high background in Au (380ppb) and Cu (0.09%) over the whole 84m of drill core. On the crest of Walker Ridge the best mineralisation is close to the contact with the Bridge River sediments which appear to be barren. The contact zone is also exposed along the road at 5,300 feet elevation, but is not mineralised there although it is anomalous in Au and As is high both in the granodiorite and in the sediments.

- 20 -

The 1066 zone (visible gold in a quartz-carbonate vein) is also within 300m of the intrusive contact. Pyrite and chalcopyrite bearing quartz vein have been reported near Jewel Creek along the border of the property. This suggests that the whole contact zone from Walker Ridge to Jewel Creek (1.5km) warrants further investigation.

Further work is recommended on the Pilot property; it should include:

- Phase 1 diamond drilling on the 1043/1044 zone, a minimum of three holes of 150-200m in length
 - prospecting and extensive lithogeochemistry on the ridge between the 1st and 2nd Cirque as well as the ridge between the 2nd Cirque and Jewel Creek.
- Phase 2 additional drilling of new targets and to extent the 1043/1044 zone westward (2,000m)

Appendix I

•.

Geochemical Analyses

ROCK SAMPLES (grabs and short chip samples).

BR 1202R

BR 1203R

BR 1204R

BR 1205R

BR 1206R

BR 1207R

BR 1208R

BR 1209R

BR 1210R

BR 1211R

BR 1212R

BR 1213R

BR 1214R

1.5

0.1

0.1

0.1

0.1

0.1

8.3

0.2

0.2

1.7

0.4

8.3

11.5

 0.2

0.2

0.2

0.2

0.2

> б 0.2

0.6

> 0.2

0.2

0.2

0.2

0.2

0.3

 1.05

0.31

0.44

0.41

0.30

0.54

0.53

0.76

0.82

0.56

0.04

0.05

0.10

0.07

0.75

0.15

0.13

0.11

1.88

1.09

0.90

1.11

1.16

0.02

0.14

1.40

Page Sb Cu Pb Zn Mo W Bi Cd Ca U Th La Aυ Ασ As Mq Ba Sr Ni Cr Co Mn Fe v 0.2 1.58 0.84 **BR 1000R** 8.42 111 0.031 0.1 0.2 BR 1001R 0.1 Z 0.14 0.67 2.44 48 0.028 S 0,5 BR 1002R 2.7 1.04 0,86 2.57 70 0.055 77 0.029 BR 1003R 0.2 0.4 0.23 1.08 2.73 17.9 BR 1004R 1.1 0.41 0.66 2.67 70 0.020 BR 1005R 1.7 1.49 1.38 5.89 158 0.076 1.2 BR 1006R 1.1 0.24 0.55 2.40 6 9.6 34 0.055 0.4 0.61 0.81 BR 1007R 0.9 60 0.042 2.73 BR 1008R 0.7 3.35 1.03 3.95 54 0.045 0.4 BR 1009R 1.1 0.04 21.49 4.81 12 0.006 0.2 BR 1010R 3.6 2 1.7 0.54 1.38 4.32 82 0.043 BR 1018R 0.1 0.2 0,06 0,14 0.80 11 0.006 BR 1053R 12.0 0.2 1.10 0.87 3.60 86 0.033 2.7 BR 1054R1 13.3 0.51 0.84 5.53 6 107 0.040 BR 1057R 0.3 0.2 1,51 0.29 27 127 3.52 49 0.060 BR 1063R 0.6 0.6 1.50 0.74 3.73 58 0.074 0.2 9.41 0,40 25 186 BR 1064R 0.2 3.57 32 0.055 BR 1065R 8.51 26 144 65 0.047 0.3 0.2 1.30 4.99 7.67 0.77 BR 1066R105932 27.4 5.8 15 0,022 3.18 З 8.33 29 187 4.37 BR 1067R 0.4 0.2 1,46 47 0.053 0.2 BR 1069R 0.1 6.86 1,16 5.18 79 0.054 BR 1070R 0.2 0.2 1.65 1.05 2.77 5 13 73 0.043 12,45 0,18 14 0.007 BR 1071R 0.1 0.4 4.30 BR 1072R 0.2 0.2 10.22 1.80 20 195 4.74 26 0.022 BR 1073R 0.4 0.2 8.48 1.08 35 107 6.31 40 0.029 BR 1074R 0.1 0.2 0,47 0.24 1.21 10 32 13 0.008 BR 1075R 0.3 0.2 0.38 1.19 4.29 2 4 116 0.066 3.35 0.2 1.05 BR 1079R 0.3 4.84 96 0.067 BR 1080R 0.3 10.94 1,25 34 176 5.11 35 0.033 0.5 0.1 0.2 0.54 0.66 48 0.037 BR 1081R 2.47 0.6 6.37 2 37 0.030 BR 1082R 0.2 0.51 2.92 0.2 0,62 0,65 R 88 0.108 BR 1083R 0.7 2.97 19 166 BR 1084R 0.2 0.2 5.37 1.50 2,90 14 0.010 0.58 0.40 BR 1085R 0.3 0.3 1.78 5 11 33 0.017 BR 1086R 21120 5.099999 154 2.2 0.16 0,02 13.58 27 0.028 42 355 BR 1089R 16680 2,499999 3.2 1,12 0.04 13,09 23 0.026 BR 1090R 0.3 1205 1.2 3.24 1.51 73 109 6.05 106 0.095 BR 1091R 1.5 0.5 0.66 0.37 1,51 5 13 1.35 BR 1200R 9.3 0.4 0.39 4.68 BR 1201R 0.7 0.3 0.53 0.74 2.38

0.66

1.75

9.14

Z

 4 0.005

25 0.004

88 0.025

0.02 2.73 0.12 0.19 23 0.012 0.02 0.81 0.13 0.18 85 0.038 0.49 0.23 1.98 0.07 2 48 0.028 0.16 1.21 0.06 0.10 9.54 22 0.039 0.04 0.67 0.02 0.16 7.36 88 0.068 0.01 1.62 0.01 0.16 7.29 92 0.057 0.01 0.84 0.02 0.15 7.77 88 0.056 0.01 0,73 0.01 0.14 5.88 37 0.047 0.01 0,64 0.01 0.22 6.80 152 0.035 0.02 2.99 0.12 0.10 4.49 73 0.033 0,15 1.83 0,05 0,08 2.88 0.15 64 0.052 0.22 1.79 0.08 3.25 74 0.048 0.22 1.52 0.08 0.16 79 0.045 3.40 0.18 1.66 0.09 0.20

