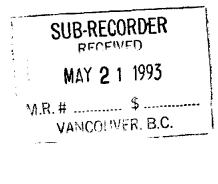
LOG NO:	JUN 1 6 1993	RD.
ACTION		
,		
FILE NO:		


GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

ON THE

PITT/TRINITY CLAIM GROUP

Trinity #1, Trinity #2, Gren 1-8, Pitt 1-4, BSL 1, BSL 2 and Gran Claims

Skeena Mining Division N.T.S. 103H/12W Latitude: 53°42' N Longitude: 129°52' W OWNER: Inco Limited OPERATOR: Inco Limited

GEOLOGICAL BRANCH ASSESSMENT REPORT

22,912

Dennis M. Bohme, P.Eng. Project Geologist Inco Exploration and Technical Services Inc. March 22, 1993

TABLE OF CONTENTS

		<u>Page</u>			
1.0	SUMMARY	1			
2.0	INTRODUCTION	2			
	2.1 Location, Access and Topography2.2 Property Definition2.3 Property History	2 2 5			
	2.4 Work Summary	6			
3.0	REGIONAL GEOLOGY	7			
4.0	PROPERTY GEOLOGY	9			
	4.1 Description of Lithologies	9			
	4.2 Structure	13			
5.0	MINERALIZATION	14			
	5.1 Pyrite Creek Zone	14			
	5.1.1 Junction Showing	14			
	5.1.2 Team Showing	16			
	5.1.3 Lower Team Showing	19			
	5.1.4 Meadow Creek Showing	19			
	5.1.5 South Pyrite Creek Showing	19			
	5.2 B Zone	22			
	5.2.1 B Creek Showing	22			
	5.2.2 Channel Showing	25			
	5.3 Pitt Zone	25			
	5.3.1 Talus Showing	26			
	5.3.2 Slide Showing	26			
6.0	GEOCHEMISTRY	26			
	6.1 Laboratory Procedure	26			
	6.2 Moss-mat Stream Sediment Results	27			
	6.3 Lithogeochemistry	27			
7.0	GEOPHYSICAL SURVEY	27			
8.0	CONCLUSIONS				
9.0	RECOMMENDATIONS				
10.0	REFERENCES				
11.0	STATEMENT OF EXPENDITURES	32			
12.0	STATEMENT OF QUALIFICATIONS	35			

APPENDICES

Page

Appendix I Geophysical Survey Report Appendix II Sample Descriptions ----Appendix III Certificate of Analyses -Appendix IV Petrographic Report -LIST OF FIGURES Figure 1 Location Map 3 ---Claim Location Map Figure 2 -4 Property Geology Map (simplified) Figure 3 8 Figure 4 Pyrite Creek Zone; Longitudinal -15 Section at 35° AZ Figure 5 Team Showing Area - Geology, 17 Sample Locations and Geochemistry (Cu, Pb, Zn) Figure 6 Team Showing Trench; Geology, 18 _ Sample Locations and Geochemistry (Cu, Pb, Zn) Figure 7 Lower Team Showing; Geology, 20 -Sample Locations and Geochemistry (Cu, Pb, Zn) Figure 8 South Pyrite Creek Showing; Geology, 21 Sample Locations and Geochemistry (Cu, Pb, Zn) B Zone Area; Geology and Figure 9 23 Geophysics (simplified) Figure 10 B Creek Showing; Geology, Sample 24 _ Locations and Geochemistry (Cu, Pb, Zn) TABLE

Table	1	-	Pyrite Creek Zone; Selected Whole	28
			Rock and Base-Metal Analyses	

LIST OF MAPS

Map 1 Property Geology, Sample In Pocket -Locations and Geochemistry (Cu, Pb, Zn); North Half-Sheet Map 2 -Property Geology, Sample In Pocket Locations and Geochemistry (Cu, Pb, Zn); South Half-Sheet Map 3 Pyrite Creek Area; Geology, In Pocket Sample Locations and Geochemistry (Cu, Pb, Zn) Junction Showing; Geology Map 4 In Pocket -Sample Locations and Geochemistry (Cu, Pb, Zn) Map 5 ---B Zone Area; Geology, Sample In Pocket Locations and Geochemistry (Cu, Pb, Zn) Geophysical Survey; HLEM Data Мар б In Pocket --and Profile Plot Geophysical Survey; Magnetic Data Map 7 In Pocket and Contour Plot Geophysical Survey; VLF Data Map 8 In Pocket and Profile Plot

1.0 SUMMARY

The Pitt/Trinity property is comprised of 222 contiguous claim units and is located on the northeast side of Pitt Island, approximately 70 km southeast of Prince Rupert, B.C. Access is by helicopter from Prince Rupert or by boat.

The property lies on the western edge of the Coast Plutonic Complex and is partly underlain by several northwest-striking pendants of highly metamorphosed sedimentary and volcanic rocks of the Lower Paleozoic Alexander Terrane. There are three principal pendant belts. The East Belt hosts the B Zone mineralization in quartz-biotite schist. The Central Belt is dominated by feldspathic biotite-quartz grit schist and biotite-chlorite schist. The West Belt contains biotitequartz schist, muscovite-quartz schist, amphibolite dykes and granitoid boudins. This narrow pendant coincides with a prominent fault(?) lineament and hosts several pyrite-rich sulphide occurrences, including the Pyrite Creek Zone.

Most of the work prior to 1992 focused along a 600 m segment of polymetallic sulphide mineralization exposed intermittently along Pyrite Creek. The 1992 program included geological mapping, prospecting, line-cutting, rock/moss-mat sampling, hand-trenching and a horizontal-loop EM/magnetic/VLF geophysical survey. Follow-up prospecting in the vicinity of several airborne EM conductors led to the discovery of two base-metal showings; one 2 km north of Pyrite Creek (the B Creek Showing) and the other 1 km southeast of Pyrite Creek (the South Pyrite Creek Showing).

The Pyrite Creek Zone is a metamorphosed, stratiform, semimassive to massive sulphide zone exposed intermittently over a strike length of 1.7 km and a vertical dimension of 0.45 km. True thickness of the zone varies between 0.2 - 1.6 m (pinch and swell). The mineralization, mainly pyrite with lesser chalcopyrite, sphalerite, galena, covellite and pyrrhotite, is spatially associated with a major stuctural zone and a large granodiorite intrusion. Base metal grades typically range from 0.9 - 4.2% Cu, 0.8 - 1.1% Pb and 1.3 - 4.3% Zn. Two adjacent chip samples returned an average grade of 4.46% Cu, 1.02% Pb, 7.06% Zn, 102.9 g/t Ag and 1.85 g/t Au across a 1.2 m wide section of structurally thickened mineralization. Drilling is recommended to explore the strike length and downdip continuity of the sulphide zone.

The B Zone geophysical survey detected several coincident horizontal-loop EM and VLF conductors along the contact between the East Belt and the plutonic rocks. A weak conductivity response was detected along strike of a semimassive pyrrhotite-pyrite zone (the B Creek Showing). Further work is warranted to evaluate the cause of the EM anomalies.

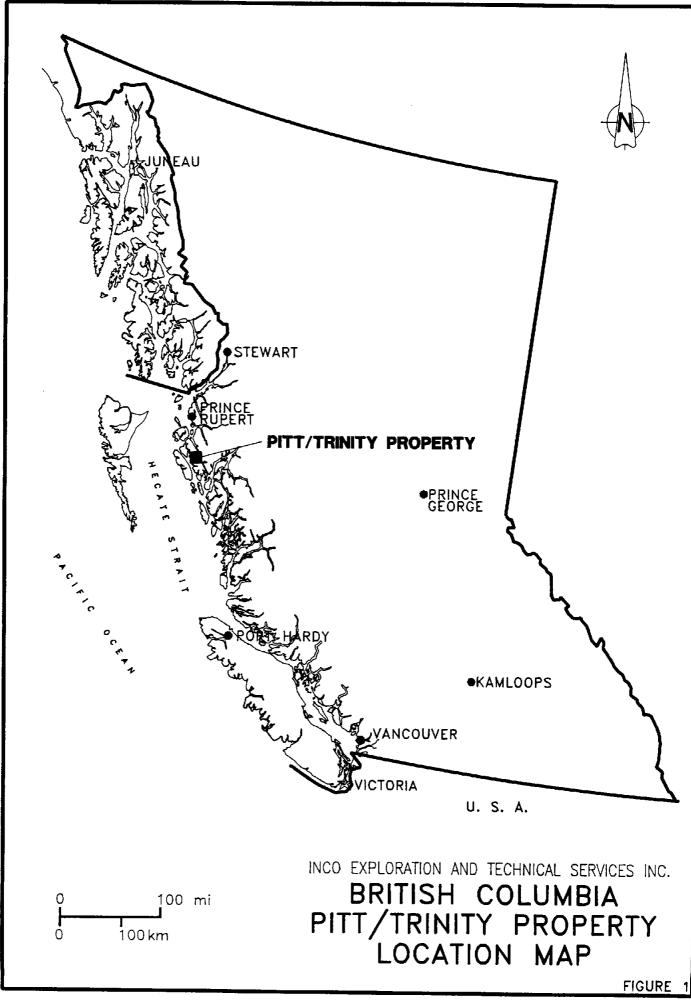
2.0 INTRODUCTION

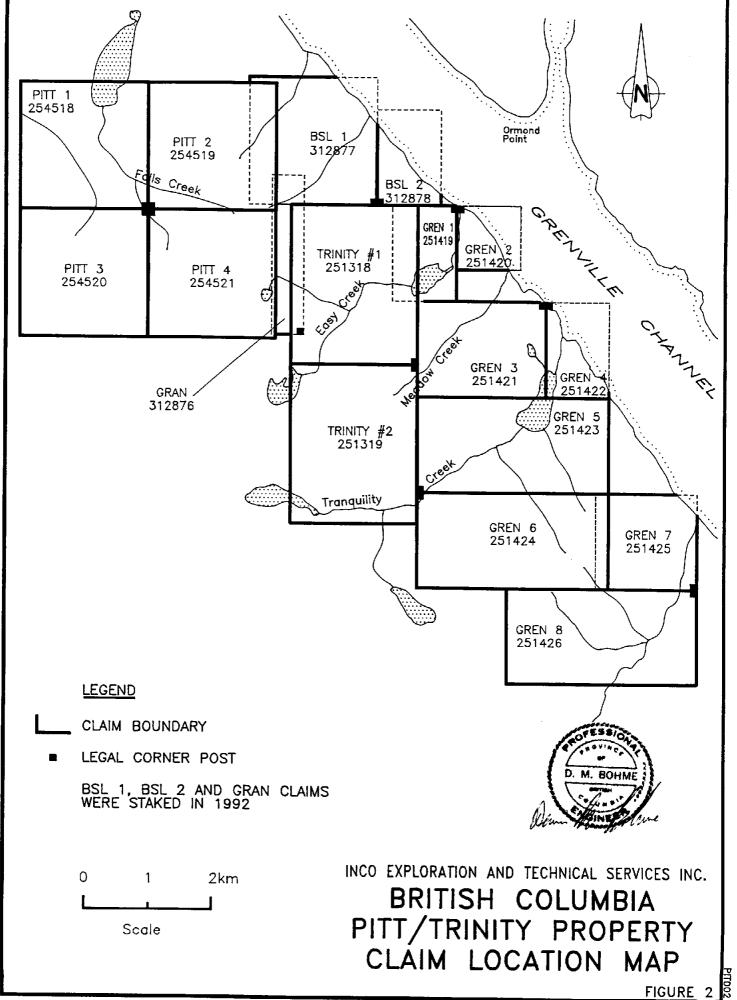
This report documents the geological, geochemical and geophysical work conducted on the Pitt/Trinity claim group during the period June 1, 1992 to December 11, 1992. The property was explored for base metals.

2.1 Location, Access and Topography

The Pitt/Trinity property is located in the Coastal Mountains of northwestern British Columbia. The centre of the claim block is located 73 km south of Prince Rupert (Figure 1). The property lies along the northeastern edge of Pitt Island opposite Ormond Point on the Grenville Channel. There is limited logging activity on the northern and southern portions of the 90-km long island.

Access to the property is via helicopter or by boat. Flight time from Prince Rupert is about 30 minutes.


Topographic relief varies from moderately flat in the outer portion of the island to mountainous and locally very rugged in the interior. The climate is generally mild and very wet. The entire property is densely vegetated by rain forest. Elevations on the property range from sea level to over 800 m.


Bedrock exposure is generally good along steeply incised creek gullies and on most ridgetops.

2.2 Property Definition

The Trinity #1, Trinity #2, Gren 1-8, Pitt 1-4, BSL 1, BSL 2 and Gran claims are recorded in the Skeena Mining Division and comprise 222 contiguous units or 5550 hectares (Figure 2). The claims have been grouped under the names Grenville 1, 2 and 3 for assessment purposes. Pertinent details follow:

<u>Group: Grenvi</u>	<u>lle 1</u>		
Claim	Units	Expiry Date	Tenure Number
		<u> </u>	
Pitt 1	16	May 22, 1996	254518
Pitt 2	16	May 23, 1996	254519
Pitt 3	16	May 22, 1996	254520
Pitt 4	16	May 23, 1996	254521

Group: Grenvill	<u>e 2</u>		
Claim	Units	Expiry Date	<u>Tenure Number</u>
Gran	5	September 3, 1993	312876
BSL 1	16	September 3, 1993	312877
BSL 2	6	September 2, 1993	312878
Trinity #1	20	March 3, 2000	251318
Gren 1	6		251419
Gren 2	4	April 11, 1998	251420
Gren 3	12	April 11, 1999	251421
Gren 4	6	April 11, 1998	251422
Group: Grenvill			
<u>Claim</u>	<u>Units</u>	<u>Expiry Date</u>	<u>Tenure Number</u>
muluiter "o			054040
	20	March 3, 2000	251319
Gren 5	18	April 11, 1999	251423
Gren 6	18		251424
Gren 7	9	April 11, 1998	251425
Gren 8	18	April 11, 1998	251426

All claims are currently owned by Inco Limited.

2.3 Property History

The exploration history is summarized as follows:

- 1980: A massive sulphide occurrence was discovered on Pyrite Creek by Ryan Exploration Company Ltd. (a subsidiary of US Borax) while conducting regional reconnaissance work along coastal B.C. The Pit claim was staked.
- 1981: Limited field work conducted on the claim.
- 1982: Evaluation of the property included mapping at 1:5000 and 1:1000 scale, rock sampling, prospecting and a VLF EM-16 (17.3 line-km) geophysical survey. The Pyrite Creek area was mapped as part of a B.Sc. thesis by B. McDonald. The highest assay reported was 7.8% Cu, 1.6% Pb, 8.7% Zn, 126 g/t Ag and 8.9 g/t Au.
- 1983: B. McDonald completed a B.Sc. thesis (U.B.C.) on the geology and opaque mineralogy of the main showing and host rocks along the Pyrite Creek avalanche gully.

- 1986: The Pit claim lapsed. The main showing area was restaked by B. McDonald and R. Haslinger as the Trinity #1 and #2 claims and subsequently optioned to BP Resources Canada Limited in April, 1986. The Gren claims were staked and BP Selco conducted regional mapping at 1:10,000 scale, prospecting, stream sediment sampling of the major drainages, limited soil sampling and detailed mapping and chip sampling of the Pyrite Creek sulphide zone. The massive sulphide exposures were mapped over a strike length of 300 m.
- 1987: No work was conducted and the option was dropped by BP Resources due to the low precious metal content of the massive sulphide zone.
- 1988: The property was optioned by Fair Harbour Mining Corporation and they completed a 2.6 line-km IP survey. They interpreted the sulphide-rich zone to extend at least 300 m further to the southeast from upper Pyrite Creek. Drilling was recommended.
- 1989: A six-hole BQ diamond drill program totalling 494 m was carried out to test the source of the IP anomalies and the down-dip continuity of the mineralization. Drilling intersected the zone over a 200 m strike length and to a depth of 70 m. The best drill intercept was 2.2% Cu, 1.2% Pb, 4.9% Zn, 44.6 g/t Ag and 0.31 g/t Au over 2.1 m.
- 1991: Atna Resources Ltd. staked the Pitt Claims. Atna Resources and Fair Harbour Mining each acquired 50% interest in the combined property. Inco Limited optioned the Pitt/Trinity claim group from Atna and Fair Harbour in December, 1991.

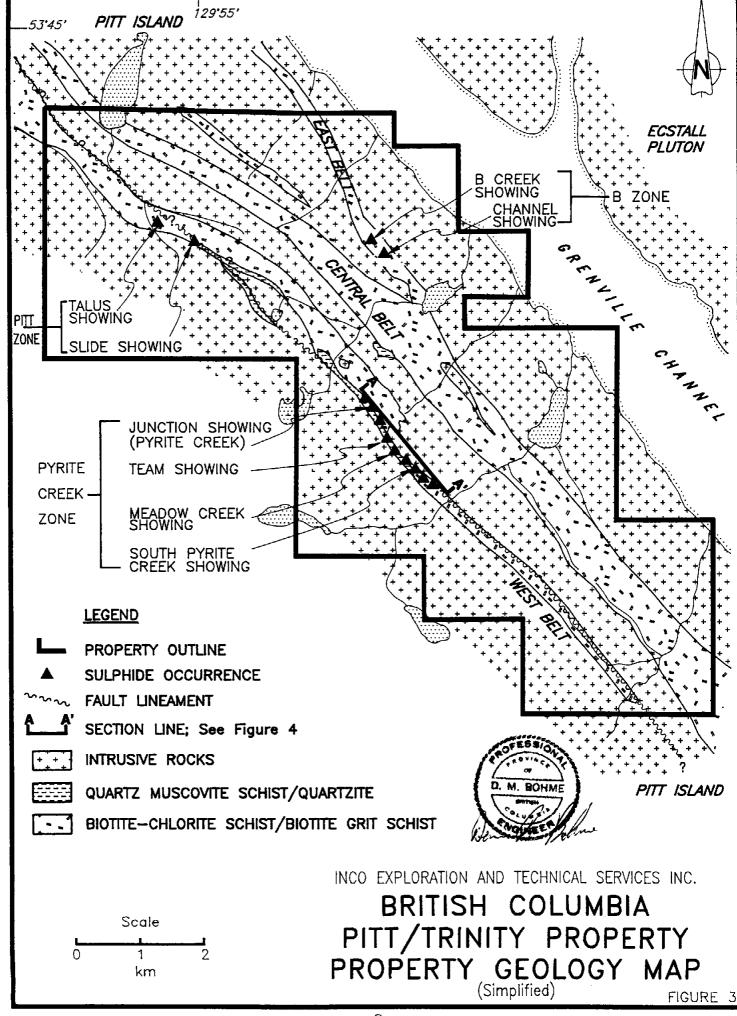
2.4 Work Summary

Field work was carried out during four periods in 1992 by Inco Exploration and Technical Services Inc. A helicopter-borne electromagnetic and magnetic survey was flown over the property in May, 1992. The survey results are reported in a geophysical assessment report by B. Lo (1992).

Between June 1 and June 30, a 4-person crew conducted mapping at 1:10000, 1:2000 and 1:500 scales, prospecting, rock sampling and hand trenching. Two camps were established to facilitate this program. During the period August 19 to September 4, field work included follow-up prospecting of several airborne EM anomalies, rock and moss-mat sampling, claim staking and mapping. Day trips by a 4-person crew were made by helicopter from Prince Rupert to complete this work. The BSL 1 and BSL 2 claims were staked to cover the northwesterly strike extension of two parallel airborne EM anomalies known as the B Zone. The Gran claim covers a gap between the Trinity and Pitt claim blocks.

A camp was established near the B Creek sulphide discovery and between September 25 and October 19, the following field work was carried out on the B Zone: grid layout, 9.5 line-km of line-cutting, 8.9 line-km of geophysics (horizontal-loop EM, magnetics and VLF), rock sampling, moss-mat stream sediment sampling and mapping at 1:2000 scale.

A total of ten moss-mat stream sediment and 348 rock samples were collected. Sample descriptions and analytical results are included in Appendices II and III, respectively. The elements Cu, Pb and Zn are plotted for all rock and moss-mat stream sediment samples.


Eight rock specimens were submitted for petrography and the descriptions are included in Appendix IV.

3.0 REGIONAL GEOLOGY

The property lies on the western edge of the Coast Plutonic Complex and is partly underlain by several pendants of highly metamorphosed sedimentary and volcanic rocks of the Lower Paleozoic Alexander Terrane (Figure 3).

The Douglas Channel-Hecate Strait area was mapped by the Geological Survey of Canada in the early-to mid-1960's. They noted that approximately 85% of the map area is underlain by gneissic granitoid rocks and the remainder by metasedimentary and metavolcanic rocks. The oldest stratified rocks are the granitoid gneisses (pre-Permian age) which underlie extensive areas of the Coast Plutonic Complex (Roddick, 1970).

Roddick et al (1970) show Pitt Island to be partly underlain by a narrow pendant of biotite-quartz-feldspar-chlorite schist, biotite schist (locally garnetiferous) and amphibolite with minor crystalline limestone, pebble-conglomerate, micaceous quartzite and phyllitic schist. The pendant rocks display a prevailing northwest trend and a steep northeast to vertical dip. The metamorphic grade is garnet-amphibolite facies. All rock types have undergone extensive deformation and recrystallization and are highly schistose.

The Grenville Channel is interpreted by the GSC to be a dextral strike-slip fault (Grenville Channel Fault).

4.0 PROPERTY GEOLOGY

The convention used to describe the metamorphic rocks discussed in this report names the minerals in decreasing order of abundance. Thus, a muscovite-quartz-biotite schist contains more muscovite than biotite.

The metasedimentary-metavolcanic rocks occur as northweststriking, steeply-dipping screens and pendants measuring several 100's of metres wide and at least 16 km along strike. These rocks are enclosed in and intruded by unfoliated to strongly foliated to gneissic biotite granodiorite, diorite, quartz diorite and quartz monzonite (Maps 1 and 2).

Three principal metamorphic pendant belts occur on the property. The East Belt, up to 350 m wide, hosts the B Zone sulphide occurrences and is characterized by pyritic quartzbiotite schist with intercalated carbonaceous argillite. The strike extension of this belt, as identified on airphotos, extends onto the Pitt 2 claim.

The Central Belt, up to 1050 m wide, is dominated by feldsparbiotite-quartz grit schist (locally carbonaceous), biotitechlorite schist, garnet-bearing biotite-muscovite schist and minor quartzite.

The West Belt, between 50 - 500 m wide, is characterized by biotite-quartz schist, pyritic muscovite-quartz schist, micaceous quartzite, discontinuous amphibolite dykes and lenticular granitic boudins. This narrow belt of deformed metavolcanic and metasedimentary rocks coincides with a major fault(?) lineament (Pyrite Creek Lineament) that is prominent on airphotos. This belt also hosts several pyrite-rich, stratiform, semi-massive to massive sulphide showings in the Pyrite Creek Zone and the Pitt Zone. The contact between the pendant rocks and the foliated to gneissic plutonic rocks ranges from sharp to gradational.

4.1 Description of Lithologies

Previous geological mapping by Ryan Energy (1983), B. McDonald (1983) and B.P. Resources (1986) established the main lithological units on the property and their geological legend was retained with slight modification. The main descriptive highlights for each lithology follow, but the reader is referred to the above reports for further details.

The rocks types are summarized from oldest to youngest as follows:

<u>Biotite-Muscovite-Garnet Schist (unit 1)</u>

These fine-grained micaceous rocks are characterized by a metamorphic assemblage of biotite, muscovite and chlorite with narrow intercalated zones of black phyllite and rusty-weathering carbonaceous argillite. Fine- to medium-grained garnet and minor amounts of disseminated pyrite give the rocks a spotted appearance.

Carbonaceous argillite is intercalated with biotite-quartz schist (unit 3) within the Central Belt and East Belt. Pyritic argillite typically forms gossanous zones.

Amphibolite; Hornblende Schist (unit 2)

Fine-grained, acicular, hornblende-rich schist or amphibolite occurs mainly in two areas: at the Pyrite Creek Zone as narrow, discontinuous dykes in biotite-quartz schist; and at the lower portion of Easy Creek as discrete, narrow interbands within feldspar-biotite grit schist. At the Pyrite Creek Zone, foliated and locally folded amphibolite dykes occur near the concordant massive sulphide zone and are exclusively hosted in the footwall biotite-quartz schist. This unit also contains abundant very fine-grained magnetite.

Pyritic Biotite-Quartz Schist (unit 3)

Biotite-quartz schist is the predominant rock type comprising the East Belt. This unit forms the structural footwall of the mineralization at Pyrite Creek and also is the dominant lithology at the B Zone. Chlorite occurs locally as coarsegrained overgrowths after biotite. Contacts with other units, including the sulphide-rich zone, are gradational over several metres. Textures vary from fine- to coarse-grained and pyrite occurs in concentrations of up to 5%. Coarse-grained quartzrich segregations commonly occur east of Pyrite Creek. DeLancey (1992) noted that petrographic work identified cordierite in a specimen from the footwall.

Feldspar-Biotite-Quartz Grit Schist (unit 4)

Weathered surfaces of this unit are mottled, rusty-black to grey-white depending on the grain size and feldspar-pyrite ratio. A diagnostic fine- to medium-grained gritty "salt and pepper" texture is apparent on the fresh surface. Most of the Central and West Belts are comprised of this unit.

The dominant lithology of unit 4 is a well-layered feldsparbiotite-quartz to feldpathic biotite grit schist, but other variations include fine-grained biotite-chlorite schist, biotite-garnet schist and biotite-muscovite-chlorite schist. Pyrite content is usually less than 5%. Phlogopite and sillimanite were identified in thin section from a specimen labelled quartz-plagioclase-pyrite schist.

<u>Semi-Massive Sulphide Schist (unit 4a)</u>

Outcroppings of the sulphide-rich zone vary from massive pyrite-chalcopyrite to semi-massive, strongly schistose, granular sulphides with up to 50% interstitial biotite and muscovite. The semi-massive, pyrite-rich, sulphide schist is more common and tends to weather more recessively. Friable sections weather dull-yellow to ochre-brown.

The sulphide occurrences at Pyrite Creek exhibit an unusual coarse-grained fragmental texture that is the result of tectonic fragmentation or milling of competent silicate rock within an incompetent sulphide matrix. Vokes (1969) calls this texture "durchbewegung" and explains the silicate rock inclusions as clasts of wall rock which have been broken off a result of plastic flow of the sulphides during as McDonald (1983) identified rounded to submetamorphism. rounded fragments representing at least three different rock types which, in decreasing order of abundance, are massive quartz, quartz-biotite schist and cherty quartzite. Some of the quartz-rich fragments exhibit a relic granitoid texture. Siliceous clasts comprise between 5 - 25% of the massive sulphide and fragments may be up to 20 cm long (typically less than 5 cm). The clasts commonly contain finely disseminated chalcopyrite, pyrite and galena.

Principal sulphide minerals in decreasing order of abundance are pyrite, chalcopyrite, sphalerite, pyrrhotite, galena, covellite and possibly bornite. In addition to biotite and muscovite, minor amounts of plagioclase, quartz and apatite are intergrown with the sulphides. Barite is associated with the opaque minerals, either as inclusions or adjoining grains. Samples of massive sulphide from the Pyrite Creek Zone contain up to 5.5% barium (the majority range between 1.0 - 2.5% Ba).

Muscovite-Quartz Schist (unit 5)

This unit generally follows the granodiorite contact throughout the area defined as the Pyrite Creek Zone and is almost exclusively found in the structural hanging wall of the sulphide zone. Granular pyrite, locally in concentrations of up to 40%, is disseminated throughout the light-grey to whitebuff unit. Grain size varies from fine sericite to coarse, platy flakes of friable muscovite. Narrow interbands of biotite-muscovite schist and competent quartzite or chert(?) layers are relatively common, particularly at the Junction Showing. The contact between this unit and the foliated granodiorite intrusion is usually quite sharp. The muscovite schist is locally interlayered with biotite-quartz schist. A thin section of quartz-muscovite schist from the South Pyrite Creek Showing is described as a pyritic siliceous exhalite(?) with disseminated chalcopyrite, galena and sphalerite. Porphyroblastic chlorite, acicular grains of sillimanite and minor apatite is noted in thin section from a nearby sample of biotite-quartz-muscovite schist.

Micaceous Quartzite (unit 6)

The white- to buff-brown coloured quartzite is confined to the hanging wall of the sulphide zone. The contact is gradational with the muscovite-quartz schist. The quartzite is characterized by a rusty-brown rind up to 2 cm thick on weathered surfaces and a white, fine- to medium-grained granoblastic to weakly foliated texture on fresh surfaces. Thin bands and irregular laminae of muscovite and biotite are common. This unit contains minor amounts of fine-grained pyrite.

A light- to dark-grey quartzite unit occurs about 0.5 km east of the Pyrite Creek Zone. This fine-grained to aphanitic rock is poorly banded and contains minor amounts of mica and pyrite.

Feldspar-Quartz-Biotite Augen Gneiss (unit 7)

This unit was observed at one locality only. Petrography by McDonald (1983) indicates a metasedimentary protolith (paragneiss) whereas Bradley (1986) suggests that the gneiss is a migmatitic phase of the granodiorite intrusion. The contacts are poorly exposed and no cross-cutting relationships were observed.

Unit 7 is medium- to coarse-grained and is heterogeneous. It is characterized by the presence of flattened to sub-rounded augens of feldspar (up to 10 cm in length) and discontinuous bands and laminae of quartz, feldspar, biotite and minor muscovite. Foliation varies from strong to weak.

Biotite Granodiorite to Quartz Diorite (unit 8)

This unit is a weak- to well-foliated intrusive body consisting predominantly of biotite granodiorite but ranging from quartz monzonite to quartz diorite. Garnet, epidote, pyrite and hornblende are present in trace amounts. The contacts of the pluton are usually sharp but gradational mylonitic and migmatitic textures are seen in a few places.

4.2 Structure

The dominant structural feature is the foliation. Foliation strikes consistently to the north-northwest and dips from vertical to 60° both to the southwest and northeast. Near the Junction Showing in Pyrite Creek, the foliation strikes 130° to 150° and dips about 75° to the southwest.

Small- to moderate-scale Z and S-shaped folds are most apparent in the metasedimentary pendant rocks. Most of the fold axes in Pyrite Creek plunge steeply to the northnorthwest. In the Meadow Creek drainage, the fold axes plunge steeply to the southeast.

A prominent S-shaped fold of amphibolite just below the Junction Showing plunges 30° to the northwest. The cleavage penetrates the fold whereas 50 m upstream both the sulphides and the cleavage are folded.

The Pyrite Creek Zone of mineralization lies parallel to and within 3 to 20 m of the Pyrite Creek Lineament. This lineament is parallel to the trend of the Grenville Channel Fault. Both ductile (slickensides, gouge) and brittle deformation (discordant fracturing) is evident in several localities along the Pyrite Creek lineament. There is no clear evidence for offset. Polished slickensides measured at South Pyrite Creek strike 160° and plunge 75° to the southwest.

Stretched and attenuated granitic boudins, up to 15 m long, are associated with the Pyrite Creek structural zone. These dyke-like bodies are muscovite-rich and locally pegmatitic. Discordant quartz-filled, brittle fractures were observed in a few places along Pyrite Creek.

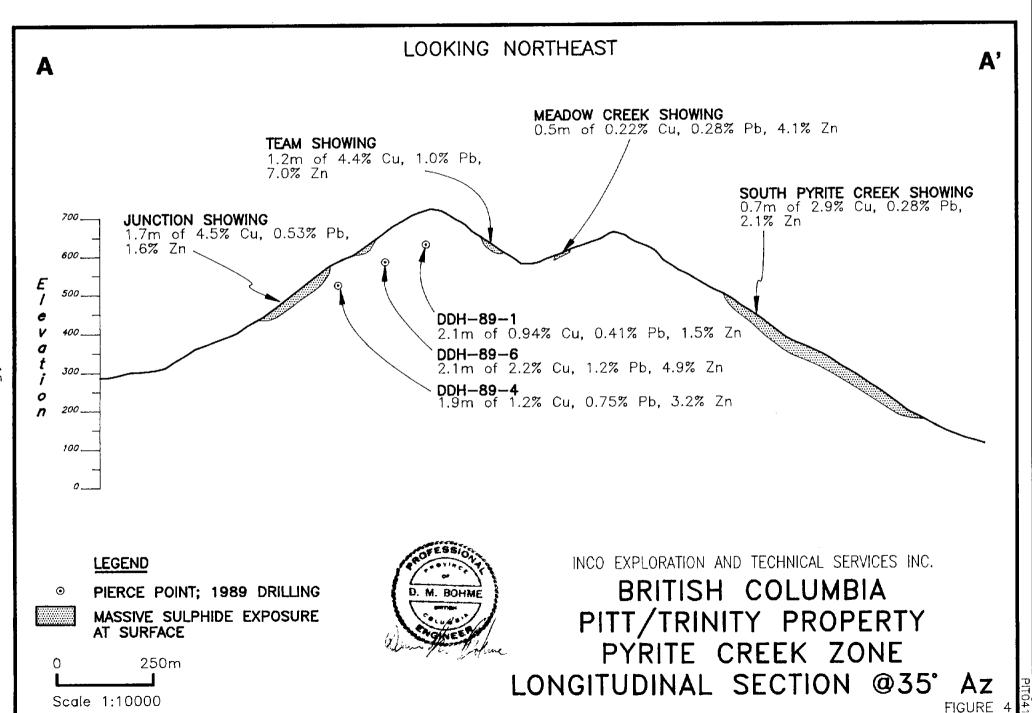
The sequence (muscovite schist/quartzite in the hanging wall and biotite schist/amphibolite in the footwall) that hosts the sulphide zone at Pyrite Creek is cut off by a granodiorite pluton just northwest of Easy Creek. The pluton forms a pronounced bow in the West Belt (Figure 3 and Map 1). Contacts observed in this area, particularly between the pyritic muscovite schist and the intrusive, are sharp. The Pyrite Creek Lineament does not parallel the contact in this area but transects the intrusive body for two kilometres. On the Pitt 2 and 4 claims, the lineament is marked by dykes. pyrite-bearing muscovite-quartz schist and biotite-rich rocks similar to those mapped in the Pyrite Creek gully. The foliation is locally sheared and highly contorted. The quartzite and amphibolite units are not present within the West Belt northwest of Easy Creek.

5.0 MINERALIZATION

The Team, Meadow Creek, South Pyrite Creek, Channel and B Creek Showings are base-metal discoveries made during the 1992 field season. The Junction, Team and Meadow Creek and South Pyrite Creek Showings comprise the Pyrite Creek Zone.

The Talus and Slide showings are the principal mineral occurrences within the Pitt Zone. Both showings lie along the projected northwest strike length of the Pyrite Creek Lineament.

No massive sulphide occurrences were found along the trend of the lineament southeast of the South Pyrite Creek Showing.


5.1 Pyrite Creek Zone

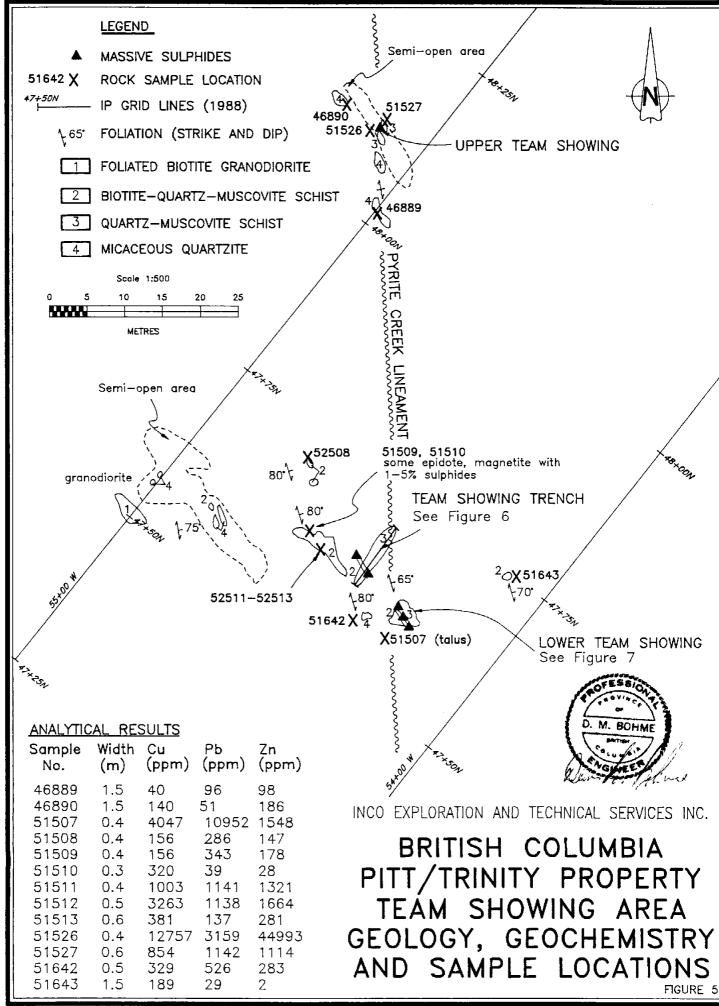
The Pyrite Creek Zone is characterized by a stratiform, elongate, semi-massive to massive sulphide zone exposed intermittently over a strike length of 1.7 km and vertical dimension of 0.45 km (Figure 4). True thickness varies between 0.2 - 1.6 m (pinch and swell) and the sulphide zone dips steeply to the southwest.

Massive sulphide mineralization (predominantly pyrite with lesser chalcopyrite, sphalerite, galena, pyrrhotite and covellite) appears to be contained within a lithologic sequence with quartzite, pyritic muscovite-quartz and intercalated biotite schist in the structural hanging wall and biotite-quartz schist, amphibolite and minor muscovite schist in the structural footwall (Map 3). Local structural complexities are evident at the Team Showing area. In all cases, the massive sulphide zone lies within 5 to 20 m of and parallel to the contact between the pendant rocks and the granodiorite.

5.1.1 Junction Showing

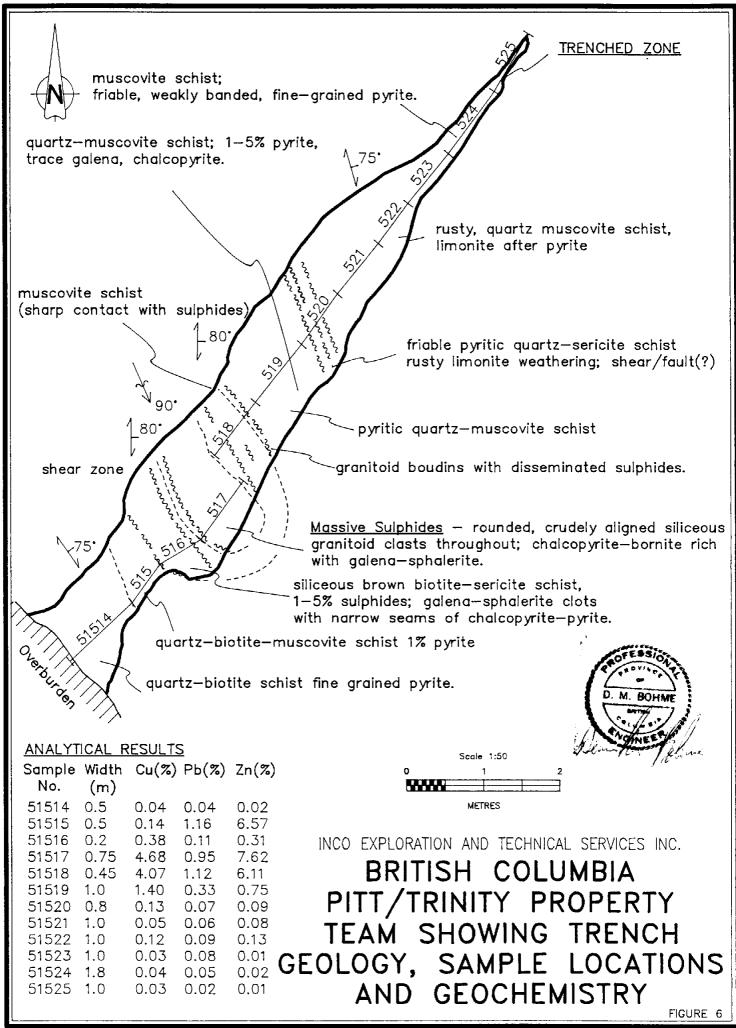
The Junction Showing, defined by mapping as a 50 by 10 m area along Pyrite Creek, contains several important characteristics different from rest of the Pyrite Creek Zone (Map 4). These features include a thickening of the massive sulphide zone, massive chalcopyrite-rich mineralization, thin cherty siliceous bands within the muscovite/sericite-quartz-pyrite schist in the hanging wall and chloritization of biotite in the footwall.

BP Selco mapped two massive sulphide bands, each about 1 to 1.5 m wide, separated by a 2 m thick band of muscovite-quartz-Detailed mapping by Inco indicates that the pyrite schist. pyrite-rich muscovite schist interband is a shear zone that cuts the massive sulphide zone. The shear zone fabric is slightly oblique to the strike of the massive sulphide zone and the schistosity developed in the surrounding schists. Within the shear zone, the massive sulphides are deformed by both ductile and brittle deformation such that they have been sliced into several small semi-massive sulphide lenses separated by narrow zones of highly schistose pyrite-rich This muscovite-pyrite schist band also muscovite schist. carries large granitoid(?) clasts and elevated base metal values (up to 7286 ppm Cu, 3860 ppm Pb and 2373 ppm Zn).


