FLE NO:
Cogema Canada Ltd.

BRALORNE PROJECT 1992 Pilot Property British Columbia

Table of Contents

Page
SUMMARY 1
INTRODUCTION 2
LEGAL DESCRIPTION OF THE PROPERTIES 2
LOCATION, ACCESS, AND PHYSIOGRAPHY 4
EXPLORATION HISTORY 4
REGIONAL GEOLOGY 6
EXPLORATION PROGRAMME 11
Geochemical Procedure 11
RESULTS 15
Geology 15
Geochemistry 16
Mineralisation 18
Drilling 19
CONCLUSIONS AND RECOMMENDATIONS 20

List of Appendices

Appendix I Geochemical Analyses
Appendix II Rock Sample Description
Appendix III Check Analyses for Au
Appendix IV Drill Logs
Appendix V Statement of Expenditures
Appendix VI Statement of Qualifications
List of Figures
Following
Page
Figure 1 Location Map 2
Figure 2 Location of Properties 2
Figure 3 Pilot Property Claim Map 2
Figure $4 \quad$ Plan View and Cross Section of PLT-3 19
List of Tables
Page
Table 1 List of Claims 3
Table 2 Summary Statistics of Geochemical Analyses 14

List of Maps

Map 1 Pilot Property, Walker Ridge Compilation, 1992

SUMMARY

Work performed on the Pilot property in 1992 consisted of detailed prospecting, lithogeochemistry, and diamond core drilling, concentrating on the Walker Ridge area. The presence of disseminated and fracture controlled $\mathrm{Au}-\mathrm{Cu}$ mineralisation associated with pyrite, chalcopyrite and bornite in the granodiorite was confirmed.

The best intersections are
-10 m at $4 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.12 \% \mathrm{Cu}$ in surface chip samples
-10.5 m at $1 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.16 \% \mathrm{Cu}$ in drill core

Grab samples reached over $100 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and over $3 \% \mathrm{Cu}$ in three locations.

Results to date show that the Pilot property has the potential to host bulk-tonnage porphyry-style $\mathrm{Au}-\mathrm{Cu}$ mineralisation and further work is recommended.

This mineralisation has now been observed over an area of about 700 m by 400 m along the contact of the granodiorite with Bridge River cherts.

INTRODUCTION

The Bridge River Camp is the largest past producer of gold in British Columbia with a total production from 1900 to 1978 of 130 t of gold, 99% of which came from the Bralorne-Pioneer deposit. The area is easily accessible and has good infrastructure (Figure 1).

Considering the past production of the Bralorne-Pioneer mine and the similarity of this deposit with those found in the Archean Superior Province of the Canadian Shield or in the Mother Lode Belt in California, it appears that the Bridge River Camp offers a good potential for mesothermal gold vein deposits.

In October 1990, Cogema acquired from X-Cal Resources Ltd. five properties in this camp: Anderson Lake, Pilot, Truck-Paymaster, Waterloo, Tyax.

In 1991, Cogema carried out an exploration programme on all five properties (Figure 2). In 1992, it returned four properties to X-Cal Resources Ltd. and continued its exploration programme on the Pilot property where positive results had been obtained.

LEGAL DESCRIPTION OF THE PROPERTY

The Pilot property consists of 27 contiguous claims (99 units, 16.5 square kilometres). Except for Pilot Ext 4 and 5, they were acquired by COGEMA Canada Ltd. from X-Cal Resources Ltd. in 1990. Pilot Ext 4 and 5 were located by Cogema early in 1991 to cover the probable extension of the Bralorne lineaments. The claims are shown on Figure 3 and listed in Table 1.

Table 1

List of Claims

Claim Name	Record No.		Lot No.	No. of Units	Loc. Year	Expiry Date
	Old	New				
Pilot:						
Pilot Extension	2224	228457		20	1982	13 Dec. 1993
Pilot Extension \#2	2244	228468		20	1982	29 Dec. 1992
Pilot Extension \#3	2252	228470		16	1983	10 Jan. 1994
Pilot A	2568	228540		1	1983	19 Aug. 1994
Pilot Ext 4	4595	229418		16	1991	06 Mar. 1994
Pilot Ext 5	4596	229419		5	1991	06 Mar. 1994
Gold Pass \#1	2080	228423	6999	1	1982	23 Jul. 1994
Gold Pass \#2	2083	228426	7000	1	1982	23 Jul. 1994
Gold Pass \#3	2793	228588	7001	1	1984	07 Feb. 1994
Gold Pass \#4	2794	228589	7002	1	1984	07 Feb. 1994
Gold Pass \#5	2726	228557	7003	1	1984	18 Jan. 1994
Gold Pass \#6	2730	228561	7004	1	1984	18 Jan. 1994
Gold Pass \#7	2727	228558	7005	1	1984	18 Jan. 1994
Gold Pass \#8	2728	228559	7006	1	1984	18 Jan. 1994
Gold Pass \#9	2729	228560	7007	1	1984	18 Jan. 1994
GLG \#1	2084	228427	1322	,	1982	23 Jul. 1994
GLG \#2	2085	228428	1323	1	1982	23 Jul. 1994
GLG \#3	2082	228425	5688	1	1982	23 Jul. 1994
GLG \#4	2086	228429	1324	1	1982	23 Jul. 1994
GLG \#5	2087	228430	1325	1	1982	23 Jul. 1994
GLG \#7	2088	228431	1326	,	1982	23 Jul. 1993
GLG \#8	2089	228432	1327	1	1982	23 Jul. 1993
GLG \#9	2090	228433	1328	1	1982	23 Jul. 1993
GLG	2230	228463	1340	1	1982	17 Nov. 1993
Ypres \#9	2905	228594	5686	1	1984	18 Jun. 1994
Ember	2906	228595	5687	1	1984	18 Jun. 1994
Ypres Fraction	2081	228424	5689	1	1982	23 Jul. 1994

LOCATION, ACCESS, AND PHYSIOGRAPHY

The Pilot mineral claim is located in the Bridge River Mining Camp at latitude $50^{\circ} 53^{\prime} \mathrm{N}$, longitude $122^{\circ} 55^{\prime} \mathrm{W}$ in NTS Map Area $92 \mathrm{~J} / 15 \mathrm{~W}$. The centre of the property lies 3.5 kilometres northwest of Gun Lake.

The southeast portion of the claim is accessible by the Gun Lake Road which goes southwest around Mount Zola then north along the northwest shore of Gun Lake approximately 10.5 kilometres from Goldbridge, B.C. The northeast zone is accessible by the Slim Creek logging road which branches north from the Carpenter Lake Road approximately 1 kilometre west of the Gun Creek Bridge. These two areas are connected by a cat road built by X-Cal in 1985.

Two major drainages, Walker Creek and Pilot Creek, form large Cirques on the western half of the Pilot property. At elevations up to 2,400 metres, this area is characterized by minimum alpine vegetation on precipitous rock exposures and talus slopes.

The eastern half of the property is mainly forest covered with a minimum elevation of 1,150 metres. Outcrops are restricted to the creek levels and occur sporadically in tree cover.

EXPLORATION HISTORY

Exploration in the area began in 1917 when the Ypres group of 18 claims were staked by Messrs. O. Fergusson and C. Walker. In 1931, the property was acquired by Gun Lake Gold Mines Ltd., transferred to Cariboo-Bridge River Gold Properties in 1933 and then acquired by Pilot Gold Mines Ltd., Vancouver, B.C. in 1934. This company developed the extensive underground workings known as the Pilot Mine.

The workings involve drifts, crosscuts, and one shallow winze totalling 1,500 metres of underground workings on a series of quartz veins occurring in a north trending shear zone. Assays up to $11 \mathrm{~g} / \mathrm{t}$ have been reported from this underground development programme (Cairnes, 1937).

Recent work on the Pilot claim group consists of:

1983

1985

1986 - diamond drilling: two holes of 137 and 152 metres along the "Pilot Shear Zone"

1991

- geological mapping and prospecting at $1: 2,500$ in the vicinity of the Pilot Mine workings (53 rock samples analyzed) and at $1: 12,500$ by traverses, mainly on the ridge top in the northwestern part of the property (52 rock samples and 15 heavy mineral stream sediments analyzed)
- grid in the southeast part of the property: 200 -metre line spacing, 25 -metre stations, about 20 line kilometres
- soil sampling at 25 -metre spacing
- VLF (EM 16) survey
- geologic mapping of the grid area at $1: 5,000$, locally $1: 2,000$
- 12 kilometres of access roads
- 3,700 metres of trenching; 522 rock samples
- geological mapping and prospecting at $1: 10,000$ scale of the whole property
- grid (200 m lines) in the eastern part of the property, mainly on claim Pilot Ext. 4
- Mag-VLF survey (12.5 m stations)
- soil geochemistry (50 m stations)
- moss-mat stream geochemistry

REGIONAL GEOLOGY

A good summary of the regional geology is given in Leitch (1990) and is reproduced in part hereunder.

The latest published geological map of the area (92J, 1:250,000) based on field mapping is by Woodsworth (1977). Table 2 gives the principal units based on recent mapping by Church (1987), Church et al. (1988), compilation of available data, and recent age dating.

The principal stratigraphic assemblages of the Bralorne area have traditionally been called the Bridge River (Fergusson) and Cadwallader groups, although the former should properly be called the Bridge River Complex. The Bridge River Complex contains the oldest known rocks of the map-area and has generally been assigned a Permo-Triassic age on the basis of its similar lithology to the Cache Creek Group and correlation to the Hozameen Group. The Permian age is supported by recent dating of the Bralorne diorite ($284 \pm 20 \mathrm{Ma}$ by $\mathrm{K}-\mathrm{Ar}$ on hornblende and $270 \pm 5 \mathrm{Ma}$ by U-Pb on zircons) which appears to intrude the Bridge River Complex. However, fossil evidence suggests a Triassic to Jurassic age.

The Bridge River Complex consists of great thicknesses (1000 m or more) of ribbon chert and argillite with very minor discontinuous limestone lenses, and large volumes of basalt, some pillowed.

The Cadwallader Group, previously considered to be Upper Triassic (pre-Norian, or pre-225 Ma) age on the basis of conodonts recovered from limestone of the upper sedimentary part of the section, is also apparently intruded by the Bralorne diorite and thus may be at least partly Permian in age. Traditionally, the Cadwallader Group, as defined originally in the Bralorne area, has been subdivided into three formations: the lowermost sedimentary Noel Formation, the Pioneer Formation greenstones, and the upper Hurley Formation sediments. However, the distinction between the two sedimentary formations is often difficult to make and the

Cadwallader may be best divided into a lower volcanic unit (Pioneer Formation) and overlying sedimentary package (Hurley Formation). The contact is generally considered to be conformable. The Pioneer Formation has commonly been called "greenstone", but abundant volcanic textures are preserved in less altered areas within the Bralorne block. On the basis of their uniform colour index and chemical analyses, the rocks appear to be basalts and basaltic andesites.

