LOG NO:	MAR 0 1 199	3 RD.
ACTION.		
FILE NO-		

DIAMOND DRILLING REPORT ON THE

MEGA AND GOLD CLAIMS

SUB-RECORDER RECEIVED CLINTON MINING DIVISION, B.C.

FEB 1 5 1993

ON BEHALF OF

VALERIE GOLD RESOURCES LTD.

JEOLOGICAL BRANCH 920/12E SSESSMENT REPORT

BY 22,798 PERRY GRUNENBERG, B.Sc., F.G.A.C., P.Geo.

JANUARY 1993

LOCATION: 51°36' NORTH LATITUDE; 123°40' WEST LONGITUDE

OPERATOR: VALERIE GOLD RESOURCES LTD.

OWNER: VALERIE GOLD RESOURCES LTD.

CONSULTANT: P + L GEOLOGICAL SERVICES, SMITHERS, B.C.

APPROVAL NO.: KAM 92-0300258-1737

P + L GEOLOGICAL SERVICES, BOX 340, SMITHERS, B.C. VOJ 2NO PHONE 847-5053 FAX 847-9045

DIAMOND DRILLING REPORT ON THE MEGA AND GOLD CLAIMS CLINTON MINING DIVISION, B.C.

SUMMARY

This report summarizes diamond drilling which took place at three locations on the MEGA and GOLD claims belonging to Valerie Gold Resources Ltd. These claims lie east of the Taseko River along a known mineral bearing geologic belt, north of the Fish Lake deposit. Drilling took place in November of 1992. Drill targets were primarily derived from Induced Potential Survey results as defined by P.E. Walcott and Associates' surveys of 1991 and 1992. A total of 691.10 metres of core was extracted from three NQ size drill holes.

All three drill holes intersected recent Chilcotin Group basalts to approximately 100 metres depth. Holes 92MG01 and 92MG02 intersected weak hydrothermal alterations in upper sections of Kingsvale Group sediments.

No appreciable amounts of sulfides were intersected in any of the drill holes. The Induced Potential anomalies in this area appear to be related to graphite and clays present within the Kingsvale Group sediments.

TABLE OF CONTENTS

SUMMARY	i
TABLE OF CONTENTS	ii
<pre>1.0 INTRODUCTION 1.1 LOCATION AND ACCESS 1.2 TOPOGRAPHY, CLIMATE AND PHYSIOGRAPHY 1.3 PROPERTY STATUS 1.4 HISTORY AND PREVIOUS EXPLORATION 1.5 DIAMOND DRILLING BY VALERIE GOLD RESOURCES</pre>	1 1 3 5 LTD., 1992 6
2.0 GEOLOGY 2.1 REGIONAL GEOLOGY 2.2 PROPERTY GEOLOGY	7 7 7
3.0 DIAMOND DRILLING 3.1 DRILL TARGETS 3.2 RESULTS AND DISCUSSION	8 8 10
4.0 ENVIRONMENTAL	11
5.0 REFERENCES	13
6.0 STATEMENT OF QUALIFICATIONS	14
7.0 COST STATEMENT	15
APPENDIX 1 - CHEMEX LABS LTD. ASSAY CERTIFICATES	16
APPENDIX 2 - DIAMOND DRILL LOGS	16
FIGURES AND TABLES	
FIGURE 1 - LOCATION MAP	2
FIGURE 2 - CLAIM MAP	4
FIGURE 3 - DRILL HOLE LOCATIONS	Pocket, 9
FIGURE 4 - WATER SAMPLE LOCATIONS	12

TABLE I- LIST OF CLAIMS5TABLE II- DRILL HOLE SUMMARY10 ·

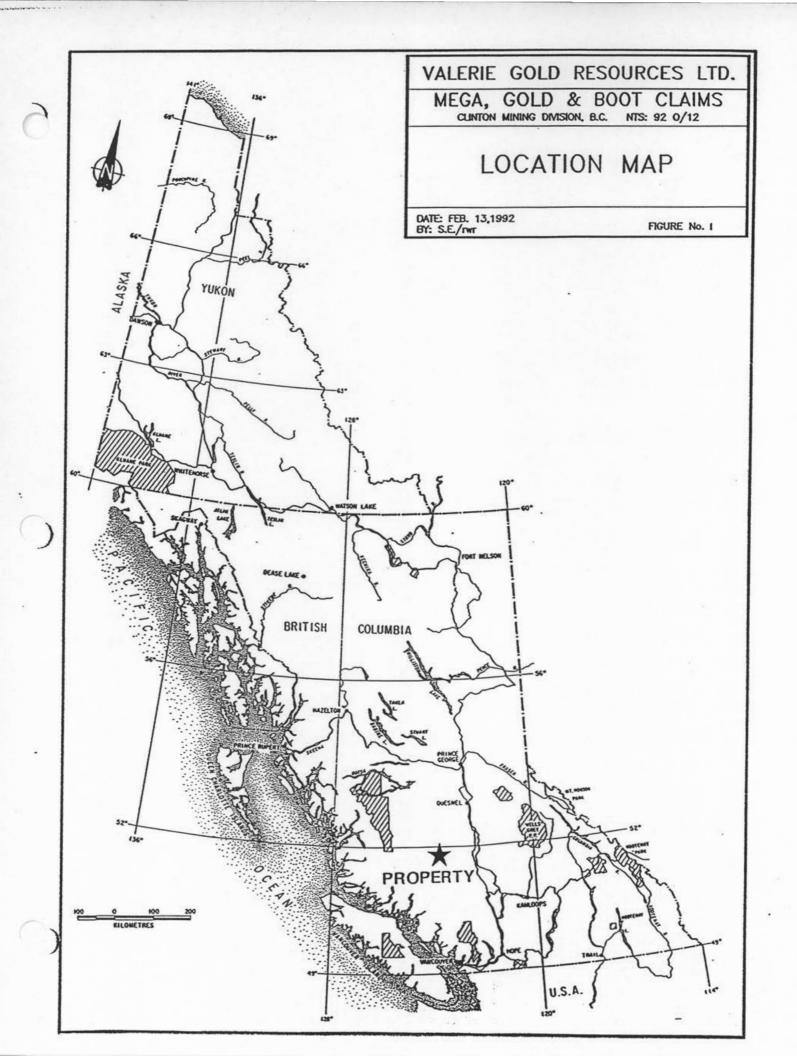
ii

DIAMOND DRILLING REPORT ON THE MEGA AND GOLD CLAIMS CLINTON MINING DIVISION, B.C.

1.0 INTRODUCTION

In September 1991, Valerie Gold Resources Ltd. purchased ten Modified Grid Claims totalling 174 units, in the Taseko River Area of the Clinton Mining Division. These claims were staked along a geologic belt know to contain mineralization, at Fish Lake to the south, and at Scum Lake to the north. Previous work, including airborne and ground magnetics, induced potential, geochemical and geological surveying, delineated several targets for diamond drilling. This report summarizes diamond drilling which took place at three locations on the property from November 1 to November 30, 1992.

1.1 LOCATION AND ACCESS


The property is located in central British Columbia at $51^{\circ}36'$ N, $123^{\circ}40'$ W (NTS 920/12E), 120 kilometres southwest of the city of Williams Lake and approximately 10 kilometres east of Elkin Lake (Figure 1).

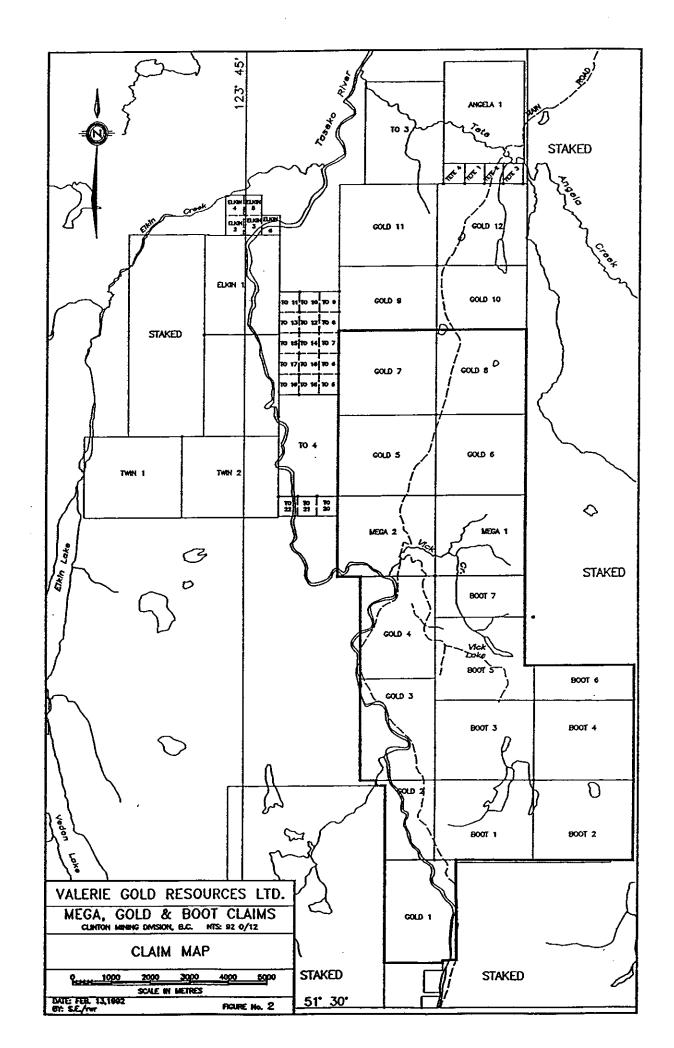
The MEGA, BOOT and GOLD claims cover an area approximately 60 square kilometres, roughly straddling the Taseko River (Figure 2). A good quality, all-weather, graded gravel road connects the property to B.C. Highway 30 at Hanceville, 65 kilometres to the north. Hanceville is approximately 95 kilometres, by paved highway, west of Williams Lake.

Access to the claims on the east side of the Taseko River is aided by a network of cattle roads, recent logging roads and seismic lines across relatively flat topography. Access to the small portion of the claims that are on the west side of the river is more difficult; however, the main road crosses the river near the south boundary of the GOLD 3 claim.

1.2 TOPOGRAPHY, CLIMATE AND PHYSIOGRAPHY

The area is in the physiographic division known as Fraser Plateau (Holland, 1965), which is an upland of low relief (approximately 500 metres). Topography is largely controlled by extensive flat-lying basalt flows which form a nearly flat plateau with a surface at approximately 1400 metres (4600 feet) above sea level. Relief on the plateau is very gentle and alkaline lakes are common. This plateau is cut by the Taseko River and by the Elkin Creek drainage to the west, both forming steep-sided valleys with 250 to 300 metres (800 to 1000 feet) relief. Cone Hill, located on the southern boundary of the claims, is the highest feature in the area with an elevation of approximately 1770 metres (5800 feet).

The north flowing Taseko River and a minor 10 kilometre long tributary, Vick Creek, are the only significant drainage features on the property.


Tree cover is extensive and consists mostly of lodgepole pine, which is well spaced and movement through the forest is easy. The area has been devastated by a mountain pine beetle infestation and vast tracts of standing dead pines are visible. To control the infestation, the entire region is very rapidly being logged. Extensive areas of clear-cut logging, with the associated road network provides easy access to the entire claim block. Large areas of grassland occur around the alkali lakes and the flat drainages. These grasslands are used for cattle grazing.

The climate is this portion of interior British Columbia is generally warm and dry with a moderately long, cold winter. Frost may occur at any time; however, day time temperatures in excess of 10° C are normal from early May until mid to late October. Temperatures in excess of 30° C are common during the summer months, while winter lows below -40° C are rare. The greatest accumulation of moisture (average of 25 mm per year) occurs during the fall, winter and early spring in the form of snow. The remainder of the year is generally dry. Moisture in the form of rainfall is confined to afternoon showers during the warm months.

