

REPORT ON THE GAMBIER PROPERTY

VANCOUVER MINING DIVISION, BRITISH COLUMBIA

NTS 92G/11

49⁰30' north latitude 123⁰21' west longitude

Ву

R.M. Durfeld, B.Sc., P.Geo.

J.P. McGoran, B.Sc., P.Geo.

March 1993

GEOLOGICAL BRANCH ASSESSMENT REPORT

22,841

TABLE OF CONTENTS

				Page
A.)	INT	RODUCTIO	ON	1
	1)	Location	on	1
	2)	Access	and Physiography	1
	3)	Ownersl	nip	2
	4)	History	y and Previous Work	3
	5)	Work Pi	rogram	4
B.)	GEO	CHEMICAI	L SURVEYS	5
	1)	Geocher	nical Sample Collection and Analy	ysis 5
	2)		nical Results	6
C.)	•	LOGY	•	7
J.,			al Geology	7
	-	-		7
	-	Local (seo1ogy	-
D.)	DIS	CUSSION		9
ILLUS	STRA!	rions		
Figui			Location Map (1:250,000)	after page 1
Figur			Claim Map (1:50,000)	after page 2
Figur	re 32	A	Geological Plan/Copper Copper Cove	attached
Figur	re 42	A.	Rock Geochemical Plan	attached
		_	Copper / Molybdenum - Copper Cov	
Figur	ce 5 <i>i</i>	A	Rock Geochemical Plan	attached
Figur	re 62	A	Silver / Gold - Copper Cove Soil Geochemical Plan	attached
5		· -	Contoured Copper Copper Cove	
Figur	e 71	A	Soil Geochemical Plan	attached
T-1		_	Contoured Molybdenum - Copper Co	
Figur	.e 61	3	Soil Geochemical Plan Copper - Gambier Creek	attached
Figur	e 71	3	Soil Geochemical Plan	attached
Figur	e 81	3	Molybdenum - Gambier Creek Soil Geochemical Plan	attached
Figur	re 91	3	Gold - Gambier Creek Soil Geochemical Plan	attached
			Lead - Gambier Creek	
Figur	re 10	OB	Soil Geochemical Plan Zinc - Gambier Creek	attached
Figur	e 1:	1B	Soil Geochemical Plan	attached
Figur	re 30	2	Silver - Gambier Creek Geological Plan/Copper	attached
Figur	e 40		Gambier Lake Rock Geochemical Plan	attached
	- • •	-	Copper / Molybdenum - Gambier La	

ILLUSTRATIONS (CONTINUED)

Figure 5C	Rock Geochemical Plan Silver / Gold - Gambier Lake	attached
Figure 6C	Soil Geochemical Plan Contoured Copper Gambier Lake	attached
Figure 7C	Soil Geochemical Plan Contoured Molybdenum - Gambier	attached Lake
Figure 6C	Soil Geochemical Plan Copper - Gambier Lake	attached
Figure 7C	Soil Geochemical Plan	attached
Figure 8C	Molybdenum - Gambier Lake Soil Geochemical Plan	attached
Figure 9C	Gold - Gambier Lake Soil Geochemical Plan	attached
Figure 10C	Lead - Gambier Lake Soil Geochemical Plan	attached
Figure 11C	Zinc - Gambier Lake Soil Geochemical Plan	attached
	Silver - Gambier Lake	

APPENDICES

Appendix I Itemized Cost Statement

Appendix II Statements of Qualifications

> Appendix III Geochemical Analyses

> Appendix IV Statistical Analysis

Figure 1. Location plan for the Gambier Island Copper Prospect. 1:250,000. NTS 92G

A.) INTRODUCTION

1) Location

The Gambier Property, comprised of the MB mineral claim group in the Vancouver Mining Division, is located on the northeast side of Gambier Island, 30 kilometres northwest of the city of Vancouver (Figure 1). More precisely, it is located at 49 degrees and 30 minutes north latitude and 123 degrees and 21 minutes west longitude. (National Topographic System Map 92G/11)

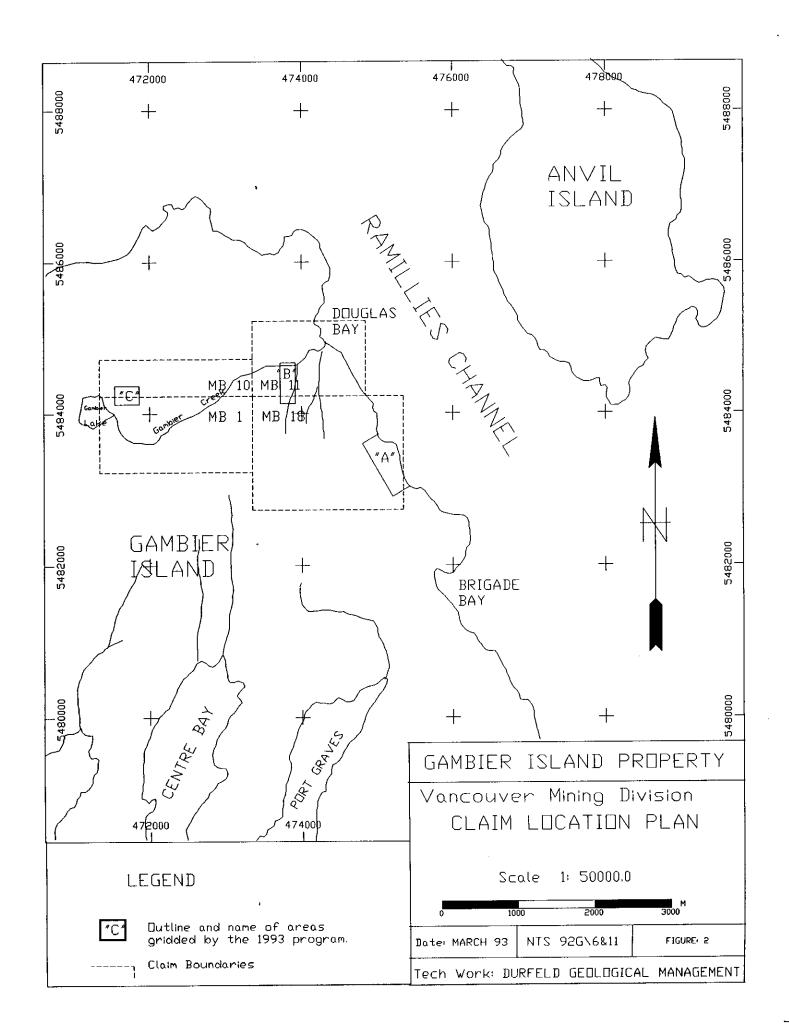
2) Access and Physiography

Access to the property to the property for this program was from Horseshoe Bay by Water Taxi and rented power boat. Since this program evaluted three distinct areas, (Copper Cove, Gambier Creek and Gambier Lake) this access was on a daily basis and the boat distance varied from 15 kilometres to Copper Cove to 21 kilometres and the north side of Gambier Island and Gambier Lake. Old skid trails originating from the beach in all three areas provided good walking access to the grids.

The terrain of the property is characterized by precipitious slopes that range from sea level on the coast to 450 metres (1500 feet) in the western claim area.

The vegetation on the Gambier property is characterized as second growth coastal forest of cedar, spruce and fir, with overmature cottonwoods in the poorly drained valley bottoms.

Undergrowth consists of variable salal, devils' club, alder and abundant moss.


3) Ownership

The Gambier property, comprised of four modified grid mineral claims - the GAM mineral claim group, totals 30 claim units and covers 750 hectares. The status of these claims is summarized below and the relative claim locations and the areas worked during the 1992 - 93 program are plotted as figure 2.

CLAIM NAME	NUMBER OF	TENURE	RECORD DATE	YEAR OF
	UNITS	NUMBER		EXPIRY
MB 1	8	258252	January 3rd	1994
MB 10	4	258264	March 29th	1995
MB 11	6	258265	March 29th	1995
MB 18	12	258266	March 29th	1995

The year of expiry in the above summary reflects the filing of the work on January 3rd, 1993 and March 25th, 1993 that is documented in this report.