Bradley (1986) reported the average of ten channel samples across the thicker, central section of the zone as follows: 2.32% Cu, 0.57% Pb, 2.53% Zn, 52.0 g/t Ag and 0.48 g/t Au. Inco collected 20 rock chip samples from the same area and obtained comparable results. The average grade of two adjacent chip samples (RX 51614 and 51616) is 4.57% Cu, 0.53% Pb, 1.69% Zn and 47.4 g/t Ag over a 1.7 m width. The mineralization is also anomalous in Mo (118 ppm), Bi (147 ppm) and Ba (23,801 ppm).

5.1.2 Team Showing

Hand trenching downslope from an IP anomaly led to the discovery of the Team Showing, Upper Team Showing and the Lower Team Showing (Figure 5). The Pyrite Creek Lineament is evident by the well-developed shear fabric in the pyritebearing muscovite schist at the Upper Team and Team Showings. Micaceous quartzite, muscovite schist and discrete zones of biotite-quartz-pyrite schist (locally epidote-altered) occur in the structural hanging wall of the massive sulphide zone.


The Team Showing massive sulphide occurs within the hinge of a tight isoclinal, vertically plunging fold resulting in minor thickening (Figure 6). The massive sulphide contains pyrite, chalcopyrite, covellite, bornite(?), galena and sphalerite, and is enclosed within a strongly foliated and locally sheared muscovite-quartz-pyrite schist. A small-scale fold is apparent by the converging attitude of the enclosing schists and the folded fabric of the massive sulphides.

The weighted average of two chip samples (0.75 m and 0.45 m) produced 1.2 m averaging 4.46% Cu, 1.02% Pb, 7.06% Zn, 102.9 g/t Ag and 1.85 g/t Au. The mineralization is highly anomalous in Ba and Hg, (up to 41000 ppm and 39 ppm, respectively) and moderately anomalous in Mo (167 ppm), Sb (39 ppm), As (16 ppm), Cd (575 ppm) and Bi (64 ppm).

17

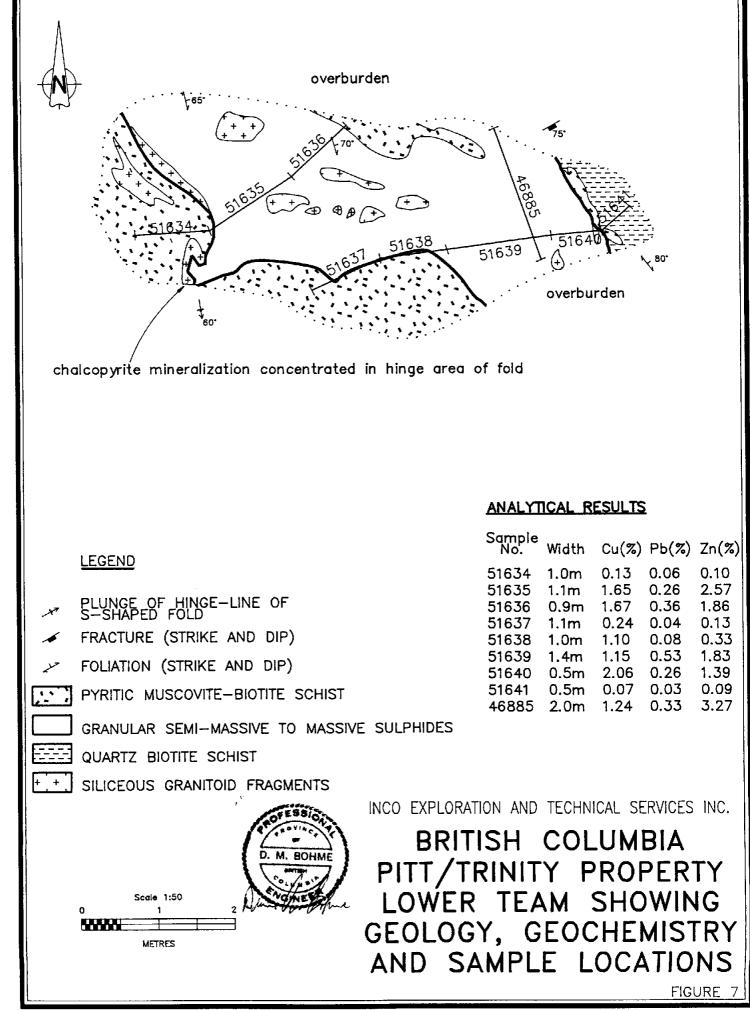
.

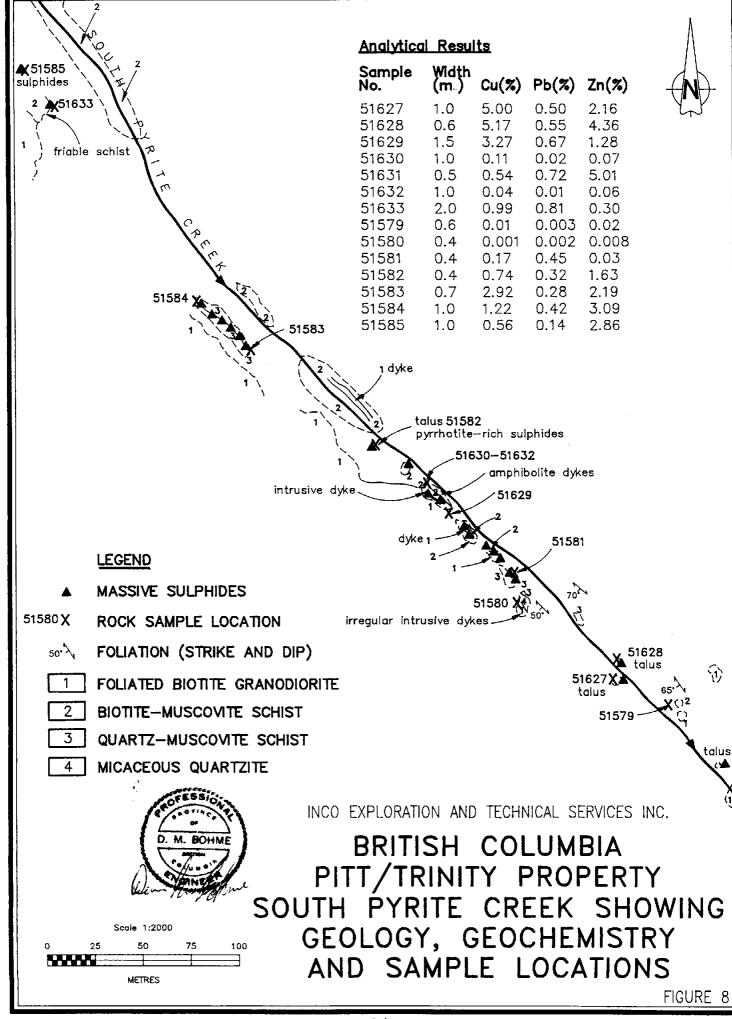
A 0.4 m wide chip sample across the Upper Team Showing contains 1.27% Cu, 0.31% Pb, 4.5% Zn, 63.6 g/t Ag and 0.95 g/t Au. A talus boulder sample near the Lower Team Showing contains 2.49 g/t Au.

5.1.3 Lower Team Showing

This exposure is a strongly schistose, contorted and tightly folded strike extension of the Team Showing. Quartz-rich granitoid clasts crudely outline several small-scale folds, particularly in the muscovite schist (Figure 7).

Mineralization consists of semi-massive, contorted pockets of chalcopyrite, pyrite, pyrrhotite, covellite mineralization with lesser galena and sphalerite. A 2 m chip sample across the widest section of the massive sulphide mineralization contains 1.24% Cu, 3.31% Pb, 3.27% Zn and 39.0 g/t Ag. This sample is also anomalous in Mo (85 ppm), Bi (40 ppm), Cd (234 ppm), Hg (18 ppm) and Ba (21,163 ppm).


5.1.4 Meadow Creek Showing


This showing is located 100 m southeast of the Team Showing and consists of fracture-controlled sulphides in granodiorite and several gossanous galena-sphalerite-bearing angular float boulders in a skarn altered host. Two gullies in the area expose friable, sheared, muscovite-quartz schist and hornfelsed biotite-epidote-pyrite schist. Narrow (0.5 - 3 m) pyritic biotite-epidote-carbonate screens are apparent at one locality and they carry elevated base-metal values of up to 3665 ppm Cu, 1208 ppm Pb and 6236 ppm Zn.

One specimen described as a silicified quartzite(?) contains banded, fine-grained, galena and sphalerite. Analytical results for the corresponding sample are 0.44% Cu, 2.59% Pb, 4.98% Zn, 212.2 g/t Ag, 719 ppm Sb and 16,620 ppm Ba. Copper values are less than 0.45% for all samples. The sulphide textures and mineralogy (high galena, low chalcopyrite content) are distinctly different from the mineralization elsewhere in the Pyrite Creek Zone.

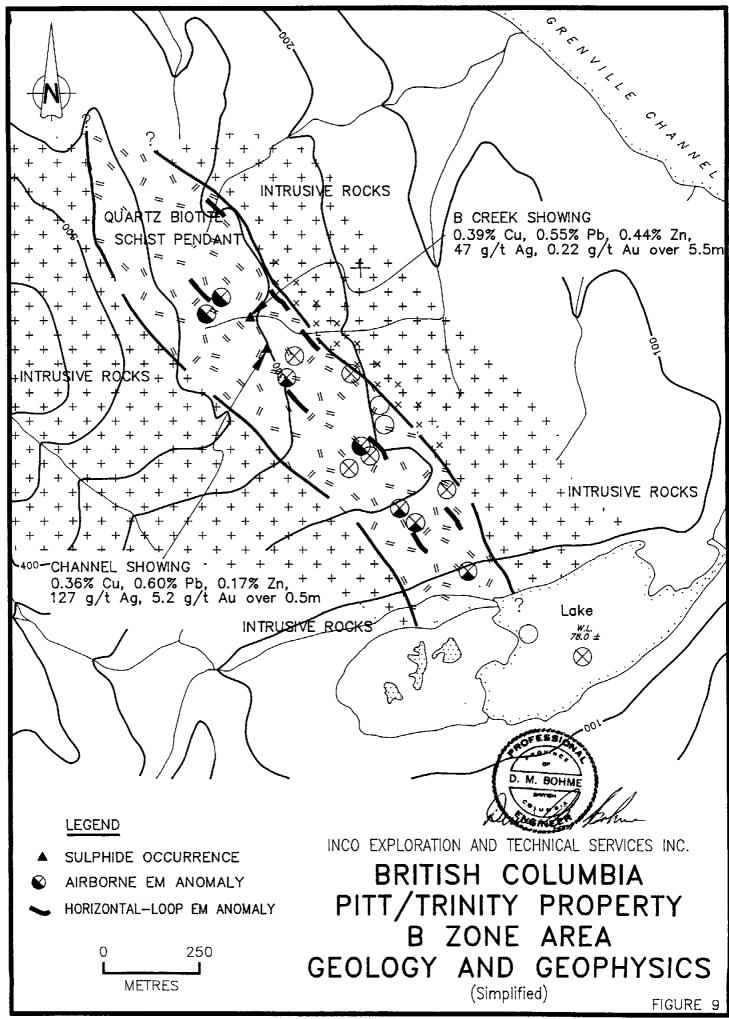
5.1.5 South Pyrite Creek Showing

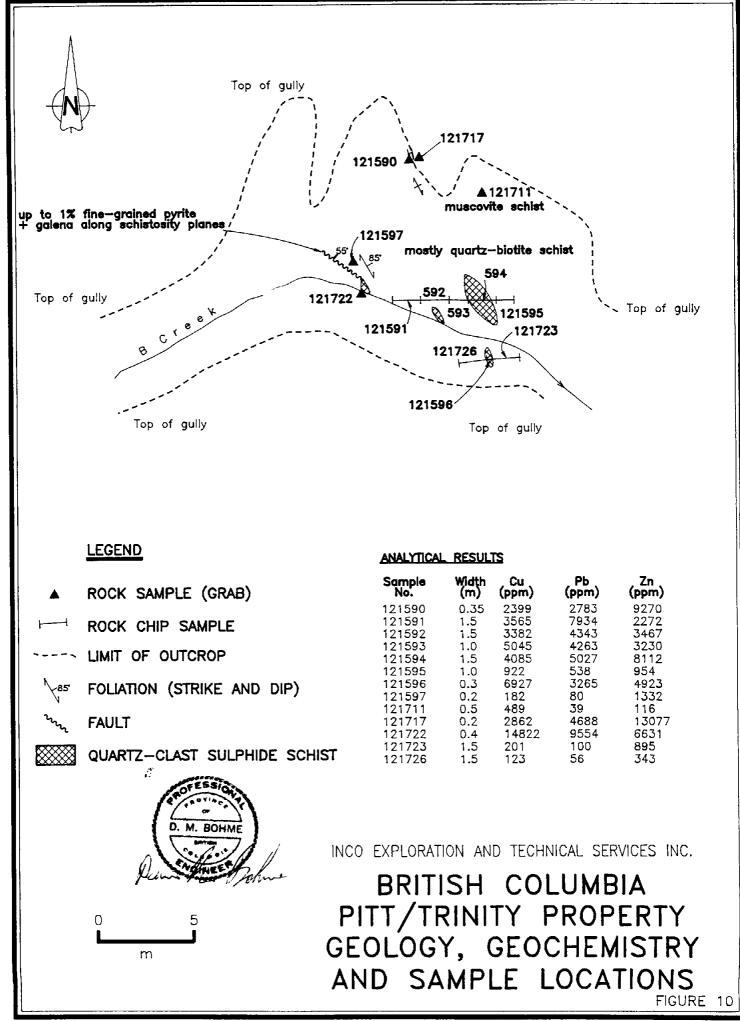
A short but notable airborne EM anomaly led to the discovery of several polymetallic, clast-rich massive sulphide occurrences along a steeply incised creek gully known as South Pyrite Creek. Several large massive sulphide boulders were discovered near the mouth of the creek (Figure 8). The lowest exposure of the sulphide zone occurs at an elevation of 210 m.

Based on two traverses up this gully, the area is similar to the Pyrite Creek area except that the massive quartzite unit is absent. At one locality the granite contact is no more than 5 m away from the sulphide horizon. Widths of the massive sulphide zone rarely exceed 1 m.

Samples from the mineralized zone contain consistently high copper grades with values from 0.67 to 3.3% Cu but locally up to 5.17% Cu. Lead and zinc range between 0.14 - 0.81% and 0.59 - 5.0%, respectively. Corresponding samples are also anomalous in Mo (345 ppm), Bi (45 ppm) and Ba (26,082 ppm).

5.2 B Zone


Several airborne EM conductors were evaluated by prospecting. This work led to the discovery of two semi-massive pyrrhotitepyrite occurrences (the B Creek and Channel Showings) near the northwest end of two parallel airborne EM conductors which are at least 1300 m long (Figure 9). The anomaly may extend beyond the northern limit of the airborne survey.


The B Zone, defined by mapping as a 1700 by 600 m area, is predominantly underlain by a gritty quartz-biotite-pyrite schist with intercalated zones of carbonaceous argillite and phyllite (Map 5). The contact between the pendant and the granitic rocks contains discordant quartz-pyrite veining. Pyrite and lesser pyrrhotite are ubiquitous in the biotitequartz schist, typically in the 1 - 5% range. Mineralization occurs as fine- to medium-grained disseminations and locally as semi-massive concentrations along schistosity planes.

The carbonaceous sections of the quartz-biotite schist unit contain anomalous base metal values of up to 750 ppm Cu, 280 ppm Pb and 2425 ppm Zn. Selected chip samples of quartz vein material contain up to 7798 ppm Zn, 9.4 ppm Ag, 100 ppb Au and 32,902 ppm Ba.

5.2.1 B Creek Showing

This occurrence is exposed along a steeply incised creek gully. It consists of several semi-massive pyrrhotite-rich lensoidal bodies containing abundant white to grey quartz clasts and lesser metasedimentary fragments up to 3 cm across (Figure 10). This fragmental texture is similar to the Pyrite Creek Zone mineralization. Variable amounts of interstial chalcopyrite, sphalerite, galena and pyrite mineralization are associated with the pyrrhotite. Tiny fractures within the quartz-rich clasts are usually healed by very fine sulphides.

The sulphides are generally fine-grained and the zone is moderately schistose parallel to the regional foliation (nearvertical dip). The showing area is cut by a northeast-dipping fault causing brittle fracturing and brecciation of the enclosing sulphide-rich rocks. Four contiguous chip samples across the tectonized biotite-quartz schist and the quartzclast pyrrhotite-rich unit average 0.39% Cu, 0.55% Pb, 0.44% 2n, 46.8 g/t Ag and 0.22 g/t Au over a width of 5.5 m. The contact between these two units is gradational. The thickness of the guartz-clast pyrrhotite lenses varies between 0.2 - 0.9 m. One selected grab sample of pyrrhotite-rich material contains 1.48% Cu, 0.96% Pb, 0.66% Zn, 70.0 g/t Ag and 0.69 m. This sample is also very high in phosphorus (3.55% q/t Au. P_2O_5) and calcium (7.9% CaO). The coincidence of high phosphorus and calcium may indicate the presence of apatite.

The B Creek Showing is moderately anomalous in Mo (124 ppm), As (293 ppm), Sb (240 ppm) and Bi (105 ppm) and distinctly low in Ba (4900 ppm or less).

5.2.2 Channel Showing

This small exposure is about 100 m southeast of the B Creek Showing but does not appear to be on strike with the B Creek Showing. The showing typically contain between 5 - 15% sulphides (mainly pyrrhotite-pyrite) in a siliceous, weakly foliated biotite schist. Samples from this zone are distinctly anomalous in gold and silver (up to 5.2 g/t and 127.2 g/t, respectively). Base-metal values are typically less than 0.5% for Cu, Pb and Zn. One chip sample contains 0.12% Cu, 0.18% Pb, 0.06% Zn, 40.9 g/t Ag and 1.6 g/t Au over 1 m. The showing is also anomalous in As, Sb and Bi.

5.3 Pitt Zone

Prospecting conducted on a 1800 by 100 m ridge area led to the discovery of several semi-massive to massive pyrite occurrences collectively named the Pitt Zone. The pyrite-rich showings contain minor values in Cu, Pb, Zn and Ag and are usually hosted in a biotite-muscovite-chlorite grit schist close to the granodiorite contact. The principal zones of mineralization are discussed below (Talus and Slide Showings).

DeLancey (1991) reports that of the 37 grab samples collected from the Pitt Zone, several contain values in the order of 1.0% Cu, 0.50% Pb, 2.0% Zn with anomalous silver, cadmium and barium. The highest base-metal values are found in angular float boulders of pyritic quartz-biotite-chlorite schist (Talus Showing). Gold values are very low.

5.3.1 Talus Showing

This showing consists of a few boulders and two poorly exposed outcrops of pyrite-rich biotite-muscovite-chlorite schist. Chlorite occurs as coarse-grained overgrowths after biotite. Selected grab samples contain up 30% sulphides and consist almost entirely of coarse-grained pyrite and lesser chalcopyrite. Base-metal values rarely exceed 1.0% Cu and 2.0% Zn. Mineralization at the Talus Showing is devoid of clasts and does not contain highly anomalous Hg and Ba values typical of the Pyrite Creek Zone.

5.3.2 Slide Showing

A recent slide has exposed discontinuous lenses of massive pyrite in a biotite-muscovite schist with interbands of buffcoloured felsic intrusive(?) rocks. The showing borders on the granodiorite contact and is characterized by massive pyrite zones up to 0.4 m thick that pinch out over a length of 2 m or less. One grab sample consisting of almost 50% sulphides analyzed 0.49% Cu and 0.89% Zn.

6.0 GEOCHEMISTRY

A total of 348 rock samples and 10 moss-mat stream samples were submitted for multi-element analyses at Acme Analytical Laboratories in Vancouver, B.C. All rock samples were also submitted for whole rock analyses for major, minor and selected trace elements. Of that total, 174 rock samples were analyzed for gold and 111 pulps were sent to Activation Laboratories Ltd. (ACTLABS) in Ancaster, Ontario for 35element instrumental neutron activation analysis (INAA).

6.1 Laboratory Procedure

Rock samples were crushed to -1/4 inch and 1/2 1b. was pulverized to -100 mesh. A 0.5 gram sample was subjected to total digestion by nitric, hydrochloric, perchloric and hydrofluoric acid at 200°C and then diluted to 10 ml with diluted aqua regia. The digested sample was analyzed for 35 elements by the inductively coupled argon plasma method (ICP). This leach is partial for Mn, Fe, Ca, P, La, Sc, Sr, Cr, Mg, Ba, Ti, B, W, Na, Zr, K and Al. For gold, a 20 gram sample was digested with hot aqua regia, extracted by MIBK (acid leach) and analyzed by graphite furnace atomic absorption (AA).

For whole rock analysis, a 0.20 gram sample was subjected to lithium metaborate fusion, nitric acid leach and an ICP scan.

A 2 gram sample was encapsulated, irradiated and measured by INAA technique for 35 elements including gold. This analytical technique is dependent primarily on measuring gamma radiation which is emitted by radioactive isotopes produced by irradiating the sample in a nuclear reactor.

Moss mat samples were dried and sieved to obtain approximately 30 grams of -80 mesh sediment material. The sample was then subjected to an aqua regia digestion (hydrochloric and nitric acid plus water) at 95°C for one hour and diluted to 10 ml with water. The digested sampled was analyzed by the ICP method for 30 elements. Gold analysis is by acid leach with an AA finish from a 10 gram sample.

6.2 Moss-Mat Stream Sediment Results

A statistical analysis of the results from the 10 moss-mat samples was not done due to the small population. Threshold values for Cu, Pb, Zn and Ag are assigned at 40 ppm, 20 ppm, 90 ppm and 0.6 ppm, respectively, based on stream sediment data from B.P. Selco (1986). All of the samples, with the exception of two, were collected within the B Zone grid area.

The results indicate two moss-mat stream sediment anomalies. A strong Pb anomaly and a corresponding weak Cu-Zn-Ag anomaly is situated immediately downstream from the B Creek Showing (SX 138805). Another Cu-Zn-Ag anomaly is indicated about 700 m to the northwest of the B Creek Showing just off grid line L218 (SX 134927).

6.3 Lithogeochemistry

The oxide and base-metal elements for selected samples representing the main rock types comprising the Pyrite Creek Zone are presented in Table 1. Two samples with chlorite alteration after biotite are also included to serve as a comparison between biotite-quartz schist (unit 3) and locally chloritized biotite schist. These four samples represent the footwall of the Pyrite Creek Zone.

7.0 GEOPHYSICAL SURVEY

A magnetic, VLF and horizontal-loop EM survey was conducted over the B Zone between October 7 - 19, 1992. A total of 8.9 line-km of grid line was cut to facilitate this work. The magnetic and VLF surveys were completed over the entire grid whereas the horizontal-loop EM survey covered 7.5 line-km of grid line.

The results of the geophysical survey are discussed in a report by Inco geophysicist B. Lo (Appendix I).

TABLE 1

PYRITE CREEK ZONE - Whole Rock ICP Analyses and Base-Metal ICP Data

Major Oxide (in percent) and Base-Metal (in parts per million) Content of Selected Rock Samples

	1		2		3		4		5		6	
	Amphibol	lite	Biotite-Qu	ıartz	Feldspar-	Biotite	Biotite-Ch	lorite	Muscovite	-pyrite	Micaceous	;
	Dyke (uni		Schist (uni		Grit Schist		Schist (uni	t 3)	Schist (uni	t 5)	Quartzite (
RX No.	46892	46897	49891	51514	51511	51574	46896	51579	51520	46898	46890	46891
Oxide %												
SiO2	48.57	52.52	58.07	50.32	58.40	49.97	51.45	54.09	70.09	69.87	64.81	69.98
AI2O3	14.90	14.67	15.44	17.22	17.62	18.01	16.11	17.50	14.40	13.69	16.27	14.00
Fe2O3	15.18	13.17	9.98	10.95	5.93	9.70	9.70	8.58	3.91	5.36	4.38	3.99
MgO	6.17	5.11	7.00	4.83	3.48	3.00	7.85	7.39	1.02	0.46	0.36	0.01
CaO	9.20	8.69	2.99	7.40	4.51	12.73	2.86	2.96	1.94	2.28	4.86	2.81
Na2O	2.21	1.83	0.98	2.12	2.46	3.69	2.35	2.65	2.09	2.19	4.02	4.86
K20	0.27	0.44	1.33	1.59	2.41	0.65	2.44	2.78	2.60	2.98	2.07	1.52
TiO2	2.00	1.81	1.06	1.00	0.57	0.84	0.85	0.81	0.32	0.72	0.66	0.54
P2O5	0.32	0.30	0.25	0.14	0.12	0.13	0.21	0.17	0.07	0.10	0.11	0.01
MnO	0.27	0.28	0.11	0.18	0.10	0.20	0.21	0.13	0.03	0.05	0.04	0.02
Cr2O3	0.007	0.002	0.005	0.002	0.002	0.006	0.002	0.007	0.002	0.016	0.002	0.002
LOI	0.7	0.9	5.7	3.2	2.4	0.8	5.7	2.6	2.6	1.4	2.0	2.1
Total	99.88	99,85	99.90	99.84	99.59	99.88	99.90	99.85	99.69	99.56	99.92	100.00
(ppm)												
Mo	1	1	1	35	40	1	2	4	3	2	1	8
Cu	61	62	38	489	1003	69	108	186	1313	81	140	41
Pb	4	14	6	443	1141	19	18	37	747	648	51	65
Zn	111	139	76	273	1321	103	181	207	923	1315	186	38
Ni	43	23	13	45	9	10	21	20	4	3	14	

8.0 CONCLUSIONS

The stratiform semi-massive to massive mineralization characteristic of the Pyrite Creek Zone and the enclosing schists have undergone intense metamorphism and deformation. Mineralization occurs near a major fault(?) lineament (Pyrite Creek Lineament) and a large granodiorite intrusion. The mineralized zone appears to be contained within a specific sequence with muscovite-rich schist and micaceous quartzite confined to the structural hanging wall and biotite-rich schist and amphibolite in the structural footwall. The 1992 program extended the strike length of the Pyrite Creek Zone by 1.1 km and economic base-metal grades occur in several localities along this trend.

The B Creek and Channel Showings contain tectonized semimassive pyrite-pyrrhotite mineralization in a pyritic biotitequartz schist. Base-metal values are low.

The horizontal-loop EM and VLF surveys over the B Zone detected strong several anomalies along the contact between the pendant and the granitic rocks. The cause of these anomalies has not been fully investigated.

9.0 RECOMMENDATIONS

Further exploration is warranted for base-metal mineralization on the Pitt/Trinity property. Recommendations are as follows:

- 1) A lithogeochemical alteration study supplemented by petrographic work is recommended to interpret the alteration of the host rocks. Based on the results of this study, further geological work may be required on the Pyrite Creek Zone and other areas in order to select the best drill targets.
- 2) The northernmost moss-mat stream sediment anomaly at the B Zone requires follow-up prospecting. Several horizontal-loop EM conductance responses also warrant further investigation. Prospecting and detailed mapping is warranted for areas of the B Zone where conductive responses were detected.
- 3) Previous drilling has demonstrated the strike and dip continuity of the polymetallic mineralization over a 200 m strike length and 70 m down-dip. Additional drilling is recommended to explore down-dip and along strike.

10.0 REFERENCES

- Bradley, W., 1987, Report of exploration on the Trinity Property, BP Resources Canada: B.C.M.E.M.P.R. Assessment Report 15647, 57 p.
- Burrows, D. R., 1992, Report on two polished thin sections of semi-massive mineralization from Pyrite Creek: internal report, Inco Exploration and Technical Services Inc., 2 p.
- DeLancey, P. R., 1991, Summary report on the Pitt Claims, Atna Resources Ltd.: internal report, 2 p.
- DeLancey, P. R., 1992, Summary report and data package on the Pitt/Trinity Property: internal report, 6 p.
- Gareau, S. A., 1989, Metamorphism, deformation and geochronology of the Ecstall-Quaal rivers area, Coast Plutonic Complex, British Columbia: Current Research, part E, Geological Survey of Canada, Paper 89-1E, pp. 155-162.
- Gareau, S. A., 1990, The Scotia-Quaal Metamorphic Belt: a distinct assemblage with pre-early Late Cretaceous deformational and metamorphic history, Coast Plutonic Complex, B.C.: Canadian Journal of Earth Sciences, Vol. 28, p. 870-880.
- Lo, B. H., 1992, Geophysical Report on an Helicopter borne Electromagnetic and Magnetometer Survey at the Pitt/Trinity Property, B.C.: B.C.E.M.P.R. Assessment Report 22475, 12 p.
- Rebagliati, C. M., 1989, Assessment Report on the Trinity Property of Fair Harbour Mining Corporation, Rebagliati Geological Consulting Ltd.: B.C.M.E.M.P.R. Assessment Report 18315, 10 p.
- Rebagliati, C. M., 1990, 1989 Phase 1-Diamond Drill Program, Trinity Project, Fair Harbour Mining Corporation: B.C.M.E.M.P.R. Assessment Report 19729, 12 p.
- Roddick, J. A., 1970, Douglas Channel Hecate Strait Map-Area British Columbia: Geological Survey of Canada, Paper 70-41, 56 p.
- Vokes, F. M., 1963, A Review of the Metamorphism of sulphide deposits: Earth-Science Review, V. 5, p. 99-143.

11.0 STATEMENT OF EXPENDITURES

Personnel

Project Geologist D. Bohme	June 1-December 11/92 96 days @ \$310/day		
Geologist M. Slauenwhite	June 1-October 17/92 42 days @ \$310/day	13,020	
Geologist C. Bell	August 19-Oct. 17/92 20 days @ \$310/day	6,200	
Geophysicist B. Lo	Jan. 20-Feb. 12/93 6 days @ \$400/day	2,400	
Autocad Tech I. Casidy	July 6-Dec. 11/92 19 days @ \$180/day	3,420	
Geologist D. Rawlek	June 1-November 13/92 62 days @ \$160/day		
Geologist O. Bundred	August 19-26/92 8 days @ \$170/day	1,360	
Field Assistant I. Perry	June 1-July 2/92 30 days @ \$130/day	3,900	
Field Assistant T. Laycock	August 19-26/92 8 days @ \$130/day	1,040	
Contract (Corvigo Nor	1-		\$71,020
<u>Contract/Service Wor</u>	<u>K</u>		
Geophysical Survey SJ Geophysics Ltd.	October 7-19/92	\$16,749	
Expeditor	June 3-30/92	700	

Expeditor T. Major

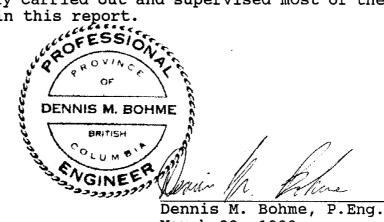
Line-Cutting Sept.25-Oct.3/92 11,834 Dean de La Mothe Exploration Services

Petrographic Work July 28, 1992 250 Vancouver Petrographics Ltd.

\$29,533

<u>Transportation</u>

Helicopter 206B 52.7 hrs. @		\$38,998	
including f Airfare; Canadian Airlines		8,709	
Vancouver-Prince Rupert-return 4x4 Truck Rental 10 days @ \$ including f	100/day	1,000	
Sabre Marine -tugboat rental	uet	2,815	
Loomis Courier/Clark Reefer -sample/equipment shipments		2,500	
Subsistence			\$54 , 022
Groceries/Meals			
200 person-days @\$35/day Accommodation		\$7,000	
40 days @ \$50/day		2,000	
<u>Geochemical Charges</u>		<u> </u>	\$9,000
Acme Analytical Laboratories L 348 rock samples for 35 elemen and whole rock analysis @ \$18/	t ICP	\$6,264	
10 moss mat samples for 30 ele ICP + gold @ \$10/sample	ment	100	
174 rock samples for gold anal @ \$5.00/sample	ysis	870	
Activation Laboratories Ltd. 111 samples analyzed for 35-el	ements		
by neutron activation @ 10/sam		1,110	
Miscellaneous			\$8,344
Reproductions, photocopying, e	ta.	\$1,760	
Camp supplies, lumber, hardwar Communications, radio rentals, Computer usage	e, etc.	7,488 3,216 900	
		·····	\$13,364
	Total	\$	\$185,283


ALLOCATION DECLARATION

- I, Dennis M. Bohme, hereby certify that:
- 1) A total of \$37,057 or 20% of the total was spent on the Grenville 1 Group.
- 2) A total of \$114,875 or 62% of the total was spent on the Grenville 2 group of which \$82,522 was expended after September 2, 1992 (work done after the Gran, BSL 1 and BSL 2 claims were staked).
- 3) A total of \$33,351 or 18% of the total was spent on the Grenville 3 Group.

12.0 STATEMENT OF QUALIFICATIONS

I, Dennis Martin Bohme, of the City of Vancouver, in the Province of British Columbia, do hereby certify that:

- 1. I reside at 57 East 40th Avenue, Vancouver, British Columbia, V5W 1L3.
- 2. I am a graduate of the British Columbia Institute of Technology with a diploma in Mining Technology, 1980.
- 3. I am a graduate of the Montana College of Mineral Science and Technology in Butte, Montana, with the degree of Bachelor of Science in Geological Engineering, 1985.
- 4. I have been employed in mining exploration as a technologist and a geological engineer with Newmont Exploration of Canada Limited from May 1980 until February 1989, except for 18 months when I was attending university.
- 5. I am a registered Professional Engineer in the Province of British Columbia.
- 6. I am a Fellow member of the Geological Association of Canada.
- 7. I am a member of the Society of Economic Geologists, Inc.
- I have been employed since December, 1989 as a Project Geologist with Inco Exploration and Technical Services Inc. with offices at 2690-666 Burrard Street, Vancouver, B.C., V6C 2X8.
- 9. I personally carried out and supervised most of the work described in this report.

Dennis M. Bohme, P.Eng. March 22, 1993 Vancouver, B.C.

APPENDIX I

Introduction

A ground follow-up programme of horizontal-loop electromagnetics (HLEM), magnetometer and very low frequency electromagnetics (VLF) surveying was completed over the B Zone grid. The surveys were utilized to help map the underlying lithologies of the gridded area, and to locate on the ground, a zone of helicopter-borne electromagnetic anomalies detected in a survey flown in May, 1992.

Previous Geophysical Work

A helicopter-borne EM geophysical survey was conducted over the entire property in May, 1992. The survey results identified the B Zone as an area of multiple and parallel conductors¹. Initial ground follow-up using aerial photographs and topographic maps for orientation discovered a carbonaceous argillite unit as a probable source for the conductors. The area was re-prospected in October, 1992 because the airborne EM data suggested that at least two somewhat parallel conductors were present and a clear explanation for both conductors was not located. Two semi-massive sulphide occurrences were located (B Creek and Channel Showings). A grid was established and a ground geophysical survey over the zone was carried out.

Rationale for the Surveys

The surveys were designed to locate and trace on the ground, the conductors which were detected from the earlier airborne survey. In addition, the magnetic survey would be used as an aid to geological mapping.

Horizontal Loop and VLF Data

In general, massive sulphides are much more conductive than the surrounding host rocks. Electromagnetic fields can then be induce currents in the sulphides or any other conductor. These currents produce a secondary field which is then measured. In this manner the conductors are detected (Grant and West, 1965). Other conductors can produce a conductive response which mimics the response due to sulphides. Graphite, clays and water filled shears are examples.

The HLEM survey used a nominal coil separation of 50 metres. Initially, survey tests were made to determine the signal difference between a 100 metre and 50 metre coil separation. The 50 metre coil separation was preferred as it would have better resolution of multiple conductors which may be closely spaced. The 100 metre separation has better depth penetration and if the 50 metre coil separation could not detect the conductors (because they were too deep), then the survey was to be done using 100 metre coil separations. However, initial tests indicated that a 50 metre coil separation with 12.5 metre station intervals was capable of detecting the conductivity on the grid, and it was adopted for the remainder of the survey.

¹ Geophysical Report on a Helicopter-Borne Electromagnetic and Magnetometer Survey at the Pitt/Trinity Property, British Columbia; Assessment Report No. 22475 by Bob Lo, Inco Exploration and Technical Services Inc., June, 1992.

VLF data suffers from topographical effects and from the high frequencies² it uses. However, it can be easily collected at pretty dense intervals along the lines which will help with the resolution of multiple and/or parallel conductors. It is also easy to implement operationally with modern instrumentation as it can be collected in conjunction with a magnetometer survey. The VLF data was collected at the same time as the magnetometer readings at 12.5 metre station intervals. The transmitting station used for most of the survey was NLK -- Seattle, Washington. Line 21800N was read using NAA -- Cutler, Maine because the Seattle station was down at the time.

Magnetometer Survey

Rocks have different magnetic susceptibilities which, in the presence of the Earth's magnetic field produce measurable differences in the local magnetic field. In general magnetic susceptibility is lowest in sedimentary and metasedimentary rocks³. Rocks of acidic composition have higher susceptibility and ultrabasic rocks have the highest values. These differences are used to help map the various underlying lithological units. Station intervals of 12.5 metres were used.

Instrumentation

The HLEM survey used a MaxMin I system with a MMC data recorder manufactured by Apex Parametrics of Uxbridge, Ontario. The MaxMin I is a horizontal coplanar EM system operating in the frequency domain. The system has a readability of 0.1 percent in both the in-phase and quadrature metres. The tilt meter has a readability of 1 percent. A data sheet is included.

The magnetometer and VLF survey used the Scintrex/EDA OMNI Plus magnetometer with the VLF attachment. The OMNI Plus magnetometer is a proton precession magnetometer capable of 0.1 nanoTesla accuracy and resolution. A base station was used to remove the diurnal variations of the Earth's main magnetic field. As part of the instrument package, the VLF data was collected at the same time as the magnetometer readings. The VLF attachment collects the horizontal field which is used as a reference and the vertical inphase and quadrature fields. Data sheets from EDA are attached.

Presentation and Interpretation

The data are presented at a scale of 1:2000 (Maps 6, 7 and 8). Data values are posted at the locations of the readings for the magnetometer and VLF data. The HLEM data is plotted at the midpoint between the transmitter and receiver. In addition, the magnetometer data are contoured at 10 nT contour intervals. VLF and HLEM are displayed as stacked profiles. With the VLF data the convention of positive towards the transmitter is followed. This yields a proper cross-over as a positive (below the line) to negative (above the line) as one moves from west to east. A local maximum in the total field is associated with a proper cross-over.

The magnetic data shows a general northwest-southeast trend, parallel to the baseline which is in the same trend as the regional and local geology. A higher magnetic intensity reading is recorded for the rock units to the west indicating rocks of a relatively higher basic composition. The metasedimentary package near the baseline shows a variable magnetic signature, reflecting in general a mixture of mafic-rich lithologies and other, generally less magnetic metasediments.

² the acronym VLF is derived from Very Low Frequency. But this is with respect to radio frequencies. With respect to the transmitted frequencies commonly used for geophysical prospecting, VLF frequencies are rather high.

³ sedimentary oxide iron formation are an exception to this generalisation.

HLEM data is complicated by the rugged topography and multiple conductors. The HLEM data is interpreted in conjunction with the VLF conductors. Table A1 provides a list of the VLF conductors while table A2 lists the conductors detected by HLEM. Where possible, continuous conductors which are seen from line to line are identified as such. In general, there is a good correlation between the VLF and HLEM conductors. The HLEM responses yield a better estimate of the conductance while the VLF data shows more resolution. Two conductors (VLF conductor #4 and #13) appear to be related to the contact between the metasediments and the plutonic rocks. Very high conductivity responses are noted in the corresponding HLEM data. Weak conductivity responses are associated with the B Creek and Channel showings (VLF conductors #8 and #12). Conductor #12 appears to trend off the northern end of the grid.

Conclusions and Recommendations

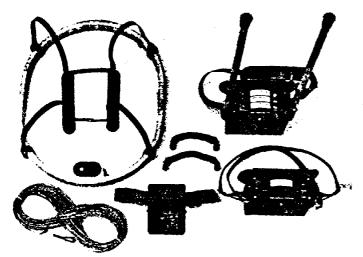
The magnetic, VLF and HLEM surveys detected several conductive anomalies on the ground which were initially indicated by the airborne geophysical survey. The B Creek and Channel Showings were detected as weak VLF conductors. Surveying was hampered by the rough topography and in one instance, HLEM was not collected over the B Creek Showing because of the rugged terrain. The magnetometer data is a useful useful mapping tool.

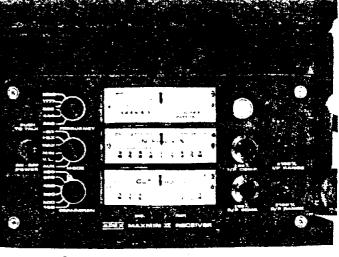
The source of the conductors associated with the contacts between the carbonaceous metasediments and the plutonic rocks are not known. They should be checked in the field along with any other unexplained EM conductors. Also, the northern strike extension of the conductors on the grid should be checked.

