LOG NO:	IMAR 1 5 1993	RD.
ACTION.		
FILE NO:		

GEOCHEMICAL REPORT ON THE MONASHEE MOUNTAIN PROJECT

Monashee Pass, Vernon Mining Division British Columbia, Canada Latitude: 50° 07' North Longitude: 118° 30' West N.T.S. 82 L/1 West and 82 L/2 East

YEOWARD 1 TO 12, YEOWARD 15 AND 16, KETTLE #1 AND #2, POT, PAN 1 & 2, EDGE 1 TO 6, AND MS-1 & 2 MINERAL CLAIMS

-Owners-

CAMECO CORPORATION 2121-11th Street West Saskatoon, Saskatchewan S7M 1J3 MISHIBISHU GOLD CORP. UNIVERSAL TRIDENT INDUSTRIES 1030-609 Granville Street Vancouver, B.C. V7Y 1G5

COMMONWEALTH GOLD INC. 1700-355 Burrard Street Vancouver, B.C. V6C 2G8

-Operator-

CAMECO CORPORATION 2121-11th Street West Saskatoon, Saskatchewan S7M 1J3

November, 1992

GEOLOGICAL BRANCH ASSESSMENT REPORT

Ken Wasyliuk Geologist III

22,827

SUMMARY

A small orientation geochemical sampling survey was completed on the Monashee Mountain property between October 26 and November 2, 1992. The following report outlines the work completed and summarizes the results obtained. Heavy mineral analyses are also presented for bulk sediment samples collected during a previous sampling program.

A total of 5 outcrop & boulder; 23 bulk till & colluvium; and 24 soil samples were collected during this program; 47 bulk samples were collected during the previous program. Previous work in the area had outlined anomalous gold values in stream sediments, including small scale placer gold production. The sampling survey discussed in this report was conducted upstream of several of these anomalous drainages. An indication for the source of the gold anomalies was sought. The preferred sampling medium was C-horizon glacial tills, however site specific mediums were collected if tills were not available. Outcrop and soil samples were collected for comparison purposes.

Thick glacial tills occur along the walls of the Kettle River valley, fluvial gravels and sediments dominate the valley floors, while a thin colluvial cover exists over the steep south wall of the Yeoward Creek valley.

Tills upstream of the creek at the extreme east central portion of the property contain anomalous gold values. A highly anomalous till occurs on the mountain crest. Anomalous colluvium samples were collected along the steep south slope of the Yeoward Creek valley, corresponding to previously outlined stream sediment anomalies. Further till sampling at closer spaced sample intervals is required to adequately define the anomalous till trains.

TABLE OF CONTENTS

		TVA
	SUMM	IARY (i)
1.0	1.1 1.2 1.3 1.4 1.5 1.6	DUCTION
2.0	GEOL 2.1 2.2	OGY
3.0	GEOC 3.1 3.2 3.3 3.4	HEMICAL SURVEY RESULTS
4.0	CONC	CLUSIONS
5.0	REFE	RENCES
TABL TABL TABL TABL	E 2 E 3	LIST OF TABLES Mineral Claim Data
		<u>LIST OF FIGURES</u>
FIGUI FIGUI FIGUI FIGUI	RE 2 RE 3	Regional Geology and Location Map

TABLE OF CONTENTS (Continued)

LIST OF APPENDICES

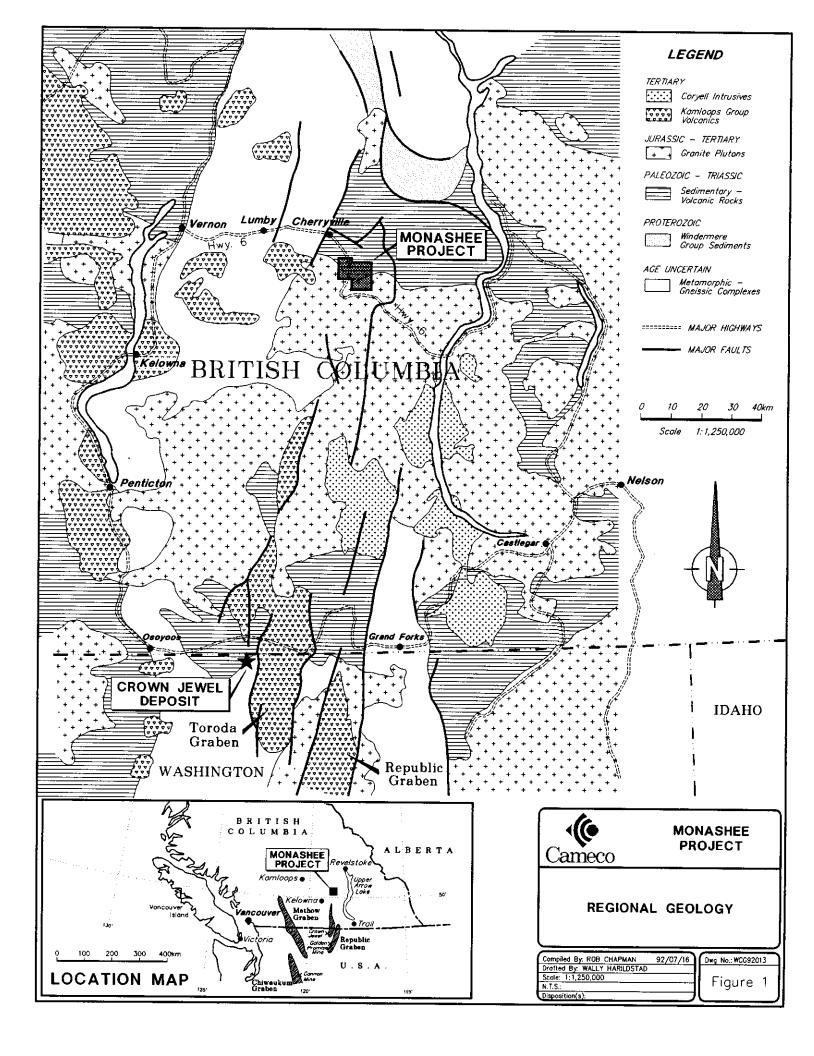
APPENDIX I	Certificate of Qualifications
APPENDIX II	Statement of Expenditures
APPENDIX III	Sample Descriptions

APPENDIX III Sample Descriptions
APPENDIX IV Analytical Results - Geochemical
APPENDIX V Analytical Results - Bulk Samples

GEOCHEMICAL REPORT ON THE MONASHEE MOUNTAIN PROJECT

1.0 INTRODUCTION

The Monashee Mountain property is located in the Vernon Mining Division of south central British Columbia, near Monashee Pass. The property is operated by Cameco Corporation under an option agreement with Mishibishu Gold Corporation, Universal Trident Industries Ltd. and Commonwealth Gold Inc. The following report outlines the results of a one week geochemical sampling program completed between October 26 and November 2, 1992, with analytical results not included in a previous report.


1.1 Location and Access

The Monashee property is located approximately 70 kilometres east of the city of Vernon, British Columbia (Figure 1). Provincial Highway 6 provides the best access to the property. Several logging roads have been established throughout the property and provide excellent 4 wheel drive access within the property boundaries.

The closest support centres are the towns of Lumby and Cherryville, about 45 and 20 kilometres west of the property, respectively. A major B.C. Hydro grid line transects the property.

1.2 **Physiography**

The Monashee claims are situated in the Whatshan Range of the Monashee Mountains immediately east of the Shuswap Highlands. Elevations range from approximately 850 metres to 1830 metres above sea level. A rolling upland forms the upper parts of the mountains with deeply incised drainages creating steep valley flanks.

1.3 **Property and Tenure**

A total of about 9,900 hectares consisting of 420 units in 27 claims makes up the total land inventory of the Monashee Property. Figure 2 provides a claim disposition map, and Table 1 summarizes the disposition status.

The Kettle, Pot, Pan and Edge claims are currently owned by Mishibishu Gold Corp. (2/3) and Universal Trident Industries Ltd. (1/3) of Vancouver, British Columbia. The Yeoward claims are owned by David M. Jenkins of Commonwealth Gold Inc. of Vancouver, B.C. The MS claims are owned by Cameco Corporation of Saskatoon, Saskatchewan. Cameco Corporation has entered into an option agreement to earn a majority interest in the entire Monashee property.

1.4 Previous Work

Mineral exploration with small scale productive mining has been ongoing in the Monashee area since the mid eighteen hundreds, with the discovery of a small silver lode deposit known as the Hidden Treasure. Lode gold production of approximately 500 ounces was developed at the Monashee Mine on the west flank of Monashee Mountain. The Morgan Claims not under this option agreement on the top of Monashee Mountain have also produced a small amount of gold to date. The St. Paul Mine occurs 600 metres north of the Morgan workings, and attempts to economically mill the polymetallic ore continued up to 1974. The Silver Bell located on the north side of Monashee Creek about 7 kilometres north of Monashee Mountain is another high grade-silver prospect in the area, but has no known production to date.

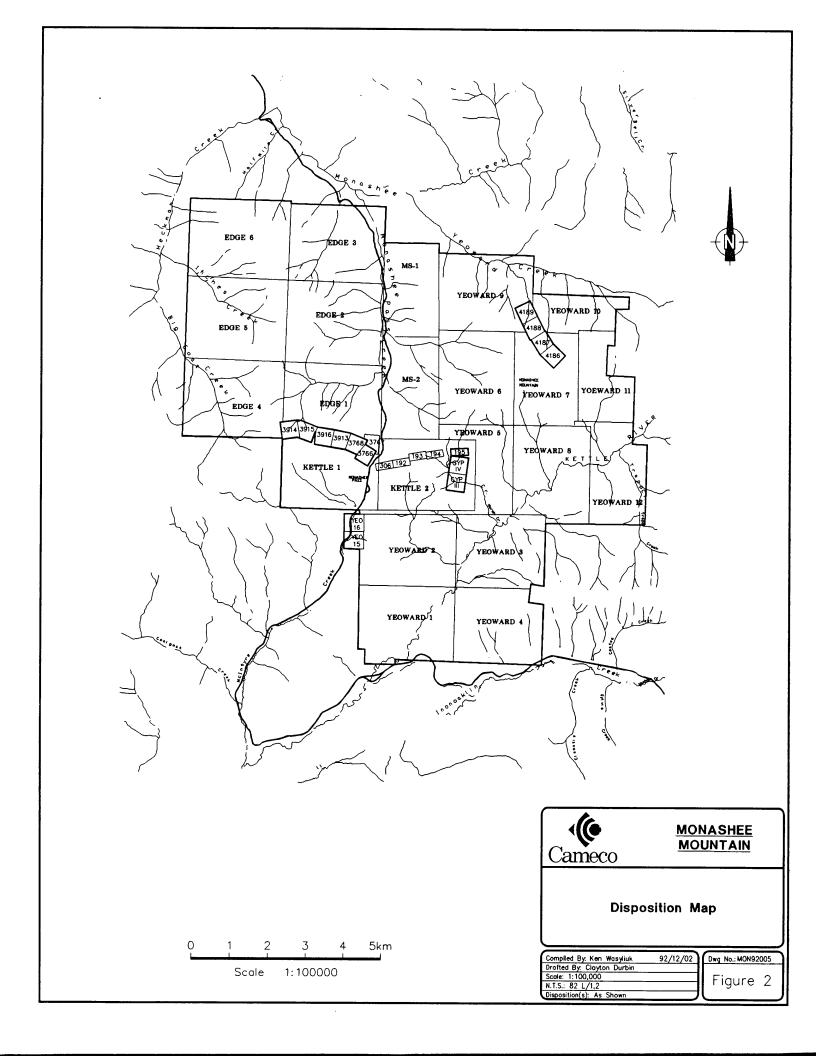


TABLE 1 MINERAL CLAIM DATA

Claim Name	No. of Units	Tenure Number	Record Number	Expiry Date
KETTLE #1	20	259773	3159	05/15/94
KETTLE #2	20	259774	3160	05/14/93
POT		260069	3458	03/16/95
PAN 1	11	260070	3459	03/16/94
PAN 2	1	260071	3460	03/16/94
EDGE 1	20	309468	-	05/05/94
EDGE 2	20	309469	-	05/05/94
EDGE 3	20	309470	•	05/05/94
EDGE 4	20	309471	<u>-</u>	05/05/94
EDGE 5	20	309472	<u>-</u>	05/05/94
EDGE 6	20	309473	-	05/05/94
YEOWARD 1	20	259960	3348	08/01/94
YEOWARD 2	20	259961	3349	08/04/94
YEOWARD 3	20	259962	3350	08/03/93
YEOWARD 4	20	259963	3351	08/03/94
YEOWARD 5	20	259964	3352	08/06/93
YEOWARD 6	20	259965	3353	08/10/94
YEOWARD 7	20	259966	3354	08/09/94
YEOWARD 8	20	259967	3355	08/06/93
YEOWARD 9	20	259968	3356	08/10/94*
YEOWARD 10	10	259969	3357	08/10/93*
YEOWARD 11	15	259970	3358	08/08/94*
YEOWARD 12	20	259971	3359	08/08/93
YEOWARD 15	1	259974	3362	08/05/94
YEOWARD 16	1	259975	3363	08/05/94
MS-1	15	313221	-	09/21/94
M\$-2	15	313222	•	09/21/94

Pending approval of the October 16, 1992 report. Not including credits from this report. Notes: 1)

2)

The most important mineral production to date has been placer gold, but no reliable production figures are available. The British Columbia Ministry of Mines records placer production of only 155,500 grams (~5,000 ounces). Sporadic placer gold production still occurs to date along some creeks on the property.

Exploration in the early 1980's included geochemical and geophysical surveys, geological mapping and prospecting, and a small amount of trenching and diamond drilling. This work was carried out by Brican Resources Ltd. and Mohawk Oil Co. Ltd. until 1986. The ground was then allowed to lapse in 1992, and was restaked by the current owners.

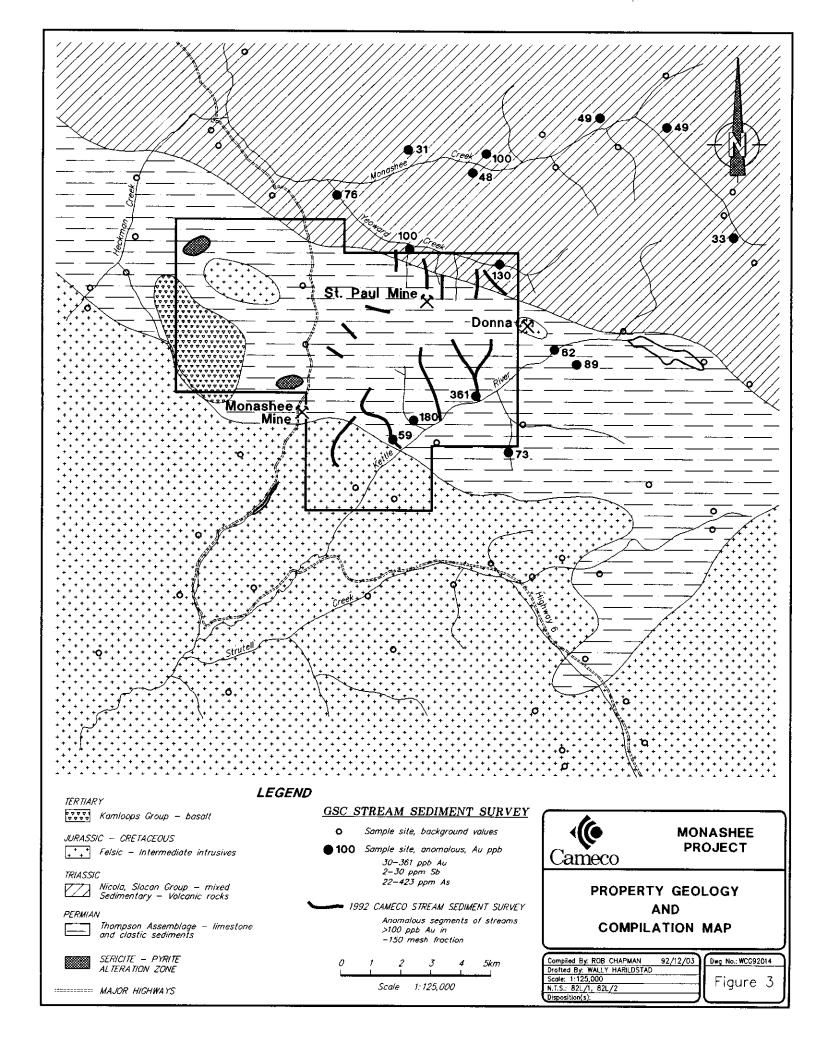
1.5 September Sampling Program

A geochemical sampling and geological mapping survey was completed by Cameco Corporation along most of the drainages on the property in September of 1992 (Coombes, 1992). Results from bulk stream silt samples and bulk tills collected during this program were not available prior to the report date. These data are included with this report.