Most of the area was covered by the Wisconsin ice-sheet which flowed northeastwardly toward the Fraser Depression. It was this ice-sheet that was responsible for the present shape of the plateau, mountains and valleys. During the height of this last glacial advance, it is likely that most of the claim was covered by ice. As the ice retreated, a thin mantle, varying from 2 to 20 metres of generally unsorted sand and gravels with little clay, covered the property. The glacial till covering the area has been little altered to soil, and in general the 'B' soil horizon is poorly developed. Glacial erratics, resting on the surface, up to several metres in diameter, are common.

1.3 PROPERTY STATUS

The property is composed of 18 Modified Grid Claims consisting of 326 units (Figure 2). All claims were staked in 1991. The claims, record numbers, size and anniversary dates are listed in Table I.

	LIST OF CLAIMS												
CLAIM 1	<u>VAME</u>	TENURE NO.	NO. OF UNITS	EXPIRY DATE									
MEGA	1	301053	20	JUNE 13, 1995									
MEGA	and in each (it is a second	301043	20	JUNE 13, 1995									
воот	1	209404	20	MAY 5,1995									
BOOT			20	MAY 6, 1994									
BOOT	the state of the second se	209406	20	MAY 6, 1994									
BOOT		209407	20	MAY 7, 1994									
BOOT		209408	20	MAY 8, 1994									
BOOT	6	209409	20	MAY 8, 1994									
BOOT	7	209410	10	MAY 8, 1995									
BOOT		209411	4	MAY 8, 1994									
GOLD	1	304584	20	SEPT. 16, 1994									
GOLD	1.1 Long The balls	304585	12	SEPT. 14, 1994									
GOLD	 A state of the sta	304586	20	SEPT. 14, 1994									
GOLD		304587	20	SEPT. 14, 1995									
GOLD	1.1.1 10.1.11407	304588	20	SEPT. 17, 1995									
GOLD	6	304589	20	SEPT. 16, 1995									
GOLD	7	304590	20	SEPT. 17, 1995									
GOLD	8	304591	<u>20</u>	SEPT. 16, 1995									
		TOTAL U	NITS 326										

1.4 HISTORY AND PREVIOUS PRODUCTION

The earliest record of exploration in the area dates to the early 1930's when prospectors followed float to exposures of narrow pyrite, chalcopyrite and gold-bearing zones associated with diorite or feldspar porphyry dykes a few kilometres south of the claims. The porphyry copper potential of the area was recognized int eh 1960's. Since that time, most exploration activities have been concentrated on the Fish Lake deposit, 10 kilometres to the south, and to a much lesser extent, on the Scum Lake deposit 15 kilometres to the north. The Fish Lake deposit is now in an advanced stage of definition drilling. This deposit may prove to be the largest tonnage copper porphyry system in Canada, with reserves estimated in December of 1992 of 1.265 billion tons grading 0.22% copper and 0.012 ounces gold per ton. In 1984, the area now covered by the Mega, Boot, and Gold claims was staked by Brinco Mining Ltd. In late 1984, Brinco contracted an aeromagnetic and VLF electromagnetic survey, resulting in 1162 line kilometres of data collection over their claims. At the same time, they contracted a geological and geochemical survey on selected portions of the property. In 1985, Brinco did additional geochemical sampling, ground magnetometer and VLF-EM surveys to complement and aid in geological and structural interpretations. This work was followed by percussion drilling of the highest priority targets. Four downhole hammer percussion drill holes were completed for a total of 492 metres of drilling.

The property was eventually allowed to lapse and the ground remained open until 1991. The area was restaked in 1991 by a number of individuals and private companies, following an announcement by Taseko Mines Ltd. of its plan to complete a major drill program over the nearby Fish Lake deposit.

In 1991, Valerie Gold Resources Ltd. purchased, optioned, and staked the 18 modified grid claims that comprise the present property. From August to December of 1991 Valerie carried out the following work over the property.

- 1) Prospecting and reconnaissance mapping was carried out over the entire property.
- 2) A reconnaissance ground magnetometer survey was carried out over the Mega 1 and 2 claims.
- 3) Reconnaissance soil sampling was carried out over the Mega 1: and 2 claims.
- 4) A reconnaissance induced polarization survey was carried out along existing roads and cut lines on the property.

1.5 DIAMOND DRILLING BY VALERIE GOLD RESOURCES LTD. IN 1992

In 1992, Valerie Gold Resources Ltd. contracted P.E. Walcott and Associates to carry out induced potential geophysical surveying over a large portion of the claim group, and several chargeability anomalies were discovered.

Al Harvey of Core Enterprises, Clinton B.C., was contracted to diamond drill 3 of these chargeability anomalies. A total of 691.10 metres of drilling was completed and geologically logged on the property, and a total of 48 drill core samples, averaging 1.2 metres of section, were shipped to Chemex Labs Ltd. for assay. Drilling took place from November 1 to November 30, 1992.

In an effort to collect early background environmental data, 8 water samples were taken along Taseko River and some of its tributaries, as well as from a small unnamed lake on the property.

2.0 GEOLOGY

2.1 REGIONAL GEOLOGY

The Taseko River area is located near the northeastern erosional edge of rocks forming part of the Tyaughton Trough (Jeletsky and Tipper, 1968) and lies at the east end of a belt of east trending folds, faults and feldspar porphyry dykes (Tipper, 1963). The Tyaughton Trough, a mid-Jurassic to late Cretaceous successor basin, contains both marine and non-marine sedimentary and volcanic rocks. The last major marine transgression occurred in early Cretaceous time. During the remainder of the Cretaceous, continental sedimentation and volcanism were dominant, accompanied by transcurrent movement on the northwest trending Yalakom Fault. Structures related to the Yalakom Fault may have provided controls important in the localization of mineral deposits in the region.

The regional geology of the Taseko River area was compiled by Tipper in 1978. An older basement of Middle Jurassic granodiorite occurs in scattered outcrops throughout the region. Overlaying folded sedimentary and volcanic strata were assigned to the Upper Cretaceous Kingsvale Group. Units within this group were intruded in various places by Eocene felsic igneous rocks. The area was later capped by Miocene to Holocene basalts (Matthews and Rouse, 1984), and subsequently further covered by variable thicknesses of glacial till and river gravels.

Tipper (1978) mapped a series of arcuate, normal faults trending NNW along the Taseko River. He considered these faults to be relatively recent (i.e. post Eocene), and later than the main transcurrent movement on the Yalakom Fault system. These faults are evident along the western portion of the present claim block.

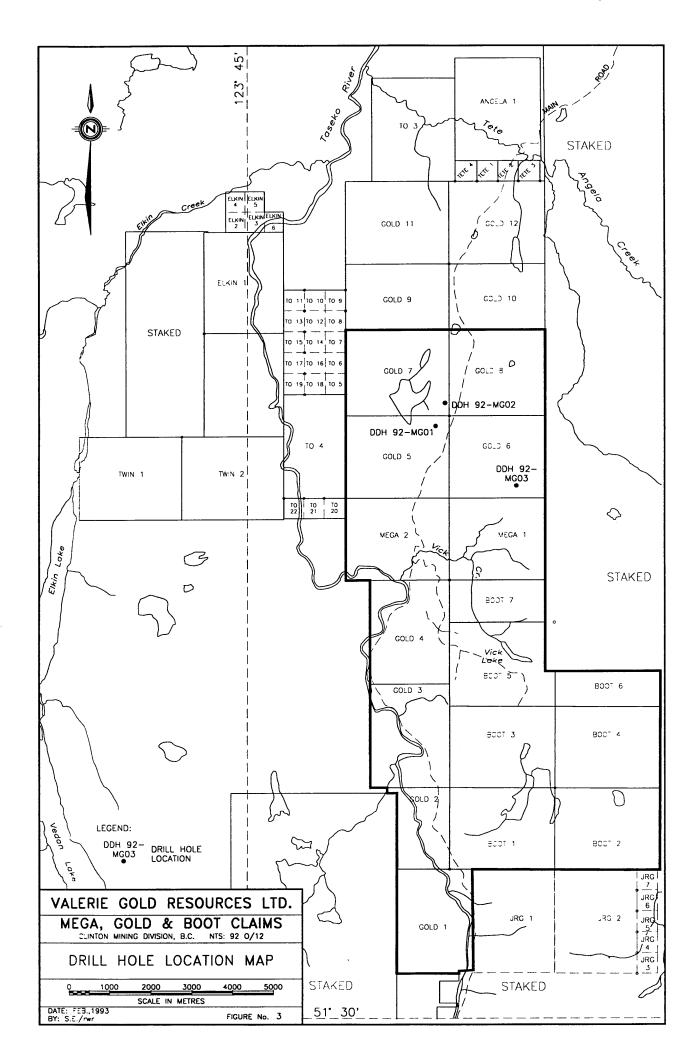
2.2 PROPERTY GEOLOGY

Exposures of bedrock on the property is minimal. Rock types in the area can be broadly classified, irrespective of age, into basalt flows, andesitic pyroclastics, andesitic flows, andesitic breccias, quartz diorites, sandstones, greywackes, and siltstones. Hydrothermally altered equivalents of the above types are observed locally.

The youngest rocks in the area are a really extensive, flat laying crystalline, highly vesicular Miocene basalt flows of the Chilcotin Group, which created tableland plateau topography. In Vick Creek valley, which divides the Mega claims into north and south halves, a sequence of Kingsvale volcanics and minor sediments is exposed in the dissected valley. Near the southern border of the Boot claims a contact between sediments, to the north, and a quartz diorite intrusive, to the south was observed. The intrusive shows weak propylitic alteration, with secondary chlorite, silicification, and minor pyrite. The sediment-intrusive contact is marked by a narrow band of hornfels. Prospecting to the north of the property, along claim lines of the Angela 1 claim, shows flat laying crystalline, highly vesicular Miocene basalt flows cover the northeast half of the claim, while Kingsvale sediments underlay the southwest half of the claim. Deep exposures of Kingsvale sediments are also present along Tete Angela creek and along Taseko River in the southwest corner of the Mega 2 claim, where 30 metre tall bluffs show a succession of poorly sorted siltstone to conglomerates with a predominance of sandy greywackes.

Several outcrop exposures along the Taseko River directly northwest of the claim block show a stockwork of carbonate stringers within Kingsvale Group rocks, apparently the result of weak, localized hydrothermal alterations in the area.

3.0 DIAMOND DRILLING


3.1 DIAMOND DRILLING TARGETS

The targets for drilling on the Mega and Gold claims were primarily derived from Induced Potential surveys carried out by P.E. Walcott and Associates during 1991 and 1992. Currently a report summarizing this geophysical work is unavailable, however, the data is compiled on both profiles and colour contour maps from which drill hole targets were calculated.

The I.P. data covers an area of roughly 11.5 square kilometres, with 200 and 400 metre line spacing and station spacing of 75 metres. The grid is located 2 to 3 kilometres east of Taseko River, directly north of Vick Creek, and 4 to 5 kilometres south of In general, the results of the I.P. survey Tete Angela Creek. outline a central anomalous chargeability zone of approximately 800 metres diameter present at depths greater than 75 to 150 metres (n=2), centred at Line 200W and station 1+50 north. Several smaller chargeability anomalies exist to the east and west of this main anomaly. Chargeability values greater than 10 are considered highly anomalous against background values of 3 to 6 milliseconds on the grid. At shallower depths (less than n=1), the I.P. results show that less chargeable, highly resistive "cap" material covers the anomalous zone of higher chargeabilities.

Individual descriptions of each drill target is given below.

- DDH 92 MG01 This hole was positioned on line 400W at 1+25S, drilled at -75 degrees to the north (360°). This hole was designed to test the core of higher chargeability values.
- DDH 92 MG02 This hole was positioned on line 200W at 5+50N, drilled at -46 degrees to the south (180°). This hole was designed to test a slightly weaker area on the northern boundary of the anomalous chargeability values.

