LOG NO:	APR 0 1 1993	RD.
ACTION.		
FILE NO:		

1992 EVALUATION

KNIPPLE PROPERTY

Latitude: 56°23'N Longitude: 130°00'W NTS: 104A/5 & 104B/8

Skeena Mining Division

OWNER:

OPERATOR:

Newhawk Gold Mines Ltd. Granduc Mines Limited

Newhawk Gold Mines Ltd. 860 - 625 Howe Street Vancouver, B.C. V6C 2T6

REPORT BY:

Dave Visagie, B.Sc., P.Geo. March 25, 1993

GEOLOGICAL BRANCH ASSESSMENT REPORT

22,832

SU93-430.20

TABLE OF CONTENTS

1.0		INTRODUCTION	1
2.0		LOCATION AND ACCESS	1
3.0		PROPERTY DESCRIPTION	1
4.0		PHYSIOGRAPHY AND VEGETATION	5
5.0		PROPERTY HISTORY	5
6.0		1992 WORK PROGRAM	5
7.0		REGIONAL GEOLOGY	6
8.0		PROPERTY GEOLOGY	8
9.0	9.1 9.2 9.3	GEOCHEMISTRY Field Procedure Analytical Procedure Results	10 10 10 10
10.0		SUMMARY AND CONCLUSIONS	11
11.0		RECOMMENDATIONS	11
12.0		COST STATEMENT: KNIPPLE PROPERTY	12
13.0		STATEMENT OF QUALIFICATIONS	13

LIST OF FIGURES

Figure 1	Property Location - BC	2
Figure 2	Property Location - Stewart Area	3
Figure 3	Claim Map	4
Figure 4	Regional Geology	7
Figure 5	Property Geology	9
Figure 6	Geology of Mineral Hill	In folder
Figure 7	Sample and Assay Results: Au, Ag, Cu, Pb, Zn - Mineral Hill	In folder
Figure 8	Property Sample Location	In folder
Figure 9	Geology and Property Geochem Results - Gold	In folder

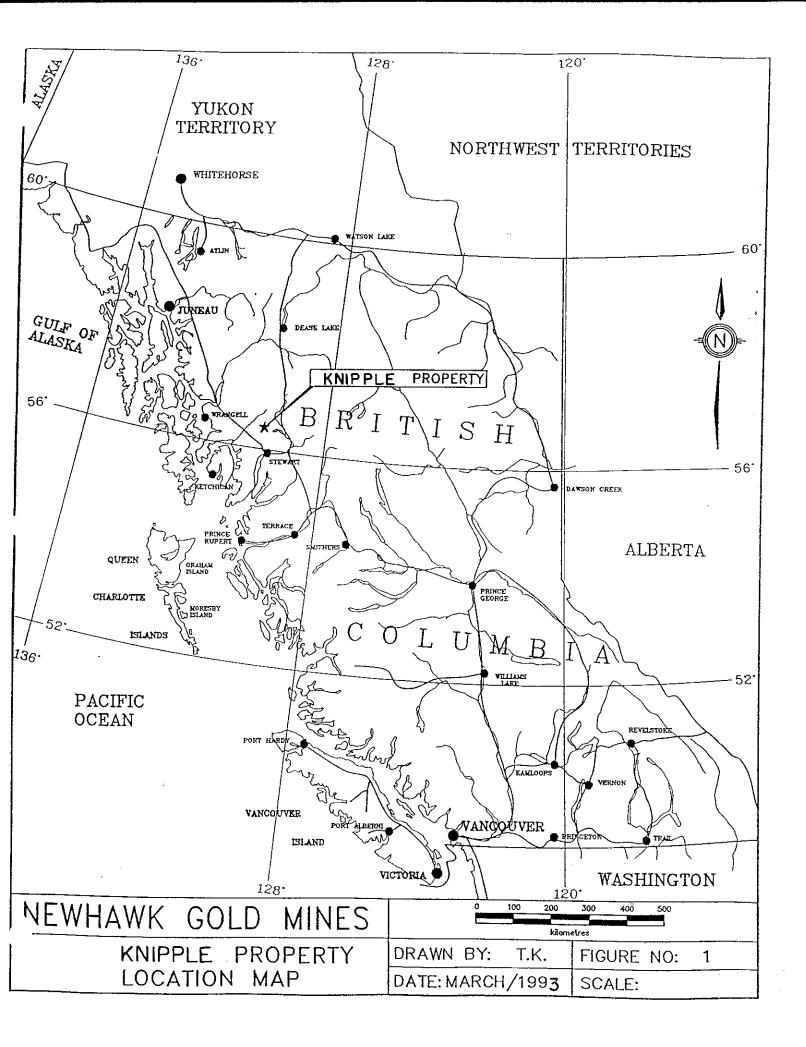
APPENDICES

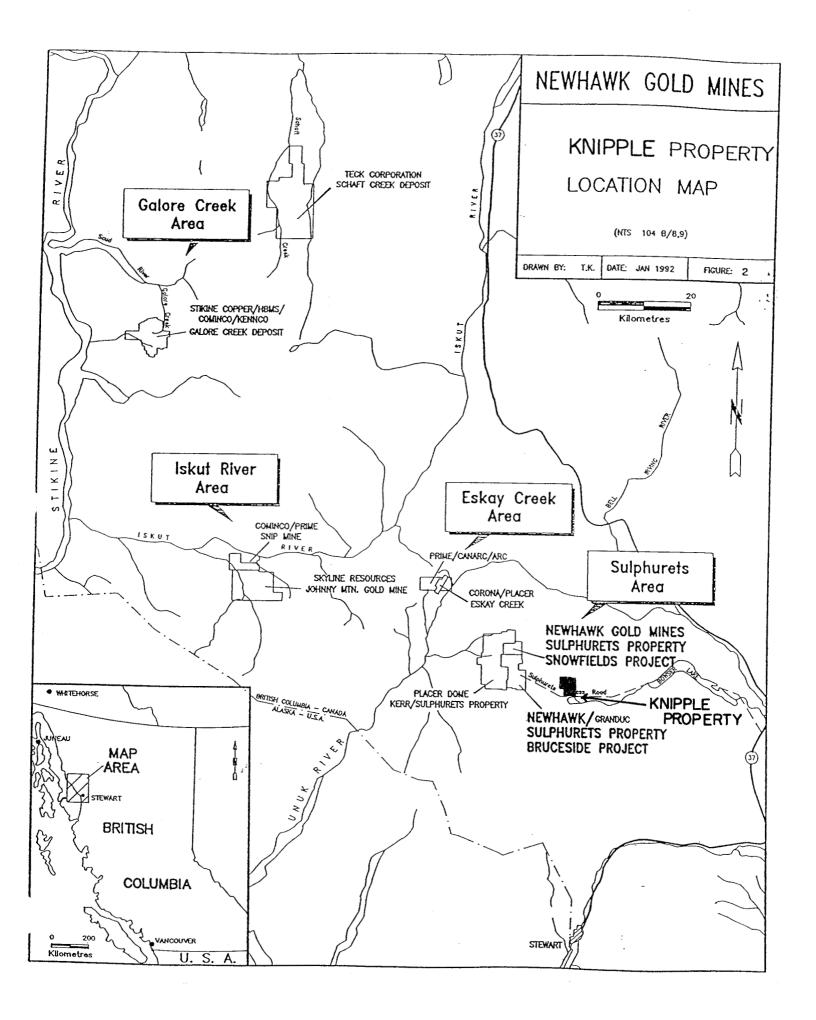
APPENDIX 1	Rock Sample Descriptions	14-23
APPENDIX 2	Assay Results	24-41

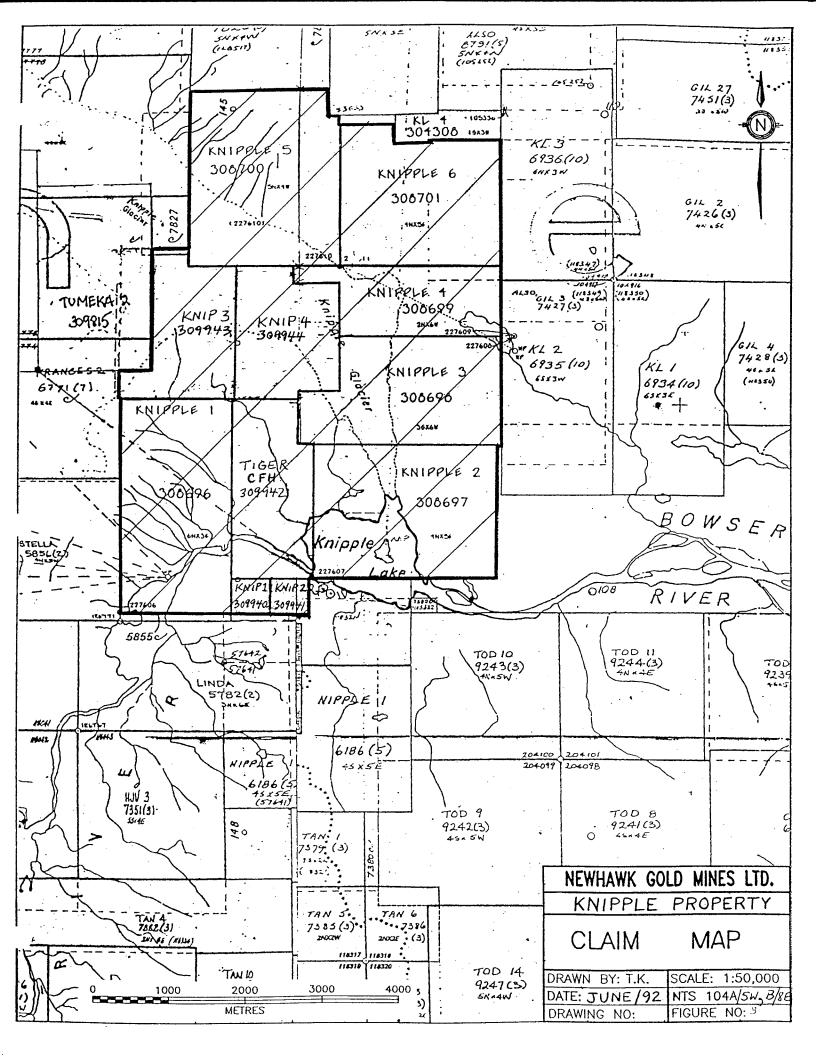
1.0 INTRODUCTION

The Knipple property is situated within the "Golden Triangle" of northwestern British Columbia. The property, consisting of 144 units in 13 claims is located 55 km north of the village of Stewart. Mapping has shown it to be underlain by Lower-Middle Jurassic aged Hazelton Group rocks locally consisting of volcanic breccias and tuffs along with intercalated sediments. Previous exploration programs outlined a 100 x 300 metre area of narrow, up to 0.8 metre wide, galena, sphalerite, chalcopyrite and silver bearing quartz veining. The purpose of the 1993 program was to evaluate the potential of both the veins and the surrounding area by mapping, prospecting and soil and rock chip sampling. Between July 21 and 26, fourteen man-days of labour were spent evaluating the property. As a result a total of 47 rock chip, 95 soil and 8 silt samples were collected and sent for analysis. In addition prior to, during and after the property evaluation a total of 90 man-days were spent rehabilitating 6 km of local roads and a bridge with the purpose of providing access throughout portions of the property for future exploration.

2.0 LOCATION AND ACCESS (Figures 1 and 2)


The property is located within the Coast Range Mountains of northwestern B.C., some 55 kilometres northwest of the village of Stewart approximately 910 kilometres northwest of Vancouver, B.C. It is centred at 129°58'W, 56°25'N. For access purposes supplies were mobilized from Stewart to the Tide Lake airstrip then ferried for 20 km to the property by helicopter. For the 1992 field season Frontier Helicopter's Jet Ranger based at Placer Dome's Kerr camp was used. At the property itself limited road access is available.


3.0 PROPERTY DESCRIPTION (Figure 3)


The Knipple property consisting of 144 units in 13 claims has been split into two groups: East and West Knipple. The property is comprised of the following claims:

Group	Claim_Name	Record #	<u>Units</u>	Expiry Date
West	Knip 1	309940	1	May 27, 1996
West	Knip 2	309941	1	May 27, 1996
West	Knip 3	309943	12	May 27, 1996
West	Knip 4	309944	12	May 27, 1996
West	Tiger CGH	309942	10	May 27, 1996
West	Knipple 1	308696	18	April 4, 1996
East	Knipple 2	308697	20	April 4, 1996
East	Knipple 3	308698	18	April 4, 1996
East	Knipple 4	308699	12	April 4, 1996
East	Knipple 5	308700	20	April 4, 1996
East	Knipple 6	308701	20	April 4, 1996

The claims all occur within the Skeena Mining Division and are 60% owned by Newhawk Gold Mines with the remaining 40% being held by Granduc Mines. Newhawk is the project operator

4.0 PHYSIOGRAPHY AND VEGETATION

The Knipple property occurs immediately to the north of Knipple Lake. Topography is typical of the Coast Range Mountains with steep glaciated U-shaped valleys being the norm. Elevations range from 460 metres at Knipple Lake to in excess of 1,100 metres at some of the ridges. Upper portions of the claims are rugged while sections around Knipple Lake are relatively moderate.

Heavy alders and brush cover many of the slopes with the timberline occurring between 800 and 1100 metres.

The climate is typical of the north coast mountains with frequent precipitation throughout the year with the winters tending to be cool and wet with heavy snowfall accumulation.

5.0 PROPERTY HISTORY

The Knipple property has been intermittently explored since the mid 1960's. The following is a summary of the published exploration activities:

- 1964-66 Regional mapping by the B.C.D.M. led to the discovery of silver and base metal mineralization near Knipple Glacier.
- 1980-82 The Knip property was optioned to E & B Exploration by Elan Exploration Ltd who undertook a program consisting of limited prospecting, sampling and geological mapping before returning the property to Elan.
- 1983 The property was optioned by Teuton Resources Corp. who completed a prospecting and sampling program that resulted in the discovery of argentiferous quartz veins in an area referred to as Mineral Hill located immediately to the north of Knipple Lake.
- 1984-86 Teuton completed an airborne EM and Mag survey over the claim along with trenching, sampling, mapping and prospecting.
- 1987 Teuton optioned the property to Crystal Cove Resources Ltd. who completed limited bulk sampling of the veins and a small drill program.
- 1992 The property was staked for Newhawk and Granduc.

6.0 1992 WORK PROGRAM

The purpose of the 1992 program was to evaluate the quartz veins located at Mineral Hill and to determine the potential of the readily accessible ground. To accomplish the above the following were completed:

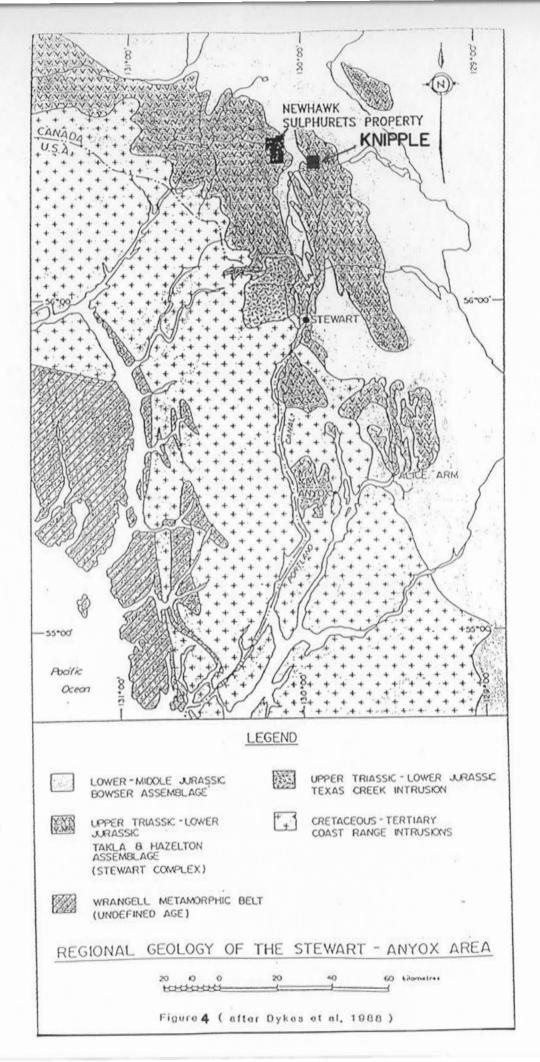
- i) detailed mapping on a grid basis of Mineral Hill at a 1:1000 scale,
- ii) the taking of 36 rock chip samples from Mineral Hill,
- iii) the collecting of 11 rock chip, 8 silt and 95 soil samples from elsewhere on the property.

The geologic evaluation of the property required fourteen man-days of labour. All samples were sent to Vangeochem Labs, Vancouver, B.C. for analysis.

Prior to, during and after the geologic work a program consisting of 6.0 km of road rehabilitation and bridge repair was completed on the property to provide access for future work programs. Equipment used for this maintenance included a Caterpillar D-7 bulldozer, a Sullivan 750 CFM compressor and an Ingersoll Rand CM 350 air trac. To complete the road and bridge up-grading required 90 man-days of labour.

