	LOG NO: MAR 1 2 1993 RD.
	ACTION.
,	FILE NO. C. S.
TASEKO MINES LIMITED	
GEOTECHNICAL DIAMOND DRI	LLING
ASSESSMENT REPORT	
eko 1, fish 1 to fish 11, and f	-1 TO F9

MINERAL CLAIMS

FISH LAKE PROPERTY

CLINTON MINING DIVISION

NTS 92 0/5E

Latitude 51° 27' N; Longitude 123° 36'W.

by

George W.G. Sivertz, B.Sc., P.Geo.

February 1993

GEOLOGICAL BRANCH ASSESSMENT REPORT

22,821

TABLE OF CONTENTS

Page

.

1.0	Summary	1
2.0	Introduction	2
3.0	Location and Access	2
4.0	Claim Status	3
5.0	Property History	4
6.0	Geotechnical Drill Program	5
7.0	Recommendations	6
8.0	References	8
	Certificate of Qualifications	9
	LIST OF TABLES	
١	1992 Mineral Claims	4
	LIST OF FIGURES Following Pag	е
1.	Site Location Map	2
2.	Property Map	3
3.	Site Layout Showing Geotechnical Drill Hole Locations	5
4.	Claim Map Showing Geotechnical Drill Hole Locations	5
	LIST OF APPENDICES	
I	Cost Statements	
II	Claims held by Cominco Ltd. and Taseko Mines Limited under th Agreement dated April 25, 1991	٦e

III Report on Preliminary Geotechnical Investigations, Fish Lake Project, by Knight Piesold Ltd.

1.0 SUMMARY

The Fish Lake mineral property, owned jointly by Cominco Ltd. and Taseko Mines covers a large Cu-Au porphyry deposit. Taseko Mines is the current operator, and conducted more than 68,000m of HQ and NQ drilling in 126 holes in 1991 and 1992.

The property is located 250 km north of Vancouver, and 125 km southwest of Williams Lake, B.C. Access is mainly by road from Williams Lake, a distance of 195 km.

Exploration by numerous operators, including Bethlehem, Cominco, Nittetsu, Quintana and Taseko Mines during the period 1960 - 1993 culminated in the discovery and definition of a Cu-Au porphyry deposit measuring approximately 1450m long, 850m wide and up to 820m thick, centered 1.2 km northwest of Fish Lake. Engineering and environmental studies of the deposit and its environs are currently underway.

A preliminary assessment of the Fish Lake area for potential tailings storage sites identified a practical and environmentally attractive site south and southeast of Fish Lake.

A program of geotechnical-geological HQ-diameter drilling, totalling 281.9m in five holes, was conducted at this site in October, 1992. The holes were drilled to assess the geological nature and permeability of foundation materials in the areas of planned impoundment structures.

The holes intersected a sequence of Miocene-age basalt flows, interbedded and underlain by overconsolidated silty clays, silts, sands, and gravelly sands. Both the basalts and the sediments have low average permeabilities, on the order of 10^{-5} cm/sec.

The proposed tailings storage site requires further evaluation for both economic mineral potential and suitability for tailings storage.

2.0 INTRODUCTION

The Fish Lake copper-gold porphyry deposit lies approximately 125 km southwest of Williams Lake, B.C. The Fish Lake property, covering the deposit, incorporates a total of 196 mineral claims and 9 placer claims.

Taseko Mines Limited conducted a major diamond drilling program on the property in 1992. This included the drilling of 111 holes in the deposit proper, and 5 geotechnical-geological holes in the area of proposed tailings embankments south of Fish Lake.

This report describes the 5-hole geotechnical-geological drilling program, conducted between October 10 and October 21, 1992 on the EKO 1 and 2 and the FISH 1 and 7 claims. Detailed technical information for each drill hole is contained in the appended report by Knight Piesold (Appendix III).

3.0 LOCATION AND ACCESS

The Fish Lake property lies 250 kilometres north of Vancouver, and 125 kilometres southwest of Williams Lake, B.C. Situated at a mean elevation of 1460m, the property straddles the headwaters and upper valley of the informally named "Fish Creek", which drains Fish Lake and debouches into the Taseko River. Topography is subdued, with local relief of no more than 150m. Most of the property is forested with species of pine, with a few spruce in wetter areas. Meadows, up to several hectares in area, occur along valley bottoms and in poorly drained areas south of Fish Lake.

Access by road can be gained from Williams Lake via Highway No. 20 west to

Hanceville (100 km) and then south and southeast via the well-maintained Nemaia Valley - Chilko Lake Road to the Whitewater (Davidson) Bridge, a distance of approximately 80 km. The less well maintained Taseko Lake branch road leads south from the Chilko Lake road from a turnoff just before the bridge; this in turn leads to the Fish Lake Road turnoff 10 km south of the bridge. The Fish Lake Road is maintained on a seasonal basis, and four wheel drive vehicles with high ground clearance are often required during winter and spring months. Total road distance from Williams Lake is approximately 195 km; travel time can vary considerably due to road conditions.

STOL aircraft equipped with floats or skis utilize Fish Lake for summer and winter air access. A shelving beach and makeshift floats at the north end of the lake provide temporary loading/unloading facilities. No secure docking or anchorage facilities exist. The north side of the lake is 1.2 km by rough road from the present Taseko Mines Limited camp on "Fish Creek".

4.0 CLAIM STATUS

The EKO 1, Fish 1-11, and F1 to F9 mineral claims are located in the Clinton Mining Division. The Fish 1-11 and F1 to F9 claims are owned by Taseko Mines Limited. The EKO 1 claim is registered to Cominco Ltd., but is part of a large block of claims owned by Taseko Mines Limited and Cominco Ltd. which is subject to an Agreement between Cominco Ltd. and Taseko Mines Ltd. Under this Agreement, dated April 25, 1991, Taseko Mines Limited is empowered to "conduct exploration activities on the property" and is obliged to "perform such assessment work or pay such money....as may be necessary to keep the Property in good standing."

A list of claims and data pertinent to this report appears below, with expiry dates subject to the acceptance of assessment work and credits supported by this report. A full list of claims covered by the Cominco - Taseko Agreement is provided as Appendix I.

-4-

Claim Name	Units	Tenure No.	Record Date	Expiry Date
EKO 1	20	999 (4)	April 2, 1981	April 2, 2000
Fish 1	20	3563(1)	January 18, 1991	January 18, 2000
Fish 2	20	3564(1)	January 19, 1991	January 18, 2000
Fish 3	20	3565(1)	January 19, 1991	January 18, 2000
Fish 4	20	3566(1)	January 18, 1991	January 18, 2000
Fish 5	20	314027	October 15, 1992	October 15, 1997
Fish 6	20	314028	October 16, 1992	October 16, 1997
Fish 7	20	314029	October 17, 1992	October 17, 1997
Fish 8	20	314030	October 17, 1992	October 17, 1997
Fish 9	8	314031	October 16, 1992	October 16, 1997
Fish 10	12	314026	October 17, 1992	October 17, 1996
Fish 11	12	314032	October 17, 1992	October 17, 1996
F1	1	314003	October 15, 1992	October 15, 1997
_F2	1	314004	October 15, 1992	October 15, 1997
F3	1	314005	October 15, 1992	October 15, 1997
F4	1	314006	October 16, 1992	October 16, 1997
F5	1	314007	October 16, 1992	October 16, 1997
F6	1	314008	October 16, 1992	October 16, 1997
F7	1	314009	October 16, 1992	October 16, 1997
F8	1	314010	October 16, 1992	October 16, 1997
F9	1	314025	October 16, 1992	October 16, 1997

5.0 PROPERTY HISTORY

Early work in the vicinity of the Fish Lake porphyry deposit is reported in the B.C. Minister of Mines Report for 1935. This work, conducted by C.M. Vick and E.A. Calep, includes trenching of feldspar porphyry dykes with stringers containing Cu and Au values in the so-called Albert's Zone, approximately 1.5 km east of the centre of the porphyry deposit. Additional work on Au-Ag-Cu mineralized shear zones located east of the deposit was apparently carried out in the late 1950's by Mr. George Renner of Williams Lake, B.C. (Cominco Ltd. archives; unsigned correspondence). Prospectors for Phelps Dodge Corp. located float and subcropping mineralization indicative of a porphyry environment in 1960, and Phelps Dodge subsequently carried out a program of IP, geochemical, and magnetic surveys, hand trenching, and

diamond drilling in eight short holes. The holes were drilled mainly north of the presently known deposit, in pyritic rocks (Quintana Minerals Ltd., 1973).

Phelps Dodge allowed the claims to lapse, and the property was relocated in 1966 by Taseko Mines Limited. Taseko built a road into the property, conducted mechanized trenching, and drilled 12 percussion holes and 6 BQ diameter diamond holes, mainly to the south of the Phelps Dodge holes of 1962 - 1964. This work, culminating in 1969, provided the first conclusive evidence of significant tonnages of mineralized rock grading 0.25 - 0.30% copper on the property, and was sufficient to attract the attention of Nittetsu Mining in 1970. Since 1970, the property has been explored by Nittetsu, Quintana Minerals, Bethlehem, Cominco and most recently by Taseko Mines Limited. This work has collectively established, through extensive diamond drilling, porphyry-type copper-gold mineralization in an area approximately 1450m long, up to 850m wide, and up to 820m in vertical extent.

6.0 GEOTECHNICAL DRILL PROGRAM

A program of diamond drilling, comprising a total of 281.9m in 5 HQ diameter holes, was completed on the EKO 1, EKO 2, Fish 1 and Fish 7 mineral claims during the period October 10 - 21, 1992. A detailed report providing drill logs, plans and cross sections is presented as Appendix III to this report.

The five holes were drilled as part of a preliminary investigation of bedrock and overburden foundation conditions in a proposed tailings disposal area known as Tailings Storage Site 2.

This site is currently considered to be the optimum site available for storage of tailings from a proposed open pit mine at Fish Lake. The holes were drilled in the foundation areas of proposed tailings impoundment structures (embankments) in order to obtain information on the geology and in-site permeability of foundation materials, and to provide groundwater quality monitoring wells.

-5-

(PROPOSED)

Four holes intersected finely to coarsely vesicular basalt flows, interbedded with coarse to fine variably consolidated sediments. The basalt sequence appears to be variably eroded and ranges in thickness from 22m to 55m, with individual flows up to 30m thick.

Underlying the basalt flow sequence is a sedimentary sequence consisting of overconsolidated silty clay, mudstone, siltstone, and sandstone, with sections of heterolithic gravel and cobbles. These sediments are generally stratified or layered with near-horizontal dips.

The fifth drill hole(KP 92-3) intersected only sediments, consisting of interbedded, locally oxidized, well stratified clayey silt, silt, and fine sand, with varved clays and silts in the bottom section of the hole. A 6.5.m sequence of grey sand, with gravel and sub-rounded cobbles, was intersected under recent glacial till at the top of the hole. Basalt outcrops are present near the collar of this hole, and it is interpreted that the basalt flow sequence has been eroded from the collar site.

The basalt flows are composed of fine-grained, massive to vesicular olivine basalt. They are considered to belong to the Chilcotin Group of Neogene age. These plateau basalts crop out extensively in the Fish Lake area, and form part of an extensive belt of Early Miocene to early Pleistocene plateau lavas covering a large area in southcentral B.C. (Riddell et al, 1992; Mathews, 1989).

7.0 RECOMMENDATIONS

The 5-hole drilling program of 1992 provided limited evidence that the proposed site, "Tailings Storage Site 2", may be a good site for the storage of tailings from a mine at Fish Lake.

If this site remains in favour as a tailings storage area, additional assessment of its foundation will be required.

This evaluation work should include:

- (1) Geological mapping to establish the distribution of flow basalt.
- (2) Test pitting using a light backhoe to confirm basalt distribution and identify areas of deeper overburden.
- (3) Drilling of key areas such as embankment and saddle dam sites.

The tailings storage area will require evaluation for its economic mineral potential. The work outlined above should be conducted with this additional objective in mind. In addition, certain specific steps will be required to ascertain the potential of the site:

- A detailed search of historical records (assessment reports, etc.) for geochemical, geophysical and geological data pertaining to the site.
- (2) An investigation into the possibility of utilizing airborne magnetic or ground IP/resistivity and magnetic surveys. The nature and depth of overburden materials would strongly influence the choice of methods. The same criteria would strongly influence the effectiveness of soil geochemical surveys.
- (3) Widely spaced drilling. Drill hole depths would be contingent on results (lithology, alteration, and mineralization at shallow depths). The Fish Lake porphyry deposit itself is over 1 km² in area, and its alteration signature is at least 4 km². Drill holes spaced 1 to 2 km apart should suffice to detect a Fish Lake style porphyry system. Closer spacing would be necessary to evaluate areas of favourable lithology, alteration, and mineralization, once identified.

8.0 **REFERENCES**

.

- B.C. Department of Mines (1936): Annual Report For 1935, Page F28 and 29.
- Caira, N.C., and Piroshco, D. (1992): Diamond Drilling Assessment Report on the Fish Lake Property
- Quintana Minerals Ltd. (1973): Progress Report, Fish Lake Project, 1973 (Private Report)
- Riddell, J., Schiarizza, P., and Gaba, R.G. (1992):

Geology and Mineral Occurrences of the Mount Tatlow Map Area (920/5,6, and 12); Geological Fieldwork 1992, B.C.M.E.M.P.R. Paper 1993-1.

Seraphim, R.H. (1971):

Fish Lake Prospect of Taseko Mines Limited, Clinton M.D. Private Report for Taseko Mines Limited.

-9-

CERTIFICATE OF QUALIFICATIONS

I, George W.G. Sivertz, resident at 11708 246th Street, Maple Ridge, B.C., do declare that:

- (1) I am a registered Professional Geologist in the Province of B.C.
- (2) I hold a B.Sc. degree in Geology from the University of B.C. (1976).
- (3) I am an employee of Taseko Mines Limited and served in both technical and supervisory roles in that Company's field program at Fish Lake, from March 7 to October 29, 1992.
- (4) I hold no interest, direct or indirect, in the property or securities of Taseko Mines Limited.
- (5) I am the author of this Assessment Report, except as noted (Appendix III).

Dated at Vancouver, B.C. March 1, 1993.

George W.G. Sivertz, P.Geo.

APPENDIX I

•

.

COST STATEMENTS FOR EKO 1 AND FISH 1 CLAIMS

FISH 1 CLAIM

.

STATEMENT OF COSTS

DDH KP - 92 - 04 OCT 17 - 18, 1992

Drill Mob-Demob: 20% X \$3,667.20	\$ 733.44
Helicopter Mob - Demob: 20% X \$1,350.00	270.00
Helicopter Support: 11.1 hr X \$650/hr:	7,215.00
Helicopter Fuel: 20% X \$5,765.96	1,153.19
Site Preparation/Clean-up: 20% X \$2,240.00:	448.00
Direct Drilling Costs	8,384.64
On site Engineering/Testwork: 43.5 man-hours:	2,704.43
Room/Board: 12 m.d. @ \$50.00:	600.00
Telecommunications/Courier: 20% X \$1,000.00	200.00
Supplies/Consumables: 20% X \$525.20	105.04
Geotechnical Equipment: 20% X \$1,494.70	298.94
Truck Rental: 20% X \$760.77:	152.15
Engineering Work (Knight & Piesold) -Computer Time: 20% X \$2,038.35	407.67
-Logs, Sections, Maps, Report: 20% X \$5,363.3	8: <u>1,072.68</u>
Total	\$ 23,745.18

EKO 1 CLAIM

.