Although the contact with the overlying sedimentary package was not mapped in detail, in the Bralorne block the volcanics seem to grade upward into finely interbedded green volcanic wackes and dark argillites of the Hurley Formation. Elsewhere a boulder and pebble conglomerate, sometimes containing limestone olistoliths, is often found at the base of the Hurley where it rests conformably on the Pioneer volcanics.

Triassic to Lower Jurassic sediments of the Tyaughton, Relay Mountain, and Taylor Creek Groups and Upper Jurassic to Tertiary volcanics and sediments occur mainly to the north of Carpenter Lake, outside of the main area of interest, but small patches of Tertiary volcanics occur along the north-west shore of Anderson Lake.

A recent volcanic ash deposit ($2400 y$ B.P.) covers much of the area and may reach 1.5 metres thick; it is thinner or absent on steep slopes.

Igneous rocks within the Bralorne block include Upper Paleozoic ultramafics and Bralorne intrusives, Mesozoic Coast Plutonic rocks. Tertiary Bendor intrusives, and dykes of CretaceousTertiary age. Ultramafic rocks are common in the Bridge River camp, forming narrow serpentinized bodies that were probably emplaced as thrust slices of oceanic, upper mantle material. With the pillow basalts and radiolarian ribboned cherts of the Bridge River Complex, they form the trinity of a typical ophiolite package. The Shulaps ultramafic complex, which lies 30 km to the northeast of Bralorne, is a much larger mass but may be of similar origin. The ultramafics in the Bralorne area range from dunite to pyroxenite, but peridotites are most common. They are usually partly to completely serpentinized, or altered to talc-antigorite-
tremolite-carbonate. In the Bralorne mine area they are intruded by the diorite and so must be Permian or older.

The Bralorne intrusive suite includes the so-called "augite diorite" and "soda granite", which commonly occur together. Usually the contact between the two is highly complex, forming such an intimate mixture that it may be properly termed a variety of migmatite called agmatite. Although their isotopic dates are indistinguishable ($270 \pm 5 \mathrm{Ma}$ by $\mathrm{U}-\mathrm{Pb}$ on zircons), sharp contact relations and chill margins near Goldbridge demonstrate that the soda granite is the younger phase. These intrusives are exposed at intervals over a 40 km strike length in a northwest trending belt parallel to and often confined by the ultramafic rocks. This belt stretches from Anderson Lake across the Bridge River valley to the lower reaches of Gun Creek.

Several workers in the Bralorne area have remarked on the unusual contact relationships of the diorite with the Pioneer volcanics. The diorite is not chilled against the volcanics, implying intrusion before significant cooling of the volcanic pile. These relations suggest that the Pioneer volcanics may be simply an extrusive expression of contemporaneous dioritic intrusions.

There are a large number of minor intrusives throughout the Bridge River camp, which are mainly dykes of various ages. However, in the light of recent mapping and isotopic dating in the Bralorne area, it is now clear that one group of dykes is early Late Cretaceous in age. These dykes are closely associated with mineralisation at Bralorne, and have traditionally been called "albitite". Dates obtained range from $91.4 \pm 1.4 \mathrm{Ma}$ by U-Pb on zircons from the highly altered, and therefore pre-mineral albitite dykes, to $85.7 \pm 3 \mathrm{Ma}$ by $\mathrm{K}-\mathrm{Ar}$ on fresh hornblende in a late intra- to post-mineral green hornblende porphyry dyke. Other dykes, locally called feldspar porphyries, are present at the Minto and Congress properties. They give Early Tertiary wholerock $\mathrm{K}-\mathrm{Ar}$ ages of 67 to $69 \pm 2 \mathrm{Ma}$, approximately in the middle of the range for Coast Plutonic activity. An Eocene magmatic event is also evident from lamprophyre dykes that cross-cut mineralized veins at Bralorne and are $43.5 \pm 1.5 \mathrm{Ma}$ by $\mathrm{K}-\mathrm{Ar}$ on biotite, because this coincides with similar dates of about 45 Ma on the Rexmount porphyry, the Beece Creek and Lorna Lake
plutons, and dates as young as 42 Ma for plutons south of the Bendor pluton.

The eastern boundary of the Coast Plutonic Complex granitic rocks lies only 2 km to 5 km west of the Bralorne deposit. The age range for these intrusions spans the interval from early Late Cretaceous (80 Ma) to Lower Tertiary (59 Ma), with the youngest ages coming from isolated stocks such as the Bendor pluton, which occur as a swarm parallel to the margin of the Coast Plutonic Complex, some 2 km to 3 km to the east of Bralorne.

Many vein gold deposits of the Archean Superior Province in the Canadian Shield are found within a mafic volcano - clastic sedimentary - ultramafic rock assemblage, thought to have formed mainly on a oceanic, accreting plate margin. A similar setting is found in the Bridge River camp, where two main lithologic assemblages can be distinguished: one dominantly oceanic and the other dominantly island arc. The former is represented by the Permian to Jurassic Bridge River Complex which comprises basalts and associated clastic sedimentary rocks with thick accumulations of ribbon chert, and minor limestone. Alpine-type ultramafic rocks in lensoid to very elongated bodies are spatially associated with the stratified rocks and are thought to form part of the assemblage. The ultramafic rocks may mark the sites of major crustal shortening that were later focuses for major transcurrent movements. Such major crustal structures are also associated with many of the large mining camps of the Superior Province or the Yilgarn Block in Australia.

The island arc assemblage, represented by the Cadwallader Group of ?Permo-Triassic age, is composed of a basaltic andesite pile with minor felsic volcanics and an overlying volcaniclastic sedimentary sequence, again with minor limestone.

The Bridge River and Cadwallader terranes containing these two assemblages form small lozenge-like fault-bounded slices sutured between the Insular super-terrane on the west and the Intermontane super-terrane on the east.

The two major faults closely bounding the major ore-producing Bralorne-Pioneer block are marked in large part along their length by narrow sinuous serpentine bodies. These could represent the sites of former major crustal shortening that have been reactivated by later transcurrent faulting, so the emplacement of the ultramafics could have been as solid bodies. Movement on the faults may have been of the same sense as the Fraser fault system, i.e. right lateral.

Although the majority of the Bridge River Camp production comes from the Bralorne-Pioneer mine, there is a host of other prospects and occurrences which can be classified into four main groups:

- mesothermal ribboned Au quartz-veins: Bralorne-Pioneer
- transitional to epithermal $\mathrm{Ag}-\mathrm{Au}-\mathrm{Sb}-\mathrm{Ag}$ veins: Congress, Minto
- epithermal Sb-Hg veins: Tyaughton, Yalakom area
- epithermal $\mathrm{Au}-\mathrm{Ag}$ veins: Blackdome (north of the Yalakom fault and outside the Bridge River Group per se)

These occurrences form a chemical and thermal zonation, away from the Coast Plutonic Complex (Figures 8 and 9). Reserves have been published for a number of these occurrences:

Tonnes.
Bralorne-Pioneer
965,000
450,000
454,000
112,000
148,000
60,000
$\mathrm{g} / \mathrm{t} \mathrm{Au}$

Congress
Reliance
Lucky Jem
Wayside
Mary Mac
9.3
10.0
6.0
20.6
3.6
7.4

EXPLORATION PROGRAMME

A 2 km access road was pushed in on the south flank of Walker Ridge from 4,950 feet to 6,300 feet elevation to carry out trenching of a large $\mathrm{Au}-\mathrm{Cu}$ geochemical anomaly.

Detailed mapping, prospecting, as well as detailed chip and grab rock sampling was carried out on Walker Ridge and along the access road. Two soil geochemistry lines, 200 m apart, 50 m stations, extend the old grid to the west.

The programmed trenching was not carried out as the above work showed the source of the geochemical anomaly to be higher up on the ridge in an area of abundant outcrop and difficult access for trenching equipment.

A small drill programme was carried out in the fall using a Gopher drill; it was only partly successful, producing one 84.4 m hole and two that were abandoned at 7.6 m and 11.3 m , respectively.

Statistics:

Geochemistry	Soils	59 samples
	Rocks	229 samples
	Core	66 samples
Drilling	103.3 m	
Road	2.0 km	

Geochemical Procedure

The following sample types were collected: rocks and soils.

Soil samples were taken below the Bridge River Ash, a Recent white pumiceous horizon which
blankets most of the area and varies in thickness from a few centimetres to one metre or more; the horizon collected would be equivalent to a B horizon.

All samples were analyzed by Acme Analytical Laboratories Ltd. in Vancouver. Sample preparation included:

- for rocks - crushing and pulverizing 250 g to -100 mesh
- for soils - drying and sieving to -150 mesh

Two types of analyses were carried out on all samples:

- Au by wet extraction and atomic absorption (A.A.): a 50 -gram sample is ignited at $600^{\circ} \mathrm{C}$, digested with hot aqua regia, extracted by MIBK (methyl isobutyl ketone), and analyzed by graphitic furnace A.A.
- multi-elements by wet extraction and inductively coupled plasma spectometry (ICP): a 0.5 -gram sample is digested with $3 \mathrm{ml} 3-1-2 \mathrm{HCl}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{O}$ at $95^{\circ} \mathrm{C}$ for one hour and is diluted to 10 ml with water. This extraction may be incomplete for certain mineral forms of $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Sn}, \mathrm{Ca}, \mathrm{P}, \mathrm{La}, \mathrm{Cr}, \mathrm{Mg}, \mathrm{Ba}, \mathrm{Ti}, \mathrm{B}, \mathrm{W}, \mathrm{Na}, \mathrm{K}, \mathrm{Al}$.

The detection limits are:

- Au (A.A.): 0.3 ppb
- Multi-element:
- Ag: 0.1 ppm
- Cd, $\mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Sr}, \mathrm{Zn}, \mathrm{W}: 1 \mathrm{ppm}$
- As, Au, B, Ba, Bi, La, Pb, Sb, Th, V: 2 ppm
- U: 5 ppm
- Al, $\mathrm{Ca}, \mathrm{Fe}, \mathrm{K}, \mathrm{Mg}, \mathrm{Na}, \mathrm{Ti}: \mathbf{0 . 0 1 \%}$
- P: 0.001\%

Appendix I lists all the geochemical results by sample type. In these tables, Au is given in ppb ; $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{P}, \mathrm{Ti}, \mathrm{Al}, \mathrm{Na}, \mathrm{K}$ in percent; Wt / g (the weight of the -150 fraction of soils) in grammes, and all others in ppm; Au by ICP has been omitted. The results given as "detection limit" should read "at or below the detection limit".

A 50 -gram aliquot was used for Au by A.A. to improve the detection limit together with a finer fraction than usual (-150 mesh) for soils to decrease the nugget effect, i.e., improve the representativity of soil samples. Going from 10 grams of -80 mesh to 50 grams of -150 mesh material decreases the potential nugget effect by a factor of 25 .

All geochemical analyses were processed using the Techbase database management system and its application programmes. Statistics were calculated for the main elements (Table 2).