Table A1 -- VLF Conductors

- 1) L20200N/79 + 75E to L20300N/97 + 50E
- 2) L20800N/79+12.5E
- 3) L21000N/79+25E
- 4) L20200N/80 + 00E to L20300N/79 + 87.5E to L20400N/79 + 75E to L20500N/79 + 62.5E to L20600N/79 + 62.5E to L20700N/79 + 62.5E to L20800N/79 + 62.5E to L20900N/79 + 62.5E to L21000N/79 + 50E to L21100N/79 + 50E to L21200N/79 + 25E to L21300N/79 + 25E
- 5) L20200N/80 + 25E to L20300N/80 + 12.5E to L20400N/80 + 12.5E to L20500N/80 + 12.5E to L20600N/80 + 00E to L20700N/80 + 12.5E to L20800N/80 + 00E
- 6) L20300N/80 + 50E
- 7) L20600N/80 + 50E
- 8) L20900N/80+37.5E to L21000N/80+40E
- 9) L21000N/80+15E
- 10) L21000N/81+12.5E
- 11) L21000N/79+75E to L21100N/79+87.5E to L21200/79+87.5E
- 12) L21100N/80 + 75E to L21200N/80 + 75E
- 13) L20100N/81 + 12.5E to L20200N/81 + 25E to L20300N/81 + 09E to L20400N/79 + 95E to L20500N/81 + 12.5E to L20600N/81 + 25E to L20700N/81 + 00E to L20800N/81 + 37.5E to L20900N/81 + 37.5E to L21000N/81 + 37.5E to L21200N/81 + 37.5E
- 14) L20100N/82 + 50E to L20200N/82 + 62.5E to L20300N/83 + 00E to L20400N/83 + 25E to L20500N/83 + 37.5E to L20600N/83 + 25E to L20700N/83 + 37.5E to L20800N/83 + 62.5E to L20900N/83 + 62.5E to L20100N/83 + 75E to L21100N/83 + 87.5E

Table A2 -- HLEM conductors


Line	Location	Strength	Conductance rating
Line 202N	8012.5E to 8025E 8156E 8262.5E	very weak	5
Line 203N	8012.5E	very weak	5
	8050E	medium	2
	8112.5E	very weak	5
Line 204N	7975E	very weak	5
	8012.5E	weak	3
	8100E	weak	2
	8150E		
Line 205N	7775E to 7787.5E		
	7962.5 E		
	8000E	weak	3
	8062.5E	medium	1
	8112.5E	weak	2
	8162.5E	very weak	2
Line 206N	7740E	weak	1
	8000E to 8037E	weak	4
	8130E	very weak	5
Line 207N	7812.5E		
	7975E to 8012.5	weak	5
	8062.5E	weak	1
Line 208N	7975E	very weak	5
	8012.5E to 8025E	weak	5
	8150E		
Line 209N (100m)	7855E		
	7995E	medium	4
Line 210N (100m)	7975E	weak	5
	8140E to 8175E	strong	1
Line 211N	7900E		
	7862.5E		
	7980E	weak	4
	8137E	medium	1
Line 212N	8062.5 E		
	8112.5 E		
	8162.5 E		
	8362.5 E		
Line 213N	7930E	medium	1


* The conductance rating ranges from 1 to 5 with 1 being the most conductive sources.

- Maximum coupled (horizontal-loop) operation with reference cable. +VERTICAL COPLANAR MODE + VERTICAL TOAXIAL LOOP MODE.
- Minimum coupled operation with reference cable. (TWO MINIMUM COUPLED MODES, MINI AND MEN2) NEW 50/60 HZ (SWITCH SELECTABLE) POWERLINE MODE.
- **Coil separations:** 25,50,75,100,125,150,200,250,300,400 & 500M, or (with cable) 100,200,300,400,500,600,800,1000,1200,1600 & 2000 ft, or 20,40,60,90,100,120,160,200,240,320 & 400 Metres.
- Reliable data from depths of up to 500 m (2000 ft).
- Built-in voice communication circuitry with cable. 9
- Tilt meters to control coil orientation.

not exactly as illustrated

not exactly as illustrated

SPECIFICATIONS: with new 50-80Hz powerline filter and with improved spherics filter.

Frequencies: 14080	0H z + 50/6	0,1760,3520,7040, OHz powerline freq.	Repeatability:	±0. 1 % to ±1% normally, depending on conditions, frequencies and coil	
Modes of Operation		nsmitter coll plane and re-		separation used.	
MAX2=VERT. COPL. LOOP MODE.	ADVAR (Me	ven coil plane horizontal ex-coupled; Horizontal-loop de). Used with insfericable.	Transmitter Output	110Hz: 240Atm ² ,3520Hz: 90 220Hz: 235 7040Hz: 45	
		nsmitter coll plane honzon-		440Hz: 230 14080Hz: 22	
	LAC tal	and receiver coil plane ver-		880Hz: 220 50/60Hz: N/A	
LOOP MODE.		(Min-coupled mode).		1760Hz: 180	
	Use	ad with reference cable.		9V trans. radio type batteries (4).	
	Rx	coil plane vertical coil plane horizonta e of Minl+Min2 allows	, al.	Life: approx. 35hrs. continuous du- ty (alkaline, 0.5 Ah), less in cold weather.	
•		ncellation of topogra			
	25,50,75,1	00,125,150,200,250,30	° B atteries:)0,	12V ¹³ Ah Gel-type rechargeable battery. (Chargers supplied).	
	• • •	400,500,600,800,1000,	Reference Cable :	Light weight 2-conductor teflon	
		,40,60,80,100,120, witch selectable.		cable for minimum friction. Unshield ed. All reference cables optional	
Deservations Deser				at extra cost. Please specify.	
Farameters Reau	nents of	and Quadrature compo- the secondary field in id MIN modes.	Voice Link:	Built-in intercom system for	
		ield and/or dic-angle		voice communication between re- ceiver and transmitter operators	
		th 50/60Hz powerline		in MAX and MIN modes, via re- ference cable.	
Readouts:	90 mm (in MAX ing or co	tic, direct readout on 3.5") edgewise meters and MIN modes. No null- ompensation necessary.	Indicator Lights	Built-in signal and reference wam- ing lights to indicate erroneous readings .	
	-Field s dips in	trengtn on IP meter a % on tilt meter wher	and 1 Temperature Sunge	-40°C to+60°C (-40°F to+140°F).	
Scale Ranges		0/60 Hz powerlines. ±20%,±100% & <u>+</u> 4% F.S		-	
	Quadratur	e: ±20%. ±100% <u>&+4</u> % F.9		-	
	Tilt : Null	±75% slope. Sensitivity adjustable by separation switch.	Shipping Weight	Typically $80\mathrm{kg}$ (1761bs.), depending on quantities of reference cable and batteries included. Shipped in two field/shipping cases	
Readability:		and Quadrature: 0.1 % ; Tilt: 1%.	Specifications subje	et to change without notification	
Equipped with int				4 data acquisition unit.	

APEX PARAMETRICS LIMITED P.O. BOX 818, RR#1, UXBRIDGE, ONTARIO, CANADA LOC 1KO

Phone: (416) 852-5875 Cables: APEXPARA TORONTO

Telex: 06-966625 APEXPARA UXB

CMNIPUS

Major Benefits of the OMNI PLUS

- Combined VLF/Magnetometer/Gradiometer System
- No Orientation Required
- Three VLF Magnetic Parameters Recorded
- Automatic Calculation of Fraser Filter
- Calculation of Ellipticity
- Automatic Correction of Primary Field
 Variations
- Measurement of VLF Electric Field

OMMERIS Ve-Webnetensystan

Description

The "OMNI PLUS" geophysical system combines the OMNI IV "Tie-Line" magnetometer and gradiometer together with a VLF measurement capability.

The OMNI PLUS VLF/Magnetometer System has been developed in co-operation with Geophysical Surveys Inc. of Quebec, canada.

This brochure concentrates on the VLF magnetic and electric field parameters measured and recorded by the OMNI PLUS. More information on the OMNI PLUS magnetometer system and tieline capability is available in the OMNI IV brochure.

Features

Each OMNI PLUS incorporates the following features:

- Measurement and recording in memory of the following VLF data for each field reading: - total field strength,
 - total dip.
 - vertical quadrature or, alternately, horizontal amplitude.
 - apparent resistivity,
 - phase angle,
 - time,
 - grid co-ordinates,
 - direction of travel along grid lines, and - natural and cultural features.
 - Complete data protection for
 - a number of years by an internal lithium backup battery.
 - "Tie-Line" or "Looping" algorithm, unique only to EDA'S OMNI IV and OMNI PLUS Series, for the self-correction of atmospheric variations and variations in the primary field from the VLF transmitter.

- Measurement of up to three . VLF transmitting stations to provide complete coverage of an anomaly regardless of the orientation of the survey grid or of the anomaly itself.
- Display descriptors to monitor the quality of the VLF signal being measured.
- Choice of three data storage modes:
 - spot record, for readings without grid co-ordinates
 - multi record, for multiple readings at one station - auto record, for automatic
 - update of station number
- Output of grid co-ordinates with the designated compass bearing, using N, S, E, W descriptors.

Major Benefits

 Combined VLF / Magnetometer/Gradiometer System

The OMNI PLUS incorporates the capabilities of the OMNI IV "Tie-Line" Magnetometer and Gradiometer System with the ability to measure the VLF magnetic and electric fields.

Only one OMNI PLUS is needed to record all of the following geophysical parameters:

- 1. The total magnetic field
- 2. The simultaneous gradient of the total magnetic field
- 3. The VLF magnetic field,
 - including:
 - the total dip - the total field strength of
 - the VLF magnetic field - the vertical quadrature, or
 - alternately, the horizontal amplitude
- 4. The VLF electric field, including:
 - the phase angle
- apparent resistivity As an example, at each location

the OMNI PLUS can calculate and

record in a matter of seconds, three VLF magnetic field and two. VLF electric field parameters from two different transmitters, a magnetic total field reading and a simultaneous magnetic gradient reading.

No Orientation Required

The OMNI PLUS requires no orientation, by the operator, of the sensor head toward the transmitter station. This simplifies field procedures as wellas saving considerable survey time. When two VLF transmitters are measured, the benefits of this time-saving feature are automatically doubled. There is no requirement for the operator to orient himself and the sensor head toward the first selected transmitting station and then reorient towards the second transmitting station.

Consistent high quality data is achieved in the OMNI PLUS due to the utilization of three orthogonal sensor coils rather than two sensor coils used in conventional systems. The quality of data is not then dependent on the operator's ability to correctly orient the sensor head for optimum coupling with the transmitting station.

The OMNI PLUS compensates automatically for the direction of travel along the grid lines as well as for the angle of the sensors from the vertical plane through the use of tiltmeters.

Three VLF Magnetic Parameters Recorded

The OMNI PLUS calculates and records in memory the:

- total dip
- total field strength vertical quadrature
- The operator has the option to substitute the horizontal amplitude for the vertical

quadrature. The OMNI PLUS calculates each of these parameters from the in-phase and quadrature measurements of all three components.

Automatic Calculation of Fraser Filter

 The OMNI PLUS automatically calculates the Fraser Filter, from the dip angle data, regardless of the interval between the stations along the grid lines. The operator no longer has to manually perform this mathematical calculation thereby reducing the possibility of human error. The Fraser Filter algorithm follows established conventions.

The operator can choose to output either the total dip or the Fraser filtered data, or both.

Calculation of Ellipticity

The OMNI PLUS calculates the true ellipticity of the VLF magnetic

- field from the measurement of the in-phase and quadrature of all three components. The
- ellipticity provides more
- interpretative information about the anomaly than the dip angle
- and is less influenced by over-
- burden shielding.

Automatic Correction of Primary Field Variations

- The OMNI PLUS can be used as a
- base station to monitor primary
- field changes from up to three VLF transmitters as well as
- alternately measuring the variations in the magnitude of
- the earth's magnetic field. Only one OMNI PLUS is needed to
- perform both functions.
- The OMNI PLUS base station can then automatically correct, by linear internolation, the field
- linear interpolation, the field units for these drift variations in the primary VLF and total magnetic fields.

Measurement of VLF
 Electric Field

The OMNI PLUS calculates and records the apparent resistivity and phase angle from the measurement of the VLF electric field. This VLF electric field measurement can be accomplished by using capacitively or resistively coupled electrodes at spacings of 5, 10 or 20 meters.

Other Benefits

Automatic Tuning

The OMNI PLUS automatically tunes up to three VLF transmitters within a frequency range of 15 to 30 kHz, once the operator has programmed in the specific frequencies.

Base Station Synchronization

The OMNI PLUS has a unique "count-down" feature which can be activated in the field unit upon synchronization with the base station. The field unit then displays and decrements the remaining time, in seconds, until the base station is scheduled to take a measurement. The operator can obtain a field reading at exactly the same time as the base station. The simultaneous field and base station measurements significantly improve the automatic correction accuracy.

Automatic "Tie-Line" Correction

The OMNI PLUS can automatically correct by **Itself** the VLF field data for atmospheric variations and changes in the primary field originating from the VLF transmitter. By tieing-back into one or several tiepoints on the grid, the OMNI PLUS will automatically calculate and apply the drift measured to the field data previously recorded in memory. More information on this unique "tie-line" method can be obtained from page 3 of the OMNI IV brochure.

Notation of Natural and Cultural Features

The OMNI PLUS can record natural and cultural features unique to each grid location. This capability eliminates the need for a field notebook and provides additional information that can assist in interpreting recorded data.

Analogue Output

Since VLF as well as magnetic data is often easier to interpret as a profile plot, data collected by the OMNI PLUS can be represented in analogue format at a vertical scale best suited for data presentation. The operator can selectively output in analogue and/or digital format, up to 10 of the following parameters:

- total dip
- Fraser filtered data
- ellipticity
- VLF total field strength
- vertical quadrature
- horizontal amplitude
- apparent resistivity
- phase angle
- magnetic total field strength
- magnetic vertical gradient

Computer Interface

The OMNI PLUS can transfer uncorrected, corrected or filtered data to most computers with a RS232C port. In some cases, a DCA-100 Data Communications Adaptor may be required. Computers with collection packages including either "X-ON, X-OFF" or "ENQ/ACK" communications protocol formats are also compatible.

Specifications*
Frequency Tuning Range
Transmitting Stations Measured Up to 3 stations can be automatically measured at any given grid location within frequency tuning range
Recorded VLF Magnetic Parameters
Standard Memory Capacity 800 combined VLF magnetic and VLF electric measurements as well as gradiometer and magnetometer readings
Display
RS232C Serial I/O Interface
Test Mode
Sensor Head
Operating Environmental Range
Power Supply
Weights and Dimensions Instrument Console2.8 kg, 128 x 150 x 250 mm Sensor HeadSensor Head2.1 kg, 130 dia. x 130 mm VLF Electronics ModuleVLF Electronics Module1.1 kg, 40 x 150 x 250 mm Lead Acid Battery CartridgeLead Acid Battery Cartridge1.8 kg, 235 x 105 x 90 mm Lead Acid Battery BeltLead Acid Battery Belt1.2 kg, 540 x 100 x 40 mmDisposable Battery Belt1.2 kg, 540 x 100 x 40 mm
*Preliminary

 $\overline{}$

EDA Instruments Inc., 4 Thorncliffe Park Drive, Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR, Cables: Instruments Toronto (416) 425-7800

۲

In USA, EDA Instruments Inc., 5151 Ward Road, Wheat Ridge, Colorado U.S.A. 80033 (303) 422-9112

Printed in Canada

Statement of Qualifications

I, Bob B.H. Lo am employed as a Senior Geophysicist by Inco Exploration and Technical Services Incorporated.

My work address is:	Inco Exploration and Technical Services Inc. Exploration Building Highway 17 West Copper Cliff, Ontario Canada POM 1N0
I reside at:	35 Harju Crescent RR2, Site 20, Box 63 Sudbury, Ontario Canada

P3E 4M9

I graduated from the University of Toronto with a Bachelor of Applied Science degree in the Geophysics option of Engineering Science in 1981 and with a Masters of Science degree in Physics--Geophysics also from the University of Toronto in 1985. In 1992, I received a Masters of Business Administration Degree from Laurentian University in Sudbury, Ontario.

I am a Licensed Professional Engineer in the Province of Ontario, an Associate member of the Society of Exploration Geophysicists (Tulsa), a member of the Environmental and Engineering Geophysical Society (Denver), Canadian Exploration Geophysicists (Toronto), Canadian Institute of Mining and Metallurgy (Toronto), and the Prospectors and Developers Association (Toronto).

Since 1981, I have been involved in the use of geophysics for mineral exploration, geotechnical, and environmental applications. I have supervised projects and interpreted data from both Canada and the United States of America and overseas.

ру	=	pyrite	musc	=	muscovite
		pyrrhotite			sericite
bn	=	bornite	bio :	=	biotite
		galena	coarse-gr :	=	coarse-grained
		chalcopyrite	fine-gr :	=	fine-grained
		sphalerite	med-gr :	=	medium-grained
sch	=	schist	diss'm :	=	disseminated
qtz	=	quartz	deg :	=	degrees

Abbreviations used:

APPENDIX II

IETS TRA	VERSE NUI	MBER:		PROJECT:	Pitt / Trinity GEOLOGIST: D. Bohme
N.T.S.:	103H/12			AREA:	Pitt Island, B.C. DATE: June 3–15, 1992
	······				, solution (10, 1002)
SAMPLE	RX	GRAB	SAMPLE	PLOTTED	
NUMBER	ROCK	CHIP	LENGTH	ON	ROCK SAMPLE DESCRIPTION
	TALUS/	CHANNEL	WIDTH	MAP # OR	rock type, lithology, mineralization, etc.
	FLOAT		AREA	FIG. #	, and the state of
46873	rock	chip	1m	Мар З	A 10-20cm wide quartz-py-po segregation hosted in fine-grained
					amphibolite (felted hornblende); sugary white, coarse-grained quartz.
46874	rock	chip	1m	Map 1	Gossanous outcrop; dark grey/purple impure quartzite with $1-3\%$ pyrite
					weakly magnetic; fine biotite throughout, some thin shale partings (Unit
46875	talus	grab	0.3	Мар З	Angular float collected near RX 46880; hard, siliceous hornfelsed biotite
					quartz schist; strong epidote-carbonate alteration in places, some chlo
					also; wispy streaks of pyrite and possible galena and chalcopyrite.
46876	rock	chip	0.4m	Map 1	Along creek, about 60m west of Trinity 1&2 LCP; several 1-5cm wide
					bands of light grey quartzite with up to 3% pyrite-pyrrhotite (slightly
					magnetic). Hosted in quartz-biotite-chlorite schist; traces of py and po
46877	rock	chip	0.8m	Мар З	Near L 5200W + 4625N; foliated grey-green guartz-biotite schist
					locally chloritic with some finely disseminated pyrite.
46878	rock	chip	0.1m	Мар З	Narrow quartz vein with fine pyrite, possible molybdenite, in quartz-
					chlorite-biotite schist (taken near contact with intrusive rocks).
46879	rock	chip	1m	Map 3	Siliceous, hornfelsed(?), greenish-gray metawacke with fine pyrite
					streaks and bands up to 1cm thick. Some epidote present.
46880	rock	chip	0.6m	Мар З	Taken mostly of discontinous, coarse-grained guartz segregation/knots
					within hornfelsed biotite-rich schist; sulphides noted include pyrrhotite.
10001					pyrite, chalcopyrite and fine galena usually along guartz vein selvages
46881	rock	chip	0.5m	Мар З	Sample taken of quartz-biotite-pyrite schist band within amphibolite
					unit; medium-grained pyrite throughout, weakly magnetic.
46882	talus	grab	0.2m	Map 3	Sub-angular rusty float of quartz-rich muscovite schist with thin
40000					pyrite bands/streaks throughout (3 to 5% sulphides). Trace chalcopyrite
46883	rock	grab	0.5m	Мар З	Bleached, well foliated quartz-sericite-pyrite schist (up to 15%
					pyrite). Narrow, friable fault(?) zone at 160degrees/80 degree dip west the
					carries strong pyrite mineralization with lesser galena, cpy and sphalerite
					(mineralization usually in quartz lenses within the muscovite/sericite schie
16004					unit). This narrow, discordant zone carries between 10-20% sulphides.
46884	rock	chip	1m	Мар З	Bleached, whitish coloured, friable muscovite/sericite-guartz-pyrite
					schist (2-5% pyrite throughout). Strongly schistose.

46885	rock	chip	2m	Figure 7	Lower Team Showing: completely of a shift of the shift of the
				riguie /	Lower Team Showing: sample taken at an oblique angle to the strike of
	+				the mineralized zone (about 0.5m across true width). Massive sulphide
46886	rock	grab	1 x 1m	Map 5	consists of pyrite, chalcopyrite, covellite, bornite and sphalerite.
		grub		Map 5	Siliceous biotite schist with $1-3\%$ pyrite as fine-grained disseminations.
46887	rock	chip	0.3m	Mon E	Intrusive contact about 30–40m to the west (elevation 425m).
46888	rock			Map 5	Taken near RX 46886, quartz-pyrite-biotite schist.
46889		grab	0.5 x 1m	Map 5	Pyritic quartz vein/lense in biotite-rich schist. Trace chalcopyrite.
40009	rock	chip	1.5m	Figure 5	Taken just below RX 51526, 51527; mostly hanging-wall micaceous
					quartzite unit. Massive, weakly foliated biotite quartzite, locally developed
40000					gneissic texture. Fine pyrite along foliation planes.
46890	rock	chip	1.5m	Figure 5	Taken about 20m above RX 46889; quartzite unit similar to above; fine
	· · · · · · · · · · · · · · · · · · ·				pyrite bands associated with biotite flakes.
46891	rock	chip	2m	Map 3	Same quartzite unit as above; sample taken at the head of Pyrite Creek;
10000					equilgranular, sugary texture noted with fine biotite/muscovite throughout.
46892	rock	chip	0.5m	Map 3	Amphibolite dyke parallel to the foliation (about 30cm wide) hosted in
					black biotite schist. Finely felted hornblende throughout, minor pyrite.
46893	rock	chip	0.3m	Map 4	Intrusive dyke in Pyrite Creek that truncates the foliation; possible greisen:
					coarse-grained muscovite present with fine gamets throughout; texture
					varies from fine-grained to pegmatitic (coarse-grained feldspars).
46894	rock	chip	0.2m	Map 4	Same intrusive dyke as above excepte more mafic (diorite?) in
	[composition towards the margins. About 50% biotite with fine muscovite.
					Multiphase dyke(?). Syntectonic(?).
46895	rock	chip	1m	Map 4	In Pyrite Creek shear zone; quartz-muscovite-pyrite schist with granitoid/
					felsic intrusive clasts up to 3cm across (taken of muscovite schist only).
46896	rock	chip	1m	Map 4	At Junction Showing; footwall of massive sulphide zone; fairly massive
					quartz-biotite-chlorite schist (biotite altering to chlorite).
46897	rock	chip	0.3m	Map 4	Same location as RX 46896; taken of black hornblende-rich amphibolite
					dykes (up to 30cm wide) within quartz-biotite-pyrite schist.
46898	rock	chip	2m	Map 4	Junction Showing Area; muscovite/sericite-rich schist with cherty
			1	- 1	siliceous zones carrying 1 – 5% pyrite and minor galena – chalcopyrite.
46899	rock	chip	0.4m	Map 4	Adjacent to RX 46898; thin quartz-biotite schist interbands parallel
		· ·			to the foliation of the quartz-muscovite-pyrite schist. Traces of galena.
46900	rock	chip	1m	Map 4	Adjacent to RX 46899; strongly schistose quartz-muscovite-pyrite schist
		 		I	carrying up to 10% pyrite (possible shear zone?). Traces of fine galena.
49890	rock	chip	1.5m	Map 3	Muscovite-pyrite-biotite schist (up to 5% pyrite).
49891	rock	chip	1.5m	Map 3	Adjacent to RX 49890; biotite-rich schist with 1-3% pyrite. Some
					narrow quartz segregations (attitude 345degrees/80 degree dip east).
		۱ ۱			nario degregations (attitude 3450egrees/ou degree dip east),

51501	rock	grab	0.5m	Map 1	Medium to dark gray, massive to slightly foliated, tabular boulder of
					quartzite(?) with gossanous stains and 1–2% fine–gr disseminated pyrite.
51502	rock	grab	0.5m	Map 2	Strongly dossanous dark to modium grow fine gr disseminated pyrite.
					Strongly gossanous dark-to medium gray, fine-grained slatey graywacke
51503	talus	grab	0.5m	Мар З	with carbonaceous biotite – quartz schist (about 3% disseminated pyrite).
		giub	0.511	Iviap 5	Tabular boulder of metasediment/greywacke similar to above with some
51504	rock	grab	0.5m	Man 2	rusty stains and about 1% disseminated, fine-grained pyrite.
01004		grab	0.511	Map 3	Sample collected from outcrop in stream towards edge of bowl. Mafic
					feldspathic biotite schist; moderate to strongly foliated but distinctly
51505	rook		0.5		porphyritic with 10% plagioclase phenos up to 0.5cm across.
51505	rock	grab	0.5m	Map 3	Outcrop in the same stream as the above. Weak to moderate sericite
					altered fine-grained biotite-quartz-feldspar schist. Hosts 2-4% pyrite as
					disseminations and thin stringers. Alteration occurs over a 2m wide zone.
54500		· · · · ·		ļ <u> </u>	Sample taken mostly of high-grade pyrite zone.
51506	rock	grab	0.5m	Мар З	Sample of high grade pyrite zone just west and adjacent
54507					to the above sample (description similar to above).
51507	talus	grab	0.4m	Figure 5	Sub-angular float; consists of fine-grained sugary biotite schist with
					siliceous patches; possible galena, chalcopyrite and pyrite mineralization.
51508	talus	grab	0.4m	Figure 5	Dark gray, fine-gr, weakly banded and platey graywacke with about
					5% fine-gr disseminated pyrite along foliation planes or as thin laminae.
51509	rock	grab	0.4m	Figure 5	Outcrop about 35m southeast from the above sample and upslope from
					RX 51507. Sample bias toward whitish band (15-20cm wide) conformable
					to the regional foliation. Possible siliceous/felsic segregation. Hosts
					1-3% pyrite with minor chalcopyrite and galena usually along margins of
					quartz sweats. Approximately 20% patches/blotches of very fine-grained
					sericite and greenish chlorite give the unit a mottled appearance.
51510	rock	grab	0.3m	Figure 5	Sample from same felsic layer as described above but bias towards quartz
					segregation which hosts patches of galena-pyrite and minor chalcopyrite.
51511	rock	chip	0.4m	Figure 5	Dark gray, fine-grained, salt/pepper biotite-quartz-feldspar schist. Hosts
					fine-grained disseminated pyrite and minor chalcopyrite. Sporadic
					felsic layers attenuated into lensoidal pods parallel to foliation.
51512	rock	chip	0.55m	Figure 5	Sample east and continuation of the above sample. Sericitic biotite-
					chlorite schist with 2-4% disseminated pyrite-chalcopyrite-galena noted
					in a narrow quartz segregation. Minor bornite also noted.
51513	rock	chip	0.6m	Figure 5	Sample east and continous from the above sample. Lithology
			····	<u>~</u>	very similar to RX 51511; gradational into adjacent sericite schist
					in RX 51512. Typified by dark gray, fine-grained and massive to slightly
					massive gneissic texture (meta-graywacke?).
	· · · · · ·				<u> </u>

51514	rock	chip	0.5m	Figure 6	Sample collected downslope from RX 51513. Dark to light gray
	L				quartz-biotite schist with some pyrite (Team Showing Trench).
51515	rock	chip	0.45m	Figure 6	Medium to coarse-grained sericite schist with patches of semi-
					massive sphalerite, chalcopyrite and pyrite. A large clast or
					attenuated dyke of granite is also present (20% of sample).
51516	rock	chip	0.2m	Figure 6	Fine-grained, strongly foliated/layered quartz-sericite schist
					exhibiting recessive weathering and strong gossanous staining.
					Hosts fine pyrite as laminae parallel to foliation (minor chalcopyrite).
51517	rock	chip	0.75m	Figure 6	Massive sulphide zone. About 80% sulphides, 20% silica-biotite
					matrix. Sulphides consist of bornite, pyrite, sphalerite and
					chalcopyrite. About 15% of the sample are polymictic clasts 1 to 20cm in
					size which exhibit concentric fractures with secondary(?) sulphides
					(clasts are well-rounded). Clasts are dominated by granodiorite
					while others are very siliceous. Sulphides are granular (coarse-grained).
51518	rock	chip	0.45m	Figure 6	Massive sulphide as above. Distinctly harder (more siliceous).
51519	rock	chip	0.9m	Figure 6	Medium to coarse – gr sericite/muscovite schist; minor biotite
				-	schist with coarse-grained euhedral pyrite and sporadic chalcopyrite-
					bornite stringers/patches parallel to the foliation. Appears to
					form a rind on the margin of the massive sulphide zone (shear
					postdates? the massive sulphide zone).
51520	rock	chip	0.7m	Figure 6	Medium to coarse-grained, crenulated quartz muscovite/sericite
_					schist. Between 1-5% pyrite (distinctly less than RX 51520) as thin
					stringers parallel to the foliation.
51521	rock	chip	1m	Figure 6	Crenulated quartz-muscovite-pyrite schist; some limonite after
			-		pyrite (rusty weathering).
51522	rock	chip	1m	Figure 6	Rusty weathering quartz-muscovite schist; minor pyrite (limonitic).
51523	rock	chip	1m	Figure 6	As above; quartz-muscovite schist. Minor pyrite.
51524	rock	chip	1.8m	Figure 6	Weathered quartzite(?) and muscovite schist; friable in places, weakly
					banded and moderately schistose; minor fine-grained pyrite (limonitic).
51525	rock	chip	1m	Figure 6	Same description as above.
51526	rock	chip	0.4m	Figure 5	Upper Team Showing; sulphide-rich tectonized massive sulphide;
					mostly pyrite and chalcopyrite with lesser bornite and sphalerite
					(strong chalcopyrite mineralization towards the margins).
51527	rock	chip	0.6m	Figure 5	Upper Team Showing (adjacent to RX 51526); quartz-sericite/muscovite
					schist with fine pyrite throughout (friable schist). Some gouge evident.
51528	rock	grab	0.5m	Map 1	Dark-gray, fine-grained argillite with interlayered siltstone. Thin pyrite
					stringers associated with light gray silicic layers, some disseminated pyrite.

.

	VERSE NUI	MBER:		PROJECT:	Pitt / Trinity	GEOLOGIST: D. Bohme
N.T.S.:	103H/12			AREA:	Pitt Island, B.C.	DATE: June 3–15, 1992
	·····		• · · · · · · · · · · · · · · · · · · ·			
SAMPLE	RX	GRAB	SAMPLE	PLOTTED		
NUMBER	ROCK	CHIP	LENGTH	ON		ROCK SAMPLE DESCRIPTION
	TALUS/	CHANNEL	WIDTH	MAP # OR	roc	k type, lithology, mineralization, etc.
	FLOAT		AREA	FIG. #		
51529	rock	grab	0.5m	Map 1	Moderate to strongly	gossanous medium to coarse-gr muscovite biotite
					garnet schist with son	ne disseminated pyrite. Unit distinctly recessive.
51530	rock	grab	0.5m	Map 1	Medium to coarse-g	rained muscovite schist with 15-20% pyrite as fine
<u> </u>					disseminations and st	tringers parallel to foliation. Host rock appears to be
54594					sheared, schistose gr	anodiorite. Strongly contorted in places.
51531	rock	grab	0.5m	Map 1	Sample collected 100	m downslope from the above. Lithology very
					similar but carries pyri	ite concentrations of up 25%.
51532	core	DH 89-4	76m	Мар З	Muscovite-altered, m	edium-grained biotite quartz diorite/granodiorite.
51533	talus	grab	0.5m	Мар З	Fine-grained quartz-	-feldspar-biotite gneiss (minor pyrite).
51534	rock	chip	0.4m	Мар З	Meadow Creek Showi	ng; strongly foliated coarse - gr guartz - musc/ser
					schist with about 5% of	disseminated pyrite and trace bornite/chalcopyrite
51505					Muscovite schist cross	s-cuts moderately deformed granodiorite.
51535	rock	chip	0.2m	Мар З	Collected adjacent an	d west of the above sample. Fine-gr oxidized
					intrusive zone displayi	ng a fine-grained sugary texture. Hosts irregular
51500					patches of finely disse	minated pyrite & minor chalcopyrite and sphalerite.
51536	talus	grab	0.2m	Мар З	Angular boulder locate	ed in small rill. Medium grey to white, very
					siliceous quartzite(?)	Very fine grained with subtle banding. Hosts
					up to 15% sulphides ir	ncluding 1% cpy as fine disseminations
					crudely parallel to the	foliation (also about 10% sphalerite-
51507					galena as bands disco	ordant to the foliation).
51537	rock	grab	0.2m	Мар З	Float boulder sample I	ocated 5m down from RX 51536. Lithology
51500					similar to RX 51535 ho	wever galena content much higher (about 5%).
51538	rock	grab	0.5m	Мар З	Sample location proxir	nal to the above. Consists of fine-grained sugary
					gneiss (muscovite-qu	artz-feldspar). Very fine-grained pyrite as
E1520					disseminations and co	arser patches which are crudely parallel to foliation.
51539	rock	grab	0.5m	Мар З	Quartz-feldspar-bioti	ite schist, med-gr with aproximately 3% fine-
					grained platey pyrite.	Moderate to strong shistosity which exhibits near-
					vertical plunging foldin	g. Sample bias towards fold hinge.
					Foliation at 140 degree	es/80 degree dip west

51540	talus	grab	0.5m	Map 3	Poulder of deals group triation at the state of the
		9.00	0.011	Iviap 5	Boulder of dark gray, biotite-rich metasediment on steep slope. Very
	+				fine-grained disseminations of molybdenite, possible galena; also
51541	talus	areh	0.5	1100	fine-grained pyrite associated with quartz-rich zones; locally magnetic.
01041	laius	grab	0.5m	Мар З	Sample collected from float boulder adjacent to RX 51540. Gossanous
					in places. Appears to be a quartz-feldspar rich lithology (gneissic).
51540	A-1				Hosts about 15% very fine-grained disseminated pyrite with lesser galena.
51542	talus	grab	0.5m	Мар З	Highly contorted medium to coarse-gr quartz-feldspar-biotite schist with
51540		++			secondary chlorite overgrowths on biotite. Garnetiferous, up to 5% pyrite.
51543	rock	grab	0.5m	Map 1	Medium to coarse-gr muscovite-quartz sch with rusty limonitic staining.
					Carries up to 5% disseminated medium-grained pyrite. Possible foliated
	+		-		granite but metasedimentary screens also noted. Foliation @ 136 degrees.
51544	rock	grab	0.5m	Map 1	Muscovite-biotite-qtz-feldspar banded gneiss, likely metasedimentary
					screen within granodiorite. Measures up to 1m wide but dies out a
					few meters along strike. Collected 10m SE of the above sample.
51545	rock	grab	0.5m	Map 1	Quartz-muscovite schist zone parallel to foliation at 140 degrees/vertical
					dip within a strongly foliated granodiorite. Zone about 0.5m wide and
					hosts approximately 3% fine-grained disseminated py (similar to RX 51543
51546	rock	grab	0.5m	Map 3	Similar to the above sample; appears to be a foliated granodiorite. The
					muscovite schist appears to grade into biotitic metasediments to the north.
51547	rock	grab	0.5m	Map 3	Similar to above, highly contorted medium-to coarse-grained muscovite
ļ <u> </u>			[biotite schist with about 10% finely disseminated pyrite and possible
				<u> </u>	galena(?). Small scale folding evident. Foliation 165 degrees/vertical dip.
51548	rock	grab	0.5m	Map 1	Gossanous and slightly pyritic, fine-grained meta-siltstone with black-to
					dark grey intercalated argillite. Foliation at 145 degrees/75 degree dip
			Í		east. Lineation; 20 degree dip at an attitude of 325 degrees.
51549	rock	grab	0.5m	Map 1	Similar to the above but pyrite content significantly higher(up to 15%).
					Pyrite occurs along fractures and as disseminations parallel to foliation.
					A few narrow quartz sweats noted as 0.5cm wide bands parallel to
					foliation (sample collected 150m SW from the above east of slide).
51550	rock	grab	0.5m	Map 1	Large partially overgrown slide area. Quartz vein crosscutting dark
		·			gray argillite. Vein consists of milky white crystalline quartz (void
					filling). Hosts about 2% pyrite-pyrrhotite as irregular coarse-gr
					masses. Vein approximately 25cm wide and traceable over 40cm length.
51551	core	DH 89-4	78m	Мар З	Muscovite-biotite-quartz-feldspar grit schist with 1% disseminated pyrite
51552	core	DH 89-4	79.5m	Мар З	Dark gray/green biotite-chlorite schist (strongly foliated). Brownish,
					hydrothermally altered biotite noted near mineralization (mafic dyke?).