The personnel employed to complete the above program consisted of the following:

Dave Visagie	Senior Geologist
Brian Malahoff	Contract Geologist
Barry McDonough	Contract Geologist
Dave Green	Cat/Air trac/Compressor operator
Shaun Edwards	Labourer
Bob Eckess	Labourer


7.0 REGIONAL GEOLOGY (Figure 4)

The Knipple property occurs immediately to the east of the Coast Crystalline Complex within the westernmost portion of the Bowser Basin. The underlying rocks belong to the Mesozoic Hazelton Group rocks and have been intruded by Cenozoic and Mesozoic aged intrusive plugs. At the base of the Hazelton Group is the Lower Jurassic marine (submergent) and nonmarine (emergent) volcaniclastic Unuk River Formation. This is overlain, at steep discordant angles, by a second, lithologically similar, Middle Jurassic volcanic cycle (Betty Creek Formation), that in turn is overlain by Middle and Upper Jurassic non-marine and marine sediments, with minor volcanics, of the Salmon River and Nass Formations.

The oldest rocks in the area belong to the Lower Jurassic Unuk River Formation which forms a north-northwesterly trending belt from Alice Arm to the Iskut River. It consists of green, red, and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

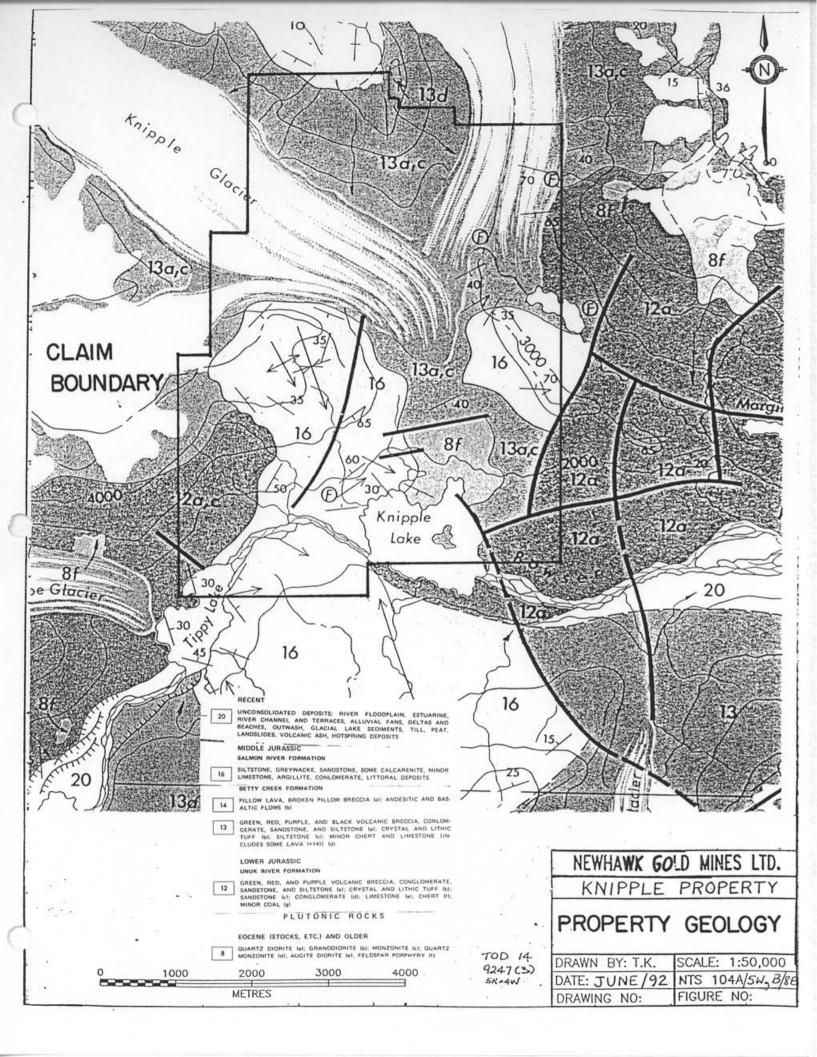
The Betty Creek Formation is another cycle of trough-filling submarine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone, and minor crystal and lithic tuffs, chert, limestone and lava. The overlying Salmon River Formation is a late to post volcanic episode of banded , predominantly dark coloured, siltstone, greywacke, sandstone, intercalated, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

According to Grove the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcances subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone. Evidently, in regional terms, submarine spreading-line basaltic lava platforms marked by massive sulphide "black smoker" features gave way to resubduction-melt, violent, feldspathic volcances along or parallel to trough lines. Violent caulderic collapse subsidence and self erosion separated the two major volcanic cycles (Unuk River, Betty Creek) at steep angles. The episodes settled to gentler tuff-distal sedex precipitate sulphides episodes (Salmon River) and back-arc and continental sedimentation (Salmon River) with occasional intercalated flows and minor fumarolic hot spring activity.

Coast Plutonic Complex granodiorite largely engulfs the Mesozoic volcanic terrain to the west. East of these, in the claim area, smaller intrusive plugs ranging from quartz monzonite to granite to highly felsic, that are, in all probability, related late phase offshoots of the Coast plutonism, while others are synvolcanic, and others Tertiary. Of particular interest are Eocene feldspar porphyry stocks appearing intermittently along the eastern margin of the Stewart Complex. These stocks often contain significant sulphide mineralization and typically feature argentiferous veins developed in post-crystallization fractures and breccia zones.

Double plunging, northwesterly trending synclinal folds of the salmon river and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-overthrusts (Tippy Lake, Knipple Lake) onstrikes parallel to the major fold axes, cross-axis steep wrench faults which locally turn beds.

8.0 PROPERTY GEOLOGY (Figures 5 and 6)


The oldest unit in the claim area are Lower Jurassic aged Unuk River Formation rocks exposed in the northeast corner of the Knipple 3 claim and in the Glacier toe area immediately north of Knipple Lake. This unit is generally in fault contact with Middle Jurassic rocks of the Betty Creek Formation including green, purple and red volcanic breccia, conglomerate, sandstone and siltstone, crystal and lithic tuffs. Augite porphyry flows and fossiliferous limestone are found in the Betty Creek at various locations throughout the property. To date all of the significant mineral occurrences on the property occur within Betty Creek Formational rocks. Middle Jurassic Salmon River Formation rocks consisting of siltstones, greywacke, sandstone, argillite, conglomerate and littoral deposits unconformably overlie the Betty Creek Formation. Semi-massive bands of pyrite ranging in width to two centimetres occur within the Salmon River Formation. Eocene coarse-grained feldspar porphyry intrusive occur throughout the property.

Structurally, the sediments on the property have been folded with predominantly northwest trending fold axes. Irregular warping has occurred due to the intrusion of the Eocene feldspar porphyry.

A major northwest-southeast trending fault cuts the Eocene intrusive resulting in approximately 100 metres of right lateral movement. Other faults on the property cut the rocks with varying strike directions and movement.

Detailed mapping and trenching at Mineral Hill showed interbedded andesitic flows and tuffs and breccia of the Betty Creek Formation to host narrow, sulphide bearing quartz veins. The andesitic rocks are typically fine grained, light to dark green coloured, feldspar porphrytic with calcite and sometimes quartz filled amygdaloids. The rocks have been moderately to strongly chlorite-carbonate altered. The tuffs are highly gossanous with strong limonite alteration occurring throughout in association with zones of faulting and shearing. The breccia is volcanic in origin and has been extensively carbonate altered.

Trenching of several pronounced lineaments at Mineral Hill exposed a series of widely spaced, northeasterly trending, steeply dipping, argentiferous, quartz-carbonate sulphide veins ranging in width from a few centimetres to 0.8 metres in width. Individual veins are up to 100 metres long and exhibit pinch and swell characteristics. These veins are in turn cut by northwest trending argentiferous quartz-calcite veins of much smaller dimension.

Typically the sulphide mineralization consists of semi-massive galena with lessor sphalerite, chalcopyrite, pyrite and tetrahedrite generally within small pods and clots within a quartz-carbonate gangue. The northeast trending set of veins are in part cut-off by an east-west trending fault.

9.0 GEOCHEMISTRY

All samples were sent to Vangeochem Labs, 1630 Pandora Street, Vancouver, B.C. for analysis by I.C.P. with gold being determined geochemically. Rock samples that contained greater than 100 ppm Ag were assayed.

9.1 Field Procedure (Figures 7 and 8)

Rock chip, soil and silt samples were collected during the course of the property evaluation. Rock chip samples consisting of both grab and measured width were taken from outcrop using a hammer and moil, identified, described and stored in plastic bags. Soil samples were collected at 25 metre intervals along a road side traverse located over a gossanous area. The samples were taken, where possible from the "B" horizon, identified then stored in kraft paper sample bags. In several instances, due to the lack of suitable material "C" horizon samples were taken instead. Silt samples, collected during a prospecting traverse, were taken from the active portion of a stream, using a trowel, stored in kraft paper sample bags and identified. Prior to shipping both the soil and silt samples were dried. The sample locations are plotted on figures 7 and 9 while the rock sample descriptions are listed in Appendix 1.

9.2 Analytical Procedure

For 30 element I.C.P. analysis a 10 gram sample is digested with 3 ml of 3:1:3 nitric acid to hydrochloric acid to water at 90°C for 1.5 hours. The sample is then diluted to 20 mls with demineralized water and analyzed. The leach is partial for the following elements: Al, B, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sb, Ti, U and W.

For gold determination by atomic absorption a 10 gram sample that has been ignited overnight at 600°C is digested with hot dilute aqua regia and the clear solution obtained is extracted with Methyl Isobutyl Ketone (MIBK). Gold is determined in the MIBK extract by atomic absorption using a background detection (detection limit 5 ppb).

For samples that returned values greater than 100 ppm Ag by I.C.P. analysis the sample was fire assayed using a 1/2 assay ton sample.

The results are listed in Appendix 2.

9.3 Results (Figures 9)

Assay results for the samples taken in the Mineral Hill area show anomalous silver values to coincide with significant lead, zinc and copper values. In general the veins are narrow, with the widest sample averaging 20.85 opt Ag, 0.88% Cu, >2.00% Pb and >2.00% Zn over 0.70 metres. Gold values are all less than 0.030 opt Au.

Soil sample results for silver, copper, lead and zinc failed to outline any significant anomalous trends. Gold values are generally low throughout with only a few erratics containing >100 ppb Au with the maximum value being 170 ppb Au.

Silt sample results returned low values for Cu, Pb, and Zn. In addition gold values are generally low, less than 70 ppb Au, with one sample assaying 170 ppb Au, being highly anomalous. The cause of this spot high is not presently known.

10.0 SUMMARY AND CONCLUSIONS

Fourteen man-days were spent evaluating the Knipple property presently held by Newhawk Gold Mines and Granduc Mines. In addition 90 man-days were spent rehabilitating the roads and a bridge on the property for the 1992 and future programs. The exploration program showed the property to be primarily underlain by Hazelton Group andesitic volcanics and intercalated sediments.

Narrow sulphide bearing, argentiferous quartz-carbonate veins occur within the volcanics. In general the mineralization consists of semi-massive pods and clots of galena and sphalerite along with lessor chalcopyrite and pyrite. The best chip sample averaged 20.85 opt Ag, .88% Cu, >2.00% Pb and >2.00% Zn over a 0.80 metre width. In all samples gold values are insignificant being less than 0.030 opt. In addition to being narrow the veins appear to have limited strike length with the longest vein having been traced for 100 metres. Due to the size and distribution of the veins the potential to develop significant reserves at mineral hill appears to be limited.

Soil and silt sample results failed to locate any significant anomalous trends for silver, copper, lead and zinc. Gold values are generally low with only spot erratic highs assaying between 100 and 300 ppb being detected. The source of these erratic high values has not been located.

Elsewhere on the property several gossanous areas have been located however due to the lack of funding they have not been evaluated.

11.0 RECOMMENDATIONS

It is recommended that no further work be completed in the Mineral Hill area as there appears to be little potential to locate significant reserves that would be feasible to mining. Future exploration programs should be concentrated on evaluating gossanous zones located on the property.

12.0	COST STATEMENT	KNIPPLE PROPERTY

1.	Labour				\$15,290.00
-	Visagie, geologist	2 days @ \$295/day	590		+10,100100
	Malahoff, geologist	6 days @ \$225/day)	
	McDonough, geologi				
	Green, cat operator	60 days @ \$150/da			
	ckess, labourer	15 days @ \$100/da	•		
	n Edwards, labourer	15 days @ \$100/da	-		
5	TOTAL	110 man-days	.) 2000		
		· · · · · · · · · · · · · · · · · · ·			
2.	Room & Board				\$11,100.00
	110 man-days @ \$1	00/dav			
	·				
3.	Transportation				\$13,290.00
i.	Airfare		6	500	
	Malahoff: Vancouve	r-Stewart return			
ii.	Helicopter		8,1	.90	
	July 15 1.0 hrs	July 21 0.5 hrs	July 23	0.4 hrs	
	July 26 0.6 hrs	Aug. 5 0.5 hrs	Aug. 12	0.9 hrs	
	Aug. 13 1.1 hrs	Aug. 24 1.0 hrs	Aug. 26	1.0 hrs	
	Sept. 2 1.3 hrs	Sept. 3 0.8 hrs	Sept. 8	0.8 hrs	
	Sept. 20 0.8 hrs	Oct. 6 1.0 hrs			
	TOTAL	11.7 hrs x \$700/hr			
iii	Truck rental		4,5	600	
	60 days @ \$75/day				
4.	Supplies & Equipr				\$500.00
	Equipment rental, s	ample bags, flagging, rac	lio rental, e	etc.	
_					Å
5.	Assaying			_	\$2,330.36
Type	Samples	Prep. Geochem A		-	ICP Anaylsis
<u>Type</u> Rock	Samples 47	3.00 7.50		<u>Ag</u> 8.50	ICP Anaylsis 6.50
<u>Type</u> Rock Soil	Samples 47 95	3.007.501.005.50		-	ICP Anaylsis 6.50 6.50
<u>Type</u> Rock	Samples 47	3.00 7.50		-	ICP Anaylsis 6.50
Type Rock Soil Silt	<u>Samples</u> 47 95 8	3.007.501.005.501.005.50		-	ICP Anaylsis 6.50 6.50 6.50
<u>Type</u> Rock Soil	Samples 47 95	3.007.501.005.501.005.50		-	ICP Anaylsis 6.50 6.50
Type Rock Soil Silt 6.	Samples 47 95 8 Expediting & Freig	3.00 7.50 1.00 5.50 1.00 5.50 1.00 5.50 ghting 3.00		-	ICP Anaylsis 6.50 6.50 6.50 \$500.00
Type Rock Soil Silt	Samples 47 95 8 Expediting & Frei Heavy Equipment	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental	15 x	8.50	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00
Type Rock Soil Silt 6.	Samples 47 95 8 Expediting & Frei Heavy Equipment i. Compressor	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00
Type Rock Soil Silt 6.	Samples 47 95 8 Expediting & Frei Heavy Equipment	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental	15 x : \$112.75/I	8.50	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00
Type Rock Soil Silt 6. 7.	Samples 47 95 8 Expediting & Frei Heavy Equipment i. Compressor ii. Bulldozer	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00
Type Rock Soil Silt 6.	Samples 47 95 8 Expediting & Frei Heavy Equipment i. Compressor	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00
Type Rock Soil Silt 6. 7. 8.	Samples 47 95 8 Expediting & Frei Heavy Equipment i. Compressor ii. Bulldozer Report	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00 \$1,000.00
Type Rock Soil Silt 6. 7. 8. 9.	Samples 47 95 8 Expediting & Frei Heavy Equipment i. Compressor ii. Bulldozer Report Office overhead	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 \$500.00 \$31,725.00 \$1,000.00 \$3,000.00
Type Rock Soil Silt 6. 7. 8. 9. SUB-1	Samples 47 95 8 Expediting & Freig Heavy Equipment i. Compressor ii. Bulldozer Report Office overhead TOTAL	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x 40 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00 \$1,000.00 \$3,000.00 \$50,185.36
Type Rock Soil Silt 6. 7. 8. 9.	Samples 47 95 8 Expediting & Frei Heavy Equipment i. Compressor ii. Bulldozer Report Office overhead	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x 40 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 \$500.00 \$31,725.00 \$1,000.00 \$3,000.00
Type Rock Soil Silt 6. 7. 8. 8. 9. SUB-1 10.	Samples 47 95 8 Expediting & Freig Heavy Equipment i. Compressor ii. Bulldozer Report Office overhead TOTAL Management fee (1	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x 40 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00 \$1,000.00 \$3,000.00 \$3,000.00 \$50,185.36 \$5,018.54
Type Rock Soil Silt 6. 7. 8. 9. SUB-1	Samples 47 95 8 Expediting & Freig Heavy Equipment i. Compressor ii. Bulldozer Report Office overhead TOTAL Management fee (1	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x 40 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00 \$1,000.00 \$3,000.00 \$50,185.36
Type Rock Soil Silt 6. 7. 8. 8. 9. SUB-1 10. TOTA	Samples 47 95 8 Expediting & Freig Heavy Equipment i. Compressor ii. Bulldozer Report Office overhead TOTAL Management fee (1	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x 40 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00 \$1,000.00 \$3,000.00 \$3,000.00 \$50,185.36 \$5,018.54
Type Rock Soil Silt 6. 7. 8. 9. SUB-1 10. TOTA Cost d	47 95 8 Expediting & Frei Heavy Equipment i. Compressor ii. Bulldozer Report Office overhead TOTAL Management fee (1) L	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x 40 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00 \$1,000.00 \$3,000.00 \$3,000.00 \$50,185.36 \$5,018.54
Type Rock Soil Silt 6. 7. 8. 9. SUB-1 10. TOTA Cost d East K	Samples 47 95 8 Expediting & Freight Heavy Equipment i. Compressor ii. Bulldozer Report Office overhead TOTAL Management fee (1) L istribution:	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x 40 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00 \$1,000.00 \$3,000.00 \$3,000.00 \$50,185.36 \$5,018.54
Type Rock Soil Silt 6. 7. 7. 8. 9. SUB-1 10. TOTA Cost d East K West F	Samples 47 95 8 Expediting & Freight Heavy Equipment i. Compressor ii. Bulldozer Report Office overhead TOTAL Management fee (1) L istribution: inipple \$37,319.50	3.00 7.50 1.00 5.50 1.00 5.50 ghting rental 10 days x 10 hrs/day x 40 days x 10 hrs/day x	15 x : \$112.75/I	8.50 nr 11,725	ICP Anaylsis 6.50 6.50 6.50 \$500.00 \$31,725.00 \$1,000.00 \$3,000.00 \$3,000.00 \$50,185.36 \$5,018.54

13.0 STATEMENT OF QUALIFICATIONS

I, D.A. Visagie of 860 - 625 Howe Street, Vancouver, British Columbia, do hereby declare that:

- 1. I graduated from the University of British Columbia with a Bachelor of Science Degree, majoring in Geology, in 1976.
- 2. I am a registered member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. I have been steadily employed in the mining industry since 1976 and have been employed by International Northair Mines Ltd. as Senior Geologist since January 1990.
- 4. The work undertaken on the Knipple group was under my supervision.