STATEMENT OF COSTS

DDH KP-92-04 OCT 17-18, 1992

Drill Mob-Demob: 20% X \$3,667.20	733.44
Helicopter Mob - Demob: 20% X \$1,350.00	270.00
Helicopter Support: 8 HR @ \$650.00	5,200.00
Helicopter Fuel: 20% X \$5,765.96	1,153.19
Site Preparation/Clean-up: 20% X \$2,240.00:	448.00
Direct Drilling Costs	7,114.82
On site Engineering/Testwork: 41.5 Man-hours:	2,565.33
Room/Board: 12 m.d. @ \$50.00:	300.00
Telecommunications/Courier: 20% X \$1,000.00	200.00
Supplies/Consumables: 20% X \$525.00	105.04
Geotechnical Equipment: 20% X \$1,494.70	298.94
Truck Rental: 20% X \$760.77:	152.15
Engineering Work (Knight & Piesold) -Computer Time: 20% X \$2,038.35	407.67
-Logs, Sections, Maps, Report: 20% X \$5,363.38	: <u>1,072.68</u>

Total <u>\$20,021.26</u>

NOTES TO ACCOMPANY COST STATEMENTS

.

KP-4 AND KP-5 DDH OCT. 17-20, 1992

- (1) Direct drilling costs were similar for each hole, in range \$7000-\$8000 so a 20% apportion of total job costs was used for each common category (eg. mob demob, fuel, site prep, etc.).
- (2) Drilling costs, engineering on site, R & B, and direct helicopter support were identified and broken out for each DDH.
- (3) Reasonable off-site engineering costs and computer time have been included.
- (4) No administrative or supervisory costs have been included, in or out of the field.

APPENDIX II

.

.

CLAIMS HELD BY COMINCO LTD. AND TASEKO MINES UNDER THE AGREEMENT DATED APRIL 25, 1991

.

.

	Record	#	Date	Expiry
<u>Claim</u>	<u>No.</u>	<u>Units</u>	<u>Recorded</u>	Date
T7	29311	1	Aug. 17, 1972	Aug. 17, 2000
L-8	29312	1	Aug. 17, 1972	Aug. 17, 2000
T9	29313	1	Aug. 17, 1972	Aug. 17, 2000
L-10	29314	1	Aug. 17, 1972	Aug. 17 2000
T11	29315	1	Aug. 17 1972	Aug. 17 2000
L-12	29316	1	Aug. 17, 1972	Aug. 17, 2000
L-21	29325	1	Aug. 17, 1972	Aug. 17, 2000
L-22	29326	1	Aug. 17, 1972	Aug. 17, 2000
L-23	29327	1	Aug. 17, 1972	Aug. 17, 2000
L-24	29328	1	Aug. 17, 1972	Aug. 17, 2000
L-31	29335	1	Aug. 17, 1972	Aug. 17, 2000
L-32	29336	1	Aug. 17, 1972	Aug. 17, 2000
L-33	29337	1	Aug. 17, 1972	Aug. 17, 2000
L-34	29338	1	Aug. 17, 1972	Aug. 17, 2000
L-35	29339	1	Aug. 17, 1972	Aug. 17, 2000
L-36	29340	1	Aug. 17, 1972	Aug. 17, 2000
L-37	29341	1	Aug. 17, 1972	Aug. 17, 2000
L-38	29342	1	Aug. 17, 1972	Aug. 17, 2000
L-39	29343	1	Aug. 17, 1972	Aug. 17, 2000
L-40	29344	1	Aug. 17, 1972	Aug. 17, 2000
L-41	29345	1	Aug. 17, 1972	Aug. 17, 2000
L-42	29346	1	Aug. 17, 1972	Aug. 17, 2000
L-43	29347	1	Aug. 17, 1972	Aug. 17, 2000
L-44	29348	1	Aug. 17, 1972	Aug. 17, 2000
L-45	29349	1	Aug. 17, 1972	Aug. 17, 2000
L-46	29350	1	Aug. 17, 1972	Aug. 17, 2000
L-47	29351	1	Aug. 17, 1972	Aug. 17, 2000
L-48	29352	1	Aug. 17, 1972	Aug. 17, 2000
K-53	29417	1	Aug. 17, 1972	Aug. 17, 2000
K-54	29418	1	Aug. 17, 1972	Aug. 17, 2000
K-55	29419	1	Aug. 17, 1972	Aug. 17, 2000
K-56	29420	1	Aug. 17, 1972	Aug. 17, 2000
K-57	29421	1	Aug. 17, 1972	Aug. 17, 2000
K-58	29422	1	Aug. 17, 1972	Aug. 17, 2000
K-59	29423	1	Aug. 17, 1972	Aug. 17, 2000
K-61	29425	1	Aug. 17, 1972	Aug. 17, 2000
K-63	29427	1	Aug. 17, 1972	Aug. 17, 2000
K-66	29430	1	Aug. 17, 1972	Aug. 17, 2000

.

	Record	#	Date	Expiry
<u>Claim</u>	<u>No.</u>	<u>Units</u>	<u>Recorded</u>	Date
K-68	29432	1	Aug. 17, 1972	Aug. 17, 2000
K-70	29434	1	Aug. 17, 1972	Aug. 17, 2000
K-72	29436	1	Aug. 17, 1972	Aug. 17, 2000
K-74	29438	1	Aug. 17, 1972	Aug. 17, 2000
K-76	29440	1	Aug. 17, 1972	Aug. 17, 2000
K-116	29480	1	Aug. 17, 1972	Aug. 17, 2000
K-117	29481	1	Aug. 17, 1972	Aug. 17, 2000
K-118	29482	1	Aug. 17, 1972	Aug. 17 2000
K-119	29483	1	Aug. 17 1972	Aug 17 2000
K-120	29484	1	Aug. 17, 1972	Aug. 17, 2000
K-121	29485	1	Aug. 17, 1972	Aug. 17, 2000
	23403	-	Aug. 17, 1972	Aug. 17, 2000
K-125	29489	1	Aug. 17, 1972	Aug. 17, 2000
K-126	29490	1	Aug. 17, 1972	Aug. 17, 2000
K-127	29491	1	Aug. 17, 1972	Aug. 17, 2000
K-128	29492	1	Aug. 17, 1972	Aug. 17, 2000
K-129	29493	1	Aug. 17, 1972	Aug. 17, 2000
K-130	29494	1	λυα 17 1972	Aug 17 2000
K-131	29495	1	Aug. 17, 1972	Aug. 17, 2000
K-132	20405	1	Aug. $17, 1972$	$\lambda_{10} = 17, 2000$
K 132 K-133	29490	1	Aug. 17, 1972	$\lambda_{10} = 17, 2000$
N-133	23437	1	Aug. $17, 1972$	Aug. 17, 2000
N-134 N 135	29490	1	Aug. 17, 1972	Aug. 17, 2000
K-135	29499	1	Aug. 17, 1972	Aug. 17, 2000
K-136	29500	1	Aug. 17, 1972	Aug. 17, 2000
BJ-1	18417	1	June 25, 1969	June 25, 2000
BJ-3	18419	1	June 25, 1969	June 25, 2000
BJ-5	18421	1	June 25, 1969	June 25, 2000
BJ-7	18423	1	June 25, 1969	June 25, 2000
BJ-9	18426	1	June 25, 1969	June 25, 2000
BJ-11	18427	1	June 28, 1969	June 28, 2000
BJ-13	18429	1	June 25, 1969	June 25, 2000
BJ-14	18430	1	June 25. 1969	June 25. 2000
BJ-15	18431	1	June 25, 1969	June 25, 2000
BJ-16	18432	1	June 25. 1969	June 25, 2000
		-		

.

.

	Record	#	Date	Expiry
<u>Claim</u>	<u>No.</u>	<u>Units</u>	<u>Recorded</u>	Date
DT 17	10400		Turne 05 1000	Turne 05 0000
BJ-17	18433	1	June 25, 1969	June 25, 2000
BJ-18	18434	1	June 25, 1969	June 25, 2000
BJ-19	18435	1	June 25, 1969	June 25, 2000
BJ-20	18436	1	June 25, 1969	June 25, 2000
BJ-21	18437	1	June 25, 1969	June 25, 2000
BJ-22	18438	1	June 25, 1969	June 25, 2000
BJ-23	18439	1	June 25, 1969	June 25, 2000
BJ-24	18440	1	June 25, 1969	June 25, 2000
BJ-25	18441	1	June 25, 1969	June 25, 2000
BJ-26	18442	1	June 25, 1969	June 25, 2000
BJ-27	18443	1	June 25, 1969	June 25, 2000
BJ-28	18444	1	June 25, 1969	June 25, 2000
BJ-29	18445	1	June 25, 1969	June 25, 2000
BJ-30	18446	1	June 25, 1969	June 25, 2000
BJ-31	18447	1	June 25, 1969	June 25, 2000
BJ-32	18448	1	June 25, 1969	June 25, 2000
BJ-33	18449	1	June 25, 1969	June 25, 2000
BJ-34	18450	1	June 25, 1969	June 25, 2000
BJ-35	18451	1	June 25, 1969	June 25, 2000
BJ-36	18452	1	June 25, 1969	June 25, 2000
BJ-37	18453	1	June 25, 1969	June 25, 2000
BJ-38	18454	1	June 25, 1969	June 25, 2000
BJ-39	18455	1	June 25, 1969	June 25, 2000
BJ-40	18456	1	June 25, 1969	June 25, 2000
BJ-41	18457	1	June 25, 1969	June 25, 2000
BJ-42	18458	ī	June 25, 1969	June 25, 2000
				·
TK-1	30881	1	May 28, 1973	May 28, 2001
TK-2	30882	1	May 28, 1973	May 28, 2001
TK-3	30883	1	May 28, 1973	May 28, 2001
TK-4	30884	1	May 28, 1973	May 28, 2001
TK-5	30885	1	May 28, 1973	May 28, 2001
TK-6	30886	1	May 28, 1973	May 28, 2001
TK-7	30887	1	May 28, 1973	May 28, 2001
TK-8	30888	1	May 28, 1973	May 28, 2001
TK-9	30889	1	May 28, 1973	May 28, 2001
TK-10	30890	1	May 28, 1973	May 28, 2001
тк-15	30895	1	May 28. 1973	May 28, 2000
TK-16	30896	ī	May 28, 1973	May 28, 2000
TK 10 TK-17	30897	1	May 28 1973	May 28 2000
TN 12	302027	± 1	May 28 1973	May 28, 2000
IN-10 TV-10	20020	1 1	May 20, 19/3 May 20, 1072	May 20, 2000
1N-19 MV-20	200022		May 20, 1973	May 20, 2000
11-20	20201	1 1	May 20, 19/3	May 20, 2000
IN-23	30003 3030T	1	May 28, 1973	may 28, 2000 Mart 28, 2000
TK=22	30902	1	May 28, 1973	May 28, 2000
TK-23	30903	Ţ	May 28, 1973	May 28, 2000
TK-24	30904	1	May 28, 1973	May 28, 2000

.

	Record	#	Date	Expiry
<u>Claim</u>	No.	<u>Units</u>	<u>Recorded</u>	<u>Date</u>
TK-25	30905	1	May 28, 1973	May 28, 2000
TK-26	30906	1	May 28, 1973	May 28, 2000
TK-29	30909	1	May 28, 1973	May 28, 2001
TK-30	30910	1	May 28, 1973	May 28, 2001
TK-31	30911	1	May 28, 1973	May 28, 2001
TK-32	30912	1	May 28, 1973	May 28, 2001
TK-33	30913	1	May 28, 1973	May 28, 2001
TK-34	30914	1	May 28, 1973	May 28, 2001
TK-35	30915	1	May 28, 1973	May 28, 2001
TK-36	30916	1	May 28, 1973	May 28, 2001
TK-37	30917	1	May 28, 1973	May 28, 2001
TK-38	30918	1	May 28, 1973	May 28, 2001
TK-39	30919	1	May 28, 1973	May 28, 2000
TK-40	30920	1	May 28, 1973	May 28, 2000
TK-41	30921	1	May 28, 1973	May 28, 2000
TK-42	30922	1	May 28, 1973	May 28, 2000
TK-43	30923	1	May 28, 1973	May 28, 2000
TK-44	30924	1	May 28, 1973	May 28, 2000
TK-45	30925	1	May 28, 1973	May 28, 2000
TK-46	30926	1	May 28, 1973	May 28, 2000
TK-47	30927	1	May 28, 1973	May 28, 2000
	00527	-	may 20, 20,0	may 20, 2000
TK-49	30929	1	May 28, 1973	May 28, 2000
TK-50	30930	1	May 28 1973	May 28, 2000
TK-51	30931	1	May 28, 1973	May 28, 2000
TK-52	30932	1	May 28 1973	May 28 2000
TK-53	30933	1	May 28 1973	May 28 2000
TK-54	30934	1	May 28, 1973	May 28, 2000
11. 34	30334	*	May 20, 1975	May 20, 2000
TK-57	30937	1	May 28, 1973	May 28, 2000
TK-58	30938	1	May 28, 1973	May 28, 2000
	50750	-	1141 207 2070	
TK-61	30941	1	Mav 28. 1973	May 28, 2000
TK-62	30942	ī	May 28, 1973	May 28, 2000
TK-63	30943	1	May 28, 1973	May 28, 2000
TK-64	30944	1	May 28, 1973	May 28, 2000
TK-65	30945	1	May 28, 1973	May 28, 2000
TK-66	30946	1	May 28 1973	May 28, 2000
TK-67	30947	1	May 28 1973	May 28 2000
TK-68	30949	1	May 28, 1973	May 28, 2000
IK-00	50548	T	May 20, 1975	May 28, 2000
TEL-57	30661	1	Apr. 25, 1973	Apr. 25, 2000
		-	- ·	
TEL-59	30663	1	Apr. 25, 1973	Apr. 25, 2000
TEL~75	30679	1	Apr. 26, 1973	Apr. 26, 2000
TEL-76	30680	1	Apr. 26, 1973	Apr. 26, 2000
TEL-77	30681	1	Apr. 26, 1973	Apr. 26, 2000

•

.

Taskeko Mines & Cominco Ltd. Joint Venture

<u>Claim</u>		Record <u>No.</u>	# <u>Units</u>	Date <u>Recorded</u>	Expiry <u>Date</u>
BCC-1	(Fr)	969	1	Feb. 6, 1981	Feb. 6, 2000
BCC-2	(Fr)	970	1	Feb. 6, 1981	Feb. 6, 2001
BCC-3	(Fr)	971	1	Feb. 6, 1981	Feb. 6, 2001
BCC-4	(Fr)	972	1	Feb. 6, 1981	Feb. 6, 2001
BCC-5	(Fr)	973	1	Feb. 6, 1981	Feb. 6, 2000
BCC-6	(Fr)	979	1	Feb. 25, 1981	Feb. 25, 2000

MODIFIED GRID CLAIMS

Taseko Mines & Cominco Ltd. Joint Venture

<u>Claim</u>	Record <u>No.</u>	# <u>Units</u>	Date <u>Recorded</u>	Expiry
FL1	401	16	Sept. 11, 1979	Sept. 11, 2000
FL4	404	16	Sept. 11, 1979	Sept. 11, 2000
EKO 1	999	20	Apr. 2, 1981	Apr. 2, 2000
EKO 2	1000	20	Apr. 2, 1981	Apr. 2, 2000
EKO 3	1001	20	Apr. 2, 1981	Apr. 2, 2000

100% owned by Taseko Mines Ltd.