DDH 92 MG03 - This hole was positioned on line 1200E at 16+25S, drilled at -55 degrees to the south (180°). This hole was designed to test one of the lesser, small chargeability anomalies to the southeast of the main anomaly. Also, previous soil sampling (Gonzalez 1991) identified an extensive mercury soil anomaly in this area, with contoured values over 1000 ppb. This soil anomaly is centred over a magnetic low, and carries coincident anomalous arsenic values. The weak chargeability anomaly on line 1200E is located on the northern edge of the soil geochemical anomaly.

Chargeability anomalies defined by the geophysical data are normally related to weak disseminations of sulfides in bedrock. The objective of drilling these targets was to determine wether disseminated sulfides exist in this area, and if so, wether they are related to a hydrothermal system which may be ore bearing.

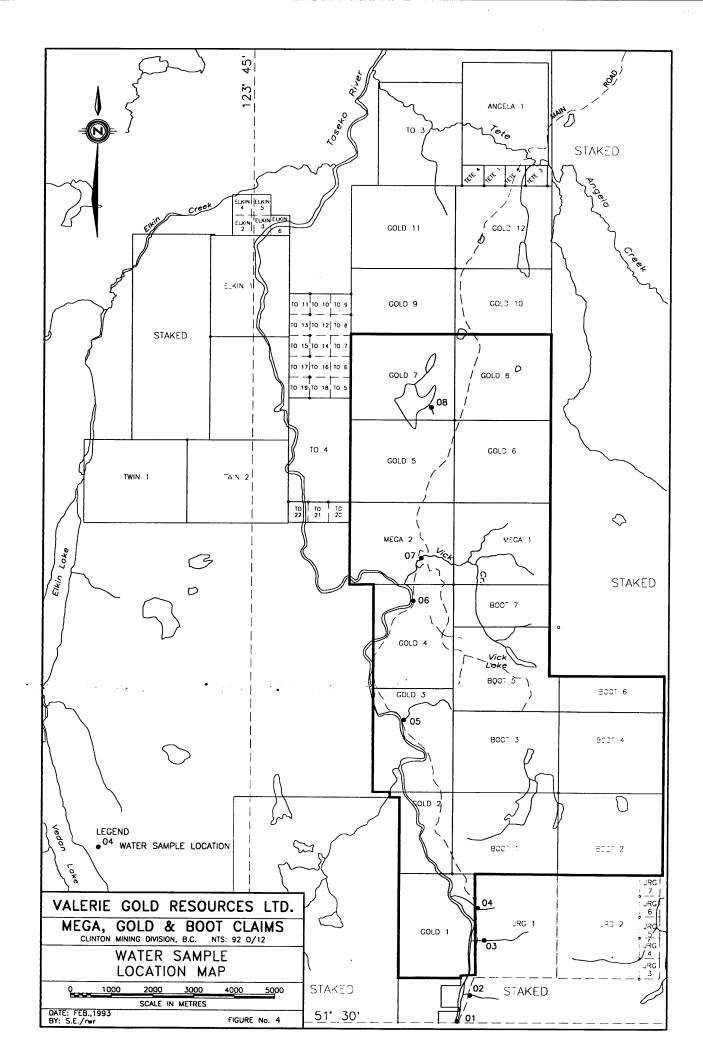
3.2 RESULTS AND DISCUSSION

Drill hole locations, orientations, and lengths are shown on Table II. Drill hole collar locations are also shown on figure #3. Complete drill logs with sample intervals, and Chemex Labs Ltd. assay sheets for these samples are provided in the appendix.

DRILL HOLE #	COLLAR LOCATION	DIP	AZIMUTH
DDH 92MG01	L400W;1+25S	-75	360
DDH 92MG02	L200W;5+50N	-46	180
DDH 92MG03	L1200E;16+25S	-55	180

TABLE II

All three of the drill holes encountered Chilcotin Group basalts to approximately 100 metres. This suggests that the base of this recent capping of lavas occurs at an average elevation of roughly 1350 metres. Underlying the basalt the drill holes encountered a succession of Kingsvale Group sedimentary rocks. These are dominated by sandy textured, poorly sorted greywackes and mixtures of siltstones, mudstones, and conglomerates. Finer sediments often contain a large amount of clays and a minor amount of graphite. Contacts are ill-defined and gradational, with very little recognizable cross-bedding. The poor sorting, combined with a large percentage of somewhat angular fragments in conglomerates, is suggestive of a lahar depositional setting. Holes 01 and 02 display weak hydrothermal alterations at the upper sections of each hole, evidenced by the destruction of calcium and iron cementing in the sediments, which have been mobilized and deposited along narrow stringers of calcium carbonate and hematite deeper into the sedimentary stratigraphy. Hole 03 displayed no alterations or mineralization of note.


None of the drill holes contained recognizable sulfides which could be related to the I.P. chargeability anomalies as targeted. The presence of conductive/chargeable graphite and chargeable clays in the sediments, and the presence of minor hematite in fractures, is likely the source of the geophysical anomalies.

4.0 ENVIRONMENTAL

In an effort to begin collecting background environmental data, 8 water samples were obtained from Taseko River, several tributaries to Taseko River, and one small lake to the north of the claims. Water sample sites are shown on figure #4. Two water samples were collected at each sample site, one "preserved" sample in which the sample container had a premeasured amount of zinc acetate, and a second "unpreserved" sample.

Samples were shipped to Chemex Labs Ltd. in North Vancouver for analysis. Copies of the certificate of analysis are given in the appendix. All of the stream and river samples contained normal background values for this area. Sample number 8, taken from the small lake in the northwest corner of the claim block shows that this is an alkaline lake with a pH of 9.5, with relatively high metals content shown by the zinc value of 2200 ppb.

CORE STORED AT CORE ENTERPRISES CLINTON, BC

5.0 REFERENCES

BUTTERWORTH, B.P., EPP, W.R., 1985; Geology, Geochemistry, Geophysics and Percussion Drilling of the Taseko claims, Southwestern British Columbia: Unpubl. Assessment Report, B.C. Dept. of Mines and Petroleum Resources File No. 14,159.

DICKIE, G.J., 1984; Tas Project, Report on 1984 Exploration in the Taseko River Area, Southwestern British Columbia: Unpubl. Report Prepared by Minequest Exploration Associates Ltd. for Brinco Mining Ltd, Ref. RM1301.

GONZALEZ, R.A., 1992; Geochemical Report on the Mega, Boot, Angela and Gold Claims: Ministry of Energy, Mines and Petroleum Resources Assessment Report.

HOLLAND, S.S., 1964; Landforms of British Columbia - A Physiographic Outline: B.C. Dept. of Mines and Petroleum Resources, Bulletin 48, p. 69.

JELETSKY, J.A. and TIPPER, H.W., 1968; Upper Jurassic and Cretaceous Rocks of Taseko Lakes Map Area and Their Bearing on the Geologic History of Southwestern British Columbia: Geological Survey of Canada, Paper 67-54.

MATTHEWS, W.H., AND ROUSE. G.E., 1984; The Gang Ranch - Big Bar Area, South-central British Columbia, Stratigraphy, Geochronology and Palynology of the Tertiary Beds and their Relationship to the Fraser Fault: Canadian Journal of Earth Sciences, Vol. 21, p. 1132-1144.

TIPPER, H.W., 1963; Geology, Taseko Lakes, British Columbia: Geological Survey of Canada, Map 29-1963.

TIPPER, H.W., 1968; Mesozoic and Cenozoic Geology of the Northeast Part of Mount Waddington Map Area (92N), Coast District, British Columbia: Geological Survey of Canada, Paper 68-33.

TIPPER, H.W., 1978; Taseko Lakes (920) Map Area, British Columbia: Geological Survey of Canada, Open File 534.

WOLFHARD, M.W., 1976; Fish Lake: in Porphyry Deposits of the Canadian Cordillera, CIM Special Volume No. 15, A. Sutherland-Brown (Editor), p. 317-322.

WOOLHAM, R.W., 1984; Report on the Helicopter-Borne Magnetic and VLF Electromagnetic Surveys, Taseko Project: Unpubl. Report prepared by Derry, Michener, Booth and Wahl Ltd. for Brinco Mining Limited, Ref. 84-57.

STATEMENT OF QUALIFICATIONS

PERRY GRUNENBERG, B.Sc., F.G.A.C., P.Geo.

ACADEMIC

1982	B.Sc. in Geology	The University of British Columbia
1987	Fellowship	Geological Association of Canada
1992	Membership	Association of Professional Engineers and Geoscientists

PROFESSIONAL

1989 to	P and L Geological	Contract Geologist working in
PRESENT	Services,	Mining and Mining Exploration
	Smithers, B.C.	in and around the Smithers
		area.

- 1984 toHughes-LangProject Geologist employed to1989Explorationswork on geological, geophys-Vancouver, B.C.ical, and geochemical surveyswith follow-up drilling,inareas throughout B.C. andYukon.Yukon.
- 1983Strato Geological
Engineering Ltd.Project Geologist contracted
to work in all aspects of
Mining Exploration on
properties in Nevada,
Washington, and B.C.
- 1982 P and L Exploration Vancouver, B.C. Contract Geologist involved in evaluating placer gold prospects near Quesnel and Princeton, B.C.

COST STATEMENT 28 July - 17 December 1993

GENERAL COST

FOOD & ACCOMMODATION: 75.5 mdays @ \$36.16 FIELD TELEPHONE SERVICE: FIXED WING: Air BC, Van-Wml 1 SHIPMENTS: FUEL: SUPPLIES & SUNDRIES: DENTALS:		\$ 2,729.74 385.00 199.61 130.87 1,334.97 1,228.36
RENTALS: P.G. TRUCK, 44.5 days @ \$40 SWEENEY TRAILER 2 mos @ \$500 TRAILER DELIVERY P.G. EQUIPMENT, 55 days @ \$10 CONSULTANT FEES: Archean Engineering REPORT PREPARATION: TOTAL GENERAL COST:	\$ 1,780.00 1,000.00 150.00 550.00	3,480.00 7,043.28 <u>2,391.00</u> \$ <u>18,922.83</u>
GEOCHEMICAL SURVEY COS	ST	
SALARIES & WAGES: 2 pers. 6 mdays @ \$280.88 ASSAYS & ANALYSES: - CHEMEX LABS 121 Soil for Au & 32el ICP @ \$15.46 1 Rock for Au,Ag & 32el ICP GENERAL COST APPORTIONED (6/75.5 X \$18,922.83 TOTAL GEOCHEMICAL SURVEY COST:	18.40	\$ 1,685.25 1,889.24 <u>1,503.80</u> \$ 5,078.29
DIAMOND DRILLING COST	2	
SALARIES & WAGES: 3 pers. 69.5 mdays @ \$186.2 ASSAYS & ANALYSES: - CHEMEX LABS 38 Core for Au & 32el ICP @ \$19.63 9 H ₂ O for 24el ICP @ \$76.08 CORE ENTERPRISES LTD: 690.98m @ \$72.48	\$ 746.11 <u>684.73</u>	\$12,947.50 1,430.84 50,083.60
GENERAL COST APPORTIONED (69.5/75.5 X \$18,922 TOTAL DIAMOND DRILLING COST:	2.88):	<u>17,419.03</u> \$ <u>81,880.97</u>

GEOPHYSICAL SURVEY

P.E. WALCOTT & ASSOCIATES:

\$<u>45,821.50</u>

APPENDIX 1

ASSAY CERTIFICATES

•

3604 687 3932 13:4112/21/92

Endlagene antes	0000				**-															
551023H 551024H 551025B 551026H 551026H 551027H	205 27 205 27 205 27 205 27 205 27 203 27	4 < 5 4 10 4 15	< 0.2 0.6 0.6	3.12	8 < 2 2 4 < 2	260 310 540 530 310	0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.44 0.31 0.31	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 12 28 22 15	24 26 40 34 37	19 27 32 31 33	2.05 2.28 3.60 4.08 4.07	< 10 < 10 20 10 10	< 1 < 1 < 1 < 1 < 1	0.24 0.15 0.18 0.13 0.14	< 10 10 50 60 10	0,49 0.54 0.42 0.28 0.44	185 200 1865 1470 765
551028¥ 551029R 551030H 551031H 551032H	205 27 205 27 205 27 205 27 205 27 205 27	4 < 5 4 < 5 4 < 5	< 0.2 < 0.2 < 0.2		2 < 2 14 < 2 < 2	160 320 270 440 190	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 < 2 2 < 2	1.31 4.39 2.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 11 10 16 15	43 32 35 30 29	26 31 23 40 42	3,41 2,64 2,78 3,14 2,90	10 10 < 10 10 < 10	< 1 1 < 1 2 < 1	0.16 0.29 0.25 0.18 0.17	10 10 10 10 < 10	0.46 0.59 0.56 1.12 1.09	190 581 2470 451 451
551033E 551034E 551035E 551036E 551036E 551037E	205 27 205 27 205 27 205 27 205 27 205 27	4 10 4 < 5 4 < 5	< 0.2	2.96 2.75	< 2 < 2 < 2 2 2	260 300 170 260 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.13 4.39 1.48	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 12 13 12 8	18 25 37 18 12	39 37 32 64 51	2.15 3.11 3.05 2.76 2.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.21 0.12 0.09 0.24 0.21	10 < 10 < 10 10 10	0.58 1.31 1.40 0.75 0.66	96(44(145(405 31(
											*									
														CERTIFIC	CATION:		ß	6	-9	Į.