Dated at Vancouver, British Columbia, this 25th day of March, 1993.

APPENDIX 1

ROCK SAMPLE DESCRIPTIONS

Date	Sample	Туре		Location				Sample D	ata			Assa	y Data][]	ler <u>B. Mahhaff</u>
	No.		Claim	Northing	Easting	Zone	No.	From (m)	To (m)	int. (m)	Cu Cu		Ag	Alteration	
~1-122/92	18651	Rock				Kripple.		0	,17	.17	9	o	57.2000t	STR. SIL STR. CHL	Qtz+carb veno
														CARO.	Veinlet Pinch and
			· · · · · · · · · · · · · · · · · · ·				ļ								Swell Seni-massive
															to magnine Gran 1-39
							·							-	CPY, 1% Tet
11	18652	Rack				μ		0	,34	.34	2	0	1520 of	5R. 61 570 - 112	Stat Cult Vain
										·····		-	·	GP. TFFC.	Pirchard Ewall
															Semi massive Oc.
														-	10/1 CP1, 70+7
ţı	18653	Ra.K				15	· · · · · · · · ·		10					6-0 (00%	Tr sp'
	18652	Kor.K						$+ \circ$,40	.40	2	0	35	STR CAPE	Qt-Contr Ver 7
														EH4	Vien BX-, mali
														1	str. Ling Fe No
۲	8654	RrK				1		0	.20	.20	10	2	64200	STR SIL STR CAPIB	Atz-Carb. Vei B:
														MOD CHIZ,	1-2% CUI, Tr Ga
	7/55	0													5p? . STR. Lim Fe
	18655	Rack				<i>[l</i>		$ \mathcal{O} $	•/4	-14	3	<u>></u>	2.2	STR SIL. TTR CARB STR CHL.	Otz-Carls. Ven
															Bie No usible
<i>!</i> ?	18656	Rock				ji		0	,08	,08	300	$\overline{\mathbf{o}}$	2.71 opt	STR SILA	
_					-					100		<u> </u>	200 1 · Ogyi	STR CARIS	at - Coult Ventet
															fractures. STR. Lim.
															I now ad along van
															Massic Gala 1-2%
		<u> </u>						-							5p? Tet? '

and a second s

and a supportant and a support

1

· *** - :**:

Section States

ne Orthai i Roup		PLE					Project	KNIP	P/E P.	ROPERTY	J			Samp	ler_B. Malatoff
Date	Sample	Туре		Location				Sample D				Assay	Data	7	Sample Description
-1 1	No.	~	Claim	Northing	Easting	Zone	No.	From (m)		Int. (m)	Cu ef		Ag	Alteration	•
S. J. Z. hz	18657	-Rack				Knipple.		\Box	. 19	.19	91	0 15	.90	STRSIL	Qtz-Carb Ven sen
													1	STRCHL.	nouse to ansain Ba.
															7.395 AL Tr. So
11	18658	Rack				1 1		0	,50	,50	21	0 2	21000	STR SIL	Of City Vie
												~ ^		STR SIL. STR. CARS. STR. CHL.	BX No visib
														-	1 1
iv (16659	Rate				1/		\cap	.13	.13				STR SIL	Sulphides
	1002.	-F-55-1(12	1-12	10	<u>, 12</u>	4pp		Otz-Conb. Ven
							<u> </u>							-	By infault or sta
			<u> </u>											-	and Nousible
-, , , , , , , , , , , , , , , , , , ,	10/10	<u> </u>													Sulphicles
July23/12	18660	Rock						\mathcal{O}	.34	.34	40	<u> 16</u>	25 at	STR SIL. SPECAPE SPECIL	Otz-Carle inc.
														SPALL.	Surly, Pirelad
															Sincle Max width
															is swell a .34.
														1	Massive Gen 1-2% CA
11	18661	Rak				1.		\mathcal{O}	.20	.20	20	2 10-	20.11	STE SIL.	Tr. 10 , 1-27- Sp
												ייאן ב	37.0	WE CARB.	3tz - min Cart. V
															Sen - mossive Ga -2
															Cp. 2% 5p. T/T.
														∦	Mod Ven BX
· ·	184-2	010												1	Mod. Lim Fe.
	1040/	Rock						0	.70	.70	10	2 29	85apt	STRSIL STRCAPS STRCHL	_ Otz-Cale Vein
														STRCHIZ	in trult zoo.
															Massive (TTA 1-29/00
														-	To maluchite 1-201 lot
															Tr SP
	8663	Roli				ľ		\bigcirc	. 44	.44	0	171	Sat	Ste. SIL.	Ote-Cart van Br
				Τ							/``			ĺ├	
															Tr COV

- Cappente aux communes communes - Ecologies como La communes No. Contraction

•••

No. Claim Northing Easting Zone No. From (m) To (m) Int. (m) Cu Alto Alteration Alteration Stronge Alteration Stronge Alter	Date	Sample	Туре		Location				Sample D	<u>25 Pl</u>	<u> </u>		A	ay Data	<u> </u>	B. Mallar
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · · · · · · · · · · · · · · · ·	No.		Claim		Easting		No.		To (m)	Int. (m)	Cu	Au	Ag		Sample Description
IB667 Park II 1866 Rak II 1866 Rak II 1866 Rak II 1866 Rak II 1966 Rak	J. 1. 23/12	18664	forl				Kr. Erd		0	2~	2m		10	1.4 p.pr	SEP 9	rich sed writ
18665 Raki " 0 A0 30 16200 Montant Other Control of the second of the secon																3-5% 10 - Py to
$\frac{1}{1} \frac{1}{1846} \frac$	1	18665	Raic))		0	,40	.40		30	11.52gpt	Mont. CHL mod Garb.	stringer. Highly fierta
$\frac{1}{10000000000000000000000000000000000$	•											· · · · ·				Moch. New Brx.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							· · · · · · · · · · · · · · · · · · ·				·					Lingte along yein + pyrin richtetts
11 18/38 Rock 11 0.35.35 10 2.3pm Tresil Ota veria Veria 11 18/38 Rock 11 0.20 .20 20 13.5pm Stresil Ota veria Veria 12 18/38 Rock 11 0.20 .20 20 13.5pm Stresil Ota veria Veria 13 18/38 Rock 11 0.20 .20 20 13.5pm Stresil Ota veria Veria Veria 1 14 18/38 Rock 11 0.20 .20 20 13.5pm Stresil Ota veria Veria 1 15 19/0 Stresil Ota veria Veria 1 16 19 Rock 11 0.20 .20 20 13.5pm Stresil Ota Veria 1 17 ->19/0 18 18/19 Rock 11 0.20 .20 20 20 13.5pm Stresil Ota Veria 1 19 19/0 Rock 11 0.20 .20 20 13.5pm Stresil Ota Veria 1 19 19/0 Rock 11 0.20 .20 20 13.5pm Stresil Ota 1 10 19/0 Rock 11 0.20 .20 20 13.5pm Stresil 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	h.	18666	Rock						\bigcirc	.7	.7n		20	.Appr	STRCAPB	BX Carb. Ver
$\frac{10.30}{10.30}$ Nor $\frac{10}{10}$ $\frac{10}{$									0							Ota Vair a Vanbe
" BURG Role II CORRECT TO I SP CPY		18(-66)	K&K)!		0	.20	.20		20	13.5 ₂₂	STRAL	1-21 Prebact
	11	18669	Rak				51		0	.20	20		20	2.71 ort	STRAL	Fanth Sp. Cpy.

ne Orthai Roup	SAM	PLE CRIPTION		·			Project .	KNIPP	ve ff	DEET	1	_		Samp	sier_B_Mahloff
Date	Sample	Туре		Location				Sample D	ata			Ass	ay Data		Sample Description
	No.		Claim	Northing	Easting	Zone	No.	From (m)	To (m)	int. (m)	Cu	088	Ag	Alteration	
5-1-2542	18670	lai				To was		\square	.10	.10		10	-3ppn		Dark nice to black
															fine arrived Ara.
															1-3% the PV
,1		<u> </u>													bards 1-2cmili
	18671	Rock				11		0	.5m	-5m		10	20.1ppr	WKED)	Light gran Ardon
к.														· _	Jui 11-1% P
	18672	fals	ļ			11		0	/Sm	,5m		20	.2ppn	Thoo.siL	STR. I'm FC
															Brack . Mabra
															the transferred.
•						11								·	Tr-19- P. Mer.BN
	18:22	Ym1-		· · · · ·		1°		\Box	m.	n		20	-4ppn		Archalo Paleina
				· · · · ·											Sit E in Facto
													<u> </u>		No as and council
	18444	L. L.		++		Clauser			1			10			
	ICCTER	Keck				Clacies Port		\bigcirc	Im	Im	_	40	·lppn		Port gray black
															Agillit to siltable
	186575	Rack				\\		\bigcirc	1.	- <u>_</u>		30	2		Rich The
	IEDIP-	Tap		+					Im	m.		∞	·2ppm		for the to silke
															1 1 L I
															we have
												·····			
1															·····
															· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·													· · ·
			L												······································

)

anne site states and anne sand

n**age**estelegen

8	Sample	CRIPTION Type		Location			Project]	[Ass	v Deta	Samp	ler
	No.		Claim	Northing	Easting	Zone	No.	From (m)		Int. (m)	Cu	AHA	Ag (ym)	Alteration	Semple Description
4 22/4	13701	Grob		0105	145E		1					30	· 3pp		Gassenaus 2006
/					1										Gosserous Poplay
							1		1						alt'n and 2-3%
	+								+						
	+								·						p, (asp)
	+					<u>.</u>	╢								
						·									
	13702			0:05	2205							10	<.1 p.M		15-20cm wide :
															(comm) 9k ver in
															(comm) 9 k voir à Chl - Vein becomes
															gosseners to (gos) So
	13703			0475	245E	· · · · · · · · · · · · · · · · · · ·		 				110	. 8 petri		10cm wide pinch and swilling gh & is minor chlorite In galena - loriz kost contact
	-										-				and swelling gh &
															in usinos chlorite.
															4 galena -lorg
															least contect
	127011	· · · · · · · · · · · · · · · · · · ·													
	13704			0655	QUOE							Ø	17 ppm		Alorg Strike g 787
···· - •	·····														0.5-19. ga, fr Ta
· ····				+											to cpy (?) within
								L							Alory shine y #187 D.5-19. ga , A Ta H Cpy (?) within D.Im wide vein.
				-											
	18705			0535	7121=							10	7		
	10100			حورن	2100					<u> </u>		IV.	.7 ₂₂ m		2.3. M. wide pinching Swelling q. v. Jost G. South of blowsont. To gi Doss A. Tet.
								+						-{}{	Swelling q.v. justige
														-	South of blowont. To gi
								L							Poss H. Tet.

• •

							1997 - 1997 -				• .			ч и И	na series de la constante de la Constante de la constante de la Constante de la constante de la	•
A		PLE RIPTION					Project	K_M	PPLE C	AKE				0	f.2. Ipler <u>B.McDanguan</u>	n 5
	Sample	Туре][Location	·····][]	Sample						Sam		<u></u>
	No.	·····	Claim	Northing	Easting	Zone	No.) To (m)	Int. (m)	Cu		ay Data	Alteration	Sample Description	
	18706	Grab		0555	190E							nď	C. Ippm		D.1 m wide 9 u To chi, some goss (sider te?)	
						-							<u></u>	-	to chi, some goss	
_				<u> </u>											(Siderik?)	
	18707			0455	13BE							1				
											r		.7ppm		1-lighty Scherke-pyrite	
								1	-						1-1.4 2 50 00 - 241.4 a 1-4 ed and es. + + (??) 15-20%, + c	ا يونغ
	19									 					(·) .1- 15-20%, H e	<u>ey(</u>)
-	13703			3955	155E					-	F	50	50.1701t		Sande toward -	
_			ļ								~	~			O 3 miles in all to	
+						······									1-27. cp- 0.5-1% mal	d b
+															1-2% go ta-0.5% 7.	F.
+														l	Sample to son from 0 30 vern in old the 1-270 cp, 05-19, mal 1-270 ge, tr-0.5% 7. th pg	
ł	18.709			1005	177E						M	D	23.1ppn		0.2m wide at blo	want.
-	· · · · · · · · · · · · · · · · · · ·														0.2m wice gt blo man chi, poss Tet within vin	
-	· · · · · · · · · · · · · · · · · ·														within vin.	
	18710			1005	190E							_				
+			** ***** ***** *		<i>110 c</i>						K		16. 0ppm		0.25 m wide bar	2
T															9 h vein	
-	·															
÷-																

.

No. Claim Northing Easting Zone No. From (m) To (m) Int (m) Ou Attention Attention $(2/2)^2$ (B711) Grado (SOS) (SSS) <th>ate</th> <th>Sample</th> <th>Туре</th> <th></th> <th>Location</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>,</th> <th></th> <th>KNIPI Sample D</th> <th> ·····</th> <th></th> <th></th> <th>y Data</th> <th></th> <th>pler <u>BH</u> DONOU</th>	ate	Sample	Туре		Location	· · · · · · · · · · · · · · · · · · ·	,		KNIPI Sample D	 ·····			y Data		pler <u>BH</u> DONOU
187/12 1585 030E 50 13.7 pm 0.25 m pinchin 187/12 1585 030E 50 13.7 pm 0.25 m pinchin 187/12 1585 030E 50 13.7 pm 0.25 m pinchin 187/12 1585 030E 50 13.7 pm 0.25 m pinchin 187/12 1585 030E 50 13.7 pm 0.25 m pinchin 187/13 1505 037 E 780 14.7 pm 0.3 m m/e and 187/13 1505 037 E 780 14.7 pm/e 0.3 m m/e and 187/13 1505 037 E 780 14.7 pm/e 0.3 m m/e and 187/13 1505 037 E 780 14.7 pm/e 0.3 m m/e and				Claim			Zone	No.		Int. (m)	Cu			Alteration	Sample Description
Image: state of the s	22/92	/8711	Grab		1505	DISE						540	.2.00~		DIM wide discont.
18712 1585 030E 50 13.7 pm - 0.25 m pinching 2 3 0 13.7 pm - 0.25 m pinching 20 mile 2 3 0 13.7 pm - 0.25 m pinching 20 mile															sh-carb usi - and
187/2 1585 030E 50 13.7 pm - 0.25 m pinching 2 3 0 13.7 pm - 0.25 m pinching 20 mile 2 3 0 13.7 pm - 0.25 m pinching 20 mile 3 0 0 0 - 0.25 m pinching 20 mile								<u> </u>							Candie taken from
187/12 1585 030E 50 13.7 pm - 0.25 m pinching 2 3 0 13.7 pm - 0.25 m pinching 20 million 2 3 0 13.7 pm - 0.25 m pinching 20 million 2 3 0 0.5 - 10 or 20 million 20 million 20 million 16713 1505 037 E 280 million 20 million 20 million 20 million 16713 1505 037 E 280 million 20 million 20 million 20 million 1/8713 1505 037 E 280 million 20 million 20 million 20 million 20 million 1/8713 1505 037 E 280 million 20 m					·····		•								dois to doil
18713 1505 037E 280 W.92 alt 18713 1505 037E 280 W.92 alt 18713 1505 037E 1-270 cm 18713 1505 037E 1-270 cm 18713 1505 037E 1-270 cm 18713 1505 037E 1-270 cm 1-270 cm, 3-57															10 200 2
18713 1505 037E 280 W.92 alt 18713 1505 037E 280 W.92 alt 18713 1505 037E 1-270 cm 18713 1505 037E 1-270 cm 18713 1505 037E 1-270 cm 18713 1505 037E 1-270 cm 1-270 cm, 3-57															
18713 1505 037 E 18713 1505 0		18712			1585	030E				T		50	1372		D.25m Hurchwall
18713 1505 037 E 18713 1505 0													···· fp.	-	Porcent for
18713 (505 037 E 18713 (505 0					<u> </u>										United and
18713 (505 037 E 18713 (505 0										 					and DC-10 day
18713 1505 037E 18713 1505 037E 280 44.92 oft 0.3 m inte and Verification 5-8 1-270 epg, 3-572 interstand curb]		 				1	and Dis 110 and
D.3 m wile and Vern content 5-8 1-270 cpg, 3-5%														·	In a rue wairoit.
D.3 m wile and Vern content 5-8 1-270 cpg, 3-5% interspiral carb										 					· · · · ·
D.3. wile and Verin content 5-8 1-2% epg, 3-5% interspice carb		18713			1505	037E				 		700	HIL (2) (1		
Ven contant 5-8 1-2% epg, 3-5% interspice carb										 			17.163/2	╢━━━━━	n_2 ((
1-270 cpg, 3-5%										 ••••••••••••••••••••••••••••••••••••••					Su wite ancismo
										 				╢	Vere (origen) 5-87.
									+	 -				-	1-270 CD4, 5-510 py.
13714 1585 042E 80 21.82 asite 0.25 m wide 94 vere - previous Cost terning 5/89 0.5 - 170 cpy, th 1-270 py										 					istastical cub.
13714 158.5 042E Vern - previous Constaining 5/8: 0.5-170 cpy, th. 1-270 py							····			 					
Conteining 5/8 0.5-170 cpy, h. 1-270 py		19714			1585	047F				 		90			
Unit previou, 1 Containing 5/89 0.5-170 cpy, h 1-270 py					·		*			 		a	4.86 gs/t_		0.23m wide gh. ca
$\begin{array}{c} Conteining 578:\\ 0.5-170 cpy, h.\\ 1-270 py \end{array}$	_									 · -					Vern previces the
0.5-170 cpy, h 1-270 py					+					 					Containing 5189. G
<u>1-2% py</u>	•••••									· -		· · · · ·	e e e	l e e e e e e e e e e e e e e e e e e e	0.5-1% cpy th sph
										 					1-2% py
								100 a.a		 					
										 · • · · · • • • • • • • • • • • • • • •					
										 ····					

ţ.