1.6 October Sampling Program

An earlier geochemical survey by Cameco Corporation (Coombes, 1992) had indicated that a possible source for the gold in the streams was the glacial drift present on the property. The survey discussed in this report was an orientation survey completed to assess the validity of a till source for the anomalous drainages, and to possibly outline areas requiring further work. Quaternary geology was mapped along sample routes and drainages.

2.0 **GEOLOGY**

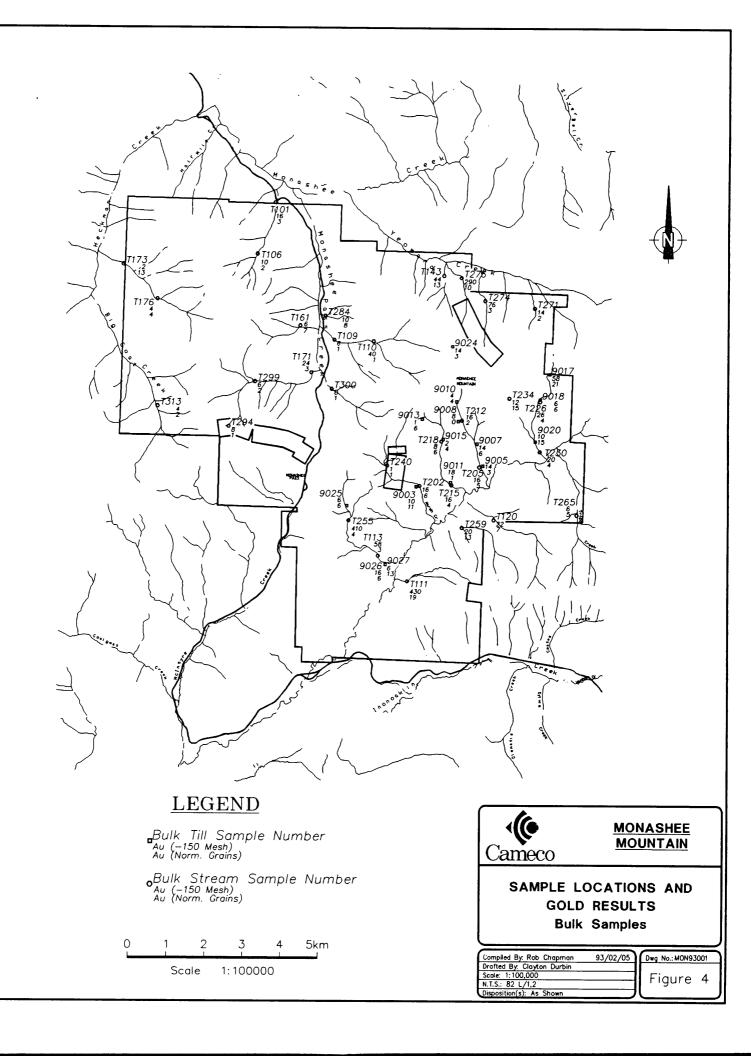

Regional as well as property scale geology descriptions for the Monashee area, were included in the October 1992 report submitted by Steven F. Coombes for Cameco Corporation. The following geological sections summarize the information provided in Coombes' report.

2.1 Regional Geology (Figure 1)

The Monashee property is located on the eastern edge of the Intermontane Belt at its boundary with the Omineca Crystalline Belt. The region is underlain by variably deformed and metamorphosed sequences of Archean to Mesozoic supracrustals, including the Proterozoic and Palaeozoic Shuswap Metamorphic Complex; the Carboniferous and Permian Thompson Assemblage; and the Triassic and Jurassic Slocan and Nicola Groups. Cretaceous and/or Jurassic granitoids related to the Columbian Orogeny intrude the supracrustals in the southern region. These rocks are capped on the western side of the region by Tertiary basaltic flows and related sediments of the Kamloops Group (Coombes, 1992).

2.2 Property Geology (Figure 3)

Pre Quaternary outcrop exposures on the Monashee property are limited to approximately 1 to 5% of the total area. The remaining area is covered by thick deposits of Quaternary sediments and glacial drift. The property is primarily underlain by a east-southeast trending, south to west dipping sequence of volcanic and sedimentary rocks belonging to the Carboniferous and Permian Thompson Assemblage. The Thompson Assemblage rocks are in contact with Triassic Slocan Group argillites and phyllites along the north edge of the property. Jurassic Nelson Plutonic rocks of granodiorite to quartz diorite occur in the south third of the


property. A second dioritic to gabbroic body intrudes Thompson Assemblage rocks on the west side of the property. Also on the western claims a columnar basalt of Tertiary age forms a blanket over the older rocks. Several small intrusive rocks on Monashee Mountain are commonly associated with sulphide mineralization (Coombes, 1992).

The Quaternary geology is dominated by Pleistocene glacial deposits. A thick glacial till covers the older rock sequences along the Kettle River Valley walls. Glaciofluvial and fluvial sediments dominate the valley floors on the property. Rocks on the steep south slope of the Yeoward Creek Valley are covered by 1 to 2 metres of colluvium, except at the extreme northeastern edge of the property where glaciofluvial silts and sands occur. Ice movement direction indicators are scarce on the property, but a regional evaluation of the topography would indicate a likely southwest direction for major ice movements in the area. Good soil profiles are developed throughout most of the property.

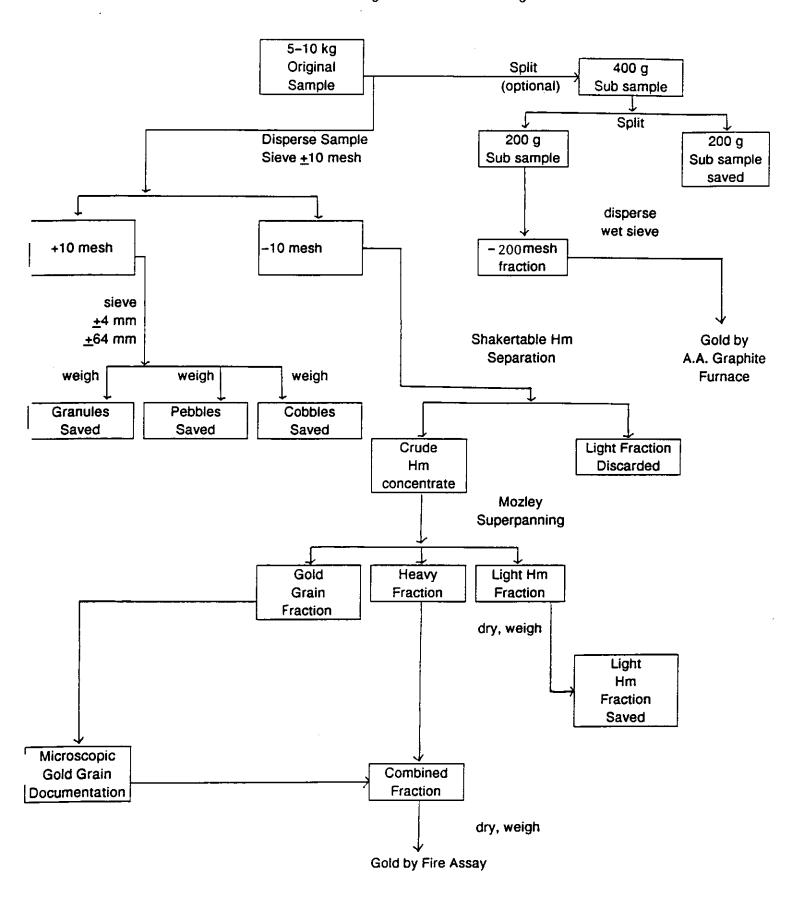
3.0 GEOCHEMICAL SURVEY RESULTS

Several drainages on the Monashee property were found to contain elevated gold values during a stream sediment sampling survey conducted by Cameco Corporation in September of 1992 (Coombes, 1992). Forty-seven bulk stream silt and bulk till samples were also collected during this survey. Sample locations and heavy mineral analytical results are shown on Figure 4.

One possible source for the gold in the streams is the thick glacial drift covering large portions of the property. A total of 23 bulk till and colluvium samples, 24 soil samples and 5 outcrop samples were collected in October to aid in the determination of a source. Figure 5 is a location map for the samples collected during the October survey.

3.1 <u>Sampling Techniques</u>

C-horizon, basal till was the preferred sampling medium during this survey, but site specific mediums were collected if till was not available. A series of contour sampling lines were predetermined by the earlier stream sediment survey. Samples were collected at specific elevations above anomalous stream sediment samples. Sampling traverses were also run along an anomalous drainage and across the crest of Monashee Mountain. A soil profile was collected at two different locations.


Two types of samples were collected during the survey. A large 5 to 8 kilogram sample was collected at one kilometre spacings along the traverse lines (prefixed MS2T). Between the bulk samples at 1 kilometre spacings, small 1 to 2 kilogram soil samples (prefixed MS2G for glacial and MS2R for residual) were collected of material similar to the bulk samples. Bulk samples were not collected if no till or colluvium was present. Outcrop (prefixed MS2Q) or boulder samples were collected of altered or sulphitic rocks for comparison purposes. Appendix III provides a listing in table form of descriptions for each sample collected.

3.2 **Analytical Procedures**

Bulk samples were shipped by bus to the Saskatchewan Research Council (SRC) in Saskatoon, Saskatchewan for analysis. Rocks and soils were shipped by truck to Acme Analytical Laboratories Ltd. in Vancouver, British Columbia.

Table 2 provides a flow chart for the standard procedures carried out by the SRC on bulk till samples. In the case of the Monashee samples the only variance from this procedure was the -150 mesh fraction of a sub sample split was analyzed by fire assay. The combined fraction after Mozley superpanning was not analyzed and only a gold grain microscopic

Flow Diagram For Hm Processing

examination was made. 'Raw' gold grain counts are normalized using the following formula, to eliminate the effect of sample size differences.

Normalized Au grains = No. Raw Au grains X 5 kg/ Table Feed weight (-10 mesh)

At Acme Analytical Labs the small soil samples were dry sieved to - 150 mesh and a 30 gram split was fire assayed for gold analysis. A multi-element (29 elements) geochemical ICP (induced coupled plasma) package was completed on each sample, after digestion in a HCI-HNO3-H2O solution. All analytical results are provided in Appendix IV. Au results are quoted in ppb, the major elements (Fe,Ca,P,Mg,Ti,Al,Na and K) in weight percent and the remaining elements in ppm.

One duplicate bulk sample and 3 duplicate soil samples were collected as check samples.

3.3 Statistical Procedures

Gold percentiles were calculated separately for the bulk samples and the soil samples collected during this follow-up survey, to determine an anomalous threshold, and are presented as Table 3. A Pearson correlation matrix was developed for the soil data with elements having values greater than the detection limit, and is provided as Table 4. Duplicate samples did not suggest any sampling or analytical problems occurred as the values were within acceptable limits of variance. Soil and bulk samples appear to correlate well with only a few exceptions. A larger sampling base is required to accurately define parameters for the different sampling mediums.

TABLE 3

MONASHEE MOUNTAIN PROJECT

GOLD PERCENTILES

PERCENTILES	50	75	80	85	90	95	97
-150 mesh Au (ppb) (32 soil samples)	9	15	23	35	45	97	154
Normalized Au Grains	7	15	17	21	38	64	150
-150 mesh Au (ppb) (28 bulk till samples)	8	14	16	20	26	57	61

Monashee Mountain Project

Table 4

Pearson Correlation Matrix

	Au	Ag	Al	As	Ba	Ca	Cd	Co	Cr	Cu	Fe	K	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Sr	Th	TI	<u>v</u>	Zn
Au	1																								
Ag	0.258	1																							
AJ	0.178	0.195	1																						
As	0.627	0.391	0.026	1																					
Ва	0.178	0.285	0.341	-0.07	1																				
Ca	0.066	0.16	0.031	-0.05	0.288	1																			
Cd	0.583	0.733	0.099	0.615	0.241	0.168	1																		
Co	0.3	0.232	0.451	0.451	0.029	-0.19	0.15	1																	
Cr	-0.10	-0.09	0.53	-0.02	-0.15	-0.04	-0.12	0.401	1																
Cu	0.086	0.261	0.033	0.375	-0.09	-0.2	0.064	0.607	-0.00	1															
Fe	0.204	0.416	0.144	0.627	-0.05	-0.16	0.373	0.766	0.179	0.808	1														
K	-0.21	-0.05	-0.08	-0.27	0.368	0.263	-0.18	-0.3	-0.10	-0.34	-0.26	1													
La	-0.15	0.533	-0.30	0.173	0.138	-0.05	0.408	0.1	-0.24	0.157	0.315	0.211	1												•
Mg	-0.11	-0.17	0.373	980.0	-0.19	-0.13	-0.21	0.598	0.608	0.163	0.432	-0.01	-0.18	1											
Mn	0.537	0.218	0.262	0.558	0.134	0.317	0.405	0.532	0.009	0.24	0.528	-0.03	0.087	0.283	1										
Мо	-0.05	0.099	-0.23	0.116	-0.11	-0.14	0.158	0.139	-0.09	0.59	0.506	-0.18	0.18	-0.22	0.029	1									
Na	0.04	0.039	0.12	-0.32	0.479	0.464	-0.05	-0.39	-0.19	-0.42	-0.50	0.628	-0.03	-0.29	-0.03	-0.33	1								
Ni	0.123	0.457	0.271	0.452	-0.03	-0.06	0.469	0.574	0.631	0.265	0.616	-0.20	0.27	0.368	0.26	0.269	-0.36	1							
P	0.29	0.275	0.112	0.55	0.015	0.19	0.339	0.286	0.15	0.329	0.463	-0.22	-0.11	-0.09	0.475	0.426	-0.17	0.529	1						
Pb	0.087	0.349	0.021	0.32	0.181	0.046	0.349	0.4	-0.17	0.219	0.407	0.008	0.589	-0.12	0.509	0.245	-0.04	0.325	0.395	1					
Sr	0.146	0.294	-0.03	0.093	0.24	0.925	0.355	-0.23	-0.15	-0.14	-0.11	0.046	-0.02	-0.29	0.251	-0.04	0.312	0.011	0.298	0.073	1				
Th	-0.18	-0.31	-0.43	-0.27	0.072	-0.06	-0.34	-0.36	-0.11	-0.10	~0.30	0.568	0.131	-0.21	-0.36	-0.01	0.478	-0.34	-0.30	-0.18	-0.22	1			
Ti	-0.14	-0.19	0.118	-0.45	0.199	0.084	-0.30	-0.54	-0.15	-0.45	-0.58	0.558	-0.25	-0.09	-0.38	-0.4	0.629	-0.54	-0.49	-0.50	-0.01	0.406	1		
	0.237					-0.03		0.601						0.739				0.279	0.181	-0.19	-0.17	0.20	0.007	1	
Zn	0.687	0.656	0.124	0.758	0.195	-0.03	0.864	0.409	-0.08	0.213	0.568	-0.13	0.408	-0.04	0.576	0.166	-0.14	0.507	0.401	0.52	880.0	-0.30	-0.38	0.111	1