Bi

DDD

Ca.

*

212 Brooksbank Ave., North Vancouver Brillish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 92 MGO1

X1

¥

λs

DDM

Ba

D00

Be

<u>ppm</u>

Ag

DDM

PREP

CODE

SAMPLE

ya dop

ра+ал

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

To: VALERIE GOLD RESOURCES LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

Co

DDD.

CERTIFICATE OF ANALYSIS

Cr

TO DEL

Cu

DEM

Fe

\$

Ga

ppm

Eg

ppm

Page Number : 1-A Tot iges :1 ie Date: 02-DEC-92 Ce. : 19225534 Invoice No. P.O. Number : :IZU Account

Кg

%

Ma

<u>ppm</u>

A9225534

X

¥

La

ppm.

Project : MEGA-GOLD Comments: CC: ART TROUP

Cđ.

ppm

1

CERTIFICATION:___

Analytical Chemists * Geochemists * Registered Assayera 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: VALERIE GOLD RESOURCES LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3 Page Number :1-B Toh' Pages :1 Ce te Date:02-DEC-92 Involue No. :19225534 P.O. Number : Account :IZU

Project : MEGA-GOLD Comments: CC: ART TROUP

		q	2 MI	GO (CERTIFICATE OF ANALYSIS							A9225534
SAMPLE	PREP CODE	Ko	Na %	Ni PPm	P ppm	Pb ppm	Sb ppn	Sc ppm	8r yym	Ti ¥	Tl ppm	U ppm	eta مراط	W Ppm	In Pfm	
551023H 551024H 551025H 551026H 551027R	205 274 205 274 205 274 205 274 205 274 205 274	< 1 < 1 1 < 1 < 1	0,10 0,09 0.09 0.13 0.12	15 19 26 24 17	50 30 150 240 100	6 6 4 2 5	2 4 < 2 < 2 < 2 < 2	6 8 13 13 15	131 143 99 117 132	0.01 < 0.01 0.13 0.29 0.22	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 46 86 93 60	< 10 < 10 < 10 < 10 < 10 < 10	42 42 98 84 92	
551028H 551029H 551030H 551031H 3551032H	205 274 205 274 205 274 205 274 205 274 205 274	< 1 < 1 < 1 < 1 < 1	0.10 0.11 0.10 0.21 0.12	29 24 24 34 36	90 540 360 380 490	6 10 4 4 < 2	< 2 2 4 < 2 2	12 8 7 9 9	139 241 215 355 176	0.10 < 0.01 0.01 0.01 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 69 74 52 53	< 10 < 10 < 10 10 < 10	60 56 64 54	
551033H 551034H 551035B 551036H 551037M	205 274 205 274 205 274 205 274 205 276 205 274	< 1 < 1 < 1 < 1 < 1 1	0.14 0.15 0.17 0.13 0.21	16 24 26 26 17	320 290 520 470 270	< 2 2 2 4 14	< 2 < 2 < 2 < 2 < 2 < 2 < 2	7 9 9 9	243 261 171 281 211	0.01 0.15 0.15 0.13 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	35 67 75 43 25	< 10 10 10 < 10 10	42 58 60 56 46	
351 038H	205 274	< 1	0.11	23	290	8	< 2	β.	225	0.14	< 10	< 10	36	< 10	54	

CERTIFICATION:_

B. Cargli

4 003/007

3932 **36**04 687 감 13: CN. 2/21/9

1

5510018	205 274		1.58 < 2	160 < 0.5	2	0.13 < 0.5		66	30	1.50	< TÔ	T
551002H	205 274	< 5 < 0.2	3,24 12	140 < 0.5	< 2	0.30 < 0.5	12	24	35	2.07	10	< 1
551003 H	205 274	35 0.2	3.65 < 2	150 < 0.5	< 2	0.30 < D.5	9	24	24	2.27	10	< 1
551004m	205 274		4.25 12	280 < 0.5	2	0.58 < 0.5	17	31	34	3.48	10	< 1
				350 < 0.5	< 2	1.08 < 0.5	14	27	42	2.82	10	₹ 1
551005 e	205 274	< 5 < U.2	3.81 2	390 < 0.2	< ₄	1,06 < 0.5	74	41	44	*.0*	10	< L
55100 <i>5</i> H	205 274	< 5 < 0.2	2,99 12	590 < 0.5	< 2	1.33 < 0.5	27	18	47	2.60	10	< 1
5510078	205 276	< 5 < 0.2	3.04 2	200 < 0.5	< 2	0.89 < 0.5	11	19	30	2.59	10	< 1
5510088	205 274	< 5 < 0.2	3.60 10	320 < 0.5	< 2	1.33 < 0.5	13	29	38	2.90	10	< 1
551009E	205 274		4.00 6	240 < 0.5	< 2	1.54 < 0.5	13	26	33	2.66	10	< 1
551010E	205 274		2.67 < 2	400 < 0.5	< 2	0.93 < 0.5	13	28	28	2.01	10	< 1
221VIVE	405 414		4.07 \ 4	800 1 0.3	· · ·	0.93 < 0.9	13	49	40	4.01		
5510118	205 274	< 5 < 0.2	3.19 10	970 < 0.5	2	1.21 < 0.5	14	33	30	2.79	10	< 1
5510128	205 274	< 5 < 0.2	3,53 4	470 < 0.5	< 2	1.67 < 0.5	17	32	41	3.12	10	< 1
5510139	205 274	< 5 < 0.2	3,03 6	190 < 0.5	4	2.43 < 0.5	14	23	61	2.64	< 10	< 1
551014N	205 274	< 5 < 0.2	2.91 6	140 < 0.5	< 2	2.65 < 0.5	12	19	40	2.52	< 10	< 1
551015E	205 274		2.73 4	440 < 0.5	2	1.80 < 0.5	13	26	31	2.85	< 10	< 1
551016E	205 274	< 5 < 0,2	2,89 4	250 < 0.5	< 2	1.73 < 0.5	14	21	39	2,90	< 10	< 1
5510178	205 274	< 5 < 0.2	2,37 12	400 < 0.5	< 2	1.81 < 0.5	13	59	27	2.95	10	< 1
5510188	205 274	5 < 0.2	3.40 8	110 < 0.5	< 2	1.96 < 0.5	15	26	62	3.07	10	< 1
551019B	205 274	< 5 < 0.2	3.09 2	130 < 0.5	< 2	2.95 < 0.5	14	20	39	2.79	< 10	< 1
5510208	205 274		3.10 10	110 < 0.5	< 2	1.96 < 0.5	12	18	31	2.51	× 10	< 1
5314804	203 274			110 (015		1138 (0.5	••	La				
5510210	205 274		3.77 < 2	750 < 0.5	2	3.16 < 0.5	12	33	30	2,65	10	2
5510228	205 274	< 5 < 0.2	3.19 2	540 < 0.5	< 2	2.11 < 0.5	11	27	26	2.62	10	< 1
		ſ										

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

DDHM69202

11

1.58

ዪ

ÅВ

ppm

< 2

Ba

160 < 0.5

DDE

Вэ

TEM

Bİ

PP

2

λg

ppa

< 5 < 0.2

PREP

CODE

205 274

SNPLE

5510018

Yo Dop

7እ+እእ

MEGA GOLD Project : Comments: CC: ART TROUP

Co

6

PP

VANCOUVER, BC

V6E 2K3

Cđ

ppm

Ca

×

0.19 < 0.5

To: VALERIE GOLD RESOURCES LTD.

CERTIFICATE OF ANALYSIS

Сu

30

pom

¥e

1.50

*

Ga

ppm

< 10

Eg

opm.

1

Cr

66

ppm

1000 - 1177 W, HASTINGS ST.

Page Number : I-A Tole" ages :1 Cĩ Ite Date: 23-NOV-92 J NO. :19224953 Inv. P.O. Number VGM Account :IZU

Kg

*

0.56

0.74

0.50

0.79

1.00

0.83

0.79

0.90

0.86

0.81

0.87

0.95

0.93

1.01

1.12

1.03

1,09

0.72

0.86

1.04

1.21

1.18

Ma

D D Sh

195

165

135

365

320

3300

420

565

520

645

820

850

515

775

715

735

790

450

720

605

630

655

A9224953

R

*

0.16

0.13

0.30

0.33

0.51

0.39

0.45

0.31

0.36

0.24

0.27

0.25

0.33

0.21

0.14

0.22

0.08

0.39

0.22

0.15

0.16

0.10

La

DDB

< 10

< 10

< 10

< 10

20

10

10

10

< 10

< 10

< 10

< 10

< 10

< 10

10

10

10

< 10 20

< 10

< 10

< 10

國 004/007

HUGHES LANG

551(5510 5510 5510 5510 5510 5510

CERTIFICATION: That DMa

-

To: VALERIE GOLD RESOURCES LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3 Total Pages :1 Cor a Date: 23-NOV-92 Invo. .4o. : 19224953 P.O. Number : VGM Account :1ZU

Project: MEGA GOLD Comments: CC: ART TROUP

CERTIFICATE OF ANALYSIS A9224953

SANPLE	PREP CODE		No ppm	Na %	Ni ppm	P DPR	Pb ppa	Sp PDu	Sc ppm	Sr ppm	Ti. %	T1 ppm	DDar DDar	V PDB	and a state of the	Zn Dom	
51001B	205 27		< 1	0.06	12	330	< 2	< 2	2	26	0.07	< 10	< 10	25	< 10	28	
51002H	205 274		< 1	0.02	24	50	2	< 2	8	81	0.01	< 10	< 10	29	< 10	32	
51003A	205 274	4	< 1	0.04	20	30	< 2	< 2	6	91	0.05	< 10	< 10	- 44	< 10	38	
510048	205 274		< 1	0.07	23	80	< 2	< 2	11	189	0.08	< 10	< 10	65	10	62	
510 05 H	205 27	4	< 1	9,10	25	450	< 2	3	9	253 -	< 0.01	< 10	< 10	57	10	52	
510068	205 274		< 1	0.08	32	820	< 2	< 2	6	156	0.01	< 10	< 10	53	10	58	
5 10 07£	205 27		< 1	0.10	22	600	2	2	8	163	0.02	< 10	< 10	49	< 10	56	
5100Be	205 274	4	< 1	0.16	23	440	< 2	< 2	8	480	0.09	< 10	< 10	75	10	60	
51009 a	205 274	(< 1	0.16	19	460	< 2	2	7	325	0.04	< 10	< 10	55	10	56	
510108	205 274	4	< 1	0.14	12	340	< 2	< 2	8	595	0.08	< 10	< 10	66	10	58	
510118	205 27		< 1	0.20	22	410	< 2	< 2	8	1450	0.13	< 10	< 10	71	10	58	
51012E	205 27		< 1	0.19	29	520	< 2	< 2	9	509	0.13	< 10	< 10	74	10	66	
51013e	205 27		< 1	0,10	27	920	< 2	2	9	189	0.10	< 10	< 10	54	10	66	
510148	205 274	4	< 1	0,11	22	550	< 2	< 2	8	143	0.14	< 10	< 10	55	10	54	
510158	205 274	4	< 1	0.14	24	690	< 2	< 2	8	532	0.19	< 10	< 10	77	10	56	
510168	205 274		< 1	0.11	25	270	< 2	< 2	8	229	0.18	< 10	< 10	67	10	62	
510178	205 274		< 1	0.10	25	370	< 2	< 2	7	626	0.16	< 10	< 10	82	10	60	
510180	205 270	l]	< 1	0,10	38	600	< 2	< 2	12	100	0.05	< 10	< 10	50	10	86	
51019H	205 270		< 1	0,12	23	580	< 2	< 2	8	146	0.07	< 10	< 10	54	10	66	
51020H	205 27	4	< 1	0.13	20	380	< 2	< 2	7	131	0.08	< 10	< 10	60	10	56	
51021E 510228	205 274		< 1 < 1	0.23 0.18	24	410 360	< 2	< 2	0 8	950 846	0.10	< 10 < 10	< 10 < 10	64 72	10 10	54 54	
		1															
		1															
		ł															
		1															
	1																
	[[1															
		1															
	1 1	1															

Chemex Labs Ltd.