A description of all the analyzed rock samples is given in Appendix II.

Table 2

SUMMARY STATISTICS OF GEOCHEMICAL ANALYSES

	Au	Ag	Cu	Pb	2n	As
Number	109	109	109	109	109	109
Mean	361.17	0.466	359.61	4.76	50.60	58.32
Std Dev	999.56	1.179	575.59	2.19	17.03	145.39
Variance	999117	1.4	331301	5	290	21139
Maximum	7338	11.6	3611	13	127	1016
Minimum	3	0.1	30	2	28	12
Range	7335	11.5	3581	11	99	1014
Coef Var	276.7524	253.0755	160.0609	45.9862	33.6639	249.2954
Std Err	95.7404	0.1130	55.1313	0.2097	1.6314	13.9260
Median	99.5	0.20	160.0	5.0	47.0	- 9.0
Skewness	5.5457	7.8856	3.6439	0.7586	2.5630	4.1998
Kurtosis	32.4286	70.1803	14.9650	0.7880	7.4077	19.7592

C. Rock Talus Samples

	${ }^{\text {Au }}$	Ag	Cu	Pb	2 n	As
Number	21	21	21	21	21	21
Mean	111.81	0.338	199.48	7.29	73.62	44.86
Std Dev	109.31	0.136	105.77	2.90	15.12	29.28
Variance	11949	0.0	11188	8	229	857
Maximum	350	0.6	417	14	112	113
Minimum	4	0.1	69	2	54	13
Range	346	0.5	348	12	58	100
Coef Var	97.7666	40.2827	53.0259	39.7674	20.5383	65.2791
Std Err	23.8539	0.0297	23.0818	0.6323	3.2995	6.3899
Median	115.0	0.30	214.0	7.0	71.5	6. 39.0
Skewness	0.7690	0.6470	0.4042	0.6077	1.0396	0.8948
Kurtosis	-0.5099	-0.2964	-0.8977	0.3090	0.4022	-0.4360

D. Soll Samples

	${ }^{\text {Au }}$	Ag	Cu	Pb	zn	$\boldsymbol{A s}$
Number	59	59	59	59	59	59
Mean	195.22	0.290	261.02	6.66	70.76	60.97
Std Dev	229.81	0.216	224.78	4.48	22.36	171.78
Vartance	52811	0.0	50528	20	500	29507
Maximum	1134	1.2	986	22	129	1268
Minimum	1	0.1	14	2	18	+ 2
Range	1133	1.1	972	20	111	1266
coef Var	117.7161	74.3588	86.1184	67.2898	31.5977	281.7573
Std Err	29.9182	0.0281	29.2643	0.5835	2.9109	22.3634
Median	137.5	0.20	181.5	6.0	72.0	25.5
Skewness	1.6804	1.6530	1.3025	1.3524	-0.3448	6.0683
Kurtosis	3.2398	3.7524	1.4129	1.5230	0.2641	38.7769

E. Core Samples

	Au	Ag	Cu	Pb	2 n	As
Number	66	66	66	66	66	66
Mean	413.71	1.014	10.0. 39	20.79	60.48	17.20
Std Dev	642.68	1.523	1307.54	42.59	33.75	39.26
Variance	413039	2.3	1709665	1813	1139	1541
Maximum	5000	9.1	8810	273	198	209
Minimum	31	0.1	128	2	26	2
Range	4969	9.0	8682	271	172	207
Coef Var	155.3450	150.2752	126.8972	204.8556	55.7913	228.2993
Std Err	79.1086	0.1875	160.9472	5.2419	4.1538	4.8326
Median	280.0	0.50	647.0	7.0	49.5	3.0
Skewness	5.6562	3.4773	3.9984	4.1009	2.4081	3.5056
Kurtosis	36.6315	12.9849	18.8618	18.6392	6.2772	12.4545

RESULTS

Geology

The property is underlain by intrusives of the Coast Plutonic Complex, Bridge River Group sediments, Bralorne Diorite, and ultramafics (serpentine, listwanite).

The structural trend appears to be generally NW-SE although bedding and foliation visible in the sediments and serpentine are quite variable. The contact of the Coast Plutonic Complex and Bridge River Group is intrusive where visible with relatively little contact metamorphic effect. The sediments are somewhat recrystallized and hornfelsed: the chert becomes sugary and the argillite more massive and harder; but this effect remains thin, a few decametres. The sediments are predominantly chert, locally pyritic, for example in the road/trench east of sample localities 082 R and 083 R ; argillite constitutes the remaining (about 30%).

The Bralorne Diorite is fine to medium grained, sometimes slightly foliated and consists mainly of plagioclase and pyroxene (diallage according to Cairnes, 1937); it is more mafic than the typical Bralorne Diorite. It occurs in one main body along Sumner Creek but crops out in a few locations further north towards Gun Creek.

The ultramafics occur mostly as serpentine, sometimes with listwanite (277R, 278R).

The Coast Plutonic Complex consists of granodiorite for the most part varying from coarse to fine-medium grained. Some of the border facies on the east end of Walker Ridge and along the contact in the centre of the old grid are dioritic and rather fine grained. It is cut by fracture systems with carbonate alteration and occasionally quartz veinlets; most are oriented at N40-60/70-80S and N90-100/60-70S.

Geochemistry

1. Soils

Table 2 gives statistics for the grid soil samples. Their Au and Cu results are plotted on Map 1. They are anomalous mainly on L800N from 1300E to 2900E with two gaps at 1750-1800E and 1950E which correspond to poor samples (contaminated by Bridge River Ash: low Ni and Fe contents). On line 1000 N the anomaly stretches from 1450 E to 2300 E with gaps caused by poor or no samples (on the rock slide) at 1600 E to 1750 E , 1850 E to 2000 E , and 2150 E to 2200 E .

Three soil sections were sampled along the road in an area shown as anomalous on the earlier work (old L29). They are strongly anomalous in Au and Cu , as expected, but show little vertical variation over 1.3 m depth below the Ash layer.

2. Talus

Two types of talus samples were taken: in the 1st Cirque, the material available was too coarse for sieving to -150 mesh and it was processed as a rock sample; in the 2 nd Cirque, fines were collected and samples were treated as soils. The analyses show three populations. To the east, sample 1269 to 1273 and 1281 to 1284 R are low in Au and Cu , but high in Ba, Ni, and Mn ; they correspond to material derived from Bridge River sediments (chert and argillite). In the western half of the 1 st Cirque and the eastern part of the 2 nd Cirque, the samples are anomalous in Au and Cu . In the centre of the 2 nd Cirque, samples 1076 to 1078 are low in Au , slightly anomalous in Cu , but low in Ba , i.e. intrusive derived.

3. Rocks

Continuous 5 m chip samples were taken along the lower part of the road where outcrop is abundant and on the eastern end of Walker Ridge where high Au and Cu values were
obtained in 1991 on each side of the rock slide that occurs on the south flank (Map 1; App. 1).

Along the road, the samples taken in Bridge River sediments (mostly chert) are low in Au (3-82ppb), anomalous in $\mathrm{Cu}(48-838 \mathrm{ppm})$, As $(90-617 \mathrm{ppm}), \mathrm{Sb}(3-39 \mathrm{ppm})$, as well as high in $\mathrm{Ba}(102-252 \mathrm{ppm})$ and $\mathrm{Ni}(28-314 \mathrm{ppm})$. The granodiorite chip samples further up the road are higher in gold, up to 385 ppb but mostly in the $30-80 \mathrm{ppb}$ range, low in Cu ($30-150 \mathrm{ppm}$); some samples have high As and Sb .

On the ridge, three zones have anomalous Au and Cu averaging 338,378 , and 752 ppb Au and 228,400 and 1007 ppm Cu respectively for the chip sampling, and contain grab samples with over $100 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ with Cu over 3%.

Several chip samples contained more than $1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, resampling confirmed some of these:

1 st Sample	Au ppb	2nd Sample	Au ppb
1043	6426	1087	7338
1044	1896	1088	472
1022	3702	1350	587
1259	1092	1351	290
1292	1470	-	

The average of $1043 / 1087,1044 / 1088$ is 10 m at $4.03 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ across the structure.

Grab samples were collected within the area of chip sampling as well as further west along Walker Ridge. Of the 99 grab samples analysed, 14 are between 1 and $10 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, and six above $10 \mathrm{~g} / \mathrm{t} \mathrm{Au}(17,21,33,102,106,111 \mathrm{~g} / \mathrm{t} \mathrm{Au})$; all of these also have high Cu , generally $>0.1 \%$, and four samples have $>1 \% \mathrm{Cu}$.

Most samples have the same metallogenic association: $\mathrm{Au}-\mathrm{Cu}-\mathrm{Ag}$; As may be anomalous, up to 962 ppm with the highest Au value ($111 \mathrm{~g} / \mathrm{t}$). $\mathrm{Zn}, \mathrm{Pb}, \mathrm{Mo}, \mathrm{W}, \mathrm{Bi}, \mathrm{Sb}$ may be slightly anomalous.

Two samples are different (BR1086R and 1089R): high in gold (21 and $17 \mathrm{~g} / \mathrm{Au}$), very high in $\mathrm{As}(>10 \%)$, high in Sb, Ag, and Cu ; they correspond to a small but massive arsenopyrite vein.

High values are found mostly in the areas where chip sampling was done and reflects (in part only) sample density; they are also found around the 1066 zone on the west ridge of 1st Cirque.

Mineralisation

The best results on chip sampling and most of the high Au grab samples on the east end of Walker Ridge correspond to sulphides occurring as rusty siliceous fracture coatings which may widen to form quartz-pyrite-chalcopyrite and/or bornite veinlets up to $3-5 \mathrm{~cm}$ thick. Narrow zones (5 cm) of bleaching form the selvage of these veinlets which have only been observed in the granodiorite. Some dissemination of sulphides occurs into the granodiorite along the joints.

The average trend of these joints and veinlets is about N70/70-80S but the mineralisation does not penetrate the Bridge River sediments which outcrop less than 50m east of the 1043-1044 zone as hornfelsed cherts.

Carbonate altered shears form brown weathering recessive saddles all along Walker Ridge; they have various orientations ($\mathrm{N} 20 / 90$, $\mathrm{EW} / 20 \mathrm{~N}, \mathrm{~N} 105 / 45 \mathrm{~N}, \mathrm{~N} 45 / 90$), are usually $1-5 \mathrm{~m}$ wide, and frequently contain narrow quartz veinlets ($1-10 \mathrm{~mm}$) at the centre; they are usually unmineralised, rarely exceeding 100 ppb Au .

One significant exception is sample 1066, a 2 cm quartz veinlet in such a carbonate altered shear which contains coarse visible gold. The gold bearing sample was not sent for analysis, but a sample taken directly underneath assayed $106 \mathrm{~g} / \mathrm{t}$ Au with relatively low $\mathrm{Cu}(0.3 \%)$. Several 0.51 m wide shears occur at this locality; they trend approximately EW to N70 with shallow but variable dip ($20-60 \mathrm{~N}$).

