

ASSESSMENT REPORT ON THE HAZEL PROPERTY 1992 GEOCHEMICAL & DRILL PROGRAM

Cariboo Mining Division, British Columbia

N.T.S. Map Area 93A/12E

Latitude 52° 31'N Longitude 121° 33'W

Claims:

HAZEL 1, HAZEL 2, HAZEL 3, HAZEL 4

Owner:

Canim Lake Gold Corp. (recorded in name of John R.

Kerr)

1003 470 Granville Street

Vancouver, BC

V6C 1V5

Operator: Canim Lake Gold Corp.

1003 470 Granville Street

Vancouver, BC

V6C 1V5

by

M. Schatten, B.Sc. March 15, 1993

Reviewed & Approved by J. Kerr, P.Eng.

> GEOLOGICAL BRANCH ASSESSMENT REPORT

CANIM LAKE GOLD CORP.

HAZEL PROPERTY
Cariboo Mining Division, B.C.

ASSESSMENT REPORT
1992 GEOCHEMICAL & DRILL PROGRAM
March, 1993

ASSESSMENT REPORT ON THE HAZEL PROPERTY 1992 GEOCHEMICAL & DRILL PROGRAM

Cariboo Mining Division, British Columbia

N.T.S. Map Area 93A/12E

Latitude 52° 31'N Longitude 121° 33'W

Claims: HAZEL 1, HAZEL 2, HAZEL 3, HAZEL 4

Owner: Canim Lake Gold Corp. (recorded in name of John R.

Kerr)

1003 470 Granville Street

Vancouver, BC

V6C 1V5

Operator: Canim Lake Gold Corp.

1003 470 Granville Street

Vancouver, BC

V6C 1V5

by

M. Schatten, B.Sc. March 15, 1993

Reviewed & Approved by J. Kerr, P.Eng.

TABLE OF CONTENTS

1.	$\frac{1.1}{1.2}$	Claim Status	
	1.3 1.4 1.5	History	4
2.	GEOL 2.1 2.2 2.3		6
3.	1992 3.1 3.2	GEOCHEMICAL PROGRAM Introduction Results	9
4.	1992 4.1 4.2	Introduction	11 11 13
5.	CONC	LUSIONS AND RECOMMENDATIONS	14
6.	COST	STATEMENT	15
7.	BIBL	IOGRAPHY	17
8.	STATI	EMENT OF QUALIFICATIONS	18
		<u>FIGURES</u>	
Figu Figu	re 1 re 2 re 3 re 4	3	2 3 5 10
		TABLES	
Tabl Tabl	e 1 e 2	Summary of Claims	1 L2
		(continued next page)	

<u>APPENDICES</u>

Appendix I Drill Sections

Appendix II Drill Logs

Appendix III Analytical Results

Appendix IV Analytical Procedures

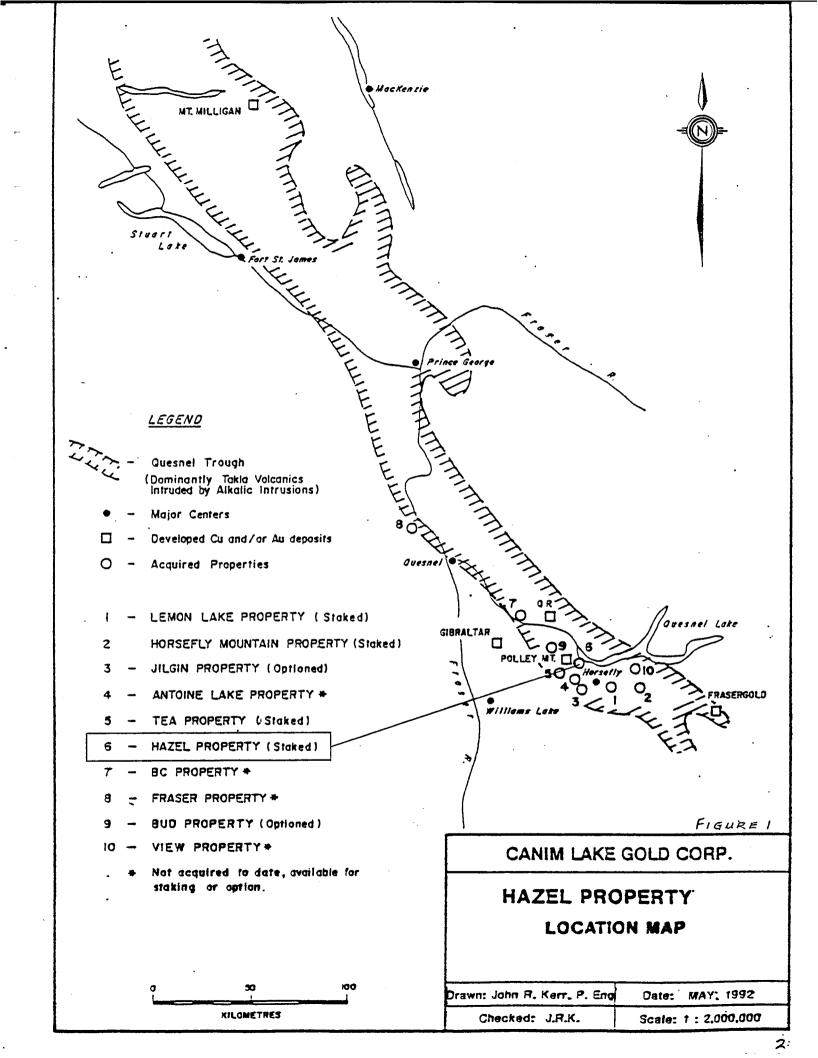
1. INTRODUCTION

1.1 Location, Access, and Terrain

The Hazel property (figure 1) is located 28km northwest of Horsefly and 55km east of Williams Lake in south-central British Columbia. Eastern portions of Hazel 2 and Hazel 3 fall on the western part of Quesnel Lake. Road access from Horsefly or Likely to the claim block is via the Horsefly-Likely forestry road or the Gavin Lake forestry road. Parts of these roads are summer access only. A good network of logging roads provide accessibility throughout the property.

Elevations range from 700-900m above sea level and relief dips to the east (Quesnel Lake). In the west-central part of the property terrain is flat-lying and covered with considerable overburden. In the east, along Quesnel Lake, the terrain is moderately steep and rock bluffs are relatively common. Hazeltine and Raft creeks flow through the southern claims.

A large part of the property has been logged off and vegetation is at various stage of regrowth. A mixture of fir, spruce, cedar, and balsam exist and underbrush is generally thick.


1.2 Claim Status

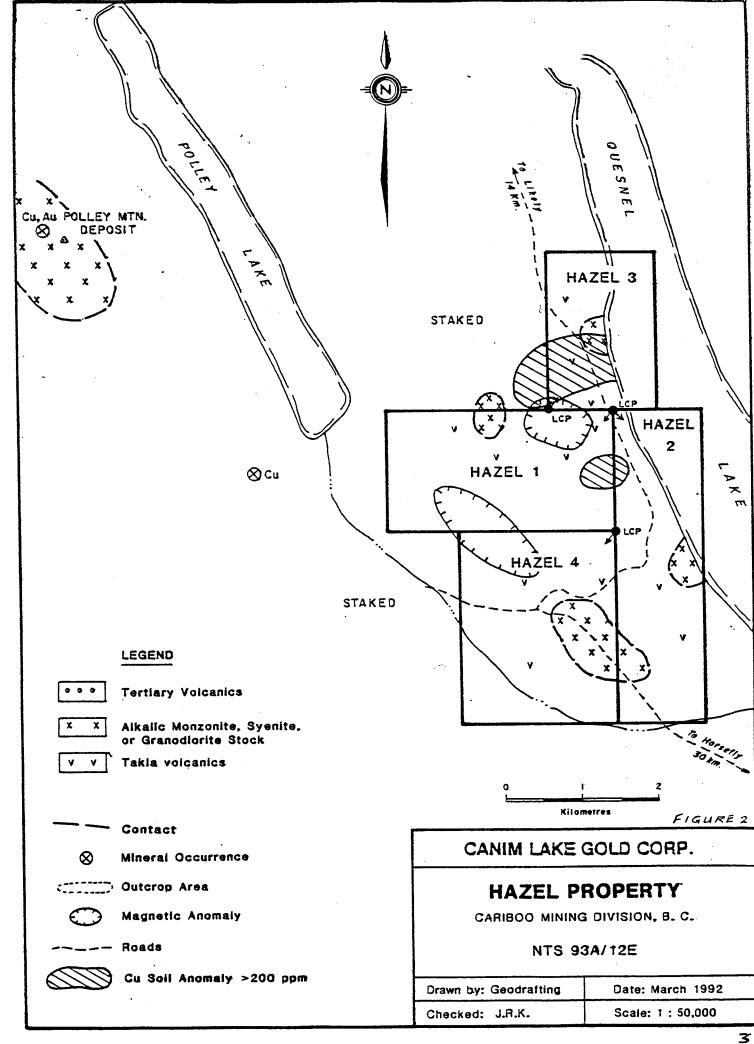

The Hazel property (figure 2) consists of 4 mineral claims (66 units) all recorded in the name of John R. Kerr. The claims were transferred to Canim Lake Gold Corp. during the period between the 1992 field program and report generation. All claims are in good standing until 1994-1995 (Table 1). The expiry dates reflect the dates that will be in effect upon acceptance of this report.