MG 92-02

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ava., North Vancouver Brilish Columbia, Canada V7J 2C1 FHONE: 604-984-0221

HUGHES LANG

CERTIFICATION: Thai DMa

To: VALERIE GOLD RESOURCES LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

CERTIFICATE OF ANALYSIS

Page Number : 1-A Toth Pages : 1 C ate Date: 16-DEC-92 In JNO. : 19226046 P.O. Number : Account : 12U

A9226046

a' DMa

CERTIFICATION:

Project : MEGA GOLD Comments: CC: A.TROUP

Chemex Labs Ltd.

92 MG03

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

SAMPLE	PRI COI		ли ррб Гл+лл	λg ppm	71 2	λs ppm	Ba ppn	Ве ррд	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ypm	Cu ppm	Fe %	Ga ppm	Bg ppm	K %	La ppu	Ng %	Ma ppm
5510398 5510408 5510418 5510428 5510428 5510438	205 205 205	274 274 274 274 274 274		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.61 3.56 2.87 3.23 2.73	< 2 < 2 < 2 10 18	130 100 1000 220 170	0.5 1.0 < 0.5 0.5 0.5	< 2 2 2 2 2 2 2 2	0.38 0.33 0.46	< 0.5 < 0.3 < 0.5 < 0.5 < 0.5 < 0.5	8 16 6 14 15	17 32 26 29 26	21 39 17 27 33	1.35 2.89 2.49 3.10 4.50	< 10 10 10 10 10	< 1 < 1 < 1 1 < 1	0.18 0.25 0.08 0.12 0.14	< 10 20 < 10 10 10	0.39 0.65 0.38 0.60 0.61	110 255 115 155 140
551044H 551045H 551046H 551047E 551047E	205 205 205 205 205 205	274 274 274	< 5 60 10	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.75 1.33 2.16 1.46 2.35	< 3 2 8 < 2 < 2 < 2	180 150 150 130 130	0.5 0.5 0.5 0.5 < 0.5	< 2 4 < 2 < 2 4	0.59 0.70 0.61	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 12 20 18 12	20 18 18 21 40	31 26 40 27 30	1.80 1.99 3.11 2.57 3.08	< 10 < 10 10 < 10 10	1 < 1 < 1 1 1	0.10 0.09 0.13 0.09 0.13	10 10 10 10 10	0.47 0.48 0.67 0.47 0.75	365 210 450 240 230
			ŗ																		

 \mathcal{O}^{\prime}

¢

HUGHES LANG

3932 C604 687 13:4312/21/92

0

Chemex Labs Ltd.

Analytical Chemists ' Geochemists ' Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: VALERIE GOLD RESOURCES LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

Page Number :1-B Toi ges :1 te Date: 16-DEC-92 Ce. Invoice No. :19226046 P.O. Number ΞIZU Account

CERTIFICATION: thai AMA

Project : MEGA GOLD Comments: CC: A.TROUP

			9	2Ni	°60-	3				(ERTIF	ICATE		NAL	(SIS	A9226046
SAMPLE	PRE		Mo ippat	Na X	Ni PPm	P PPm	Pb ppm	Sb ppm	Sc ppm	Sr T ppm	. Tl 5 ppm		V PDm	191902. W	2n ppm	
551039H 551040H 551041R 551042H 551042H 551043H	205 205 205 205 205 205	276 274	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.06 0.04 0.07 0.07	16 27 13 24 28	20 130 150 160 200	8 12 12 6 14	< 2 < 2 < 2 < 2 < 2	4 11 9 9	54 < 0.0 79 0.0 68 < 0.0 110 0.0 109 < 0.0	L < 10 L < 10 L < 10	< 10 < 10 < 10	21 89 68 61 51	< 10 < 10 < 10 < 10 < 10 < 10	15 64 18 56 68	
5510442 5510452 5510462 5510462 5510478 5510488	205 205 205 205 205 205	274 274	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.06 0.08 0.06 0.10	18 15 30 17 28	70 30 170 30 530	8 10 20 14 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	6 6 8 5 9	$\begin{array}{cccc} 112 & 0.0 \\ 116 < 0.0 \\ 119 & 0.0 \\ 112 < 0.0 \\ 113 & 0.0 \\ \end{array}$	L < 10 L < 10 L < 10	< 10 < 10 < 10	27 23 34 21 67	< 10 < 10 < 10 < 10 < 10 < 10	54 56 68 44 65	
						<u> </u>										

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

A9225739

To: VALERIE GOLD RESOURCES LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

Comments: ATTN: A.G. TROUP CC: S. EDWARDS

A9225739

ANALYTICAL PROCEDURES DETECTION UPPER CHEMEX NUMBER LIME LIMIT METHOD SAMPLES DESCRIPTION CODE 14.0 POTENTIOMETER 0.1 659 1 DH 10000 TITRATION 0.01 Sulfide mg/l S 658 1 10000 Ag ug/1: Water samples ICP-AES 1 Β4 1 2000 Al mg/1: Water samples ICP-ABS 0.2 80 1 10000 Ba ug/1: Water samples ICP-ARS 26 74 1 10000 1 Be ug/1: Water samples ICP-AES 81 1 10000 A 70 Bi ug/l: Water samples ICP-ARS 1 2000 0.2 ICP-AES 82 1 Ca mg/l: Water samples 10000 TCP-AES 1 71 1 Cd ug/l; Water samples 2 10000 Co ug/l: Water samples ICP-ARS 72 1 10000 Cr ug/1: Water samples ICP-AES 20 77 1 10000 Cu ug/l: Water samples ICP-AES 2 83 1 0.2 2000 75 Fe mg/1: Water samples ICP-ARS 1 0.2 2000 ICP-ARS 88 K mg/l: Water samples 1 2000 ICP-ARS 0.2 78 1 Mg mg/l: Water samples 10000 ICP-AES 2 Mn ug/1: Water samples 76 1 2 10000 Mo ug/l: Water samples ICP-AES 63 1 0.2 2000 Na mg/l: Water samples ICP-ABS **B7** 1 10000 Ni ug/1: Water samples ICP-NES 2 73 1 10000 ICP-ARS 20 P ug/1: Water samples 68 1 10000 Ph ug/1: Water samples ICP-ARS 4 69 1 10000 2 86 1 Sr ug/l: Water samples ICP-ARS 0.2 2000 ICP-ARS 85 1 Ti mg/l: Nater samples 10000 ICP-ARS 2 V ug/1: Water samples 79 1 20 10000 ICP-ARS 64 1 W ug/1: Water samples 10000 Zn ug/1: Water samples ICP-ARS 2 65 1

VALERIE GOLD RESOURCES LTD.

CERTIFICATE

Project: MEGA GOLD P.O. # : NONE

Samples submitted to our lab in Vancouver, BC. This report was printed on 9-DEC-92.

	SAMPLE PREPARATION												
Chemex Code	NUMBER	DESCRIPTION											
221	2	Water sample											

シンドゴ

*

0 Q /TT .T/

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: VALERIE GOLD RESOURCES LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3 Page Number :1 Total Pages :1 Certifice Ste:09-DEC-92 Invoice :19225739 P.O. Number :NONE Account :1ZU

-

Project : MEGA GOLD Comments: ATTN: A.G. TROUP CC: S. EDWARDS

•

					CERTIFICATE OF ANALYSIS			A92	A9225739			
PARAMETER DESCRIPTIONS	SAMPLE 820-8 NOV 24/92	SAMPLE 820-8 HOV 24/92										
Sample preparation code Sample preparation code	221	221								~		
pH Sulphide (mg/L S) Ag ug/L Al mg/L Ba ug/L	9.2 < 1 < 0.2 < 20	0.80										
Be ug/L Bi ug/L Ca mg/L Cd ug/L Co ug/L	< 1 < 4 6.8 < 1 2											
Cr ug/L Cu ug/L Fe mg/L K mg/L Mg mg/L	<pre>< 2 < 2 < 2</pre>											
Mn ug/L Mo ug/L Na mg/L Ni ug/L P ug/L	2 < 2 97 < 2 40											
Pb ug/L Sr ug/L Ti mg/L V ug/L W ug/L	28 26 < 0.2 6 < 20					l						
Zn ug/L	8											
	1											
		<u> </u>	L	_1		_ _	CERTIFICATIO	DN:	.Y. W	Than		

01/11/93

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: VALERIE GOLD RESOURCES LTD.

1000 - 1177 W. HASTINGS ST. ANCOUVER, BC V6E 2K3

Page Number :1 Total Pages :1 Certificate Device 09-DEC-92 Invoice No. 9225739 P.O. Numbe, AONE :IZU Account

Project : MEGA GOLD Comments: ATTN: A.G. TROUP CC: S. EDWARDS

.

SAMPLE E2D-8 BOY 24/92	SAMPLE			CERTIFIC	ATE OF A	NALYSIS	A92	25739			
				CERTIFICATE OF ANALYSIS A9225739							
	E20-8 NOV 24/92										
221	221						 				
9.2 < 1 < 0.2 < 20	0.80										
<pre>< 1 < 4 6.8 < 1 2</pre>											
<pre>< 2 < 2</pre>											
2 < 2 97 < 2 40											
28 26 < 0.2 6 < 20											
8											
ľ							6		11		
· · ·	<pre></pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} - & - & 0.80 \\ < 1 & - & - & - \\ < 20 & - & - & - \\ < 20 & - & - & - \\ < 4 & - & - & - \\ < 4 & - & - & - \\ < 5 & - & - & - \\ < 2 & - & - & - \\ 2 & - & $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

A9224274

Г

To: HUGHES LANG EXPLORATIONS LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

Comments: ATTN: PERRY GRUNENBERG CC: A. TROUP

	DESCRIPTION	NUMBER SAMPLES	Chemex Code
samplesICP-ARS1samplesICP-ARS0.2samplesICP-ARS20samplesICP-ARS1samplesICP-ARS4samplesICP-ARS0.2samplesICP-ARS0.2samplesICP-ARS2samplesICP-ARS2samplesICP-ARS2samplesICP-ARS20samplesICP-ARS0.2samplesICP-ARS0.2samplesICP-ARS0.2samplesICP-ARS0.2samplesICP-ARS0.2samplesICP-ARS	pH Sulfide mg/1 S Ag ug/1: Water samples Al mg/1: Water samples Ba ug/1: Water samples Be ug/1: Water samples Ca mg/1: Water samples Cd ug/1: Water samples Cd ug/1: Water samples Cr ug/1: Water samples Cr ug/1: Water samples Fs mg/1: Water samples Ma ug/1: Water samples Ma ug/1: Water samples Ma ug/1: Water samples Na mg/1: Water samples Na mg/1: Water samples Na mg/1: Water samples Na mg/1: Water samples Pug/1: Water samples Pug/1: Water samples Pug/1: Water samples Ff ug/1: Water samples Sr ug/1: Water samples Y ug/1: Water samples Y ug/1: Water samples Y ug/1: Water samples Y ug/1: Water samples	6 5 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	659 658 84 80 71 70 82 71 72 73 83 75 88 76 63 76 63 85 79

HUGHES LANG EXPLORATIONS LTD.