A third type of mineralisation consists of two occurrences of narrow (5 cm) arsenopyrite veins; one is located some 90 m west of the $1043 / 1044$ zone (two samples grade 21 and $17 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and more than $10 \% \mathrm{As}$) and one, which was not sampled, another 400 m to the west on the ridge.

The $\mathrm{Au}-\mathrm{Cu}$ association, the granodiorite host, and the fracture-controlled as well as dispersed habit of the main mineralisation suggest a porphyry- Cu style of mineralisation, albeit in a peripheral (or sommital) part of a system. Alteration is very subtle; most of the granodiorite is fresh with some of the hornblende retrograded to actinolite; carbonate alteration is restricted to shears and narrow selvages along quartz-sulphide veinlets and joints.

Drilling

The drill programme, initiated late in the season, suffered from inadequate (underpowered) equipment which could not penetrate zones of carbonate alteration and fracturing.

One drill hole reached 277 feet $(84.4 \mathrm{~m})$. A second hole was stopped after encountering difficulties at 25 feet and upon restarting again at 37 feet.

Hole PLT-3 was collared in outcrop and drilled at a 315° bearing and $45^{\circ} \mathrm{dip}$; end of hole dip was 42° (acid test). It cuts equigranular hornblende-biotite-granodiorite from top to bottom, medium grained in the upper half and coarser grained, more leucocratic in the lower half (Figure 4). Quartz filled joints are more abundant in the medium grained granodiorite averaging about

5 joints per metre. Carbonate alteration and bleaching occurs mainly in the coarse grained granodiorite.

The core was sampled and analysed from top to bottom in 1.5 m increments except where geological features dictated otherwise. The weighted average grade for the whole hole is 0.38 $\mathrm{g} / \mathrm{t} \mathrm{Au}$ and $0.09 \% \mathrm{Cu}$. The best intersection is from 51.4 to $61.9 \mathrm{~m}: 10.5 \mathrm{~m}$ at $1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and 0.16% Cu , including 0.8 m at $5 \mathrm{~g} / \mathrm{tau}$ and $0.9 \% \mathrm{Cu}$.

As shown in Figure 4, if the 1043/1044 zone strikes at N70/70-80S, it would cut the drill hole at about the location of the best mineralisation. However, the paucity of quartz filled joints and of quartz-sulphide veinlets in the core, together with subtle differences in chemistry ($\mathrm{Ca}, \mathrm{V}, \mathrm{Ni}$, $\mathrm{Cr})$ suggest the possibility that the $1043 / 1044$ zone was not intersected in the drill hole.

CONCLUSIONS AND RECOMMENDATIONS

Soil sampling, prospecting, and lithogeochemistry confirmed the presence of $\mathrm{Au}-\mathrm{Cu}$ mineralisation on surface on Walker Ridge with 10 m at $4 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $0.12 \% \mathrm{Cu}$ in chip samples across a quartz sulphide veinlet swarm, grab samples with over $100 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $3 \% \mathrm{Cu}$ and coarse visible gold in outcrop; all mineralisation is in granodiorite.

Drill confirmed the presence of mineralisation with 10.5 m at $1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $0.16 \% \mathrm{Cu}$ and of widespread high background in $\mathrm{Au}(380 \mathrm{ppb})$ and $\mathrm{Cu}(0.09 \%)$ over the whole 84 m of drill core. On the crest of Walker Ridge the best mineralisation is close to the contact with the Bridge River sediments which appear to be barren. The contact zone is also exposed along the road at 5,300 feet elevation, but is not mineralised there although it is anomalous in Au and As is high both in the granodiorite and in the sediments.

The 1066 zone (visible gold in a quartz-carbonate vein) is also within 300 m of the intrusive contact. Pyrite and chalcopyrite bearing quartz vein have been reported near Jewel Creek along the border of the property. This suggests that the whole contact zone from Walker Ridge to Jewel Creek (1.5 km) warrants further investigation.

Further work is recommended on the Pilot property; it should include:

Phase 1 - diamond drilling on the 1043/1044 zone, a minimum of three holes of $150-200 \mathrm{~m}$ in length

- prospecting and extensive lithogeochemistry on the ridge between the 1 st and 2 nd Cirque as well as the ridge between the 2 nd Cirque and Jewel Creek.

Phase 2 - additional drilling of new targets and to extent the 1043/1044 zone westward (2,000m)

Appendix I

Geochemical Analyses

ROCK SAMPLES (grabs and short chip samples).

		Au	Ag	As	Sb	Cu
BR	1000R	26	0.1	23	13	64
BR	1001R	8	0.1	2	2	51
BR	1002R	3108	2.7	4	2	2416
BR	1003R	53	0.2	12	3	445
BR	1004R	3738	17.9	6	2	6883
BR	1005R	31980	1.2	2	2	32252
BR	1006R	4704	9.6	35	2	4159
BR	1007R	33	0.9	6	5	303
BR	1008R	73	0.4	5	4	185
BR	1009R	16	0.2	8	2	60
BR	1010R	2304	3.6	118	2	1819
BR	1018R	80	0.1	21	2	207
BR	1053R	3336	12.0	86	2	20908
BR	1054R1	11000	13.3	962	9	6822
BR	1057R	17	0.3	2	2	699
BR	1063R	220	0.6	181	2	92
BR	1064R	11	0.2	20		56
BR	1065R	134	0.3	25	15	121
BR	1066R10	05932	27.4	102	395	3289
BR	1067R	276	0.4	34	23	371
BR	1069R	74	0.1	14	,	147
BR	1070R	212	0.2	2	2	608
BR	1071R	5	0.1	25	51	102
BR	1072R	3	0.2	31	11	47
BR	1073R	52	0.4	43	39	136
BR	1074R	22	0.1	6	2	68
BR	1075R	6	0.3	8	2	122
BR	1079R	75	0.3	26	2	165
BR	1080R	594	0.5	35	36	381
BR	1081R	30	0.1	10	2	330
BR	1082R	34	0.2	30	18	606
BR	1083R	350	0.7	591	2	756
R	1084R	6	0.2	9	2	18
R	1085R	269	0.3	30	2	1102
BR	1086R	21120	5.09	9999	154	963
BR	1089R	16680	2.49	9999	128	206
BR	1090R	163	0.3	1205	2	692
	1091R	1.326	1.5	53	2	2912
BR	1200R	7920	9.3	8	2	2112
BR	1201R	350	0.7	4	2	616
BR	1202R	490	1.5	5	2	1998
	1203R	51	0.1	34	2	72
	1204R	20	0.1	320	4	53
BR	1205R	25	0.1	308	6	75
BR	1206R	300	0.1	370	13	41
BR	1207R	130	0.1	43	2	216
BR	1208R	6660	8.3	6	2	6192
BR	1209R	44	0.2	7	2	158
BR	1210R	30	0.2	3	2	236
	1211R	870	1.7	10	2	878
	1212R	294	0.4	8	2	240
BR	1213R	6672	8.3	19	2	723
	R	1176	1.5	155		601

[^0]

 -

 T1
0.01
0.01
0.17
0.16
0.15
0.14
0.01
0.20
0.12
0.01
0.01
0.06
0.14
0.18
0.17
0.16
0.18
0.11
0.15
0.20
0.09
0.01
0.01
0.22
0.01
0.20
0.01
0.01
0.04
0.01
0.01
0.10
0.07
0.12
0.03
0.10
0.05
0.04
0.01
0.01
0.01
0.07
0.01
0.08
0.01
0.12

 K
0.11
0.10
0.20
0.13
0.08
0.09
0.02
0.11
0.10
0.13
0.12
0.14
0.08
0.12
0.08
0.07
0.11
0.27
0.08
0.29
0.14
0.03
0.08
0.28
0.13
0.10
0.20
0.13
0.17
0.23
0.22
0.14
0.16
0.08
0.18
0.15
0.15
0.13
0.14
0.12
0.05
0.14
0.13
0.24
0.14
0.12

ROCK SAMPLES (5m chips).

Page 2 BR 1229RC BR 1230 RC | BR | 1232 RC |
| :--- | :--- |
| BR | 1233 RC | $\begin{array}{ll}\text { BR } & 1233 R C \\ \text { BR } & 1234 R \mathrm{RC}\end{array}$ $\begin{array}{ll}\mathrm{BR} & 1234 \mathrm{RC} \\ \mathrm{BR} & 1235 \mathrm{RC}\end{array}$ BR 1236 RC BR 1237 RC BR $12339 R C$ BR 1241 RC BR 1243 RC BR 1244 RC BR 1246 RC BR 1247 RC BR 1249 RC $\begin{array}{ll}\text { BR } & 1250 \mathrm{RC} \\ \text { BR } \\ 1251 \mathrm{RC}\end{array}$ $\begin{array}{ll}\text { BR } & 1251 R C \\ \text { BR } & 1252 R C\end{array}$ $\begin{array}{ll}\mathrm{BR} & 1253 \mathrm{R} \\ \mathrm{BR} & 1254 \mathrm{R}\end{array}$ $\begin{array}{ll}\text { BR } & 1254 \mathrm{RC} \\ \text { BR } & 1255 \mathrm{RC}\end{array}$ $\begin{array}{ll}\text { BR } & 1256 \mathrm{RC} \\ \text { BR } \\ \text { 1257RC }\end{array}$ $\begin{array}{ll}\text { BR } & 1258 R \mathrm{C} \\ \text { BR } & 1259 \mathrm{RC}\end{array}$ BR 1259 RC

BR 1260 RC $1261 R C$
$1263 R C$ R 1263 RC $\begin{array}{ll}\text { BR } & 1264 \mathrm{RC} \\ \text { BR } & 1265 \mathrm{RC}\end{array}$ BR 1266 RC BR 1267 RC BR 1268 RC $\begin{array}{ll}\text { BR } & 1285 R \mathrm{R} \\ \text { BR } & 1286 \mathrm{RC}\end{array}$ $\begin{array}{ll}\text { BR } & 1287 \mathrm{RC} \\ \text { BR } & 1288 \mathrm{RC}\end{array}$ BR 1289 RC BR 1290 RC
BR 1291 RC BR 1292RC BR 1294 RC $\begin{array}{ll}\text { BR } & 1295 R C \\ \text { BR } 1296 R C\end{array}$ BR I298RC
00000NH00001000ッ00ッ000000000000000000000000000000000及
 NNNMGMNNNNMNOLNEMNGMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

 W Bi UNNNWNNONNGANNNNNNNIWAGNNNNNNNNNNNNNWNNNNNNUNNNNNANNN＂

Page 3
BR 1299 RC BR 1350RC BR 1351RC

Au	Ag	As	Sb	Cu	P
12	0.1	2	2	60	
587	1.1	32	2	691	
290	0.4	1016	2	231	

$\begin{array}{rr}\text { W } & \text { Bi } \\ 1 & 3 \\ 1 & 3 \\ 1 & \end{array}$
$\begin{array}{ll}0.3 & 0 .\end{array}$ 0.91
0.81
0.64