...

10) .

> . Costo and

ate	Sample	Туре]	Location		******		Sample Da			r				P.495 Sampler <u>B. 176 Doniou 6,14</u>
	No.		Claim	Northing	Easting	Zone	No.	From (m)		Int. (m)	Cu	AUL	y Data Ag	Altera	Sample Description
(y23/9.	18715	Grab		1435	045E							210	4 00	17	
/									······				7.0000	4	- Can printing and
						· ·				· · · · · · · · · · · · · · · · · · ·		 	[<u>+</u>	- Develling gr - Saus Ver-
				1										·	- 0.2m pinching and Swelling gt- cars ver- 3-5% Ga, 1-2% cpy
								· [<u> </u>				┼───╢────	
· - · · · · · · · · · · · · · · · · · ·	18716			1535	LOCE			+		<u>+</u>		0=	2.0	┼──╢───	
	10110			1235	105E	<u> </u>				I		80	2.0 Øppm	╡────	Gosserous: gh-sail altit pepty to flow at jurity of two lineanent 2.3%
					·	<u> </u>								<u> </u>	proling to flow at junit
			L			<u> </u>									or two lines marine 2.3%
				<u> </u>		ļ	╢────								Pr. Ven is wispy
·	+														10
			ļ			L									
	16717			1405	1705							10	·leppn		Bull white al win
												-100-	- e ppri	<u> </u>	ister y/z-bein
								t		<u>†{</u>				<u>├</u> ──── <u>├</u> ─────	Bull while glower mare: convergence of two Structure Gossences,
							1	††						<u>├───</u> ┤ <u>├──</u> ──	two Structure Crossence,
				†			1			├				<u>├ </u>	to west
										-				┟────┃┟─────	
· 24/92	18718			See 2	unal ITa		1			<u>├</u>		4.0		├ }	
1-41-	,			sec Rop	unal Ila	ρ	╢	<u>├</u>				40	· 4 ppm	├──── -────	From Knipple Traveser
										┝┣				 	From Knipple Traveser Bousen Sers sittstoref argutite i gassenans i 0.570-11. py
				+						-					argillite , gossenans i
															0.5%-1%. py
			· · · · · · · · · · · · · · · · · · ·	<u>}</u> ∔											
	0								·						
	18719				+							30	2000	n	Ciraphic aigillite (silt- Stone) rear Silt Sauge KS-002-92 by Second Sheam.
				 											e for a) near c. If c.
][KC-007-92 6 (a)
												+			Cher
								**************************************							D/ucum.

÷

ş,

SAPLE Description Prove				n an	u – gennese Uru en deventet									ang			
No. 199 Location Sample Data Assey Data Sample Description in String Easting Zone No. From (m) To (m) Int. (m) U Assey Data Sample Description in String See Referred Training Easting Zone No. From (m) To (m) Int. (m) U Assey Data Assey Da	e Drtha 20Up		PLE CRIPTION					Project	KNU	PLE	LARE		_		Sample	B. McDonourg N	<u>,</u>
$\frac{1}{13721}$ $\frac{1}{13722}$ $\frac{1}{1372}$ \frac	ate		Туре										Ass	ay Data			1
13722 " Mar Show at bose of Chi: Souch ath 1 at Prove a busice of Subscription for garles - Charge 13721 " 13722 " 13722 " 13722 " 13722 " 13722 " 13722 " 13722 " 13722 " 13722 " 1072	: sila			Claim				No.	From (m)	To (m)	Int. (m)	Cu	AUL)	Agai	Alteration	•]
13722 " Mar Show at bose of Chi: Souch ath 1 at Prove a busine of Subscription of a busine 290 (1)m 13721 " 13722 " 13722 " 13722 " 100 Chiman Subscription 100 Chiman Subscription	1 24/42	18120	0125		See Re	Fronal 1	ter	-	ļ				10	·lepm		From gossenous bouido.]
13721 " " " " " " " " " " " " " " " " " " "				ll			ļ	┨────								new stream at base of	
13721 """" Helded hell menomena Submerine flags - 1. He D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Notes the point of the second of Submyreland for under Submyreland fo									<u> </u>				ļ			The Serve altit int	
13721 """" Helded hell menomena Submerine flags - 1. He D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Notes the point of the second of Submyreland for under Submyreland fo					ļ											Row 1-29. 2. (+ Tet?))
13721 """" Helded hell menomena Submerine flags - 1. He D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Notes the point of the second of Submyreland for under Submyreland fo						+										st either a press on]
13721 """" Helded hell menomena Submerine flags - 1. He D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Notes the point of the second of Submyreland for under Submyreland fo					·											only tic ante - Kan	
13721 """" Helded hell menomena Submerine flags - 1. He D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Massive Some flags (2722 """"" Helded hell menomena D No metric Of is Notes the point of the second of Submyreland for under Submyreland fo															1	Tracerso)	
13.61		()											290	K.lpom			
13722 13722 10 10 10 10 10 10 10 10 10 10		13121			,,										+	Welded fuffly comercia	
13722 13722 10 10 10 10 10 10 10 10 10 10	·					ļ										Supromina ficas - 1. He	
13722 13722 10 10 10 10 10 10 10 10 10 10																A Ma matrix. Ola is	
13722 13722 10 10 10 10 10 10 10 10 10 10				·												nassive Some flags	
13722 13722 10 10 10 10 10 10 10 10 10 10																colaced by an (fored	
13722 13722 10 10 10 10 10 10 10 10 10 10								Į								Tracese)	
Submigular forwarded Frags lines 10-15% pass Seel but of 15 volcan In a province Py																	
Submigular forwarded Frags lines 10-15% pass Seel but of 15 volcan In a province Py																	
Submigular forwarded Frags lines 10-15% pass Seel but of 15 volcan In a province Py			· - · · · · · · · · · · · · · · · · · ·														
Ser but ye is volcan in a province by	4	13722			••		••						60	LI. ppm		Marine , & Land LA	I
Ser but ye is volcan in a province by															-	ula malas to evendant	
Ser but ye is volcan in a province by																ags 17ans 10-15%) and	
In a private fy																ect but ofe is inte-	
stanger 1-2%															10	1 6. secure Pu	
	·····;							ļ							1	placing some formal	:
															1	5 1-2%	
																/	
															-		
															-11		

 $\sum_{i=1}^{n} |i_i| = \sum_{i=1}^{n} |i_i| = \sum_{i$

APPENDIX 2

ASSAY RESULTS

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

(() (amp.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: NEWHAWK GOLD MINES LTD. ADDRESS: 860 - 625 Howe St. : Vancouver, BC : V6C 2T6 DATE: AUG 10 1992

REPORT#: 920070 GA JOB#: 920070

PROJECT#: NONE GIVEN SAMPLES ARRIVED: AUG 06 1992 REPORT COMPLETED: AUG 10 1992 ANALYSED FOR: Au (FA/AAS) ICP INVOICE#: 920070 NA TOTAL SAMPLES: 47 SAMPLE TYPE: 47 ROCK REJECTS: SAVED

SAMPLES FROM: MR. DAVE VISAGIE COPY SENT TO: NEWHAWK GOLD MINES LTD.

PREPARED FOR: MR. DAVE VISAGIE

ANALYSED BY: Raymond Chan

SIGNED:

GENERAL REMARK: SAMPLE SHIPMENT # 1 RESULTS FAXED TO MR. DAVE VISAGIE @ 689-5041. COPY SENT TO MR. DAVE VISAGIE AT STEWART BC.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

.

REPORT NUMBER: \$20070 G/	JOB NUMBER: 920070	NEWHAWK GOLD WINES LTD.	PAGE 1 OF 2
SAMPLE #	Au		
	dqq		
18651	90		
18652	20		
18653	20		
18654	10		
18655	30		
18656	300		
18657	910		
18658	20		
18659	10		
18660	40		
18661	20		
18662	10		
18663	10		
18664	10		
18665	30		
18666	20		
18667	10		
18668			
18669	20		
18670	10		
18671	10		
18672	20		
18673	20		
18674	40		
18675	30		
18701	30		
18702	10		
18703	110		
18704	10		
18705	10		
18706	nd		
18707	nd		
18708	50		
18709	10		
18710	10		
18711	540		
18712	50		
18713	280		
18714	280		
DETECTION LIMI	T 5		
nd = none detecte		is = insufficient sample	

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

ł

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 920070 GA	JOB NUMBER: 920076	NEWHAWK GOLD MINES LTD.	PAGE 2 OF 2
SAMPLE #	Au		
	dqq		
18715	210		
18716	80		
18717	10		
18718	40		
18719	. 30		
18720	10		
18721	290		
18722	60		

DETECTION LIMIT 5 nd = none detected -- = not analysed is = insufficient sample

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT ______

CLIENT: NEWHAWK GOLD MINES LTD. DATE: AUG 14 1992 ADDRESS: 860 - 825 Howe St. : Vancouver, BC : V6C 2T6

PROJECT#: NONE GIVEN SAMPLES ARRIVED: AUG 06 1992 **REPORT COMPLETED: AUG 14 1992** ANALYSED FOR: Ag

REPORT#: 920070 AA JOB#: 920070

INVOICE#: 920070 NA **TOTAL SAMPLES: 15 REJECTS/PULPS: 90 DAYS/1 YR** SAMPLE TYPE: 15 ROCK

SAMPLES FROM: MR. DAVE VISAGIE COPY SENT TO: NEWHAWK GOLD MINES LTD.

PREPARED FOR: MR. DAVE VISAGIE

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: SAMPLE SHIPMENT # 1 RESULTS FAXED TO MR. DAVE VISAGIE @ 689-5041. COPY SENT TO MR. DAVE VISAGIE AT STEWART BC.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: \$2007\$ AA	JOB NUNBER: \$20070	NEVRAVE GOLD HINES LTD.	PAGE 1 OF 1
SAMPLE #	Ag oz/st		
18651	57.20		
18652	15.20		
18654	6.42		
18656	62.71		
18657	15.90		
18660	16.25		
18661	18.37		
18662	20.85		
18663	7.15		
18665	11.52		
18669	2.71		
18708	50.17		
18713	44.92		
18714	21.82		
18715	4.00		

DETECTION LIMIT	0.01		
1 Troy oz/short ton = 34.28 ppm	1 ppm = 0.0001 %	ppm = parts per million	< = less than
		1 17	

signed:

1.

1630 Pandora Btreet, .ouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

ANALYST: 1

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT 1: 920070 PA	NEW	HANK GOL	D NINES L	TD,			FROJEC	T: None (iven			DATE	[N: AUG	06 1992	DATE	OUT: AU	G 12 199	2 AT	TENTION	MR. DAV	E VÍSAGIE			P	PAGE 1	OF 2
Sample Name 18651 18652 18653 18654 18655	Ag >50 >50 35.0 >50 2.2	Al X 0.10 0.18 0.84 1.05 0.49	As 105 <3 <3 272 <3	+Au 905 20 20 10 30	Ba pp∎ 13 34 31 54	Bi ¢3 ∢3 ∢3 ∢3 ∢3 ∢3	Ca 7 6.05 0.19 6.05 7.09 6.28	Cd ppm >1000 >1000 16.3 10.2 0.B	Co pps <1 (1 11 10 11	Cr ppm (1 13 30 23 24	Cu pp• 11177 5332 548 5886 50	Fe 2 6.41 2.59 5.60 9.81 6.19	K 2 (0.01 (0.01 (0.01 (0.01 (0.01	Mg 1 0.82 0.07 1.04 1.25 1.04	Mn 2373 189 2604 2679 2806	No 94 107 8 46 <1	Na X >10 >10 0.21 0.33 0.06	Ni ppm 6 (1 (1 5 (1	P 2 0.05 0.04 0.08 0.04 0.04	Pb ppm >20000 >20000 1315 639 87	Sb pp# 1979 126 (2 10 (2	5n ¢pm <2 <2 <2 <2 <2 <2 <2 <2	Sr ppn 247 13 341 417 311	8 99 (5 (5 (5 (5 (5)		Zn pp#)20000)20000 1705 2535 189
19656 18657 18658 18659 18660	>50 >50 2.1 12.4 >50	0.07 0.21 1.30 0.28 1.56	⟨3 ⟨3 ⟨3 ⟨3 584	300 910 20 10 40	14 30 306 43 <1	. 56 5B <3 <3 <3	0.24 3.19 1.00 1.81 5.27	67.4 16.9 0.5 <0.1 >1000	4 5 6 3 <1	8 26 36 45 <1	4945 4015 63 387 981	1.47 5.39 3.88 1.66 8.37	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.03 0.50 0.61 0.12 1.55	158 1379 568 686 3046	10 <1 4 7 124	0.08 0.12 0.07 0.03 >10	1 5 4 (1	0.01 0.04 0.05 0.04 0.03	>20000 >20000 1519 1005 674	1551 175 <2 <2 224	<2 <2 <2 <2 <2 <2	10 164 54 125 162	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	373 579 256 131 >20000
18661 18662 18663 18664 18665	>50 >50 >50 1.4 >50	0.04 0.74 0.36 0.52 0.47	<pre></pre>	20 10 10 10 30	1 29 49 67 43	<3 <3 <3 <3 <3	0.87 4.11 4.30 1.46 8.32	403.2 >1000 129.5 0.3 >1000	<1 <1 14 13 <1	34 6 33 7 3	1988 8857 495 62 3601	1.43 5.76 3.96 8.73 5.75	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.18 0.84 0.81 0.05 1.05	421 1503 1599 714 2705	21 53 12 19 68	4.85 >10 1.44 0.15 >10	<1 <1 3 (1 5	0.01 0.13 0.04 0.33 0.15	>20000 >20000 >20000 1232 >20000	202 231 128 (2 51	<2 <2 <2 <2 <2 <2 <2	42 213 204 55 381	<5 <5 <5 <5 <5	<3 <3 <3	>20000 >20000 13221 400 >20000
18666 18667 18668 18669 18670	0.4 2.8 13.5 350 0.3	0.22 0.13 0.36 0.38 3.39	(3 (3 604 665 (3	20 10 20 20 10	38 50 34 20 20	<3 <3 <3 <3 <3)10 2,58 7,58 1,09 2,78	9.4 4.0 59.5 657.3 5.8	9 4 12 <1 3	4 46 24 46 5	39 84 106 274 28	>10 2.63 5.36 2.42 9.06	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.11 0.36 1.10 0.27 2.08	8323 1386 2913 590 517	37 18 5 36 61	0.18 0.09 0.90 >10 0.19	<1 <1 <1 2 23	0.03 0.03 0.12 0.05 0.05	257 639 1760 >20000 222	<2 2 <2 85 <2	<pre> {2 <2 <2 <2</pre>	364 119 410 72 107	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	1345 439 8195 >20000 821
18671 18672 18673 18674 18675	<0.1 0.2 0.4 0.1 0.2	1.51 0.90 1.30 3.15 1.26	<3 <3 <3 <3 94	10 20 20 40 30	22 37 118 122 169	<pre></pre>	6.74 0.45 0.24 1.16 3.07	0.3 1.9 <0.1 <0.1 <0.1	8 2 3 24 47	9 29 14 105 18	11 15 10 72 119	6.10 4.14 4.30 6.30 4.07	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.59 0.47 0.68 2.03 1.38	2134 383 241 715 4312	14 32 12 3 6	0.08 0.18 0.10 0.07 0.04	5 6 7 131 175	0.39 0.07 0.13 0.17 0.08	129 79 56 (2 21	<pre><2 <2 <</pre>	<2 <2 <2 <2 <2 <2 <2	240 31 17 106 262	<5 <5 <5 (5 <5	(3 (3 (3 (3 (3	200 1060 70 180 343
18701 18702 18703 18704 18705	0.3 (0.1 0.8 17.0 0.7	0.39 0.44 0.26 0.04 0.15	<pre><3 <3 <3 <3 <3 <3</pre>	30 10 110 10 10	70 37 55 19 21	10 (3 (3 (3) (3)	0.62 0.24 7.17 0.52 0.05	<0.1 <0.1 0.3 6.4 0.2	9 4 8 <1 5	23 52 30 63 58	6 3 4 3 4	3.72 1.38 4.31 0.93 0.86	<0.01 0.37 <0.01 <0.01 0.79	0.10 0.13 0.60 0.02 0.03	253 171 2154 310 86	16 4 5 6 26	0.03 0.03 0.05 0.11 0.04	5 {1]]]]	0.11 0.03 0.04 (0.01 0.01	60 41 342 7693 89	<2 <2 <2 5 <2	(2 (2 (2 (2 (2 (2	26 16 347 14 3	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	89 41 85 757 44
18706 18707 18708 18709 18710	<0.1 0.7 >50 23.1 16.0	0.12 0.58 0.37 0.17 0.27	<3 <3 ≥2000 14 1916	<5 <5 50 10	4 66 42 32 47	<pre><3 <3 137 <3 <3 <3</pre>	0.36 0.33 1.05 0.52 1.52	<0.1 <0.1 85.5 1.3 <0.1	1 2 6 1	69 15 49 52 61	2 4 >20000 301 B€	0.97 4.09 4.58 1.55 1.49	0.26 <0.01 <0.01 <0.01 <0.01	0.08 0.09 0.15 0.04 0.10	201 145 534 504 954	4 22 9 8 3	0.03 0.08 1.02 6.03 0.04	3 (1 2 2 4	<pre>(0.01 0.12 0.08 0.01 0.01</pre>	29 31 11903 114 45	(2 (2)2000 105 33	<2 <2 <2 <2 <2 <2	27 14 63 3 82	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	18 30 8999 100 50
19711 18712 18713 18714	0.2 13.7 >50 >50	0.42 0.07 0.17 0.07	(3 (3 463 1931	540 50 280 80	60 5 25 13	4 (3 (3 3	>10 >10 4.33 4.38	<0.1 1.3 >1000 106.1	3 2 (1 2	10 21 (1 20	15 42 8234 7055	6.23 >10 4,89 4,98	<0.01 <0.01 <0.01 <0.01	1.64 2.81 0.84 0.80	7454 4301 1342 1637	2 <1 104 9	<0.01 0.12 >10 1.94	<1 <1 <1)	0.02 0.03 0.06 0.03	(2 5033)20000)20000	<2 <2 576 213	(2 (2 (2 (2 (2	1273 621 170 221	<5 <5 <5 <5	<3 <3 <3 <3	32 539)20000 17204
Minimum Detection Maximum Detection < - Less Than Minimum	0.1 50.0 > - (0.01 10.00 Greater	3 2000 Than Maxi	5 10000 Rua	1 1000 is - Ins	3 1000 ufficier		0.1 1000.0 e ns	1 20000 - No Sam	i 1000 ple	1 20000 ‡Au Anal	0.01 10.00 ysis Do	0.01 10.00 ne By Fin	0.01 10.00 re Assav	1 20000 Concentr	1 1000 ation /	0.01 10.00 AAS Fin:	1 20000 Lsh.	0.01 10.00	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