CERTIFICATE

Project: MEGA-GOLD P.O. # : NONE

Samples submitted to our lab in Vancouver, SC. This report was printed on 14-NOV-92.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
221	8	Water sample
		[

איזאיז

000000

07.57

10 / TT

177

>>>

5

Ś

1

3

1

.

ł

÷

1

.

.

.

4

I

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

HUGHES LANG EXPLORATIONS LTD.

1000 - 1177 W. HASTINGS ST. VANCOUVER, BC V6E 2K3

स स

raye nu 1 . 1 Total Pages - 1 Certificale Date: 14-NOV-92 19224274 invoice N P.O. Nun :NONE :CH Account

5 20 - 4

MEGA-GOLD Project : Comments: ATTN: PERRY GRUNENBERG CC: A. TROUP

A9224274 **CERTIFICATE OF ANALYSIS** SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE PARAMETER 820 - 06 820 - 07 1920 - 08 H20 - 04 820 - 05 **E20 - 03 E20 - 01** 820 - 02 DESCRIPTIONS 221 221 ___ 221 221 221 ---221 221 Sample preparation code 221 ---_ _ _ _ _ _ _ _ ~ -------------____ Sample preparation code ---7.9 8.3 9.5 8.3 8.4 8.1 8.2 7.2 рн 0.30 0.60 0.40 0.40 0,50 < 0.05 0.40 0.40 Sulphide (mg/L S) < 1 < 1 < 1 < 1 < 1 < 1 < 1 ug/L < 1 Ag Al 0.8 < 0.2 1.8 1.8 < 0.2 < 0.2 2.0 4.0 mg/L < 20 < 20 20 20 20 < 20 20 20 ug/L 38 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 Be ug/L < 4 < 4 7.4 < 4 < 4 < 4 < 4 < 4 Bi < 4 ug/L 10.0 10.5 56 73 10.0 89 46 mg/L Ca < 1 2 12 < 1 < 1 < 1 < 1 < 1 < 1 ug/L Cđ 2 2 2 2 < 2 < 2 ug/L Co < 2 12 4 18 4 2 6 6 Cr ug/L < 2 < 2 4 2 8 < 2 4 ug/L Cu < 0.2 1.6 1.4 < 0.2 < 0.2 1.4 4.2 1.6 mg/L Fe 2.8 33 28 1.2 1.2 1.4 1.2 1.4 mg/L 1.4 ĸ 170 17.5 1.6 1.6 1.8 16.0 10.5 mg/L Mg 24 < 2 32 < 2 < 2 < 2 22 26 290 Mn ug/L 2 < 2 2 2 4 6 2 MO ug/L 1.8 16.0 94 7.2 14.5 1.8 2.0 15.0 Na mg/L < 2 < 2 < 2 < 2 < 2 < 2 < 2 Ni ug/L 20 20 60 < 20 < 20 36Õ < 20 < 20 P ug/L < 4 24 < 4 < 4 < 4 8 ug/L < 4 < 4 ₽b 56 370 32 360 150 260 54 56 Sr ug/L < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 < 0.2 Ti < 0.2 mgr/L < 2 8 2 < 2 < 2 2 v ug/L 2 B < 20 < 20 < 20 < 20 20 < 20 < 20 < 20 w ud/L 6 26 12 2200 8 165 2 140 Zn ug/L and the

CERTIFICATION:

÷

DIAMOND DRILL LOGS

.

.

APPENDIX 2

LOCA	HONE	L4W; 1+255			Du	mond Driff Record			HOLL NO. 92MG01 Page 1 of 5		
AZIM	ιтн+	360°	DIPS – collar		75°	CONTRACIOR: Core Ent. (Al	Harvey)		PROPERTY: Mega Gold		
ELEV	ATION	4415 feet	- 226 m		78°	LOGGED BY: Perry Grunenbe	LOGGED B) + Perry Grunenbers, P.Geo.				
LENC	1.11 +	226.83 m	- m		0	DAIL: November 17, 1	DAIL: November 17, 1992				
CORE	SIZE	ı NQ	- m		0			STARILD: November 14, 1992			
PURP	OSE +	1.P. chargeabili	ty zone, magneto	neter					COMPLETED: November 19, 1992		
Sec	ion	ROC.	ĸ	Interval		ALTERATION			VEINLETS		
from to m m		DESCRIPTION		from to m m		MINERALIZATION etc.	Thickness Ang		ore minerals in decreasing abundance		
0	21.34	OVERBURDEN - CASING									
		Apparently sand textured									
		materials.									
21.34 70.73	70.73	BASALT			ROD = 0 to 50						
		Dark grey to blac			Recovery = 50 to 100%						
		medium-grained, e				1					
		highly vesicular					1				
		zeolite infills o	common				1				
		(phillipsite) and	sodalite								
		(blue).									
		Red colouration o	over 1 to 2 m								
		segments appear t	o represent								
		successive deposi	torial episodes.								
at	70.73	Contact broken ir	regular								
0.73	75.5	WACKE - MUDSTONE				RQD = 20					
		Grey, fine graine	ed matrix, in			Recovery = 90%					
		places with round	ed pebbles or			lagnetic blotches to 3 mm					
		angular fragments	tolcm			diameter, 5% of rock in places.					

.

.

٠

hind a subsection of the subse

.

.

.

				Du	amond Drill Record		но	DLE NO. 92MGO1 Page 2 of 5
Sec	tion	ROCK	Inte	rval	ALTERATION			VEINLETS
from	10 m	DESCRIPTION	from m	to m	MINERALIZATION etc.	Thickness	Angle to core	minerals in decreasing abundance
0.73	75.5	diameter.				1		
(cor	ι)	Bedding visible at 85° to C.A.						
at	75.5	Contact distinctive at 15° to C.A						
5.5	84.8	BASALT			RQD = 15 to 50			
		Vesicular minor amygdaloids,			Recovery = 70%			
		slight red colour near bottom.						
		Minor glassy inclusions.						
at 85.8	85.8	CONTACT						
		Apparent 90° to C.A.						
4.8	87.4	GREYWACKE			RQD - 10			
		Muddy matrix, grey-green, with			Recovery = 100%			
		sandy grained texture throughout						
		Minor pebbles to 2 or 3 mm						
		diameter.						
7.4	147.1	Gradational contacts			RQD - 5 to 30			
		MUDSTONE			Recovery - 75%; down to 40%			
		Black (graphitic?) to green and			near end of section			
		brown, poorly consolidated, in			Samples 98.4 - 99.7 #551023			
		places pebbly, with poorly			102.6 - 104.0 #551024			
		distinguishable 1 to 5 mm			108.0 - 109.5 #551025			
		rounded pebbles (wacke).			114.0 - 115.3 #551026	1		
		Poorly sorted, nearly grading			118.5 - 120.0 #551027	1		

• *

Report States and the states of the second states and the

.

				Dı.	amond Drill Record	r	нс	DEE NO. 92MG01	Page 3 of
Sect	ion	ROCK	Inte	rval	ALTERATION			VEINLETS	
from m	to m	DESCRIPTION	from m	to m	MINERALIZATION dic.	Thickness mm	Angle to core	minerals in di	ccreasing abundance
7.4	147.1	to greywacke in places.			Rounded, black blotches to .5 cm				
(cor	t)				diameter, up to 3% of rock over				
					some .5 to 1 m sections (organic				
					carbon).				
					Weakly magnetic in places, minor				
					hematite.				
					Sample 130.2 - 131.7				
		·							
47.1	161.6	LITHIC PEBBLE CONGLOMERATE							
		Gradational contact from			Yellow-blue-pink tinge in				
		mudstone. Still a very fine			cavities around pebbles, clays,				
		mudstone appearance with 50 to			apparent alteration from				
		60% pebbles and fragments,			feldspars.				
		poorly sorted, wacke style							
		deposition. Pebbles and stones			RQD = 30				
		become larger (to 6 cm diameter)			Recovery = 55% at top of section				
		and more distinct toward bottom			90% toward bottom				
		of section. Pebbles are			Sample 153.5 - 155.0				
		primarily sedimentary types.			157.0 - 158.3				
		Bedding 25° to C.A. Broken							,,,,
		semi-gradational contact to							
		next unit.							

•

and a second
,

•

				Dia	mond Drill Record		но	LE NO. 92MG01 Page 4 of 5
Sec	tion	ROCK	Inte	rval	ALTERATION			VEINLETS
from m	to m	DESCRIPTION	from m	to m	MINERALIZATION de	Thickness	Angle to core	minerals in decreasing abundance
161.6	165.8	GREYWACKE			RQD = 5	1 to 2	5 to 45	Low % stringers, carbonate and
		Grey coloured, poorly sorted,			Recovery = 95%			clays.
		weakly bedded 15° to C.A.			Sample 164.0 - 165.5			Stockwork appearance.
		Broken contact, angle unknown						
		to next section.						
165.8	177.5	MUDSTONE/WACKE			Weakly magnetic in places	1 to 3	asstd.	Low % stringers, clay, carbonate,
		dark grey, finer grained, to			RQD = 6 to 25			minor talc?
		light grey and grey-green.			Recovery = 95%			
		Sandy grained, poorly sorted,			Samples 168.7 - 170.0			
		bedding 15 to 20° to C.A.			173.0 - 174.5			
		Gradational contact.						
177.5	181.0	WACKE - CONGLOMERATE			Weakly magnetic			Very minor white stringers
		Grey, poorly sorted, pebbly			RQD = 15			(carbonate, some clays)
		texture, 0.3 to 1 cm pebbles.			Recovery = 95%			
		Broken contact, apparently			Samples 182.9 - 184.4			
		sharp, angle unknown.						
181.0	187.8	WACKE - MUDSTONE			RQD = 6			
		Predominently grey, mud to			Recovery = 95%			
		sandy grained, equigranular with						
		lesser segments slightly coarser				1 to 8	0 to 90	Carbonate, clay, minor talc
		grained.						

.

Mennessen and a supervision of the supervision of t

,

.

				Du	amond Dritt Record		но	DLE NO. 92MG01 Page 5 of 5
Sect	ion	ROCK	Inte	rval	ALTERATION.			VEINLETS
from m	to M	DESCRIPTION	from m	to m	MINERALIZATION de.	Thickness mm	Angle to core	minerals in decreasing abundance
187.8	131.15	WACKE - CONGLOMERATE			Blue-green colour over some 3 cm			Minor stringers, carbonate, clay,
		Poorly sorted, sandy matrix, in			sections (talc) near fractures			and in places massive green talc.
		places with pebbles of .3 to 3 cm			RQD = 7			Less stringers towards bottom
		diameter, both angular and			Recover = 95%			of section.
		rounded.			Sample 187.8 - 188.4			
191.15	226.83	MUDSTONE - WACKE			RQD = 7			Several whispy "horsetail"
		Dark grey, fine grained			Recovery = 95%			stringers.
		equigranular.			Sample 194.3 - 195.7	l to 3	0 to 20	Quartz-carbonate, minor pyrite
		(Grading to wacke 195.5.			ROD to 50 near 200.61 m			(coatings on fractures, very few).
		Weak bedding 20° to C.A.)			and near 210.0 m			Appears to be more quarts in
		Very gradational changes over						veining through section, but
		l to 2 m intervals between dark			Graphitic section 215.5 - 216.5			still only up to 5% of stringers.
		grey to black fine grained			(specimen sent to office,			
		mudstone, to lighter grey,			P. Walcott test for conductivity)		
		poorly sorted, sandy textured						
		greywacke (tuff appearance).			Samples 200.0 - 200.6 #551037			
		Rock towards bottom of hole much			205.6 - 207.0 #551038			
		more competent than at top of						
		hole.			Minor chlorite 200.5 m			
		Darker mudstone sections possibl	·					
		graphitic.						
		Minor bedding visible at 75°						
		to C.A.						
	226 83	END OF HOLE						

Salating and a second
4.000

.