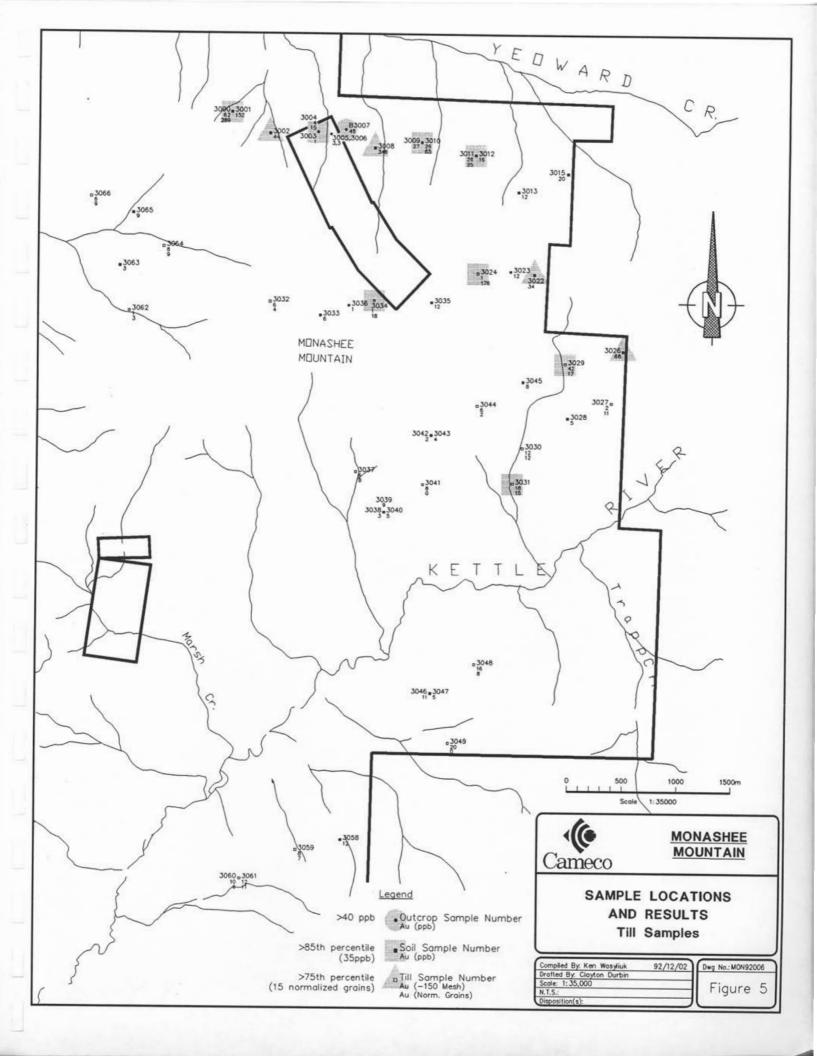

3.4 Results

Figure 4 shows the locations of bulk stream silt and bulk till samples collected during the September sampling program. <u>Bulk silt</u> samples containing greater than 9 gold grains (normalized to a 5 kg sample) are considered anomalous. Data points are too wide-spaced to be conclusive, however three drainages with elevated gold contents suggest a source area from the crest of Monashee Mountain, in the eastern portion of the property.

The bulk silt sample results do not correlate well with results from the September stream silt sampling survey. This discrepancy is being further investigated.

Figure 5 is a plot of the gold results of the various samples collected during the October follow-up survey with significantly anomalous values highlighted. Background gold grain counts for tills in the region appears to between 5 and 15 grains. Any gold grain count greater than background can be considered anomalous with those samples greater than the 90th percentile extremely anomalous. Soil profile sampling did not reveal any significant differences between the B or C horizon mediums, however a larger sample population is required to provide a better statistical analysis.

Several bulk colluvium samples collected along the south flank of the Yeoward creek valley returned elevated gold grain counts and assay values. Soil samples collected along the same traverse were also anomalous. These samples would indicate a bedrock source within the near vicinity. Elevated till grain counts occur in the extreme northeast portion of the property upstream of an anomalous drainage. An indicated till source would be up ice to the northeast. The stream sample anomalies along the anomalous creek could be the result of the erosion of a till source. However, other anomalous streams draining into the Kettle River do not

appear to have a till source. Samples T-3000 and T-3024 contained highly anomalous gold grain counts (289 and 176 normalized grains, respectively). Further sampling in the vicinity of these samples is required. The -150 mesh Au analysis for soil samples appears to correlate well with the grain counts, with only a few exceptions.

4.0 **CONCLUSIONS**

Two anomalous bulk samples (T-3000 and T-3024) require follow up sampling. A linear trend of anomalous soils, tills and colluvium samples stretches in a ESE direction from sample T-3000 on the south flank of Yeoward Creek to the property boundary at sample G-3026 near the Donna workings. Drainages from this trend are anomalous in gold. A detailed soil and bulk till sampling program over this ~4.5 X 2 kilometre area could help to pinpoint areas for further work. The other anomalous drainages along the Kettle River could not be explained by this sampling program.

5.0 **REFERENCES**

Coombes, S.F.:

Geological and Geochemical Report on the Monashee Project, October, 1992 submitted to the B.C. Ministry of Energy Mines and Petroleum Resources as a Geological Branch Assessment Report.

APPENDIX I CERTIFICATE OF QUALIFICATIONS

APPENDIX I

CERTIFICATE OF QUALIFICATIONS

- I, Ken R. Wasyliuk, do here by certify that:
 - 1.0 I am a geologist for Cameco Corporation, 2121 - 11th Street West, Saskatoon, Saskatchewan, S7M 1J3.
 - 2.0 I am a graduate of the University of Saskatchewan, Saskatoon, Saskatchewan, Canada, with a B.Sc Honours Geological Science.
 - 3.0 I have practised my profession since 1988.
 - This report is based upon my personal fieldwork and supervision of the 4.0 geochemical sampling survey carried out between October 26 and November 2, 1992.
 - I have no direct or indirect interest in the Monashee Mountain property or 5.0 securities of Cameco Corporation, nor do I expect to receive any such interest.

Ken Wasyliuk, B.Sc.Hons. December 3, 1992

APPENDIX II STATEMENT OF EXPENDITURES

APPENDIX II

STATEMENT OF EXPENDITURES

1.	PERSO	ONNEL:			
	a)	Field Geochemical Sampling: K. Wasyliuk, Cameco; E. Mackenzie, Technician; P. Kryszkiewicz, Technician;	8 days @ \$350.00/day 8 days @ \$150.00/day 8 days @ \$130.00/day	2,800.00 1,200.00 <u>1,040.00</u>	
	b)	Orientation Survey; Supervision R. Chapman, Cameco; V. Sopuck, Cameco; K. Wasyliuk, Cameco; C. Durbin, Cameco;	n. <u>Logistics, Reporting:</u> 6 days @ \$380.00/day 4 days @ \$455.00/day 6 days @ \$350.00/day 3 days @ \$178.00/day	2,280.00 1,820.00 2,100.00 _534.00	
		TOTAL PERSONNEL COSTS:			11,774.00
II.	CAMP				
	a)	Accommodations: Diamond Motor Inn (2 rooms);	7 days @ \$ 98.33/day	688.31	
	b)	Food:	24 mandays @ \$ 22.88/day	549.12	
	c)	Field Supplies; First Aid; Miscel	<u>63.49</u>		
		TOTAL CAMP COSTS:			1,300.92
III.	ANALY	<u>'SES</u>			
	a)	Outcrop Samples:	5 samples @ \$10.68/sample	53.40	
	b)	Soil Samples:	24 samples @ \$10.68/sample	256.32	
	c)	Bulk Till Samples:	23 samples @ \$72.02/sample	1,656.46	
	d)	Bulk Stream Samples:	47 samples @ 54.05/sample	<u>2,540.35</u>	
		TOTAL ANALYTICAL COSTS:			4,506.53
IV.	TRANS	PORTATION AND TRAVEL			
	a) b) c)	Air Fares: 4x4 Trucks: Miscellaneous:	Mob/demob 2 trucks; rental, gas, repairs Freight	890.24 2,169.39 <u>666.50</u>	
		TOTAL TRANSPORTATION CO	OSTS:		3,726.13
		SUBTOTAL:			21,307.58
		Overhead @ 15%			3,196.13
		TOTAL EXPENDITURE:			24,503.71

APPENDIX III SAMPLE DESCRIPTIONS

MONASHEE PROJECT APPENDIX III

SAMPLE#	SAMPLE TYPE	DESCRIPTION	ANALYTICAL	ANALYTICAL RESULT			
			Normalized	Au(ppb)			
			Gold Grains	-150 mesh			
MS2T-3000	bulk colluvium	B-horizon colluvium	289	62			
MS2R-3001	soil	B-horizon colluvium; same location as MS2T-3000	n/a	152			
MS2R-3002	soil	B-horizon colluvium	n/a	44			
MS2R-3003	soil	B-horizon colluvium; same location as MS2T-3004	n/a	1			
MS2T-3004	bulk colluvium	B-horizon colluvium	15	4			
MS2O-3005	outcrop	quartz-calcite breccia veins in mafic volcanics??	n/a	3			
MS2O-3006	outcrop	30 cm calcite vein	n/a	3(1)			
MS2B-3007	float	rusty dark black rock	n/a	45			
MS2R-3008	soil	B-horizon colluvium	n/a	348			
MS2R-3009	soil	B-horizon colluvium; same location as MS2T-3010	n/a	27			
MS2T-3010	bulk colluvium	B-horizon colluvium	65	26			
MS2T-3011	bulk till	C-horizon till	25	26			
MS2G-3012	soil	C-horizon till; same location as MS2T-3011	n/a	16			

MONASHEE PROJECT APPENDIX III

SAMPLE #	SAMPLE TYPE	DESCRIPTION	ANALYTICAL	RESULT
			Normalized	Au(ppb)
			Gold Grains	-150 mesh
MS2G-3013	soil	poor soil profile development glaciofluvial silt	n/a	12
MS2G-3015	soil	poor soil profile development glaciofluvial silt	n/a	20
MS2G-3022	soil	C-horizon till	n/a	34
MS2O-3023	outcrop	felsic volcanic??; unmineralized	n/a	12
MS2T-3024	bulk till	C-horizon till	176	1
MS2T-3025	bulk till	C-horizon till	39	1
MS2G-3026	soil	C-horizon till	n/a	68
MS2T-3027	bulk till	C-horizon till	11	2
MS2G-3028	soil	C-horizon till	n/a	5
MS2T-3029	bulk till	C-horizon till	17	42
MS2T-3030	bulk till	C-horizon till	12	12
MS2T-3031	bulk till	C-horizon till	15	18
MS2T-3032	bulk till	C-horizon till	4	6
MS2G-3033	soil	C-horizon till	n/a	6
MS2T-3034	bulk till	C-horizon till	18	1
MS2G-3035	soil	C-horizon till	n/a	12

MONASHEE PROJECT APPENDIX 111

SAMPLE #	SAMPLE TYPE	DESCRIPTION	ANALYTICAL	ANALYTICAL RESULT			
			Normalized	Au(ppb)			
			Gold Grains	-150 mesh			
MS2O-3036	outcrop	quartz vein top of Monashee	n/a	1			
		Mountain					
MS2T-3037	bulk till	C-horizon till	8	6			
MS2G-3038	soil	C-horizon till	n/a	3			
MS2G-3039	soil	C-horizon till; duplicate of MS2G-3038	n/a	9			
MS2G-3040	soil	B-horizon soil at same location as samples MS2G-3038 and 3039	n/a	5			
MS2T-3041	bulk till	C-horizon till	0	8			
MS2G-3042	soil	C-horizon till	n/a	2			
MS2G-3043	soil	C-horizon till; duplicate of MS2G-3042	n/a	4			
MS2T-3044	bulk till	C-horizon till	2	6			
MS2G-3045	soil	C-horizon till	n/a	8			
MS2G-3046	soil	C-horizon till	n/a	11			
MS2G-3047	soil	C-horizon till; duplicate of MS2G-3046	n/a	5			
MS2T-3048	bulk till	C-horizon till	8	16			
MS2T-3049	bulk till	not a till; lenses of sand and basaltic outcrop	0	20			

MONASHEE PROJECT APPENDIX III

SAMPLE #	SAMPLE TYPE	DESCRIPTION	ANALYTICAL	ANALYTICAL RESULT			
			Normalized	Au(ppb)			
			Gold Grains	-150 mesh			
MS2G-3058	soil	C-horizon till	n/a	12(12)			
MS2T-3059	bulk till	C-horizon till	7	8			
MS2T-3060	bulk till	C-horizon till	6	10			
MS2T-3061	bulk till	C-horizon till; duplicate till of MS2T-3060	11	12			
MS2T-3062	bulk till	C-horizon till	3	1			
MS2G-3063	soil	C-horizon till	n/a	3			
MS2T-3064	bulk till	C-horizon till	9	8			
MS2G-3065	soil	C-horizon till	n/a	9			
MS2T-3066	bulk till	C-horizon till	9	6			

APPENDIX IV ANALYTICAL RESULTS - GEOCHEMICAL

REPORT

-106um

C230 1 AU 2		MECO ASSAY		16/92	(28)	[FIRE	ASSAY]
3 4			•				
5							
6							
7							
8							
9		Attoni	'n				
		AUppi	U				
MS2S		62					
MS2T		4					
MS2T		26					
MS2T MS2T		26 12					
MS2T		12					
MS2T		1					
MS2T		1					
MS2T	3027	2					
MS2T		42					
MS2T		12					
MS2T		18					
MS2T MS2T		6					
MS2T		6 8					
MS2T		6					
MS2T		16					
MS2T		20					
MS2T		2					
MS2T		66					
MS2T		8					
MS2T		8					
MS2T		10					
MS2T MS2T		12					
MS2T		1 8					
MS2T		6					
MS2T		1					

GEOCHEMICAL ANALYSIS CERTIFICATE

CAMECO U.S. Inc. PROJECT MONASHEE MTN. File # 92-3844 Page 1 P.O. Box 6446, Reno NV U.S.A. 89523

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ní	Co	Mn	Fe	As	Ų	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ	- W /	Au**
	ppm	ppm	ppm	ppm	bbw	bbw	bbw	bbu	×	bbu	ppm	ppm	ppm	bbu	ppm	ppm	ppm	ppm	X	*	ppm_	ppm	X	ppm	X	ppm	X	X	*	ppm	_
MS2F-3007	4	35	17	78	1.2	18	11	559	3.15	751	5	ND	3	586	7	4	7	61	9.27	.069	4	15	.82	104	.11	6	.70	.01	.32	010000 01000	45
MS20-3005	1	8	5	19	_3	22	4	481	1.07	110	7	ND	1	1388	72	20	ż		20.71	.039	ž		.80	75	.01	•	.37	.01	.06		77
MS20-3006	1	3	4	7	.2	10	1	596	.44	35	9	ND		4024	2	3	Ž	. ,	39.82	.003	12	ž	. 14	33	.01	4	.06	.01	.01	2,000 PE	7
RE MS20-3006	1	1	2	4	11	5	1	585	.37		10	ND		4040	.2	5	ž	_		.001	11	ī	. 12	32	.01	,	.03	.01	.01		1
MS20-3016	3	14	5464	21	18.6	13	2	96	1.06	5140	5	2	1	88	5.2	4308	Ž	ī		.004	2	12	.03	10	.01	3	.03	.01	.01	13 4	4166
MS20-3017	1	36	37	28	.5	5	4	230	3.51	29	7	ND	1	89	.2	27	5	44	1.04	.167	12	12	.60	33	. 10	2	. 71	.02	.09	1	19
MS20-3023	1	61	42	64	.2	28	18	240	3.35	22	5	ND	1	21	2	29	2	18	1.14	.023	- 2	23	.68	33	.10	2	.99	.04	.11		12
MS20-3036	1	5	7	5	.3	8	1	95	.41	2	8	ND	1	5	.2	2	Ž	1		.006	2	5	.01	17	.01	3	.04	.01	.01	000 . 000 . 000 .	1
STANDARD C/AU-R	18	58	38	131	7.6	69	32	1060	3.96	41	20	7	35	52	18.5	14	22	57		7.7.7.7.4	39	61	.94	184	.09	35 1		.06	. 14	11	463

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE. Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: P1 ROCK P2 SOIL

DATE RECEIVED: D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Assay Recommended for Pb ; sh.