Messrs. J.P. McGoran and R.M. Durfeld are the registered owners of the MB mineral claims.

4) History and Previous Work

The first claim staking on Gambier Island in 1905 would have coincided with the explortion and development of the Britannia Mine. The location for this staking is not given.

The next documented work was in the early 1970's, by Gaylord Mines who staked the northeast section of Gambier Island to cover old known copper showings. Gaylord Mines conducted soil sampling, EM 16 and magnetometer surveys over the northeast section of Gambier Island. This work defined anomalies centred at Copper Cove (figure A) and south of Gambier Creek at a point approximately 1 kilometre inland from Douglas Bay (figure B). The Copper Cove Anomaly was tested by a single diamond drill hole that was cored at -45° for 815 feet (248 metres) and was reported to have assayed 0.117% copper over its entire length. The Gambier Creek anomaly was not tested by diamond drilling at that time. Gaylord Mines permitted the property to lapse.

The property was again staked in February 1978 by 20th Century Energy Corporation. During the period 1978 to 1981, 20th Century conducted extensive exploration in the area of the Gambier Creek anomaly, comprised of a geochemical soil sampling and induced polarization surveys followed by 5,558 metres of diamond drilling. This work defined a 'Porphyry Copper-Molybdenum Deposit' with estimated reserves of:

- 198 million tonnes .24% Cu and .015% MoS2, with a .20% copper equivalent cutoff.

or - 56 million tonnes .36% Cu and .021% MoS₂, with a .40% copper equivalent cutoff.

In December 1984 and March 1985 the MB 1, MB 10, MB 11 and MB 18 mineral claims were forfeited and relocated by Messrs. R.M. Durfeld and J.P. McGoran.

Work conducted since 1985 on behalf of Durfeld and McGoran has consisted of geochemical (soil silt and rock sampling) and geological mapping surveys peripheral to the Gambier Creek and Copper Cove anomalies and covering much of the present claim group.

5) Work Program

The purpose of this program was to evaluate three distinct targets defined by previous surveys that can be described as:

Copper Cove (Figure A)

The geochemical soil and rock surveys in 1987 and 1991 showed strongly anomalous copper, gold, silver, zinc and arsenic values in Zone 1. The objective of this survey was to expand the area of known mineralization to the west.

Gambier Creek (Figure B)

A geochemical soil grid in 1986 showed isolated anomalous copper values on line 600 west in an area of low relief. These values were to the east of the mineralized zone defined by 20th Century's work. During this program 900 metres of grid were established and sampled at 25 metre intervals to the west and

east of line 600 west. Prospecting of this area was conducted in conjunction with the soil sampling.

Gambier Lake (Figure C)

Geochemical sampling in 1987 showed a float sample in the Gambier Lake area as anomalous in copper. The objective of this survey was to evaluate the area by soil sampling and identify a mineralized source.

This report reviews the geological, prospecting and geochemical surveys conducted on these three areas of the Gambier property during the period December 21st, 1992 to March 12th, 1993 by R.M. Durfeld and J.P. McGoran.

B.) GEOCHEMICAL SURVEYS

1) Geochemical Sample Collection and Analyses

Soil samples were collected at 25 metre intervals with the aid of a grub-hoe from the top of the B-horizon and placed in Kraft sample bags marked with the relative grid coordinates.

The soils are generally coarse and well drained and as such would be classed as Dystric Brunisols. The top of the Bhorizon was generally between 4 and 15 centimetres in depth. However, in the Gambier Creek Area the residual soil was found to be masked by a varved light-grey glacial outwash clay and sample depths of up to 70 centimetres were necessary to get through this clay. Some of the steep outcrop areas lacked well developed soil horizons and resulted in missed samples or rock

chip samples being collected instead.

Rock chip samples consisted of random chips of outcrop.

All the soil and rock samples were shipped to Acme Analytical Laboratories Ltd. at 852 East Hastings Street in Vancouver for anslysis.

At the Acme laboratory, the soil samples were dried and sieved. The rock samples were crushed and pulverized. All the samples were then digested and analyzed for 30 element ICP and gold by atomic absorption. The detailed description of the analytical procedures employed at the Acme laboratory along with the geochemical results for the soil and rock samples are given as Appendix II of this report.

2) Geochemical Results

Acme Analytical Laboratories supplied the soil and rock sample results on computer disk. Computer plots and statistical analyses were generated from this database. Appendix I, The Rock Assay Report, gives the rock sample number, grid location, geology code and analytical results. The Geological Plan (figure 3) shows rock results for copper with the Geology in the Copper Cove and Gambier Lake areas. All the rock results for copper, molybdenum, silver and gold are given as figures 4 and 5. The soil results for copper, molybdenum, gold, lead, zinc and silver are given as figures 6 to 13. Statistical analysis for the soil samples consisted of calculating the means and standard deviations and drawing the histograms that

are given as appendix I of this report.

The detailed geochemical results are discussed as the individual areas later in this report.

C.) GEOLOGY

1.) Regional Geology

The regional geology of Gambier Island is mapped by J.A. Roddick of the Geological Survey of Canada and is published as Memoir 335 and Open File 611. This mapping shows the southern and western portions of Gambier Island to be underlain by intrusive rocks of granodiorite composition. Volcanic and clastic rocks of the Jurassic to Cretaceous Age Gambier Group underlie the northern portion of Gambier Island. The Gambier Group rocks have a north to northwest strike and steep easterly to northeasterly dips. Ramilles Channel through McNab Creek to the north shows a strong northerly trending regional structure on the east side of Gambier Island.

2.) Local Geology

Geological mapping was completed in conjunction with the soil sampling. Outcrop exposures were mapped in the grid area. The geology is given with the rock chip sample locations with results in ppm copper as figure 3 for the Copper Cove and Gambier Lake areas.

Lithology

Rocks of Jurassic to Cretaceous Gambier Group were the oldest lithology in the Gambier property area. Mapping divides the Gambier Group into: 1) volcanic sediment and pyroclastic rocks comprised of a) feldspar porphyry, b) feldspar-hornblende porphyry, c) volcanic breccia, d) chert, e) fine grained andesite to dacite - in part tuffaceous, f) dark grey to black argillite, g) limestone and 2) massive medium grained andesite.

During Upper Creaceous to Tertiary time the Gambier Group rocks were intruded by 3) massive medium grained diorite and 4a) quartz porphyry 4b) to quartz feldspar porphyry as dykes and small stocks.

Structure

Regionally the prominent structural directions on Gambier Island are west-northwest and north-south.

Alteration

Hydrothermal alteration products in the Gambier property area are mapped as fine hornfels and chlorite, epidote and silicification.

Mineralization

Due to the heavy rainfall sulphide mineralization is absent from most outcrop exposures and only noted on freshly broken

surfaces. Pyrite occurs as disseminations and blebs in the matrix and on fractures and veins was noted in all lithologies. Locally the pyrite is accompanied by lesser chalcopyrite and malachite.

D.) DISCUSSION

The 1992-93 exploration program evaluated three distinct areas on the Gambier property that are discussed herein as the Copper Cove, Gambier Creek and Gambier Lake areas.

Copper Cove "A"

The 1991 geochemical soil surveys in the Copper Cove area defined three anomalous copper zones. Geological mapping and rock sampling identified sulphide mineralization in bedrock as the source of these anomalies.

Geological mapping has shown the Copper Cove area to be underlain by Lower Cretaceous age Gambier Group volcanic sediments and pyroclastic rocks intruded by Cretaceous to Tertiary dioritic, quartz porphyry and quartz-feldspar porphyry intrusions. Hydrothermal alteration related to these intrusions is recognized as extensive silicification and associated sulphide mineralization as well as hornfelsing and propylitic alteration.