a service a service a service s 1630 Pandora Street .ouver, B.C. V5L IL6 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO $_{2}$ to H $_{2}$ O at 95 °C (or 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

. .

.

				A	.5 gram s	ample is	digeste Th	d with 5 Is leach	al of 3: is parti	1:2 HCl al for	L to HNO _a Al, Ba,	to H2O Ca, Cr,	at 95 °(Fe, K, 1	C (or 90 1g, Kn, 1	∎inutes la, P, Sn	and is d , Sr and	liluted to I W.	n 10 a l	with wa	ter.	,	ANALY	'ST: _	14	'~+	16
REPORT #: 920070 PA	NEW	HAWK GOL	D MINES	LTD,			PROJEC	T: None	Given			DATE	IN: AUG	06 1992	DATE	OUT: AU	16 12 1993	2 AT	TENTION	: MR. DAV	E VISAGII	E		•	PAGE 2	OF 2
Sample Name 18715	Ag ppæ }50	Al X 0.41	As pp# ∢3	∓Au ppb 210	Ba ppm 13	Bi pp∎ 9	Ca X 1,53	Сd рре 18.0	Co pp∎ 5	Ст рр.я 40	Cu opm 6137	Fe ۲ 2,95	K Z {0.01	Ид % 0.37	Mn pp• 723	Ko pp∎ ∢1	Na % 0.26	Ni ppm 6	P 1 0.05	Pb ppm)20000	5b pp∎ 109	Sn pp≞ ∢2	Sr pp# 87	8 pp∎ <5	W pga {3	Zn 99a 2307
18716 18717 18718 18719	2.0 0.6 0.4 0.2	0.84 0.14 3.09 1.56	<3 <3 <3	80 10 40 30	10 53 99 87	<3 <3 <3 10	1,43 0.09 0.09 0,06	<0.1 0.8 <0.1 <0.1	35 1 30 14	16 51 80 32	122 22 79 34	>10 0,78 7.22 4,82	(0.01	0.30 0.03 1.67 0.98	696 147 4497 296	29 <1 8	0.23 0.02 0.05 0.07	8 5 168 41	0.15 0.01 0.09 0.05	1288 293 34 31	<pre></pre>	<pre></pre>	25 5 23	(5 (5 (5 (5)	<pre></pre>	150 58 253
18720 18721 18722	0.1 <0.1 <0.1	0.21 2.02 3.17	36 <3 <3	10 290 60	115 47 71	< 3 < 3 < 3	0.04 0.30 0.27	<0.1 <0.1 <0.1	<1 34 75	23 22 20	3 13 19	1.61 7.36 9.72	0.21 <0.01 <0.01	0.02 0.84 0.95	92 2499 2188	4 3 18 30	0.07 0.04 0.02 0.10	1 17 27	0.03 0.05 0.05 0.14	59 19 (2	<2 <2 <2 <2	<2 <2 <2 <2 <2	10 16 12	<5 <5 <5 <5	<3 <3 <3	95 65 116 77
Hinimum Detection Maximum Detection < - Less Than Minimum	0.1 50.0 > - 6	0.01 (0.00 ireater 1	3 2000 han Maxi	5 10000 Aur	1 1000 is ~ Ins	3 1000 sufficien		0.1 1000.0	1 20000 ~ No Samp	1 1000 Die	i 20000 *Au Anal	0.01 10.00 ysis Do	0.01 10.00 ne By Fir	0.01 10.00 re Assay	1 20000 Concentr	1 1000 ation /	0.01 10.00 AAS Fini	1 20000 sh.	0.01 10.00	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

CONTRACTOR VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

C.C. » Camp.

CLIENT: NEWHAWK GOLD MINES LTD. ADDRESS: 860 - 625 Howe St. : Vancouver, BC : V6C 2T6

.

DATE: AUG 11 1992

REPORT#: 920072 GA JOB#: 920072

INVOICE#: 920072 NA TOTAL SAMPLES: 8 SAMPLE TYPE: 8 SILT REJECTS: DISCARDED

SAMPLES FROM: MR. DAVE VISAGIE COPY SENT TO: NEWHAWK GOLD MINES LTD.

PROJECT#: NOEN GIVEN

SAMPLES ARRIVED: AUG 06 1992 REPORT COMPLETED: AUG 11 1992

ANALYSED FOR: Au ICP

PREPARED FOR: MR. DAVE VISAGIE

ANALYSED BY: Raymond Chan

SIGNED:

GENERAL REMARK: SAMPLE SHIPMENT # 1 RESULTS FAXED TO MR. DAVE VISAGIE @ 689-5041. COPY SENT TO MR. DAVE VISAGIE AT STEWART BC.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUBBER: \$26672 GA	JOB NUMBER: 020072	BEVELAVE GOLD HINES LTD.
SAMPLE #	Au	
	ppb	
KS-001-92	10	
KS-002-92	100	
KS-003-92	20	
KS-004-92	170	
KS-005-92	45	
KS-006-92	85	
KS-007-92	65	
KS-008-92	20	

DETECTION LIMIT 5 nd = none detected -- = not analysed is = insufficient sample

PAGE 1 OF 1

·=========== 1630 Pandora Street, Juver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with 5 ml of 3:1:2 HCL to HNDs to HgD at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al. Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

				Α.	Sgram s	ample is								C for 90 1g, Mn, N				o 10 a l	vith val	ter.		ANALY	'ST: _	4	M	6
REPORT 1: 920072 PA	NEW	HAWK GOL	D MINES	L10.			PROJE	CT: None	Given			DATE	EN: AUG	06 1992	DATE	OUT: AU	IG 12 199	2 41	TENTION	: MR. DAV	E VISAGI	£		-	PAGE 1	1 30
Sample Name	Å∯ pp≉	A] 7	As pp e	ŧÅu ppb	Ba pp a	Bi ppa	Ca y	Cď pp∎	Co pp∧	Cr pome	Сш рра	۶ ۲	K Y	Mg	Mn ppa	Mo ppa	Na 7	Ni pp m	P *	Pb ppm	Sb ppa	Sn pps	Sr ppn	U ppe	W ppa	2n ppe
KS-001-92	1.3	0.88	92 8	10	144	16	0.16	3.8	18	20	49	5.94	(0.0)	0.43	3315	25	0.02	81	0.09	40	9	<2	23	¥۶ ز5	(3	441
KS-002-92	0.5	0.87	<3	100	139	<3	0.15	<0.1	11	13	25	4.42	<0.01	0.25	1597	15	<0,01	29	0.09	43	12	(2	18	(5	(3	272
K5-003-92	0.4	0.73	(3	20	159	14	0,12	1.5	6	5	13	3.08	(0,01	0.12	2495	17	(0.01	11	0.07	133	13	<2	18	(5	(3	404
KS-004-92	0.3	0.86	(3	170	129	4	0.27	<0.1	9	11	15	3.73	<0.01	0.37	1369	8	<0.01	19	0.12	50	6	<2	24	<5	(3	214
KS-005-92	0.3	0,92	<3	45	110	26	0,14	<0.1	7	17	21	3.43	(0.01	0.33	1127	9	<0.01	33	0.08	47	6	<2	19	<5 ·	(3	183
KS-006-92	0.1	0.93	<3	85	155	12	0.25	(0.1	7	11	13	3,14	(0,01	0.24	1810	11	(0.01	18	0.08	23	16	<2	26	<5	<3	182
KS-007-92	0.1	1.15	<3	65	62	19	0.38	<0.1	12	27	25	4.08	(0.01	0.89	764	5	<0.01	34	0.11	<2	6	<2	26	<5	<3	116
KS-008-92	0.2	1,01	<3	20	63	7	0.23	<0.1	3	27	29	2.14	<0.01	0.54	235	3	(0.01	44	0.07	<2	5	<2	36	<5	<3	98
Minimum Detection	0.1	0.01	3	5	t	3	0.01	0.1	1	1	1	0.01	0.01	0.01	i	1	0.01	١	0.05	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	10000	1000	1000	10,00	1000.0	20000	1000	20000	10,00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum) - 6	Greater 1	Than Max:	iតប ក	is - Ias	ulficier	nt Sampl	e ns	- No San	ple	⊀Au Anal	узіз До	ne By Aq	ua Regia	Digestio	n / Soli	vent Extr	action	AAS.							

. . .

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CC > Camp.

CLIENT:	NEWHAWK GOLD MINES	LTD.
ADDRESS:	860 - 625 Howe St.	
:	Vancouver, BC	
:	V6C 2T6	

DATE: AUG 11 1992

REPORT#: 920071 GA JOB#: 920071

INVOICE#: 920071 NA TOTAL SAMPLES: 95 SAMPLE TYPE: 95 SOIL REJECTS: DISCARDED

SAMPLES FROM: MR. DAVE VISAGIE COPY SENT TO: NEWHAWK GOLD MINES LTD.

PROJECT#: NOEN GIVEN

SAMPLES ARRIVED: AUG 06 1992

REPORT COMPLETED: AUG 11 1992

ANALYSED FOR: Au ICP

PREPARED FOR: MR. DAVE VISAGIE

ANALYSED BY: Raymond Chan SIGNED:

GENERAL REMARK: SAMPLE SHIPMENT # 1 RESULTS FAXED TO MR. DAVE VISAGIE @ 689-5041. COPY SENT TO MR. DAVE VISAGIE AT STEWART BC.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: \$20071 GA	JOB NUNBER: \$20471	HEVELVK GOLD HIN	es lid.	PAGE	1	OF	3
SAMPLE #	Au						
	ppb						
KR-92-01	20						
KR-92-02	15						
KR-92-03	170						
KR-92-04	20						
KR-92-05	10						
	* *						
KR-92-06	105						
KR-92-07	155						
KR-92-08	50						
KR-92-09	35						
KR-92-10	140						
	140						
KR-92-11	15						
KR-92-12	15						
KR-92-13	170						
KR-92-14	70						
KR-92-15	15						
MN 02 10	10						
KR-92-16	15						
KR-92-17	40						
KR-92-18	25						
KR-92-19	25						
KR-92-20	55						
Kit 02 20	00						
KR-92-21	50						
KR-92-22	30						
KR-92-23	60						
KR-92-24	140						
KR-92-25	30						
KR-92-26	75						
KR-92-27	55						
KR-92-28	25						
KR-92-29	15						
KR-92-30	30						
KR-92-31	55						
KR-92-32	30						
KR-92-33	50						
KR-92-34	125						
KR-92-35	25						
KR-92-36	20						
KR-92-37	165						
KR-92-38	120						
KR-92-39	15						
DETECTION LIMIT	5						
nd 🗆 none detected	= not analysed	is = insufficient sample					
	•	•					