0,50

2.24

0.26

Тi R

> 1.50

1.90

1.82

1.34

3.20

0.86

1.41

1.45

0.36

2,21

2.27

1.53

0.94

0.62

1.54

1.64

0.20

0.61

2.26

1.75

0.57

1.16

1,17

1.08

0.23

1.05

0.89

0.73

0.01

0.17

0.16

0.16

0.14

0.13

0.01

0,19

0.01

0.01

0.21

0.02

0.08

0.03

0.10

0.01

0.01

0.01

0.01

0.01

0.01

0.16

0.01

0.01

0.01

0.03

0.20

0.09

0.01

0,14

0.03

0.13

0,01

0.05

0.01

0.01

0.01

0.04

0.03

A1

1.23

0.29

1.83

2.31

0,71

0.30

0.63

0.82

Na

0.12

0.52

0.23

0.34

0.18

0.09

0.05

0.15

0.16

0.01

0.21

0.11

0.09

0.15

0.05

0.28

0.17

0.14

0.14

0.16

0,15

0.13

0.06

0.13

0.13

0.16

0.69

0,19

0.14

0.26

0.15

0.12

0,10

0.21

0.32

0.35

0.13

0.14

0.05

0.03

0.04

0.34

0.07

0.14

0.19

0.02

0.13

0.04

0.01

0.10

0.06

0.14

0,12

0.38

0.03

0.02

0.04

0.01

0.03

0.03

0.13

0.01

0.02

0.02

0.07

0.08

0.11

0.02

0.12

0.05

0.04

0,01

0.15

0.04

0.05

0.04

0.04

0.04

Page 2																												
BR 1215R BR 1217R BR 1216R BR 1217R BR 1219R BR 1219R BR 1219R BR 1219R BR 1219R BR 1219R BR 1220R BR 1301R BR 1300R BR 1317R BR 1317R BR 1317R BR 1318R BR 1318R BR 1318R BR 1319R BR 1322R BR 1322R BR 1322R BR 1322R BR 1327R BR 1327R BR 1337R BR 1347R BR	Au 78 8 339 1032 20 673 326 56 109 9 11 1330 49 97 58 10 9 97 58 22 2110 3500 628 1098 22 2110 583 3500 628 1098 25 32 7572 327 77 72 32	Ag 0.1 0.4 0.4 0.6 10.4 0.6 0.1 0.6 0.5 0.1 0.6 0.5 0.4 0.2 0.5 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.4 0.4 0.6 1 189.1 10.4 0.4 0.6 1 189.1 10.4 0.6 0.5 10.4 0.6 0.5 10.4 0.6 0.5 0.5 0.1 0.4 0.6 0.5 0.5 0.1 0.4 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	As 53 85 63 327 34 42 31 10 32 22 110 67 15 40 18 53 42 22 10 67 15 40 22 42 22 10 67 10 22 22 10 68 5 42 22 22 40 22 22 45 85 22 22 45 86 66 21 22 22 45 86 66 21 29 40 22 22 45 85 22 22 45 86 66 21 29 40 20 20 20 40 20 20 20 20 20 20 20 20 20 2	Sb 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2	Cu 1455 2489 484 4952 499 453 4902 2539 460 4902 2039 2093 2093 2093 2093 2093 2093 2	PD354662724527652646543527225242422732 2024527652646543527225242422732 332	2n 1 58 41 43 42 54 37 1 1 36 33 68 47 55 40 40 30 15 13 44 18 74 64 54 79 16 77 79 107 79 79 107 77 77	Mo 1 4 2 2 1 2 4 1 6 1 3 3 2 2 3 2 2 3 1 7 1 4 2 2 1 1 3 3 1 1 4 1 1 1 2 2 1	W111111125411111121111111111111111111111	31 2 2 2 2 3 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2		Ca 1.44 0.91 0.93 0.707 0.05 0.365 0.539 1.08 1.503 1.166 0.657 0.577 1.266 0.577 1.276 0.663 3.217 7.276 0.683 3.233 0.50 1.234 0.506 1.234 0.505 0.234 0.550 0.557 0.556 0.557 0.556 0.557 0.556 0.557 0.556 0.557 0.556 0.557 0.556 0.557 0.556 0.557 0.557 0.556 0.557 0.557 0.557 0.556 0.557 0.557 0.556 0.557 0.557 0.557 0.556 0.557 0.557 0.556 0.557 0.557 0.556 0.557 0.557 0.556 0.557 0.557 0.556 0.557 0.55	Mg1.41 0.348 0.852 0.255 0.255 0.256 0.557 0.557 0.560 1.388 0.661 0.790 0.217 1.085 0.745 0.575 0.955 1.734 0.555 1.396 0.855 0.857 0.555 0.856 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.557 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555 0.557 0.555	Ba 25220 59223 86 309 703 46 309 38 4309 38 4309 336 336 336 336 336 336 336 336 336 33	Sr 42 91 311 17 29 4 31 17 29 57 63 17 29 57 63 7 89 1008 30 20 26 63 131 51 008 30 220 65 24 30 59 108 30 123 108 30 123 108 30 123 108 10 123 108 108 108 108 108 108 108 108 108 108	N1 18 17 16 13 15 4 16 12 17 16 12 17 16 12 17 16 12 12 17 16 12 12 17 16 12 12 17 16 12 12 17 16 12 12 12 12 15 15 15 15 15 15 15 15 15 15	Cr 29 200 408 25 6 33 35 1 36 447 16 104 17 25 276 8 5 9 3 3 2 9 3 3 1 1 6 3 3 2 9 3 3 2 9 3 3 1 1 6 3 3 2 9 3 3 2 9 3 3 1 1 6 4 6 3 5 4 4 3 4 3 3 4 4 4 7 1 6 3 3 4 4 7 1 6 3 4 4 7 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	Co 133 1312 111 9 9 8 11 6 15 28 28 28 113 8 4 5 9 12 12 2 13 15 13 24 22 12 13 15 13 25 11 19 10 22 11 19 10 22 11 19 10 22 11	Mn 552 5642 311 2763 273 381 185 2908 816 223 223 157 320 327 320 327 320 327 320 327 320 327 320 327 320 327 320 327 320 327 320 327 320 1404 329 129 364 1102 1453 830 1402 1453 830 1402 1453 830 1402 1453 830 1402 1453 830 1402 1453 830 1402 1402 1402 1402 1402 1402 1402 140	Fe 582.085 22.65 22.65 22.65 22.65 22.65 22.65 22.65 22.65 22.65 22.65 22.65 22.65 23.65 24.86 24.86 24.86 24.85 24.47 24.43 25.65 24.47 25.65 24.47 25.65 24.47 25.65 24.47 25.65 24.47 25.65 24.47 25.65 24.47 25.65 24.47 25.55 25.55 26.	r 1 555 555 15575555555555555555555555555555555	L:	a V 7 77 0.0 4 44 0.0 3 58 0.0 3 55 0.0 3 55 0.0 3 55 0.0 3 55 0.0 5 66 0.0 5 28 0.0 6 115 0.0 6 94 0.1 4 104 0.0 5 125 0.0 6 94 0.1 7 55 0.0 6 94 0.1 7 50 0.0 6 5125 0.0 7 18 0.1 7 5 0.0 7 36 0.0 8 97 0.0 5 53 0.0 6 5 0.0 7 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>B684565273231677579576463473657566509</td><td>$\begin{array}{c} \textbf{A1}\\ \textbf{1.66}\\ \textbf{1.00}\\ \textbf{1.51}\\ \textbf{1.38}\\ \textbf{1.33}\\ \textbf{0.15}\\ \textbf{0.883}\\ \textbf{1.55}\\ \textbf{2.018}\\ \textbf{2.02}\\ \textbf{2.275}\\ \textbf{2.40}\\ \textbf{1.725}\\ \textbf{2.40}\\ \textbf{1.725}\\ \textbf{0.266}\\ \textbf{0.553}\\ \textbf{0.475}\\ \textbf{0.76}\\ \textbf{0.553}\\ \textbf{0.475}\\ \textbf{0.762}\\ \textbf{1.255}\\ \textbf{1.881}\\ \textbf{1.716}\\ \textbf{0.766}\\ \textbf{0.533}\\ \textbf{0.766}\\ \textbf{1.255}\\ \textbf{1.881}\\ \textbf{1.716}\\ \textbf{0.766}\\ 0$</td><td>Na 0.04 0.03 0.08 0.05 0.061 0.19 0.253 0.29 0.314 0.15 0.207 0.014 0.020 0.001 0.004 0.004 0.001 0.004 0.004 0.001 0.004 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.00</td><td>K 0.11 0.100 0.200 0.13 0.08 0.099 0.020 0.11 0.100 0.12 0.14 0.08 0.12 0.12 0.14 0.08 0.12 0.12 0.14 0.08 0.12 0.12 0.14 0.08 0.07 0.27 0.11 0.27 0.11 0.27 0.13 0.28 0.12 0.28 0.13 0.28 0.13 0.22 0.13 0.22 0.14 0.03 0.28 0.13 0.22 0.14 0.03 0.28 0.12 0.12 0.12 0.14 0.27 0.14 0.27 0.14 0.27 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12</td></td<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B684565273231677579576463473657566509	$\begin{array}{c} \textbf{A1}\\ \textbf{1.66}\\ \textbf{1.00}\\ \textbf{1.51}\\ \textbf{1.38}\\ \textbf{1.33}\\ \textbf{0.15}\\ \textbf{0.883}\\ \textbf{1.55}\\ \textbf{2.018}\\ \textbf{2.02}\\ \textbf{2.275}\\ \textbf{2.40}\\ \textbf{1.725}\\ \textbf{2.40}\\ \textbf{1.725}\\ \textbf{0.266}\\ \textbf{0.553}\\ \textbf{0.475}\\ \textbf{0.76}\\ \textbf{0.553}\\ \textbf{0.475}\\ \textbf{0.762}\\ \textbf{1.255}\\ \textbf{1.881}\\ \textbf{1.716}\\ \textbf{0.766}\\ \textbf{0.533}\\ \textbf{0.766}\\ \textbf{1.255}\\ \textbf{1.881}\\ \textbf{1.716}\\ \textbf{0.766}\\ 0$	Na 0.04 0.03 0.08 0.05 0.061 0.19 0.253 0.29 0.314 0.15 0.207 0.014 0.020 0.001 0.004 0.004 0.001 0.004 0.004 0.001 0.004 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.00	K 0.11 0.100 0.200 0.13 0.08 0.099 0.020 0.11 0.100 0.12 0.14 0.08 0.12 0.12 0.14 0.08 0.12 0.12 0.14 0.08 0.12 0.12 0.14 0.08 0.07 0.27 0.11 0.27 0.11 0.27 0.13 0.28 0.12 0.28 0.13 0.28 0.13 0.22 0.13 0.22 0.14 0.03 0.28 0.13 0.22 0.14 0.03 0.28 0.12 0.12 0.12 0.14 0.27 0.14 0.27 0.14 0.27 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
BR 1345R BR 1346R BR 1346R BR 1347R BR 1348R BR 1348R BR 1352R BR 1353R BR 1355R	216 550 54 184 25 930 151 52 3	0.3 0.2 0.1 0.1 0.1 2.3 0.5 0.1 0.4	91 33 32 4 3 107 12 11 4	27 2 10 2 2 6 19 3 6 19 3 2 11	145 414 109 28 113 947 639 50 35	2 2 5 4 2 2 5 2 2 3	95 80 84 17 65 36 44 18 21	1 4 6 1 1 1 4 3	1 1 1 1 3 2 1	2 0 2 0 2 0 2 0 2 0 2 0 5 0 4 0 2 0 2 0	· 2 2 2 2 2 5 5 3 2	5.95 9.58 5.03 9.62 0.20 3.02 0.08 0.51 4.94 0.39	0.89 0.56 0.42 0.91 0.30 0.81 0.51 0.96 0.11 0.16	39 46 23 26 17 46 27 89 28 59	106 56 37 55 8 32 32 26 18 61	21 16 22 23 7 18 14 23 12 14	13 20 22 36 52 19 59 8 12	18 21 22 4 15 6 9 8 6	876 1238 807 1379 159 613 193 338 882 192	4.88 4.50 5.52 6.03 1.25 3.76 1.74 2.34 2.84 1.84	59551 5555 5555 55555	1 6 1 7 1 8 1 7 8 3 3 8 5 4 5 7 1 4 1 4	60 0.06 69 0.04 78 0.06 79 0.04 20 0.01 69 0.04 43 0.01 65 0.03 20 0.01 41 0.06	0 0.05 4 0.04 3 0.01 4 0.01 0 0.01 6 0.07 6 0.01 6 0.08 8 0.01 1 0.12	9 6 9 7 4 7 9 1 2 5 4	1.04 1.16 1.25 1.59 0.63 1.28 0.84 1.44 0.72 1.02	0.04 0.09 0.03 0.01 0.04 0.05 0.04 0.15 0.01 0.37	0.15 0.13 0.14 0.12 0.05 0.14 0.13 0.24 0.14 0.12

ROCK SAMPLES (5m chips).

Page 1																										
2	Au	Ag	As	Sb	Cu	Pb	Zħ	Mo	W	Bi	Cd	Ca	Ma	Ba Sr	Ni	Cr	Co	Mn	Fe	U Th La	V P	ተሰ	в	Al	Na	v
BR 1011RC	84	0,2	18	2	213	6	48	2	1	2	0.3	0.70	0.82	39 28	19	28	10	294 2	2.54	5 5 5	62 0 046	0 18	ดี	1 36	0 12	0 11
BR 1012RC	8	0.1	15	2	90	7	44	2	1	2	0.3	0.65	0.73	102 34	17	32	10	273 2	2.53	5 6 7	70 0.045	0.20	Ř	1 25	0 15	0.11
BR 1013RC	22	0.2	11	2	93	7	45	2	1	3	0.2	0.57	0.90	90 30	37	45	9	262 2	2.31	58	61 0.042	0.18	ž	1 23	0.10	0.20
BR 1014RC	21	0.3	10	3	96	6	47	2	4	2	0.3	0.60	0.76	113 31	15	27	9	263	2 35	7 6 6	65 0 044	n 19	6	1 22	0 15	0.19
BR 1015RC	37	0.1	14	2	132	4	53	2	2	2	0.3	0.66	0.86	90 33	17	30	9	279 2	2 56	5 5 6	65 0 044	0 10	ĕ	1 40	0.10	0.20
BR 1016RC	93	0.2	19	2	222	6	50	3	3	2	0.4	0.59	0.73	57 28	18	27	9	325	2 38	6 9 7	54 0 041	0 15	ĕ	1 32	0.13	0.16
BR 1017RC	46	0.2	8	2	213	4	64	5	1	2	0.2	0.62	0.84	88 34	17	43	9	351 2	2 38	ŠŚŚ	63 0 046	0 18	Ă	1 34	0.15	0.10
BR 1019RC	58	0.1	4	2	195	6	53	4	ī	2	0.3	0.62	0.68	84 34	15	27	á	299	2 11	556	60 0 048	0 17	5	1 10	0.15	0 16
BR 1020RC	67	0.5	89	2	705	5	55	2	ĩ	2	0.4	0.72	1.03	62 33	21	a i	าก์	362 3	้รักริ	5 1 9	69 0 046	0.10	š	1 67	0 12	0.10
BR 1021RC	89	0.1	15	2	168	5	43	2	2	2	0.2	0 76	0.89	46 30	วัติ	43	10	381 2	2 62	5 6 6	61 0 046	0.17	6	1 20	0 11	0.14
BR 1022RC	3702	0.6	6	2	440	6	45	ī	2	2	0.5	0.66	0.93	37 26	15	31	îñ	325 2	2 84	5 5 6	62 0 048	0 19	Š	7 45	0 11	0.11
BR 1023RC	342	0.6	12	2	369	Š	52	Ĝ	ĩ	4	0.3	0.69	0.88	61 33	18	31	10	321 2	2 69		68 0 045	0.10	6	1.40	0.11	0.13
BR 1024RC	279	0.4	6	2	278	8	44	2	2	2	0 2	0 73	0,20	69 33	17	31	ĩã	261 2	2 27	5 5 7	64 0 046	0.20	~	1 20	0.17	0.20
BR 1025BC	37	0.2	6	2	152	2	45	2	ĩ	2	0.2	0 71	0 68	52 32	15	11	á	251 2	2 1 8	5 5 6	59 0 040	0.12	4	1 21	0.10	0.22
BR 1026RC	37	03	50	3	137	5	46	ī	Ā	6	0.2	0 63	0.81	40 28	15	20	ó	217 2	2 51	5 7 7	62 0 045	0.10	7	1 42	0.13	0.15
BR 1027RC	279	0.2	21	3	193	ž	42	î	1	4	0.2	0 60	0.75	34 27	16	27	â	271 2	2 20	576	57 0 040	0.10	5	1 25	0.12	0.12
BR 1028RC	102	0.6	117	2	421	3	65	Ť	î	2	ňī	0.51	0.94	52 20	19	22	ä	226 2	2 94	5 5 6	69 0 040	0.15	2	1 67	0.13	0.12
BR 10298C	217	ñ,	6	2	265	2	43	2	1	2	ñž	0 67	0.94	37 20	10	20	á	344 2	5 50	5 4 5	55 0 043	0.10	2	1 20	0.14	0.11
BR 1030RC	102	0 1	ž	2	121	4	30	ī	2	2	0.2	0 64	0.69	36 27	15	23	à	201 2	2.30	5 6 5	50 0 047	0.15	4	1.30	0.12	0.11
BR 1031RC	61	0.1	ž	2	96	ź	46	ī	ĩ	2	0.2	0 80	0.86	44 34	16	26	10	289 2	2 / 9	5 5 6	58 0 046	0.10	4	1,21	0 12	0.10
BR 10328C	441	ñ â	2	2	296	7	37	â	2	5	0.2	0 71	0.00	54 37	10	20	10	201 2	2.40	5 1 5	55 0 040	0.10	4	1 24	0.12	0.12
BR 10338C	231	őź	36	à	484	2	52	ă	2	2	ñ Â	0.64	0.92	55 22	21	A A	12	201 2	2.22	0 4 7	57 0 045	0.10	- S - O	1 5 3 4	0.10	0.14
BR 1034BC	25	01	5	2	191	2	47	i	1	2	ñ 2	ດ້ຄື	n 9n	51 32	17	28	11	361 2	2.22	5 5 4	67 0 047	0.14	7	1 4 3	0.10	0.17
BR 10358C	75	0.1	4	2	129	2	59	î	1	2	0.2	1 08	1 14	40 30	20	20	13	100 2	2 2 4	5 5 9	75 0 045	0.10	<u>,</u>	1 64	0.12	0.12
BR 1036RC	94	0.1	4	2	144	2	55	2	1	2	0.2	0 70	0 92	51 31	22	32	11	408 2	2 71	5 4 5	65 0 044	0.12	ś	1.04	0.11	0.12
BR 1037RC	89	0.1	3	2	122	6	50	2	î	4	0.2	0 72	0.91	39 26	19	44	10	408 2	2 7 7	5 4 5	67 0 044	0.10	5	1.51	0.15	0.10
BR 1038RC	29	0.1	5	2	172	ĕ	50	2	î	2	0.2	0 69	0.91	45 28	17	28	10	209 2	2 61	5 4 0	67 0.046	0.15	5	1.90	0.13	0,10
BR 1039RC	84	0.2	14	2	158	Ğ	107	2	1	2	n 9	5 14	0.58	17 54	ī ģ	15	12	520 2	2 20	5 6 11	39 0 041	0.10	ř	1.37	0.00	0.09
BR 1040RC	175	0.3	11	2	171	5	51	3	ĩ	2	0 2	0 97	1 13	59 29	21	19	11	518 3	1 2 2	5 6 4	76 0 046	0.01		1 62	0.01	0.10
BR 1041RC	152	0.5	3	2	542	Ğ	40	ĩ	î	2.	0 4	1 50	0.75	63 109	12	19	11	342 3	222	5 1 2	76 0.040	0.10	6	2 10	0.10	0.14
BR 1042RC	120	0.9	6	2	1368	3	41	3	ĩ	3	0.2	1.53	0 78	53 125	12	14	11	285 2	71	5 1 2	92 0 059	0.11	ŝ	2.97	0.32	0.14
BR 1043RC	1896	1.1	8	2	961	2	35	2	ĩ	2	0.2	1 27	0 75	46 102	13	17	11	200 2	56	5 2 2	67 0 049	0.10	1	2.05	0,30	0.13
BR 1044RC	6426	11.6	592	5	1695	13	127	90	ī	29	0.6	1 24	0 72	40 99	11	19	â	325 4	17	5 1 7	81 0 059	0.10	7	2 35	0.20	0.00
BR 1045RC	218	0.3		3	653	2	53	1	2	2	0.2	1 64	0 65	42 118	11	Ŕ	11	360 2	, 72	5 2 3	91 0 061	0.00	Ā	2.33	0.25	0.12
BR 1046RC	119	0.3	25	2	365	5	38	2	1	2	0.2	1.54	0.56	58 128	11	13	10	339 2	21	5 1 2	65 0 049	0.07	5	2.01	0.30	0 12
BR 1047RC	804	1.1	15	2	1317	5	51	2	ī	5	0.2	1.36	0.93	75 121	12	22	12	342 2	à à à	5 1 2	87 0 051	0.09	Ă	2.39	0.39	0.12
BR 1048RC	200	0.4	7	2	484	6	40	1	1	2	0.2	1.26	0.66	53 87	8	12	îõ	327 2	51	5 1 2	84 0 056	0.12	1	2 06	n 27	0 12
BR 1049RC	53	0.1	7	2	209	5	41	1	1	2	0.2	1.09	0.55	67 87	11	14	10	333 2	38	5 5 3	103 0 055	0 13	5	1 97	0 28	0 14
BR 1050RC	118	0.2	4	2	276	4	55	1	1	2	0.2	1.48	0.94	59 76	12	17	12	499 3	37	5 2 3	99 0 069	0.16	5	2 30	0 25	0 14
BR 1051RC	39	0.1	7	2	175	4	53	1	1	2	0.2	1.29	0.95	62 56	10	25	12	419 3	46	5 2 3	93 0 067	0 14	7	2 13	0 17	0 15
BR 1052RC	252	2.9	24	2	2352	3	49	1	1	2	0.2	1.53	1.01	31 57	ĩĩ	17	15	405 3	63	5 2 3	103 0 070	0 12	÷	2 18	0 17	0.08
BR 1055RC	101	1.3	48	2	3611	7	54	3	1	7	0.2	1.24	0.94	51 80	13	29	20	289 3	47	5 2 3	98 0 064	0 16	à	2 36	0 25	0.17
BR 1056RC	32	0.1	2	2	96	3	41	3	3	3	0.2	0.57	1.11	46 27	14	30	14	436 3	16	ŝŝš	73 0 048	0 14	Ś	1 64	0.06	0 06
BR 1087RC	7338	2.6	449	2	1075	2	42	1	3	2	0.4	1.84	0.93	62 134	15	22	14	397 2	84	5 2 4	97 0 070	0 10	11	3 27	0.00	0 13
BR 1088RC	472	0.6	48	2	1031	2	121	2	1	2	0.9	1.52	0.93	1774 142	13	14	14	1967 3	. 46	5 1 3	85 0 055	0 10	îî	2 79	0.39	0 13
BR 1221RC	80	0.1	6	2	128	6	53	1	1	2	0.2	1.01	0.88	94 94	12	20	11	257 2	.82	5 1 2	93 0.056	0.16	12	2.08	0.34	0.38
BR 1222RC	98	0.1	5	2	140	2	42	ī	1	2	0.2	1,00	0.74	76 91	11	24	ĩõ	213 2	46	5 1 2	89 0.058	0.14	5	1.92	0.31	0.30
BR 1223RC	168	0.1	2	2	114	3	51	ī	1	2	0.2	0.95	0.87	104 86	11	21	11	248 2	.74	5 1 2	91 0.056	0.15	4	1 95	0.30	0 35
BR 1224RC	329	0.1	3	2	137	3	63	1	1	2	0.2	1.01	1.13	78 87	13	23	14	317 3	.21	5 1 2	98 0.063	0.15	6	2.17	0 29	0.22
BR 1225RC	62	0.1	2	2	92	2	41	1	1	2	0.2	1.43	0.92	55 127	- 9	17	11	330 2	. 54	5 1 2	87 0.075	0.11	ň	2.54	0.39	0 12
BR 1226RC	47	0.1	2	2	75	3	42	ī	1	2	0.2	1,38	0,92	53 132	8	21	īī	275 2	.56	5 1 2	78 0.078	0.11	š	2.54	0.42	0.10
BR 1227RC	98	0.1	9	2	99	3	35	1	1	2	0.2	1.19	0,87	42 97	6	15	10	248 2	46	5 1 2	132 0 067	0.10	6	2.19	0.29	0.07
BR 1228RC	76	0.1	101	2	41	2	51	2	1	2	0.3	0.66	1 14	36 57	22	28	24	757 5	.79	5 1 3	150 0 067	0.03	10	2 14	0 15	0.08