Ba Sr N 1 Cr Co | 0.81 | 1.11 | 50 | 47 | 16 |
| ---: | ---: | ---: | ---: | ---: |
| 0.64 | 0.91 | 53 | 37 | 20 | $\begin{array}{ccccc} & \mathrm{Fe} & \mathrm{U} & \mathrm{Th} & \mathrm{La} \\ 6 & 2.82 & 5 & 3 & 6 \\ 2 & 3.14 & 5 & 6 & 5\end{array}$

$\begin{array}{cccccc}\mathrm{V} & \mathrm{P} & \mathrm{Ti} & \mathrm{B} & \mathrm{Al} & \mathrm{Na} \\ 91 & 0.061 & 0.19 & 3 & 1.63 & 0.13\end{array}$
K
0.17
0.22 $\begin{array}{ll}3 & 1.63 \\ 9 & 1.85 \\ 9 & 1.50\end{array}$ $10 \quad 0.1$

TALUS ROCK SAMPLES

Page	Au	Ag	As	Sb	Cu	Pb	2 n	Mo	W	B1	Cd	Ca	Mg	Ba	St	N1	Cr	Co	Mn	Fe	U	Th	La	\checkmark	P	Ti	B	Al	Na	K
BR 1058RT	114	0.2	27	2	270	6	54	2	1	3	0.2	1.09	1.02	45	87	12	24	19	549	4.00	5	2	6	102	0.070	0.12	8	2.68	0.19	0.13
BR 1059RT	163	0.6	113	4	322	7	67	1	1	2	0.2	1.17	0.83	68	109	11	23	16	501	3.52	6	3	7	93	0.079	0.13	7	2.25	0.19	0.14
BR 1060RT	268	0.3	48	3	223	8	70	2	1	2	0.2	1.20	0.89	83	119	12	19	17	578	3.71	5	3	8	80	0.078	0.14	6	2.61	0.20	0.21
BR 1061RT	117	0.3	21	2	205	7	60	1	1	2	0.2	1.07	0.86	69	97	14	23	17	484	3.43	5	3	7	75	0.072	0.14	6	2.42	0.19	0.16
BR 1062RT	120	0.4	43	6	275	6	80	2	1	2	0.5	0.71	0.91	73	53	17	36	21	720	4.29	5	3	9	83	0.076	$0.12{ }^{\circ}$	10	2.16	0.13	0.18
BR 1269RT	13	0.1	32	2	69	5	112	2	1	2	0.2	0.66	1.49	240	32	63	63	21	835	4.90	5	1	9	96	0.068	0.11	11	2.50	0.09	0.61
BR 1270RT	16	0.4	19	2	76	3	105	1	1	2	1.9	0.69	1.55	205	29	67	50	19	863	5.11	5	2	7	99	0.067	0.13	11	2.60	0.09	0.58
BR 1271RT	4	0.3	13	2	73	13	73	2	1	2	0.5	0.55	1.05	305	27	50	50	13	828	3.66	5	3	9	67	0.052	0.09	12	1.71	0.06	0.44
BR 1272RT	7	0.3	19	2	88	5	77	3	1	2	0.5	0.48	0.97	200	21	63	49	15	943	3.80	5	3	10	62	0.042	0.06	15	1.54	0.05	0.31
BR 1273RT	6	0.3	35	2	98	4	74	3	1	2	1.2	0.44	0.91	188	23	63	62	18	960	3.98	5	3	9	63	0.039	0.08	12	1.49	0.06	0.24
BR 1274RT	350	0.3	16	2	202	7	64	1	1	2	0.3	0.93	0.84	75	73	13	28	14	490	3.33	5	2	6	77	0.067	0.14	7	2.10	0.17	0.17
BR 1275RT	242	0.3	19	2	231	7	59	1	1	2	0.3	1.01	0.84	74	79	12	26	15	482	3.29	5	3	6	78	0.067	0.15	6	2.11	0.17	0.16
BR 1276RT	112	0.3	50	2	223	8	59	1	1	2	0.5	1.01	0.75	80	91	12	24	14	468	3.26	5		6	81	0.069	0.14	7	2.27	0.20	0.18
BR 1277RT	196	0.4	90	2	302	14	63	1	1	2	0.2	1.25	0.80	60	96	11	29	15	472	3.27	5		5	91	0.075	0.13	6	2.29	0.18	0.12
BR 1278RT	116	0.5	73	2	278	7	57	1	1	2	0.3	1.12	0.71	61	95	10	21	12	462	3.17	5	2	6	83	0.078	0.12	6	2.17	0.18	0.11
BR 1279RT	331	0.6	91	2	417	9	70	1	1	2	1.4	1.08	1.06	68	83	15	31	17	618	4.05	5	2	6	108	0.072	0.14	5	2.49	0.16	0.13
BR 1280RT	134	0.6	91	2	395	8	65	1	1	2	0.7	1.12	0.99	64	84	14	31	15	497	3.65	5	2	6	103	0.070	0.14	6	2.29	0.17	0.13
BR 1281RT	16	0.3	24	2	143	8	90	3	1	2	1.1	0.29	0.88	160	20	48	62	19	878	3.79	5	3	9	75	0.038	0.12	6	1.56	0.05	0.35
BR 1282RT	12	0.2	19	2	123	7	77	1	1	2	0.3	0.44	0.91	135	18	42	47	13	736	3.27	5	4	8	72	0.032	0.12	6	1.66	0.06	0.30
BR 1283RT	5	0.2	43	,	91	2	77	2	1	2	0.5	0.46	0.81	242	21	56	42	15	940	3.49	5	3	9	56	0.037	0.05	13	1.37	0.05	0.25
BR 1289RT	6	0.2	56	2	85	12	93	4	1	2	0.7	0.81	0.55	289	29	39	30	15	985	3.75	5	3	11	53	0.038	0.03	13	1.13	0.04	0.28

SOIL SAMPLES

Page	1						
NORTH EAST	Au	Ag	As	Sb	Cu	Pb	
1000	1000	22	0.1	30	2	112	22
1000	1050	35	0.1	22	2	183	3
1000	1100	12	0.1	13	2	127	7
1000	1250	34	0.1	11	2	110	6
1000	1350	65	0.2	15	2	81	4
1000	1400	24	0.1	8	2	83	5
1000	1450	237	0.1	12	2	139	2
1000	1500	38	0.3	12	2	105	2
1000	1550	182	0.2	122	2	171	2
1000	1600	6	0.3	8	2	25	14
1000	1650	14	0.2	5	2	26	3
1000	1700	3	0.1	4	2	17	2
1000	1750	3	0.1	2	2	14	4
1000	1800	2134	0.8	25	2	560	8
1000	1950	267	1.2	13	2	207	10
1000	2050	342	0.5	84	5	440	7
1000	2100	478	0.4	451	2	986	5
1000	2150	3	0.3	13	2	63	17
1000	2200	1	0.1	2	2	15	6
1000	2250	55	0.4	26	2	387	16
1000	2300	332	0.4	38	2	335	6
800	1000	7	0.1	9	2	80	9
800	1050	4	0.2	8	2	157	5
800	1100	13	0.3	18	2	195	3
800	1150	15	0.4	18	6	137	2
800	1200	5	0.1	2	2	38	2
800	1300	68	0.1	4	2	109	3
800	1350	192	0.2	6	2	275	5
800	1400	102	0.1	12	2	184	5
800	1450	36	0.1	15	2	101	4
800	1500	268	0.3	16	2	138	2
800	1550	183	0.1	23	2	167	2
800	1600	159	0.5	32	2	180	4
800	1650	587	0.5	53	2	338	4
800	1700	739	0.7	129	2	581	2
800	1750	7	0.3	8	2	60	4
800	1800	2	0.1	2	2	23	10
800	1850	672	0.6	39	2	330	7
800	1900	324	0.4	36	2	272	6
800	1950	3	0.1	2	2	22	16
800	2000	198	0.3	35	2	314	6
	0						

1071 T	5	0.1	25	51	102
1076 T	28	0.5	50	29	152
1077 T	43	0.3	37	6	156
1078 T	92	0.2	35	6	162
1303 T	534	0.7	88	2	885
1304 T	546	0.4	125	2	868
1305 T	534	0.2	115	2	673
1306 T	210	0.2	64	2	507
1307 T	177	0.4	64	2	456
1308 T	187	0.5	48	2	482
1309 T	224	0.2	40	2	291

 \qquad

W
1

 T1
0.13
0.1
0.0
0.1
0.11
0.12
0.1
0.0
0.10
0.19
0.1
0.1
0.1
0.1
0.0
0.0
0.1
0.11
0.1
0.12
0.13
0.0
0.0
0.0
0.19
0.1
0.1
0.1
0.12
0.1
0.12
0.15
0.1
GMMJMMNNJNNNNNMMZUNNNMONNNNNNNMMMMOMNNDONR $\begin{array}{llll} & & & \\ \text { B } & \text { A1 } & \mathrm{Na} & \mathrm{K} \\ 3 & 3.15 & 0.03 & 0.07 \\ 3 & 4.66 & 0.02 & 0.09 \\ 4 & 3.09 & 0.03 & 0.08 \\ 3 & 2.14 & 0.04 & 0.09 \\ 3 & 3.31 & 0.02 & 0.06 \\ 2 & 3.18 & 0.02 & 0.05 \\ 2 & 2.85 & 0.02 & 0.06 \\ 4 & 3.59 & 0.02 & 0.07 \\ 2 & 3.21 & 0.02 & 0.06 \\ 2 & 1.20 & 0.05 & 0.05 \\ 2 & 1.18 & 0.10 & 0.04 \\ 2 & 0.99 & 0.07 & 0.03 \\ 2 & 0.62 & 0.12 & 0.03 \\ 3 & 2.37 & 0.03 & 0.09 \\ 3 & 2.02 & 0.05 & 0.07 \\ 4 & 2.39 & 0.03 & 0.12 \\ 5 & 2.92 & 0.01 & 0.06 \\ 2 & 1.64 & 0.08 & 0.05 \\ 2 & 1.27 & 0.06 & 0.04 \\ 2 & 2.06 & 0.04 & 0.07 \\ 3 & 2.93 & 0.03 & 0.07 \\ 4 & 2.58 & 0.04 & 0.11 \\ 2 & 2.94 & 0.02 & 0.11 \\ 2 & 3.41 & 0.01 & 0.11 \\ 2 & 4.27 & 0.01 & 0.06 \\ 2 & 2.29 & 0.05 & 0.05 \\ 2 & 3.61 & 0.03 & 0.06 \\ 2 & 3.24 & 0.03 & 0.07 \\ 2 & 3.09 & 0.03 & 0.06 \\ 3 & 3.02 & 0.03 & 0.05 \\ 3 & 3.68 & 0.03 & 0.07 \\ 3 & 3.82 & 0.02 & 0.05 \\ 3 & 3.31 & 0.03 & 0.08 \\ 4 & 3.74 & 0.03 & 0.08 \\ 3 & 3.09 & 0.02 & 0.10 \\ 2 & 1.17 & 0.06 & 0.05 \\ 2 & 1.03 & 0.08 & 0.03 \\ 8 & 3.51 & 0.02 & 0.05 \\ 9 & 3.25 & 0.02 & 0.05 \\ 2 & 1.59 & 0.05 & 0.03 \\ 7 & 4.10 & 0.02 & 0.06 \\ & & & \end{array}$