51553	1 0050		100		
51553	core	DH 89-2		Map 3	Aphanitic biotite granodiorite porphyry. Weakly chloritic.
51554	core	DH 89-4		Map 3	Potassium feldspar(?) altered biotite schist adjacent to intrusive dyke.
· · · · · · · · · · · · · · · · · · ·	core	DH 89-4		Map 3	Muscovite-biotite granodiorite carrying up to 3% disseminated pyrite.
51556	core	DH 89-1	75m	Map 3	Similar to RX 51532; med-gr, muscovite-biotite granodiorite intrusive.
51557	core	DH 89-1	75.5m	Map 3	Similar to RX 51554; adjacent to granitic dyke; hornfelsed arkosic grit schis
51558	rock	chip	0.5m	Map 1	Slightly gossanous patch of meta-siltstone/argillite with 3-5% pyrite
					as disseminations and thin stringers parallel to the foliation:
					attitude @ 160 degrees/85 degree dip southwest.
51559	rock	chip	1m	Мар З	Med to coarse-gr muscovite schist carrying up to 25% py as coarse-gr
					euhedral bands and disseminations aligned as trains parallel to foliation.
					Sample bias towards narrow pyritic zone. Trace chalcopyrite and bornite.
51560	talus	grab	0.5m	Map 3	Rusty float boulder of biotite-feldspar-quartz schist (highly contorted).
					Hosts about 15% pyrite as fine-grained disseminations in felsic bands;
					also, some coarser grained disseminations in biotite-rich layers.
51561	talus	grab	0.5m	Мар З	Strongly gossanous boulder. Biotite-muscovite-quartz-feldspar schist
		-			with up to 15% pyrite as coarse patches conformable to the foliation.
					Minor chalcopyrite associated with the pyrite.
51562	talus	grab	0.5m	Мар З	Similar to RX 51561; no visible chalcopyrite.
51563	talus	grab	0.5m	Мар З	Similar to RX 51561 but is coarser grained with biotite partially
					recrystallized to chlorite. Hosts 5% coarse-grained disseminated pyrite.
51564	talus	grab	1m	Мар З	Coarse-grained biotite-muscovite schist irregular patches and stringers
					of pyrite; trace chalcopyrite.
51565	talus	grab	0.5m	Map 1	Strongly contorted and foliated biotite-muscovite quartz schist. Rusty
					patches associated with 1-3% fine-grained disseminated pyrite.
51566	rock	chip	1m	Map 1	Mostly massive, coarse-grained, euhedral pyrite. Some grains
					up to 1cm across. Poorly consolidated massive sulphides; crumbles
					readily into gravel-type material. Zone 20-30cm wide and traceable
					over a strike length of 15m.
51567	rock	chip	0.30m	Map 1	Description same as above (10m along strike of pyritic zone).
51568	rock	chip	0.5m	Map 1	Sample collected west and adjacent to the above massive pyrite zone.
					Coarse-grained, strongly gossanous muscovite qtz schist; up to 5%
					fine – grained to medium – grained disseminated pyrite throughout.
51569	talus	grab	0.5m	Map 1	Sample downslope from the above; granodiorite with iron stain and
					variable muscovite alteration; no sulphides apparant. Strong weathering.
51570	talus	grab	0.5m	Map 1	Sample upslope from RX 51666-668; highly contorted med to coarse-gr
				147	muscovite-qtz-feldspar-biotite schist with 15% finely disseminated pyrite
					concentrated in tight fold hinge (approximately 1m of amplitude).
			· · · · · · · · · · · · · · · · · · ·	•	

	VERSENU	MBER:		PROJECT:	Pitt / Trinity	GEOLOGIST: D. Bohme/M. Slauenwhite
N.T.S.:	103H/12			AREA:	Pitt Island, B.C.	DATE: June 20-30, 1992
SAMPLE	DY	0.545				
	RX	GRAB		PLOTTED		
NUMBER	ROCK	CHIP	LENGTH			ROCK SAMPLE DESCRIPTION
	TALUS/	CHANNEL	WIDTH	MAP # OR		rock type, lithology, mineralization, etc.
	FLOAT		AREA	FIG. #		
51571	rock	grab	0.5m	Map 1	Medium-grained	biotite granodiorite with fine reddish gamets.
51572	rock	grab	0.5m	Map 1	Coarse-gr musco	ovite-biotite-quartz schist (3-5% disseminated pyrite)
51573	rock	grab	0.5m	Map 1	Similar to RX 5157	2; siliceous biotite-muscovite schist.
51574	rock	grab	0.5m	Map 1	Granular salt & pe	pper textured biotite-feldspar-pyrite grit schist (unit 4)
51575	rock	grab	0.5m	Map 1	Fine-grained biot	ite-rich grit schist with coarse-grained euhedral pyrite
					and secondary chi	lorite after biotite (strike 110 degrees/35 degree dip wes
51576	talus	grab	0.5m	Map 1	Numerous deeply	rusted boulders; ferricrete with numerous rusty granitic
			_		clasts and muscov	vite schist hosted in a goethite-rich matrix.
51577	rock	grab	0.5m	Map 1	Chlorite-py-bioti	te schist with 25% white, highly contorted quartz veinlet
51578	rock	grab	1m	Map 1	Massive sulphides	, dominated by coarse-grained pyrite similar to RX
					51566; zone about	15cm wide and hosted by biotite-muscovite schist.
51579	rock	chip	0.6m	Figure 8	Medium to fine-gr	biotite-quartz schist with 1% disseminated pyrite and
					some coarse-grai	ned chlorite overgrowths. Biotite usually brown. Strike
					150 deg/60 deg di	p west. Footwall to east is massive biotite quartz diorite
51580	rock	grab	0.4m	Figure 8	Speckled qtz-biot	ite-feldspar schist with interbedded carbonaceous
					biotite-rich schist.	Similar to the feldspar-biotite grit schist unit.
51581	rock	grab	0.4m	Figure 8	Light grey, slightly	granular quartzite with 5% fine-grained disseminated
					pyrite and trace ga	lena. Distinctly layered with pyrite-biotite aligned
					parallel to foliation.	Zone is a few centmeters wide and may be the SE
					extension or distal	end of the massive sulphide zone. Fine-grained
				-	sugary biotite-feld	spar-quartz schist marks structural hanging-wall.
51582	talus	grab	0.4m	Figure 8	Sub-rounded bou	Ider about 35cm across of semi-massive sulphides wit
					high pyrrhotite cont	tent and lesser chalcopyrite, bornite and sphalerite.
					Sulphide-rich mate	erial surrounds rounded granitic (mineralized) clasts.
51583	rock	chip	0.7m	Figure 8	Semi-massive sulr	ohide zone consisting of approximately 30% granular,
					euhedral pyrite and	chalcopyrite; sulphides occur in a very fine-grained
					biotite-rich matrix.	Zone distinctly devoid of conglomeratic clasts.
51584	rock	chip	1m	Figure 8	About 50m below R	X 51633; conglomeratic massive sulphide zone carrying
					mostly pyrite, trace	bornite, pyrrhotite, chalcopyrite; strong sericite altered
					muscovite schist ar	ound massive sulphide, narrow intrusive dyke in footwa

Pitt / Trinity GEOLOGIST: D. Bohme/M. Slauenwhite Pitt Island, B.C. DATE: June 20-30, 1992 ROCK SAMPLE DESCRIPTION rock type, lithology, mineralization, etc. About 20m above RX 51633, fine-gr pyrite throughout massive sulphide zone (some granitoid clasts) with fine chalcopyrite and sphalerite. Angular float about 35cm across; about 35% sulphides dominated by
rock type, lithology, mineralization, etc. About 20m above RX 51633, fine-gr pyrite throughout massive sulphide zone (some granitoid clasts) with fine chalcopyrite and sphalerite
rock type, lithology, mineralization, etc. About 20m above RX 51633, fine-gr pyrite throughout massive sulphide zone (some granitoid clasts) with fine chalcopyrite and sphalerite
rock type, lithology, mineralization, etc. About 20m above RX 51633, fine-gr pyrite throughout massive sulphide zone (some granitoid clasts) with fine chalcopyrite and sphalerite
About 20m above RX 51633, fine-gr pyrite throughout massive sulphide zone (some granitoid clasts) with fine chalcopyrite and sphalerite
zone (some granitoid clasts) with fine chalcopyrite and sphalerite
zone (some granitoid clasts) with fine chalcopyrite and sphalerite
zone (some granitoid clasts) with fine chalcopyrite and sphalerite
Angular float about 35cm across: about 35% sulphides dominated by
pyrite, chalcopyrite, sphalerite and minor galena. Also about 25%
siliceous granitoid clasts up to 2cm across in the sulphide matrix.
Same description as RX 51586, large boulder about 1.5 by 1m wide.
Gossanous zone (South Pyrite Crook Showing), wing boulder about 1.5 by 1m wide.
Gossanous zone (South Pyrite Creek Showing); wispy massive sulphide zone 10-40cm wide along bio-chlorite/sericite-musc-py contact zone
biotite-rich matrix; trending 135 deg/70 deg dip west (locally magnetic).
Uppermost showing on South Purito Crock, generation (locally magnetic).
Uppermost showing on South Pyrite Creek; gossanous massive sulphide zone 0.05-25cm wide; wispy bands of py, po, cpy & sph in bio rich matr
Tabular boulder of light grey, micaceous felsic ash(?) tuff; pyritic in place
exhibits pseudo-foliated appearance; in sharp contact with biotite schist
Same location as above. Boulder of medium – grained muscovite – biotite
schist with 5% pyrite as disseminated grains parallel to the foliation.
Medium-gr qtz-py-feldspar-biotite schist. Minor quartz-rich bands
2cm wide. Sample collected 15m SE from RX 51591; similar to the above
but more schistose; 10% coarse-gr chlorite and 3% disseminated pyrite.
Fine-grained quartz-feldspar-biotite schist with subtle lineation marked
by fine-grained biotite-rich layers (2% of lithology). Interlayered with
ine-grained biotite schist as above but no chlorite or sulphides. Felsic
ayer 70cm wide. Granite contact 10m to the SW (up-slope).
Coarse-gr, rusty, muscovite-sch with 3-5% fine-gr euhedral-subhedr
ovrite and possible chalcopyrite interbedded with biotite schist (chloritic
overgrowths). Attitude 142 deg/62 deg dip west. Located 2m from PD-1
Quartz-chlorite-biotite schist outcrop adjacent to the above sample.
Chlorite is pale green colour and appears to be secondary after biotite
chlorite is quite coarse). Patches of disseminated pyrite (up to 5%).

	ERSE NUN	MBER:			Pitt / Trinity GEOLOGIST: D. Bohme/M. Slauenwhite
N.T.S.:	103H/12			AREA:	Pitt Island, B.C. DATE: June 20-30, 1992
SAMPLE	RX	CDAD		DI OTTO	
	ROCK	GRAB		PLOTTED	
NUMBER		CHIP	LENGTH		ROCK SAMPLE DESCRIPTION
	TALUS/	CHANNEL	WIDTH	MAP # OR	rock type, lithology, mineralization, etc.
51597	FLOAT		AREA	FIG. #	
51597	rock	grab	0.2m	Map 1	Light gray fine-grained felsic to intermediate ash tuff with sporadic clots
51598	roal				and patches of pyrite and chlorite. Some quartz-rich patches.
51590	rock	grab	0.2m	Map 1	Sample collected along strike from the above (25m); Massive supplies
			· · · · · · · · · · · · · · · · · · ·		interlayered with biotite schist and gravish felsic horizons. Hosts about
51500					20% disseminated pyrite with rare clots of chalcopyrite and bornite.
51599	rock	grab	0.2m	Map 1	Same description as RX 51598 (pyrtite-rich biotite schist).
51600	rock	grab	0.2m	Map 1	Medium to light gray siliceous felsic muscovite schist with about 10% pyri
FLOOT	·				blackish, tarnished pyrite forms granular lineations or layers.
51601	rock	chip	0.4m	Map 4	Massive sulphide zone located 10m south of RX 51602-04; sheared
					sulphides, about 40% pyrite, minor cpy and sph in a biotite-musc schist
51602	rock	chip	0.9m	Map 4	Quartz-muscovite-biotite schist with up to 5% sulphides, mostly pyrite
					with lesser chalcopyrite, bornite and sphalerite.
51603	rock	chip	1m	Map 4	Similar to the above; slightly more sericitic with 1-5% sulphides.
51604	rock	chip	0.9m	Map 4	Quartz-muscovite schist with 10% sulphides; mainly chalcopyrite with
					variable amounts of pyrite and possible bornite.
51605	rock	chip	0.4m	Map 4	Massive sulphides; mainly pyrite with lesser chalcopyrite and sphalerite in
					medium to coarse-grained biotite-rich matrix; different from RX 51601 to
					51604 in that there is only minor amounts of muscovite present.
51606	rock	chip	0.4m	Map 4	Massive sulphide zone described as above.
51607	rock	chip	1m	Map 4	Quartz-muscovite schist (sulphide-rich) as above; similar RX 51602-60
51608	rock	chip	1.2m	Map 4	Muscovite-quartz schist with disseminated sulphides similar to RX 51607
51609	rock	chip	1m	Map 4	Similar to the description above.
51610	rock	chip	0.4m	Map 4	Similar to above except high chalcpyrite content: some remobilized
				•••••	sulphides into a shear zone (average 10-15% sulphides).
51611	rock	chip	0.7m	Map 4	Similar description to RX 51605; pyrite-rich quartz-muscovite-biotite
					schist with coarse-grained patches of chalcopyrite.

	VERSENUN 103H/12	VIBER:		PROJECT:	
N.1.0.,	1030/12			AREA:	Pitt Island, B.C. DATE: June 5-15, 1992
SAMPLE	RX	GRAB	SAMPLE	PLOTTED	
NUMBER	ROCK	CHIP	LENGTH	1	ROCK SAMPLE DESCRIPTION
	TALUS/	CHANNEL	WIDTH	MAP # OR	
	FLOAT		AREA	FIG. #	rock type, lithology, mineralization, etc.
51612	rock	chip	1.1m	Map 4	Massive chalcopyrite-pyrite mineralization (a few small clasts noted).
51613	rock	chip	0.5m	Map 4	Similar description to RX 51611 and 605 but appears to be more
					sheared (highly schsitose) and muscovite/sericite-rich.
51614	rock	chip	0.7m	Map 4	Junction Showing area in Pyrite Creek; sample taken across biotite-rich
				······	massive sulphide zone (poorly exposed); strong cpy, sph and bornite
					mineralization evident in pyrite-rich matrix. Trending 140 deg/vert dip.
51615	rock	chip	0.5m	Map 4	Junction Showing; biotite-pyrite-rich massive sulphides with numerous
					siliceous variably flattened granitoid(?) clasts. Strike at 140 degrees/
					70 degree dip to the west (strong schistosity).
51616	rock	chip	1m	Map 4	Coarse-grained muscovite schist; large 30cm-size granitoid clasts note
51617	rock	chip	1.5 m	Map 4	Same description as for RX 51613 (semi-massive sulphide zone).
51618	rock	chip	0.5m	Мар З	Quartz-biotite schist unit in contact with bleached quartz-muscovite
					schist (only pyritic biotite schist sampled).
51619	_ rock	chip	1m	Мар З	Taken just above RX 51618; very friable, sheared muscovite/sericite schis
					(?fault zone) with boudins of intrusive material. Schistosity at 155 degree
51620	rock	chip	0.5m	Мар З	Meadow Creek Showing area; well-mineralized fracture zone in diorite.
					Medium to coarse-gr disseminations of chalcopyrite, sphalerite, galena
					and minor pyrite. Minor bornite noted. Looks like porphyry-related(?),
					fracture – controlled mineralization; some biotite schist screens nearby.
51621	rock	chip	0.8m	Мар З	In narrow creek gully; siliceous biotite – muscovite – pyrite schist zone;
					(?hornfelsed) with stretched boudins of felsic-looking intrusive material.
					Fine pyrite throughout, possible chalcopyrite-galena.
51622	rock	chip	0.8m	Map 3	Numerous siliceous felsic dyklets parallel to foliation of biotite-muscovite
					schist; sporadic fine-grained pyrite, chalcopyrite and minor galena noted
51623	rock	chip	0.5m	Мар З	Taken adjacent to RX 51622; hornfelsed biotite – muscovite (minor chlorite
					schist (forms as a narrow screen in diorite) with fine pyrite bands/streaks.
51624	talus	grab	0.4m	Map 3	Angular float sampled near RX 51539; very siliceous hornfelsed/
					skam altered rock with fine pyrite-chalcopyrite throughout. Traces
					of galena – sphalerite; also fine – grained reddish garnets noted in greenish
					epidotized quartz-carbonate rich matrix.

INCO EXPLORATION AND TECHNICAL SERVICES INC.

IETS TRA			LOIMICAL	PROJECT:					M SIA	uonuhi	
N.T.S. :				AREA:	•			GIST(S) June 17		denwni	e
SAMPLE		PLE TYPE	SAMPLE	PLOTTED	SAMPLE DESCRIPTION	T	DATE	Julie 1	1992		
NUMBER		Grab,	LENGTH,	ON: MAP #	Rock type, lithology, character of soil, stream silt, etc.	1	RE	SULTS	(nnm)		
	Rock,	Chip,	WIDTH,	OR	Formation			OULIO	(phu)		
	Talus	Channel	AREA	FIG, #	Mineralization, etc.	Cu	Pb	Zn	Aq	Мо	Ba
RX 51625	5 rock	chip	0.3m	Map 2	Quartz-bio schist band within strongly foliated intrusive.	81	4	201	1.7	1	273
					Traces of fine pyrite; medium-grained gritty texture.				<u> </u>	†	
RX 51626	rock	chip	0.6m	Map 2	Adjacent to RX 51625; cataclasite (foliated granodiorite).	45	14	66	0.5	3	840
					Fine greenish chlorite atteration after biotite; trace pyrite.						
RX 51627	talus	chip	1.0m	Figure 8	Large boulder of (1m by 1.5m) of massive sulphide	50033	5017	21654	68.8	80	9433
					breccia/conglomerate. Pyrite-rich with chalcopyrite		1				1
					streaks with lesser interstial galena-sphalerite-bornite;	1		1			<u> </u>
					granular sulphides contain siliceous clasts up 10cm long.						
					Coarse-gr, interstial biotite flakes generally throughout.						1
RX 51628	talus	chip	0.6m	Figure 8	About 3m from RX 51627, angular talus boulder up to 2m	51788	5505	43635	58.0	108	1813
					across carries strong cpy-py mineralization. Similar						
					to above description (extension of Pyrite Creek Zone).						
					Fair amount of bornite noted. Numerous flattened clasts.						
RX 51629	rock	chip	0.5m	Figure 8	Elv. 200m, outcrop of quartz-clast massive sulphide unit.	32713	6737	12800	51.8	63	8378
					Pyritic biotite-rich matrix with strong chalcopyrite-sph						
-					bornite mineralization towards the margins of the zone.						
RX 51630	rock	chip	1.0m	Figure 8	Brownish biotite-muscovite-pyrite schist in footwall of	1136	232	748	1.9	26	1994
					massive sulphide zone. Numerous granitoid – quartz						
	ļ				fragments as elongate boundins parallel to the foliation.						-
					Weak to moderate chlorite alteration (after biotite).						
RX 51631	rock	chip	0.5m	Figure 8	Massive sulphides; flattened, rounded clasts throughout.	5443	7261	50116	24.5	109	9870
					Biotite-pyrite rich matrix with chalcopyrite-sph-ga. In						1
RX 51632	rock	chip	1.0m	Figure 8	hanging-wall of sulphide zone, intercalated bands of	410	185	689	1.7	5	841
··					pyritic quartz – biotite schist and biotite – musc – py schist.		_				
RX 51633	rock	chip	2.0m	Figure 8	South Creek Showing area, elv. 325 m; very friable,	9903	8162	3069	56.6	173	29854
—,					schistose, pyritic massive sulphide zone about 2m wide.						
					Possible gouge zone (could be intense weathering) in				•		1-
					adjacent biotite-muscovite schist (in hanging-wall).						
RX 51634	······	chip	1.0m	Figure 7	Large granitoid clast in qtz-musc-py schist; minor cpy.	1308	667	1018	3.7	6	3179
RX 51635	rock	chip	<u>1.1m</u>	Figure 7	Mostly granular massive sulphides with pyritic muscovite	16583	2651	25797	39.8	182	6945
					schist interbands; cpy-bornite-sphalerite-galena noted						
RX 51636			0.9m	Figure 7	Same as above (Lower Team Showing mineralization).	16727	3640	18669	32.8	257	8845
RX 51637		chip	1.1m	Figure 7	Mostly quartz-musc-py schist; minor chalcopyrite.	2483	377	1376	2.9	13	1837
RX 51638		chip	1.0m	Figure 7	Qtz-ser-py sch with iregular knots of cpy-ga-sph-bn	11037	775	3398	17.4	46	5184
RX 51639	rock	chip	<u>1.4m</u>	Figure 7		11597	5396	18356	36.2	24	10631
					sulphides (mostly py) with cpy-bn-galena-sphalerite.						
RX 51640	rock	chip	0.5m	Figure 7	Sulphide-rich musc-bio sch; strong cpy-bornite noted	20620	2614	13932	38.6	31	7846

51641	rock	chip	0.5m	Figure 7	Quartz-bio-musc-py gneiss; quite siliceous and competent, minor cpy.
51642	rock	chip	0.5m	Figure 5	Quartz-biotite schist; very little pyrite (near Lower Team Showing).
51643	rock	chip	1.5m	Figure 5	Finely banded quartz-biotite schist with minor pyrite.
51644	talus	grab	0.3m	Map 2	Finely disseminated pyrite-pyrrhotite in quartzite; bleached quartz-
					feldspar band that carries most of the sulphide mineralization.
51645	rock	chip	1m	Map 2	Very rusty, muscovite/sericite schist with 5-10% disseminated pyrite; black
					sooty pyrite as small patches (trace chalcopyrite).
51646	rock	chip	0.5m	Map 2	In creek gully, narrow band of siliceous, rusty quartzite; appears to be
					hornfelsed with fine pyrite throughout.
51647	talus	grab	0.3m	Map 2	Rusty angular float; quartz-feldspar-biotite bands with chalcopyrite along
					fracture planes; trace galena, some fine pyrite.
51648	rock	chip	0.5m	Map 2	Along strike of prominent lineament; fine-grained pyrite throughout in
					hornfelsed quartzite(?). Occurs as a narrow screen in gully.
51649	rock	chip	1m	Map 2	On ridgetop; rusty weathering quartz-biotite-chlorite schist. Pale brown
					biotite and fine pyrite throughout.
51650	rock	chip	0.5m	Мар З	Along upper Pyrite Creek; strike extension of massive sulphide zone;
					good cpy-bornite-pyrite along foliation planes of qtz-bio-musc schist.
51651	rock	grab	0.4m	Map 4	Qtz-vein filled rupture zone in folded quartz-feldspar gneiss; quartz is
					milky white with up to 5% coarse-gr pyrite; hosted in biotite-musc schist.
51652	rock	chip	0.3m	Мар З	Epidote-rich microfractures cross-cutting felspathic dioritic intrusive
					dyklet near contact with quartzitic metasedimentary screen.
51653	rock	chip	0.6m	Мар З	In creek gully; magnetic, chloritic amphibolite (mafic metavolcanic?).
51654	rock	chip	0.5m	Map 1	Contact between granodiorite and biotitic metasediments on Pitt 4
					claim; mostly biotite hornfels, locally bleached (siliceous) and well
					banded as defined by medium-grained biotite with minor pyrite.
51655	talus	grab	0.3m	Map 1	In creek gully; talus of very rusty banded quartzite(?); 5-10% finely
					banded pyrite generally throughout.
51656	rock	grab	0.5m	Map 1	Rusty coloured, gritty, biotite-rich metasediment. Trace pyrite.
51657	rock	grab	0.5m	Map 1	Gritty, mafic biotite-pyrite schist (rusty patches).
51658	rock	grab	0.5m	Map 1	About 5m from the contact, sample of granodiorite with a few garnets.
51659	rock	grab	0.5m	Map 1	Rusty, gritty, mafic metasediment (quartz-biotite schist).
51660	rock	grab	0.5m	Map 1	Taken 10m east of RX51569; biotite granodiorite with fine garnets.
51661	rock	grab	0.5m	Map 1	Quartz-musc schist (no visible sulphides); taken near granite contact.
51662	rock	grab	0.5m	Map 1	Partially mylonitized biotite granite (fine-grained, banded in places).
51663	rock	grab	0.5m	Map 1	Amphibolite; slightly chloritic (trending at 140 degrees/70 degree dip west).
51664	talus	grab	0.4m	Map 1	Bleached quartz-sericite-pyrite-chalcopyrite schist (minor galena);
					between 10–15% sulphides; some dark black sooty pyrite present.

51665	talus	grab	0.4m	Map 1	Siliceous, rusty massive sulphide (biotite schist) float with irregular clots of
					pyrite-chalcopyrite-molybdenite-galena mineralization.
51666	rock	chip	0.5m	Map 1	Quartz-biotite-pyrite schist (attitude 125 degrees/65 degree dip west).
51667	rock	grab	0.3m	Map 1	Coarse-gr muscovite-bio-qtz schist with chlorite as very coarse-grained
					overgrowths. Hosts 1-5% pyrite; strike 120 degrees/70 degree dip west.
51668	rock	grab	0.3m	Map 1	Highly contorted coarse-gr muscovite-chlorite schist carrying 5% pyrite.
51669	rock	grab	0.3m	Map 1	Massive sulphide zone consisting mainly of pyrite, minor chalcopyrite,
					along a granitic(?)/felsic tuff metavolcanic contact. Zone is about 0.2m
					wide and appears to pinch-out laterally over a stike length of 1 meter.
51670	rock	grab	0.4m	Map 1	Quartz-biotite-pyrite schist interbedded with felsic metavolcanic tuff(?).
51671	rock	grab	0.4m	Map 1	Pyrite (30-40%) plus quartz-rich massive sulphide. Rusty weathering.
51672	talus	grab	0.4m	Map 1	Pyrite-biotite rich massive sulphides, minor chalcopyrite noted.
51673	rock	grab	0.2m	Map 1	Up to 20% pyrite in a quartz-biotite rich matrix, minor chalcopyrite.
51674	rock	grab	0.2m	Map 1	Quartz-muscovite-pyrite (30%) schist. Trace chalcopyrite and bornite.
51675	rock	grab	0.4m	Map 1	Semi-massive sulphide zone, averaging about 30% pyrite, 70% biotite.
51676	rock	grab	0.4m	Map 1	Same as above; 30-50% pyrite in muscovite-biotite schist.
51677	rock	grab	0.4m	Map 1	Felsic and mafic tuff interbeds, quite siliceous; 15–20% pyrite content;
					foliation at 140 degrees (taken about 70m from rock sample MB-Pitt-11).
51678	rock	grab	0.4m	Map 1	Same as above but pyrite content is between 5 to 10%.
51679	rock	grab	0.4m	Map 1	Taken near sample MB-Pitt-91-11; description same as above.
51680	rock	grab	0.4m	Map 1	Quartz veins in granite, 10–15% pyrite, trace chalcopyrite, bornite,
					galena and covellite (same locality as MB-Pitt-91-12 to 91-14).
121588	rock	grab	0.4m	Мар З	Biotite-quartz schist, dark gray to buff-brown, strongly foliated. Fine to
					medium-grained texture (attitude 132 degrees/vertical dip).
121589	rock	chip	1.5m	Map 5	Quartz-biotite-muscovite schist, medium gray colour, strongly foliated;
					medium-grained texture, less than 1% pyrite.
121590	rock	chip	0.35m	Figure 9	Quartz-pyrite lense(?); 15-20% cpy, bn, po, py as interstitial masses
					and discrete subhedral grains up to 1mm across; trace fine sph; lense
					trends 155 degrees/vertical. Contains rounded qtz clasts up to 3cm wide.
121591	rock	chip	1.5m	Figure 9	Silica-rich sulphide horizon; 3% po, 1% py, 1% cpy and trace galena;
					10cm wide section on east margin contains high-grade sulphides.
121592	rock	chip	1.5m	Figure 9	Silica-sulphide horizon; 3% pyrrhotite, 1% pyrite (locally coarse-gr),
					trace galena and chalcopyrite; erratic distribution of sulphides.
121593	rock	chip	<u>1m</u>	Figure 9	Silica-sulphide horizon; contains 3% po, 1% py and trace chalcopyrite.
121594	rock	chip	1.5m	Figure 9	Quartz-clast silica-sulphide zone with 3% cpy and minor galena and py.
121595	rock	chip	1m	Figure 9	Quartz-sulphide schist with minor sericite and chlorite alteration. Trace
					chalcopyite and up to 1% pyrrhotite mainly along fractures.

121596	rock	chip	0.3m	Figure 9	Quartz-clast silica-sulphide zone; 3% cpy, 1% po, 1% ga and minor py.
121597	rock	grab	0.2m	Figure 9	Quartz-biotite schist, strongly foliated at 150 degrees/85 degree dip
					east; fine-grained biotite throughout siliceous matrix; 1% pyrite as
					thin (1-5mm wide) partings along foliation planes.
121598	rock	chip	1.5m	Map 1	Mafic schist, medium gray to brown colour; strongly foliated at 136
					degrees/61 degree dip east, fine-grained gritty textured schist (unit 4).
121599	rock	grab	0.5m	Map 1	Foliated granite, light gray-white; weakly to moderately foliated at
					125 degrees/vertical dip; fine to medium-grained texture.
121600	rock	grab	0.5m	Map 1	Mafic schist, medium gray-brown, well foliated at 140 deg/vertical dip;
					varies from fine-grained to gritty biotite-rich schist to minor amphibolite;
					trace pyrite and locally graphitic (carbonaceous).
121687	rock	grab	0.5m	Map 2	Biotite-quartz-homblende gritty schist. Rusty patches from very fine
					grained disseminated pyrite.
121688	rock	grab	0.5m	Map 2	Quartz-muscovite-biotite gritty schist; locally silicified and cut by quartz
					veinlets. Traces of very fine-gr pyrite and chalcopyrite.
121689	rock	grab	0.5m	Map 2	Quartz veins and veinlets within biotite-quartz schist similar to the above
					sample but less quartz; traces of very fine sulphides (mostly pyrite).
121690	rock	grab	0.5m	Map 2	Biotite-quartz schist with narrow quartz veinlets, locally sheared; veins
					subparallel to the foliation. Some gossan staining (traces of fine pyrite).
121691	rock	grab	0.5m	Map 2	Quartz-muscovite-biotite-pyrite schist; more siliceous than the above.
121692	rock	grab	0.5m	Map 2	Intrusive unit; gneissic texture to strongly foliated (near contact with
					metasediments). Quartz-feldspar rich matrix with hornblende-biotite-
					muscovite-rich bands up to 2 cm wide. No trace of mineralization.
121693	rock	grab	0.5m	Map 2	Biotite-quartz grit schist; pseudo gneissic texture as mafic minerals occur
					in bands. Strongly foliated, rusty weathered surface, minor pyrite.
121694	rock	grab	0.5m	Map 2	Recessive weathering biotite-quartz grit schist, strongly foliated, no
					sulphides noted. Gneissic intrusive contact nearby.
121695	rock	grab	0.5m	Map 2	Same description as RX 121693.
121696	rock	grab	0.5m	Map 2	Quartz-biotite grit schist (unit 4). Trace pyrite (similar to RX 121693).
121697	rock	grab	0.5m	Map 5	Very fine-gr quartz-muscovite-bio schist. Recrystallized texture evident;
					attitude at 325 degrees/80 degree dip east. Outcrop is iron-stained on
· · · · · · · · · · · · · · · · · · ·					weathered surface but light gray on fresh surface; trace to 1% fine
					to medium-grained pyrite as disseminations along foliation planes. Some
					portions of this unit appear to be graphitic.
121698	rock	grab	0.5m	Map 5	Iron-stained quartz vein 5-10 cm wide within quartz-biotite schist
					pinch and swell vein). Vein hosts 1-3% medium to coarse-grained pyrite
					(locally carbonaceous).

IETS TRAV	ERSE NU	MBER		PROJECT:	Pitt / Trinity	GEOLOGIST: D. Bohme / C. Bell
N.T.S.: 10	N.T.S.: 103H/12			AREA:	Pitt Island, B.C.	DATE: August 20 – September 5, 1992
SAMPLE	RX	GRAB	SAMPLE	PLOTTED		
NUMBER	ROCK	CHIP	LENGTH	ON	F	IOCK SAMPLE DESCRIPTION
	TALUS/	CHANNEL	WIDTH	MAP # OR	rock	type, lithology, mineralization, etc.
	FLOAT		AREA	FIG. #		
121699	rock	grab	0.5m	Map 5	Mafic, biotite-rich schis	st. Finely disseminated pyrite (1-3%), some large
						oss). Schistosity @ 105 degrees/65 degree dip NE
121700	rock	grab	0.5m	Map 5		sediment; 1% pyrite as blebs and disseminations.
121701	rock	grab	0.5m	Map 5	Same sample description	on as above.
121702	rock	grab	0.5m	Map 5	Weakly foliated, gneissi	c qtz monzonite; 20% bio, 30% qtz, 50% feldspar.
121703	rock	grab	0.5m	Map 5	Siliceous metasediment	t with up to 3% pyrite.
121704	rock	grab	0.5m	Map 5	Schistose, mafic "gritty"	metasediment with pyrite blebs; about 1% pyrite
					locally up to 2mm long.	Possible chalcopyrite also.
121705	rock	grab	0.5m	Map 5	Siliceous fine-grained,	medium to dark grey pyritic metasediment.
121706	rock	grab	0.5m	Map 2	Quartz-biotite schist.	No visible sulphides
121707	talus	grab	0.5m	Map 2	Quartz float found in cre	ek; appears to be a quartz-carbonate vein up to
					5cm wide bounded by c	tz-bio schist. Between 3-5% disseminated pyrite
					galena and sphalerite.	Sulphides in vein oriented longitudinally to vein.
121708	rock	grab	0.5m	Map 2	Gritty textured quartz-b	piotite schist with 1-3% disseminated pyrite.
121709	rock	grab	0.5m	Map 2		with more siliceous segregations. More pyrite
					(5%) as fine disseminati	ons. Finer grained than RX 121708.
121710	rock	grab	0.5m	Map 1	Massive granite, coarse	-grained (20% biotite). No sulphides noted.
121711	rock	grab	0.5m	Figure 9	Medium to coarse-grain	ned white gossanous muscovite schist with
					up to 3% medium-grain	ned disseminated pyrite. Zone about 1.5m wide
					and located adjacent to	the semimassive sulphide zone (B Creek Showing)
121712	rock	grab	0.5m	Map 5	Mafic biotite schist, dark	gray, strongly foliated; fine-grained with finely
					disseminated pyrrhotite	and pyrite (up to 1%).
121713	rock	grab	0.5m	Map 5	Siliceous biotite schist, v	well foliated; contains between 1-4% fine-grained
					disseminated sulphides	aligned with foliation (mostly pyrite, trace galena).
121714	rock	grab	0.5m	Map 5	Silica-sulphide zone; se	emimassive (15-25%) sulphides, mostly fine-
						e, galena, and chalcopyrite; very siliceous matrix.
121715	talus	grab	0.2m	Map 5	Several small pieces, 4m	nm diameter quartz clasts occur in a quartz-
					sulphide schist; sulphide	es include pyrite, pyrrhotite and galena.
121716	rock	grab	0.2m	Map 5	Just downhill from RX 12	21715; sulphides in black biotite-pyrite schist;
					traces of chalcopyrite an	d galena in fine-grained biotite-rich matrix.

121717	rock	grab	0.2m	Figure 9	Sulphide-quartz clast unit, 30-40% sulphides (mostly pyrrhotite with
					chalcopyrite, py and sph). Quartz clasts are rounded (up to 5cm across).
121718	rock	grab	0.2m	Map 5	Light to medium gray, fine-grained, well banded on mm-scale, quartz-
					biotite-muscovite-pyrite schist (gossanous on weathered surface); up to
					2% very fine-grained disseminated pyrite (possible exhalite?).
121719	rock	grab	0.2m	Map 5	Strongly gossanous schistose zone within more competent meta-siltstone
					unit. Zone is about 0.5m wide; mainly sericite/muscovite schist with
					minor chlorite and some coarse aggregates of pyrite as well as fine-
					grained disseminated pyrite-pyrrhotite (possible galena noted)
121720	rock	grab	0.4m	Map 1	Mafic schist, dark gray, well foliated with finely diss'm po and pyrite (up
					to 1% sulphides). Attitude at 135 degrees/65 degree dip to the west.
121721	rock	grab	0.4m	Map 1	Mafic biotite schist, strongly foliated with disseminated pyrrhotite-pyrite.
121722	rock	grab	0.4m	Figure 9	Narrow, 30-45cm wide zone of strongly silicified rock with fine to coarse
					disseminations and semi-massive streaks of po, py, cpy and minor
					galena/sphalerite $(5-10\%$ pyrrhotite, $1-5\%$ cpy/pyrite). Unit is magnetic;
					bounded by a banded (foliated) sequence of rocks which consists of
					chlorite-sericite schist with narrow siliceous cherty laminae. Also hosts
					disseminated pyrrhotite, pyrite; trace chalcopyrite/galena mineralization.
121723	rock	chip	1.5m	Figure 9	Moderately to strongly foliated sequence consisting of inter-laminated
					chlorite-sericite schist with thin (<0.5cm) siliceous bands (foliation at
					155 degrees/80 degree dip east). Rock is buff to rusty colour on weathered
					surface and medium gray on fresh surface. Unit hosts very fine
					disseminations of pyrite-pyrrhotite (up to 5%) with trace cpy and galena;
					some of the mineralization occurs along fractures parallel to the foliation.
121724	rock	grab	0.5m	Map 5	Dark gray argillaceous siltstone, slightly graphitic with between $1-3\%$
			·		finely disseminated pyrite.
121725	rock	grab	0.5m	Map 5	Sample next to Rx 121705; mafic biotite grit unit with siliceous bands. Up
					to 4% pyrite in patches, possible fine-grained galena; 20 cm wide
					feldspar-quartz dyke noted adjacent to the mineralized zone.
121726	rock	grab	1.5m	Figure 9	Same description as in RX 121723.
121727	rock	grab	0.4m	Map 5	Biotite granodiorite, strong foliation at 150 degrees/78 degree dip northeast
121728	rock	grab	0.4m	Map 5	Siliceous, schistose metasediment. More quartz than normal for this biotite
					rich unit. Finely disseminated pyrite usually along foliation planes.
121729	rock	grab	0.4m	Map 5	Same description as above; slightly less siliceous; about 1% pyrite noted.
121730	rock	grab	0.4m	Map 5	Biotite-quartz schist, dark gray, highly schistose. Graphite present with
					coarse-grained pyrite along schistosity planes (contains 1-3% pyrite and
			<u></u>		is weakly magnetic).

121731	rock	grab	0.4m	Map 5	Biotite-rich schist with 2% pyrite as finely diseminated grains; foliation
					at 135 degrees/80 degree dip northeast (weakly magnetic).
121732	rock	grab	0.4m	Map 5	Silicic metasediment carrying up to 2% disseminated pyrite.
121733	rock	grab	0.4m	Map 5	Quartz-biotite schist with up to 5% disseminated pyrite.
51901	rock	grab	0.4m	Map 5	Gritty, mafic biotite schist, medium gray colour. Schistosity at 173 degrees/
		J			80 degree dip to the east. Fine-grained pyrite throughout $(1-3\%$ pyrite).
51902	rock	grab	0.4m	Map 5	Mafic biotite schist with clots of euhedral medium-gr pyrite; a few
		v			fracture-controlled quartz segregations.
51903	rock	grab	0.4m	Map 5	Gritty argillaceous matic schist with between 1–3% disseminated pyrite.
51904	talus	grab	1m	Map 5	Dark grey pelitic schist, highly schistose with up to 5% very fine-grained
				•	pyrite (usually along schistosity planes).
51905	rock	grab	1m	Map 5	Biotite-quartz schist (carbonaceous) with 1-2% finely disseminated pyrite.
51906	rock	grab	1 m	Map 5	Same description as in above sample.
51907	rock	grab	1m	Map 5	Dark-grey, biotite schist/argillite with 1-2% fine-gr disseminated pyrite.
51908	rock	grab	1m	Map 5	Black, slightly carbonaceous, argillite with 1-3% disseminated pyrite.
51909	rock	grab	1m	Map 5	Biotite-quartz schist; strike @ 145 degrees/vertical dip; minor pyrite.
51910	rock	grab	1m	Map 5	Biotite granite, light buff-gray colour, medium-grained; locally schistose.
51911	rock	grab	0.5m	Map 5	Biotite-quartz schist, highly schistose at 152 degrees/85 degree dip east.
					Contains up to 20% very fine-grained pyrite as irregular streaks, some
					kink folding present (adjacent to granodiorite contact).
51912	rock	grab	1m	Map 5	Gritty biotite-quartz schist with up to 3% fine-gr disseminated pyrite.
51913	rock	grab	1m	Map 5	Channel Showing; quartz-rich biotite schist with up to 10% sulphides;
					mainly pyrite/pyrrhotite with sporadic chalcopyrite, galena and possible
					sphalerite. Some complex folding noted (poor exposure in the mud).
51914	rock	grab	1m	Map 5	Quartz-rich biotite schist with between 5-10% sulphides (mainly pyrite).
51915	rock	grab	1m	Map 5	Biotite-quartz schist with 1-3% fine-grained disseminated pyrite. The
					schistosity is at 150 degrees (near-vertical dip).
51916	rock	grab	1m	Map 5	Quartz-rich biotite schist, dark gray colour, with 1% disseminated pyrite.
					Complex small-scale folding noted.
51917	rock	grab	1m	Map 5	Quartz-muscovite gritty schist, light grey to buff-brown; trace pyrite.
					Schistosity at 130 degrees/70 degree dip east, some complex folding.
51918	rock	grab	1m	Map 5	Biotite granodiorite, strongly foliated at 125 degrees/80 degree dip east.
51919	rock	grab	1m	Map 5	Quartz-biotite-muscovite schist with fine-grained pyrite. Schistosity at
					120 degrees/80 degree dip east
51920	rock	grab	1m	Map 5	Quartz-biotite schist carrying 2-5% fine-grained pyrite and trace galena.
51921	rock	grab	1m	Map 5	Quartz-biotite schist carrying 1-3% fine-grained disseminated pyrite.
51922	rock	grab	1m	Map 5	Biotite granodiorite, strong foliation developed, medium-grained texture.

IETS TRAVERSE NUMBER:				PROJECT:	Pitt / Trinity GEOLOGIST: D. Bohme / C. Bell
N.T.S.:	103H/12			AREA:	Pitt Island, B.C. DATE: October 7–19, 1992
SAMPLE	RX	GRAB	SAMPLE	PLOTTED	
NUMBER	ROCK	CHIP	LENGTH	ON	ROCK SAMPLE DESCRIPTION
	TALUS/	CHANNEL	WIDTH	MAP # OR	
	FLOAT		AREA	FIG. #	
51923	rock	grab	0.5m	Map 5	Quartz-biotite schist (strong schistosity developed). Taken in area of
					complex folding and contains light grey-white sugary quartz bands. Up to
					5% fine-grained disseminated pyrite and possible galena.
51924	rock	chip	0.9m	Map 5	Gray quartz-biotite schist exhibiting tight isoclinal folding. About 5%
					fine-grained pyrite and trace galena.
51925	rock	grab	0.5m	Map 5	Sugary quartz vein mass adjacent to RX 51923.
51926	rock	grab	0.5m	Map 5	Quartz-biotite schist, weakly magnetic, about 3% fine-grained pyrite.
51927	rock	grab	0.5m	Map 5	Quartz-biotite schist, strong schistosity, about 3% fine-grained pyrite.
51928	rock	grab	0.5m	Map 5	Quartz-biotite schist, strong schistosity with about 2% fine-grained
					pyrite. Attitude at 145 degrees/85 degree dip east.
51929	rock	grab	0.5m	Map 5	Quartz-biotite schist, strong schistosity. Medium-grained with 3%
					disseminated pyrite. Attitude at 130 degrees/78 degree dip east.
51930	rock	grab	0.5m	Map 5	Quartz-biotite schist carrying between 3-5% pyrite as fine disseminations
					and as streaks along schistosity planes.
51931	rock	grab	0.5m	Map 5	Argillaceous schist, strong schistosity; fine-gr, dark gray carbonaceous
					material noted, also 5% pyrite as elongate masses along the foliation.
51932	rock	grab	0.5m	Map 5	Quartz-biotite pyrite schist; attitude at 145 degrees/80 degree dip east.
51933	rock	chip	0.5m	Map 5	Milky white quartz vein (0.5m wide) with distinct foliation parallel to
					the predominant fracturing attitude. Some coarse-gr pyrite; vein is hosted
					in a black meta-argillaceous schist. Vein continuous over a 1.5m strike.
51934	rock	grab	0.5m	Map 5	Dark gray/black, slightly graphitic meta-argillaceous schist with 1-3%
					pyrite as coarse clots and patches. Strike 150 degrees/75 degree dip east.
51935	rock	grab	0.3m	Map 5	Similar to the above sample except for distinct greenish mineral (clay
					alteration or very fine-grained chlorite).
51936	rock	grab	0.6m	Map 5	White to greenish-grey quartz-muscovite schist with 1-3% fine-grained
					pyrite. Slightly chloritic, possible sericite also present (similar-looking
		· · · · · · · · · · · · · · · · · · ·			to muscovite schist adjacent to massive sulphide zone at Pyrite Creek).
51937	rock	grab	0.6m	Map 5	Grey, very fine-grained carbonaceous siltstone. Moderately to highly
					siliceous with up to 3% fine-grained disseminated pyrite. Some
					discontinuous discordant fractures evident.

51938	rock	grab	0.5m	Map 5	Light grey to white, very siliceous and distinctly banded quartz-biotite
					schist. Medium gray coloured layers are muscovite-chlorite enriched.
					White bands mostly quartz. Some disseminated pyrite parallel to the
					schistosity. Possible exhalite(?) horizon.
51939	rock	grab	0.5m	Map 5	Gray meta-siltstone, very fine-grained with alternating dark grey and
					thinner whitish laminae (more siliceous). Traces of garnet, minor pyrite.
51940	rock	grab	0.5m	Map 5	Taken near RX 51933; 3cm wide quartz vein hosting medium to coarse
					grained sphalerite and trace chalcopyrite/pyrite mineralization adjacent
					to and within the vein. Appears to be parallel to the predominant foliation
					@ 150 degrees/85 degree dip east. Other veinlets in area contain pyrite.
51941	rock	grab	0.5m	Map 5	Similar to RX 51938; 15cm wide quartz vein in a shear zone. Some coarse
					clots of pyrite mineralization (hosted in quartz-biotite schist).
51942	rock	grab	0.5m	Map 5	Sample of coarse-grained, pegmatic intrusive dyke parallel to the regional
					foliation. About 3-5% chloritic muscovite present in specimen.
51943	rock	chip	0.5m	Map 5	Quartz-biotite carbonaceous schist. Distinctly banded/laminated lithology.
					Banding produced by weathering of less resistant, micaceous layers
					instead of the more siliceous laminae. Hosts 1-3% pyrite as sporadic
					patches and in veinlets. Outcrop approximately 60% siliceous bands.
51944	rock	grab	0.5m	Map 5	Lithology similar to the above sample description but contains less
					micaceous bands (sample taken of very siliceous portion). Minor pyrite.
51945	rock	chip	1m	Map 5	Quartzite, light gray colour with minor amounts of disseminated pyrite.
					This unit hosts about 5% milky white quartz veinlets parallel to the
					foliation. Attitude at 150 degrees/70 degree dip east.
51946	rock	grab	0.5m	Map 5	Collected from same outcrop as above but sample bias towards the quartz
					veinlets which constitute about 5% of the host lithology. Veins are milky
					white to translucent gray colour lie parallel to the foliation. Subtle
					enrichment of pyrite along vein selvages.
51947	rock	grab	0.5m	Map 5	Strongly siliceous and gossanous metasediment. Carries between 2-4%
					disseminated pyrite.
51948	rock	grab	0.5m	Map 5	Strongly foliated, micaceous talus of granite with sporadic patches of fine-
					grained chlorite and some disseminated pyrite. Medium-grained texture.
51949	talus	grab	0.5m	Map 5	Milky white quartz vein with patches of dark grey graphitic material. Quartz
					of coarse-grained pyrite associated with the black graphitic material.
51950	rock	grab	0,5m	Map 5	Light gray coloured, leucocratic granite with 2-4% biotite. Strongly
					foliated as defined by biotite flakes, trace muscovite and garnet.
51951	rock	grab	0.5m	Map 5	Dark gray/black gritty biotite-quartz-feldspar gneiss (sample mostly of
					biotite-quartz rich layer). Zone is transitional to an intrusive sill.

51952	rock	grab	0.5m	Map 5	Muscovite-quartz-biotite schist with 5% garnet. Gossanous outcrop.
				•	Hosts 1-3% disseminated and fracture-controlled pyrite mineralization.
51953	rock	grab	0.5m	Map 5	Mostly quartz-vein material associated with a biotite-chlorite grano-
				1	diorite dyke parllel to the foliation. Host rock is a siliceous biotite-
					muscovite schist; locally banded.
51954	rock	grab	0.5m	Map 5	Weakly banded, light grey quartzite with up to 15% very fine-grained pyrite
					as irregular streaks. Foliation at 130 degrees/vertical dip.
51955	rock	grab	0.5m	Map 5	Quartz vein or pod; one of two boudins parallel to foliation. Milky white
				1	quartz with rusty patches (some coarse-grained pyrite). Host rock is
					a rusty muscovite-biotite schist (?altered felsic volcanic).
51956	rock	grab	0.5m	Map 5	Sample taken near contact with the muscovite schist; mostly dark gray
		U			biotite schist with possible kyanite and sillimanite, minor gamet. About
	1		1		2% pyrite as irregular clots.
51957	rock	grab	0.5m	Map 5	Adjacent to above sample; graphitic argillite with sporadic blebs of pyrite.
51958	talus	grab	0.5m	Map 5	Siliceous metasediment with muscovite with light gray quartz stringers
		<u> </u>			carrying 1-3% pyrite. Some cross-cutting quartz stringers.
51959	rock	grab	0.5m	Map 5	Fine-grained meta-argillite/siltstone with 1-2% pyrite/pyrrhotite.
					Chloritic muscovite gives the unit a distinct parting parallel to foliation.
51960	rock	grab	0.5m	Map 5	Quartz veinlet hosted by slightly graphitic argillite. About 3cm wide, rusty
		1	1	• • •	in places, and runs parallel to the foliation.
51961	rock	grab	0.5m	Map 5	Dark gray, fine-grained, moderately siliceous meta-siltstone; locally
				•	graphitic. Unit hosts quartz veinlets similar to that sampled in RX 51960.
				······	Pyrite mostly along veinlet selvages.
51962	rock	grab	1m	Map 5	Dark gray, pyritiferous meta-siltstone with distinct whitish patches of
					kyanite(?); lath-like radiating needles present.
51963	rock	grab	1m	Map 5	Quartz vein (3cm wide) parallel to the foliation hosted in carbonaceous
					biotite-rich schist with 1-3% disseminated pyrite.
51964	rock	grab	0.8m	Map 5	Black meta-argillite with 1-3% disseminated pyrite. Some quartz veinlets
				·	cross-cutting this unit.
51965	rock	grab	0.8m	Map 5	Very siliceous, banded metasediment with $1-5\%$ pyrite (exhalite?).
51966	talus	grab	0.5m	Map 5	Hornfelsed pegmatitic intrusive with 5% pyrite as coarse clots; feldspars
				•	partially altered to sericite. Possible brownish sphalerite present.
51967	rock	grab	0.8m	Map 5	Graphitic meta-argillite with 1-5% pyrite as disseminations and coarse
				•	streaks parallel to the foliation. Dark grey/black colour.
51968	rock	grab	0.5m	Map 5	Black, gritty meta-argillite. Up to 5% pyrite smeared along foliation
					planes. Foliation at 150 degrees/60 degree dip east.
51969	rock	grab	0.5m	Map 5	Rusty, schistose quartz-sericite schist. Some fine-grained pyrite.

	/ERSE NUI	MBER:		PROJECT:	, ,	GEOLOGIST: D. Bohme
N.T.S.:	103H/12			AREA:	Pitt Island, B.C.	DATE: October 7–19, 1992
SAMPLE	RX	GRAB	SAMPLE	PLOTTED		
NUMBER	ROCK	CHIP	LENGTH	ON		ROCK SAMPLE DESCRIPTION
	TALUS/	CHANNEL	WIDTH	MAP # OR	roc	k type, lithology, mineralization, etc.
	FLOAT		AREA	FIG. #		
51970	rock	grab	3m	Map 5	Siliceous, fine-graine	d, biotite schist; attitude 145 degrees/70 degree dip
				•		rite is present, locally very schistose (shear?).
51971	rock	chip	1m	Map 5		te with some fine-grained garnets. Weakly magnet
51972	rock	chip	1m	Map 5	Small outcrop of an al	tered intrusive. Very siliceous with sericite alteration
					and muscovite. Fine k	piotite associated with disseminated pyrite.
51973	rock	chip	1m	Map 5	Siliceous, fine-gr biot	tite schist with minor amounts of finely disseminated
					pyrite. Siliceous band	s are more resistant to weathering.
51974	rock	chip	1 m	Map 5	Sample taken of 10-2	25cm wide quartz-feldspar dyke hosted in biotite-
					quartz schist. Some c	oarse-grained pyrite present. The dyke is parallel
					the foliation at 140 deg	grees/80 degree dip east; several stretched granitic
					boudins are present (f	orming boundinage).
51975	rock	chip	1m	Map 5	Well foliated, quartz-k	piotite schist with some finely disseminated pyrite.
					Foliation at 140 degree	
51976	rock	chip	1m	Map 5	Siliceous quartz-bioti	te schist with 1% pyrite usually along foliation
						n-grained muscovite also present.
51977	rock	chip	1m	Map 5		muscovite schist. Foliation at 165 degrees/65 degree
					dip to the east.	
51978	rock	chip	0.5m	Map 5		carrying up to 5% pyrite as coarse-grained blebs
					along foliation planes.	Foliation at 145 degrees/60 degree dip to the east.
	•••					
					·····	
		- 1				
		<u> </u>		-		
		I /				

INCO EXPLORATION AND TECHNICAL SERVICES INC.

IETS TRA				PROJECT			GEOLO	GIST(S)): M.S	lauenwh	lite
<u>N.T.S. :</u>			·····	AREA:	Pitt Island, B.C.		DATE:	July 13	, 1992		
SAMPLE		PLETYPE	SAMPLE	PLOTTED	SAMPLE DESCRIPTION						
NUMBER		Grab,	LENGTH,	ON: MAP #	Rock type, lithology, character of soil, stream silt, etc.		RE	SULTS	(ppm)		
	Rock,	Chip,	WIDTH,	OR	Formation						
	Talus	Channel	AREA	FIG. #	Mineralization, etc.	Cu	Pb	Zn	Ag	Мо	Ba
Rx 51189) thin	l	_	Map 1	Thin section RX 51189 corresponds to sample RX 51590.	135	124	168	1.0	27	449
	section				Buff white, micaceous, fine-to medium-gr. felsic ash(?)				1		
			L		schistose tuff. In sharp contact with gray fine-grained				1	1	1
					biotite-feldspar schist with sporadic medium-grained	-				1	<u> </u>
					euhedral feldspar laths; possible pyroclastic component.		1	1			·
					Carries up to 2% fine-grained disseminated pyrite.	-		1		1	1
		<u> </u>						1			<u> </u>
Rx 51190	thin			Map 1	Thin section RX 51190 corresponds to sample RX 51591.	28	199	114	1.2	23	287
	section				White, strongly foliated, micaceous quartz-feldspar						1
		L			felsic ash tuff(?). Similar to felsic component in RX 51189		1	· · · · ·			+
							1				<u> </u>
RX 51191	thin			Map 1	Thin section RX 51191 corresponds to sample RX 51590.	135	124	168	1.0	27	449
	section				Light gray, biotite quartzite gneiss. Thin layers and pods						<u> </u>
					of quartz up to 0.5 cm across. Flattened, disseminated						1
					pyrite grains generally throughout biotite-rich matrix.						l
					Similar to biotite-rich "mafic" unit noted in RX 51189.						
											<u> </u>
RX 51192	thin			Figure 8	Thin section RX 51192 corresponds to sample RX 51581.	1706	4583	320	19.8	31	4547
	section				Pyrite-rich, quartz-muscovite schist. Slightly banded,						
					fine-gr. biotite usually with granular pyrite. Up to 5%						l
					disseminated pyrite. Some more competent quartzite						
					bands.						
RX 51193	thin			Figure 8	Thin section RX 51193 corresponds to sample RX 51579.	186	37	207	0.2	4	684
	section				From South Pyrite Creek Zone, medium-to coarse-						
					grained chloritic biotite-quartz schist. Chlorite						· · · · · · · · · · · · · · · · · · ·
					overgrowths appear to be replacing biotite. Some						
_					euhedral pyrite noted.						
RX 51194	thin			Map 1	Thin section RX 51194 corresponds to sample RX 51669.	3492	209	1049	3.6	233	1729
	section				From Talus Showing, 20-30% semi-massive sulphides					200	1123
					(almost entirely pyrite) in a quartz – biotite – muscovite						<u></u>
					schist. Faint banding evident in the sulphides. A few	· · · · · · · · · · · · · · · · · · ·					
					white quartz clasts up to 0.5 cm long.				·		
					······································					· · · · ·	

INCO EXPLORATION AND TECHNICAL SERVICES INC.

IETS TRAV				PROJECT	: PITT / TRINITY		GEOLO	GIST(S)	: C. Br		awlek
<u>N.T.S. :</u>				AREA:	Pitt Island, B.C.			Septem			
SAMPLE	The second s	PLE TYPE	SAMPLE	PLOTTED	SAMPLE DESCRIPTION						
NUMBER	RX	SX	LENGTH,	ON: MAP #	Rock type, lithology, character of soil, stream silt, etc.						
	Rock,	Stream,	WIDTH,	OR	Formation		BE	SULTS	(ppm)		
	Talus	Silt,	AREA	FIG. #	Mineralization, etc.				166.00		
		Soil				Cu	Pb	Zn	Ag	Мо	Ba
SX138803		Moss		Map 5	Elevation 280m; dry creek gully just over from sample	11	4	42	0.1	13	56
		Mat			SX 138804 on the B Zone grid (Channel Creek).	-					
	-										
SX138804		Moss									
37130004	' <u> </u>	Mat	·	Map 5	Elevation 285m; silty moss-mat sample obtained in	11	4	45	0,2	6	56
		Mal			creek gully just north of Line 213 on B Zone grid.						<u> </u>
SX138805		Moss		Мар 5	Elevation 280m; just downstream from B Creek Showing;	42	32	119	0.6	7	106
		Mat			sity moss-mat sample in steeply incised creek gully.		- 02	113	0.0		100
					in the provide the second second gaily.						
SX138806		Moss		Мар З	Elevation 575m; small creek gully draining off the ridge.	21	4	34	0.1	1	56
		Mat			Good sity moss-mat sample obtained.					•	
		ļ									1
SX138807		Moss		Map 2	Elevation 130m, northwestly trending dry creek gully on	36	2	77	0.1	4	255
		Mat		···	the Gren 8 claim. Good moss-mat sample obtained.						
SX138808		Moss		Map 5	Elevation 250m; about 200m down from SX 138804 on						
0		Mat		Map 5	the same stream gully (Channel Creek).	10	9	36	0.2	6	52
		mat			the same stream guily (Channel Cleek).						
SX138813		Moss		Map 5	Elevation 125m; stream draining the B Creek Showing.	12	16	51	0.2	4	65
		Mat			Mostly intrusive talus in the creek bed; nearby exposures				0.2		
					granodiorite.						
									-		
SX138814		Moss		Map 5	Elevation 60m; taken from creek draining the eastern	1	4	16	0.1	1	30
		Mat			edge of the BSL 2 claim. Almost entirely intrusive rocks						
					in the creek bed.						
SX138815		Moss		Mon F	Elevation Romitation instruments of form OV (coord)						
0/100010		Mat		Map 5	Elevation 80m; taken just upstream from SX 138814.	1	2	16	0.1	1	45
					Description same as above sample.						
SX134927		Moss		Map 5	Elevation 370m; on B Zone grid L218+80E, good moss	62	12	101			
		Mat			mat sample with lots of sandy sitt material.	2	12	101	1.0	2	1008
					in a canter of the foco of barray she material,					-	

APPENDIX III

acme Analyi	ICAL I	JABO	RATO	RIE	s l:	rd.		352 1	e.	HAS	sti	ngs	ST	. VI	NC	20UV	ER B.	С.	V67	1 I R	:6	I	PHON	E(60	04):	253-	-31	L58	F)	AI (604)	25
AA								G	FEO	CH	EM:	ICA	L 7	ANA	LY	SIS	CEF	TI	?IC/	ATE												
							Inco	Fur		e	m	aah		0		-	D ł	1 .	#		1	.										
						<u> </u>	<u>Lucc</u>	<u></u>													TU	J 4										
				Alternation and the second											1 A 3 1	. V BNC	ниег I			1999 (M. 1997)		Sec. 10, 20, 24, 24, 24										5 CSPC 94
			<u></u>	<u>2,885.0</u>	<u>893</u>					2070					2.4.9	Vanc	ouver l		6 670													
SAMPLE	Мо	Cu	РЬ	Zn	Ag	N1 (Co Mn	- Fe	e As			Th				B1		1L VOI	P La	-	Mg	Ba	T1	A1	Na	ĸ	W	Zr :	Sn	Y N	b Be	S
SAMPLE	Mo ppm	Cu ppm	Pb ppm		•	N1 (ppm p)			e As	. บ	Au		Sr	Cd	Sb		v c	•	<u></u>	Cr		Ba ppm						-		,	b Be mippmi	-
SAMPLE#		Cu ppm 458	Pb ppm 84		ppm	ppm pj		n %	e As 5 ppm	. บ	Au	Th	Sr	Cd	Sb	Bí	v c	<u></u> ▲ X :	P La % ppm	Cr				*	%	% р		-		,		

· · · · · · · ·

and the second secon

STANDARD HFC/AU-R 20	60	40	137	6.9	96	47 1217	4.52	38	17	6	37	58	20.6	15	19	81	.51 .116	38	60 1.07	224	.08 2.07	.09	. 15	11	5	17	7	2.	2 5.7	470

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 10ML HCL04-HN03-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM. AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCL04 FUMING. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE. <u>Samples beginning 'RE' Are duplicate samples</u>.

ACME ANALYTICAL LABORATORIE	s lti).	85	2 E.	HASI	TINGS	5 ST	. VA	NCOU	VER 1	B.C	. v	6A 1	R 6		PHO	VE (6	04)2	53-315	8 FAX (604)	253-17
						WHO]	lb i	ROC	K IC	P As	5 8 a	¥.									
		<u>In</u>	<u>co e</u>	<u>xpl</u>	. 6 2690	<u>Tec</u>]	h. I Burre		Vice		Fil r BC	e #	92 ¥8	-10	02						
SAMPLE#	Sio	2 AL2	03 Fe20				1963233				84.99 <u>8</u> 8	관련하여		1.6	76	<u> </u>	Nb		SUM		
		*	*	<u>x</u> 7	(7	*		%	*	X.						ppn			*		
RX 049890 RX 049891	63.5	7 13. ⁻ 7 15.4	16 10.2 14 9.9	3 1.61 8 7.00	.38 2,99	.43 .98	3.52	.41 1.06	.11	-05 11	.009	1741	77	4	142	18 24	5	6.1 2.6	99.91 99.94		

، مقصف

STANDARD S0-4 68.74 10.34 3.39 .92 1.58 1.37 2.12 .56 .21 .08 .009 828 210 28 299 21 7 10.4 99.95

A .2000 GRAM SAMPLE IS FUSED WITH 1.2 GRAM OF LIBO2 AND IS DISSOLVED IN 100 MLS 5% HNOS. - SAMPLE TYPE: ROCK <u>Samples beginning 'RE' are duplicate sample</u>

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Inco Expl. & Tech. Services PROJECT 60522 File # 92-1414 Page 1 2690 - 666 Burrard St., Vancouver BC V6C 2X8 Submitted by: DENNIS BOHME

																								<u> </u>						<u></u>				
SAMPLE	Mo	<u></u> Cน	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	8 a	TI	A1	Na	ĸ	W	Z۳	Sn	Y	Nb	Be Sc
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ррт	ppm	ppm	ppm	p pm	ppm	%	%	ppm	ppm	%	p pm	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm ppm
AX 046073	1	245	11	31	.2	41	15	77	1.44	3	5	ND	1	78	.2	2	2	12	.64	.004	2	2	.04	38	. 09	. 48	. 53	.01	4	1	1	1	1	1.6
RX 046873 RX 046874	8	245 83	7			66	15		4.39	3	5	ND		182	2.7	4		387	2.54			121		82	. 22	1.44	.64	.89	4	4	1	22	1	1 12.1
RX 046875	35	367	43		.9	22			6.83	4	5	ND		189	2.8	2	2		11.00		8	20	2.05	127	.46 8	3.79	.51	.13	5	12	6	17	1	1 22.5
RX 046876	22	112	13			75			4.04	3	5	ND	8	355	14.4	2	2	469	3.98	. 194	24	68	1.61	164	. 34 7	. 22	1.37	1.24	6	14	1	26	4	1 12.2
RX 046877	1	193	41			9		1235		3	5	ND	9	195	.8	11	2	117	4.05	.079	18	11	1.61	409	. 46 9	.25	3.90	.86	6	15	1	27	3	1 21.3
RX 046878	з	203	20	19	. 4	8	4	154	1.27	3	5	ND	1	60	.2	2	3	4	.23	.008	2				.02			. 31	4	1	1	6	7	1 .B
RX 046879	12	845	33	165	1.0	24	37	2009	5.73	3	5	ND	3	300	1.1	2			7.47		7		1.91		. 42 8			.18	2	5	1	16	1	1 24.3
RX 046880	27	276	21	116	. 4	15		923		3	5	ND	1	147	. 6	2	2	101	3.46		4		1.24		.23 5			.23	2	4	1	9	1	1 15.3
RX 046881	4	94	14	89	.2	29	44			3	5	ND		525	.7	2	2	199	4.16		7		2.54		.54 7				2	1	1	24 8	1	1 27.4
RX 046882	6	322	116	184	.6	14	10	222	2.54	3	5	ND	8	183	1.5	2	2	23	1.38	.043	16	8	. 34	163	.20 7	.68	3.42	2.75	Э	30	1	8	1	1 0.5
		667		77830	47 4		£	534	14 17	5	5	ND	3	49	293.0	56	5	25	2.42	.030	2	10	.73	70	.13 4	.75	. 40	.51	2	27	1	12	1	5 8.4
RX 046883 RX 046884	10 2	667 16	9331	73439 674	47.4 .2	11 5	2		14.17	3	5	ND	3	21	2.8	2	5	6	.04		5	28	.23	609	.12 4				2	19	2	3	1	4 6.5
						95		366		3	5	ND	5		8.0	2	2		1.69		-	116			.11 5				2	23	1	17	1	1 13.8
RX 051501	11	106	29 35			95 140		366 1471		3	5	ND	10			2	7		4.66		36	37		108	.56 6		.55		5	9	1	33	10	3 24.7
RX 051502	21 11	287	43			52		1022		6	7	ND		220	2.4	5	-		3.11		16				.28 5				7	4	1	23	2	1 16.2
RX 051503	11	69	42	3//	1.0	52	14	1022	2.71	0	,	no.	Ŭ	224	2.4	2	•	100			••													
RX 051504	1	59	16	124	.7	68	61	1669	9.32	Э	5	ND	4	391	1.3	2	2	279	8.35	.079	8	44	3.71	114	.82 6	s. 95 🗄	1.65	. 37	2	6	3	24	1	1 30.2
RX 051505	4	323	17	72	.2	29	52	418	7.00	3	5	ND	1	261	. 2	2	3	191	2.48	.077	3	17 3	2.16	214	.36 8	1.93	4.15	1.20	2	1	1	5	1	1 26.6
RX 051506	7	83	35	41	.3	23	47	232	5.79	3	5	ND	1	353	. 2	2	2	105	2.53	.056	2	17	. 45	222	. 33 9	.10	5.12	. 35	2	1	1	8	1	1 17.4
RX 051507		4047	10952	1548	58.6	59	19	2252	7.06	60	5	ND	4	326	17.7	350	70	303	10.93	.054	6	34	4.23	490	.51 7	. 94	. 27	.15	4	5	1	16	1	1 39.0
RX 051508	1	156	286	147	1.6	3	12	1115	5.39	5	5	ND	7	239	. 6	2	2	133	5.16	. 101	19	2 3	2.13	157	,61 E	8.81	3.59	.13	2	8	1	30	2	1 21.3
																-	_										• • •		-	48	2	9	22	4 8.6
RX 051509	5	156	343		.5	5	2		2.40	3	5	ND	13		. 2	2	2		1.62		46		.25			.48		.46 .05	2	40	1	2	22	1 .6
	1893	320	39	28		3	13		1.30	Э	5	ND	1	45	.2	5	2	10	. 50		4	-		101	.07 1				2	7	1	6	1	1 18.6
RX 051511	40	1003	1141		3.7	9	13		4.44	9	5	ND		269	7.1	8	2 8		3.20		7		2.31 1.64		.38 6		-		11	9	1	5	1	1 23.7
RX 051512		3263	1138	1664		27	14		4.26	15	5	ND		168	12.6	24			2.18		7		2.04		.46 6			.63	2	6	1	14	2	1 23.3
RX 051513	41	381	137	281	1.2	11	20	1360	6.19	3	5	ND	1	461	. 2	2	2	231	5.04	.024	'	21 0	2.04	13/4	.40 0	.03 /	2.3/	.03	~	v	•		•	
RE RX 051509	8	164	336	181	.9	4	2	561	2 45	5	5	ND	14	155	.4	3	2	13	1.59	.016	45	25	. 24	1165	.20 7	.84	4.95	. 47	2	51	1	9	22	4 9.1
RX 051514	35	489	443			45	_	1538		4	5	ND		274	1.5	2	2			.068	7	22	2.88	2714	.64 8	. 46	1.68	1.22	2	4	1	20	1	1 29.4
RX 051515					34.5	19		742		10	5	ND	1	-	469.1	35	44		1.47	.064	2				.14 7				2	22	1	7	1	1 6.2
RX 051515				3199		15		653		3	5	ND	-		20.6	5			2.11		6				. 33 7				3	24	1	13	1	1 17.3
RX 051516					104.6	30		747		5	5	ND	1		574.7	39	64		1.08		2		.75		.18 2			.86	2	9	4	13	1	2 7.9
										-	-		-																					
RX 051518	152	40765	11243	61106	100.0	33	43	713	19.97	16	5	ND	1	11	464.6	31	44	65	.95	.084	2		.65		. 18 2			.65	22	9	5	12	1	1 6.1
RX 051519	28	14090	3320	7524	36.5	13	4	484	7.47	9	5	ND	4	126	53.9	24	63	90	1.31	.062	5	14	1.87		.30 6				8	13	1	5	2	1 13.6
RX 051520	3	1313	747	923	2.5	4	2	285	3.10	3	5	ND	5	225	5.1	2	4	34	1.44	.037	14	8		201	.22 7				5	13	1	5	4	1 8.4
RX 051521	18	541	624	870	3.7	15	11	649	6.74	6	9	ND	8	166	4.6	12	2	69	1.76		16			136	.35 7				6	13	1	10	2	1 14.9
RX 051522	4	1269	966	1339	5.2	1	2	430	6.80	10	6	ND	8	61	6.5	3	2	33	.57	.063	17	4	.82	427	.31 7	.29	. 59	3.01	2	23	1	8	5	1 11.9
		210	077	165	1 0	,	•	200	3 47	4	5	ND	6	55	.2	2	3	29	.55	043	19	5	.68	2276	.28 6	92	56	2 80	2	17	1	8	6	1 10.8
RX 051523	4	310 495	873 535	155 280		3 10		390 1166		4	ວ 5	ND	9	55 151	.2	2			1.21		22		1.40		.65 6				z	22	i		5	1 18.4
RX 051524	6 22										5 17	NU 7			21.3				.52		39				.08 1				11	4	16	7	1	1 5.8
STANDARD HFC	22	61	42	120	7.4	93	40	11/2	4.38	30	17	· · ·	37	33	21.3	10	C 1	10	. 52		39	00		2.90	.00 1			• • •				<u> </u>	-	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 10ML HCL04-HN03-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM. AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCL04 FUMING.

- SAMPLE TYPE: ROCK <u>Samples beginning 'RE' are duplicate_samples.</u>

ACHE ANALYTICAL				I	nco	Ex	pl.	& I	'ech	.	Ser	vic	es	PRO	ЭJЕ	СТ	60	522	2	FIL	E	# 9	2-1	414					Pag	ge	2			A L TTICAL
SAMPLE#	Мо ррт	Cu ppm		Zn ppm			Co Mr ppm ppm		e As % ppm			Th ppm p		Cd ppm			V ppm	Ca %	P %	La ppm		Mg %	Ba ppm		Al %	Na %	к %		Zr ppm		•	NP Npuri	Be opm	Sc ppm
RX 051525 RX 051526 RX 051527 RE RX 051526	10		1142	1114	4.7	13	1 417 31 558 3 558 33 563	14.3 9.6	5 5 9 4	5 24 5 15	ND	2 3 1		.2 47.7 5.4 50.7	_	39 2	117 126	1.10 1.06	.042 .069 .068 .066	2 8	17	.76 2.41	74 2583	.20 .30	5.17	.93 1.18	1.73 1.49 1.19 1.51	5	26 21 7 21	1 2 1 4	4 12 4 12	3 1 1 1	6 1 1	8.8 8.3 13.2 8.5

-

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

سطيبية برابية فالروقو وكالطام

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

WHOLE ROCK ICP ANALYSIS

Inco Expl. & Tech. Services PROJECT 60522 File # 92-1414 Page 1 2690 - 666 Burrard St., Vancouver BC V6C 2X8 Submitted by: DENNIS BOHME

		20	70 - U																	
SAMPLE#	Si02	AL203	Fe203	MaO	CaO	Na20	K20	TiO2	P205	MnO	Cr203	Ba	Sr	La	Ζr	Y	Nb	LOI	SUM	
JANFELW	2		-	-	%	%	%	%	%	%	%	ppm		ppm -		ppm	ppm	%	%	
 	<u> </u>												••			- <u></u>	••			
RX 046873	92.56	2.66	1.96	.08	.88	.61	. 15	.12	.01	.01	.002	13	76	11	15	5	9	.9	99.96	
RX 046874			5.48						.35	.05	.014	3465	218	8	47	15	5	5.5	99.90	
	49.74								.17	.40	.002	140	215	4	28	14	5	2.3	99.88	
RX 046876	66.15	12 74	5.05	2.30	5.25	1.56	1.50	.52	.41	- 1 2.		5078	429	27	91	24	5	3.3	99.83	
RX 046877	61.76	17 37	4 06	2 25	5 33	4.68	90	.64	.16			425	213	16	160	22	8	1.6	99.93	
KK 040071	00		4170		1. S.						• • • •									
RX 046878	03 41	2 40	1.65	. 04	.28	.77	.44	.02	.02	.01	.002	106	58	6	10	5	5	.9	99.97	
RX 046879	54.57	16 95	7.01	3.04					.10	.23	.002	135	339	10	56	16	5	3.1	99.88	
RX 046880	74.47	8 07	5 14	1 96	4.85	1.70	39	34	.07	11	.006	145	155	6 :	31	7	5	1.9	99.93	
	52.88								.22		-	334		12	76	27		5.7	99.95	
	69.41								.08	.03		1131			136	25	16	2.3	99.94	
KA 040002	07.41	14.21	5.57				2.2.													
RX 046883	36.25	0 02	21 83	1 31	4 01	52	80	. 34	.08	07	-002	22110	468	14 🔅	111	20	5	14.2	93.20	
RX 046884			19.90						.01			1577	31	11	1.1	19	-	12.9	99.94	
RX 051501			3.54							.04	.014	2593		20	75	23		2.5	99.82	
RX 051501	54.81								.53		.003	3763		40		33		6.4	99.56	
RX 051502	76 57	0.23	3.54	1 26	4 32	1 57	58	40	.11			1643		16	63	20		1.9	99.91	
KX UJIJUJ	10.55	7.23	2.24	1.20	4.J	1.57								1	177					
RX 051504	47.44	18 05	11 37	6 06	11 90	2.07	.46	1.31	. 15	. 19	.007	110	443	16	77	24	5	.8	99.93	
	53.33								.16	.05	.003	285	304	7	49	17	5	3.6	99.93	
	57.06								.12		.002		411	8	50	13	5	3.6	99.96	
	50.19							.77	.10			1227		4	29	13	5	2.9	98.63	
	58.31												264	18	110	30		1.1	99.92	
KX UJ1500	10.51	10.47	0.72	L .,,		4.27			••••					i i a C	i ing Gili					
RX 051509	71.53	14 59	3 17	36	2 07	5.86	.60	.25	.02	.07	.002	1090	168	43	386	37	24	1.1	99.91	
	92.86								.03	.02	.002	59	45		16	5	5	1.0	99.96	
RX 051511	58.40	17 62	5 03	3 48	4.51	2.46	2.41	.57				8864	348	15	65	13	10	2.4	99.59	
	56.69									.06		16303		9	53	21		4.0	99.39	
	55.84											1570			61	16	5	1.9	99.88	
	00.04		0.01	5.2.		J.LJ					• • • •									
RE RX 051509	71.51	14.60	3.18	.36	2.07	5.91	. 55	.26	.02	.07	.002	1082	167	45 0	376	37	24	1.1	99.92	
RX 051514			10.95					1.00	.14	.18	.002	4779	314	4 🖇	54	18	5	3.2	99.84	
	54.42									. 09		33728	494	12	66	17	5	4.5	91.34	
RX 051516	58.36	14.53	7.77	3.04	3.05	1.24	2.61	.78	.18	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		10431	245	12 🕺	136	25	5	5.7	99.19	
RX 051517	26.65	6.21	25.28	1.33	1.80	.57	1.27	.30				53524		4 🖇	27	12	5	14.5	87.33	
	20.05	0.2.	23120						• • •											
RX 051518	19.83	4.62	35.18	1.21	1.63	.30	.92	.33	.13	.10	.002	39654	334	8	83	10	5	18.1	89.17	
RX 051519	57.82	13.41	10.01	2.92	1.88	1.62	2.51	.56	.09	n de ser en s		5749		7	108	18	5	6.0	97.92	
	70.09								.07	1995 (M. 1997)		3194			103	21	5	2.6	99.69	
	60.27											3424			157	21	5	4.4	99.78	
	62.87				.79	.69	3.78	.47	. 12	.05			62		150	18	5	5.5	99.62	
NA VIIJEE																				
RX 051523	70.12	13.16	4.83	1.15	.78	.65	3.58	.44	.08	.05	.002	2156	58	10	144	18	5	4.6	99.84	
RX 051524	60.79	13.43	9.63	2.33	1,75	1.86	2.31	1.04	.12	15			161		147	18	5	6.1	99.85	
STANDARD SO-4	69.02	10.23	3.38	.96	1.55	1.28	2.05	.56	.20	.08	.007	819	196	32		24	12	10.4	99.95	
	h	•		•	<u>airte innin</u>		<u> </u>						_				_			
									1 1 0 0	3 A 100		100013		100 14		• • • • • • • • • • • • • • • • • • •	7			

.200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBO2 AND ARE DISSOLVED (N 100 MLS 5% HNO3. - SAMPLE TYPE: ROCK <u>Samples beginning 'RE' are duplicate samples</u>

D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS 2 SIGNED BY. JUN 11 1992 DATE REPORT MAILED: 'G me 19 DATE RECEIVED:

Inco Expl. & Tech. Services PROJECT 60522 FILE # 92-1414

Page 2

ACHE ANALYTICAL																				 ACHE ANALY
	SAMPLE#	si02 %				CaO N	a20 K2 %	20 TiO2 % %	P205 %	MnO %	Cr203 %	Ba ppm	Sr ppm	La ppm	Zr ppm	Y ppm		LOI %	SUM %	
	RX 051525	68.19	14.33	4.92	1.43	1.86 2	.64 1.8	3.41	.06	.05	.005	2549	181 481	6 5	123 59	14 13		3.7 12.3		
	RX 051526	35.83	9.41	19.95	1.51	1.68 1	.08 2.0	כנ. כו מי זי:	دا . 15	.07	.004 :	32730			101	15		11.2		
	RX 051527	51.43	13.70	13.22	4.12	1.49 1	נ.ו זכ. ח R 1 C	20 .70	15	07	002	54988	486							
	RE RX 051526	35.86	9.55	20.01	1.32	1.68 1	.08 1.9	2.35	.15	.07	.003 !	54988	486	4	63	15	5	12.4	93.85	
	RE RX 051526	35.86	9.55	20.01	1.32	1.68 1	.08 1.9	2.35	. 15	.07	.003	54988	486			15	5	12.4	93.85	
	Sample type: A	ROCK.	Samole	es begi	innina	'RE'	are duc	licate	sampl	les.										
	Sample type.	LUCK.	Janpre	S Degi	1011119															

	e F	Acti	vat	ion	Labo	orate	orie	es L	.td.		Wor	k 0	rde	er:	409	1	Re	Port	t: 4	1081	•	
	Sample description	AU PPB	Аб РРМ	AS PPM 	ba Bi PPM PPI		CO PPM	CR — PPM —	CS PPM	FE *	hf — FPM	HG PPM	IR PPB	MO PPM	NA - FPM	NI - PPM	RB PPM	SB PPM	SC PPM	SE PPM	SN *	
,	RX 046873 RX 046874 RX 046875 RX 046876 RX 046876	7 <5 10 <5	<5 <5 <5 <5 <5	63. 53. 94	100 () 100 () 270 () 000 () 320 ()	1 3 1 14 1 5	12 7 16 8 7	<10 110 23 55 (10	(2 (2 (2	1.61 4.32 6.94 3.53 2.77	(0.5 2.5 1.1 2.3 1.9		<5 <5 <5 <5 <5 <5	<5 21 7 1	5090 5900 4990 1600 0200	50 <50 <50 <50 <50	<30 33 <30 46 <30	0.2 1.5 1.3 2.8 (0.2		12 <5 34	(0.01 (0.01 (0.01 (0.01 (0.01 (0.01	
7	RX 046878 RX 046879 RX 046880 RX 046881 RX 046881	5 (5 (5 (5 (5	<5 <5 <5 <5 <5	2 (2 (2 3	170 () 240 () 200 ()	((1 	<5 23 11 32	12 18 49 34 	<2 <2 <2 <2	1.32	<pre></pre>		(5) (5) (5) (5) (5)	INT <5 2 16 1 <5 1	6580 7000 3200	<50 <50 <50 <50 <50 <50	(30 - (30 - (30 - (30 - 37 - 45	0.3 0.5 0.3 0.3 0.3	0.6 -24	<5 <5 <5 <5	(0.01 (0.01 (0.01 (0.01 (0.01 (0.01	
× .	RX 046883 RX 046884 RX 051501 RX 051502 	100 15 <5 11 <5	56 (5 (5 (5 (5 (5	6 18(14 14 <2 19 7 33		4 ~ {1 {1 5	7 (5 8 34 9	19 34 100 35 	<pre> {2 1</pre>	5.0	7.0 - 3.9 2.9 4.1 - 2.1-	12 (1) (1) (1) (1)	<5 <5 <5 <5 <5	<5 <5 <5 10	40 70 2130	<50 <50 80 <50 <50	(30	44 	8.2 7.0 12 25	<pre>{5 <</pre>	(0.02 (0.01 (0.01 (0.01 (0.01	
	RX 051504 RX 051505 RX 051506 RX 051507 RX 051508	<5 <5 <5 2490 37	<5 <5 <5 56 <5	<pre> <2 3 <2 1 730 8</pre>	100 <1 310 <1 170 3 300 <1 240 <1	(1 	40 33 31 14 11	53 19 <10 49 	<2 <2 <2	8.25 5.78 4.68 6.30 4.96	2.1 2.2 1.5 0.7 4.2	<1 - (1 - 2 - (1 - (1 - (1)	<5 <5 <5 <5 <5	<pre><5 1 <5 3 <5 4 <5 4 <5 3 <5 3 </pre>	8700 5600 2620	<50 <50 <50 <50 <50	<30 <30 <30 <30 <30		26 16 39	<5 < <5 < <5 <	(0.01 (0.02 (0.01 (0.03 (0.02	
	RX 051509 RX 051510 RX 051511 RX 051512 RX 051513	17 28 26 586 11	<5 <5 <5 11 	5 1 28 70 21 130	/00 <1 00 <1 00 <1 00 <1 00 <1	<1 2	(5 8) 11 12 16	22 <10 11 29 22	<2 <2	3.78 3.68	10 0.9 3.1 3.5 2.1	(1 (1 (1 (1	(5 (5 (5 (5 (5	<pre> <5 4; 1600 15 1; 13 1; </pre>	5710 9100 4600	(50 (50 (50 (50 (50	<30 (30 65 51, (30	2.0 1.4 6.4 12 1.2	7.4 1.7 17 24 23	<pre> <5 < </pre> <		
2 4	RX 051514 RX 051515 RX 051516 RX 051517 RX 051518	73 48 81 1010 3260	8 42 <5 100 109	8 270	.00 3 100 (1	<1 3	23 6 12 20 	29 25 22 51 20	<2 <2 <2 <2 1 <2 1 <2 1	2.87 4.96 4.6	2.5 6.5 6.0 1.0	<1 23 <1 39 35	<5 <5 <5 <6 €		7100 9730 4210	<50 <54 <50 <82 <79	<30 53	-33 7.5 38	28 5.0 19 8.0 7.3	<5 < <5 < <5 <	0.01 0.03 0.01 0.04 0.04	
-	RX 051519 RX 051520 RX 051521 RX 051522 RX 051522 RX 051523	403 127 33 50 36	33 <5 <5 6 <5	8 20	100 (1 100 4 100 4		(5 (5 9 (5 (5	12 <10 37 <10 		2.67 6.08 6.57	4.5 3.1 5.2 5.8 6.0	4 <1 <1 <1	<5 <5 <5 <5 <5		5200 4400 5410	<50 <50 <50 <50 <50	- 33 42 50	17 -2.3 3.2 3.1 	15 11	<pre> <5 < <5 <</pre>	0.01 0.01 0.01 0.01 0.01 0.01	

L.