Page 2																									
-	Au	Ag	As Sb	Cu	Pb	Zn Me	0	W Bi	Cd	Ca	Mg	Ba Sr	Nİ	. Cr (Co	Mn	Fe	U Th 1	La	V P	Тi	в	Al	Na	ĸ
BR 1229RC	35	0.1	30	2 103	2	50	1	12	0.3	1.16	1.75	41 84	2	4 38	23	557	4.62	52	5	134 0.061	0.09	10	3.10	0.38	0.08
BR 1230RC	48	0.1	36	2 30	2	38	1	32	0.3	1.16	1.76	54 71	2	2 39	21	526	4.11	52	5	132 0.063	0.14	10	2,69	0.28	0.08
BR 1231RC	21	0.1	62	2 31	4	41	1	22	0.2	1.24	1.92	52 71	2	9 38	24	697	4.72	51	5	143 0.055	0.13	8	2,93	0.26	0.09
BR 1232RC	91	0.2	75	5 89	2	47	3	34	0.2	0.73	1.37	39 51	2	6 40	24	714	5.21	73	5	143 0.045	0.08	11	2.56	0.22	0.11
BR 1233RC	130	0.1	221 1	9 65	6	51 3	11	32	0.2	0.45	0.49	84 33	2	5 27	25	761	5.14	5 Z	7	84 0.055	0.01	25	1.18	0.06	0.17
BR 1234RC	43	0.1	192	5 98	4	33	7	12	0.2	0.56	0.53	56 38	2	1 28	18	617	4.08	51	6	90 0.054	0.04	25	1.25	0.14	0.12
BR 1235RC	25	0.1	51	2 52	7	32	1	12	0.2	0.70	0.72	53 56	2	1 40	19	558	4.26	51	6	109 0.058	0.07	19	1.67	0.24	0.11
BR 1236RC	385	0.1	83	2 70	3	52	3	32	0.3	0.53	0.92	55 38	2	4 37	27	899	5.70	92	5	115 0.059	0.05	22	1.89	0.10	0.12
BR 1237RC	21	0.1	18	2 73	5	53	Z	12	0.4	0.76	1.34	51 37	2	2 39	27	815	5.46	52	5	121 0.062	0.07	15	2.48	0.09	0.12
BR 1238RC	48	0.1	6	2 126	5	46	1	15	0.2	0.88	1.55	46 44	1	5 41	23	615	4.37	51	5	130 0.065	0.13	10	2.09	0.13	0,09
BR 1239RC	84	0.1	91	3 67	7	29	2	32	0.2	0.93	0.89	53 46	1	8 33	18	380	3.43	51	5	86 0.044	0.12	18	1.74	0.12	0.11
BR 1240RC	112	0.2	19	2 150	4	28	1	22	0.2	1.00	1.01	52 53	2	3 36	18	337	3.45	12 1	5	91 0.059	0.19	11	1.85	0.16	0.11
BR 1241RC	82	0.3	617 3	9 240	4	58 3	30	22	0.2	0.23	0.21	127 42	31	4 100	40	1439	6.44	52	9	52 0.035	0.01	21	0.76	0,01	0.20
BR 1242RC	19	0.1	377	6 196	4	63]	14	32	0.2	0.27	0.36	110 23	- 4	5 17	17	601	4.68	52	6	53 0.061	0.01	27	0.95	0.02	0.27
BR 1243RC	13	0.1	90	7 150	5	45	8	1 2	0.2	0.18	0.53	132 14	4	6 32	15	443	3.34	55	12	46 0.039	0.01	22	1.01	0.02	0.22
BR 1244RC	15	0.1	539 2	5 90	3	69	6	32	0.2	0.30	0.63	102 19	4	2 24	19	677	4.73	52	8	64 0.064	0.01	19	1.39	0.03	0.22
BR 1245RC	14	0.8	134	7 838	8	112	4	2 3	0.3	0,48	1.26	207 23	17	4 117	35	1529	5.72	53	11	91 0.088	0.11	8	1.91	0.07	0.40
BR 1246RC	8	0.1	124	/ 162	/	92	4	2 2	0.5	0.81	1.28	252 44	19	0 118	33	2043	5.37	52	10	97 0.095	0.13	20	2.11	0.12	0.33
BR 1247RC	6	0.1	176	4 77	11	100	5	2 2	0.2	0.24	0.76	167 18	6	7 52	21	1031	5.21	5 2	7	72 0.063	0.02	19	1.56	0.04	0.31
BR 1248RC	3	0.1	109	3 48	1	88	Z.	2 2	0.2	0.28	1.02	243 26	2	8 32	20	726	4.78	5 2	4	98 0.056	0.09	17	1.86	0.08	0.57
BR 1249RC	235	0.1	31	2 152	67	43	4	1 2	0.2	0.63	0.93	53 25	1	8 42	13	445	3.00	85	2	72 0.050	0.18	2	1.62	0.06	0.11
BR 1250RC	202	0.1	12	2 135	5	40	2	1 2	0.2	0.59	0,90	49 23	2	6 30	12	490	3.12	54	4	69 0 047	0.16	4	1.60	0.06	0,08
BR 1251RC	143	0.1	10	2 120	2	42	â	2 2	0.2	0.03	0.90	102 29	1	5 20	10	4110	2.59	5 5	5		0.10	2	1 42	0.00	0.00
BR 1253RC	97	ñî	á	2 124	ž	51	จั	2 2	0.4	0 66	0.97	38 23	1	7 19	12	505	2 95	5 6	6	71 0 047	0.18	8	1 61	0.00	0.10
BR 1254BC	549	0.8	4	2 256	4	36	ĩ	2 2	0.3	0.63	0.79	41 31	ī	2 25	11	334	2.56	5 4	5	63 0 047	0 19	4	1 44	0 08	0 10
BR 1255RC	468	0.1	2	2 182	2	39	2	2 2	0.2	0.65	0.83	38 31	1	4 27	īī	305	2.56	7 5	6	65 0.048	0.20	2	1.43	0.08	0.10
BR 1256RC	92	0.1	2	2 92	6	46	2	1 2	0.2	0.72	0.85	42 33	1	5 28	11	339	2.62	5 5	6	67 0.049	0.20	- Ã	1.50	0.08	0.11
BR 1257RC	237	0.1	7	2 138	3	34	3	22	0.2	0,59	0.78	78 32	1	5 41	12	335	2,58	55	5	65 0.047	0.21	3	1.38	0.09	0.16
BR 1258RC	96	0.1	6	2 136	2	40	1	22	0.2	0.54	0.78	82 30	1	626	13	440	2.69	54	5	65 0.047	0.21	2	1.32	0.09	0.17
BR 1259RC	1092	0.5	5	2 258	5	40	1	15	0.2	0.67	0.86	44 27	1	0 27	12	373	2.79	54	5	67 0.050	0.19	3	1.46	0.08	0.11
BR 1260RC	233	0.1	9	2 105	7	38	1	14	0.2	0.64	0.94	63 28	1	629	13	409	2.91	55	5	70 0.049	0.21	3	1.47	0.08	0.13
BR 1261RC	640	0.2	4	2 193	4	40	2	2 3	0.2	0.61	0.89	55 27	1	1 38	12	393	2.82	55	- 5	71 0.047	0.21	3	1.47	0,08	0.12
BR 1263RC	537	1.1	7.	2 1547	10	45	3	1 11	0.2	0.57	0.94	81 27	1	5 26	14	388	3.04	65	6	71 0.047	0.19	6	1.52	0.08	0.17
BR 1264RC	443	0.7	3.	2 419	5	52	6	1 2	0.2	0.60	1.02	59 28	1	5 30	14	394	3.18	5 4	5	76 0.050	0.19	8	1.65	0.07	0.12
BR 1265RC	141	0.2	6	2 140	6	42	2	1 2	0.2	0.6/	0.99	44 27	1	6 38	13	407	2.95	6 5	5	70 0.049	0.19	6	1.62	0.07	0.09
BR 1266RC	402	1.0	18	2 330	2	47	÷	1 2	0.2	0.54	1.00	40 22	1	ວ 28 ເ	1.3	465	3.22	5 5	6	72 0.050	0.17	5	1.61	0.06	0.09
BR 126/RC	151	0.1	71	2 144	4	41	1	2 2	0.2	0.37	0.96	46 20	1	2 28	11	435	3.02	5 4	5	68 0.043	0.15	6	1.01	0.00	0.10
DR 1200RC	202	0.3	14	2 224	7	40	1	1 2	0.2	0.70	0.81	40 31	1	4 27 7 10	12	256	2.10	5 4	2	76 0 047	0.13	3	1.32	0.00	0,10
BR 1285RC	203	1 0	12	2 559	ź	54	î	2 2	0.2	0.61	1 06	68 28	1	/ 12 8 37	13	431	3 25	5 4	5	82 0 051	0.21	2	1 76		0.15
BR 12878C	58	03	6	2 197	7	57	1	ĩả	0.7	0.82	1 06	109 40	2	0 43	13	437	3 19	5 7	5	99 0 062	0.25	2	1 71	0.00	0.15
BR 1288RC	676	0.5	5	2 226	7	51	ĩ	1 3	0.6	0.96	1.01	101 48	2	0 37	14	429	3,12	5 4	5	91 0 062	0.23	ĥ	1 69	0 11	0.20
BR 1289RC	84	0.4	2	2 158	ģ	62	ź	ĩž	0.7	1.11	1.06	78 50	ĩ	9 50	ĩ4	448	3.26	5 4	6	96 0.061	0.23	ĕ	1.83	0.11	0.16
BR 1290RC	279	0.3	7	2 225	3	52	1	1 2	0.4	0.83	1.01	78 37	1	4 34	13	430	2.72	5 3	5	78 0.071	0.21	6	1.57	0.09	0.12
BR 1291RC	824	1.3	21 3	2 3334	8	36	2	10 10	0.2	0.17	0.30	42 15		8 13	5	233	1.38	5 15	2	29 0.011	0.07	2	0.67	0.07	0.10
BR 1292RC	1470	2.3	6	2 1395	4	54	1	42	0.3	0.66	1.01	69 35	1	7 34	12	401	3.08	54	5	82 0.054	0.20	2	1.66	0.09	0.15
BR 1293RC	124	0.2	2	2 144	4	51	1	12	0.4	0.86	1.01	40 39	1	5 37	12	388	2.88	54	5	84 0.059	0.21	4	1.63	0.09	0.10
BR 1294RC	337	0.4	4	2 225	3	60	1	1 3	0.5	0.96	1.16	36 39	1	7 39	15	448	3.26	53	5	92 0.067	0.23	6	1.82	0.08	80.0
BR 1295RC	11	0.2	2	2 119	7	53	1	1 2	0.5	0.94	1.03	76 44	1	8 44	14	383	3.06	5 3	6	104 0.068	0.23	4	1.67	0.13	0.19
BR 1296RC	19	0.2	4	2 76	5	47	1	1 2	0.4	1.04	0.93	70 42	2	U 41	12	356	2.75	53	5	83 0.064	0.22	2	1.64	0.09	0.13
BR 129/RC	16	0.2	4 1	2 58	8	42	1	1 2	0.7	1,01	0.91	46 37	1	6 40 5 47	12	378	2.61	53	4	15 0.059	0.21	4	1.63	0.08	0.10
BK IZ98RC	4	0.1	J 1	<u> 70</u>	0	J T	1	1 2	U.J	0,00	1.03	8U 44		D 410	13	4 U Z	3.20	J J	Ð	97 U.UG3	0.23	3	1.02	0.11	0.13