The location of Gaylord Mines' 1972 drill site was discovered in the creek bed on the east side of Zone I. Although no core

or description of the geology is available, the reported assay results (0.117% copper over 815 feet) suggest Zone I could contain significant mineralization with vertical extent. The 1993 rock sampling in the western extent of Zone I, shows the anomalous copper values in soils to be sourced by mineralized bedrock. Rock sampling as line 9700 east showed low copper values, although several pyritic sections were encountered. The weaker alteration and predominantly pyrite mineralization suggests that zone I is terminated to the west.

The Copper Cove area is seen as as porphyry copper target similar to the deposit outlined in Gambier Creek, 2 kilometers to the northwest. Extensive jointing and faulting of the Gambier Group rocks in this area have produced a favorable host for mineralization.

Additional work as induced polarization surveys in conjunction with additional geological mapping would define targets for diamond drilling.

Gambier Creek "B"

During 1986 four soil lines were run in the area of the Gambier Porphyry Copper Prospect in the Gambier Creek area. Lines 1080 west and 840 west, through the centre of the deposit showed strongly anomalous copper and molybdenum values. Line 600 west showed an isolated anomalous copper value in a low lying area devoid of outcrop. Lines 660 west and 540 west were designed to evaluate this anomaly on line 600 west. The soil sampling identified a light grey clay layer of probable glacial origin

as masking this area which by way of deeper sampling it was possible to get through to the residual soil.

The results of the 1993 soil sampling confirmed the anomalous copper in soil zone of the 1986 survey centred on line 600 west and showed a zone of strongly anomalous copper in soil values to extend beyond the proposed extent of the Gambier Porphyry Copper deposit. These results suggest an area of copper/molybdenum mineralization that could significantly increase the reserves of the presently defined deposit. Additional deep soil sampling and diamond drilling in this area is warranted to define the extent of this additional reserve.

Gambier Lake "C"

The prospecting and rock sampling of the 1987 survey identified a mineralized float sample in the Gambier Lake grid area.

The geological mapping of the Gambier Lake grid identified a northwesterly trending section of Gambier Group rocks comprised of argillite, limestone and fine grained volcanics overlain by a massive medium grained andesite. The hydrothermal alteration was weak and showed only minor epidote and chlorite with isolated quartz veins. In the area of 25+90 west and 4+25 south small lenses of pyrite and chalcopyrite were noted to parallel the bedding foliation in a the pyritic argillite. Rock sampling of these lenses showed significant copper (to 8190 ppm) with anomalous molybdenum and zinc values. The soil sampling showed this area to coincide with anomalous copper, molybdenum and zinc values.

The economic potential for this area is seen as hosting a volcanogenic massive sulphide deposit, akin to the Britannia deposits, 20 kilometres to the northeast, that are also hosted by Gambier Group rocks. Although this mineralization could be sourced as vein off shoots from the Gambier Creek Porphyry Copper deposit, 1 kilometre to the east, this model is not supported by associated hydrothermal alteration and intrusive activity. Additional rock and soil sampling is necessary to define the full potential of this area.

APPENDIX I

Itemized Cost Statement

Technical Staff R.M. Durfeld (March 7th to 11th, 1993) 5 days @ \$ 350/day	\$ 1750.00
J.P. McGoran (December 21st and 22nd 1992 and March 7th to 11th, 1993) 6 days @ \$ 350/day	2150.00
Assistants	
D. Javorsky (December 21st, 1992) 1 day @ \$ 150/day .	150.00
C. McGoran (December 21st, 1992) 1 day @ \$ 110/day	110.00
Room and Board 13 mandays @ \$50/day	650.00
Radio Rentals 4 days @ \$ 20/day	80.00
Truck Rental - include fuel 6 days @ \$ 45/day	270.00
Water Taxi - December 21, 1992 Boat Rental - March 8 to 11, 1993	149.80 506.86
Field Equipment	210.00
Geochemical Analyses	1196.39
Drafting	750.00
Report Compilation and Copying	600.00
TOTAL COST OF PROGRAM	\$ 8573.05

Dated at Williams Lake, British Columbia

this 29th day of March 1993.

R.M. Durfeld, B.Sc., P.Geo. (Geologist)

APPENDIX II

Statement of Qualifications

- I Rudolf M. Durfeld, do hereby certify:
- 1.) That I am a consulting geologist with offices at 180 Yorston Street, Williams Lake, B.C.
- 2.) That I am a graduate of the University of British Columbia, B.Sc. Geology 1972, and have practiced my profession with various mining and/ or exploration companies and as an independent geologist since graduation.
- 3.) That I am a Fellow of the Geological Association of Canada (Member No: F3025), a member of the British Columbia and Yukon Chamber of Mines and a member of the Canadian Institute of Mining and Metallurgy.
- 4.) That I am registered as a Professional Geoscientist by the Association of Engineers and Geoscientists of B.C. (No. 18241)
- 5.) That this report is based on my personal knowledge of the property and member of the exploration team that conducted exploration on the Gambier property during the period December 21st, 1992 to March 11th, 1993.

Dated at Williams Lake, British Columbia

this 29th day of March 1993

R.M. Durfeld, B.Sc., P.Geo. Geologist)

STATEMENT OF QUALIFICATIONS

- 1, John P. McGoran of 2111 West 34th Avenue, Vancouver, B.C., hereby certify that:
- 1. I am a graduate of Carleton University (1972) and hold a B.Sc. Degree in Geology.
- 2. I am a member in good standing of the following associations:

The Association of Professional Engineers and Geoscientists Canadian Institute of Mining and Metallurgy Geological Association of Canada American Institute of Mining Engineers Prospectors and Developers Association of Canada.

3. I have been employed in my profession as an exploration geologist, geochemist and consultant for the last fourty years.

DATED at Vancouver, British Columbia, this 26 day of MARCH 93.

SIGNED;