19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	Acti	vat	ion	La	bor	atc	orie	es L	_td	-	Wor	k C	rde	r:	409	91	Rep	POT	t: 4	108	1	
Sample description	AU PPB	ag —PFM—	AS PFM	ea PPM	BR PPM	CA *	CO PPM	CR - PPM	CS 	FE ¥	hf fpm	HG P PM	IR PPB	MO PPM	na PPM	NI - PPM-	re 	SB PFM	SC - PPM	SE PPM	SN ¥	
RX 051524 RX 051525 RX 051526 RX 051527	35 19 952 69	<5 <5 47 <5	6 25 4	1200 2000 4000 2300	13 6 (1 15	2 2 2 (1	<5 <5 25 <5	11 33 22 14	<2 <2	6.71 3.28 12.1 9.28	5.5 4.4 6.0 3.4	<1 <1 26 <1	(5 (5 (5 (5	<5 55	14400 20500 8390 11100	<50 <50 <50 <50 <50	<30	3.0 0.4 25 4.8	9.2 9.2	< \s \square \squar	<0.01 <0.01 <0.02 <0.01	
																				an an an		
- 1 <u>9 - 19 - 19 - 19 - 19 - 19 - 19 - 19</u>																						
								ς.			-w						·					
											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
																·	- <u> </u>					
	 .		-				<u>_</u>															

	Acti	vat	ion	La	bor	ato	rie	s L	.td.		Wor	·k (Orde	er :	4091	Report:	4081
ample description	SR #	ta — PPM —	th 	U - PPN	¥ PPh	ZN - PPM	la - PPH	ce - Pfn	ND PPh	SM PPM	eu - PPM-	tb PPM	yb Ppm				
RX 046873	<0.05			<Ø.5	<4	<50 170	2	3	< <u>5</u>	0.3	<0.2 0.9		0.10 1.93		30.00 30.00		
IX 046874 IX 046875	(0.05 (0.05	<1 <1	3.9 1.8	2.8 2.0	<4 <4	172 376	- 14 - 9	19 23	6. 8	2.0 2.4	v.5 1.0				30.00 30.00		
X 046876	0.10	ä	5.8	5.0	₹4	624	29	50	13	3.8	1.4	<0.5	2.40	0.44	30.00		
X 046877	<u> </u>	{1-	3.3	1.8		- (50	-12-	- 20-	8	-1.9	0.6	(0.5	-1.82	0.34	-39.00		<u> </u>
RX 046878	<0.05	1	1.5	4.8	<4	<50	2	5	⟨5	0.3	(0.2	(0.5	0.64	0.13	30.00		
X 046879	<0.05	<ī.	2.1	1.4	₹4	130	9	17	10	1.9			2.08		39.00	· · ·	
X 046880	<0.05	4		<0.5		103	5	12	6	0.9	0.4			0.17 A 55	30.00 30.00		
1X 046881 1X 046882	(0.05 (0.05_	1 (1_	1.4	<0.5 <u>-3.2</u> -	<4 {4	130 149	11 14	25 	9 9_	3.4 <u>-2.0</u> -	1.4 0.6 -				-30.00		
		•-							_								
X 045883	<0.05			(0.5		近的的) 513	19 19	37	10	2.7	1.8 0.4		2.20		30.00 30.00		
X 046884 X 051501	<0.05 <0.05	<1 <1	5.4 5.0	1.9 4.2	- (4 - (4	612 520	18	- 42 28	9	2.5	0.4 0.8			0.51	30.00		
X 051502	(0.05		11	9.9		1870	48	89	37	8.6	3.0	1.3	2.79	0.48	30.00		
<u> </u>			2.9	-2.1-		377	-13-	23	7_	2.5	_0.8-	. (0 .5	-2.10	0.42	- 30 . 00		
X 051504	(0.05	(1	0.8	(0.5	{ 4	160	10	22	11	3.1	1.3	(0.5	2.84	0.51	30.00		
X 051505	<0.05	<1	(0.5 -	<0.5		<50	4 -	12	<5 -	1.3			1.60		30.00		κ.
X 051506	(0.05 (0.05			<0.5 (0.7	{4	60 1500	3	10	<5	1.0		(0.5 (0.5	1.14	0.22 0.40			
IX 051507 I X 051508	<0.05 {0.05_	<1 - 71		<0.7 ≺0.5_	{ 4 	1500 	6 21	14 42	/9	1.5	1.0 	(0.5 - (0.5			30.00 		
R 901000		**	V.V	10.0	17			- 1 6									
IX 051509	<0.05		16	5.2	{4	200	59	110	38		1.5	1.5	4.75 a oc	0.84 0.00	30.09 20.00		
X 051510 X 051511	<0.05 <0.05			(0.5 (0.5	<4 <4	<50 1340	3 - 9	5 17	<5 - 6.	0.5 1.8	<0.2 1.0	<0.5 <0.5	0.35 1.70	0.08 0.33	30.00 30.00	u.	
X 051511	(0.05			<0.5		1760	13	23	9	2.7	1.0	<0.5	2.35	0.43	30.00		
X 051513	(0.05	(1	2.4	(0.5		170	-11	20	-12	2.1	. 7	(0.5 -	1.90	0.31			
X 051514	(0.05	(1	2.0	(0.5	∢4	260	8	12	9.	2.3	1.1	0.6	2.32	0.42	. 30.00		
X 051515	(0 .05	2	3.1	i3	<4.7	3400	15	17	9	1.3	1.1	<0.5	2.60	0.39	30.09		
X 051516	<0.05	(1		3.1		2670	20	40	15	3.6	1.2				30.00		
IX 051517 I X 051518	<0.07 	(1 (1	2.8			4000 9100	13 14	16 	/ 7	1.8					_ 30.09 _ _ 30.09		
X 051519	(0.05 (0.05		4.9		<4 74		18	38	12	3.0	1.0				30.00 20.00		
IX 051520 IX 051521	(0.05 (0.05	1	4.6 6.0	2. 4 3.3	<4 <4	771 851	15 21	27 42	6 16	2.1 3.6				9.41 0.57	30.00 30.00	1.1 A.	
X 051522	<0.05	-	7.4	2.1		1420	20	42	13	3.4	1.1	0.6	3.18	0.59	30.00		
X 051523	(0.05	-(1-	7.1	2.9	6	_168	21	45		3.5	1.0	<u> (0.5</u>	3.24	0.61	39.69		

	Acti	vat	ior	n La	bot	ato	orie	es i	.td.	•	Woi	-k (Orde	≥r:	4091	Report:	4081
Sample description	SR ¥		Th PPM	U PPM	₩ 	ZN PPM	la - PPM	CE FPM	ND FPM	sm PPM	eu 	tb ppn-	YB 	LU FFh	Mass g		
XX 051524 XX 051525 XX 051526 XX 051527	<0.05 <0.05 <0.05 <0.05 <0.05	(1 (1 (1 (1	7.3 6.7 3.4 3.9	4.0 3.2 19 2.2	<4 -	294 193 54100 1090	22 19 16 14	44 40 21 31	18 12 9 12	3.9 2.9 1.3 2.9	1.1 1.0 0.9 1.0	(0.5	2.21 1.46	0.39 0.33	30.00 30.00 30.00 30.00 30.00		
	<u></u>									· •							
					a 0.a		15.860100 ALLO 110	e i i i i i i i				a 1994 a 1994 a 1		·			
										•						1.2.1.1	
	.,	* • • • •		1998 - 9039-0 Marine - 1993		,					1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	GIN 100 1			ng nagawaran ing ing adalah di ditabaharan rina		
	<u>1.</u>									۱.							
						an a					an e name e champana a na anna h	Q	andar over a fordalen i se i ove				
										4					ц.		
													·				
n	- 	. 5 6 6 6 1 196 - 501	1	ay and a star and a star at					a ka sanan awaranga ka	•				93090000	gge o plant a portra de Magnatter de Haa		na ann an ann an ann ann ann ann ann an
																	·
							_		_								
e saan ee			•••					8 8 ° N	w			·					
										-							<u></u>
. *																	

States and the second s

Next the second state of t

بهارك ومركبتهم فيستحسب

ىرىن ئۇيو كىرىمەر بەر مەرەپ بەرە بەرە مەرە بىرەنچىرىيەر بەرەپ ئەرەپ بەرەپ بەرىيىتىنى ، ئىرغۇر بەرەپ بەرەپ بەرەپ

ACME A	NALYT	ICA.	LL	ABOF	ATO	RIE	s l'	TD.		852	E.	HAF	STIN	(G S	ST .	VAN	COUT	VER	B.C	• •	76A	1R6		P	HON	E(6f	14)7	:53-	-3158	j P	AX (/	604)25?	3-17	/1/
AA											GE(JCH	emi	:CA	l an	IAL!	/81	8 (:ERT	! IF]	ICA'	TE											Í	Ă/	Á
									Inco	· Ey	(D]	28 6	Te	•ch	. 87	≥rv'	LCe	, s	Fil	⊥e '	# 9	2-1	54	4									188 – T	^7	C
	(revuoa							DENNI													
4PLE#	Mo	Cu	Pb	Zn	Ag	r N1	Co	o Mn	n Fe	As	U	Au	Th	Sr	Cď	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	A۱	1 Na	a K	< W	Zr	Sn	Y	Nb	Be	• !
	ppm				-	•					ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	%	%	ppm	ppm	_		*	. %	* *	% %	% ppm	ppm	ppm	ррт	ppm	ppm	n p
046885	85	12488	3319	32759	39.3	3 15	57	/ 603	3 18.42	5	5	ND	1	31	234.1	2	40	92	1.22	.059	2	16	1.04	33	. 26	3.67		2 1.06				15			7 10
046886	18	118	38	718	1.0	50	10	0 645	53.88	4	5	ND	1	132	10.2	9	10	395	3.26	.051	19		-	144								29	1		1 1
046887	33	95	7	1861	1.1	113	12	2432	2 3.43	17	10	ND	1	306	29.9	15	-		14.59				7.50			3.81						21	1		1
046888	17	118	58	1274	. 6	30	3	173	3 1.83	4	5	ND	17	140	16.8	6	-		1.48		13			1105							_		3		4
046889	6	40	96	98	.2	2 10	9	291	1.70	4	5	ND	4	252	. 3	2	2	37	2.97	.085	17	8	. 55	578	.11	8.15	3.31	1.45	52	68	1	15	1	1	1 1
046890	1	140	51	186	.8	3 14	9	9 251	3.24	4	5	ND	4	169	1.1	2	7	93									1 2.91			•		20			1 1
46891	8	41	65	38	.7	' 1	1	1 127	2.78	4	5	ND	3	111	.2	2	5	30	1.79								9 3.58				1	5	1	-	-
46892	1	61	4	111	.8	43	53	3 2165	10.77	4	5	ND	1	287	.2	2		369	6.02							7.68					1	39	1	1	
46893	1	2	18	15	.2	: 1	1	1 853	.94	4	5	ND	1	94	.2	3	2	10		.023			. 18			6.50				-	1	4	9	-	
046894	1	14	26	66	.2	! 1	2	2 952	1.81	4	5	ND	1	75	.2	2	2	17	. 44	. 020	4	2	. 38	1136	.15	6.59	2.27	2.47	7 3	12	1	3	12	2	
046895	10	93	33	57	.9	15	21	1 202	5.81	9	5	ND	1	72	.2	2	-	316	.26 .		3		1.17			12.21				1	1	1	1	1	
04689 6	2	108	18	181	.9	21	32	2 1809	7.13	4	5	ND	1	215	.2	4	-		2.01 .				5.16			8.71				-	1	8	1	1	
046897	1	62	14	139	.2	23		3 2344		6	5	ND	-		.2	2	-		6.19 .		12										2	38	1	1	
051528	6	143	6	176	2.3	104	46	5 447	6.15	4	5	ND			.2	2			3.18		÷.	167 1				3.67					2	49	1	1	
051529	1	80	27	68	.6	19	26	962	6.40	15	5	ND	4	439	.5	2	3	198	2.73 .	.087	16	24 2	2.04	1092	. 59	9.02	2.02	1.42	2 2	14	2	16	3	1	
051530	15	110			• •	-	-	9 141		4	6	ND	2	51	.2	2	4	21		.046		-						8 2.49		9	2	4	2	1	
051531	26	95							16.58	6	5	ND	1	78	.2	2	2	22		.026			.72			2.35				_	1	3	1	5	
051532	2				. –		-			4	5	ND	-		.2	2	3		1.55		7		.28				9 3.17				1	2	5	-	
051551	2	31	26								5	ND		101	.2	3	2		1.71		-		1.93			6.44				_	1	4	1		
RX 051529	91	71	21	63	1.0	23	27	7 993	6.71	9	6	ND	6	437	.2	7	2	202	2.84 .	.089	19	24 2	2.11	831	. 58	9.43	2.00	1.42	2	12	Ŧ	17	د	1	
051552	1	79	4	110				5 2086		9	5	ND			.2	2	-				14	-				7.66					1	34	1	1	-
051553	1	41	5					3 1655		5	5	ND		355	.3	2					5	71 3				9.66				3	1	20	1	1	
051554	1	-	279		1.0			250		10	11	ND			.5	11	2		3.25 .					2244			4 3.43				1	18	1	-	
051555	5		105			-	-	-		16	5	ND		-	.2	2	4		1.08 .		6		. 33							-	2	7	1	-	
051556	2	45	127	56	.6	5	Э	3 204	. 82	4	5	ND	1	750	.4	2	. 2	13	2.51 .	.014	7	1	. 17	557	.03	7.85	3.93	1.24	4 2	6	1	3	T	1	
051557	4	210	84	293	1.6	73	17	198	3.32	10	5	ND	4	154	2.6	6	2	107	2.68.	.073	26	19	. 17	357	.21	8.28	3.50	2.54	L 5	62	1	23	1	1	
ANDARD HEC		64	-		7.4			5 1183			21	7	36			17	21		.51 .			-	1.00		. 08	2.01	09	17	11	4	17	7	2	1	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 10ML HCLO4-HNO3-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM. AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCLO4 FUMING. - SAMPLE TYPE: ROCK/CORE Samples beginning 'RE' are duplicate samples.

Mme 29/92

DATE RECEIVED: JUN 22 1992 DATE REPORT MAILED:

.

ACME ANALYTICAL LA	BORATORIES	LTD.		852	e. H	ASTI]	NGS	ST.	VAN	couv	ER B	.c.	V6A	1R6		PH	one (604)	253-3158	FAX (604	253-171	6
						WHC	DLE	ROC	K I	CP:	ANA	lys:	IS								AA	
]	Inco	EX	ol. Burrar	<u>8 T</u>	ech.	. 8e	rvi	. <u>Ces</u>	F	ile	# 9	2-1	544	UME						
	a.umi 5.8								3336553		<u></u>					nne Y	Nb	LOI	SUM			
	SAMPLE#	\$102	X1203 %	Fe203 %		СаО %			1102 %		***** *	۲205 %	Ba ppm		ppm			<u>x</u>	%			
*** •= • • • •	RX 046885	29.19	7.02	29.02	1.79	1.96	.49	1.46	.50	.62	.08	.002	21163	206	59	16	5	16.3	92.06			
	RX 046886	76.36	6.34	4.94	2.48	4.74	.43	.43	.37	.12	.08	.010	4775		70	28	5	2.6	99.74			
	RX 046887	53.18	7.53	4.06	12.03	19.77	.13	.05	.24	.07	.28	.002	382	319	54	17	5	2.2	99.60			
	RX 046888	80.63	8.59	2.71	.26	2.23	2.05	.74	.10	.12	.02	.005	1541	145	66	70	5	1.9	99.65			
	RX 046889	65.51	17.18	2.63	.76	4.76	4.62	1.75	.64	.14	.04	.002	2686	294	287	24	13	1.4	99.97			
	RX 046890	64.81	16.27	4.38	.36	4.86	4.02	2.07	.66	.11	.04	.002	1648	191	271	26	11	2.0	99.92			
	RX 046891	69.98													260				100.00			
	RX 046892	48.57												298	117	36		.7	99.88			
	RX 046893	76.84	13.96	1.08	.19	.91	3.02	2.39	.09	.01	.13	.006	809	115	23	9	14	1.2	99.97			
	RX 046894	73.33	14.39	2.84	.58	.81	3.01	2.85	.21	.02	.17	.002		96	39	12	19	1.5	99.95			
	RX 046895	53.40	25.81	8.61	2.15	.46	1.84	5.40	1.35	.06	.03	.002	2080	99	196	16	5	.4	99.91			
	RX 046896	51.45	16.11	9.70	7.85	2.86	2.35	2.44	.85	.21	.21	.002	771	225	58	18	5	5.7	99.90			
	RX 046897	52.52	14.67	13.17	5.11	8.69	1.83	-44	1.81	.30	.28	.002	409	347	125	36	5	.9	99.85			
	RX 051528	70.44	6.36	7.39	1.99	4.35	1.22	.14	.77	1.09	.05	.023	172	149	84	41	5	6.0	99.89			
	RX 051529	55.23	18.94	9.50	2.88	3.99	2.77	1.69	.87	.22	.13	.009	1750	459	128	21	5	3.3	99.90			
	DV 051570	77.14	0.67	7 27			/9	2 00	11	05	60	002	1760	60	108	18	6	45	99.97			
	RX 051530	73.46	9.73 (EO	25 20	.00		.40	2.77	- 441	.05 05	A2	002	962	00	40	8	5	12.2				
	RX 051531	54.22								.05			1768			9		.5	99.93			
	RX 051532	75.03	13 19	-14 7 34	.31	5.00	4.UY	4 17	. 10	.01	-04	.004	517	100	108	19		5.2	99.99			
	RX 051551	70.98	19 04	2.21	2.3/	2.41	2 77	1 4 4 9	.32	.03							-	3.2	99.88			
	RE RX 051529	122.12	10.90	y.24	2.00	3.73	2.13	1.00	.02	. 22	. 16	.002	110/	437		66		J.6	77.00			
	RX 051552	51.52	14.66	12.92	5.52	9.29	2.26	.50	1.65	.26	.23	.006	248	321	120	33			99.92			

.200 GRAN SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBO2 AND ARE DISSOLVED IN 100 MLS 5% HNO3. - SAMPLE TYPE: ROCK/CORE <u>Samples beginning 'RE' are duplicate samples.</u>

.59

.27 4.65 4.58 2.23 .67 .21 .03

.13 3.59 5.31 1.52 .11 .08 .03

.16 3.75 4.64 2.98

.89 1.56 1.30 2.02

.15

.21 .02

.48 1.59 2.82 4.00 .80 .24 .02 .002 7422 233

.54 .20

. 19

.08

.008

.002

.003

.008

67 382 149

263

57

.002 3168 184 282

612 858

1416 167 275

810 190 319

22

26

34

26

22

6

5.4

5.4

9.9

10 3.5

5 1.2

11 10.4

99.92

99.94

99.98

99.98

99.86

99.52

48.40 19.57 9.90 5.46 11.67 2.58 .37 1.14

66.73 17.69 1.38

63.56 17.25 4.39

65.50 16.36 4.15

68.97 10.07 3.27

.87

71.70 16.03

RX 051553

RX 051554

RX 051555

RX 051556

RX 051557

STANDARD SO-4

	Acti	ivat	io	n La	abor	ato	orie	es L	.td.		Wor	k C	rde	? r:	413	36	Re	9PO1	rt:	411	2
Sample description	au PPB-	AG PPM	as PPM	BA PPM_	er PPM	CA ¥	CO FFM	CR PFM	CS PPM	FE ¥	hf ppm	HG PPM	IR PPB	ho PFM	MA FFM_	NI PEM	RE PPM	SB PPA	SC FPM	SE PF#	SN X
RX 046885 RX 046886	406 11	44 <5	3	15000 3600	3 (1	2 4	44 7	17 41		3.39	5 2.4	18 <1	<5 <5	59 8	3080	(50 53	(30 (30	22 3.6	12 13	25	(0.02 (0.01
RX 046887 RX 046888 RX 046889	5 12 7	<5 <5 {5	27 4 3_	260 1100 1900	(1 (1 (1	16 2 3	8 <5 7	31 15 12	<2	2.74 1.61 <mark>1.61</mark>	1.7 5.2 7.4	(1 (1 (1	<5 <5 <5		813 14600 32600	110 <50 (50	(30 (30 (30	3.8 3.5 0.5	7.7 2.6 11	13 -	(0.01 (0.01 (0.01
RX 046890 RX 046891 RX 046892	5 6 (5	<5 <5 <5	5 2 3	1200 470 180	<1 2 <1	4 2 7	8 (5 35	24 (10 68		3.18 2.42 3.43	7.1 5.8 4	<1 (1 (1	⟨5 ⟨5 ⟨5	<\$.	30500 33600 15100	<50 (50 (50	31 (30 (30	0.4 0.3 0.5	14 - 6.6 45	<5 ∢	(0.01 (0.01 (0.01
RX 046893 RX 046894	⟨\$ {\$	(5 (5	<2 (2	610 990	<î {1	(i {1	(5 (5	<10 _<10		99	1.8 	(i (1	<5 <5	(5)	21800 22800	(50 (50	62 	<0.2 0.2	2.2	<5 <	0.01 0.01 0.01
RX 046895 RX 046896 RX 046897 RX 051528 RX 051529	⟨5 ⟨5 ⟨5 ⟨5 €	<5 <5 <5 <5 <5	<2 <2 <2 5 <2	1300 570 350 160 630	<1 <1 <1 <1 <1	(1 2 7 3 1	14 22 34 30 10	34 18 51 140 13		5.70).81 5.19	4 2.5 5 2.3 1.7	<1 <1 <1 <1 <1	<5 <5 <5 <5	<5 <5 ∶ <5	11400 18000 14600 9060 10300	<50 62 <50 95 <50	53 57 (30 (30 (30	0.2 0.4	39 28 49 12 14	<5 < <5 < <5 < 13 < <5 <	0.01 0.01 0.01
RX 051530 RX 051531 RX 051532 RX 051551 RX 051552	<5 18 <5 <5 <5	⟨5 ⟨5 ⟨5 ⟨5 ⟨ 5	4 6 (2 (2 (2)	2000 210 1400 410 230	<[] <[] <[] <[] <[] <[] <[] <[] <[] <[]	<1 (1 2 2 	15 45 ∢5 6 39	13 15 (10) (10 89	(2 10) (2 18 (2 0) (2 2 (2 9) (2 9)	.5 .61 .30	8 1.7 3.1 4.5 4	(1 (1 (1 (1	(5 (5 (5 (5 (5	11 (53) (51	7050 5770 31800 13400 17300	<50 <50 <50 <50 <50	(30 39 (30	(0.2 (0.2 0.3	19 4.7 2.5 8.9 48	<5 < 17 < <5 < < <u>5</u> <	0.01 0.01 0.01
RX 051553 RX 051554 RX 051555 RX 051556 RX 051557	<5 <5 <5 <5 <7	(5 (5 (5 (5	<2 20 <2	<100 2500 5700 430 1100	<1 (1 (1 (1 (1	9 4 3 3	30 7 11 <5 _13	93 23 (10 (10 22	(2 1 (2 3 (2 9	.00 .26 .19 .78 .23	3 7.9 7.6 2.5 7.5	(1 (1 (1 (1	(5 (5 (5 (5	<pre><5 3 <5 2 <5 3 </pre>	89 4 00 85000 89300 89300 19900	<50 <50 <50 <50 <50 - 81	<30 75 <30	0.7 1.3 (0.2	35 14 16 2.4 13	<5 () (5 () (5 () (5 () (5 ()	0.01 0.01 0.01

٩...

	Acti	ivat	tion	n La	boı	ato	rie	s L	.td.		Woi	rk (Ord	er:	4136	Report:	4112
Sample description	SR ¥	ta ppm_	Th PPM	U PFM	ų PFM	ZN PPM	LA PPM	ce FFM	ND PFM	Sh PPH	EU FFM	te PFM			Mass g		
046885 046886	<0.05 <0.05	<i (1)</i 	1.8 2.6	<0.5 4.1	<4 <4	39300 678	15 19	20 27	19 14	2.2 3.1	1.1		1.42	0.35 0.54			
X 046687	<0.05	<1	2.6	6.0	<4	1960	11	19	8	2.0	1.2	<0.5	2.04	0.34	30.00		
X 046888 X 046889	<0.05 	2	21 8.6	10 19		1180 104	13 25	25 54	12 20	4.3	0.8 1.5	1.3 <u>1.0</u>		1.54 - 0.69	30.00 30.00		
X 046830	<0.05	(1	7.7	4.0	<4	199	24	48	16	4.3					30.00		
X 046891 X 046892	<0.05 <0.05	(1 (1	6.6 2.1	6.2 1.8	<4 (4	<50 160	20 14	40 29	14 13	2.5 4.7	1.0 2.0	<0.5 1.1	2.75 4.95		30.00 30.00		
X 046893	<0.05	2	0.9	1.3	<4	57	4	10	⟨5	1.2	0.2	(0.5	1.41	0.21	30.00		
X 046894		2_	1.8	3.7		124	6	13	- (5	1.5	0.2	(0.5	1.58	0.24	_30_00		
RX 046895	(0.05	<1	2.2		⟨4	<50	15	32	13	3.5	1.0		2.41		30.00		
X 045896	(0.05 70.05		1.9	(0.5 70 F	< 4	225	10	24	12	2.9	1.0			0.48 a oo			
X 046897 X 051528	(0.05 (0.05	{1 (1	3.7 3.3		<4 <4	199 192	18 33	37 41	17 23	5.1 5.2	2.1 1.6		5.66 4.90		30.00 30.00		
X-051529	<0.05_		3.5				_11		7	1.8					30.00	·	
X 051530	<0.05	(1	11	3.8	⟨4	113	42	85	31	6.5	1.3	1.0	6.35	0.99	30.00		
X 051531	(0.05	<1	2.2	1.3	<4	310	8	16	5	1.4	Ø.5	(0.5	1.17	0.19	30.00		
X 051532	0.07		5.8	3.9	<4	105	14	25	7	1.5	0.6	<0.5		0.26	30.00 30.00		
X 051551 X 051552	<0.05 0.08	<1 {1	6.0 3.1	2.3 -{0-5	5 {4	66 209	29 16	57 31	21 16	4.1	1.5 2.0_	0.6 -1.1-			30.00 _30.00		
	7: 7 5						10		10	4.4	E:0-						
X 051553	(0.05	(1		<0.5	4	171	7	15	7	2.8	1.4	(0.5		0.47	30.00		
X 051554 X 051555	<0.05 <0.05	1 <1	9.2 7.5	6.7 6.0	<4 <4	147 74	32 28	64 58	22 22	5.2 5.2	1.4 2.0	1.1 1.0	4.45 4.31	0.69 0.25	30.00 30.00		
x 051556	0.11	$\langle 1 \rangle$	2.8	в.е 1.3	\4 {≰	74 59	12		- <u>1</u> 2 6	5.2 1.0		(0.5		0.14	30.00		
X 051557	(0.05		9.0		{4			7ø	-								·

المارين المركو بحرافها بعواليم لأمالا بعاليتهم

. ___

5

4

í._..

1.14

. . *

and the second secon

										G	EOC	HE	MIC	AL	ANZ	ILXE	BIB	CE	RE	IFI	CAT	E												
							In		Exp								2010/01/2012				-16			Pag	je	1								
								20		000 1	urra	ra s	•••	anco	uver	BC V60	. 280)))		Lieu	by: I	/C.N.N.1		JUNE C					<u></u>		<u></u>			
AMPLE#	Mo ppm	Cu popra	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	F∙ %	As ppm	U ppm ·	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	B1 ppm	V mqq	Ca %	Р %		Cr ppm	Mg X	8a ppm	T1 %	A1 %		ь к К %		2r ppm	Sn ppm	Y ppm	Nb ppm	Be ppm
		81	648	1315	3.9	3	7	339	3.48	12	5	ND	6	143	2.0	6	2	50	1.56	.076	10	5	. 42	123	. 39	7.61	1.9	3 2.97	15	24	1	10	1	1 1
X 046898 X 046899	2	98	147	424	.9	16	•	1167	5.49	5	5	ND	Ĵ	496	.2	2		211			8			1427				5 2.00	2	5	2	16	2	12
X 046900	5	155	1482	-	33.4	4			4.61	184	5	ND	4	48	4.B	57	6	24	.55	.059	7	31	. 31	68	. 33	6.97	. 37	3.32	3	86	1	12	5	1 1
X 051533	1	304	62	327	.7	25	18	1473	9.32	4	5	ND	13	293	.2	3	2	130	1.10	.049	29	6	. 68	595	. 43	6.93	3.00	2.46	2	36	1	10	10	1 1
X 051534	39	1828	1208	6236	24.5	9	2	177	2.51	4	5	ND	5	27	45.8	48	5	25	.11	.005	21	9	. 34	273	. 18	4.20	.28	3 1.99	23	39	1	4	2	1
X 051535	6	3665	828	995	7.7	10	12	192	3.05	4	5	ND	4	166	7.3	5	2	24	.97	.019	7	45	. 18	142	. 12	7.01	2.13	2 3.63	5	19	1	4	1	1
X 051536	30	4405	25935	49830	212.2	9	1	424	1.91	20	5	ND	1	103	444.4	719	9	25	1.97	.006	2	1	. 14	285	.11	3.61	. 32	2 .48	18	19	1	6	1	1
X 051537	91	4535	7576	58641	34.2	18	2	555	3.59	4	6	ND	4	83	506.2	37	11	24	.74	.075	3	1	. 14	96				3.27	20	17	1	6	4	1
X 051538	9	495	162	916	2.9	18	11	423	3.12	4	5	ND	7	187	4.6	2	2		1.77		15	39	.75	154				1.08	2	39	1	7	1	1 1
X 051539	3	340	89	220	.8	13	32	458	10.47	4	5	ND	2	110	1.1	2	2	163	.99	. 112	4	6	1.99	70	. 17	6.42	1.5	1.23	2	1	1	6	1	1 2
X 051540	2051	2277	82	383	3.9	50	95	2508	9.74	4	5	6	3	358	2.8	2	2	182	9.23	. 144	9	12	2.00	183		7.73			2	6	1	18	1	1 1
X 051541	114	855	98	837	2.4	140	20	2374	5.57	5	7	ND		243	10.3	8		223					1.15					.23	5	10	1	36	3	1 1
K 051542	2	153	23	174	. 6	36		710		6	5	ND	3	145	.2	9	2		1.15		7		5.48	418				5 1.49	2 7	1	1	4	1	13
051543	33	483	46		.В	5			5.01	4	5	ND	5	59	12.3	2	3	27 22	.51		12 9		1.26	70 75				2.32	2	12 14	1	4	3	1
051544	23	346	33	194	.6	3	10	247	5.11	4	5	ND	3	70	. 2	۲	2	22	. 30	.043	3		1.04	/3	. 24	5.00			-	• •	•	-		•
X 051545	11	17	16	53	.2	1	5	102	3.02	4	5	ND	5	23	.2	2	2	9	.06	.024	9	2	.62	110	.21	3.86	.16	3.76	2	28	1	5	5	1.
X 051546	12	53	21	91	.6	6	11	193	2.81	4	5	ND	3	50	.8	2	2	129	.49	.073	7	6	.71	677	.44	6.87	.85	5 4.00	7	5	1	4	1	1 1
X 051547	20	1233	1871	5579	9.1	6	6	473	5.74	4	5	ND		101	21.0	2	2		2.20		5			188				1.72	3	44	1	11	1	1 10
X 051548	5	163	48	372	2.8	279			5.05	4	5	ND	4	248	.6	2		323					4.46			6.18			2	11	1	39	1 2	1 30
X 051549	25	88	22	696	1.6	72	6	366	2.60	8	5	ND	3	101	21.0	8	5	593	1.68	.077	17	85	1.38	113	. 14	2.96	.7	.70	2	30	I	22	2	1 4
C 051550	10	225	23	45	.6	27	33	91	3.05	4	5	ND	1	Э	.2	3	2	11	.05	. 001	2	106	.05	109	.01	.15	. 02	.03	2	1	1	1	1	1
051558	5	115	19	49	1.8	52	16	316	2.93	4	5	ND	3	433	2.3	2	4	137	3.43	.067	11	44	1.40	1237	. 36	8.20	4.45	5 1.68	2	10	1	14	1	1 10
X 051601	116	0609	4283	13181	27.9	54	18	513	17.51	9	5	ND	1	25	83.8	2	19		1.21		2		1.73	74		4.00		1.31	13	34	5	11	1	3
X 051602		7286	1688	2116	42.2	21		259		4	5	ND	4	34	16.5	5	39		.59		5		2.45	37		4.47		1.29	3	35	2	4	1	1 3
K 051603	6	2517	301	584	3.4	28	12	265	6.12	4	5	ND	2	72	1.9	2	6	44	1.32	.056	9	31	1.32	64	.23	4.88	.85	1.46	2	20	1	6	1	1 1
051604	4 :	2660	7738	3384	96.3	29	17	385	6.72	4	5	ND	3	98	17.2	13	147	52	1.38	.073	9	26	4.60	374	.25	6.58	1.33	2.46	2	58	1	5	1	1 1
051605	38 9	99999	4884	31372	98.2	26	9	463	13.39	4	5	ND	1	42	236.8	2	77	63 :	1.03	. 141	2		1.69	100				1.26	2	25	1	7	1	3 1
051606	51 3	6721	4501	17723	30.3	35	15	599		4	5	ND	1		115.1	2	36		1.41 .		2			117				1.43	3	20	1	8	1	1 1
051607	1	3707	387	537	3.1	18	-	397		4	5	ND	3	96	.2	2	5		1.14		9		2.06	153				2.39	2	15	1	5	1	1 1:
051608	6	2105	250	334	4.0	25	8	239	5.31	4	5	ND	3	61	.6	2	2	39	.95	.043	8	79	1.11	51	.23	4.48	.74	1.85	2	15	1	5	1	1 9
051609	2	7164	3860	2373	52.3	16	10	396	6.19	4	5	ND	4	68	8.5	4	75	47	.87	.062	12							2.10	2	34	1	5	1	1 9
051610	5	7573		6261		28			7.31	4	5	ND	3		22.6	2	57				17							3.39	2	44	1	8	1	1 12
051611		5858		40523		51		413		4	5	ND	1		276.7	2	38		01 .		2		1.40					1.19	2	25	2	9	1	2 7
051612		1574			5.5	22		296		4	6	ND	3	48	.2	2	15		.81 .		5		1.89					1.86	2	18 18	1	4 5	1	1 10
RX 051608	7	2155	268	355	4.2	26	7	234	5.36	4	5	ND	1	60	.6	2	4	4U	.95 .	.042	6	80	1.09	62	. 23	4.58	./3	1.79	2	10	1	5	•	
051613	57 1	6479	3851	32888	16.4	43	19	619	16.99	4	6	ND	1		207.2	2	40		01 .		2		2.07					1.40	2	32	4	11	1	18
051614		9297	F	31294		32	-		14.65	4	5	ND	1		85.6	2	2	20	.97 .	100	2		1.27	07	26	2 70	60	1.25	2	18	2	11	1	1 10

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 10ML HCL04-HN03-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LED IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM. AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCL04 FUMING.

- SAMPLE TYPE: ROCK <u>Samples beginning 'RE' are duplicate samples.</u>

-

££

Inco Expl. & Tech. Services FILE # 92-1642

Page 2

ACHE ANALYTICAL																																			CHE A	MALYTICAL
SAMPLE	Мо	Cu	n Pb) Zn	Ag	N1	Св	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bſ	v	Ca	P	La	Cr	· Mç	а В.	a T	1	A1	Na	к	W	Zr	Sn	Y	Nb	E	Be Sc
	ppm	ррп	ppn	ı ppm	ppm	ррт	ppm	ppm	۲.	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	۲.	%	ppm	рра	7	6 pp	n	*	%	*	*	ppm	ppm	ppm	ppm	ppm	PP	pm ppm
RX 051615	99	41277	4763	28839	75.5	38	14	576	15.55	4	5	ND	1	28	179.0	5	2	53	1.13	. 092	2	10	1.16	3 12	3.2	03.	52	.73	1.20	27	21	5	12	2		4 7.4
RX 051616				6845					11.07	4	5	ND	1	66	38.3	2	47	48	1.40	.061	2	51	1.36	5 9	1.1	65.	18 1	.06	1.24	13	20	3	6	1		1 8.2
RX 051617				26094			-		13.48	4	5	ND	1	36	162.0	2	6	55	1.24	.087	2	51	1.49	7	3.2	1 4.	07	.89	1.15	19	21	4	8	2		3 9.2
RX 051618		197			2.4				9.30	4	5	ND	6	356		2	2		7.40		7	49	3.20	28	3.9	6 8.	62 1	.01	.69	2	1	1	28	1		1 36.1
RX 051619	6		-		1.3				7.70		5	ND	2	92		2	-	187	.67		5	11	2.94	61						2	1	1	3	1		1 21.5
																														_		_	_			
RX 051620	38	2235	2871	41704	9.9	16	2	539	3.83	7	5	ND	1	115	316.8	9	2		.62		2		.21							6		1	6	4		1 3.8
RX 051621	8	1865	i 789	1194	7.7	24	7	482	5.96	4	5	ND	6	96	5.2	4	4	58	1.12	.040	5		. 56		2.2					3		1	5	8		1 8.1
RX 051622	8	153	171	1026	1.6	18	7	1106	4.49	4	5	ND	15	249	2.0	2	2	127	3.24	.168	33	2	1.60) 1463	-				2.37	2		1	17	21		1 8.9
RX 051623	29	173	42	373	1.5	183	12	374	3.51	1184	8	ND	12	191	1.6	2	2	729	1.97	.069	25	292	.84	134	.2	77.	30 1	. 89	2.04	2	48	1	12	1		2 14.5
RX 051624	50	350	177	2243	3.9	177	16	2449	7.38	20	5	ND	13	149	25.7	4	2	200	7.03	.052	30	252	.86	12	5.3	0 5.0	61	. 31	.21	6	22	3	55	3		1 11.6
RX 051625	1	81	4	201	1.7	14	42	2122	11.18	4	5	ND	9	395	.2	2	2	420	6.26	. 148	19	z	2.73	22	1.4	87.	25 1	. 86	1.17	2	4	1	38	1		1 44.4
RX 051625	3					4			1.31	4	5	ND	6	134		10	2				10	29	. 37	100	5.1	7 4.3	74 3	.02	3.02	4	11	1	4	1		1 2.7
RX 051627	-		+	21654		61	-		15.01	7	5	ND	1		138.9	2	-	113			2	62	1.92	5	5.4	0 3.4	44	.71	1.01	9	3	3	11	1		3 13.7
RX 051628				43635		33	-		19.31	12	8	ND	1		292.3	3	2		.94		2		.43		2.1					13	5	6	8	1		1 4.6
RX 051629				12800		17			12.47	4	5	ND	1		80.2	3	6		1.50		2			29!						7	7	1	9	1		1 7.2
RA 051625	03	32/13	0737	12000	51.0	47	14	504	12.47	-	•		-	00		-	•	••			-															
RX 051630	26	1136	232	748	1.9	15	19	771	5.33	4	5	ND	4	227	3.6	2	2	130	2.26	.072	13		2.56						1.99	2		1	12	1		1 19.7
RX 051631	109	5443	7261	50116	24.5	27	37	744	17.80	4	5	ND	1	23	341.9	2	27		1.02		2		.73		1.1					2	6	2	8	1		1 6.7
RX 051632	5	410	185	689	1.7	34	31	1994	6.65	6	5	ND	6	457	3.2	5	2	220	6.31	,090	14	62	3.05	708	3.5	4 8.4	91 Z	. 36	.68	2		2		4		1 25.9
RX 051633	173	9903	8162	3069	56.6	13	10	701	14.84	8	5	ND	1	47	20.5	20	24	68	1.61	.033	2	16							1.02	5		8	11	1		2 7.4
RX 051634	6	1308	667	1018	3.7	22	9	821	6.09	4	5	ND	3	165	5.2	2	2	96	1.57	.064	9	21	2.15	14!	5.3	97.	35 1	. 57	2.70	2	21	2	9	4		1 11.9
RX 051635	182	16507	2651	25797	70 R	53	26	405	15.07	4	5	ND	1	38	182.1	5	28	58	1.01	. 067	2	32	.45	i 96	.2	2 3.(01	.74	. 69	9	16	1	12	1		2 8.2
RE RX 051632		415			1.4	35			6.58	4	5	ND	+	451		2	2		6.11		16		2.93		.5	5 8.(58 2	. 37	. 68	2	3	1	16	1		1 24.7
RX 051636	-			18669		24			12.21	4	5	ND	1		124.2	5	19		1.20		2	8							1.26	6	15	1	10	1		1 8.8
RX 051637				1376		22			5.53	4	5	ND	2	101		2	2		1.74		10	12			.2					2	17	1	8	1		1 8.7
				3398					10.53	4	5	ND	1		23.2	2	10		1.53		3	50			1.3					2	15	1	11	1		1 12.1
RX 051638	40	1103/	115	3330	17.4	27	23	JEE	10.55	-	5	,10	•	/3	23.2	-	10	/3	1.50		•									-						
RX 051639	24	11597	5396	18356	36.2	24	26	708	10.89	7	5	ND	3	74	116.2	29	18		2.47		2		1.58		.4					7		1		1		1 15.3
RX 051640	31	20620	2614	13932	38.6	21	19	400	10.10	10	5	ND	1	61	95.0	22	6	64	1.49	.061	2	14	-		.2					7		1	10	1		1 7.5
RX 051641	4	667	262	987	2.0	10	7	1132	2.94	4	5	ND	5	207	5.3	7	2	36	1.77	.046	17	_	. 92						1.79	2		1	7	2		1 8.3
RX 051642	2	329	526	283	4.5	20	26	1382	6.65	4	5	ND	3	715	2.4	4	4	244	5.97	.039	4		2.80						1.07	2	2	1	12	1		1 25.0
RX 051643	1	189	29	145	. 3	24	21	1673	6.75	4	5	ND	1	652	1.8	2	2	220	7.49	.036	5	24	3.15	152	2 . 36	8 9.5	50 2	. 44	.54	2	6	1	11	1		1 22.5
STANDARD HEC	22	64	39	133	7.4	94	45	1154	4.43	39	17	7	36	54	20.8	17	19	77	. 53	. 117	39	60	. 95	237	. 08	B 1.9	94	.09	. 16	11	4	18	7	1		1 5.7
JIANUAAU AFC								- 104	41.40			•																								-

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

ASSAY RECOMMENDED for Cu, ph, 2n 71%. Ag = 30 ppm.