.

LOCA	HON :	L2W; 5+50N			Dia	nond Drill Record		ног	I NO. 92MG02 Page 1 of 4		
AZIM		180°	DIPS - collar	L	60	CONTRACTOR: Core Drilling	(Al Harvey)	PRO	PERTY: Mega Gold		
ELEN/	MION	4450 feet	- m		0	LOGGED BY: Perry Grunenber	rg	CLA	CLAIM NO. Gold 7		
LENG		242.62 m	- m		٥	DATE: November 4, 19	92	SEC	SECTION NO.		
CORE	SIZE	NQ-BQ	- m		0		SIA	SIARIED: November 2, 1992			
PURP		I.P. chargeabilit	ty zone, mercury	anoma	ly, ae	romagnetic		CON	MPLLIID: November 12, 1992		
Sect	ion	ROC	ĸ	Interval		ALTERATION		VEINLETS			
from m	rom to			from m	to m	MINERALIZATION dec.	Thickness A mm to	Angle core	minerals in decreasing abundance		
0	5.18	OVERBURDEN				RQD = # of breaks / 5 feet					
5.18	99.11	BASALT				Mild to moderately magnetic					
-		Dark grey to grey									
		grained equigrant									
		Highly vesicular		25.7	26.5				Red colouration, oxidized.		
		minor amygdaloids of zeolite					1				
		(phillipsite).			30.3				Small cm veinlet, guartz-		
		Vesicles to 40% of	of rock.						carbonate near devitrified glass		
		Several 1 cm to 5	5 cm zenoliths								
		of semitranslucer	nt, light green?	79.8	82.5				Very blotchy, fragmented 50%		
		devitrified volca	anic glass.						devitried glass.		
		26.1 to 26.2 - th	nin wedge of			RQD ranges approximates 5 - 20					
		wacke in red, oxi	idized segment.								
		Periodic red cold	ourations approx								
		each 10 to 15 m i	intervals				_				
		appears to repres	sent surface								
		oxidation of succ	cessive volcanic								
		layers									
								Ī			

.

٠

•

\$

.

				Du	imond Drill Record		нс	DLE NO. 92MG02 Page 2 of 4		
Sec	tion	ROCK	Inte	rval	ALTERATION			VEINLETS		
from to m m		DESCRIPTION	from m	to m	MINERALIZATION ctc.	Thickness mm	Angle to core			
at	99.97	CONTACT								
		Basalt → Sandstone-wacke								
		Uneven, approximately 75° to 85°								
		to C.A.								
9.97	101 61	COARSE SANDSTONE/WACKE			Bronze coloured mica throughout.					
		Bedded, I to 3 cm red and grey			RQD = 10	1				
		colours.			Sample 100.10 - 100.70 #551001	1				
		Bedding 47° to C.A.			· · · · · · · · · · · · · · · · · · ·	1				
		(represents shallow dip)								
at	101.61	Contact 47° to C.A.								
101.61	190.71	MUDSTONE			RQD range 5 to 50					
		Sharp contact. Brown to grey-								
		brown colour, fairly equigranula	r110.5		Hematite porphyroblasts					
		Minor fragments at 110 m	123.0	125.0	Small nodules, to 1 or 2%	1 to 2	35	Clays and altered feldspar		
		(primary depositional).								
		Top of section very clayey,	125.0	135.5	Approximately 95% recovery	1 to 2	45 to 90	Black, magnetic, iron oxides,		
		uncemented. Hard toward 136 m,			Samples 104.5 - 105.5 #551002			MnOx, and white to pink and		
		very "mushy" 146.5 to 155 m			109.0 - 110.0 #551003			blue-green clays		
					118.0 - 119.0 #551004			Spaced approximately 20 to 30 cr		
					122.5 - 123.5 #551005					
		-			130.5 - 131.5 #551006	I				
					138.4 - 140.0 #551007					

•

....

anterine internet and a state of the second of

.

				Du	amond Drill Record		но	DLE NO.92HG02 Page 3 of 4					
Sect	lion	ROCK	Inte	rval	ALTERATION		VEINLETS						
from to m m		DESCRIPTION	from m	to m	MINERALIZATION etc.	Thickness	Angle to core	minerals in decreasing abundance					
at	149.0	Reduced to BQ core	147.0	174.0	No recovery 172.82 - 173.73			Minor magnetite-hematite on					
			174.0	190.0				fractures					
					Samples 144.0 - 145.5	1 to 5	0 to 15	Increase in quartz-carbonate					
					148.0 - 149.5			stringers, low density, 20 to					
					151.0 - 152.5			30 cm spaced. Magnetite along					
					163.0 - 164.5			some fractures.					
					168.0 - 169.4								
					178.0 - 179.3								
					183.8 - 185.0 #551014								
at	190.71	Sharp contact 20° to C.A.											
190.71	193.30	CONGLOMERATE/WACKE			RQD = 5 to 15								
		Brown colour, marked increase in			RQD very high 191.0 - 192.0 m								
		coarser, sub-rounded lithic			Recovery = 95%								
		fragments or pebbles of 1 mm to			Recovery 40% 191.11 - 192.33								
		1.5 cm diameter to 70% of rock.			Sample 190.7 - 193.0 #551015								
at	193.30	Contact 20° to C.A.											
193.30	199.50	MUDSTONE/WACKE			RQD = 5 to 10	1	10 to 70	Very minor quartz-carbonate					
		Gradational interlayers of fine			Recovery = 95%			stringers spaced 20 to 30 cm.					
		grained brown mudstone to sandy			Weakly magnetic								
		grained grey-brown wacke.			Sample 195.4 - 196.5 #551016								
		Layers 20 to 50 cm wide.											
		Gradational change to conglomera	te.										

HUNDER CONSISTER HUNDER

.

				Di	amond Drift Record		н	DLENO. 92MGO2 Page 4 of 4				
Sec	tion	ROCK	Inte	rval	ALTERATION	VEINLETS						
from m	to m	DESCRIPTION	from m	to m	MINERALIZATION de	Thickness mm	Angle to core					
199.5	212.3	CONGLOMERATE			RQD = 30 at top to 5 at bottom							
		Gradational increase in grain			Recovery = 70%			Very minor carbonate stringers.				
		coarseness from top of section										
		to bottom.			Bedding weak, 75° to C.A.							
		Very colourful red, green,										
		black, blue pebbles at bottom			Sample 209.0 - 210.3 #551017							
		of section, making up to 90%										
		of rock, 0.5 to 3 cm diameter.										
at	212.3	Contact 45° to C.A.			RQD = 5, very broken over		20 to 8	• Very minor quartz carbonate				
212.3	239.0	MUDSTONE/WACKE			several 1 m sections = 50			stringers.				
		Intermixed, gradational dark			Recovery = 75%		<u> </u>					
		grey. In places contains I to			Samples 213.5 - 215.0 #551018							
		2 cm. Poorly distinguishable			219.0 - 220.0 #551019							
		sandy pebbles.			225.0 - 226.0 #551020							
		Gradational contact to next unit			230.0 - 231.4 #551021							
39.0	242.62	WACKE/CONGLOMERATE			RQD = 12			Minor quartz-carbonate stringers				
		Gradational from unsorted sandy			Recovery = 100%							
		wacke, to 0.5 - 1 cm pebble			Weakly magnetic							
		conglomerate.			Sample 237.8 - 239.0 #551022							
		Colourful pebbles in places										
	242.62	END OF HOLE										

÷.,

annen seisen seise

•

	1.0CATION = L12E; 16+255					Du		HOLL NO. 92MG03 Page 1 of						
	AZ IN	1(11)	180°	DIPS - collar 55° CONTRACTOR: Core Enterprises						PROPERTY: Mega Gold				
	ELEN	1.1.VATION: 4570 feet 1.1.NGTH: 221.65			1	58°	LOGGED BY: Perry Grunenb		CLAIM NO. Mega 1/Gold 6					
	LENG				1	o	DAIL: November 25,	1992		SECTION NO.				
	COR	E SIZE	* NQ	- n		0				STARTED: November 23, 1992				
	PLRF	POSE <u>F</u>	1.P. Chargeabilit	y anomaly; merc	ury so	il ano	maly, magnetometer low			COMPLETED: November 28, 1992				
	Sec	tion	ROC	К	Inte	erval	ALTERATION			VEINLETS				
	from m	to m	DESCRIP	TION	from m	to m	MINERALIZATION etc.	Thickness mm	Angle to cor	e minerals in decreasing abundance				
	0	12.20	OVERBURDEN											
	12 20	109.5	BASALT				Oxidized red surfaces at							
		aloidal.			16.77m; 29.2 m; 48.0 m; 71.1;									
		<u>├</u> ──┤	layered, with oxi				each approximately 0.5 m in							
			erosional paleo-s	surfaces			length.							
			Talc in cavities.	Holes		+	RQD = 2 to 20							
			Zeolite as before	. (01)			Recover = 90%							
				(02)			53.35 m - tube not locked.							
								No recovery 1.5 m.						
			•	······································			Moderately magnetic							
ningennengiger og higgerligerigerigerigerigerigerigerigerigeriger	109.5	114.0	GREYWACKE											
			Weakly layered, b				RQD = 5							
	·		colours, 80° to C	.A.			Recovery = 100%			······································				
	114.0	145.0	BASALT				RQD = 10							
			Vesicular, amygda	loidal (white,			Recovery = 90%							
			blue-green) talc,	to 30% of										
			rock											
			- Small wedge (25	cm) of										

.

				Ð	imond Drill Record		H	OLE NO. 92MG03 Page 2 of 5				
Sec	tion	ROCK	Inte	rval	ALTERATION	Ι		VEINLETS				
from m	10 M	DESCRIPTION	from m	to m	MINERALIZATION du	Thickness mm	Angle to core	minerals in decreasing abundance				
114.0	145.0	fine mudstone at 134 m?			Moderately magnetic							
(co	1)				· · · · · ·							
145.0	161.3	WACKE-CONGLOMERATE			RQD = 50							
		Dull grey, broken, poorly			Recovery = 752							
		consolidated, sandy matrix with			TAG							
		areas of small (to 5 mm) pebbles			Samples 145.0 - 147.0 #551039H							
		to 20%, pebbles poorly			157.0 - 158.2 #551040H							
		distinguishable.										
		Very muddy in places.										
		Gradational contacts										
161.3	173.0	SILTSTONE			RQD = 5							
		Light grey, very clayer,			Recovery = 90%							
		unconsolidated. Consistency										
		of molding clay.			Red coloured, patchy areas							
					throughout, 1 cm to 5 cm							
					diameter?, originally pebbles?							
i					Does not test for mercury							
					under heating?							
					Sample 161.3 - 162.0 #551041H							
13.0	173.2	CONGLOMERATE										
		Coloured (green, red) pebbles			Semi-consolidated.	 						
		0.5 to 3.0 cm diameter, to 60%										
		of rock, in sandy, grey matrix,						1				

•

antine and the second
τ.

.