PAOVINCE OF J. P. A. MCGORAN

SCIEN

n P. McGoran

APPENDIX III

Geochemical Results

P. 882/885

8			****	<u> </u>										m (e) H		W. 13				8 (2) B	(A) (B)							****	44.38	9.35	m	27(4)
P.(SAMPLE#	Mo ppm	Du ppm	bbu P	Zn ppm	Ag Ag	Mi ppm	Co Ppm	Mrs ppm	fe %	As ppm	U ppn	Au ppm	?h ppn	\$r ppm	Cd ppn	Sb ppm	Bí ppm	V ppm	Ca X	P X	La ppn	Cr ppm	Mg X	Ba Ba	Ti X	g pps	Al X	Ka X	×	ppm U	M4,
	97E 104+75N 97E 104+50N 97E 104+25N 97E 103+25N 97E 103+00N	र र र र र र	20 6 38 14 38	4 24 <2 6 23	150 75 73 61 92	.3 .2 .2 <.1	9 11 12 126 87	17 14 43	1534 713 690 668 629	5.04 5.35 4.41 7.54 3.74	88888	\$\$\$\$\$	SSSSS	2 2 2 2 2	241 241 149 311 196	.2 <.2 <.2 .4	8888	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	166	1.26 1.26	.039 .068 .034	2 2 3 2 2		2.78	47 65 203 49 88	.21 .20 .20 .01		3.88	.55 .72 .24 .81 .48	.13 .11 .07 .17	3 3 2 2 5	3 6 2 3 1
687-6533	97E 102+75N 97E 102+50N 4+50S 25+75W GA 1 GA 2	रा रा रा	29 318 18 55 34	<2 18 <2 <2	71 61 97 19 31	.2 .4 .2 .1	63 51 82 14 13	20 16 9	903 389 746 886 1131	3.48 3.34 5.26 3.70 3.81	<2 3 2 2	9999	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	₹ 2 ₹ ₹	110 198 11 239 127	.2 .3 <.2 <.2	2 <2 4 2 <2	8 & & & & & & & & & & & & & & & & & & &	75 57 54	2.70 2.08 .55 1.96 1.82	.049 .070 .051	<2 3 5 2 2	17 '		51 270 73 108 145	.16 .18 .20 .12	2 4 3 1 2 5	3.54 3.30 3.42 5.37 5.71	.35 .69 .08 .87 .57	.03 .03 .30 .13	3 <1 3 2 4	1 1 1 5
TO 687-	GA 3 651 652 653 654	<1 1 3 3	12 46 11 39 20	6 3 3 13 243	31 68 74 77 146	<.1 .1 .2 <.1	10 47 5 8 5	14 3 4	684 350 889 593 677	4.72 4.95 3.21 2.68 1.70	2B 2 4 Q 2	\$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$	<2 2 <2 <2 <2	88 33 78 26 73	<.2 <.2 .3 <.2 2.3	<2 <2 3 <2 2	<2 <2 <2 <2 3	58 11 19	.75 1.02 1.62 .38 1.33	.047	2 7 5 5 <2		1.63 1.31 .65 .54 .39	189 77 12 387 43	.12 .24 .29 .11	5 3 4 2 4 1	5.03 5.42 2.20 1.27 1.65	.35 .31 .07 .13 .03	.05 .19 .07 .03	2 3 2 2 4	9 1 3 1 2
	655 656 6568 6568 RE 6568	110 30	53 3681 5397 8190 8036	7 18 64 7 4	227 656	21.4 73.1 12.6 12.3	47 48 37 54 53	16 12 19	372 2050 1584 2140 2154	5.10 9.57 17.21 8.49 8.46	19 5 19 9 7	\$ \$ \$ \$ \$ \$	\$\$\$\$\$ \$\$\$\$\$	4 4 4	70 10 5 6 5	.3 3.2 1.3 7.5 6.9	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 17 48 5 <2	63 64 82 57 56	.05	.045 .051 .037 .052	6 3 2 4 3	54 40 53	1.18 1.16 1.06 1.08 1.09	119 156 137 78 68	.18 .13 .11 .12 .10	<2 3 <2 3 <2 3	3.88 3.97 3.29 3.10 3.00	.65 .01 .01 .01	.18 .12 .11 .15 .13	3 <1 1 <1 <1	1 30 81 28 25
ANALYTICAL	657 659 660 661 662			12 2 4 5	31 465 287 262 134	.1 2.3 1.1 .2	12 12 16 10 11	15	186 1239 854 675 426	5.44 4.84 5.20 5.32 3.56	5 <2 3 2 <2	5 5 5 5	& & & & & &	2 4 2 <2	181 76 87 64 103	<.2 2.3 .7 1.3	<2 <2 6 2 <2	5 00 00 00 00 00 00 00 00 00 00 00 00 00	76 116 112		.038	2 4 4 8 4	18 13	.90 1.55 1.57 .82 1.00	42 34 57 30 29	.06 .19 .24 .24 .22	<2 3 3 3 4 7	3.12 1.53	.65 .32 .31 .15	.14 .18 .21 .09	4 2 5 2 <1	6 170 40 3 32
FROM ACME	663 664 665 666 667	8 6 1 1	10	30 18 21 12 4	117 71 62 110 119	.1	7 7 6 10 9	4 5 6 19 19	473 253 767 844 650	1.79 2.67 3.65 5.28 3.37	<2 <2 <2 <2	5 5 5 5 5	\$ \$ \$ \$ \$ \$	4 <2 2 3 <2	22 61 69 278 216	<.2 .9 <.2 .2	2 2 2 3 <2	\$ \$ \$ \$ \$.50 .55 1,22	.014 .008 .050 .045	9 2 5 4 6		.30 .14 .99 1_53 1.64	35 51 84 58 12	.11 .05 .10 .21	3 2 2	.97 .76 1.74 3.30 2.87	.09 .03 .27 .59	.16 .05 .09 .14	2 1 2 3 2	2 14 3 2 1
3:53	668 669 670 671 STANDARD C\AU-R	19 5 6 4 18	863 152 318		130 131	<.1 .8 .8 .6 7.2	9 4 5 7 72	6 7 7 10 31	480 543 752 415 1032	3.68 2.52 4.28 3.89 3.96	00 7 00 12 12 12 12 12 12 12 12 12 12 12 12 12	<5 <5 <5 <5 18	2 2 2 2 7	_	74 48 82 71 53	<.2 4.4 .5 .8	<2 <2 2 <2 16	2 <2 <2 20	32	.82 1.15 .98	.065 .082 .080 .061 .063	9 9	7 4 4 6 59	.95 .47 1.84 .84	25 66 20 30 189	.15 .14 .17 .23	3 3 3	1.77 1.30 2.65 1.95 1.88	.10 .97 .24 .23 .08	.06 .28 .07 .09	1 <1 2 1 11	6 8 4 2 450
MAR-17-1993 1			ass. - s.	S LEAS AY RES AMPLE	CH 18 COMME TYPE	PARTI NDED ! : P1 !	AL FO FOR RO ROCK I	OR NW OCK AND OC TO	FE SR (D COR P3 SC	WITH CAP RESAMP DILP4 ICC SAM	LA CI PLES I SILT	R NG (PB ZI	N AS > Kalysi	ND LI 1%, IS BY	AG >	FOR 30 PA LEAC	NA K PM & / I/AA	AMD / NU = 1 FRON	AL. 1000 10 GM	PP8 SAMPI	LE.										
Æ	DATE REC	BIVE	SD:	MAR	11 19	93 1	DATE	REF	PORT	MAIL	EDI	"II		17/	13	sı	GNE	BY	NY.	2	9.1.	.a.TC	YE, C	.LEON	IG, J.	uang;	DERT	1 F L ED	0. C.	ASSA	YERS	

536/500	TT.						J.	P.	Mo	Gora	an i	A	BBO	cia	tes	F	PILE	2 #	93-	-04	40						Pa	ge	2		1	
P.003	sample#	Ma PPM	Çu ppra	Pb ppm	Pipu Zn	NO Vg	N i ppen	Co ppm	bbus	Fe X	As ppus	ppe U	Au ppm	Th ppn	bbar \$t	Ed pipul	\$b ppn	Bi ppm	PC(q	Ca %	р Х	Le ppm	Cr ppm	Mg %	Ba ppm	Ti %	bbw B	Al X	Na X	K X	M ppen	Au* ppt
	97E 105+00H 97E 104+00H 97E 103+75H 97E 103+50H 4+00S 27+50H	2 2 1 1	26 38 28 43 24	16 22 22 24 7	44 61 53 208 55	.3 .4 .2 .3 <.1	13 9 7 12 8	13 5 4 12 4	274 179 984	3.42 3.34 3.27 3.59 2.45	2 -2 7 6 2	\$ \$ \$ \$ \$	2222	₹2 2 ₹2 2 2	20 21 18 69 13	.5 .3 .4 1.6 3	8888	\$ \$2 \$2 \$3 \$3	71 63 63 68 53	.17 .16 .74	.029 .061 .092 .054 .020	7 3 3 3 5	14 17 17 13 15	.18 .19 .14 .46	55 50 48 350 25	.23 .21 .17 .17	<2 4 <2 2	.53 .94 .93	.02 .02 .02 .02	.02 .02 .02 .05	1 <1 <1 1	1 1 1 1
6533	4+00s 27+25W 4+00s 27+00W 4+00s 26+75W 4+00s 26+50W 4+00s 26+25W	2 2 3 9 6	25 28 29 40 45	15 9 6 16 12	47 50 76 95 55	.1 <.1 <.1 .2	8 7 10 12 8	4 5 13 5	205 257 647	2.28 2.76 2.75 4.30 2.64	9 4 2 6 5	\$	& & & & &	₹2 2 3 2 2	19 13 14 18 11	<.2 .2 .2 .7 .4	\$\$ \$\$ \$\$	89 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	47 51 55 79 49	.10 .11 .21	.037 .045 .031 .045 .066	4 5 5 4 11	14 18 17 19 18	.18 .15 .19 .22 .16	35 23 29 57 20	.15 .18 .20 .24 .16	<2 6	.37	.03 .02 .02 .02	.03 .02 .02 .03	<1 2 1 <1 2	1 1 1 1 2
39- <i>28</i> 9 01	4+00\$ 26+00W 4+00\$ 25+75W RE 4+00\$ 25+75W 4+00\$ 25+50W 4+00\$ 25+25W	6 5 5 2 37	40 33 35 19 133	16 25 25 27 43	96 88 89 33 212	.1 .2 .1 .3	12 9 9 5 16	5 6 6 2 282	214 213 85	4,52 3.74 3.75 1.30 5.53	10 6 5 4 86	ক ক ক	\$ \$ \$ \$ \$ \$	3 2 2 2 2	14 12 12 10 29	.6 .4 <.2 .2	8888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	68 73 73 35 96	.09 .09 .07	.075 .023 .023 .022 .065	3 4 4 4 6	26 25 24 13 25	.21 .13 .13 .06 .25	37 50 51 44 144	.22 .14 .14 .08 .15	<2 2 <2 1	.42	.02 .01 .02 .01	.03 .02 .02 .02 .08	<1 <1 1 <1	1 1 1
	4+50s 27+50W 4+50s 27+25W 4+50s 27+00W 4+50s 26+75W 4+50s 26+50W	2 1 2 1 2	22 20 28 26 40	10 17 44 23 51	43 43 59 55 70	.1 <.1 <.1 .1	6 8 9 5	6 3 6 5 3	156 250 323	2.81 2.35 3.02 2.96 2.53	5 5 8 2	ও ও ও ও ও	\$ \$ \$ \$ \$	2 <2 <2 <2 <2	10 14 15 12 25	.7 .3 .5 .4	5 5 5 5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60 55 63 57 56	.09	.018 .023 .031 .045 .029	5 3 5 2 3	18 12 17 20 14	-13 -11 -13 -13 -16	22 30 30 27 42	.21 .19 .21 .19	<2 5 <2 5	.52 2.73 3.69 1.10	.02 .01 .02 .02	.02 .01 .02 .02	1 <t 1 1</t 	1 1 3 1
ALYTICAL	4+505 26+25H 4+508 26+00H 4+508 25+50H 4+50S 25+25H 4+50S 25+00H	3 1 1 2 2	98 22 55 27 27	27 12 36 16 13	155 54 78 74 65	.3 <.1 .1 .1	7 8 9 8 10	4 4 13 3	192 1213 165	3.36 3.19 2.27 3.05 2.74	4 5 8 3 <2	\$ \$ \$ \$	\$\$ \$\$ \$\$	2 8 2 2	16 11 14 11 12	.6 .4 .6 .5	\$ \$ \$ \$ \$	<2 3 <2 <2	61 60 46 58 54	.08	.101	3 2 9 3 2	17 18 14 20 20	.16 .12 .12 .13	33 23 49 34 29	.19 .21 .14 .18 .19	2 4 2 3 <2 3	. 14 . 71 3 . 65 3 . 60	.01 .62 .01 .01	.02 .02 .03 .02 .02	<1 41 1 1 <1	3 1 2 1
ACME PAPE	660W 1+20S	2 3 26 22 28	857	10 7 14 29 13	60 43 60 71 29	.1 <.1 <.1 <.1	14 12 12 6 3	8 4 4 1	175 180	2.83 1.35 2.23 1.08 .59	3 <2 3 3 <2			& & & & &	32 29 23 40 24	.5 .3 .5 .8	2 <2 <2 <2	2 2 3 2	53 28 57 27 19	.25 .15 .29	.048 .063 .022 .017 .012	6 3 2 5 2	24 15 21 15 9	.32 .30 .27 .22 .12	76 86 66	.18 .13 .22 .16 .14	4 3 4 3	5.09 5.17 2.99 1.07 .81	.02 .03 .02 .02	.05 .05 .03 .03	<1 1 1 2 <1	2 1 1 2 2
54 FROM	6604 1+805 6604 2+105 6604 2+405		2193 1140 51	13 17 16 14 10	33 53 71 52 82		4 7 10 9 14	2 5 12 9	135 298 307	2.00 3.03 2.93 4.85 3.16	2 3 8 6 11	<5 <5 <5 <5	\chi \chi \chi \chi \chi \chi \chi \chi	\$ \$ \$ \$	21 21 20 24 36	.2 .6 .7 .4	€2 €2 €4 €2	2 <2 <2 <2	38 60 49 112 48	. 15 . 16 . 15	.009 .011 .035 .018 .043	2 5 9 5 6	13 19 21 24 19		37 41	.22 .17 .17 .30	<2 : <2 :	1.18 3.52 5.85 2.48 5.87	.01 .01 .02 .82	.02 .02 .04 .04	1 2 <1 1 1	1 5 5 1 2
993 13:	660W 3+00\$ 660W 3+30\$	9	46 238 62	9	77	.2	12	44	1310	2.79 2.64 3.96	7	<5 <5 18	<2	<2	38	.6	<2	<2	44	.30	.059	6	17	.37	84	.11	<2	5.04	.02	. 05	1 <1 11	3
MDR-17-16	Sample type: \$01	<u> </u>	<u>ample</u>	s beg	<u>ianlo</u>	g 'RE	<u>'are</u>	<u>dun</u> l	icate	samo	tes.																	,				

J.P. McGoran & Associates

FILE # 93-0440

Page 3

44

X .	APPL HELTIPAL																														FE MAN 1	TICH
P. 00	SAMPLE#	Ho Ho	Cu ppm	Pb Ppm	Zn ppm	Ag PPM	Mi ppm	Co ppm	Mn ppm	Fe X	As ppm	U PPm	Au	Th ppn	Sr ppn	Cd ppn	d2 fireqq	8 i ppn	N Ppm	Ca X	P X	La ppm	Cr Cr	Hg X	βа рре	Ti X	g ppm	Al X	Ha X	K	bbui A	AL FF
	6604 3+60s 6604 3+70s	6	146	10	77 49	.2	13 10	17 13	255 : 306		14	ণ্ড ণ্ড	<2 <2	~ ~	28 30	.6 .3	4 22	<2 <2	58 42		.032	14	19	.39	91 62	.19 .14	4 2	3.74 2.15	.01	.05	5 <1	
	660¥ 4+205 660¥ 4+50\$	15	156 76	15	73 89	.2	10 10	· 20	411 3 319	3.57 4.13	6 8	√5 <5	<2 <2	2 2	17 13	1.0	3 4	₹2 ₹2	55 74	.15	.153 .065	13	20 24	.21	38 40	.19		10.50	.01	.03	4 2	
	540H 0+00S	2		6	59	.2	12	8	268		2	<5 	<2	<2	51	.2	2	<2	51	.22		6	21	.36	142	.19	42	4.65	.01	.07	1	
	540W 0+30\$ 540W 0+60\$ 540W 0+90\$	25 37 28	529 826 825	16 10 7		.4	13 10 10	12 11	375 · 434 282	2.70	<2 2 3	ক ক	888	₹ ₹	32 34 24	<.2 .3	3 2	S S	82 65 53	.21	.039 .042 .052	5 4	23 17 17	.33 .39 .32	92 120 71	.28 .21 .19	& & &	3.00 2.34 2.33	<.01	.07 .06 .05	্ব ব ব	•
533	RE 540W 0+90S 540W 1+20S	33 12	943	9	73 67	.2	8 10	9 7	320 158	3,11	<2 8	ঠ	₹2 ₹2	<2 <2	26 14	.2 <.2	<2 <2	2 2	60 93	.21	.059	5	18 22	.36	82 67	.21	2 2	2.78	<.01	.06	<1 1	<
7-6	540V 1+50S	3		12	80	4.1	11	13	608		8	<5	<2	<2	37	.3	<2	<5	53		.043	ž	16	.41	72	.12	2		.01	.05	1	
œ æ	540W 1+80S 540W 2+10S 540W 2+40S	3 5	63 100 34	12 7 9	103 72 68	.2 .3 <.1	18 19 11	20 14	1362 501 170		10	∢5 ∢5 ∢5	<2 <2 <2	S S S	57 46 23	<.2 .4 .2	₹ ₹	₹ ₹	94 69 56	.35	.057 .094 .056	10	26 26 24	.56 .53 .23	105 93 37	.23 .17 .21	د 2> ۲	4.44 5.93 7.28	.01 .01 .01	.09 .08 .03	2	•
1	540H 2+70S	6		ś	24	,1	6	5		1.94	<2	<5	₹2	₹2	26	<.2	ż	<2	43		.017	6	12	.08	39	.14	√ 2			.01	<1	-
	540W 3+00S 540W 3+30S	6 9	267	8	38 74	.1 .2	9 13	8 25	538	2.60 3.82	3	<5 <5	Q	<2 <2	27 30	.2	Q	₹ 42	47 54	.27	.054	6 9	20	.27	34 62	.14	<2	3.59	<.01	.04	1	∢
	STANDARO C/AU-S	17	62	38	130	6.9	68	32	1031	3,98	42	18	7_	36	54	18.6	13	19	55	.50	.087	39	60	.90	187	.09	35	1,88	.07	.14	13	4

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

FROM ACME ANALYTICAL

MAR-17-1993 13:55 FF

												_																		ACRE	AGEST FORE
SAMPLE#	Но РРМ	Cu:	Pb ppm	Zn ppa	Ag ppm	Ni Ppu	Со	Ppm Mn	Fe X	As ppn	ppm U	Au	Th ppm	Sr ppn	Cd -	Sb ppe	9 i ppn	V ppn	Ca X	P X	Le ppe	Cr Cr	Ng X	Ba	Tí X	B ppm	AL X	Ns X	K X		Au ^a
GA 1H GA 3H RE GA 1H	1 1	17 21 17	3 4 3	45 53 46	<,1 ,1	10 15 13	9 12 8	386 3 466 4 389 3	.19	2 3 <2	5 <5 <5	₹ ₹ ₹	0 0 0	93 96 94	<.2 <.2 <.2	<2 <2 <2	₹ 2 2	66 91 67	.82	.040 .021 .040	6 7 6	20 23 19		63 58 62	.20 .22 .20	₹ ₹	1.50 1.60 1.47	.10 .05 .10	.11	3 1 2	ং ং ং ং ং

Sample type: SILT. Samples beginning 'RE' are duplicate samples.

10 687-6533

FROM ACME ANALYTICAL

MAR-17-1993 13:56

APPENDIX IV
Statistical Analysis

SUMMARY STATISTICS and HISTOGRAM ARITHMETIC VALUES Variable = Mo ppm Unit = N = 214 Mean = 7.252 Min = 1.000 1st Quartile = 2.000 Std. Dev. = 10.471 Max = 62.000 Median = 3.000 CV % = 144.377 Skewness = 2.653 3rd Quartile = 6.000 (# of bins = 24 - bin size = 2.652)% cum % cls int _____ 0.00 0.23 -0.326 40.19 40.23 2.326 ****************** 22.90 63.02 4.978 ******* 17.29 80.23 7.630 ****** 3.74 83.95 10.283 0.93 84.88 12.935 0.93 85.81 15.587 1.40 87.21 18.239 1.87 89.07 20.891 0.93 90.00 23.543 ** 1.87 91.86 26.196 * * 2.34 94.19 28.848 31.500 0.47 94.65 1.40 96.05 34.152 0.00 96.05 36.804 0.93 96.98 39.457 0.47 97.44 42.109 0.93 98.37 44.761 0.47 98.84 47.413 50.065 0.00 98.84 0.00 98.84 52.717 0.00 98.84 55.370 0.47 99.30 58.022 0.00 99.30 60.674 0.47 99.77 63.326

Each "*" represents approximately 1.7 observations.

2

1

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = SOGAM.PRO

N = 214Variable = Mo ppm Unit = NCI = 24

Transform = Logarithmic Number of Populations = 3

of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	2.248	_	1.366	70.00
		+	3.699	
2	6.388	_	4.988	15.00
		+	8.180	
3	26.716	-	18.093	15.00
		+	39.447	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thre	sholds
1	0.830	6.087
2	3.895	10.475
3	12.253	58.246

SUMMARY STATISTICS and HISTOGRAM ARITHMETIC VALUES

SUMM	ARY STAT	ristics and	HISTOGRAM				ARITE	IMET	IC VALU	ES
Vari	iable =	Cu ppm	Unit	=			N	=	214	
	Mean =	114.584	Min	=	11.000	1st	Quartile	*	24.00	00
Std.		229.206								
		200.033								
=====		========	========	-===	=======			===	======	===
%	cum %	cls int	•	(# c	of bins =	24 -	bin size	• =	94.87	70)
			-							
		-36.435								
66.82	66.74	58.435					*****	***	>	83
18.69	85.35	153.304	1	***	******	*****	****			
		248.174	7	***						
		343.043	i	***	ł .					
		437.913	1	**						
		532.783	1	***						
		627.652	4	k						
		722.522	*	* *						
		817.391								
		912.261	,	**						
		1007.130	4	k						
	98.84									
	99.30		,	k						
		1291.739								
		1386.609								
	99.30									
	99.30									
	99.30									
	99.30									
	99.30									
		1955.826								
		2050.696								
		2145.565								
0.47	99.77	2240.435	*	r 						
	-		0		1		2	3	- 	4

Each "*" represents approximately 1.7 observations.

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = SOGAM.PRO

Variable = Cu ppm Unit =

N = 214

NCI = 24

Transform = Logarithmic Number of Populations = 3

of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		_		
1	24.014	_	18.165	50.00
		+	31.746	
2	65.364	_	43.419	36.00
		+	98.399	
3	442.289	-	244.739	14.00
		+	799.301	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thre	Thresholds				
1	13.741	41.967				
2	28.842	148.131				
3	135,425	1444.489				

		######### ISTICS and			+++1	*####;	####	###	********** ARITHMET	####### IC VALUE	
Var	iable =	Pb ppm	Unit	=					N =	214	
	Mean =	22.664	Min	=		2.000)	lst	Quartile =	10.000	
Std.	Dev. =	28.238				8.000			Median =		
	CA # =	124.598						3rd	Quartile =		
====:									=========		
-	cum %	cls int		(#	of k	oins :	= 24	. – 	bin size =	12.870)
		-4.435									
18.69	18.84	8.435				****					
47.20	65.81	21.304	;	* * *	****	****	***	***	*****	> 5	8
19.63	85.35	34.174	,	* * *	***	****	***	***	****		
7.48	3 92.79	47.043	,	* * *	****	***					
2.80	95.58		,	* * *	•						
	96.98		,	* *							
		85.652	,	*							
		98.522									
		111.391									
		124.261	,	k							
		137.130									
	98.84	150.000									
0.00	98.84	162.870									
0.00	98.84	175.739									
0.00	98.84	188.609									
0.47	7 99.30	201.478	•	*							
0.00	99.30	214.348									
0.00	99.30	227.217									
0.00	99.30	240.087									
0.00	99.30	252.957									
0.00	99.30	265.826									
0.00	99.30	278.696									
0.00	99.30	291.565									
0.47	7 99.77	304.435	,	*							_
			0			1			2 3		4

Each "*" represents approximately 1.7 observations.