34
24
100

1561
1406
725
900
280
380
519
261
310
360
411

 $\begin{array}{rr}4 \\ 10 \\ 13 \\ 11 \\ 6 & 8 \\ 6 & 13 \\ 5 & 12 \\ 4 & 7 \\ 5 & 8 \\ 5 & 11 \\ 5 & 10\end{array}$ 14
79
93
87
69
72
68
73
84
79
73 $\begin{array}{ll}14 & 0.007 \\ 79 & 0.09 \\ 93 & 0.077 \\ 87 & 0.07 \\ 69 & 0.04 \\ 72 & 0.060 \\ 68 & 0.090 \\ 73 & 0.0 \\ 84 & 0.0 \\ 79 & 0.0 \\ 73 & 0.0\end{array}$ 76
77
75
60
90
48
36
50 0.01
0.07
0.11
0.12
0.09
0.11
0.13
0.12
0.15
0.14
0.11
 0.20
3.14
2.72
1.67
3.11
2.17
1.96
3.26
3.36
2.43
3.28 0.0
0.0
0.1
0.0
0.0
0.
0.
0.
0.
0. 0.01
0.02
0.17
0.05
0.01
0.02
0.02
0.02
0.02
0.02
0.02 0.06
0.11
0.10
0.15
0.06
0.08
0.13
0.06
0.09
0.13
0.06

Page 2
NORTH EAST
1310 T
1311 T
1312 T
1329 T 1339 T 1340 T
1341 T 1342 T

Au	Ag	As	Sb	Cu	Pb
217	0.4	46	2	381	7
329	0.1	46	2	373	8
61	0.3	1268	3	132	4
517	0.2	50	2	316	7
208	0.5	44	7	404	15
116	0.2	23	3	358	17
376	0.1	37	2	548	9
248	0.1	34	2	369	9

－unowののロコ

NTNNNNNNNNO
Cd
0.2
0.2
0.2
0.2
0.6
0.
0.2 Ca
0.12
0.28
0.44
0.35
0.96
0.72
0.5
0.47 $\begin{array}{ll}\text { Ca } & \\ .12 & 0.9 \\ .88 & 1.00 \\ .34 & 1.0 \\ .96 & 1.69 \\ 72 & 1 . \\ 59 & 1 . \\ 47 & 1 .\end{array}$ Mg
.93
.02
.01
.69
.69
.70
1.39
1.19

 ᄃ

 v
72
70
147
72
120
112
111
 1.11
0.12
0.12
0.04
0.18
0.21
0.17
0.14
0.13
 NNWNRANN Na
0.02
0.02
0.03
0.07
0.09
0.07
0.03 $\begin{array}{ll}2 & 0.07 \\ 3 & 0.12 \\ 7 & 0.1 \\ 9 & 0.2 \\ 7 & 0.2 \\ 3 & 0.1\end{array}$

CORE SAMPLES
Page 1
Page 1

BR
B
B
BR
$B R$

$B R$ $\begin{array}{ll}\text { BR } & 1502 \mathrm{C} \\ \text { BR } & 1503 \mathrm{C}\end{array}$ $\begin{array}{ll}\text { BR } & 1503 C \\ \text { BR } & 1504 \mathrm{C}\end{array}$ R 1505 C $\begin{array}{ll}\text { BR } & 1506 \mathrm{C} \\ \text { BR } & 1507 \mathrm{C}\end{array}$ | R 1507 C |
| :--- |
| 1508C |
| 1509 C |

$\stackrel{\Im}{\sim} \Delta$ जّه
N゙荡

 \qquad 0000H00

 Mg
0.78
0.72
0.71
0.72
0.70
0.84
0.82
0.73
0.71
0.78
0.80
0.82
0.76
0.66
0.78
0.76
0.78
0.74
0.76
0.91
0.87
0.74
1.10
1.27
1.12
0.95
1.10
0.73
0.58
0.78
0.76
1.14
1.19
0.39
0.08
0.50
0.71
0.64
0.57
0.58
0.94
0.89
1.22
0.76
0.80
0.53
0.62
0.89
1.37
0.65
0.90
0.57
0.65

を UNANGWNNWNGWWNNNNWWNWWNNNNWNWOWNNNNNNNN，NNNNNNNNNNNNN

 \begin{tabular}{ll}
V

76 \& 0.0

78 \& 0.0

77 \& 0.0

81 \& 0.0

80 \& 0.0

77 \& 0.0

78 \& 0.0

77 \& 0.0

77 \& 0.0

75 \& 0.0

77 \& 0.0

76 \& 0.0

80 \& 0.0

93 \& 0.03

88 \& 0.0

74 \& 0.02

73 \& 0.028

70 \& 0.062

96 \& 0.040

03 \& 0.028

10 \& 0.034

24 \& 0.032

28 \& 0.030

28 \& 0.03

07 \& 0.03

91 \& 0.033

87 \& 0.03

68 \& 0.04

57 \& 0.04

67 \& 0.08

63 \& 0.08

99 \& 0.07

30 \& 0.08

08 \& 0.05

44 \& 0.05

55 \& 0.04

01 \& 0.05

32 \& 0.04

12 \& 0.05

24 \& 0.05

45 \& 0.04

71 \& 0.03

71 \& 0.04

15 \& 0.06

74 \& 0.043

120 \& 0.03

\hline 90 \& 0.04

58 \& 0.038

4 \& 0.038

32 \& 0.051

p

.057

.066

.057

.050

.050

.050

.054

.058

.059

.056

.051

.051

.058

.039

.028

.028

.062

.040

.0284

.032

.030

.034

.030

.033

.034

.042

.044

\hline 083

\hline 083

\hline 088

\hline 054
\end{tabular}

 000

	Au	Ag	As	Sb	Cu	Pb	2 n	Mo	W	B1	Cd	Ca	Mg	Ba	Sr	N1	Cr	Co	Mn	Fe	U	Th	La	\checkmark	P	T1	B	Al	Na	K
BR 1553C	410	0.8	43	2	1128	5	46	1	1	5	0.2	2.42	0.85	20	100	5	12	14	348	2.95	5	1	3	58	0.059	0.04	9	2.79	0.25	0.15
BR 1554C	1640	1.1	17	2	1240	3	46	1	1	10	0.2	2.11	0.69	55	125	6	16	12	252	2.43	6	1	4	71	0.058	0.09	6	3.03	0.35	0.12
BR 1555C	210	0.3	2	2	427	5	30	1	1	2	0.2	1.71	0.48	32	99	4	9	10	180	1.83	5	1	2	56	0.043	0.09	8	2.57	0.29	0.07
BR 1556C	300	0.6	2	2	499	3	29	1	1	5	0.2	1.79	0.45	32	111	8	7	9	179	1.86	5	1	2	67	0.051	0.10	6	2.67	0.31	0.06
BR 1557C	220	0.4	2	2	329	2	28	1	1	5	0.2	1.65	0.51	34	106	8	12	7	185	1.71	5	1	3	59	0.043	0.10	5	2.50	0.32	0.09
BR 1558C	480	6.2	7	52	1894	4	52	2	1	14	0.2	1.60	0.71	39	94	10	13	11	217	2.50	5	1	3	79	0.051	0.08	9	2.73	0.28	0.10
BR 1559C	210	0.7	5	2	633	5	26	1	1	10	0.2	1.75	0.50	41	112	7	9	8	176	1.68	5	1	3	55	0.057	0.09	11	2.63	0.33	0.07
BR 1560 C	260	0.4	2	2	492	5	29	1	1	2	0.2	1.16	0.67	23	73	1	15	10	199	2.41	5	3	3	57	0.046	0.12		1.90	0.18	0.09
BR 1561C	160	0.5	2	2	525	2	35	1	1	5	0.2	1.57	0.45	31	97	5	9	8	182	1.77	5	1		52	0.054	0.09	4	2.42	0.28	0.07
BR 1562C	430	0.9	3	2	866	3	37	1	1	9	0.2	1.68	0.52	40	103	5	10	9	217	1.95	5	1	3	56	0.058	0.09	6	2.52	0.30	0.08
BR 1563C	490	1.3	2	2	1036	6	38	1	1	6	0.2	1.67	0.46	37	104	3	10	9	203	1.81	5	1	3	52	0.056	0.09	9	2.50	0.31	0.08
BR 1564C	420	0.8	2	2	843	7	42	1	1	4	0.2	1.73	0.59	26	101	1	9	10	250	2.17	5	1	3	59	0.058	0.09	4	2.58	0.29	0.07
BR 1565C	380	0.9	43	4	1677	4	53	2	1	11	0.4	0.92	0.45	32	53	7	8	7	242	2.03	5	9	4	55	0.036	0.02	,	1.63	0.15	0.14

Appendix II

Rock Sample Description

ROCK DESCRIPTIONS

Sample

BR 1000R Chip (20 cm), traces of hydrothermal quartz in faulted/sheared granodiorite, iron oxide on fracture surfaces, no visible sulphides.

BR 1001R Float - grey-white rhyolite brx?, chert, some fine graphite stringers and quartz veinlets ($1-3 \mathrm{~mm}$).

BR 1002R Quartz diorite - grab - fresh granodiorite with minor sulphide mineralization along expansion cracks, $\mathrm{Py}, \mathrm{Cpy}, \pm$ Born. Malachite stain along fracture.

BR 1003R Chip (1m) - representative chip across quartzite lens within Bridge River chert rusty limonite stain.

BR 1004R Grab - joint/fractured granodiorite. Fresh surfaces show malachite stain which is not obvious on weathered surfaces. Strike of fault/fracture 040°. Sulphides mainly Cpy ($1<\%$ Cpy).

BR 1005R Chip 6 cm - high grade sample containing 1 to 2 cm mineralized veinlet with Cpy, Born., \pm Py. Host rock granodiorite, very little weathering, alteration, but malachite stain on fresh surfaces. Veinlets follow jointing $080 / 60 \mathrm{~S} 10 \mathrm{~m}$ from sample 1004 R .

BR 1006R Float - hydrothermal quartz boulder. Open space filling, drusy quartz. Malachite stain. Blebs of Cpy, Born.

BR 1007R Grab o/c - granodiorite fairly altered. Minor oxide stain on weathered surfaces.
BR 1008 R Chip - 1 m - similar to 1007 R. Alteration is even more pronounced 10 m from 1007R.

BR 1009R Float boulder - 50 cm dia. Ultrabasic heavily foliated, serpentine on many surfaces trace to 1% Py disseminated.