Page 3																												
•	Au	Ag	As	Sb	Cu	Рb	Zn	Mo	W	Bi	Cd	Ca	Mg	Ba	Sr	Nİ	Cr	Co	Mn	Fe	UT	h La	V E	Tĺ	в	Al	Na	ĸ
BR 1299RC	12	0.1	2	2	60	5	51	1	1	3	0.3	0.91	1.01	50	47	16	38	13	326	2.82	5	36	91 0.06	1 0.19	3	1.63	0.13	0,17
BR 1350RC	587	1.1	32	2	691	3	55	8	1	3	0.7	0.81	1.11	114	37	20	35	10	372	3.14	5	65	69 0.04	4 0.19	10	1.85	0.18	0.22
BR 1351RC	290	0.4	1016	2	231	2	36	1	1	3	0.4	0,64	0,91	53	24	15	27	11	343	2.77	5	66	62 0.04	7 0.16	9	1,50	0.10	0.14

TALUS ROCK SAMPLES.

Deco 1																													
Page I	A 11	ħæ	he	sh	Cu	Ph	7 *	Mo	w	Бí	CA	C a	Mer	D a	C *	NE	Cr	60	Mn	Fo	.,	Th T	-	17 D		р	B 1	N-0	
DD 1050DT	114	ົ້	27	20	270	6	54	2	1	2	n 2	1 00	1 02	45	97	12	24	10	540	4 00	5	10 1	2 1		0 12	0	3 60	0 10	0 1 1
BR IUSORI	14	0.2	117	-	2.70	2	67	1		2	0.2	1 17	0.02	20	100	11	24	12	501	4.00	2	2	2 1	02 0.070	0.12	2	2 00	0.19	0.13
BR IUS9RT	163	0.0	113	4	322		20	Ť	1	2	0.2	1.1/	0.83	68	109	11	23	16	501	3.52	6	3	2	93 0.079	0.13		2.25	0.19	0.14
BR IU60RT	268	0.3	48	3	223	8	10	2	1	2	0.2	1.20	0.89	83.	119	12	19	+/	578	3./1	5	3	8	80 0.078	0.14	6	2.61	0.20	0.21
BR 1061RT	117	0.3	21	2	205	7	60	1	1	2	0.2	1,07	0.86	69	97	14	23	17	484	3.43	5	3	7	75 0.072	0.14	- 6	2.42	0,19	0.16
BR 1062RT	120	0.4	43	6	275	6	80	2	1	2	0.5	0.71	0,91	73	53	17	36	21	720	4.29	5	3	9	83 0.076	0,12	10	2.16	0.13	0.18
BR 1269RT	13	0.1	32	2	69	5	112	2	1	2	0.2	0.66	1.49	240	32	63	63	21	835	4.90	5	1	9	96 0.068	0.11	11	2.50	0.09	0.61
BR 1270RT	16	0.4	19	2	76	3	105	1	1	2	1.9	0.69	1.55	205	29	67	50	19	863	5.11	5	2	7	99 0.067	0.13	11	2.60	0.09	0.58
BR 1271RT	4	0.3	13	2	73	13	73	2	1	2	0.5	0.55	1.05	305	27	50	50	13	828	3.66	5	3	9	67 0.052	0.09	12	1.71	0.06	0.44
BR 1272RT	7	0.3	19	2	88	5	77	3	1	2	0.5	0.48	0.97	200	21	63	49	15	943	3.80	5	3 1	0	62 0.042	0.06	15	1.54	0.05	0.31
BR 1273RT	6	0.3	35	2	98	4	74	3	1	2	1.2	0.44	0.91	188	23	63	62	18	960	3 98	ŝ	3	9	63 0 039	0.08	12	1 49	0 06	0 24
BR 1274RT	350	0.3	16	2	202	ż	64	ĩ	ī	2	03	0 93	0.84	75	73	13	28	14	490	2 22	š	2	6	77 0 067	0 14	7	2 10	0.17	0 17
DR 1274RI	242	n 3	10	2	231	7	50	1	1	2	0.3	1 01	0.84	71	79	12	26	15	192	2 20	š	2	6	79 0.067	0.15	Ġ	2 11	0.17	0 16
DA 12/JA1	110	0.5	50	2	201	é	50	1	1	5	0.5	1 01	0.04	60	01	12	24	1.4	102	3.29	5	5	č	91 0 060	0.10	7	2.11	0.17	0.10
BR 1270RI	112	0.3	20	2	223	14	63	1	1	2	0.5	1 25	0.75	60	21	11	24	15	400	3.20		2	5	01 0.009	0.19	1	2.27	0.20	0.10
BR 1277RI	190	0.4	90	2	302	14	63	÷	Ţ	2	0.2	1.23	0.00	60	20	11	29	10	472	3.21	2	2	2	91 0.075	0.13	6	2.29	0.18	0.12
BR 1278RT	116	0.5	13	2	278	1	57	1	1	4	0.3	1.12	0.71	61	95	10	21	12	462	3.17	5	2	6	83 0.078	0.12	6	2.1/	0.18	0.11
BR 1279RT	331	0.6	91	2	41/	9	70	1	1	2	1.4	1.08	1.06	68	83	15	31	17	618	4.05	5	2	6 1	08 0.072	0.14	5	2.49	0.16	0.13
BR 1280RT	134	0.6	91	2	395	8	65	1	1	2	0.7	1.12	0.99	64	84	14	31	15	497	3.65	5	2	61	03 0.070	0.14	6	2.29	0.17	0.13
BR 1281RT	16	0.3	24	2	143	8	90	3	1	2	1.1	0.29	0.88	160	20	48	62	19	878	3.79	5	3	9	75 0.038	0.12	6	1,56	0.05	0,35
BR 1282RT	12	0.2	19	2	123	7	77	1	1	2	0.3	0.44	0.91	135	18	42	47	13	736	3.27	5	4	8	72 0.032	0.12	6	1,66	0.06	0,30
BR 1283RT	5	0.2	43	2	91	2	77	2	1	2	0.5	0.46	0.81	242	21	56	42	15	940	3.49	5	3	9	56 0.037	0.05	13	1.37	0,05	0.25
BR 1284RT	6	0.2	56	2	85	12	93	4	1	2	0.7	0.81	0.55	289	29	39	30	15	985	3.75	5	31	1	53 0.038	0.03	13	1.13	0.04	0.28

1071T 1076T 1077T 1303T 1304T 1304T 1305T 1306T 1307T 1308T 1309T	Page 1 NORTH EAST 1000 1050 1000 1050 1000 1250 1000 1350 1000 1450 1000 1550 1000 1550 1000 1600 1000 1550 1000 1600 1000 1650 1000 1700 1000 1700 1000 2150 1000 2100 1000 2200 1000 2200 1000 2300 800 1000 800 1000 800 1000 800 150 800 1400 800 150 800 1550 800 1550 800 1550 800 1550 800 1550 800 1550 800 15
5 28 43 92 534 546 534 210 177 187 224	Au 22 32 12 34 624 237 38 16 14 32 47 332 47 332 47 332 47 332 47 332 15 56 268 192 268 189 587 739 2672 324 31 58 95 739 72 2672 324 198
0.1 0.5 0.3 0.2 0.7 0.4 0.2 0.2 0.2 0.4 0.5 0.2	Ag 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
25 50 37 35 88 125 115 64 64 48 40	As 302 111 122 122 122 122 122 122 1
51 29 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	s2222222222222222222222222222222222222
102 152 156 162 885 868 673 507 456 482 291	Cu 112 183 127 110 81 83 139 105 171 25 26 17 14 560 207 986 315 387 387 387 195 137 195 138 109 275 180 338 109 275 180 338 109 275 180 100 275 180 275 180 275 267 180 275 267 275 267 275 267 275 267 275 267 275 267 275 267 275 275 275 275 275 275 275 275 275 27
2 10 9 7 5 9 6 2 3 7 7	Pb2376452224324807576669 53223554224424076666
47 89 91 72 70 73 76 81 80 103	2n79961 86257583444228 142564259156127700858886124 1883294
3 2 5 1 2 1 1 1 1 1	M 6 2 3 2 3 2 1 2 1 2 1 1 1 7 2 1 3 1 1 3 3 3 4 2 2 1 1 3 3 3 2 1 2 2 2 1 1 4 4 2 5
1 4 1 3 1 1 3 1 1 1 1	W111111111111111111111111111111111111
2 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 2 2	313242222222222222222222223432222222223422462222
0.4 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	
12.45 0.16 0.82 0.56 0.11 0.21 0.33 0.14 0.15 0.19 0.14	Caa 0.286 0.37 0.29 0.13 0.15 0.15 0.227 0.227 0.228 0.227 0.228 0.227 0.228 0.227 0.228 0.227 0.222 0.227 0.222 0.221 0.220 0.221 0.220 0.220 0.221 0.220 0.221 0.220 0.221 0.221 0.221 0.220 0.2210 0.221 0.221 0.2210 0.2110 0.2210 0.2110 0.2210 0.2110 0.2210 0.2110 0.22110 0.22110 0.2110 0.22110 0.2110 0.22110 0.2110 0.22110 0.2110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22110 0.22100 0.22110 0.22110 0.2210000000000
0.18 0.73 0.96 1.05 0.88 1.04 1.04 1.03 1.54 1.03 0.82	$\begin{array}{c} Mg\\ 0.738\\ 0.991\\ 0.773\\ 0.773\\ 0.773\\ 0.773\\ 0.773\\ 0.773\\ 0.773\\ 0.773\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.771\\ 0.772\\ 0.771\\ 0.772\\ 0.773$
14 118 88 118 89 97 104 120 168 226 124	Ba 999 104 101 976 828 584 81 37 952 118 64 105 98 125 119 125 119 125 119 125 119 125 119 125 119 125 119 125 119 125 119 125 105 105 105 105 105 105 105 105 105 10
34 24 100 50 19 21 30 21 20 22 21	Sr 479 578 229 223 14 2477 225 163 274 227 225 461 220 2247 229 2247 225 461 220 2247 269 274 1627 169
12 31 37 36 59 49 58 120 148 85 80	N187422024114565127977589089346551162116
1 41 38 83 51 53 60 87 134 72 60	C455048726538222104433863727551163844656578165919
5 15 23 22 15 14 17 24 16 16	Colling and the second
1561 1406 725 900 280 380 519 261 310 360 411	Mn 6163 10887 4562 38284 42045 4262 42045 41275 2175 4747 25593 4262 41275 59364 4157 2175 4743 25593 3242 3322 3327 45651 99 3006 2151 421
4.30 4.41 5.32 4.65 4.15 4.31 4.01 3.82 4.53 4.16 4.05	Fe7 4.47 5.170 3.4294 3.567 1.330 3.57 1.370 3.507 1.370 3.570 1.370 3.570 1.370 3.570 1.370 3.570 1.370 3.570 1.370 3.570 1.1700 1.570 1.1700 1.1700 1.1700 1.1100 1.110 1.1100000000
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	US555555555555555555555556095555555555555
1 4 6 10 10 13 8 11 6 8 6 13 5 12 4 7 5 8 5 11 5 10	n24952344231114258212327851643565557114517 L6758757766553577745279077886556666666548759
14 0.007 79 0.096 93 0.077 87 0.070 69 0.045 72 0.060 68 0.090 73 0.048 84 0.036 79 0.050 73 0.078	$\begin{array}{ccccc} y & p \\ 94 & 0.085 \\ 95 & 0.112 \\ 99 & 0.112 \\ 72 & 0.070 \\ 75 & 0.126 \\ 69 & 0.078 \\ 73 & 0.093 \\ 70 & 0.078 \\ 67 & 0.105 \\ 10 & 0.059 \\ 28 & 0.079 \\ 38 & 0.051 \\ 36 & 0.072 \\ 38 & 0.051 \\ 36 & 0.072 \\ 38 & 0.053 \\ 38 & 0.102 \\ 34 & 0.056 \\ 62 & 0.046 \\ 75 & 0.078 \\ 70 & 0.119 \\ 97 & 0.076 \\ 10 & 0.076 \\ 70 & 0.118 \\ 70 & 0.078 \\ 70 & 0.138 \\ 70 & 0.078 \\$
0.01 0.07 0.11 0.12 0.09 0.11 0.13 0.12 0.15 0.14 0.11	Ti 0.13 0.17 0.14 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
8 10 11 8 4 3 2 2 3 4 3	B33433 2242222233452223422222223333343228927
0.20 3.14 2.72 1.67 3.11 2.17 1.96 3.26 3.36 2.43 3.28	A1 3.156 4.009 3.185 3.120 3.185 3.1200 3.120 3.12000 3.12000 3.1200 3.
0.01 0.02 0.17 0.05 0.02 0.02 0.02 0.02 0.02 0.02	Na 0.032 0.023 0.024 0.022 0.022 0.022 0.025 0.025 0.020 0.025 0.020 0.025 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.032 0.035 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.033 0.032 0.033 0.035 0.033 0.033 0.033 0.035 0.035 0.033 0.033 0.030 0.035 0.033 0.030 0.033 0.030 0.030 0.033 0.030 0.033 0.030 0.030 0.033 0.030 0.000 0.000 0.0000 0.00000000
0.06 0.11 0.10 0.05 0.06 0.08 0.13 0.06 0.09 0.13 0.06	K 0.07 0.08 0.08 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05
 78 90 78 100 215 225 100 110 160 115	WEIGHT 122 110 65 90 125 135 140 110 105 70 115 85 90 90 100 40 120 130 160 70 100 100 100 100 100 100 100