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = SOGAM.PRO

Variable = Pb ppm Unit = N = 214NCI = 24

Transform = Logarithmic Number of Populations = 3

of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	9.281	_	5.862	50.00
		+	14.693	
2	20.800	-	17.331	35.00
		+	24.964	
3	46.840	_	28.301	15.00
		+	77.523	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds					
1	3.702	23.263				
2	14.440	29.961				
3	17,100	128.305				

******************************* SUMMARY STATISTICS and HISTOGRAM ARITHMETIC VALUES

SOM	AKI SIMI.	isites and	HISTOGRAM				AKIINMEI	IC VALUES
Var	iable =	Zn ppm	Unit	=			N =	214
	Mean =	91.626	Min	=	10.000	1st	Quartile =	53,000
Std.	Dev. =	73.512	Мах	=	498.000		Median =	70.000
	CV % =	80.230	Skewness				Quartile =	103,000
							•	
====:			=======	===	=== === ==	=====		=======
	cum %	cls int					bin size =	•
0.0	0.23	-0.609						
1.8	7 2.09	20.609	;	* *				
10.28	3 12.33	41.826	7	***	*****			
28.04	4 40.23	63.043	•	* * *	*****	*****	******	***
27.5	7 67.67	84.261	;	***	******	****	******	***
7.94	4 75.58	105.478	1	***	*****			
8.43	1 83.95	126.696	1	***	****			
3.27	7 87.21	147.913	,	***	*			
3.27	7 90.47	169.130	1	***	*			
0.47	7 90.93	190.348	1	k				
1.87	7 92.79	211.565	4	* *				
0.47	7 93.26	232.783	¥	k				
1.87	7 95.12	254.000	*	fr *fr				
1.40	96.51	275.217	7	* *				
0.00	96.51	296.435						
0.47	7 96.98	317.652	3	t				
0.93	3 97.91	338.870	4	*				
0.00	97.91	360.087						
0.47	7 98.37	381.304	*	ł				
0.00	98.37	402.522						
0.00	98.37	423.739						
0.93	3 99.30	444.957	,	t			•	
0.00	99.30	466.174						
0.00	99.30	487.391						
0.47	99.77	508.609	·	•				
·			0	. — — -	1		2 3	4

Each "*" represents approximately 1.7 observations.

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = SOGAM.PRO

Variable = Zn ppm Unit = N = 214NCI = 24

Transform = Logarithmic Number of Populations = 4

of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		_		
1	21.107	-	13.789	5.00
		+	32.309	
2	54.872	-	43.155	55.00
		+	69.769	
3	95.277	_	79.364	25.00
		+	114.381	
4	212.760		145.868	15.00
		+	310.327	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
1	9.008	49.456			
2	33.940	88.711			
3	66.109	137.315			
4	100.007	452.637			

SUMMARY STATISTICS and HISTOGRAM ARITHMETIC VALUES N = 214Variable = Ag ppm Unit = Mean = 0.175 Min = 0.100 1st Quartile = 0.100 Std. Dev. = 0.165 Max = 1.500 Median = 0.100 CV % = 94.614 Skewness = 4.430 3rd Quartile = 0.200 % cum % cls int (# of bins = 24 - bin size = 0.061)-----_____ 0.00 0.23 0.070 66.82 66.74 0.130 0.00 66.74 0.191 14.95 81.63 0.252 ******** --> 83 ****** ******** 10.28 91.86 0.313 0.00 91.86 0.374 4.21 96.05 0.435 0.00 96.05 0.496 1.40 97.44 0.557 0.00 97.44 0.617 0.00 97.44 0.678 0.93 98.37 0.739 0.00 98.37 0.800 0.00 98.37 0.861 0.47 98.84 0.922 0.00 98.84 0.983 0.00 98.84 1.043 0.00 98.84 1.104 1.043 0.00 98.84 1.165 0.47 99.30 1.226 0.00 99.30 1.287 0.00 99.30 1.348 0.00 99.30 1.409 0.00 99.30 1.470 0.47 99.77 1.530 2 0 1 3

Each "*" represents approximately 1.7 observations.

SUMMARY STATISTICS and HISTOGRAM ARITHMETIC VALUES Variable = Au pp Unit = N = 214 Mean = 2.706 Min = 1.000 1st Quartile = 1.000 Std. Dev. = 6.361 Max = 60.000 Median = 1.000 CV % = 235.104 Skewness = 7.032 3rd Quartile = 2.000 % cum % cls int (# of bins = 24 - bin size =0.00 0.23 -0.283 79.91 79.77 2.283 13.08 92.79 4.848 2.34 95.12 7.413 ******** --> 99 ***** *** 0.93 96.05 9.978 * 0.47 96.51 12.543 1.40 97.91 15.109 0.00 97.91 17.674 0.00 97.91 20.239 22.804 0.00 97.91 0.00 97.91 25.370 0.47 98.37 27.935 0.00 98.37 30.500 0.00 98.37 33.065 0.00 98.37 35.630 0.47 98.84 38.196 40.761 0.00 98.84 0.00 98.84 43.326 0.00 98.84 45.891 0.00 98.84 48.457 0.00 98.84 51.022 0.00 98.84 53.587 0.47 99.30 56.152 0.00 99.30 58.717 0.47 99.77 61.283

Each "*" represents approximately 1.7 observations.

1

2

3

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = SOGAM.PRO

Variable = Au ppm Unit =

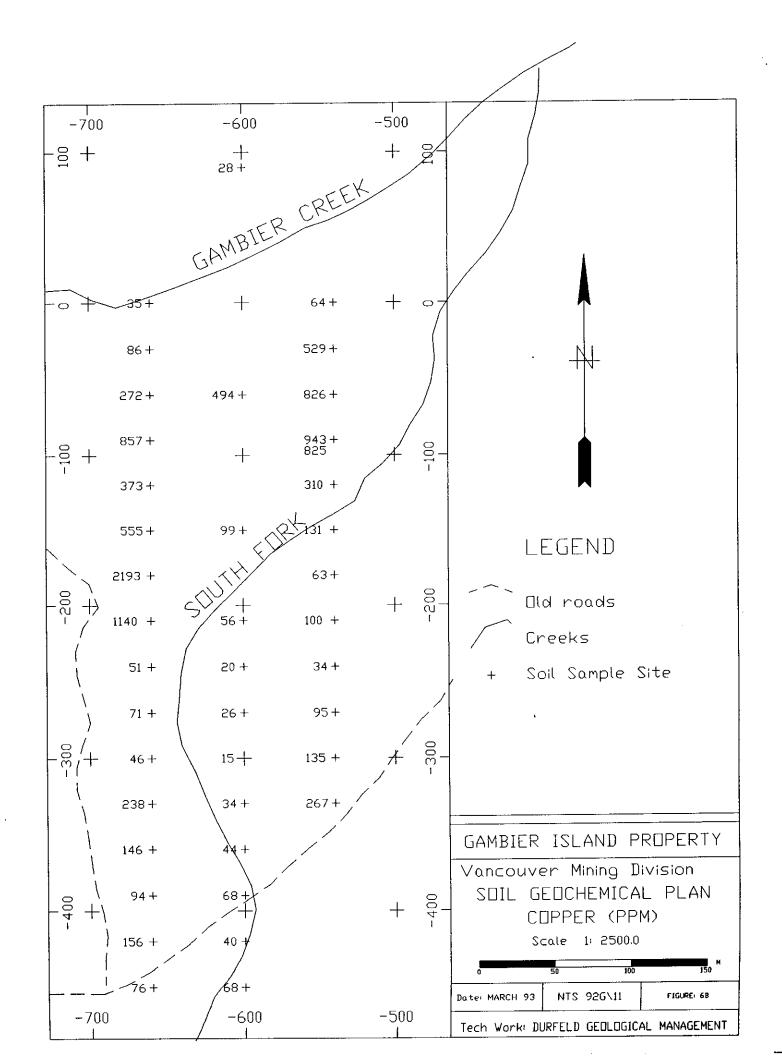
N = 214

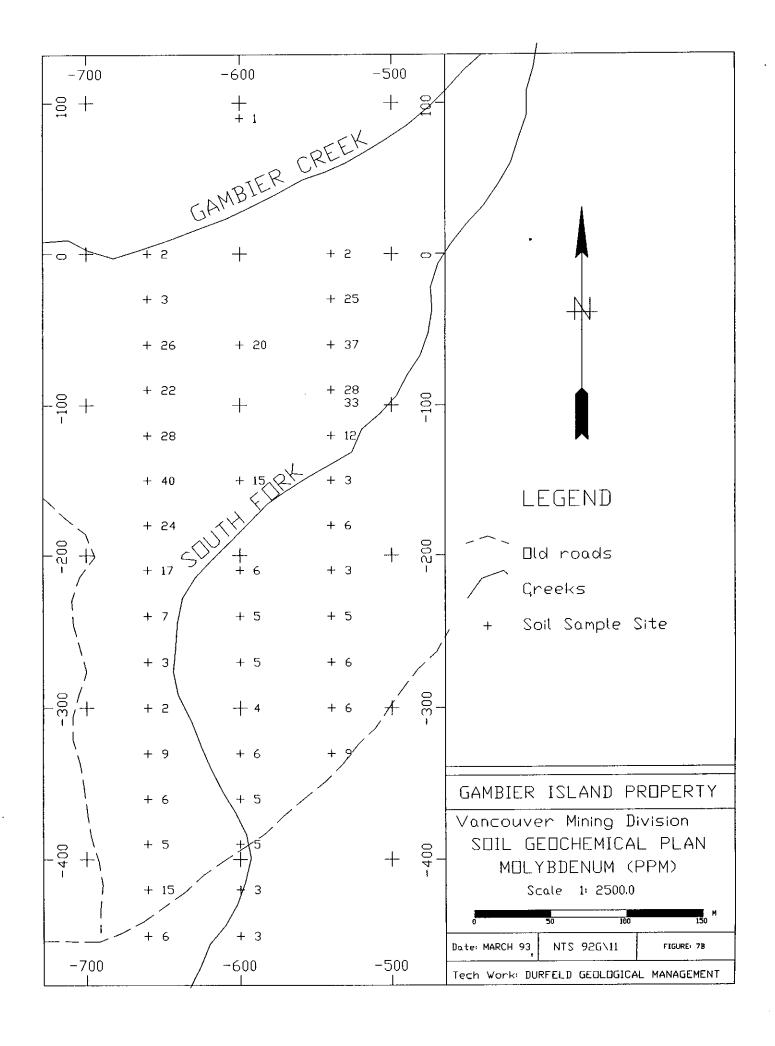
N CI = 24

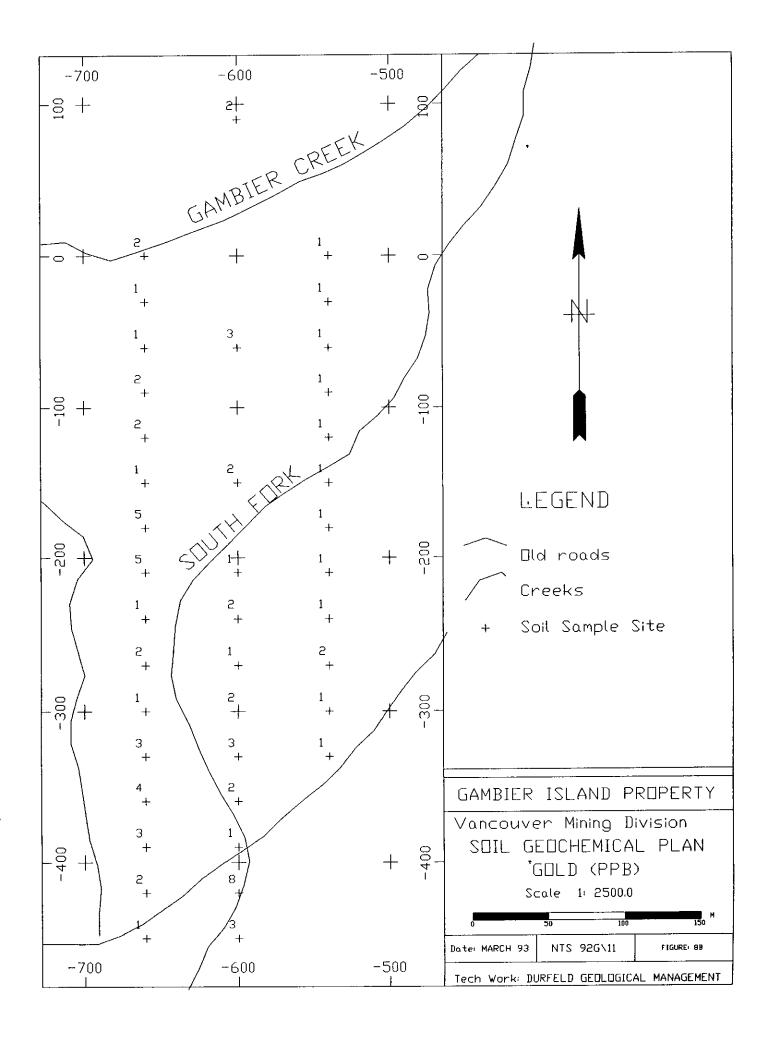
Transform = Logarithmic Number of Populations = 2

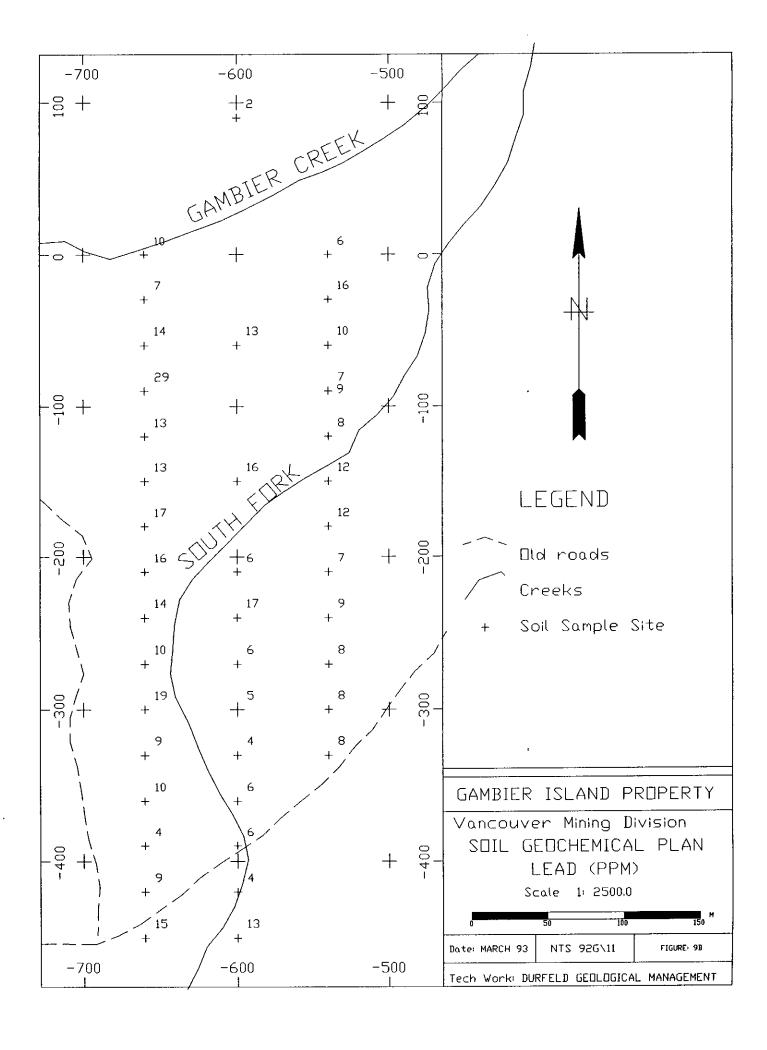
of Missing Observations = 0.

Users Visual Parameter Estimates


Population	Mean		Std Dev	Percentage
		-		
1	1,554	_	0.805	95.00
		+	3.002	
2	49.159	-	37.404	5.00
		+	64.609	


Default Thresholds.


Standard Deviation Multiplier = 2.0


Pop.	Thresholds			
1	0.417	5.798		
2	28.459	84.915		