<u>c1</u>	<u>aim</u>	Record <u>No.</u>	# <u>Units</u>	Date <u>Recorded</u>	Expiry
тко	1	3517	16	Jan. 9, 1991	Jan. 9, 2000
тко	2	3518	20	Jan. 8, 1991	Jan. 8, 2001
тко	3	3519	8	Jan. 18, 1991	Jan. 18, 2001
тко	4	3520	20	Jan. 16, 1991	Jan. 16, 2001
тко	5	3521	20	Jan. 17, 1991	Jan. 17, 2001
тко	6	3522	12	Jan. 18, 1991	Jan. 18, 2001

MODIFIED GRID CLAIMS

.

.

100% owned by Taseko Mines Ltd. (optioned from Cascade)

<u>Claim</u>	Record <u>No.</u>	# <u>Units</u>	Date <u>Recordeđ</u>	Expiry
Fish 1	3563	20	Jan. 18, 1991	Jan. 18, 2000
Fish 2	3564	20	Jan. 19, 1991	Jan. 18, 2000
Fish 3	3565	20	Jan. 19, 1991	Jan. 18, 2000
Fish 4	3566	20	Jan. 18, 1991	Jan. 18, 2000

PLACER CLAIMS

100% owned by Taseko Mines Ltd.

<u>Claim</u>		Record	Date <u>Recorded</u>	Expiry Date
Marc	1	63	Jan. 20, 1991	Jan. 20, 1997
Marc	2	64	Jan. 20, 1991	Jan. 20, 1997
Marc	3	65	Jan. 20, 1991	Jan. 20, 1997
Marc	4	66	Jan. 20, 1991	Jan. 20, 1997
Marc	5	67	Jan. 20, 1991	Jan. 20, 1997
Marc	6	68	Jan. 20, 1991	Jan. 20, 1997

100% owned by Cominco Ltd.

<u>Claim</u>	Record <u>No.</u>	Date <u>Recorded</u>	Expiry
FIS 1	27	Apr. 28, 1989	Apr. 28, 2001
FIS 2	28	Apr. 28, 1989	Apr. 28, 2001
FIS 3	29	Apr. 28, 1989	Apr. 28, 2001

APPENDIX III

.

REPORT ON PRELIMINARY GEOTECHNICAL INVESTIGATIONS, FISH LAKE PROJECT, BY KNIGHT PIESOLD LTD.

TASEKO MINES LIMITED FISH LAKE PROJECT

REPORT ON PRELIMINARY GEOTECHNICAL INVESTIGATIONS (REF. NO. 1733/1)

FEBRUARY 1993

Suite 1400 750 West Pender Street Vancouver, British Columbia Canada V6C 278 Telephone (004) 085-0543 Telefax (004) 085-0147 CIS 72360:477

.

Knight Piésold Ltd.

CONSULTING ENGINEERS

Knight Piésold Ltd. CONSULTING ENGINEERS

TASEKO MINES LIMITED FISH LAKE PROPERTY

<u>REPORT ON</u> <u>PRELIMINARY GEOTECHNICAL INVESTIGATIONS</u> <u>REPORT NO. 1733/1</u>

THIS REPORT HAS BEEN PREPARED EXCLUSIVELY FOR TASEKO MINES LIMITED FOR THE PURPOSE OF PROJECT EVALUATION AND PERMITTING.

Association og des Ingénieurs Conseils du Canada

Knight Piésold Ltd. CONSULTING ENGINEERS

TASEKO MINES LIMITED FISH LAKE PROJECT

REPORT ON PRELIMINARY GEOTECHNICAL INVESTIGATIONS (REF. NO. 1733/1)

TABLE OF CONTENTS

EXECUTIVE SU	JMMA	RY	1
SECTION 1.0	INTR OF V	RODUCTION AND SCOPE VORK	3
SECTION 2.0	GEO	TECHNICAL INVESTIGATIONS	4
	2.1	DRILLING OBSERVATIONS	4
		AND RESULTS	
	2.2	IN-SITU PERMEABILITY TESTING	7
	2.3	MONITORING WELL INSTALLATIONS	8
SECTION 3.0	CON	CLUSION AND RECOMMENDATIONS	9

TABLES

 Table 1
 Summary of In-Situ Permeability Testing

FIGURES

Figure 1	Project Location N	Лар
	•	-

Knight Piésold Ltd. CONSULTING ENGINEERS

DRAWINGS

1733.001 Preliminary Geotechnical Investigations - Drill Hole Locations

APPENDICES

Appendix A	Test Hole Logs
Appendix B	Geotechnical Drilling Bedrock Logs
Appendix C	Results of In-Situ Permeability Testing
Appendix D	Water Quality Monitoring Well Completion Details

Knight Piésold

TASEKO MINES LIMITED FISH LAKE PROJECT

REPORT ON PRELIMINARY GEOTECHNICAL INVESTIGATIONS (REF. NO. 1733/1)

EXECUTIVE SUMMARY

A preliminary geotechnical investigation program was conducted at the Fish Lake property in October, 1992 by Knight Piesold Ltd. The program was limited to Tailings Storage Site 2 and included the following:

- \diamond General reconnaissance of the area.
- Helicopter supported drilling of five boreholes in the foundations of \diamond proposed tailings impoundment structures.
- Identification and evaluation of foundation materials for geological and \diamond geotechnical parameters.
- \diamond In-situ permeability testing of various units.
- Installation of five groundwater quality monitoring wells for baseline data \Diamond collection.

The results of the investigation program are summarized below:

- Glacial till overburden cover is minimal, up to 3.96 m. \diamond
- The Miocene basalt cap is extensive and varies in thickness from 0 to 30 m. \diamond
- \diamond Random sections of coarse sediments are located within the basalt cap.

Canada

CONSULTING ENGINEERS

- ♦ The basalt is underlain by a sedimentary sequence which grades from coarse gravel and cobbles, to sand, to layered silts, fine sands and clay.
- \diamond Tailings Storage Site 2 has a relatively low permeability foundation. The average permeability of the units encountered is 10⁻⁵ cm/s.
- ♦ Five groundwater quality monitoring wells were installed in the boreholes and sampling for baseline groundwater quality has been initiated.

The preliminary geotechnical investigation program has shown that Site 2 has the potential to be a good site for storage of mine tailings. Drilling and in-situ testing have shown that the site has a relatively low permeability foundation (10^{-5} cm/s) that is competent and extensive.

3

SECTION 1.0 - INTRODUCTION AND SCOPE OF WORK

The Fish Lake project is a large gold-copper deposit located approximately 125 km southwest of Williams Lake, B.C., as shown on Figure 1. Permanent storage of mine tailings for the project must include the possibility of completely mining the deposit, which has an estimated preliminary geological reserve of 1.27 billion tons. The preliminary geotechnical investigations were conducted at proposed Tailings Storage Site 2, located south of Fish Lake as shown on Drawing No. 1733.001.

Previous work conducted by Knight Piesold Ltd. on the project includes the following:

- (i) Initial overview in February, 1991.
- A site visit, followed by issuing of "Report on Preliminary Geotechnical (ii) Evaluation, Report No. 1731/1" in July/August, 1991.
- (iii) Hydrogeological investigations in the orebody and issuing of "Report on Preliminary Hydrogeological Investigations, (1732/2)" in April/May, 1992.

This report presents the results of the investigations conducted at site during The work comprised five helicopter supported boreholes and October, 1992. included general surface reconnaissance, geological and geotechnical logging of drill core, in-situ permeability testing and the installation of groundwater quality monitoring wells.

The investigations were undertaken at this time because of the availability of equipment from the on-going exploration drilling program. In addition, it was believed that Site 2 was the best location for tailings storage. Further work will be required if this site is selected. Should any other potential tailings storage sites be preferred, work of the same detail will be required to evaluate its suitability for storage of tailings.

Canada

Knight Piésold Ltd. CONSULTING ENGINEERS

SECTION 2.0 - GEOTECHNICAL INVESTIGATIONS

2.1 DRILLING OBSERVATIONS AND RESULTS

The preliminary geotechnical investigations at Tailings Storage Site 2 were undertaken with the goal of minimizing surface disturbance. For this reason, a helicopter supported drill program was selected. Vancouver based Quest Canada provided a specially modified heli-portable hydraulic powered Val D'Or diamond Helicopter support was provided by Canadian drill to conduct the work. Helicopters, of Williams Lake, who utilized an A Star helicopter with a lifting capacity of approximately 550 kg for drill moves and crew changes.

General surficial reconnaissance conducted prior to drilling identified abundant basalt outcrop in the area, indicating that overburden cover was minimal. Therefore, SPT sampling of overburden materials was not required for preliminary geotechnical investigations. The investigation program was focused on obtaining core samples for visual identification of foundation materials and conducting in-situ permeability testing, where possible, to provide information required for a first pass evaluation of the site's suitability for storage of tailings.

A total of 5 boreholes was drilled in the foundations of proposed tailings impoundment structures. The borehole depths ranged from 33.83 to 68.88 m and the total footage drilled was 281.94 m. Drilling typically consisted of setting a shallow HW casing in basalt, followed by HQ coring. All casings were left in the hole to aid in monitoring well installations. Recoveries were generally good, with the exception of some sandy, weakly consolidated sedimentary sections where only gravel and cobbles were recovered. Recovery in basalt was typically 90 to 100 percent. All core was logged for geological identification of materials and for geotechnical parameters. The test hole and geotechnical drilling bedrock logs are included in Appendices A and B, respectively.

Association des Ingenieurs Conseils du Canada

Knight Piésold Ltd. CONSULTING ENGINEERS

CONSULTING ENGINEERS

5

Summaries of the drill holes are presented below.

(i) <u>KP92-1 Main Embankment</u>

Hole KP92-1 was drilled just west of Fish Creek, on the alignment for the Main Embankment. Drilling encountered a thin glacial till overburden layer (to 1.52 m) consisting of silt and sand with some gravel and cobbles. Immediately below the till is a sequence of Miocene aged basalt flows which, although similar in composition, range from medium grained, competent and weakly vesicular to fine grained, highly vesicular and glassy materials. The basalt flows extend to 56.39 m. RQD is quite varied in the basalt and is often difficult to determine, especially in the vuggy sections where the weaker rock is easily disturbed by drilling.

Occasional sequences of alluvial/fluvial sediments are located from 18.59 to 21.79 m and from 45.42 to 46.02 m, within the basalt flows. These sediments are stratified and are typically overconsolidated. The sediments are also present below the basalt, where greenish-grey sands and overconsolidated silts were recovered. Hole KP92-1 was drilled to a total depth of 59.74 m.

(ii) KP92-2 Main Embankment

Hole KP92-2 was also drilled on the Main Embankment alignment, approximately 1100 m east of KP92-1. Glacial till overburden extends to a depth of 3.35 m and is underlain by the Miocene basalt previously discussed. Most of the basalt at this location is the glassy, highly vesicular type. The basalt extends to 25.30 m and has low RQD. It is broken and altered to chlorite in sections. Underlying the basalt is an overconsolidated sedimentary deposit. The sedimentary deposit grades from coarse sandy gravel to a uniform sand and, finally, to layered silts and fine sands. The hole was terminated in the sediments at a depth of 68.88 m.

6

KP92-3 South Saddle Dam (iii)

Hole KP92-3 was drilled at the western side of the South Saddle Dam, approximately 6 km south of the Main Embankment. Here, glacial till overburden extends to 3.96 m and is underlain by sediments similar to those encountered in hole KP92-2. The sediments grade from coarse sand with gravel and cobbles to a medium to fine grained sand to silts, fine sands and clays. No basalt was encountered in hole KP92-3. However, basalt ridges were observed in the nearby vicinity.

KP92-4 West Saddle Dam (iv)

Hole KP92-4 was drilled on the ridge top along the alignment of the West Saddle Dam. The hole was located approximately 1200 m south of the Main Embankment. Drilling intersected competent, moderate to high RQD, weakly vesicular basalt from surface to 29.41 m. Underlying the competent basalt is a coarse sedimentary unit which consists of cobbles and gravel with some sand. This unit extends to 36.88 m. It is underlain by basalt which varies from chloritized and brecciated to competent material, similar to that The basalts extend to 46.33 m, where more identified near surface. gravelly sediments were encountered. These sediments extend to the bottom of the hole at 59.74 m, but have other thin units within them, including 0.91 m of stratified sand and silt and 2.29 m of brecciated basalt.

(v) KP92-5 West Saddle Dam/Main Embankment

Hole KP92-5 was also drilled along the West Saddle Dam alignment. The hole was located approximately 400 m south of the western abutment of the Main Embankment. Drilling intersected competent basalt which extends from surface to 6.40 m. Underlying this is a coarse sedimentary unit of cobbles and gravel with some sand and silt which extends to 17.98 m. basalts varying from competent to vuggy or brecciated and chloritized underlie the sedimentary unit. The hole was terminated at 33.83 m due to

Canada

7

difficulties associated with collapsing of the sediments nearer to the top of the hole.

2.2 **IN-SITU PERMEABILITY TESTING**

In-situ permeability testing was conducted with the Longyear Type II Wireline Packer System. Testing comprised the following:

- core to required depth.
- pull back drill rods to expose test interval.
- lower packer assembly to drill bit and inflate the packers, thereby isolating the test interval.
- pump water into test interval at a constant head and record the volume of water that flows into the formation.

Three ascending and two descending stages are required to verify the validity of each packer test. Tests were attempted at 30 foot intervals, unless precluded by poor drilling conditions. Testing was limited in several holes because of material collapsing around the drill rods.

A total of seventeen packer tests were completed during the investigation program. A summary of the results is presented on Table 1 and detailed results are included in Appendix C. Testing has indicated that the permeability of the Miocene basalts ranges from 2 x 10^4 cm/s to 9 x 10^{-7} cm/s, with an average of 4 x 10^{-5} cm/s. These values are based on testing in all types of basalt, including competent and weakly vesicular, highly vesicular and vuggy, and brecciated and chloritized sections.

Intervals containing varying thicknesses of both basalt and sediments were also tested. These results show permeabilities that range from 3 x 10^{-4} cm/s to 2 x 10^{-6} cm/s. The average permeability of this material is 6×10^{-5} cm/s.

Two tests were completed in the sedimentary deposits. The results showed permeability values of 8 x 10⁻⁶ cm/s and 3 x 10⁻⁵ cm/s, with an average value of 2

Canada

Association of Consulting des indenieurs Conseris du Canada

8

x 10^{-5} cm/s. These tests were completed in the finer grained, more competent silty Testing was not conducted in coarser grained sections because materials. pressurizing the formations would have destabilized the drill holes.