SOIL SAMPLES
Page 2								-						_			-						-		-				
NORTH EAST	Au	Ag	As	sb	Cu	Pb	Zn	Mo	W	Bi	Cd	Ca	Mg	Ba	Sr	N1	Cr	Co	Mn	Fe	U Th La	v	P	T1	в	AL	Na	K	WEIGHT
13101	217	0. 4	46	2	381	7	60	1	1	2	0.2	0.12	0.93	119	20	78	67	16	261	3.79	558	72	0.044	0.12	5	2.78	0.02	0.07	115
13117	329	0.1	46	2	373	8	66	1	1	2	0.2	0,28	1.02	144	27	78	64	16	474	3.82	5 4 12	70	0.090	0.12	3	2.28	0.02	0.12	120
12124	61	0.3	1268	3	132	4	66	13	1	2	0.2	0.44	1.01	106	42	114	70	42	1867	7.88	549	147	0.037	0.04	10	4.32	0.03	0.10	79
12201	517	0 2	50	2	316	7	55	2	ĩ	2	0.2	0.35	0.69	54	35	22	30	12	387	3.01	7 3 5	72	0.053	0.18	7	1.60	0.07	0.12	
13291	317	0.2	44	7	404	15	110	ĩ	ž	5	0.6	0 96	1 69	131	94	37	58	32	985	5 47	5 5 12	120	0 111	0.21	5	2.76	0.09	0.25	30
13391	208	0.5	44	1	404	15	110	5	2	5	0.0	0.20	1.00	101		e é	EC	22	1202	5 74	E 4 10	112	0 110	0 17	č	2 40	0.07	0 2 2	50
1340T	116	0.2	23	3	358	17	129	2	1	2	0.4	0.12	1.70	121	94	22	20	32	1387	5./4	5 4 12	112	0,110	0.17	2	3.40	0.07	0.22	63
13417	376	0.1	37	2	548	9	105	2	1	2	0.2	0.59	1.39	107	36	33	45	29	1119	6.44	5 10 11	111	0,106	0.14	7	2.28	0.03	0.12	71
12427	248	0.1	34	2	369	9	80	1	1	2	0.2	0.47	1.19	102	54	27	38	24	872	4.97	5 9 10	90	0.085	0.13	5	2.03	0.03	0.09	60
1 342 1	240		24	-	001	-		-	~	-						_		-											

· · ·

CORE SAMPLES

· · · ·

ĺ

Page 2	گ 11	Ārr	Ac	Sb	C»	Ph	2 n	Mo	W	Bİ	60	Ca	Ma	Ra Sr	NI	Cr	60	Ma	Fo		ጥዜ ነ	r -	V D	T 1		. 1	N-	
BD 15530	410	n ě	43	2	1128		46	1	1	5	n 2	2 12	A	20 100		12	14	240	2 05	5	10 1	2	50 0 050		5	2 70	Na	~ K
DR 15550	1410		17	5	1110	5	44		-	± .	0.2	2.72	0.00	20 100		12	19	340	2.93	5	Ţ	3	20 0.039	0.04		2.19	0.25	0.15
RK 1004C	1640	1.1	11	2	1240	3	40	1	1	10	0.2	2.11	0.69	22 172	Þ	16	12	252	2.43	6	1	4	71 0,058	0.09	6	3.03	0.35	0.12
BR 1555C	210	0.3	2	2	427	5	30	1	1	2	0.2	1.71	0.48	32 99	4	9	10	180	1.83	5	1	2	56 0.043	0.09	8	2.57	0.29	0.07
BR 1556C	300	0.6	2	2	499	3	29	1	1	5	0.2	1.79	0.45	32 111	8	7	9	179	1.86	5	1	2	67 0.051	0.10	6	2.67	0.31	0.06
BR 1557C	220	0.4	2	2	329	2	28	1	1	5	0.2	1.65	0.51	34 106	8	12	7	185	1.71	5	1	ā	59 0.043	0.10	5	2.50	0 32	0.00
BR 1558C	480	6.2	7	52	1894	4	52	2	1	14	0.2	1.60	0.71	39 94	10	13	11	217	2 50	5	7	3	79 0 051	0.08	ğ	2 73	0.28	0 10
BR 1559C	210	0.7	5	2	633	5	26	1	1	10	0.2	1.75	0.50	41 112	-7	- q	Â	176	1 68	5	1	3	55 0 057	0.00	11	2 62	0.20	0.10
BR 1560C	260	n 4	ž	2	492	5	29	ī	ī	- ž	n 2	1 16	0.67	23 73	i	15	īΩ	100	2 11	š	2	2	57 0 046	0.09	1	1 00	0.33	0.07
DR 15000	1.00		5	2	505	Š	àć		-	-	0.5	1 67	8- 9 f	23 13	÷.	13	10	1 9 9	4.91	5	3	3	57 0.040	0.12	4	1.90	0.10	0.03
RK 1201C	100	0.5	2	- 2	525	2	30	1	T	5	U.2	1.5/	0.45	31 97	5	9	8	195	1.77	5	1	3	52 0.054	0.09	4	2.42	0.28	0.07
BR 1562C	430	0.9	3	2	866	3	37	1	1	9	0.2	1.68	0.52	40 103	5	10	9	217	1.95	5	1	3	56 0.058	0,09	6	2.52	0.30	0.08
BR 1563C	490	1.3	2	2	1036	6	38	1	1	6	0.2	1.67	0.46	37 104	3	10	9	203	1.81	5	1	3	52 0.056	0.09	9	2.50	0.31	0.08
BR 1564C	420	0.8	2	2	843	7	42	1	1	4	0.2	1.73	0.59	26 101	1	9	10	250	2.17	5	1	3	59 0.058	0.09	4	2.58	0.29	0.07
BR 1565C	380	0.9	43	4	1677	4	53	2	1	11	0.4	0.92	0.45	32 53	7	8	7	242	2.03	5	9	4	55 0.036	0.02	6	1.63	0.15	0.14

•

Appendix II

Rock Sample Description

ROCK DESCRIPTIONS

Sample	Description
BR 1000R	Chip (20cm), traces of hydrothermal quartz in faulted/sheared granodiorite, iron oxide on fracture surfaces, no visible sulphides.
BR 1001R	Float - grey-white rhyolite brx?, chert, some fine graphite stringers and quartz veinlets (1-3mm).
BR 1002R	Quartz diorite - grab - fresh granodiorite with minor sulphide mineralization along expansion cracks, Py, Cpy, ±Born. Malachite stain along fracture.
BR 1003R	Chip (1m) - representative chip across quartzite lens within Bridge River chert - rusty limonite stain.
BR 1004R	Grab - joint/fractured granodiorite. Fresh surfaces show malachite stain which is not obvious on weathered surfaces. Strike of fault/fracture 040°. Sulphides mainly Cpy (1<% Cpy).
BR 1005R	Chip 6cm - high grade sample containing 1 to 2cm mineralized veinlet with Cpy, Born., \pm Py. Host rock granodiorite, very little weathering, alteration, but malachite stain on fresh surfaces. Veinlets follow jointing 080/60S 10m from sample 1004R.
BR 1006R	Float - hydrothermal quartz boulder. Open space filling, drusy quartz. Malachite stain. Blebs of Cpy, Born.
BR 1007R	Grab o/c - granodiorite fairly altered. Minor oxide stain on weathered surfaces.
BR 1008R	Chip - 1m - similar to 1007R. Alteration is even more pronounced 10m from 1007R.
BR 1009R	Float boulder - 50cm dia. Ultrabasic heavily foliated, serpentine on many surfaces trace to 1% Py disseminated.
BR 1010R	Float - boulder talus (0.5-1.5m) thin (1cm) quartz veinlet and envelope contain minor Cpy, \pm malachite stain.
BR 1011R	Continuous chip (5m) - chips are taken perpendicular to strike with the objective of detecting mineralization in the jointing. It should be noted that the best (most obvious) mineralization is sampled with a high grade sample across joint width.
BR 1012R to BR 1017R	Chip (5m).
BR 1018R	Chip (8cm) - aplite dyke in host granodiorite. Some rust, iron oxide stain, trace Py - dyke orientation. 95/50N.
BR 1019R to	

BR 1028R Chip (5m) - continuous chip granodiorite.

Page 2

Sample

Description

BR 1029R Continuous chip (5m) - taken perpendicular to joint structure (070/54S).

BR 1030R to

- BR 1038R Chip (5m) as above.
- BR 1039R Chip (12cm) carbonaceous brx vein 1cm contained within crosscutting joint 085/28N.
- BR 1040R Chip (5m) continuous chip at highest point on north side of talus slide.
- BR 1041R to Chip (5m) continuous chips across an area of siliceous veining associated with BR 1052R joint structure. This series tends to cross mineralized jointing noted in 1005R.
- BR 1053R High grade grab from mineralized joint/shear (30cm). Joint attitude 043/55E. Sulphide contained Cpy, Born. (5-10%).
- BR 1054R High grade grab within sample 1044R. Sample contains high density at microfractures (1mm) filled with malachite calcite. Width of shear fractures (30-45cm). Shear attitude 060/56S. Sulphide mineralization Cpy 1-5%, ±Born., Py <1%, vuggy qtz.
- BR 1055R Chip (5m) continuous chip, last in sequence ending with 1052R.
- BR 1056R Chip (5m) taken across barren, granodiorite med. to coarse grained. Joint structure 078/68S.
- BR 1057R Float, dark coarse grained granodiorite. Rusty, weak carbonate alteration with pyrite chalcopyrite finely disseminated.
- BR 1063R Select sample across 15cm quartz carbonate vein rusty on weathered surfaces, some blebs of pyrite centre of vein, has vuggy quartz, 098/90S.
- BR 1064R Chip sample across two parallel calcite veins each 6cm wide, some malachite stain on fracture surfaces, 110/20N.
- BR 1065R Select sample of quartz carbonate veins, no visible sulphides, 88/142N.
- BR 1066R Select sample of 7cm quartz carbonate vein, visible coarse gold, chalcopyrite and pyrite.
- BR 1067R 2.5m chip over 1066R vein. Chip comprises host rock (granodiorite) and selvage, vein material not included.
- BR 1069R 1.5m chip quartz carbonate altered granodiorite, no visible sulphides.
- BR 1070R Select sample of a 50cm quartz vein contains blebs of pyrite, chalcopyrite with malachite on fractures, 082/66S.
- BR 1071R Chip sample across 30cm quartz carbonate vein, no visible sulphides.

<u>Sample</u>	Description
BR 1072R	Select sample of 20cm quartz vein, patches of malachite 014/32E.
BR 1073R	1m chip sample across weak stockwork of quartz carbonate veinlets.
BR 1074R	1m chip sample across aplitic dyke, some blebs of pyrite.
BR 1075R	Hornfelsed granodiorite along 1074 dyke, some blebs of pyrite.
BR 1079R	2m chip sample across rusty quartz-carbonate altered granodiorite zone contains stringers of quartz and chalcopyrite.
BR 1080R	Select sample from 5m ² quartz-carbonate altered granodiorite zone contains veins up 30cm, no visible sulphides.
BR 1081R	1.5m chip over intensely silicified granodiorite, rusty surfaces show a trace of pyrite.
BR 1082R	Select sample over 20cm includes 5cm quartz-carbonate vein with patches of malachite, azurite, 118/34N.
BR 1083R	1m chip across quartz flooded granodiorite zone contains several subparallel quartz veins from less than 1cm to 8cm wide. No visible sulphides.
BR 1084R	Select sample of bull white qtz. from within 3m zone of quartz-carbonate altered granodiorite.
BR 1085R	Select sample from bull white 10cm wide quartz vein, blebs of pyrite, chalcopyrite with patches of malachite.
BR 1086R	Select sample of 3cm massive arsenopyrite vein.
BR 1087R	5m chip - resample 1043R.
BR 1087R	5m chip - resample 1044R.
BR 1089R	Float 2cm grey sulphide vein.
BR 1090R	Select sample from 30cm wide quartz-carbonate altered granodiorite, some disseminated pyrite.
BR 1091R	Select sample of 15cm quartz vein contains blebs and stringers of chalcopyrite.
BR 1200R	Very rusty granodiorite, fine grained with abundant biotite, pervasive malachite stain (float).
BR 1201R	Medium grained granodiorite with 1cm wide quartz vein some blebs of pyrite
BR 1202R	Rusty granodiorite argillically altered (float).
BR 1203R	0.8m wide shear in granodiorite, extreme argillic alteration.

- -

Sample	Description
BD 1204D	20cm wide shear clay altered 160/30W trace of original fabric
DK 1204K	20cm whice shear chay anched 100/30W, trace of original fublic.
BR 1205R	20cm wide shear clay altered 165/60W.
BR 1206R	10cm wide shear clay altered 135/55W.
BR 1207R	5cm wide shear clay altered 140/65W, some relict fabric.
BR 1208R	3cm quartz veinlet with disseminated pyrite and chalcopyrite, malachite stain.
BR 1209R	0.45m wide shear, granodiorite very bleached and with argillic alteration. No visible sulphides. Rusty along microfractures. 094/88S
BR 1210R	Fresh granodiorite with fracture filling of biotite, chalcopyrite and malachite.
BR 1211R	Medium grained granodiorite hornblende > biotite with some blebs of chalcopyrite and malachite and fracture surface.
BR 1212R	20cm wide felsic dyke very silicified and fine grained, some blebs of pyrite 145/25E.
BR 1213R	5cm felsic dyke, very siliceous, some free quartz 060/90.
BR 1214R	30cm wide shear in granodiorite, very bleached, coarse grained on fresh surface, some free quartz and malachite, 090/80S.
BR 1215R	0.45m shear, no visible sulphides, 072/45N.
BR 1216R	0.5m shear with argillic alteration, no visible sulphides, 072/67S.
BR 1217R	Granodiorite rock weathered surface orange, fresh surface very clean.
BR 1218R	.04m veinlet (shear), some blebs of chalco and malachite. Sample across 40cm, 115/25S.
BR 1219R	Granodiorite, malachite and chalco occurs along parting. Sample across 10cm.
BR 1220R	Altered granodiorite along joint face, fine blebs of chalco and malachite.
BR 1221R to BR 1223R	5m chip across dark granodiorite.
BR 1224R	5m chip across sheared granodiorite malachite, stain on fractures, some blebs of pyrite and chalcopyrite.
BR 1225R to BR 1226R	5m chip across fresh granodiorite. No visible sulphides.
BR 1227R	"C" Horizon bedrock contact, granodiorite is extremely altered and bleached weakly to clay, 5m chip, 135/45E.

Rock Descrip	tions (cont'd.) Page 5							
<u>Sample</u>	Description							
BR 1228R to BR 1231R	5m chip sample across fresh granodiorite, some malachite stain, weak clay alteration.							
BR 1232R	5m around shear sample 1207.							
BR 1233R to BR 1235R	5m chip sample, taken over (1206) 1233 (1205) 1234 (1204) 1235							
BR 1236R to BR 1238R	Fine grained granodiorite, very mafic, 5m chip samples. 1238 ends in "B" horizon with chert in soil above.							
BR 1239R to BR 1240R	5m chip samples in medium grained fresh granodiorite, no visible.							
BR 1241R to BR 1242R	5m chip sample through subcrop of weathered chert.							
BR 1243R to BR 1244R	5m chip sample of black and green silicified chert, some blebs of pyrite.							
BR 1245R	5m rusty chert, has been silicified, shows weathered malachite and pyrite.							
BR 1246R BR 1248R	5m chip rusty chert.							
BR 1249R to BR 1252R	5m chip across fresh granodiorite.							
BR 1253R	5.5m chip across fresh granodiorite.							
BR 1254R to BR 1261R	5m chips across fresh granodiorite							
BR 1262R	2cm wide quartz vein with open space filling of malachite, weathered sulphides, bornite, chalcopyrite, 62/40S.							
BR 1263R to BR 1268R	5m chips, fresh granodiorite (includes sample 1262)							
BR 1269R to BR 1284R BR 1285R	Talus samples. 5m chip sample over fresh granodiorite, contains 6cm felsic dyke, 1cm qtz vein.							
BR 1286R	5m chip contains 2cm quartz vein.							

BR 1287R to BR 1288R 5m chip samples, fresh granodiorite.

C	Description
<u>Sample</u>	Description

BR BR	1289R to 1290R	5m chip samples, fresh granodiorite.
BR	1291R	15cm felsic dyke, some blebs of pyrite, 35/70S.
BR	1292R	5m chip samples, granodiorite contains several crosscutting dykes and veinlets, all 2cm wide or less.
BR BR	1293R to 1299R	5m chip sample over fresh granodiorite.
BR	1300R	1m chip sample across 10cm felsic dyke, no visible sulphides, 85/40N.
BR	1301R	Felsic dyke predominantly plag with some mafic pheno's, some patches of quartz, sample over 0.5m.
BR	1302R	Calcite shear approx. 2m wide, sample over 2m.
BR	1313R	10cm shear in granodiorite, selective.
BR	1314R	3m chip over rusty weathered shear in granodiorite.
BR	1315R	3m chip across very rusty granodiorite disseminated Py, Cpy, granodiorite coarse grained, high percentage of hornblende w/glassy quartz.
BR	1316R	2m chip across very rusty granodiorite disseminated Py, Cpy.
BR	1317R	2m chip across rusty coarse grained granodiorite, a few blebs of Py, less hornblende than 1315, 1316, more quartz, 100/85N.
BR	1318R	1m select sample of rusty granodiorite, rust has obscured fabric.
BR	1319R	1m wide rusty zone of granodiorite, coarse grained, malachite stain on joints, 40/52E.
BR	1320R	2cm shear with pervasive malachite stain, sample over 40cm.
BR	1321R	2cm shear malachite vein in medium grained granodiorite, 40/56E.
BR	1322R	Grab of sulphide rich (pyrite, chalcopyrite) patch in medium grained granodiorite, rare quartz partings.
BR	1323R	Granodiorite bloc (0.5m) with rusty joints spaced at 0.5-1cm.
BR	1324R	Fragments of chalcedonic quartz veinlets in strongly weathered (altered) granodiorite.
BR	1325R	Orange crumbly (carbonate altered) weathered granodiorite.
BR	1326R	Granodiorite with dense jointing (quartz and sulphides), chip 30cm (N70/90-45S).

_

<u>Sample</u>

Description

- BR 1327R Aplitic dyke with patches of quartz-sulphides; 20cm wide, N100/70S.
- BR 1328R Boulder of Cu-stained granodiorite.
- BR 1330R 40cm chip over 15cm qtz carb. vein. Resample 1066.
- BR 1331R 40cm chip over same as 1066.
- BR 1332R 3m chip across carbonate altered granodiorite disseminated Cpy. Duplicate 1067.
- BR 1333R 50cm chip across qtz. carb. altered granodiorite, some blebs, Cpy w/minor malachite stain. 15m above 1066.
- BR 1334R 70cm chip across carb. altered granodiorite.
- BR 1335R 30cm chip across 15cm vein of qtz. carb., some blebs malachite, 70/50N.
- BR 1336R 1m chip over carbonate shear, 25/32S.
- BR 1337R 40cm hip over 15cm qtz. vein with pervasive malachite stain. Disseminated Py in granodiorite selvage, 80/60S.
- BR 1338R 30cm chip across 10cm qtz. carb. vein, 90/50N.
- BR 1343R 30cm chip over 10cm qtz. carb. vein.
- BR 1344R 50cm chip over 15cm qtz. vein, 100/60N.
- BR 1345R 50cm chip carbonate shear.
- BR 1346R 1m chip of carbonate altered granodiorite with small parallel qtz. veinlets.
- BR 1347R 1m chip across carbonate altered granodiorite w/flatlying qtz. carb. veinlets.
- BR 1348R 50cm chip across 50cm albite dyke.
- BR 1349R Carb. altered granodiorite, 60cm sample.
- BR 1350R Resample 1022R, 5m chip.
- BR 1351R Resample 1259, 5m chip.
- BR 1352R Resample BR 146/147, 2m chip.
- BR 1353R 2m chip of silicified granodiorite.
- BR 1354R Carbonate altered granodiorite with small calcite and qtz. veinlets, blebs of Py.

Appendix III

Check Analyses For Au

CHECK ANALYSES FOR AU

Core samples with more than 1g/t Au (1535, 1542, 1548, and 1555) were re-analyzed by F.A. and A.A. Significant differences were found on the first check analyses, so further verifications were made both with Acme and Bondar-Clegg (Table 1).

To test if the variability of the results in Table 1 are due to coarse, gold metallics analyses were carried out on the three samples having sufficient rejects:

	Sample wt. gm.	Au -100 ppb	Native Au 	Avg. ppb
1535	640	1646	31	1680
1548	430	926	0	926
1554	790	1337	25	1362

The "nugget effect" observed in Table 1 does not appear to be related to the presence of coarse native gold. It may, however, be due to the high gold content of sulphides which occur in coarse grains.

Check analyses were also done on surface samples including some on pulps and rejects from the 1991 sampling (Table 2). Similar variability is seen irrespective of laboratory or analytical method.

Check analyses were done at the same time on samples from another project with a different type of Au mineralisation, the variability is much less pronounced, differences between analyses being usually in the 10% range (for analysis of 1-5 g/t Au). This suggests that the variance shown in Table 1 and 2 is most probably inherent to the mineralisation on Walker Ridge, a nugget effect.