CAMECO U.S. Inc. PROJECT MONASHEE MTN. FILE # 92-3844

Page 2

SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni	Co ppm	Mn ppm	Fe %	As pom	U ppm	Au ppm	Th ppm	Sr	Cd ppm	Sb	Bi	V	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B ppm	Al %	Na %	. К %	. ₩	Au**
	bbu	PP	Þþill	Phan	PP-II	bbu	PPIII	Pysii		PP44	ММ	Ppiii	Phil	bbus	Man	ppm	ppm	bbu		200000 	Phil	PP"		PP"	<u> </u>	Ppin				וויילק	ppb
MS2G-3012	3	90	13	135	.3	71	17	833	5.12	98	5	ND	4	23	.5	2	2	44	.20	.085	22	44	1.35	97	.04	2	1.46	.01	.07	1	16
MS2G-3013	2	66	14	143	.5	78	17	733	4.39	44	5	ND	4	61	.9	3	2	44	.58	.088	16	50	1.41	193	.05	2	1.92	.02	.15	. 1	12
MS2G-3014	1	35	12	94	5	41	10	683	2.95	14	5	ND	1	130	.9	2	2	30	1.12	.055	15	33	.48	183	.07	2 :	2.93	.02	.06	. 1	4
MS2G-3015	16	67	15	175	.1	89	17	640	4.89	25	5	ND	3	23	1.1	2	2	45	. 18	.087	19	48	.72	113	.03		1.81	.01	.09	. 1	20
MS2G-3020	2	38	10	125	.3	43	11	608	3.41	32	5	ND	2	16	.2	2	2	41	.12	-069	12	38	.64	115	.06	2 :	2.52	.01	.07	1	8
MS2G-3022	2	75	12	160	1	73	20	840	5.18	237	5	ND	3	36	.7	2	2	74	.29	.102	13	62	1.60	101	.07	2	2.70	.01	.11	1	34
MS2G-3026	3	71	8	116	.7	62	17	923	4.23	78	5	ND	3	87	. 6	2	2	62	.83	.095	12	42	1.34	70	.07	2	1.52	.02	.09	1	68
MS2G-3028	1 2	37	12	105	.2	36	12	863	3.34	19	5	ND	5	59	.8	2	2	44	.55	.048	19	40	.76	142	. 10	2 :	2.30	.02	.09	. 1	5
MS2G-3033	1	54	13	107		42	17		3.79	15	5	ND	2	14	.2	2	2	56		.05B	16		1.54	95	. 10		3.01	.01	.09	1	6
MS2G-3035	2	99	8	89	1.1	46	18		4.36	33	5	ND	3	18	.4	2	2	61		.031	13		1.83	88	. 08		2.83	.02	.08	1	12
MS2G-3038	1	50	6	95	.1	36	14	594	3.80	11	5	ND	4	32	.2	2	2	64	.36	.033	11	44	1.61	190	. 14	2 :	2.64	.02	.19	1	3 +
MS2G-3039	1	48	5	92	.1	34	14	573	3.71	16	5	ND	5	30	. 2	2	2	63	.36	.031	11	43	1.60	186	ં 14	2	2.52	.02	.18	1	9
MS2G-3040	1	35	13	128	.5	32	12	530	3.09	11	5	ND	4	25	.4	2	2	47	.31	.071	9	33	.66	164	.15	2 :	3.65	.03	.08	1	5 ↓
MS2G-3042	1	55	6	76	2.1	39	13		3.30	12	5	ND	5	18	. 2	2	2	47		.027	17	48	1.23	119	. 13		2.23	.02	.10	. 1	٦l
MS2T-3043	1	53	9	73	.1	39	13		3.29	13	5	ND	5	19	.3	2	2	47		.028	18		1.24	119			2.22	.02	.10	1	4
MS2G-3045	1	55	7	118	.3	46	15	427	3.74	17	5	ND	4	16	.4	2	2	50	. 13	.048	10	52	1.35	150	.09	2 3	2.51	.01	.07	1	8
MS2G-3946	1	29	7	70	1	33	8	227	2.44	9	5	ND	6	23	.2	2	2	32	.24	.028	16	35	.56	117	. 10	2	1.53	.02	.10	1	11 📇
MS2G-3047	2	28	8	68	1.	32	8	221	2.33	12	5	ND	6	22	.3	2	2	31	.23	-029	16	34	.52	119	. 10		1.49	.02	.10	1	5 ½
M\$2G-3050	1	34	10	84	.1	40	11	647	3.02	9	5	ND	7	50	2	2	2	46	.66	.064	17	47	.69	149	.14	2 :	2.14	.03	.26	1	6
MS2G-3052	2	43	11	135	1.1	59	15	726	3.94	11	5	ND	4	38	.8	2	2	57	.49	.058	20	61	1.19	217	. 16	2 3	3.98	.03	.25	1	5
MS2G-3053	1	33	12	119	.2	45	12	564		8	5	ND	5	33	.3	2	2	50	.39	,030	22	51	1.11	144	. 16	2 2	2.49	.02	.21	1	8
MS2G-3054	1	34	11	115	.4	46	13		3.33	7	5	ND	6	35	. 2	2	2	51		.028	23	51	1.13	142	. 16		2.42	.03	.21	1	5
MS2G-3056	1	31	6	70	.4	76	12		2.71	- 8	5	ND	3	41	. 3	2	2	41			9	62	.76	177	. 16		2.77	.02	.09	1	12
MS2G-3058	1	37	9	84	.6	52			2.72	12	5	ND	2	51	.9	2	2	41		.071	8	47	.52	107	.11		3.70	.02	.07	1	12
MS2G-3063	1	24	5	60	.3	29	8	197	2.28	7	5	ND	4	20	.2	2	2	31	.20	.022	15	32	.47	72	. 10	2	1.49	.01	.09	. 1	3
MS2G-3065	1	76	3	70	.1	29			4.43	10	5	ND	2	28	.2	2	2	77	.31	.016	4		2.31		. 16	2 :	3.04	.01	.06	1	9
MS2R-3001	1	102	13	116	1:	34		994	4.14	52	5	ND	3	21	. 2	2	2	76	.32	.058	10	37	1.22	250	⊶06	2 4	4.03	.02	.07	1	152
MS2R-3002	1	136	18	180	.5	74	35		5.55	91	5	ND	3	8	. 2	5	2	43	.09	.048	21	52	1.88	74	. 03	2 2	2.57	.01	.08	1	44
RE MS2G-3058	1	36	10	82	.5	47	12	399		12	5	ND	1	47	.6	2	2	38		.068	7	43	.47	100	.10		3.41	.02	.07	1	12
MS2R-3003	1	71	6	89	2	134	30	600	4.90	32	5	ND	3	19	.2	2	2	87	.32	.074	5	303	2.83	98	.05	2 4	4.84	.01	.05	. 1	1
MS2R-3008	1	57	9	347	.9	70			4.55	222	5	ND	3	56	2.6	2	2	59	.40	2084	9	39	.64	154	.10	2 3	5.12	.02	.06	1	348
MS2R-3009	4	126	16	292	1.8	113	26	704	6.52	141	5	ND	2	35	2.5	2	2	50	.23	.051	45	40	1.15	189	.03	2 2	2.81	.01	.07	. 1	27
MS2R-3019	14	284	9	98	.6	51	21		6.51	77	5	ND	5	33	.2	2	2	60	.24	.093	14	32	.56	122	. 07	2 2	2.30	.01	.05	. 1	10
STANDARD C/AU-S	17	59	41	127	6.8	70	32	1123	3.96	43	17	7	40	52	16.6	14	21	55	.50	.083	37	58	.92	182	.08	36	1.88	.06	.14	10	46

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

R= B kriger Soil

L L	CAMBUU U.B. I	nc. PROJECT MONAS	SUBB PAIN.	111E # 32-304	70	L
		SAMPLE#	Au** SAMPI ppb -150	LE 3m		
		MS2G-3022 MS2G-3026 MS2G-3042 MS2R-3001 MS2R-3008	36 85.2 152 91.5 3 134.4 224 51.7 64 75.2	52 46		
		RE MS2R-3008 STANDARD AU-S	53 48	-		
DATE RECEIVED: NOV 17 1992	DATE REPORT MA	AILED: Nov 27/92	SIGNED BY.	D.TOYE,	C.LEONG, J.WANG; CERT	IFIED B.C. ASSAYER
•						•

-106um

C206 1 AU 2 3 4 5 6 7 8		JCK CAMECO FIRE ASSAY		24/92	(26)	[FIRE ASSAY]	
		AUpp]	b				
MS2¶	101	16	•				
MS2T		10					
MS2T	109	6					
MS2T	110	40					
MS2T	202	16					
MS2T	205	16	•				
MS2T	212	16	•				
MS2T	215	16					
MS2T		8					
MS2T		56					
М82Т		20					
MS2T		10					
MS2T		14					
MS2T		14					
MS2T		8					
MS2T		4					
MS2T		18					
MS2T		1					
MS2T		2					
MS2T		58					
MS2T		6					
MS2T		10					
	9024	14					
MS2T		6					
	9026	16					
MSZT	9027	6	•				

```
C218 SOPUCK CAMECO OCT. 8/92 (17) [FIRE ASSAY]
 1 AU ppb FIRE ASSAY AA
 2
 3
 4
 5
 6
 7
 8
 9
                 AUppb
                  44.
MS2T 143
MS2T 161
                   6.
MS2T 171
                  24.
                   2.
4.
MS2T 173
MS2T 176
MS2T 265
                   6.
4.
MS2T 270
MS2T 271
                   14.
MS2T 274
                   76.
MS2T 276
                 290.
MS2T 281
                   62.
MS2T 284
                   10.
MS2T 294
                   8.
MS2T 299
                   6.
MS2T 300
                   8.
MS2T 311
                    1.
MS2T 313
                   4.
```

-106um

C207 1 AU 2 3 4 5 6 7 8		CK CAMECO FIRE ASSAY	SEPT. AA	28/92	(8)	[FIRE	ASSAY]
		AUppl)				
MS2T MS2T	113 119 120 234 240 255	430. 58. 270. 22. 12. 1. 410. 20.	•				

APPENDIX V ANALYTICAL RESULTS - BULK SAMPLES

```
2211 SOPUCK CAMECO OCT. 6/92 (18) [HEAVY MINERALS]
 1 SAMPLE WEIGHT IN KG
 3 % +1.7mm IN TOTAL SAMPLE
 4 % -1.7mm IN TOTAL SAMPLE
 5 +1.7mm WEIGHT IN KG
 6 -1.7mm WEIGHT IN KG (TABLE FEED)
 7 MATRIX %SAND ESTIMATE
 8 MATRIX %SILT ESTIMATE
 9 MATRIX %CLAY ESTIMATE
                              - $+1.7 %-1.7 +1.7 -1.7 %SAND
                   S.WT
                                                                   %SILT %CLAY
MS2T 101
                  13.30
                                   43
                                          56
                                               5.80
                                                      7.50
                                                               85
                                                                      10
                                                                              5
                                   47
                                                      6.75
                                                                              5
MS2T 106
                  12.80
                                          52
                                               6.05
                                                               85
                                                                      10
MS2T 109
                  10.10
                                   59
                                          40
                                               6.05
                                                      4.05
                                                                               5
                                                               85
                                                                      10
MS2T 110
                  10.40
                                   51
                                          48
                                               5.40
                                                      5.00
                                                               85
                                                                      10
                                                                               5
MS2T 202
                  7.40
                                   47
                                          52
                                               3.55
                                                      3.85
                                                               85
                                                                      10
                                                                               5
MS2T 205
                  10.80
                                               5.40
                                                                               5
                                   50
                                          50
                                                      5.40
                                                               85
                                                                      10
                                                                              5
MS2T 212
                  8.65
                                   64
                                          35
                                               5.55
                                                      3.10
                                                               85
                                                                      10
                                                                               5
MS2T 215
                  10.20
                                   75
                                          25
                                                                      10
                                               7.65
                                                      2.55
                                                               85
                                                                               5
MS2T 218
                  10.35
                                   52
                                          47
                                                     4.90
                                                               85
                                                                      10
                                               5.45
                                                      4.25
                                                                               5
MS2T 226
                  9.45
                                   55
                                          44
                                               5.20
                                                               85
                                                                      10
MS2T 230
                  9.30
                                   49
                                          50
                                               4.60
                                                     4.70
                                                               85
                                                                      10
                                                                              5
MS2T 9003
                                          43
                                                                               5
                  11.85
                                   56
                                               6.75 5.10
                                                               75
                                                                      20
                                              6.45
MS2T 9005
                                   63
                                                                               5
                  10.10
                                          36
                                                     3.65
                                                               75
                                                                      20
MS2T 9007
                                   69
                                          30
                                                     2.35
                                                               75
                                                                      20
                                                                               5
                  7.80
                                               5.45
                                               4.05
                                                                               5
MS2T 9008
                  9.35
                                   43
                                          56
                                                     5.30
                                                               75
                                                                      20
                                                                               5
                  7.55
                                   36
                                          63
                                              2.75 4.80
                                                                      15
MS2T 9010
                                                               80
                                                                               5
MS2T 9011
                                   32
                                               2.65 5.45
                                                               75
                                                                      20
                  8.10
                                          67
```

43

56

3.85 5.05

75

20

8.90

MS2T 9013

```
C211 SOPUCK CAMECO OCT. 6/92 (18) [HEAVY MINERALS]
 1 OVERBURDEN CLASSIFICATION TILL(T), GRAVEL(G), SAND(S), SILT(ST), CLAY(C)
 2 HEAVY MINERALS MAGNETICS IN GRAMS
 3 HEAVY MINERALS NONMAGNETICS IN GRAMS
 4 HEAVY MINERALS TOTAL IN GRAMS (MAG+NONMAG)
 5 VISIBLE GOLD GRAIN COUNT
 6
 7
 8
 9
                             MAG NONMAG
                    CLASS
                                            H.M.
                                                    V.G.
MS2T 101
                             9.16
                                   19.70
                        G
                                           28.86
                                                       4
MS2T 106
                        G
                            8.87
                                   18.25
                                           27.12
                                                       3
                        G
                            0.97
                                   16.03
                                                       1
MS2T 109
                                           17.00
MS2T 110 -
                        G
                             1.06
                                   14.34
                                           15.40
                                                       1
MS2T 202
                        G
                                   20.12
                                           23.26
                                                       5
                            3.14
MS2T 205
                       G
                            1.27
                                   18.12
                                          19.39
                                                       5
                            0.98
                                   23.24
MS2T 212
                        G
                                           24.22
MS2T 215
                            0.69
                                   14.74
                                           15.43
                                                       2
                        G
MS2T 218
                        G
                                   21.13
                            0.96
                                           22.09
                                                       6
MS2T 226
                        G
                            0.58
                                   14.23
                                           14.81
                                                       3
                        G
                                                       4
MS2T 230
                            1.66
                                   15.39
                                           17.05
MS2T 9003
                        \mathbf{T}
                            2.61
                                   14.67
                                           17.28
                                                      11
MS2T 9005
                        \mathbf{T}
                            0.27
                                   12.73
                                                       2
                                           13.00
                        \mathbf{T}
MS2T 9007
                            0.57
                                   21.33
                                          21.90
                                                       3
MS2T 9008
                        Т
                            0.33
                                   10.12
                                          10.45
                                                       0
MS2T 9010
                        T
                             0.83
                                   11.12
                                           11.95
                                                       4
MS2T 9011
                        T
                            0.53
                                   16.75
                                           17.28
                                                       1
```

14.35

15.14

 ${f T}$

0.79

MS2T 9013

38.97= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C2:	11 SC	PUCK	CAMECO	OCT.	6/92	(18)	[GOLD	GRAIN	COUNT]	(4)	MS2T	101
1	GOLD	GRAIN	WIDTH II	MIC	RONS		•		_			
2	GOLD	GRAIN	LENGTH :	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	rion								
4	GOLD	GRAIN	WIDTH II	N MIC	RONS				•			
5	GOLD	GRAIN	LENGTH :	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	MOLT								
7	GOLD	GRAIN	WIDTH II	N MIC	RONS							
8	GOLD	GRAIN	LENGTH :	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP?	rion								
				W	L	D	•					
				40	40	A						
				20	140	I/A						
				20	200	A/I						
				40	320	, <u>-</u>						