Table 1. Summary of Claim Particulars

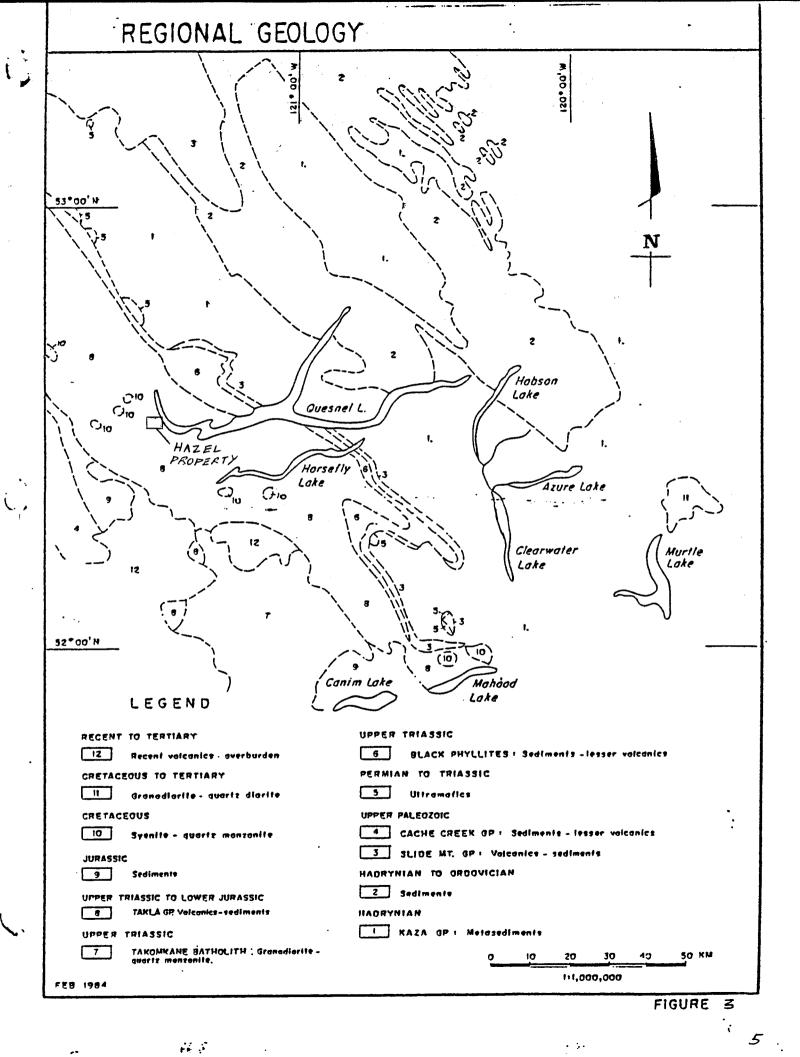
Total Units	66		
HAZEL 4	20	307829	03/11/1994
HAZEL 3	12	307828	03/07/1995
HAZEL 2	16	307827	03/10/1994
HAZEL 1	18	307826	03/10/1995
Claim Name	<u>Units</u>	Tenure No.	<pre>Expiry Date*</pre>

^{*} Upon acceptance of this report.

1.3 History

There is little history of intensive exploration on the property. Soil sampling completed in the early 1970's turned up two strong copper anomalies located on what is now staked as Hazel 3 and Hazel 1. There has been no evidence of drilling on the property. There are no reported mineral occurrences.

1.4 1992 Work Summary


During the latter part of July and first part of August 1992, Canim Lake Gold Corp. conducted a reconnaissance soil sampling program to test for copper anomalies. A 4.8km baseline and 27km in grid lines were established. 265 soil samples were collected and analyzed for copper. On October 6, 1992 1.05km of infill grid lines were run and an additional 34 soil samples collected over anomalous areas indicated by initial soil sampling. A total of 32.85km grid lines (including baseline) were run and a total of 299 soil samples were collected and analyzed for copper.

Geological mapping was conducted on the grid lines and along the shore of Quesnel Lake on Hazel 3. A total of 14 rock chip and grab samples were collected and analyzed for copper and gold.

A limited reverse circulation drill program was undertaken October 11-13, 1992 to test geochemical anomalies on Hazel 3. A total of 183m were drilled over 3 holes. 8 soil samples were collected from the overburden and 52 drill chip samples were collected. All were analyzed for copper and select samples were analyzed for gold as well.

1.5 Claims Work Performed On

Hazel 1	13.5km grid, 125 soil samples, 1 rock sample, 54.9m reverse circulation drilling
Hazel 2	4.55km grid, 44 soil samples, 2 rock samples
Hazel 3	5.35km grid, 81 soil samples, 8 rock samples, 98m reverse circulation drilling
Hazel 4	4.6km grid, 49 soil samples, 3 rock samples

2. GEOLOGY

2.1 Regional Geology

The Hazel property is located in the central part of the Quesnel Trough which is a subdivision of the Intermontane structural belt of British Columbia. The area is underlain predominantly by Triassic volcanics and related sediments that have been intruded by late Jurassic and late Cretaceous alkalic stocks (Bailey, 1987).

The Quesnel Trough is host to a number of copper-gold enriched alkalic stocks. Polley Mountain porphyry copper-gold deposit is one such occurrence that is in close proximity to the Hazel property. The Polley Mountain deposit is 7km northwest of the Hazel claims and is in a similar geological setting.

2.2 Property Geology

Rock exposure on the Hazel claims is limited to a few small outcrops and subcrops with the exception of the northeastern part of the property above Quesnel Lake where there are bluffs.

Four rock types were encountered in outcrop and drill holes and comprise the volcanic units and intrusive units. Outcrop locations are shown on the copper geochemical map, figure 4.

UNIT 1: MAFIC VOLCANIC

This unit is a dark greenish grey basalt with phenocrysts of pyroxene and/or olivine weathers greenish brown and buff. Often maroon phenocrysts (hematite) are present and here the basalt weathers reddish brown. Fractures may be coated with weak carbonate and epidote. It may be weakly chloritic. There are zones of moderate limonite and hematite alteration. Finely disseminated pyrite is present locally. The unit is moderately magnetic.

UNIT 2: INTERMEDIATE VOLCANIC

The second volcanic unit is a greyish green and green andesite with local plagioclase phenocrysts. It may contain weak chlorite, epidote, carbonate, limonite, and hematite as alteration. Weak disseminated pyrite is rare.

UNIT 3: MONZONITE/MONZODIORITE

This unit is exposed for 56m along the shore of Quesnel Lake on Hazel 3. The contact with the intermediate volcanics is sharp. The intrusive is speckled orange, black, white, and grey weathering pink and greenish brown. Locally it is equigranular (fine- to medium-grained) but more generally porphyritic as seen in outcrop and drill holes. Phenocrysts are of plagioclase, K-feldspar (up to 2cm), and hornblende. Alteration consists of epidote, chlorite, limonite, and hematite all in varying amounts. Minor disseminated pyrite may be present. The unit is quite strongly jointed and non-magnetic.

UNIT 4: INTRUSIVE(?) DYKE

This unit was intersected over a vertical length of 15m in drill hole HRC92-1. It is dark grey to black with coarse K-feldspar phenocrysts. Alteration consists of weak chlorite and epidote. Trace pyrite was observed. The contact with the porphyritic basalt is sharp.

2.3 Rock Sampling Results

Sample H92-02

Collected as float at L36+00N and 18+00E. It is a dark greyish green gossaned andesite with < 1% disseminated and stringer pyrite. It assayed 74ppm Cu and 14ppb Au.

Samples H92-03 - H92-07

Chip and grab samples collected from porphyritic basalt bluffs trending roughly north-south between ~53+50N and ~51+50N just above Quesnel Lake. Alteration is spotty and consists of weak to moderate epidote, carbonate, limonite, and hematite. Trace to 1% finely disseminated pyrite was observed in samples H92-05 and H92-07. Sample H92-07 returned the highest copper value at 119ppm. Gold was below detection limit in all but sample H92-06 which ran 90ppm Cu and 12ppb Au.

Sample H92-08

0.5m chip collected from trench in the vicinity of L20+00N and 14+50E. Moderately limonitic speckled pink and white monzosyenite(?) assayed 42ppm Cu and negligible gold.

Sample H92-09

Collected as float from same location as H92-08. Fine- to medium-grained pinkish grey monzonite with strong limonite alteration. Mineralization observed as trace malachite and trace fine sulphides. Assayed at 365ppmCu and 31ppb Au.

Sample H92-10

Collected as grab from baseline 30+00E and ~10+00N. Monzonite(?) assayed at 35ppm Cu and 6ppb Au.