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

|

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

SAMPLE #Au PPb $KR - 92 - 40$ S $KR - 92 - 41$ 15 $KR - 92 - 42$ 25 $KR - 92 - 43$ 30 $KR - 92 - 44$ 40 $KR - 92 - 46$ 10 $KR - 92 - 48$ 45 $KR - 92 - 50$ $KR - 92 - 51$ 35 $KR - 92 - 52$ 15 $KR - 92 - 53$ $KR - 92 - 54$ 145 $KR - 92 - 55$ 55 $KR - 92 - 58$ 10 $KR - 92 - 58$ 10 $KR - 92 - 60$ $KR - 92 - 61$ 20 $KR - 92 - 61$ $KR - 92 - 61$ 20 $KR - 92 - 63$ $KR - 92 - 61$ 20 $KR - 92 - 71$ 10 $KR - 92 - 71$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35 $KR - 92 - 74$ 25	REPORT NUMBER: \$20071 GA	JOB NUNBER: \$20071	NEWSLAVE COLD DINES	LT9.	PAGE 2 OF 3
RR - 92 - 40 5 $RR - 92 - 42$ 25 $RR - 92 - 42$ 25 $RR - 92 - 42$ 25 $RR - 92 - 43$ 30 $RR - 92 - 45$ 40 $RR - 92 - 45$ 40 $RR - 92 - 46$ 10 $RR - 92 - 47$ 5 $RR - 92 - 49$ 45 $RR - 92 - 49$ 45 $RR - 92 - 50$ 85 $RR - 92 - 51$ 35 $RR - 92 - 52$ 15 $RR - 92 - 53$ 145 $RR - 92 - 54$ 145 $RR - 92 - 55$ 55 $RR - 92 - 57$ 55 $RR - 92 - 58$ 10 $RR - 92 - 59$ 30 $RR - 92 - 61$ 20 $RR - 92 - 64$ 40 $RR - 92 - 64$ 40 $RR - 92 - 64$ 40 $RR - 92 - 68$ 75 $RR - 92 - 68$ 75 $RR - 92 - 69$ 20 $RR - 92 - 70$ 10 $RR - 92 - 70$ 10 $RR - 92 - 71$ 100 $RR - 92 - 72$ 20 $RR - 92 - 72$ 20	SAMPLE #	Au			
KR - 92 - 4115 $KR - 92 - 42$ 25 $KR - 92 - 42$ 30 $KR - 92 - 43$ 30 $KR - 92 - 45$ 40 $KR - 92 - 45$ 10 $KR - 92 - 46$ 10 $KR - 92 - 47$ 5 $KR - 92 - 48$ 45 $KR - 92 - 48$ 45 $KR - 92 - 49$ 45 $KR - 92 - 50$ 85 $KR - 92 - 51$ 35 $KR - 92 - 52$ 15 $KR - 92 - 53$ 145 $KR - 92 - 54$ 145 $KR - 92 - 55$ 55 $KR - 92 - 57$ 55 $KR - 92 - 58$ 30 $KR - 92 - 59$ 30 $KR - 92 - 61$ 20 $KR - 92 - 61$ 20 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 65$ 30 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 66$ 65 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35		ррь			
KR = 92 - 4225 $KR = 92 - 43$ 30 $KR = 92 - 44$ 40 $KR = 92 - 45$ 40 $KR = 92 - 46$ 10 $KR = 92 - 48$ 45 $KR = 92 - 48$ 45 $KR = 92 - 49$ 45 $KR = 92 - 50$ 85 $KR = 92 - 52$ 15 $KR = 92 - 53$ 145 $KR = 92 - 54$ 145 $KR = 92 - 55$ 55 $KR = 92 - 56$ 30 $KR = 92 - 58$ 10 $KR = 92 - 59$ 30 $KR = 92 - 60$ 10 $KR = 92 - 61$ 20 $KR = 92 - 64$ 40 $KR = 92 - 64$ 40 $KR = 92 - 64$ 40 $KR = 92 - 64$ 20 $KR = 92 - 64$ 20 $KR = 92 - 64$ 40 $KR = 92 - 64$ 40 $KR = 92 - 64$ 20 $KR = 92 - 64$ 20 $KR = 92 - 64$ 40 $KR = 92 - 64$ 40 $KR = 92 - 67$ 20 $KR = 92 - 68$ 75 $KR = 92 - 70$ 10 $KR = 92 - 70$ 10 $KR = 92 - 71$ 10 $KR = 92 - 73$ 35					
KR - 92 - 4330 $KR - 92 - 44$ 40 $KR - 92 - 45$ 40 $KR - 92 - 46$ 10 $KR - 92 - 47$ 5 $KR - 92 - 48$ 45 $KR - 92 - 49$ 45 $KR - 92 - 50$ 85 $KR - 92 - 52$ 15 $KR - 92 - 52$ 15 $KR - 92 - 54$ 145 $KR - 92 - 55$ 55 $KR - 92 - 56$ 30 $KR - 92 - 58$ 10 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 61$ 20 $KR - 92 - 64$ 40 $KR - 92 - 64$ 40 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 70$ 10 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35	KR-92-41				
KR - 92 - 4440 $KR - 92 - 45$ 40 $KR - 92 - 46$ 10 $KR - 92 - 48$ 45 $KR - 92 - 48$ 45 $KR - 92 - 48$ 45 $KR - 92 - 50$ 85 $KR - 92 - 51$ 35 $KR - 92 - 52$ 15 $KR - 92 - 53$ 145 $KR - 92 - 54$ 10 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 60$ 10 $KR - 92 - 61$ 20 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35	KR-92-42				
KR - 92 - 4540 $KR - 92 - 45$ 10 $KR - 92 - 47$ 5 $KR - 92 - 48$ 45 $KR - 92 - 50$ 85 $KR - 92 - 51$ 35 $KR - 92 - 52$ 15 $KR - 92 - 53$ 145 $KR - 92 - 55$ 55 $KR - 92 - 56$ 30 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 61$ 20 $KR - 92 - 61$ 20 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 65$ 30 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35	KR-92-43				
KR - 92 - 4610 $KR - 92 - 47$ 5 $KR - 92 - 48$ 45 $KR - 92 - 48$ 45 $KR - 92 - 50$ 85 $KR - 92 - 51$ 35 $KR - 92 - 52$ 15 $KR - 92 - 53$ 145 $KR - 92 - 54$ 145 $KR - 92 - 55$ 55 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 61$ 20 $KR - 92 - 61$ 20 $KR - 92 - 61$ 20 $KR - 92 - 64$ 40 $KR - 92 - 64$ 40 $KR - 92 - 64$ 55 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35	KR-92-44	40			
KR - 92 - 4610 $KR - 92 - 47$ 5 $KR - 92 - 48$ 45 $KR - 92 - 48$ 45 $KR - 92 - 50$ 85 $KR - 92 - 51$ 35 $KR - 92 - 52$ 15 $KR - 92 - 53$ 145 $KR - 92 - 54$ 145 $KR - 92 - 55$ 55 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 61$ 20 $KR - 92 - 61$ 20 $KR - 92 - 61$ 20 $KR - 92 - 64$ 40 $KR - 92 - 64$ 40 $KR - 92 - 64$ 55 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35					
KR - 92 - 475 $KR - 92 - 48$ 45 $KR - 92 - 50$ 85 $KR - 92 - 51$ 35 $KR - 92 - 52$ 15 $KR - 92 - 53$ 145 $KR - 92 - 54$ 145 $KR - 92 - 56$ 30 $KR - 92 - 56$ 30 $KR - 92 - 56$ 30 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 61$ 20 $KR - 92 - 61$ 20 $KR - 92 - 63$ 55 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 71$ 10 $KR - 92 - 71$ 35					
$\begin{array}{c} RR - 92 - 48 & 45 \\ KR - 92 - 49 & 45 \\ KR - 92 - 50 & 85 \\ KR - 92 - 51 & 35 \\ KR - 92 - 52 & 15 \\ KR - 92 - 53 & 145 \\ KR - 92 - 54 & 145 \\ \hline\\ KR - 92 - 56 & 30 \\ KR - 92 - 57 & 55 \\ KR - 92 - 58 & 10 \\ KR - 92 - 59 & 30 \\ \hline\\ KR - 92 - 61 & 20 \\ KR - 92 - 61 & 20 \\ KR - 92 - 62 & 50 \\ KR - 92 - 63 & 55 \\ KR - 92 - 64 & 40 \\ \hline\\ KR - 92 - 65 & 30 \\ KR - 92 - 65 & 30 \\ KR - 92 - 66 & 65 \\ KR - 92 - 66 & 65 \\ KR - 92 - 67 & 20 \\ KR - 92 - 68 & 75 \\ KR - 92 - 68 & 75 \\ KR - 92 - 69 & 20 \\ \hline\\ KR - 92 - 68 & 75 \\ KR - 92 - 69 & 20 \\ \hline\\ KR - 92 - 70 & 10 \\ KR - 92 - 71 & 10 \\ KR - 92 - 71 & 10 \\ KR - 92 - 72 & 20 \\ KR - 92 - 73 & 35 \\ \hline\end{array}$					
KR - 92 - 4945 $KR - 92 - 50$ 85 $KR - 92 - 51$ 35 $KR - 92 - 52$ 15 $KR - 92 - 53$ 145 $KR - 92 - 55$ 55 $KR - 92 - 56$ 30 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 61$ 20 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 71$ 10 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 71$ 35					
KR - 92 - 5085 $KR - 92 - 51$ 35 $KR - 92 - 52$ 15 $KR - 92 - 53$ 145 $KR - 92 - 54$ 145 $KR - 92 - 55$ 55 $KR - 92 - 56$ 30 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 61$ 20 $KR - 92 - 61$ 20 $KR - 92 - 63$ 55 $KR - 92 - 63$ 55 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 68$ 65 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35					
KR - 92 - 5135 $KR - 92 - 52$ 15 $KR - 92 - 53$ 145 $KR - 92 - 54$ 145 $KR - 92 - 55$ 55 $KR - 92 - 56$ 30 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35	KR-92-49	45			
KR - 92 - 5135 $KR - 92 - 52$ 15 $KR - 92 - 53$ 145 $KR - 92 - 54$ 145 $KR - 92 - 55$ 55 $KR - 92 - 56$ 30 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35	VB-00-60	95			
KR - 92 - 5215 $KR - 92 - 53$ 145 $KR - 92 - 54$ 145 $KR - 92 - 55$ 55 $KR - 92 - 56$ 30 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 60$ 10 $KR - 92 - 61$ 20 $KR - 92 - 63$ 55 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35					
KR - 92 - 53145 $KR - 92 - 54$ 145 $KR - 92 - 55$ 55 $KR - 92 - 56$ 30 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 60$ 10 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 66$ 65 $KR - 92 - 66$ 65 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35					
KR - 92 - 54145 $KR - 92 - 55$ 55 $KR - 92 - 57$ 55 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 60$ 10 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35					
KR - 92 - 55 55 $KR - 92 - 56$ 30 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 60$ 10 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 66$ 65 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35					
KR - 92 - 5630 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 60$ 10 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35	KK-92-54	145			
KR - 92 - 5630 $KR - 92 - 57$ 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 60$ 10 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 71$ 10 $KR - 92 - 73$ 35	KR-92-55	55			
KR - 92 - 57 55 $KR - 92 - 58$ 10 $KR - 92 - 59$ 30 $KR - 92 - 60$ 10 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35					
KR - 92 - 5810 $KR - 92 - 59$ 30 $KR - 92 - 60$ 10 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35					
KR - 92 - 59 30 $KR - 92 - 60$ 10 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 64$ 40 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35					
KR - 92 - 6010 $KR - 92 - 61$ 20 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35					
KR - 92 - 6120 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35					
KR - 92 - 6120 $KR - 92 - 62$ 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35	KR-92-60	10			
KR - 92 - 62 50 $KR - 92 - 63$ 55 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35		20			
KR - 92 - 6355 $KR - 92 - 64$ 40 $KR - 92 - 65$ 30 $KR - 92 - 66$ 65 $KR - 92 - 67$ 20 $KR - 92 - 68$ 75 $KR - 92 - 69$ 20 $KR - 92 - 69$ 20 $KR - 92 - 70$ 10 $KR - 92 - 71$ 10 $KR - 92 - 72$ 20 $KR - 92 - 73$ 35		50			
KR-92-6440 $KR-92-65$ 30 $KR-92-66$ 65 $KR-92-67$ 20 $KR-92-68$ 75 $KR-92-69$ 20 $KR-92-70$ 10 $KR-92-71$ 10 $KR-92-72$ 20 $KR-92-73$ 35		55			
KR-92-66 65 KR-92-67 20 KR-92-68 75 KR-92-69 20 KR-92-70 10 KR-92-71 10 KR-92-72 20 KR-92-73 35		40			
KR-92-66 65 KR-92-67 20 KR-92-68 75 KR-92-69 20 KR-92-70 10 KR-92-71 10 KR-92-72 20 KR-92-73 35					
KR-92-67 20 KR-92-68 75 KR-92-69 20 KR-92-70 10 KR-92-71 10 KR-92-72 20 KR-92-73 35					
KR-92-68 75 KR-92-69 20 KR-92-70 10 KR-92-71 10 KR-92-72 20 KR-92-73 35					
KR-92-69 20 KR-92-70 10 KR-92-71 10 KR-92-72 20 KR-92-73 35					
KR-92-70 10 KR-92-71 10 KR-92-72 20 KR-92-73 35					
KR-92-71 10 KR-92-72 20 KR-92-73 35	KR-92-69	20			
KR-92-71 10 KR-92-72 20 KR-92-73 35	VD_09~7A	4.0			
KR-92-72 20 KR-92-73 35					
KR-92-73 35					
KK-92-74 20					
	NN-92-74	25			
KR-92-75 10	KR-92-75	10			
KR-92-76 10					
KR 92-77 55					
KR-92-78 10					
		10			
DETECTION LIMIT 5		5			
nd = none detected = not analysed is = insufficient sample	nd = none detected	= not analysed	is = insufficient sample		

VANGEOCHEM LAB LIMITED /G ?

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: \$20071 GA	JOB NUMBER: \$20071	HEVHANK GOLD HINES LTD.
SAMPLE #	Au	
	ppb	
KR-92-79	10	
KR-92-80	5	
KR-92-81	100	
KR-92-82	15	
KR-92-83	60	
KR-92-84	75	
KR-92-85	5	
KR-92-86	30	
KR-92-87	15	
KR-92-88	5	
KR-92-89	10	• •
KR-92-90	25	
KR-92-91	30	
KR-92-92	15	
KR-92-93	20	
KR-92-94	15	
KR-92-95	20	

PAGE 3 OF 3

1630 Pandora Street, ouver, B.C. V5L 1L6 Ph: (604) 251-5656 rax; (604) 254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO, to H $_20$ at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

							IC	AP	GE		HEI	MIC	CAL	AI	VAL	YS.	IS									
				Α.	5 gram s	ample is	-								minutes a a, P, Sn,			5 10 ml s	with wat	er.	ł	ANALY	st: ,	1z	nfl	4
REPORT 1: 920071 PA	NEF	IHAWK GOL	D MINES	LTD.			PROJEC	T: None	ĝi ven			DATE	IN: AUG	06 1992	DATE	OUT: AUG	G 12 1993	2 AT	TENTION:	MR. DAVE				/	PAGE 1 C	~
Sample Name KR-92-01 KR-92-02 KR-92-03 KR-92-04 KR-92-05	Ag ppm 0.3 0.2 0.1 0.1 0.2	A1 2.46 2.23 1.96 1.86 1.58	As pp a <3 <3 <3 <3 <3 <3	*Au ppb 20 15 170 20 10	Ba 423 397 133 167 120	Bi ppm ⟨3 ⟨3 ⟨3 ⟨3 ⟨3 ⟨3 ⟨3 ⟨3	Ca X 3.67 4.15 3.56 2.57 4.15	Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 0.6	Co ppm 10 11 11 10 11	Cr ppm 7 8 8 13	Cu ppm 15 15 18 15 35	Fe % 6.94 6.33 5.69 6.09 4.85	K 2 (0.01 (0.01 (0.01 (0.01	Mg 1.04 1.00 0.96 0.81 0.94	Mn ppm 1667 1424 1227 1295 1038	Mo ppm 7 8 8 13 19	Na X (0.01 0.01 0.01 (0.01 0.03	Ni ppm 12 25 29 21 54	P 1 0.38 0.36 0.26 0.31 0.16	Pb ppm 6 (2 (2 (2 (2 (2)	Sb ppm <2 <2 <2 <2 <2 <2 <2 <2 <2	Sn pp# <2 <2 <2 <2 <2 <2 <2 <2	Sr ppm 254 239 143 138 132	U ¢pm <5 <5 <5 <5 <5 <5	W ppm <3 <3 <3 <3 <3 <3 <3	2n pp 232 255 244 234 357
KR-92-06 KR-92-07 KR-92-08 KR-92-09 KR-92-10	0.2 0.1 1.1 0.3 0.3	1.40 1.24 1.40 2.06 1.86	<3 <3 <3 <3 <3	105 155 50 35 140	107 268 112 123 113	<3 <3 <3 <3 <3	5.33 1.90 3.09 1.99 1.14	2.7 2.8 (0.1 (0.1 (0.1	11 19 14 26 25	17 12 30 63 59	42 40 48 64 61	4.73 4.49 5.04 5.63 5.40	<0.01 <0.01 <0.01 <0.01 <0.01	0.96 0.85 1.04 1.46 1.29	924 1293 1046 1432 1246	21 16 13 6 7	0.03 0.04 0.05 0.06 0.07	75 73 63 123 123	0.11 0.14 0.12 0.11 0.11	<2 4 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	151 61 100 126 81	<5 <5 <5 <5 <5	(3) (3) (3) (3) (3)	454 479 293 257 254
KR-92-11 KR-92-12 KR-92-13 KR-92-14 KR-92-15	0.3 0.3 0.3 0.4 0.4	1.72 2.13 1.37 1.53 1.62	<3 <3 <3 <3 <3 <3	15 15 170 70 15	104 130 121 126 165	<3 <3 <3 <3 3	1.02 1.14 0.69 0.96 3.16	<0.1 <0.1 1.9 3.2 6.0	21 24 16 16 18	50 68 22 21 28	53 64 34 58 67	5.17 5.48 5.10 5.23 4.76	<0.01 <0.01 <0.01 <0.01 <0.01	1.15 1.35 0.87 0.94 1.12	1000 913 1084 1139 1451	6 7 8 16 14	0.07 0.05 0.04 0.06 0.05	97 115 52 75 103	0.13 0.13 0.15 0.13 0.11	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	64 76 41 50 83	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	235 251 333 435 658
KR-92-16 KR-92-17 KR-92-18 KR-92-19 KR-92-20	0.3 0.1 0.6 0.2 <0.1	2.20	<3 <3 <3 <3 <3	15 40 25 25 55	99 113 92 103 162	6 <3 <3 <3 <3	3.45 0.98 1.06 0.60 1.75	5.1 1.9 1.0 1.8 <0.1	14 16 16 25 38	28 28 28 42 83	48 41 38 62 88	4.46 5.07 4.83 5.71 5.86	<0.01 <0.01 <0.01 <0.01 <0.01	1.03 0.92 0.92 0.99 1.48	1172 968 921 1267 1200	11 11 9 13 5	0.04 0.06 0.05 0.07 0.05	89 77 65 106 166	0.11 0.13 0.13 0.14 0.12	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	86 46 47 43 114	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3	554 362 316 384 321
KR-92-21 KR-92-22 KR-92-23 KR-92-24 KR-92-25	0.1 (0.1 (0.1 (0.1 0.2	1.67 1.76 1.60 1.77 2.06	<3 <3 <3 <3 <3	50 30 60 140 30	151 255 199 146 302	12 <3 <3 <3 <3	0.56 1.77 0.83 0.73 1.06	2.3 1.5 1.1 1.7 0.2	25 15 23 29 46	35 20 29 49 72	58 35 54 68 98	6.11 5.27 5.55 5.96 6.39	<0.01 <0.01 <0.01 <0.01 <0.01	0.98 0.98 0.96 1.08 1.33	1548 1030 1321 1254 1418	11 17 12 11 9	0.05 0.03 0.05 0.08 0.07	91 58 82 117 174	0.16 0.15 0.15 0.14 0.16	4 <2 17 <2 19	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	46 76 56 63 83	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	401 333 371 422 440
KR-92-26 KR-92-27 KR-92-28 KR-92-29 KR-92-30	<0.1 <0.1 0.4 0.3 0.2	1.86 1.95 1.63 2.01 1.73	<3 <3 <3 <3 <3	75 55 25 15 30	191 168 252 130 120	<pre><3 </pre> <3 <3 <3 <3	1.12 0.98 0.97 0.63 0.44	<pre><0.1 <0.1 2.0 <0.1 <0.1 <0.1</pre>	23 33 41 29 33	63 67 52 67 56	64 68 82 76 83	5.49 5.64 5.92 5.89 5.84	<0.01 <0.01 <0.01 <0.01 <0.01	1.25 1.34 1.07 1.39 1.06	1118 1190 2598 1231 1144	6 6 9 6 9	0.05 0.06 0.08 0.05 0.09	129 143 160 138 136	0.12 0.13 0.13 0.13 0.13	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	89 78 102 64 46	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	284 262 550 273 470
KR-92-31 KR-92-32 KR-92-33 KR-92-34 KR-92-35	0.1 0.3 <0.1 <0.1 <0.1	1.90 2.23 1.82 1.95 1.75	<3 <3 <3 <3 <3 <3	55 30 50 125 25	88 189 65 94 71	7 6 (3 (3 4	0.46 0.57 0.45 0.39 0.40	<0.1 2.4 <0.1 1.7 <0.1	39 54 20 22 24	64 78 67 72 62	76 87 54 58 61	6.36 6.95 5.50 5.76 5.85	<0.01 <0.01 <0.01 <0.01 <0.01	1.20 1.26 1.18 1.20 1.09	1609 7368 778 702 908	9 12 7 10 10	0.07 0.03 0.05 0.07 0.06	165 209 123 131 121	0.14 0.14 0.13 0.13 0.13	<2 (2 (2 (2 (2 (2	<pre><2 <2 <</pre>	<2 <2 <2 <2 <2 <2 <2	51 64 44 43 45	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	362 483 252 318 276
KR-92-36 KR-92-37 KR-92-38 KR-92-39	<0.1 <0.1 0.1 0.2	1.55 1.67 2.06 2.01	<3 <3 <3 <3	20 165 120 15	38 48 73 66	<3 8 <3 <3	0.22 0.20 0.22 0.33	<0.1 <0.1 <0.1 <0.1	14 13 14 15	59 60 76 76	33 29 41 43	4.76 4.75 5.68 5.88	<0.01 <0.01 <0.01 <0.01	0.99 0.97 1.26 1.28	510 401 523 660	7 6 9 9	0.04 0.04 0.06 0.07	90 86 100 117	0.12 0.10 0.10 0.12	<2 <2 <2 <2	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	20 19 23 31	<5 <5 <5 <5	<3 <3 <3 <3	154 142 163 186
Minimum Detection Maximum Detection (- Less Than Ninimum	0.1 50.0 > -	0.01 10.00 Greater	3 2000 Than Maxi	5 10000 aus	1 1000 is - Ins	3 1000 sufficien	0.01 10.00 nt Sample	0.1 1000.0 P ns	1 20000 - No Sam	1 1000 aple	1 20000 ‡Au Ana)	0.01 10.00 Lysis Do	0.01 10.00 ne By Ag	0.01 10.00 13 Regia	1 20000 Digestio	1 1000 n / Solv	0.01 10.00 vent Extr	1 20000 action /	0.01 10.00 / AAS.	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

1630 Pandora Street,couver, B.C. V5L 1L6 Phi (604)251=5656 Faxi (604)254=5717

;

.

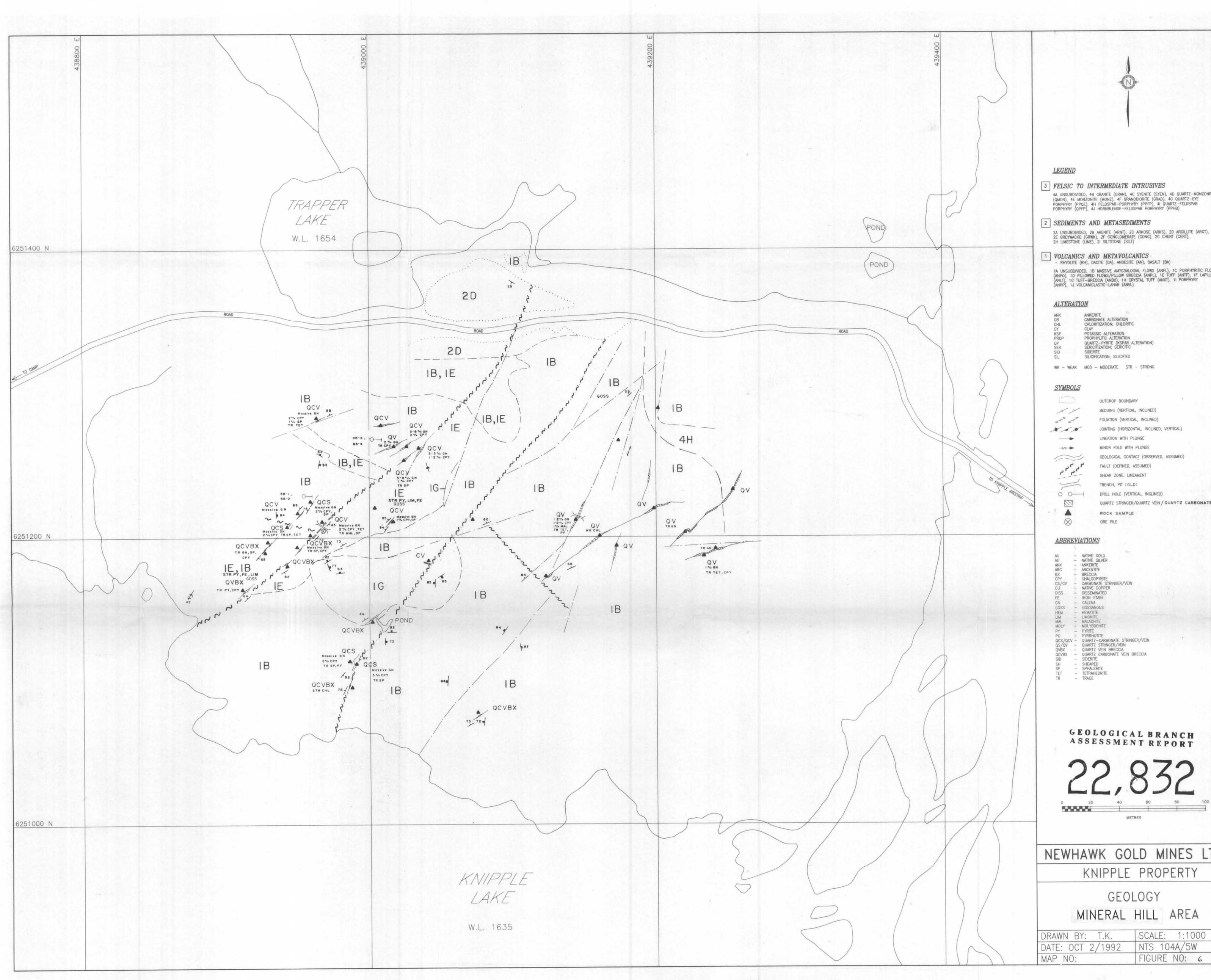
ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST:

REPORT #: 920071 PA	NEV	IHAWK GOL	D MINES	LTD.			PROJEC	T: None	Given			DATE	IN: AUG	06 1992	DATE	OUT: AU	6 12 199	2 AT	TENTION:	MR. DAV	E VISAGIE				PAGE 2	DF 3
Sample Name	Ag	Al X	As	+Au aab	Ba ppe	Bi ppm	Ca X	Cd ppm	Co pps	Cr pps	Cu	Fe	K X	Mg X	Mn	Mo	Na X	Ni	۲ ۲	Pb	Sb opm	Sn	Sr	U	W	Zn
KR-92-40 KR-92-41 KR-92-42 KR-92-43 KR-92-44	0.1 0.1 <0.1 <0.1 <0.1 <0.1	1.77 1.51 1.41 1.36 1.55	ppm	5 15 25 30 40	66 53 45 39 45	<pre></pre>	0.23 0.29 0.23 0.24 0.20	<pre></pre>	14 21 15 12 12	67 53 50 48 55	рр м 41 55 33 33 33	4.87 5.03 4.60 4.18 4.75	<pre></pre>	1.12 0.99 0.90 0.88 0.97	pp n 461 863 602 436 386	ррм 7 8 8 5 8	0.08 0.07 0.05 0.05 0.05	рр м 96 105 74 73 88	0.10 0.12 0.10 0.11 0.11	ppm	<pre></pre>	pp# <2 <2 <2 <2 <2 <2 <2	ppm 22 34 22 23 21	pp# <5 <5 <5 <5 <5	рря (3 (3 (3 (3 (3 (3	ppm 156 254 175 152 155
KR-92-45 KR-92-46 KR-92-47 KR-92-48 KR-92-49	<pre>(0.1 0.2 0.2 0.1 0.2</pre>	1.56 1.16 1.24 1.38 3.22	<3 <3 <3 <3 <3 <3	40 10 5 45 45	41 56 39 40 66	<3 <3 <3 <3 <3	0.19 0.17 0.20 0.25 0.04	<0.1 0.3 <0.1 <0.1 <0.1	16 12 15 17 26	54 33 42 49 41	33 31 31 38 30	4.75 3.64 4.34 4.50 6.12	<0.01 <0.01 <0.01 <0.01 <0.01	0.95 0.61 0.77 0.87 0.70	580 410 633 782 1026	6 12 7 5 16	0.04 0.07 0.08 0.04 0.06	76 56 65 76 41	0.11 0.08 0.10 0.12 0.10	<2 <2 <2 <2 <2 <2 <2	<2 <2 7 <2 4	<2 <2 <2 <2 <2 <2 <2	18 17 20 24 9	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	139 167 150 150 130
KR-92-50 KR-92-51 KR-92-52 KR-92-53 KR-92-54	0.2 <0.1 <0.1 0.5 0.4	1.44 1.72 1.83 1.50 3.08	<3 <3 <3 <3 <3	85 35 15 145 145	80 79 54 93 103	<3 <3 <3 <3 <3	0.14 0.24 0.08 0.51 0.09	<0.1 <0.1 <0.1 0.4 <0.1	13 27 14 30 30	46 42 38 19 49	58 40 39 42 73	7.86 4.64 4.79 1.66 6.29	<0.01 <0.01 <0.01 <0.01 <0.01	0.16 0.76 0.53 0.25 0.99	795 1387 561 2311 1586	12 9 8 12 15	0.13 0.03 0.05 (0.01 0.03	39 65 46 41 82	0.09 0.12 0.11 0.19 0.09	<2 <2 <2 <2 <2 <2 <2	5 4 2 10 2	<2 <2 <2 <2 <2 <2	30 35 14 175 17	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	67 150 105 85 220
KR-92-55 KR-92-56 KR-92-57 KR-92-58 KR-92-59	0.3 0.3 0.1 0.2 0.2	2.82 1.93 1.38 1.88 2.04	(3 (3 (3 (3 (3	55 30 55 10 30	80 51 77 44 98	<3 <3 <3 <3 <3	0.03 0.08 0.28 0.10 0.28	<0.1 <0.1 <0.1 <0.1 <0.1	27 11 10 15 23	45 37 22 29 31	76 26 21 27 36	6.16 5.16 4.12 5.59 5.19	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.99 0.65 0.55 0.58 0.72	1511 560 670 97B 1351	20 15 7 3 10	0.03 0.09 0.03 0.07 (0.01	82 41 31 32 62	0.06 0.06 0.09 0.11 0.08	<2 <2 <2 <2 <2 <2	<2 4 2 <2 <2	<2 <2 <2 <2 <2 <2	14 19 36 12 45	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	241 126 108 99 168
KR-92-60 KR-92-61 KR-92-62 KR-92-63 KR-92-64	0.1 0.4 0.5 0.5 0.3	0.37 1.59 2.89 2.71 2.28	<3 <3 <3 <3 <3	10 20 50 55 40	23 67 63 62 68	<3 <3 <3 <3 <3	0.12 0.19 0.07 0.03 0.16	<0.1 <0.1 <0.1 <0.1 <0.1	3 192 40 15 33	9 45 53 35 35	12 60 50 30 33	1.79 >10 8.49 5.83 7.07	0.01 <0.01 <0.01 <0.01 <0.01	0.16 0.06 0.77 0.52 0.62	148 19734 3272 1336 4864	3 15 18 15 14	0.05 <0.01 0.08 0.04 0.02	9 48 78 65 68	0.03 0.29 0.11 0.10 0.12	<2 30 <2 <2 <2 <2	<2 3 4 <2 5	<2 <2 <2 <2 <2 <2	18 29 14 13 19	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	26 93 239 186 266
KR-92-65 KR-92-66 KR-92-67 KR-92-68 KR-92-69	0.2 <0.1 0.4 0.2 0.2	1.53 0.59 1.06 1.55 1.52	<3 <3 <3 <3 <3	30 65 20 75 20	109 49 77 61 65	<3 <3 <3 <3 <3	0.48 0.23 0.31 0.29 0.28	<0.1 <0.1 <0.1 0.4 1.2	22 7 19 21 22	27 16 29 40 44	34 13 32 50 49	4.60 2.07 4.27 5.72 5.43	<0.01 <0.01 <0.01 <0.01 <0.01	0.68 0.39 0.69 0.91 0.97	1727 533 973 1204 1252	6 4 7 13 11	0.04 0.06 0.06 0.06 0.03	51 19 56 78 84	0.13 0.07 0.11 0.14 0.13	<2 <2 <2 7 <2	<pre><2 <2 <</pre>	<2 <2 <2 <2 <2 <2 <2	42 18 24 27 32	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	159 61 162 215 215
KR-92-70 KR-92-71 KR-92-72 KR-92-73 KK-92-74	0.1 0.3 <0.1 <0.1 <0.1	1.14 1.29 1.28 1.24 1.23	<3 <3 <3 <3 <3	10 10 20 35 25	77 74 64 63 97	<3 <3 <3 <3 <3	0.31 0.32 0.28 0.30 0.34	<0.1 <0.1 <0.1 <0.1 0.5	17 19 18 19 19	20 32 36 30 25	32 41 40 31 52	4.57 5.06 4.76 5.04 5.59	<0.01 <0.01 <0.01 <0.01 <0.01	0.64 0.83 0.86 0.82 0.84	1578 1260 990 1217 1271	10 9 9 8 19	<pre><0.01 0.01 0.02 0.02 0.03</pre>	42 63 70 52 60	0.11 0.14 0.12 0.13 0.13	<2 <2 <2 11 2	3 3 (2 (2 (2	<2 <2 <2 <2 <2 <2 <2	27 27 25 24 26	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	150 183 181 147 315
KR-92-75 KR-92-76 KR-92-77 KR-92-78	0.2 0.2 0.3 0.1	1.48 0.79 1.13 1.12	(3 (3 (3 (3	10 10 55 10	119 59 80 70	16 5 (3 (3	0.56 0.28 0.30 0.35	0.7 0.1 (0.1 (0.1	22 12 14 15	30 15 26 26	36 16 29 25	6.14 3.41 4.45 4.44	<0.01 <0.01 <0.01 <0.01	0.92 0.56 0.78 0.78	1557 836 996 941	12 7 8 6	0.05 0.07 <0.01 0.01	52 25 47 40	0.17 0.10 0.11 0.12	16 4 (2 (2	20 5 (2 (2	<2 <2 <2 <2 <2	45 19 24 25	<5 <5 <5 <5	<3 <3 <3 <3	192 122 160 146
Minimum Detection Maximum Detection < - Less Than Minimum	0.1 50.0 > -	0.01 10.00 Greater	3 2000 Than Max:	5 10000	1 1000 is - Ins	3 1000 sufficier		0.1 1000.0 e ns	1 20000 - No Sam	1 1000 ple	1 20000 ‡Au Ana	0.01 10.00 Lysis De		0.01 10.00 ua Regia	1 20000 Digestio	1 1000 n / Sol	0.01 10.00 vent Ext	1 20000 raction	0.01 10.00 / AAS.	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

1630 Pandora Street Juver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717


ICAP GEOCHEMICAL ANALYSIS

. .

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO5 to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST:	10 mln

REPORT #: 920071 PA	NEW	IHAWK GOL	D MINES	LTD.			PROJE	CT: None	Given			DATE	IN: AUG	06 1992	DATE	OUT: AU	G 12 1392	2 a t	TENTION:	MR. DAV	E VISAGIE	Ē		- -	PAGE 3 (OF 3
Sample Name	Ag opa	Al Y	As pp∎	€Au ppb	Ba pp∎	Bi ppa	Ca Y	Cd ppm	Co ppm	Cr ppnt	Cu ppa	fe 12	K Y	Mg Z	Min pp#	Мо рря	Na X	Ni ppm	P X	ԲԵ քք∰	Sb ppa	Sn ppm	Sr ppe	U pp∎	W PDB	Zn pp n
KR-92-79	0.2	0.99	<3	10	78	×3	0.40	(0.1	13	24	31	3.99	<0.01	0.74	874	6	0.02	52	0.12	×2	7	2	27	<5	<3	154
KR-32-80	0.2	1.08	<3	5	87	8	0.36	<0.1	14	26	36	4.21	(0.01	0.76	970	6	0.01	55	0.11	<2	3	<2	26	<5	(3	173
KR-92-81	<0.1	0.99	<3	100	68	<3	0.31	<0.1	14	23	25	4.16	<0.01	0.70	981	7	0.02	40	0.11	4	4	<2	23	<5	<3	136
KR-92-82	0.2	1.08	<3	15	85	<3	0.39	<0.1	13	26	33	4.08	(0.01	0.74	986	5	<0.01	47	0.11	<2	<2	<2	28	(5	<3	157
KR-92-83	(0.1	0.95	<3	£0	63	8	0.40	<0.1	8	23	22	3.03	<0.01	0.68	438	3	0.01	41	0,10	(2	<2	<2	28	<5	<3	123
KR-92-84	0.2	1.06	<3	75	42	16	0.20	(0.1	9	31	21	4.42	<0.01	0.71	522	7	0.05	47	0.09	<2	4	<2	17	<5	(3	95
KR-92-85	0.1	1.21	₹3	5	60	<3	0.31	<0.1	16	28	31	4.62	<0.01	0.84	1007	6	0.01	51	0.11	<2	<2	<2	22	<5	₹3	130
KR-92-86	0.2	1.14	(3	30	76	<3	0.35	<0.1	16	27	29	4.42	<0.01	0.81	974	7	0.03	45	0.11	<2	3	<2	25	<5	<3	145
KR-92-87	0.4	1,16	<3	15	73	13	0.33	<0.1	17	27	34	4.69	<0.01	0.81	992	7	0.01	49	0.11	5	3	<2	23	<5	<3	147
KR-92-88	0.2	1.08	<3	5	49	<3	0.28	<0.1	13	28	30	4,23	<0.01	0.79	799	6	0.03	52	0.11	<2	<2	<2	21	<5	<3	141
KR-92-89	0.2	1.06	<3	10	65	⟨3	0.41	<0.1	13	28	29	4.07	<0.01	0.80	1437	7	0.02	56	0.11	<2	2	<2	31	<5	<3	179
KR-92-90	0.2	1.05	<3	25	77	5	0.33	(0.1	14	29	32	4.15	<0.01	0.79	844	5	0.04	58	0.13	<2	<2	<2	35	<5	(3	190
KR-92-91	0.2	1,09	<3	30	82	₹3	0.34	<0.1	15	26	31	4.15	<0.01	0.79	1134	7	0.01	63	0.12	<2	3	<2	27	<5	<3	162
KR-92-92	0.1	1.09	<3	15	63	<3	0.28	<0.1	13	26	27	4.15	<0.01	0.77	580	5	0.01	42	0.09	<2	<2	<2	21	(5	<3	125
KR-92-93	(0.1	1.06	<3	20	58	<3	0.40	<0.1	33	24	48	4.44	<0.01	0.64	2878	8	0.03	116	0.12	<2	<2	<2	35	<5	<3	306
KR-92-94	0.1	1,11	⟨3	15	83	(3	0.29	0.2	14	25	34	4.20	<0.01	0.77	980	8	0.02	55	0.11	<2	<2	<2	25	<5	⟨3	161
KR-92-95	0.2	1.08	⟨3	20	58	<3	0.25	<0.1	16	27	34	4.63	<0.01	0.79	363	7	0.01	56	0.11	<2	<2	<2	21	<5	⟨3	157
Minimum Detection	0.1	0.01	3	5	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	i	0.01	1	0.01	2	2	2	1	5	3	ι
Maximum Detection	50.0	10.00	2000	10000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - (Greater 1	Than Maxi	តម្មធ	is - Ins	ufficier	nt Sampl	e ns	- No Sam	ple	∔Au Ana	lysis Do	ne By Aq	ua Regia	Digestic	on / Sol	vent Extr	action	/ AAS.							