2.3 MONITORING WELL INSTALLATIONS

Groundwater quality monitoring wells were installed in the boreholes after the rig had moved. Drill casings were left to ensure that the holes would not collapse at surface. The monitoring wells were installed to allow for sampling as part of the baseline groundwater quality data collection program. The completion zones were not pre-selected. Rather, the wells were completed above sections that had collapsed, typically sandy gravel horizons. The wells were sampled shortly after drilling, using Knight Piesold's Reel EZ/Grundfos pump and converter. Hole KP92-4 was dry at the time of sampling. Completion details for each monitoring well are included in Appendix D.

Canada

Association des Indenieurs Conseils du Canada

SECTION 3.0 - CONCLUSIONS AND RECOMMENDATIONS

The preliminary geotechnical investigations have indicated that Site 2 has the potential to be a good site for the storage of mine tailings. The site is characterized as having a relatively low permeability foundation (10^{-5} cm/s) that is competent and extensive. However, it will be necessary to confirm that the low permeability foundation is present over the entire area in order to verify the integrity of the proposed tailings basin.

The most cost effective way to evaluate the continuity of the low permeability foundation would be:

- \diamond Identify the geomorphology of the area using air photos and possibly landsat imaging.
- \diamond Airborne geophysical surveys covering the entire storage site.
- \diamond Ground geophysical surveys to investigate anomalous areas identified by the airborne surveys.
- \diamond Verification of geophysical data by drilling and in-situ testing in a manner similar to the recently completed investigations, concentrating on the anomalous areas previously identified.

Canada

Knight Piésold Ltd. CONSULTING ENGINEERS

TABLE 1 TASEKO MINES LIMITED FISH LAKE PROJECT

SUMMARY OF IN-SITU PERMEABILITY TESTING

Hole	Test	Test Interv	al (ft)	Permeability	
No.	No.	From	То	k (cm/sec)	Comments
KP92-1	1	19.0	46.0	8 x 10 ⁻⁶	Alternating basalt
	2	48.5	76.0	2 x 10 ⁻⁵	Basalt and sediments
	3	78.5	106.0	6 x 10 ⁻⁵	Alternating basalt
	4	108.5	136.0	2 x 10 ⁻⁵	Alternating basalt
	5	138.5	166.0	4 x 10 ⁻⁵	Basalt and sediments
	6	168.5	196.0	4 x 10 ⁻⁵	Basalt and sediments
KP92-2	1	19.0	46.0	4 x 10 ⁻⁵	Alternating basalt
	2	48.5	76.0	2 x 10 ⁻⁴	Vesicular basalt
	3	78.5	106.0	7 x 10 ⁻⁶	Basalt over sediments
KP92-3	1	99.0	126.0	8 x 10 ⁻⁶	Interbedded sediments
	2	139.0	166.0	3 x 10 ⁻⁵	Layered silts
KP92-4	1	19.0	46.0	3 x 10 ⁻⁶	Basalt
	2	58.5	86.0	4 x 10 ⁻⁷	Basalt
	3	88.5	116.0	4 x 10 ⁻⁶	Basalt over sediments
	4	128.5	156.0	9 x 10 ^{.7}	Basalt (brecciated)
	5	148.5	196.0	2 x 10 ⁻⁶	Sediments and basalt
КР92-5	1	19.0	46.0	3 x 10 ⁻⁴	Sediments and basalt

,

Association g des Ingenieurs Conseits du Canada

Knight Piésold Ltd.

APPENDIX A

TEST HOLE LOGS

Association of Consulting Engineers of Canada Association des Ingenieurs Conseils du Canada

Pol 1 PROVECY 1/337 (AC) 47 2

KNIGHT PI	ESOLD LTD. Engineers	TEST	HOLE L	OG -	TEST HOLE No. <i>KP92-2</i> SHEET 2 of 2
PROJECT LOCATION OF DATE BEGUN	/ F TEST HOLE_ ND	<i>FISH LAKE Main Embar</i> ATE FINISHED_	0ct. 15/92	PROJECT NO GROUND EL. LOGGED BY	1733 4900 ft. KDE
NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.	PERMEABILITY cm/s	DEPTH OC OHIERON	DESCRIF	PTION AND CLASSIFI OF MATERIAL	CATION
Samples: KP92-2-1@8ft. KP92-2-3@166ft. KP92-2-4@184ft. KP92-2-5@196ft.		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-Brownish grey (MUDSTONE). Un with depth. Fine bedding planes core axis. Breat induced. END OF HOLE 2	SILTY CLAY to CLA nit becoming increa ely laminated (varv approximately perp ks along bedding p 226 ft.	YEY SILT asingly dense es) with bendicular to blanes are drill

KNIGHT PIE CONSULTING	SOLD LTD. Engineers	TEST	HOLE L	OG TEST HOLE NO. <i>KP92-3</i> SHEET 1 of 1
PROJECT LOCATION OF DATE BEGUN	<i>FI</i> : TEST HOLE <u>0ст. 15/92</u> DA	<i>SH LAKE South Saddle</i> TE FINISHED	Dam 0CT. 17/92	PROJECT NO. <u>1733</u> GROUND EL. <u>5175 ft.</u> LOGGED BY <u>KDE</u>
NOTES Water loss, type and size of hole, drilling method, groundwater level, etc.	PERMEABILITY cm/s 0 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶	DEPTH (m) (ft.) 10 ⁻⁷	DESCRIF	PTION AND CLASSIFICATION OF MATERIAL
Heli-portable Val D'Or diamond drill Set HW casing to 4.5 ft. with EZ-Mud Core HQ from 4.5 ft. to 196' with water only			OVERBURDEN Brown SILT and COBBLES, occa SEDIMENTARY SE Grey SAND with generally sub-in Greyish brown Medium dense 1 cm CLAYEY Pale greenish grained SAND, perpendicular t	d SAND with GRAVEL, some sional BOULDER. Glacial till. TOUENCE for GRAVEL and COBBLES, rounded. fine to medium grained SAND SILT , pale beige color grey brown fine to medium stratified with bedding approx. to core axis
No geotechnical logging for RQD. All breaks drill induced on bedding planes perpendicular to core axis, recovery generally 100% Hole making water for a short time 176–186 ft. Stopped after 5 minutes. Samples: KP92–3–1@7ft. KP92–3–2@23ft. KP92–3–2@23ft. KP92–3–2@23ft. KP92–3–6@108ft. KP92–3–6@108ft. KP92–3–6@108ft. KP92–3–9@196ft.	3×10^{-6}	<i>30 - 100</i> <i>30 - 100</i> <i>125 + + + + + + + + + + + + + + + + + </i>	Interbedded fin to yellowish br perpendicular t Fine to mediur Interbedded SIL Brown grey CL Fine to mediur with some higi SILT/CLAY Grey brown in with CLAY Hig typically 1–5m on bedding plu Density and su	te SAND and SILT. Pale brown own. Dense, bedding approx. To core axis. In grained SAND, as above. LT and fine SAND AYEY SILT with trace of fine SAND in grained SAND, brownish yellow hely oxidized sections. Trace of terbedded SILT and FINE SAND only stratified (varved) with layers anes perpendicular to core axis trength increasing with depth.

KNIGHT PIESOLD LTD. CONSULTING ENGINEERS	TEST HOLE L	.OG TEST HOLE NO. <i>KP92-5</i> SHEET 1 of 1
PROJECT/ LOCATION OF TEST HOLE DATE BEGUNCt18/92D	FISH LAKE West Saddle Dam ATE FINISHED	PROJECT NO. <u>1733</u> GROUND EL. <u>5000 ft.</u> LOGGED BY <u>KDE</u>
NOTES PERMEABILITY Water loss, type and size of hole, drilling method, groundwater level, etc. 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 1	$DEPTH \qquad DESCRIP (m) (ft.) Here are a constrained on the second second$	PTION AND CLASSIFICATION OF MATERIAL
Heli-portable Val D'Or diamond drill HW casing to 4' Core HQ to 110' Use EZ-Mud for entire hole because of bad caving, squeezing.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ne to medium grained, strong, lar. GRAVEL with SAND, some SILT color. Heterolithic.
Hole lost at 111' - - - - - - - - - - - - - - - - - -	$20 - \frac{0.0 C_{0}}{0.0 \sqrt{0}}$ $BASALT$ $- Dark grey, fin$ $Weakly vesicul$ $BASALT$ $- Dark grey-gr$ $C' C$ $- C' C$ $BASALT$ $- Dark grey-gr$ $C' C$ $- Dark green-gr$	ne to medium grained, strong, lar. reen broken (brecciated), ggy/highly vesicular. grey slightly vesicular, fine trained. Similar to 0'-21' hloritized. e to medium grained, strong, fr. 11 ft.
Samples: KP92-5-1@6ft. KP92-5-2@37ft. KP92-5-3@77ft. KP92-5-4@98ft. KP92-5-5@102ft.	50- - - - - - - - - - - - - - - - - - -	

Knight Piésold Ltd. CONSULTING ENGINEERS

APPENDIX B

GEOTECHNICAL DRILLING BEDROCK LOGS

Association des ingenieurs Conseds du Canada

	Kni con	ight Pi	i <i>csold</i> 3 engint	<i>Ltd.</i>		GEOTECHNICAL BEDROCK	DR LOC	ILLING G	ì			PROJECT No. <u>1733</u> Sheet 1 of 4
PROJEC DATE LOGGED	T D BY	FISH LAK OCT. 13, KDE	E 1992		HOLE NO CORE SIZ	KP92-1 TOTAL DEPTH 196 ft REF. EL. 4825 ZE HQ COORDINATES: N BEARING CTOR QUEST E DIP -90						file: u:\user\kde\1733\corelog\kp921.wk3
IN	DRILLING FORMATI) ION				ROCK DESCRIPTION					ROCKM	ASS DEFECTS
Depth (ft)	Core Recovery	RQD	Foliation /Bedding	Hard- ness	Weather - Ing	Structure, color, grain size,strength, rocktype. Other comments.		Spacing (cm) m S R S	Graphic Log	Orienta- tion	Freque – ncy (perft)	Type, shape, roughness, infilling.
5.0	Approx. 50%	_	_	-		OVERBURDEN - brown to brownish-red SILT and SAND with GRAVEL and COBBLES, occasional BOULDER. No fines recovered.	t		-	-	-	
7.0	75%	0%	-	R3	sw	BASALT ~ Weakly vesicular, fine to medium grained, dark grey, competent, (vesicles to 1mm).	I.		X	40	1	Joints are planar to irregular, rougn, 1 – 2 mm aperture, with muddy clay infilling
120	100%	75%		R3	sw	BASALT – Weakly vesicular, fine to medium grained, dark grey, competent, (vesicles to 1mm). As above	l.		\leq	60 - 70 80	2	Joints as above. Occasional mud seam to 1 cm.
16 0	75%	50%		R3	sw	BASALT – Weakly vesicular, fine to medium grained, dark grey, competent, (vesicles to 1 mm). As above,	I.			70	1	Joints are planar, smooth to rough, with muddy clay infilling, as above.
21 0	100%	68%		R3	sw	BASALT – Weakly vesicular, fine to medium grained dark grey, competent, (vesicles to 1 mm). As above	l, 		Ŧ	15	1-2	Joints are planar, smooth to rough, with muddy clay infilling, as above.
26 0	100%	83%		R3	sw	BASALT – Weakly vesicular, fine to medium grained dark grey, competent, (vesicles to 1mm). As above,	J.			70	1-2	Joints are planar, smooth to rough, with muddy clay infilling, as above.
31.0	100%	0%		R3	sw	dark grey, competent, to 29. From 29, vuggy highly vesicular, fine grained, black, weak.	1. /		t	15	3	with muddy clay infilling, as above. Mud seam at contact.
36 0	100%	68%		R3	sw	BASALT-Vuggy highly vesicular, fine grained, blac weak, as above	:k,			60	1-2	talcy clay infilling. Numerous irregular drill induced breaks in vesiclar basalt.
41.0	100%	75%		R3	sw	BASALT – Vuggy highly vesicular, fine grained, blac weak, as above.	: K,			65	1-2	talcy clay infilling. Numerous irregular drill induced breaks as above.
46.0	100%	7%		R3	sw	BASALT-Weakly vesicular, fine to medium grained dark grey, competent, (vesicles to 1 mm).	d,			10-20	2	smooth chloritic infilling. Other joints as above.
51.0	100%	50%		R3	sw	BASALT – Weakly vesicular, fine to medium grained dark grey, competent, (vesicles to 1 mm). As above BASALT – Weakly vesicular, fine to medium grained	d,)			70	1-2	smooth chloritic infilling. Other joints as above.
56 0	100%	100%	-	R 3	sw	dark grey, competent, to 54. From 54, vuggy highly vestcular, fine grained, black, weak.	y y			70	1-2	2mm, occasional slickensided surface talcy caly infilling.

	Kni	ight Pi	esold	Ltd.			GEOTECHN		DR		G			PROJECT No.	, <u>1733</u>
	CON	SULTIN	BENGINE	ERS			BEDR	UUK		2				SHEET 2 of 4	
PROJEC	r	FISH LAK	E		HOLE NO	KP92-1	TOTAL DEPTH		196	ft	REF. EL.	4825	ft (collar)		
DATE		OCT. 13.	1992		CORE SI	ZE НО	COORDINATES			N	BEARING			file :	
LOGGED	BY	KDE			CONTRAC	TOR QUEST	-	- <u></u>		E	DIP	- 90		u:\user\kde\1733\corel	oa\kp921.wk3
IN	DRILLING FORMATI	3 ION				ROCK DESCRIPTION							ROCKM	ASS DEFECTS	
Depth	Core		Foliation	Hard –	Weather -	Structure, co	olor, grain size,strength	, rocktype.		Spacin	g Graphic	Orienta-	Freque-		
(ft)	Recovery	RQD	/Bedding	ness	ing		Other comments.			(cm) ♀ ♀ ∽	<u>E</u> Log	tion	ncy (per ft)	Type, shape, rough	ness, infilling.
							.				/ -			Rough planar to irreg	ular joints with
	0.5 %	6.28		0.1	CW	BASALI - Vuggy	highly vesicular, fine g	rained, blac	:K,			15	1.2	talcy clay infilling. Nul	merous irregular
61.0	95%	53%		HJ	51	Weak, as above.						13	1-2	Bandom breaks along	bedding planes
											F			in SEDIMENTS. Occa	sional irregular
66.0	100%	35%	-	R2	-	SEDIMENTS - Int	erbedded SILT and SA	ND.				80-90	2	break in coarser secti	ons.
														Random breaks along	bedding planes
														In SEDIMENTS. Occa	sional kregular
71.0	93%	88%		R2	SW	SEDIMENTS - Int	erbedded SILT and SA	ND, as abov	ve.			80 - 90	1	break in coarser secti	ons.
						71 5 From 71 5 F	ASALT-Vucay highly	vesicular fi	ve to ine					noune. Random irreo	ular breaks in
76 0	50%	0%	-	R2/R3	sw	grained, black, w	eak. Chlorite coatings	on vesicles.				45	3-4	vuggy, vesicular secti	ons.
														Joints are planar, roug	gh with some
						BASALT - Vuggy	highly vesicular, fine g	rained, blac	k ,					gouge. Random kreg	ular breaks in
81.0	67%	10%		R3	SW	weak Chlorite co	atings on vesicles. As	above.				10-15	3-4	vuggy, vesicular secti	ons.
1]				DACALT VURSU	highly uppingles fine of	raigad blac	1.					Joints are planar, roug	gh with some
86.0	100%	03%	_	Ba	SW	weak Chlorite or	nightiy vesicular, hite yi natings on vesicles. As	ahove	n ,			70	2	yuqqy vesicular secti	
	100 %	33.4				BASALT - Vugay	highly vesicular, fine of	rained, blac	k.				<u>~</u>	Joints are planar, rou	ah with some
1						weak Chlorke co	atings to 94. From 94 E	BASALT-W	eakly					gouge. Random Irreg	ular breaks in
91.0	100%	93%	-	R 3	sw	vesicular, fine to	medium grained, dark	grey, comp	etent.			70	2	vuggy, vesicular secti	ons.
											17/	45		Joints are planar, rou	gh with some
						BASAL I - Weakly	vesicular, line to medi	ium grained	1,		11/	60	1 1 2	gouge. Handom irreg	ular breaks in
96.0	100%	90%		НЗ	SW	oark grey, comp	etent. As above.					00	1-2	Planar emosth loint w	ons.
						BASALT-Weakh	vesicular fine to medi	ium orained	l			25		and slightly polished	surface
101.0	100%	80%	_	R 3/R 4	sw	dark grev, comp	etent. As above.	un grunou	•			20	1-2	Continues curved, sik	ckensided
					1							45			
						BASALT-Weaki	vesicular, fine to med	ium grained	1.					Planar, smooth to rou	gh joints to 1 m m
106.0	100%	92%		R3/R4	SW	dark grey, comp	etent. As above.				11/_/	25	1-2	with talcy infilling.	
1						BASALT-Weak	y vesicular, fine to med	ium grained	1,		$ /\rangle$	60			
	1000			0104		dark grey, comp	etent to 115. From 115.	, BASALT - 1	Vuggy ac		1	30		Rough planar lakts -	the taley infilling
111.0	100%	60%		H 3/H 4	5₩	vesicular, tine gra	INGU, DIACK, WEAK, CHI	ionte coating	¥s			65	<u> </u>	nougn planar joints w	nu laicy mining.
						BASALT - Vugav	highly vesicular, fine o	rained, blac	ck,					Rough planar joints w	th talcy infilling
116 0	100%	67%	-	R3	sw 🛛	weak. Chlorite c	patings on vesicles. As	above.			17	30	1-2	as above.	

	Кпі	ght P	icsold	Ltd.		GEOTECHNICAL	DR		G			PROJECT No. <u>1733</u>	
	CON	SULTIN	GENGINI	EERS		BEDHUCK	LU	<u>i</u>				SHEET 3 of 4	
PROJEC DATE	T .	FISH LAK OCT. 13,	E 1992		HOLE NO CORE SIZ	KP92-1 TOTAL DEPTH ZE HQ COORDINATES:	196	ft N	REF. EL. BEARING	4825	ft (collar)	file :	
LOGGED	BY .	KDE		•	CONTRAC			E	DIP	- 90		u:\user\kde\1733\corelog\kp921.wk3	
IN	DRILLING FORMATI	3 ION				ROCK DESCRIPTION					ROCK MASS DEFECTS		
Depth (ft)	Core Recovery	RQD	Foliation /Bedding	Hard – ness	Weather - ing	Structure, color, grain size,strength, rocktype Other comments.	3.	Spacing (cm) <u>223</u>	Graphic Log	Orienta- tion	Freque – ncy (per ft)	Type, shape, roughness, infilling.	
121.0	100%	25%	_	R2/R3	sw	BASALT – Vuggy highly vesicular, fine grained, bl: weak. Chiorite coatings on vesicles. As above.	ack,		t	70 30	2	Joints as above, but planar and rough along with numerous Irregular drill breaks in vuggy basalt.	
126.0	100%	50%	-	R2/R3	sw	BASALT-Vuggy highly vesicular, fine grained, bla weak. Chlorite coatings on vesicles. As above.	ack,			15 75-85	2-3	Joints as above, but planar and rough along with numerous irregular drill breaks in vuggy basalt.	
131 0	100%	33%	-	R3	sw	BASALT - Vuggy highly vesicular, fine grained, bla weak Chiorite coatings on vesicles. As above. At 15cm seam of green MUDSTONE.	ack, 129,		K	25 50 75	1 - 2	Joints as above, contact with mud seam 75 to CA. Minor crushed rock and talc along joint surface.	
136.0	100%	0%	-	R3	sw	BASALT - Vuggy highly vesicular, fine grained, bla weak as above to 134. From 134, BASALT - brecc dark green/black with chloritic groundmass.	ack, ciated,			0-5 75-85	3	Joints planar and rough to 1 mm with minor crushed rock, talc infilling. Numerous drill breaks in vuggy basalt.	
141 0	100%	73%	-	R2	SW	BASALT-Brecclated, dark green/black with chlor groundmass. As above.	itic			7	2-3	Irregular breaks along planes of weakness in breccia.	
146 0	100%	93%	_	R2/R3	sw	BASALT-Brecciated, dark green/black with chlor groundmass. As above.	itic		F	25 50	1	Irregular breaks along planes of weakness in breccia, as above.	
151.0	100%	87%	-	R3	sw	BASALT-Brecclated, dark green/black with chlor groundmass as above to 149. From 149, SEDIME Interbedded SILT and SAND	itic NTS –			80	2	Irregular breaks along planes of weakness in breccia, as above.	
156 0	95%	39%	-	R2/R3	sw	BASALT-Flow top breccia with basalt clasts in bi groundmass. Dark green/black.	asaltic		1	20 70	2-3	Smooth planar joints with 1 – 3 mm aperture, containing, minor crushed rock and gouge.	
161.0	100%	28%	-	R 2/R 3	sw	BASALT – Flow top breccia with basalt clasts in ba groundmass. Dark green/black.	saltic			60 - 70	2-3	Planar rough joints to 2 mm with crushed rock and gouge.	
166 0	95%	32%	_	R2/R3	sw	BASALT – Flow top breccia with basalt clasts in b groundmass. Dark green/black.	asaltic			0	2-3	Planar, smooth to rough joint with crushed rock 20 to CA. Numerous irregular drill breaks.	
171 0	100%	43%	_	R 2/R 3	sw	BASALT – Flow top breccia with basalt clasts in b groundmass. Dark green/black.	asaltic		1	45 80	3	Planar rough joints to 2 mm with crushed rock and gouge, as above.	
176.0	95%	0%	_	R3	sw	BASALT – Flow top breccla with basalt clasts in b groundmass to 175. From 175, BASALT – Weakly vesicular dark grey, competent with brecciated s	a saltic ections			?	3	Irregular breaks along planes of weakness in breccia.	

	Kni	ght Pi	i <i>esold</i>	Ltd.		GEOTECHNICAL BEDBOCK		ILI G	LIN	IG			PROJECT No. 1733		
PR OJEC DATE LOGGEC	r BY	FISH LAK OCT. 13, KDE	E 1992	-	HOLE NO CORE SI CONTRAI	KP92-1 TOTAL DEPTH ZE HQ COORDINATES: CTOR QUEST	196	ft N E		REF. EL BEARINO DIP	4825 3 90	ft (collar)	file: u:\user\kde\1733\corelog\kp921.wk3		
IN	DRILLIN G) ION	ROCK DESCRIPTION									ROCK MASS DEFECTS			
Depth (ft)	Core Recovery	RQD	Follation /Bedding	Hard – ness	Weather - ing	Structure, color, grain size,strength, rocktype. Other comments.		Sp (1	acin cm) 23	g Graphic Log	Orlenta – tion	Freque – ncy (perft)	Type, shape, roughness, infilling.		
181.0	100%	52%	-	R3	SW	BASALT – Weakly vesicular, fine to medium grained dark grey, competent with chloritic breccisted sect as above BASALT – Weakly vesicular, fine to medium grained	J, ions d,			5.5	7	3	Irregular breaks along planes of weakness in breccia.		
186 0	95%	44%	70	R 2/R 3		dark grey, competent to 185 From 185 SEDIMENT green SILT and fine SAND (SILTSTONE).	[S -			F.	70	3	Drill induced breaks in sediments. No natural defects evident, Drill induced breaks in sediments.		
191.0	95%	60%	70	R2	-	SEDIMENTS – green SILT and fine SAND (SILTSTO	<u>NE).</u>			/	30	3	No natural defects evident. Weak jointing at 30 to core axis. Drill induced breaks in sedments		
196 0	43%	10%	70	R2		SEDIMENTS – green SILT and fine SAND (SILTSTO	NE).				30	5+	No natural defects evident. Weak jointing at 30 to core axis.		
						END OF HOLE AT 196ft									

•

	Kni con	ght P i	i <i>csold</i> 3 engine	Ltd. Eers		GEOTECHNICAL DR BEDROCK LO	ll G	LIN	G			PROJECT No. <u>1733</u> Sheet 1 of 4	
PROJEC DATE LOGGEE	T) BY	FISH LAK OCT 15, KDE	iE 1992		HOLE No CORE SIZ CONTRAC	KP92-2 TOTAL DEPTH 226 YE HQ COORDINATES:	3_ft N E		REF. EL. BEARING DIP	4900 - 90	_ft (collar) _ file: _ u:\user\kde\1733\corelog\kp922.wk3		
IN	DRILLIN G					ROCK DESCRIPTION					ROCKM	ASS DEFECTS	
Depth (ft)	Core Recovery	RQD	Foliation /Bedding	Hard – ness	Weather - ing	Structure, color, grain size,strength, rocktype. Other comments.		Spacing (cm) m g g g	Graphic Log	Orlenta - tion	Freque – ncy (perft)	Type, shape, roughness, infilling.	
4.5	_		_	-	-	OVERBURDEN – No core recovered.							
8.0	Approx. 57%		-	-	-	OVERBURDEN – Brown SILT and SAND with some GRAVEL and COBBLES, trace CLAY, GLACIAL TILL.							
11 0	100%	-		-		GRAVEL and COBBLES, trace CLAY. GLACIAL TILL. As above.							
16.0	92%	0%	_	R 2	SW/MW	BASALT – Vuggy/vesicular, fine grained, brownish black to 15.5. From 15.5, weakly vesicular, fine to medium grained, dark grey, more competent.			1	45 70	5+	Hough planar joints to 2 mm with oxidized/clay infilling. Numerous random drill induced breaks.	
21.0	92%	0%	_	R2/R3	sw	BASALT – Weakly vesicular, fine to medium grained, dar grey, more competent to 17.5. From 17.5, vuggy/ vesicular, fine grained, black, weaker.	rk			5-10 80	5+	Rough joints and drill breaks, as above.	
26 0	100%	0%	-	R2/R3	sw	BASALT – Vuggy/vesicular, fine grained, black, weaker as above				80 35	3-4	Rough joints and drill breaks, as above. Joint at 35 to 4mm, with clay, some crushed rock.	
31.0	92%	62%		R3	sw	BASALT – Weakly vesicular, fine to medium grained, more competent to 30. From 30, vuggy/vesicular, fine grained, black, weaker.				70-80	2	Rough joints and drill breaks, as above. Talcy infilling.	
36.0	95%	0%	_	R3	sw	BASALT – Vuggy/vesicular, fine grained, black, weaker as above.			1	15-20	5+	Rough joints and drill breaks, as above.	
41.0	100%	42%	-	R3	sw	BASALT-Vuggy/vesicular, fine grained, black, weaker as above.				15 · 80	3-5	Rough joints and drill breaks, as above.	
46.0	100%	0%	-	R2/R3	sw	BASALT-Vuggy/vesicular, fine grained, black, weaker as above. Greenish/red color due to chloritic alteration.				10-15	5+	Joint at 10 – 15 is planar and polished. Numerous drill breaks, as above.	
51.0	100%	0%	_	R2/R3	sw	BASALT – Vuggy/vesicular, fine grained, black, weaker as above. Greenish/red color due to chloritic alteration.				5-15 50 70-80	2-3	Rough joints and drill breaks, as above. Some chlorite healing.	
56.0	100%	10%	_	R2/R3	sw	BASALT-Vuggy/vesicular, fine grained, black, weaker as above. Greenish/red color due to chloritic alteration.			fin	30	2 - 3	Some brecciated sections. Rough joints and drill breaks, as above, Some chlorite healing.	

	Kni	ght P	icsold	Ltd.		GEOTECHNICAL DR		LIN	IG			PROJECT No. ' <u>1733</u>	
PROJECT DATE LOGGED	ВУ	FISH LAK	E 1992	<u> </u>	HOLE NO CORE SIZ CONTRAC	KP92-2 TOTAL DEPTH 226 ZE HQ COORDINATES:	6_ft N E		REF. EL. BEARING DIP	<u> 4900</u> 90	ft (collar)	file: u:\user\kde\1733\corelog\kp922.wk3	
IN	DRILLING FORMATI	ION				ROCK DESCRIPTION	ROCK MASS DEFECTS						
Depth (ft)	Core Recovery	RQD	Foliation /Bedding	Hard - ness	Weather- ing	Structure, color, grain size,strength, rocktype. Other comments.	•	Spacir (cm) ∾ୁନୁ	ng Graphic Log _로	Orienta – tion	Freque – ncy (per ft)	Type, shape, roughness, infilling.	
61.0	100%	0%	-	R 2/R 3	SW	BASALT – Vuggy/vesicular, fine grained, black, weaker as above. Oxide rich, red color due to alteration. BASALT – Vuggy/vesicular, fine grained, as above.				70	2	Some brecciated sections. Rough joints and drill breaks, as above. Some chlorite healing. Some brecciated sections.	
66 0	100%	30%		<u>R3</u>	SW	Oxide rich, red color due to alteration. Has 1.5 it of weakly vesicular, fine to medium grained rock. BASALT – Vuggy/vesicular, fine grained, black, weaker as above.			8	70 10-15	2	Hough joints and drill breaks, as above. Some chlorite healing. Some brecclated sections with rough, chlorite filled planar joints and random	
71.0	100%	<u>0%</u> 35%	-	R2/R3	sw SW	Greenish/red color due to chloritic alteration. BASALT – Vuggy/vesicular, fine grained, as above. From 74, alternating sequences of vuggy/vesicular and more competent, fine to medium grained rock.				70	2-3	drill breaks, as above. Some brecclated sections with rough, chlorite filled planar joints and random drill breaks, as above.	
61 0	100%	68%		R3	sw	BASALT – Alternating sequences of vuggy/vesicular and more competent, fine to medium grained rock.				70	2	Rough planar joints to 2 mm with chlorite/carbonate Infilling. Random drill breaks, as above.	
86 0	100%	58%		R2	sw	more competent, fine to medium grained rock to 83. At B3, SEDIMENTS – SILTY SAND with GRAVEL.				70	2	As above. Contact with sediments is rough, planar at 70 to core axis.	
91.0	Approx 33%	-		-	-	SEDIMENTS – SILTY SAND with GRAVEL, as above. Only gravel recovered						No natural defects in sediments.	
96.0	Approx. 50%	-	-			SEDIMENTS – SILTY SAND with GRAVEL, as above. Only gravel recovered.	_					No recovery.	
101.0	Approx. 60%	-		-		SEDIMENTS – SILTY SAND with GRAVEL, as above. Only gravel recovered.	_					No recovery.	
106.0	Approx. 60%		-	_		SEDIMENTS - SILTY SAND with GRAVEL, as above. Only gravel recovered.						No recovery.	
111.0	Approx.	-		-		SEDIMENTS - SILTY SAND with GRAVEL, as above. Only gravel recovered.			<u> </u>			No recovery.	
112.0	Approx 25%	_	-	_	-	SEDIMENTS - SILTY SAND with GRAVEL, as above. Only gravel recovered.						No recovery.	

	Клі	ght P	iesold	Ltd.		GEOTECHNICAL	DR	ILLIN	G			PROJECT No. <u>1733</u>		
	CON	SULTIN	GENGINE	ERS		BEDROCK I	LO(<u>} </u>				SHEET 3 of 4		
PROJEC	T :	FISH LAP	Œ		HOLE No	KP92-2 TOTAL DEPTH	226	ft	REF. EL.	4900	ft (collar))		
DATE	BY	OCT. 15. KDF	1992		CORE SI	COORDINATES:	HQCOOHDINATES:N BEAHING QUEST F DIP							
100010														
IN	FORMATI	ON				ROCK DESCRIPTION					ROCKM	IASS DEFECTS		
Depth	Core		Foliation	Hard -	Weather	Structure, color, grain size,strength, rocktype.		Spacing	Graphic	Orienta -	Freque -			
(11)	Hecovery	нар	/Reading	ness	ing	Other comments.		و لا سا) چ لا ∽	Log	tion	ncy (perft)	type, shape, roughness, infiling.		
117.0	0%	_	_	_	_	Zero recovery. Most likely SAND from SEDIMENTS sequence washed away								
								╏┼┼┼┤						
						As above. Zero recovery. Most likely SAND from					ĺ			
123.0	0%		-	-		SEDIMENTS sequence washed away.		╏┼┼┼┤		<u> </u>		No recovery.		
						As above. Zero recovery. Most likely SAND from								
128 0	0%	-			-	SEDIMENTS sequence washed away.		▋┧┊┟┧				No recovery.		
						Arshove Zero recovery Mostlikely SAND from				1				
136.0	0%	-	-	-	-	SEDIMENTS sequence washed away.						No recovery.		
141.0	0%			_		As above. Zero recovery. Most likely SAND from SEDIMENTS requesce washed away								
	0.8					SEDIMENTS SEQUENCE Washed away.		╏┼┼┼┧	+	1				
1						As above. Zero recovery. Most likely SAND from								
146.0	0%			-		SEDIMENTS sequence washed away.		┨┽┼┼┤		 		No recovery.		
ļ						As above. Zero recovery. Most likely SAND from					1			
151.0	0%				-	SEDIMENTS sequence washed away.						No recovery.		
						An above Zero recovery Meet likely CAND to -								
156.0	0%	_	-	-	-	SEDIMENTS sequence washed away.						No recovery.		
	1		1		1	SEDIMENTS - Brownish green SILT/SAND to weak		╏┼┼┼┤	1	1		Drill induced breaks along bedding		
ł	Approx.					SILTSTONE/SANDSTONE. Stratified, dense but						planes perrendicular to core axis.		
164.0	75%		90			breaks easily.		╏┼┼┊┤		<u> </u>	 	No natural defects.		
	Annrox	ĺ				SUITSTONE/SANDSTONE Stratified dense but						planes perrendicular to core axis		
166.0	75%	-	90	- 1	-	breaks easily. As above.						No natural defects.		
		I	I	1	1	SEDIMENTS-Brownish green SILT/SAND to weak				l				
	1000					SILISIONE/SANDSTONE. Stratified, dense but					1	Drill induced breaks along bedding		
1/1.0	100%		- a0			SEDIMENTS - Brownish green SILT/SAND to weak		╏┼┼┼┤	+	ł	 -	pianes. As above.		
1						SILTSTONE/SANDSTONE. Stratified, dense but						Drill induced breaks along bedding		
176.0	100%		90		<u> </u>	breaks easily. As above.						planes. As above.		

	Kni con	<i>ght P</i>	<i>icsold</i> g engine	Ltd.		GEOTECHNICAL D	RI)(LL	IN	G			PROJECT No. <u>1733</u> Sheet 4 of 4			
PROJEC DATE LOGGED	BY	FISH LAP OCT. 15, KDE	(E 1992		HOLE NO CORE SI CONTRAC	KP92-2 TOTAL DEPTH 22 ZE HQ COORDINATES:	26	it N E		REF. EL. BEARING DIP	<u>4900</u> 90	ft (collar) -	flie: u:\user\kde\1733\corelog\kp922.wk3			
IN	DRILLIN G	ON				ROCK DESCRIPTION				ROCK MASS DEFECTS						
Depth (ft)	Core Recovery	RQD	Foliation /Bedding	Hard – ness	Weather ing	Structure, color, grain size,strength, rocktype. Other comments		Spa (ci ~ 9	cing m) ខ្លួ	Graphic Log	Orienta- tion	Freque – ncy (perft)	Type, shape, roughness, infilling.			
180 0	100%	_	90	-	_	SEDIMENTS - SILT/SAND as above to 179. From 179, fine SAND/SILT and trace CLAY. Finely laminated MUDSTONE/SILTSTONE (varved).							Drill induced breaks along bedding planes. As above.			
185 0	100%		90		-	SEDIMENTS – Fine SAND/SILT and trace CLAY. Finely laminated MUDSTONE/SILTSTONE (varved) As above	5.						Drill induced breaks along bedding planes. As above.			
191.0	100%	-	90	-	-	SEDIMENTS - Fine SAND/SILT and trace CLAY, Finely laminated MUDSTONE/SILTSTONE (varved). As above	3.						Drill Induced breaks along bedding planes. As above.			
198 0	Approx 75%		90	-		SEDIMENTS – Fine SAND/SILT and trace CLAY. Finely laminated MUDSTONE/SILTSTONE (varved). As above) .						Drill induced breaks along bedding planes. As above.			
216.0	Approx 90%	_	90	-		SEDIMENTS – Fine SAND/SILT and trace CLAY, Finely laminated MUDSTONE/SILTSTONE (varved). As above	Э.						Drill induced breaks along bedding planes. As above.			
221.0	100%		90			SEDIMENTS – Fine SAND/SILT and trace CLAY. Finely laminated MUDSTONE/SILTSTONE (varved). As above) .						Drill induced breaks along bedding planes. As above.			
226.0	100%		90			SEDIMENTS - Fine SAND/SILT and trace CLAY. Finely laminated MUDSTONE/SILTSTONE (varved). As above	9.						Drili induced breaks along bedding planes. As above.			
						END OF HOLE AT 226 ft.				_						
					-		- - ,									
1				1												

	Kni con	ght P	i <i>csold</i> g engine	Ltd.		GEOTECHNICAL DR BEDROCK LOO	ILLI G	NG				PROJECT No. <u>1733</u> Sheet 1 of 4	
PROJEC DATE LOGGED	T I BY	FISH LAN OCT. 18, KDE	(E 1992		HOLE NO CORE SI CONTRAC	KP92-4 TOTAL DEPTH 196 ft REF. EL. 5075 ft ZE HQ COORDINATES: N BEARING CTOR QUEST E DIP -90					ft (collar)	file: u:\user\kde\1733\corelog\kp924.wk3	
IN	DRILLING FORMATI	ON				ROCK DESCRIPTION		ROCK MASS DEFECTS					
Depth (ft)	Core Recovery	RQD	Follation /Bedding	Hard – ness	Weather - ing	er Structure, color, grain size,strength, rocktype. Other comments.			Spacing Graphic (cm) Log ମୁହ୍ୟୁଟ୍ଟି		Freque – ncy (perft)	Type, shape, roughness, infilling.	
2.0	Approx. 75%	0%	_	R2/R3	sw	BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent.				_	-	JOINTS – planar to irregular, rough to smooth, 1 – 2mm with talcy slightly oxidized surfaces.	
5.0	100%	0%	_	R3	sw	BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent. As above.			\mathbf{X}	30 50	2-3	JOINTS – planar to irregular, rough to smooth, as above.	
10.0	100%	63%		P3	sw	BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent. As above.			\vdash	10 30 50	1-2	JOINTS – planar to irregular, rough to smooth, as above. Not oxidized.	
15.0	100%	68%	-	R3	sw	BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent. As above.			1	0 - 10 60	1-2	JOINTS – as above. Low angle joints are curved, rough to smooth.	
16.0	100%	0%	-	R3	sw	BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent. As above.				30	1	JOINTS – planar to irregular, rough to smooth, as above.	
21 0	100%	90%		R3	sw	BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent, As above.			F	20 70	1	JOINTS – planar to irregular, rough to smooth, as above.	
26 0	100%	28%	-	R3	sw	BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent. As above.			\square	0 – 5 30	1-2	JOINTS – planar to irregular, rough to smooth, as above.	
31 0	100%	75%		R3	sw	BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent As above.			1.	0 - 5 60 30	1	JOINTS – planar to irregular, rough to smooth, as above.	
36.0	100%	43%	_	R3	SW	BASALT-Massive, dark grey, fine to medium grained, weakly vesicular, competent. As above.				0-5 70	2	JOINTS – planar to irregular, rough to smooth, as above.	
41.0	100%	80%	-	R3		BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent. As above.			$\langle \rangle$	0 - 5 30 70	1-2	JOINTS – planar to irregular, rough to smooth, as above.	
46.0	100%	80%	-	83		BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent. As above.			ŦŦ	30 70	1	JOINTS – planar to irregular, rough to smooth, as above.	
51.0	100%	75%	_	R3		BASALT – Massive, dark grey, fine to medium grained, weakly vesicular, competent. As above.			X	15 30 70	1	JOINTS – planar to irregular, rough to smooth, as above.	

	Kni	ght Pi	icsold	Ltd.		GEOTECHNICAL DRILLING						PROJECT No. <u>1733</u>		
	CON	SULTING	BENGINE	ERS		l,	<u>i</u>				SHEET 2 of 4			
PROJEC DATE LOGGED	T 9 BY	FISH LAK OCT. 18, KDE	E 1992		HOLE NO CORE SI CONTRAC	KP92-4 ZE HQ CTOR QUEST	TOTAL DEPTH COORDINATES:	196	ft N E	REF. EL. BEARING DIP	5075 - 90	ft (collar)	file: u:\user\kde\1733\corelog\kp924.wk3	
IN	DRILLING FORMATI	3 ION				ROCK DESCRIPTION						ROCK MASS DEFECTS		
Depth (ft)	Core Recovery	RQD	Foliation /Bedding	Hard – ness	Weather ing	Structure, col	or, grain size strength Other comments.	, rocktype.	Spacin (cm) າ ຂີ	ng Graphic Log 걏	Orienta- tion	Freque – ncy (perft)	Type, shape, roughness, infilling.	
56 0	100%	62%	_	R3		BASALT – Massive weakly vesicular, d	, dark grey, fine to me competent. As above.	dium grained,		KA	0-10 30 70	1	JOINTS – planar to irregular, rough to smooth, as above.	
61 0	100%	93%	_	R3		BASALT – Massive weakly vesicular, d	, dark grey, fine to me competent. As above.	dium grained,			30	1	JOINTS-planar to irregular, rough to smooth, as above.	
66 0	100%	52%	-	R3		BASALT – Massive weakly vesicular, d	, dark grey, fine to me competent As above.	dium grained,		$ \chi\rangle$	30 20	1	JOINTS – as above, 1 – 3mm with minor crushed rock, slightly oxidized.	
71 0	100%	63%	-	R3		BASALT - Massive weakly vesicular,	, dark grey, fine to me competent. As above.	idium grained,			10 30 70	1	JOINTS – as above, 1 – 3mm with minor crushed rock, slightly oxidized.	
74.0	100%	44%	_	R3		BASALT – Massive weakly vesicular,	, dark grey, fine to me competent. As above,	dium grained,			30 70	1-2	JOINTS – as above. Brecclated mud seam at 30 to core axis.	
79 0	100%	100%	-	R3		BASALT – Massive weakly vesicular,	, dark grey, fine to me competent. As above.	adium grained,			30 15 70	1	JOINTS-planar to irregular, rough to smooth, as above.	
86.0	100%	89%	_	R3		BASALT - Massive weakly vesicular,	, dark grey, fine to me competent. As above.	adium grained,		X	30 15 70	1 - 2	JOINTS – planar to irregular, rough to smooth, as above.	
91.0	100%	63%	_	R3		BASALT-Massive weakly vesicular,	e, dark grey, fine to me competent. As above.	adium grained,			0-5 30 70	1	JOINTS-planar to irregular, rough to smooth, as above.	
96.0	100%	85%		R3		BASALT – Massive weakly vesicular,), dark grey, fine to mi competent. As above.	adium grained,			30 70	2-3	JOINTS – planar to irregular, rough to smooth, as above.	
100.5	90%	_		R2		BASALT – Massive weakly vesicular, 96.5, SEDIMENTS), dark grey, fine to mo competent. As above S-COBBLES with GR	edium grained, to 96.5. From AVEL and SAND.			-	_	No defects. Only cobbles and gravel recovered.	
103.0	50%	_	_	-		SEDIMENTS - CC Little sand recov	OBBLES with GRAVEL ered.	and some SAND			-		No defects. Only cobbles and gravel recovered.	
105.0	90%	_	_	_		SEDIMENTS - CC Little sand recover	DBBLES with GRAVEL ared. As above.	and some SAND			-	_	No defects. Only cobbles and gravel recovered.	

	Клі	ight P	icsold	Ltd.			GEOTECHN	ICAL DR		NG	à			PROJECT No. <u>1733</u>	
PR OJEC DATE LOGGEI	т Э ву	FISH LAK	1992	ECH 5	HOLE NO CORE SI CONTRAC	IO KP92-4 TOTAL DEPTH <u>196 ft</u> REF. SIZE <u>HQ</u> COORDINATES:N BEAR ACTOR QUESTE DIP					REF. EL. BEARING DIP	5075 - 90	ft (collar)	tile: u:\user\kde\1733\corelog\kp924.wk3	
IN	DRILLIN (3 ION				ROCK DESCRIPTION							ROCK MASS DEFECTS		
Depth (ft)	Core Recovery	RQD	Foliation /Bedding	Hard - ness	Weather ing	Structure, co	lor, grain size,strength Other comments	i, rocktype	Spac (cm	cing n) ភ្នំខ្ម័	Graphic Log	Orienta- tion	Freque- ncy (per ft)	Type, shape, roughness, infilling.	
116.0	Approx. 80%	-	-	-		SEDIMENTS-CC Little sand recove	BBLES with GRAVEL red As a bove.	and some SAND				-	-	No defects. Only cobbles and gravel recovered.	
120 5	Approx. 100%	-		-		SEDIMENTS-CO Little sand recove	BBLES with GRAVEL red. As above.	and some SAND				_	_	No defects. Only cobbles and gravel recovered.	
126 0	100%	17%	-	R2		SEDIMENTS – CO As above to 121 with chloritic after	BBLES with GRAVEL a From 121–BASALT. F ation, green/black.colo	and some SAND low top breccia, pr				15	1 - 3	JOINTS – planar to irregular, rough to smooth, as above.	
131.0	95%	73%	-	R2		BASALT- Flow to	op breccia, as above.				3	_	1-2	Random drill breaks on weaknesses.	
136 0	93%	85%		R2		BASALT - Flow to	p breccia, as above.					15	1-2	JOINTS – as above. Random drill breaks on weaknesses.	
141.0	100%	75%		R2/R3		BASALT – Massive weakly vesicular,	e, dark grey, fine to me competent. As above	edium grained, O to 96.				15	1	10mm Chlotite veinlet planar, rough.	
146.0	100%	100%	-	R 2/R 3		BASALT – Massive weakly vesicular.	e, dark grey, fine to me competent.	adium grained,			$\left \right\rangle$	70	1-2	JOINTS – Planar, rough, 1 – 2mm with chlorite/carbonate infilling.'	
151.0	100%	100%		R2/R3		BASALT - Massivi weakly vesicular,	e, dark grey, fine to me competent.	edium grained,			F	60	1	JOINTS – Planar, rough, 1 – 2mm with chlorite/carbonate infilling.'	
156.0	75%	-		R1		BASALI – Massie weakly vesicular, SEDIMENTS – gre	e, dark grey, fine to mo competent to 152. Fro en SAND with GRAVE	im 152, L and COBBLES				-	-	Random drill breaks on weaknesses and bedding planes.	
	42%	0%	_	R1/R2	,	SEDIMENTS - gro as above	een SAND with GRAVE	L and COBBLES	;				_	Random drill breaks on weaknesses and bedding planes, as above.	
166.0	67%	28%	90	R1/R2		SEDIMENTS - gro as above to 164	een SAND with GRAVE From 164, dense, gre	EL and COBBLES				-	-	Random drill breaks on weaknesses and bedding planes, as above.	
172 () 81%	24%	90	B1/R2		SEDIMENTS - De From 167, green	nse green SAND as a SAND with GRAVEL a	bove to 167. and COBBLES.						Random drill breaks on weaknesses and bedding planes, as above.	

	Клі	ight P	icsold	Ltd.		GEOTECHNICAL DRILLING BEDROCK LOG							PROJECT No. <u>1733</u>			
PROJEC DATE LOGGED	T BY	FISH LAN OCT. 18, KDE	(E 1992		HOLE NO CORE SI CONTRAC	No. KP92-4 TOTAL DEPTH 196 ft REF. EL. 5075 ft SIZE HQ COORDINATES: N BEARING ACTOR QUEST E DIP -90			ft (collar)	file: u:\user\kde\1733\corelog\kp924.wk3						
IN	DRILLING FORMATI	3 ION				ROCK DESCRIPTION								ROCK MASS DEFECTS		
Depth (ft)	Core Recovery	RQD	Foliation /Bedding	Hard - ness	Weather ing	Structure, col	or, grain size,strength Other comments.	, rocktype.	S	pacin (cm) ຂຸຊ	10 0	Graphic Log	Orienta- tion	Freque – ncy (perft)	Type, shape, roughness, infilling.	
177.0	100%	1.8%	-	R2		SEDIMENTS – gree as above	an SAND with GRAVE	L and COBBLES					_	2-4	Random drill breaks on weaknesses and bedding planes, as above.	
182.5	100%	48%		R2/R3		SEDIMENTS - gree as above	an SAND with GRAVE	L and COBBLES					_	2	Random drill breaks on weaknesses and bedding planes, as above	
189.5	85%	57%		R 2/R 3	 	as above to 1835. breccia as above 1	From 183.5, BASALT 21 to 126.	- Flow top						1-2	Random drill breaks on weaknesses and bedding planes, as above	
193 0	31%	0%	_	R1		BASALT - Flow top GRAVEL recovered) breccia, as above. S d (SEDIMENTS?).	ome COBBLES						-	Random drill breaks on weaknesses and bedding planes, as above.	
196.0	0%	0%	-	-		No core recovered	·						-	-	No core recovered.	
						END OF HOLE A	T 196h									
							· · · · · · · · · · · · · · · · · · ·	- W. J. J.								
										+						

	Клі сом	ght P	i <i>csold</i> g engine	<i>Ltd.</i> Eers		GEOTECHNICAL DR BEDROCK LO	۱۱L G	LIN	١G				PROJECT No. <u>1733</u> Sheet 1 of 2
PROJEC DATE LOGGED	T BY	FISH LAK OCT 19 KDE	(E		HOLE NO CORE SI CONTRAC	KP92-5 TOTAL DEPTH 111 RE HQ COORDINATES:	ft N E		R E B E DII	F.EL. ARING P	5000 90	ft (collar)	file : u:\user\kde\1 733\corelog\kp925.wk3
IN	DRILLING					ROCK DESCRIPTION		ROCK MASS DEFECTS					
Depth (ft)	Core Recovery	RQD	Foliation /Bedding	Hard – ness	Weather - ing	Structure, color, grain size,strength, rocktype. Other comments.	Sr n	pacir (cm) 오오	ng G o	iraphic Log	Orienta – tion	Freque – ncy (perft)	Type, shape, roughness, infilling.
4.0	100%	Approx. 75%	_	R3/R4	sw	BASALT-Weakly vesicular, fine to medium grained, dark grey, massive, more competent.			2		40	1-2	Rough, planar joints, slighlty oxidized, 1–2 mm aperture.
10 0	100%	26%		R 3/R 4	sw	BASALT – Weakly vesicular, fine to medium grained, dark grey, massive, more competent, as above.				Ă	70 40 0-5	2-3	Joints as above. Joint at 0 – 5 is curved, 1 – 3 mm aperture.
16.0	100%	40%	-	R3/R4	sw	BASALT – Weakly vesicular, fine to medium grained, dark grey, massive, more competent, as above.				Ŕ	5-10 40 70	2	Joints as above.
21.0	80%	20%		R3	sw	BASALT – Weakly vesicular, fine to medium grained, dark grey, massive, more competent, as above.					70	3	Joints as above. Surfaces are talcy (clay minerals).
28.0	Approx. 85%		-			SEDIMENTS-COBBLES and GRAVEL (heteralithic) with SAND, some SILT. Slightly rusty brown.							No joints. Random breaks along weaknesses at gravel, cobbles.
34 0	Approx 70%	-	-			SEDIMENTS – COBBLES and GRAVEL (heterolithic) with SAND, some SILT. Slightly rusty brown. As above.							No joints. Handom breaks along weaknesses at gravel, cobbles. As above.
38 0	100%			_		SEDIMENTS – COBBLES and GRAVEL (heterolithic) with SAND, some SILT. Slightly rusty brown. As above.	h				-	-	No joints. Handom breaks along weaknesses at gravel, cobbles. As above.
46 0	Approx 70%				_	SEDIMENTS – COBBLES and GRAVEL (heterolithic) with SAND, some SILT. Slightly rusty brown. As above.					_		No joints. Handom breaks along weaknesses at gravel, cobbles. As above.
53 0	Approx. 95%		-		-	SEDIMENTS-COBBLES and GRAVEL (heterolithic) with SAND, some SILT. Slightly rusty brown. As above.	h				-	_	No joints. Random breaks along weaknesses at gravel, cobbles. As above.
58.0	Approx. 60%		-	-	-	SEDIMENTS - COBBLES and GRAVEL (heterolithic) with SAND, some SILT. Slightly rusty brown. As above.	,					-	No joints. Handom breaks along weaknesses at gravel, cobbles. As above.
62.0	Approx. 80%	_	-			SEDIMENTS - COBBLES and GRAVEL (heterolithic) with SAND, some SILT. Slightly rusty brown. As above.	<u>ا</u>					-	No joints. Random breaks along weaknesses at gravel, cobbles. As above.
66 0	75%	43%		83	sw	BASALT – Weakly vesicular, fine to medium grained, dark grey, massive, more competent, as above.					30	2-3	Rough planar joints with oxidized infilling, 1 – 2 mm aperture.

	Кл	ight P	iesold	Ltd.			GEOTECHN	ICAL DF		LIN	G			PROJECT No. <u>1733</u>		
	CON	SULTIN	GENGIN	EERS			BEDR	OCK LO	G					SHEET 2 of 2		
PROJEC DATE LOGGED	T 9 BY	FISH LAN OCT. 19, KDE	(E 1992		HOLE NO CORE SI CONTRAC	ZE <u>HQ</u> CTOR <u>QUEST</u>	TOTAL DEPTH COORDINATES:		_ft N E		REF. EL. BEARING DIP	5000 90	ft (collar) -	file: u:\user\kde\1733\corelog\kp925.wk3		
IN	DRILLING FORMAT	3 ION				ROCK DESCRIPTION							ROCKM	ROCK MASS DEFECTS		
Depth (ft)	Core Recovery	RQD	Foliation /Bedding	Hard - ness	Weather ing	Structure, co	olor, grain size,strength Other comments.	i, rocktype.	Sp (0	acing cm) 2 2 1	g Graphic Log	Orienta- tion	Freque – ncy (per ft)	Type, shape, roughness, infilling.		
71.0	100%	22%		R2		BASALT – Weakly dark grey, more c chloritized green/i	vesicular, fine to med ompetent, as above to black, highly vuggy an	lum grained, 67.5. From 67.5 d vesicular,			A	30 50	4 - 5	Joints as above. Numerous drill breaks in weaker vesicular material.		
76 0	100%	Approx 25%		R2/R3	 	BASALT-Chloriti vesicular, as abov	zed green/black, highly ve.	y vuggy and			X	10-15 35	2-3	Joints as above. Numerous drill breaks on weaknesses, as above.		
81.0	Approx 85%	63%		R2		BASALT – Chlorilli, vesicular, as abov	zed green/black, highly /e.	vuggy and				10	1-2	Joints as above. Chlorite Infilling. Numerous drill breaks on weaknesses. As above.		
86 0	100%	Approx 50%		R2/R3		BASALT - Chloriti vesicular to 85. Fi medium grained	zed green/black, highly rom 85, weakly vesicul dark grey, more comp	y vuggy and ar, fine to etent.				70	2-4	Joints as above. Chiorite infilling. As above, chioritized seam to 15 mm at 70 to core axis.		
91.0	100%	95%		R3		BASALT – Weakly dark grey, massiv	vesicular, fine to medi re, more competent, as	um grained, s ab <i>o</i> ve.				_15	1	Joints as above. Chlorite infilling. Numerous drill breaks on weaknesses. As above.		
96.0	100%	Approx 80%		R2/R3		BASALT - Weakly dark grey, massiv vesicular with chl	vesicular, fine to medi ve, more competent, as orite alteration and veir	um grained, s above. More niets.				70	1	Joints as above. Chlorite infilling. Numerous drill breaks on weaknesses. As above.		
101 0	100%	83%		R3		BASALT – Weakly dark grey, massiv vesicular with chil	vesicular, fine to medi ve, more competent. M orite alteration and veir	ium grained, ore ilets, as above.				20-25	11	Joints as above. Chlorite infilling. Chlorite veiniets to 2 cm at 20–25 to core axis.		
106.0	100%	Approx 100%		R3		BASALT-Weakly dark grey, massiv	vesicular, fine to medi ve, more competent.	ium grained,			F	20-30	1	Joints, rough planar, 1 – 2 mm aperture with minor clay (talc?) infilling		
111.0	Approx. 50%	Approx 100%		R3		BASALT – Weakly dark grey, massk As above. (core	vesicular, fine to medi ve, more competent. most likely left in hole).	lum grained,			F	20-25	1	Joints, rough planar, 1 – 2 mm aperture with minor clay (taic?) infiling. As above.		
						END OF HOLE	AT 111 ft.									

Knight Piésold Ltd. CONSULTING ENGINEERS

APPENDIX C

RESULTS OF IN-SITU PERMEABILITY TESTING

Association g des Ingenieurs Conseils du Canada

PACKER TESTING CALCULATION SHEET

Knight Piésold Ltd.

PROJECT:	FISH LAKE (1	733)
LOCATION:	MAIN EMBAN	IKMENT
HOLE No:	KP92-1	
TEST DATE:	OCTOBER 11,	1992
COORDS(m)	N:	E:
REF. ELEV.(m)		

HOLE DIAMETER (inches): HQ	3.782
DEPTH TO GDW TABLE BELOW PRESSURE GAUGE (ft):	10.5
BEDROCK DEPTH(ft):	0
TESTED BY:	KDE/GRG
ANGLE FROM VERTICAL (deg):	0
HEIGHT OF PRESSURE GAUGE ABOVE GROUND(ft):	2.5

TEST	DEPTH II (f	NTERVAL ï)	FLOW N	METER gal)	ELAPSED TIME	FLOW RATE	GAUGE PRESSURE	HEAD CORRN	TEST HEAD	PERMEABILITY (cm/sec)	COMMENTS
	from	to	init	final	(min)	(Igpm)	(psi)	(ft)	(ft)		
1	19.0 19.0	46.0 46.0	18.50 19.30	19.19 20.09	5	0.115 0.132	15.0 20.0 25.0	0.0	45.1 56.7	6.3E-06 5.7E-06	ALTERNATING SECTIONS
1	19.0 19.0 19.0	46.0 46.0 46.0	20.30 22.15 23.45	22.05 23.25 24.08	5 5 5	0.292 0.183 0.105	23.0 17.0 10.0	0.0 0.0 0.0	68.2 49.8 33.6	9.1E-06 7.7E-06	COMPETENT BASALT
2 2 2 2 2 2	48.5 48.5 48.5 48.5 48.5 48.5	76.0 76.0 76.0 76.0 76.0 76.0	32.80 38.00 43.50 50.50 55.20	36.60 42.20 49.00 54.50 58.00	5 5 5 5	0.633 0.700 0.916 0.666 0.466	20.0 30.0 40.0 28.0 20.0	0.0 0.0 0.0 0.0 0.0	56.7 79.8 102.9 75.2 56.7	2.7E-05 2.1E-05 2.2E-05 2.2E-05 2.0E-05	ALTERNATING SECTIONS OF VUGGY AND COMPETENT BASALT WITH A LAYER OF SANDY SEDIMENTS
3 3 3 3 3	78.5 78.5 78.5 78.5 78.5 78.5	106.0 106.0 106.0 106.0 106.0	46.00 64.50 83.00 103.00 117.00	58.50 77.50 100.00 114.50 125.30	5 5 5 5	2.083 2.166 2.832 1.916 1.383	25.0 35.0 55.0 35.0 25.0	0.0 0.0 0.0 0.0 0.0	68.2 91.3 137.5 91.3 68.2	7.4E-05 5.8E-05 5.0E-05 5.1E-05 4.9E-05	ALTERNATING SECTIONS OF VUGGY AND COMPETENT BASALT
4 4 4 4 4	108.5 108.5 108.5 108.5 108.5 108.5	136.0 136.0 136.0 136.0 136.0	35.00 44.60 57.00 70.00 77.50	42.40 53.30 67.10 76.20 81.00	5 5 5 5 5	1.233 1.449 1.683 1.033 0.583	35.0 55.0 70.0 60.0 35.0	0.0 0.0 0.0 0.0 0.0	91.3 137.5 172.2 149.1 91.3	3.3E-05 2.6E-05 2.4E-05 1.7E-05 1.6E-05	ALTERNATING SECTIONS OF VUGGY AND COMPETENT BASALT

PAGE1 OF2

PACKER TESTING CALCULATION SHEET

PAGE 2 OF 2

CONSULTING ENGINEERS

PROJECT:	FISH LAKE (1733)
LOCATION:	MAIN EMBANKMENT
HOLE No:	KP92–1
TEST DATE:	OCTOBER 11, 1992
COORDS(m)	N: E:
REF. ELEV.(m)	
REF. ELEV.(m)	

HOLE DIAMETER (inches): HQ	3.782
DEPTH TO GDW TABLE BELOW PRESSURE GAUGE (ft):	10.5
BEDROCK DEPTH(ft):	0
TESTED BY:	KDE/GRG
ANGLE FROM VERTICAL (deg):	0
HEIGHT OF PRESSURE GAUGE ABOVE GROUND(ft):	2.5

TEST	DEPTH II (I	NTERVAL	FLOW I (US	FLOW METER (USgal)		FLOW RATE	GAUGE PRESSURE	HEAD CORR'N	TEST Head	PERMEABILITY (cm/sec)	COMMENTS
	from	10	init	final	(тіл)	(Igpm)	(psi)	(ft)	(ft)		
5	138.5	166.0	691.00	701.50	5	1.749	30.0	0.0	79.8	5.3E-05	
5	138.5	166.0	7.50	24.10	5	2.766	60.0	0.0	149.1	4.5E-05	VUGGY BASALT
5	138.5	166.0	31.00	50.90	5	3.315	90.0	0.0	218.4	3.7E-05	WITH MINOR
5	138.5	166.0	55.00	67.70	5	2.116	60.0	0.0	149.1	3.5E-05	SANDY SEDIMENTS
5	138.5	166.0	69.00	76.40	5	1.233	30.0	0.0	79.8	3.8E-05	
6	168.5	196.0	800.00	844 30	5	7 380	65.0	0.0	160.6	1 1E-04	
6	168.5	196.0	858.00	895 30	4	7 768	125.0	0.0	200.0	635-05	BDOVEN BASALT
6	168.5	106.0	003.00	010 20	5	2 716	125.0	0.0	2332		
μ <u>ζ</u>	160.5	190.0	000.00	015.00	5	4./10	100.0	0.0	241.4	2.76-03	
0	108.2	190.0	921.00	925.10	3	0.083	60.0	0.0	149.1	1.1E-05	SANDY SEDIMENTS

filename u:\user\kde\1733\KP92-1B.WK3

PACKER TESTING CALCULATION SHEET

Knight Piésold Ltd.

KP92-2

N:

FISH LAKE (1733)

OCTOBER 13, 1992

MAIN EMBANKMENT

E:

PROJECT:

HOLE No:

LOCATION:

TEST DATE:

COORDS(m) REF. ELEV.(m)

HOLE DIAMETER (inches):	HQ
DEPTH TO GDW TABLE BE	LOW PRESSURE GAUGE (ft):
BEDROCK DEPTH(ft):	
TESTED BY:	
ANGLE FROM VERTICAL (leg):
HEIGHT OF PRESSURE GA	JĞE ABOVE GROUND(ft):

PAGE1 OF1

3.782

22.5

GRG

0

0 2.5

	DEPTH I	NTERVAL	FLOW N	METER	ELAPSED	FLOW	GAUGE	HEAD	TEST	PERMEABILITY	
TEST	((ι)	US)	gal)	ТІМЕ	RATE	PRESSURE	CORRIN	HEAD	(cm/sec)	COMMENTS
	· · · · ·	,	·								
	from	to	init	final	(min)	(Igpm)	(psi)	(ft)	(ft)		
· · · · · · · · · · · · · · · · · · ·											
1	19.0	46.0	65.0	70.70	5	0.950	10.0	0.0	45.1	5.2E-05	
1	19.0	46.0	72.0	77.60	5	0.933	16.0	0.0	59.0	3.9E-05	ALTERNATING SECTIONS
1	19.0	46.0	79.0	87.20	5	1.366	25.0	0.0	79.7	4.2E-05	OF VUGGY AND
1	19.0	46.0	88.2	93.40	5	0.866	16.0	0.0	59.0	3.6E-05	COMPETENT BASALT
1	19.0	46.0	94.0	97.50	5	0.583	10.0	0.0	45.1	3.2E-05	
ł	ļ	l			ļ		l	Į		ļ	
2	48.5	76.0	40.00	93.20	5	8.863	30.0	0.0	91.8	2.4E-04	
2	48.5	76.0	4.00	59.10	5	9.180	35.0	0.0	103.3	2.2E-04	VUGGY, HIGHLY
2	48.5	76.0	70.00	125.70	5	9.280	40.0	0.0	114.9	2.0E-04	VESICULAR BASALT
2	48.5	76.0	137.00	176.70	5	6.614	35.0	0.0	103.3	1.6E-04	
2	48.5	76.0	184.00	218.70	5	5.781	30.0	0.0	91.8	1.5E-04	
3	78.5	106.0	20.00	21.75	5	0.292	30.0	0.0	91.8	7.7E-06	
3	78.5	106.0	22.30	24.45	5	0.358	40.0	0.0	114.9	7.6E-06	COMPETENT BASALT
3	78.5	106.0	25.10	27.65	5	0.425	50.0	0.0	138.0	7.5E-06	OVERLYING
3	78 5	106.0	28.00	29.75	5	0.292	40.0	00	1149	62E-06	SAND AND GRAVEI
3	78 5	106.0	30.00	31.20	5	0.200	30.0	0.0	91.8	5 3F-06	
	10.5	100.0				0.200		0.0	1.0	5	
11		1 .	1	l	1		1	1	1	I	L

filename u:\user\kde\1733\KP92-2.WK3

PACKER TESTING CALCULATION SHEET

PAGĘ1 OF1

I	CONSULTING	ENGINEERS

PROJECT:	FISH LAKE (1733)	
LOCATION:	SOUTH SADDLE DAM	ļ
HOLE No:	KP92-3	
TEST DATE:	OCTOBER 16, 1992	
COORDS(m)	N: E:	
REF. ELEV.(m)		

HOLE DIAMETER (inches): HQ	3.782
DEPTH TO GDW TABLE BELOW PRESSURE GAUGE (ft):	5
BEDROCK DEPTH(ft):	0
TESTED BY:	GRG
ANGLE FROM VERTICAL (deg):	0
HEIGHT OF PRESSURE GAUGE ABOVE GROUND(ft):	2.5

TEST	DEPTH II	NTERVAL [1)	FLOW 1 (US	METER gal)	ELAPSED TIME	FLOW RATE	GAUGE PRESSURE	HEAD CORR'N	TEST HEAD	PERMEABILITY (cm/sec)	COMMENTS
	from	to	init	final	(min)	(lgpm)	(psi)	(ft)	(ft)		
1 1 1 1 1	99.0 99.0 99.0 99.0 99.0 99.0	126.0 126.0 126.0 126.0 126.0	51.50 54.90 57.50 60.30 61.70	54.30 57.00 59.80 61.55 62.50	5 5 5 5 5	0.466 0.350 0.383 0.208 0.133	30.0 45.0 65.0 45.0 30.0	0.0 0.0 0.0 0.0 0.0	74.3 108.9 155.1 108.9 74.3	1.6E-05 7.9E-06 6.1E-06 4.7E-06 4.4E-06	INTERBEDDED SANDS AND SILTS
2 2 2 2 2 2	139.0 139.0 139.0 139.0 139.0 139.0	166.0 166.0 166.0 166.0 166.0	67.50 74.80 84.00 93.00 298.00	73.50 81.80 91.50 97.30 301.00	5 5 5 5 5	1.000 1.166 1.250 0.716 0.500	30.0 35.0 40.0 35.0 30.0	0.0 0.0 0.0 0.0 0.0	74.3 85.8 97.4 85.8 74.3	3.3E-05 3.4E-05 3.2E-05 2.1E-05 1.7E-05	LAYERED SILTS AND SILTS WITH TRACE CLAY

filename u:\user\kde\1733\KP92-3.WK3

PACKER TESTING CALCULATION SHEET

PAGE 1 OF 2

						_
CONS	ULT	ING I	ENGI	NE	EF	1

PROJECT:	FISH LAKE (1733)
LOCATION:	WEST SADDLE DAM
HOLE No:	KP92-4
TEST DATE:	OCTOBER 17, 1992
COORDS(m)	N: E:
REF. ELEV.(m)	

HOLE DIAMETER (inches): HQ	3.782
DEPTH TO GDW TABLE BELOW PRESSURE GAUGE (ft):	150
BEDROCK DEPTH(ft):	0
TESTED BY:	KDE/GRG
ANGLE FROM VERTICAL (deg):	0
HEIGHT OF PRESSURE GAUGE ABOVE GROUND(ft):	2.5

TEST	DEPTH II (I	NTERVAL ï)	FLOW N (US	METER gal)	ELAPSED TIME	FLOW RATE	GAUGE PRESSURE	HEAD CORR N	TEST HEAD	PERMEABILITY (cm/sec)	COMMENTS
	from	to	init	final	(min)	(Igpm)	(psi)	(fı)	(ft)		
1 1 1 1 1	19.0 19.0 19.0 19.0 19.0	46.0 46.0 46.0 46.0 46.0	5.2 6.1 7.2 8.3 8.9	5.98 6.98 8.19 8.88 9.37	5 5 5 5 5	0.130 0.147 0.165 0.097 0.078	18.0 25.0 35.0 25.0 15.0	0.0 0.0 0.0 0.0 0.0	76.6 92.7 115.8 92.7 69.6	4.2E-06 3.9E-06 3.5E-06 2.6E-06 2.8E-06	COMPETENT BASALT
2 2 2 2 2 2	58.5 58.5 58.5 58.5 58.5 58.5	86.0 86.0 86.0 86.0 86.0	1.40 1.60 1.85 2.10 2.30	1.55 1.80 2.05 2.29 2.44	5 5 5 5 5	0.025 0.033 0.033 0.032 0.023	35.0 45.0 50.0 45.0 35.0	0.0 0.0 0.0 0.0 0.0	155.6 178.7 190.2 178.7 155.6	3.9E-07 4.5E-07 4.3E-07 4.3E-07 3.7E-07	COMPETENT BASALT
3 3 3 3 3	88.5 88.5 88.5 88.5 88.5 88.5	116.0 116.0 116.0 116.0 116.0	4.60 6.50 19.00 21.70 23.60	6.05 8.40 21.35 23.40 24.95	5 5 5 5 5	0.242 0.317 0.392 0.283 0.225	30.0 45.0 60.0 45.0 30.0	0.0 0.0 0.0 0.0 0.0	174.0 208.7 243.3 208.7 174.0	3.4E-06 3.7E-06 3.9E-06 3.3E-06 3.1E-06	COMPETENT BASALT OVERLYING COBBLES AND GRAVEL
4 4 4 4	128.5 128.5 128.5 128.5 128.5 128.5	156.0 156.0 156.0 156.0 156.0	6.70 7.40 8.30 9.20 39.90	7.25 8.00 9.10 9.80 40.31	5 5 5 5	0.092 0.100 0.133 0.100 0.068	40.0 60.0 80.0 60.0 40.0	0.0 0.0 0.0 0.0 0.0	232.9 279.1 325.3 279.1 232.9	9.6E-07 8.7E-07 1.0E-06 8.7E-07 7.1E-07	BRECCIATED BASALT OVERLYING COMPETENT BASALT

PACKER TESTING CALCULATION SHEET

PAGE₂ OF 2

CONSUL	TING	ENGINE	ERS

PROJECT:	FISH LAKE (1733)
LOCATION:	WEST SADDLE DAM
HOLE No:	KP92-4
TEST DATE:	OCTOBER 17, 1992
COORDS(m)	N: E:
REF. ELEV.(m)	

HOLE DIAMETER (inches): HQ	3.782
DEPTH TO GDW TABLE BELOW PRESSURE GAUGE (ft):	150
BEDROCK DEPTH(ft):	0
TESTED BY:	KDE/GRG
ANGLE FROM VERTICAL (deg):	0
HEIGHT OF PRESSURE GAUĞE ABOVE GROUND(ft):	2.5

TEST	DEPTH INTERVAL (ft)		FLOW METER (USgal)		ELAPSED TIME	FLOW RATE	GAUGE PRESSURE	HEAD CORRN	TEST Head	PERMEABILITY (cm/sec)	COMMENTS
	from	to	init	final	(min)	(lgpm)	(psi)	(ft)	(ft)		
5 5 5 5 5	148.5 148.5 148.5 148.5 148.5 148.5	196.0 196.0 196.0 196.0 196.0	44.00 46.00 49.00 56.00 59.50	45.72 48.20 55.50 59.30 61.22	5 5 5 5 5 5	0.287 0.367 1.083 0.550 0.287	50.0 90.0 125.0 90.0 50.0	0.0 0.0 0.0 0.0 0.0	265.5 357.9 438.7 357.9 265.5	1.7E-06 1.6E-06 3.9E-06 2.4E-06 1.7E-06	SANDY SEDIMENTS WITH SOME . BASALT SECTIONS

filename u:\user\kde\1733\KP92-4B.WK3
Knight Piésold Ltd.

PROJECT:

HOLE No:

LOCATION:

TEST DATE:

COORDS(m) REF. ELEV.(m)

CONSULTING ENGINEERS

N:

KP92-5

FISH LAKE (1733)

OCTOBER 18, 1992

MAIN EMBÀNKMENT

E:

PACKER TESTING CALCULATION SHEET

PAGE 1 OF 1

HOLE DIAMETER (inches): HQ	3.782
DEPTH TO GDW TABLE BELOW PRESSURE GAUGE (ft):	10
BEDROCK DEPTH(ft):	6.5
TESTED BY:	GRG
ANGLE FROM VERTICAL (deg):	0
HEIGHT OF PRESSURE GAUĞE ABOVE GROUND(ft):	2.5

TEST	DEPTH II (I	DEPTH INTERVAL FLOW METER (ft) (USgal)		ELAPSED TIME	FLOW RATE	GAUGE Pressure	HEAD CORRN	TEST HEAD	PERMEABILITY (cm/sec)	COMMENTS	
L	from	to	init	final	(min)	(lgpm)	(psi)	(ft)	(ft)		
	19.0 19.0 19.0 19.0 19.0 19.0	46.0 46.0 46.0 46.0 46.0	376.00 433.00 492.00 550.00 590.00	413.60 481.30 540.60 586.70 605.60	5 5 5 5 5	6.264 8.047 8.097 6.114 2.599	12.0 20.0 23.0 20.0 12.0	0.0 0.0 0.0 0.0 0.0	37.7 56.2 63.1 56.2 37.7	4.1E-04 3.5E-04 3.2E-04 2.7E-04 1.7E-04	COBBLES AND GRAVEL WITH SAND, SOME SILT.

filename u:\user\kde\1733\KP92-5.WK3

Knight Piésold Ltd. CONSULTING ENGINEERS

APPENDIX D

WATER QUALITY MONITORING WELL **COMPLETION DETAILS**

Association des Ingenieurs Conseils du Canada

er wer the relation with an action to

o nic towarch with where por score

- i soor is a relativity was seen in

in now into a so a construction was seen in

CAD PRF 1 PHONECY 17337 AG1 +5 PKF KOV 1=1