Sample H92-11

Collected as grab along Horsefly-Likely forestry road near L32+00N and 33+00E. Fine-grained dark intrusive that returned a value of 1010ppm Cu and 10ppbAu.

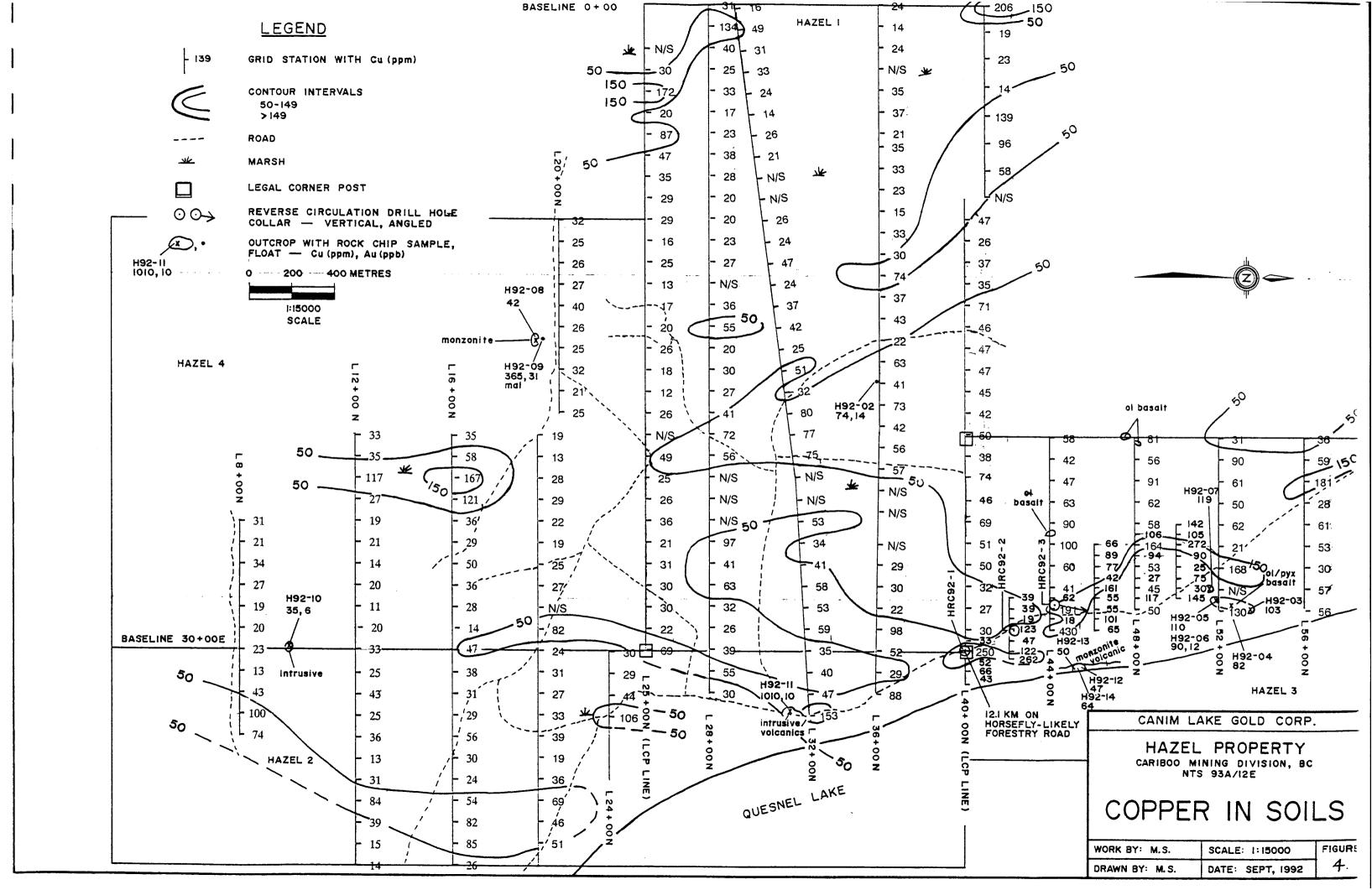
Samples H92-12 - H92-14

0.5-1m chip samples collected from a monzonite outcrop along the shore of Quesnel Lake on Hazel 3. Alteration consists of patchy moderate epidote, limonite, and hematite, and minor weak feldspar. Mineralization was not observed. The highest value returned was 64ppm Cu. Gold was below detection limit in all three samples.

3. 1992 GEOCHEMICAL PROGRAM

3.1 Procedure

During the period of July 25 - August 5, 1992 a compass and chain grid was run over the Hazel claims. The baseline, oriented north-south, extends for 4.8km from line 8+00N to line 56+00N. Grid lines run east-west and vary in length from 300m to 3.3km. Lines are spaced at 400m intervals and stations every 100m. Infill lines on Hazel 3, spaced at 200m intervals with stations every 50m were completed October 6, 1992. A total of 28.05km in grid lines and 4.8km in baseline were established.


Initial soil sampling (July 25 - August 5) was done on a reconnaissance basis as lines were spaced at 400m. During this period 265 soil samples were collected. An additional 34 soil samples were collected as follow-up on October 6, 1992 to test the continuity of a strong copper anomaly on Hazel 3. A total of 299 soil samples were collected and shipped via Greyhound bus from Williams Lake to the laboratory of Bondar-Clegg & Company Ltd. in North Vancouver for geochemical analysis of copper.

Soil samples were collected at depths of 15cm to 35cm from the "B" horizon and placed in Kraft soil envelopes marked with the appropriate grid coordinates.

3.2 Results

Geochemical copper values greater than 49ppm were considered anomalous and contoured on two intervals: 50-149ppm Cu >149ppm Cu.

Weakly anomalous (50-149ppm Cu) zones are scattered over the grid system and generally trend north-south. The eastern and northeastern part of the property hosts the most extensive anomaly. On Hazel 3 a strong (>149ppm Cu) linear anomaly, with copper values to 430ppm, is 800m long and 50m wide trending northwest-southeast. It is enclosed by a large weakly anomalous zone that is up to 1300m wide and 3200m long and is open to the north and northeast.

4. 1992 DRILL PROGRAM

4.1 Introduction

Drilling was done by Northspan Exploration Ltd. of Kelowna, BC. The customized reverse circulation drill was designed and built by Pat Mooney of Northspan Exploration Ltd. with the idea of prospector drilling in mind. It is track mounted and has a small dozer blade. It requires a minimum of 4m (drill length) to set up on a site. The environmental impact is minimal as drill access roads and drill pads are not required. The drill utilizes a compressor that has a 350 PSI capacity (500 CFM). The drill string consisted of 3.75" conventional dual wall pipe in 10ft lengths, a conventional crossover hammer, and a 4.5" conventional bit.

On October 11 the reverse circulation drill was mobilized to the Hazel property from the Lemon Lake property just east of Horsefly, BC. Drilling commenced October 11, 1992 and was completed October 13, 1992. In all 3 drill holes, 2 vertical and 1 angled, totalling 183m (Table 2, Figure 4) were drilled on the Hazel 3 claim. All holes reached target depths. Overburden was shallow, from 3.4m-8.5m deep, on this part of the property due to the steeper, rockier terrain above Quesnel Lake. Water was not required for drilling and all 3 holes were drilled dry.

Drill samples were collected at 10ft (3.05m) intervals from both the overburden and the bedrock using a Jones 3-tier riffle splitter for a representative 1/8th split. If the sample from a 1/8th split was too large a 1/16th split was used. To ensure a clean sample, at the end of a 10ft run the hole was "spudded" over a 20ft length 8 soil samples were collected from the of the drill rods. overburden and placed in soil envelopes. 52 chip samples were collected and placed in plastic poly ore bags. All samples were sent to the laboratory of Bondar-Clegg & Company Ltd. of North Vancouver, BC for geochemical analysis of copper. Select samples were geochemically analyzed for gold. Additional drill cuttings were placed in 7dram vials for logging purposes. Once back in the office drill cuttings were examined more closely with the aid of a microscope.

Table 2. Reverse Circulation Drill Holes 1992

	<u>Date</u>	Grid Coo	<u>rdinates</u>			
<u>Hole No</u>	Started/Completed	<u>Northing</u>	<u>Easting</u>	Bearing	<u>Angle</u>	<pre>Hole Depth(m)</pre>
HRC92-1	Oct 11, 1992	40+00	30+03		-90 ⁰	54.9
HRC92-2	Oct 12, 1992	42+14	29+15	_	-90 ⁰	61.0
HRC92-3	Oct 12-13,1992	44+25	27+85	100 ⁰	-60 ⁰	67.1

4.2 Results

Overburden in this part of the claim block is shallow and varied in depth from 3.4m to 8.5m. The main lithologies intersected were intermediate and mafic volcanics, a monzonite dyke, and a melanocratic porphyritic intrusive(?) dyke. Lithologies are described in the previous section 2.2.