LEGEND

- 3 FELSIC TO INTERMEDIATE INTRUSIVES 4A UNSUBDIVIDED, 4B GRANITE (GRAN), 4C SYENITE (SYEN), 4D QUARTZ-MONZONITE (QMON), 4E MONZONITE (MONZ), 4F GRANODIORITE (GRAD), 4G QUARTZ-EYE PORPHYRY (PPQE), 4H FELDSPAR-PORPHYRY (PPFP), 4I QUARTZ-FELDSPAR PORPHYRY (QPFP), 4J HORNBLENDE-FELDSPAR PORPHYRY (PPHB)
- 2 SEDIMENTS AND METASEDIMENTS 2A UNSUBDIVIDED, 2B ARENITE (ARNT), 2C ARKOSE (ARKS), 2D ARGILLITE (ARGT), 2E GREYWACKE (GRWK), 2F CONGLOMERATE (CONG), 2G CHERT (CERT), 2H LIMESTONE (LIME), 2I SILTSTONE (SILT)
- 1 VOLCANICS AND METAVOLCANICS - RHYOLITE (RH), DACITE (DA), ANDESITE (AN), BASALT (BA) 1A UNSUBDIVIDED, 1B MASSIVE AMYGDALOIDAL FLOWS (ANFL), 1C PORPHYRITIC FLOWS (ANPO), 1D PILLOWED FLOWS/PILLOW BRECCIA (ANPL), 1E TUFF (ANTF), 1F LAPILLI TUFF (ANLT), 1G TUFF-BRECCIA (ANBX), 1H CRYSTAL TUFF (ANXT), 1I PORPHYRY (ANPP), 1J VOLCANICLASTIC-LAHAR (ANVL)

ALTERATION

ANK CB	ANKERITE CARBONATE ALTERATION
CHL	CHLORITIZATION; CHLORITIC
KSP	POTASSIC ALTERATION
PROP	PROPHYLITIC ALTERATION
QP SER	QUARTZ-PYRITE (KSPAR ALTERATION) SERICITIZATION; SERICITIC
SID	SIDERITE
SIL	SILICIFICATION; SILICIFIED
WK - WEAK	MOD - MODERATE STR - STRONG

SYMBOLS

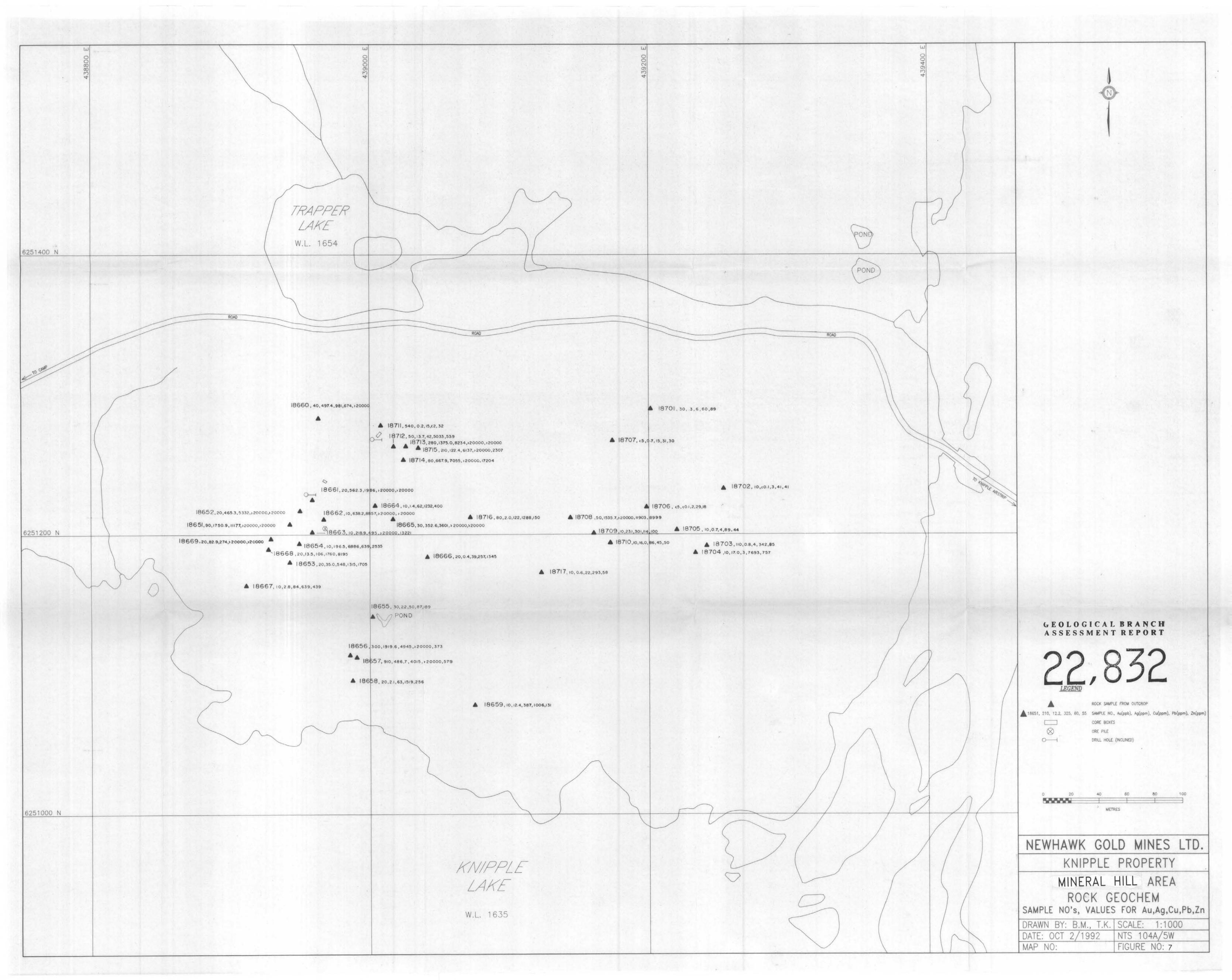
1	OUTCROP BOUNDARY
XX	BEDDING (VERTICAL, INCLINED)
22	FOLIATION (VERTICAL, INCLINED)
* * *	JOINTING (HORIZONTAL, INCLINED, VERTICAL)
	LINEATION WITH PLUNGE
	MINOR FOLD WITH PLUNGE
(GEOLOGICAL CONTACT (OBSERVED, ASSUMED)
^{م.} د ^۲ د	FAULT (DEFINED, ASSUMED)
	SHEAR ZONE, LINEAMENT
-	TRENCH, PIT (OLD)
00-1	DRILL HOLE (VERTICAL, INCLINED)
	QUARTZ STRINGER/QUARTZ VEIN / OUARTZ CARBONATE
- 1 🔺 👘	ROCK SAMPLE
\otimes	ORE PILE

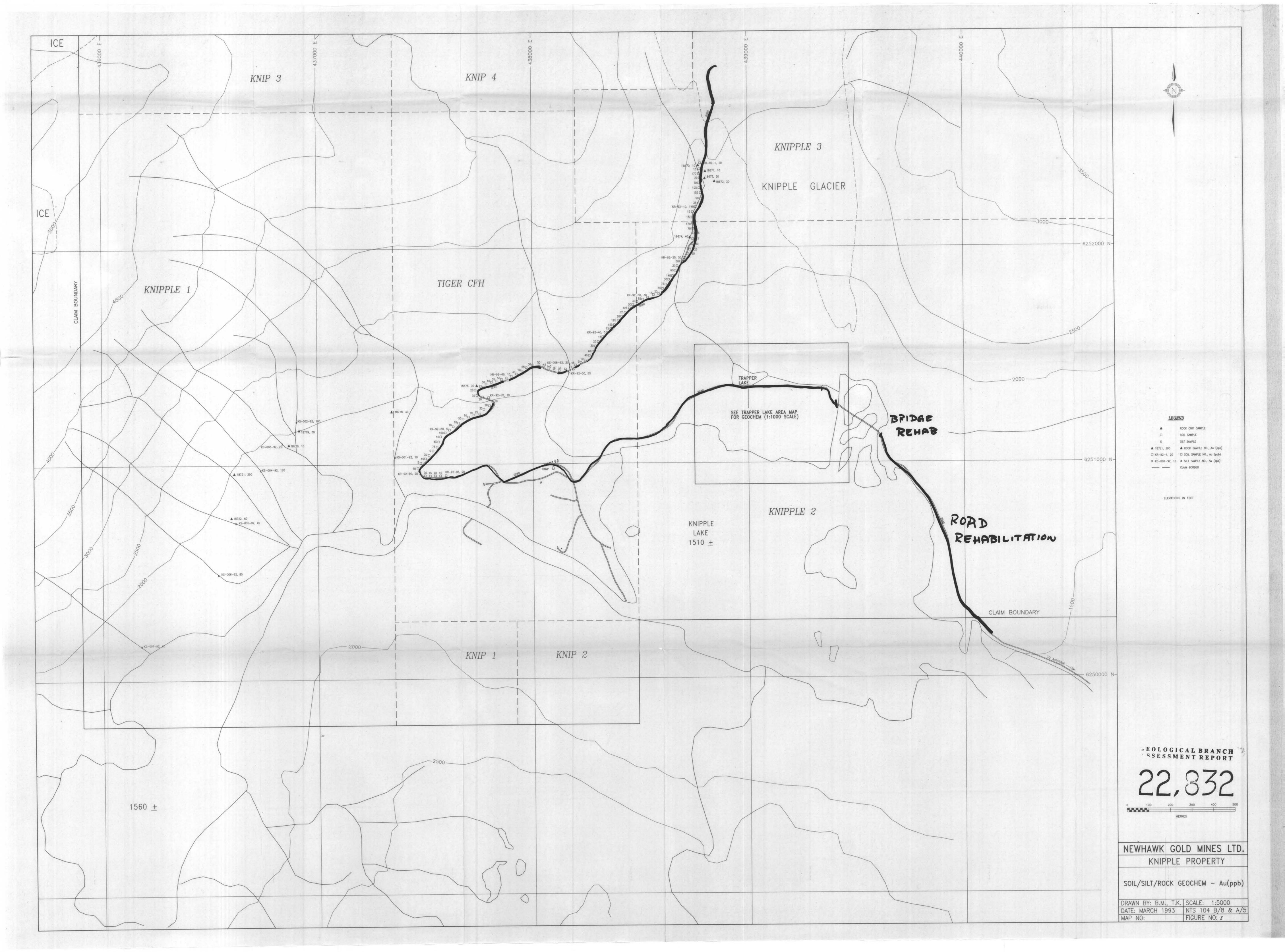
ABBREVIATIONS

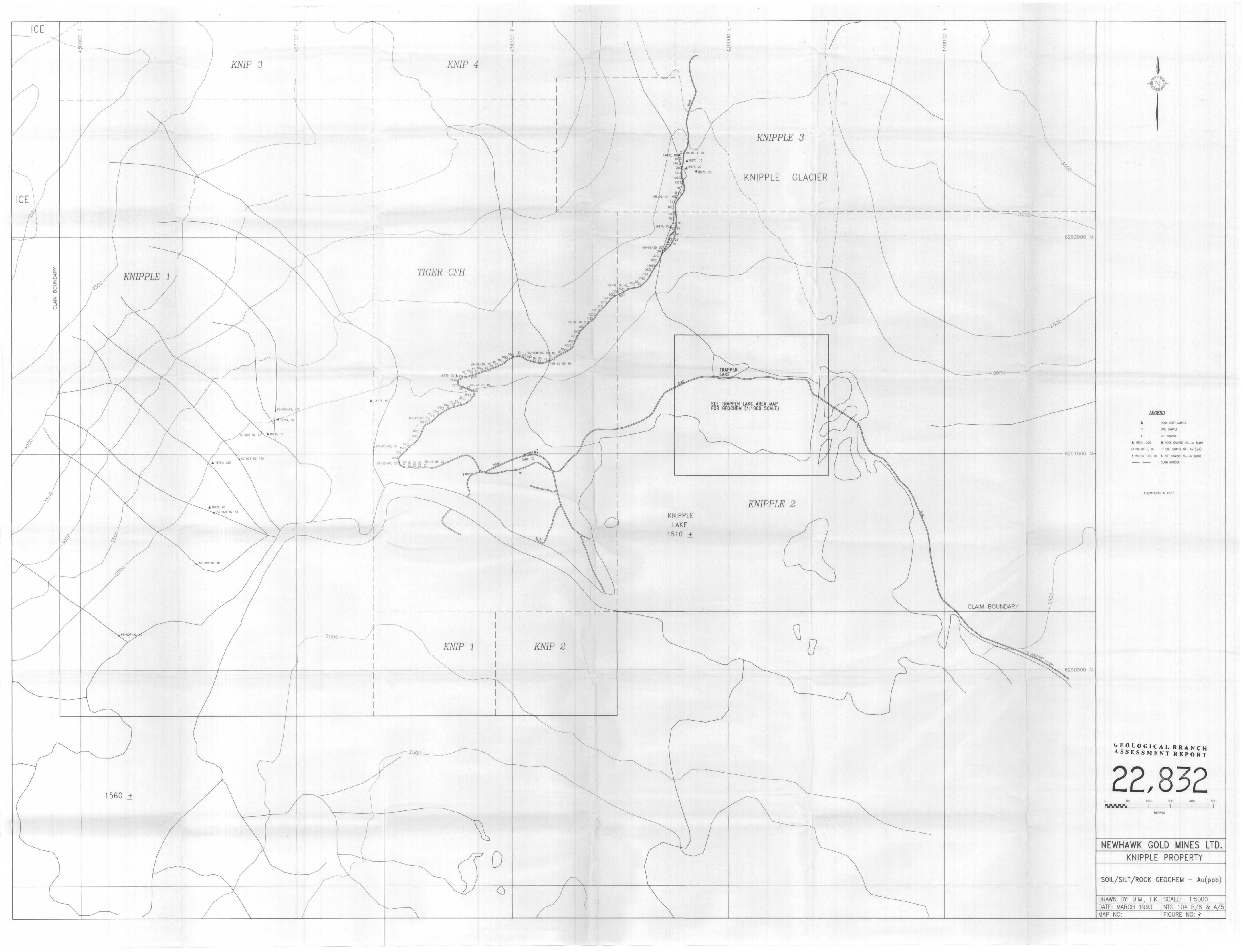
-

	5			
		And the second sec		
UA.	-	NATIVE GOLD		
AG	-	NATIVE SILVER		
ANK	-	ANKERITE		
ARG	-	ARGENTITE		
BX	-	BRECCIA		
CPY	-	CHALCOPYRITE		
CS/CV	5	CARBONATE STRINGER/VEIN		
CU		NATIVE COPPER	9	
DISS	2	DISSEMINATED	10 M	
FE	-	IRON STAIN		
GN	1	GALENA		
GOSS	2	GOSSANOUS		
HEM	2	HEMATITE		
LIM	-	LIMONITE		
MAL	2	MALACHITE		
MOLY	4	MOLYBDENITE		
PY		PYRITE		
PO	-	PYRRHOTITE		
QCS/QCV		QUARTZ-CARBONATE STRINGER/VEIN		
QS/QV	0	QUARTZ STRINGER/VEIN		
QVBX	0.	QUARTZ VEIN BRECCIA		
QCVBX	1	QUARTZ CARBONATE VEIN BRECCIA		
		SIDERITE		
SID	100			
SH		SHEARED		
SP	-	SPHALERITE		
TET		TETRAHEDRITE		
TR		TRACE		

GEOLOGICAL BRANCH ASSESSMENT REPORT


METRES


NEWHAWK GOLD MINES LTD.


GEOLOGY

KNIPPLE PROPERTY

MINERAL HILL AREA