•

Ŧ

					Di	amond Drill Record		ſ	HOLE NO. 92MG03 Page 3 of
	See	(LION	RUČK	Inte	Interval ALTERATION				VLINLETS
	from m	10 M	DESCRIPTION	from m	to m	MINERALIZATION de	Thickness mm	Angle to con	e minerals in decreasing abundance
· · ·	173.0	173.2	clayey in places. Sharp contact,						
	(c	ont)	broken approximately 90° to C.A.						
	173.2	176 (MUDSTONE			ROD = 20			
		1.7.0.0	Brown and grey, mottled, pebbly			Recovery = $70\dot{z}$			
			in places (wacke), gradational						
			to next unit.			566 – 570 – broken rock fragments			
						likely fall-in from surface of			
		ļ				hole			
		ļ				25% recovery			
		 				Sample 173.8 - 175.0 #551042			
• • • • • • • •		ļ							
	176.0	180.5	WACKE - CONGLOMERATE			RQD = 10			
			Brown and grey, very unsorted,			Recovery = 75%			
· · · · · · · · · · · · · · · · · · ·			in places pebbly with 1 to 3 cm						
			pebbles, varying matrix, sandy			Sample 178.0 - 179.0 #551043			
and the second		ļ	to slightly clayey.						
<i>.</i> .		<u> </u>	Gradational contact with less						
			pebbles, and increase in						
			mud-clay.						
	189.5	203.4	MUDSTONE			RQD = 30			
			Dull grey, equigranular, semi-			Recovery = 60% average			
· · · ·			consolidated, clayey in places.			Areas of core loss to 10%			
			Green tinged in areas, perhaps			194.5 to 202.0 m coring, reaming			

.

.

-

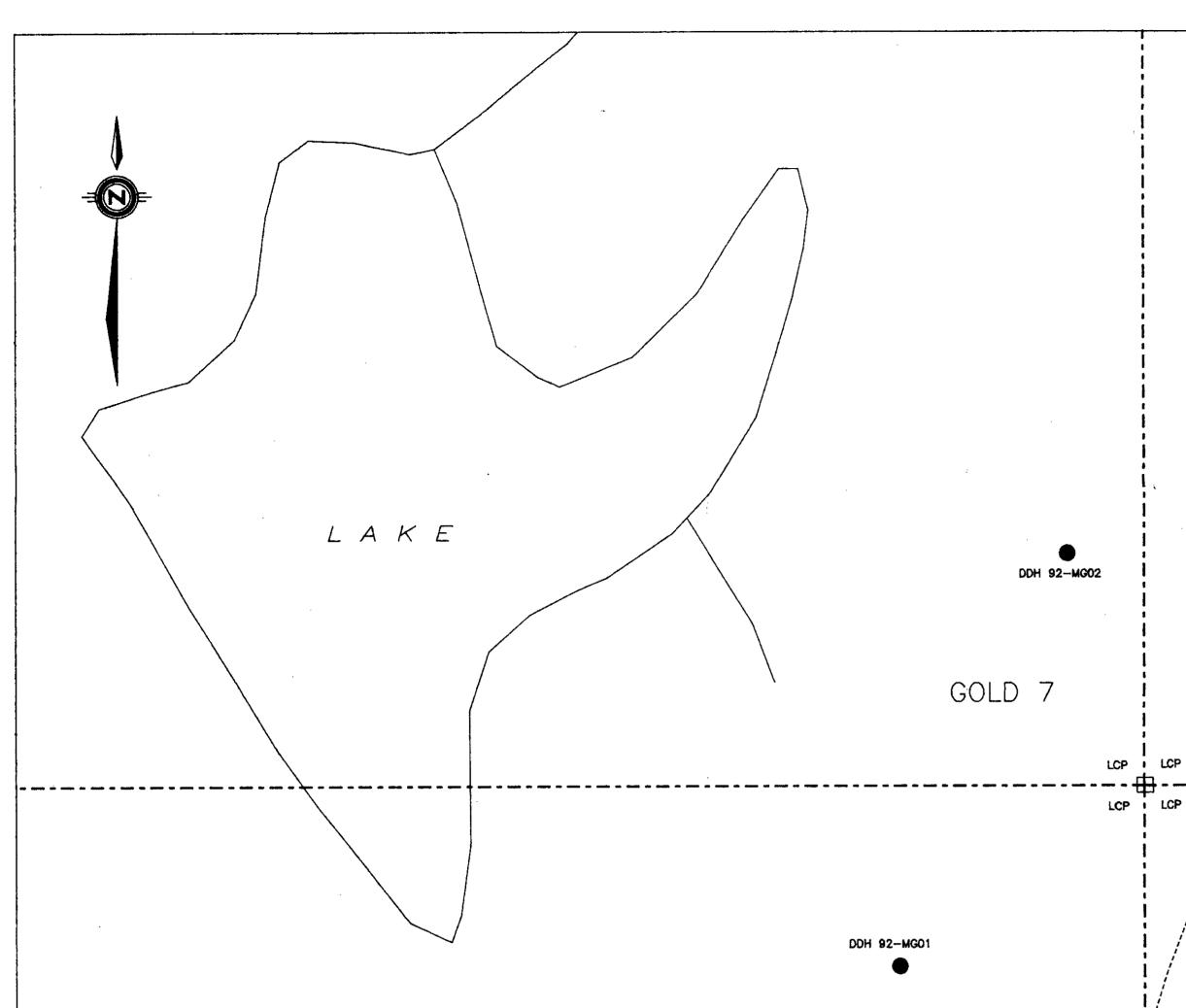
• '

				D	amond Drill Record		[·	HOLE NO. 92HG03 Page 4 of 5			
Sec	Section ROCK			rval	ALTERATION	VEINLETS					
from 10 m m		DESCRIPTION	from m	to m	MINERALIZATION etc	Thickness	Angle to cor	minerals in decreasing abundance			
189.5	203.4	weakly chloritic. Gradational			through "drop in" overburden at						
(co	t)	to next unit, increase in "grit".			183 m and 195 m.	<u> </u>					
					Sample 191.5 - 192.5 #551044	 	 				
03.4	207.0	GREYWACKE			RQD = 10		<u> </u>				
		Grey, sandy textured, poorly			Recovery = 80%						
		consolidated.			Sample 205.0 ~ 206.0 #551045						
		Loss of core, coring									
		Overburden near 204.6 m									
07.0	210.4	SILTSTONE			Core turning in tube, came out						
		Dark grey, equigranular			approximately Bq in size						
		Weakly cross-bedded at 70° to C.A			RQD = 8						
		Few black lamellae of 3 mm width			Recovery = 60%						
		(graphite?).									
		Apparent sharp contact to next			Sample 209.0 - 210.0 #551046						
		unit, lost between change in									
		core boxes.									
		Well developed cleavage, along									
		lamellae plane.									
10.4	212.8	MUDSTONE			RQD - 15						
		Dull grey, semi-consolidated,			Recovery = 99%						
		clayey in places, fairly equi-			Sample 211 - 212 m #551047						
		granular but sandy in places. Contact undistinguishable.									

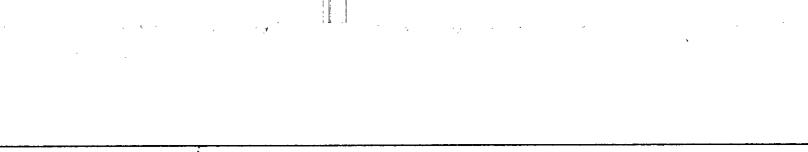
•

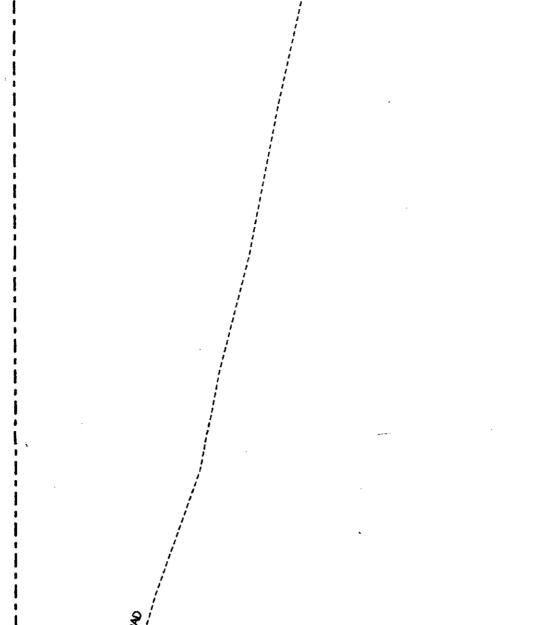
and a second sec

.


•

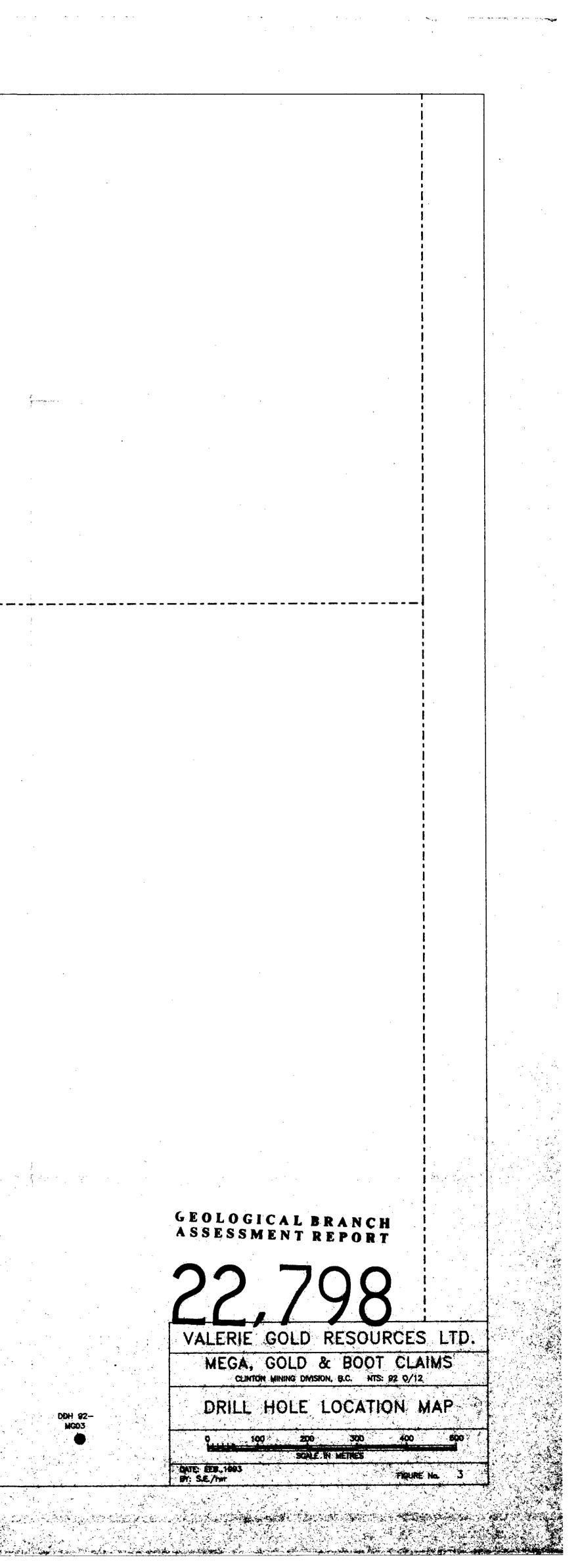
				Di	amond Drill Record		н	OLE NO. 92MG03 Page 5 of 5				
Sec	tion	ROCK	Inte	rval	ALTERATION	Τ		VEINLETS				
mon) m	to M	DESCRIPTION	from m	10 m	MINERALIZATION etc.	Thickness	Angle to core	gle core minerals in decreasing abundance				
212.8	221.6	WACKE-CONGLOMERATE			RQD =							
		At top of section, well defined			Recovery =	1						
		stones to 6 cm diameter, rounded			Sample 22015 - 221.5 #551048	1						
		Grades in short distance (20 cm)			· · · · · · · · · · · · · · · · · · ·	1						
		to poorly defined, primarily				1						
		wacke with angular to subrounded				1						
		gragments in sandy, poorly										
		sorted matrix.						Absolutely no evidence of fractu				
		Well developed stones again at						filling minerals whatsoever.				
		bottom of section.						No fractures.				
		Sediment core beginning to be										
		more consolidated toward bottom										
		of hole.				1						
		Unconsolidated nature of core				1						
		toward surface.										
		Apparently oxidation of										
		carbonate cement due to surface										
		groundwater perculation.										
	221.6	END OF HOLE										
	┝──┤											


• •


.

.

GOLD 5



--+--LCP LCP

GOLD 6