33.57= ESTIMATED WEIGHT OF Au IN MICROGRAMS

1	GOLD	GRAIN	WIDTH	IN MIC	RONS	(18)	[GOLD	GRAIN	COUNT]	(3)	MS2T	106
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRI:	PTION			_					
4	GOLD	GRAIN	WIDTH	IN MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRI	PTION								
7	GOLD	GRAIN	WIDTH	IN MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRI:	PTION								
				W	L	D	_					
				40	60	-						
				40	60	Ţ						
				60	100	A						
			•	260	320	A						

55.57= ESTIMATED WEIGHT OF Au IN MICROGRAMS

			CAMECO WIDTH I			(18)	[GOLD	GRAIN	COUNT]	(1)	MS2T	109
_												
Z	מתרט	GRAIN	LENGTH	TN WTG	CRONS							
3	GOLD	GRAIN	DESCRIP	MOIT								
4	GOLD	GRAIN	WIDTH I	N MICI	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MICE	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	L	D	-					
			3	20	380	A						

1.05= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C2:	11 SC	PUCK	CAMECO O	CT.	6/92	(18)	[GOLD	GRAIN	COUNT]	(1)	MS2T	110
1	GOLD	GRAIN	WIDTH IN	MICE	RONS							
2	GOLD	GRAIN	LENGTH IN	MIC	CRONS							
3	GOLD	GRAIN	DESCRIPTI	ON								
4	GOLD	GRAIN	WIDTH IN	MICE	RONS							
5	GOLD	GRAIN	LENGTH IN	MIC	CRONS							
6	GOLD	GRAIN	DESCRIPTI	ON								
7	GOLD	GRAIN	WIDTH IN	MICE	RONS							
8	GOLD	GRAIN	LENGTH IN	MIC	CRONS							
9	GOLD	GRAIN	DESCRIPTI	ON								
			W		L	D						
			80		100	I						

164.29= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C21	L1 S	OPUCK	CAMECO	OCT.	6/92	(18)	[GOLD	GRAIN	COUNT]	(5)	MS2T	202
1	GOLD	GRAIN	WIDTH :	IN MIC	RONS							
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRI	PTION								
4	GOLD	GRAIN	WIDTH :	IN MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRI	PTION								
7	GOLD	GRAIN	WIDTH :	IN MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRI	MOITS								
				W	L	D						
						_						
				80	140	I						
			:	180	260	A						
				200	400	A						
			:	280	320	A/I						

460

116.11= ESTIMATED WEIGHT OF AU IN MICROGRAMS

1 2 3 4	GOLD GOLD GOLD	GRAIN GRAIN GRAIN GRAIN	CAMECO WIDTH II LENGTH DESCRIPT WIDTH II	N MICI IN MIC TION N MICI	RONS CRONS RONS	(18)	[GOLD	GRAIN	COUNT]	(5)	MS2T	205
5	GOLD	GRAIN	LENGTH :	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP!	TION								
7	GOLD	GRAIN	WIDTH I	N MICI	RONS							
8	GOLD	GRAIN	LENGTH :	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	L	D						
			1	40	140	A						
			1	40	260	I						
			1	80	320	A						
			2:	20	380	I						
				20	420	A						

6.00= ESTIMATED WEIGHT OF Au IN MICROGRAMS

			CAMECO			(18)	[GOLD	GRAIN	COUNT]	(1)	MS2T	212
1	GOLD	GRAIN	WIDTH I	N MICI	RONS							
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	MOIT								
4	GOLD	GRAIN	WIDTH I	N MICI	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MICI	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	MOIT								
				W	L	D						
			1	40	180	I						

27.27= ESTIMATED WEIGHT OF AU IN MICROGRAMS

			CAMECO WIDTH I			(18)	[GOLD	GRAIN	COUNT]	(2)	MS2T	215
_			LENGTH	•								
					CRONS							
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	r	D						
			1	00	160	A						
			2	40	280	A						

6.72= ESTIMATED WEIGHT OF AU IN MICROGRAMS

2 3 4	GOLD GOLD GOLD	GRAIN GRAIN GRAIN GRAIN	CAMECO OCT. WIDTH IN MIC LENGTH IN MIC DESCRIPTION WIDTH IN MIC LENGTH IN MIC	CRONS CRONS CRONS	(18)	[GOLD	GRAIN	COUNT]	(6)	MS2T	218
6	GOLD	GRAIN	DESCRIPTION								
7	GOLD	GRAIN	WIDTH IN MIC	CRONS							
8	GOLD	GRAIN	LENGTH IN MI	CRONS							
9	GOLD	GRAIN	DESCRIPTION								
			W	L	D						
			40	60	A						
			60	120	A						
		,	60	60	I/A						
			80	80	· A						
			100	120	I						
			100	140	A/I						

3.99= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C2:	11 SC	PUCK	CAMECO	OCI	6/92	(18)	[GOLD	GRAIN	COUNT]	(3)	MS2T	226
			WIDTH		•	()	•			\ - <i>\</i>		
2	GOLD	GRAIN	LENGTH	IN N	IICRONS							
3	GOLD	GRAIN	DESCRI	PTION	Ī							
4	GOLD	GRAIN	WIDTH	IN MI	CRONS		•					
5	GOLD	GRAIN	LENGTH	IN N	IICRONS	;						
6	GOLD	GRAIN	DESCRI	PTION	Ī							
7	GOLD	GRAIN	WIDTH	IN MI	CRONS							
8	GOLD	GRAIN	LENGTH	IN N	IICRONS							
9	GOLD	GRAIN	DESCRI	PTION	Ţ							
				W	L	D						
				60	60	A/R						
						A/K						
				60	80							
				120	140	I						

13.42= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C 2	11 SC	PUCK	CAMECO	OCT	. 6/92	(18)	[GOLD	GRAIN	COUNT]	(4)	MS2T	230
1	GOLD	GRAIN	WIDTH	IN MI	CRONS							
2	GOLD	GRAIN	LENGTH	IN M	ICRONS							
3	GOLD	GRAIN	DESCRI	PTION								
4	GOLD	GRAIN	WIDTH	IN MI	CRONS							
5	GOLD	GRAIN	LENGTH	IN M	ICRONS							
6	GOLD	GRAIN	DESCRI	PTION								
7	GOLD	GRAIN	WIDTH	IN MI	CRONS							
8	GOLD	GRAIN	LENGTH	IN M	ICRONS							
9	GOLD	GRAIN	DESCRI	PTION								
				W	L	D						
				60	80	A						
				100	160	A						
				100	140	A						

140 200 A

47.15= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C211 SOPUCK CAMECO OCT. 6/92 (18) [GOLD GRAIN COUNT] (11) MS2T 9003 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION L D 20 20 Α I 40 80 Ι 40 60 40 60 A 40 120 A 60 80 A 60 100 A/I 100 200 A/I

A/I

A/I A/I

120

140

220

180

160

.26= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C21	1 S	OPUCK	CAMECO	OCT.	6/92	(18)	[GOLD	GRAIN	COUNT]	(2)	MS2T	9005
			WIDTH I		•	` ,	-		•	` '		
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	MOIT								
4	GOLD	GRAIN	WIDTH I	N MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	MOIT								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	MOIT								
				W	L	D						
				40	60	I						

40 I

3.18= ESTIMATED WEIGHT OF AU IN MICROGRAMS

						•	(18)	[GOLD	GRAIN	COUNT]	(3)	MS2T	9007
1	GOLD	GRAIN	WIDTH	IN N	4ICI	RONS							
2	GOLD	GRAIN	LENGTH	IN	MI	CRONS							
3	GOLD	GRAIN	DESCRI	PTIC	NC								
4	GOLD	GRAIN	WIDTH	IN N	4IC	RONS							
5	GOLD	GRAIN	LENGTH	IN	MI	CRONS							
6	GOLD	GRAIN	DESCRI	PTIC	ИC								
7	GOLD	GRAIN	WIDTH	IN N	4ICI	RONS							
8	GOLD	GRAIN	LENGTH	IN	MI	CRONS							
9	GOLD	GRAIN	DESCRI	PTIC	NC								
				W		L	D						
				40		60	I						
				60		80	I						
				120		120	A						

1.00= ESTIMATED WEIGHT OF Au IN MICROGRAMS

1 2	GOLD GOLD	GRAIN GRAIN	CAMECO OC WIDTH IN M LENGTH IN DESCRIPTIO	ICRONS MICRONS	•	[GOLD	GRAIN	COUNT]	(4)	MS2T	9010
_			WIDTH IN M	= -							
_			LENGTH IN								
			DESCRIPTIO								
7	GOLD	GRAIN	WIDTH IN M	ICRONS							
8	GOLD	GRAIN	LENGTH IN	MICRONS	1						
9	GOLD	GRAIN	DESCRIPTIO	N							
			W	L	D						
			20	40	I						
			40	60	I						
			60	60	I						
			60	80	I/A						

.28= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C2:	11 SC	DPUCK	CAMECO	OCT.	6/92	(18)	[GOLD	GRAIN	COUNT]	(1)	MS2T	9011
1	GOLD	GRAIN	WIDTH I	N MIC	RONS		•		-	•		
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	L	D						
				40	80	A						

1.87= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C211 SOPUCK CAMECO OCT. 6/92 (18) [GOLD GRAIN COUNT] (6) MS2T 9013 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION D 40 60 Α 40 40 A 60 A 40

I

I

40

60

60

80

100

C'09 SOPUCK CAMECO OCT. 2/92 (8) [HEAVY MINERALS] SAMPLE WEIGHT IN KG

3 % +1.7mm IN TOTAL SAMPLE % -1.7mm IN TOTAL SAMPLE +1.7mm WEIGHT IN KG

6 -1.7mm WEIGHT IN KG (TABLE FEED)

" MATRIX %SAND ESTIMATE
MATRIX %SILT ESTIMATE

9 MATRIX %CLAY ESTIMATE

	2.WI	4-T.1	8-1./	T1./	-1./	*SAND	#21TI	&CLA1
111	8.80	64	35	5.70	3.10	85	10	5
113	9.15	57	42	5.30	3.85	85	10	5_
120	9.15	62	37	5.75	3.40	85	10	5
234	9.45	51	48	4.85	4.60	85	10	5
240	8.25	47	52	3.90	4.35	85	10	5
255	11.20	50	49	5.65	5.55	85	10	5
259	7.30	32	67	2.40	4.90	85	10	5
	111 113 120 234 240 255 259	111 8.80 113 9.15 120 9.15 234 9.45 240 8.25 255 11.20	111 8.80 64 113 9.15 57 120 9.15 62 234 9.45 51 240 8.25 47 255 11.20 50	111 8.80 64 35 113 9.15 57 42 120 9.15 62 37 234 9.45 51 48 240 8.25 47 52 255 11.20 50 49	111 8.80 64 35 5.70 113 9.15 57 42 5.30 120 9.15 62 37 5.75 234 9.45 51 48 4.85 240 8.25 47 52 3.90 255 11.20 50 49 5.65	111 8.80 64 35 5.70 3.10 113 9.15 57 42 5.30 3.85 120 9.15 62 37 5.75 3.40 234 9.45 51 48 4.85 4.60 240 8.25 47 52 3.90 4.35 255 11.20 50 49 5.65 5.55	111 8.80 64 35 5.70 3.10 85 113 9.15 57 42 5.30 3.85 85 120 9.15 62 37 5.75 3.40 85 234 9.45 51 48 4.85 4.60 85 240 8.25 47 52 3.90 4.35 85 255 11.20 50 49 5.65 5.55 85	111 8.80 64 35 5.70 3.10 85 10 113 9.15 57 42 5.30 3.85 85 10 120 9.15 62 37 5.75 3.40 85 10 234 9.45 51 48 4.85 4.60 85 10 240 8.25 47 52 3.90 4.35 85 10 255 11.20 50 49 5.65 5.55 85 10

```
C209 SOPUCK CAMECO OCT. 2/92 (8) [HEAVY MINERALS]
 1 OVERBURDEN CLASSIFICATION TILL(T), GRAVEL(G), SAND(S), SILT(ST), CLAY(C)
 2 HEAVY MINERALS MAGNETICS IN GRAMS
 3 HEAVY MINERALS NONMAGNETICS IN GRAMS
 4 HEAVY MINERALS TOTAL IN GRAMS (MAG+NONMAG)
 5 VISIBLE GOLD GRAIN COUNT
 7
 8
 9
                  CLASS
                           MAG NONMAG H.M. V.G.
MS2T 111
                         16.92
                                12.72
                                       29.64
                                                 12
MS2T 113
                      G
                         3.99
                               17.27
                                       21.26
                                                  2
MS2T 120
                               22.14
                      G
                          0.48
                                       22.62
                                                  5
MS2T 234
                                19.81
                                       20.92
                      G
                          1.11
                                                 14
MS2T 240
                      G
                          3.20
                               19.73
                                       22.93
                                                  1
MS2T 255
                      G
                          4.16
                               25.68 29.84
                                                  4
```

1.07 15.64 16.71

13

G

MS2T 259

252.83= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C20)9 S(PUCK	CAMECO	OCT.	2/92	(8)	[GOLD	GRAIN	COUNT 1	(12)	MS2T	111
		GRAIN	WIDTH I			` '	•		-	` '		
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	L	D						
				60	60	A/I						
				60	160	Í						
				80	120	I/A						
		•	1	20	160	A/I						
			1	20	160	I/A						
			1	20	200	A/I						
			1	40	280	I						
			2	20	260	A/I						
			2	20	520	I						

I

A

A

260

260

280

400

360

1.74= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C20)9 S(DPUCK	CAMECO	OCT.	2/92	(8)	[GOLD	GRAIN	COUNT]	(2)	MS2T	113
			WIDTH :			•	•					
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRI	PTION								
4	GOLD	GRAIN	WIDTH :	IN MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRI	MOLTS								
7	GOLD	GRAIN	WIDTH :	IN MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRI	PTION								
				W	${f L}$	D						
				60	60	т						
				80	120	A/Î						

22.97= ESTIMATED WEIGHT OF AU IN MICROGRAMS

1	GOLD	GRAIN	CAMECO OC WIDTH IN M LENGTH IN	IICRON	IS	(8)	[GOLD	GRAIN	COUNT]	(5)	MS2T	120
3	GOLD	GRAIN	DESCRIPTION	N								
4	GOLD	GRAIN	WIDTH IN M	IICRO	1S							
5	GOLD	GRAIN	LENGTH IN	MICRO	ONS							
6	GOLD	GRAIN	DESCRIPTIO	N								
7	GOLD	GRAIN	WIDTH IN M	IICRON	1S							
8	GOLD	GRAIN	LENGTH IN	MICRO	ons –							
9	GOLD	GRAIN	DESCRIPTIO	N								
			W		L	D						
			60	8	30	I						
			80	12	20	I						
			140	24	10	A/I						
			140	20	00	A/I						
			140	14	10	A/I						

387.66= ESTIMATED WEIGHT OF Au IN MICROGRAMS

2 3 4 5 6 7	GOLD GOLD GOLD GOLD GOLD GOLD	GRAIN GRAIN GRAIN GRAIN GRAIN GRAIN	CAMECO WIDTH II LENGTH I DESCRIPT WIDTH II LENGTH II WIDTH II LENGTH	N MICI IN MIC TION N MICI IN MIC TION N MICI	RONS CRONS RONS CRONS	(8)	[GOLD	GRAIN	COUNT]	(14)	MS2T	234
9			DESCRIP'		CROND							
9	GOTD	GRAIN	DESCRIP		Ŧ	ъ						
				W	L	D						
				20	20	A						
						I						
				40	60							
				60	80	A						
			(60	80	I						
			•	60	140	I/A						
				80	120	I/A						
				80	100	A/I						
				80	140	Í						
				20	200	Ā						
				60	200	I						
				00	240	A						
			2	00	280	A						

A/I

220

500

280

REPORT =====

1.96= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C209 SOPUCK CAMECO OCT. 2/92 (8) [GOLD GRAIN COUNT] (1) MS2T 240 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION D