Table 1:	Check	Analyses	for Au	in	Core Samp	les
----------	-------	----------	--------	----	-----------	-----

Sample Nu	ımber	1535	1542	1548	1554
		Au ppb	Au ppb	Au ppb	Au ppb
<u>Acme</u>					
A./	A. (50g)	1440	5000	1070	1640
A.4	A. (20g)	1166	5315	1132	857
F.A	A. (1 A.T.)	1646	2983	754	823
Α./	A. (10g)	$ 1870 \\ 2040 \\ 1010 \\ 3120 \\ 1620 \\ 7750 \\ 1830 \\ 1390 \\ 2610 \\ 2230 $	1650 2980 2470 2890 1630 2490 2460 2710 2440 2150	810 1010 740 1730 750 1070 830 810 710 1000	580 910 530 870 470 530 560 1350 520 590
F.A	м. (10g)	1397 1462 1667 2013 2521 2752 2946 2161 4293 1725	2911 2594 5428 4757 3249 3604 2844 6162 2276 2643	961 808 852 922 744 1002 1640 742 734 1606	790 885 589 542 532 501 495 568 493 665
Bondar-C	legg				
F.A	A. (30g)	1614 1202	4455 5231	741 996	4113 1939 1252 6074
n x Ma Mi Sto	n. l. Dev.	25 2219 7750 1010 1367	25 3333 6162 1630 1285	25 967 1730 734 290	27 1099 6074 470 1239

	Acme		Bonda	r-Clegg	
Sample Number	<u>A.A. (50g)</u>	<u>F.A. 1</u> (30g)	<u>F.A. 2</u> (30g)	<u>F.A. 3</u>	<u>F.A. 4</u>
	Au ppb	Au ppb	Au _ppb_	Au ppb	Au _ppb
1022	3702	1476	2121	2172	1998
1043	1896	2017	1226	1250	1234
1044	6426	5187	6636	4039	5252
1047	804	5369	1005	925	836
1053	3336	2353	162	2064	4185
1055	101	158	-	146	-
1213	6672	6188	5211	-	-
1214	1176	1014	1101	-	-
1259	1092	949	1242	-	-
1292	1470	1179	1322	-	-

Table 2: Check Analyses for Au in Surface Samples

			Acme		
	A.A. 1	A.A. 2	A.A. 3	F.A. 1	F.A. 2
	(50g)	(20g)	(10g)	(20g)	(20g)
	Au	Au	Au	Au	Au
	ppb	ppb	ppb	_ppb_	_ppb
42 49 309 309A	2060 6233 2027	3710 3860	2316 2226	2450 8164 2190	2679 - -

Appendix IV

Drill Logs

CE EN LEVANCE	> 340 Date Date	5Yarted 008 28/1992 completed at 30/1992
	1 Sordo	0-:12 overbuilden
ETERIES CANSON & MONTGOL FI		3D OPENFRAT
8 3 p ⁹ 0 *	- 55 198620 - 70	4,43 open R St. weak Qtz Albite Halo 4.13 - 4.86 Bloched Diorite & parollet imm St. Very Risty 5,10 8,1111 Qtz. vein
		5.92 3mm St intilled Qt & matches GPY Zom Qte albite thats
	1370 1350 140 CPY 140 CPY 140 CPY 150 CPY 1	6.21 open FR weat Q'z albite Hals 6.30 - 6.72 Bleached Intrusine Zone Contairs 5 Sparallel Inno 5/5 Blebs CPY 6.833 limm it intell CPY 6.935 limm it intell CPY 7.17 Sonon Otz Albide Dein 3 patetres CPY 1.62 Innor it CPY infill 7.98 open FR it weak halo Blebs CPY
9		8,80 = 10,30 Qtz Carbonde Altered Zone disseminated maj
		10.30 - 11.27

PLT 41	-60 7 340 Ret 142	Niteral A	Daristanted Oct 25/ 1992 Dari Completed ON 27/ 1992	
	100% 7\$60		5-44 overburden	
2	Sp N	-60 70 60	2.10. Smingt yfr intill Blobs PY 2.15 innse afz intill weak hals 299 BPEN for weak hals	
		{§ mal	340 OPEN FRAC INT St. Mal Blebs PY 3:50 Imm St. gtz MRIII Bleb. PY	
-4 -5.		60 60 78 70 70 70 70 70	A.03 2MM JF Qtz infill 936 DEN FR JF ZUM Qtz allate Halo 9,56 8MM JF ZUM Qtz allate Halo OPEN FR 967 Imm OFEN JF Malstain 975 2MM Qtz infilled JF Norm pleuched Halo Fatches PY 5,10-5.25 Broken Bleached Core Course grain Qt 5,83 Imm JF 202 main 1	
1	0 10 10	63 CPY 16 70	532-6.00 9mm Otznein with Patches CPY Bim bleached Halo 630 /mm st Rusty 644 9mm Otzaein 9m bleached Halo BlebsCPY 680-90 Bleached Zome Blebs PY	
		(36)	727 32 parallel Qts alloile verms comm 730 Blebs of Py 7.62 End of Hole	
			Y	

76 00y 75:97 4mm Qtz vern Blebs CPY	
76.30 Smin Ofte win Zen Bleachert Halo disseminated PY	
27 27 27 27 27 27 27 27 27 27	
$\frac{8}{18}$ $\frac{8}{18}$ $\frac{18}{18}$ $\frac{18}{$	
80 80 80 80 80 80 80 80 80 80	
BI BI BI BI BI BI BI BI BI BI	
$\frac{81}{80}$ $\frac{81}{80}$	
83	
End of Hole es 84.45 Meter vol	
85 Pri Laken	
87	

land a

Page 4st finct vein struct the 11111 57,77 Jours Stevent O'r. Envelope 37,82 u u n u u 70 个 1 38 38.04 38.20 32m wide Otz verz No Visz 7 38.00 - 38.00 Bioks - Cove 130 6R60 40 38.60 Inter wide 56 otz 17-61/ 28.87 Amin OPTU FRACTURE 38.97 Ima of Zam Q'E Encelope 97% 3880 60 39 20 39.03 Imm It weak Oft Friedopr 39.15 Imm It weak Oft Friedopr 39.45 Imm It weak Oft Friedopr 39.45 Imm It weak Oft Embelope Blais of PY 100 163 10.02 Simon St week Qtz Errochope .1..... 40 40.13 10000 St with Zenn Otz Noto Bless FY Spire Inner St with Sonn (1) (1) (1) (FY Spire Inner St Russy 20, Core 80 Mal St St Inner St Russy 20, Core 60 Joint In Obert England 40 Joint Inner St Obert England & Core 60 1111 Ру Руску W CPY 10060 3, 70 50 40,70 2mm 55 GHZ wein Q12 100% 41 10.97 Emm O'z vern ALOO Viem wide flawing in 41.07 41.22 Bleached Interview (Succinit) P(2) 11.07= The Pace The and a store of the and a store of the and a store of the and the a -60 150 KAZ CPY CRY 40 47 150 CPY. Beached 42,00 - 42.12 42.00-92.10 Bleached Intrusive Blebs CPY 42.20 - 42.30 Bleached Intrusive Blebs CPY ey Bloage \$2.50 - 43.00 Broken fore Tome is bleached Intrusive with pervasive Malachite; *12,50 → 13:00* 1 K K Poor Resourcy A2.50-93.00 Bleached Intrusive Pervasive Mal, & 6714 60% 43.10 Ion Pible Dyke Dem? 150 Bleached Intrusive Marsing A3.17-23 Bleached Intrusive Blebs PY 43.17-23 Realized 43.30 113.11B Eleached Intrustor Blebs PY Mul Stain on Features Bleached Intrusive 43.30-43.48 150 13:50 10n Alkile Dyke Vern? 13:85 2mm Stinkild with Qtz Blebs PY, Mat 13:91 2mm 3ª infilled with Qtz Blebs PY, E 11 70 44.05 - 44.70 Bleached Intrusive 44.05-4.4.70 Castse Grained Bleps of PY Throughout 100% 12F60 45 49.90-46 16,50 Mal Stain 47.32 \$7 1 105% 47.32-48.70 Bleached Intrusive 4 Coarse Grained and 41.52 Immi St Qteinfill Blebs PY 170 70 ST.TZ OPEN FROCT St Mat Stair Blebs PV, CPY 42 200 17.90 OPEN FRACT 3+ 7 8 AB36 Imm St. Quinfill Mal. 70 3640 40 48.70 → 53.20 Intense Carbonate 19 N. Altered Intrusive very Rusty Alleration obscares original Fabric bona 1 mal apple \$1 50

es Fran	To Rec Fract Veins Struct Primes	rols Harry	
	705 X	25.8 I mon St weat Otr Envelope	
*	99% 32 60 - 80	25.99 2mm 28 Sonn Qtr Envelope Patches PY Ball OPEN PRICENC Sonn Qtr Envelope Navis Sz 26.36 Imm St west Orz Envelope Blelos of Py	
æ	(Broken) walipz, 1	PY, Jog9 Imm OFEN FR St with smm Qtz Envelopse Mal, Az, PY	
	- 80 17al	27.26 Imm OPEN FR 3t with weak Qtz Ervelope 1974 Stain 23.44 Imm OPEN FR 3t Sound Ervelope Sonall Stringer of PY	
9	K0%	28.11 Imm St. Smm QLZ Envelope Chl,	
	- 70	27,48 Inum St. Ion Gez Envelope Blabs Nature Gu Weathered Sz.	
(9) (0)	87 % 37.80 70 CPY	29,10 JANA GE VER No US 52. 2926 Amm Of VEIN Blobs CPY 29.10 Hann St Simm Oft Envelope Blob PY, CPY 29.10 Hann Jt Simm Oft Envelope 29.16 Janm Jt with Zon Oft Envelope Patches CPY	
	760 760 8310	36.11 Imm Fl. With Smin Encelope 30.32 Imm Occern 20.37 Imm a u 30.86 OPEN FR with Que Encelope	
2	78	31.40 Inco 31 weak Envelope Elek Py 31.52 Imm Gtz Veca	
8		31.59 Iron It Comm Ota Envelope Blobs CPY 31.69 Iron Ota pein Chl 31.82 Iron OPEN st with smort Ota Envelope Blobes CPY	
	98%	32.06 - 32.11 Zome OF Qtz Flooding Novis sz. 32.25 - 37.29	
3	~ 10		
	10F60 40 3F40 40 IF80 50	SS.16 5mm Qlz Decn 276 Vis Sz. Gerbone 23.40 Imm Stz Ucin	33.25 - 3
4	50 50	33.80 - 24:8° Broker Core 31:85 Imm Qt 2 and Il Bless PY, 17:21	
e l			
Ø	5660 30 atz	15,04 Int. It weat D' F-vents 25.15 Jun OFFIST Rush 25.20 30.00 Antm Otz With Dem Attach Halo (viest Bootfic Allerenan)	
8	100 41950 70	35-80 2mm Of2 Octor minor God Alleration for 35-70 Umm OPEN St Som Alleration hals (What Propulsi);	
	50	364 com OPFN FACTORS were Busty	
337	99.00 1190 000 Mail PX	36.80 thin Oil wein ote cent with Potchers PY, Maf 200 wide propylise &	10/0

Drill Hole PLT 3 Roc % St will prestin Norrecals The at Lesigen discription FROM 1.00 12.76 1mm 3t weak Otz Envelop 12.89 12.92 2mm St with 2cm Qtz Envelop Blobs of PY, CPY, Mal 6F60 60 10000 - 3 13 PY, CPY, mal 13.16-13.30 Broken Core 13.35 Janat Jt Rusty Infill 100 1160-60 13:55-57 innot St with Qtz Envelop Chi 13:69 13:66 1000 M 13,66-15:36 Very Poor Recovery 20% 26 * 15:36 - 15:5 Broken Core 3680 180 2560 15,95-16.97 Simm Qtz vern Patches PY CPY PY.CPY 16.05 Imm St useak Otz Encelops Stebs OP 134 11 14. 11 mai 1615-1617 Je with 2000 Ote Envelop Mal stain 392 CPY 16,42 emm St with Qtz infill Blebs of PY 16.19-16.50 Fractured St Blobs of CPY 16.60 Jam St with Smin Otz Envelop Blebs CPY 70 PAR60 28 16-79 7 Imm Tt with Smin Qu Envelops CPY 17:00-23 Qtz infill on It Patches CPY, 17:30 Qtz infill of St Blebs PY 17:65 Imm atz instill at It Blebs PY 100 5480 60 18 111 18:00 3mm 56 instill Qtz Ch/ 18:07 10:00 56 """"" " 17al stain 18:15 1mm " "" " Blebs CPY, Brt 1000 18,44 Imm + infill Chil Blebs PY B,53 1 1 1 1 NoVis 52 10-18.72 JF 127 PLPY 18.88 In It Invalle Envelop Blebs GPY, 1897 In It 2mm ale Envelop 4 19.35 FR Jt with Otz Envelop 70 19:48 Int It Zoin Q's Etwelop -60 19,96 2mm St FR Smith Die Earling Blobs CPY 150 75 19:89 M. 93 A TIMA ON THE TOP SPORT OF CAY 20:10 Innin 54 Zom Otz Envelop Blebs FY 20:00 DENTR Ion Otz Envelop Blebs FY 20:00 OFEN FR Ion Otz Envelop Politics by 20:00 OFEN FR Smin Qtz Envelop Bleb Fy 20:00 OFEN FR Smin Qtz Envelop 160 - 60 26% N60 195 60 Sp -1 23,23 inm St Weak Envelop 21.30-21.4 Broken Care 21.30-21.4 Broken Care 21.35 Imin 18 St Qts Encelop 21.55 OPENTR W/Qts Encelop(5mm) 21.62 " 38 80 28 50 170 80.28 21.62 " 21.76 2mm Gt infill Bleb Py, Mal 21.90 Imm St Qtz CHI 22 03 22:57 Imn St Weak Qtz Envelop - 70 22.75-22.29 Zmin Qtzinfill Aun Envelop Blobs PY, CPY 70 27.4 Imm Jt Qte mail 100 22.50 OPEN FR with Emm Qte Fridelop 22.93.98 inno St 10 3cm Qte Envelop Mat 22 CO. 23.57 Jan 34 with weat Ore Envelop 23.57 Jan 31 1 1 1 1 1 1 Block CPY in 60 12F60 23.62 Imm Jt Blebs CPY, Bn, Cu Gey 23.75 Inm JE Weak Envelop - 12 -00-24.12 FRST with zon Qtz Erwelop 9% TEGO 6570 AC.40. 24.97 OPEN IR KM QUE Envelop