BR 1010R Float - boulder talus ($0.5-1.5 \mathrm{~m}$) thin (1 cm) quartz veinlet and envelope contain minor Cpy, \pm malachite stain.

BR 1011R Continuous chip (5m) - chips are taken perpendicular to strike with the objective of detecting mineralization in the jointing. It should be noted that the best (most obvious) mineralization is sampled with a high grade sample across joint width.

BR 1012R to
BR 1017R Chip (5m).
BR 1018R Chip (8cm) - aplite dyke in host granodiorite. Some rust, iron oxide stain, trace Py - dyke orientation. 95/50N.

BR 1019R to
BR 1028R Chip (5m) - continuous chip granodiorite.

Sample

Description

BR 1029R Continuous chip (5m) - taken perpendicular to joint structure (070/54S).
BR 1030R to
BR 1038R Chip (5m) - as above.

BR 1039R Chip (12 cm) - carbonaceous brx vein 1 cm contained within crosscutting joint $085 / 28 \mathrm{~N}$.

BR 1040R Chip (5m) continuous chip at highest point on north side of talus slide.
BR 1041R to Chip (5m) - continuous chips across an area of siliceous veining associated with BR 1052R joint structure. This series tends to cross mineralized jointing noted in 1005R.

BR 1053R High grade grab from mineralized joint/shear (30 cm). Joint attitude 043/55E. Sulphide contained Cpy, Born. (5-10\%).

BR 1054R High grade grab within sample 1044R. Sample contains high density at microfractures (1 mm) filled with malachite calcite. Width of shear fractures (3045 cm). Shear attitude 060/56S. Sulphide mineralization Cpy $1-5 \%, \pm$ Born., Py $<1 \%$, vuggy qtz.

BR 1055R Chip (5m) - continuous chip, last in sequence ending with 1052R.
BR 1056R Chip (5m) - taken across barren, granodiorite med. to coarse grained. Joint structure 078/68S.

BR 1057R Float, dark coarse grained granodiorite. Rusty, weak carbonate alteration with pyrite chalcopyrite finely disseminated.

BR 1063R Select sample across 15 cm quartz carbonate vein rusty on weathered surfaces, some blebs of pyrite centre of vein, has vuggy quartz, 098/90S.

BR 1064R Chip sample across two parallel calcite veins each 6 cm wide, some malachite stain on fracture surfaces, $110 / 20 \mathrm{~N}$.

BR 1065R Select sample of quartz carbonate veins, no visible sulphides, 88/142N.
BR 1066R Select sample of 7 cm quartz carbonate vein, visible coarse gold, chalcopyrite and pyrite.

BR 1067R 2.5m chip over 1066R vein. Chip comprises host rock (granodiorite) and selvage, vein material not included.

BR $1069 \mathrm{R} \quad 1.5 \mathrm{~m}$ chip quartz carbonate altered granodiorite, no visible sulphides.
BR 1070R Select sample of a 50 cm quartz vein contains blebs of pyrite, chalcopyrite with malachite on fractures, 082/66S.

BR 1071R Chip sample across 30 cm quartz carbonate vein, no visible sulphides.

Sample

Description

BR 1072R Select sample of 20 cm quartz vein, patches of malachite 014/32E.
BR 1073R 1m chip sample across weak stockwork of quartz carbonate veinlets.
BR 1074R 1m chip sample across aplitic dyke, some blebs of pyrite.
BR 1075R Hornfelsed granodiorite along 1074 dyke, some blebs of pyrite.
BR 1079R 2 m chip sample across rusty quartz-carbonate altered granodiorite zone contains stringers of quartz and chalcopyrite.

BR 1080R Select sample from $5 \mathrm{~m}^{2}$ quartz-carbonate altered granodiorite zone contains veins up 30 cm , no visible sulphides.

BR 1081R 1.5 m chip over intensely silicified granodiorite, rusty surfaces show a trace of pyrite.

BR 1082 R Select sample over 20 cm includes 5 cm quartz-carbonate vein with patches of malachite, azurite, $118 / 34 \mathrm{~N}$.

BR 1083R 1 m chip across quartz flooded granodiorite zone contains several subparallel quartz veins from less than 1 cm to 8 cm wide. No visible sulphides.

BR 1084R Select sample of bull white qtz. from within 3 m zone of quartz-carbonate altered granodiorite.

BR 1085R Select sample from bull white 10 cm wide quartz vein, blebs of pyrite, chalcopyrite with patches of malachite.

BR 1086R Select sample of 3 cm massive arsenopyrite vein.
BR 1087R 5m chip - resample 1043R.
BR 1087R 5m chip - resample 1044R.
BR 1089R Float 2cm grey sulphide vein.
BR 1090R Select sample from 30 cm wide quartz-carbonate altered granodiorite, some disseminated pyrite.

BR 1091R Select sample of 15 cm quartz vein contains blebs and stringers of chalcopyrite.

BR 1200R Very rusty granodiorite, fine grained with abundant biotite, pervasive malachite stain (float).

BR 1201R Medium grained granodiorite with 1 cm wide quartz vein some blebs of pyrite (float)
BR 1202R Rusty granodiorite argillically altered (float).
BR $1203 \mathrm{R} \quad 0.8 \mathrm{~m}$ wide shear in granodiorite, extreme argillic alteration.

BR $1204 \mathrm{R} \quad 20 \mathrm{~cm}$ wide shear clay altered $160 / 30 \mathrm{~W}$, trace of original fabric.
BR $1205 \mathrm{R} \quad 20 \mathrm{~cm}$ wide shear clay altered $165 / 60 \mathrm{~W}$.
BR $1206 \mathrm{R} \quad 10 \mathrm{~cm}$ wide shear clay altered $135 / 55 \mathrm{~W}$.
BR 1207 R 5 cm wide shear clay altered $140 / 65 \mathrm{~W}$, some relict fabric.
BR $1208 \mathrm{R} \quad 3 \mathrm{~cm}$ quartz veinlet with disseminated pyrite and chalcopyrite, malachite stain.
BR 1209R 0.45 m wide shear, granodiorite very bleached and with argillic alteration. No visible sulphides. Rusty along microfractures. 094/88S

BR 1210R Fresh granodiorite with fracture filling of biotite, chalcopyrite and malachite.
BR 1211R Medium grained granodiorite hornblende > biotite with some blebs of chalcopyrite and malachite and fracture surface.

BR $1212 \mathrm{R} \quad 20 \mathrm{~cm}$ wide felsic dyke very silicified and fine grained, some blebs of pyrite 145/25E.

BR 1213R 5 cm felsic dyke, very siliceous, some free quartz 060/90.
BR $1214 \mathrm{R} \quad 30 \mathrm{~cm}$ wide shear in granodiorite, very bleached, coarse grained on fresh surface, some free quartz and malachite, 090/80S.

BR 1215R $\quad 0.45 \mathrm{~m}$ shear, no visible sulphides, $072 / 45 \mathrm{~N}$.
BR $1216 \mathrm{R} \quad 0.5 \mathrm{~m}$ shear with argillic alteration, no visible sulphides, $072 / 67 \mathrm{~S}$.
BR 1217R Granodiorite rock weathered surface orange, fresh surface very clean.
BR 1218 R .04 m veinlet (shear), some blebs of chalco and malachite. Sample across 40 cm , 115/25S.

BR 1219R Granodiorite, malachite and chalco occurs along parting. Sample across 10 cm .
BR 1220R Altered granodiorite along joint face, fine blebs of chalco and malachite.
BR 1221R to
BR 1223R 5m chip across dark granodiorite.
BR 1224R 5m chip across sheared granodiorite malachite, stain on fractures, some blebs of pyrite and chalcopyrite.

BR 1225R to
BR 1226 R 5 m chip across fresh granodiorite. No visible sulphides.
BR 1227R "C" Horizon bedrock contact, granodiorite is extremely altered and bleached weakly to clay, 5 m chip, $135 / 45 \mathrm{E}$.

BR 1228R to
BR 1231 R 5 m chip sample across fresh granodiorite, some malachite stain, weak clay alteration.

BR 1232R $\quad 5 \mathrm{~m}$ around shear sample 1207.
BR 1233R to
BR 1235R 5m chip sample, taken over (1206) 1233
(1205) 1234
(1204) 1235

BR 1236R to
BR 1238R Fine grained granodiorite, very mafic, 5 m chip samples. 1238 ends in "B" horizon with chert in soil above.

BR 1239R to
BR $1240 \mathrm{R} \quad 5 \mathrm{~m}$ chip samples in medium grained fresh granodiorite, no visible.
BR 1241R to
BR $1242 \mathrm{R} \quad 5 \mathrm{~m}$ chip sample through subcrop of weathered chert.
BR 1243R to
BR $1244 \mathrm{R} \quad 5 \mathrm{~m}$ chip sample of black and green silicified chert, some blebs of pyrite.
BR 1245R 5m rusty chert, has been silicified, shows weathered malachite and pyrite.
BR 1246R
BR $1248 \mathrm{R} \quad 5 \mathrm{~m}$ chip rusty chert.
BR 1249R to
BR 1252R 5m chip across fresh granodiorite.
BR 1253R $\quad 5.5 \mathrm{~m}$ chip across fresh granodiorite.
BR 1254R to
BR 1261R 5m chips across fresh granodiorite
BR $1262 \mathrm{R} \quad 2 \mathrm{~cm}$ wide quartz vein with open space filling of malachite, weathered sulphides, bornite, chalcopyrite, 62/40S.

BR 1263R to
BR $1268 \mathrm{R} \quad 5 \mathrm{~m}$ chips, fresh granodiorite (includes sample 1262)
BR 1269R to
BR 1284R Talus samples.
BR 1285R $\quad 5 \mathrm{~m}$ chip sample over fresh granodiorite, contains 6 cm felsic dyke, 1 cm qtz vein.
BR 1286R $\quad 5 \mathrm{~m}$ chip contains 2 cm quartz vein.
BR 1287R to
BR 1288R 5m chip samples, fresh granodiorite.

Sample

BR 1289R to
BR 1290R 5m chip samples, fresh granodiorite.
BR $1291 \mathrm{R} \quad 15 \mathrm{~cm}$ felsic dyke, some blebs of pyrite, $35 / 70 \mathrm{~S}$.
BR 1292R 5 m chip samples, granodiorite contains several crosscutting dykes and veinlets, all 2 cm wide or less.

BR 1293R to
BR 1299R 5m chip sample over fresh granodiorite.
BR $1300 \mathrm{R} \quad 1 \mathrm{~m}$ chip sample across 10 cm felsic dyke, no visible sulphides, $85 / 40 \mathrm{~N}$.
BR 1301R Felsic dyke predominantly plag with some mafic pheno's, some patches of quartz, sample over 0.5 m .

BR 1302R Calcite shear approx. 2 m wide, sample over 2 m .
BR 1313R 10 cm shear in granodiorite, selective.
BR 1314R 3m chip over rusty weathered shear in granodiorite.
BR 1315R 3m chip across very rusty granodiorite disseminated Py, Cpy, granodiorite coarse grained, high percentage of hornblende w/glassy quartz.