> 80 Ι 140

61.66= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C20			CAMECO WIDTH		•	(8)	[GOLD	GRAIN	COUNT]	(4)	MS2T	255
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRI	PTION								
4	GOLD	GRAIN	WIDTH	IN MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRI	PTION								
7	GOLD	GRAIN	WIDTH :	IN MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRI	PTION								
				W	L	D						
				100	100	A						
				120	200	I						
				200	380	I						
				200	300	I/A						

REPORT ======

178.95= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C20	9 \$0	PUCK	CAMECO C	CT.	2/92	(8)	[GOLD	GRAIN	COUNT]	(13)	MS2T	259
1	GOLD	GRAIN	WIDTH IN	MIC	RONS							
2	GOLD	GRAIN	LENGTH IN	MI	CRONS							
3	GOLD	GRAIN	DESCRIPTI	ON								
4	GOLD	GRAIN	WIDTH IN	MIC	RONS							
5	GOLD	GRAIN	LENGTH IN	MI	CRONS							
6	GOLD	GRAIN	DESCRIPTI	ON								
7	GOLD	GRAIN	WIDTH IN	MIC	RONS							
8	GOLD	GRAIN	LENGTH IN	MI	CRONS							
9			DESCRIPTI									
			W		L	D						
						_						
			40)	80	A						
			100		140	A/I						
			120		180	A/I						
			140		160	A/I						
			140		160	A/I						
			180		240	A/I						
			180		200	A/I						
			180		200	A/I						
			180		240	A/I						
			180		400	, <u>-</u>						
				200 260		A						
			200			**						

A

A/I

340

320

220

10-22-1992

C223 SOPUCK CAMECO OCT. 22/92 (17) [HEAVY MINERALS]

1 SAMPLE WEIGHT IN KG

- 3 % +1.7mm IN TOTAL SAMPLE
- 4 % -1.7mm IN TOTAL SAMPLE
- 5 +1.7mm WEIGHT IN KG
- 6 -1.7mm WEIGHT IN KG (TABLE FEED)
- 7 MATRIX %SAND ESTIMATE
- 8 MATRIX %SILT ESTIMATE

	42ILL F2ILMAIL							
9 MATRIX	%CLAY ESTIMATE							
	S.WT	%+1.7	%-1.7	+1.7	-1.7	%SAND	%SILT	%CLAY
MS2T 143	8.85	59	40	5.30	3.55	85	10	5
MS2T 161	13.05	26	73	3.45	9.60	85	10	5
MS2T 171	8.30	54	45	4.50	3.80	85	10	5
MS2T 173	7.40	33	66	2.50	4.90	85	10	5
MS2T 176	- 7.60	67	32	5.10	2.50	85	10	5
MS2T 265	7.45	28	71	2.15	5.30	85	10	5
								اليستنسي
MS2T 271	8.05	30	69	2.45	5.60	85	10	5
MS2T 274	7.75	60	39	4.70	3.05	85	10	5
MS2T 276	8.85	53	46	4.70	4.15	85	10	5
4400								
MS2T 284	7.90	32	67	2.60	5.30	80	15	5
MS2T 294	10.85	67	32	7.35	3.50	80	15	5
MS2T 299	12.50	50	49	6.30	6.20	80	15	5
MS2T 299 MS2T 300	12.50 6.70	50 4 0	49 59	6.30 2.70	6.20 4.00	80 80	15 15	5 5

```
C223 SOPUCK CAMECO OCT. 22/92 (17) [HEAVY MINERALS]
 1 OVERBURDEN CLASSIFICATION TILL(T), GRAVEL(G), SAND(S), SILT(ST), CLAY(C)
 2 HEAVY MINERALS MAGNETICS IN GRAMS
 3 HEAVY MINERALS NONMAGNETICS IN GRAMS
 4 HEAVY MINERALS TOTAL IN GRAMS (MAG+NONMAG)
 5 VISIBLE GOLD GRAIN COUNT
 6
 7
 8
 9
                            MAG NONMAG
                   CLASS
                                          H.M.
                                                  V.G.
MS2T 143
                            0.29
                                          13.29
                                                     9
                       G
                                  13.00
MS2T 161
                       G
                           49.27
                                  11.24
                                          60.51
                                                    13
MS2T 171
                       G
                                  16.85
                                          29.81
                                                     2
                           12.96
MS2T 173
                       G
                                                    13
                           10.29
                                  17.11
                                          27.40
MS2T 176
                                                     2
                       G
                            4.79
                                  17.04
                                          21.83
MS2T 265
                       G
                            0.58
                                  17.54
                                          18.12
                                                     5
                                          15.88
MS2T 271
                            1.29
                                  14.59
                                                      2
                       G
MS2T 274
                                                     2
                       G
                            0.31
                                  12.56
                                          12.87
MS2T 276
                       G
                            0.57
                                  14.51
                                          15.08
                                                     8
MS2T 284
                                                     8
                       G
                            1.90
                                  13.53
                                          15.43
MS2T 294
                       G
                           16.01
                                  14.06
                                          30.07
                                                      1
MS2T 299
                       G
                           37.50
                                                     3
                                  20.56
                                          58.06
MS2T 300
                       G
                                                     1
                            4.27
                                  13.39
                                          17.66
```

14.35

25.79

1

G

11.44

MS2T 313

30.32= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C223 SOPUCK CAMECO OCT. 22/92 (17) [GOLD GRAIN COUNT] (9) MS2T 143 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION L D Ι 20 40 Ι 40 60 I 40 40 40 40 A 80 I 120 I 100 140 140 180 A

I

A

140

160

220

1.82= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C223 SOPUCK CAMECO OCT. 22/92 (17) [GOLD GRAIN COUNT] (13) MS2T 161

- 1 GOLD GRAIN WIDTH IN MICRONS
- 2 GOLD GRAIN LENGTH IN MICRONS
- 3 GOLD GRAIN DESCRIPTION
- 4 GOLD GRAIN WIDTH IN MICRONS
- 5 GOLD GRAIN LENGTH IN MICRONS
- 6 GOLD GRAIN DESCRIPTION
- 7 GOLD GRAIN WIDTH IN MICRONS
- 8 GOLD GRAIN LENGTH IN MICRONS
- 9 GOLD GRAIN DESCRIPTION

W	L	D
20	40	I
20	40	A
20	20	I
20	60	I
40	60	I
40	40	I
40	40	A
40	60	I
40	40	I
60	80	A

.6= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C2:			CAMECO		-	(17)	[GOLD	GRAIN	COUNT]	(2)	MS2T	171
1	GOLD	GRAIN	WIDTH I	N MIC	RONS							
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								•
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	L	D						
				20	20	I						
				60	80	I						

82.08= ESTIMATED WEIGHT OF AU IN MICROGRAMS

2 3 4 5 6 7 8	GOLD GOLD GOLD GOLD GOLD GOLD GOLD	GRAIN GRAIN GRAIN GRAIN GRAIN GRAIN GRAIN	CAMECO OC WIDTH IN M LENGTH IN M LENGTH IN M LENGTH IN DESCRIPTIO WIDTH IN M LENGTH IN M LENGTH IN M LENGTH IN	ICRONS MICRONS N ICRONS MICRONS N ICRONS N	(17)	[GOLD	GRAIN	COUNT]	(13)	MS2T	173
9	GOLD	GRAIN	DESCRIPTIO								
			W	L	D						
			20	20	I						
			20	40	I						
			20	40	I						
			20	20	I						
			40	40	A						
			40	40	ľ						
			40	60	I						
			60	80	I						
			60	60	I						
			60	80	I						
			60	100	I						
			200	280	I						

A/I

280

======

51.31= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C22	23 S	OPUCK	CAMECO	OCT.	22/92	(17)	[GOLD	GRAIN	COUNT]	(2)	MS2T	176
1	GOLD	GRAIN	WIDTH I	N MIC	RONS							
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MICI	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	L	D						
				40	40	1						
				80	400	A/I						

42.05= ESTIMATED WEIGHT OF AU IN MICROGRAMS

			CAMECO			(17)	[GOLD	GRAIN	COUNT]	(5)	MS2T	265
_			WIDTH IN									
2	GOLD	GRAIN	LENGTH 1	EN MI	CRONS							
3	GOLD	GRAIN	DESCRIPT	MOIT								
4	GOLD	GRAIN	WIDTH IN	MIC:	RONS							
5	GOLD	GRAIN	LENGTH I	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIPT	NOI								
7	GOLD	GRAIN	WIDTH IN	MIC	RONS							
8	GOLD	GRAIN	LENGTH I	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIPT	MOIT								
				W	L	D						
			4	10	60	ı						
			(50	80	A/I						
			10	00	120	I/A						
			18	30	200	À						
			18	30	380	A/I						

54.46= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C223	SOPUC	K CAMECO	OCT.	22/92	(17)	[GOLD	GRAIN	COUNT]	(2)	MS2T	271
1 GO	LD GRA	IN WIDTH :	IN MIC	RONS							
2 GO	LD GRA	IN LENGTH	IN MI	CRONS							
3 GO	LD GRA	IN DESCRI	PTION								
4 GO	LD GRA	IN WIDTH :	IN MIC	RONS							
5 GO	LD GRA	IN LENGTH	IN MI	CRONS							
6 GC	LD GRA	IN DESCRI	PTION								
7 GO	LD GRA	IN WIDTH	IN MIC	RONS							
8 GC	LD GRA	IN LENGTH	IN MI	CRONS							
9 GC	LD GRA	IN DESCRI	PTION								
			W	L	D						
		•	120	140	A						
			240	440	A/I						

13.9= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C22	23 SC	OPUCK	CAMECO	OCT.	22/92	(17)	[GOLD	GRAIN	COUNT]	(2)	MS2T	274
_			WIDTH I		•	` ,	•		•	, ,		
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MICI	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MICI	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	L	D						
			1	00	180	A/I						
			1	60	220	I/A						

22.94= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C22		PUCK GRAIN	CAMECO OCT		(17)	[GOLD	GRAIN	COUNT]	(8)	MS2T	276
2	GOLD	GRAIN	LENGTH IN M	IICRONS							
3	GOLD	GRAIN	DESCRIPTION	Ī		_					
4	GOLD	GRAIN	WIDTH IN MI	CRONS							
5	GOLD	GRAIN	LENGTH IN M	IICRONS							
6	GOLD	GRAIN	DESCRIPTION	1							
7	GOLD	GRAIN	WIDTH IN MI	CRONS							
8	GOLD	GRAIN	LENGTH IN M	ICRONS							
9	GOLD	GRAIN	DESCRIPTION	ī							
			W	L	D						
			60	100	I						
			60	120	A						
			60	100	I						
			60	120	A						
			80	100	A/I						
			120	180	Ĺ						
			120	180	I						
			160	200	A						

19.7= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C223 SOPUCK CAMECO OCT. 22/92 (17) [GOLD GRAIN COUNT] (8) MS2T 284
1 GOLD GRAIN WIDTH IN MICRONS
2 GOLD GRAIN LENGTH IN MICRONS
3 GOLD GRAIN DESCRIPTION
4 GOLD GRAIN WIDTH IN MICRONS
5 GOLD GRAIN LENGTH IN MICRONS
6 GOLD GRAIN DESCRIPTION
7 GOLD GRAIN WIDTH IN MICRONS
8 GOLD GRAIN LENGTH IN MICRONS
9 GOLD GRAIN DESCRIPTION

W	L	D
40	60	I
40	80	I
40	80	I
60	120	I
60	80	I
80	120	A
80	100	I
160	280	I

.1= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C22	23 SC	OPUCK	CAMECO	OCT.	22/92	(17)	[GOLD	GRAIN	COUNT]	(1)	MS2T	294
			WIDTH I			, ,	-		7	• •		
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	L	D						
				40	40	A						

14.95= ESTIMATED WEIGHT OF Au IN MICROGRAMS

			CAMECO			(17)	[GOLD	GRAIN	COUNT]	(3)	MS2T	299
_			WIDTH IN									
2	GOLD	GRAIN	LENGTH]	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIPT	rion								
4	GOLD	GRAIN	WIDTH IN	N MICI	RONS							
5	GOLD	GRAIN	LENGTH 1	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIPT	TION								
7	GOLD	GRAIN	WIDTH IN	N MICI	RONS							
8	GOLD	GRAIN	LENGTH 3	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIPT	PION								
				W	L	D						
			•	60	120	I						
				20	160	Ā						

140 240 A/I

6.00= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C22	23 SC	PUCK	CAMECO	OCT.	22/92	(17)	[GOLD	GRAIN	COUNT]	(1)	MS2T	300
1	GOLD	GRAIN	WIDTH I	N MIC	RONS		_		_			
2	GOLD	GRAIN	LENGTH	IN MI	CRONS		_					
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	${f L}$	D						
			1	60	160	I						

7.15= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C22	23 50	PUCK	CAMECO	OCT.	22/92	(17)	[GOLD	GRAIN	COUNT]	(1)	MS2T	313
1	GOLD	GRAIN	WIDTH I	N MIC	RONS							
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	TION								
				W	L	D						
			1	60	180	A						

C233 SOPUCK CAMECO NOV. 24/92 (18) [HEAVY MINERALS] 1 SAMPLE WEIGHT IN KG 2 3 % +1.7mm IN TOTAL SAMPLE 4 % -1.7mm IN TOTAL SAMPLE 5 +1.7mm WEIGHT IN KG 6 -1.7mm WEIGHT IN KG (TABLE FEED) 7 MATRIX %SAND ESTIMATE 8 MATRIX %SILT ESTIMATE 9 MATRIX %CLAY ESTIMATE -1.7 %SAND **%SILT** %CLAY S.WT **%+1.7 %-1.7** +1.7 4S2S 3000 7.40 69 30 5.15 2.25 75 20 5 **1S2T 3004** 5 8.75 68 31 6.00 2.75 80 15 5 MS2T 3010 25 34 5.05 2.70 70 7.75 65 5 MS2T 3011 47 52 4.35 4.85 75 20 9.20 70 25 5 MS2T 3024 4.55 7.10 35 64 2.55 75 20 5 AS2T 3027 33 5.60 8.45 66 2.85

41

38

30

53

40

30

47

44

42

58

61

70

46

59

69

52

55

57

3.85

3.65

3.00

7.90

3.85

2.30

5.80

4.70

5.30

5.35

5.75

7.00

6.90

5.55

5.25

6.45

5.95

7.30

70

75

75

70

65

70

75

75

75

25

20

20

25

25

25

20

20

20

MS2T 3029

1S2T 3030

1S2T 3031

MS2T 3032

MS2T 3037

fS2T 3041

MS2T 3044

MS2T 3048

IS2T 9034

9.20

9.40

10.00

14.80

9.40

7.55

12.25

10.65

12.60

5

5

5

5

10

5

5

5

```
C233 SOPUCK CAMECO NOV. 24/92 (18) [HEAVY MINERALS]
 1 OVERBURDEN CLASSIFICATION TILL(T), GRAVEL(G), SAND(S), SILT(ST), CLAY(C)
 2 HEAVY MINERALS MAGNETICS IN GRAMS
 3 HEAVY MINERALS NONMAGNETICS IN GRAMS
 4 HEAVY MINERALS TOTAL IN GRAMS (MAG+NONMAG)
 5 VISIBLE GOLD GRAIN COUNT
 7
 8
 9
                    CLASS
                             MAG NONMAG
                                            H.M.
                                                     V.G.
MS2S 3000
                             0.65
                                     6.99
                                             7.64
                                                      130
                        T
4S2T 3004
                             0.90
                                     3.22
                                             4.12
                                                        8
                         T
                                             3.23
                                                       35
4S2T 3010
                         \mathbf{T}
                             0.38
                                     2.85
4S2T 3011
                         \mathbf{T}
                             0.59
                                     3.99
                                             4.58
                                                       24
4S2T 3024
                         T
                             0.49
                                    11.65
                                            12.14
                                                      160
4S2T 3027
                        Т
                             2.00
                                    8.99
                                            10.99
                                                       12
4S2T 3029
                             0.12
                                    12.42
                                            12.54
                                                       18
4S2T 3030
                        T
                             0.54
                                     6.79
                                             7.33
                                                       14
4S2T 3031
                                                       21
                        T
                             0.48
                                     9.41
                                             9.89
1S2T 3032
                        \mathbf{T}
                                                        5
                            27.39
                                     8.85
                                            36.24
1S2T 3037
                        Т
                             0.81
                                     9.59
                                            10.40
                                                        9
1S2T 3041
                        Т
                                     8.78
                                                        0
                             0.62
                                             9.40
1S2T 3044
                        \mathbf{T}
                                                        2
                             1.30
                                    12.74
                                            14.04
1S2T 3048
                        T
                                                        9
                             0.59
                                    8.55
                                            9.14
```

15.82

16.80

27

T

0.98

1S2T 9034

55.95= ESTIMATED WEIGHT OF AU IN MICROGRAMS

		•	33.95-	F21.TMW.	LED MET	Gnr Or	AU IN	MICROG	RAMS			
2 3 4 5	GOLD GOLD GOLD GOLD GOLD	GRAIN GRAIN GRAIN GRAIN GRAIN	CAMECO WIDTH LENGTH DESCRI WIDTH LENGTH DESCRI WIDTH LENGTH	IN MIC IN MIC PTION IN MIC IN MIC PTION IN MIC	CRONS RONS CRONS RONS	(18)	[GOLD	GRAIN	COUNT]	(130) MS2S	3000	
9	GOLD	GRAIN	DESCRI									
				W	${f L}$	D	W	L	D	W	L	D
				20 20 20	20 40 40	I I A	20 20 20	20 40 40	I I A	40 40 40	40 40 60	I I I
				20	40	I	20	20	I	40	60	I
				20 20	40 40	I A	20 20	40 20	I A	40 40	80 40	A I
				20	40	A	20	60	I	40	60	Ī
				20	40	Ī	20	20	Ā	40	40	Ā
				20	20	Ā	20	20	A	40	60	I
				20	20	A	20	20	A	40	40	I
				20	40	A	20	20	I	40	60	I
				20	20	A	20	20	A	40	60	A
				20	20	A	20	40	I	40	40	A
				20	40	A	20	20	A	40	40	I
				20	60	I	20	40	I	40	40	Ī
				20	40	A	20	40	A	40	40	I
				20	20	Ī	20	40	Ī	40	40	A
				20	40	I	20	20	I	40	60	A
				20	20	A	20	20	A	40	60	A
				20	20	I	20	40	I	40	40	I I
				20 20	40 20	I A	20 20	40 40	Ī	40 40	40 60	Ī
				20	20	Ī	20	20	Ī	40	60	Ī
				20	40	Ī	20	20	Ī	40	80	I/D
				20	20	Ī	20	40	Ĩ	40	60	
				20	20	Ī	20	20	Ī	40	40	I A
				20	20	A	20	20	A	40	60	I
				20	20	A	20	40	I	60	80	I
				20	20	A	20	40	I		100	I
				20	20	I	20	60	I	60	80	A
				20	60	A	20	20	I		120	I/D
				20	20	I	20	20	I		140	_ I
				20	20	I	20	20	A		160	I /D
				20	20	A	20	20	Į	60 60	80	D
				20	20	I	20	40	I	60 60	80 100	I
				20 20	20 40	A I	20 20	40 20	I		100	I/D
				20	20	I	40	40	Ī	60	80	1/D
				20	20	A	40	60	A		120	I A
				20	20	A	40	60	Ī		120	A/I
				20	20		40	00	_			/ -

55.95= ESTIMATED WEIGHT OF AU IN MICROGRAMS

1 2 3 4	GOLD GOLD GOLD GOLD GOLD GOLD GOLD	GRAIN GRAIN GRAIN GRAIN GRAIN GRAIN GRAIN	CAMECO NO WIDTH IN I LENGTH IN LENGTH IN DESCRIPTION WIDTH IN I LENGTH IN LENGTH IN LENGTH IN DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION IN DESCRIPTION	MICRONS ON MICRONS MICRONS ON MICRONS MICRONS MICRONS	(18)	[GOLD	GRAIN	COUNT]	(130)	MS2S	3000	
			W	L	D	W	L	D	7	N	L	D
			80 80 80 100 100 100 100	100 120 160 180 140	I I/D I/D I/D I/D I/D I/D							

1.63= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C233 SOPUCK CAMECO NOV. 24/92 (18) [GOLD GRAIN COUNT] (8) MS2T 3004 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION D \mathbf{L} 20 20 Α 20 20 A 20 20 Α 20 20 Ι Ι 20 40 20 40 Α

Α

Α

40

80

60

REPORT ======

4.79= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C233 SOPUCK CAMECO NOV. 24/92 (18) [GOLD GRAIN COUNT] (35) MS2T 3010 1 GOLD GRAIN WIDTH IN MICRONS

- 2 GOLD GRAIN LENGTH IN MICRONS
- 3 GOLD GRAIN DESCRIPTION
- 4 GOLD GRAIN WIDTH IN MICRONS
- 5 GOLD GRAIN LENGTH IN MICRONS
- 6 GOLD GRAIN DESCRIPTION
- 7 GOLD GRAIN WIDTH IN MICRONS
- 8 GOLD GRAIN LENGTH IN MICRONS
- 9 GOLD GRAIN DESCRIPTION

L	D
40	A
	A
	I
	I
	A
	A
	Ī
	A
	I
	I
20	A A
	A
	Ī
	Ī
	Ī
	Ī
40	A
20	I
40	I
40	A
	A
	I
	I
	A
	A
	A
	Ī
	I
	I A
	I
	Ī
	A
	Ï
	_
	40 20 40 20 20 20 40 60 20 20 20 20 20 40 20 40 20

178.9= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C233 SOPUCK CAMECO NOV. 24/92 (18) [GOLD GRAIN COUNT] (24) MS2T 3011

- 1 GOLD GRAIN WIDTH IN MICRONS
- 2 GOLD GRAIN LENGTH IN MICRONS
- 3 GOLD GRAIN DESCRIPTION
- 4 GOLD GRAIN WIDTH IN MICRONS
- 5 GOLD GRAIN LENGTH IN MICRONS
- 6 GOLD GRAIN DESCRIPTION
- 7 GOLD GRAIN WIDTH IN MICRONS
- 8 GOLD GRAIN LENGTH IN MICRONS
- 9 GOLD GRAIN DESCRIPTION

W	L	D
20	40	I
20	20	A
20	20	A
20	40	I
20	20	I
20	40	I
20	40	I
20	20	A
20	40	I
40	40	I
40	60	I
40	60	I
40	40	A
40	40	I
40	60	I
40	80	I
40	40	A
40	60	I
40	60	A
40	80	I
40	60	I
60	60	A
60	80	I
380	680	I/A

25.70= ESTIMATED WEIGHT OF AU IN MICROGRAMS

	•	•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	011.1 01	114 211	111 0110	714115			
C23 1 2 3 4 5	GOLD GOLD GOLD GOLD	GRAIN GRAIN GRAIN GRAIN	CAMECO WIDTH I LENGTH DESCRIE WIDTH I LENGTH	IN MIC PTION IN MICRO IN MIC	ons Rons Ons	(18)	[GOLD	GRAIN	COUNT]	(160) MS2	2T 3024	
6 7 8	GOLD	GRAIN	DESCRIE WIDTH I LENGTH	N MICR								
9			DESCRIE		RONS							
•	COTD	CICILI	DESCRII	W	L	D	W	L	D	W	L	D
				20	20	A	20	20	A	20	20	A
				20	20	A	20	20	A	20	60	A
				20	20	A	20	20	A	20	60	A
				20	20	A	20	20	A	20	60	A
				20	20	A	20	20	A	20	20	A
				20	20	A	20	20	A	20	20	A
				20	20	A	20	20	A	20	40	A
				20	20	A	20	20	A	20	20	A
				20	20	A	20	40	A	20	20	A
				20	20	A	20	20	Ā	20	20	A
				20	20	A	20	40	I	20	20	A
				20	20	A	20	40	Ī	20	20	A
				20	20	A	20	40	I	20	40	I
				20	20	A	20	20	A	20	40	I
				20	20	A	20	20	A	20	40	A
				20	20	A	20	20	A	20	20	A
				20	20	A	20	20	A	20	20	A
				20	20	A	20	20	A	20	20	A
				20	20	A	20	20	A	20	20	A
				20	20	A	20	20	A	20	40	A
				20	40	A	20	20	A	20	20	A
				20	40	A	20	20	A	20	20	A
				20	40	A	20	20	A	20	20	A
				20	40	A	20	20	A	20	20	A
				20	40	A	20	20	A	20	20	. А
				20	40	A	20	20	A	20	20	A
				20	40	A	20	20	A	20	20	A
				20	40	A	20	20	A	20	20	A
				20	20	A	20	20	A	20	20	A A
				20	20	A	20	20	A	20	20	χ
				20	20	A	20	20	A A	20 20	40 20	A A
				20	20	A	20	20	A			A A
				20	20	A	20	20	A	20	20 20	A
				20	20	A	20	20	A	20	40	A
				20	20	A	20	20	A	20		A
				20	20	A	20	20	A	20	20 60	አ / T
				20	20	A	20	20	A	40		A/I A
				20	20	A	20	20	A	40	40	A X
				20	20	A	20	20	A	40	40	A A
				20	20	A	20	20	A	40	60	н

25.70= ESTIMATED WEIGHT OF AU IN MICROGRAMS

	•	25.70- BOITME	TED WE	IGHT OF	AU IN	MICKO	3KAD10			
1 GOLI 2 GOLI 3 GOLI 4 GOLI 5 GOLI 7 GOLI 8 GOLI	GRAIN	CAMECO NOV. WIDTH IN MICLENGTH IN MICHENGTH IN MICLENGTH	CRONS CRONS CRONS CRONS	(18)	[GOLD	GRAIN	COUNT]	(160) MS2T	3024	
a GODI) GRAIN	DESCRIPTION W	L	D	W	L	D	W	L	D
		40	40	_						
		40	40	Ā						
		40	40	A						
		40	40	A						
		40	40	A						
		40	60	A						
		40	40	A						
		40	40	A		•				
		40	40	A						
		40	40	A						
		40	60	A						
		40	60	A/I						
		40	60	I						
		40	40	A						
		40	60	A/I						
		40	40	A						
		40	40	A						
		40	40	A						
		40	40	A						
		40	60	A						
		40	40	A						
		40	60	A						
		40	60	A/I						
		40	40	A						
		40	60	A						
		40	40	A						
		40	80	A						
		40	40	A						
		40	40	A						
		40	60	A						
		40	40	A						
		40	40	A						
		40	60	A/I						
		40	60	A/I						
		40	40	A/I A						
		40	40	A						
		40	40	A						
		60	60	I						
		60	100	A						
		60	60	A						
		400	1.00	•						

120 160 A

9.17= ESTIMATED WEIGHT OF Au IN MICROGRAMS

		. D			446						
			CAMECO NOV	•	(18)	[GOLD	GRAIN	COUNT]	(12)	MS2T	3027
			WIDTH IN MI								
2	GOLD	GRAIN	LENGTH IN M	ICRONS							
			DESCRIPTION								
4	GOLD	GRAIN	WIDTH IN MI	CRONS							
5	GOLD	GRAIN	LENGTH IN M	ICRONS							
6	GOLD	GRAIN	DESCRIPTION								
7	GOLD	GRAIN	WIDTH IN MI	CRONS							
8	GOLD	GRAIN	LENGTH IN M	ICRONS							
9	GOLD	GRAIN	DESCRIPTION	•							
			W	L	D						
			20	20	A						
			20	40	A						
			20	20	A						
			20	40	A						
			40	60	A						
			40	80	A						
			40	60	Ï						
			40	40	A						
			40	40	A						
			60	80	A						
			60	60	A						

3.49= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C233 SOPUCK CAMECO NOV. 24/92 (18) [GOLD GRAIN COUNT] (18) MS2T 3029

- 1 GOLD GRAIN WIDTH IN MICRONS
- 2 GOLD GRAIN LENGTH IN MICRONS
- 3 GOLD GRAIN DESCRIPTION
- 4 GOLD GRAIN WIDTH IN MICRONS
- 5 GOLD GRAIN LENGTH IN MICRONS
- 6 GOLD GRAIN DESCRIPTION
- 7 GOLD GRAIN WIDTH IN MICRONS
- 8 GOLD GRAIN LENGTH IN MICRONS
- 9 GOLD GRAIN DESCRIPTION

D	Ъ	W
I	40	20
A	20	20
A	20	20
A	40	20
A	20	20
A	40	20
A	40	20
A	80	40
A	40	40
A	40	40
A/I	80	40
A	80	40
A	40	40
A	40	40
A	60	40
A	40	40
A	80	60
A	80	80

24.64= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C233 SOPUCK CAMECO NOV. 24/92 (18) [GOLD GRAIN COUNT] (14) MS2T 3030 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION D 20 20 Α 40 80 A/I 40 60 A 40 60 A 40 60 A 60 120 I 80 120 I 80 80 A/I 80 120 A/I 100 140 A/I 100 100 A/I

A/I

A/I

A/I

120

120

160

160

120

8.59= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C233 SOPUCK CAMECO NOV. 24/92 (18) [GOLD GRAIN COUNT] (21) MS2T 3031
1 GOLD GRAIN WIDTH IN MICRONS
2 GOLD GRAIN LENGTH IN MICRONS
3 GOLD GRAIN DESCRIPTION
4 GOLD GRAIN WIDTH IN MICRONS
5 GOLD GRAIN LENGTH IN MICRONS
6 GOLD GRAIN DESCRIPTION

7 GOLD GRAIN WIDTH IN MICRONS

8 GOLD GRAIN LENGTH IN MICRONS

9 GOLD GRAIN DESCRIPTION

W	L	D
20	40	I
40	100	I
40	60	A
40	40	A
40	40	A
40	60	I
40	40	A
40	40	A
40	40	A
40	60	I
40	60	A
40	40	A
40	100	I
60	80	I
60	60	I
60	100	I
60	120	I
60	60	I
60	100	A
60	60	I
80	160	I

7.96= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C233 SOPUCK CAMECO NOV. 24/92 (18) [GOLD GRAIN COUNT] (5) MS2T 3032 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION D 20 I 60 40 Α 40 60 100 A/I

A

Ι

80

120

100

4.33= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C233 SOPUCK CAMECO NOV. 24/92 (18) [GOLD GRAIN COUNT] (9) MS2T 3037 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION L D 20 40 I 20 20 Α 40 I 40 40 100 I 40 40 I 60 80 A I 60 80 80 120 I

A/I

80

.74= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C2:	33 S	OPUCK	CAMECO	NC	ov.	24/92	(18)	[GOLD	GRAIN	COUNT]	(2)	MS2T	3044
			WIDTH		_	•_	` '	-		-	` ,		
2	GOLD	GRAIN	LENGTH	IN	MI	CRONS							
3	GOLD	GRAIN	DESCRI	PTIC	M								
4	GOLD	GRAIN	WIDTH	IN M	IIC:	RONS							
5	GOLD	GRAIN	LENGTH	IN	MI	CRONS							
6	GOLD	GRAIN	DESCRI	PTIC	N								
7	GOLD	GRAIN	WIDTH	IN N	IIC:	RONS							
8	GOLD	GRAIN	LENGTH	IN	MI	CRONS							
9	GOLD	GRAIN	DESCRI	PTIC	N								
				W		L	Ď						
				40		80	A						
				40		100	Ī						

2.73= ESTIMATED WEIGHT OF AU IN MICROGRAMS

~~		D11.00	63.VE66 NOV		(40)		a				
C2:			CAMECO NOV		(18)	[GOTD	GRAIN	COUNT	(9)	MS2T	3048
1	GOLD	GRAIN	WIDTH IN MI	CRONS							
2	GOLD	GRAIN	LENGTH IN M	ICRONS							
3	GOLD	GRAIN	DESCRIPTION	,							
4	GOLD	GRAIN	WIDTH IN MI	CRONS							
5	GOLD	GRAIN	LENGTH IN M	ICRONS							
6	GOLD	GRAIN	DESCRIPTION	•							
7	GOLD	GRAIN	WIDTH IN MI	CRONS							
8	GOLD	GRAIN	LENGTH IN M	ICRONS							
9	GOLD	GRAIN	DESCRIPTION								
			W	L	D						
			20	100	I						
			20	20	A						
			20	40	A						
			40	60	A/I						
			40	80	Í						
			40	60	I						
			60	120	A/I						
			60	60	A						
			30	00							