Drill Hole PL+ 3 Bearing 315 Date started oct 11/92 -45 Dip Date Completed Oct 24/92 FRAct Veins Stract, Mineralisation 84 Gestogical Discription Rec Jam/s infill Daniel To FROM % - 80 50 ALL CAY SMAN Mechum Granet Diorite Color Index 7 matics hemplende Augite, Quarte & Plagioclase some disservinated 1012 Sulphides 21%, at Im Bon Ole ven Patches of CPY, at 13m on Procture Bleb of Chalcopyrite and Nal Over Copper. -5 99 unn que, Behrr 78 > CPY, Natioe Ca 107 70 - 25 - AN - 60 2760 V60 mm air Bics PY Zmitt 1.42 1.42-1.57 Broken Core 1.57 96 60 370 102.07 QF2 Imm Otz 201 Weatly disseminated Pyrite - 60 am schudge 205 - 2.07 Ann Jsint 200 Q12 Emselop \$38 2.12 - 2.15 Imm Joint Zem Qtz Envelop -60 2,21 2.29 Stz infill Enveloping Soint, Blebs of Chakopyrite, Malachite Stain 23 mm Sarat weak Oto Envelope Some Blebs CPY 99 -20 176 90 176 176 176 255-2.66 3 John Jocart's Qtz Envelopes some Blebs of CPY 2.70 Sunt Ost Fridelaps Otalhered enchedred Py stals 2.85 Em Encelope Der Chil Blebs of Purile, 2.98 = Imm Sunt 3.17-3.18 Imm Saint 2011 Ott Encelope, Takhes of Py, some Chi, 3.94-3.16 Imm Ott Bern patrices of Pr. Chi 3.53-3.56 Imm Saint excels of Pr. Chil 3.53-3.56 Imm Saint excels of Pr. Chil 10 3177 10 10 13:20 14:20 17:20 99 3.64 Imm Ote voin, patebes of Py some Of. 3172 2mm ge 3.84 Im Gte 31, 3.89 Im Qie 3t 39% - 9.09 3Parallel Sounds with Qle infill 1st Samt 2min with patches Bri, CPY, PY, zid + sid Sounds Joint Min weak Qle Envelopes 401 CPY, Bry, PY - 00 130 3.14-3.20 Jaint with course Qtz xtals 2mm wide Veinlet with patches PY RR 160 PY 4.40-9.42 Joint wit Qtz infill some Blebs PY 99 5177 Imm Jant weak Ot Envelop Frank 26 PY 5.05= 5.17 2mm Qtzuein some Blebs of P PICPY 5.34 5.36 ZAM Olz vern Patches of Pyrite 5.39= 5.91 Zom Qteven " 97 Gm Imm St Cetz inFill 170 Giz Limming St 6.49 Imm St 170 6.60 Inm It Weak Gtz infill 6.23-673 Inm JE des Envelope Patches OF PY 6.98- Imm JE, Sommete Envelope Blebs PY 180 7,00 7.03 Im St Aless of Py 40 1129 + 7.28 2min It with Qteinfill Patches of Py 170 7.53 2mm wide Emelope of Qiz wound St 10 7.60 mm wide 1.75 Course Otz Xtals 7.90 Jom St in Zen Envelope Blebs of Py 800 188 8.08 Gauge St Imm Some Blek PY 8.19 weak St Que infill 843 102 St with 300m Q12 Envelop CPY Porrett 170 7.84 8.21- 2.00 Broken Core Contains V 900 93% 9-05 ? Imm St weak Qte Envelops 3mm Chil, Blebs PY Y 10 70 70 11.27 KPY. 9.37-9.90 2mm It with 3cm Qtz Envebp Patches CPV, Chl EPY 9.96-9.98 2mm 56 " 1' 11 CPY 760 9.702 Imm St with 3mm Qtz Envelop Bleps CPY, Des 11/1 9,85-9,90 Imm Jt Son Ore Envelop Chi, Stes An 15.07,10.15 Imm It Moeak Envelop 13.13-10.19 3mm It Infill Qtz, Patches PY 10,59-10.65 FRactured St w/ Infill of Qtz, Patches OF PY, CPY, Mal FY, mat, 14 100 10.74 + 10.78. Imm 52 11 10.98-11.10 Zone Contains 3 parallel Sts, perussive Qtz Infill with Chil Blebs My 700 11.36 Imm St CAL Bleb PY A fun Qte Envelop Blebs PY 10 11.84 -11:86 - Imm It with 20m Ote Envers Chy Blebs PY -70 11.93 MAN St with Icm Qt Envelope 170 12 160 12.26-12.27 Emps Otzuein mass CPY BID, PY 12.32 3mm salphide Vein Bn.Pj CFY, Br, Mal, PY Vas.

PROJECT	Pilot	r
HOLE NO	PLT #3	
LOGGED BY	W. Robb	

16

[](

PAGE	1
OF	4

SAMPLE	FROM	TO	LENGTH	WIDTH	COMMENTS	AU	CU
BR 1500C	.72 m	2.30,77	1.58	1.12		110	231
1501C	2.30 m	3.80,77	1.50	1.06		130	439
15020	8.80	4,77,02	. 97	68		480	1298
1503C	4.77	6.37m	1.50	1.06	·	98	472
1504C	6.37	7.84	1.47	1.04		200	28!
1505C	7.84	9,13	1. 29	.91		230	661
_15060	9.13	10.90	1. 77	1.25	·	440	975
1507 C	11.44	12.64	1.20	. 85		790	1273
15080	12.64	13.66	1.02	.72		53	304
1509C	13.66	15.36	1,70	1.20	Very Poor Recovery Core Very Brokezz	110	199
1510C	15,36	16.8.	1.5	1.06		200	52 <u>5</u>
1511C	16.80	18,36	1.5	1.06		113	355
15120	18.36	19.86	1.5	1.06		64	169
1513(19.86	21,36	1.5	1.06		120	302
1514C	21.36	22.86	1,5	1,06		140	363
15156	22.86	24.34	1.5	1,06		300	531
15160	24,36	Z5,86	1,5	1.06		21	123
1517C	25.86	26.90	1.01	. 74		72	185
15180	26,90	Z7,88	. 98	.69		170	401
1519(27.88	29.38	1.5	1.06		280	385

PROJECT			lot				
HOLE NO		PL	T 3				
LOGGED	BY	w	. Robl	/			
SAMPLE	FR	OM	то	LENGTH	WIDTH	COMMENTS	AU
15700	2	q 38	30,88	1.50	106		67
/52/	30), 8 8 (37,38	1,50	1.06		310
1522	32	, 38	33.38	1.00	1,06		100
1523	33	,38	34.96	1.50	1.06	Carbonate Allered Zone	290
1524	34.	96	36.46	1,50	1.06		210
1525	£	46	37.96	1.50	1.06		110
1526	37.	%	38.67	.71	.50	Albite - Ofzvein Dyke?	150
1527	38	67	40.17	1.5	1,06		170
1628	40	,17	41.67	1,5	1.06		150
1529	41	67	43.17	1.5	1,06		790
1530	43	3,17	44.67	1,5	1.06		460
1531.	41	.67	46.17	1.5	1.06		140
153 Z	46	.17	48.40	2,23	1.58		470
1533		40	49.90	1,50	1.06	Stort of Wide Curbornale Zorrio	570
1534	49	9, 9 0	51.40	1.50	1.06	Carbonate Zone	100
1535	5/.	40	53.00	1.60	1.13	End of Cutborate Zone	2219
1536	5.	3,00	54,5	1.5	1,06	·	460
153.7	51	1,5	56,00	1.5	1.06		440
1538	56	<i>0</i> 0	57.5	1.5	1.06		430
1539	57	.5	59.0	15	106		480

PAGE Z OF 4

CU

ÈÌ	PROJECT	Pilot	
	HOLE No	PL+ 3	
U	LOGGED BY	W. Robb	

ļ

(

SAMPLE	FROM	TO	LENGTH	WIDTH	COMMENTS	AU	CU
BR 1590C	59,0	60.5	1.5	1,06		590	1315
1541 C	60.5	6110	.60	.42		440	163
154ZC	61.10	61.87	, 77	. 54	Curbonate Zome pervassion 177alachite	3333	38K
1543	61.87	63.27	1.40	.99		<i>zz</i> 0	150
1544	63,27	63.57	.30	.21	Garbonate Zone	370	134
1545	63,57	64:87	1.30	.92		250	579
1596	64,87	66.10	1.23	.87		460	1160
1547	66.10	66.95	.85	.6		440	265
1548	66,95	67.80	.85	.6	Very Bleached Zome Pervasive Malachite	967	572
1549	67.80	68.65	.85	.6		Z80	660
1550	68,65	69.65	1.00	.7/	Two ReCorbonate Zones Mulachile Stain	460	37/
1551	69,55	71.15	1.5	1.06		450	80
155Z	71.15	72,00	,85	.6		200	85.
<i>155</i> 3	77.00	73,25	1,25	.88		415	112
1554	73,25	74, 75	1.50	1.06		1099	124
1555	79:75	76.20	1.95	1.03	· · · · · · · · · · · · · · · · · · ·	210	42
1556	76,20	77.70	1.50	1,06		300	499
1557	77.70	79.60	1.90	1.34	·	320	320
1558	79.60	80,48	.30	.57	Cortomate Zome @ 80m Mail Stein	483	189
1559	90,40	81.90	1.5	1.06		21.5	66

PAGE 3 OF 4

			LIST	OF	SAMI
	PROJECT	Pilot			
	HOLE NO	PLT 3			
Ŀ	LOGGED BY	W. Robb			

PAGE	4
OF	4

	· · ·			r		·	· · · · · · · · · · · · · · · · · · ·	
	SAMPLE	FROM	то	LENGTH	WIDTH	COMMENTS	AU	CU
	1560	81.90	84.9	2.10	1.48		260	492
n								
Ľ								
								·
E. [*]								
r								
l								
						and the second second second second second second second second second second second second second second second		
(:		1						
								<u> </u>
F -1								
l								
L.							1	
		1						
~								<u> </u>
		1						
- (<u> </u>	1	I	1	L			I

ſ			
	• • •		
	1		LIST OF SAMP
(
	PROJECT	Pilot	
	HOLE NO	PL+ 4	
Ľ	LOGGED BY	W. Robb	
	· · · · · · · · · · · · · · · · · · ·		
			

SAMPLE	FROM	то	LENGTH	WIDTH	COMMENTS	AU	CU
156/C	4.50	5.70	1.2	.60		160	525
15620	5,70	7.62	1.92	.96		430	866
1							
						-	
			1	1	· ·		

PAGE 1 OF 1

 $\left\lceil \right\rceil$

 $\left[\right]$

ł

Į

PROJECT	Pilot	· · · · · · · · · · · · · · · · · · ·
HOLE NO	PLT 5	
LOGGED BY		

ſ

PAGE	1
OF	1

SAMPLE	FROM	то	LENGTH	WIDTH	COMMENTS	AU	ເບ
15630	4,24	6.10	1.86	,93		490	636
1564	6. N	8,13	2.03	1.01		420	843
1565	8.80	10,30	1.50	.75		380	1677
	· · · · · · · · · · · · · · · · · · ·						
					· · · · · · · · · · · · · · · · · · ·		
de la construcción de la constru	· 1:						
							1
	•••						
	•						

Appendix V

Γ

ſ

.

Statement of Expenditures

STATEMENT OF EXPENDITURES

ſ

PILOT PROPERTY

Geological and Geochemical Surveys and Drilling

May to November 1992

Personnel		
K. Schimann	15.5 days @ \$441	\$ 6,835
W. KODD C. Church	08.0 days @ \$158 36.0 days @ \$173	10,744
C. Church	50.0 uays @ \$175	
		23,807
Drilling (core 103.3m)		9,190
Helicopter rental	6.0 hrs. @ \$722	4,332
Truck rental	81 days @ \$70	5,670
ATV rental	30 days @ \$30	900
Field equipment and supplies		1,647
Fuel		1,113
Accommodation and food		4,210
Air photos and mapping	• • •	1,467
Miscellaneous fees		340
Geochemical analyses	59 soil samples @ \$13.40	791
	296 rock samples @ \$15.00	4,440
Data processing and report pr	reparation	5,700
		\$ <u>63,607</u>

Appendix VI

Statement of Qualifications

APPENDIX VI

STATEMENT OF QUALIFICATIONS

- I, Karl Schimann, residing at 5442 Columbia Street, Vancouver, B.C., hereby state that:
 - 1. I am the senior author of the report Bralorne Project 1992, Pilot Property, British Columbia.
 - 2. I have worked on the property from May to November 1992 for COGEMA Canada Ltd. and supervised the work described in this report.
 - 3. I graduated from the Université de Montréal with a B.Sc. in Geology in 1968.
 - 4. I graduated from the University of Alberta with a Ph.D. in Geology in 1978.
 - 5. I have worked in mineral exploration since 1976.

6. I am a registered member, in good standing, of the Association of professional Engineers and Geoscientists of British Columbia.

ESSIO PROVINCE 0 R. K. SCHIMANN Karl Schimann District Geologist SCIEN

LEGEND

ODDH PLT-4,5

Diamond Drill Hole

/·····

Rock outcrop

New Road

Old Road

Geological Contact

ROCK SAMPLES

Γ	1022 3702 440	5 metre chip	(sample #, Au ppb, Cu ppm)
×	1211 870 878	Grab (sample	#, Au ppb, Cu ppm)

∧ 1200 7920 2112 Float (sample #, Au ppb, Cu ppm)

SOIL SAMPLES

1283 68,10

8

alus chips (sample #, Au ppb, Cu ppm) Grid soil sample (Au ppb, Cu ppm)

Soil sample (sample #, Au ppb, Cu ppm)

Compiled by W. ROBB	Date :	Report no 102 OND 65 0
Drafted by : W. ROBB	DEC. 1992	Annex no. :
Base map :		MAR NO. 1