The results from HRC92-1 are fairly uniform and average 206ppm Cu. Where analyzed for gold, results are below the detection limit. The alkalic dyke/stock was not intersected. The intrusive(?) dyke was intersected from 30.5m to 48m.

As with HRC92-1 the results from HRC92-2 are quite uniform. The average grade over the hole is 239ppm Cu and gold is below the detection limit. An alkalic dyke was intersected from 50.5m to 52.3m.

Drill hole HRC92-3 shows some variation in mineralization. The average grade of the andesite from 9.1m-39.6m is 167ppm Cu. At 39m a monzonite dyke is intersected for 9m and the average grade falls to 82ppm Cu. Gold, except for one sample interval (24ppb), is below the detection limit.

5. CONCLUSIONS AND RECOMMENDATIONS

The Hazel claim block was staked in March, 1992 as part of a regional program to test for copper-gold porphyry systems in geologically favourable areas covered by extensive overburden.

Reconnaissance geochemistry on the property has delineated several copper anomalies. Of these the strongest (>149ppm Cu) occurs in the northeast part of the claims, Hazel 3. It is 800m long and 50m wide and after a break of ~100m continues for an additional 200m. The copper highs are enveloped by a much larger, weaker (50-149ppm Cu) anomaly that is up to 1300m wide and 3200m long and open to the north and northeast.

Reverse circulation drilling at 200m centres was conducted on Hazel 3 along the southern end of the geochemical high, from lines 40+00N to 44+00N. Three drill holes, totalling 183m were completed. Holes HRC92-1 and HRC92-2 intersected anomalous copper values over much of the lengths of the holes. Samples from HRC92-3 did not return any significant intersections.

Geological mapping was hampered by overburden covering a large part of the property. Outcrops and subcrops indicate Takla volcanics (andesite, basalt). All 3 drill holes intersected andesite and basalt over most of the lengths with the volcanics carrying weak copper mineralization in HRC92-1 and HRC92-2. Few scattered subcrops and outcrops of porphyritic monzonite were observed. The largest of these is a small stock/dyke exposed along the shore of Drill hole HRC92-2 intersected a Quesnel Lake at ~L45+00N. porphyritic monzonite dyke from 50.5m-52.3m. Hole HRC93-3 intersected a series of unmineralized monzonitic/monzodioritic dykes between 32.5m and 52m. A dark, fine-grained intrusive is partially exposed near the east end of L32+00N. Grab sample, H92-11, collected here ran 1010ppm Cu and 10ppb Au. Drill hole HRC92-1 intersected a dark grey to black porphyritic intrusive(?) dyke over a drill length of 17.5m.

Additional investigation is warranted to test the continuity of an open geochemical anomaly located along the east ends of lines 24+00N and 32+00N. Infill soil sampling would further outline the anomaly.

Soil samples should be collected over and in the area of a partially exposed alkalic intrusive located at ~L20+00N and 15+50E where malachite was observed in float.

A ground magnetometer survey conducted over areas of interest would be useful in further identifying locations of intrusives.

6. COST STATEMENT

GEOCHEMICAL & GEOLOGICAL PROGRAM

9 days @ \$40/day 500km @ \$0.15/km SUBTOTAL GEOCHEMICAL EXPENSES	360.00 75.00 \$6,366.50
TRUCK RENTAL	
FIELD SUPPLIES	170.00
ROOM & BOARD 18 mandays @ \$60/day	1,080.00
ANALYTICAL 299 soil samples @ \$3.50/sample 14 rock samples @ \$10/sample	1,046.50 140.00
FIELD CREW J. Kerr 1 day @ \$350/day M. Schatten 8.5 days @ \$200/day D. Wager 7 days @ \$170/day R. Montgomery 1.5 days @ \$170/day	350.00 1,700.00 1,190.00 255.00

DRILL PROGRAM

DRILLING Reverse Circulation Drilling - Northspan 183m @ \$26.25/m	Exploration Ltd.
GEOLOGICAL SUPERVISION M. Schatten 3 days @ \$200/day J. Kerr 1 day @ \$350/day	600.00 350.00
CASUAL LABOUR Drill helper 3 days @ \$180/day	540.00
ASSAYS & ANALYTICAL 8 soil samples @ \$3.50/sample 52 chip samples @ \$10/sample	28.00 520.00
ROOM & BOARD 10 man days @ \$60/man/day	600.00
VEHICLE RENTAL 3 days @ \$40/day 200km @ \$0.15/km	120.00 30.00
FIELD SUPPLIES	70,00
SUBTOTAL DRILLING EXPENSES	\$7,658.00
COMPILATION & REPORT Report preparation M. Schatten 2 days @ \$200/day Photocopies, printing	400.00 75.00
TOTAL EXPENSES	\$14,499.50

7. BIBLIOGRAPHY

Bailey, D.G., 1987; `Geology of the Hydraulic Map Area NTS 93A/12', Province of British Columbia Ministry of Energy, Mines and Petroleum Resources, Preliminary Map No. 67.

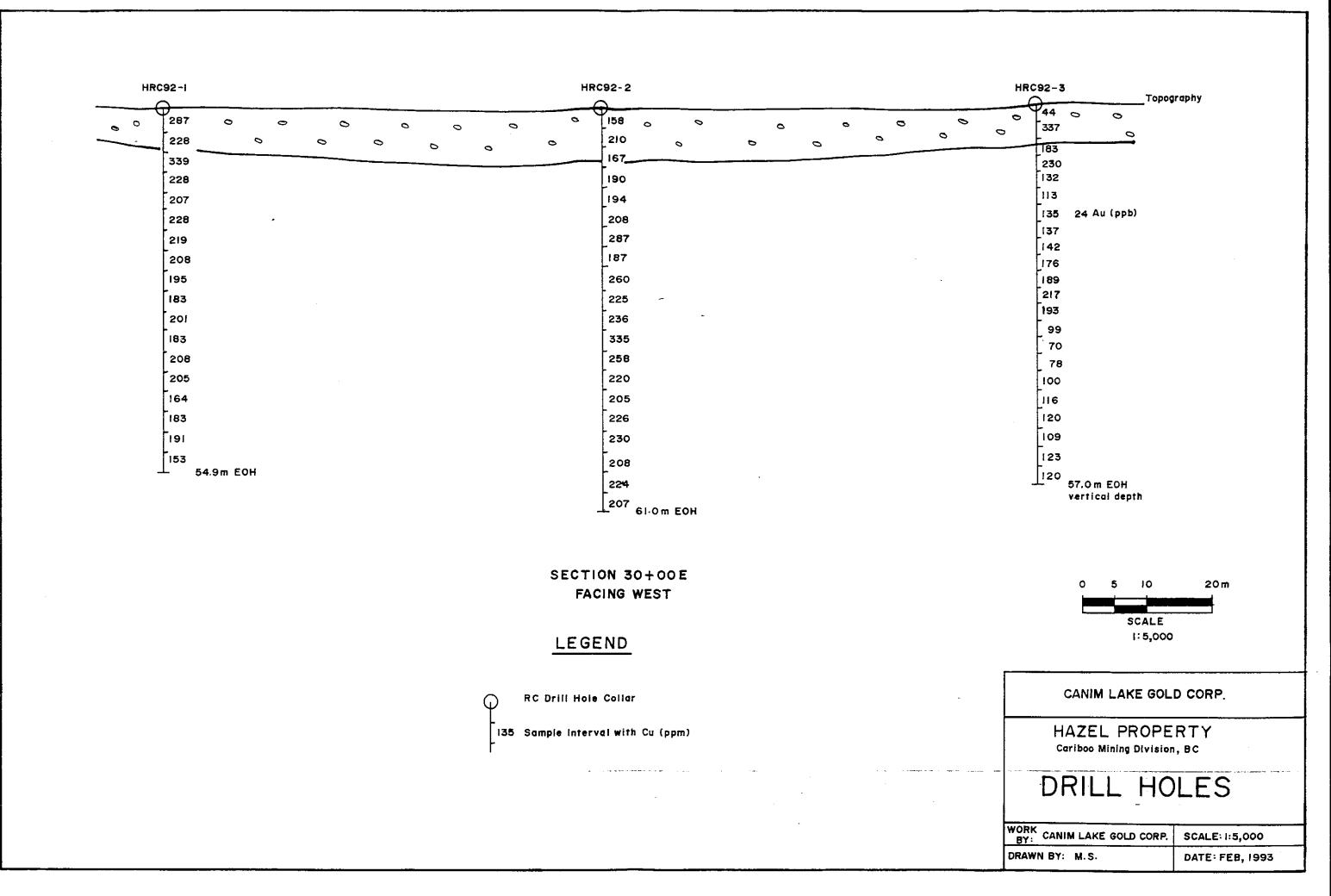
8. STATEMENT OF QUALIFICATIONS

I, MYRA G. SCHATTEN, resident of Calgary, Province of Alberta, hereby certify as follows:

- 1. I am a contract geologist currently employed by Canim Lake Gold Corp. at 1003-470 Granville St., Vancouver, BC.
- 2. I was actively involved as a field geologist on the Hazel property during the 1992 geochemical and drill program and assisted in the collection of the data referred to in this report.
- 3. I graduated from the University of Alberta, Edmonton, Alberta, B.Sc. Geology, 1987. I have been actively involved in mineral exploration since 1987.

DATED at Vancouver, Province of British Columbia this 15th day of March, 1993.

M.G. Schatten, B.Sc.


Geologist

- I, JOHN R. KERR, of Vancouver, British Columbia, do hereby certify that:
- I am a member of the Association of Professional Engineers of British Columbia and a Fellow of the Geological Association of Canada.
- 2. I am a geologist employed by Canim Lake Gold Corp. at 1003-470 Granville St., Vancouver, BC.
- 3. I am a graduate of the University of British Columbia (1964) with a B.A.Sc. degree in Geological Engineering.
- 4. I have practised my profession continuously since graduation.
- 5. I supervised and assisted in the collection of the data as compiled in this report. I have reviewed the contents of this report which is based on the aforementioned data, and supervised the compilation and authorship by M. Schatten. I verify the costs as reported to be true.
 - 6. I am an officer and director of Canim Lake Gold Corp. and hold a direct and indirect interest in the securities of this company.

DATED at Vancouver, Province of British Columbia this 15th day of March, 1993.

J.R. Kerr, P. Eng.

APPENDIX I REVERSE CIRCULATION DRILL SECTIONS

APPENDIX II REVERSE CIRCULATION DRILL LOGS

PROPERTY	HAZEL
PRUPERTY	111144

HOLE No. HRC22-1

DIP AND AZIMUTH TEST								
	Corrected							
Footage	Angle	Azimuth						
······································								
								
•								
		İ						

Hote St.	of Hole Very
Angle	of Hole Wary
Section	40100N: 30100E

Total Depth 59.90	Sheet No of
% Recovery	Logged by Al Schallen / Kerr
Elev. Collar	Date Begun Celediscula 1592
Latitude	Date Finished October 11,199
Departure	Core Stored At

TEXTURE, ALTER'N.	GRAP		INTERVAL (m)		REC	EST.	Sample	ASSAYS	
MINERALIZATION, ETC.	GEOL	DESCRIPTION	FROM	то	OVERY	GRADE	No.	Cil	PAR
		0.3.4m Overbuiden (5d. gr.		3.4		42.3		267	
		Rusty, Golbk porphyritic basall.	3.4	6.1m		11.2		228'	
		Gry lon basall fondeside Wesk carbierid.	6.1	9.1		18865		339	€ 5
		Gray/Go basal/fund? Work carblas chow)	91	12.2		18866		228	₹ 5
		Graylan pasell : syndrusis in min all"	12 E	15 E		188E)		207	~ 5
		Graylon andesite Weakall & chlor > (pid	15:2	18.3		18868		228	25
		e carb . It page !!			_				
		Houkly all of anchsite as about.	18.3	21.3		18869		219.	
		Corten andeside mine benutite, some Solds	<i>21.3</i>	24.4		18870		208	
		x/s. weak chlor > epida Kr.							
		Gaylon andisite as above increasing tolds	24.4	27.4		18871		195	
		x's week a por		<u> </u>					

PROPERTY.	MAZEL	

HOLE No. 11RC 92-1

SHEET No. 2 of 2

TEXTURE, ALTER'N. MINERALIZATION	G ПАРН.	INTE	RVAL				RECO-	SAM- PLE			ASSAY	s	
ETC.	GEOL.	FПОМ	10	LITH 1	LITH 2	DESCRIPTION	VERY	No.	Λu	EEM	ΜΛυ	V Oliver	PPB
	-	274	305	· 		Cillar and Idds X'13 . weak Chlo alt'		7872	<u></u>	182			
	111	30.5	33.5			DKgray/bk / grained intrusive rack?		8873		201			
	-					with course X- Tolds phonocysts		i	-1770-0-0-0-	ļ		<u></u>	l
		_				dike??							
		33.5	36.6	-		Osapove - Warka HT Chlaff and		88.4		184			
	-					Tr. py,, Yr							
		36.6	39.6			As chere clike wrokalto		587.S		208			
		37.6	127			Bks? as about - 11. pyr.	·	18876		<u> </u>			
		42.7	45.7			Diks? asabour		18877	·	164			
		45.7	98.8			Dike as a bove to 48m. Then		S\$ 78		153			
	-	_				Shorp united to besall							<u> </u>
		18.8	5/.8			Grey Kr. pushy, the basail.		9879		191			
	 -	_				syraise x'is. Thron Chlor.							
		51.8	54.9			Dx Grey Con bose H. as above.		8880		15.3			
						54.9 - END OF HOLE.							
		-				(Bilding)					- 		

	40	
PROPERTY	MAZEL	

HOLE No. //202-2

DIP AND	AZIMUTH Cor	rEST rected
Footage	Angle	Azimuth
,		
		<u> </u>

Hole Size
Angle of Hole Wary
Claim
Section 42115N; 271156
Descine

Total Depth 61.0	Sheet No
Elev. Collar	Date Begun Car dor 12, 1992
Latitude	Date Finished OCLOBER 12, 1992
Departure	Core Stored At

TEXTURE, ALTER'N.	GRAPI		INTERVAL (m)		REC-	EST.	Sample	ASSAYS			
MINERALIZATION, GEOL. ETC.		DESCRIPTION		то	OVERY			Cu	P. Ac b		
		0-8.5 m Over burden 151/5d/b/drs)	حخسا			121	158			
				6			12.2	210			
	 	Wird gylan buso H.	8.5	21		_	12.3	167			
		DK graylon basalt some benefit fait	9.1	12.2		/	5881	190			
		DK grey Ign busall Minor chlor & hemolite	122	15.2			5882	194			
		Graylgraphown and sile base H. Mod Chlor Hom	152	18.3			18883	208			
		> epid a Moi									
		Gray for loss, and sile and about.	18:3	21.3			\$30°4	287	-5		
		braylan/maron andosite as a bour	2/3	29.4			1880	187	<i><</i> 5		
		Groupen andaite · No hometite freschlor.	24.4	27.4			18880	260	<5		
		Producite as about.	27.4	305			8887	225	~ 5		

PROPERTY	HAZEL
PHOPERTY	////

HOLE No. 1/2/92-2

SHEET No. 2 of 2

TEXTURE, ALTER'N. MINERALIZATION	6	anar	Ή,	INTE	RVAL				RECO-	SAM-			ASSAY	S	
ETC.		EOL		FROM	то	LITH 1	LITH 2	DESCRIPTION	VERY	PLE No.	Λυ	est Apm	MΛu	Other A	14
	-			30.5	33.5°			DK go andesite Work Chestan		5858		230			13
			ļ	ļ			<u> </u>	Tr. pyrite					 		ļ
			_	73 55	366			Graffon andsiile pyrox 11/3.		9882					3
				36.6	39.6	: - 		Given perplyitic andrite		9890		<u>~</u> 58			-
				F1 6	427			undesite, as a bour.		891		220			< 5
			-	127	15.7			Terst andrite Some tolds where.		F822		205			
				45.7	18.8			pouch andes, as above		8823		226			<u>~3</u>
				48.8	51.8			poep and to 505 m then.		CS 24		 230			
	_		_					dike pink for intrusion K. felds &							
		_		518	54.9			Pike 10 523 - Then on best .	/	8895		208			
				59.9		_		Greylan andesite minora Hen]	8820		224			
		_		580				Grey/gn and as a bour				207			
	-						-	610 END OF HOLE							
	_							(DII Dry)							

PROPERTY HAZEL	HOLE No. HRC22-3

DIP AND AZIMUTH TEST Corrected						
Footage	Angle	Azimuth				
,						
·						
:		1				

Hole Size
Angle of Hole
Claim
Section 44125N; 27185E
Bearing 100°

Total Depth 671m	Sheet No
% Recovery	Logged by 17.5challen N. Kirs
Elev. Collar	Date Begun La Years 12/92
Latitude	Date Finished Deleber 13/5
Departure	Core Stored At

TEXTURE, ALTER'N.	GRA		DECORUNTION	INTER	VAL (m)	REC-	EST.	Sample	ASSAYS	
MINERALIZATION, ETC.	GEO	JL.	DESCRIPTION	FROM	то	OVERY	GRADE	No.	Ly Cy	Post
			0. 6.70 Overbuch (5d/5)/pldes).		3. 1	3.1				
		-			601	H3-Z	· <u>·····</u>			
			PKgieg bana H (willid)	6.7	9.1	13.3				
			The gray bost (withof) Carbatt" > chlog/Hem.	9.1	122			18858	230	-5
			Tr. blobs édiss pyr.							
			Baselffandreite, as a bar.	12.2	15.2			18875	132	4 5
		-	Tainly gofgrey and, as about Sonall dike it Top	152	18.3			18900	113	~ 3
		-	Telaren andesite some homo tite feblor > cele.	18.3	21.3			19251	135	24
			To pipila throughout							
			Podreite es above - work (the.	خو <i>ردي</i>	24.4			19252	137	~ 5
			Anderite as above Chlorehon forid	244	274			19253	142	- -5"
			Indesite . shong hamalite in seit wie hlor.	27.4	30.5		ز ر	9259	176	-3-

PROPERTY	HAZEL	
----------	-------	--

HOLE No. 1/20 92-3

SHEET No. 2 of 3

TEXTURE, ALTER'N, MINERALIZATION		RAP	Ή.	INTE	RVAL				aroo	SAM-	ĺ		ASSAY	S	
ETC.	_ G	EOL		FROM	10	LITH	LITH 2	DESCRIPTION	RECO- VERY	PLE No.	Λu	121	ΜΛυ	Other	p.
	_			30.5	23.5			DKgn. and. to 32.5m. Then		233		15%			25
	_							speckbelpink intresivedile					ļ.——.		
× 2		_			36.6			DK go anderd with cakete strengthe	n_L.	9 <u>2.50</u>		217			~ :
				36.6	39.6			Andrile as about to 39 in them		925.7		193			-
								mother purklancy dike	·						
	.			39.6	42.7			Am sink / gray intrusive diles sime		9258		99			
	-	_						Blue la rey clay ofth. Tr pyrite							
	-	_		12.7	45.7			Pink / go sy in trease dike? beames		<u>259</u>		70			
								diss syr. Some clay all'	 -						-
		_	_		40.0							1			
		_	_	45.7	78.8			Dixo to 48 m, as show then dk gafger basa N to and.		9660		28'			
		_	<u>- </u>	18.8	518	· · · · · ·		Dx gray bas fond to 51m them		261		100			
		-						Imalldiko							
		_ -	_	51.8	54.9			Dike to 32m there to dkging	_/	282		116			<u> </u>
		-	_					green hose // fand	- -						
741- 		L		54.9	3 <i>79</i>			DK grey/green bass H wrokalto		265		120			وريد

	11 ·
PROPERTY	HAZEL

HOLE No. 1/RC92-3 SHEET No. 3 of 3

TEXTURE, ALTER'N. MINERALIZATION		GRAI	— РН,	INTE	RVAL	LITH			RECO-	SAM-			ASSAY	s	• • • • • • • • • • • • • • • • • • • •
ETC.		GEO	L.	FROM	10	FILM	LITH 2	DESCRIPTION	VERY	PLE No.	Λu	Les_	ΜΛυ	Other A	Por
	_ _	. _	.	579	61.0		 	DK groy/green base H/and		2264		105			-25
····	_	. _	.				ļ 	Tinos carb/ Epid/chlor, incarring	!	 	ļ	ļ			·
	- -	-	-	<u> </u>				Dis cerb/ Epid/chlor, incovering	 	 	<u> </u>	<u> </u>	 		
	1-	-		61.0	64.0			De green bon boom H land. Nad.		255		123			-:5
	_							De grey for bornt fond. Rad.							
and the second section of the second			-	64.0	171		· · · · · · · · · · · · · · · · · · ·	Dr mer las a drite as above		19266		120			<u>~5</u>
				27.2	27.7			Dx grey/gn andsit - as obove		7200					
				ļi		· -						·			
	-	-				· 	·	671 END OF HOLE	· 						
	_	_						67.1 END OF HOLE (Drilled Dry)							
	-	-													
* **	_			ļ											
		<u> </u>					·								
4 C48 AND															
	<u> </u>														
		i	_											[
	_			<u> </u>											
i		ļ		1						- 1				- 1	

APPENDIX III

ANALYTICAL RESULTS

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

DATE PRINTED: 24-AUG-92

REPORT: V92-00982.0 (COM	IPLETE)	PROJECT: NONE GIVEN	PAGE 1
SAMPLE ELEMENT NUMBER UNITS	Cu PPM	SAMPLE ELEMENY CU Number units ppm	
S1 HL8+00N 24+00E	31	\$1 HL16+00N 28+00E 28	
S1 HL8+00N 25+00E	21	\$1 HL16+00N 29+00E 14	
S1 HL8+00N 26+00E	34	\$1 HL16+00N 30+00E 47	
S1 HL8+00N 27+00E	27	\$1 HL16+00N 31+00E 38	
S1 HL8+00N 28+00E	19	\$1 HL16+00N 32+00E 31	
\$1 HL8+00N 29+00E	20	\$1 HL16+00N 33+00E 29	
\$1 HL8+00N 30+00E	23	\$1 HL16+00N 34+00E 56	
\$1 HL8+00N 31+00E	13	\$1 HL16+00N 35+00E 30	
\$1 HL8+00N 32+00E	43	\$1 HL16+00N 36+00E 24	
\$1 HL8+00N 33+00E	100	\$1 HL16+00N 37+00E 54	
\$1 HL8+00N 34+00E	74	\$1 HL16+00N 38+00E 82	
\$1 HL12+00N 20+00E	33	\$1 HL16+00N 39+00E 85	
\$1 HL12+00N 21+00E	35	\$1 HL16+00N 40+00E 26	
\$1 HL12+00N 22+00E	117	\$1 HL20+00N 20+00E 19	
\$1 HL12+00N 23+00E	27	\$1 HL20+00N 21+00E 13	
S1 HL12+00N 24+00E	19	\$1 HL20+00N 22+00E 28	
S1 HL12+00N 25+00E	21	\$1 HL20+00N 23+00E 29	
S1 HL12+00N 26+00E	14	\$1 HL20+00N 24+00E 22	
S1 HL12+00N 27+00E	20	\$1 HL20+00N 25+00E 19	
S1 HL12+00N 28+00E	11	\$1 HL20+00N 26+00E 25	
\$1 HL12+00N 29+00E	20	\$1 HL20+00N 26+60E 27	·
\$1 HL12+00N 30+00E	33	\$1 HL20+00N 29+00E 82	
\$1 HL12+00N 31+00E	25	\$1 HL20+00N 30+00E 24	
\$1 HL12+00N 32+00E	43	\$1 HL20+00N 31+00E 31	
\$1 HL12+00N 33+00E	25	\$1 HL20+00N 32+00E 27	
S1 HL12+00N 34+00E	36	\$1 HL20+00N 33+00E 33	
S1 HL12+00N 35+00E	13	\$1 HL20+00N 34+00E 39	
S1 HL12+00N 36+00E	31	\$1 HL20+00N 35+00E 19	
S1 HL12+00N 37+00E	84	\$1 HL20+00N 36+00E 36	
S1 HL12+00N 38+00E	39	\$1 HL20+00N 37+00E 69	
S1 HL12+00N 39+00E	15	\$1 HL20+00N 38+00E 46	
S1 HL12+00N 40+00E	14	\$1 HL20+00N 39+00E 51	
S1 HL16+00N 20+00E	35	\$1 HL21+00N 10+00E 32	
S1 HL16+00N 21+00E	58	\$1 HL21+00N 11+00E 25	
S1 HL16+00N 22+00E	167	\$1 HL21+00N 12+00E 26	
S1 HL16+00N 23+00E	121	\$1 HL21+00N 13+00E 27	
S1 HL16+00N 24+00E	36	\$1 HL21+00N 14+00E 40	
S1 HL16+00N 25+00E	29	\$1 HL21+00N 15+00E 26	
S1 HL16+00N 26+00E	50	\$1 HL21+00N 16+00E 25	
S1 HL16+00N 27+00E	36	\$1 HL21+00N 17+00E 32	

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

NATE PRINTED: 24-AIIG-92

REPORT: V92-00982.0 (COMPLETE)		DATE PRINTED: 24-AUG- PROJECT: NONE GIVEN	-92 PAGE 2
ACI ON 1. 132 00302.0 (COM CESE)		LYOUTCI: WORE GIACH	PHUC 2
SAMPLE ELEMENT CU NUMBER UNITS PPM	SAMPLE NUMBER	ELEMENT CU UNITS PPM	
C1 III 21 (00) 10 (00)	21 11 20 20	7.005	
S1 HL21+00N 18+00E 21 S1 HL21+00N 19+00E 25	\$1 HL28+00M - \$1 HL28+00M		
S1 HL24+00N 30+00E 30	S1 HL28+00N		
S1 HL24+00N 31+00E 29	S1 HL28+00N		
S1 HL24+00N 32+00E 44	S1 HL28+00N		
S1 HL24+00N 33+00E 106	S1 HL28+00N	12+00E 27	
S1 HL25+00N 3+00E 30	S1 HL28+00N		
S1 HL25+00N 4+00E 172	S1 HL28+00N		
\$1 HL25+00N 5+00E 20	S1 HL28+00N		
\$1 HL25+00N 6+00E 87	S1 HL28+00N	17+00E 30	
S1 HL25+00N 7+00E 47	S1 HL28+00N	18+00E 27	
S1 HL25+00N 8+00E 35	S1 HL28+00N	19+008 41	
S1 HL25+00N 9+00E 29	S1 HL28+00M		
S1 HL25+00N 10+00E 29	S1 HL28+00N		
S1 HL25+00N 11+00E 16	S1 HL28+00M	25+00E 97	
S1 HL25+00N 12+00E 25	S1 HL28+00N	26+00E 41	
S1 HL25+00N 13+00E 13	S1 HL28+00N		
S1 HL25+00N 14+00E 17	S1 HL28+00N		
\$1 HL25+00N 15+00E 20	\$1 HL28+00h		
S1 HL25+00N 16+00E 26	S1 HL28+00N	30+00E 39	
\$1 HL25+00N 17+00E 18	S1 HL28+00N		
S1 HL25+00N 18+00E 12	\$1 HL28+00N		
\$1 HL25+00N 19+00E 26	\$1 HL32+00N	= -	
S1 HL25+00N 21+00E 49	S1 HL32+00N		
\$1 HL25+00N 22+00E 25	S1 HL32+00N	2+00E 31	
S1 HL25+00N 23+00E 26	S1 HL32+00N	1 3+00E 33	
S1 HL25+00N 24+00E 36	S1 HL32+00M		
S1 HL25+00N 25+00E 21	S1 HL32+00N	· · · · · · · · · · · · · · · · · · ·	
\$1 HL25+00N 26+00E 31	S1 HL32+00H		
S1 HL25+00N 27+00E 30	S1 HL32+001	7+60E 21	
S1 HL25+00N 28+00E 30	S1 HL32+00M		
S1 HL25+00N 29+00E 22	S1 HL32+00N		
\$1 HL25+00N 30+00E 69	S1 HL32+00M		
S1 HL28+00N 0+00E 31	S1 HL32+00h		
S1 HL28+00N 1+00E 134	S1 HL32+001	1 14+00E 37	
\$1 HL28+00N 2+00E 40	S1 HL32+00/		
\$1 HL28+00N 3+00E 25	\$1 HL32+00N		
\$1 HL28+00N 4+00E 33	S1 HL32+00h		
S1 HL28+00N 5+00E 17 S1 HL28+00N 6+00E 23	S1 HL32+00N		
JI HEZOTUMY OTOUE 23	S1 HL32+00	1 19+00E 80	

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V92-00982.0 (COMPLETE)	A DIVISION OF INCHCAPE INSPECTION & TESTING SI	DATE PRINTED: 24-AUG- PROJECT: NONE GIVEN	92 PAGE 3
Ref or 1. 172 00702.0 Complete y		PROJECT: NONE STACK	ר שטב ט
SAMPLE ELEMENT CU NUMBER UNITS PPM	SAMPLE NUMBER	ELEMENT CU UNITS PPM	
S1 HL32+00N 20+00E 77	S1 HL36+00N	32+00E 88	······································
S1 RL32+00N 21+00E 75	S1 HL40+00N		
S1 HL32+00N 25+00E 34	S1 HL40+00N		
S1 HL32+00N 26+00E 41	S1 HL40+00N		
\$1 HL32+00N 27+00E 58	S1 HL40+00N	5+00E 14	
\$1 HL32+00N 28+00E 53	S1 HL40+00N	6+00E 139	
\$1 HL32+00N 29+00E 59	S1 HL40+00N		
S1 HL32+00N 30+00E 35	S1 HL40+00N		
\$1 HL32+00N 31+00E 40	S1 HL40+00N		
S1 HL32+00N 32+00E 47	S1 HL40+00N	11+00E 26	
S1 HL32+00N 33+00E 153	S1 HL40+00N	12+00E 37	
S1 HL32+00N NO NUMBER 53	S1 HL40+00N	13+00E 35	
S1 HL36+00N 0+00E 24	S1 HL40+00N	14+00E 71	
S1 HL36+00N 1+00E 14	S1 HL40+00N	15+00E 46	
S1 HL36+00N 2+00E 24	S1 HL40+00N	15+00E 47	
S1 HL36+00N 4+00E 35	S1 HL40+00N	I 17+00E 47	
S1 HL36+00N 5+00E 37	S1 HL40+00N		
S1 HL36+00N 6+00E 21	S1 HL40+00N		
S1 HL36+00N 7+00E 35	S1 HL40+00N		
. S1 HL36+00N 8+00E 33	S1 HL40+09N	21÷00E 38	1
S1 HL36+00N 9+00E 23	\$1 HL40+00M	1 22+00E 74	
, S1 HL36+00N 10+00E 15	S1 HL40+00N		
\$1 HL36+00N 11+00E 33	S1 HL40+00h		
\$1 HL36+00N 12+00E 30	S1 HL40+00N	I 25+00E 51	
S1 HL36+00N 13+00E 74	S1 HL40+00N	1 26+00E 50	
S1 HL36+00N 14+00E 37	\$1 HL40+00N	1 27+00E 32	
S1 HL36+00N 15+00E 43	S1 HL40+00M		
\$1 HL36+00N 16+00E 22	S1 HL40+00M		
S1 HL36+00N 17+00E 63	S1 HL40+00M		
S1 HL36+00N 18+00E 41	S1 HL44+008	1 20+00E 58	
S1 HL36+00N 19+00E 73	S1 HL44+00N	1 21+00E 42	,
\$1 HL36+00N 20+00E 42	S1 HL44+00N		
S1 HL36+00N 21+00E 56	S1 HL44+00N	1 23+00E 53	
S1 HL36+00N 22+00E 57	S1 HL44+00N		
\$1 HL36+00N 26+40E 29	S1 HL44+00H	1 25+00E 100	
S1 HL36+90N 27+00E 30	S1 HL44+00P	1 26+00E 60	
\$1 HL36+00N 28+00E 22	S1 HL44+001	1 27+00E 41	
\$1 HL36+00N 29+00E 98	S1 HL44+00r	191 × 28+00E	
1 S1 HL36+00N 30+00E 52	S1 HL44+001		
\$1 HL36+00N 31+00E 24	S1 HL48+00f	1 20+00E 81	

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

			·				DATE PRINTED:	24-AUG-92		
	REPORT: V92	-00982.0 (COH	PLETE)				PROJECT: NONE	GIVEN	PAGE	4
	SAMPLE	ELEMENT	Cu		·	SAMPLE	ELEMENT	Cu		
. <u> </u>	NUMBER	UNITS	PPM			NUMBER	UNITS	PPM		······································
	S1 HL48+00N	21+00E	56	 			······································	- 1		
	S1 HL48+00N	22+00E	91							
	S1 HL48+00N		62							
	S1 HL48+00N		58							
	\$1 HL48+00N	25+00E	164							
	S1 HL48+00N	26+0 0 E	53							
	S1 HL48+00N	27+00E	45							
	S1 HL48+00N	28+00E	50							
	31 HL52+00N	2 0 +00E	31							
	S1 HL52+00N	21+00E	90							
	S1 HL52+00N	22+00E	61		-			· · · · · · · · · · · · · · · ·		
	S1 HL52+00N		50							
	S1 HL52+00N		62							
	S1 HL52+00N		21							
	S1 HL52+00N	26+00E	168							
	S1 HL52+00N	28+00E	130							
	S1 HL56+00N		36							
	S1 HL56+00N		59							
	S1 HL56+00N	22+00E	181							
	S1 HL56+00N	23+00E	28							
	S1 HL56+00N	24+00E	61							
	S1 HL56+00N		53							•
	S1 HL56+00N		30							
	S1 HL56+00N		57							
	S1 HL56+00N		56							

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V92-00983.0 (COMPLETE)		DATE PRINTED: PROJECT: HONE		PAGE 1
SAMPLE ELEMENT AU	Cu	SAMPLE ELEMENT	Au	Cu
NUMBER UNITS PPB	PPM	NUMBER UNITS	PP8	PPM
S1 8L40+00E 6+65N	38	\$1 BL50+00E 4+00N		46
S1 8L40+00E 7+50N	40	\$1 BL50+00E 4+50N		140
S1 8L40+00E 8+50N	155	\$1 BL50+00E 5+00N		148
S1 8L40+00E 9+50N	156	\$1 BL50+00E 5+50N		34
S1 8L40+00E 10+50N	20	\$1 BL50+00E 6+00N		120
\$1 8L42+00E 5+00N	45	\$1 8L50+00E 6+50N		50
\$1 8L42+00E 5+50N	60	\$1 8L52+00E 0+50N		70
\$1 8L42+00E 6+0CN	45	\$1 8L52+00E 1+50N		50
\$1 8L42+00E 6+50N	35	\$1 8L52+00E 2+50N		42
\$1 8L42+00E 7+00N	135	\$1 8L52+00E 3+50N		43
S1 BL42+00E 7+50N	77	\$1 8L52+00E 4+50N		206
S1 8L42+00E 8+00N	189	\$1 8L52+00E 5+50N		73
S1 BL42+00E 8+50N	66	\$1 8L54+00E 0+00N		45
S1 BL42+00E 9+00N	77	\$1 8L54+00E 0+50N		58
S1 BL42+00E 9+50N	26	\$1 8L54+00E 1+00N		59
S1 8L42+00E 10+00N	21	S1 8L54+00E 1+50N		100
S1 8L44+00E 4+50N	23	S1 8L54+00E 2+00H		45
S1 8L44+00E 5+40N	98	S1 BL54+00E 2+50N		75
S1 8L44+00E 6+50N	38	S1 BL54+00E 3+00N		146
S1 8L44+00E 7+50N	201	S1 BL54+00E 4+50N		177
S1 8L44+00E 8+50N	36	R2 H9201	54	58
S1 8L46+00E 3+00N	55	R2 H9202	14	74
S1 8L46+00E 3+50N	192	R2 H9203	<5	103
S1 8L46+00E 4+00N	53	R2 H9204	<5	82
S1 8L46+00E 4+50N	66	R2 H9205	<5	110
\$1 8L46+00E 5+00N	40	R2 H9206	12	90
\$1 8L46+00E 5+50N	86	R2 H9207	<5	119
\$1 8L46+00E 7+00N	59	R2 H9208	<5	42
\$1 8L46+00E 7+50N	26	R2 H9209	31	365
\$1 8L46+00E 8+00N	20	R2 H9210	6	35
S1 8L48+00E 3+50N S1 8L48+00E 4+50N S1 8L48+00E 5+50N S1 8L48+00E 6+50N S1 8L48+00E 7+50N	70 104 89 75 136	R2 H9211	10	1010
S1 8L50+00E 1+50N S1 8L50+00E 2+00N S1 3L50+00E 2+50N S1 8L50+00E 3+00N S1 8L50+00E 3+50N	24 38 24 58 47			

Inchcape Testing Services

				DATE PRINTED: 28-OCT-92					
REPORT: V92-01	282.0 (COMF	PLETE)	************************************	PROJECT: NONE GIVEN PAGE 1					
SAMPLE	ELEMENT	Au	Cu	SAMPLE	ELEMENT	Au	Cu	***************************************	
NUMBER	UNITS	PPB	PPM	NUMBER	CTIMU	PP8	PPM		
	**************************		**************************************	***************************************	*****************************			***************************************	
\$1 81-1			75	R2 19279		<5	9		
\$1 81-2			65	R2 19280		<5	11		
S1 81-3			62	R2 19281		<5	14		
S1 81-4			68						
S1 B1-5	*************************		75	***************************************					
S1 H3-1		***************************************	98	***************************************	***************************************			***************************************	
S1 H3-2			337						
S1 H3-3			183						
\$1 L44+00N Z8	+50€		18						
R2 18898		<5	230				•		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**********************	*******************		***************************************	·····				
R2 18899		<5	132						
R2 18900		<5	113						
R2 19251		24	135						
R2 19252		<5	137						
RZ 19253		<5	142						
	***************************************	e	476	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		****************			
R2 19254 R2 19255		<5 <5	176 189						
RZ 19256		<5	217						
R2 19257		<5	193						
RZ 19258		<5	99						
*****************************	*********************	*************		***************************************	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************		
RZ 19259		<\$	70						
RZ 19260		<5	78						
RZ 19261		<5	100					•	
R2 19262		<5	116						
R2 19263	************************	<5	120						
R2 19264	***************************************		100	***************************************			,		
RZ 19265		<5 <5	109 123						
R2 19266		<5	120						
R2 19267		< 5	70						
RZ 19268		< 5	67						
*****************************	***************************************		· ************************************	***************************************					
RZ 19269		<5	104						
R2 19270		<5	77						
RZ 19271		<5	87						
R2 19272		<5	92						
R2 19273	***	<5	139	***************************************	**************************			***********************	
R2 19274	***************************************		26	***************************************		*************		•••••••	
RZ 19275		<5 <5	44						
R2 19276		<5	24						
		~ ~							
R2 19277		<5	10						

500000 USS 645	174 A C COURT 777 -	DATE PRINTED: 20-OCT-92					
REPORT: V9Z-012	271.0 (COMPLETE).	PROJECT: NONE GIVEN	PAGE 1				
SAMPLE	ELEMENT Cu	SAMPLE ELEMENT CU	***************************************				
NUMBER	UNITS PPM	NUMBER UNITS PPM					
S1 H1-1	287	S1 L46N 27+00E 161	***************************************				
S1 H1-2	228	S1 L46N 27+50E 51					
S1 H2-1	158	\$1 L46N 28+00E 55					
S1 H2-2	210	S1 L46N 28+50E 101					
s1 H2-3	167	S1 L46N 29+00E 65					
S1 L11-1	104	S1 L48N 24+50E 106					
S1 L11-2	· 73	S1 L48N 25+50E 94					
S1 L11-3	71	S1 L48N 26+50E 27					
S1 L11-4	65	S1 L48N 27+50E 117					
S1 L11-5	73	\$1 L50N 24+00E 142					
***************************************		31 6300 67-002	***************************************				
S1 L11-6	62	S1 L50N 24+50E 105					
S1 L11-7	137	\$1 L50N 25+00E 272					
S1 L11-8	134	S1 L50N 25+50E 90					
S1 L11-9	88	\$1 L50N 26+00E 25					
S1 L11-10	37	\$1 L50N 26+50E 75					
S1 L12-1	115	S1 L50N 27+00E 30					
S1 L12-2	110	S1 L50N 27+50E 145					
\$1 L12-3	109	R2 18864 50					
S1 L12-4	84	R2 18865 339					
\$1 L12-5	56	R2 18866 228					
S1 L12-6	65	R2 18867 207					
S1 L12-7	82	RZ 18868 228					
S1 L12-8	102	R2 18869 219					
\$1 L12-9	84	R2 18870 208					
S1 L40N 29+508		R2 18871 195					
			• • • • • • • • • • • • • • • • • • • •				
S1 L40N 30+50E		R2 18872 183					
S1 L40N 31+00E		R2 18873 201					
\$1 L40N 31+50E		RZ 18874 183					
S1 L42N 27+50		R2 18875 208					
S1 L42N 28+00E	39	R2 18876 205					
S1 L42N 28+50E		. RZ 18877 164					
\$1 L42N 29+00E		RZ 18878 183	i e				
S1 L42N 29+50	€ 47	R2 18879 191					
S1 L42N 30+001	122	. R2 18880 15	i				
S1 L42N 30+30i	E 262	R2 18881 190	<u> </u>				
S1 L44N 27+50	E 62	R2 18882 194					
\$1 L46N 25+00	É 66	R2 18883 200	}				
\$1 L46N 25+50	E 89	R2 18884 28	•				
S1 L46N 26+00	E 77	R2 18885 18	•				
S1 L46N 26+50		R2 18886 26					

Inchcape Testing Services

REPORT: V92-0127	***************************************	DATE PRINTED: 20-OCT-92 PROJECT: NONE GIVEN PAGE 2
SAMPLE Number	ELEMENT Cu UNITS PPM	SAMPLE ELEMENT CU NUMBER UNITS PPM
R2 18887 R2 18888	225 236	
R2 18889 R2 18890 R2 18891	335 258 220	
R2 18892 R2 18893	205 226	
R2 18894 R2 18895 R2_18896	230 208 224	
R2 18897	207	
	•	

Inchcap: Testing Services

		DATE PRINTED: 26-OCT-92		
REPORT: V92-0	1271.1 (COMPLETE)	PROJECT: NONE GIVEN	PAGE 1	
***************************************	~*************************************			
SAMPLE	ELEMENT Au			
NUMBER	UNITS PPB			
R2 18865	<5 			
R2 18866 R2 18867	<5			
RZ 18868	<5 <5			
R2 18884	<5			
			*	
R2 18885	<5		***************************************	
R2 18886	<5			
RZ 18887	<5			
R2 18888	<5			
R2 18889	<5			

R2 18890	<5 			
R2 18891 R2 18892	<5 .c.			
R2 18893	<5 <5			
R2 18894	\s			
		······································		
***************************************	***************************************		***************************************	
·			***************************************	
			•	

***************************************	***************************************		***************************************	
		•		
	•			
~	······		*************************************	

APPENDIX IV

ANALYTICAL PROCEDURES

GEOCHEMICAL ANALYSIS FOR GOLD

Fire Assay Preconcentration finished by Atomic Absorption Spectroscopy

The fire assay preconcentration consists of a standard litharge fusion followed by cupellation of the lead button to obtain the precious metals concentrated into a tiny (about 3 mg) silver prill. Bondar-Clegg has adopted this technique as our primary method for the preconcentration of gold and other precious metals because of its proven track record and sensitivity. The silver prill is dissolved in aqua regia and the diluted solution is then aspirated into the AAS flame for measurement of the gold concentration.

GEOCHEMICAL ANALYSIS FOR CU

Copper is analyzed routinely by Atomic Absorption Spectroscopy (AAS) following the dissolution of the sample with aqua regia. AAS is an instrumental method of analysis in which a sample that has been put into an aqueous solution is aspirated into the flame of the instrument for measurement of the concentration of the element(s) of interest. A light source emits light at the wave length of the element to be measured in a beam that passes through the flame. The atoms of the element in the flame absorb the light in proportion to the concentration of the element in the sample solution. This absorption is compared to those measured when a series of standard solutions has been aspirated in order to estimate the concentration of the element in the sample solution