I

60

38.81= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C233 SOPUCK CAMECO NOV. 24/92 (18) [GOLD GRAIN COUNT] (27) MS2T 9034 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION L D 20 60 I 20 40 Ι 20 40 Α 20 60 Ι 20 Ι 80 40 60 Ι 40 60 Ι I 40 40 40 60 Α 40 60 Ι 40 60 I/D 40 60 I/D 40 80 Ι 40 60 I/D 40 80 Ι 40 60 Ι 60 I 60 60 80 Α 60 100 I/A 60 80 Ι 60 80 Ι 80 100 Α 80 120 Α 100 140 I

100

160

160

140

320

180

I/D

I I/D

C238 SOPUCK CAMECO NOV. 27/92 (10) [HEAVY MINERALS]

1 SAMPLE WEIGHT IN KG

2

3 % +1.7mm IN TOTAL SAMPLE

4 % -1.7mm IN TOTAL SAMPLE

5 +1.7mm WEIGHT IN KG

6 -1.7mm WEIGHT IN KG (TABLE FEED)

7 MATRIX %SAND ESTIMATE

8 MATRIX %SILT ESTIMATE

9 MATRIX %CLAY ESTIMATE

		2.M.T.	8+1.7	%-1. 7	+1.7	-1.7	%SAND	*SILT	*CLAY
AS2T	3049	9.10	34	65	3.15	5.95	75	20	5
M									
MS2T	3059	7.85	36	63	2.85	5.00	75	20	5
MS2T	3060	9.90	30	69	3.00	6.90	80	15	5
MS2T	3061	10.20	29	70	3.00	7.20	80	15	5
MS2T	3062	11.05	57	42	6.30	4.75	70	25	5
MS2T	3064	10.05	51	48	5.15	4.90	80	15	5
4S2T	3066	11.65	59	40	6.90	4.75	80	15	5

```
C238 SOPUCK CAMECO NOV. 27/92 (10) [HEAVY MINERALS]
 1 OVERBURDEN CLASSIFICATION TILL(T), GRAVEL(G), SAND(S), SILT(ST), CLAY(C)
 2 HEAVY MINERALS MAGNETICS IN GRAMS
 3 HEAVY MINERALS NONMAGNETICS IN GRAMS
 4 HEAVY MINERALS TOTAL IN GRAMS (MAG+NONMAG)
 5 VISIBLE GOLD GRAIN COUNT
 6
 7
 8
 9
                                                   V.G.
                   CLASS
                             MAG NONMAG
                                            H.M.
MS2T 3049
                            0.02
                                            7.71
                                    7.69
MS2T 3059
                        \mathbf{T}
                            0.94
                                    9.33
                                           10.27
                                                       8
MS2T 3060
                        \mathbf{T}
                            2.17
                                    5.63
                                            7.80
MS2T 3061
                        Т
                            2.55
                                    8.51
                                           11.06
                                                      16
MS2T 3062
                        T
                            0.23
                                    7.39
                                            7.62
                                                       3
                                                       9
MS2T 3064
                        Т
                            0.77
                                    7.49
                                            8.26
                        Т
                                                       9
MS2T 3066
                            0.72
                                    8.46
                                            9.18
```

14.04= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C238 SOPUCK CAMECO NOV. 27/92 (10) [GOLD GRAIN COUNT] (7) MS2T 3059 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION L D 40 60 Α 40 60 Ι 100 60 Ι 60 60 Α 80 100 R

A/R

Α

120

160

140

10.34= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C23			CAMECO		7	(10)	[GOLD	GRAIN	COUNT	(8)	MS2T	3060
1	GOLD GRAIN WIDTH IN MICRONS											
2	GOLD GRAIN LENGTH IN MICRONS											
3	GOLD GRAIN DESCRIPTION											
4	GOLD GRAIN WIDTH IN MICRONS											
5	GOLD GRAIN LENGTH IN MICRONS											
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH IN MICRONS									
9	GOLD	GRAIN	DESCRIPTION									
_				W	L	D						
					_	_						
				40	40	A						
				40	80	ī						
				60	100	Ā		•				
				60	100	Ī						
				80	120	Ā						
				.00	140	A						
			=	.00	120	A						
			_									
			1	.20	120	A						

13.9= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C238 SOPUCK CAMECO NOV. 27/92 (10) [GOLD GRAIN COUNT] (16) MS2T 3061
1 GOLD GRAIN WIDTH IN MICRONS
2 GOLD GRAIN LENGTH IN MICRONS

- 3 GOLD GRAIN DESCRIPTION
- 4 GOLD GRAIN WIDTH IN MICRONS
- 5 GOLD GRAIN LENGTH IN MICRONS
- 6 GOLD GRAIN DESCRIPTION
- 7 GOLD GRAIN WIDTH IN MICRONS
- 8 GOLD GRAIN LENGTH IN MICRONS
- 9 GOLD GRAIN DESCRIPTION

W	L	D
20	20	A
20	20	I
40	60	I
40	60	I
40	40	Α
40	60	Α
40	60	I
40	60	A
40	60	A
50	60	A
50	60	A/1
30	100	I/A
30	120	A/I
00	140	I/A
00	120	A/I
40	160	A/I

5.27= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C23	88 SC	PUCK	CAMECO	NOV.	27/92	(10)	[GOLD	GRAIN	COUNT]	(3)	MS2T	3062
1 GOLD GRAIN			WIDTH I	N MIC	RONS	•			_			
2	2 GOLD GRAIN LENGTH IN MICRONS											
3	3 GOLD GRAIN DESCRIPTION											
4	4 GOLD GRAIN WIDTH IN MICRONS											
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH IN MICRONS									
9	GOLD	GRAIN	DESCRIP	TION								
				W	$oldsymbol{r}$	D						
						_						
				20	20	A						
				40	60	A/I						
			1	40	160	A/R						

2.69= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C238 SOPUCK CAMECO NOV. 27/92 (10) [GOLD GRAIN COUNT] (9) MS2T 3064 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION D L 40 80 Α 40 40 Ι 40 60 Α 40 60 A 40 60 A 40 60 Ι 40 60 Α

I

A/I

60

60

80

13.59= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C2:	38 SC	DPUCK	CAMECO NO	$\nabla . 27/92$	(10)	[GOLD	GRAIN	COUNT]	(9)	MS2T	3066
1	GOLD	GRAIN	WIDTH IN M	ICRONS							
2	GOLD	GRAIN	LENGTH IN	MICRONS							
3	GOLD	GRAIN	DESCRIPTIO	N							
4	GOLD	GRAIN	WIDTH IN M	ICRONS							
5	GOLD	GRAIN	LENGTH IN	MICRONS							
6	GOLD	GRAIN	DESCRIPTIO	N							
7			WIDTH IN M								
Ŕ			LENGTH IN								
_			DESCRIPTION								
•	GCLD	CICITI	W	L	D						
			**		D						
			20	20	A						
			40	60	A						
			40	40	A						
			40	60	I						
			40	40	A						
			40	60	A						
			80	120	I/A						
			100	100	-, A						
			140	240	I						

240

1216 SOPUCK CAMECO OCT. 7/92 (8) [HEAVY MINERALS]

1 SAMPLE WEIGHT IN KG

3 % +1.7mm IN TOTAL SAMPLE

4 % -1.7mm IN TOTAL SAMPLE

5 +1.7mm WEIGHT IN KG 6 -1.7mm WEIGHT IN KG (TABLE FEED)

7 MATRIX &SAND ESTIMATE

8 MATRIX &SILT ESTIMATE 9 MATRIX &CLAY ESTIMATE

1-		TW.2	%+1.7	%-1.7	+1.7	-1.7	&SAND	&SILT	*CLAY
MS2T		6.75	50	49	3.40	3.35	75	20	5
MS2T	9017	8.00	46	53	3.75	4.25	75	20	5
	9018	8.50	50	49	4.30	4.20	75	20	5
S2T	9020	9.35	31	68	2.95	6.40	75	20	5
MS2T	9024	8.10	42	57	3.45	4,65	75	20	5
82T	9025	6.40	35	64	2.30	4.10	75	20	5
82T	9026	7.80	45	54	3.55	4.25	75	20	5
MS2T	9027	9.95	37	62	3.70	6.25	75	20	5

```
C216 SOPUCK CAMECO OCT. 7/92 (8) [HEAVY MINERALS]
 1 OVERBURDEN CLASSIFICATION TILL(T), GRAVEL(G), SAND(S), SILT(ST), CLAY(C)
 2 HEAVY MINERALS MAGNETICS IN GRAMS
 3 HEAVY MINERALS NONMAGNETICS IN GRAMS
 4 HEAVY MINERALS TOTAL IN GRAMS (MAG+NONMAG)
 5 VISIBLE GOLD GRAIN COUNT
 7
 8
 9
                  CLASS
                           MAG NONMAG H.M.
                                               V.G.
MS2T 9015
                      T
                          2.06
                                15.25 17.31
                                                  3
                                16.65 18.76
                                                  18
MS2T 9017
                          2.11
MS2T 9018
                          0.35
                                15.53 15.88
                                                  5
                      T
MS2T 9020
                                                  19
                      T
                          1.91
                                16.11
                                       18.02
MS2T 9024
                      T
                          0.36
                                14.28
                                       14.64
                                                  3
                                16.96
                                                  5
MS2T 9025
                      T
                          0.66
                                      17.62
MS2T 9026
                          7.55
                                17.16 24.71
                                                  5
                      T
MS2T 9027
                      T
                         10.95 14.26 25.21
                                                 15
```

47.7= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C2:			CAMECO			(8)	[GOLD	GRAIN	COUNT]	(3)	MS2T	9015
1	GOLD	GRAIN	WIDTH I	N MIC	rons							
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MIC	RONS							
5	GOLD	GRAIN	LENGTH	IN MI	CRONS							
6	GOLD	GRAIN	DESCRIP	TION								
7	GOLD	GRAIN	WIDTH I	N MIC	RONS							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
			DESCRIP									
		1		M	L	D						
		İ										
				40	60	I						
		!		60	80	I						
			2	20	440	A						

12.83= ESTIMATED WEIGHT OF Au IN MICROGRAMS

~~			GAVEGA AGE	7 (0)	(0)	LOOTE	653 TW	Aorman 1	/10\	wasm	^^1=
			CAMECO OCT		(8)	[GOTD	GRAIN	COUNT	(19)	MSZT	AOTA
			WIDTH IN MIC								
			LENGTH IN MI	CRONS							
			DESCRIPTION	TRAME							
			WIDTH IN MIC LENGTH IN MI								
			DESCRIPTION	CKOND							
			WIDTH IN MIC	POVO							
			LENGTH IN MI								
			DESCRIPTION	CRORS							
7	GOTTO	GIGHTIN	M	L	D						
		:	11	4	U						
			20	80	I						
		•	40	80	Ī						
		!	40	40	Ā						
		:	40	100	Ī						
		,	40	40	A						
		,	40	40							
			40	60	I						
			40	120	I I I						
			40	80	I						
			60	80	A						
			60	120	I/D						
			60	120							
			60	80	I I						
		;	60	100	I						
		:	60	80	I						
		•	60		I/A						
		:	100	180	A/I						
		:	100	120	'n						

ם

25.4= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C216 SOPUCK CAMECO OCT. 7/92 (8) [GOLD GRAIN COUNT] (5) MS2T 9018 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION L D 60 I/A 40 60 80 Ī 100 120 160 240

180

12.74= ESTIMATED WEIGHT OF Au IN MICROGRAMS

C216 SOPUCK CAMECO OCT. 7/92 (8) [GOLD GRAIN COUNT] (19) MS2T 9020 1 GOLD GRAIN WIDTH IN MICRONS 2 GOLD GRAIN LENGTH IN MICRONS 3 GOLD GRAIN DESCRIPTION 4 GOLD GRAIN WIDTH IN MICRONS 5 GOLD GRAIN LENGTH IN MICRONS 6 GOLD GRAIN DESCRIPTION 7 GOLD GRAIN WIDTH IN MICRONS 8 GOLD GRAIN LENGTH IN MICRONS 9 GOLD GRAIN DESCRIPTION D 20 40 40 60 I 40 50 I 40 60 A 60 40 I 80 40 A 40 60 I 40 80 40 40 60 80 60 100 A I 60 80 60 80 A I 100 60 100 A 60 I 80 60

I

A

60

100 140 60 120

2.27= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C2:	16 80	PUCK	CAMECO O	CT.	7/92	(8)	[GOLD	GRAIN	COUNT]	(3)	MS2T	9024
1	GOLD	GRAIN	WIDTH IN	MICE	RONS							
2	GOLD	GRAIN	LENGTH IN	MIC	CRONS							
3	GOLD	GRAIN	DESCRIPTI	ON								
4	GOLD	GRAIN	WIDTH IN	MICE	RONS							
5	GOLD	GRAIN	LENGTH IN	MIC	CRONS							
6	GOLD	GRAIN	DESCRIPTI	ON								
7	GOLD	GRAIN	WIDTH IN	MICE	RONS							
8	GOLD	GRAIN	LENGTH IN	MIC	RONS							
9	GOLD	GRAIN	DESCRIPTION	ON								
		!	W		L	D						
		!	40		120	A						
			40		40	A						
		i	80		120	1						

1.4= ESTIMATED WEIGHT OF AU IN MICROGRAMS

C21	.6 ° 80	PUCK	CAMECO	OCT.	7/92	(8)	[GOLD	GRAIN	COUNT]	(5)	MS2T	9025
			WIDTH I				_		_	•		
2	GOLD	GRAIN	LENGTH	IN MI	CRONS							
3	GOLD	GRAIN	DESCRIP	TION								
4	GOLD	GRAIN	WIDTH I	N MIC	ron8							
5	GOLD		LENGTH		CRONE							
6	GOLD	GRAIN	DESCRIP	MOIT								
7	GOLD	GRAIN	WIDTH I	N MIC	rons							
8	GOLD	GRAIN	LENGTH	IN MI	CRONS							
9	GOLD	GRAIN	DESCRIP	MOIT								
		ı		W	L	D						
				20	40	A						
				40	40	A						
				60	80	I						
				60	60	I						
				60	80	I						

18.51- ESTIMATED WEIGHT OF Au IN MICROGRAMS

1 GOLD GRAIN 2 GOLD GRAIN 3 GOLD GRAIN 4 GOLD GRAIN 5 GOLD GRAIN 6 GOLD GRAIN 7 GOLD GRAIN	LENGTH IN MICRONS DESCRIPTION WIDTH IN MICRONS LENGTH IN MICRONS DESCRIPTION WIDTH IN MICRONS LENGTH IN MICRONS	(8) [GOLD	GRAIN	COUNT]	(5)	M\$2T	9026
ļ	WL	D					
	40 60 40 60 40 60 80 100 220 240	I I A A					

6.74= ESTIMATED WEIGHT OF Au IN MICROGRAMS

2 3 4 5 6 7	GOTD GOTD GOTD GOTD GOTD GOTD	GRAIN GRAIN GRAIN GRAIN GRAIN GRAIN	CAMECO OCT WIDTH IN MI LENGTH IN MI DESCRIPTION WIDTH IN MI LENGTH IN MI DESCRIPTION WIDTH IN MI LENGTH IN MI	ICRONS MICRONS ICRONS MICRONS MICRONS ICRONS	(8)	 [GOTD	GRAIN	COUNT]	(16)	MS2T	9027
9	GOLD	GRAIN	DESCRIPTION	Ŋ							
		1	W	L	D						
		;									
			20	40	I						
		•	20	60	A						
		:	20	80	I						
		:	20	40	I I I I						
		:	40	40	I						
		:	40	40	I						
			40	60	I						
			40	40							
			40	80	A						
			40	80	A						
		:	40	80	I						
			40	80	A						
		;	60	80	I						
			60	100	A/I						
		•	60	60	A						
			120	140	A/I						