BR 1316R 2 m chip across very rusty granodiorite disseminated $\mathrm{Py}, \mathrm{Cpy}$.
BR 1317R 2 m chip across rusty coarse grained granodiorite, a few blebs of Py, less hornblende than 1315,1316 , more quartz, $100 / 85 \mathrm{~N}$.

BR $1318 \mathrm{R} \quad 1 \mathrm{~m}$ select sample of rusty granodiorite, rust has obscured fabric.
BR 1319R lm wide rusty zone of granodiorite, coarse grained, malachite stain on joints, 40/52E.

BR 1320R $\quad 2 \mathrm{~cm}$ shear with pervasive malachite stain, sample over 40 cm .
BR 1321R 2 cm shear malachite vein in medium grained granodiorite, 40/56E.
BR 1322R Grab of sulphide rich (pyrite, chalcopyrite) patch in medium grained granodiorite, rare quartz partings.

BR 1323R Granodiorite bloc (0.5 m) with rusty joints spaced at $0.5-1 \mathrm{~cm}$.
BR 1324R Fragments of chalcedonic quartz veinlets in strongly weathered (altered) granodiorite.

BR 1325R Orange crumbly (carbonate altered) weathered granodiorite.
BR 1326R Granodiorite with dense jointing (quartz and sulphides), chip 30cm (N70/90-45S).

BR 1327R Aplitic dyke with patches of quartz-sulphides; 20 cm wide, N100/70S.
BR 1328R Boulder of Cu -stained granodiorite.
BR 1330R 40 cm chip over 15 cm qtz carb. vein. Resample 1066.
BR 1331R 40 cm chip over same as 1066.
BR 1332R 3m chip across carbonate altered granodiorite disseminated Cpy. Duplicate 1067.
BR 1333R 50 cm chip across qtz. carb. altered granodiorite, some blebs, Cpy w/minor malachite stain. 15 m above 1066 .

BR 1334R 70 cm chip across carb. altered granodiorite.
BR $1335 \mathrm{R} \quad 30 \mathrm{~cm}$ chip across 15 cm vein of qtz. carb., some blebs malachite, $70 / 50 \mathrm{~N}$.
BR 1336R 1 m chip over carbonate shear, 25/32S.
BR 1337R 40 cm hip over 15 cm qtz. vein with pervasive malachite stain. Disseminated Py in granodiorite selvage, $80 / 60 \mathrm{~S}$.

BR $1338 \mathrm{R} \quad 30 \mathrm{~cm}$ chip across 10 cm qtz. carb. vein, $90 / 50 \mathrm{~N}$.
BR $1343 \mathrm{R} \quad 30 \mathrm{~cm}$ chip over 10 cm qtz. carb. vein.
BR 1344R 50 cm chip over 15 cm qtz. vein, $100 / 60 \mathrm{~N}$.
BR 1345R $\quad 50 \mathrm{~cm}$ chip carbonate shear.
BR 1346R Im chip of carbonate altered granodiorite with small parallel qtz. veinlets.
BR 1347R 1 m chip across carbonate altered granodiorite $\mathrm{w} /$ flatlying qtz. carb. veinlets.
BR 1348R $\quad 50 \mathrm{~cm}$ chip across 50 cm albite dyke.
BR 1349R Carb. altered granodiorite, 60 cm sample.
BR 1350R Resample 1022R, 5m chip.
BR 1351R Resample 1259, 5m chip.
BR 1352R Resample BR 146/147, 2m chip.
BR 1353R 2m chip of silicified granodiorite.
BR 1354R Carbonate altered granodiorite with small calcite and qtz. veinlets, blebs of Py.

Appendix III

Check Analyses For Au

CHECK ANALYSES FOR AU

Core samples with more than $1 \mathrm{~g} / \mathrm{t} \mathrm{Au}(1535,1542,1548$, and 1555) were re-analyzed by F.A. and A.A. Significant differences were found on the first check analyses, so further verifications were made both with Acme and Bondar-Clegg (Table 1).

To test if the variability of the results in Table 1 are due to coarse, gold metallics analyses were carried out on the three samples having sufficient rejects:

	Sample wt. gm.	$\begin{gathered} \mathrm{Au}-100 \\ \mathrm{ppb} \\ \hline \end{gathered}$	Native Au \qquad	Avg. ppb
1535	640	1646	31	1680
1548	430	926	0	926
1554	790	1337	25	1362

The "nugget effect" observed in Table 1 does not appear to be related to the presence of coarse native gold. It may, however, be due to the high gold content of sulphides which occur in coarse grains.

Check analyses were also done on surface samples including some on pulps and rejects from the 1991 sampling (Table 2). Similar variability is seen irrespective of laboratory or analytical method.

Check analyses were done at the same time on samples from another project with a different type of Au mineralisation, the variability is much less pronounced, differences between analyses being usually in the 10% range (for analysis of $1-5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$). This suggests that the variance shown in Table 1 and 2 is most probably inherent to the mineralisation on Walker Ridge, a nugget effect.

Table 1: Check Analyses for Au in Core Samples

Sample Number	1535	1542	1548	1554
	Au ppb	Au ppb	Au ppb	$\begin{aligned} & \mathrm{Au} \\ & \mathrm{ppb} \end{aligned}$
Acme				
A.A. (50g)	1440	5000	1070	1640
A.A. (20 g)	1166	5315	1132	857
F.A. (1 A.T.)	1646	2983	754	823
A.A. $(10 \mathrm{~g})$	1870	1650	810	580
	2040	2980	1010	910
	1010	2470	740	530
	3120	2890	1730	870
	1620	1630	750	470
	7750	2490	1070	530
	1830	2460	830	560
	1390	2710	810	1350
	2610	2440	710	520
	2230	2150	1000	590
F.A. (10g)	1397	2911	961	790
	1462	2594	808	885
	1667	5428	852	589
	2013	4757	922	542
	2521	3249	744	532
	2752	3604	1002	501
	2946	2844	1640	495
	2161	6162	742	568
	4293	2276	734	493
	1725	2643	1606	665

Bondar-Clegg

F.A. (30g)	1614	4455	741	4113
	1202	5231	996	1939
				1252
				6074
n	25	25	25	27
X	2219	3333	967	1099
Max.	7750	6162	1730	6074
Min.	1010	1630	734	470
Std. Dev.	1367	1285	290	1239

Table 2: Check Analyses for Au in Surface Samples

Sample Number	$\begin{gathered} \text { Acme } \\ \text { A.A. }(50 \mathrm{~g}) \end{gathered}$	Bondar-Clegg			
		$\frac{\text { F.A. } 1}{(30 \mathrm{~g})}$	$\frac{\text { F.A. } 2}{(30 \mathrm{~g})}$	F.A. 3	F.A. 4
	Au ppb	Au ppb	Au ppb	Au ppb	Au ppb
1022	3702	1476	2121	2172	1998
1043	1896	2017	1226	1250	1234
1044	6426	5187	6636	4039	5252
1047	804	5369	1005	925	836
1053	3336	2353	162	2064	4185
1055	101	158	-	146	
1213	6672	6188	5211	-	
1214	1176	1014	1101		
1259	1092	949	1242		
1292	1470	1179	1322	-	-

			Acme		
	$\begin{aligned} & \hline \text { A.A. } 1 \\ & (50 \mathrm{~g}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A.A. } 2 \\ & (20 \mathrm{~g}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A.A. } 3 \\ & (10 \mathrm{~g}) \end{aligned}$	$\begin{aligned} & \hline \text { F.A. } 1 \\ & (20 \mathrm{~g}) \end{aligned}$	$\begin{aligned} & \text { F.A. } 2 \\ & (20 \mathrm{~g}) \\ & \hline \end{aligned}$
	Au ppb	Au ppb	Au ppb	Au ppb	Au ppb
42	2060	-	-	2450	2679
49	6233	-	-	8164	
309	2027	3710	2316	2190	
309A	-	3860	2226	-	

Appendix IV

Drill Logs

LIST OF SAMPLES

PROJECT	Pilot
HOLE NO	PT TA 3
LOGGED BY	W.ROBL

LIST OF SAMPLES

PROJECT	Pilot
HOLE NO	PLT 3
LOGGED BY	W. ROCK

PAGE	2
OF	4

LIST OF SAMPLES

PROJECT	Pilot
HOLE NO	Pit 3
LOGGED By	W. Rabh

LIST OF SAMPLES

LIST OF SAMP
$\left[\begin{array}{|l|l|}\hline \text { PROJECT } & \text { Pilot } \\ \hline \text { HOLE NO } & \text { PLT 3 } \\ \hline \text { LOGGED BY } & \text { W. Nobly } \\ \hline\end{array}\right.$

PAGE	4
OF	4

$[$

SAMPLE	FROM	TO	LENGTH	WIDTH	COMMENTS	AU	CU
1560	81.90	84.3	2.10	1.48		260	492

LIST OF SAMPLES

PROJECT	Pilot
HOLE NO	PL A 4
LOGGED BI	$W, K G W$

PAGE	1
OF	1

ursp of sampres $^{\text {a }}$							
Prosecr	Pilot				commers	Prase OF/, 0	
ноге но	PLTS						
${ }_{\text {Locses ar }}$							
Smprie							
	Prom	70				${ }^{\text {at }}$	${ }^{\text {cu }}$
15636	4.24	6. 10	4, ${ }^{86}$,93		490	,
1564	6.0	8.19	2.03	1.0		420	- 843
1565	8.80	10.30	1.50	. 75		380	1672

\square
Statement of Expenditures

STATEMENT OF EXPENDITURES
PILOT PROPERTY

Geological and Geochemical Surveys and Drilling
 May to November 1992

Personnel
K. Schimann 15.5 days @ \$441 \$ 6,835
68.0 days @ \$15810,744
C. Church36.0 days @ \$1736,228
23,807
Drilling (core 103.3m) 9,190
Helicopter rental 6.0 hrs. @ \$722 4,332
Truck rental 81 days @ \$70 5,670
ATV rental 30 days @ \$30 900
Field equipment and supplies 1,647
Fuel 1,113
Accommodation and food 4,210
Air photos and mapping 1,467
Miscellaneous fees 340
Geochemical analyses 59 soil samples @ \$13.40 791
296 rock samples @ \$15.00 4,440
Data processing and report preparation 5,700

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Karl Schimann, residing at 5442 Columbia Street, Vancouver, B.C., hereby state that:

1. I am the senior author of the report Bralorne Project 1992, Pilot Property, British Columbia.
2. I have worked on the property from May to November 1992 for COGEMA Canada Ltd. and supervised the work described in this report.
3. I graduated from the Universite de Montréal with a B.Sc. in Geology in 1968.
4. I graduated from the University of Alberta with a Ph.D. in Geology in 1978.
5. I have worked in mineral exploration since 1976.
6. I am a registered member, in good standing, of the Association of professional Engineers and Geoscientists of British Columbia.

[^0]:

