A			,
LOG	40:	[FEB_1 5 1993	RD.
ACTIC	N.		
	Circle 1		
FILE I	VO:		

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL

ASSESSMENT REPORT

ON THE

MT. ALCOCK PROPERTY

Recreation Area Mining Division NTS 94F/11 Latitude 57°40'N Longitude 125°24'W

GEOLOGICAL BRANCH #600-200 Burrard StreeASSESSMENT REPORT Vancouver, B.C. V6C 3L9

S. Jensen January 1993 Kamloops, B.C.

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL

ASSESSMENT REPORT

ON THE

MT. ALCOCK PROPERTY

Recreation Area Mining Division NTS 94F/11 Latitude 57°40'N Longitude 125°24'W

OWNER: Teck Corporation #600-200 Burrard Street Vancouver, B.C. V6C 3L9

> S. Jensen January 1993 Kamloops, B.C.

SUMMARY

The Mt. Alcock property consists of the Cu and Cv mineral claims totalling 432 units. The property, situated within the Kwadacha Recreation Area, is located within the Rocky Mountains of northern B.C., roughly 300 kilometres northwest of Mackenzie.

The Mt. Alcock barite-hosted sulphide occurrence was discovered in 1977. The property was staked in 1989 in response to the provincial government's decision to open the recreation area for mineral exploration.

Teck's 1992 program consisted of 1:5,000 scale mapping with concurrent rock sampling. In addition, two grids were established and soil sampled, with a gravity survey carried out over selected portions of one grid. The purpose of the program was to test for an economic barite-hosted Zn-Pb massive sulphide deposit hosted within Devonian black shales. Mapping and soil, rock and stream sampling was concentrated within the black shales. The program was carried out between July 15 and August 31, 1992.

Regionally, the property is underlain by Upper Devonian to Ordovician fine grained basinal clastics and carbonates. Middle to Upper Devonian lower Earn Group black shales, cherts, and siltstones of the Gunsteel Formation underlie a majority of the area worked in 1992.

Mapping on the Nod Grid delineated a structurally offset, 800m x 25m zone of nodular barite. In addition, two areas (up to 700 metres strike length) of favourable pregnant shale lithology were identified.

Rock samples from the nodular barite and pregnant shale as well as poker chip shale and cherts, returned subeconomic base metal (Zn-Pb) values. A soil survey conducted over the Nod Grid did not return significant base metal results, only weak anomalies were outlined, the most interesting being coincident zinc (up to 1119 ppm Zn), lead (up to 484 ppm Pb) and associated sedex indicator elements (cadmium, manganese and vanadium) in an area underlain by pregnant shales between L43N and L44N. A limited gravity survey carried out over three lines on the Nod Grid returned weakly encouraging results. The survey along L50N indicates a 0.2 milligal anomaly centered at 46+75E (edge of nodular barite outcrop) that could be caused by a 25m x 100m x 100m mass of density contrast and holds hope of a larger down dip extension of the nodular barite horizon. However, geological interpretation suggests the body is faulted off. Weak gravity anomalies, most likely attributed to density contrasts between siliceous and non-siliceous black shales, were identified on lines 44N and 38N.

Mapping within the Seep Grid identified laminated pyrite exposures hosted by pregnant and poker chip shales. Rock sampling of the pyritic black shales returned subeconomic base metal values. Highly elevated zinc (up to 12967 ppm Zn) values were returned from stream and iron-seep sampling in the Seep Grid area. However, associated lead values are low, likely indicating a fault source for the seeps and anomalies.

Soils collected from the Seep Grid outlined several coincident anomalous base metal (Zn-Pb) zones. Values up to 4672 ppm Zn and 857 ppm Pb were obtained with locally anomalous, and usually coincident, sedex indicator elements including cadmium, manganese, vanadium and silver. However, a majority of the anomalies are likely related to fault zones. Several of the anomalous zones remain unexplained.

Mapping on the northwest side of Warneford River revealed numerous exposures of nodular barite hosted by poker chip, distinctly laminated and pregnant shales. One area of massive barite was identified with over 350 metres of strike length uncovered. Rock samples collected from both the nodular and massive barite returned subeconomic base metal and associated sedex indicator element values.

Laminated pyrite within pregnant shales was identified in the Longwok Creek area. Rock samples returned subanomalous base metal values.

<u>ii</u>

RECOMMENDATIONS

Additional work on the Mt. Alcock property should consist of:

- 1) Close spaced soils on the west side of the Seep Grid to better define the coincident lead-zinc soil anomaly.
- 2) Hand trenching favourable results from 1).
- 3) Diamond drill testing the gravity anomaly on L50N within the Nod Grid.

TABLE OF CONTENTS

	_	Page			
	Summary				
	Recommendations	🕷			
1.	Introduction				
2.	Location and Access	1			
3.	Topography and Vegetation	1			
4.	Claims				
5.	Previous Work and History				
6.					
7.	Geology				
	A) Regional Geology				
	B) Property Geology	4			
	I) Nod Grid Area				
	II) Seep Grid Area				
	III) NW of Warneford River	10			
	IV) Longwok Creek and 1616 Peak Area	11			
	V) Mineralization and Alteration	12			
8.	Soil Geochemistry				
0.					
	B) Seep Grid	17			
0	I) Results				
9.	Stream Samples	20			
10.	Gravity Survey - Nod Grid	22			
	A) Results				
	I) L50+00N				
	II) L44+00N				
	III) L38+00N				
	IV) Recommendations				
11.	Conclusion				
12.	References	26			

LIST OF FIGURES

•

	Fo	llowing Page
Figure 1:	Property Location Map (1:2,000,000)	1
Figure 2:	Claim Map (1:75,000)	
Figure 3:	Grid and Map Sheet Locations (1:75,000)	
Figure 4:	Regional Geology (1:66,700)	
Figure 5:	Geology and Geochemistry - Nod Grid Area (1:5,000)	
Figure 6:	Hand Trenches : Geology & Geochemistry - Nod Grid (1:100)	
Figure 7:	Cross-section : L50+00N - Nod Grid (1:10,000)	
Figure 8:	Cross-section : L44+00N - Nod Grid (1:10,000)	
Figure 9:	Cross-section : L38+00N - Nod Grid (1:10,000)	
Figure 10:	Geology and Geochemistry - Seep Grid (1:5,000)	
Figure 11:	Geology and Geochemistry - NW of Warneford River (1:5,000)	
Figure 12:	Geology and Geochemistry - Longwok Creek and	
	1616 Peak Areas (1:5,000)	. In Pocket
Figure 13:	Soil Geochemistry : Zn(ppm) - Nod Grid (1:5,000)	
Figure 14:	Soil Geochemistry : Pb(ppm) - Nod Grid (1:5,000)	
Figure 15:	Soil Geochemistry : Ba(ppm) - Nod Grid (1:5,000)	
Figure 16:	Soil Geochemistry : Zn(ppm) - Seep Grid (1:5,000)	
Figure 17:	Soil Geochemistry : Pb(ppm) - Seep Grid (1:5,000)	
Figure 18:	Soil Geochemistry : Cd(ppm) - Seep Grid (1:5,000)	
Figure 19:	Gravity Survey : L50+00N Profile - Nod Grid (1:10,000)	
Figure 20:	Gravity Survey : L44+00N Profile - Nod Grid (1:10,000)	
Figure 21:	Gravity Survey : L38+00N Profile - Nod Grid (1:10,000)	
i iyure zi.	diavity durvey, Loo torrettoric - 1400 and (1.10,000)	

LIST OF TABLES

		Page
Table 1:	Claim Records	 2

APPENDICES

Appendix I:	Statement of Qualifications
Appendix II:	Cost Statement
Appendix III:	Certificates of Analyses
Appendix IV:	Analytical Procedures
Appendix V:	Rock Sample Descriptions
Appendix VI:	Soil Sample Descriptions
Appendix VII:	Gravity Survey Specifications & Procedures

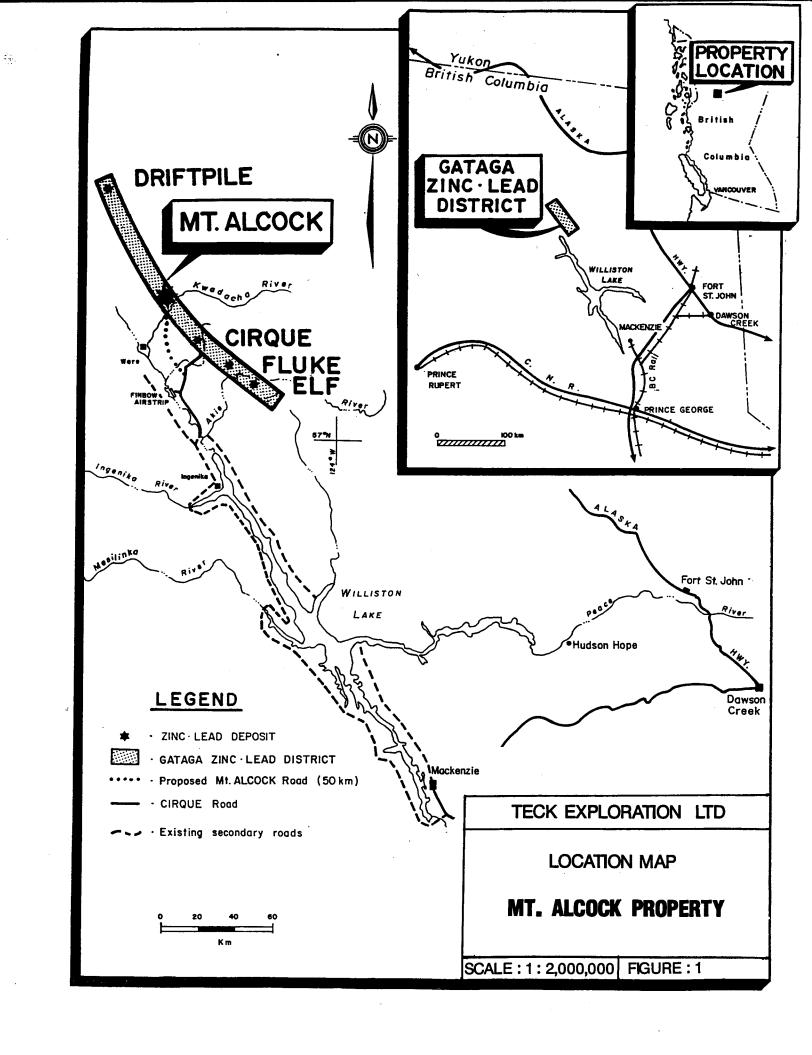
1. INTRODUCTION

During 1992, a program of 1:5,000 scale geological mapping and grid soil sampling with concurrent rock chip sampling was carried out on the Mt. Alcock property. In addition, a limited gravity survey and stream and iron seep sampling was completed. The property was staked in 1989 in response to the provincial government's decision to open the recreat area for mineral exploration. The 1992 program was designed to evaluate the potential for an economic sedex Zn-Pb massive sulphide deposit.

1992 surveys were concentrated on favourable black shale stratigraphy, as outlined by Triumph Resources previous 1989 and 1990 work on the claims. Work was concentrated on a Devonian thrust slice located northeast of the main Mt. Alcock barite-sulphide showing.

This report describes the 1992 program and results.

2. LOCATION AND ACCESS (Figure 1)


The Mt. Alcock property is located roughly 300 kilometres northwest of Mackenzie in northern British Columbia. The claims are situated within the western portion of the Kwadacha Recreation Area, approximately 25 kilometres northeast of Ft. Ware. The property is located on NTS map sheet 94F/11 with an approximate property centre latitude and longitude of 57° 40'N and 125° 24'W, respectively.

Access is via helicopter based locally at Finbow logging camp, located roughly 50 kilometres south of the property. Logistical support was provided by chartered fixed wing aircraft out of Mackenzie to the Finbow airstrip.

3. TOPOGRAPHY AND VEGETATION

Topography is steep to moderate as the property is situated within the Muskwa Ranges of the Rocky Mountains. Elevations range from 2010 metres (6593 feet) on the slopes of Mt. Luke in the eastern claim area to 800 metres (2624 feet) at the confluence of the Kwadacha and Warneford Rivers located in the southwest corner of the property.

Vegetation is thick to open and consists predominantly of mature spruce and balsam. Underbrush is generally moderate and consists of alders, scrubrush and burn. Moderate portions of the property area are covered by forest fire burns.

4. <u>CLAIMS</u> (Figure 2)

The property, located in the Recreation Area Mining Division, consists of the Cu and Cv mineral claims totalling 432 units (\approx 10,800 hectares). The claims are registered in the name of Teck Corporation and claims worked in 1992 were grouped into two, 96 unit groups as follows:

Nod Group: CV 5200 RAC, CV 5400 RAC, CU 5498 RAC, CU 5898 RAC, CU 5698 RAC, CU 5896 Seep Group: CV 5800 RAC, CV 5600 RAC, CU 6092 RAC, CU 6094 RAC, CU 6096 RAC, CU 6098 RAC

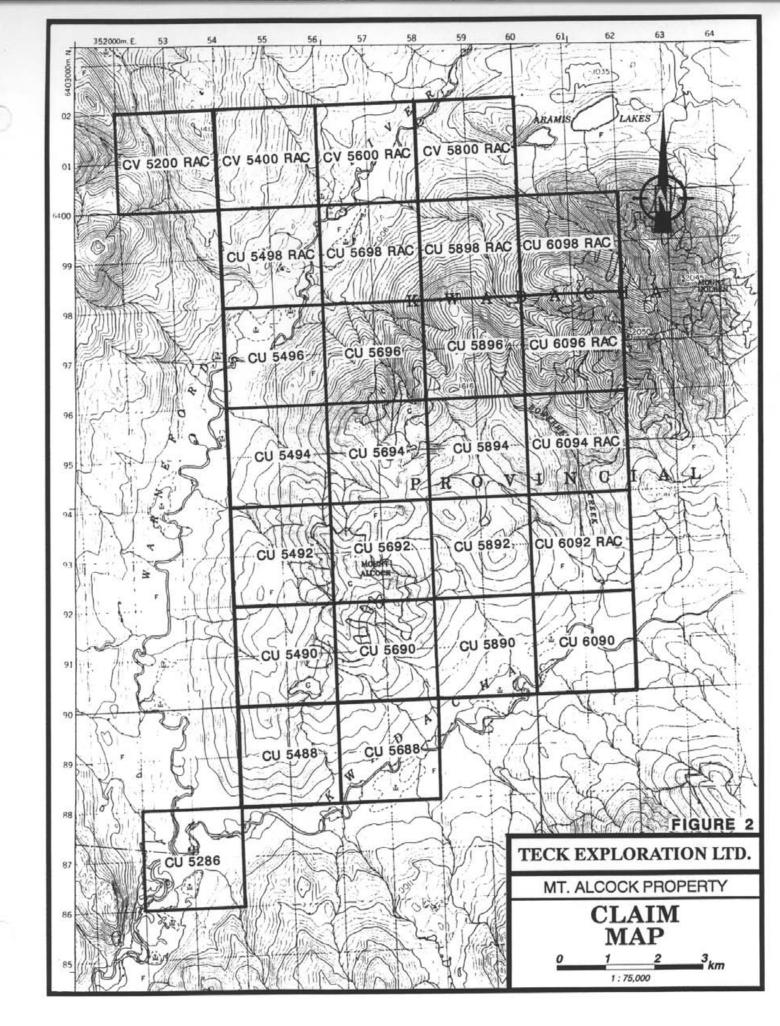

The following table lists all pertinent claim data.

TABLE 1

CLAIM RECORDS

Claim Name	Record No.	Units	Record Date	Expiry Date [*]
CU 5488	241394	16	June 27, 1989	June 27, 1996
CU 5490	241395	16	June 27, 1989	June 27, 1996
CU 5492	241396	16	June 27, 1989	June 27, 1996
CU 5494	241397	16	June 27, 1989	June 27, 1996
CU 5496	241398	16	June 27, 1989	June 27, 1996
CU 5688	241399	16	June 27, 1989	June 27, 1996
CU 5690	241400	16	June 27, 1989	June 27, 1996
CU 5692	241401	16	June 27, 1989	June 27, 1996
CU 5694	241402	16	June 27, 1989	June 27, 1996
CU 5896	241403	16	June 27, 1989	June 27, 1997 [*]
CU 5890	241404	16	June 27, 1989	June 27, 1996
CU 5892	241405	16	June 27, 1989	June 27, 1996
CU 5894	241406	16	June 27, 1989	June 27, 1996
CU 5896	241407	16	June 27, 1989	June 27, 1996
CU 5286	241408	16	July 05, 1989	July 05, 1996
CU 6090	241416	16	Sept 28, 1989	Sept 28, 1996
CV 5200 RAC	307519	16	Feb 12, 1992	Feb 12, 1997
CV 5400 RAC	307518	16	Feb 12, 1992	Feb 12, 1997
CU 5498 RAC	307515	16	Feb 12, 1992	Feb 12, 1997 [*]
CV 5600 RAC	307517	16	Feb 12, 1992	Feb 12, 1996 [*]
CU 5698 RAC	307514	16	Feb 12, 1992	Feb 12, 1996
CV 5800 RAC	307516	16	Feb 12, 1992	Feb 12, 1996
CU 5898 RAC	307513	16	Feb 12, 1992	Feb 12, 1996
CU 6092 RAC	307498	16	Feb 12, 1992	Feb 12, 1996
CU 6094 RAC	307510	16	Feb 12, 1992	Feb 12, 1997 [*]
CU 6096 RAC	307511	16	Feb 12, 1992	Feb 12, 1996
CU 6098 RAC	307512	<u>16</u>	Feb 12, 1992	Feb 12, 1996 [*]
	Total	= 432 Unit	S	

*Note = Expiry date based on acceptance of this report

5. PREVIOUS WORK and HISTORY

Regional exploration for sediment-hosted Pb-Zn in northeastern B.C. was generated in the late 1960's due to the recognition of clastic-hosted stratiform baritic sulphide deposits of the West German (Meggen and Rammelsberg) type in the Yukon (MacMillan Pass). The first major program in the Kechika Trough was conducted by Geophoto Consultants in 1970. Exploration was further intensifed by the 1971 discovery of the carbonate-hosted Pb-Zn Robb Lake deposit. In 1974, Placer Development Ltd discovered several Devonian-aged baritesulphide occurrences including Driftpile Creek (north of Mt. Alcock). The first major discovery, the Cirque (Stronsay) deposit, was made by Cyprus Anvil and Hudson's Bay Oil & Gas in 1977 and contains reserves in excess of 35 million tonnes averaging 10% (Pb + Zn) and 47 g/t Ag.

The Mt. Alcock barite-hosted sulphide occurrence was discovered in 1977 by Cyprus Anvil Mining Company. Grab samples from a 2-3m thick mineralized zone within the barite kill zone returned up to 14.8% combined Pb-Zn and 0.6 opt Ag.

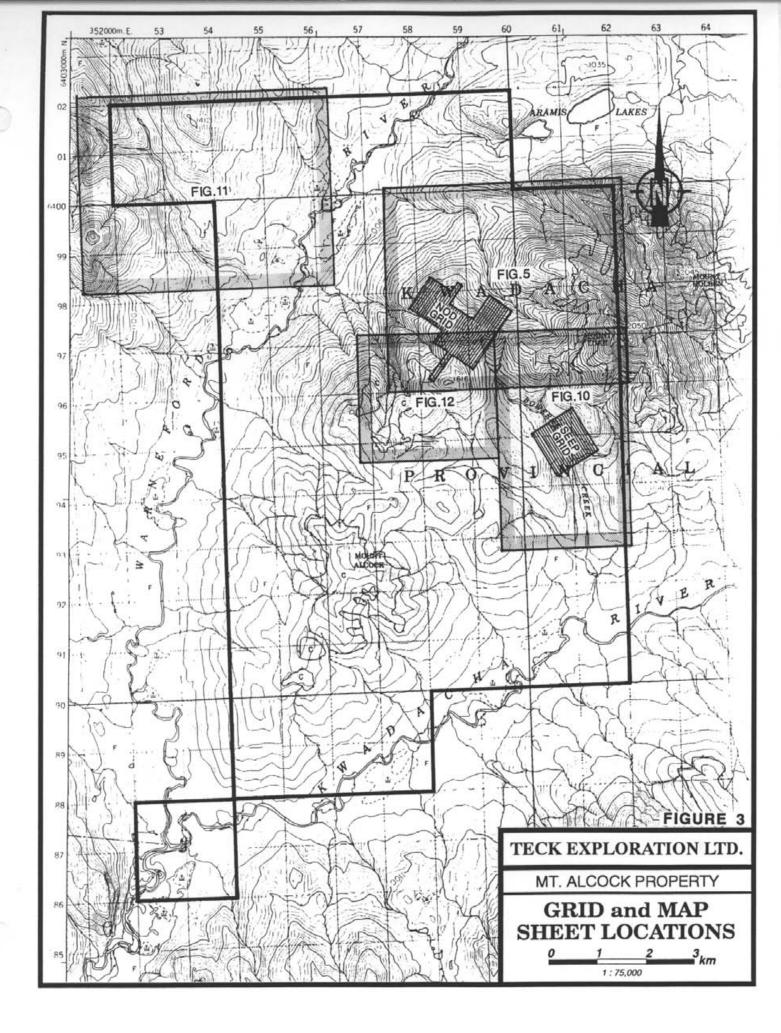
In 1989, the Mt. Alcock area (part of the Kwadacha Recreation Area) was opened for mineral exploration with Triumph Resources, funded by Teck Exploration, becoming the successful bidder. During 1989, Triumph carried out a program consisting of mapping, prospecting, stream sampling; establishing and soil sampling a grid overlying the barite-sulphide showing; conducting 7 km of induced polarization survey over the same grid and testing the down-dip extension of the mineralized zone with nine diamond drill holes totalling 1111 metres. Drilling indicated the main showing area to be structurally complex with one of the best intersections containing 8.8 metres of 9.3% combined Zn-Pb (hole 89-3). Mapping and sampling within Devonian black shales northeast of the main showing revealed nodular barite zones as well as anomalous (Zn-Pb) drainages and soils.

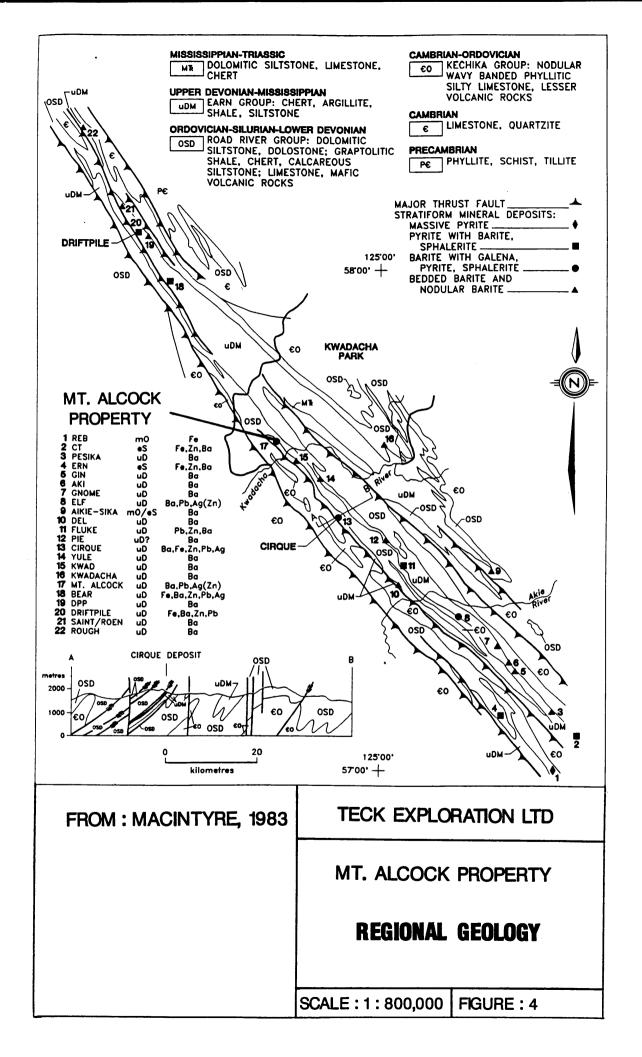
In 1990, Triumph carried out a diamond drilling program totalling 1211.6 metres in six holes. The holes tested IP and geochemical targets (proximal to the main showing) and the down-dip extension of the main showing. No significant massive sulphide intercepts were obtained.

6. <u>1992 PROGRAM</u>

In 1992, 87 mandays were spent on the Mt. Alcock property between July 15 and August 31. The program consisted of grid installation and soil sampling, a geophysical survey and 1:5,000 geological mapping with concurrent rock chip and stream sampling. Most of the work was carried out within Teck's newly staked claims.

A total of 741 soil samples on 21.5 km of grid line were collected on two grids; the Nod Grid and Seep Grid. Grid locations are shown on Figure 3. In addition, 57 rock chip, 29 moss mat, 5 silt and 6 iron seep samples were collected. A ground gravity survey was carried out over selected portions of the Nod Grid.


Mapping was done with topofil, compass and altimeter. Outcrop exposure on the property is variable, with most of the rock exposure provided along creek drainages.


7. <u>GEOLOGY</u>

A. Regional Geology (Figure 4)

The region (Gataga District) has been mapped on several occassions by the federal and provincial governments since the 1970's. The two most recent mapping projects are 'Geology of the Akie River Ba-Pb-Zn Mineral District' by D. MacIntyre of the B.C MEMPR in 1981 (Preliminary Map 44) and 'Geologic Map of Ware (West 1/2) and Tooddoggone River Map-Areas' by H. Gabrielse of the Geological Survey of Canada in 1979 (Open File Report 483).

This work indicates the Mt. Alcock property area is underlain by Devonian to Ordovician clastic and carbonate rocks. Ordovician stratigraphy consists of black shales to siltstones of the Road River Group. These are unconformably overlain by Silurian Road River Group dolomitic siltstones and limestones. Lower to Middle Devonian limestones of the Road River Group unconformably overlie the Silurian strata. The youngest Devonian unit underlying the claims area is the Middle to Upper Devonian Gunsteel Formation black shales and cherts of the Earn Group. Cambrian sediments are fairly common proximal to the property area (Gataga district). The units (especially the Devonian and Silurian) outcrop in narrow

northwest-trending panels bounded by southwest-dipping thrust faults. Precambrian sediments are found 60 kilometres northeast of the Mt. Alcock claims.

Ordovician to Devonian sediments were deposited in structurally controlled, epicratonic extensional basins (Kechika Trough) that formed along the western margin of the miogeocline of ancestral North America. These Paleozoic and older sediments are bounded to the east and west by limestones and shallow water clastics of the Mackenzie and Cassiar Platforms.

The Gataga district is located within the western half of the Rocky Mountain Tectonic Belt and is dominated by the characteristic structural style of this fold and thrust belt. The western margin of this belt is the Rocky Mountain Trench, a zone occupied by a major strikeslip fault zone along which over 450 km of dextral displacement has occurred in Cretaceous or Eocene time (Gabrielse, 1984).

McClay and Insley (1986) recognized three phases of deformation in the district. The dominant deformation is northwest-striking, southwest-dipping and northeast-verging thrustbounded packages of gently northwest and southeast-plunging chevron to tightly folded and cleaved strata. This was preceeded by an earlier pre-thrusting and pre-main cleavage phase of asymmetric folding on northeast-trending fold axes. These phase one fold hinges contain local cleavage development. All thrusts have been subsequently rotated and steepened during continued deformation by movement on underlying thrusts. The third phase of deformation is late, northeast to east-striking dextral reverse kink-folding. This results in minor folds, dilatant vein systems and minor reorientation of existing structures.

The area surrounding the Mt. Alcock property is host to numerous barite-sulphide mineral showings or occurrences, including Driftpile Creek, Bear, Cirque, Fluke, Pie, Elf, Kwadacha and Sika. The mineral district is over 180 kilometres long and occurs within Devonian basinal facies rocks of the northwest-trending Kechika Trough. The sedex deposits are interpreted to have formed in local, fault controlled, third order basins within the larger epicratonic to intracratonic marine basins (Large, 1983).

B. <u>Property Geology</u> (Figures 5-12)

The immediate area covering the Mt. Alcock property can be divided into 5 major mappable units (Figures 5-12). All references to 'the claims' refers to the claims worked on by Teck in 1992; predominately the newly staked claims that were added along the eastern and northern edge of the existing claims, north and east of the main Mt. Alcock showing. Coverage of the separate map sheets is shown on Figure 3.

The oldest rocks underlying the property are Ordovician black shales and siltstones and Silurian dolomitic siltstones. The predominately Silurian sediments are mainly exposed within the eastern portion of the property; just east of the Seep grid, and are traceable north/northwest for 5-6km to the Aramis Lakes area. The Silurian and Ordovician rocks are in thrust contact with younger Devonian sediments. Ordovician and/or Silurian sediments are also exposed one kilometre southwest of the Seep grid area. Silurian rocks have been identified on the north side of Warneford River, 800 metres southwest of the northwest corner of the claims. Possible Silurian sediments have been identified along Longwok Creek, located two kilometres southwest of the Nod Grid.

A majority of the claims are underlain by Devonian Gunsteel Formation black shales, cherts, siltstones and limestones. Poker chip shale and porcellanite (chert) are the most common rock type, with lesser siltstones and limestones. Limestones are found primarily at the base of the Devonian section on the property, proximal to the thrust contacts with the older Ordovician and Silurian sediments.

Units 1 to 4 (Figures 5 & 6) are described individually.

Unit 1 : Ordovician Black Shale and Siltstone

The oldest Road River Group lithology found on the property is Ordovician black shales and siltstones. Grey to black shales range from totally non-siliceous (soft) to strongly siliceous and cherty. The shales can contain appreciable quantities of silt, as there is a continum between the shales and siltstone. Carbonaceous black shales can be calcareous and strongly cleaved. Ordovician shales often contain characteristically abundant graptolites, especially in the more silty and muddy layers.

Unit 2 : Silurian Dolomitic Siltstone and Limestone

The Silurian Road River Group contains siltstones and limestones. Unit 2a is grey to beige bedded limestone, grey weathering, locally silty and a prominent ridge former.

Unit 2b is a characteristically orange weathering dolomitic siltstone. This ridge forming, locally micaeous, well bedded and grey colored unit is often calcareous and contains local, but uncommon graptolites. A characteristic of the Middle to Late Silurian unit is abundant burrow and grazing trail trace fossils.

Unit 3 : Lower to Middle Devonian Limestone

Unit 3 is a medium grey fossiliferous limestone. It is locally black and silty; usually as thin beds within the thicker bedded limestone. The unit is locally a limestone breccia or conglomerate with predominantly limestone clasts in a limestone to calcareous mud matrix. The fragmental nature is possibly related to debris flows off adjacent limestone reefs.

Unit 4 : Gunsteel Formation

This Middle to Upper Devonian Earn Group unit is comprised of 5 subunits.

Subunit 4a is porcellanite; a grey to black strongly to totally siliceous rock (chert). This competent rock is often phyllitic and can possess a cleavage and megascopic folds. It is often ribbon-banded; 3-5 cm black chert bands with \leq 5mm black shale partings and laminations. The porcellanite is also commonly interbedded with poker chip shale.

A moderate to strongly siliceous black shale; pregnant shale, makes up subunit 4b. It is a carbonaceous, non-calcareous, silvery blue-grey weathering shale. It is a thick bedded, with beds ranging from 2-8cm (mode 4-6cm). It locally contains weak laminated and disseminated pyrite and often contains a fine stockwork of quartz veins. This subunit is distinguished from the other black shales by its thick bedding and moderately to strongly siliceous nature. This is the favourable unit to host barite-sulphide mineralization in the Gataga district.

Subunit 4c, distinctly laminated shale, is grey to black, somewhat silty shale with

distinct rhythmic 0.5-3cm laminations. It is non-siliceous and locally weakly calcareous. This subunit most likely represents a distal turbidite and is often interbedded with the poker chip shale. It can locally host nodular to massive barite.

The poker chip shale, subunit 4d, is a strongly cleaved, often phyllitic and locally graphitic dark grey to black shale. It is non to weakly siliceous (very soft) and silvery grey weathering. This carbonaceous, often folded and contorted, locally silty and non-calcareous subunit is often rusty and locally contains laminated and disseminated pyrite. It can be interbedded with the distinctly laminated shales and can host nodular to massive barite.

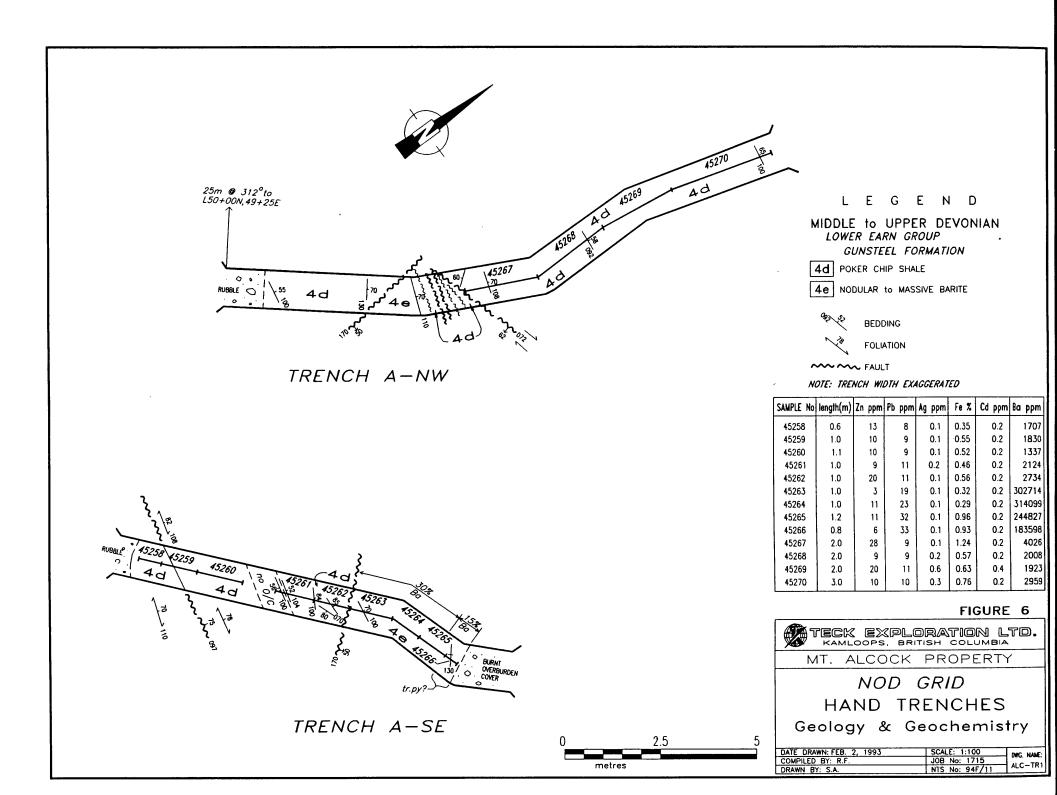
Nodular to locally massive barite, laterally equivalent to the poker chip and distinctly laminated shales, comprises subunit 4e. The nodular barite is comprised of spherulitic barite nodules ranging from 0.1-5mm in diameter with a 1-3mm modal size. The nodules are circular to ellipsoid depending on the degree of deformation and flattening. Nodular barite constitutes 15-60% of the rock mass and may represent pulled apart laminae of barite. The nodules are often concentrated in discontinuous wavy bands (up to 5mm wide) along bedding. Barite is also locally found as massive beds up to 3m wide. The poker chip and distinctly laminated shales host the nodular and massive barite. The barite nodules may represent the distal equivalent to the stratiform barite-sulphide deposits.

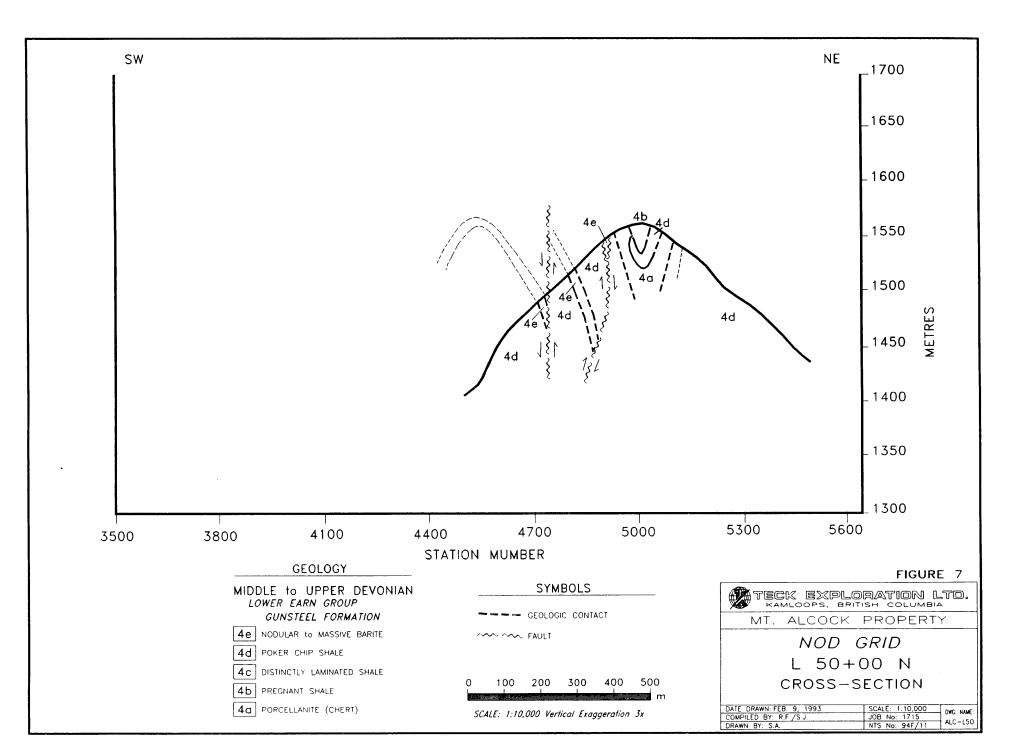
I. Nod Grid Area (Figures 5,6,7,8,9)

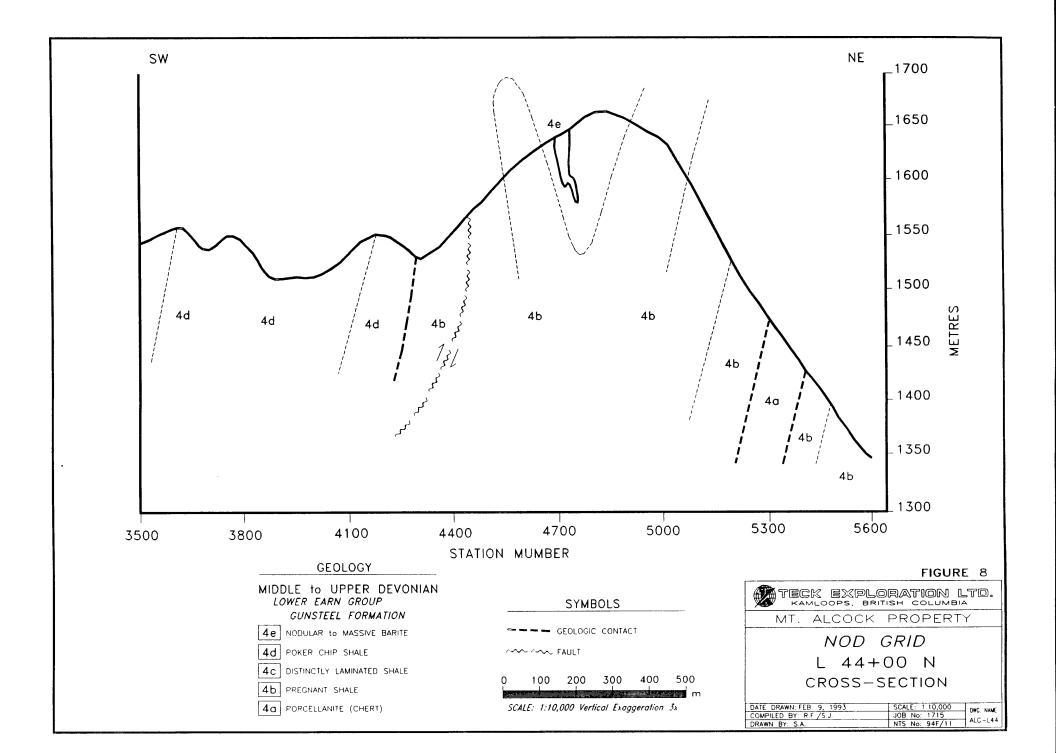
The Nod Grid area is underlain by the five subunits of the Devonian Gunsteel Formation (Figure 5). Poker chip shale is the most abundant rock type with moderate porcellanite and lesser pregnant shale, nodular barite and distinctly laminated shale exposure.

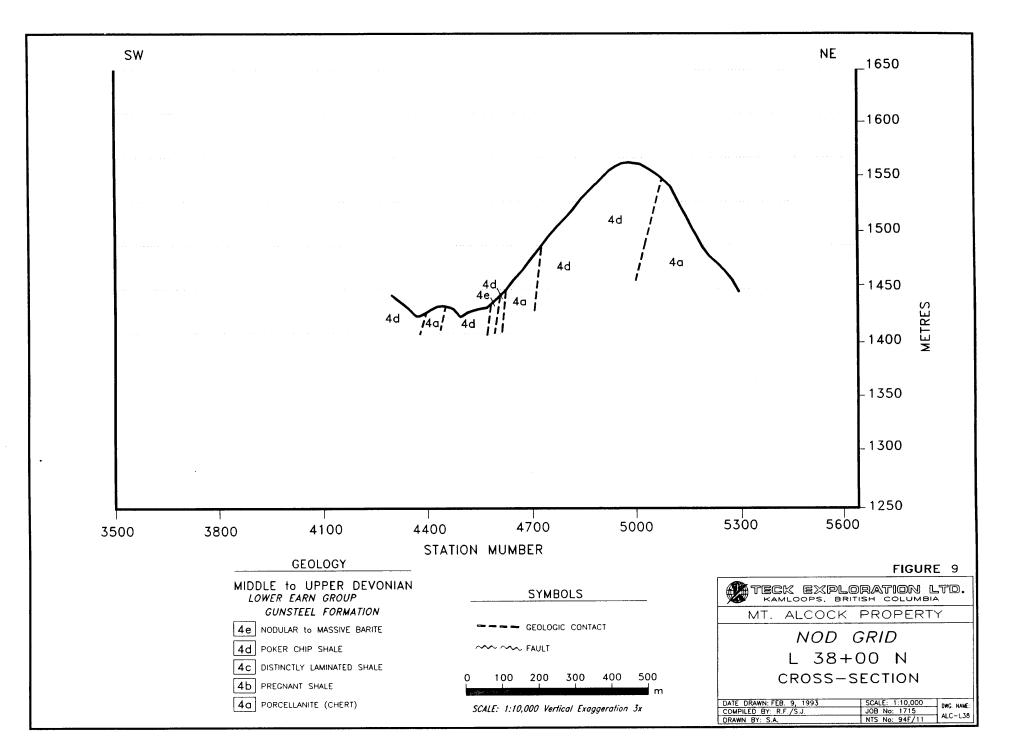
The general bedding is strikes 120°-150° and dips 30°-50° southwest. A prominent penetrative cleavage found in the shales roughly strikes the same as, or close to bedding, with dips ranging from 60°-80° to the southwest or northeast. Local variations (often in close proximity) in the bedding and cleavage attitudes are due to numerous antiforms, synforms and minor folds. This variation is reflected in the steronet analysis of the structural data. The poles to bedding and cleavage plot into two very loosely scattered groups; the more prominent cluster reflecting the general attitudes listed above and the less populous cluster

refecting the northeast dipping limbs of the minor folds. The bedding/cleavage intersection lineations and minor fold axes plot roughly 10°→290°.


The Nod Grid was established to cover exposures of nodular barite. Nodular barite, up to 25m wide on surface, outcrops intermittently southwest of the baseline from line L38N to L52N. The northwest-trending horizon can be traced almost continuously from L44N to L52N except at L49N where it is apparently offset by a dextral normal-slip fault. A cross-section of L50N depicts this relationship (Figure 7).


Approximately 100m northeast of the main nodular barite horizon lies a narrow and short exposure of nodular between L49N & L50N. Two small hand trenches seven metres apart, and totalling 25m in length, were constructed across the horizon (Figure 6). The barite is exposed up to 3m in width and appears to be fault controlled as the contacts of the barite with the poker chip shale in both trenches are fault zones and the horizon pinches out immediately along strike. This may be explained by the presence of a thrust fault as depicted in the cross-section along L50N (Figure 7). The rocks are consistently northeast-dipping and form the southern limb of a synform. A 600m exposure of barren pregnant shale occupies the axial trace of the synform.


A cross-section along L44N (600m southeast of L50N) further depicts the faulted and folded nature of the area (Figure 8). The favourable pregnant shale lithology is found along L44N from 43+00E to 44+50E and can be traced 700m northwest. It contains numerous small scale folds and faults. The pregnant shale horizon does not contain nodular or massive barite and appears to pinch out to the southeast. Nodular barite, up to 25 metres wide, is found within the poker chip shales and traceable northwesterly to L52N.


A small outcrop of nodular barite is located just off L38N, 46+00E. It is not traceable but appears to be the strike extension of the nodular barite horizon located to the northwest. A cross-section of L38N (Figure 9) indicates a uniformly dipping sequence of black shales and chert with no obvious folds and faults.

A long creek traverse carried out north of the Nod Grid revealed isolated outcrops of poker chip and pregnant shale and porcellanite. Approximately one kilometer north of the grid along a main drainage numerous outcrops of Lower Devonian grey, silty limestone were identified; usually adjacent to a major thrust fault.

.....

II. Seep Grid Area (Figure 10)

The Seep Grid covers part of a package of recently staked claims that cover the possible southeast strike extension of the nodular barite exposed within the Nod Grid area. Previous work by Triumph Resources outlined numerous zinc stream anomalies in an area just north of the Seep Grid . The Seep Grid area is underlain by Devonian shales, cherts and limestones. The most common lithology is poker chip shale with lesser porcellanite and pregnant shale. The main outcrop exposure is along Bowerheney Creek which roughly parallels the grid baseline. Rocks are quite folded and contorted as extreme strike and dip changes commonly occur over short distances. Stereonet analysis provided similar results as the Nod Grid area, with two scattered groups of pole plots to bedding and cleavages reflecting minor folding and contortion. The bedding/cleavage intersection lineation roughly plots at 10°→300°.

North of the grid along, Bowerheney Creek and a main tributary, poker chip shale and chert predominate with local beds of pregnant shale. Beds consistently strike northwest and dip southwest. Locally, the rocks are highly contorted possibly due to the prescence of a major fault zone traceable two kilometres to the southeast.

At the north end of the grid baseline (L70N) and along Bowerheney Creek, a section of pregnant shale extends 400m southeastward along the creek to L66N. This area is host to a major iron seep. Extreme variations in bedding and cleavage are found within the shales. The contorted nature of the rocks is most likely due to the above mentioned major fault zone. Nodular barite was not discovered in the pregnant or poker chip shales in this area or in any area around the Seep Grid.

The southeast area of the grid contains locally abundant exposures of Devonian limestones and limestone fragmentals exposed in a 50m wide major reverse fault zone that trends 125°-130° and dips 60° to the southwest. Poker chip shales are exposed on either side of the limestones. The limestones are not traceable to the northwest and most likely pinch out against the fault. The fault zone is intermittently traceable two kilometres to the northwest and passes through the major iron seep. The fault zone probably continues to the southeast but no traverses were carried out in that area.

Silurian and/or Ordovician siltstones and silty limestones are found 300-500m east of

the Seep Grid and continue north 5-6 km's to the Aramis Lakes area (Figure 5). A thrust contact is assumed between the Devonian sediments of the Seep Grid and the Silurian and/or Ordovician sediments to the east. The assumed thrust contact between the Devonian and older sediments is intermittently traceable to the northern claim area, 5 kilometres to the northwest.

Approximately one kilometre southwest of the Seep Grid, a creek traverse identified Ordovician and/or Silurian silty black shales (Figure 10). The shales are different than any of the Devonian sediments identified within the property. Further downstream Devonian limy, silty black shales and limestones are exposed. A 100 metre exposure of pregnant shales are exposed just below the limestones and shales, along a main drainage.

III. <u>NW of Warneford River</u> (Figure 11)

The northwest side of Warneford River covers the possible northeast strike extension of the nodular barite exposed on the Nod Grid. The area is underlain by all of the Devonian Gunsteel Formation subunits. Immediately west of the extreme western edge of the new claims lie two small outcrops of limy Silurian siltstone.

The area is similar to the Seep Grid area; a lot of outcrops are strongly contorted with major fluctuations in strikes and dips occurring over short distances, although the general attitude is again a northwest strike and southeast dip. This is again most likely the result of numerous minor folds and faults, common to the entire Mt. Alcock area.

The northern Warneford area is host to numerous exposures of nodular barite, usually occurring as narrow and local zones within the poker chip and distinctly laminated shale units. Unlike the Nod Grid area, nodular barite was found hosted by pregnant shales in two localities along a main creek drainage.

This area is also host to the only locality of massive barite found within the newly staked claims. The massive barite occurs over a strike length of 350m and is hosted within poker chip and distinctly laminated units. It grades, along strike, from massive barite 10+ metres in thickness at the north end to predominantly shale and silty shale at the southern end. The zone possibly continues to the northwest as massive barite float was found along a creek drainage 1.5km to the northwest. The area between the float and outcrops was not

prospected.

IV. Longwok Creek and 1616 Peak Area (Figure 12)

Traverses were carried out along Longwok Creek and creeks south of the 1616 Peak, roughly 1.5 kilometres southwest of the Nod Grid. These creeks contained previously outlined zinc stream anomalies. Upper Longwok Creek revealed abundant exposures of pregnant shale, often brecciated. Approximately one kilometre downstream, pregnant and poker chip shales are well exposed on the east side of the creek. A large outcrop along the west side of the creek, directly across from the pregnant shales, consisted of tan-weathering dark grey shale with local pyrite. It is not known whether the shale is part of the Devonian poker chip unit or the Silurian unit.

The area south of 1616 Peak is underlain predominately by poker chip shale. The overall strike and dip is consistent with the regional attitude; a northwest strike and a southwest dip. A minor synformal structure was identified within the poker chip shales along the southern part of the creek traverse. A 200 metre section of barren pregnant shale is exposed further upstream.

V. Mineralization and Alteration

Fifty seven rock samples were collected during the 1992 Mt. Alcock program. Samples were sent to Acme Analytical Laboratories Ltd. in Vancouver, B.C. and analysed for 29 elements by ICP (Ag,AI,As,B,Bi,Ca,Cd,Co,Cr,Cu,Fe,K,La,Mg,Mn,Mo,Na,Ni,P,Pb,Sb,Sr,Th, Ti,U,V,W,Zn) and Ba by whole rock ICP. In addition, 18 rock samples were analysed for whole rock geochem. A complete list of ICP, geochem Ba and selected geochem whole rock results are included in Appendix III, while rock sample descriptions are provided in Appendix V. Rock samples were 1m chips, where possible, and collected from black shales and cherts. Sample locations and selected results are shown on the respective geology and geochemistry maps; Figures 5,6,10,11,12.

Thirty-two rock samples were collected from the Nod Grid and immediate area. Sample locations and selected results are plotted on Figure 5. A majority of the samples were taken from nodular barite and associated footwall and hanging wall zones with whole rock analysis run on eighteen of the samples. The whole rock analysis shows the nodular

barite zones to be highly enriched in barium, highly anomalous in strontium and depleted in silica and aluminum. The nodular barite zones also contain very low zinc, lead and silver values. Two samples were collected from nodular barite exposed around L44N, 47+00E with sample 45206 returning the following results - 29.7% Ba, 1671 ppm Sr, 40.33% SiO₂, 2.92% Al, 19 ppm Pb, 7 ppm Zn and 0.1 ppm Ag. The hanging wall and footwall results are nearly identical to each other with a typical result being 4671 ppm Ba, 62 ppm Sr, 77.14% SiO₂, 11.19% Al, 19 ppm Pb, 34 ppm Zn and 0.3 ppm Ag (sample 45209; a footwall poker chip shale sample of the L44N nodular barite zone).

Similar results occur within the small nodular barite zone exposed by the two hand trenches (Figure 6). A chip through the nodular barite zone ran 31.4% Ba, 1251 ppm Sr, 38.45% SiO_2 , 2.44% Al, 23 ppm Pb, 5 ppm Zn and 0.1 ppm Ag (sample 45264) while a chip through the poker chip shale hanging wall returned 4026 ppm Ba, 51 ppm Sr, 85.43% SiO_2 , 5.19% Al, 9 ppm Pb, 28 ppm Zn and 0.1 ppm Ag (sample 45267).

Similar ICP results (whole rock analysis was not done) were obtained from poker chip shale footwall and hanging wall rock samples (#'s 45201,45202,45203,45257) collected around the nodular barite exposed at 47+00E from L47N to L49N.

Three rock samples were collected from the favourable pregnant shale within the Nod Grid area. A sample from the pregnant shale exposed along the baseline returned weakly anomalous base metal and indicator element values. A sample (45254) collected from weakly pyritic pregnant shale exposed along L44N, 43+00E returned a weakly anomalous zinc value of 224 ppm Zn. A sample from the same pregnant shale zone located 650 metres to the northwest again returned a very weakly anomalous zinc value of 198 ppm Zn (sample 45202).

A chip sample (45205) through a poker chip shale with porcellanite bands, located 300m northwest of L48N-40+00E, returned one of the highest zinc values in 1992; 908 ppm Zn. The sample also returned anomalous sedex indicator element values of 13.1 ppm Cd and 235 ppm V. A rusty poker chip shale sample (45217) 200m northeast of baseline 50+00E and between L44N & L50N returned a weakly anomalous zinc value of 236 ppm Zn. Additional samples collected from poker chip shale and porcellanite within and proximal to the Nod Grid returned subanomalous base metal and sedex indicator element values.

The Seep Grid contained the most abundant pyrite found during the 1992 program. Sample locations and selected results are plotted on Figure 10. Laminated pyrite in bands up to 0.8cm wide were found in zones up to one metre wide within pregnant shales. No base metals were observed. The best exposures are along Bowerheney Creek within the Seep Grid and proximal to the major iron seep. Three samples were collected from the laminated pyrite zones and returned subeconomic base metal values.

A chip through rusty porcellanite located 500 metres south of the Seep Grid returned anomalous sedex indicator results of 10.3 ppm Cd and 174 ppm V (sample 45227). A chip across a rusty fault zone, 200 metres south of sample 45227, separating porcellanite and limestone returned the highest base metal values obtained during the 1992 program with sample 45275 returning 1787 ppm Pb, 2028 ppm Zn, 4.3 ppm Ag, 6.8 ppm Cd, and 164 ppm V.

A chip through a rusty chert with pregnant shale beds, located seven hundred metres north of the Seep Grid, returned anomalous values of 1051 ppm Zn, 7.3 ppm Cd and 143 ppm V. A similar sample (45229) 150 metres south returned subanomalous values from a weakly pyritic chert/pregnant shale.

Three rock samples collected from poker chip and pregnant shales located south of the 1616 Peak and one collected from a pyritic dark grey shale in upper Longwok Creek returned subeconomic base metal values. Sample locations and selected results are plotted on Figure 12.

A total of thirteen rock samples were collected from the northwest Warneford River area. Sample locations and selected results are plotted on Figure 11. The samples were collected predominantly from nodular barite zones within poker chip, distinctly laminated and pregnant shales. The nodular barite samples returned up to 26% barium (sample 45242) with no elevated base metal or sedex indicator element results returned from any of the samples. Two samples (45289 & 45290) were collected from massive barite; one from outcrop and one from float. Both returned very high barium (39% & 48% respectively) with subanomalous base metal results.

In summary, the sampled Devonian black shales (\pm barite) are not elevated in zinc, lead and silver and contain only local concentrations of stratiform pyrite. In addition, the shales were found to be silica-rich (averaging 75% to 85% SiO₂), carbon-rich, iron-poor and enriched in barium (averaging 500-1000 ppm Ba) with respect to comparable pelagic sediments. This is consistent with the regional trend of the Gunsteel Formation rocks found in the Gataga district. Regionally, elevated base metal (Zn-Pb) values are found only very proximal to the barite-sulphide deposits in the Gataga district.

The abundance of nodular barite and local massive barite is a positive indicator of a favourable depositional environment for sedex deposits.

No significant alteration was noted within the black shales.

8. SOIL GEOCHEMISTRY (Figures 13-18)

Two soil grids were established and sampled during the 1992 program; the 'Nod Grid' and the 'Seep Grid'. Grid locations are shown on Figure 3. A total of 741 soils on 21.5 km of line were collected within the two grids. Samples were sent to Acme Analytical Laboratories Ltd. in Vancouver, B.C. and analysed for 29 elements by ICP (Ag,Al,As,B,Bi,Ca,Cd,Co,Cr,Cu, Fe,K,La,Mg,Mn,Mo,Na,Ni,P,Pb,Sb,Sr,Th,Ti,U,V,W,Zn) and Ba by whole rock ICP. Soil samples were collected using a shovel from the 'B' horizon, which generally occurred at a depth of 20-40 centimetres. All soils were collected in Kraft bags and allowed to air dry before shipment to the lab. Certificates of analyses are included in Appendix III and complete soil sample descriptions are provided in Appendix VI.

A. <u>Nod Grid</u>

The Nod Grid covers nodular barite exposures within Devonian stratigraphy (Figure 5). Several anomalous zinc soil results from Triumph's previous work are located within the grid. Sixteen grid lines at 045° were established from L38+00N to L56+00N for a total distance (including the baseline) of 15.6 km. Eleven hundred metres of line were not soil sampled and established for use in the subsequent gravity survey. Lines are 100m apart, except for three 200m spaced lines, with samples collected every 25m (50m intervals on two lines) along the 500m to 1.5km long lines.

I. <u>Results</u> (Figures 13-15)

Results from the Nod Grid geochemical survey including contour maps for zinc (ppm), lead (ppm) and barium (ppm) are shown on Figures 13,14 & 15, respectively. Contour intervals for zinc (750,1000 ppm) were determined by visual analysis of the data, the background value being roughly 200 ppm. The zinc geochemistry plot (Figure 13) reveals spotty anomalous zinc values. A six-point anomaly exists between L44N and L43N at 43+00E to 44+00E with values up to 1119 ppm Zn (L44N,43+50E). The anomalous zone corresponds to the location of favourable pregnant shale. Several one and two-point zinc anomalies exist along strike of the pregnant shale, 300 metres to the northwest along L47N, 42+75E to 44+25E. The maximum zinc soil value obtained during the survey was 6888 ppm Zn at 43+50E on L47N. Interestingly, the line between the anomalies (L46N) does not contain any elevated zinc soil values. Several one and two-point zinc soil anomalies are found north of the baseline between L40N and L43N. Spotty zinc values to 2312 ppm Zn are found within areas of little or no outcrop.

The soil geochemical plot for lead (Figure 14) is somewhat similar to zinc. Contour intervals (100,200,400 ppm) were again determined visually with a background of roughly 30-40 ppm lead. An anomalous zone (values up to 484 ppm Pb) exists between L44N and L47N at 43+00E to 44+00E. This correlates with the anomalous zinc zone and pregnant shales outlined above. The only other anomalous lead soil zone is found near the southern end of lines 45N to 47N. Values are only weakly anomalous and are located proximal to a stream with no outcrop located nearby.

Silver soil geochemical values are consistently low and contain local, weak anomalies usually associated with elevated zinc or lead values. As a result a silver soil profile map was not constructed.

Anomalous cadmium soil values and local clusters are associated with enhanced zinc values. Examples of this correlation include L47N , 43+50E - 36.9 ppm Cd and 6888 ppm Zn; L43N , 54+00E - 36.9 ppm Cd and 1740 ppm Zn; L56N , 49+50E - 52.9 ppm Cd and 759 ppm Zn. Due to the spotty nature of the anomalous cadmium soil values, a profile map was not constructed.

Manganese and vanadium soil values are similar to silver; there are local anomalies

throughout the grid, usually correlative with elevated zinc and/or lead values. Examples of this spotty association include L44N,43+00E - 822 ppm Mn & 125 ppm Pb; L44N,45+25E - 1591 ppm V & 936 ppm Zn; L47N, 43+50E - 649 Mn, 6888 ppm Zn & 455 ppm Pb; L46N,41+00E - 1052 ppm V & 1046 ppm Zn. Due to the spotty nature of manganese and vanadium values, profile maps were not constructed.

The barium geochemical plot is shown in Figure 15. Background barium values are consistently high (similar to high background barium found within the black shale rock samples) with a background value estimated at 1500 ppm Ba. Contour intervals were again estimated visually and determined to be 10,000 ppm and 100,000 ppm respectively. A main anomalous zone correlates quite well with the location of nodular barite outcrops. Barium soil values up to 14% Ba were returned. The anomalous zone extends from L44N to L50N around 43+00E and again from L49N to L54N centered around 48+00E. The offset in the anomaly corresponds to the assumed location of a dextral normal-slip fault. A three-point barium anomaly along L38N, 44+75E to 45+25E corresponds to outcropping nodular barite. Three one or two-point barium anomalies are found north of the baseline between lines 40N and 43N. They may be caused by local nodular barite zones (not found due to lack of outcrop) within black shales.

In summary, the most interesting base metal soil anomalies found within the Nod Grid are located between L43N and L44N. The coincident zinc and lead anomalous zone corresponds to favourable pregnant shale outcropping. In addition, sedex indicator elements including cadmium, manganese and vanadium are elevated within the same zone as the coincident zinc and lead. The strongly anomalous barium soil results are directly correlative with the exposures of nodular barite found within the grid.

B. <u>Seep Grid</u>

The Seep Grid covers the major iron-seep exposed along Bowerheney Creek and laminated pyrite found within pregnant black shales along the creek (Figure 10). In addition, zinc silt anomalies were identified upstream from the grid by previous workers. The grid is comprised of six, 1km long lines (L60+00N to L70+00N) for a total distance of 7.0km (including the baseline). A total of 245 soils were collected along the 060°-trending, 200m spaced lines.

1. <u>Results</u> (Figures 16-18)

Results from the soil survey conducted over the Seep Grid are encouraging. Zinc (Figure 16) and lead (Figure 17) anomalous thresholds were determined visually from the data. The background for zinc was roughly 300 ppm, thus contours of 500, 1000, 2000 and 4000 ppm were used. The background for lead was determined to be roughly 35 ppm and contours of 100, 200 and 300 ppm were utilized.

The zinc soil geochemical results outlined several anomalous zones (Figure 16). A large zinc anomaly exists from the east portion of L60N and trends northwest to L68N with values to 4716 ppm Zn. This anomaly may be explained by the large northwest-trending fault zone outlined by mapping (Figure 10). The zinc anomaly trends toward the eastern edge of L64N & L66N, 100-200 metres away from the main fault zone projection. This may be explained by the presence of secondary faults or splays. A three-point anomaly exists from L70N, 61+00E to L66N, 62+50E with a maximum value of 4586 ppm Zn at L68N, 61+25E. This zone is also most likely related to the above mentioned fault zone. A single point zinc anomaly exists at L60N, 62+25E (4672 ppm) and may be related to the fault zone. A weak zinc anomaly runs roughly parallel to B/L 60+00E from L60N to L66N. It overlies Devonian black shales, and more specifically, over pregnant shales containing stratiform pyrite from L68N to L70N.

Another anomalous zone in zinc is found from L60N at the B/L to L66N, 56+50E. Zinc values to 3377 ppm occur within this northwest-trending zone and may be related to a limestone - porcellanite contact zone. The contact is a fault zone 700 meters southeast of the grid with values of 1787 ppm Pb, 2028 ppm Zn, 4.3 ppm Ag, 6.8 ppm Cd, 164 ppm V and 3736 ppm Ba in a one metre rock chip (sample 45275). Although the fault zone was not identified within the Seep Grid, it may be the cause of the anomaly. Two additional zinc anomalies are outlined on the grid, a three-point anomaly between L60N, 57+75E to 58+00E and L60N, 55+75E and a three-point anomaly between L62N, 56+00E to 56+25E and L62N, 58+00E.

The lead soil geochemical profile identified several anomalous zones (Figure 17). The most prominent zone is coincident with the anomalous zinc zone from L60N at the B/L to L66N, 56+50E. Lead values to 349 ppm are outlined within the zone that may be related to a faulted limestone-chert contact zone. However, regionally, elevated lead values in the Gataga

area are favourable indicators of possible massive sulphide systems. Therefore, a possibility exists that the anomalous lead soil values could indicate a massive sulphide source intersected by a fault. The highest lead value (857 ppm) is a single-point anomaly coincident with the single-point zinc anomaly of 4672 ppm found along L60N at 62+25E. This coincident anomaly may be related to the main fault zone. Several other single- point weak lead soil anomalies were identified within the grid, two coincident with zinc anomalies. One anomalous lead sample was contained within the anomalous zinc zone trending along the baseline, the other at L62N, 58+00E.

The cadmium soil geochemical profile outlined several anomalous zones (Figure 18). Almost all of the anomalies are coincident with anomalous zinc zones. Other associated sedex indicator elements including manganese, vanadium and phosphorous are locally anomalous. The local highs of these elements (up to 0.634% P, 2950 ppm V, 2337 ppm Mn) as well as silver (up to 4.2 ppm) are almost directly correlative with elevated zinc and/or lead values. Therefore, individual soil profile maps of these elements are not constructed. The coincidence of anomalies is clearly demonstrated in the following soil locations; L60+00N, 62+25E - 857 ppm Pb, 4672 ppm Zn, 1.3 ppm Ag, 775 ppm Mn, 25.7 ppm Cd, 272 ppm V and 0.634% P; L62+00N, 56+25E - 30 ppm Pb, 2794 ppm Zn, 3.9 ppm Ag, 259 ppm Mn, 60.8 ppm Cd, 2455 ppm V and 0.185% P; and L62+00N, 63+75E - 42 ppm Pb, 4716 ppm Zn, 4.2 ppm Ag, 273 ppm Mn, 43.5 ppm Cd, 2950 ppm V and 0.151% P. In addition, locally elevated nickel (up to 934 ppm), strontium (up to 613 ppm) and iron (up to 10.62%) are associated with elevated zinc and/or lead. The barium soil values consistently range from 1000-4000 ppm Ba with a rough average of 1500 ppm. Local, sporatic anomalies (up to 47,669 ppm Ba) are found within the Seep Grid soil survey.

In summary, coincident zinc and lead anomalies are outlined within the Seep Grid. A majority of the anomalies are most likely related to northwest-trending fault zones. Several of the anomalies remain unexplained, including the coincident anomalous lead-zinc zone from L60N at the baseline to L66N, 56+50E. In addition, associated sedex indicator elements including cadmium, manganese, vanadium, phosphorous and silver are locally anomalous and almost always coincident with elevated zinc and/or lead values.

9. STREAM SAMPLES (Figures 5,10,11,12)

A total of 40 stream samples were collected, including 29 moss mat, 5 silt and 6 ironseep. Samples were sent to Acme Analytical Laboratories Ltd. in Vancouver, B.C. and analysed for 29 elements by ICP (Ag,Al,As,B,Bi,Ca,Cd,Co,Cr,Cu,Fe,K,La,Mg,Mn,Mo,Na, Ni,P,Pb,Sb,Sr,Th,Ti,U,V,W,Zn) and Ba by whole rock ICP. Stream sample collection was concentrated in areas not previously sampled by Triumph Resources. Sample locations and Zn(ppm), Pb(ppm), Ag(ppm), Fe(%), Cd(ppm) and Ba(ppm) results are shown on Figures 5,10,11,12.

Only five stream samples were collected from the Nod Grid area as most of the drainages were previously sampled (Figure 5). One sample (M45251) was collected just east of L38+00N and returned low results. The remaining stream samples were collected northeast of the baseline between L42+00N and L50+00N. Values up to 1451 ppm Zn, 15.1 ppm Cd and 9380 ppm Ba were obtained indicating minor enrichment in barium and zinc.

Eight stream samples were collected in the immediate Seep Grid area with many more collected in the surrounding area (Figure 10). The Seep Grid is named for the major iron-seep that occurs along Bowerheney Creek between L68+00N and L70+00N. A sample from the spectacular iron seep (\$45234) returned 12967 ppm Zn. Two minor iron-seeps located 200 metres upstream (S45230 & S45231) returned up to 4076 ppm Zn and 46.2 ppm Cd. However, associated lead and silver values for all three seeps are very low in addition to relatively low barium values (to 1928 ppm). Regional work carried out in the Gataga district since the 1970's has included numerous sampling of iron-seeps and concluded that unless there is associated elevated lead values the seeps are of little interest and probably related to fault zones. The iron-seeps that occur along Bowerheney Creek are most likely related to faulting and the presence of a major fault zone through the area has been previously inferred. Five additional moss mat stream samples collected in the grid and immediate area returned similar results (to 8923 ppm Zn, 92 ppm Pb, 39.2 ppm Cd and 5622 ppm Ba) and most likely are related to faulting. Sample M45249, collected from a tributary of Bowerheney Creek just upstream from the laminated pyrite exposures and draining the favourable coincident leadzinc soil anomaly, returned the highest lead value, 92 ppm along with 1637 ppm Zn.

Four moss mats collected from streams draining Silurian to Ordovician stratigraphy east of the Seep Grid returned comparatively low zinc, lead, silver, cadmium and barium

results (Figure 10). A sample collected from an iron-seep (S45240) south of Aramis Lakes (4 kilometres north of the Seep grid and 3 kilometres northeast of the Nod grid) returned similar results (Figure 5).

Two moss mats were collected 700 metres south of the Seep Grid (Figure 10). Sample M45226, from Bowerheney Creek, returned 1055 ppm Zn, 30 ppm Pb, 6.4 ppm Cd and 16483 ppm Ba. A moss mat sample from a tributary of Bowerheney Creek (M45274) returned 2612 ppm Zn, 209 ppm Pb, 20.8 ppm Cd and 1958 ppm Ba. The sample was collected just downstream from a fault zone which returned strongly anomalous zinc and lead from a rock sample (45275). Thus the elevated lead in the moss sample is likely attributed to the upstream anomalous fault zone.

Four stream samples were collected south of the 1616 Peak area, 1.5 kilometres west of the Seep Grid and 2 kilometres south of the Nod Grid (Figure 12). A moss mat sample (M45219) collected from a tributary returned 13272 ppm Ba and likely reflects drainage from ground underlain by nodular barite, although not identified from mapping. Sample ST45221, a silt from another tributary returned a weakly anomalous 2072 ppm Zn and 18 ppm Pb. A sample from an iron-seep zone (3-4 total seeps) located just south of the 1616 peak returned 1021 ppm Zn but again very low lead, 2 ppm (S45225).

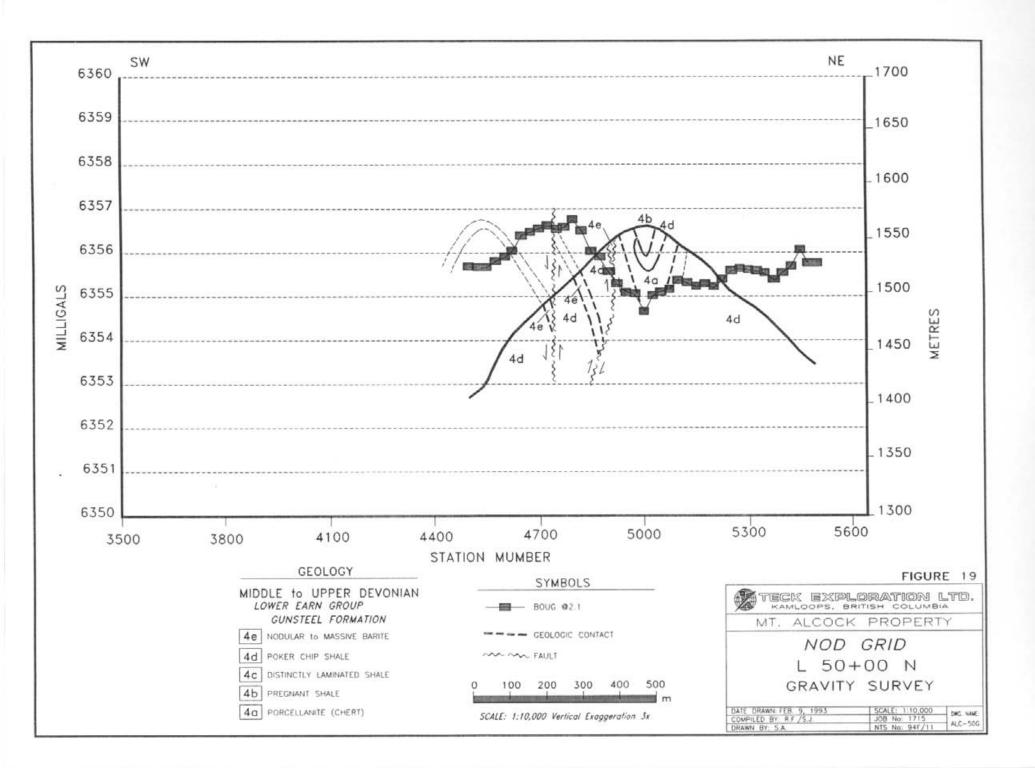
A silt and an iron seep sample were collected from upper Longwok Creek. The ironseep (ST45273) returned high zinc (4283 ppm) but again returned a low lead (6 ppm) value (Figure 12).

Thirteen stream samples were collected from the northwest side Warneford River area; an area with no previous recorded sampling (Figure 11). Results of the stream sampling were mixed. Zinc values to 2712 ppm (M45237) were obtained, however associated lead, silver and sedex indicator elements were low, the maximum values obtained were 50 ppm Pb, 1.0 ppm Ag and 13.4 ppm Cd. Barium values are quite high as might be expected from the numerous nodular barite zones underlying the area. The maximum barium value obtained was 50763 ppm (M45248).

In summary, stream sampling conducted throughout the claims resulted in local anomalies in zinc and barium. The zinc anomalies, however, did not have corresponding elevated lead values except for moss mat M45249 collected from the Seep Grid and draining the coincident anomalous lead-zinc soil zone. This was true of the iron-seeps, mosses and silts. In addition, the associated sedex indicator elements, including cadmium and manganese, were only locally and weakly anomalous.

10. GRAVITY SURVEY - NOD GRID

A limited gravity survey (using a Lacoste & Romberg gravity meter) was carried out over selected portions of the Nod Grid. In total, 4.1 line-kilometres over three lines (L38+00N, L44+00N & L50+00N) were surveyed with readings taken every 25m. Appendix VII lists field procedures and specifications of the gravity and elevation surveys.


The following interpretations of the three lines were made by Al Wynne, geophysicist of Terra Surveys Ltd, who was contracted to interpret the gravity data. Assumed densities used were nodular barite 4.0 g/cc, pregnant shale 2.3 g/cc, black chert (porcellanite) 2.7 g/cc and poker chip shale 2.1 g/cc. Gravity line profiles along with accompanying geology are plotted on Figures 19, 20 and 21.

I. <u>L50+00N</u> (Figure 19)

"This line is quite short, making regional trends difficult to account for. It is possible to visualize an anomaly of about 0.75 milligals centered at 47+50E. However, comparison with L44+00N and replotting of the data at a vertical scale of 0.1 milligal/cm indicates two anomalies, 0.2 milligals at 46+25E-47+00E and a one point anomaly of 0.1 milligals at 48+00E."

"Computer modelling of these anomalies indicate the 46+25E-47+00E anomaly can be caused by a unit of density contrast 1.0 g/cc with dimensions of width 25m length 100m depth 100m. The anomaly at 48+00E can be related to a unit of density contrast 1.0 g/cc with dimensions of width 10m, length 100m, depth 100m."

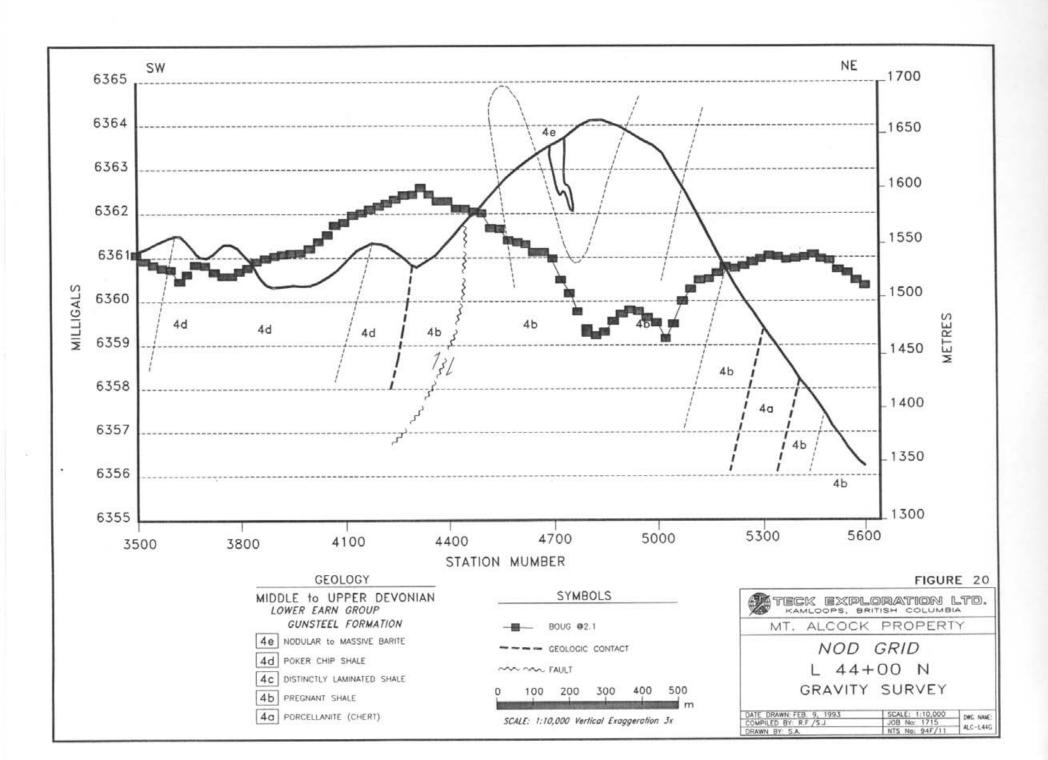
"These anomalies correspond to the known nodular barite showings, however put stronger emphasis on the 46+75E showing. Keeping in mind that a larger anomaly is possible the depth extent of this anomaly may be greater than interpreted."

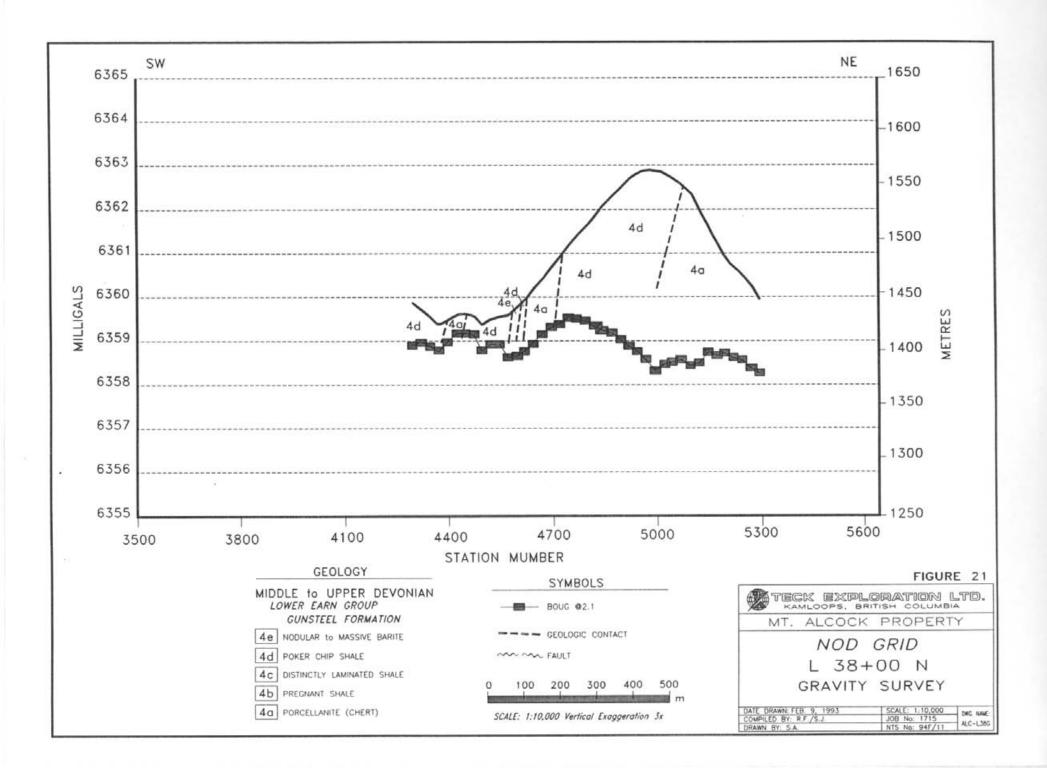
II. <u>L44+00N</u> (Figure 20)

"This regional line (2.1 km) is dominated by terrain effects over the crest of the knob centered within the grid. This effect could be compensated for, however, any very small deviations off the trend and would be masked. It is better to look at the raw data, keeping in mind the terrain effects. Both topographic highs and topographic lows effect the data by lowering the Bouguer values. Any short wavelength positive anomalies can be related to surface geology (the result of topographic corrections is to emphasize deep seated structures, ie. oil exploration)."

"The geology of the section consists of poker chip black shale with one thin section of pregnant shale and one thin section of black chert."

"The sections of pregnant shale and black chert exhibit residual anomalies of about 0.75 milligals, indicating positive density differences from the poker chip shale of about 0.4 g/cc."


"The nodular barite showing has a signature of less than 0.1 milligals and would not be located without prior knowledge. This indicates very limited extent as the density contrast should be about 1 g/cc."


III. <u>L38+00N</u> (Figure 21)

"On this line there are two positive anomalies centered at 47+50E and 44+50E, respectively. They appear to be related to geological contacts between poker chip black shale and black chert and indicate a contrast of about 0.4 g/cc. The nodular barite showing is not related to either of these anomalies."

IV. <u>Recommendations</u>

"Of interest may be line 50+00N on the Nod Grid at 46+75E where the gravity corroberates a 25m x 100m x 100m showing and holds hope of a larger down dip extension."

11. CONCLUSION

Geological mapping has shown the property to be largely underlain by Lower Earn Group Middle to Upper Devonian black shales, cherts, silty shales, nodular barite and limestone of the Gunsteel Formation. Abundant exposures of Ordovician and Silurian dolomitic siltsones, black shales and siltstones are found in the eastern portion of the claims with local exposures found elsewhere.

Mapping and propsecting within the Nod Grid area has outlined a nodular barite zone 800 metres in strike length and up to 25 metres wide. Favourable pregnant shale lithology was identified in two zones up to 700 metres in strike length. Rock chip samples from both the pregnant shale and nodular barite returned subeconomic base metal (Zn-Pb) values.

Soils collected from the Nod Grid also failed to return significant base metal results, the most interesting anomaly located between L43N and L44N; a zone with coincident zinc (up to 1119 ppm Zn), lead (up to 484 ppm Pb) and associated sedex indicator element (cadmium, manganese and vanadium) values overlying pregnant shales. The highly anomalous barium soil values (up to 14% Ba) are correlative with the nodular barite outcrops.

The gravity survey carried out over portions of the Nod Grid provided mixed results. The survey over L50+00N indicates a 0.2 milligal anomaly centered at 46+75E that could be caused by a 25m x 100m x 100m mass of density contrast and holds hope of a larger down dip extension. However, the geological cross-section interpretation suggests this body is fault bounded. The two other lines surveyed, L44+00N and L38+00N, resulted in weak gravity anomalies associated with density contrasts between siliceous and non-siliceous black shales.

Mapping and prospecting within the Seep Grid identified several exposures of laminated pyrite hosted by Devonian pregnant and poker chip shales. Rock chip samples of pyritic black shales returned subeconomic base metal values. Stream and iron-seep sampling returned highly elevated zinc values (up to 12967 ppm Zn), however most associated lead values are low, thus likely indicating the iron-seeps are fault related.

The soil survey conducted over the Seep Grid delineated several coincident anomalous zinc and lead zones containing values up to 4672 ppm Zn and 857 ppm Pb.

Associated sedex indicator elements, including cadmium, manganese, vanadium and phosphorous and silver are locally anomalous and almost always correlative with elevated zinc and/or lead values. The majority of the anomalies are most likely attributed to northwest-trending fault zones. Several of the anomalous zones remain unexplained, including the anomalous lead stream value draining the lead-zinc soil zone from L60N at the baseline to L66N, 56+50E.

Mapping northwest of Warneford River indentified numerous occurrences of nodular barite, usually hosted by poker chip shale. Two areas of nodular barite are hosted by favourable pregnant shale. One area of massive barite has over 350 metres of strike length. Samples collected from both nodular and massive barite returned subeconomic base metal and associated indicator element values.

Laminated pyrite within pregnant shales was identified in the Longwok Creek area. Rock chip samples returned no significant base metal values.

A significant Zn-Pb-Ag massive sulphide deposit is not outcropping in the areas covered by the 1992 surveys.

11. <u>REFERENCES</u>

- Abbott, J.G, Gordey, S.P. and Tempelman-Kluit, D.J. (1986): Setting of stratiform, sediment-hosted Pb-Zn deposits in Yukon and Northeastern British Columbia. In Mineral deposits of northern Cordillera; CIM Special Volume 37.
- 2. Carne, R.C. and Cathro,R.J.(1982): Sedimentary exhalative (sedex) Zn-Pb-Ag deposits, northern Canadian Cordillera; CIM Bulletin, 75, No. 840.
- Gabrielse, H.(1984): Major dextral transcurrent displacements along the northern Rocky Mountain trench and related lineaments in north-central British Columbia; Geological Society of America Bulletin, 96.
- 4. Gabrielse, H.(1981): Geological map of Ware (West 1/2) and Toodoggone River mapareas, Geological Survey of Canada; Open File Report 483.
- 5. Hylands, J.J. (1990): Summary Report, 1990 Exploration Program on the Mt. Alcock Property; In house report.
- Insley, M.W.(1991): Modification of sedimentary barite textures during deformation,
 Gataga District, NE British Columbia; In Ore Geology Reviews, 6.
- Jefferson, C.W. et al (1983): The Cirque barite-lead-lead deposits, northeast British Columbia. In Sediment-hosted stratiform lead-zinc deposits; Mineralogical Association of Canada Short Course Handbook, 8.
- Large, D.E. (1983): Sediment-hosted massive sulfide lead-zinc deposits. In Sedimentary stratiform lead-zinc deposits; Mineralogical Association of Canada Short Course Handbook, 8.
- Large, D.E. (1981): Sediment-hosted submarine exhalative sulfide lead-zinc deposits a review of their geological characteristics and genesis; In Handbook of stratabound and stratiform ore deposits, Volume 9.
- Large, D.E.(1980): Geological parameters associated with sediment-hosted, submarine exhalative Pb-Zn deposits: an empirical model for mineral exploration; Geologische Jahrbuch.

- MacIntyre, D.G. (1992): Geological setting and genesis of sedimentary exhalative barite and barite-sulfide deposits, Gataga district, northeastern British Columbia; In Explor. Mining Geology, Vol.1, No.1.
- MacIntyre, D.G. (1983): Geology and stratiform barite-sulfide deposits of the Gataga District, northeastern British Columbia. In Sediment-hosted stratifrom lead-zinc deposits; Mineralogical Association of Canada Short Course Handbook, 8.
- 13. MacIntyre, D.G.(1982): Geological setting of recently discovered stratiform baritesulfide deposits in northeast British Columbia; CIM Bulletin, 75, No. 840.
- 14. MacIntyre, D.G.(1982): Geology of the Akie river Ba-Zn-Pb mineral district, Ministry of Energy, Mines and Petroleum Resources; Preliminary Map No. 50.
- 15. MacIntyre, D.G. (1981): Geology of the Akie river Ba-Zn-Pb mineral district, Ministry of Energy, Mines and Petroleum Resources; Preliminary Map 44.
- MacIntyre, D.G. (1980): Geological compilation and mineral occurrence map, Driftpile creek - Akie river, Ba-Pb-Zn mineral districts, Ministry of Energy, Mines and Petroleum Resources; Preliminary Map 38.
- McClay, K.R. et al (1989): Inversion of the Kechika Trough, northeastern British Columbia, Canada, In Inversion tectonics; Geological Society Special Publications No. 44.
- 18. McClay, K.R. et al (1988): Tectonics and mineralization of the Kechika Trough, Gataga area, northeastern British Columbia, Geological Survey of Canada; Paper 88-1E.
- McClay, K.R. and Insley, M.W. (1986): Structure and stratigraphy of the Gataga fold and thrust belt, northeastern British Columbia, In Current Research, Part A, Geological Survey of Canada; Paper 86-1A.
- Murrell, M. and Roberts, W.(1990): Summary Report, 1989 exploration program on the Mt. Alcock property, in the Kwadacha recreational area, northern British Columbia; in house summary report.

APPENDIX I

•

Statement of Qualifications

I, Steve Jensen, do hereby certify that:

- 1) I am a geologist and have practised my profession for the past five years.
- 2) I graduated from University of British Columbia, Vancouver, British Columbia with a Bachelor of Sciences degree in Geology (1987).
- 3) I was actively involved in the Mt. Alcock Property program and authored the report contained herein.
- All data contained within this report and conclusions drawn from it are true and accurate to the best of my knowledge.
- 5) I hold no personal interest, direct or indirect in the Mt. Alcock Property which is the subject of this report.

Step?

Steve Jensen Project Geologist November, 1992

APPENDIX II

Cost Statement

MT. ALCOCK PROPERTY

.

COST STATEMENT

1.	<u>Geolo</u> (incluc	gy les preparation,field plotting,travel days)	
	NOD (GROUP	
	Α.	Randy Farmer (Geologist) 14 days @ \$256.65/day July (15,17,22),29,30,31,Aug 1,2,3,4,(5),6,12,14	\$3593.10
	B.	Steve Jensen (Geologist) 14 days @ \$223.52/day July (15,22),29,30,31, Aug 1,2,3,4,(5),6,12,14,16	\$ <u>3129.28</u> Subtotal \$6722.38
	SEEP	GROUP	
	Α.	Steve Jensen (Geologist) 9 days @ \$223.52/day July (13,20,21), Aug 8,10,11,13,15,(20)	\$2011.68
	В.	Randy Farmer (Geologist) 11 days @ \$256.65/day July (13,14,16,20,21), Aug 10,11,13,15,16,(20)	\$ <u>2823.15</u> Subtotal \$4834.83
2.	Hand	Trenching	
	NOD (GROUP	
	Α.	Doug Nikirk (Technician) 1 day @ \$195.75/day Aug 4	\$195.75
	В.	Gord May (Assisstant) 1 day @ \$253.75/day Aug 4	\$ <u>162.00</u> Subtotal \$357.75
		() Denotes non-field days	

3. <u>Soil Survey</u>

4.

• ,

NOD GROUP

Α.	Doug Nikirk (Technician) 8 days @ \$195.75/day July (22),29,30,31, Aug 1,2,3,5	\$1566.00
B.	Gord May (Assisstant) 8 days @ \$162.00/day July (22),29,30,31, Aug 1,2,3,5	\$ <u>1296.00</u> Subtotal \$2862.00
<u>SEEP</u>	GROUP	
A.	Doug Nikirk (Technician) 6 days @ \$195.75/day July (21), Aug 10,11,12,13,(20)	\$1174.50
B.	Gord May (Assisstant) 6 days @ \$162.00/day July (21), Aug 10,11,12,13,(20)	\$ <u>972.00</u> Subtotal \$2146.50
<u>Gravity</u>	<u>/ Survey</u>	
NOD (GROUP	
A.	Kevin McNabb (Geophysicist) & Equipment Rental 5 days @ \$680.00/day Aug (15),16,17,19,(20)	\$3400.00
В.	Doug Nikirk (Technician) 3 days @ \$195.75/day Aug 16,17,19	\$587.25
C.	Gord May (Assisstant) 3 days @ \$162.00/day Aug 16,17,19	\$486.00
D.	Gravity Survey - Report & Interpretation - Al Wynne (Geophysici: 4 days @ \$400.00/day Oct (27,28,29,30)	\$ <u>1600.00</u>
	() Denotes non-field days	Subtotal \$6073.25

5. <u>Analytical</u> = Acme Analytical Labs, Vancouver, B.C.

NOD GROUP

A.	Rock samples 49 @ \$11.37 ea. (29 el. ICP & Geochem Ba by whole rock ICP)	\$557.13
B.	Rock samples 18 @ \$9.00 ea. (Geochem whole rock)	\$162.00
C.	Soil samples 496 @ \$9.35 ea. (29 el. ICP & Geochem Ba by whole rock ICP)	\$4637.60
D.	Moss Mat, silt and Fe-seep samples 25 @ \$9.35 ea. (29 el. ICP & Geochem Ba by whole rock ICP)	\$ <u>233.75</u> Subtotal \$5590.48
SEEP	GROUP	
A.	Rock samples 8 @ \$11.37 ea. (29 el. ICP & Geochem Ba by whole rock ICP)	\$90.96
В.	Soil samples 245 @ \$9.35 ea. (29 el. ICP & Geochem Ba by whole rock ICP)	\$2290.75
C.	Moss Mat and Fe-seep samples 15 @ \$9.35 ea. (29 el. ICP & Au)	\$ <u>140.25</u>
		Subtotal \$2521.96

6. <u>Helicopter</u> = Northern Mountain Helicopters, Ft. Nelson,B.C.

NOD GROUP

Date	Hours	Cost/Hour	Fuel & Oil	Total
July 28	1.9	\$660.00	\$358.38	\$1612.38
Aug 12	0.8	\$660.00	\$92.80	\$620.80
Aug 14	2.1	\$660.00	\$243.60	\$1629.60
Aug 16	0.7	\$660.00	\$81.20	\$543.20
Aug 17	<u>1.2</u>	\$660.00	\$139.20	\$ <u>931.20</u>

Total 6.7 hrs

Subtotal \$5337.18

SEEP GROUP

<u>Date</u>	Hours	<u>Cost/Hour</u>	Fuel & Oil	<u>Total</u>
Aug 8	2.4	\$660.00	\$278.40	\$1862.40
Aug 10	2.1	\$660.00	\$243.60	\$1629.60
Aug 11	1.6	\$660.00	\$185.60	\$1241.60
Aug 12	1.0	\$660.00	\$116.00	\$776.00
Aug 13	2.0	\$660.00	\$232.00	\$1552.00
Aug 15	2.6	\$660.00	\$301.60	\$2017.60
Aug 16	2.0	\$660.00	\$232.20	\$ <u>1552.00</u>
Tot	tal 13.7 hrs		S	ubtotal \$10631.20

7. Fixed Wing Transportation = Williston Lake Air, Mackenzie, B.C.

<u>Date</u>	Cost	Description
July 22	\$1845.00	Twin Otter charter from Mackenzie to Ft. Ware - crew and field supplies mobilization to property
Aug 10	\$371.25	Ceneca charter from Mackenzie to Finbow Camp - personnel, groceries and rock samples
Aug 13	\$58.50	Dangerous goods (naptha, propane) shipment from Mackenzie to Finbow
Aug 15	\$670.25	Ceneca charter from Mackenzie to Finbow - personnel and groceries
Aug 19	\$315.00	Ceneca charter from Finbow to Mackenzie - personnel & gear
Aug 20	\$615.15	Ceneca charter from Finbow to Mackenzie - personnel & gear
Aug 20	\$271.73	Canadian Airline flight from Prince George to Vancouver - personnel
Aug 25	\$168.30	Part Ceneca charter from Finbow to Mackenzie - sample shipment
Aug 31	\$1122.43	Northern Thunderbird Air charter (Beech 18) from Prince George to Finow and return - personnel & field supplies, camp gear - demobilization
Sept 1	\$ <u>371.25</u>	Ceneca charter from Finbow to Mackenzie - demobilizaton
Subto	tal \$5808.86	
		0

Subtotal \$5808.86

8. <u>Food and Accommodation</u>

	Α.	Shopp	- groceries pers Food Mart & Coop 22-Aug 20,1992)	· Mackenzie	\$1298.64
	В.	Willisto	itor Fees on Lake Air - Mackenzie 22-Aug 20,1992)		\$1250.00
	C.	Accon (i)	nmodation Williston Lake Lodge (July 20,21,Aug 5,14,2	4)	\$370.30
		(ii)	Finbow Logging Camp (Aug 9,19))	\$ <u>450.00</u>
					Subtotal \$3368.94
9.	Truck	Transpo	rtation		
	33 day	s @ \$12	ckup & Toyota Forerunn 20.00/day nsurance,repairs)	er	Subtotal \$3960.00
10.	<u>Freight</u>	t and Sh	nipping		
	Sample	e shipm	ents, correspondance et	С.	Subtotal \$580.00
11.	<u>Field S</u>	upplies			
	Sample	e bags, '	flagging, topo thread, pr	opane etc.	Subtotal \$1529.22
12.	Teleph	<u>one</u>			
	Radio t	telephor	ne charges		Subtotal \$300.18
13.	Radio I	Rental			
	A.	4 - har	ndheld IC-U16		\$360.00
	В.	2 - SB)	X-11A high freqency rad	io phones	\$ <u>240.00</u>
					Subtotal \$600.00

14. Drafting

Α.	Base maps preparation (Steve Archibald) 10 days @ \$200/day	\$2000.00
В.	Drafting (Steve Archibald) 10 days @ \$200/day	\$2000.00
C.	Prints, Enlargments	\$ <u>500.00</u>
		Subtotal \$4500.00

15. <u>Report Writing and Typing</u>

A. Steve Jensen (Geologist) 15 days @ \$223.52/day

Subtotal \$3352.80

TOTAL COST MT ALCOCK 1992 PROGRAM \$71.077.53

COST ALLOCATION

Costs for the 1992 Mt. Alcock program will be split between two claim groups, the NOD and the SEEP. Each group contains the same number of units -96-, therefore the costs of sections 7 through 15 will be split evenly between the two groups.

The sum of the costs of sections 7 thru 15 = \$24,000.00

Therefore \$12,000.00 (\$24,000.00/2) will be applied to each group.

The sum of costs of sections 1 thru 6 is \$26,943.04 for the Nod group and \$20,134.49 for the Seep group.

TOTAL COSTS 1992 PROGRAM

- Nod Group: \$26,943.04 (Sections 1-6) \$12,000.00 (Sections 7-15) \$38,943.04
- Seep Group: \$20,134.49 (Sections 1-6) \$12,000.00 (Sections 7-15) \$32,134.49

APPENDIX III

.

Certificates of Analysis

ROCKS

.

ACRE MALTICAL	Teck Exploration (BC) PROJECT 1715 FILE # 92-2518 Page 2	A L L VTICAL
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As. U Au Th Sr. Cd Sb Bi V Ca P La Cr Mg. Ba Ti B. Al Na K. W. Ba* ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	
45201 45202 RE 45213 45203 45204	8 19 23 117 .2 13 3 11 1.42 9 5 ND 4 25 .2 3 2 41 .03 .034 2 11 .06 771 .01 19 .71 .01 .27 1 2685 7 43 23 198 .5 36 7 23 1.47 15 5 ND 5 21 1.0 4 2 43 .08 046 2 13 .05 394 .01 17 .70 .01 .28 1 5848 14 16 11 126 .5 18 5 58 .69 7 5 ND 3 28 1.9 4 2 89 .07 .031 2 20 .05 386 .01 24 .44 .01 .24 1 .923 14 11 10 62 .1 17 2 13 .83 4 5 ND 1 14 .22 <td< td=""><td></td></td<>	
45205 45213 45214 45217 45252	40 25 52 908 1.3 39 2 25 .96 24 5 ND 1 12 13.1 18 2 235 .11 .016 2 17 .04 302 .01 15 .31 .01 .13 1 1192 15 14 10 140 .6 20 5 60 .72 7 5 ND 3 29 2.0 3 2 94 .07 .032 2 21 .05 398 .01 24 .46 .01 .25 1 913 15 12 4 57 .3 19 2 37 .54 5 ND 1 25 1.6 3 2 101 .06 .012 2 11 .03 219 .01 12 .20 .01 .12 1 .50 10 37 34 236 .6 45 8 47 2.46 22 5 ND 5 43 1.1 3	
45253 45254 45255 45256 45256 45257	3 5 10 9 .1 7 1 13 .14 2 5 ND 1 82 .3 2 2 79 .02 .002 2 11 .03 1197 .01 16 .29 .01 .12 1 135160 28 14 28 24 .2 30 2 40 .82 .3 5 2 131 .01 .005 2 12 .01 .12 .1 135160 28 14 28 24 .2 30 2 40 .82 .6 5 ND 1 5 .3 5 2 131 .01 .005 2 12 .01 323 .01 8 .14 .01 .05 1 1124 13 6 10 16 .9 16 1 12 .31 5 ND 2 12 .2 6 2 120 .02 .01 17 .31 .01 .18 1 1426 <td></td>	
	<u>19 57 38 132 7.2 70 31 1039 3.96 41 16 7 40 52 17.6 14 19 56 .51 .087 38 59 .92 182 .08 34 2.00 .06 .14 10 2133</u> Samples beginning <u>(RE' are duplicate samples.</u> ED WITH 1.2 GM LIBO2, ANALYSIS BY ICP.	

SAMPLE#	Mo	Cu	Pb	Zn 💹	Ag	Ni	Co	Mri	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba		B	Al	Na	K N
	ppm	ppm	ppm	ppm p	bw l	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	*	ppm	ppm	*	ppm	*	ppm	*	*	% ppr
45206	10	9.	19		1	7	2		.62	8	5	ND	7		.9	2	2	59		.011	2	7		229	.01		.19	.01	228665772
45207 45208	11	3 7	15 19		.1 .2	7	1 2	7 9	.18	2 5	5 5	ND ND	13	76 21	.2 .2	2 2	2 4	82 54		.003	2 2	7 13	.03 .05	926 789		16	.27	.01 .02	.12 1
45208	6	12	19	34	.3	11 12	2	ş	.90	8	5	ND	3	24	.2	2	2	71		.023	ź	16	.05	948		21	.77	.02	.20
45210	9	4	9	3	.2	6	1	20	.44	3	5	ND	2	7	.2	2	Ž	65		.006	2	8	.04	520			.37	.01	
45258	10	3	8	13				7	76		5	ND		14	<u> </u>	2	2	67	.01	.006	2	44	.04	628		10	.38	01	
45259	13	7	ş		1 1	8 7	1	9	.35	4	5	ND ND	1	16 13	.2 .2	2 2	3	76		.006	2	16 11	.04	566		18 23	.30	.01 .01	.19 1
45260	12	4	9		ំ	8	i	Ś	.52	3	5	ND	ż	11	.2	2	2	82		.006	2	16			.01	23		.01	.24
45261	10	4	11		.2	6	1	9	.46	2	5	ND	ī	10	.2	2	Ž	76		.003	ž	11			.01	23	.46	.01	.24
45262	12	8	11	20	.1	8	1	6	.56	3	5	ND	1	12	.2	2	2	114		.007	2	15		576		21	.46	.01	.24 1
45263	10	4	19	3	.1	5	1	7	.32	4	5	ND	1	109	.2	2	3	46	.01	.004	2	5	.02	332	.01	15	. 18	.01	.10 1
45264	7	4	23	5	1	5	i	4	.29	3	5	ND	i		.2	ž	2	51		.003	2	7	.02	383			.18	.01	
RE 45260	12	6	11	11 💹	. 1	8	1	7	.53	5	5	ND	2	12	.3	2	2	84	.01	.006	2	15	.05	351		23	.46	.01	.24
45265	14	7	32		.1	6	1	7	.96	10	5	ND	1	89	.2	2	3	64		.013	2	7	.02	93			.22	.01	20000000
45266	17	7	33	6	1	10	1	3	.93	11	5	ND	1	77	.2	4	2	107	.01	.016	2	11	.02	102	.01	11	.26	.01	.18 1
45267	18	16	9		.1	12	2	18	1.24	12	5	ND	1	15	.2	2	2	98	.01	.015	2	11	.03	310	.01	15	.34	.01	.23
45268	12	8	9	9 🛞	.2	9	1		.57	4	5	ND	1	15	.2	2	2	109		.011	2	15	.04	694		20	.43	.01	.20 💮 1
45269	10	12	11		.6	11	2		.63	5		ND	3	14	.4	3	2	135		.019	2	12	.07	463			.54	.01	.24
45270 STANDARD C	11	13 57	10 38	10 132 7	.3	9 70	1 31 1		.76	7 41	5 16	ND 7	2 40	11	.2 17.6	2 14	2 19	113 56		.008	2 38	13 59	.05	516	.01 .08		.50 2.00	.01	.26 1
				O GRAM																									
		ASSA	Y REC	OMMENDE	D FO	R ROO	K AND	COR	E SAM	PLES	IF CU	PBZ	N AS	> 1%,	AG >	30 P	PM &	AU >	1000	PPB									
		- SA	MPLE	TYPE: P	1 10	P2 1	ROCK P	5 51	LT P4	MOSS	MAI	5	ample	s beg	<u>10010</u>	g 'RE	<u>' are</u>		\mathcal{I}	e samp	les.								
											1		1.					(')	Ι.										
DATE REC	EIVE	D:	AUG 1	2 1992	DA	ATE	REPO	ORT	MAI	LED :	H	ng 2	4 4	2	SI	GNE	D BY	\sim :.	·	****	D.TO	DYE, I	C.LEO	NG, .	I.WANG	; CER	TIFIE	D B.C	ASSAYER
											••	1	1.																
										•		v	•								/								

	SAMPLE#	si02	A1203	Fe203	MgO	CaO	Na20	K20	TiO2	P205	MnQ	Cr203	Ba	Sг	Z٢	Y	Nb	LOI	SUM
		*													ppm	00000000			%
	45206		2.92			.07							296658		35	7 5		4.2	99.82
	45207		3.85			.06							194810		43		5		99.82
	45208 45209					.02	.09	2.70	.55 .53	.02	.01 .01		4430 4671		101 90	12 10	16 17	6.0 5.8	99.87 99.84
	45210		6.84			.05	.07	1.76	.32	.01	.01		1569		42	6		5.2	99.83
	45258		6.52		.23	.02	.07		.27	.01		.002	1707		40	8		4.6	99.83
	45259	85.12	6.54	.66	.22	.05	.09	1.66	.29	.01	.01	.002		42	38	7	5		99.85
	45260		7.14			.02	.08		.33	.01			1337		50	8	5		99.85
	45261 45262		7.36			.25		1.97		.01	.01 .01				48 49	7 7		5.5 5.8	99.86 99.83
	43606	0	1.10	.0,				1.1.5					Erw-	70			-	5.0	77.05
	45263	40.28	2.68	.36		.05			.12	.01	.01		302714		27	5		4.0	99.87
	45264		2.44						' .12	.01			314099		22	5		4.3	99.89
	RE 45260 45265		7.30		.31 .01	.02 .02		1.83					1285 244827		61 30	8 5		5.5 6.1	99.86 99.85
	45266		3.88					1.05		.01	.01		183598		34	5		7.9	99.83
	45267		5.19						.24					51	37	8		5.5	99.84
	45268	84.87	6.26	.65	.20	.02	.07	1.35	.27	.01	.01	.004	2008	44	40	9	5	5.8	99.85
	45269 45270		7.91						2.36			.002			56 51	10 8		5.8 6.7	
	45270 STANDARD SO-4		10.16						.58						51 308	8 23		10.4	
DATE RECEIVED:	-	200 GRAM SAMPLE amples t	TYPE:	P1 TO	P2 RO	DCK P3	S SILT	T P4 1	MOSS M	MAT									J.WANG; CERTIFIED B.C. ASSAY
							v	ť							I				

			.000000000			3 50 -	- 272	2 Vic	toria	ı St.	, Ka				<u>171</u> C 2A2		Fi Jomi			RANDY			P	៍								
		Cu ppm	Pb ppm		200 200	Ni ppm		Mn ppm		As ppm					Cd ppm			V ppm			La ppm p	Cr I xpm	lg X p		Ti X			Na %	к %	W Ppm	Ba* ppm	
45220	13	16	14	37	.2	16	2	11	.86	9	5	ND	3	16	.5	5	2	22	.07	.007	2	9.0	5 5	58	.01	21	.61	.01	.31	1	2754	
45223	21	8	5	86	.3	17	1	35	1.11		5	ND	2		.2	5	2			.031		11.0					.32	.01	.15	1	1599	
45224	10	20	12	125			5	31	1.34			ND	3		1.1		2			.014		10 .0					.80	.02	.30	ા	3538	
45227	68	37		330	.9		1		.81			ND			10.3	10	2			.020		17 .0					.23			86	546	
45228	36	28	135	1051	.2	42	2	68	1.28	14	5	ND	1	17	7.3	8	2	143	.06	.007	2	12 .0	02 1	49	.01	11	.18	.01	.08	f	999	
45229	18	93	43	103	.4	28	2	50	.83	31	8	ND	1	16	.7	12	2	103	.03	.006	2	17.0	3 2	38	.01	13	.25	.01	. 15	2	696	
45232	23	38	11	46			6		4.10		5	ND		23	4	3				.031		9				15			.18	87	972	
45233	29	19	13	29		35	3		1.09		8	ND		16	.2	6				.051		10 .0							.20	1	678	
45235		46	28	57			5		2.35		5	ND	1		.6	5	3			.015		11 .				20			.20	8 Å	847	
45236		11	14	59			2	63			5	ND		56	.2	3	2			.019		8.0								1	21155	
45242	7	7	21	29	.2	8	1	14	.75	10	5	ND	1	155	.2	2	2	20	03	.016	2	5.0	13 2	38	01	15	30	01	.17		266159	
45243	10	13	23	52		20	i	19	.78		5	ND		104	.2	ī	3			.015		7.0			.01				.13		226420	
45245	10	7	20	21			i	5			5			136	2	5				.013		5.0							.15		245042	
45247	8	24	26	149			3		1.40		5	ND		66	ंड	ź	2	35	.07	.033		10 .							.25		56999	
45272	23		10	119		34	8		1.09		5	ND		25	.5	4				.085		11 .							.25	- 1000 A. A. A.	3303	
RE 45242	8	7	22	29	.1	7	1	13	.73	9	5	ND	1	146	.2	3	4	27	.03	.016	2	5.) <u>3</u> 2	77	.01	12	.28	.01	.15	1	279618	
45275	44	41<		2028		39	1		1.88		5	ND			6.8					.017		16 .								1	3736	
45276	43			209			1		1.07		5	NÐ		7	1.0					.016		15 .0							.05	1	973	
45283	12	44	23	126	.3	43	2	17	1.49	12	5		1	106	.2	2	2	28	.09	.063	2	14 .0)2 4	88	.01	13	.67	.01	.16	1	111579	
45284	9	15	22	54	.5	18	2		1.35		5	ND		51	.3	5	3	30	.09	-064	2	12 .	04 1	79	.01	16	.46	.01	.23	1	19907	
45286	7	13	9	26	.5	16	1	18	.99	11	5	ND	3	43	.2	4	2	41	.11	.058	2	11 .)3 4	02	.01	17	.55	.01	.21	1	48153	
45288	7	15	13	52			ż	18		10	5	ND		31	.2	ż				.038		13 .							.18		19271	
45289	1	3	2				1	7			5			111	.2	2				.003		1.					.08	.01	.01		484714	
45290	1	3	5	8	8. Î	6	1	15	.29		5			404	.2	2	2			.016		4 .									392204	
45291	4	9	9	20	•1	15	1	26	.77	8	5	ND	1	147	.2	2	2	14	.03	.040	2	7.0	01 6	72	.01	9	. 19	.01	.10	1	183547	
45292	4	13	12	28	.2	16	1	17	.75	8	5	ND	1	176	.2	2	2	14	.04	.028	2	7.	01 2	24	.01	9	. 18	.01	.10	1	189699	
-		60																		.087												

:

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF LO PB 2N AS / 14, NG / 30 FFM & NO / 1000 FFB - SAMPLE TYPE: P1 ROCK P2 SILT P3 MOSS MAT BA* .2 GN SAMPLE FUSED WITH 1.2 GM LIBO2, ANALYSIS BY ICP. GEOCHEM BA ANALYSIS BY WHOLE ROCK ICP. <u>Samples beginning 'RE' are duplicate samples</u>.

5

STREAM - MOSS MATS

ANAL YTICAL				Tec	c k	Ехі)]0:	rat	ion	L (]	BC)	P	ROJ	JEC	T 1	1719	5	FI	LE	# 9	2-2	264	1					Pa	age	3		
SAMPLE#	Mo ppm	Cu ppm			Ag ppm			Mn ppm		As ppm	-		Th ppm		Cd ppn	sb ppm		-			La ppm			Ba ppm	ті % р	Bi Aprin	Al %	Na X	к %, рр	666 T	3a* opm	Hg ppb
N45219	24	49	27	882	.8	126	12	160	2.25	18	5	ND	9	61	6.6	4	6	83	.47	.059	3	11	.10	1134	.01	11	.56	.01	.13	3 132	272	125
RE M45239	28	40	28	1805	.7	216	11	218	1.96	19	5	ND	4	98	12.5		2	127	2.61	.075	10	14			.01	11	.60	.01	.12	1 135	509	115
M45222	40	57		630			24	393	3.46	27	5	ND			7.8					.092			.11				.68	.01		1 27		90
M45226	31	35		1055			12		1.91			ND								138					.01			.01		1 164		100
M45237									2.56			ND			13.4					.098				896				.01		1 51		
M45238	22	44	26	1906	.5	230	11	220	2.40	19	5	ND	1	96	8.3	5	2	68	1.31	.089	11	11	.36	1314	.01	7	.53	.01	.11	1 220	07	100
M45239	27	44	26	1821	.7	217	11	226	1.93	20	5	ND	2	96	12.6	5	3	124	2.49	.074	10	13	.62	1185	.01	12	.57	.01	.12 🖉	1 126	598	120
M45244	15	45	45	1292	.7	104	12	235	2.48	18	5	ND	2	67	6.4	5	2	59	.60	.062	4	12	.18	1612	.01	7	.68	.01	.12 🛞	1 213	395	105
M45244 DUP.	30	41	93	1528	.7	104	11	294	2.47	16	5	ND	2	68	8.4	4	- 4	60	.62	.069	83	11	.15	1332	.01	7	.64	.01	.11 🛞	1 80	096	100
M45246	6	35	24	508	1.0	74	10	172	2.14	12	5	ND	2	75	3.6	2	5	43	.63	.071	5	14	.24	1171	.01	9	.81	.01	.12	1 70	009	135
M45248	13	34	29	648	.7	68	10	183	2.18	15	5	ND	4	67	3.7	2	2	44	.46	.068	7	12	.21	1337	.01	8	.66	.01	. 10	1 507	763	90
M45274	34	57	209	2612	.8	499	12	308	2.38	19		ND		97	20.8	7	2	116	2.29	138	5	12		538	.01	29	.48	.01	.17 💹	3 19	958	185
M45277	22	29	- 14	660	.1	161	6	194	1.45	10	5	ND	1	- 36	4.5	3	2	113	2.25	.095	14	13	.82	165	.01	11	.39	.01	.10 💮	1 9	965	80
M45278	19	26				123			1.16		5	ND	2		3.7					176		15	2.29	424	.01	13	.36	.01	.12 🛞	1 30	052	85
M45279	18	23	11	527	.1	114	6	156	1.32	11	5	ND	3	42	3.5	2	2	119	3.14	, ,123	18	14	1.36	245	.01	14	.38	.01	.09	1 10	096	80
M45280	22	2 7	9	1036	.3	179	6		1.29		5	ND	1	57									1.38		.01		.37	.01	.10	<u>1</u> 11	132	125
M45281	59	59	27	1429	.1	228	14		2.38		- 5	ND	2			10	- 3	219	2.44	.099	9	16				12	.40	.01	.12 🛞	1 15	931	155
M45282	19	42	35	522		91	10	221	2.59	16	5	ND	1	62	3.8	2	2	57	.74	059	4	11	.21	1090	.01	9	.59	.01	. 12 🖉	1 38	847	135
M45285	17	49	30	537	.6	92	11	286	2.77	22	5	ND	1	95	5.0	4	- 3	- 56	.71	.064	4	11	.14	1264	.01	11	.63	.01	.12 🛞	1 276	593	140
N45287	18	36	21	614	ંુ 3	87	11	234	1.98	17	5	ND	5	96	3.7	2	- 4	62	4.20	.095	18	9	1.62	780	.01	7	.48	.01	.12 🗑	1 434	491	80

:

Sample type: MOSS MAT. Samples beginning 'RE' are duplicate samples.

SAMPLE#						350 •											File bmitte				MER									
					Ag ppm			Mn ppm		As ppm						Sb ppm p	Bi V xpm ppm	/Ca		La ppm (Ba ppm	Ti Z		AL %			W ppm	Ba* ppm
L48+00N 39+00E	45	32	46	206	.6	38	8	136	2.23	99	5	ND	2	20	.8	7	2 165	. 15	.034	5	11	.06	545	.01	8	.46	.01	.05	1	1827
L48+00N 39+25E	28	46	58	766	1.6	102	8	222	2.65	13	5	ND	2		7.0				.078				1410	.01		.91				3667
L48+00N 39+50E	26			246			4		2.09			ND	1	26					.039		11		197			.78			- 2000 1000	1344
L48+00N 39+75E	47	25		730			6		2.08			ND			.4				.026	4	15 .	.04	112			.58		.06		808
L48+00N 40+00E	16	11	22	204	.3	28	2	29	1.08	8	5	ND	2	11	.4	5	2 108	.03	.020	8	10	.05	234	.01	6	.62	.01	.07		1228
1 68+00N 60+25E	23	18	75	316		58		28	1 50	10	5	ИП	1	18	7	5	2 104	. 02	027	5	12	۵۵	365	01	6	62	01	06		1660
					2.37427		5				-																		20 1	
																													20.00200	
											-		2	27	24	4														
L48+00N 41+25E							4						1	18	.9	4														
														_											_					
L48+00N 41+50E							3				5	ND																	0000100	
																													8889739	
																				3	14	.04							0000070	
																													0000000	
L48+00N 42+50E	28	23	62	483	.5	42	3	42	2.25	16	5	ND	1	43	2.4	7	2 208	5.03	.058	6	15	.08	760	.U1	8	.94	.01	.15		4046
148+00N 42+75F	34	23	70	441		61	3	24	1.07	17	5	ND	1	20	R	12	3 221	.02	.037	7	13	.03	437	.01	6	.46	.01	.08	1	1367
							ž						2												-					
	98																													
L48+00N 42+00E 58 41 53 499 1.5 69 9 43 3.29 18 5 ND 2 17 .9 5 2 185 .08 .041 3 14 .04 980 .01 10 .61 .01 .10 1 3682 L48+00N 42+25E 43 35 73 498 1.8 76 5 35 2.81 23 5 ND 3 31 2.1 8 2 215 .03 .059 7 17 .09 108 .61 .01 .12 1 6306 L48+00N 42+50E 28 23 62 433 .5 42 3 42 2.25 16 5 ND 1 43 2.4 7 2 208 .03 .058 6 15 .08 .01 .03 .03 .03 .01 6 .46 .01 .08 1 .056 .059 .01 .03 .03 .01 .03 .04 .01 .01																														
L48+00M 40+50E L48+00M 41+00E L48+00M 41+00E L48+00M 41+5E L48+00M 41+5E L48+00M 41+5E L48+00M 41+75E L48+00M 42+25E L48+00M 42+50E L48+00M 42+52E L48+00M 42+52E L48+00M 42+52E L																														
							4									8														
L48+00M 40+75E L48+00M 41+25E L48+00M 41+25E L48+00M 41+25E L48+00M 41+25E L48+00M 41+25E L48+00M 41+25E L48+00M 42+25E L48+00M 42+25A																														
L48+00N 42+75E 34 23 70 441 .3 61 3 24 1.97 17 5 ND 1 29 .8 12 3 221 .02 .037 7 13 .03 437 .01 6 .46 .01 .08 1 1367 L48+00N 43+00E 37 24 75 336 .2 54 3 29 1.99 15 5 ND 2 34 1.0 6 3 203 .05 .041 6 14 .05 981 .01 7 .72 .01 .01 1 5069 L48+00N 43+50E 29 21 32 273 .1 46 3 28 1.06 19 5 ND 1 35 .5 7 2 101 .03 73 .01 7 .49 .01 .11 18 8749 L48+00N 43+75E 78 33 33 494 .7 135 5 45 .01																														
L48+00N 43+50E 98 42 34 56 .1 164 5 40 1.99 24 5 ND 1 15 1.1 25 2 526 .07 .030 5 23 .04 663 .01 8 .55 .01 .07 1 1471 L48+00N 43+75E 78 33 33 494 .7 135 5 45 2.19 19 5 ND 1 10 .030 5 23 .04 663 .01 8 .55 .01 .07 1 1471 L48+00N 43+75E 78 33 33 494 .7 135 5 45 2.19 19 5 ND 1 10 .030 5 23 .04 663 .01 8 .55 .01 .07 1 13477 L48+00N 44+25E 12 59 32 69 7 750 3 30 2.33 43 5 ND 1 15 1.08																														
L48+00N 43+50E 98 42 34 566 .1 164 5 40 1.99 24 5 ND 1 15 1.1 25 2 526 .07 .030 5 23 .04 663 .01 8 .55 .01 .07 1 1471 L48+00N 43+75E 78 33 33 494 .7 135 5 45 2.19 19 5 ND 1 10 .7 11 2 46 .03 .036 8 26 .05 1013 01 7 .85 .01 .09 1 3477 L48+00N 44+00E 61 27 15 405 .1 99 4 38 1.68 14 5 ND 1 15 1.0 8 2 350 .04 .043 .01 10 .62 .01 .07 1 4836 L48+00N 44+25E 112 59 32 697 .7 150 3 30 2.33																														
L48+00N 45+25E	29	50	32	284	4	61	4	29	1.93	16	5	ND	2	47	1.4	5	2 175	i.09	.063	7	14	.07	1063	.01	7	.75	.01	.14	1	5481
							8																						30030030	
	1												1				2 108	3.04	.080				726	.01	7	.98	.01	.15	<u> 1</u>	3382
	I																2 109	2.01	.066											13916
															.3	2														
							~	~ 4	a 44		-		~	<i>,,</i>		-				,	~	~	E00		~		~~			1705
												ND																		
							-																						- 20002002	
L48+00N 47+25E		30		184			3			32			3		1.4				1068		11		293			.81		.22		3138
140.00N 41.30C	1 "	50	£.4	104		20		21	3.32			NU	5	50		Ŭ	5 100			-	••				•					2,50
	10				.2		2	18	2.16	15		ND		45	.4	2	2 117	7.02	.047	3			510					.15		1964
RE L48+00N 46+50E							2			13		ND	1	54	.2	2	2 146	5.03	.049	3	11	.05	382	.01	7	.77	.02	.18	11	6440
RE L48+00N 46+50E L48+00N 47+75E Standard C/CB-1200	20	23																											20020202	

	Teck	Ехр
--	------	-----

ploration (BC) PROJECT 1715 FILE # 92-2722

AAA ACHE AMALYTICAL	Teck	Exploration	(BC) PROJECT	1715 FILE # 92-2722	Page 2 AAA
r			Fe As: U Au Th S % ppm ppm ppm ppm pp		
L48+00N 48+25E 20 56 L48+00N 48+50E 27 21 L48+00N 48+75E 18 34	19 97 23 150 23 192 25 233 28 211	.1 32 4 31 1.8 .4 16 4 34 2.5 .9 32 5 178 2.0	83 7 5 ND 2 4 58 20 5 ND 1 5 06 10 8 ND 1 7	3 2.5 2 2 161 .17 .094 3 18 .06 5 .8 7 2 123 .16 .065 3 10 .09 0 3.4 3 2 112 .46 .103 5 18 .23	
L48+00N 49+50E 17 24 L48+00N 49+75E 17 15 L48+00N 50+00E 25 20	21 111 38 85	1.3 19 4 32 2.6 .4 17 4 32 2.0 .5 16 2 21 1.2	95 19 5 ND 2 4 63 12 5 ND 1 8 03 13 5 ND 1 3 24 9 5 ND 1 5 31 10 5 ND 2 2	7 .2 2 2 102 .04 .106 6 13 .05 5 .3 2 3 139 .03 .048 8 16 .10 5 .9 3 2 172 .18 .046 5 14 .06	0 693 01 2 .92 .01 .12 1 6470 5 491 01 2 .88 .02 .16 1 1463 0 467 .01 6 1.18 .01 .11 1 1246 5 754 .01 7 .94 .01 .13 1 2083 303 .01 6 1.62 .01 .11 1 2219
L44+00N 35+50E 10 12 L44+00N 35+75E 48 22 L44+00N 36+00E 22 17	19 169 15 168 18 776 17 127 15 134	.2 16 6 44 2.3 .8 28 11 40 4.4 .6 14 4 27 2.6	34 5 5 ND 1 1 45 21 5 ND 2 5 62 15 5 ND 2 4	3 .2 2 2 76 .03 .036 4 13 .06 1 .4 2 2 95 .03 .066 3 9 .04 5 .2 2 5 108 .01 .056 5 15 .07	9 365 01 5 1.04 .01 .14 1 2398 5 319 01 2 1.15 .01 .12 1 2161 4 456 .01 2 .78 .01 .15 1 3014 7 362 .01 3 1.16 .01 .12 1 2230 6 402 .01 2 .85 .02 .12 1 2084
L44+00N 37+25E 24 37	40 208 54 151 34 315	.3 30 7 46 2.3 1.4 26 5 24 2.1	38 13 5 ND 1 7 18 13 5 ND 2 15 37 14 5 ND 1 3	0 .2 2 2 113 .03 .069 6 12 .04 7 .2 2 2 67 .06 070 2 13 .04 1 .4 2 2 121 .03 .065 4 12 .04	213 01 7 .89 .01 .07 1 2450 272 01 3 .73 .01 .10 1 2163 403 .01 8 .69 .03 .16 1 2995 255 01 8 .85 .01 .09 1 1355 349 01 3 .69 .01 .09 1 1670
L44+00N 38+50E 35 30		.4 47 8 59 2.4 .2 52 7 62 2.5 .4 56 7 50 2.4	57 20 5 ND 1 3 47 17 6 ND 2 2	0 2 3 2 180 .01 .030 6 15 .05 3 2 3 2 172 .02 .047 6 14 .05 8 .4 5 2 172 .02 .053 6 15 .04	
L44+00N 39+25E 37 34 L44+00N 39+50E 37 47 RE L44+00N 38+50E 34 29	45 287 54 428 61 474 58 366 31 253	.6 69 8 120 2.9 .4 65 10 124 2.8 .4 56 7 50 2.4	94 21 5 ND 2 3 89 18 5 ND 1 2 43 15 5 ND 1 2	8 1.0 4 2 197 .05 .089 7 18 .11 9 2.0 2 2 142 .06 .065 7 16 .10 8 .2 2 2 170 .02 .052 5 15 .04	6 626 01 4 .93 .01 .10 1 1974 617 01 10 .88 .01 .11 1 2050 0 624 .01 10 .73 .01 .10 1 2350 5 515 .01 7 .77 .01 .09 1 1708 4 327 .01 6 .81 .01 .09 1 1582
L44+00N 40+50E 38 32 L44+00N 40+75E 29 33	29 202 37 295 53 301 33 262 42 286	.3 48 7 63 2.3 .6 48 7 56 2.4 .8 43 8 75 2.5	35 12 5 ND 1 1 47 14 5 ND 1 2	7 .2 2 2 202 .02 .042 6 13 .04 1 .2 3 2 190 .02 .047 5 15 .05 2 .2 2 5 173 .04 .061 5 14 .04	307 01 5 .63 .01 .08 1 1366 5 327 01 7 .83 .01 .09 1 1410 4 18 01 9 .77 .01 .11 1 1705
L44+00N 41+50E 28 29	38 204		45 20 5 ND 1 1		3 342 01 7 .52 .01 .12 1 1593 5 294 .01 3 .66 .01 .10 1 1458 5 183 .09 35 2.02 .07 .14 10 2081

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

ł

Teck Exploration (BC) PROJECT 1715 FILE # 92-2722

ÉÉ ACIE AMULTICAL	Teck Exploration (BC) PROJECT 1715 FILE # 92-2722	Page 3
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr Cd Sb Bi V Ca. P La Cr Mg Ba ppmippmippmippmippmippmippmippmippmippm	TÎ B AL Na K ⊌ Ba* Xippm X X Xippmi ppmi
L44+00N 41+75E L44+00N 42+00E L44+00N 42+25E L44+00N 42+50E L44+00N 42+75E	34 28 48 278 .4 48 7 56 2.86 18 5 ND 8 22 .2 5 2 174 .02 .044 5 15 .06 400 . 29 23 41 241 .1 45 6 44 2.02 13 5 ND 2 20 .4 4 2 188 .02 .029 4 13 .05 369 . 25 27 23 130 .2 29 6 47 1.59 9 6 ND 1 22 .9 2 2 109 .05 .045 8 16 .05 694 .1 24 29 22 145 .1 31 7 53 2.01 4 5 ND 1 272 .6 2 2 110 .02 .043 7 13 .05 401 .1 35 45 28 209 .4 57 14 157	01 4 .89 .01 .08 1 1226 01 7 .90 .01 .08 1 1793 01 8 .90 .01 .07 1 1761
L44+00N 43+00E L44+00N 43+25E L44+00N 43+50E RE L44+00N 43+75E L44+00N 43+75E		01 7 .85 .01 .11 1 3836
L44+00N 44+00E L44+00N 44+25E L44+00N 44+50E L44+00N 44+75E L44+00N 45+00E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01 10 .82 .01 .12 1 1456 01 8 .89 .01 .09 1 1954 01 10 .81 .01 .11 1 3740
L44+00N 45+25E L44+00N 45+50E L44+00N 45+75E L44+00N 46+00E L44+00N 46+25E	21 31 51 237 .6 45 7 60 2.73 20 5 ND 1 89 .8 4 2 142 .02 .078 4 15 .04 566 .	
L44+00N 46+50E L44+00N 46+75E L44+00N 47+00E L44+00N 47+25E L44+00N 47+50E		01 6 .47 .01 .09 1 3217
L44+00N 47+75E L44+00N 48+00E L44+00N 48+25E L44+00N 48+50E L44+00N 48+75E		01 6 .79 .01 .13 1 1293
L44+00N 49+00E L44+00N 49+25E L44+00N 49+50E L44+00N 49+75E L44+00N 50+00E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01 6 1.10 .01 .13 1 1317 01 5 1.07 .02 .19 1 1532 01 3 1.19 .01 .16 1 1225
STANDARD C/CB-1200	20 63 39 135 7.3 71 32 1068 3.96 42 21 7 39 53 18.6 15 21 59 .50 .085 39 60 .95 183 .	09 34 1.99 .07 .14 10 2287

Sample type: SOIL. Samples beginning 'RE' are duplicate samples,

	NOD GRID SOILS ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604)253-3158 FAX (604)253-1716 GEOCHEMICAL ANALYSIS CERTIFICATE Teck Exploration (BC) PROJECT 1715 File # 92-2519 Teck Exploration (BC) PROJECT 1715 File # 92-2519 Teck Exploration (BC) PROJECT 1715 File # 92-2519
	SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As. U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B At Na K W Ba* ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
NOD GRID Soils P.1-11, 3 1-3	ppm
	DATE RECEIVED: AUG 12 1992 DATE REPORT MAILED: Aug 25/92 SIGNED BY

L.			Te	ec)	: E:	xp1	.ora	atio	on	(BC)) I	PRO	JE	СТ	171	15	FJ	[LE	: #	92	-25	519					<u> </u>	Pa	ıge	2	
SAMPLE#	I				Ag ppm		-	Mn ppm		As ppm					Cd ppm			-		P X				8a ppm	1000	в ррп	Al X	Na X	K Z	W ppm	
L52+00N 49+00E RE L52+00N 50+25E L52+00N 49+25E	11	15	18	130	.6 .6 .4	16	5	35:	1.16 1.71 1.92	10	-	ND ND ND	2	14	.2 .2 .2	5		142	.02	.040 .035 .035	5	16	.07	569 197 308	.01	8		.01	.13	2	

Ba*

ppn L52+00 1574 RE 152 1015 L52+00 1112 3 133 .04 .046 4 15 .08 340 .01 9 1.14 .02 .22 L52+00N 49+50E 15 17 23 81 8 2 37 .2 4 9 3 30 2.02 7 5 ND 1 1389 L52+00N 49+75E 15 28 12 91 .8 19 4 26 1.68 7 5 ND 1 29 1.1 4 2 117 .19 .044 6 16 .11 486 .01 6 1.17 .01 .14 1 1249 5 L52+00N 50+00E 2 2 58 .02 .030 5 13 .07 196 .01 9 1.03 .01 .15 1263 10 6 14 46 1.3 -5 2 18 .88 3 ND 1 9 .2 1 5 .2 L52+00N 50+25E 20 128 .6 19 5 35 1.70 8 ND 1 4 2 139 .02 .033 5 15 .07 186 .01 8 1.12 .01 .13 1049 11 15 14 L52+00N 50+50E 13 19 119 .4 28 1.65 5 2 .2 3 2 138 .04 .037 4 14 .08 263 .01 3 1.25 .01 .17 1076 9 13 4 11 ND 20 L52+00N 50+75E 10 33 22 249 .8 7 103 4.88 12 5 2 36 .9 5 2 166 .02 .078 3 14 .09 325 .01 2 1.15 .01 .20 23 ND 1 1173 72 L52+00N 51+00E 11 20 26 367 2.5 30 7 37 3.68 14 5 ND 2 .9 14 2 167 .04 .105 4 16 .08 384 .01 8 1.42 .02 .24 1164 L52+00N 51+25E 37 101 1.9 14 28 1.96 9 5 5 2 169 .02 .051 6 16 .06 407 .01 6 .84 .01 .19 1154 29 9 4 ND 1 70 4 .2 .2 .2 .2 .2 L52+00N 51+50E 28 20 31 135 1.1 23 6 44 3.11 20 5 ND 3 85 2 2 169 .03 .068 4 18 .09 441 .01 7 1.06 .02 .25 1384 1 6 10.40 306 5 ND 2 535 .04 .144 2 20 .06 157 .01 3 .83 .01 .05 822 L52+00N 51+75E 165 36 20 69 .1 6 8 1 18 4 38 48 286 .9 49 2 131 .02 .066 L52+00N 52+00E 16 9 28 3.45 25 5 ND 4 167 3 3 14 .07 277 .01 6 1.04 .03 .24 1 1909 46 40 270 1.8 68 14 137 5.57 22 5 ND 2 78 2 4 104 .02 .097 4 17 .11 239 .01 2 1.19 .01 .16 1608 L52+00N 52+25E 9 23 16 153 7 5 15 .09 197 .01 1345 L52+00N 52+50E 5 .2 .9 2 3 100 .02 .051 6 1.06 .01 .13 9 26 7 119 3.18 14 ND 1 15 25 21 113 .1 19 24 143 .4 18 13 1.61 12 5 1 208 4 2 178 .04 .062 2 12 .04 1221 .01 10 .53 .01 .10 4040 L51+00N 47+50E 3 ND 22 1 .5 L51+00N 47+75E 23 25 4 23 1.65 14 5 ND 1 54 3 2 110 .06 .052 3 10 .04 799 .01 8 .54 .01 .13 4301 1 7 .97 .01 .17 L51+00N 48+00E 37 38 34 172 .6 36 5 62 2.67 24 5 ND 1 103 .8 3 3 200 .22 .080 8 17 .07 497 .01 1 14308 2 630 .30 .168 3 16 .04 152 .01 L51+00N 48+25E 127 69 23 74 .6 132 5 13 4.76 74 10 ND 2 163 .7 7 3 .98 .02 .25 1 112415 2 112 .10 .055 19 1.56 .2 4 15 .05 675 .01 3375 L51+00N 48+50E 45 14 43 54 .2 12 3 16 5 ND 1 62 2 11 .53 .01 .20 10 **2** .2 .2 15 24 123 4 37 2.54 16 5 NÐ 1 130 3 5 200 .18 .079 6 17 .07 697 .01 10 .85 .01 .15 1471 L51+00N 48+75E 33 14 5 2 151+00N 49+00E 13 21 130 .3 17 4 42 1.83 12 ND 1 47 2 177 .03 .046 4 16 .09 755 .01 11 1.19 .01 .15 1 3130 26 20 8 457 .2 121 20 237 4.05 24 8 10 79 .3 10 3 43 .92 3 2 174 .07 .043 L51+00N 49+25E 60 5 ND 1 25 .2 2 8 14 .06 1445 .01 2 .71 .01 .07 1 141476 L51+00N 49+50E 13 5 ND 1 13 .7 2 3 88 .10 .041 8 17 .07 319 .01 7 .88 .01 .10 ÷. 1291 .7 5 23 .2 5 2 105 .09 .042 4 14 .08 489 .01 9 .97 .01 .14 1284 L51+00N 49+75E 14 15 129 12 4 27 1.67 8 ND 1 16 .5 3 124 .10 .042 19 5 20 5 5 13 .07 1076 .01 5 .89 .01 .11 L51+00N 50+00E 33 23 10 148 .8 25 5 31 2.15 ND 1 2189 5 4 13 .07 390 .01 10 1.01 .01 .24 15 2 25 2 129 .03 .055 1 1352 L51+00N 50+25E 14 11 28 127 .8 9 3 27 2.48 ND .2 6 2 2 153 .02 .039 L51+00N 50+50E 15 12 20 122 .5 10 4 22 2.35 13 5 ND 31 .2 4 4 14 .08 303 .01 5 1.13 .01 .20 1 1171 5 2 9 .2 3 3 113 .02 .016 9 15 .08 183 .01 1 929 L51+00N 50+75E 7 8 10 90 .5 10 4 35 1.25 6 ND 6 1.13 .01 .11 4 13 .06 238 .01 7 .90 .02 .18 919 L51+00N 51+00E 13 15 18 179 .7 18 5 24 2.17 12 5 ND 2 40 .3 3 2 123 .02 .039 5 7 18.09 1 43 14 70 2 322 .01 1287 L51+00N 51+25E 40 25 24 143 1.1 25 6 2.89 ND 1 1.0 2 138 .15 .052 4 1.10 .04 .22 13 5 2 1179 L51+00N 51+50E 42 30 33 154 .6 42 6 27 2.32 ND 2 59 ,2 2 149 .04 .050 3 17 .07 296 .01 5 1.13 .03 .18 18 17 22 122 .5 5 2 40 .2 3 4 98 .02 .036 4 11 .05 253 .01 8 .82 .01 .16 1010 L51+00N 51+75E 18 3 23 1.51 10 ND 14 95 .2 2 5 20 .14 305 .01 18 1380 5 3 2 112 .03 .098 2 1.60 .01 .17 L51+00N 52+00E 10 42 38 255 1.1 102 19 116 4.38 ND 5 ND 5 13 .07 259 .01 1161 L51+00N 52+25E 9 28 .2 2 2 95 .02 .036 4 .99 .01 .13 10 16 27 118 .4 19 5 36 1.65 1 6 22 15 162 .6 30 7 5 ND 10 .2 2 3 96 .02 .029 5 14 .07 218 .01 8 1.04 .01 .12 1360 L51+00N 52+50E 6 59 1.61 1 8.48 STANDARD C/CB-1200 19 63 39 137 7.5 70 32 1056 3.96 43 18 7 41 53 18.9 14 21 59 .49 .087 39 61 .94 183 .08 35 1.93 .07 .14 10 2249

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

CHE ANALYTICAL

AMAL YTTEAL		T	'ec	k E	cp l	ora	tic	n	(BC)	P	RO	JEC	T	171	5	FI	LE	#	92-	25	19						Pa	ge	3		£
SAMPLE#	Mo ppm p			Zn Ag pm ppr	S		Mn ppm		As ppm								V ppm	Ca %		La pprnp		Mg X		ті %		AL X	Na %		W ppm		
L50+00N 45+00E	22	63 (25 3	87	77	16	260	3.21	29	8	ND	7	79	5.4	7	4	130	.11	,103	5	18	.12	891	.01	8	1.28	.01	.18	2	10942	
L50+00N 45+25E	19	31 2	22 1	55 🍭	31	5	39	2.13	18	5	ND	2	57	1.5	3	2	99	.07	.057				1119				.01			16252	
L50+00N 45+50E		21				5		2.15		5		3	55	.8	5				_046				685							13407	
L50+00N 45+75E		18 2			38	6			20	5	ND		51	.5	5				.047				742							15927	
L50+00N 46+00E			26 2		47				28		ND	Ž	73	.2	5				.066				465				.01			23792	
L50+00N 46+25E	21	18	23 1	on 🖉	34	6	24	2.2	28	5	ND	2	58	.2	5	2	111	.01	.038	3	9	.04	443	.01	9	.53	.01	. 15		34768	
L50+00N 46+50E	5		8					.60		5	ND		19	.2	2	2			.018				1691				.01			6242	
L50+00N 46+75E		13 :						1.64			ND	i	62	.2	2				.036				1018				.01			6005	
L50+00N 47+00E			29 1		29				17	7		i	60		2				.040				944				.01			10669	
L50+00N 47+25E	13		22		13			1.10			ND	i	22		2				.043				1694							15057	
					Č.																										
L50+00N 47+50E				32 1.) 21		ND		96	.3	3				.081				577				.03			2295	
L50+00N 47+75E			63 2					3.8			ND		138	.6	3				.094				545				.01			2708	
L50+00N 48+00E			25 2						20		ND	1	78	.4	2				.051								.01			30596	
L50+00N 48+25E	17								10		ND	1		.4	2								2265				.01			40992	
L50+00N 48+50E	44	21	23 3	37	36	7	104	2.8	23	5	ND	1	30	.2	3	2	170	.03	.045	9	15	.05	545	.02	8	.77	.01	.12		1702	
RE 150+00N 49+75	33	14	31 1	04 🎇	8 21	6	54	2.43	5 814	5	ND	1	41	.2	3	2	122	.02	.033	8	17	.06	321	.01	8	.97	.02	.20	1	1487	
L50+00N 48+75E			10 1					1.2		5	ND		17	.2	2				.030				460				.01		- 201		
L50+00N 49+00E	43		26		2 14	5			5 16	8	ND		95	.2	5				.063				183			.56	.03	.25	- 889	2297	
L50+00N 49+25E	16		17		10			1.2		5			20	.3	2				.022				411		9	.56	.01	.15	- 880	1538	
L50+00N 49+50E	79			96 1.				4.7		5	ND		194	.4	4				.131				303		7	1.15	.03	.23	1	1595	
L50+00N 49+75E	33	13	38	98	5 20	5	53	2.4	15	5	ND	1	44	.2	3	5	120	02	.035	7	16	06	309	01	6	50	.02	10		1503	
L50+00N 50+00E				64 1.					7 107	5	ND	1	5	2	3				.111		17		97				.01			630	
L49+00N 45+00E			18 1		5 22			1.7		5			31	3	ž	2	112	01	.042				757				.01			2343	
L49+00N 45+25E			26 2		36				7 22		ND	1	60		6				.065				566				.01			12783	
L49+00N 45+50E			24 1		31				25	5		1	54		6				.058			.08					.01			12481	
					š.																										
L49+00N 45+75E			24 1		31				4 24		ND		59	.3	- 5				.079				610				.01		- 2000/026	13409	
L49+00N 46+00E			24 1					2.4			ND	1	46		4				.052				873							8462	
L49+00N 46+25E	1		19 1		÷ 22				B 20		ND	1			4				.070				1020				.01			11622	
149+00N 46+50E	22			31 🔍					5 26		ND			1.0					.077				1004				.01			13653	
L49+00N 46+75E	21	29	27 1	44 1.	2 30	5	27	2.4	9 25	5	ND	2	56	1.0	4	2	128	.01	.053	4	12	.05	644	.01	8	.82	.01	.18		14644	
149+00N 47+00E	20	24	24 1	85 1.	s 5 31	6	55	2.6	5 22	5	ND	2	55	.2	3	2	122	.03	.064	7	17	.10	840	.01	4	1.13	.01	.15	1	11000	
L49+00N 47+25E			74 1		7 17				B 29	6			134	.2	4				.070				484				.01		- 0000000	38733	
L49+00N 47+50E	25		28 1		4 32				2 20	5		1			ġ.				.043				763				.01			2573	
L49+00N 47+75E		32			7 40				0 35		ND		71	.2	•				.084				643				.02			3709	
L49+00N 48+00E		33			9 35				1 16		ND								.072				762				.01			8256	
L49+00N 48+25E	19	26	35 2	77	6 45	5 7	10	2 2	1 23	Ę	ND	1	79	.2	7	7	127	07	.072	4	14	05	782	01	7	٥/	.02	17		6632	,
L49+00N 48+23E					B 30				0 14		ND ND		41	- <u>-</u>	2	2	145	.03	.072	0	21	.05	087	8018 1018	6	.74	01	14		20175	
STANDARD C/CB-12												30	52	18.7	14	21	50	52	087	38	50	.00	184	08	34	2 00	07	14	10		

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

Teck Exploration (BC) PROJECT 1715 FILE # 92-2519

ACHE ANALYTICAL																									AMALTTICAL
SAMPLE#	Mo	Cu Pl	o Zr	Agl	Ni Co	Mn	Fe 🖇	As (J Au	Th	Sr C	1 Sb	Bi V				r Mg		Tĩ		AL	Na	ĸ	Ba*	
	ppm p	pu bb	n ppn) ppm p	om ppm	ppm	% p	pm ppi	n ppm	ppm p	opm ppp	n ppm	ppm ppm	2	5 🕺 🕺 p	pm pp	xm X	ppr	• 💥 🔭 F	ipm	%	%	% ppn	ppm	
L49+00N 48+75E	39	31 33	3 130) 25 7	24 3	25	2.01	13. !	5 ND	4 1	113 1.	») 3	2 166	. 02	.058	5 1	2.05	601	.01	9.	84.	02.	21	2390	
L49+00N 49+00E		72 5		87					5 ND	-					086				.01	8.				3007	
L49+00N 49+25E		41 29			38 4				5 ND											7 1.				2035	
L49+00N 49+50E	9	27 3	3 148	2.2	20 2	27	2.03	7	5 ND	1										8.	91 🕻	01 .		1155	
L49+00N 49+75E		21 2					3.73		5 ND	2					.061				.01					1394	
																							· · · ·		
L49+00N 50+00E	26	32 6	1 200		50 5		4.67		5 ND	1 7		5 4	2 170	.07	.087	7 1	6.05	i 155	.01	10 .	67.	03.	.34 💓	1492	
L47+00N 39+00E	47	36 6	1 538	3 .2	76 5		2.32		5 ND		39 🥘 .	2 14			.049	6 1	6.04	770	.01	11 .	54.	01 .	.10 💓	2351	
L47+00N 39+25E				1.4			2.54		5 ND		19 ا 🕄	59			3 .098	6 2	23.12	2 1172	.01	14 1.	12 .	01 .	.13 🎯	3100	
L47+00N 39+50E	27			• 3.7 •			1.87		5 ND		35 📖				2 .028				3 .01					8 1566	
L47+00N 39+75E	33	33 4	9 44!	5 🔍 5 🗉	63 4	66	2.16	18	5 ND	2	29 1.	97	2 186	.06	5 .063	6 1	15.07	1361	.01	10 .	74.	.01 .	.12 🎆	7575	
												8												ê	
L47+00N 40+00E	61	41 6	9 469) .6 1			2.29		5 ND		32 1.				.058				i 401					3913	
L47+00N 40+25E		19 2		7 1.0			1.40		5 ND		23 2.				5.041				.01					2325	
L47+00N 40+50E				71.0			1.74		5 ND			9 26			5.040				.01					1236	
L47+00N 40+75E				5 🔍 5			2.24		5 ND		51 1.								2 .01	8.				4125	
L47+00N 41+00E	26	23 2	9 249) .5	43 4	39	1.93	16	5 ND	2	35 🔍	67	2 167	.03	5.037	6 1	14 .06	5 1075	.01	9.	79.	01 .	.13 💓	8953	
												8												č.	
L47+00N 41+25E		.43 5					2.46		5 ND		53 12				.060					10 .				3015	
L47+00N 41+50E		37 5					2.02		5 ND		27 1.				.048				.01	8.				2036	
RE L47+00N 42+75E				2 2.5 1			4.50		5 ND		34 1.				5 .495				5 .01					2194	
L47+00N 41+75E				7 .4			3.61		5 ND		45 1.	07			5 .062				.01					4332	
L47+00N 42+00E	25	24 3	9 24	۱ (۱)	40 3	23	1.95	15	5 ND	1	36 🥘 .	56	2 167	.02	2 .038	6 1	11 .03	5 925	.01	8.	55.	.01 .	.11 🎆	§ 4164	
1												× .								_			🕷	š	
L47+00N 42+25E		24 6					1.99		5 ND			58			038				2 .01	8.				5143	
L47+00N 42+50E				5 .7			1.98		5 ND			8 7			5 .061					10 .				2866	
L47+00N 42+75E				2 2.6 1			4.71		5 ND		35 1.				\$.517				.01					2155	
L47+00N 43+00E				1 1.8			1.81		5 ND						2.059				.01	8.				1105	
L47+00N 43+25E	31	31 13	7 156	B .1	87 6	358	3.07	24	5 ND) 1	24 6.	3 11	2 349	.30	3.071	93	33 .19	7 1857	7 .01	81.	46 .	.01 .	.11 🏼	3003	
1 (7+00) (7+505	75	70 / 5	E 200	。 • • • • • • •	97 7		2.78	40	5 ND		66 36.	98	2 212		5 .110	• •	25 7	. 796	.01	91.	10	02	10	2208	
147+00N 43+50E				8 1.6 4			1.86		5 ND		35 2.				0.038				5 01	7.				2321	
L47+00N 43+75E		25 10					1.90		5 NU 5 ND		24				3 .037				01	6.				5039	
L47+00N 44+00E	1			5.9																				1697	
L47+00N 44+25E		68 7					2.56		5 ND		12 3.				2 .053				5.02					1526	
L47+00N 44+50E	107	46 3	62	6 1 2	21 6	> 61	2.43	33	5 NC) 1	8 .	0 10	2 701		3 .047	()	42.00	5 203	5 <u>201</u>	10 .	.90 .	.01	.09 🛞	1520	
L47+00N 44+75E	25	29 3	10 49	1 .1	59 4	50	3.16	20	5 ND		74	65	2 368	a 0.	3 .077	4	22 1 [.]	> 4/0	2 .01	81.	30	02	10 🕷	4753	
L47+00N 44+75E			5 16						5 ND						2 038				1 .01	7.			T T T 2000	2052	
							3.78		5 NC			25 711			1 .076				3 .01		.83			2052	
L47+00N 45+25E		49 5					1.87		5 NC			ş i,	2 12		1 036								3876	1 1349	
L47+00N 45+50E		20 2							D NL 5 NC			34 64	2 94		4 .057				4 .01.					1 1681	
L47+00N 45+75E	y	_27_3	58 25	0.4	60 7	31	2.74		D NL	, ,	14 💓	64	2 94	+ .0	+ + + + + + + + + + + + + + + + + + + +	0	12 .0	J 40	' SU	8.	.84	.02	. 10 🛞	1001	
147+00N 46+00E	17	48 2	24 12	8 1.2	27 3	ر T1	2.08	14	5 NC	1 2	50 1.	4 4	2 17	5 0	3 .070	7	10 1	0 100	5 .01	71.	.62	02	.13 💹	1 2111	
L47+00N 46+25E			19 11	= 55:53:2.6			1.50		5 NC				2 114						5 .01					3229	
STANDARD C/CB-1200													19 58												
			., 13	- 100		0.7	3.70	9-7-5-3 -	<u> </u>		55 10	<u>es</u> 14			· *****				<u></u>					<u></u>	

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

44

4

CHE ANALYTICA SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B AL Na ĸŴŴ Ra* ppm ppm ppm ppm ppm X por por por por por por por por por **%** % pom pom * ppm 🛛 🌋 ppm % * % ppm pon pon pon DOM 29 2.49 17 5 ND 6 92 .Z 3 2 132 .04 .053 4 12 .05 625 .01 4 .73 .01 .12 1 12493 L47+00N 46+50E 23 - 29 187 .3 26 - 5 18 .5 37 24 187 .3 24 5 31 2.36 25 5 ND 2 69 4 2 221 .03 .045 3 11 .05 629 .01 8 .71 .01 .14 1 3245 147+00N 46+75E 26 474 4.69 86 1 181 3.8 4 2 951 .48 .203 2 19 .09 839 .01 2 1.03 .01 .14 L47+00N 47+00E 52 295 26 142 .7 147 13 8 ND 1 5043 3 437 .20 .157 .9 30 10 310 4.30 84 1 134 1.2 10 3 19 .07 676 .01 8 .96 .01 .17 L47+00N 47+25E 187 73 43 149 6 ND 1016586 5 2 177 .05 .087 1 66 .9 4 15 .10 737 .01 7 .97 .01 .17 L47+00N 47+50E 56 29 164 .6 28 5 49 2.60 41 5 ND 1 2085 46 .5 2 2 101 .04 .052 3 9 .04 542 .01 7 .53 .01 .13 L47+00N 47+75E 34 28 19 149 .2 20 3 32 1.68 16 5 ND 1 42 1 1686 2.0 6 17 .13 991 .01 5 .87 .01 .15 47 27 175 .4 26 6 194 2.22 32 5 ND 1 74 4 3 163 .37 .080 1 2414 L47+00N 48+00E 42 .4 3 12 .05 458 .01 6 .82 .02 .18 2 114 .04 .062 26 21 145 .9 20 5 36 2.93 19 5 ND 1 44 5 1 1603 RE L47+00N 49+25E 19 3 2 82 .22 .056 7 2 90 .25 .108 1 55 4 9 .06 596 .01 6 .51 .01 .13 1 1520 L47+00N 48+25E 22 26 21 178 .4 22 4 27 1.78 12 5 ND 1.8 4 12 .09 655 .01 3 .91 .01 .14 38 102 20 245 .7 43 7 79 3.02 18 7 ND 1 51 3.9 Ŧ 1678 L47+00N 48+50E 2 15 .05 381 .01 6 .93 .01 .15 1348 5 ND 2 41 1.0 8 2 162 .03 .196 10 L47+00N 48+75E 21 69 34 525 2.3 46 12 72 8.28 21 2 29 1 45 .4 .5 2 213 .03 .063 4 16 .07 360 .01 4 1.32 .02 .19 1296 L47+00N 49+00E 17 27 26 202 .9 12 5 31 3.71 16 5 ND 6 1 3 14 .05 488 .01 6 .85 .02 .18 5 ND 2 117 .04 .062 1 1584 147+00N 49+25E 19 27 20 150 1.0 21 5 35 3.02 19 6 2 204 .05 .096 3 13 .05 321 .01 8 .72 .04 .25 L47+00N 49+50E 24 33 173 .9 19 5 23 3.51 26 5 ND 1 66 .8 7 1 1647 27 8 2 89 .23 .064 1 62 4 14 .07 438 .01 9 .52 .03 .19 L47+00N 49+75E 25 29 137 .5 23 4 30 2.12 19 5 ND 2.0 1 1657 26 2 116 .03 .066 5 16 .08 432 .01 8 1.05 .02 .23 1872 7 65 2.32 22 5 ND 3 53 .6 7 1 L47+00N 50+00E 31 22 40 105 .9 26 45 1.74 9 28 1.45 7 .3 .3 2 141 .02 .037 5 ND 1 19 2 7 14 .04 654 .01 6 .74 .01 .08 1 1882 18 22 191 .3 27 5 L46+00N 39+00E 18 2 149 .02 .025 1370 5 ND 2 11 3 7 15 .05 473 .01 7 .82 .01 .07 L46+00N 39+25E 17 19 17 205 1.9 31 4 5 12 .04 706 .01 1 43 3 2 148 .02 .037 5 .67 .01 .09 2328 L46+00N 39+50E 21 20 25 223 6.6 32 5 31 1.96 11 5 ND .4 .5 2 183 .02 .033 38 340 2.6 5 31 1.85 5 ND 2 36 8 4 17 .04 1091 .01 7 .63 .01 .09 1 4573 L46+00N 39+75E 26 29 60 2 133 .39 .141 7 25 .09 2052 .01 13 .51 .01 .12 8653 L46+00N 40+00E 63 191 676 1.7 105 8 165 1.93 19 5 ND 3 38 7.3 8 **1**0 23 6 33 .06 753 .01 1984 1 19 5.8 25 2 529 .18 .085 8 .82 .01 .09 81 132 1032 .7 221 9 59 3.33 43 7 ND 1 L46+00N 40+25E 217 31 1.95 21 1 3438 4 15 .04 950 .01 6 .65 .01 .10 L46+00N 40+50E 53 29 38 367 .4 76 6 5 ND 1 32 .7 8 2 224 .04 .040 4 17 .05 830 .01 39 76 425 5 73 7 46 2.79 34 5 ND 1 58 1.3 14 2 281 .04 .067 7 .72 .01 .13 1 7171 L46+00N 40+75E 45 2 33 3.0 67 52 4.06 51 5 ND 2 1052 .04 .083 5 50 .05 643 .01 8 .94 .01 .12 1 2017 L46+00N 41+00E 161 167 156 1046 3.8 184 10 2636 1 61 3.8 2 120 .26 .050 5 17 .14 1136 .01 7 .81 .01 .15 L46+00N 41+25E 24 42 45 319 1.3 58 11 189 2.89 13 5 ND - 4 2 2 81 .30 .034 3 11 .10 1269 .01 11 .69 .01 .11 1 3269 .9 7 7 5 ND 1 39 L46+00N 41+50E 22 25 40 200 34 108 2.60 .8 4 16 .06 777 .01 10 .90 .01 .09 1 2154 1 25 .4 2 166 .06 .049 L46+00N 41+75E 23 25 30 239 .8 39 5 33 1.68 10 5 ND 4 3 155 .04 .041 6 14 .05 953 .01 1 4981 L46+00N 42+00E 22 23 40 226 .3 39 5 36 1.92 11 5 ND 1 43 .6 4 5 .72 .01 .11 5 ND 24 .5 5 2 179 .04 .030 5 12 .04 698 .01 8 .54 .01 .08 1 1976 L46+00N 42+25E 21 34 234 3 39 5 30 1.74 14 1 27 1680 .5 2 2 165 .05 .035 6 14 .04 568 01 7 .74 .01 .08 2 37 48 1.87 10 5 ND 1 17 L46+00N 42+50E 24 31 34 191 6 6 .48 .01 .09 3992 27 1.46 14 5 ND 24 .3 5 2 186 .02 .022 6 11 .04 1017 .01 1 L46+00N 42+75E 30 16 35 214 43 4 1 39 2 215 .02 .040 4 12 .03 888 .01 5 .45 .01 .11 1 6599 L46+00N 43+00E 37 24 57 326 .4 52 5 23 2.01 19 5 ND 1 .3 8 .4 1 1274 26 2 235 .05 .056 4 21 .04 358 .01 5 .71 .01 .09 L46+00N 43+25E 41 34 67 351 4 68 5 27 1.91 12 5 ND 1 8 24 2 159 .11 .047 9 21 .04 1595 .01 7 .71 .01 .06 1 6100 33 30 36 199 5 ND 1.4 5 L46+00N 43+50E 27 37 5 41 1.47 8 1 1956 2 232 .54 .038 11 20 .05 1161 .01 2 .73 .01 .07 .5 53 9 5 ND 1 27 4.6 4 L46+00N 43+75E 44 40 144 360 6 78 1.79 1 16 3.4 7 2 379 .24 .051 4 22 .06 529 .01 5 .86 .01 .09 1 1340 80 43 229 625 .9 83 44 1.72 22 6 ND L46+00N 44+00E 4 20 60 39 136 7.5 70 32 1047 3.96 41 18 7 41 52 18.0 14 21 61 .49 087 38 60 .93 183 08 34 2.03 .06 .14 11 2221 STANDARD C/CB-1200

Teck Exploration (BC) PROJECT 1715 FILE # 92-2519

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

SMPLE# Mo Cu Pb Zn Mej Mi Co Mn Fe AF G U Au Th Sr GG Sb Bi T C L C L C Mej AP Dep AP Dep AP Dep AP		Teck	Explo	ration	(BC)	PRO	JECT	1715	FIL	E #	92-2519)		Pac	je 6	
L44-00x 44-956 09 60 28 64 10 24 13 24 13 24 13 24 14 14 15 16 65 13 14 10	1															
L44-00 44-95E 08 40 28 43 32 13 25 5 NO 1 41 1.1 30 26 09 05 0.5 10 36 05 00 1 36 05 10 36 05 10 36 05 10 36 05 10 11 100 10	L46+00N 44+25E 104 2	4 181 258	.7 50	4 44 2.0)2 11	5 ND	2 10	1,2	4 2 335	.04	.039 13 25	.04 3	336 .02 9	.67 .01 .	06 1	991
L46+00M 45+00E 171 51 66 65 32 5 7 7 2 578 0.3 0.53 8 42.06 165 01 0 9 .03 16 10.00 16 10.00 16 17.00 16 10.00 16 17.00 16 10.00 16 17.00 16 10.00 16 17.00 16 10.00 16 17.00 16 10.00 16 17.00 16 10.00 16 17.00 16 10.00 16 17.00 16 10.00 16 10.00 16 10.00 16 10.00 10.00 16 <td>L46+00N 44+50E 98 4</td> <td>0 28 546</td> <td>1.0 129</td> <td>4 33 2.1</td> <td>13 21</td> <td>5 ND</td> <td>1 14</td> <td>1.1 3</td> <td>0 2 609</td> <td>.05 🖁</td> <td></td> <td></td> <td></td> <td>.83 .01 .</td> <td>09 🗐</td> <td></td>	L46+00N 44+50E 98 4	0 28 546	1.0 129	4 33 2.1	13 21	5 ND	1 14	1.1 3	0 2 609	.05 🖁				.83 .01 .	09 🗐	
L44-00N 44-22E 11 17 16 12 5 10 1 15 2 2 2 10 0.01 0.04 10 19 0.6 875 0.1 6 1.05 0.1 1 2131 L46+00N 45+75E 17 23 3 13 2 2 10 0.0 0.0 5 11 0.4 56 0.0 6 6.5 0.0 1 17 13666 L44+00N 4-00E 16 22 23 1.0 161 2 2 116 0.0 105 1 8 6.6 0.0 1.7 1 1701 L44+00N 4+00E 16 12 2 2 116 0.0 105 1 8 6.6 0.0 1.7 1 1701		1 66 656	.8 264	7 79 2.5	57 25	5 ND	1 6				063 8 42			.93 .01 .	08 1	
L44+00N 45+50E 17 23 34 18 2 2 104 01 046 5 11 04 55 10 046 5 11 04 55 10 046 5 11 04 55 10 046 5 11 04 67 01 07 74 03 17 74 03 17 74 03 17	L46+00N 45+00E 45 2	6 56 332	.8 78		70 21	5 ND			0 2 409	.01 🕯	035 7 20	.04 4	460 01 6	.71 .02 .	14 1	1842
L44-00N 44-975E L44-00N 44-975E L44-00N 44-95E L44-00N 44-05E L44-00N 44-05E L44-00N 44-05E L44-00N 44-05E L45-00N 44-05E L45-00N 44-05E L45-00N 44-05E L45-00N 44-0	L46+00N 45+25E 11 1	7 16 123	.5 27	3 26 1.2	27 6	5 ND	1 15	.2	2 2 108	3 .01 ŝ	.041 10 19	.06 8	875.01 61	.05 .01 .	10 1	2131
L44-00N 44-97E L44-00N 44-97E L44-00N 44-92FE L44-00N	L46+00N 45+50E 17 2	3 34 181	.4 35	3 23 2.1	11 15	5 ND	1 64	.2	2 2 104	.01	.046 5 11	.04 5	561 .01 6	.65 .02 .	17 1	13666
L44+00W 4+00E 16 26 4 27 2,45 16 5 NO 1 01 2 2 133 02 05 6 13 0.4 06 01 8 .71 01 17 7 1 10 13 7 21 2 23 3 30 15 11 5 10 15 17 7 21 2 23 13 14 5 NO 1 7 7 2 2 126 10 10 10 10 10 1 7 7 1 16 17 2 126 16 17 7 1 16 16 17 16 16 17 2 13 13 1 16 16 17 2 42 17 2 42 17 16 17 2 2 116 17 33 2 113 13 13 13 11 116 16 17 16 17 16 11 116 <	L46+00N 45+75E 15 2			4 24 2.8	32 17	5 ND	2 74		2 2 136	.01	.052 5 11	.04 4	475 .01 7	.74 .03 .	17 1	1724
L46+00H 46+50e 15 19 21 131 7 21 2 21 15 64 10		6 41 201	.6 37													
L46+00H 46+50e 15 19 21 131 7 21 2 21 15 64 10	L46+00N 46+25E 16 1	7 23 139	5 23	3 30 1.9	95 11	5 ND	1 61							.78 .02 .	15 1	
L 46+00N 47+50E L 66+00N 48+25E L 62+00N 48+25E L 72+22+22+04 L 62+00N 48+25E L 62+00N 59+00E L 62+02A L 62+00N 59+00E L 7			.7 21					.4	2 2 115							
L64+00N 47+00E 18 14 24 76 2 12 2 22 1 1 5 N0 1 18 3 2 2 113 0 8 .68 .01 13 1 5111 1 1319 L64+00N 47+50E 16 12 15 80 1 15 5 N0 1 17 3 2 2 137 .08 055 8 18 .05 538 01 7 .46 .01 .18 1 3024 L64+00N 47+50E 12 2 23 18 1 10 2 54 .01 1 17 3 2 2 18 .01 0.42 4 11 .05 533 .01 1 1668 2 13 .01 13 8 .01 18 .03 .07 44 10 10 88 .04 .20 1 155 N0 1 16 .03 .01 .01 .03 .0	146+00N 46+75E 19 4	0 54 203	4 40	2 13 2.1	13 38	5 ND	2 358	.7	3 2 116	5 .07	077 2 13	5 .06 11	135 .01 7	.94 .01 .	14 1	141062
L 46+00N 47+25E L 46+00N 47+75E 16 12 15 89 4 14 2 48 1.40 5 5 ND 1 16 4 2 2 113 0.8 056 7 15 .04 513 01 8 .03 .01 .11 1 1 1379 L 46+00N 47+75E 16 12 15 89 4 14 2 48 1.40 5 5 ND 1 44 4 3 2 153 0.5 052 10 19 .05 558 01 7 .44 01 .11 1 1 1274 L 46+00N 48+50E L 46+00N 48+50E 26 24 26 199 .6 17 2 2 46 1.45 5 ND 1 44 4 4 3 2 118 01 042 4 11 .05 533 01 6 .78 .02 .17 1 1 1652 L 46+00N 48+50E 26 34 26 199 .6 17 2 2 46 3.43 22 5 ND 1 38 6 6 2 146 05 045 5 17 0.0 484 01 10 .08 03 .23 1 1552 L 46+00N 48+50E L 46+00N 48+50E 26 34 26 199 .6 17 2 2 46 3.43 22 5 ND 1 38 6 6 2 146 05 045 5 17 .07 444 01 10 .08 03 .23 1 1552 L 46+00N 48+50E 10 32 15 15 .9 16 2 22 1.24 11 5 MD 1 21 .6 3 2 118 .01 040 4 10 10 .80 03 .23 1 1561 L 46+00N 48+50E 10 32 15 15 .9 16 2 22 1.24 1.15 5 ND 1 38 6 6 2 146 .5 045 5 17 .07 444 01 10 .108 03 .23 1 1561 L 46+00N 48+50E 10 32 15 15 .9 16 2 22 3 .24 1.6 31 2 5 ND 3 38 1.3 11 2 171 .02 086 4 19 .09 246 01 7 1.45 .01 .15 1 1611 L 46+00N 49+02E 12 19 22 126 .6 22 3 24 1.63 12 5 ND 1 53 .3 2 2 108 .02 .047 5 13 .05 661 01 7 .87 .02 .14 1 1711 L 46+00N 49+50E 12 2 2 2 2 2 .24 1.63 12 5 ND 1 1 74 6 7 2 124 .02 050 6 11 .05 587 .01 7 .84 .02 .16 1 1433 L 46+00N 49+50E 13 2 6 25 153 .35 16 5 4 3 1 .15 15 5 ND 1 1 8 .8 8 2 169 .64 117 9 .24 .02 .44 1 1.07 1 13647 RE L 46+00N 49+25E 14 2 00 105 .2 17 2 2 01 .26 12 5 ND 1 1 8 .8 8 2 169 .64 117 9 24 .09 1.07 1 3.84 .02 .16 1 1433 L 45+00N 39+25E 14 4 03 1 .55 15 5 ND 1 1 8 .8 8 2 169 .64 117 9 24 .09 1.05 407 .01 .6 .72 .01 .11 1 177 L 45+00N 39+25E 14 5 ND 1 7 5 ND 1 1 2 .6 3 2 117 .05 310 .01 12 .87 .01 .11 1 177 L 45+00N 49+25E 14 5 ND 1 7 5 ND 1 1 2 .6 3 2 117 .05 306 .01 10 .83 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 10 .84 .01 11 .13 1280 L 45+00N 40+50E 14 5 ND 1 12 6 ND 1 12 6 ND 1 12 6 .1 17 .9 3 2 145 .05 546 .01 10 .75 .01 .13 1 1905 L 45+00N 40+50E 14 5 ND 1 12 6 ND 2 2 4 .1 1 2 11 .55 10 .0 48 .60 11 0 .7																Q
L 46+00N 47+50E L 46+00N 47+57E L 46+00N 48+00E L 46+00N 48+0E L 46+00N 48+0E L 46+00N 48+0E L 46+00N 48+0E L 46+00N 48+0E L 46+00N 48+0E L 48+0D L 46+00N 48+0E L 48+0D L 4																
L L46+00N 47+75E 16 12 15 89 4 14 2 48 1.40 5 5 ND 1 17 .3 2 2 137 .08 .052 10 19 .05 419 .01 7 .82 .01 .11 1 1274 L 64+00N 48+25E 22 20 23 185 .6 24 3 24 2.14 15 5 ND 1 44 4 3 2 118 .01 .042 4 11 .05 333 .01 6 .02 .07 1 10 88 .01 10 .88 .01 10 .88 .01 10 .88 .01 10 .88 .01 10 .88 .01 10 .88 .01 10 .88 .01 10 .88 .01 10 .88 .01 10 .88 .01 .14 .03 .83 .13 .12 .13 .05 .01 .05 .01 .01	L46+00N 47+50E 19	9 20 96				5 ND		.3	2 2 153					.84 .01 .	18 1	
L44+00N 48+52E L44+00N 48+52E L45+00N 40+52E L45+00N 40+52E	L46+00N 47+75E 16 1	2 15 89	.4 14			5 ND	1 17	.3	2 2 137	7 .08	.052 10 19	.05 4	419 .01 7	.82 .01 .	.11 1	1274
L44+00N 48+25E L44+00N 48+52E L44+00N 48+52E L45+00N 38+52E L45+00N 38+52E L45+00N 40+52E L45+00N 40+52E	146+00N 48+00E 22 2	0 23 185	6 74	3 24 2.1	14 15	5 ND	1 44	.4	3 2 118	3 .01	042 4 1 ⁴	.05 5	533 01 6	.78 .02 .	17 1	1668
L46+00N 48+50E L46+00N 48+75E L46+00N 49+00E L46+00N 49+00E L46+00N 49+00E L46+00N 49+25E L46+00N 49+25E								550 C.C.C.C.C.C.								
L46+00N 48+75E 10 32 15 15 1 2 22 1.8 11 5 ND 3 38 1.3 11 2 17 1.0 080 5 18 0.0 866 0.0 7 1.49 0.1 1.5 1 1011 L46+00N 49+00E 12 10 02 2 1.6 02 2 3 3 1.5 1 2 171 0.0 088 4 19 .09 246 01 7 1.65 0.3 2.8 1 1 1111 1 111 2 171 0.0 080 5 18 0.0 64 10 0.0 2.4 0.0 1.6 1.4 0.0 1.6 1.4 0.0 1.6 1.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td><td>6 2 146</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								6	6 2 146							
L46+00N 49+00E 16 60 24 193 1.3 21 2 34 3.95 29 5 ND 3 38 1.3 11 2 17 1.02 0.088 4 19 .09 246 .01 7 1.65 .03 .28 1 1910 L64+00N 49+25E 12 19 22 126 .6 22 3 24 1.63 12 5 ND 1 64 .04 .05 87 .01 7 .87 .02 .14 1 171 L46+00N 49+25E 15 26 25 168 22 .02 15 ND 1 64 2 97 .04 .027 5 10 .05 401 .01 6 .72 .01 .03 .04 .04 .03 .04 .03 .04 .03 .04 .03 .04 .03 .04 .03 .027 5 10 .05 .041 .01 .05 .01 .05 .04 .01 .01<					84 11	5 ND	1 21	.6	3 2 118		.080 5 1	3.08 6	686 .01 7 1	.49 .01 .	.15 🚮	1611
L46+00N 49+50E 15 26 25 16 1 164 9 4 2 103 .02 080 6 14 .05 587 01 7 .84 .02 .16 1 1493 L46+00N 49+75E 19 22 32 242 .6 29 4 32 2.70 18 5 ND 1 74 6 7 2 124 .02 058 6 12 05 .03 19 1 1443 L46+00N 49+75E 10 22 33 26 55 4 31 1.56 15 5 ND 1 88 8 2 106 004 027 5 10 1 64 14 5 ND 1 55 10 1 16 10 16 17 2 2 10 107 364 11 17 10 30 2 2 116 11 13 1203 13 1203 13 1203 11	L46+00N 49+00E 16 6				95 29			1.3 1	1 2 171	.02	.088 4 19	09 2	246 .01 7 1	.65 .03 .	.28 1	1910
L46+00N 49+50E 15 26 25 16 1 164 9 4 2 103 .02 080 6 14 .05 587 01 7 .84 .02 .16 1 1493 L46+00N 49+75E 19 22 32 242 .6 29 4 32 2.70 18 5 ND 1 74 6 7 2 124 .02 058 6 12 05 .03 19 1 1443 L46+00N 49+75E 10 22 33 26 55 4 31 1.56 15 5 ND 1 88 8 2 106 004 027 5 10 1 64 14 5 ND 1 55 10 1 16 10 16 17 2 2 10 107 364 11 17 10 30 2 2 116 11 13 1203 13 1203 13 1203 11	L46+00N 49+25E 12 1	9 22 126	.6 22	3 24 1.0	63 12	5 ND	1 53	.3	2 2 108	3.02	.047 5 12	5.05 é	661 .01 7	.87 .02 .	.14 1	1711
L46+00N 49+75E 19 22 32 242 6 29 4 32 2.70 18 5 ND 1 74 .6 7 2 124 .02 058 6 12 .05 422 01 6 .72 .01 138 .4 4 2 97 .04 027 5 10 .05 401 10 6 .72 .01 11 1172 L45+00N 39+00E 40 25 35 35 6 55 4 31 1.56 15 5 ND 1 8 8 2 208 .02 043 5 19 .04 423 .01 10 .64 .01 .07 1 3647 L45+00N 39+25E 13 46 16 64 3 2 10 15 .3 2 2 116 .02 .05 6 14 .05 .01 7 .77 .6 .03 .11 .13 .13028 L45+0																
L46+00N 50+00E 15 16 20 10 2 17 2 20 1.26 12 5 ND 1 38 .4 4 2 97 .64 027 5 10 .05 401 10 6 .72 .01 .11 1 1172 RE L46+00N 49+25E 16 20 27 133 .8 24 3 25 1.69 14 5 ND 1 5 .3 2 2 116 .02 .05 .01 7 .89 .02 .14 1 1053 L45+00N 39+25E 16 20 27 33 .4 24 2 10 .05 .01 14 8.8 8 2 169 .64 117 9 24 .00 1.11 1 1072 L45+00N 39+75E 44 24 73 30 2 10 12 .66 3 2 191 .02 .064 21 10 .01 .01		2 32 242	.6 29				1 74							.78 .03 .	.19 📰	1240
RE L46+00N 49+25E 16 20 27 133 .8 24 3 25 1.69 14 5 ND 1 55 .3 2 2 116 .02 0.50 6 14 .05 671 .01 7 .89 .02 .14 1 1653 L45+00N 39+25E 33 46 136 840 1.8 127 10 305 2.29 20 5 ND 1 41 8.8 8 2 169 .64 .117 9 24 .09 10 .15 .71 .01 .14 1 3028 L45+00N 39+75E 49 24 7 34 2.01 17 5 ND 1 29 3.0 4 2 17 .05 310 .01 12 .63 2 17 .05 .06 10 .22 .14 .1 3028 .21 .11 1 3028 .21 .13 .22 .16 .102 .062 .17<	L46+00N 50+00E 15 "		.2 17	2 20 1.2	26 12			.4	4 2 97	7 .04 🛔	.027 5 10	.05 4	401 01 6	.72 .01 .	11 📰	1172
L45+00N 39+25E 33 46 136 840 1.8 127 10 305 2.29 20 5 ND 1 41 8.8 8 2 169 .64 .117 9 24 .09 1299 .01 15 .71 .01 .14 1 3028 L45+00N 39+50E 54 42 70 361 .6 57 4 34 2.01 17 5 ND 1 29 3.0 4 2 177 .15 .063 7 17 .06 848 .01 10 .83 .01 .13 1 2003 L45+00N 40+00E 42 47 346 .6 66 8 80 2.87 17 .5 ND 1 12 .66 3 2 191 .02 .062 3 17 .5 .11 1 1833 L45+00N 40+25E 43 40 74 324 1 155 7 67 2.93 16 5 <td< td=""><td>L45+00N 39+00E 40</td><td>5 35 335</td><td>.6 55</td><td>4 31 1.</td><td>56 15</td><td>5 ND</td><td>18</td><td>-8</td><td>8 2 208</td><td>3 .02</td><td>.043 5 19</td><td>7.04 4</td><td>423 .01 10</td><td>.64 .01 .</td><td>.07 1</td><td>3647</td></td<>	L45+00N 39+00E 40	5 35 335	.6 55	4 31 1.	56 15	5 ND	18	-8	8 2 208	3 .02	.043 5 19	7.04 4	423 .01 10	.64 .01 .	.07 1	3647
L45+00N 39+50E 54 42 70 36 57 4 34 2.01 17 5 ND 1 29 3.0 4 2 177 15 0.63 7 17 0.68 88 01 10 .83 .01 .13 1 2003 L45+00N 39+75E 49 42 47 346 6 66 8 80 2.87 17 5 ND 1 12 66 3 2 191 .02 .062 3 17 .05 310 01 12 .87 .01 .11 1 1833 L45+00N 40+00E 43 40 74 324 1 55 7 67 2.93 16 5 ND 2 24 2.1 2 2 14 .04 418 01 9 .76 .01 .17 1 4070 L45+00N 40+75E 28 43 89 206 1.2 43 5 ND 1 2.93 2	RE L46+00N 49+25E 16	0 27 133	.8 24	3 25 1.	69 14	5 ND	1 55	.3	2 2 110	5.02	.050 6 14	.05 6	671.01 7	.89 .02 .	.14 1	1653
L45+00N 39+50E 54 42 70 36 57 4 34 2.01 17 5 ND 1 29 3.0 4 2 177 15 0.63 7 17 0.68 88 01 10 .83 .01 .13 1 2003 L45+00N 39+75E 49 42 47 346 6 66 8 80 2.87 17 5 ND 1 12 66 3 2 191 .02 .062 3 17 .05 310 01 12 .87 .01 .11 1 1833 L45+00N 40+00E 43 40 74 324 1 55 7 67 2.93 16 5 ND 2 24 2.1 2 2 14 .04 418 01 9 .76 .01 .17 1 4070 L45+00N 40+75E 28 43 89 206 1.2 43 5 ND 1 2.93 2	L45+00N 39+25E 33	6 136 840	1.8 127	10 305 2.	29 20		1 41	8.8	8 2 169	9.64	.117 9 2	.09 12	299 .01 15	.71 .01 .	.14 🔍1	3028
L45+00N 39+75E 49 42 47 346 .6 66 8 80 2.87 17 5 ND 1 12 .6 3 2 191 .02 .062 3 17 .5 ND 1 17 5 ND 1 17 5 ND 1 17 .9 3 2 191 .02 .062 3 17 .5 .01 .11 1 1833 L45+00N 40+02E 43 40 74 324 1.1 55 7 67 2.93 16 5 ND 2 24 2.1 2 2 14 .04 418 01 9 .76 .01 .17 1 4070 L45+00N 40+50E 41 36 51 204 6 50 6 68 2.82 16 5 ND 2 22 1.3 2 2 14 .04 418 01 9 .76 .01 .13 1905 L45+00N 41+00E	L45+00N 39+50E	2 70 36	.6 57		01 17	5 ND	1 29	3.0	4 2 177	7.15	.063 7 1	7.06 8	848 01 10	.83 .01 .	.13 🔍 1	2003
L45+00N 40+00E 45 49 62 371 .5 75 8 89 3.00 21 5 ND 1 17 .9 3 2 145 .05 .042 2 15 .05 486 01 10 .92 .01 .15 1 2196 L45+00N 40+25E 43 40 74 324 1.1 55 7 67 2.93 16 5 ND 2 24 2.1 2 2 141 .02 .04 5 14 .04 418 .01 9 .76 .01 .17 1 4070 L45+00N 40+75E 28 43 89 206 1.2 43 5 73 2.69 12 5 ND 1 143 2.9 2 2 104 .41 .078 7 20 .12 1515 .01 9 .86 .01 .190 14069 L45+00N 41+25E 25 20 33 100 39 5<	L45+00N 39+75E 49	2 47 340	.6 66	8 80 2.	87 17	5 ND	1 12	.6		1 .02		7.05 3		.87 .01	.11 💹	
L45+00N 40+50E 41 36 51 294 6 50 6 68 2.82 16 5 ND 2 22 1.3 2 2 151 .03 .053 5 13 .05 560 01 10 .75 .01 .13 1 1905 L45+00N 40+75E 28 43 89 206 1.2 43 5 73 2.69 12 5 ND 1 134 2.9 2 2 104 .41 .078 7 20 .12 1515 .01 9 .86 .01 .19 1 4069 L45+00N 41+25E 74 97 44 38 1.73 14 5 ND 1 20 7 2 147 .02 .027 7 12 .04 .070 .01 6 .74 .01 .11 1 1845 L45+00N 41+25E 27 39 33 201 3 36 6 64 2.83 12 <td>L45+00N 40+00E 45</td> <td>9 62 37</td> <td>.5 75</td> <td>8 89 3.</td> <td>00 21</td> <td>5 ND</td> <td>1 17</td> <td>.9</td> <td>3 2 14</td> <td>5.05</td> <td>,042 2 1</td> <td>5.05 4</td> <td>486 .01 10</td> <td>.92 .01</td> <td>.15 🚺</td> <td>2196</td>	L45+00N 40+00E 45	9 62 37	.5 75	8 89 3.	00 21	5 ND	1 17	.9	3 2 14	5.05	,042 2 1	5.05 4	486 .01 10	.92 .01	.15 🚺	2196
L45+00N 40+50E 41 36 51 294 6 50 6 68 2.82 16 5 ND 2 22 1.3 2 2 151 .03 .053 5 13 .05 560 01 10 .75 .01 .13 1 1905 L45+00N 40+75E 28 43 89 206 1.2 43 5 73 2.69 12 5 ND 1 134 2.9 2 2 104 .41 .078 7 20 .12 1515 .01 9 .86 .01 .19 1 4069 L45+00N 41+25E 74 97 44 38 1.73 14 5 ND 1 20 7 2 147 .02 .027 7 12 .04 .070 .01 6 .74 .01 .11 1 1845 L45+00N 41+25E 27 39 33 201 3 36 6 64 2.83 12 <td>145+00N 40+25E 43</td> <td>0 74 32</td> <td>1.1 55</td> <td>7 67 2.</td> <td>93 16</td> <td>5 ND</td> <td>2 24</td> <td>2.1</td> <td>2 2 14</td> <td>1 .02</td> <td>.044 5 1</td> <td>4.04</td> <td>418 01 9</td> <td>.76 .01</td> <td>.17 🕅</td> <td>4070</td>	145+00N 40+25E 43	0 74 32	1.1 55	7 67 2.	93 16	5 ND	2 24	2.1	2 2 14	1 .02	.044 5 1	4.04	418 01 9	.76 .01	.17 🕅	4070
L45+00N 40+75E 28 43 89 206 1.2 43 5 73 2.69 12 5 ND 1 142 2.9 2 2 104 41 078 7 20 12 155 01 9 .86 .01 .19 1 4069 L45+00N 41+00E 74 97 44 370 1.3 68 6 33 10.03 69 5 ND 2 108 2.4 2 2 91 19 170 4 12 .07 323 01 8 .86 .02 .29 1 39 .6 .01 .11 1 1.20 .7 2 2 147 .02 .027 7 12 .04 .07 01 6 .74 .01 .11 1 1845 L45+00N 41+50E 27 39 33 201 3 36 6 64 2.83 12 5 ND 1 22 7 2 2 103																
L45+00N 41+00E 74 97 44 370 1.3 68 6 33 10.03 69 5 ND 2 108 2.4 2 2 91 170 4 12 07 323 01 8 .86 .02 .29 1 3946 L45+00N 41+25E 25 20 33 199 .7 34 4 38 1.73 14 5 ND 1 20 .7 2 2 147 .02 .027 7 12 .04 707 .01 6 .74 .01 .11 1 1845 L45+00N 41+50E 27 39 33 201 .3 36 6 64 2.83 12 5 ND 1 22 .7 2 2 139 .04 .05 7 13 .05 875 .01 9 .81 .01 .13 1 2618 L45+00N 41+75E 32 22 34 25 ND 1																
L45+00N 41+25E 25 20 33 199 .7 34 4 38 1.73 14 5 ND 1 20 .7 2 2 147 .02 .027 7 12 .04 707 .01 6 .74 .01 .11 1 1845 L45+00N 41+50E 27 39 33 201 .3 36 6 64 2.83 12 5 ND 1 22 .7 2 2 139 .04 .035 7 13 .05 875 .01 9 .81 .01 .13 1 2618 L45+00N 41+75E 32 22 34 25 5 45 4 36 1.85 15 5 ND 1 22 .8 2 2 150 .04 .028 4 11 .04 999 .01 8 .58 .01 .12 1 2655																3946
L45+00N 41+75E 32 22 34 225 5 45 4 36 1.85 15 5 ND 1 22 8 2 2 150 .04 .028 4 11 .04 999 01 8 .58 .01 .12 1 2655																1845
L45+00N 41+75E 32 22 34 225 5 45 4 36 1.85 15 5 ND 1 22 8 2 2 150 .04 .028 4 11 .04 999 01 8 .58 .01 .12 1 2655	L45+DON 41+50E 27	9 33 20	3 36	6 64 2.	83 12	5 ND	1 22	.7	2 2 13	9 .04	.035 7 1	3.05	875 .01 9	.81 .01	.13 1	2618
			2022.578								266.7.772				- <u>2000</u> 00	

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

A MARKEN AND A MARKAN AND AND AND AND AND AND AND AND AND A		Тес	k E	xplor	ati	.on	(BC)	P	ROJ	ECI	17	15	F	LE	#	92-	25	19					Pa	ge 7	A L
SAMPLE#	Mo Cu ppm ppm (Mn ppm		As pom pr					Sb ppm			Ca %		La ppm p			Ba Ti ppm %		AL X		K W Xippm	
L45+00N 42+00E	21 12	23 147	· .3	24 3	30	1.34	10	5 N	(D	7 13	.2	2	3	128	.02	.025	7	11	.04	401 .01	4	.69	.01	.08 1	1410
L45+00N 42+25E		25 124		21 4		: 1.64				2 14		3				.029		12		435 _01		.89			2025
L45+00N 42+50E	23 20					2.08			(D	3 19		3	3	141	.01	.030	7	13	06	334 .01	6	1.00			1433
L45+00N 42+75E	24 10					.69					· .2	2	4				3	10	05	277 .01	7	.84			1927
145+00N 43+00E	21 98					12.37		5 1			2.5	2	2							1431 .01		1.74			3835
L45+00N 43+25E	53 38	99 511	1 8.7	91 7	107	3.09	23	5 N	D	1 19) (1.1)	11	2	456	.03	.064	6	26 .	.07	354 .01	5	1.04	.01	.09 💓 1	1406
L45+00N 43+50E	65 31	119 493	144	90 4	96	1.80	17	5 1	ND	1 8	3 1.9	20	2	314	.11	.069				308 .01		.53	.01	.09 🛞 1	1183
L45+00N 43+75E	35 26	100 277	7 👯 5	47 4	118	2.33	26	5 N	ND .	1 8	3 1.0	11	2	235	.04	.077	5	24 .	.06	168 01	7	.79	.01	.07 💓 1	944
L45+00N 44+00E	232 94	153 835	i 1.6	108 6	34	4.87	103	91	D	2 21	2.7	60	3	1488	.06	.121				799 .01		.99	.01	.13 🕅	2075
L45+00N 44+25E	173 72	78 947	7 29 2			2.95	57 '	0			8.0		2	1072	.04	-049	4	38 .	.05	741 .01	9	.96	.01	.10 1	2185
1 / 5 . 000 / / . 505	477 00	43 938	. 300.		70	2 /0		F .	-			FO	-	47//	~		-	<i>,,</i>		(DE 04	40		0.1		1922
L45+00N 44+50E					39 10	2.60					4.8					.052				625 .01		.91			
145+00N 44+75E		48 138								3 102						-077		25		56 .01		-81			4227
L45+00N 45+00E		37 230									3					.072				639 .01		.91			2480
L45+00N 45+25E		30 230		63 10		3.46				3 18		4				.072				316 .01		.98		5355577	
L45+00N 45+50E	13 33	32 146) 1.0	30 7	85	3.61	13	5)	ND	1 57	.6	2	2	107	.03	.085	8	22	.13	525 .01	3	1.51	.02	.16	8378
L45+00N 45+75E	13 20	35 168	3 6	29 5	36	2.05	12	5 1	ND	2 67	,	3	2	102	.03	.054	6	16	.06	728 .01	9	.85	.01	.17	7033
L45+00N 46+00E	16 26	43 284	1.0	62 6	32	3.47	24	5 1	ND	1 193	5 .5	6	2	101	.02	.106	5	15	.05	527 .01	8	.82	.01	.22	3417
L45+00N 46+25E	9 25	25 144			82		12			1 62	2 .2	ž	2	97	.03	.049				627 .02		.82			3230
L45+00N 46+50E						1.96				1 64		ž	ž			.050				810 .01		.76			
L45+00N 46+75E		38 255				3.39		5 1			3 1.0	5				.087				206 .01		.94			29420
RE L45+00N 46+25E	0.00	71 4/5	. 88	70 (07	2 40		5 1		1 62	2	-	2	~~~	07	.050	•	14	0 4	640 .02	7	.83	01	47 04	3353
		31 145		30 6 15 3		2.60										-032				656 .01		.83			120256
L45+00N 47+00E	11 9									1 61	\ <u>@</u> ?	Ę	ź							134 01		.75			51328
L45+00N 47+25E		57 117								1 150		5				.078									2007
L45+00N 47+50E	15 6	9 236		6 1			5		ND	1 10)	2	3			.016				499 .01		.46			
L45+00N 47+75E	12 7	7 51	1.6	14 3	15	.68	2	5 (ND	2 12	2 .2	2	4	78	.01	.025	4	10	.04	876 .01	10	. >>	.01	.09 🔐	1949
L45+00N 48+00E	27 27	27 72	2 .7	15 4	24	2.09	12	5 1	ND	1 62	2 .4	3	2	140	.02	.057	4	16	.05	336 .01	7	.80	.01	.23	2065
L45+00N 48+25E	16 18	18 103		17 5		1.95		5 1	ND	1 32		3				.037	6	16	.06	452 .01	5	1.00	.01	.14 🕅	1765
L45+00N 48+50E	36 25					2.95			ND	1 43	3 .2	2				.065				312 .01		1.10			1347
L45+00N 48+75E	17 32			20 5		3.14				2 3	7	8				.058				389 .01		.97			1425
L45+00N 49+00E		16 113				1.50		5	ND	1 14		3				052				424 01		1.26			1431
242.000 47.00L		10 11.										3	-	134			-							••••	
L45+00N 49+25E	12 13			16 3	21	1.90			ND	1 3	1 🔜 3		2	134	.02	.054				361 .01		1.11	.02	.17 💹	1347
L45+00N 49+50E	8 18	18 118	8 8	16 4		1.92		5	ND	1 32		2				.046	5	14	.06	371 .01	6	.98	.01	.16 💹	1389
L45+00N 49+75E		29 22				3.01			ND	1 6	7 📖 8	8				.059				418 .01		.98			1406
L45+00N 50+00E	19 28					1.30				1 12		3				.048				607 .01					1881
L43+00N 50+00E		33 16				2.81		5		1 30		2				065				367 .01		1.02			1771
1/7.000 50.057		24 44	. 🕮	20 <i>·</i>				e					~	~	~7	(),-/		45	07	774 04		4 44	^ 4	۰c 🕅	1533
L43+00N 50+25E		26 148				2.30	11	2	NU	1 5	! 334	2	2	7 1	.03	.054	Ŷ	12	.07	321 .01 330 .01	4	1.11	.01	.12	
L43+00N 50+50E		22 124				1.50	8	2	ND	2 2	v 🔬 3	2	2	78	.01	.074	-0	21	.08	330 .01	2	1.50	.01	.13	1579
STANDARD C/CB-1200	19 57	- 39 13	2 7.6	70 32	1043	5.96	4Z	21	1 1	40 57	1 3127	: 14	- 20	57	.51	2087)	58	59	.92	185 208		1.112	. 106	.14 ::30	2185

.

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

		Те	ck :	Explo	ora	tion	(BC)	PR	OJE	СТ	171	5	FILE	#	92-2	51	9]	Pag	ie 8	3	4	
SAMPLE#			- 2	666 - 1 6		Mn ppm								Ca %							Al %	Na X	к % р	۲ ۲	Ba* ppm	
L43+00N 50+75E L43+00N 51+00E L43+00N 51+25E L43+00N 51+50E L43+00N 51+75E L43+00N 52+50E L43+00N 52+50E L43+00N 52+75E L43+00N 53+00E L43+00N 53+50E L43+00N 53+50E L43+00N 53+75E	8 28 7 30 6 23 5 23 5 27 7 21 12 21 10 11 6 17 15 30 34 23 51 33	30 46 29 40 22 24 32 22 27 30 26 50	187 1 230 1 175 1 252 160 189 34 49 102 164 255	I.2 42 I.7 49 .5 37 I.4 34 .3 49 .8 32 .2 39 .7 12 I.2 21 I.2 21 I.7 22 I.1 41	4 4 4 4 4 4 4 1 1 2 2 5	45 2. 46 3. 29 2. 44 2. 64 2. 35 1. 27 2. 6 . 13 . 17 1. 11 2. 11 4. 28 2.	28 15 09 19 10 15 41 16 58 13 74 11 00 18 58 5 78 6 34 16 28 15 39 37 02 24	5 N N N N N N N N N N N N N N N N N N N	ID 3 ID 2 ID 1	25 24 15 29 16 12 48 39 25 92 128 107 71	.8 .7 .5 .5 .5 .3 .4 .3 .4 .3 .4 1.0 .9 1.1 2.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 95 2 90 2 99 2 83 2 73 2 101 2 102 2 51 2 64 2 124 2 124 2 152 2 270	.02 .01 .02 .02 .02 .01 .01 .02 .04 .05 .02 .03 .04	.080 .082 .056 .050 .042 .041 .041 .017 .035 .068 .055 .067 .066	5555 5555 74255 439	18 .0 18 .0 18 .0 18 .1 10 .0 18 .0 18 .0 18 .0 14 .0 14 .0 22 .0 32 .0	7 32 8 29 8 23 1 22 5 18 5 22 5 74 3 56 3 188 5 116 5 116 5 40 5 7 5 45	2 .01 4 .01 1 .01 5 .01 4 .01 6 .01 9 .01 6 .01 7 .01 9 .01 9 .01 7 .01 5 .01	6 5 6 7 10 11 14 15 15 13 13 12	1.26 1.19 1.32 1.24 .68 1.01 .80 .43 .76 .86 .74 .68 .90	.01 .01 .01 .01 .01 .01 .02 .01 .02 .02 .02 .03 .01	.17 .18 .15 .18 .18 .14 .14 .14 .14 .12 .11 .18 .29 .57 .15	1 1 1 1 1 1 1 1 1 1 1	1487 1453 1283 1284 1344 1441 1067 0704 1999 5187 3869 1058 1561 1099	
L43+00N 54+00E L43+00N 54+25E L43+00N 54+25E L43+00N 54+75E L43+00N 55+00E L43+00N 55+25E L43+00N 55+50E L43+00N 55+75E	192 101 39 35 39 34 32 36 80 80 27 54	37 22 24 31 24 34		.7 339 .8 57 .7 73 .5 57	14 14 5 4 13 4 6	55 4. 27 2. 33 2. 27 1. 49 3. 43 2.	99 45 35 16 .08 18 .82 16 .31 25 .16 21	6 N 5 N 5 N 5 N 5 N	ID 3 ID 1 ID 1 ID 2 ID 2 ID 2	82 40 98 64 83	29.1 2.6 .4 1.5 1.0 3.5 3.9		2 682 2 168 2 206 2 209 2 306 2 213 2 224	.03 .03 .03 .02 .06 .07 .78	.099 .080 .042 .065 .113 .113 .113	17 8 10 15 10 22	43 .0 19 .0 22 .0 27 .0 29 .0 27 .0	07 22 05 24 05 17 09 23 07 30 08 62	9.01 5.01 3.01 7.01 5.01 6.01	16 15 11 15 10 13	1.04 .75 .74 1.36 1.16 1.00	.01 .01 .01 .01 .01 .01	.19 .16 .13 .15 .14 .17	1 1 1 1 1 1	686 676 800 1046 1365 1392	
L43+00N 56+00E L42+00N 50+00E RE L43+00N 55+25E L42+00N 50+25E L42+00N 50+50E L42+00N 50+75E L42+00N 50+75E L42+00N 51+00E	9 23 84 81 9 35 9 32 7 25 7 27	32 28 32 32 36 34 7 29	268 200 174 216	1.4 35 .7 43	9 3 13 4 4 3 5	34 2. 51 3. 48 3. 26 2. 34 2. 42 2.	.61 14 .56 28 .19 15 .82 18 .40 14 .61 13	5 N 5 N 5 N 5 N 5 N	10 1 10 2 10 1 10 1 10 2 10 2	20 2 66 35 2 42 2 26 2 33	.4 3.7 .8 .5 .4	6 2 4 2 2 2 2 2	2 98 2 323 2 99 2 97 2 97 2 108	.04 .06 .06 .02 .02 .02	.074 .120 .102 .097 .070 .082	7 15 6 6 6	16 .0 31 .0 18 .0 19 .0 19 .0 20 .0	06 26 07 31 09 29 07 30 08 27 09 27	7.01 7.01 1.01 6.01 9.01 1.01	6 11 5 6 6 7	1.01 1.22 1.25 1.30 1.44 1.47	.01 .01 .01 .01 .01 .01	.13 .14 .16 .19 .17 .19	1 1 1 1 1 1	1374 1033 1539 1605 1511 1316	
L42+00N 51+25E L42+00N 51+75E L42+00N 51+75E L42+00N 52+00E L42+00N 52+25E L42+00N 52+50E L42+00N 52+75E L42+00N 53+00E L42+00N 53+25E STANDAPD 5(768-1200	6 21 21 37 6 18 28 27 6 10 7 14	1 24 7 52 3 16 7 34 0 20 4 20 3 28 9 14	161 193 125 287 33 98 161 73	.7 30 .7 44 1.0 26 .9 55 .2 8 1.2 20 .9 34 1.6 17	4 3 3 4 1 2 3 2	26 1. 19 2. 39 1. 28 2. 5 17 23 1. 10	.80 13 .71 27 .48 6 .27 19 .42 3 .96 8 .58 11 .97 5	5 5 5 5 5 5 5	ND 2 ND 3 ND 2 ND 3 ND 1 ND 1 ND 1	2 23 3 338 2 12 3 71 2 34 1 20 2 70 1 54	.2 .2 .4 .3 .2 .2 .2 .3 .4	3 2 3 2 2 2 2 2 2	2 91 2 99 2 97 2 196 2 82 2 99 2 122 2 66	.02 .01 .01 .01 .01 .01	.046 .085 .029 .039 .014 .021 .037 .040	4 37 52 2 4	16 . 15 . 17 . 18 . 10 . 11 . 14 . 12 .	07 28 03 34 06 28 06 38 04 52 05 22 04 40 03 62	13.01 14.01 18.01 13.01 13.01 12.01 10.01 10.01 10.01 10.01	9 13 7 12 16 12 10 9	1.13 .61 1.05 .95 .67 .79 .68 .67	.01 .03 .01 .01 .01 .01 .01	.16 .20 .13 .18 .15 .13 .17 .11	1 1 3 1 1 1 1 1	1423 1259 1099 1305 1130 1361 1937	
	SAMPLE# L43+00N 50+75E L43+00N 51+75E L43+00N 51+25E L43+00N 51+50E L43+00N 51+50E L43+00N 51+75E L43+00N 52+25E L43+00N 52+25E L43+00N 52+25E L43+00N 52+25E L43+00N 52+25E L43+00N 52+75E L43+00N 53+25E L43+00N 53+25E L43+00N 54+25E L43+00N 54+25E L43+00N 54+25E L43+00N 54+25E L43+00N 54+25E L43+00N 54+25E L43+00N 55+25E L43+00N 55+25E L43+00N 55+25E L43+00N 50+25E L42+00N 50+25E L42+00N 50+25E L42+00N 50+25E L42+00N 51+25E L42+00N 52+25E L42+00N 52+25E L42+00N 52+25E L42+00N 52+25E L42+00N 52+25E	SAMPLE# Mo Cu ppm ppm ppm L43+00N 50+75E 8 28 L43+00N 51+25E 6 23 L43+00N 51+25E 5 23 L43+00N 51+25E 5 23 L43+00N 51+75E 5 27 L43+00N 52+25E 12 21 L43+00N 52+25E 12 21 L43+00N 52+50E 10 11 L43+00N 52+50E 10 11 L43+00N 53+50E 51 33 L43+00N 53+50E 51 33 L43+00N 53+50E 192 101 L43+00N 54+50E 192 101 L43+00N 54+50E 192 101 L43+00N 54+50E 192 101 L43+00N 54+50E 39 35 L43+00N 55+50E 27 54 L43+00N	SAMPLE# Mo Cu Pb JUNE JUNE<	SAMPLE# Mo Cu Pb Zn L43+00N 50+75E 8 28 30 187 L43+00N 51+00E 7 30 46 230 L43+00N 51+25E 6 23 29 175 L43+00N 51+25E 5 27 22 252 L43+00N 51+25E 5 27 22 252 L43+00N 52+50E 10 11 22 34 L43+00N 53+50E 51 33 50 255 L43+00N 53+50E 51 33 50 255 L43+00N 54+50E 39 35 22 279 L43+00N 54+50E 39 35 22 279	SAMPLE# No Cu Pb Zn Ag Ni IL43+00N 50+75E 8 28 30 187 1.2 42 L43+00N 51+50E 6 23 29 175 5. 37 L43+00N 51+25E 6 23 29 175 1.4 34 L43+00N 51+25E 5 27 22 252 .3 49 L43+00N 52+50E 10 11 22 34 22 9 L43+00N 52+75E 6 17 27 49 .7 12 L43+00N 52+75E 6 17 27 49 .7 12 L43+00N 53+50E 51 33 50 255 1.1 41 L43+00N 53+52E 34 23 26 164 1.7 22 L43+00N 54+50E 192 101 37 1085 .7 339	And Herein No Cu Pb Zn Ag Ni Co SAMPLE# Mo Cu Pb Zn Ag Ni Co L43+00N 50+75E 8 28 30 187 1.2 42 4 L43+00N 51+25E 6 23 29 175 5 37 4 L43+00N 51+25E 5 27 22 252 3 49 4 L43+00N 52+00E 7 21 24 160 .8 32 4 L43+00N 52+00E 7 21 24 160 .8 32 4 L43+00N 52+00E 7 21 24 160 .8 32 4 L43+00N 52+75E 10 11 22 21 12 1 L43+00N 53+50E 51 33 50 255 1.1 41 2 L43+00N 54+50E	SAMPLE# No Cu Pb Zn Ag Ni Co Mn ppm ppd	SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As L43+00N 50+75E 8 28 30 187 1.2 42 4 45 2.28 15 L43+00N 51+00E 7 30 46 230 1.7 49 4 46 3.09 19 L43+00N 51+50E 6 23 29 17 4.9 4 46 2.10 15 L43+00N 52+50E 10 11 22 22 2.3 4.9 4 64 2.58 13 L43+00N 52+50E 10 11 22 1 1 1.3 .78 6 L43+00N 53+25E 14 23 26 164 1.7 22 1 1.28 15 L43+00N 53+25E 34 23 26 164 1.7 22 11 2.28 23 1.4	SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As U A L43+00N 50+75E 8 28 30 187 1.2 42 4 45 2.28 15 5 N L43+00N 51+02E 6 23 29 7 57 4 29 2.10 15 5 N L43+00N 51+75E 5 27 22 252 .3 49 4 64 2.58 13 5 N L43+00N 52+02E 12 132 14 23 9 4 64 2.58 13 5 N L43+00N 52+02E 10 11 22 14 1.3 .78 6 5 N 143+00N 53+02E 13 50 251 13 50 22 11 17 1.3 18 5 N 14 40 <	AMBLE# No Cu Pb Zn Ag Ni Co Mn Fe As U. Au Th L43+00N 50+75E 8 28 30 187 1.2 42 4 45 2.28 5 ND 2 L43+00N 51+25E 6 23 29 175 5 37 4 29 2.10 15 5 ND 2 L43+00N 51+25E 6 23 29 175 5 37 4 29 2.10 15 5 ND 2 L43+00N 52+75E 12 21 32 189 2 39 4 27 2.00 18 5 ND 2 L43+00N 52+75E 10 11 22 14 17 13 16 5 ND 2 L43+00N 53+75E 32 22 16 4 37 55 ND <t< th=""><th>SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr L43+00N 50+75E 8 28 30 187 1.2 42 4 5 2.8 15 5 ND 3 25 L43+00N 51+25E 6 23 29 175 1.5 37 4 29 2.10 15 5 ND 2 25 L43+00N 51+52E 5 23 40 175 1.4 34 4 42 2.10 15 5 ND 2 15 L43+00N 52+25E 12 21 32 189 2 39 4 27 2.00 18 5 ND 2 12 L43+00N 52+25E 10 11 22 34 22 1 13 7.78 5 ND 2 12 14 30<</th><th>SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd L43+00N 50+75E 8 28 30 187 1.2 42 4 45 2.28 15 5 ND 3 25 .8 L43+00N 51+25E 6 23 29 175 15 37 4 29 2.10 15 5 ND 2 29 5 14 44 44 1.16 5 ND 2 16 .5 L43+00N 52+25E 12 21 32 189 2 39 4 27 20 18 5< ND 2 28 .4 14 16 5 ND 2 12 .3 L43+00N 52+20E 10 12 21 13 35 25 10 17 22 10 17</th><th>SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U. Au Th Sr Cd Sb L43+00N S0+75E 8 28 30 187 1.2 42 4 45 2.28 15 5 NO 2 2.4 7 2 L43+00N S1+25E 6 23 29 175 5 37 4 29 2.10 15 5 NO 2 16 .5 2 2 143+00N 51+75E 5 27 22 252 .3 49 4 64 2.58 13 5 NO 2 16 .5 2 2 14 15 NO 2 12 13 3 2 12 13 3 2 14 30 3 2 14 30 3 2 14 30 3 2 14 30 3</th><th>SAMPLE# Ho Cu Pb Zn Ag Ni Co Mn Fe As UL Au Th Sr Cd Sb Bi Y L43+00N 50+75E 8 28 30 187 1.2 42 4 45 2.2 15 5 NO 3 25 -5 2 2 90 L43+00N 51+00E 7 30 46 230 177 44 44 44 1.6 5 NO 2 22 2 90 L43+00N 51+75E 5 27 22 252 3 49 4 44 2.1 16 5 NO 2 16 5 2 2 71 L43+00N 52+75E 12 21 13 .78 5 NO 2 18 42 2 10 L43+00N 53+75E 13 3 50 30</th><th>SAMPLE# No Cu Pban ppan ppan</th><th>SAMPLE# No Cu Pb Zn Act Ni Co Mn Fe As U. Au Th Sr Cd Sb I Ca Pp Pp<</th> Pp<</t<>	SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr L43+00N 50+75E 8 28 30 187 1.2 42 4 5 2.8 15 5 ND 3 25 L43+00N 51+25E 6 23 29 175 1.5 37 4 29 2.10 15 5 ND 2 25 L43+00N 51+52E 5 23 40 175 1.4 34 4 42 2.10 15 5 ND 2 15 L43+00N 52+25E 12 21 32 189 2 39 4 27 2.00 18 5 ND 2 12 L43+00N 52+25E 10 11 22 34 22 1 13 7.78 5 ND 2 12 14 30<	SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd L43+00N 50+75E 8 28 30 187 1.2 42 4 45 2.28 15 5 ND 3 25 .8 L43+00N 51+25E 6 23 29 175 15 37 4 29 2.10 15 5 ND 2 29 5 14 44 44 1.16 5 ND 2 16 .5 L43+00N 52+25E 12 21 32 189 2 39 4 27 20 18 5< ND 2 28 .4 14 16 5 ND 2 12 .3 L43+00N 52+20E 10 12 21 13 35 25 10 17 22 10 17	SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U. Au Th Sr Cd Sb L43+00N S0+75E 8 28 30 187 1.2 42 4 45 2.28 15 5 NO 2 2.4 7 2 L43+00N S1+25E 6 23 29 175 5 37 4 29 2.10 15 5 NO 2 16 .5 2 2 143+00N 51+75E 5 27 22 252 .3 49 4 64 2.58 13 5 NO 2 16 .5 2 2 14 15 NO 2 12 13 3 2 12 13 3 2 14 30 3 2 14 30 3 2 14 30 3 2 14 30 3	SAMPLE# Ho Cu Pb Zn Ag Ni Co Mn Fe As UL Au Th Sr Cd Sb Bi Y L43+00N 50+75E 8 28 30 187 1.2 42 4 45 2.2 15 5 NO 3 25 -5 2 2 90 L43+00N 51+00E 7 30 46 230 177 44 44 44 1.6 5 NO 2 22 2 90 L43+00N 51+75E 5 27 22 252 3 49 4 44 2.1 16 5 NO 2 16 5 2 2 71 L43+00N 52+75E 12 21 13 .78 5 NO 2 18 42 2 10 L43+00N 53+75E 13 3 50 30	SAMPLE# No Cu Pban ppan ppan	SAMPLE# No Cu Pb Zn Act Ni Co Mn Fe As U. Au Th Sr Cd Sb I Ca Pp Pp<	Set Multicity Mo CL Pho Zn Ag Ni Co Mn Fe As Virus Th Sn Cd Sb Bi V Ca P La P L43+00N 50+75E 8 28 30 187 1.2 42 4 45 2.28 15 5 ND 3 25 .8 2 2 90 .02 082 5 L43+00N 51+25E 5 22 2 175 1.5 14 44 44 2.41 16 5 2 2 90 0.20 0.82 5 L43+00N 51+75E 5 27 2 22 23 4 47 1.5 ND 2 16 5.5 2 2 3.3 2 101 0.6 1.4 2 2 16 5.5 ND 2 12 1.6 5.0 1.6 5.0 1.7 </th <th>SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb BI V Ca P La Cr M L43+00M 50+75E 8 28 30 187 1.2 42 4 45 2.0 1.2 2.9 5.0 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 1.93 .02 1.93 .02 1.93 .02 1.93 .02 1.93 .02<</th> <th>Set martial SAMPLE# No Cu Pb Zn Ag Mi Fe As LL Au Th Sr Cd Sb V Ca P La Cr Mg Bu L(3+00N 50+75E 8 28 30 187 1.2 42 4 45 2.28 15 5 NO 3 2 2 95 0.2 0.80 5 18 .08 2 14 .00 15 5 NO 2 2 95 0.2 0.80 5 18 .08 2 14 .00 15 5 NO 2 2 95 0.2 0.80 5 18 .08 2 14 .02 15 5 2 2 15 5 2 2 13 10 16 15 2 2 15 5 10 15 10 10 16 16</th> <th>Set market Mo Cu Pb Zn Ag Mi Go Mi Fe As U. Au Th Sr Cd Sb B V Ca P La Cr Mg Ba T L43-00N S1-75E 8 28 30 187 1.2 42 4 45 2.28 15 5 NO 3 25 .8 2 2 90 0.02 0.08 5 18 .03 25 .8 2 2 90 .01 0.02 0.08 5 18 .08 24 .01 15 5 NO 2 2 95 .02 0.00 5 18 .08 21 0.01 0.41 7 18 .5 16 15 5 10 15 5 16 2 2 18 .5 18 .01 16 .02 .02 16 .5 2 2</th> <th>SAMPLE# Mo Cu Pb Zn Ag Mi Go Mn Fe As U Au Th Sr Cd Sb BI V Ca P La Cr Mg Ba TI Ba TI Ba TI Ca St Cd Sb BI V Ca P La Cr Mg Ba TI Ba TI Ca Ca Ca P La Cr Mg Ca TA TA TA TA Ca Ca Ca Ca TA Ca TA Ca TA Ca Ca Ca Ca<!--</th--><th>Sector No Cu Pp Pm Ag NI Co Mn Fe Az U Au Th Sr Cd St <</th><th>Servente No C Dro Dro Dro Provide Provide</th><th>Surple No Cu Por Dorn por P</th><th>Sumples No Cu Pb Zon Adj Hi Co No Cu Pb Zon Pain Dam Da</th><th>Supples No Lu Pho Part Part Part Part Part Part Part Part</th></th>	SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb BI V Ca P La Cr M L43+00M 50+75E 8 28 30 187 1.2 42 4 45 2.0 1.2 2.9 5.0 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 2.95 .02 1.93 .02 1.93 .02 1.93 .02 1.93 .02 1.93 .02<	Set martial SAMPLE# No Cu Pb Zn Ag Mi Fe As LL Au Th Sr Cd Sb V Ca P La Cr Mg Bu L(3+00N 50+75E 8 28 30 187 1.2 42 4 45 2.28 15 5 NO 3 2 2 95 0.2 0.80 5 18 .08 2 14 .00 15 5 NO 2 2 95 0.2 0.80 5 18 .08 2 14 .00 15 5 NO 2 2 95 0.2 0.80 5 18 .08 2 14 .02 15 5 2 2 15 5 2 2 13 10 16 15 2 2 15 5 10 15 10 10 16 16	Set market Mo Cu Pb Zn Ag Mi Go Mi Fe As U. Au Th Sr Cd Sb B V Ca P La Cr Mg Ba T L43-00N S1-75E 8 28 30 187 1.2 42 4 45 2.28 15 5 NO 3 25 .8 2 2 90 0.02 0.08 5 18 .03 25 .8 2 2 90 .01 0.02 0.08 5 18 .08 24 .01 15 5 NO 2 2 95 .02 0.00 5 18 .08 21 0.01 0.41 7 18 .5 16 15 5 10 15 5 16 2 2 18 .5 18 .01 16 .02 .02 16 .5 2 2	SAMPLE# Mo Cu Pb Zn Ag Mi Go Mn Fe As U Au Th Sr Cd Sb BI V Ca P La Cr Mg Ba TI Ba TI Ba TI Ca St Cd Sb BI V Ca P La Cr Mg Ba TI Ba TI Ca Ca Ca P La Cr Mg Ca TA TA TA TA Ca Ca Ca Ca TA Ca TA Ca TA Ca Ca Ca Ca </th <th>Sector No Cu Pp Pm Ag NI Co Mn Fe Az U Au Th Sr Cd St <</th> <th>Servente No C Dro Dro Dro Provide Provide</th> <th>Surple No Cu Por Dorn por P</th> <th>Sumples No Cu Pb Zon Adj Hi Co No Cu Pb Zon Pain Dam Da</th> <th>Supples No Lu Pho Part Part Part Part Part Part Part Part</th>	Sector No Cu Pp Pm Ag NI Co Mn Fe Az U Au Th Sr Cd St <	Servente No C Dro Dro Dro Provide Provide	Surple No Cu Por Dorn por P	Sumples No Cu Pb Zon Adj Hi Co No Cu Pb Zon Pain Dam Da	Supples No Lu Pho Part Part Part Part Part Part Part Part

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

			T	ack	: E2	գյյ	SIO.	iti(on	(BC	:)	PRC	JE	СТ	17	15	FIL	E #	92-	-25	19					Pac	ge 9		£
SAMPLE#	Mo ppm p	Cu ppnip			Ag ppm		Co ppm	Mn ppm									Bi V ppm ppm			La ppm p		Mg X	Ba Ti ppm %		AL %				
L42+00N 53+50E		22			1.7					13	5	ND		141	.3	2	2 93		.058				603 .01	13	.78	.02	.17	2 20523	
L42+00N 53+75E			23		2.6			10	1.29	6	5	ND		127	.2	2	2 113	.02		2	15		673 .01					1 2313	
L42+00N 54+00E					-4			9	.74	2	5	ND	1		.2	2	3 84	.03	4,036	2			708 .01					1 1926	
L42+00N 54+25E					1.0			21	1.28		5	ND		24 68	.3	2	2 91	.01	.035	2			1188 .01			.01		1 2822	
L42+00N 54+50E	15	18	22	127	3.0	21	2	15	1.12		2	ND	1	00	.2	4	2 125	.01	.037		15	.05	549 .01	ý 7	.04	.01	•14 📓	1 1330	
L42+00N 54+75E	26	20	39	276	2.2	- 41	7	21	3.59	16	5	ND	4	142	1.2	13	2 158	.01	.059	4	15	.05	153 .01	8	- 89	.03	38	1 1392	,
L42+00N 55+00E		14			1.2				1.26						.6		2 127		029		13		332 .01			.01		1 1186	
L42+00N 55+25E					1.3			39	2.51	23	5	ND	2	112	1.1	10	2 321	.03	083	8			407 .01			.01	2000	1 1076	
L42+00N 55+50E					1.7			34	2.79	63	5	ND	3	169	4.0	25	2 625	.07	7 121	12	42	.08	430 .01	11	1.20	.01	.12	1 978	,
L42+00N 55+75E	23	35	41	615	.4	90	6	26	1.84	28	5	ND	1	74	3.1	8	2 285	.07	7 .070	9	31	.08	264 .01	9	.98	.01	.09 👹	1 752	
L42+00N 56+00E	40	61	25	627	8	129	9	62	2.68	3 26	5	ND	1	43	3.6	8	2 325	.31	1 .295	14	39	.08	318 .01	13	1.02	.01	14 👹	1 999	,
L41+00N 50+00E	157			1699		364				5 75			4				5 571		5 110		26	.08	91 .01			.01		1 580	
L41+00N 50+25E		25		222		43	4	37	1.42	2 (12)	- 5	ND	1	47	2.4	3	2 146	.46	5 .047				285 .01			.01		1 1041	
L41+00N 50+50E		55			1.5			181	2.14	25	5	ND	1	42	8.6	10	2 482	.61	1 .177	19	37		735 .01			.01		1 1488	,
L41+00N 50+75E	31	38	22	446	5	74	5	54	1.26	5 12	5	ND	1	24	7.0	5	2 401	. 18	3 .063	17	26	.09	605 .01	7	.86	.01	.09 🛞	1 1285	
L41+00N 51+00E	68	70	26	1917	2.5	310	8	205	1.64	36	6	ND	2	51	21.8	18	2 934	1.17	7 .127	21	42	.20	723 .01	11	. 88	.01	15	1 1454	
L41+00N 51+25E	24	40			1.3					5 12		ND	ĩ		13.6		2 283		0 2061		32		869 .01			.01		1 1657	
L41+00N 51+50E										33		ND	4	65	9.9	13			7 .121				222 .01					1 917	
L41+00N 51+75E		17		188		33			1.04		5	ND	1	35	.9	3	2 130	.10	040	2	14					.01		1 1238	
L41+00N 52+00E	18	25	27	223	.9	40	4	18	1.64	11	5	ND	1	74	1.2	3	2 145	.03	3.053	3	18	.06	433 .01	9	.92	.01	.16	1 1151	
L41+00N 52+25E	31	64	44	1277	1.5	204	13	118	2.84	. 31	5	ND	2	41	10.1	14	2 428	.41	1 .262	16	49	.21	471 .01	16	1.66	.01	.10	1 981	i
L41+00N 52+50E		40								> 15	5	ND	1	81	5.1	6	3 247	.09	9 144	10	32	.09	884 .01	9	1.32	.01	.16 💹	1 1630	
L41+00N 52+75E	27	38	35			80				i 17	5	ND		63	2.4	7	2 230	.03	3 .083	7	27	.07	605 .01	11			.14 🎆	1 1298	-
L41+00N 53+00E		46			·			181			5	ND	1		5.3		2 237	.48	B .153	10			915 .01			.01		1 1660	
L41+00N 53+25E	13	73	21	926	. 4.4	361	5	361	1.56	5 [14]	5	ND	1	166	36.1	6	2 180	2.46	5 .174	8	26	.26	1085 .01	j 13	1.00	.01	.10	1 2721	
L41+00N 53+50E	16	47	32	438	1.9	73	5	70	1.59	7 11	5	ND	1	151	9.Z	5	2 174	1.07	3 .107	9	22	. 15	1079 .01	8	.88	.01	. 15	1 1762	<u>.</u>
L41+00N 53+75E	20			199		o :			.87				1	26	1.2	4	2 159		5 .036		18					.01	2322	1 944	-
RE L41+00N 52+75E		35				74		29	1.87	7 15	5	ND	1	58	2.2	6	3 217	.03	3 .075	7	26		550 .01			.01		1 1327	
L41+00N 54+00E		40				129		30	1.39	9 24	5	ND	1	10	1.2	10	2 812	.06	6.035	11	39	.07				.01		1 710	
L41+00N 54+25E	47	28	29	405	5 .5	83	7	105	3.12	2 33	5	ND	4	61	1.4	7	2 490	.4	3 .127	12	37	.27	234 .01	4	1.44	.01	.13 🎆	1 1103	,
L41+00N 54+50E	13	23	29	245	5 .7	59	7	35	3.56	5 15	5	ND	1	18	.3	3	2 127	.18	8.114	5	19	.07	402 .01	6	1.09	.01	.13	1 1664	÷
L41+00N 54+75E	11				5 1.0					B 813		ND			7	2	2 102		3 .094		20	.08				.01		1 2003	
L41+00N 55+00E				289	3.7	64				2 21		ND		49	.9	2	3 107	.03	3 .133	5	24		372 .01		1.63	.01	.15 🐰	1 1673	
L41+00N 55+25E	8				5 1.1			28	2.52	2 11	5	ND				2	2 104	.02	2 .078		19	.08		Ë 5	1.42	2.01	.15 💓	1 1394	
L41+00N 55+50E	8	25	35	201	I .5	40	6	42	2.67	2 15	5	ND	1	49	.5	2	2 101	.01	1 .049		18	.07	288 .01	4	1.22	2 .01	.15 📓	1 1455	,
L41+00N 55+75E	1 11	18	21	119	, .5	26	4	23	2.2	2 14	5	ND	2	92	.2	3	2 85	.0	1 .054	2	12	.04	810 .01	7	.61	.01	.11	1 28733	5
L41+00N 56+00E	10							15						211					1 .053		11		291 01					1 77320	
STANDARD C/CB-1200															10 1	14							191 .08						

Sample type: SOIL, Samples beginning 'RE' are duplicate samples.

AÁ ACHE MALITTECAL	Teck Exploration (BC) PROJECT 1715 FILE # 92-2519 Page 10
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As. U Au Th Sr. Cd Sb Bi V Ca. P La Cr Mg. Ba Ti B. Al Na K. W. Ba* ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
L40+00N 50+00E L40+00N 50+25E L40+00N 50+50E L40+00N 50+75E L40+00N 51+00E	7 17 33 118 .4 23 4 22 1.89 9 5 ND 6 26 .2 2 2 86 .02 .064 6 17 .06 273 .01 4 1.16 .01 .12 1 1356 8 19 30 120 1.5 23 4 18 1.88 12 5 ND 3 25 .2 2 2 87 .01 .086 4 19 .06 892 .01 5 1.22 .01 .14 1 2323 7 22 32 147 .5 27 5 20 1.86 11 5 ND 2 36 .2 2 2 89 .01 .069 4 17 .06 1053 .01 5 1.15 .01 .15 .1 .15 .01 .15 .1 .15 .01 .15 .1 .11 .15 .01 .14 .15 .15 .01 .14 .
L40+00N 51+25E L40+00N 51+50E L40+00N 51+75E L40+00N 52+00E RE L40+00N 53+25E	16 25 76 213 2.4 39 6 34 2.23 14 5 ND 3 59 .4 2 2 103 .01 .057 4 18 .04 596 .01 13 .94 .01 .20 1 5226 11 29 40 180 2.7 44 7 26 1.87 14 5 ND 3 50 .4 2 2 102 .01 .053 4 18 .04 454 .01 13 1.0 .01 .13 1 1759 9 17 40 73 1.8 21 3 17 1.00 7 5 ND 2 87 .2 2 81 .01 .037 3 14 .04 18 .04 454 .01 13 .78 .01 .13 1 7712 9 19 40 144 1.1 31 5 28 1.61 10 9 ND 2 78
L40+00N 52+25E L40+00N 52+50E L40+00N 52+75E L40+00N 53+00E L40+00N 53+25E	8 18 32 72 .4 23 3 13 .97 5 5 ND 2 77 .2 2 2 94 .01 .033 2 14 .05 927 .01 16 .83 .01 .12 1 7029 7 15 18 94 1.0 19 4 20 .94 5 7 ND 1 17 .3 2 2 73 .01 .039 7 17 .04 612 .01 12 .81 .01 .10 1 1631 19 23 25 186 .8 34 3 16 1.19 10 6 ND 1 91 .7 3 4 154 .02 .073 4 20 .07 .01 14 1.04 .01 .16 1 1119 27 34 25 302 1.7 56 4 20 1.75 17 5 ND 1 84 .9 4 <td< td=""></td<>
L40+00N 53+50E L40+00N 53+75E L40+00N 54+00E L40+00N 54+25E L40+00N 54+50E	27 40 32 455 .4 83 6 24 1.77 16 5 ND 1 44 1.2 5 2 200 .04 .058 8 28 .05 247 .01 11 .76 .01 .10 1 878 12 17 20 160 .1 26 2 15 .78 7 5 ND 1 35 .8 2 2 150 .03 .044 11 21 .06 188 .01 10 .82 .01 .08 1 878 39 31 24 328 .9 68 6 26 2.00 11 5 2 2 178 .01 .043 8 17 .05 131 .01 11 .75 .01 .10 1 669 28 21 25 262 5 56 4 25 1.42 13 14 ND 2 26 5 5 2 197 .01
L40+00N 54+75E L40+00N 55+00E L40+00N 55+25E L40+00N 55+50E L40+00N 55+75E	30 28 26 270 .6 51 5 57 2.00 18 5 ND 1 35 1.1 3 2 302 .07 .100 13 29 .14 303 .01 7 1.14 .01 .10 1 1022 39 34 43 333 .2 70 4 43 1.61 21 5 ND 2 32 1.1 5 2 464 .04 .065 13 35 .10 203 .01 6 1.13 .01 .09 1 887 44 58 39 391 4 95 4 23 1.67 20 5 ND 2 15 2.0 9 2 516 .11 146 18 39 .06 245 .01 7 .78 .01 .09 1 865 61 125 20 2312 7.1 8 127 1.97 54 12 ND 3 72 33.1
L40+00N 56+00E L38+00N 43+00E L38+00N 43+25E L38+00N 43+50E L38+00N 43+75E	84 39 48 527 .7 142 7 60 2.61 32 5 ND 4 35 1.5 11 2 774 .09 .080 16 49 .14 212 .01 6 1.62 .01 .10 1 887 40 20 46 325 .4 57 5 28 1.72 16 5 ND 2 36 .5 8 3 225 .04 .036 4 14 .04 742 .01 8 .56 .01 .10 1 2693 29 15 50 200 .6 35 4 20 1.17 9 9 ND 2 28 .2 6 2 196 .02 .025 5 13 .04 1393 .01 8 .73 .01 .08 18 8788 34 30 56 394 .6 67 8 62 2.50 14 5 ND 2 39 .7
L38+00N 44+00E L38+00N 44+25E L38+00N 44+50E L38+00N 44+55E L38+00N 44+75E L38+00N 45+00E	24 21 34 214 .5 38 4 28 2.30 18 5 ND 3 49 .3 4 2 194 .01 049 3 16 .05 752 .01 5 .88 .01 .13 1 9973 30 24 57 310 .4 57 6 31 2.78 17 5 ND 3 85 .3 4 2 202 .01 .058 3 13 .04 523 .01 5 .75 .02 .14 1 3400 18 76 45 468 .7 67 11 168 7.43 25 5 ND 2 36 .8 4 2 140 .02 .181 2 17 .07 900 .01 12 1.19 .01 .16 13590 27 20 45 211 .6 37 6 40 2.47 .2 4 2 154 .01 042 3 </td
L38+00N 45+25E L38+00N 45+50E STANDARD C/CB-1200	39 31 58 153 .7 30 4 22 2.35 36 5 ND 3 252 .2 5 2 164 .10 083 3 15 .04 279 .01 12 .61 .01 .17 1 79156 37 16 35 79 .4 15 4 50 1.37 11 5 ND 2 140 .3 4 2 175 .09 .067 11 21 .07 1415 .01 .7 .88 .01 .10 1 3706 19 58 39 131 7.5 69 32 1051 3.96 43 17 7 39 53 18.4 14 21 59 .52 .087 38 60 .93 186 .08 .35 2.01 .06 .14 11 2185

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

		1	ſec	:k	Exp	010	rat	tio	n	(BC)	P	ROJ	TEC	T	171!	5	FI	LE	#	92-2	251	9	<u> </u>					Paç	ge	11		AA LL T MINI TTEAL
						Ni xpm p		Mn ppm		As ppm p					cq Cq				Ca %		La ppm p	Cr		Ba ppm	Ti X p			Na X	K X	N N N	Ba* ppm	
L38+00N 45+80E SILT L38+00N 46+00E L38+00N 46+25E	27 18 18	19 24	28 31 30	504 177 215	.8 .9 .2 .4 .8	31 37	5 9 3 4 3	177 25 25	3.32 1.85 2.03	15	7 5 5	ND ND ND ND ND	2 1 1 1	26 49 57	.4	3 6 33 4 8	2 2 3	96 118 119	.45 .03 .05	.101 .085 .047 .060 .079	4 4 3	13 . 11 . 13 .	.11 .04 .05	1555 527 717 725 864	.01 .01 .01	10 9 10	.81 .66 .76	.02 .02 .01	.20 .15 .17	1 1 1 1	4834 2232 2508 2073 5404	
RE L38+00N 48+00E L38+00N 47+00E L38+00N 47+25E	44 22	30 34 13	54 37 26	177 283 113		42	3 3 6 3 4	22 525 37	1.86 2.70 3.61 1.85 1.61	28 49 14	5 5 5	ND ND ND ND ND	1122	181 226 247	.5 1.2 2.5 .5 1.0	3 10 3 2 2	2 2 2	168 154 1 98	.35 1.26 .10	.042 .120 .117 .049 .061	5 5 7	17 21 15	.06 .29 .04	723 367 682 427 1120	.01 .01 .01	10 8 2 8	.53 .80 2.09 .64 .96	.03 .02 .01	.29 .24 .11	1 1 1	3281 3302 3198 1244 1566	
L38+00N 48+00E L38+00N 48+25E		30 14 22	58 23 26	184 120 140	.4 2.0 .7 .4	43 20 28	3 3 2 2 2	24 58 19	2.18 2.79 1.33 1.57 1.36	30 7 13	5 5 5	nd Nd Nd Nd Nd		185	.6 1.2 .3 .2 .3	5 11 2 3 2	2 2 2	174 102 117	.38 .12 .03	.085 .127 .054 .045 .054	5 5 2	14 14 12	.06 .07 .05	535 305 410 364 524	.01 .01 .01	10 9 6	.74 .81 .89 .80 .95	.03 .01 .01	.30 .16 .13	1	1433 3053 1369 23440 1667	
L38+00N 49+00E L38+00N 49+25E L38+00N 49+50E L38+00N 49+75E L38+00N 50+00E	8 7 6	22 22 23	33 26 19	194 171 183 212 288	.4 .4 .8		4 3 4 4 3	19 44 36	2.47 1.86 1.90 1.82 2.02	12 11 8	5 5 5	nd ND ND ND ND	1 1 1	65 47 29 18 11	.3 .4 .8 .6 1.1	3 2 4 2 2	2 2 2	88 86 81	.03 .09 .07	.067 .062 .072 .079 .080	5 6 5	14 17 15	.06 .05 .07	384 427 384 458 409	.01 .01 .01	6 6 5	.83 .94 .92 1.11 1.19	.01 .01 .01	.17 .15 .16	1 1 1	1411 1399 1303 1303 1361	
L38+00N 50+50E L38+00N 50+75E L38+00N 51+00E	14 10 5 7 43	16 28	27 26		.6 .5 .3 1.0 2.3	46 31	2 3 6 4 2	36 61 30	1.06 1.28 2.71 1.98 6.72	6 9 7	5 5 5	nd Nd Nd Nd Nd	1 1	55 35 23 21 163	.3 .2 .7 .4 1.8	2 2 2 13	2 2 2	93 113 101	.02 .04 .01	.043 .031 .064 .065 .112	5 7 6	12	.05 .07 .07		.01 .01 .01	7 7 9	.77. .75 1.12 1.31 .80	.01 .01 .01	.11 .12 .18	1 1 1	4100 851 1085 1107 2296	
L38+00N 51+75E L38+00N 52+00E L38+00N 52+25E	39 25 29 24 23	25	24 17 22	127 174 194 143 198	.7 .5 .1 .5 .2	30 40 32	32322 222	17 23 13	2.62	24 2 20 3 14 2 15 3 15	5 5 5	nd Nd Nd Nd	1 1 1	69 78 19 148 72		5 3	2 2 2	159 154	.02 .01 .03	.080 .077 .048 .108 .075	5 6 9	17 19 20	.05 .05 .04	565 525 261 401 394	.01 .01 .01	11 9 10	.85 .82	.01 .01 .01	.25 .14 .18	1 1 1 1 1	1515 1361 1500 877 970	
L38+00N 53+00E	47 21 18	59 16 60	11	278 115 132	- XX 3 1	23	3 2 31	25	- 91	5 29 3 10 5 41	5	ND ND 8	1 1 39	12	1.0 .2 18.8	2	2	223 114 57	.03	.063 .028 .084	15	19	.04	336 115 183	.01	9	.90 .59 1.94	.01	.07	M		

.

Sec. 20

ź.

							350	+ 27	2 Via	ctori	a St.	, Kan	nl ooq	os B(: V2	171 C 2A2	Su	<i>i</i> bmit	ted l	by: I	RAND	(FAF	MER		Pac							
	SAMPLE#							Co			e As 6 ppm					Cd ppm		Bi ppm p				La ppm			8a ppm	Ti X		AL X			W Ba xpm pp	
	L70+00N 55+00E L70+00N 55+25E		24 27			1000000000	54 67			1.75			ND	9	8	.3	6	2 2	24 .	02.	025	7								.07	2 135	
	L70+00N 55+50E		18			200000000				1.22			ND ND	1	13 7	.5	6	22 21	58.	01 🕻	017	7	12	.04	182 125	.01	4	.63 .51		- T T - 193	1 137 1 114	
	L70+00N 55+75E L70+00N 56+00E		18 21				33 34			1.33 .91						.8 3.3	5	21	48.	11 🗓	025	9	12	.04	278	.01	8	.48 .48	.01	.06	1 128	31
	L70+00N 56+25E		19						18				ND	1		3.4									467			.36			1 125	
	L70+00N 56+50E	18	17	22	264	.3	35	3	27	1.09	> 7	5	ND	1	37	3.1	3	21	71.	21 .	029	6	13	.06	1201	.01	7	.55	.01	.12	1 663	30
	L70+00N 56+75E L70+00N 57+00E		19 17				41 38			i 1.59			ND ND	1	30 9		5	21	57. 91.	03	032 018	5	12 12	.04	814 167	.01	7 10	.54	.01	.10	1 519	
	L70+00N 57+25E		14			- NY 100 - NY 1				.97			ND		12										204			.56			1 100	
	L70+00N 57+50E		14				48			1.31			ND		15	.4		2 2							182			.55			1 103	
	L70+00N 57+75E L70+00N 58+00E		35 19				51 34			01.30 1.45	5 10	5	ND ND	1	29 28	.2	5	2 1	84.	03 .	023	2	10	.04	246	.01	13 10	.53	.01	.11	1 180	
EEP GRID	L70+00N 58+25E L70+00N 58+50E	23	14 43	18	184	.2	34	4	43	1.51	7	5	ND	2	9	.2	3	21	94.	01 .	017	9	13	.04	144	.01	3	.64	.01	.06	1 104	48
							56	_							18										238			1.15			1 15	
Soils	L70+00N 58+75E L70+00N 59+00E		36 31			10.17.17.1	59 41			2.31			ND ND		40 34	1.4		21										.55		.11	1 585	
_	L70+00N 59+25E	58	60	51	526	.4	110	11	132	3.62	2 30	6	ND	3	55	1.2	11	22	43.	08	14D	7	22	. 10	767	.01	9	.87	.01	.13	1 284	48
	L70+00N 59+50E L70+00N 59+75E		40 47					6		3.06 2.60			ND ND	1	56 163	2.0 1.6	6 11	22	25. 69.	04 . 41 .	097 057	4	22 11	.04	711 745	.01	11	.67 .36	.01 .01	.14	1 200	
2.1-7	L70+00N 60+00E		43			2	5			3.07			ND			3.1												.38			1 270	
	L70+00N 60+25E	30	28	34	327	1.0	57	5	35	2.21	20	5	ND	1	55	1.6	6	2 1	52.	06	059	2	10	.04	679	.01	9	.45	.01	.15 🖁	1 205	51
	L70+00N 60+50E L70+00N 60+75E		49 22							2.24					49 26	1.6	7	21	83.	14 n4	064 035	2	11 13	.05	766 220	.01	9 7	.47	.01	.14	1 259	
	L70+00N 61+00E							8		2.41						3.6															1 225	
	L70+00N 61+25E		20							1.77				1	31	.8	4	2 2	. 60	04 .	040	4	14	.06	866	.01	13	.86	.01	.13	1 192	
	L70+00N 61+50E L70+00N 61+75E		24 12			- Xee Xee Xee				2.59			ND ND	2	54 22	.7 2.5	5	32	35.	03. na	087	27	17 14	.06. 06	628 340	.01	6	1.02	.01	.15	1 16 1 11	
	L70+00N 62+00E	22	16	20	106	.2	18	3	23	1.35	5 8	5	ND	1	16	1.0	2	3	90.	09	030	3	11	.05	272	.01	13	.77	.01	. 12	1 9'	14
	L70+00N 62+25E	53	19	22	283	•1	58	4	22	2 1.47	14	5	ND	1	32	.5	12	32	29.	02.	027	3	9	.03	173	.01	9	.48	.01	.09	1 8	28
	L70+00N 62+50E							4		1.45			ND			1.4											9				1 94	
	L70+00N 62+75E L70+00N 63+00E	101	27	19	648	1.1	194	7	30	2 1.64) 1.81	30	5	ND ND	1	12	1:3 5.1)	18	28	97.	14 🖁	029	5	36	.08	194	.01	9 12	.90	.01	. 12	1 6	97
	RE L70+00N 62+25E L70+00N 63+25E	- 58-	19-	-25-	-311- 152		- 63 40	42	21	1.53 / 1 1*) - 18 ; 7	- 5	· ND ···	1 -	- 32	9 -	14	2-2	61	02-	027	3	-11-	.04	- 166	01	- 10 -	49	.01	.09	-1 - 8; 1 7(29
						- 83383					34600									ž.						- 2004				3		
	L70+00N 63+50E L70+00N 63+75E	00 47	20 48	28 31	630 726	.6	151	, 7 , 7	40	1.61	5 22	5	ND ND	1	21	5.7	15 10	24	87. 22.	07 59	031 191	6 10	28 73	.07	96 189	.01	9	.61 1.03	.01	.09	1 7: 1 7:	∍4 88
	STANDARD C/CB-1200		-60-	-41	138	7:4	- 74		1067	-3.96	,42	- 22-	- 7 -	-40 -	53	19:1	14	-20	61:	50	086	38	-61	.94	-183	:08	-33	2.03	.07	. 14	10 22	23
	ICP - This i															T 95 D																

AA

Teck Exploration (BC) PROJECT 1715 FILE # 92-2640

ACHE ANALYT	ICAL											•																						K ANALYTIC
	SAMPLE#				Pb ppm		Ag ppm		Co ppm	Mn ppm		As ppm					Cd ppm		Bi ppm		Ca %		La ppm		Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	K X		8a* ppm	
	L70+00N	64+00E	48	55	39	1080	2.1	171	9	174	2.12	22	5	ND	5	44	9.9	11	2	283	1.12	.333	27	76	.20	423	.01	14	1.36	.01	.14	2	1051	
	L70+00N	64+25E	62	37	28	857	.5	159	8	116	2.11	24	5	ND	2	23	11.1	^{>} 13		300		.078		33			.01						990	
	L70+00N	64+50E	67	36	18	549	.2	125	5	45	2.01	23	5	ND	1	11	4.4	13	2	253	.14	.045		23		184			.66				928	
	L70+00N	64+75E	47	57	36	349	.3	97	9	85	3.43	25	5	ND	2	28	2.2	2	2	99	.10	.071	5	17	.05	184	.01	13	.60	.01	.18	1	917	
	L68+00N	55+00E	43	59	14	168	.2	74	11	123	4.74	21	5	ND	1	8	.5	2		79	.05	.050	3	12	.06	270	.01	12	.90	.01	.10	1	3181	
	L68+00N	55+25E	51	47	42	281	.9	110	22	134	5.27	14	5	ND	3	41	.2	3	2	56	.01	.045	3	14	.05	496	.01	12	.91	.01	.17		3861	
	L68+00N	55+50E	38	28	14	271	.2	50	6	49	2.44	16	5	ND	1	6	.3	4		154	.03	.030	5	10	.04	158	.01	12	.62	.01	.08		1602	
	L68+00N	55+75E	41	22	21	178		31	3		1.45		5	ND	1	15		4		124		.022			.04	334				.01			1719	
	L68+00N	56+00E	139	106	288	457	.5	63	3	26	2.92	35	5	ND	2	19	8.6) 44	2	457	.17	.055	9	27		813	.01	12	.53	.01	.09		1511	
	L68+00N	56+25E	68	24	107) 378	.1	66	3	22	1.77	15	5	ND	1	18		10	2	258	.05	.028	5	15	.04	160	.01	10	.63	.01	.05	1	1068	
	L68+00N	56+50E	57	27	105	356	.1	69	4	25	1.71	15	5	ND	1	18	.7	11	2	237	.01	.027	6	14	.03	131	.01	9	.54	.01	.08		1095	
	L68+00N	56+75E	49	28	72	367	1	69	3	29	1.66	18	5	ND	1	10	.5	12	2	337	.01	.023		15	.04	138	.01	6	.59	.01	.07	1	1009	
	L68+00N	57+00E	43	18	- 37	294	1	56	2	22	1.23	15	5	ND	1	7	3	11	3	428	.01	.018	9	20	.06	161	.01	5	.82	.01	.05		974	
	L68+00N	57+25E	63	17	17	235		83	3	58	.94			ND	4	5	1.4	11	2	457	.03	.020	7	30	.09	277	.01	9	.90	.01	.10	. T	1246	
	L68+00N	57+50E	22	11	11	156	.2	29	1	12	.85	7	5	ND	1	7	.3	5	2	178	.01	.017	8	12	.04	185	.01	8	.66	.01	.07	1	1111	
	L68+00N	57+75E	19	12	7	119	.1	20	1	12	.81	4	5	ND	1	5	.2	2	2	129	.01	.015	5	8	.03	253	.01	6	.43	.01	.06		1150	
	L68+D0N	58+00E	31	17	24	230	.2	43	2	- 36	1.25			ND	1	17	.2	5	2	186	.04	.020	4	11	.05	203	.01	9	.48	.01	.08	S.	1305	
	L68+00N	58+25E	23	- 14	19	169	.1	35	2	- 51	1.53			ND	2	18	.5	- 4	2	157	.04	.019	9	12	.04	212	.04	8	.45	.01	.06	1	1167	
	L68+00N		28	13	9			44	2	19	.93			ND	1	6	.8	6	2	169	.04	,015	4	9	.03	134	.01	11	.35	.01	.07	1	843	
	L68+00N	58+75E	30	21	21	263	.1	47	3	22	1.64	15	5	ND	1	21	.4	8	2	228	.02	.028	3	10	.04	1008	.01	12	.52	.01	.12		3674	
	L68+00N	59+00E	27	18	24	218	.1	43	3	32	1.67	12	5	ND	2	23	.5	7	2	196	.01	.025	6	12	.04	244	.01	11	.69	.01	.10		1053	
	L68+00N	59+25E	33	38	52	521	.3	80	9	151	2.99	27	5	ND	2	47	1.2	9	2	297	.09	.168	4	22	.07	904	.01	14	1.29	.01	.15	٩.	3772	
	L68+00N	59+50E	62	52	- 38	670	1.5	123	7		3.62			ND	3	99	3.7	17	2	164	.30	.106	7	15	.06	897	.01	12	.47	.01	.20	S.	3099	
	L68+00N	59+75E	48	56	37	625					2.73			ND	1		4.4			156		.072		14	.07	1184	.01	10	.45	.01	.14	1	3687	
	L68+00N	60+00E	57	56	38	534	.6	114	16	196	2.91	26	5	ND	1	58	4.2	15	2	172	.16	.080	7	14	.06	966	.01	13	.45	.01	. 16		3247	
	L68+00N	60+25E	30	38	25	400	.3	71	5	62	2.30	18	5	ND	1	42	2.8	6	2	159	. 10	.073	5	11	.04	980	.01	12	.51	.01	.13	1	2932	
	L68+00N	60+50E	34		24	480		88			2.47		5	ND	1		3.1			160		.064		12	.04	1074	.01	14	.49	.01	.14	- 6096	3034	
	L68+00N		27			552					1.96			ND			7.2					.080					.01		.50	.01	.13	ľ	5950)
	L68+00N		29			<u>308</u>					1.84			ND	1		1.5					.047					.01		.53	.01	.15		1999	
	L68+00N	61+25E	72	99	29	4586).5	787	041	> <u>689</u>	5.89)62	5	ND	2	121	15.5) 10	2	354	2.09	.100	5	15	.35	571	.01	17	.51	.01	. 15	2	2037	
	L68+00N	61+50E	27	20	20	255	.3	49	3	31	1.54	11	5	ND	1	32	2.0	5	2	171	.08	.035	5	12	.05	565	.01	17	.68	.01	. 12	1	158 0	
	L68+00N	61+75E	33	17	18	247	.2	48	3	24	1.53	9	5	ND	1	20	2.1			188	.04	.032			.05	993	.01	14	.64	.01	.11	1	2580	
	L68+00N	62+00E	53	19	16	470	.1	102	3	29	1.32	16	5	ND	1	18	2.1	9	2	370	.13	.023	2	16	.05	400	.01	12	.47	.01	.13	1	1287	
	L68+00N	62+25E	31	19	21	307	.6	141	3	66	1.51	10	5	ND	1	39	6.8	2, 7	2	205	.70	.027	5	16	.07	999	.01	9	.67	.01	.10		2239	
	RE1-68+1	90N-61+25E	60	94	27	4383	÷.6	733	39-	643	5:70	57	- 5	-ND-	1	113	15.7) 8	2	333	198	,095	- 4	13	.34-	572	-+:01~	-14-	50	.01	-14		2086-	
	L68+00N	62+50E	81	52	20	1831	· .1	427	8 (204	1.93	23	5	ND	1	48	11.4	7	2	329	1.50	.085	11	22	. 12	336	.01	13	.59	.01	.08	1	1190	
	L68+00N	62+75E		32		497				39	1.81	23	5	ND	1	11	2.5	8	2	358	.21	.035	7	22	.07	332	.01	8	.71	.01	.11	1	1181	
	STANDARI	D-C/CB+1200	19	60	- 37	.139	7.3	_76	-32	1113	4.16	42	19	7	37	52	19.1	-14	19	61	.50	.089	40	- 63	.91	183	.09	- 35	1.95	.08	. 16	-11-	2244	
																															_			

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

Page 2

			Te	ck	Ех	plo	ora	tic	n	(BC)) I	PRO	JEC	CT	171	5	FI	LE	#	92-	26	40						Pag	ge	3	AC
SAMPLE#	1 .					Ni ppm		Min ppm		As ppm					Cd ppm			V ppm	Ca X		La ppm			Ba ppm		B ppm	Al X	Na X		W ppm	Ba*
L68+00N 63+00E	78	30	19	487	.1	159	4	38	1.74	20	5	ND	3	10	4.5	7	2	294		.037	8	22	.05	248	.01	9	.59	.01	.12	1	1261
L68+00N 63+25E	63	27				123	3		1.44		5	ND	1	17	4.0	7		257		.023		17			.01		.47			<u>_</u>	1011
L68+00N 63+50E	66			616		156	5		2.09		5	ND	1	26	5.3	8	2	392		.042	14			263			.89			1 1	979
L68+00N 63+75E	48			335		87	3		1.29		5	ND	1		2.2		2	268		.026		16					.55				925
L68+00N 64+00E	25	10	11	159	1	43	2	20	.76	6	5	ND	1	13	1.8	3	2	140	.32	.019	10	12	.04	170	.01	6	.45	.01	.08		995
L68+00N 64+25E				571			7		1.88		5	ND	1		12.8					.137					.01	16	.64	.01	.09	1	1212
L68+00N 64+50E	31			422			4		1.74		5	ND	1		5.2			208		.033			.10		.01	6	.72			1	1223
L68+00N 64+75E	1			620			11		2.22		5	ND	1		7.6					.061							.78				1395
L68+00N 65+00E	29		7			56	3		1.14		5	ND	1	29	4.1	6		123		.024				385				.01			1104
L66+00N 55+00E	46	19	31	332	.2	75	2	15	1.14	17	5	ND	1	9	.5	20	2	265	.03	.015	10	13	.02	129	.01	7	.32	.01	.05		1028
L66+00N 55+25E		27					4		2.50		5	ND	1	8	.7			293		.032		12			.01		.72			1	1000
L66+00N 55+50E	22			114		19	2		1.11		5	ND	1	7	.6	2		83		.016			.04		.01	8		.01		1	1673
L66+00N 55+75E	41					44	4		2.66		5	ND	2	6	.5	8		191		.030	5	10	.03	149	.01		.63				1776
L66+00N 56+00E		24		273		45	4		1.64		5	ND	1	7	.6	9		161		.023	7	10	.03	127			.54			- 9000 O.A.	1449
RE L66+00N 57+25E	17-	• 11	- 6	. 92		18	2	~ 21	.75	4	5	ND	·· 1	3	.6	4	2	85	.02	.014	10	11	.01	115	.01	6	.24	.01	.04		832
L66+00N 56+25E				543			5		1.74		5	ND	1	3				279		.025		16			.01		.52			1	
L66+00N 56+50E	26			_339			9		5.00		5	ND	2		1.0			184		. 165		33			.01		1.29			1	1840
L66+00N 56+75E	160					504			8.61		5	ND	1		36.9			624		.060				1699			2.93				3654
L66+00N 57+00E	50			334		63	2		1.34		5 5	ND	1					226		.019		10					.39				
L66+00N 57+25E			10	96	•7	19	2	24	.78	2	2	ND	1	3	,5	3	2	91	.02	.014	10	11	.02	110	.01	(.24	.01	.04	1	819
L66+00N 57+50E	69	26		435		92	2		1.54		5	ND	1	14	.7			477		.023				241			.59				1181
L66+00N 57+75E	52			255			2		1.18		5	ND	2	6	.4	8		241		.016				164		8	.54				1031
L66+00N 58+00E	21		19	150			2		.93		5	ND	1	28	3			115		.016				1562		7			.08		47669
L66+00N 58+25E L66+00N 58+50E	30	15	54 31			46 37	3		2.11		5	ND ND	1	24 23	2.7			291 176		.036				1220 862			.91				9565- 3032
LOOTUUN JOTJUE	30	13	21	191		37	2	17	1.14	10	2	RU	2	23	•••	0	2	1/0	.08	-014	0	10	.05	002	.01	y	.46	.01	. 10		3032
L66+00N 58+75E			25	141		28	2		1.24		5	ND	1	35	.2			153		.021				1009							4183
L66+00N 59+00E	16		10			23	3	18			9	ND	2	7	.7			112		.021				440					.10	- 2000 A 2000	1346
L66+00N 59+25E	36			368		56	3		1.97		5		1	25	.7			249		.039				419				.01			1336
L66+00N 59+50E	37			² 458		73	4		3.33		5		3	45	1.9	10		274		.186				981							13874
L66+00N 59+75E	31	25	29	330	.0	56	3	22	1.80	18	6	ND	2	27	1.1	9	2	201	.02	.035	5	11	.03	1236	.01	12	.50	.01	.15	1	8052
L66+00N 60+00E						113			2.67		7				5,2					.082				1197					.13		5437
L66+00N 60+25E									4.34		9				6.8					.112				1199			.54				3605
L66+00N 60+50E					- 100 P P	94	5		4.19		5	ND			2.2			172		.115				798						1	
L66+00N 60+75E			70			44	1		5.51		5			149	_ .5			60		.046			.04				.22				
L66+00N 61+00E	24	20	29	283		46	3	50	1.81	15	5	ND	1	50	3.6	6	2	153	.05	.031	3	9	.03	734	.01	11	.45	.01	.14		1861
L66+00N 61+25E			46	345		57	3		2.52			ND			2.8	8		170		.083				607							
L66+00N 61+50E	1 37	47	46	426	1867	83	- 4	62	2.64	26	5	ND	2	47	2.6	9	2	224	.07	.073	<u>د</u>	14	. 04	738	01	12	.59	01	16		2459

F L66+00N 61+75E L66+00N 62+00E L66+00N 62+25E L66+00N 62+75E L66+00N 63+00E L66+00N 63+00E L66+00N 63+25E L66+00N 63+25E L66+00N 63+25E L66+00N 63+50E	31 19 49 39 68 23 72 22 58 18 72 29	m ppm 0 27 6 28 9 19 9 30 3 13 2 13	221 233 406 802	.3 .1 .4 .8	997 pm 36 44 72	5 4	20	% 1.74	ppm	ppm		Th ppm		- COM - AND C.		Bi	-	Ca	Р	La				Ti	B	AL		ĸ		Ba*
L66+00N 62+00E L66+00N 62+25E L66+00N 62+50E L66+00N 62+75E L66+00N 63+00E L66+00N 63+25E L66+00N 63+50E	29 16 31 19 49 39 68 23 72 22 58 18 72 25	6 28 9 19 9 30 3 13 2 13	233 406 802	.1 .4 .8	44 72	4	20		15	-				ppii	ppm	bbw t	nqc	×		ppm	ppm	*	ррт	*	ррт	*	*	% p	ADIB	ррт
L66+00N 62+25E L66+00N 62+50E L66+00N 62+75E L66+00N 63+00E L66+00N 63+25E L66+00N 63+50E	31 19 49 39 68 23 72 22 58 18 72 29	9 19 9 30 3 13 2 13	406 802	.4 .8	72			4		5	ND	7	34	1.5	4	2 1	177	.12	.041				412						2	1304
L66+00N 62+50E L66+00N 62+75E L66+00N 63+00E L66+00N 63+25E L66+00N 63+50E	49 39 68 23 72 22 58 18 72 29	9 30 3 13 2 13	802	.8		5			15	5	ND	2	34	3.2	5				.031	3	13	.04	360	.01	12	.45				1281
L66+00N 62+75E L66+00N 63+00E L66+00N 63+25E L66+00N 63+50E	68 23 72 22 58 18 72 29	3 13 2 13					50			5	ND	1		5.1					.036	7	20	.07	494	.01	10	.61				1423
L66+00N 63+00E L66+00N 63+25E L66+00N 63+50E	72 22 58 18 72 29	2 13	420				258				ND	2		9.4)												1.21				2578
L66+00N 63+25E L66+00N 63+50E	58 18 72 29				121	5	51	1.63	20	5	ND	1	y	1.5	5	23	567	.06	.024	4	19	.05	167	.01	10	.48	.01	.08	1	789
L66+00N 63+50E	72 29	9 1/	428	. ••	127	5	20	1.45	18	5	ND	1	5	1.9	8	24	435	.05	.022	2	19	.04	143	.01	13	.43	.01	.09	1	810
			377	.1	110	4		1.35			ND	1	4	1.6	8	24	455 .	.04	.018	4	19	.04	133	.01	13	.43	.01	.09	1	799
L66+00N 63+75E	220 24	9 22	444	. 1 '	128	7		2.38		5	ND	1		1.2	7				.035		15	.04	100	.01	12	.47	.01	.10	1	798
		6 83						3.80				4		1.5					.112							1.38			1	1039
L66+00N 64+00E	82 59	9 24	502		126	8	22	2.59	28	5	ND	2	9	.8	7	2 1	164	.03	.032	3	13	.04	135	.01	13	.56	.01	.11	1	867
L66+00N 64+25E 1	132 35	5 21	674	.1 ·	152	7	24	2.42	28	5	ND	1	12	1.9	23	2 3	514	.04	.040	5	14	.04	107	.01	5	.47	.01	.09	1	826
	66 31		418	.3		8		2.22		5	ND	3		1.9					038		15		138		9	.48			1	854
	48 41		243		56	6		2.31			ND	2	19	.6	5	2 1	100	.08	.034	6	11	.04	164	.01	8	.44	.01	.12	1	884
	42 25			.2		4		2.13			ND	2			4				.028				191		7	.60			1	791
L64+00N 55+00E	53 26	5 49	431	.4	89	4	28	1.62	24	5	ND	1	9	1.3	30	2 5	540	.05	-033	15	25	.05	180	.01	10	.60	.01	.06	1	813
L64+00N 55+25E	53 19	9 28	362	.1	85	4	33	1.68	16	5	ND	1	7	.9	15	2 3	396	.05	.019	19	16	.04	131	.01	7	.49	.01	.05	1	872
	77 20	6 28	487	.3		4		1.68		5	ND	2	5	.7					.024		32		154		9		.01		1	1009
	34 23		275	.1		6		1.82				1	10	.6					.032			.06				.47	.01	.08		1298
	33 48			.6		6		2.76		5		1	99	3.9					.087				784			.40				2096
L64+00N 56+25E	37 34	4 39	434	.4	76	5	27	2.56	29	5	ND	1	43	1.3	9	2 2	265	.05	.058	3	16	.05	943	.01	11	.62	.01	.13	1	5568
L64+00N 56+50E	31 22	2 32	360		67	5	23	1.64	23	5	ND	1	27	.8	6	2 2	291	.04	.033	2	15	.06	1413	.01	15	.66	.01	.12	î.	12889
	63 26		370	.1		5		1.56			ND	1	19	.9					.027	9			765			.54				2388
	76 21		413	. 1		4		1.56				1	10		16				.024							.59				1468
	37 21					5		1.76				1		1.3					.023							1.03				4412
L64+00N 57+50E	43 21	1 20	272	.1	57	4	21	1.57	14	5	ND	1	22	.4	8	2 :	516	.04	.030	2	15	.04	316	• U1	14	.53	.01	.09		1158
L64+00N 57+75E		9_7		.2		2		.65	7		ND	2	4	.5	7				.010	15			184		9	.24	.01	.03) (812
	97 32			.1		6		2.44				3	20	.5					.089	9			1243			.89			1	4657
	72 18			1		3		1.42			ND	2	11		13				.021							.49			1	847
	67 20		225	.7		3		1.06	9		ND	1	5	2.3	12				.017							.32			1	899
-RE L64+00N -57+50E	46 2	T 20	287	•1	59~	- 4	24	1.60	~10		· ND ··	1	- 22	1		2	552-		-050	5	15	104	- 328	01	15 -	56 -	01	10		1077
L64+00N 58+75E	24 12	2 12	179	.7		3	26	1.01	8		ND	1	5	.5	6	2 '	189	.03	.017	10	12	.03	159	.01	10	.40	.01	.04	1	789
	34 19			.5		3		1.09	7		ND	1	3	.3					.020	5	12	.03	91	.01		.36	.01	.05	1	840
		1 11				3		1.00	7			1	4	.7					.014			.03				.42			1	868
	37 24			•1	48	6		1.79	12			1	11	.5					.025		13			.01		.57			1	1439
L64+00N 59+75E	23 14	4 14	117	.4	19	3	21	1.07	6	5	ND	1	17	.6	3	2	85	.02	.018	6	10	.03	198	.01	13	.56	.01	.08	1	1339
L64+00N 60+00E	22 18	8 14	148	.4		4	43	1.46				1	7			2 .	126	.02	.017	7	10	.04	158	.01	10	.53	.01	.06	1	1992
L64+00N 60+25E	38 16 20 60	6 59	182	.5	32	6	69	2.25	13	5	ND	1	10	2.0	5				.031	6	12	.04	370	.01	13	.61	.01	.10	1	2373

			Te	eck	E	rpl	ora	tic	n	(BC)) I	PRO	JEC	T	171	5	FI	LE	#	€2-2	64	0					F	'ag	e 5	•	ACH
SAMPLE#			Pb ppm				Co ppm			As ppm					Cd ppm	Sb ppm (-	V ppm		P X	La ppm				Ti X'l				K X p		Ba* ppm
L64+00N 60+50E	70	84	51	554	1.4	76	11	214	6.86	62	5	ND	9	104	5.1	11	2	196	.22	.243) 3	19	.05	785	.01	11	.62	.01	.15	÷.	3416
L64+00N 60+75E				535						46	6	ND	7		7.2					.158	4	19	.09	702	.01	11	.93	.01	.20		2365
L64+00N 61+00E				295						25	5		3	45	2.4	8		185		.048				436					.14	ŝ.	1459
RE-L64+00N 62+25E	20	- 7	- 10	136		29	2	26			5		1		1.0	4 -	- 2	276	.07	.014	6	15	.04	271	.01	41 -		.01	.11		- 969
L64+00N 61+25E	39	35	46	374	.5	69				25		ND	1		1.5	9	2	225	.05	.060	2	14	.04	723	.01	11	.56	.01	.16		3018
L64+00N 61+50E	29	24	23	275	.4	46	4	55	1.90	13	5	ND	1		1.3	5	2	172	.12	.047	6	13	.05	391	.01	15	.53	.01	.13	1	1319
L64+00N 61+75E	23	13	21	181	.2	32	3	32	1.57	10	5	ND	1		1.6	6		189	.05	.025	7	13	.04	333	.01	11	.50	.01	.12	1	1201
L64+00N 62+00E				157				18	.96	8	5	ND	1	11	1.1	5	2	281		.018	- 4	13	.04	244	.01	15	.48			1	970
L64+00N 62+25E	20	9	7	127	1	28	1	23	.83	6	5	ND	1	9	1.1	3	2	265	.07	.014	5	13	.04	262	.01	10	.42	.01	.10		1011
L64+00N 62+50E	22	10	13	169		34	3		1.15		5	ND	1	14	1.5	4	2	242	.05	.018	6	16	.04	242	.01	12	.47	.01	.10	1	1082
L64+00N 62+75E	27	10	18	194		41			1.21		5	ND			1.9	5		268		.018				222						2000000	940
L64+00N 63+00E	21	10	17	170					1.32		5	ND	2	10	4.1	4	2	231		.015				215			.53				1000
L64+00N 63+25E	50	16		249		73			1.12		5	ND	1	7		8	2			.021				131							771
L64+00N 63+50E	30	10		146		48		24	.85		5		1	5		4		226		.009		12			.01						831
L64+00N 63+75E	42	11	6	158		62	2	27	.89) 6	5	ND	1	6	1.1	5	2	164	.08	.013	7	12	.04	87	.01	12	.36	.01	.08		851
L64+00N 64+00E	87			507		163			2.23	24	5	ND	1	9	2.3			389		.039				150							1061
L64+00N 64+25E		29		482		111			2.24		5		1	18	1.8	9		175		.045				276							1563
L64+00N 64+50E	202) 12		3.34		5		2	8	1.1	22		715		.037				213							1070
L64+00N 64+75E	94			191		49			2.58		5			18	.3	4		112		.029				188							911
L64+00N 65+00E	35	15	31	78		22	3	23	1.71	9	5	ND	2	37	.3	3	2	78	.07	.033	4	10	.05	274	.01	13	.46	.02	.22		1021
L62+00N 55+00E	56			542					8.63		5	ND			4.8			533		.022				555			.85				1322
L62+00N 55+25E	75			499		107			2.02				1		4.0			276		.031				371			.43				1362 1301
L62+00N 55+50E		23		395		86			1.72				1	14	1.6	11	4	547	.03	.028	13	18	.04	223	.01	11	.43			0000000	
L62+00N 55+75E	84			476					1.94				د	12	3.3	14-	2	405	.00	.030	18	23	.00	423	.01	13					1695 2463
L62+00N 56+00E	81	90	58	5637	72.4	498	5	12	1.74	43	2	ND			998223	-				.094		44	. 13	040	- 91	13	.69	.01	.12		2403
L62+00N 56+25E		183								(<u>11</u>		ND								.185				997 705							2191
L62+00N 56+50E				428		68		- 44	1.19	212	2	ND			4.4			295		.027				305							1341 1654
L62+00N 56+75E		25		550		92				14	5				3.0					.030				377							3341
L62+00N 57+00E		46		725		127				29	5		1		6.1			364		.118							.60		.12		1695
L62+00N 57+25E	52	25	61	413		2 75	5	26	1.00	5 18	5	ND	1	12	1.2	10	2	269	-06	.029	2	14	.04	387	.01	10	.40	.01	.00		1073
L62+00N 57+50E	20			163		31			1.34		5		2	12		4				.014			.04		.02				.06		1001
L62+00N 57+75E	66			446		91				28			1		2.3					.028			.04		.01				.11	2000000	1807
L62+00N 58+00E) 719		161			3.98						3.2					.046				512			.57				1485
L62+00N 58+25E		24		347		68			1.80				2							.020				353 392					.14		2039
L62+00N 58+50E	89	20	21	596	· ·	132	2 4	48	1.7:	5 52	2	ND	2	14	7.0	51	2	1102	1.09	.035	5/	47	.08	372	.UI	13	.0/	.01	. 14		2039
L62+00N 58+75E	41			300		56			1.8				2		1.2					.033			.04						.10		1726
L62+00N 59+00E STANDARD C/CB-1200		23	16	220	J 🖓	2 39) 5	- 28	2.73	5 22	5	ND	2	14	1.3	6	2	256	.09	.033	2	11	.04	214	.U1	-15	.40	.01	. 10	- 1963 - 19	1083

~

,

		Te	ck	Exţ	lor	atic	n	(BC	:)]	PRC	JE	СТ	171	L5	F	ILE	#	92-	264	40					F	ag	e e	5	~
SAMPLE#	Mo Cu ppm ppm			Sec. 28	li Co om ppm	Mn ppm		As ppm					Cd ppm	Sb ppm (V ppm	Ca %		La ppm		Mg X	Ba ppm	Ti X			Na %		W B ppm pp	8
L62+00N 59+25E	138 163									2								.031					.01	7	.28	.01	.09	2 148	8
L62+00N 59+50E	142 90									ND	3		LI			432		.073			.11				.83			1 215	
L62+00N 59+75E	58 67							33	5	ND	3		6.2					.082			.06				.61			1 309	-
L62+00N 60+00E		37 5						32		ND	2	53	3.2	9				.096		17			.01					1 357	
L62+00N 60+25E	34 59	29 4	493	.0 5	2 10	\mathcal{U}	2.27	21	5	ND	2	58	7.1)	8	2	205	.24	.065	. 4	16	.07	1220	.01	11	.68	.01	.14	1 525	1
L62+00N 60+50E	45 66	34 10	128	7 20	3 13	207	2.34	20	5	ND	1	02	8.4	9	5	211	1.84	.106	5	14	57	71R	.01	13	.47	.01	.15	1 450	0
L62+00N 60+75E	30 29			.8 4			1.69		5	ND	1		2.7	7	4			.050		15	.07		.01	18	.63			1 113	
L62+00N 61+00E	39 26			.4 7				22		ND	i		1.5	8		228		.046			.04		.01		.41			1 167	
L62+00N 61+25E	35 22				56 5			15		ND	4		3.2	6				.033					.01	15			.14	1 137	
L62+00N 61+50E	42 21				72 5			19		ND	1		2.7	8	3	271		.025		13	.04		.01			-	.12	1 106	-
				62					_					_	_		•=							• •		• •			
L62+00N 61+75E	26 16			.5 4			1.51			ND	1		2.1	5	2			.026		14			.01		.62			1 120	
L62+00N 62+00E	44 34				6 6			32	5	ND	2		2.1	9		318		.037		15	.06		.01		.56			1 247	
L62+00N 62+25E L62+00N 62+50E	44 24 54 20	21 3		.37 .38				26		ND ND			1.5	9				.046				422			.66			1 116	_
L62+00N 62+75E	76 65				53 10			18		ND			3.6	10 13				.033			.05 .29		.01		.45			1 97 1 131	
	10 05	20 (~ 10				,	ND	5	04		13	2	002	2.02		•••	51	. 27	570	• 4 1	10		.01	• 12		'
L62+00N 63+00E	186 100	16 16	539)2	2 2 59	27 15	247)	2.24	55	5	ND	1	135 (12.Z	29	2	812	4.85	.060	8	26	. 18	615	.01	35	.60	.01	.15	2 145	7
L62+00N. 63+25E	231) 76								5	ND	6	81	5.9	11	2	574	2.92	.067	7		.95	442	.01	20	.51	.01	.16	1 144	2
L62+00N 63+50E	113 47									ND	3	27	3.8	2				.026		26	.13	395	.01	13	.68	.01	.14	1 131	7
L62+00N 63+75E	319 306										14	206)	43.5)	82	2	2950	5.20	.151	>35	87					.95			1 183	
L62+00N 64+00E	190 83	67 12	265	.8:44	i4) 16	291)	3.09	60	7	ND	7	113	9.9	17	2	560	1.90	-085	10	28	.77	473	.01	19	.50	.01	. 18	1 145	4
L62+00N 64+25E	193 76	70 10	001	1 4		02	3 12	50	5	ND	٦	18	3.7	15	2	812	22	.021	7	30	11	303	.01	13	63	01	.12	1 104	0
L62+00N 64+50E	63 32				37 6					ND			4.6	8		238		.048		14	.08		.01	13			.18	1 108	
L62+00N 64+75E	59 40				71 12					ND	ž	49	2.9	3	3	136	.28	.071	6	15			.01	11			.22	1 128	
L62+00N 65+00E	52 27				57 8				5	ND	3	33	2.4	6	2	142		.057		13	.08		.01		.62			1 107	4
L60+00N 55+00E	112 17	38 3	385	.1 19	80 6	28	1 .90	34	5	ND	1		.8	16	2	251	.03	.024	6	16	.04	154	.01	6	.42	.01	.07	1 88	4
	0.0								-					~	~	- 47				~~	07					~	05		
L60+00N 55+25E	89 31			.1 8				14		ND			6.3		4	215	.10	.023	12	25			.01					1 98	
L60+00N 55+50E	79 33			.2 9				19		ND ND			3.2					.031			.03		.01 01-					1 127 1-131	
L60+00N 55+75E	51 26								5	ND	1	40	15 7) 12	2	40	. 11	.055	12				.02					1 142	-
L60+00N 56+00E	88 32							23		ND	3	16	1.9	29	2	527	.04	.033	17	24					.46			1 107	
			•••						-		-				-				••			,		•					-
L60+00N 56+25E	88 21			.1 1			2.01		5		2		3.8					.029			.05		.01		.56			1 195	7
L60+00N 56+50E	26 11			.1 3			1.59		5				3.8	4		190		.020		15			.03		.50	.01	.09	1 104	
L60+00N 56+75E	43 29			.1 4				22	5		2		.7	6	2			.057					.01		.53			1 162	
L60+00N 57+00E	27 15			.7 4				14		ND	1		1.6	6		176		.028					.01					1 121	
L60+00N 57+25E	39 22	22 2	281	.1 !	55 4	19	1.58	16	5	ND	1	22	1.0	8	2	281	.02	.024	4	12	.04	939	.01	14	.52	.01	.11	1 290	4
L60+00N 57+50E	35 17	20 3	227	.2	46 3	19	1.38	10	5	ND	1	14	1	7	3	250	.03	.021	4	12	n 4	322	.01	12	51	01	.00	1 117	'n
L60+00N 57+75E	39 46					131				ND			14.8					.050										5 231	
STANDARD C/CB-1200																													

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

			T	!ec	;k	E۶	τp]	Lori	ati(on	(BC) I	PRO	JEC	CT	171	5	FI	LE	# 9	2-2	264	:0					P	age	e 7		ACHE
SAMPLE#		Cu ppm						Co appra			As ppm		Au ppm			Cd ppm		Bi ppm p		Ca X			Cr ppm		Ba ppm	a Ti n 🎗			Na %		W ppm	Ba* ppm
L60+00N 58+00E	62	49	77	- 91	04	.3	122	2 7	135	2.41	23	12	ND	4	22	13.6) 18	24	432	.25	.077	12	23	.04	623	.01	13	.57	.01	.13	: ;	2411
L60+00N 58+25E												8		3			11	2 2		.17						5 .01			.01			2111
L60+00N 58+50E		17					58				20020000			2		3.3	7				.049					3.01			.01			1600
L60+00N 58+75E		18												2			9	2 2			.024						11		.01			1164
L60+00N 59+00E	1	32					74			2.15				2		1.2	9				.070		13		894							3490
L60+00N 59+25E	32	45	31	6	,58	.6	104	, 6	91	1.97	20	5	ND			5.6				.66				.07				.45	.01	.13		4692
L60+00N 59+50E		45				.8				1.36						6.0				6.59				2.82				.41	.02	.17	1 '	1909
L60+00N 59+75E										10.62			ND			5.7				1.38				. 15	371	1.01	19	.34	.01			1302
L60+00N 60+00E								5 10	308	3.07	30	6	ND	2		11.3				.50	.111	8	3 15	.08	1091	1 .01	12	.47	.01	.12		2053
L60+00N 60+25E		43		51			106			3.01			ND			3.8					. 155		5 15		1053				.01		1 7	2986
L60+00N 60+50E	37	31	36	5 40	.09	.5	78	35	126	2.72	: 27	5	ND	1		1.3	9	2 2	202		.060		5 11			0 .01			.01	. 15		1936
L60+00N 60+75E	29	24	27	27	275	.4	47	7 3		1.78			ND	2	28	1.2	7	2 1	182	.03	.042		5 10				12		.01		<u>ا ا ا</u>	1106
L60+00N 61+00E		12					31			1.06				2			5				.020		5 10					.47	.01	.09		660
L60+00N 61+25E	26	15			l61 🕺	.1	35	j 2	24				ND	2	13	1.5	6	2 1	173		.021		7 11			0.01			.01			663
L60+00N 61+50E	40	21	15	21	16 1	1.1	56	5 4	36	1.47	14	6	ND	2		1.2	7	2 2	231	.07	.022	8	3 13	.04	111	.01	14	.42	.01	.09	1	750
L60+00N 61+75E	34			5 32			50			2.01				1		3.7					.035		i 10		335							960
L60+00N 62+00E	50									2.92				3		1.2		2 1			.056					0,01						1134
L60+00N 62+25E	26									3.47				2		25.7				3.43								1.56				804
L60+00N 62+50E		12			41	়া	28			1.15				1		.8					.018							.56				745
L60+00N 62+75E	31	23	35	5 34	43	.1	56	54	9 0	2.45	i 12	5	ND	1	7	1.0	4	2 1	148	.02	.038	7	7 11	.04	80	/ .01	11	.55	.01	.07	1	821
L60+00N 63+00E	18					.8				2.91						1.9					.062			.07		9 .01						1119
REL60+00N_62+00E							76			2.74						2.1		·· 2 1			.052		5 11			2 .01	11		.01			1171-
L60+00N 63+25E				<u> 72 </u>			61			1.27					18	4.6	6				.021) 11			3 .01		.45	.01			986
L60+00N 63+50E	28						112			1.52				1	42	(7.3)) 9	2 3		1.39) 22			3.01			.01			914
L60+00N 63+75E	44	34	27	150	00>	.5	158	35	79	1.68	; 21	5	ND	2	32	4.3	12	2 2	257	.87	.042	9	9 19	.08	307	.01	11	.60	.01	.09	1	1195
L60+00N 64+00E		51		7 175			258			1.92						9.8				1.45								.45			-200000000 -	1399
L60+00N 64+25E		62					273			1.85						11.6				2.24				.70			13		.01		3336.76	1679
L60+00N 64+50E		56					186			2.07			ND			9.0				1.23				.33								1707
L60+00N 64+75E		309)		5 241) <u>8.56</u>						26.9				1.26				.13							1000 C 1000 C 1000	1166
L60+00N 65+00E	5	78	2	2 41	16	.3	266	38	2160	4.47	ソ5	6	ND	1	613	<i>(</i> 6.0 <i>)</i>	/ 2	2	20	12.22	,024	5	6	6.44	588	1 .01	2	.61	.02	.05	1	1093
STANDARD C/CB-1200	20		. 70	5 4°	(76 ⁾	7 E		v 70	1070	7.0/		21	7	70	57	10 2	17	24	50	50	097	6 10	1 41	.90	187	د ۵۵۲	्र ३ रद	1 04	08	17	11	2201

.

- ' - not number having int lot and durisants complete

TT							<u>Tec</u>		<u>xplor</u>	ati	on_((BC)	PF	OJE	CT 1	1715	<u>5</u> :	FICAT File d by: R/	# 92		23							£	£
SAMPLE#	Mo ppm	Cu ppn			Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe Ai X ppi					Cd ppm	Sb ppm	Bi ppm	V (ngq		La Copm	Cr ppm	Mg X	Ba ppm	Ti X p	B	Al X	Na X	K X F	30000	a* pm
M45249	44	71	92(1637)1.2	207	7	157 1	.86 2	5	ND	2	73	15.1	17	2	385	.82 .09	11	23	. 12	990	.01	13 .	.58	.01	.16	2 56	22
M45250	63	76	43	8923	.6	1004		88 1						39.2	8			2.63 .10		18	.37				.51		.11	1 11	
45293	23	32	16	930	.5	163		186 1						7.6	7			4.47 .12			1.80						.14	1 27	
M45301	74	127			1.0		13	215 2				2		20.4)	17	2	306 4	4.90 13	10		.90	416 🔣			.51	.01	.20 🛞	1 17	03
RE M45293	26	32	18	908	.5	165	7	191 1	.37 1	55	ND	3	68	7.4	6	2	145 4	4.59 .13	14	14	1.83	429	.01	16	.41	.01	.14	1 22	47
45302	14	38	33	478	.6	66	7	117 1	.97 1	5 5	ND	3	53	3.8	5	2	43	.43 .06	6 7	0	.17	659	.01	9	.52	.01	.13	1 338	23
45303	8	42	25	273	.6	65		172 2		5				2.4	ź	ž	41	.62 .06		12	.24		.01				.12	1 87	
45304	10	36		422	.6	70		140 1						3.5	3	2		.60 .06		9		1051				.01		1 213	
DATE	RECEI		- SAM Geoch	PLE 1 Em Ba	YPE:	MOSS I Ysis i	MAT BY WHO	BA* DLE RC	CK ICP.	SAMPLE <u>Samp</u>	FUSEI	D WITH eginni	H 1.2 ing /F	GM LIB RE' are	302, A <u>e dupl</u>	NALYS icate	SIS B' samp	Y ICP.				IT BY I				FIED	B.C. A	SSAYER	s
DATE	RECEI		- SAM Geoch	PLE 1 Em Ba	YPE: ANAL	MOSS I Ysis i	MAT BY WHO	BA* DLE RC	2 GM S CK ICP.	SAMPLE <u>Samp</u>	FUSEI	D WITH eginni	H 1.2 ing /F	GM LIB RE' are	302, A <u>e dupl</u>	NALYS icate	SIS B' samp	Y ICP. $\frac{ples.}{ples}$								FIED	B.C. A	SSAYER	S
DATE	RECE		- SAM Geoch	PLE 1 Em Ba	YPE: ANAL 2 1992	MOSS I YSIS I DA	MAT BY WHO ATE I	BA* DLE RO REPO	2 GM S CK ICP.	SAMPLE Samp LED :	fusei des ba	D WITH eginni	H 1.2 <u>ing 'F</u> 27	GM LIB RE' are	302, A <u>e dupt</u> SIG	NALYS	BY.	Y ICP. $\frac{ples.}{ples}$.D.TO	YE, C				ERT I	FIED			S A L L L L L
24	RECE) Mo		- SAM Geoch	PLE 1 EM BA UG 22	YPE: ANAL 2 1992	Moss I Ysis I DA DA	MAT BY WHO ATE J K EJ Co	BA* DLE RO REPO	CK ICP.	OR	(BC)	p WITH eginni ~9 2 	H 1.2 ing 'F 27/9 ROJI	GM LIB RE' are 72- ECT ECT	302, A dup! SIG 171	NALYS	BY.	Y ICP. <u>ples.</u> <u>C.</u> LE #	↔} 92-2	.D.TO	YE, C		, J.WA	NG; C	ERTI P	age	4 <u>.</u>		44

Sample type: MOSS MAT. Samples beginning 'RE' are duplicate samples. BA* .2 GM SAMPLE FUSED WITH 1.2 GM LIBO2, ANALYSIS BY ICP.

					J	'eck	: Еж	plo	orat	cion	1 (1	BC)	PRO)JE	CT 1	L715	i I	FILE	s #	92-	·251	.8				Pag	je 3	
AMPLE#	Mo ppn	Cu	Pb ppm	Zn ppm	Ag ppm		Со	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm		1000000000	Sb ppm	Bi ppm	V ppm	Ca %		La ppm	Cr ppm	Mg X	Ba Ti ppm %	8 ppm	Al %	Na X	K W Ba* % ppm ppm
T45215	75	99	28	1451	1.1	356	22	467	3 51	32	•	ND	2	117	15.1	14	2	263	1.05	.126	11	21	.19	631 .01	17	.81	.01	.16 1 3279
T45216	78	72			ż			217			11	ND	2		8.4			211			9	16		687 .01	16	.46	.01	.12 1 3480
T45218	29	59			.7		6			17	6	ND	2		6.0					.067	8	13		683 .01		.43	.01	.12 1 3732
E ST45216	74	69			.6		-	206		25	6	ND	2		7.7					.075	8	13	.75	712 .01	17	.43	.01	.12 1 3443

Sample type: SILT. Samples beginning 'RE' are duplicate samples. BA* .2 GM SAMPLE FUSED WITH 1.2 GM LIBO2, ANALYSIS BY ICP.

ACRE ANIL VIEL		Teck Explo	ration (BC)	PROJECT 1715	FILE # 92-2641	Pa	ge 2
SAMPLE#	Mo Cu Pb ppm ppm ppm	10000A	000.000	U Au Th Sr Cd Sb ppm ppm ppm ppm ppm ppm	o Bi V Ca P La Cr Mg nppmppm X X ppmppm X	Ba Ti B Al Na ppm % ppm % %	K W Ba* Hg Xippm ppm ppb
ST45221	33 53 18	3 2072 .7 211 1	415 3.21 21	5 ND 2 59 9.5 10	0 2 126 .37 .073 12 12 .10	521 .01 4 .92 .01	.10 2 3327 80
ST45271	254 25 12) 18716 17.19 311			647 .01 2 .43 .01	
RE \$45225	23 18 2	2 1002 .1 101 4		· · ··· · · · · · · · · · · · · · · ·			.01 1 151 5
- ST45273	47 35 6	5 4283 .2 389 10		10 ND 7 138 8.5 2		332 .01 2 .28 .01	
(- \$45225	22 18 2	2 1021 .1 101 4	1 781 38.28 2	5 ND 8 29 26.8 2	2 9 5 .20 .019 2 3 .02	76 .01 2 .42 .01	.01 1 160 5
E. See	34 30 2	2 3699 .1 287 8	3 1068 37.54 2	11 ND 8 66 46.4 4	4 6 64 .57 .019 3 8 .05	208 .01 8 1.03 .01	.03 3 750 60
Fe-Seep 5 \$45230 \$45231	19 30 11	4076 .3 416 15	3 2352 30.66 2	5 ND 6 76 11.7 2	2 2 69 .41 .026 2 6 .04	446 .01 2 .46 .01	.10 2 1928 105
s45234	112 19 2	2 12967 .1 1770 52	0 9333 37.90 34	5 ND 19 210 4.9 2	2 5 11 1.66 .025 2 11 .03	195 .01 2 .06 .01	.01 1 329 15
- \$45240	13 23 2	2 279 .4 125 4	3 11271 29.03 33	5 ND 37 413 6.8 2		1370 .01 2 .15 .01	
STANDARD C/CB-120	0 18 58 39	9 128 6.9 70 3	1 1040 3.96 38	17 7 37 52 16.9 15	5 19 56 .48 .083 36 58 .88	187 .08 35 1.88 .07	.16 10 2075 1600

APPENDIX IV

•

Analytical Procedures

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C., Canada V6A 1R6 Telephone: (804) 253-3158 Fax: (604) 253-1716

Geochemical Methods Acme Analytical Laboratories Ltd.

11 **1** 1 1 1 1 1

<u>Soil Preparation:</u> Dry soil or silt sample up to 1 Kg at 60 deg.C and sieve to -80 mesh.

<u>Rock Preparation:</u> Rocks or cores are crushed to -3/16" and 250 gm is split out. This split is pulverized using a ring mill pulverizer to 99% -100 mesh.

<u>ICP Analysis:</u> 0.50 gm sample is digested with 3ml 3-1-2 HCL-HN03-H2O at 95 deg.C for one hour and is diluted to 10ml with water. This leach is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K, Al.

<u>Gold Analysis (Fire Geochem):</u> 10 gm is ignited at 600 deg.C for 4 hours and fused with F.A. flux. The dore bead is dissolved in Aqua Regia and analysed by ICP.

Detection limit for Au 1 ppb Pt 3 ppb Pd 3 ppb Rh 3 ppb

** Larger sample - on special request.

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C., Canada V6A 1R6, Telephone: (604) 253-3158 Fax: (604) 253-1716

GOLD & SILVER BY FIRE ASSAY

1 A.T is mixed in dry reagent flux with 1 Ag inquart and fused at 1000 deg C for 45 to 60 mins. The resulting Ag bead from cupellation is dissolved in aqua-regia. Au is analyzed by ICP. High Ag is obtained from the difference between the bead weight and the Au value. Wet acid leach Ag will also perform to obtain low grade Ag and to check Ag value obtained by fire assay. The procedure for wet acid Ag is same as below.

ASSAY FOR CU, PB, ZN AND AG

In 250 ml volumetric flask, 1 g sample is digested in 60 ml of aqua-regia for one hour and diluted to 250 ml. analyzed by ICP.

WHOLE ROCK ANALYSIS

0.2 g fused with LiBO2, dissolved in 100 ml dilute acid, analysed by ICP. This procedure is also the same for total BA.

HEAD OFFICE: 852 EAST HASTINGS STREET, VANCOUVER, B.C., CANADA V6A 1R6 TEL: (604) 253-3156 FAX: (604) 253-1716

APPENDIX V

.

ż

Rock Sample Descriptions

SAMPLE NUMBER	LOCATION COMMENT	SAMPLE DESCRIPTION
45201	Nod Grid - just SE of L48N, 47+50E, ele. 1500m, along creek	≈60cm chip thru weakly rusty Poker Chip black shale, HW of nodular barite zone, no visible pyrite, non-calcareous, non-siliceous, S ₁ 122/85NE (cleavage at high angle to bedding as noted from pencil rods) ran: 2685 ppm Ba
45202	SW of Nod Grid, along creek, ele. 1405m	1.0m chip same as 45201 plus: weakly graphitic, good bedding, likely Pregnant? shale, S ₀ 160/32SW, S ₁ 118/80SW, L ₁ 28→300 ran: 5848 ppm Ba
45203	SW of Nod Grid, along creek, ele. 1350m	1.0m chip thru weak-moderately rusty Poker Chip shale with local Porcellanite bands, weak-moderately graphitic, S_0 142/30SW, S_1 120/85NE ran: 2766 ppm Ba
45204	West of Nod Grid, along creek, ele. 1125m	1.0m chip thru moderately rusty Poker Chip black shale, local concretions, S ₁ 110/75SW ran: 2656 ppm Ba
45205	South of Nod Grid, Central claims, along creek, ele. 1300m	1.0m chip thru moderately rusty Poker Chip with Porcellanite bands, weakly graphitic, S_0 130/35SW ran: 908 ppm Zn, 13.1 ppm Cd, 235 ppm V, 1192 ppm Ba
45206	Nod Grid, just off L44N, 47+00E, ele. 1600m	1.2m chip thru Nodular Barite; spherulitic barite nodules up to 4mm diameter (2mm mode),nodules circular to ellipsoid and often in discontinous wavy bands along bedding, ± narrow ≤3mm shale bands, overall more barite than shale matrix and bands, S ₀ 105/55NE ran: 296658 ppm Ba (29.7%)
45207	Nod Grid, just off L44N, 47+00E, ele. 1600m	Same as 45206 plus: 1.0m chip thru Nodular Barite; more shale matrix and bands than nodular barite, S _o 110/70NE ran: 19410 ppm Ba
45208	Nod Grid, just off L44N, 46+50E, ele. 1585m	1.0m chip thru Poker Chip shale, in footwall of nodular barite zone, S ₀ 120/72NE ran: 4430 ppm Ba
45209	Nod Grid, just off L44N, 46+75E, ele. 1592m	1.0m chip thru Poker Chip shale, in footwall of nodular barite zone, closer to zone than 45208 ran: 4671 ppm Ba
45210	Nod Grid, 3m north of L44N, 47+75E, ele. 1615m	1.0m chip thru weakly siliceous, slightly silty Poker Chip shale, in hanging wall of nodular barite zone, bedding and cleavage not measureable ran: 1569 ppm Ba

•

SAMPLE NUMBER	LOCATION COMMENT	SAMPLE DESCRIPTION
45213	NE of B/L of Nod Grid, between L50N & 44N ele. 1385m	1.0m chip thru weakly rusty Poker Chip shale, no visible sulphides, along creek, S_0 130/58SW
45214	NE of B/L of Nod Grid, between L44N & 50N, ele. 1375m	1.0m chip thru weakly rusty black Porcellanite (POR), just below sample 45213 along creek, S_0 140/45SW
45217	NE of B/L of Nod Grid, between L44N & 50N, ele. 1455m	1.0m chip thru locally moderately rusty Poker Chip shale (PCP), along creek, slightly warped bedding, S ₀ 112/30SW, S ₁ 100/60SW, L ₁ 10→280 ran: 236 ppm Zn, 2.46% Fe, 2629 ppm Ba
45220	South of 1616 peak, ele. 1275m	1.0m chip thru weak to moderately rusty PCP, trace disseminated pyrite, S_0 160/40NE, S_1 140/60NE, strong cleavage (rods), along creek ran: 2754 ppm Ba
45223	South of 1616 peak, ele. 1418m	1.0m chip thru weakly rusty Pregnant shale (PR), beds 0.5cm-7cm wide (mode 2-5cm), mesoscopic fold 40->200, S_0 110/35SW, along creek
45224	South of 1616 peak, ele. 1790m	1.0m chip thru weakly rusty PCP, S ₀ 160/60SW, S ₁ 130/40NE, \approx 50m downstream from iron seep ran: 3538 ppm Ba
45227	Along bank of Bowerhenney Creek, south of Seep Grid ele. 1185m	1.0m chip thru moderately rusty POR, beds 1-4cm wide, wavy folded, S_0 135/60SW, bedding roughly parallel to axial plane of tight to isoclinal folds ran: 10.3 ppm Cd, 174 ppm V
45228	Upper Bowerhenney Creek tributary, North of Seep Grid, ele. 1370m	1.0m chip thru moderate to strongly rusty POR with local PR beds, beds 1-4cm strongly folded in variable directions, local quartz-carbonate veinlets up to 2cm wide, no visible pyrite ran: 1051 ppm Zn, 7.3 ppm Cd, 143 ppm V
45229	Just downstream from #45228, ele. 1330m	1.0m chip thru moderately rusty POR/PR? (mostly POR), locally strongly graphitic, trace pyrite, S_0 140/80SW
45232	Seep Grid, along Bowerhenney Creek ele. 1190m	50cm chip thru PR shale, contains laminated pyrite (up to 0.5cm) and disseminated pyrite, beds 1-5cm, S_0 140/50SW ran: 4.10% Fe
45233	Seep Grid, along Bowerhenney Creek ele. 1178m	1.0m chip thru weakly laminated and disseminated pyrite in PR shale, just upstream from iron seep & waterfall, S_0 010/50E

SAMPLE NUMBER	LOCATION COMMENT	SAMPLE DESCRIPTION
45235	Seep Grid, along Bowerhenney Creek, ele. 1170m	1.0m chip thru laminated pyrite (0.8cm band), weakly disseminated pyrite, strongly graphitic, basically at base of waterfall and major iron seep, transition from pregnant to poker chip shale
45236	NW of Warneford Creek, ele. 1140m	1.0m chip thru weak to moderately rusty PCP with local nodular barite zones (up to 1m wide), bedding folded and distorted, S_0 000/30E, S_1 015/60SE ran: 21155 ppm Ba
45242	NW of Warneford Creek, ele. 1000m	1.0m chip thru PCP with nodular barite, nodules 1- 2mm round and squeezed to ellipsoid shapes, concentrated in discontinuous bands up to 2mm wide, S_0 000/36W ran: 266159 ppm Ba
45243	NW of Warneford Creek, ele. 1020m	Same as #45242 plus: 150m upstream, some sections no barite nodules, $S_0 000/30E$ ran: 226420 ppm Ba
45245	NW of Warneford Creek, ele. 1156m	Same as #45242 plus: further upstream, S_0 140/60SW, S_1 140/80SW ran: 245042 ppm Ba
45247	NW of Warneford Creek, ele. 940m	1.0m chip thru PCP with local nodular barite zones, S_0 118/45SW, S_1 096/50SW ran: 56999 ppm Ba
		·

SAMPLE NUMBER		
45252	at main fork in upper Bowerheney Ck, south of Nod Grid.	Grab of porcellanite with trace pyrite and blue stain on fractures.
45253	Near main fork in upper Bowerheney Ck, @ 1435m elevation on west branch. Nod Grid area.	Grab of nodular barite horizon in laminated shale. Ran: 135160ppm Ba.
45254	Nod Grid L44N - 43+25E	Grab of rusty pregnant shale, trace Py on fractures. Ran: 224ppm Zn.
45255	Nod Grid B1.50E - 48+50N	Grab of thick bedded, siliceous shale (Pregnant Shale) with graphitic partings.
45256	Nod Grid 49+25N - 50+50Ë	Grab of rusty black porcellanite with trace disseminated Py.
45257	Nod Grid L48N - 47+25E	1.0m chip of rusty, laminated black shale. Haning wall to nodular barite, ran: 7848ppm Ba.
45258	Nod Grid hand trench A SE	Chip from 0.5m to 1.1m, poker chip shale. Footwal to nodular barite, ran: 1707ppm Ba.
45259	Nod Grid hand trench A SE	Chip 1.1 to 2.1m, poker chip shale. Footwall to nodular barite, ran: 1830ppm Ba.
45260	Nod Grid hand trench A SE	Chip 2.1 to 3.2m, poker chip shale. Footwall to nodular barite, ran: 1337ppm Ba.
45261	Nod Grid hand trench A SE	Chip 4.2 to 5.2m, poker chip shale. Footwall to nodular barite, ran 2124ppm Ba.
45262	Nod Grid hand trench A SE	Chip 5.2 to 6.2m, poker chip shale. Footwall to nodular barite, ran: 2734ppm Ba.
45263	Nod Grid hand trench A SE	Chip 6.2 to 7.2m, nodular barite. Ran: 302714ppm Ba.
45264	Nod Grid hand trench A SE	Chip 7.2 to 8.2m, nodular barite. Ran: 314099ppm Ba.
45265	Nod Grid hand trench A SE	Chip 8.2 to 9.4m, nodular barite, trace Py. Ran: 244827ppm Ba.
45266	Nod Grid hand trench A SE	Chip 9.4 to 10.2m, nodular barite, trace Py. Ran: 183598ppm Ba.
45267	Nod Grid hand trench A NW	Chip 5.4 to 7.4m, poker chip shale, NE side of nodular barite (HW). Ran: 4026ppm Ba.
45268	Nod Grid hand trench A NW	Chip 7.4 to 9.4m, poker chip shale, NE side of nodular barite (HW). Ran: 2008ppm Ba.

- 1

.

SAMPLE NUMBER	LOCATION COMMENT	SAMPLE DESCRIPTION
45269	Nod Grid hand trench A NW	Chip 9.4 to 11.4m, poker chip shale, NE side of nodular barite (HW). Ran: 1923ppm Ba.
45270	Nod Grid hand trench A NW	Chip 11.4 to 14.2m, poker chip shale, NE side of nodular barite (HW). Ran: 2959ppm Ba.
45272	Longwalk Ck. 1220m elev.	1.0m chip, rusty dark grey shale with mm scale Py laminations. Includes 10cm fault zone. Ran: 3303ppm Ba.
45275	Bowerheney Ck., second side Ck south of heli-pad 1080m elev.	1.0m chip across rusty fault zone which separates porcellanite to the west from bioclastic limestone to the east. Ran: 1787ppm Pb, 2028ppm Zn, 4.3ppm Ag,6.8ppm Cd, 164ppm V, 3736ppm Ba.
45276	Same as 45275, but at 1100m elev.	Grab from black, graphitic porcellanite with fracture and breccia matrix fill Py. Ran: 209ppm Zn.
45283	Creek traverse, north side of Warneford River. 1210m elev.	Composite grab over 0.5m of nodular barite hosted by poker chip shale. Ran: 111579ppm Ba.
45284	Same as 45283, at 1040m elev., at junction with main ck.	Grab of distinctly laminated shale with sparse barite nodules and trace Py. Ran: 19907ppm Ba.
45286	Same as 45283, at 980m elev. in main ck.	Grab of distinctly laminated unit with Ba nodules and minor disseminated Py. Ran: 48153ppm Ba.
45288	Same as 45283, at 960m elev. in main ck.	Grab of Pregnant shale with Ba nodules and minor Py, also blue powder on fracture surfaces. Ran: 19271ppm Ba.
45289	Near 45283, at 1145m elev.	Grab of 30cm x 30cm float boulder of massive to veiny barite. Ran: 484714ppm Ba.
45290	Ridge traverse north of Warneford River, 1187m elev.	0.5m chip of massive barite in silty shale (distinctly laminated unit?). Ran: 392204ppm Ba.
45291	25m downhill from 45290.	Grab of nodular to laminated and massive barite hosted by DL? Ran: 183547ppm Ba.
45292	Same as 45290, at 1170m elev.	1.0m chip through nodular to massive and laminated barite with minor Py (Poker Chip shale host?). Ran: 189699ppm Ba.

APPENDIX VI

r

Soil Sample Descriptions

l

l

1992	SOIL	SAIPL	ES		PROPER	TY PROJECT	r _/	715			SNP	LER DOUG	NIKIRK ,
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	NORIZON	COLOUR	PARTICLE SIZE	X	ROUND	COMP	SLOPE	_	COMMENTS	
138+00rl	50+00E	15	5	BM	Jø					1505			
<u>.</u>	50+25E	20	10	BM	DB					1505			
<u></u>	SOTSOE	20	10	BM	LB					1SE			•
n [.]	50+75 E	20	10	BM	LB					10°E			
11	51+00€	20	10	BM	DB			·		28E			
11	51+25E	30	10	BM	LB					35 E			
38+000	SITSOE	30	10	BM	کد					35°E		SHALE %	@ 51+50E
<u> </u>	51+75E	30	10	βM	DB					35°E			
<u>n</u> .	52+00E	30	10	BM	38					35°E			
<u>1</u>	52+25E	20	10	BM	Ъв					20°E			
4	52150E	30	10	BM	JB					20°£			
h	52+75E	20	10	BM	Эв					20°€			
	53+00E		10		4					30°€			
					-								
													,,
				· · · · ·	·								
													~
												<u></u>	
								╞──┤					
								┼──┤					
								┟──┤					
								╞──┨				· · · · · · · · · · · · · · · · · · ·	

Nod Grid

1.

160

-

Linnetting

1992	SOIL	SAMPL	ES		PROPER	TY PROJEC	ı	715		-	SANP	LER DOUG NIKIRK
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	TNICK (cm)	NORIZON	COLOUR	PARTICLE SIZE	x	ROUND		SLOPE	SEEPACE	CONNENTS
L40+000	50+00E	30	10	ВM	DB					10°E		
ι(50+25E	40	10	BM	DB					40° E		
11	50+ 50E	30	10	BH	48					40°E		
	_50+75E	30	10	BM	DB					40°E		
4	SItooE	20	10	BM	DB					40°E		
4	51+25E	30	10	BM	Dв					35°E		•
L40+00N	SITSOE		10	BM	ЭB	,				SS€		
11	SITTSE		10	BM	DB					3SE		
li –	52+00E		10	BM	R					25°E		
11	52125E		10	BM	Æ				_	25°E		
(1	52+50E		10	GM	DB					25E		
h	52+75E		10	вм	PB					zе		· · · · · · · · · · · · · · · · · · ·
640+00N	53+00E		10	BM	ЪB					SNE		
11	53+25E		10	BM	DB					20" JE		
a	53+50E		10	Вм	DB					20°E		
	53+75E		10	BM	DB		-			10°E		
71	54+00E		10	BM	LB					I°E		
n	54+25E		10	BM	LB					20°E		· · · · · · · · · · · · · · · · · · ·
HOTOON	54+50E		10	BM	LB					№E		
. //	54+ 75E		10	BM	mB					10°E		
11	55+00E		10	BM	30					_		
11	55+25E		10		DB					10°E		- · · · · · · · · · · · · · · · · · · ·
4	55+SOE		10	Bm	BL					10°W		CLOSS CREEK @ 55+45E Ye in CRAAK BED
4	SS+95E		10		205							IL IN GREEK ALD
	56+00E		10	BM	LB					_		
-70,004	C 070012	~								-		
								+				
												· · · · · · · · · · · · · · · · · · ·
	· ·							┝──╂				· · · · ·
								\vdash				·····

"Nas Gris"

•

•••

Nos GRID

4

. 🔨

1992	\$ 01L	SAMPLI	ES		PROPERTY PROJECT							LER Doug NIKIRK
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	HOR I ZON	COLOUR	PARTICLE SIZE	X	RCLIND	COMP	SLOPE	SEEPAGE	COMMENTS
142+00N	50+00E	10	5	BM	LB					1		
16	50+25E	10	5	BM	LB					2SF		
h	50+50E	20	10	BM	DB					3SE		
11	50+75E	20	10	BM	ЭB					46°E		·
4	51+00E	20	10	BM	₽G					40°E		
h.	51+25E	20	10	BM	ÐB					30°E		
42+000	51+506	20	10	BM	ЭB					30°€		
n	SITTSE	20	10	BM	Лß					38E		
4	52+00E	20	10	BM	Ъв					2SE		· · · · · · · · · · · · · · · · · · ·
4	52+25E	20	10	BM	ЪB					25E		
11	52+50E	20	10	BM	عو					2°E		
4	52+75E	20	10	BM	ДB					æ`E		
42+00N	53+00£	20	10	BM	BL					25°E		
11	53+25E	20	10	BM	ЭB					25°E		
4	53+50E	20	10	BM	Ðß					28° E		
11	53+75E	20	10	BM	LB					20°E		
4	54+00E	20	/0	BM	DB					20°E		
4	54+25E	20	10	BM	Эß					15E		
42+00N	54+50E	ఎం	10	Bm	عد					15°E		
. 1	54+75E	20	10	BM	DB					10°E		
n	55+00E	30	10	BM	ЭB		·			10°E		
4	55+25E	40	10	BM	BL					10°E		
4	55+50E	20	10	BM	4B					10°E		
11	SSHASE	20	10	BM	LB					1°E		
42+00N	SCHOOE	20	10	BM	LB					10°E		
						· _						

3.

NOD GRID

4.

1992	SOIL	SAMPLI	ES		PROPER	TY PROJECT	<u>ا ا</u>	715	-		SAMP	LER DOUG NIKIRK
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	x	ROUND	TS COMP	SLOPE	SEEPAGE	CONNENTS
L 43+001	50+00E	20	10	BN	JB							
<i>L</i> 1	SOIZSE			BM	LB					-		
11	SDASOE			BM	JB					3SE		
	50+75E	20	10	BM	DB					SSE		
10	51+00E			BM	DB					35°E		
17	51+25E	30	10	BM	JB					35°E		
L43+000	SHSOE	30	10	BM	JB					300		% @ 51+45E
<u> </u>	SITTSE	30	10	BM	DB					35°E		
11	52+00E	30	10	вн	DB					35°E		· · · · · · · · · · · · · · · · · · ·
<u> </u>	52+25E	५०	10	BM	DB		~			35 E		
19	52+50E	20	10	BM	BL					35°€		
	52+75E	20	10	BM	ЭB					38€		
L43+000	53+00E			BM	Эв					18° <u>F</u>		CROSS CREEK @ 52+95E
1/	53125E	20	10	Вм	LB					15°E		
4	53450E			вн	LB					20°E		
- 4	53+75E			BM						20°E		
4	54+00E			BM						20°E		
<u>lı</u>	54+25E			Bn	LB					20°E		
L43toon	54+SOE			BM	LB				<u> </u>	20°E		· · · · · · · · · · · · · · · · · · ·
!	54+75E			BH	LB		_			20°€		
11	55+00E			βŋ	LB					SE		
	55+256			Bn	ЭB					10°E		
11	55+50E			BM					14	10°E		
<u> </u>	55+75E			Bn	JB					10°E		``````````````````````````````````````
<u>L43+aon</u> l	56+00E	30	10	ßm	3 8					ID E		
						•						1
												· · · · · · · · · · · · · · · · · · ·

A REAL PROPERTY AND

1992	\$ 01L	SAIPL	ES		PROPER	TY PROJECT	17	215			SAMP	LER DOUG NIKIRK
SAMPLE NO.	GRID LOCATION	DEPTN (cm)		NOR120N	COLOUR	PARTICLE SIZE	X	ROUND	TS COMP	SLOPE	SEEPAGE	CONNENTS
L46+00N	39+00E	30_	10	BM	LB					20°2		
"	39+25E	26	10	BM	LB					20° N		
11	39+50E	20	10	BM	40					ach		
н :	39+75E	30	10	BM	LB					_		· ·
11	40+00E	40	10	BM?	BL		. 			38°E		· · ·
1(40+25E	20	10	BM	MB					-		CROSS CREEK @ 40+10
L46+000	40+50E	20	10	BM	LB					3ö°W		
11	40+7SE	20	10	BM	MB					<u>3</u> 0°W		
<u> </u>	41+00E	20	10	TALUS FINES	MB					300		
ч	41+25E	۵۵	10	BM	MB					28°W		
u	41+50E	20	10	BM	MB					رم انه ک		
<u>u</u>	41+75E	20	10	BM	MB					ιs°W		
L46+00N	42+00E	20	10	BM	MB					<u>رچ،</u>		
н	42+25F=	20	10	BM	MD					15°W		
4	42+50E	20	10	DM	MB					15°W		
ų	42+75E	20	10	DM	20					15°W		- ··
"(43+00E	20	10	BM	LB					دى		·····
4	43+25E	20	10	BM	NB					12°W		
L46+00nd	43+50E	ଌ୦	10	BM	MB					10°W		
- A	43+75E	20	10	BM	MB					10°W		
- 4	44 +00 Æ	20	10	BM	MB					180		· · · · · · · · · · · · · · · · · · ·
4	44+25E	20	16	BM	MB					10° W		
4	44+50E	ఎం	10	BM	MB							
4	44+75E	20	10	BM	MB					<u> الم 16</u>		
LUGtoch	45+00E	٥د	10	BM	DB					א <i>מצו</i>		
u	45+25E	20	ø	BM	MB				_	IS NE		
4	45+50E	20.	10	BM	MB					L'AF		
4	45+751=	ఎం	10	BM	MB					المحا		
14	46+00E	20	10	BM	MB	•				15 N		
u	46+25F=	20	10	BM	LB					لرمحا		
L46+000l	46+50E	20	10	BM	MB					15°N		
l												. · · · · · · · · · · · · · · · · · · ·
		1				<u> </u>		L				

"Nos Gris"

5-

NOD GRID

6.	

1992	S 01L	SAPL	ES		PROPER	TY PROJEC	<u></u>	715		SAMPLER DOUG NIKIRK				
SAMPLE NO.	CRID LOCATION	DEPTN (cm)	THICK (cm)	NORIZON	COLOUR	PARTICLE SIZE		ROUND	COMP	SLOPE	SEEPAGE	COMMENTS		
1-46+00N	46+75 F-	20	18	BM	MB		_			15 N				
/1	47+00E	20	10	BM	MB					15°N				
11	47+25E	20	10	TALUS MAKS	MD					له ي				
ц.	47+50E	30	10	BM	MB					15 N				
10	47+75E	20	10	BM	MB					ISN				
11	48+001	20	10	BM	nB					15°N				
11	48+251=	20	10	BM	MB					15°N				
L46 +00 N	48+SOE	20	10	BМ	MB					15°2				
((48+75E	20	10	BM	MB					15°N				
10	49+00E	20	10	BM	LB					1				
11	49+25E	ఎం	10	BM	MB					SE				
4	49+50/=	20	10	BM	мв					15°W				
11	49+75E	30	10	BM	MB					15ml				
146+00d	50+00 FE	20	10	BM	MB					-				
											_			
												· · · · · · · · · · · · · · · · · · ·		
								<u>├</u>			•			
											_			
								┟──┤				· · · · · · · · · · · · · · · · · · ·		
								┟───┤				· . 		
								┟──┤						
		-+						<u> </u>				<u></u>		
												······		
						·								
												- <u></u>		
			 					┝──┤						
		1												

) .

real and a second real for

North Contractor

Nos GRIS

F.

1992	S OIL	SAMPL	ES		PROPER	TY PROJECT	r _/	715			SAMP	LER DOUG NIKIRK
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	NOR120N	COLOUR	PARTICLE \$12E	x	ROUND	COMP	SLOPE	SEEPAGE	CONNENTS
L48+00N	39+00F	20	10	BM	LB.							CROSS CREEK @ 39+15
11	39+25E	40	10	BM	DB					10 2		
ч	39+50E	20	10	BM	LB					-		
ų ·	39+75E	26	10	BM	LB					l		
(₁	40+00E	26	/٥	BM	LB		-			(
u	40+25F=	20	10	BM	LB					_		
L48+000	40+50E	30	/0	BM	LB					15°E		
1	40+75E	30	10	BM	20					30°£		CROSS CREEK @ 40+75
	41+00E	30	10	BM	DB					-		
	41+25E	20	10	BM	LB					20°W		
/1	41+50E	20	10	Вм	LB					2° W		
1(41+75E	20	10	BM	LB					38°W		· · · · · · · · · · · · · · · · · · ·
L48+000	42+00E	20	10	BM	LB					380		
/(42+25E	10	5	BM	LB					20° W		·····
11	42+50E	20	10	BM	LB					200		
/1	42+75E	20	10	Вн	LB					<u>జిచి</u>		
11	43+00E	20	61	BM	LB					20°0		
u	43+25E	10	5	BM	LB					10°W		
148+00n	43+50E	20	10	BM	LB					42		
H	43+75E	30	10	BM	MB					1521		
<u>li</u>	44+00 E	20	10	BM	MB					15 m		
Le .	44+25E	20	10	BM	MB					15 D		
4	44+50E	20	10	BM	MB					SE		
11	44+75E	30	10	BM	LB		_			SE		
-48+00N	45+002	30	10	BM	DB					SE		
it	45+25E	20	10	BM	ЭB					-		
11	45+50E	20	10	BM	MB			`		_		
1	45+75E	20	10	BM	MB					_		
11	46+00E	೨೦	10	BM	LB	·				15°		
- 11	46+25E	20	10	BM	LB					15°W		
48+001	46+51E	20	10	An	LB					Isal		

"NOD GRID"

8.

a state 10

	1992		SAMPLI				TY PROJEC		-	-			SAMPLER DOUG NIKIRK		
	SAMPLE NO.	CRID LOCATION	DEPTN (cm)	TILICK (cm)	NORIZON	COLOUR	PARTICLE SIZE	x	ROUND	COMP	SLOPE	SEEPAGE	CONVENTS		
	L48+00N	46+75E	20	10	BM	MB					15 W				
	h	47+00E	20	10	BM	DB					152		CROSS CREEK @ 47+10		
	((47+25E									15ml		% C 47+25		
	<u>.</u>	47+50E	20	10	BM	LB					zo°u				
	16	47+75E	20	10	BM	LB					15 W		·		
	11	48+00E	20	16	BM	DB					15°W				
		48+25E	20	10	BM	ЭB					10°W				
	4	48+50E	20	10	BM	MB					18 W				
	۰,	48+75F_		10	BM	MB					50				
	4	49+00 E		10	BM	MВ					ร์ป				
:	4	49+25E	20	10	Bry	MB					10°W				
		49+50E		10		MB					10°W				
	ti i	49+75E		10	BM	LB					ริฟ				
	LyBrood	SOTOOE	20	10	BM	mВ					1		CAMP @ 48+00		
													· · · · · · · · · · · · · · · · · · ·		
ŀ		<u> </u>													
ļ															
ļ															
-															
ļ															
ļ													······		
Ļ															
Ļ													· · · · · · · · · · · · · · · · · · ·		
ļ															
													·		
· · ·															
							•								
· .															
Ļ															
L	<u> </u>		<u> </u>	1							[<u></u>		

1992	SOIL	SAMPL	ES		PROPER	TY PROJECT	17	215	SAMPLER DOUG NIKIRK			
SAMPLE NO.	CRID LOCATION	DEPTN (cm)		NOR120N	COLOUR	PARTICLE SIZE	*	ROUND	SLOPE	SEEPAGE	COMENTS	
L51+00N	47+50E	20	10	BM	DB				20°W			
11	47+75E	20	10	BM	DB				15 2			
11	48+00E	20	10	BM	LB				10°a)			
ц.	48+25E	30	10	βM	Эв				20°W			
4	48+50E	40	10	FINES	DB				28° W			
51+00N	48+751=	15	10	BM	LB				28 W			
	49+00E	10	5	BM	LB				26 2			
10	49+25E	10	5	BM	LB				ю°w			
(i	49+50E	10	5	FINES	æ				للأكرا			
11	49+95E	15	10	BM	LB				-			
-51+00N	50+00F	15	10	BM	LB				(
i(50+ZSE	15	10	BM	LB				ł			
4	50+50E	15	10	ßм	LB)			
4	50+75E	10	5	βM	1B				I			
4	51400E	_	5	BM	LB)			
51+00N	51+25E	15	10	BM	MВ				15°E			
h	SILSOE	15	10	Вм	мв				1			
4	51+75E	15	10	BM	MB)			
1.	52+00E		10	BM	OB				1			
4	52+25E	15	10	BM	LB	·			10°€			
SITOON	52+50E		10	BM	LB				1°E			
					_					·		
											······································	
								\vdash	 			
								<u>├</u> †	 		· · · · · · · · · · · · · · · · · · ·	
		[┝──╋				
								├╂	 			
									 		<u> </u>	
										ľ		

· · ·

.

NOD GRID

9:

Noo GRID

10.

in the second second

1992	SOIL	SAMPLI	ES		PROPER	TY PROJECT	ر	715		SAMP	DOUG NIKIRK	
SAMPLE NO.	GRID LOCATION		THICK (cm)	NORIZON	COLOUR	PARTICLE SIZE	×	ROUND		SLOPE	SEEPAGE	COMMENTS
52 toon	47+50E	15	ю	вm	LB					BW	-	
11	47+75E	15	10	BM	LB					نه حرا		
11	48+00 E	15	10	BM	Dβ					15w		
	48+25E	10	5	BM	B					150		
11.	48+50E	20	10	BM	JB					10° N		
-SZHOON	48+75E			BM	Lß					20 20		
- 11	49+00E	10	5	BM	LB					200		
н	49+25E			BM	LB					IS NA		
4	49+50E			BH	LB					15° N		
11	49+75E			BM	LB					للمحرا		
SZtoon	SO+00E			BM	LB					لدحمحا		
	50+25E			BM	18					152		
4	50+50E			BM	LB					ISAJ		•
4	50+75E		10	BM	48					15°N		
11	51+00E		10	BM	LB					15h		· · · · · · · · · · · · · · · · · · ·
52toon	51+25E		10	BM	LB					15N		
	51+50E			BM	LB					adn	L.	
	51+75E			BM	٥ß					2 NE		
	52+00E			BM	LB					25°N		······································
	52+25E			BM	OB					25°N		· ·
	52+50E		10	BM	LB				-	2811		, , , , , , , , , , , , , , , , , , ,
					-							
												· · · · · · · · · · · · · · · · · · ·
												· · ·
								<u>├</u> ┠				<u></u>
	<u> </u>											<u> </u>
				·								
								┝─┼				
						[· ·	1		

"Nod GRID"

ر،!!

1992	SO IL	SNIPL	ES		PROPER	TY PROJEC	r _/-	+15	 •	SAMPLER DOUG NIKIRK				
SAMPLE NO.	GRID LOCATION		THICK (cm)	NORIZON	COLOUR	PARTICLE SIZE	x	ROUND	SLOPE	SEEPAGE	CONNENTS			
LS6+00nl	45+00 E	20	10	BM	LB				20'14					
	45+50E	20	10	BM	MB				20° Nu					
Ц	46+00E	20	10	BM	LB				 20 MW					
l_{l} ·	46+50E	26	10	BM	23				 20° NW					
K	47+00E	20	10	BM	LB				 2800					
L56+001	47+50£	40	10	BM ?	BL				20° NU					
ч	48+00 E	20	10	BM	LB				 20%					
10	48+50F	20	10	BM	LB				25Å					
11	49+00E	20	10	TALUS FINES	BL				 30°N		9/2 @ 49 + 15			
"(49+50E	20	10		Эв				30'N					
LSGtood	50+00E	30	10	BM	ЭB				30%					
4	50+50E	20	10	BM	DO				 300		CROSS SMALL CREEK @ 50+45			
4	51+00E	10	5	TALUS FINES	LB			·	4°05		90 @ 51+10 SAMPLE @ 50+95			
ц	SHSOF	20	10	BM	DB				30°J					
LSGOON	52+00E	20	10	BM	Эв				 302					
			1											
	• .													
							-							
										·				
								·						
							-							

.

ien den kind

•	1992	SO [[L SNPL	ES		PROPER	TY PROJEC	TI	115			SAN	L 54+00N, L 49+0
	SAMPLE	GRID			4		PARTICLE	-	FRAGHE		<u> </u>	<u> </u>	T
	NO.	LOCATION						X	ROUND	COMP	SLOPE	SEEPAGE	E CONVENTS
	LASTOON	4475E	35	10	Bn	nB		L.			[-]		
		47OCE	30	10	<u>on</u>	mB		<u> </u>	I		-		
		25	20	10	DM	MB		Γ			-77	\Box	NOPULAR BARITE O/C
		50	25	10	pm	MB		\Box			-7		
		75	20	10	sm	mB				,	~		
		48+001	20	10	nn	MB				SL/to	_		
		25	30	10	nm	ns		1	1		-		
	145-00N		30	10	Bm	MB		\square	 	52 /40			
		75	30	10		MR	!	<u> </u>			-	<u> </u>	
		49100E	+	10		mB		-	+		-	<u> </u>	
		25	30	10		11			<u>├</u> ──		-	<u> </u>	
	'	50	30	10	BM	MB	<u>├</u> ────┦		┝─┦	┝──┦		\vdash	
		75	+		Bn	MD		╂──	┢──┦	┝──┦	-	├ ───┘	
			30	10	BM	MB		├	┟──┤	\$1	-	Ļ	<u> </u>
	L4Sroon	30+00 F	10	10	Bm/c1	LB		<u> </u>	┝──┦	54/ta	F	┝───┘	
		<u> </u>	├ ──	<u> </u>	<u> </u>	┝──┥			╂───┦	<u> </u>		┝───┘	
	L 54100N	4500Fz			BM	nB		┣—	\vdash	<u> </u>	7	⊢′	<u>- '</u>
	· '		30	10	BM	MB	j]			L	-7	└── ┘	
	'			10	Bm	LB				É	_7		·
	'	50	30	10	BM	mB				<u> </u>	-7		
	′	47+00R	30	10	BM	LB					-7		
	<u> </u>	50	20	5	Br	LB					-7		
		48+00E	25	5	BM	ĿB				2/fa	-7		the state of the second st
	L S4 HOON	50	30	10	om	mB				7	-7		·
			30			MB				SL/to	-7		"poker chip" o/C.
			<u> </u>	10	on	nB				2. 11			Shalle Old Stating (SURF
	+	50100E				nB				SLA		+	MARE UIL STOLLING COURT
	++		25		Bm	MB		\neg			~>	+	entra de la constante
		51400E	35	<u> </u>	jm	mB		\square		SAND SL/H	-		
			25						\vdash	-/104			010
						OB				a.).	-		
	L 54+00N	52+00E	25	10	BM	MB		-	⊢{	51/fa	>		OK Shale
	144+00N	50+00E	/∔	ił					⊢				50+ 45E power chip " 0/C
		30+00E to 56+00E		GR	AUITY	SUR	LUEY	LIN	E-	NO F	SAMA	LES	50+ 45 % port chip of C
	·	<u>/// / / / / / / / / / / / / / / / / / </u>	_ _	L	L		L		L			Ł	of the - O/G in creek (r
			•										
	(

d standards

بر ۲۰۰۰ ایس ۲۰۰۱ بر میر ۲۰۰۰ را همار ۲۰۰۰ رو میر ۲۰۰۱

1992	3011	. SAMPL	ES		PROPERTY PROJECT 1715						SAPLER GIMMY				
SAMPLE NO.	GRID LOCATION		(cm)	HORIZON	COLOUR	PARTICLE SIZE	x	ROUND		SLOPE	SEEPAGE	COMMENTS			
45+00N	39+00F	35	10	BM	ng		1			~>					
	25	35	10	BM	DB				CL	->>		ereek			
	50	35	10	BM	BM					-					
	75	35	10	300 .	MB				SL	-					
	40+00 E	35	10	3M	LB					~					
	25	35	10	on	LB	_				7					
	50	35	10	rsu	LB					7					
	15	40	10	Bn	DB					~~					
	41HOOF	25	10	hr	nß				56	-7					
	25	25	10	BM	MB				54/m	~					
	50	25	10	BM	MA					7					
	15	25	10	m	13					2					
	47.400E	25	10	om	LB					-					
	25	20	10	BM	LB					-					
	50	20	10	51	LB					-					
	15	20	10	BM	LB					-					
45100N	43400E	30	10	en	OB					-					
	25	30	10	Bm	03		6C		44 ₁ , ,	-					
	50	25	10	BM	DB					-7					
	75	25	10	BM	MB		60		sc/a	~					
	44100E	25	10	BM	MB					ת					
	25	55	10	BM:	MAS					~					
	50	45	10	Mr ?	nß					~					
	75	35	10	Br	MB					_7					
	1StOOF	25	10	BM	ng					~					
	25	20	10	Bn	OB					-7					
	50	25.	10	1m	ns				sc/m	2					
	75	25	10	Bm	MB										
	46100E	35	10	Ba	MB					-					
	25	35	10	ßM	MA			1	5× / se	-					
2 T	46+50 FC	30	10	BM	NS					-					

segura de la composición de la

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1992	102	SAIPL	FS					715		4 7+1	∞N ,	6. 5 m
IDENTITY ICON 1001 CON MERIZING DERIZING DERIZING DERIZING COMP SLOPE DERIZING DERIZING DERIZING COMP SLOPE DERIZING DERIZING <thderizing< th=""> <thderizing< th=""> <t< th=""><th></th><th></th><th></th><th>_</th><th></th><th>T</th><th>_</th><th></th><th></th><th></th><th></th><th>5,002</th><th></th></t<></thderizing<></thderizing<>				_		T	_					5,002	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				((CB)	HORIZON	COLOUR	SIZE	X	ROUND	COMP	SLOPE	SEEPACE	CONVENTS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L 474000	49100 E	20	10	BM	MB					7		
75 25 10 $6n$ 73 - - $L47hool 50hoo \in 25 10 6n nf_{5} - - L49hool 45hoo E 25 10 6n nf_{5} - - 25 25 10 6n nf_{5} - - - 50 25 10 6n nf_{7} - - - 50 25 10 0n nf_{7} - - - 75 30 10 0n nf_{7} - - - 26 25 10 0n nf_{7} - - - 50 30 10 0n Lg - - - - 75 25 10 0n Lg - $		25	20	10	Bn	LB					-7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	25	10	pn	MB					-7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			25	10	Bm?	DB.					-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147+00 m	50100 E	25	10 -	on	MB					-		
25 25 10 $6m$ $mr3$ $ 50$ 25 10 $0m$ $mr3$ $ 75$ 30 10 gm $mr3$ $ 46cosE$ 25 10 gm $mr3$ $ 21$ 25 10 gm $mr3$ $ 50$ 30 10 gm $mr3$ $ 50$ 30 10 gm $mr3$ $ 75$ 25 10 gm Lrg $ 149100N$ $47100c$ 25 10 gm LRg $ 149100N$ $47100c$ 25 10 gm LRg $ 50$ 10 gm LRg $ 45000c$ 20 10 gm LRg $ 45000c$ 20	1 19-004	151005	26	10									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 1700												
$75'$ 30 10 $5m$ $Fris$ -7 $CREEK 45+5c$ $46rcsF_{2}$ $2i'$ 10 $7m$ $Fris$ -7 $CREEK 45+5c$ $2i'$ $2s'$ 10 $7m$ $Fris$ -7 -7 $2i'$ $2s'$ 10 $9m$ $Fris$ -7 -7 50 30 10 $9m$ $Fris$ -7 -7 $75'$ $2s'$ 10 $0m$ LB -7 -7 $149100N$ $47tore$ $2s'$ 10 $0m$ LB -7 $2s'$ 20 10 $0m$ LB -7 -7 50 $2o$ 10 $0m$ LB -7 -7 $75'$ 20 10 $0m$ LB -7 -7 $75'$ $2o$ 10 $0m$ LB -7 -7 $75'$ $2o$ 10 $0m$ LB -7 -7 $75'$ 10 $5m$ <td></td> <td></td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				·									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·											CREEK 45+50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. ·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 49,00N			10									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											~		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20	10									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		75		10									<u></u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		48+00E	20	10									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25	20	10	BM								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	10	5	BM					-	.7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		75	10	5	BM								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		49100E	10	5	BM	MB					-7		· · · · · · · · · · · · · · · · · · ·
75 20 10 FM 1B -> L 49roy/ 50 too E 20 10 Bn LB ->	· · ·	25	20	10	BM	MB					~		
L 49row 50 took 20 10 Bn LB ->		50	20	10	B17	LB					-7		
			20	10	m	115					-^		
	L 49roon	50 tOOE	20	10	on	LB					ſ		
	·												
								T	T			T	
	L		L	l	L	L	L		l			l	
		-											

. A mention for the form

.

ſ

1992	\$ 01L	SAMPL	ES -		PROPER	TY PROJECT	لل ا	715			SAIP	LER G. MAY
SAMPLE NO-	GRID LOCATION	DEPTN (cm)	THICK (cm)	NORIZON	COLOUR	PARTICLE SIZE	X	ROUND	COMP	SLOPE	SEEPAGE	COMENTS
LA Troon	41+25E	35	10	BM	rB					~>~		
	50.	30	/0	nn	MB					~>~		
	75	30	10	ßm	LB					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
•	42+00 k	30	10	Br	MB					~~~		
	25	25	10	Dr	1B					->		
	50	25	10	Bri	MR.					ζ,		
	15	30	10	Bru	0B					-7		
	43+00E	25	10	Br	OB							
	25	25	10	m	MI							
	50	25	10	Bm?	03					-7		
	75	25	10	57	IB					.7		
	44 100 E	25	10	n	1P,					->~		
	25	25	10	34	DP,					-7		
	50	25	10	Bn	MB					-		
	75	25	10	An	MB					~ ~		
47+00N	45100 E.	30	10	Br	GB					بر		
	25	25	10	Br	MB					-34		
	50	25	10	BM	LB					n		
	75	25	10	m	LB					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	46+001	30	10	DM	no					-7		
	25	24	10	BM	LB					-7		
	50	75	10	57	10	-						
	75	25	10	sn	LB					-7		
	47100E	45	10	Bm?	06							
	75	45	10	Br?	DB						0	BARITZ GLOAT
	Ø	30	10	6n	DB					. ~7		
	15	25	10	ßm	DB					-		
	48+00E	25	10	дm	DB					-7		
	25	20	10	Om	R					-7		
	50	50	10	βr	DB					.7		
47.00N	48+75E	20	10	ßМ	MB					.7		

15.

1992				N	017	GR	5		4	50	400N	<u>, L 47+</u> Ler <u>G. /</u>	001
SAUPLE	GRID	SAMPL	TRICK		PROPER	PARTICLE		FRAGME					
10.	LOCATION	(cm)			COLOUR	SIZE	X	ROUND	COMP	SLOPE	SEEPAGE	CONNENTS	
50100 N	45+00 E	30	16	Bri	mB		<u> </u>					CREEK	44+95E
	2ζ.	30	10	BM	ma					5W -7			
	50	30	10	sm	MB					-7			
•	75	20	5	Br	mB					~?			
	4.6+00 E	20	10	en	LOB					~			
	25	20	10	3m	rB					~			
	50	20	10	BM	GR		`.			-7			
	75	20	10	n	LB				54/ta	~7			
	47+00E	20	10	on	LB				54/ta	_7			
	25	30	10	pm	LB.				5x/42	-7			
	50	20	10	<u>An</u>	LOB					_~~		· · · · · · · · · · · · · · · · · · ·	·
	75	20	10	5m	MB				sc/fa	-7			
	98+00E	20	10	Br	MB					_7			
	25	15	5	57	NB				54/ta	~ ~ ~			
	50	15	5	BM	LB		50		se/ta	-7			
	75	20	5	nn	LB		so		Sc/ta	1			
	49100E	15	5	BM	LB		65		SL/ta	7			
	25	20	5	Bm	Gß		50		sl/ta	1			-
	.50	20	5	BM	Los					1			
	15	20	5	Br	LOB		60		sc/to	-			
SOTOGN	50+00 E	15	5		LOR		60		Sc/fen	-			
													•
47100N	39100E	35	10	BM	nB					12			
				zm	MB					-			
	50	35	10	Br	GB					-			
	75	35	10	M	MS					ζ		CREEK	39185E
	40+00E	35	10	13M	nß			·		-7			
	25	25	10	BM	LB					>			
	50	25	10	DM	LB	•				~7			
	75	35	10	on	MB					ر المر		olc	cento
47 100N	41tOOE	35	10	13m	mB					sul			
	· · · · · ·	<u> </u>			· · ·								

ters in a second to get

.

•

T. Herrichten

1992	\$0 1L	SNIPL	ES		PROPER	J GR	I L	715			SAIP	LER G. MAY
SAMPLE NO.	GRID LOCATION	DEPTN (cm)		HORIZON	COLOUR	PARTICLE SIZE	×	RACHE		SLOPE	SEEPAGE	COPPENTS
91+00N	56+00 E	60	16	Bn	9P					su T		CREAK ISmelers to South
	75	35	10	Br	GR					52		
	50	35	10	m	GB					-7		
•	25	35	10	SM	MB					~7		
	55100E	35	10	nn	MB					-7		
	75	35	10	on	MB	_				-		
	50	25	10	Bn	MR					-7	_	
	25	25	10	Bm	MB				·			
	54100E	25	10	DM	MB					, 7		
	71	25	10	ßm	MB					-7		
	ςO	25	10	m	MB					, 7		
	25	25	10	BM	MB					-7		
	53100E	30	10	BN	mB				٢٢	-7		
41100N	75	30	10	BM	μB					.7		
	50	30	10	BM	MB				CL	~?		
	25	20	10	C1 ?	DGR					7		
	52.00E	30	10	c1?	DGR					-7		
	75	35	10	BM	mB		50		Se/m	-7		
	· 50	35	10	m	MB				•	-7		
	25	25	10	rsn.	BM					-7		
	5/100 6	30	10	m	mB					-7		
	75	20	10	pm	LB					-7	•	
	şC	20	10	BM	03				52/ta	7		
	25	30	10	5M	MB		50		52/40	7		
41,00N	SCHOOLE	20	5	ßm	MB				54/m	1		ridge
												· · · · · · · · · · · · · · · · · · ·
								·				

17:

ki mensisharana

.

---- ·

L 44+00N NOD GRID

1992	SOIL	SAIPL	ES .		PROPER	ry projec	<u> </u>	זי ר				LER G. MAY
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	NOR120N	COLOUR	PARTICLE SIZE	×	ROUND	CCHP	SLOPE	SEEPAGE	COMMENTS
94+00N	42+75E	20	10	6m	MB				SL/ta	*>		a the second second
	43+00E	25	10	BM	nB				54/m	~		
	25	25	10	<u>s</u> m	OB				4	7		CREEK 43+20 R
•	50	30	10	Br	MB					-?		
	75	30	10	ßn	MB					7		
	44,00E	25	10	Bn	LOB					2		· · · · · · · · · · · · · · · · · · · ·
	25	25	10	Im	DB				54/te	-7		
	50	20	10	m	DB					-7		
	75	25	10	Bri	DB				211	~		
	45100 E	30	10	17m	mB				ci/ta	7		
	25	30	10	?	Gra		80		5/ta	2		· · · · · · · · · · · · · · · · · · ·
	50	30	10	BM	MB					12		
	75	30	10	BA	MB		75		54/th	~		
	46 100 F	30	10	BM ?	MB				54/ta	1		
44+00N	25	30	10	BM ?	MB				Sc/to	5		very fine talus
	50	25	(0	ßm	DB				51/+2	~		very fire talus
-	75	25	10	6h	NB				52/fm	_7		,
	47+00E	20	10	BM	DGR							
	25	25	10	C1	LB				Sc/ta	_7		
	50	20	10	ßп	DB				5 L/4			"poker chip" talus
	75	10	5	5m	DB				c6 .	2		
	18100E	10	5	5m	٥ß		50		5ª fra	~		
	25	25	10	0n	nß					-		
·	50	20	10	n	DB		50		54 /ya	~>		
	15	35	10	bn	DB					1		
	49100 FE		10	BN	MB					~>		
	24	25	10	<u>6n</u>	MB					``>		
	50	25	10	R M	MB					1		
	75	25	10	15m	MB					~~		
11+00N	50+00 F	25	10	вм	MB					->		
								·				
						<u> </u>						

d. Alexandra Mod

6 44+00N NOD GRID

1992	\$01L	SNIPL	ES			TY PROJEC				++0.		LER G, MAY
SAIPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	NORIZON	COLOUR	PARTICLE SIZE	x	ROUND	COMP	SLOPE	SEEPAGE	CONNENTS
2 44100N	35400 E	25	10	Bn	OB		40		Se/ta	NE		
	25.	20	10	BM	05		60		sc/ra	7		
	50	20	10	on	mB		25		sifer	~		
· .	75	25	10	Bn	μB		71		\$ fa	-7		churty talus
	36+00E	25	10	BM	00				St free	7		
	25	25	10	BM	mB					-		
	50	30	10	Br	MB					~>		
	75	35	10	Bri	DB				CL	->		
	37+00E	35	10	<u>Cr</u>	GR			· · · ·		-7		36+60 DRAW
	25	30	10	en	LB					_7		
	50	30	10	Br	MB							
	75	30	10	Bri	MB					7		
	38+00E	25	10	BAI	MB				در ا	~		
	zs	25	10	ßm	mB				ĊL 	~>		
	50	25	10	lin	mB				сL	->		
	75	25	10	Br	MB					20		
L 44100N	39+00E	25	10	вн	MA					2		
	25	25	16	ßn	۳ß					5		
	50	25	10	BM	mm					-300		
	75	25	10	snk2	GB					22		
	40100E	25	/ ۵	Br	NB					12/2		
	25	25	10	B44	MB				gi/ka	2 20		
······	50	25	10	n	nŋ					3.		
	75	25	10	Bn	mB				54m	_?		
	41+60 E	25	10	<u>gn</u>	LB					~		
	25	25	1.6	bn	LB					~		· · · · · · · · · · · · · · · · · · ·
	50	25		RA N	LOB			· ·		2		
	- 75	20	10	Bn	20B					-		· · · · · · · · · · · · · · · · · · ·
	42+00F=	15	5	Bn	MB	··						Ridae
	25	F5	5	ßn	MB) 1		
L 49+00N	50	20	10	ßn	mB					?		sale fit. "poker chip"

d manufacture

												10.
				·				> (GRI	0		238+000
1992	SOIL	SAPL		,	PROPER	TY PROJEC	<u></u>	715			SAUP	LERG. MAY
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	NOR120N	COLOUR	PARTICLE SIZE	X	ROUND	COMP		SEEPAGE	CONNENTS
L 38+00N	49+75E	20	5	Bn	nn				51/ra	24		•
	50	20	10	BM	ng				,	لىعد		
	25	20	10	BM	MB					للعزر		
•	49+00F	25	10	BM	LB					2ser		
	75	25	10	BM	MB				54/tu	->		
	50	25	10	BM	LB				54/+a	~>		
	25	25	10	nn	LB				51/ta	->		
	48+00F	25	10	BA	20				54/ta	^		
	75	25	10	ßn	DB				54/pa	1		
	50	25	10	am	LB				ci/to	ζų		
	25	20	10	GΗ	DB				c L/m	ţ		
381000	47+00E	25	10	Br	MB				34/4m	~>		
	25	25	10	BM	MA					~>		
	50	30	10	Bin	ms					\$		
	25	30	10	Bri	DB		70		sifta	~>		
	45+00E	30	10	Bn	MB					Ż		
	75	30	10	Dm?	DB					•		ASHOR CREEK (SILT)
	50	10	5	Br	-		90		ta	J		
	25	30	10	Bn	LB		•		si/ta	ζ.		
	45+00E	30	10	<u>n</u>	MB					ζ.		
	75	25	10	6n	LB				-	15		· · · · · · · · · · · · · · · · · · ·
	50	25	10	nn	OB					57		
	25	20	10	BM	LB		-			1		0/c 501: cious charty sta
38100N	44+00E	25	10	BM	MB					J.		· · · · · · · · · · · · · · · · · · ·
	7(MB					>>		
	50	30	10	An	MB					~		CREEK 43+65E
	25	25.	10	n	MB					_7		
38+00N	43100K	25	10	30	MB				СЬ	7		
						•						
								·				

•2

20.

n 1970 - State Maria Maria 1970 - State St

1

. .

.....

7wara i

SEEP GRID

												ock CIIP
1992		. SAUPL	FS	<u> 586</u>	<u> </u>	PAD TY BEALET	τ 4'	115		mt	<u>Alc</u>	LER G. mm
SAMPLE ND.	GRID LOCATION	DEPTH	THICK	-		PARTICLE		FRACHE	NTS	Γ		COMMENTS
160+00N	SStock	41	10	nm	ma					~>		
	25.	40	10	nn	MB		50			7		sil/tolus
	50	35	10	50	nn		20			5		des / tales
<u> </u>	75	38	10	nm	m					~		sil/tolus deg/tolus
	Stook	35	10	n	23		80			*>		soil toles
······	25	30	.0	130	LB			1	<u> </u>	~		· · · · · · · · · · · · · · · · · · ·
	50	30	10	0n	2.13		ŀ.	L		~>	ļ	
·	75	25	0	BM	LB			<u> </u>		->		
	57+00k	35	10	m	LB				<u> </u>	~>		
	25	35	10	mm	mn		L					
60toan	50	35	10	BM	LB			 				
	15	35	10	Bn	DG		L	ļ	ļ	$\overline{)}$	······	
	58.00k			m	ns			ļ	 	-		
	75	35	10	nm	LB					\searrow		
	50	35	10	5m	LB			 		5		
	25	35	10	ßm	LB					1		· · · · · · · · · · · · · · · · · · ·
	59 1002		10	ßM	LD		·	<u> </u>		5.0		· · · · · · · · · · · · · · · · · · ·
		40	10	12m	mb			<u> </u>		·>		and mult
	50	50	10	BM	613				5:17	1		CRK 59+45E
- 60100N	37+ 75	60	10	Bn	mB					~		Iron seep runoff
											•	
		-										
······												
					:			<u> </u>				
											_	· · · · · · · · · · · · · · · · · · ·
						·						
											_	

1992	SOIL	SAIPL	ES		PROPERT	TY PROJECT	 _	715			SAMP	LE DOUG NIKIRK
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)		COLOUR	PARTICLE SIZE	×	ROUND	COMP	SLOPE	SEEPAGE	CONNENTS
LGOHOON	60+00E	30	10	BM	Dβ					รรพ		
ų	10+25E	20	10	βM	MB					38a)		
ц	60+50E	20	10	BM	LB					352		
и.	40- 75E		10	BM	LB					30°NW		
4 1	61+00E	20	10	BM	LB					للالمح		
L60+00N	61+25 E	20	10	BM	LB					30°N		
11	61+50E	30	10	BM	LB					30°N		
11	61+75E	30	10	ВM	LB					30%		
11 /	62+00E	30	10	βM	MB					35%		
10	62+25F	20	10	BM	DB					352		2062+20E
60+00N	62+50E	30	10	BM	LB					<u>16°25</u>		
ų	62+75E	30	10	BM	LB					<u>35</u> °2		· · · · · · · · · · · · · · · · · · ·
<u> </u>	63+00F	20	10	BM	LB					550		· · · · · · · · · · · · · · · · · · ·
ц	63+25E	40	10	BM	LB					362		
H.	63+50E	30	10	βM	ЭB					45%		
160+00rl	63+75E	30	10	BM	Dβ					45 N		
11 /	64+00E	30	10	BM	₽B					452		
U)	64+25E	20	10	ВM	DB					45N		% € 64+40E
11	64+50E	20	61	BM	ЪB					45N		
Ц	64+75E	20	10	Bn	₽B					-		9C @ 64+75E CROSS CREEK @ 64+80E
60+0 ON	65+00E	10	5	BM	MB					4°-5		% € 65700 E
												·····
•												
	-						·					·
			[

SEEP GRID

.

. .

" SERP CRUD"

3-

1992		SAPL		<u> </u>	TRUPER	TY PROJEC						LER <u>G. M.M.</u>
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	X	NOUID	COMP	SLOPE	SEEPAGE	CONTRACTS
L62+00N	55too E	30	10	Bm	ma					ッ		
	26	45	10	Ġn.						5		
	50	40	,0	8~						>		
	75	35	10	m						Ì		
	5600E	40	10	ism						~		
	26	35	10	17.00						~		Gilly
	50	30		m			ŀ.			\int		
	75	36	10	nm						1		
	57+00€	35	10	nn						Ś		Gully/CRK
	25	30	10	13m				- -	-			7
162000	50	35	19	1714						-		
	75	35	10	sn						1		
	5800E	30	10	Br			50		4	$ \rightarrow $		soil taks
	25	30		<u>Gri</u>						~>		,
	50	35	10	BA		<u> </u>				5		
	75	30	10	Bm			65					soil/toly
	59106	30	10	na						2		· · · · · · · · · · · · · · · · · · ·
	25	30	10	C1?			7(~		soil/toly o/c "poker chip" soil/toluy
	50			37			ም			>		
62+00N	59+75E	35	10	13m			40			>		soil/talks
· · · · · · · · · · · · · · · · · · ·												
				a - 1								
									· .			
			•						•			
												· · · · · · · · · · · · · · · · · · ·
												· .
				I					1		1	······································

SEEP GRID

4.

. A statistical and a said

l

1992	3 01L	SAMPLI	ES		PROPER	TY PROJECT	r _/	715			SAMP	DOUG NIKIRK
SAUPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	NOR 1 ZON	COLOUR	PARTICLE SIZE	x	ROUND		SLOPE	SEEPACE	COMMENTS
L62+001	60+00E	20	16	BM	MB					35SE		
()	60+25E	20	10	BM	MB					30°E		
//	60+50%		10	BM?	$\mathcal{D}_{\mathcal{L}}$					1		CLOSS CREEK@ 60+50E SAMPLE TAKEN 5M EAST
11 -	60+75E	20	10	BM	MB					35°W		
II	61200E	20	10	Вм	MB					35°W		
L62+001	61+25E	20	10	BM	LB					350		
17	61+50E	20	10	BM	LB					25°W		
	61+75E		10	BM	LB					3°S		
11	62+00E		10	BM	LB					35°5		
11	62+25E	20	10	BM	LB					35°S		
L62+00N	62+50E	30	10	BM	LB					353		
11	62+75E	20	10	Ľм	LB					35°5		% @ 62+75E
11	63+00E		5	TALUS FINES TALUS FINES	BL					35°5		% @ 63+00€
11	63+25E		5	TALUS	BL					35°5		9/c @ 63+25E
11	63+50E			BM	LB					3505		
1621001	63+75E			TALUS, FINES						35°5		% @ 63+75F=
	64+00E		10	BM	DB					3505		
	64+25E		10	BM	MB					5°Se)		
	64+506		10	BM	LB					38°51		
	64175E		10		MB					30°51		% C 64+65 E
	65+00E		10	EM	LB					35°EJ		40@ 65+00E
												, , , , , , , , , , , , , , , , , , ,
							_					
							_					
									·			
· · · · · ·	· · · · · · · · · · · · · · · · · · ·							<u>├</u> ┟				

" SEEP GRID"

5.

d Anorea Continue

1992	\$ 01L	SAIPL	ES		PROPER	TY PROJEC	T	1715		SAIP	DOUG NIKIRK
SAMPLE NO.	GRID LOCATION	DEPTH (cm)	THICK (cm)	NORIZON	COLOUR	PARTICLE SIZE	x	ROUND	SLOPE	SEEPAGE	CONNENTS
664400N	55+00E	20	16	BM	LB				10°E		
11	55+25E	20	10	BM	LB				20°E		
	55+50E	20	10	BM	LB				20°E		
1	55475E	20	10	BM	LB				30°E		BOTTOM OF GULLY
1/	56+00E	20	10	Вм	LB				15°3E		· · ·
L64toon	56+2 <e< td=""><td>20</td><td>10</td><td>Bm</td><td>LB</td><td></td><td></td><td></td><td>20°SE</td><td></td><td></td></e<>	20	10	Bm	LB				20°SE		
H	56+50E	20	10	BM	MB				18 E		
	56+15E	20	10	BM	MB				 10°E		
"(57+00E	20	10	BM	MB				 18E		
4	57+25E	20	10	BM	LB				10°£		
64400N	S7+SOE	20	10	BM	MB	_			 25°E		
11	57+75E	20	10	ВМ	MВ				25°E		
"	58+00F	20	10	BM	MB				2°E		
4	58+25F	20	10	BM	LB				25°£		
<u> </u>	SBITOF	20	10	BM.	LB				2SE		
64tord	58+75 <u>F</u>	20	10	BM	LB				 35°E		
11	59+00F	20	10	BM	LB				35E		
4	59+25E	20	10	BM	LB				 35°E		
	59+50E	20	10	BM	LB				35°E		
И	59+75E	20	10	βM	LB				 48°E		
64HOON	60+cof	20	10	BM	MB				40°E		*****
11	60+25E	20	10	BM	ЭB				40° E		
11 -	60+50E	20	10	BM	DB				 40°E		(ROSS CREAK @ 60+55E
11	60175E	5	5	ALUS	JB				40° J		% @ 60+75E
4	61+00F	20	10	βM	LB				40°W		
164+00N	61+25E	20	10	BM	LB				لأكحك		
11	61+50E	20	10	BM	LB/				2SW		
Ц	61-175E	20	10	BM	LB				لاحكا		
li li	62+00E	20	10	BM	LB	•			28° W		
4	62+25E		10	BM	LB				 25°W		
644000	62+50E		10	Вн	LB				3°W		

d a maria a ma

.

ſ

ſ

1992	S OIL	SAMPL	ES		PROPER	TY PROJEC	T	1715	-		SAMP	LER DOUG NIKIRK
SAMPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	x	ROLIND	COMP	SLOPE	SEEPAGE	COMMENTS
L64:001	62+75E	20	10	BM	1B					25 4		
11	63+00'E	20	10	EM	LB					25 J		
11	63+25E	20	10	BM	1B					25°W		
11 .	63+50E	20	10	BM	16					15°W		
И	63+75E	20	10	Bri	1B					15 W		
L64400N	64400 E	20	10	EM	4-B					15 W		
11	64+25E	20	10	pr.	I-B					10° W		
	64450E		10	BM	LB					40 ⁹ 51J		
4.	64+75E	20	10	BM	18					48°54		
L6Haon	bitoor	20	10	Cr:	LB					485ul		· · · · · · · · · · · · · · · · · · ·
							L					
				T	T			T	Τ			

SEEP GRID

1992	SOIL	SNPL	ES		PROPER	TY PROJEC	r/	715			SAMP	LER DOUG NIKIRK
SAMPLE NO.	GRID LOCATION	DEPTI (cm)	THICK (cm)	NOR120N	COLOUR	PARTICLE SIZE	X	ROUND		SLOPE	SEEPAGE	COMMENTS
L68toon	55+00 F.	20	10	BМ	LB					20°E		
11	55+25E	20	10	BM	LB					20°E		
	55+50E	20	10	BM	LB					2°E		
<i>lı</i> .	55775E	10	5	BM	LB					20°E		
//	56+00E	20	10	BM ?	DB					20° F		
LLB+00rt	56125E	20	10	BM	LB					26 E		
11	56+50E	20	10	BM	LB					2°E		
4	56+75E	20	10	BM	LB					2°€		
<u> </u>	STTOOL	20	10	BM	LB					10°£		
11	57+25E	20	10	ВM	LB					10°E		
L68+00N	ST+SOE	20	10	βM	LB					IS E		
н	57+75E	20	10	BM	LB					15 E		
4	58+00E	20	10	BM	LB					28° E		
4	SB+25E	20	10	BM	LB					28E		
4	58+50E	20	10	BM	LB					25 E		
168+00n	58+75E	20	10	BM	LB					26 1		
	59+00E	20	10	BM	LB					25°E		
17	59+25E	30	10	BM	LB					38°E		
11	59+50E	20	10	BM?	X					40°E		
<u>'t</u>	59+75E	20	10	BM	JB					46°E		
168+00rl	60+00E	20	10	BM	MB				-	4°E		
<u> </u>	60+25E	20	10	BM	MB					Bal		CROSS CRALK @ 60+20E
11	60+50E	٥٥	10	BM	MB					35°N		
4	LOTTSE		10	BM	DB					75°N		
1	61+00E	20	10	BM	LB					30361		·
L68+00n	61+25E	20	10	BM	DB.					30°W		LROSS SMALL CAREK @ 61425E
1	61+50E	20	10	BM	LB					38°W		· · · · · · · · · · · · · · · · · · ·
)(61+75E	20	10	BM	LB					z°ω		
А	62+00E	20	10	BM	LB					25° N		
1	62+25E	20	10	BM	LB					su		
68+00N	62+50E		10	BM	DB					2ชัน)		
												· ·

"SEEP GRID"

Ŧ

"SEEP GRID"

8.

1992	1992 SOIL SAMPLES			PROPERTY PROJECT _17-15						SAMPLER DOUG NIKIRK		
SAIPLE ND.	GRID LOCATION	DEPTII (ciii)	THICK (cm)	NOR120N	COLOUR	PARTICLE SIZE	X	ROLNO	COMP	SLOPE	SEEPACE	COMMENTS
168+00N	62+75E	20	16	BM	MB					25°W		
11	63+00 E	20	10	BM	LB					100		
11	63+25E	20	10	BM	MB					2° J		
	63+50E			BM	MB					38 al		· · · · · · · · · · · · · · · · · · ·
	63+75E			BM	LB					202		
	64+00E_		10		LB					له ک		
1	64+25E			BM?						ఎ కి ట		
<u> </u>	64+50E			BM	MB			 		చిల		
	64+75E				LB					280		
L68+00N	65+00E	20	10	BM	MB					20° W		
								┠──┤				
												· · · · · · · · · · · · · · · · · · ·
									-			
· · ·												
								├				
				·								
						·		├				
								┝┣				

" SEEP GRID"

1992	9 01L		PROPERTY PROJECT						SWPLER G. MAY			
SAMPLE NO.	GRID LOCATION	DEPTH (CHIT	THICK (Cm)	NORIZON	COLOUR	PARTICLE SIZE	X	ROUND	COMP	SLOPE	SEEPAGE	COMMENTS
L66+000	55took	10	35	Br	MA					ッ		
	26	10	36	Br	mB					Ś		
	50	10	35	BM	43					\mathcal{I}		
	75	10	35	Br	MB					5		cla
	56100E	10	76	Br	MB					$\langle $		
	26	10	70	Bm	ma		30			1		soil thely
	50	10	30	Bon.	mB		-			~>		Some rush soil
	75	10	35	an	OB					$\langle A$		
	54 100E	10	20	BM	MA					1		
	25	10	35	inn	MB-		•			\checkmark		
	50	10	35	1577	mß					$\tilde{\lambda}$		i)
	75	10	35	BA	нß					5		•
	58+00 E	16	35	Bm	MA							
	25	10	35	Pro	<i>mB</i>					>		
466000	50	10	35	Ron .	LB					~>		
	75	10	35	Bri	mß					\searrow		
	(9100E	jo	35	7	6R		90			~>		W
	25	10	35	BM	DA					>>		
	50	10	35	nm	DB					~>		
	75	10	35	Br	MB					\searrow		· · ·
	60+00 %	10	25	13m	Dß				-	~>		• ·
	25	10	25	Bn	17A	_				>>		sultales
·	50	10	25	Bn	MJ					-		CREEK
	75	10	25	pn	MD					~		crean soil/growel
	61+00 E	10	25	Br	MB					-	,	
	26	10	35	Br	MA							
	50	10	25	Br	m					~7		
	15	10	zŚ	Bm	ma	·				~		
	67-00 F.	10			MS					~7		
	25	10	25	BM	MA					/7	·	
L66+000	62+506	10	30	BM	mn					~		
										Π		· · · · · · · · · · · · · · · · · · ·
		<u> </u>				<u> </u>		i	l	I		

9. /

1992	1102	SNPL	FS			SEEP TY PROJEC	T)	715			SMP	LER GIMMY
SAUPLE			_			PARTICLE		FRAGMEN	TE			
10.	LOCATION	6	(cm) TillCK	NORIZON	COLOUR		X	ROUND	COMP	SLOPE	SEEPACE	CONNENTS
LIGOON	62+756	p	28	Bn	mB		<u> </u>			7		
	63HOE	10	35	sm	MB					-7		
	26	10	30	BM	ns					-7		
·	50	10	30	Br	mB					~		
	75	10	30	Bon	OB					-7		
	64100E	10	30	Ben	mB					-7		
	25	10	35	1300	MS		AD_			.77		soil talus
	50	10	30	13.4	MA		L					
	75	10	35	Bn	LD					17		
66+00N	65100 k	10	35	pn	MB							
		Dept	thick									
1 TOHON	SSHOOE	10	35	n	mß							
	25	10	30	Bn	mB					3		
	50	10	30	110	MB					$\langle \rangle$		_
	15	10	25	om	MB					1		
	56700E	10	30	on	mB					~>		
	25	10	30	mm	mB					Ý		
	50.	;0	25	ろう	2B					>		
	75	10	35	ሰካ	ms					>>		
	54100E	10	35	p~	mB					ズ		
	25	10	35	13m	mß					Ň		
	So	10	35	かり	mß			·		~>>		
: .	75	10	30	n	rn					12		
· · ·	S8+00K	10	35	nn	MB					~>		
	zś	10	20	DM	LB					-		BRUCH
	50	10	30	13m	OB					-		
	75	10	36	m	68			•		~`_		
	59 100 k	10	75	n	DB						_	
	25	:0	35	BM	ng					- 2		
	50	10	35		DB					5		CREEK 59465E
1 Johnon	59+75€		35		GR		40			~		CREEK 59+65E soil/tales
							· ·					

"SEEP GRID"

1992	SOIL SAUPLES											SAPLER G. MAT		
SAUPLE NO.	GRID LOCATION	DEPTN (cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	×	ROUID	COMP	SLOPE	SEEPAGE	COMMENTS		
L7000N	60+00E	10	20	Bn	GR		40			7		soil taly		
	25	10	35	ism	mB					-7				
	50	10	35	m	rß					-7				
	75	10	35	Bn	MA					-				
	61+00E	10	35	הדין	nz					-		61+0SE CREEK		
	25	10	35	m	MB				-	~				
	50	,0	35	Dm	LB				-	_				
	75	10	25	isn	mn		60			~		soil taken		
	62HOOE	10	30	130~	mB				_	~		/		
	25	10	35	pn	ms					~				
2 FORDON	50	10	25	Bry	mB					~				
	75	10	30	Bry	mb		30			2		soiltakes		
	63+00E	10	70	ijum	mß					~		/		
	25	10	35	ism	ms					~		· · · · · · · · · · · · · · · · · · ·		
	50	10	35	in	mß					~				
	75	10	35	Br	mB					~				
	AtOK	10	35	V ^M	nB									
	25	<u>10</u>	X	1317	MB					~				
	50					Gully	1	thic	h A	The	izon	CREKK		
	-15	10	35		MR					2				
L70100N	65+0052	<u>ļo</u>	35	DM	rs.				-	-7		n *		
· · · · ·														
										· .	· .			
						<u> </u>			_			<u> </u>		

APPENDIX VII

[(

İ

÷.

Ł

Gravity Survey Specifications and Procedures

Instrumentation:

A Lacoste & Romberg gravity meter, serial #371, was utilized for the gravity measurements. Pertinent meter variables are summarized below.

Meter #371:		
Range:	Value:	Interval:
4600	4836.25	1.05173
4700	4941.42	1.05168

Additional Survey Equipment:

- 1 Compaq portable computer
- 1 GDD Instrumentation Hydrostatic level

Field Procedures, Gravity:

All gravity readings were taken in a loop procedure to allow for correction of instrument drift. Temporary field bases were established as required to expedite the survey.

The gravity meters' sensitivity was set prior to the commencement of the survey and checked regularly as the survey progressed. All gravity readings were taken to the 1/100th of a milligal. Due to the extreme topography and close station spacing inner terrain corrections were not taken. The large intrinsic errors of the terrain correction would likely mask the local anomalies in this scale of survey. Five percent of the gravity stations were repeated on a random basis as an additional check on data quality. The average repeat difference was .05 milligals. The daily ties and repeat-ability of gravity measurements prove the overall integrity of the gravity surveying.

Field Procedures, Surveying:

A GDD hydrostatic level was used to obtain the gravity station elevations. The GDD level determines differential levels between two sensor ends. Using a 'leapfrog' technique elevations along and between lines can be determined. The advantage of this system is that line of sight is not required to conduct the survey. The disadvantage is that traverse closures exceed the normal closures of an optical survey by several factors. Two minimize elevation inaccuracies each gravity station was occupied twice in a closed survey loop.

DATA REDUCTION:

The gravity readings were converted to milligals and corrected for: instrument height, earth tides, drift between base ties and adjusted to the local base value. The results are listed as Observed Gravity. Using elevations derived from the GDD hydrostatic level, the Observed Gravity values were then corrected to Bouguer Gravity using the following formula:

$$Gb = Gobs + tc - Gl + (.30845*h) - ((.04186*h)*d)$$

where:

Gb = Bouguer_Gravity Gobs = Observed_Gravity Gl = latitude_correction tc = total_terrain_correction h = station_elevation d = density

The latitude correction was calculated as

1.307 * SIN ^ 2 * *latitude*(*mgals/mileNorth/South*) Line and station positions were used to geometrically derive North-South distances.

To ensure the most accurate elevations possible from the GDD level, the following adjustments were made to the raw field readings. The loop misclosure was prorated throughout the survey traverse, then the two individual readings made at each gravity station were meaned. I feel that these measures contributed substantially to the accuracy of the elevation survey and the overall viability of the entire gravity survey.

SUMMARY:

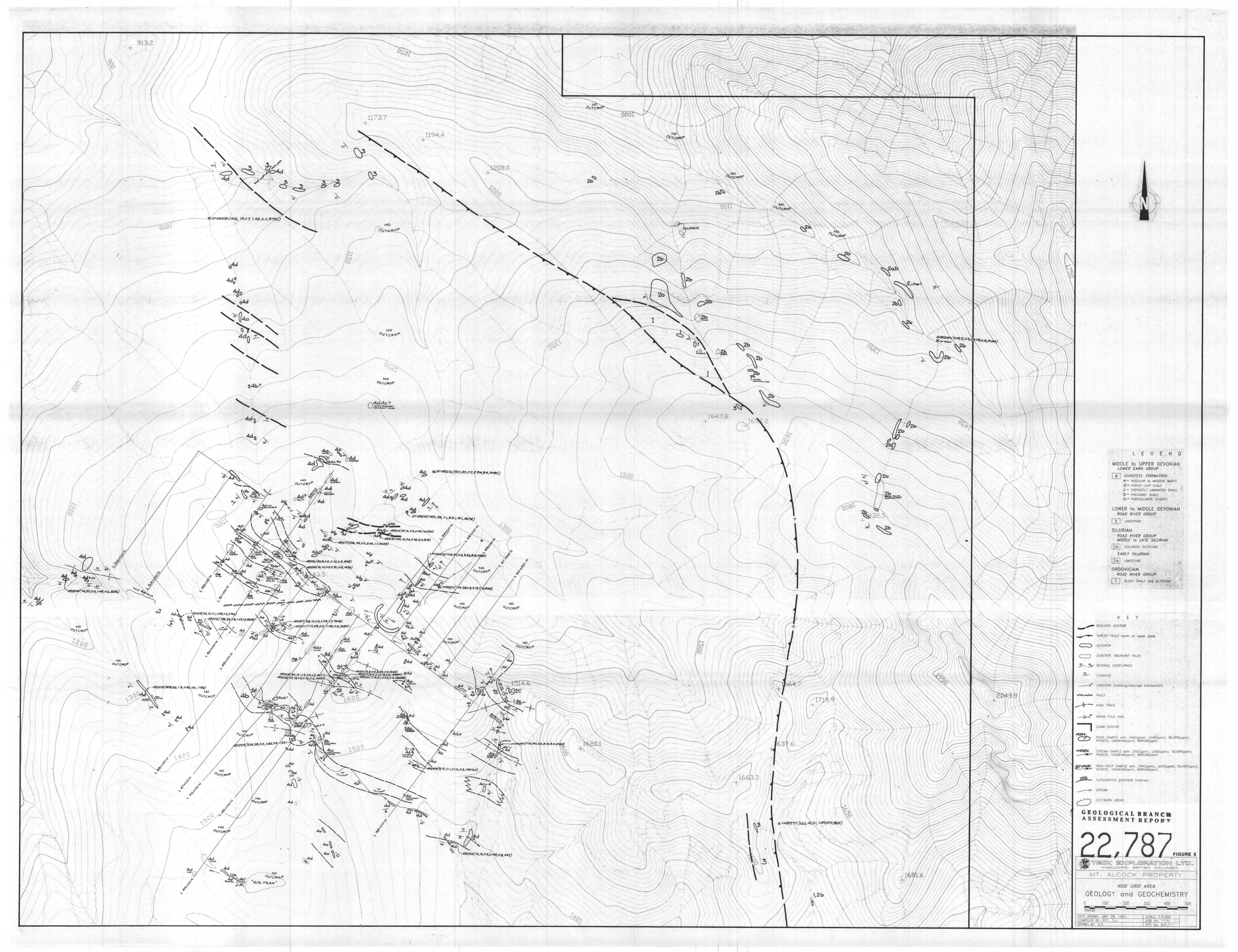
There were no problems with either the gravity survey logistics or gravity data integrity throughout the course of this gravity survey. The high accuracy of the gravity measurements, as indicated by the base ties and repeats yields a reliable gravity data set from which exploration decisions may be based.

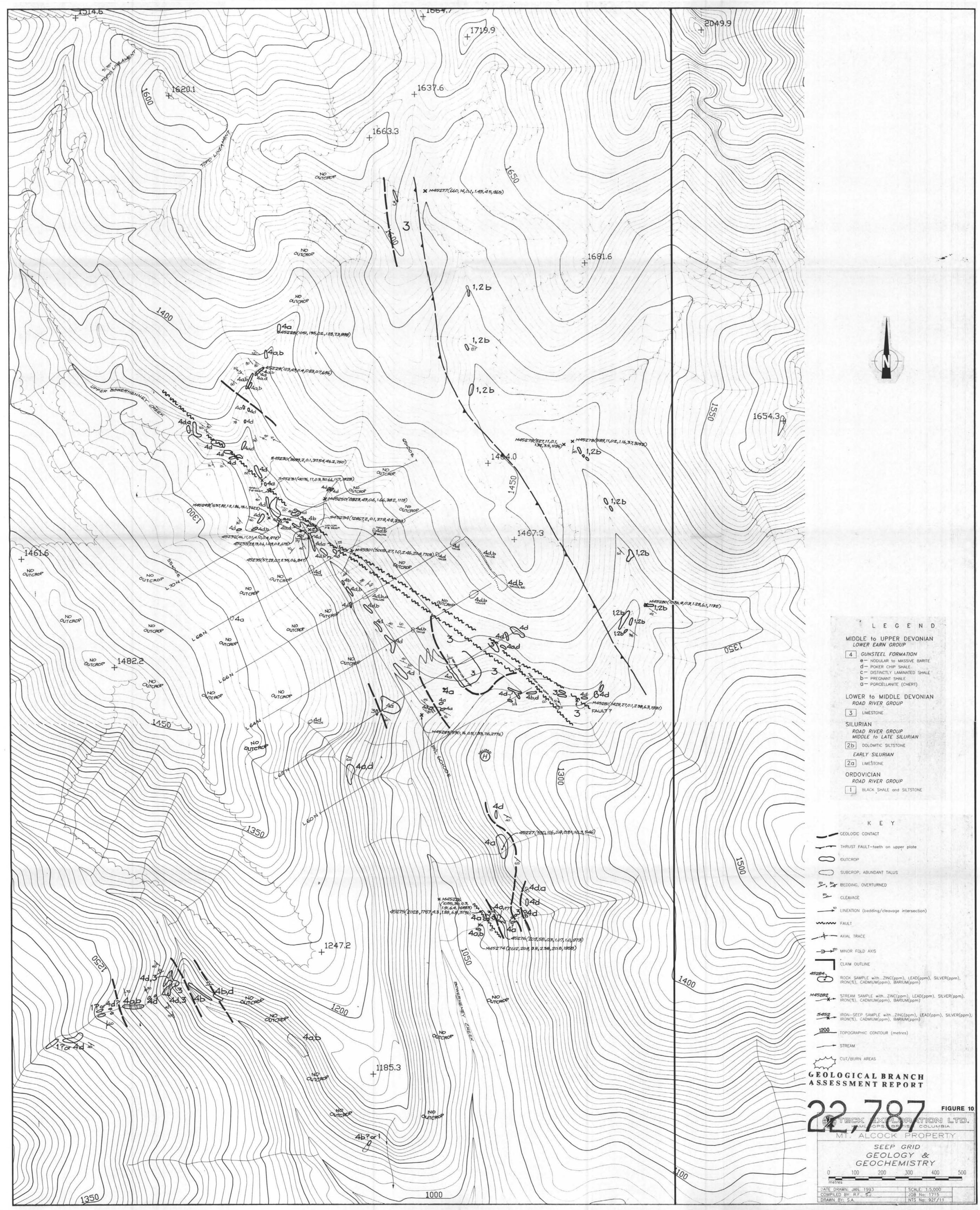
FIELD PROCEEDURE

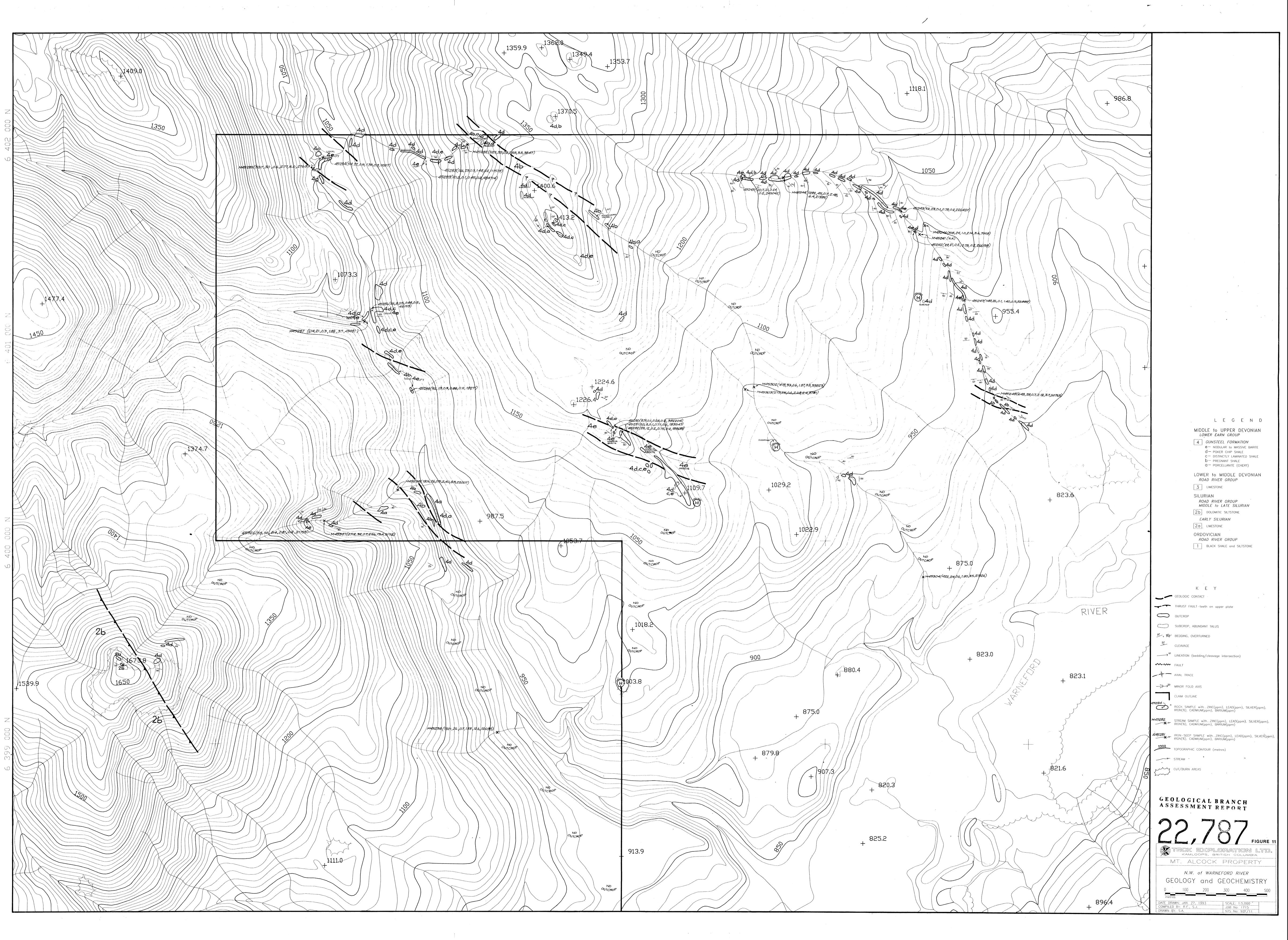
Elevations

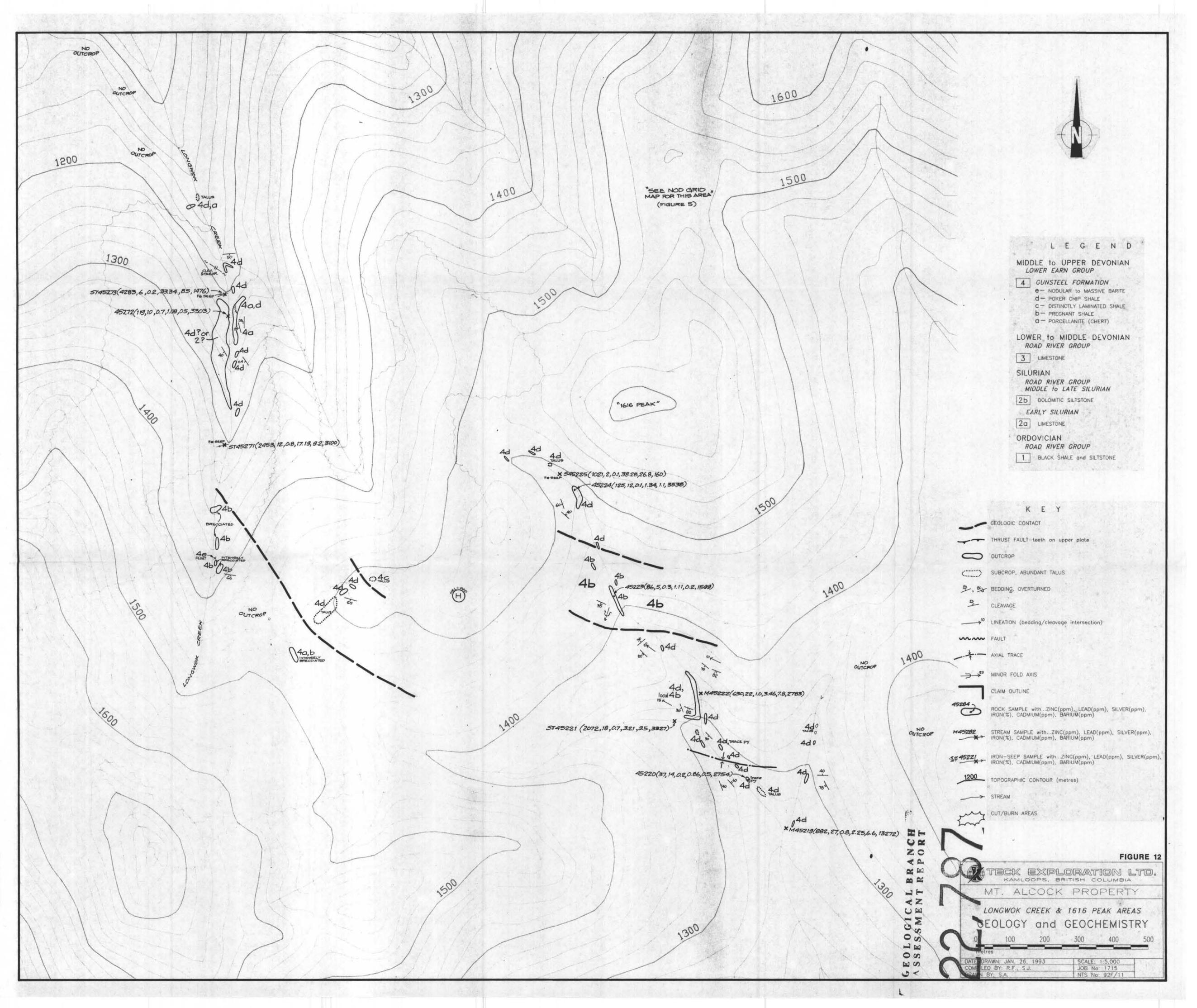
The survey was conducted using a GDD electronic level to measure elevation differences between stations. The electronic level consists of a fluid filled plastic hose and two pressure sensors to measure hydraulic pressure within the fluid. The system is sensitive to temperature changes and therefore must be used in differential mode and frequently zeroed. In this survey, a point near camp was chosen as the zero point and all measurements on the grid referenced to this point. Proceedure is for the lead operator to take a reading at a piont, mark the point, and continue on. When the rear operator reaches this point, the elevation difference is taken and the proceedure repeated.

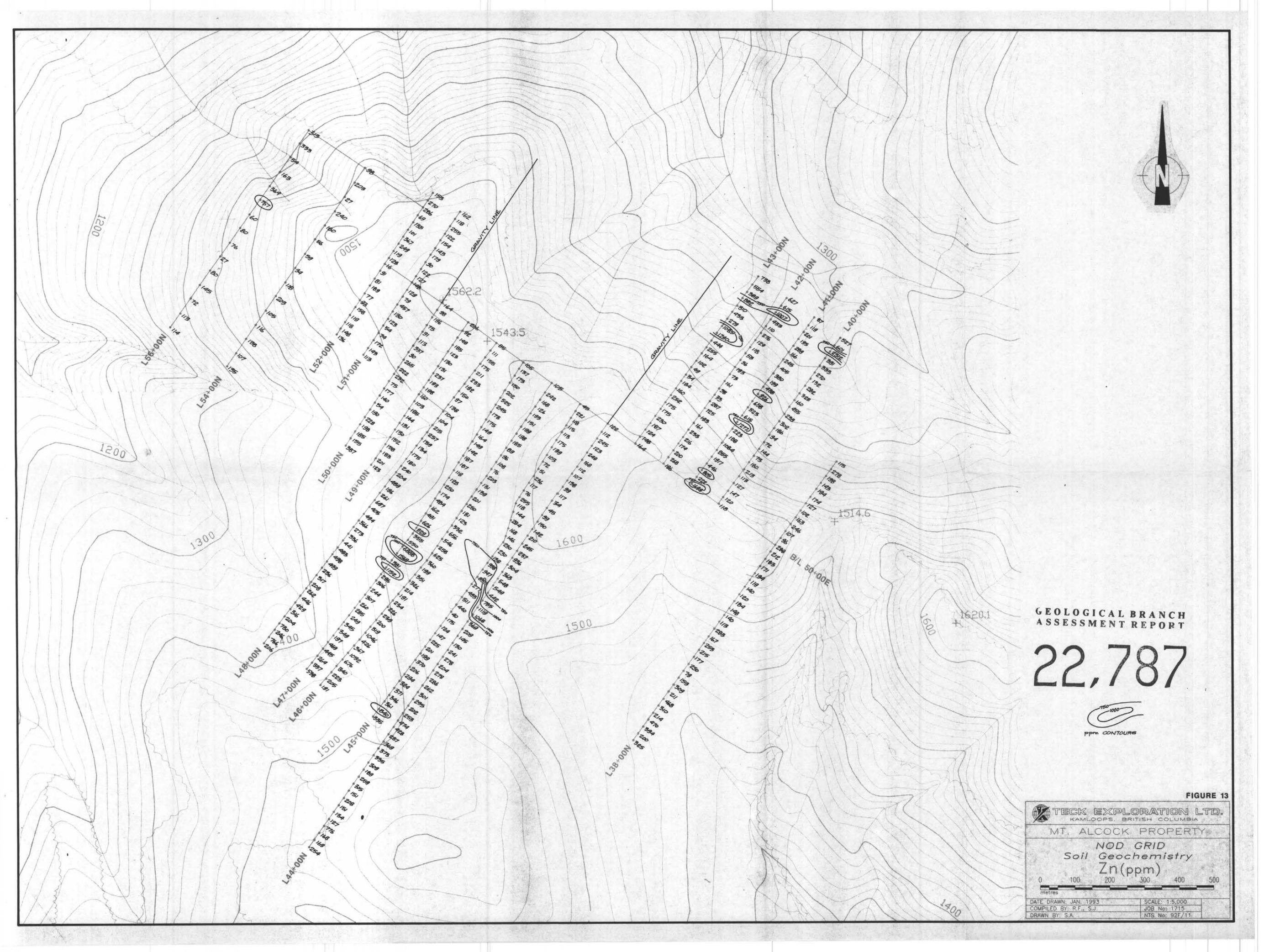
Gravity.

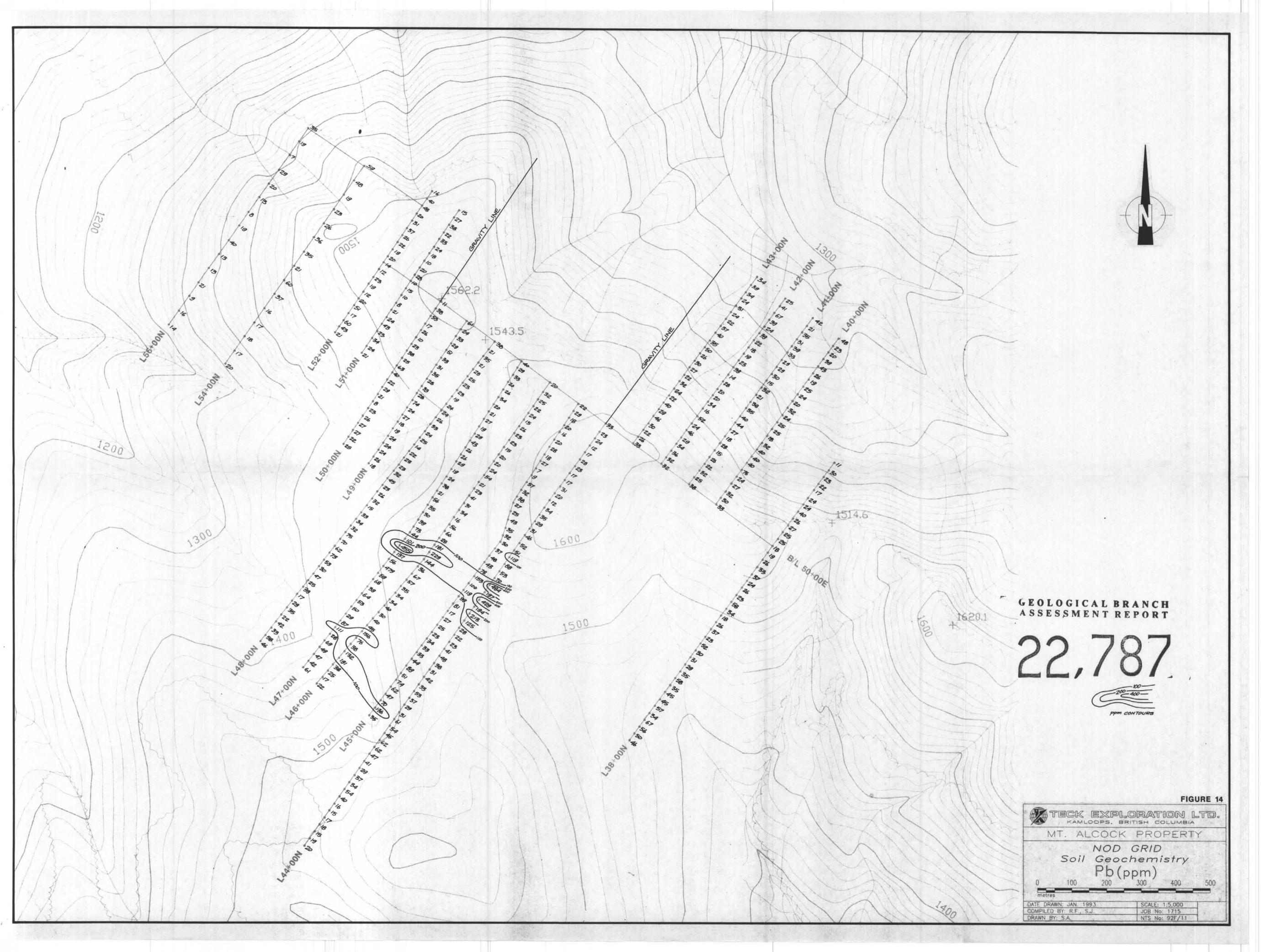

The survey utilized a Lacoste & Romberg G meter. A base station was set near camp (same as elevation) and all data was read in a looping proceedure from this point. Data was corrected for G meter daily drift, converted to observed gravity using the correction factors for the particular meter and reduced to Bouguer gravity using the formula

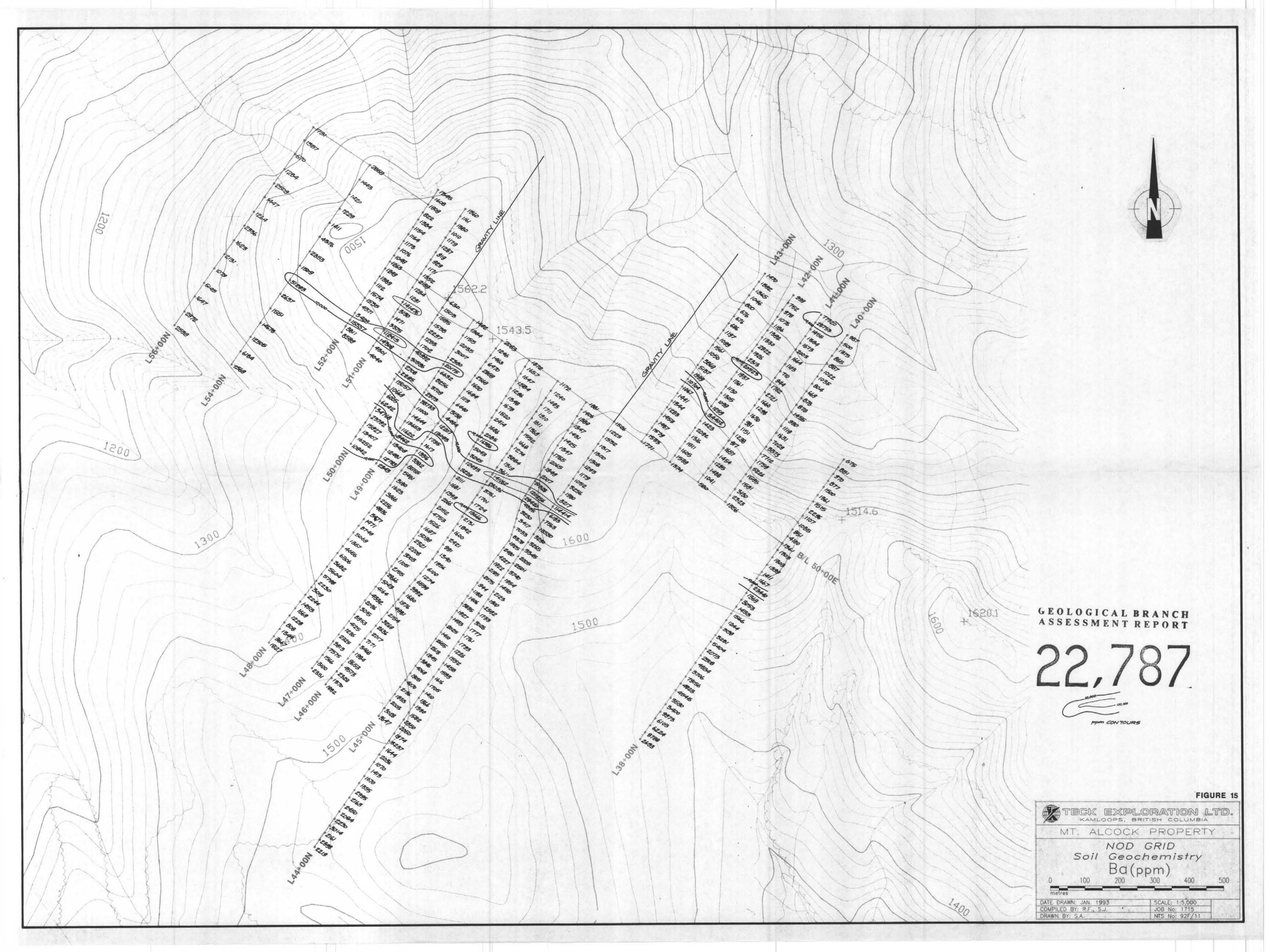

GBouguer= Gobserved+(0.30845*elevation)-(0.04188*elevation*density) -Latitude corr+tidal corr+Terrain correction

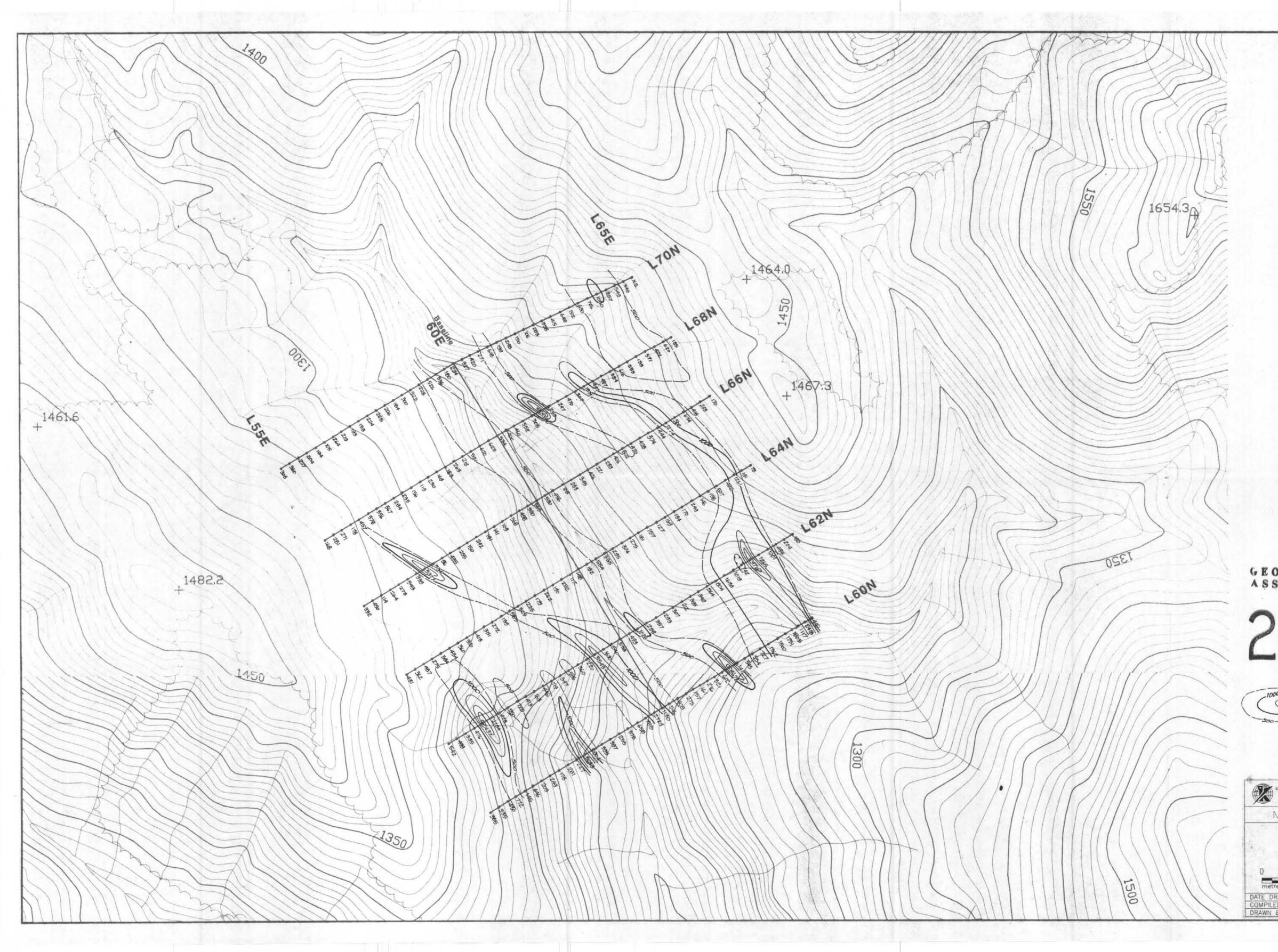

where

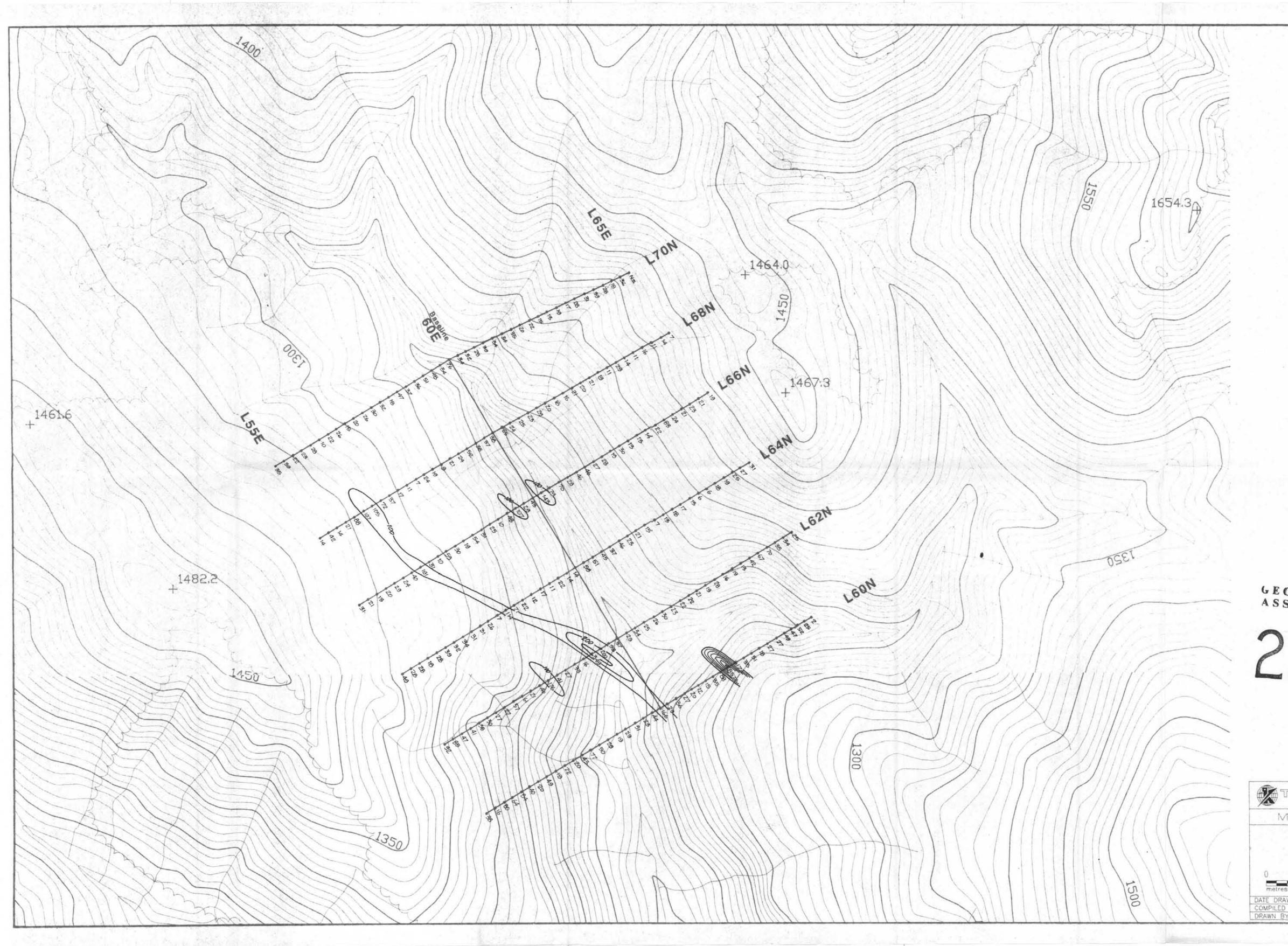

Latitude correction = 1.307sin2pmgal/mile Tidal correction is taken from GSC tide tables Terrain is visually estimated and corrected using Hammer charts.


Data is reduced nightly and presented as profiles

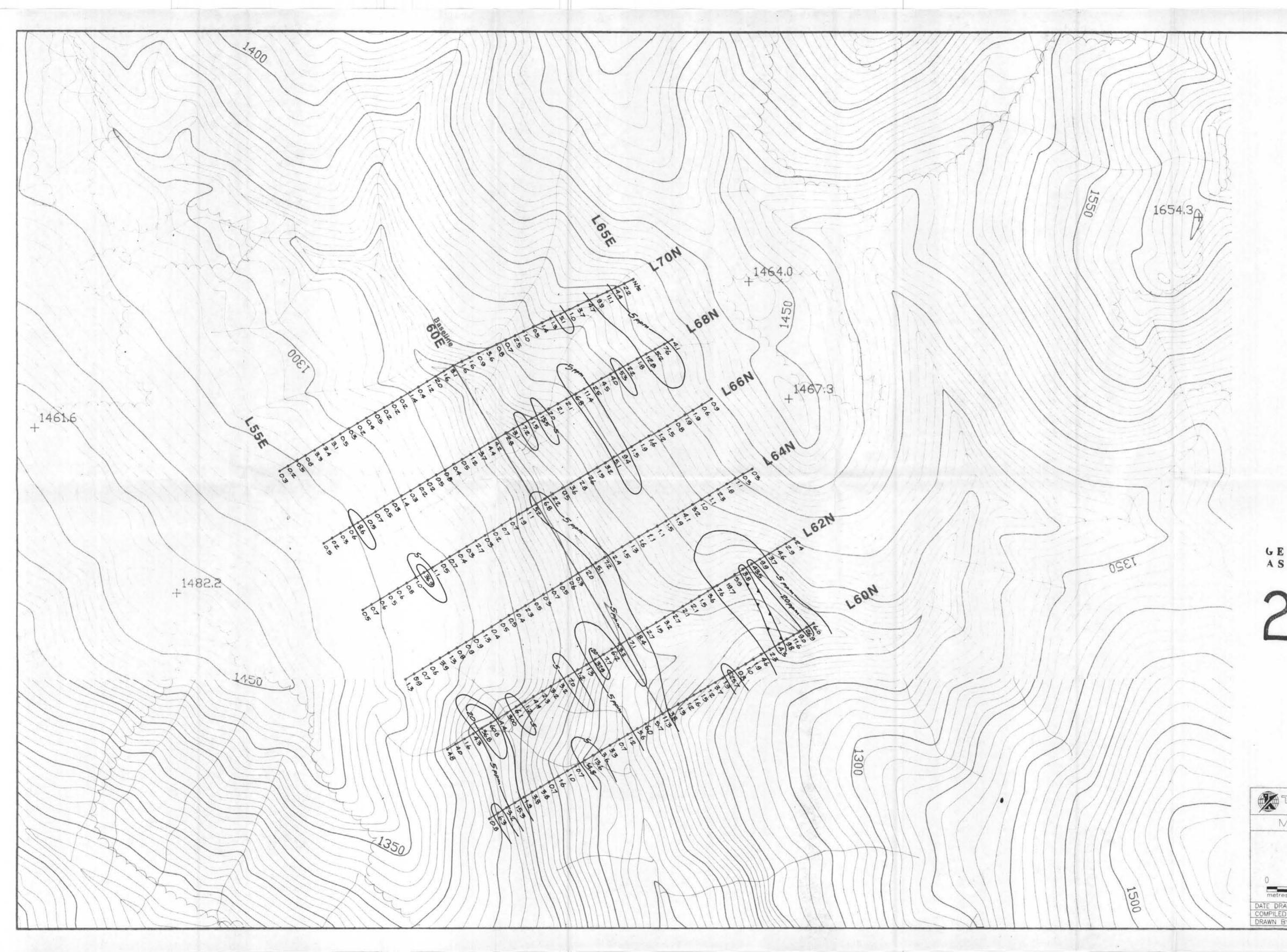






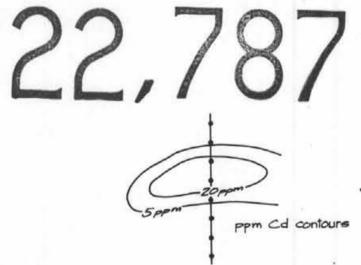


1000 Ppm Zr	n contours		
t .			
		FIGURE	16
TECK EXPL) _D
MT. ALCOCK	PROP	ERTY	
Soil Geod	GRID chemis ppm) 300	400 500	
etres DRAWN: JAN. 1993 PILED BY: R.F., S.J. N BY: S.A.	SCALE: 1: JOB No: NTS No: S	5,000	


ppm Pb contou	irs
	FIGURE 17
	ORATION LTD.
T. ALCOCK	PROPERTY
Soil Geoc Pb(p	hemistry
100 200	300 400 500
WN: JAN. 1993 BY: R.F., S.J. ; S.A.	SCALE: 1:5,000 JOB No: 1715 NTS No: 92F/11

22,787

GEOLOGICAL BRANCH ASSESSMENT REPORT



1. L II.

			FIG	URE 18
TECK I	EXPL(the second s
AT. AL	COCK	PRC	PERT	Y
Soil	SEEP Geoc Cd(p	hem		500
⇒s AWN: JAN, 199 D BY: R.F., S.J BY: S.A.		SCALE: JOB N		