ANAL. TICAL LAB	CIRCICALD						2223	d dit he. Variation		£869.			FICA						253-3158		
A		· · · · ·														n					
		Inco											ed by:			Pag	ет				
		<u></u>	<u></u>			<u></u>	-			<u></u>				Sr	Zr	Y	NP	101	SUM	<u></u>	
3	AMPLE#	\$102	X1203 %	Fe203 %		CaO X	N820 %				MIN %	×				ppm			×		
R	X 046898	69.87	13.69	5.36	.46	2.28	2.19	2.98	.72	.10	.05	.016	2269	159	178	68	35	1.4	99.56		
	X 046899	56.85											3371		87	50	20	1.6	99.76		
R	X 046900	69.60	12.22	6.72	. 15	.72	.39	3.59	.44	.12	.01	.002	2967	56	132	31	6	4.9	99.38		
R	X 051533	59.31	13.26	15.28	1.18	1.72	3.93	2.80	.78	.06	. 19	.002		296	176	41	5	.8	99.83		
	X 051534	81.30	7.54	2.90	.23	.14	.31	2.27	.20	.01	.01	.002	7328	29	73	17	5	2.2	98.37		
R	X 051535	69.74			.01	1.33	2.54	3.87	.27	.01	.01	.002	9554	225	94	16	8	2.5	99.39		
	X 051536	70.43	6.06	2.17	.01	2.69	.37	.66	. 15	.02			16620	134	61	7	5	2.5	87.94		
	X 051537	55.23	11.13	5.68	.01	1.01	2.59	3.80	. 12	.13	.06	.002	12116	142	58	21	12	5.6	87.45		
	X 051538	67.76	13.46	5.15	1.13	2.51	4.52	1.26	.50	. 19	.09	.044	617	188	143	22	5	2.9	99.66		
	X 051539	50.29	14.66	17.79	3.20	1.51	1.88	1.43	.93	.23	.06	.005	481	131		22	5	7.8	99.89		
R	X 051540	49.97	14.08	13.51	2.88	11.63	2.28	.21	.60	.33	.27	.002	77	328	21	17	5	3.7	99.52		
	X 051541	62.43											151			35	5	2.4	99.63		
	X 051542	51.39										.003		144		18	5	6.3	99.88		
	X 051543	69.92	10 31	7 73	1 98	07	1.07	2.65	.43	.13			759	69		21		3.9	99.23		
	X 051544	72.21										.009	955	80	94	16		3.4	99.70		
	X 051544																-				
	X 051545	71.98				.10	.19	4.50	.24	.01			2265	29	154			3.5			
R	X 051546	66.98											1752	54		21		3.4	99.91		
R	X 051547	58.93	14.19	9.87	2.12	3.07	2.07	1.97	.46	.09	.04	.006	13859	245	137			3.4	98.62		
R	X 051548	59.41	10.92	6.81	6.49	9.48	.38	.70	.77	.24	. 11	.062	138	230	56			4.4	99.83		
R	X 051549	81.58	5.03	2.96	2.04	2.33	.79	.89	.22	.13	.03	.017	3312	101	57	21	5	3.1	99.70		
R	X 051550	95.16	.18	3.04	.01	.01	.05	.05	.01	.01	.01	.021	5	10	5	5	5	1.6	100.00		
R	X 051558	55.94	18.97	6.66	2.27	4.97	6.13	2.03	.59	. 18	.05	.007	1268	444		16	5	1.9	99.97		
	X 051601	31.57	8.21	27.86	2.79	1.88	1.11	1.69	.36	.20	.05	.002	23789	239	39	15	5	16.7	96.50		
R	X 051602	55.60	13.58	13.39	4.02	.99	.79	1.68	.51	.17	.02	.005	2680		108	24	9	7.7	98.94		
R	X 051603	69.42	6.48	7.65	2.81	1.77	2.90	3.60	.16	.01	.01	.002	1192	92	37	15	10	4.7	99.72		
R	X 051604	49.27	15.68	9.74	8.58	2.12	1.78	3.42	.60	.21	.06	.002	4007	152	108	25	16	5.5	97.68		
	X 051605	35.17									.05	.002	14178	203	39	17		7.0			
	X 051606	41.66											15474		57		5	9.5	94.72		
	X 051607	59.65											5073		101			4.6	99.46		
	X 051608	66.32											2380	84	81	20	8	4.8	99.60		
n	X 051609	55.53	17 80	0 /.4	6 / 1	1 73	1 04	2 02	57	16	04	005	3300	99	104	26	14	6.6	98.53		
		47.34	13.07	10 22	10 84	1 07	00	6.08	58	. 10	07	.003	3800	152	96	22		6.9	97.66		
	X 051611	33.77											16631	198	33	16		10.8	90.16		
	X 051612	60.67	7.42	0.87	3 37	1 70	1 04	2 39	رد. ۲۷	.22	-04			89	93			5.5	98.43		
		66.00											2246	81	76	20		5.1	99.55		
ĸ	E AA UJIDUO	0.00		7.00	1.07		.02	2.10	-41	• • • •			2240	51			,				
	X 051613	26.74	8.03	28.87	3.73	1.69	.69	1.71	.34	.22	.07		23801			15	_	15.9	92.07		
		31.79														15		10.1	87.70		
S	TANDARD SO-4	67.05	10.79	3.44	.92	1.54	1.36	2.17	.57	.21	.08	.005	787	198	280	19	17	10.4	98.73		

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK <u>Samples beginning 'RE' are duplicate samples.</u>

DATE RECEIVED: JUN 24 1992 DATE REPORT MAILED:

SIGNED BY.....D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

فيواريك

£

44

Inco Expl. & Tech. Services FILE # 92-1642

Page 2

E ANALYTICAL																			ACHE ANALYT
SAMPLE#		A1203	Fe203			Na20					Cr203	Ba		Zr	Y	Nb		SUM	
	*	*	*	X	X	X	X	*	*	*	*	ppm	ppm	ppm	ppm	ppm	*	X	
RX 051615	31.63	8.39	24.65	2.38	1.97	1.08	1.89	.34	.61	.08	.002	21849	301	46	5	5	14.0	90.78	
			15.52							.04	.002	15300	277	108	48	28	10.5	96.99	
			20,42						.55	.07	.002	16415	239	80	18	5	10.6	91.82	
			12.18								,002		351	84	32	5	1.0	99.84	
			11.55									686		80			8.7	99.87	
																_			
												6956		33	14		3.5	92.02	
			9.37							.05		4373			18		5.7	99.39	
			6.41									1538			22		4.3	99.61	
												1319			49		3.3	99.74	
RX 051624	65.12	10.26	8.88	1.24	9.36	.38	.47	.41	.14	.26	.029	1001	143	85	50	5	2.7	99.45	
RX 051625	/7 51	1/ 08	15.97	6 73	8 85 3	5 56	1 46	2 60	62	25	.002	273	380	275	34	5	1.7	99.85	
			1.78						.04		.002		139	97	7		1.4	99.90	
			25.05							.20		9433		34	14		11.0	92.21	
			32.18							.08		18130		19	11		16.1	88.30	
												8378		58	11		9.3	94.90	
KX 031029	40.05	0.90	19.00	1.12	C. DO	.07	1.00	. 30	.40	* 4 (.002	0310	676	50		,	7.5	74.70	
RX 051630 5	59.06	14.88	9.30	4.16	3.33 2	2.48	2.30	.92	.16	.11	.002	1994	229	87	24	5	2.5	99.58	
RX 051631 3	30.55	6.35	28.95	1.38	1.80	.65	1.09	.30	.17	.10	.002	9870	178	16	9	5	16.5	89.54	
RX 051632 5	52.72	17.01	8.44	4.65	8.50 3	5.08	.77	.89	.20	.22	.002	841	436	51	18	5	2.9	99.58	
									.17	.09	.002	29854	551	32	11	5	15.8	98.11	
												3179	201	118	21	5	4.5	99.52	
											~~~					_	45 0	o/ oo	
			21.82										142	47	15		15.0	94.02	
			8.48							. 23		856		54	18		3.1	99.68	
												8845			15		10.6	95.14	
RX 051637 6	65.62	12.31	9.17	1.40	2.66 Z	2.10	1.54	.53	.17	.04		1837			20		3.5	99.39	
RX 051638 5	54.12	10.89	15.37	1.69	2.59 1	.88	1.54	.79	.24	.07	.003	5184	220	89	18	5	8.4	<b>98.</b> 50	
RX 051639 4	45.84	12.30	15.60	2.73	3 93 1	_29 ·	1.35	.78	.25	.10	.002	10631	305	77	20	5	9.4	95.43	
			16.52		1.2.1.4.1.1.1.1.1.1.1				.27		.002			71	15		8.8	95.79	
			4.91						.09				207		19		3.0	99.59	
			9.67								.003		697	54	14		1.0	99.78	
			6.61									415			622		1.4	99.34	
KA UD1045 D	17.37	11.01	0.01	2.07	0,4 <i>1</i> .4	.01.3	.0,	. 14		- <b></b>	.002	413	671	407	UCL	144	1	77.34	
STANDARD SO-4 6	58.86 ·	10.40	3.25	.96	1.54 1	.33 2	2.18	.55	.21	.07	.006	812	196	298	20	14	10.4	99.96	

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

ppm         ppm <th>53-1716 AA</th> <th>) 25 /</th> <th>04</th> <th>N.</th> <th>P</th> <th>158</th> <th>53:</th> <th>4)2!</th> <th>(60</th> <th>NE (</th> <th></th> <th></th> <th>.64</th> <th><b>TE</b> 2-]</th> <th>(CA   9</th> <th>le ;</th> <th></th> <th>68 28</th> <th>181 1.00</th> <th>NAL Ərv</th> <th>14 1 80</th> <th>CAL ch.</th> <th>mi( Te(</th> <th>HE &amp;</th> <th>L.</th> <th>G) XP</th> <th>85 <u>co E</u> 90 + 6</th> <th>In</th> <th>LTD</th> <th>es 1</th> <th>ORI</th> <th>BORAT</th> <th><b>, LA</b></th> <th>ICAI</th> <th></th> <th>ME ANA</th> <th></th>	53-1716 AA	) 25 /	04	N.	P	158	53:	4)2!	(60	NE (			.64	<b>TE</b> 2-]	(CA   9	le ;		68 28	181 1.00	NAL Ərv	14 1 80	CAL ch.	mi( Te(	HE &	L.	G) XP	85 <u>co E</u> 90 + 6	In	LTD	es 1	ORI	BORAT	<b>, LA</b>	ICAI		ME ANA	
RX 051560       75 1337 180       453       1.6       34       21       399       5.17       4       5       ND       5       306       3.0       2       2       52       1.53       0.029       10       14       1.0       93       21       6.12       2.06       1.47       2       18       1       6       1         RX 051561       21       830       30       103       .5       15       36       353       7.01       4       5       ND       6       151       .2       2       14       .80       0.022       10       8       .48       56       .20       5.5       1.6       1.41       1.71       1.85       2       37       1       8       8       1.5       1.8       .007       10       52       .29       55       1.6       4.51       1.74       1.8       1.8       1.8       1.8       1.8       10       6       37       2       2       171       4.1       0.07       10       52       .29       55       1.6       4.51       1.74       2       9       18       .50       .50       .5       1.33       .50       .5       5       50	Be Sc ppm ppm				0.00					- 10 A	- 60.00		-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1.10															E#	SAMPL
RX 051561       21 830 30 103       .5 15 36 353 7.01       4 5 ND 6 151       .2 2       2 14       .80 .022       10 8       .48 56       .20 5.52       1.27 1.85       2 37       1       8       8         RX 051562       33 602       45 86       1.0 12       56 223       6.35       4       5 ND 6       5 206       .2       2       3 18       .95       .007       10       52       .29       55       16       4.61       1.74       1.22       2       38       1       5       3       584       4       121       .5       11       43       1086       10.22       4       5       ND       6       37       .2       2       171       .41       .071       5       6       5.02       235       .41       7.65       .89       1.34       2       1       1       3       1       1.3       1       3       3       2       2       171       .41       .071       5       6       5.02       235       .41       7.65       .89       1.34       2       1       1       3       3       2       2       1.35       .050       6       533       .63       319       93       8.	10 2.8	1	3	3	20 F.S.					24.1	- 10 A A							6	4	2	.3	14	5	ND	5	8	20.05	43	25	12	.2	70	8	153	27	1559	RX 05
RX 051562       33       602       45       86       1.0       12       56       223       6.35       4       5       ND       5       206       .2       2       3       18       .95       .007       10       52       .29       55       16       4.61       1.74       1.22       2       38       1       5       3       584       4       121       .5       11       43       1086       10.22       4       5       ND       6       37       .2       2       171       .41       071       5       6       5.02       235       41       7.45       .89       1.34       2       1       1       3       1       3       1       3       1       3       1       3       12       2       12       13       12       13       14       3       164       47.1       2       9       158       3.05       072       9       37       2.05       31       54       6.53       .55       1.39       2       11       2       12       12       12       12       12       12       12       13       13       13       13       13       13       <	1 7.4	1	6	1	- <u></u>					-94 C				14							NACE 1 1		-		-	- 4	5.17			34	1.6	453	180	1537	75	1560	RX 05
RX 051563       3 584       4 121       15       11       43 1086       10.22       4       5       ND       6       37       .2       2       171       .41       .071       5       6       5.02       235       .41       7.65       .89       1.34       2       1       1       3         RX 051564       7       3676       383       9836       6.9       23       18       728       11.81       4       8       ND       7       164       47.1       2       9       158       3.05       .072       9       37       2.05       31       54       6.53       .55       1.59       2       11       2       12       12       12       12       12       12       12       13       2       36       3.05       .072       9       37       2.05       31       54       6.53       .55       1.59       2       11       2       12       12       12       13       2       36       3.05       .072       9       37       2.05       31       54       6.53       .55       1.59       2       11       2       11       2       12       11       2	1 7.7	8	8	1						1999 B	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		-	-		- CA									-	4				15	.5	103	30	830	21	1561	RX 05
RX 051564       7 3676 383 9836 6.9       23 18 728 11.81       4       8 ND       7 164 47.1       2       9 158 3.05       072       9 37 2.05       31       54 6.53       .55 1.59       2       11       2       12       12         RX 051644       431 239       12       154 1.2       143 36 3850       7.81       4       6       ND       2 381       1.1       2       7 325       11.35       .650       6 533       .63 319       93 8.29       .48       .13       2       36       3 32       8         RE RX 051648       5 195       10       176       .7       185       46 1803       6.57       4       5 ND       6 530       .3       2       228       9.09       .066       9 338       1.75       360       .75       8.52       1.51       .26       2       19       120       11       120       11       120       11       11       24       5 ND       5 333       8.5       2       2 00       .065       9 338       1.75       360       .75       8.52       1.51       .26       19       120       131       131       131       120       131       131       120       131       131 <t< td=""><td>1 5.6</td><td>3</td><td>5</td><td>1</td><td>38</td><td>T 267</td><td></td><td></td><td></td><td>-929</td><td>111111</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>÷ –</td><td>1. COM 1. T.</td><td></td><td></td><td></td><td>-</td><td>4</td><td></td><td></td><td></td><td>12</td><td>1.0</td><td>86</td><td>45</td><td>602</td><td>33</td><td>1562</td><td>RX 05</td></t<>	1 5.6	3	5	1	38	T 267				-929	111111								_	÷ –	1. COM 1. T.				-	4				12	1.0	86	45	602	33	1562	RX 05
RX 051644       431 239 12 154 1.2 143 36 3850 7.81 4       6 ND 2 381 1.1 2 7 325 11.35 050 6 533 .63 319 .93 8.29 .48 .13 2 36 3 32 8         RE RX 051648       5 195 10 176 .7 185 46 1803 6.57 4       5 ND 6 530 .3 2 2 228 9.09 .066 9 338 1.75 360 .75 8.52 1.51 .26 2 19 1 20 1         RX 051645       12 321 11 284 1.0 243 66 1795 8.24 4       5 ND 5 410 .8 2 2 224 9.50 051 2 311 3.12 120 .84 8.44 1.43 .87 2 14 1 20 1         RX 051646       40 89 7 552 .5 92 8 726 2.45 4       5 ND 5 410 .8 2 2 224 9.50 051 2 311 3.12 120 .84 8.44 1.43 .87 2 14 1 20 1         RX 051647       4 1248 22 105 .7 49 67 1933 7.95 5 5 ND 11 449 2.5 2 606 3.61 159 15 62 1.59 206 .29 3.52 .59 1.01 2 13 1 31 6         RX 051647       4 1248 22 105 .7 49 67 1933 7.95 5 5 ND 11 449 2.5 2 30 9.33 0.69 11 337 1.80 381 7.68.71 1.52 .30 2 19 1 19 1         RX 051648       4 200 10 172 1.0 183 46 1818 6.70 5 5 ND 7 534 1.2 3 2 230 9.33 0.69 11 337 1.80 381 7.68.71 1.52 .30 2 19 1 19 1         RX 051650       33 8691 2664 12091 23.0 31 17 535 6.38 5 5 ND 6 10 320 .6 2 3 217 3.06 072 19 141 2.58 2285 .41 8.18 1.39 1.70 2 16 1 14 1         RX 051651       4 83 49 91 2.1 29 24 50 5.69 4 5 ND 3 13 .2 2 2 4 .14 007 2 14 .04 27 .02 .51 .14 .21 2 4 1 2 7 3         RX 051652       1 20 4 50 .7 15 4 511 2.13 4 9 ND 6 501 .4 5 2 50 2.18 031 14 18 .29 546 .26 7.22 4.09 1.85 3 .9 1 1 8 8	1 19.8	1	3	1		2 👸	1.34	.89	.65	17.	-41	235	5.02	6	5	.071	.41	171	2	2	.2	37	6	ND	5	4	10.22	1086	43	11	.5	121	4	584	3	1563	RX 05
RX 051644       431 239 12 154 1.2 143 36 3850 7.81       4 6 ND 2 381 1.1       2 7 325 11.35 050       6 533 .63 319 .93 8.29 .48 .13 2       36 3 32       8         RE RX 051648       5 195 10 176       .7 185 46 1803 6.57       4 5 ND 6 530       .3 2 2 228 9.09 .066       9 338 1.75 360 .75 8.52 1.51 .26 2       19 1 20 1         RX 051645       12 321 11 284       1.0 243 66 1795 8.24       4 5 ND 5 410 .8 2 2 224 9.50 .051 2 311 3.12 120 .84 8.44 1.43 .87 2       14 1 20 1         RX 051646       40 89 7 552 .5 92 8 726 2.45       4 5 ND 5 333 8.5 2       2 606 3.61 .159 15 62 1.59 206 .29 3.52 .59 1.01 2       13 1 31 6         RX 051647       4 1248 22 105 .7 49 67 1933 7.95 5 5 ND 11 449 2.5 2 6 2 5 281 13.47 .147 53 69 2.20 187 .55 8.41 .44 .18 2 42 2 27 10       13 1 31 6         RX 051647       4 1248 22 105 .7 49 67 1933 7.95 5 5 ND 7 534 1.2 3 2 230 9.33 069 11 337 1.80 381 .76 8.71 1.52 .30 2 19 1 19 1       19 1 19 1         RX 051647       4 200 10 172 1.0 183 46 1818 6.70 5 5 ND 7 534 1.2 3 2 230 9.33 069 11 337 1.80 381 .76 8.71 1.52 .30 2 19 1 19 1       19 1 19 1         RX 051649       5 74 11 148 .2 44 15 898 5.46 4 5 ND 10 320 .6 2 3 217 3.06 072 19 141 2.58 2285 .41 8.18 1.39 1.70 2 16 1 14 1       14 1 2 7 3         RX 051650       33 8691 2664 12091 23.0 31 17 535 6.38 5 5 ND 3 13 .2 2 2 4 .14 .007 2 14 .04 27 .02 .51 .14 .21 2 4 1 2 1       14 1 2 1         RX 051651       4 83 49 91 2.1 29 24 50 5.69 4 5 ND 3 13 .2 2 2 4 .14 .007 2 14 .04 27 .02 .5	3 22.1	1	12	2	11	2	1.59	.55	.53	4 6.	.54	31	2.05	37	9	.072	3,05	158	9	2	47.1	164	7	ND	8	4	11.81	728	18	23	6.9	9836	383	3676	7	1564	RX 05
RE       RX 051648       5       195       10       176       .7       185       46       1803       6.57       4       5       ND       6       530       .3       2       2 228       9.09       .066       9       338       1.75       360       .75       8.52       1.51       .26       2       19       1       20       1         RX       051645       12       321       11       284       1.0       243       66       1795       8.24       4       5       ND       5       410       .8       2       2 224       9.50       .051       2       311       3.12       120       .84       8.44       1.43       .87       2       14       1       20       13       1       31       6         RX       051647       4       1248       22       105       .7       49       67       1933       7.95       5       5       ND       1       149       2.5       2       5 281       13.47       147       53       69       2.00       187       55       8.41       .44       .18       2       2       2       7       10       1337       1.06<	1 32.8	8	32	3 0	36	2	.13	.48	. 29	38.	.9	319	.63	533	6	,050	11.35	325	7	2	1.1	381	2	ND	6	4	7.81	3850	36				12				
RX 051645       12 321       11 284       1.0 243       66 1795       8.24       4       5       ND       5 410       .8       2       2 224       9.50       .051       2 311       3.12       120       .84       8.44       1.43       .87       2       14       1       20       1         RX 051646       40       89       7       552       .5       92       8       726       2.45       4       5       ND       5       333       8.5       2       2 606       3.61       159       15       62       1.59       206       29       3.52       .59       1.01       2       13       1       31       6         RX 051647       4       1248       22       105       .7       49       67       1933       7.95       5       5       ND       7 534       1.2       3       2 230       9.33       069       11       337       1.80       381       .76       8.71       1.52       .30       2       19       1       19       1       19       1       19       1       19       1       19       1       19       1       19       14       2.825       4	1 27.6	1	20	1 1	19	2	.26	1.51	.52 '	58.	.75	360	1.75	338	9	.066	9.09	228	2	2	.3	530	6	ND	5	4	6.57	1803	46	185	.7	176	10	195	5		
RX 051646       40       89       7       552       .5       92       8       726       2.45       4       5       ND       5       333       8.5       2       2       606       3.61       159       15       62       1.59       206       29       3.52       .59       1.01       2       13       1       31       6         RX 051647       4       1248       22       105       .7       49       67       1933       7.95       5       5       ND       1       449       2.5       2       5       281       13.47       .147       53       69       2.20       187       .55       8.41       .44       .18       2       42       2       2.7       10         RX 051648       4       200       10       172       1.0       183       46       1818       6.70       5       5       ND       7 534       1.2       3       2 230       9.33       069       11       337       1.80       381       .76       8.71       1.52       .30       2       19       1       19       14       2.8285       .41       8.18       1.99       1.70       2	1 26.6	1	20	1 1	14	2 🔮	.87	1.43	.44 '	4 8.		120	3.12	311	2	.051	9.50	224	2	2	.8	410	5	ND	5	4	8.24	1795	66	243	1.0	284	11	321	12		
RX       051648       4       200       10       172       1.0       183       46       1818       6.70       5       5       ND       7       534       1.2       3       2       230       9.13       069       11       337       1.80       381       .76       8.71       1.52       .30       2       19       1       19       1         RX       051649       5       74       11       148       .2       44       15       898       5.46       4       5       ND       10       320       .6       2       3       217       3.06       072       19       141       2.58       2285       .41       8.18       1.39       1.70       2       16       1       14       1         RX       051650       33       8691       2664       12091       23.0       31       17       535       6.38       5       ND       6       106       85.7       8       27       89       2.02       079       3       51       1.41       51       .37       6.42       2.35       1.76       2       41       2       7       33       13       12       2	1 11.0	6	31	1 3	13	2 🦉	1.01	.59	.52	93.	.29	206	1.59	62	15	.159	3.61	606	2	2	8.5	333	5	ND	5	4	2.45	726	8	92	.5	552	7	89	40		
RX       051648       4       200       10       172       1.0       183       46       1818       6.70       5       5       ND       7       534       1.2       3       2       230       9.13       069       11       337       1.80       381       .76       8.71       1.52       .30       2       19       1       19       1         RX       051649       5       74       11       148       .2       44       15       898       5.46       4       5       ND       10       320       .6       2       3       217       3.06       072       19       141       2.58       2285       .41       8.18       1.39       1.70       2       16       1       14       1         RX       051650       33       8691       2664       12091       23.0       31       17       535       6.38       5       ND       6       106       85.7       8       27       89       2.02       079       3       51       1.41       51       .37       6.42       2.35       1.76       2       41       2       7       33       13       12       2	1 20.2	10	27	2 :	42	2 /	. 18	. 44	.41	5 8.	- 888 - 8 <b>55</b>	187	2.20	69	53	147	13.47	281	5	2	25	440	11	ND	5	Ę	7 05	1033	67	40	7	105	22	1748	4	1647	DV 05
RX       051649       5       74       11       148       2       44       15       898       5.46       4       5       ND       10       320       .6       2       3       217       3.06       072       19       141       2.58       2285       .41       8.18       1.39       1.70       2       16       1       14       1         RX       051650       33       8691       2664       12091       23.0       31       17       535       6.38       5       ND       6       106       85.7       8       27       89       2.02       079       3       51       1.41       51       .37       6.42       2.35       1.76       2       41       2       7       3         RX       051651       4       83       49       91       2.1       29       24       50       5.69       4       5       ND       3       13       .2       2       2       4       .14       .007       2       14       .04       27       .02       .51       .14       .21       2       4       1       2       1       2       1       2       1	1 26.9	1			- S 77														_		284 <del>7</del> 5 7.7 °C				-	2000			<b>-</b> •	••			10				
RX       051650       33       8691       2664       12091       23.0       31       17       535       6.38       5       ND       6       106       85.7       8       27       89       2.02       079       3       51       1.41       51       .37       6.42       2.35       1.76       2       41       2       7       3         RX       051651       4       83       49       91       2.1       29       24       50       5.69       4       5       ND       3       13       .2       2       4       .14       .007       2       14       .04       27       .02       .51       .14       .21       2       4       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>1 25.7</td><td>1</td><td>14</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>122</td><td></td><td></td><td></td><td></td><td></td><td>- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>2</td><td></td><td></td><td>. –</td><td></td><td></td><td>=</td><td>11</td><td></td><td></td><td></td><td></td></t<>	1 25.7	1	14	1						122						- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2			-						-	2			. –			=	11				
RX 051651       4       83       49       91       2.1       29       24       50       5.69       4       5       ND       3       13       .2       2       2       4       .14       .007       2       14       .04       27       .02       .51       .14       .21       2       4       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2 <th1< th="">       2       <th1< th=""> <th2< th=""></th2<></th1<></th1<>	1 11.9	3	7	ż	05 TO -						- 17 55 5					0.00.00000			_		wa ata 2026				-	5					Sec. 1997		2664		-		
	1 .6	1	2	1	4	- 20				26 7 7	- 15-512														-	3 33. 2.3											
	1 6.4	8	R	1	0	- <b>z</b>	1 85		22 /		34	5/6	70	12	16	071	2 10	50	2	E	,	E01	4		•		<b>J</b> 17	E 1 1	,	15		50	,	20		460	NY 05
	1 20.2	7	35	4	27. 42														-												9000000000		4		1		
RX 051653 2 27 10 113 .4 6 11 997 5.45 6 5 ND 10 264 .7 2 5 69 2.27 .139 20 17 .91 460 .74 7.05 3.68 1.05 2 13 1 35 7 STANDARD HFC 22 64 39 133 7.3 94 45 1191 4.34 37 19 7 36 53 20.5 14 20 78 .53 .116 41 64 .91 238 .08 1.87 .09 .15 10 4 18 7 1	1 5.8	1	7							- CO - C									-						-	2002 C Top				-		• • =	10		2		

ICP - . 500 GRAM SAMPLE IS DIGESTED WITH 10ML HCLO4-HNO3-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM. AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCLO4 FUMING. 

¢

ACHE ANAL .	ICAL LABORATORIES I	Inco	<u> </u>	1.	<u>6 Te</u>	ch.	<u>8e</u>	rvi	ces	F	LYS] ile	# 9							AA
	SAMPLE#	SiO2 AL20	- 666 13 Fe203 X X	MgO		Na2O	<b>K20</b>	Ti02	P205	<u></u>		Ba	Sr Sr	Zr	HME Y ppm			SUM X	
	RX 051559	41.72 5.4	2 30 89	.44	.09	.21	1.69	. 13	.07	.01	.008	797	27	77	24	17	19.1	99.93	
	RX 051560	68.59 11.5	7.10	1.71	2.04	2.42	1.59	.45	.09	.05	.004	1665	390	140		24	3.8	99.74	•
	RX 051561	67.15 10.4	1 10.17	.78	1.10	1.52	2.29	.29	.07	.05	.002						5.7	99.89	
	RX 051562	69.73 8.9	0 9.09	.49	1.31	2.07	1.44	.28	.03	.03	.009	1347				11	6.2	99.89	
	RX 051562	50.09 15.3	0 14.31	7.98	.55	1.15	1.78	.73	.18	.13	.002						7.6	99.89	
	RX 051564	44.49 14.2	7 18 47	3 26	4 50	72	2 28	63	. 16	10	.008	1361	237	125	28	6	8.7	98.28	
		50.20 16.0	5 10 20	07	15 81	., 2	72	1 30	10	44	.085		450	51	32		3.1		
	RX 051644	49.68 16.9	12 0 00	2 40	17 77	1 04	8/	1 15	15	• • •	050		633				3.7	99.91	
	RE RX 051648	45.36 16.5	1 11 04	2.00	13.32	1 82	1 15	1 20	13	21	053						3.9	99.89	
	RX 051645 RX 051646	76.11 6.1	6 3.20	2.28	4.82	.68	1.15	.37	.35	.09	.009	2104				-	4.1	99.77	
																11	2.5	99.77	
	RX 051647	42.17 17.4	y 11.01	3.20	47 35	1.05	./3	.02	. 50	-64 33	.012		635	80	23		3.7		
		49.65 16.9	Y Y.US	2.30	13.23	1.93	.92	1.10	. 10	.22	.004		374	07	20	-	4.5	99.92	
	RX 051649	56.64 16.5	6 8.34	4.04	4.29	1./1	2.19	.()	. 17	- 16	.024						5.2	97.46	
	RX 051650	51.51 16.6	5 10.29	2.40	3.44	2.00	2.09	.02	.11		.000	E70	449	104	4 I .		4.0	99.98	
	RX 051651	86.13 .9	<i>i</i> o 7.81	.05	• 19	. 14	.55	.04	101	• "	.005	219	10	14		,	4.0	/7.74	
	RX 051652	69.46 15.0	6 3.07	.50	2.94	5.04	2.03	.33	.06	.07	.003	547	634	113	7	5	1.2	100.01	
	RX 051653	63.19 14.2	3 8.06	1.51	3.25	4.60	1.29	1.02	.33	. 13	.003	864	336	197	40	5	2.1	99.96	
	STANDARD SO-4	68.51 10.6	6 3.41	.94	1.57	1.25	2.12	-56	.22	.08	.009		197			11	10.4	99.95	

.200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBO2 AND ARE DISSOLVED IN 100 MLS 5% HNO3. - SAMPLE TYPE: ROCK <u>Samples beginning 'RE' are duplicate samples</u>

DATE RECEIVED: JUN 26 1992 DATE REPORT MAILED: July 2/92 SIGNED BY.

									C	FOC	'H'	T MS	CAT.	ANA	LY	8T F	: r	ER	rtf	'IC	at1	2													Ĩ
												3.1.3																							A
							Inc	<u>20</u>	Exp	1.	6	Te	<u>ch.</u>	Ser	<u>vi</u>	ces		Fi.				-17	10												
											DYU	* 00		rard §		A Fil Ir								9293-94 				<u></u>	<u> </u>		<u>003</u>	<u> 8</u>	<u> 399.55</u>	<u>49399</u>	<u>23</u>
SAMPLE#	Mo	Cu	РЬ	 Zn	Ag	NI	Co	Mn	• -				Th Sr			81			-	i.e		Mg		T1	A1 %			W							
	ppm	ppm	ppm	Ppm	p pm	ppm	p pm	p pm	*	ppm	ppm	ppm p	opm ppm	n bbw	ppm	ppm	ppm 	*	*	ppm	ppm	7.	ppm	*				ppm	ppm	ppm	ppm	ppia	- ppin	- 141	
RX 051565	12	95	36	66	.8	1	3	282	5.56	4	5	ND	4 89	.2	2	2	41	.60	.039				130				1.77								
RX 051566	98	1336	14	187	16.1	14	245	15	43.25	4	7	ND	2 3	; .2	9	2	7	.03	.006	2		.05		.03	. 56		.23		7						2 :
RX 051567	74	607	39	83	9.0	6	118	63	27.23	13	5	ND	2 11	2	4	8	17	.23	.016	2	3	.20			2.86		1.00		12			-	_	2.	
RX 051568	4	392	82	106	1.0	6	8	351	4.75	4	5	ND	4 110	.2	2	2	26	. 57	.032	15	32	1.18			6.33		2.07	3	7	2					-
RX 051569	65	34	5	40	_	5	11	293	4.87	4	5	ND	2 40	.2	2	3	109	. 10	.061	7	3	1.82	93	. 30	7.08	, 35	2.73	5	1	1	3	1	1	20.	3
					-	_	10		5,92	4	5	ND	3 113	ı .2	2	2	<b>A</b> 7	.74	.029	9	8	.78	28	. 18	5.52	.77	1.71	6	10	1	3	1	1	7.	0
RX 051570	18	374	40	85									1 606		-	-		1.93				.25					1.48	3	5	1	4	5	1	2.	3
RX 051571	12	81	65		1.6				3.36		5							.62									2.18		7	1	4	4	1	7.	7
RX 051572	23	972	68						4.49		5	ND	4 103					1.04									1.92		4			4	1	8.	0
RX 051573	51	96	48	87					1.94			ND	4 230					7.83									.50		14			1		25.	4
RX 051574	1	69	19	103	.2	10	24	1522	6.68	4	5	ND	1 384	.2	2	2	244	1.83	.047	-	10	1.00	10/		3.13	2.27		~		•	•••	-			
RX 051575	2	53	9	62	. 3	7	33	800	7.74	4	5	ND	2 85	i .2	16	5	162	.80	.080	4	3	4.15	278	.54	9.21	1.12	1.35	4	1	1	3	+		21.:	
RX 051576	14	460	19	93					12.80		10	ND	5 248	.4	15	2	64	. 96	.062	8	32	1.19	613	.21	6.07	1.24	.92	9	3	1	3	1	5	12.	0
RX 051578	3	101	19	71					4.88		5		3 180	.2	6	2	67	1.15	.040	2	8	2.33	226	. 19	7.02	1.23	1.57	3	10	1	2	1	1	12.	6
	109	3213	46	920					27.22			ND	2 34			9	53	. 53	.020	2	9	.97	19	. 16	2.01	. 33	. 46	2	7	4	4	1	1	4.	6
RX 051578			40						6.45			ND	1 212					2.03		6	24	4.14	605	.40	9.45	1.97	2.21	2	1	1	5	1	1	26.	6
RX 051579	4	186	31	207	. 2	20	21	1003	0.43	•					-	-																			
RX 051580	4	16	20	81	.3	8	18	1473	6.86	4	5	ND	3 407	.2	7	6	177	3.72	.055	5	13	1.66	96	.64	10.43	4.27	.21	4	3	2	21	3		28.	
RX 051583		1706			19.8	-	-		8.43			ND	1 30	4.1	26	23	16	. 44	.015	2	2	.19	26	.05	1.87	. 59	. 48	2	18	2	2	1	1	2.	,0;
		7414				-						ND		138.2	2	34	85	1.81	.076	9	27	.83	26	.23	4.81	1.12	.79	2	9	1	17	1	2	9.	. 3
RX 051582		29294							17.03		_	ND		167.4				1.48			30	.84	28	.23	3.53	.77	.85	3	5	5	11	1	3	7.	. 2
RX 051583		12264										ND		244.5				. 94		2	29	.62	52	. 19	2.40	. 37	.50	2	6	9	9	1	1	5.	.8
RX 051584	129	12264	4252	20933	21.7	34	20	220	64.99	•	5		1 3		-			•••																	
RX 051585	71	5628	1489	28666	10.2	25	21	480	19.76	5	6	ND	2 38	3 218.6	2	8	49	.91	.048	2	8	.86	19	. 18	2.40	.51	.78	2	7	7	10	1		5.	
RX 051586		33702									5	2	3 47	266.4	3	45	62	1.37	.088	4	21	.79	17	.22	2.73	. 52	. 58	2	6	3	15	1	1	7.	. 1
RX 051580	329			22142					22.54		5	ND	2 59	210.1	2	35	53	1.19	.058	5	18	.69	19	. 18	2.79	.66	. 49	2	6	3	14	1	2	5.	9
RX 051587	220			13850							_	ND		123.1				1.68		5	43	1.18	20	.28	4,46	1.00	.95	2	10	1	14	1	2	11.	1
RX 051588	193	6764										ND		i 47.4				1.23		6	18	. 97	33	. 30	3.97	1.01	. 96	10	12	1	13	1	1	11.	6
NN 431443		*/**																																	_
RE RX 051585	71	5838	1332	29162	10.0	25	21	496	20.07	4	5	ND	1 43	225.3	2			.93				.88					.79				10		1		
RX 051654	5	288	81	351					3.91		5	ND	6 21	5 2.3	8	2	93	1.76	.051	13									12		12		-	11.	-
RX 051655	10	164	59	221		14	7	518	3.07	4	5	ND	8 270	) 1.2	2			2.20									1.46		24		13			7.	
RX 051655	21	110	23	192					3.95		6	ND	7 159	1.4	3	2	240	2.77	.060	16	79	1.25	149	. 30	6.66	. 96	1.09	3	15	1	18	1		19.	
RX 051657	10	99	22	181					4.11			ND	8 41	7	2			3.03											24	1	4	1	1	20.	9
	••						-	-																	_		/	_					_		
RX 051658	1	29	19	59		8		1011				ND	3 98		6	-	-	.60									3.31 .43		16 2	-	14 16		-	1. 29.	
RX 051659	3	126	7	192	. 5	72			9.13			ND	2 299					6.80										_	_		16			5.	
RX 051660	1	25	18	91	.2	10			3.18		5		7 70:					3.72																20.	
RX 051661	18	42	23	112	.2			953	5.22			ND	10 323					3.07									1.52		28					20.	
RX 051662	16	25	18	108	.2	5	1	398	2.34	4	5	ND	18 138	3.2	2	9	3	1.28	.008	35	6	. 10	1129	. 16	6.77	2.93	1.93	Z	à	4	62	24	5	٤.	
				133																								_	-		-	•	1	5	7

1CP - .500 GRAM SAMPLE IS DIGESTED WITH 10ML HCL04-HN03-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM. AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCL04 FUMING.

- SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

- ACME-ANAL . II	CAL LABORATORIES I	JTD.	852	<b>E</b> . H	astii								1R6		РНС	)ne (	[004	) 255-3	158 FA	04)253-1716	
					WHO	DLE	ROC	:K 1	CP	ANA	L <b>¥</b> 8]	18									
TT		Inc	<u>:0 Ex</u>	<u>pl.</u> 2	<b>&amp; T</b> 690 - 6	ech. 66 Bu	8e	e <b>rvi</b>   St.,	Ces Vanc	F. ouver	ile BC Vố	# 9 c 2x8	2-1	710							
	SAMPLE#	SiO2 AL		3 MgC % %						MnO ( %	cr203 X	Ba ppm	Sr ppm	Zr ppm	8-9-65-665		L01 %	SUM X			
· · · · · · · · · · · · · · · · ·	RX 051565	68.42 11	.89 7.6	5 1.57	.90	.81	2.25	.44	.09	.04	.004	2841	99	164	28			99.90			
	RX 051566	3.48 1.	55 62.3	3 .07	.06	.05	.47	.06	.02	.01	.002	1923	10	14	6			100.02			
	RX 051567	31.73 6.	15 37.1	0.37	′40	.46	1.56	, 18	.05	.01	.003	3294	51	43			21.4				
	RX 051568	68.42 13	.21 6.6	5 2.17	.94	.90	2.69	.39	.08	.05	.008	1890	143				4.0				
	RX 051569	63.37 16	.13 6.6	6 3.10		.42	3.41	.82	.13	.04	,003	835	51	125	25	5	5.5	99.93			
	RX 051570	69.42 10	.49 8.9	5 1.45	1.21	.96	2.02	.35	.06	.03	.003	1094	151	123	10		4.7				
	RX 051571	67.79 15	.66 4.3	7 .44	2.73	4.55	1.76	. 16	.06	.06	.005	998	684	108	7		2.0				
	RX 051572	71.29 11	.83 6.1	8 1.72	.99	.91	2.76	.38	.11	.04	.006	1401		128	20		3.2				
	RX 051573	73.34 13.	.70 2.6	2 1.77	1.47	2.07	2.35	.26	.08	.04	.004	1338	253	77			1.9				
	RX 051574	49.97 18	.01 9.7	0 3.00	12.73	3.69	.65	.84	.13	.20	-006	210	502	50	21	5	.8	99.88			
	RX 051575	57.33 16	17 10 3	6 7.45	1 15	1.52	1.55	.79	. 19	.10	.002	381	102	82	22	5	3.2	99.91			
	RX 051576	56.71 11	13 17.9	4 2.15	1 47	1.69	1.01	.48	.17	.04	.006	634	276	147	14	5	6.9	99.88			
	RX 051577	68.15 12	37 6 6	2 4 17	1 75	1.66	1.72	.42	. 12	.06	.003	569	206			8	2.7	99.91			
	RX 051578	32.98 5	80 35 5	2 2 01	QR	52	.42	.35	.08	.03	.003	946	71	53	9	5	20.8	99.77			
	RX 051579	54.09 17	.50 8.5	8 7.39	2.96	2.65	2.78	.81	.17	.13	.007		241	78	19	5	2.6	99.85			
												00	/58	60	23	5	र	100.10			
	RX 051580	58.06 16			2.76	0.00	.05	.07	• 14		.000		458 81	52	9		5.5				
	RX 051581	74.15 3			, 00		.0/	- 12	.04	40	.005	4547 3444		76	20		7.6				
	RX 051582	38.39 9	.98 31.9	0 1.74	3.09	1.00	1 03	-42	.23	10	.000	12703	301	43			12.2				
	RX 051583	37.36 7	.39 27.3	0 2.03	4 70	E4	1.02	.3/	10	10	000	26082	220	54			17.2				
	RX 051584	27.46 4	.95 55.5	8 1.5/	1,10	.70	. 51	.52	. 10	-00	.007	20002	440			-		/			
	RX 051585	36.28 4	.95 31.6	2 1.94	1.78	.75	.83	.30	.16	_07	.004	13190	284	46	9		14.4				
	RX 051586	30.85 5	.60 36.9	1 1.86	2.61	.74	.67	.35	.23	. 16	.005	2424	157	36			12.7				
	RX 051587	35.54 5	.93 38.1	2 1.54	2.20	.94	.36	.30	.22	.08	.005	2510	154	39	16		9.4				
	RX 051588	40.15 8	.87 27.2	6 2.44	2.94	1.30	.97	.42	.23	10	.011	2517	195	68			12.1				
	RX 051589	60.26 8	.57 15.6	0 1.93	; 2.05	1.25	.84	.49	.15	-09	.004	3176	164	78	17	2	6.7	98.52			
	RE RX 051585	35.25 4	93 32.5	4 1.89	1.73	.73	.83	.28	. 16	.07	.004	12526	275	42	8	5	14.3				
	RX 051654	67.09 14	07 5.3	8 2.14	2.75	3.25	2.78	.48	.13	,11	.004	589	238	116	15	5	1.5	99.85			
	RX 051655	67.40 14	42 4 5	4 1.60	3.58	3.86	1.55	.41				533	307	167	21	- 5	2.1	99.85			
	RX 051656	69.35 11	33 5 4	6 2.42	4.58	1.18	.97	.57	.17	.07	.019	2319	186	75	21	5	3.1	99.86			
		59.48 17	9/ 5 A	2 2 6	2 34	3 65	1.67	.71	.17	07	.008	3805	551	103	22	5	2.9	99.84			
	RX 051657				- 88.8653												-				
	RX 051658	73.94 14	.12 1.0	3.14	. 95	4.33	4.36	.06	.09	. 19	.043		127		25	_	.5				
	RX 051659	49.30 15	.34 11.6	5 6.75	9.31	3.00	.70	1.32	.13	. 18	.038	438		72	19		2.0				
	RX 051660	65.96 16	.36 4.1	4 1.09	> 5.05	3.86	1.75	.36	.14	. 18	.011	1119	859		19		.6				
	RX 051661	60.92 17	.25 6.7	3 2.09	4.21	2.30	1.88	.67	.02	-11	.006	5468	396	97	14		3.0				
	RX 051662	74.83 12	.25 3.2	20 .17	7 1.84	4.07	2.37	.20	.02	.05	.003	1088	170	427	79	14	.6	99.89			
	STANDARD SO-4	10 51 40	77 7 /	4 05	10000 10000	1 37	2.0/	54	20	78	000	798	198	313	24	15	10.4	99.68			

. . . .

. . . .

.200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBO2 AND ARE DISSOLVED IN 100 MLS 5% HNO3. - SAMPLE TYPE: ROCK <u>Samples beginning 'RE' are duplicate samples</u>

JUN 30 1992 DATE REPORT MAILED: Yuly 8 92 DATE RECEIVED:

ACME ANA	L_Ĭ	CAL	LABC	RAT	ORIE	S I	TD.		85	2 E	. H	AST	ING	s s	<b>r.</b> \		.0U	/ER	<b>B.</b> C		V6A	186	5	P	HON	E(60	4)2	53-3	158	F1	ū	<u>.</u>	253	-1716
<b>AA</b>									<u>:0 E</u> - 666	xpl		<b>&amp;</b> ]	lec	h.	8e:	rvi	ce	9	Fi]		# 9	2-1			TF								4	
SAMPLE#	Mo ppm		Pb ppm			N i ppm		inen di N	Fe	As ppm	U	Au	Th	Sr	Cd	Sb ppm	Bi	۷		P	La ppm	Cr	Mg	Ba ppm	11									Be Sc pm ppm
RX 051590 RX 051591 RE RX 051595 RX 051592 RX 051593	27 23 14 7 1	28 706 52	124 199 78 9 4	114 1883 87	1.2 1.3 .4	7 5 8	29 8		9.40 9.32 5.24 6.34 6.90	444	5 5 5		4 5 3	41	2.3 3.0 11.4 .3 .6	2 2 6	2 6 2	23 26 148	.26 .38 2.24	.027 .015 .036 .080 .089	9 13 11	45	1.17 .45 3.13	70 81 338	.09 .17 .50	3.68 2.94 7.08 8.76 8.75	.31 .68 2.91	2.40 2.44	2 8 6	11 2 19 2 1	1 2 1 1	4 3 5 13 3	1 1 3 3 1	1 5.8 1 4.8 1 8.1 1 18.1 1 25.0
RX 051594 RX 051595 RX 051596 RX 051597 RX 051598	1 14 2 1 173	4 678 722 64 4616	182 15	1836 716	1.6 2.9 1.4	7 67 17	7 30 21	130 1635 1341	.78 4.87 7.61 7.11 10.93	4 4 5	6 5 5	ND ND	6 3 2	70 180 415	.2 11.2 1.6 .2 4.2	3 2 2	6 2	227 258	.36 4.40 3.85	.007 .034 .085 .092 .051	13 9 9	24 37 15	.42 4.90 3.15	141 453	. 16 .32 .69	7.64 6.79 8.16 9.42 4.62	.68 1.28 2.88	2.36 1.97 1.54		17 17 1 3 9	1	9 4 17 21 12	2 1 1	1 1.9 1 7.2 1 27.6 1 30.0 1 11.3
RX 051599 RX 051600 RX 051663 RX 051664 RX 051665	77 1 149	4261 1534 58 6193 4147	51 4	356 148 50	1.1	4 26 14	22	172 1938 53	10.70 8.00 14.14 6.53 5.69	4 4 4	5 5 5	2 ND 2 ND 5	1 3 1		4.8 2.7 .3 .2 .4	2 2 2	5 2 13	17 509 11	.66 6.14 .61	.053 .030 .085 .007 .008	6 7 4		.76. 3.78 .07	53 134 86	.08 1.56 .08	4.28 3.03 6.77 3.02 3.58	1.02 1.40 1.43	.66 .56 .57	2 2	9 14 2 11 3	1	13 4 34 3 2	1	1 10.6 1 4.5 2 40.4 1 2.2 1 .2
RX 051666 RX 051667 RX 051668 RX 051669 RX 051669 RX 051670	29 4 18 233 217	34 41 3492	31 46 8 209 42	95 60 31 1049 64	.6	21 10 16	18 48 22 134 13	820 313 547	4.69 8.62 5.88 20.18 3.57	446	6 5	ND ND ND 2 ND	1 5 2	335 146 86 248 106	.2 .2 .2 8.1 .2	2 4 2	2 2 23	208 175 62	1.20 .39 2.19	.068 .088 .064 .043 .017	7 10 8	25	3.52 1.37 .82	117 182 94	.17 .17 .27	8.22 7.92 9.06 4.79 3.45	2.46 .65 1.42	1.59 3.21 .80	2 5	18 3 3 16 9	1 1	18 4 4 14 2	1	1 14.4 1 18.6 1 20.8 3 8.5 1 4.3
RX 051671 RX 051672 RX 051673 RX 051674 RX 051675	83 103		973 234	4520 451	5.1 9.7	13 11 17	40	704 271 113	23.43 17.47 8.47 13.49 17.93	4 4 4	5	ND ND ND ND	3 2 1	80 163 69	.2 35.3 3.6 10.8 4,0	2 4 2	5	128 48	1.39 1.05 .72	.004 .053 .032 .013 .024	3 4 2	11 40 8	.95 .33	62 84 46	.36 .21 .09	1.41 5.84 4.64 2.51 1.53	1.53 1.49 .81	2.42 1.18 .42	4	19 15 11 24 10	3 1 1 2	2 13 2 2 7	1 1 1	1 1.6 3 18.8 1 5.9 3 3.0 1 2.2
RX 051676 RX 051677 RX 051678 RX 051679 RX 051680	35 10 10	4937 209 209 200 15496	29	174 190 203	.9 .7 .2	14 14 14	34 21	598 1172 872	26.54 7.30 7.15 6.59 6.45	444	5 5 5	2 ND ND ND 3	6 5 4	202 139 190	65.1 .2 1.7 .4 10.6	2 2 2	2 5 2	70 148 102	1.13 2.12 1.46	.014 .055 .044 .064 .011	11 9 10	47 24 15	2.05 1.82 2.95	496 216 298	.29 .59 .34	2.19 6.01 6.23 7.29 2.21	1.49 1.00 1.69	2.05 1.66 2.41	2 5 2 5	9 6 6 7 4	1 1 3 1 1	5 5 14 6 2	1 7 1	1 4.2 1 9.2 1 18.4 1 15.4 1 .7
STANDARD HEC	22	65	43	132	7.4	95	46	1199	4.46	39	18	8	37	55	20.8	19	21	80	.53	.116	40	61	.97	237	.08	2.07	.09	. 18	12	4	17	7	2	1 5.8

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 10ML HCLO4-HNO3-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM. AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCLO4 FUMING.

Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: ROCK

Check         AMALYTICLAL         LABORATORIARS 1200         B52 R.:         DASCIEVE SCIEVE         NANCOUVER N.C.         VAL (504) 123-1216         ACC (52,27, 9,20,9,2)         ACC           MECOLER         SUBJECK         CCW         ATACINE         File         9 (2-1743)         Pile         9 (2-1743)         Pile         9 (2-1743)         Pile         Pile <th></th> <th></th> <th></th> <th></th>				
MACE         FROME ROCK ICP ANALYSIS         DOS227.96072         MS           Inco Broll. & TechServices         File \$ 92-1743R         MS         MS           MADLES         SU02 AL203 Fe203 Mg0         Inco Broll. & TechServices         File \$ 92-1743R         No         No         No           MADLES         SU02 AL203 Fe203 Mg0         Inco Broll. & TechServices         File \$ 92-1743R         No         No         No           No         X X X X         X X X X         X X X X         X X X X         X X X X         No         No <th>ACHE ANALYTICAL LAP</th> <th>BORATORIES</th> <th>LTD. 852 E. HASTINGS ST. VANCOUVER B.C. VOA 1R6 PHONE(604)253-3158 FAX(604)253-17</th> <th>16</th>	ACHE ANALYTICAL LAP	BORATORIES	LTD. 852 E. HASTINGS ST. VANCOUVER B.C. VOA 1R6 PHONE(604)253-3158 FAX(604)253-17	16
SMPLE#         Start Algo Algo Algo Algo Cao NeO Cao N				
SMPLE#         Start Algo Algo Algo Algo Cao NeO Cao N			MACHA AUCA ICF ANALISIB 60527-86022 A	
SMPLE#         Start Algo Algo Algo Algo Cao NeO Cao N			Inco Expl. & Tech. Services File # 92-1743R	
X         X         X         X         X         X         X         X         X         X         Ppm         Ppm <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th>			· · · · · · · · · · · · · · · · · · ·	
X         X         X         X         X         X         X         X         X         X         Ppm         Ppm <th></th> <th></th> <th>CIO2 41207 5-207 M-0 2-0 M-20 X20 X102 0205 M-0 0-207 0- 0- 7- W White Lot MM</th> <th><u></u></th>			CIO2 41207 5-207 M-0 2-0 M-20 X20 X102 0205 M-0 0-207 0- 0- 7- W White Lot MM	<u></u>
KK 051590 RK 051591       65.53       7.82       14.00       2.01       45       .74       1.05       .25       .07       03       .002       449       93       81       13       5       7.5       99.96         RK 051591       56.53       7.62       14.62       3.03       31       1.19       24       .04       102       .000       287       46       74       14       5       7.1       99.97         RK 051592       56.53       16.68       6.14       2.03       58       19       04       .002       107       25       77       16       5       .2       99.98         RK 051595       51.63       10.26       6.46       .72       .49       .79       2.78       .43       .05       .02       .005       719       25       72       10       5       .77       99.79         RK 051595       50.62       15.41       17.47       74       72       17       71       74       17       15       5.4       99.60       72       14       12       5       2.6       99.75       72       74       10       5       5.6       99.65       72       99       10       <		JUNPLEN		
RX 051591       70.48       5.85       12.45       1.80       .22       .006       287       46       74       16       5       7.1       99.97         RX 051592       56.53       14.62       3.05       3.61       2.90       75       19       09       .003       1100       313       17       16       5       2.2       99.98         RX 051594       74.69       14.01       1.03       3.00       3.60       2.13       98       19       08       .002       1077       262       57       10       5       4.2       99.99         RX 051595       69.40       12.45       6.46       77       4.9       77       2.7       78       43       05       .02       1007       754       198       101       20       5       3.7       99.90         RX 051596       62.79       8.08       14.62       1.62       1.64       1.26       1.64       1.26       1.64       1.9       20       007       75       22       10       5       5.6       99.61         RX 051596       62.79       8.08       9.74       1.05       .61       10.21       .002       79       70				
RX 051592       56.59 16.65       8.51 4.82 3.05 3.61 2.19 3.09 .75 .19 00 .003 1100 333 117 18 5 2.2 99.98         RX 051593       RX 151594       74.69 14.01 1.03 .14 1.08 4.06 3.87 .66 .01 08 .002 1077 242 57 10 5 .7 99.97         RX 051594       69.80 12.65 6.84 .72 .49 .79 2.78 43 .05 02 .005 2255 92 140 17 5 4.6 99.60         RX 051595       51.63 18.41 9.73 4.72 5.18 3.76 2.21 108 .20 .07 754 198 011 20 5 3.7 99.97         RX 051596       50.24 15.95 10.27 735 5.96 1.62 2.44 1.26 1.9 .20 .007 754 198 011 20 5 3.7 99.97         RX 051596       51.63 18.41 9.73 4.72 5.18 3.78 2.23 108 .20 .17 .003 599 467 81 21 5 5 2.6 99.95         RX 051596       62.29 7.41 1.60 1.51 2.15 1.35 1.59 .57 .11 0.6 .009 755 223 99 10 5 7.2 99.64         RX 051509       62.26 7.61 14.60 1.51 2.16 1.84 1.97 3.71 7.10 10 .000 775 13 180 130 10 5 7.2 99.64         RX 051509       62.26 7.61 14.60 1.51 2.16 1.84 1.97 3.27 1.11 0.6 .009 755 223 99 10 5 7.2 99.64         RX 051601       77.52 4.88 9.74 1.05 .81 1.69 .73 2.71 1.1 0.6 .009 755 223 99 10 5 7.6 99.64         RX 051603       47.75 11.21 11.76 6.11 1.69 .300 1.94 85 .20 11 0.005 639 320 0 5 5 5.6 99.64         RX 051664       76.17 4.21 7.41 .21 1.41 1.99 .30 1.07 .01 11 0005 639 320 0 15 5 5.6 99.63         RX 051664       76.27 7.41 .21 1.41 .49 .30 .01 .01 0.002 7170 117 117 117 75 5 .6 9.945         RX 051664       70.27 7.74 1.22 7.73 .3.97 7.13 0.77 0.11 70 10 11 0.005 639 320 0.15 5 5 .6 99.905         RX 051667       50.44 7.7			65.53 7.82 14.00 2.01 .85 .74 1.05 .25 .07 .03 .002 449 93 81 13 5 7.5 99.96	
RX 051593       51.83 17.96       9.78 5.98 3.00 3.60 2.13 9.98 1.90 0.81 0.005 719 255 72 18 5 4.2 99.95         RX 051594       74.69 14.01 1.03 1.4 1.08 4.06 3.87 .06 0.01 0.81 0.002 1077 262 57 10 5 7.7 99.97         RX 051595       50.62 15.93 10.29 7.37 5.54 1.62 2.24 1.26 1.19 20 0.007 754 198 101 20 5 3.7 99.79         RX 051595       50.62 15.93 10.29 7.37 5.54 1.62 2.24 1.26 1.29 20 0.007 754 198 101 20 5 3.7 99.79         RX 051595       56.62 15.93 10.29 7.37 5.54 1.62 2.24 1.26 20 317 0.005 594 467 81 21 5 2.64 99.55         RX 051595       56.26 15.93 10.29 7.37 5.54 1.62 2.24 1.26 20 317 0.005 594 467 81 21 5 2.64 99.55         RX 051595       56.26 97.61 14.60 1.51 2.15 1.35 1.59 5.57 .11 0.6 0.09 755 223 99 10 5 7.2 99.64         RX 051600       75.29 4.88 9.74 1.05 .54 1.05 .98 .16 0.7 0.2 0.002 979 70 52 10 5 5.6 99.84         RX 051664       74.18 5.25 8.42 .10 .74 1.37 1.76 0.11 0.07 0.02 0.000 755 223 09 10 5 7.6 99.64         RX 051665       76.41 .21 1.41 1.97 9.32 0.07 10 01 00.002 650 320 40 5 5 5.6 99.63         RX 051666       64.18 15.47 6.13 2.08 3.47 4.21 2.14 5.9 13 12 0.002 680 364 112 18 5 5 6.1 99.99         RX 051666       60.13 9.29 4.33 3.22 1.81 1.17 45 0.90 07 0.005 811 07 65 111 5 3.9 9.97         RX 051666       60.13 9.29 4.4 1.04 1.25 1.42 1.94 1.55 0.90 07 0.005 810 107 65 111 1 5 3.9 9.98         RX 051667       50.44 17.31 11.76 6.11 1.69 3.09 1.94 1.85 5.20 10.005 831 107 65 111 1 5 3.9 9.97         RX 051666       60.17 4 1.39 2.92 4.			70.48 5.85 12.45 1.80 37 .35 1.19 .24 .04 .02 .006 287 46 74 14 5 7.1 99.97	
FX 051594       74.69 14.01       1.03       .14       1.08       4.06       3.87       .06       .01       .08       .002 1077       262       57       10       5       .7       99.97         IN 051595       69.80 12.65       6.84       .72       .69       .72       .78       .43       .05       .002       .007       754       198       101       20       5       .7       99.97         RX 051596       50.62       153       10.277.37       .58       1.02       .007       754       198       101       20       5       .7       99.97         RX 051596       62.26       67       .61       1.51       2.18       1.7       .03       599       467       81       1.57       .75       .00       1.60       .007       752       246       96       5       5.6       99.84         RX 051600       75.29       4.88       9.74       1.05       .81       1.05       .96       .16       .07       .02       .002       .007       752       10       5       5.6       99.84         RX 051660       75.29       4.88       9.74       1.05       .81       1.05       .16			56.93 16.65 8.51 4.82 3.05 5.61 2.90 .75 .19 .09 .003 1100 333 117 18 5 2.2 99.98	
()       RK 051595       69.80 12.65 6.84 .72 .49 .79 2.78 .43 .05 .02 .005 2255 92 140 17 5 4.6 99.60         RK 051596       50.62 15.93 10.29 7.37 5.96 1.62 2.46 1.26 .19 .20 .007 754 198 101 20 5 3.77 99.79         RK 051597       51.63 18.41 9.73 4.72 5.18 3.78 2.23 1.08 .20 .17 .003 599 467 81 21 5 2.64 99.57         RK 051599       62.69 7.61 14.60 1.51 2.18 1.35 1.59 .57 .11 0.6 .009 775 223 99 10 5 7.2 99.64         RK 051600       75.29 4.88 9.74 1.05 .81 1.06 .98 .16 .07 102 .002 979 70 52 10 5 5.6 99.84         RK 051663       74.51 14.64 1.51 2.15 1.33 1.39 .57 .11 0.6 .009 755 223 99 10 5 7.6 99.64         RK 051664       76.51 14.60 1.51 2.15 1.31 1.79 5.13 1.00 .20 009 775 52 10 5 5.6 99.84         RK 051665       75.29 4.88 9.74 1.05 .81 1.00 7.91 .71 16 1 02 .002 977 70 52 10 5 7.6 99.64         RK 051664       76.11 14.50 1.51 2.05 .21 0.07 71.11 01 2.002 971 101 23 .00 5 .55 .6 99.64         RK 051665       76.47 6.21 7.41 .21 1.41 1.99 .32 07 .01 101 .005 639 320 40 5 5 5.6 99.63         RK 051666       60.92 17.61 7.44 2.28 2.52 .77 3.83 .77 .11 64 .002 1770 117 197 23 5 .33 99.97         RK 051667       50.84 17.13 11.76 6.11 1.69 3.09 1.94 .85 .20 .11 .005 645 177 82 15 5 1.54 99.92         RK 051667       50.84 17.13 11.76 6.11 1.69 3.09 1.94 .85 .20 .11 .005 635 1107 65 11 4 5 5 1.54 99.92         RK 051667       50.84 17.13 11.76 6.11 1.69 3.09 1.94 .85 .20 .11 .005 831 107 65 11 4 5 5 1.54 99.92         RK 051667       50.64 .102 2.90 2.93 .13 1.92 .006 1				
RX 051596       50.62 15.03 10.29 7.37 5.96 11.62 2.46 1.26 .19 20 .007 754 198 101 20 5 3.7 99.79         RX 051597       51.63 18.41 9.73 4.72 5 18 3.78 2.23 1.08 .20 .17 .003 599 467 81 21 5 2.6 4.99.57         RX 051599       62.79 8.08 14.66 1.51 2.15 1.35 1.59 .57 .11 .06 .009 755 223 99 10 5 7.2 99.64         RX 051600       75.29 4.88 9.74 1.05 .81 1.65 .96 .16 .07 .02 .002 779 70 52 10 5 5.6 99.95         RX 051600       75.52 4.88 9.74 1.05 .81 1.65 .96 .16 .07 .02 .002 779 70 52 10 5 7.6 99.94         RX 051664       74.18 5.25 8.42 .10 .74 1.57 .95 .13 .01 01 .002 2714 142 52 10 5 7.6 99.94         RX 051665       64.7 .61 7 .41 2.01 .74 1.57 .95 .13 .01 01 .002 2714 142 52 10 5 7.6 99.43         RX 051666       64.18 15.47 .61 5 2.08 3.07 4.21 2.14 .59 .13 .12 .002 680 364 112 18 5 .8 99.95         RX 051666       64.18 15.47 .61 5 2.08 3.07 4.21 2.14 .59 .13 .12 .002 680 364 112 18 5 .8 99.95         RX 051667       50.84 17.13 11.76 6.11 1.67 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 .6.1 99.99         RX 051667       50.84 17.3 11.66 1.1 1.67 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 .6.1 99.99         RX 051667       50.84 17.43 11.66 1.11 .67 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 .4.2 99.92         RX 051667       50.84 17.43 11.66 1.11 .67 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 .4.9 99.92         RX 051667       50.84 17.43 11.65 1.14 .14 1.97 .32 .23 .10 1.11 .005 .05 1177 01 14 5 5 1.6.9 99.92         RX 051667       50.84 17.13 11.66 .11 .67 3.09 1.94 .83 .11		KX U51594	14.09 14.01 1.05 .14 1.08 4.00 5.87 .06 .01 .08 .002 10/7 202 57 10 5 .7 99.97	
RX 051596       50.62 15.03 10.29 7.37 5.96 11.62 2.46 1.26 .19 20 .007 754 198 101 20 5 3.7 99.79         RX 051597       51.63 18.41 9.73 4.72 5 18 3.78 2.23 1.08 .20 .17 .003 599 467 81 21 5 2.6 4.99.57         RX 051599       62.79 8.08 14.66 1.51 2.15 1.35 1.59 .57 .11 .06 .009 755 223 99 10 5 7.2 99.64         RX 051600       75.29 4.88 9.74 1.05 .81 1.65 .96 .16 .07 .02 .002 779 70 52 10 5 5.6 99.95         RX 051600       75.52 4.88 9.74 1.05 .81 1.65 .96 .16 .07 .02 .002 779 70 52 10 5 7.6 99.94         RX 051664       74.18 5.25 8.42 .10 .74 1.57 .95 .13 .01 01 .002 2714 142 52 10 5 7.6 99.94         RX 051665       64.7 .61 7 .41 2.01 .74 1.57 .95 .13 .01 01 .002 2714 142 52 10 5 7.6 99.43         RX 051666       64.18 15.47 .61 5 2.08 3.07 4.21 2.14 .59 .13 .12 .002 680 364 112 18 5 .8 99.95         RX 051666       64.18 15.47 .61 5 2.08 3.07 4.21 2.14 .59 .13 .12 .002 680 364 112 18 5 .8 99.95         RX 051667       50.84 17.13 11.76 6.11 1.67 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 .6.1 99.99         RX 051667       50.84 17.3 11.66 1.1 1.67 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 .6.1 99.99         RX 051667       50.84 17.43 11.66 1.11 .67 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 .4.2 99.92         RX 051667       50.84 17.43 11.66 1.11 .67 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 .4.9 99.92         RX 051667       50.84 17.43 11.65 1.14 .14 1.97 .32 .23 .10 1.11 .005 .05 1177 01 14 5 5 1.6.9 99.92         RX 051667       50.84 17.13 11.66 .11 .67 3.09 1.94 .83 .11	O .	BV 051505	40 80 12 45 6 86 72 10 70 2 78 43 05 03 005 2255 02 140 17 5 4 6 00 60	
RX 051597       51.63 18.41 9.73 4.72 5.18 3.78 2.23 1.08 2.20 1.17       .003 599 467 81 21 5 2.6 99.95         RX 051598       62.79 8.08 14.66 1.51 2.15 1.35 1.59 .57 .09 06 .004 795 224 94 12 5 6.4 99.57         RX 051509       62.69 7.61 14.60 1.51 2.15 1.35 1.59 .57 .11 0.6 0.09 755 223 99 10 5 7.6 99.64         RX 051600       75.29 4.88 9.74 1.05 .81 1.05 .98 .16 .07 .02 0.002 779 70 52 10 5 7.6 99.64         RX 051663       47.54 12.43 19.36 5.29 8.54 1.84 .73 2.71 .18 23 .007 173 181 93 30 5 1.0 99.94         RX 051664       76.47 6.21 7.41 .21 1.4 1.99 .32 0.7 0.11 01 01 002 2714 142 52 10 5 7.6 99.45         RX 051665       76.47 6.21 7.41 .21 1.4 1.99 .32 0.7 0.11 01 005 639 320 40 5 5 5.6 99.63         RX 051666       64.18 15.47 6.15 2.08 3.67 4.21 2.14 .59 .13 12 002 660 364 112 18 5 .8 99.95         RX 051666       50.64 17.13 11.76 6.11 1.69 3.09 1.94 .85 .20 11 005 665 177 82 15 5 5.3 99.97         RX 051667       50.84 17.13 11.76 6.11 1.69 3.09 1.94 .85 .20 11 005 665 177 82 15 5 5.3 99.97         RX 051667       50.84 17.4 3.9 2.9 48 1.04 1.53 .19 0.02 107 101 14 5 15.4 99.92         RX 051667       50.64 17.4 3.9 2.9 48 1.04 1.53 .19 0.22 .01 0.05 813 107 65 11 5 3.9 99.80         RX 051670       81.66 6.17 4.39 .29 48 1.04 1.53 .19 0.22 .01 0.05 881 107 65 11 5 3.9 99.80         RX 051675       85.64 3.10 2.38 1.44 1.61 3.3 .11 .59 .11 09       .002 6146 244 69 13 5 12.0 99.36         RX 051676       81.60 6.17 4.39 .29 46 1.64 1.35 .34 .05 .03 100 0	()			
RX 051598       62.79       8.08 14.66 1.51 2.18       1.49 1.54       57       .09       06       .004       795       244       94       12       5       6.4       99.57         RX 051599       62.69       7.61       14.60       1.51       2.15       1.35       1.59       57       .11       .06       .009       755       223       99       10       5       7.2       99.64         RX 051600       75.29       4.88       9.74       1.05       .98       .16       .07       .02       .002       979       70       52       10       5       7.6       99.44         RX 051664       74.18       5.25       8.54       1.84       .73       2.71       18       23       10       1.01       .002       2714       142       52       10       5       7.6       99.45         RX 051664       76.47       6.21       7.41       .21       1.41       .99       .32       .07       .01       .001       .005       639       320       40       5       5       .6       99.99         RX 051667       50.64       77.13       1.76       1.45       .50       .07       .03			51 63 18 61 9 73 6 72 5 18 3 78 2 73 1 08 20 17 108 20 17 003 509 667 81 21 5 2 6 09 05	
RX 051599       62.69       7.61       14.60       1.51       2.15       1.35       1.59       .57       .11       .06       .009       755       223       99       10       5       7.2       99.64         RX 051600       75.29       4.88       9.74       1.05       .81       1.05       .98       .16       .07       .02       .002       979       70       52       10       5       5.6       99.64         RX 051663       47.54       12.43       19.36       5.27       6.5       1.84       .73       2.71       .18       23       .007       713       181       99       30       5       1.0       99.94         RX 051665       76.47       6.21       7.41       .21       1.4       1.99       .32       .007       .01       .002       630       64       12       18       5       5.6       99.63         RX 051666       64.18       15.47       6.11       1.69       3.04       7.1       .40       .002       170       117       18       5       5.6       99.95         RX 051667       30.84       17.13       11.76       6.13       .22       1.4       .57<				
RX 051600       75.29       4.88       9.74       1.05       .98       1.66       .07       .02       .002       979       70       52       10       5       5.6       99.84         RX 051663       47.54       12.43       19.36       5.29       8.54       1.84       .73       2.71       1.8       23       .007       173       181       93       30       5       1.0       99.94         RX 051664       74.48       5.25       8.42       .10       .74       1.57       .95       .13       .01       100       203       300       5       1.0       99.94         RX 051666       64.18       15.47       6.15       2.08       3.87       4.21       2.14       .59       .13       .12       .002       680       364       112       18       5       6.1       99.99       64       .16       .17       .13       .17       .64       .002       177       17       1.2       .10       .05       .051       177       82       15       5       6.1       99.99       .16       .17       .13       .17       .64       .02       .17       17       13       .12       .16				
RX 051663       47.54       12.43       19.36       5.29       8.54       1.84       .73       2.71       1.8       223       .007       173       181       93       30       5       1.0       99.94         RX 051664       74.18       5.25       8.42       .10       .74       1.57       .95       .13       .01       .002       2714       142       25       10       5       7.6       99.94         RX 051666       76.47       6.21       7.41       .29       .07       01       100       .002       2714       142       25       5       5       6       99.94         RX 051666       64.18       15.47       6.15       2.08       3.87       4.21       2.14       .59       .13       12       .002       680       364       112       18       5       6.1       99.99         RX 051666       60.92       17.61       7.46       2.28       52       .77       3.83       .77       .11       .005       6655       177       12       15       5       5.4       99.99       92       10       10       10       .002       107       11       107       103       22 </th <th></th> <th></th> <th></th> <th></th>				
RX 051663       47.54 12.43 19.36 5.29 8.54 1.84 .73 2.71 .18       23 .007 173 181 93 30       5 1.0 99.94         RX 051664       74.18 5.25 8.42 .10 .74 1.57 .95 .13 .01       01 .002 2714 142 52       10 5 7.6 99.45         RX 051666       76.47 6.21 7.41 .21 1.14 1.99 .32 .07 .01       01 .005 633 320 40       5 5 5.6 99.63         RX 051666       64.18 15.47 6.15 2.08 3.87 4.21 2.14 .59 .13       12 .002 680 364 112       18 5 .8 99.95         RX 051666       50.84 17.13 11.76 6.11 1.69 3.09 1.94 .85 .20       .11 .005 665 177 82       15 5 6.1 99.99         RX 051668       60.92 17.61 7.46 2.28 52 .77 3.83 .77 .11       04 .002 1770 117 197 23       5 5.3 99.97         RX 051667       50.84 17.13 11.76 6.11 1.69 3.09 1.94 .85 .20       .01 .005 831 107 65 11       5 15.4 99.92         RX 051667       81.60 6.17 4.39 .29 46 1.04 1.53 .19 .02       .01 .005 831 107 65 11       5 18.2 100.12         RX 051670       81.60 6.17 4.39 .29 46 1.04 1.53 .19 .02       .01 .005 831 107 65 11       5 18.2 100.12         RX 051671       39.69 11.01 25.80 2.08 1.94 1.83 3.11 .59 .11       .09 .002 6146 244 69 13       5 12.0 99.63         RX 051674       66.72 8.48 11.83 1.46 1.46 1.36 .34 .05       .03 .005 1174 207 72       7 5 6.0 99.63         RX 051675       56.66 3.10 23.81 .74 1.01 .30 .31 .12 .07 02 .003 233 68 51 6 5 18.8 100.00       5 18.8 100.00         RX 0516		RX 051600	75.29 4.88 9.74 1.05 .81 1.05 .98 .16 .07 .02 .002 979 70 52 10 5 5.6 99.84	
RX 051664       74.18 5.25 8.42 .10 .74 1.57 .95 .13 .01 .01 .002 2714 142 52 10 5 7.6 99.45         RX 051665       76.47 6.21 7.41 .21 1.44 1.99 .32 .07 .01 .01 .005 639 320 40 5 5 5.6 99.63         RX 051665       64.18 15.47 6.15 2.08 3.87 4.21 2.14 .59 .13 112 .002 680 364 112 18 5 .8 99.95         RX 051667       50.84 17.13 11.76 6.11 1.69 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 6.1 99.99         RX 051666       60.92 17.61 7.46 2.28 52 .77 3.83 .77 .11 .04 .002 1770 117 197 23 5 5.3 99.97         RX 0516669       36.13 9.62 30.26 1.30 3.23 1.81 1.17 .45 .09 .07 .005 1729 367 101 14 5 15.4 99.92         RX 051670       81.60 6.17 4.39 .29 .46 1.04 1.53 .19 .02 .01 .005 831 107 65 11 5 3.9 99.80         RX 051671       47.29 2.80 29.93 .13 .02 .06 1.23 .12 .02 .01 .002 1807 0 44 5 5 18.2 100.12         RX 051672       39.69 11.01 25.80 2.08 1.94 1.83 3.11 .59 .11 .19 .002 6146 244 69 13 5 12.0 99.36         RX 051674       63.79 4.42 18.36 .49 .96 .88 .44 .16 .03 .01 .003 889 96 51 6 5 9.9 .99.63         RX 051675       56.66 3.10 23.81 .74 1.01 .30 .31 .12 .07 .02 .003 233 68 51 8 5 13.8 100.00         RX 051676       63.79 4.42 18.36 .43 .96 .76 .18 .02 0.27 .78 .18 .02 .02 .003 233 68 51 8 5 13.8 100.00         RX 051675       56.66 3 10.0 23.81 .74 1.01 .30 .31 .12 .07 .02 .003 233 68 51 8 5 13.8 100.00         RX 051676       63.30 0.10 10 3.24 1.62 1.61 2.10 .44 .12 .08 .007 845 230 105 16 5 5 3.8 99.94         RX 051676       65.63 10.50 10.10 3.24 1.62 1.61 2.10 .44 .12 .08		RX 051663	47.54 12.43 19.36 5.29 8.54 1.84 .73 2.71 .18 23 .007 173 181 93 30 5 1.0 99.94	
RX 051666       64.18 15.47       6.15 2.08 3.87       4.21 2.14       .59       .13       .12       .002       680       364       112       18       5       .8       99.95         RX 051667       50.84       17.13       11.76       6.11       1.69       3.09       1.94       .85       .20       .11       .005       665       177       82       15       5       6.1       99.99         RX 051668       60.92       17.61       7.46       2.28       .52       .77       3.83       .77       .11       .04       .002       1770       117       197       23       5       5.3       99.97         RX 051669       36.13       9.62       30.22       1.30       3.223       1.81       1.17       .45       .09       .07       .005       172       367       10       14       5       15.4       9.9.92         RX 051670       81.60       6.7       7.39       .29       .48       1.04       1.53       .19       .02       .01       .002       1607       10       44       5       5       18.2       100.12         RX 051672       39.69       11.01       25.80       2.88		RX 051664	74.18 5.25 8.42 .10 774 1.57 .95 .13 .01 002 2714 142 52 10 5 7.6 99.45	
RX 051667       50.84 17.13 11.76 6.11 1.67 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 6.1 99.99         RX 051668       60.92 17.61 7.46 2.28 52 .77 3.83 .77 .11 .04 .002 1770 117 197 23 5 5.3 99.97         RX 051669       86.3 9.62 30.26 1.30 3.23 1.81 1.17 .45 .09 .07 .005 1729 367 101 14 5 15.4 99.92         RX 051670       81.60 6.17 4.39 .29 46 1.04 1.53 .19 .02 01 .005 831 107 65 11 5 3.9 99.80         RX 051671       47.29 2.80 29.93 .13 .02 .06 1.23 .12 .02 .01 .005 831 107 65 11 5 3.9 99.80         RX 051672       39.69 11.01 25.80 2.08 1.94 1.83 3.11 .59 .11 .09 .002 6146 244 69 13 5 12.0 99.36         RX 051673       66.72 8.48 11.83 1.46 1.46 1.46 1.36 .34 .05 .03 .005 1174 207 72 7 5 6.0 99.63         RX 051674       63.79 4.42 18.36 .49 .96 8.8 .44 .16 .03 .01 .003 889 96 11 6 5 99.62         RX 051676       24.34 3.77 38.56 .63 .00 .75 .78 .18 .02 .02 .002 2099 111 34 5 5 28.9 99.14         RX 051676       24.34 3.77 38.56 .63 .00 .75 .78 .18 .02 .02 .002 2099 111 34 5 5 28.9 99.14         RX 051678       63.98 11.48 10.32 2.93 3.07 1.12 2.00 .81 .10 .16 .006 692 162 95 21 5 3.8 99.94         RX 051679       65.63 10.50 10.10 3.24 1.62 1.61 2.10 .44 .12 .08 .007 845 230 105 16 5 4.3 99.95         RX 051679       65.63 10.50 10.10 3.24 1.62 1.61 2.10 .44 .12 .08 .007 845 230 105 16 5 4.3 99.94         RX 051679       63.98 11.48 10.32 2.93 3.07 1.12 2.00 .81 .10 .16 .006 692 162 95 21 5 3.8 99.94         RX 051679       60.10 13.65 9.34 4.82 2.00 2.02 3.54 .71 .13 .11 .003 887			76.47 6.21 7.41 .21 1.14 1.99 .32 .07 .01 .01 .05 639 320 40 5 5 5.6 99.63	
RX 051668       60.92 17.61 7.46 2.28       52       .77 3.83       .77 .11       .04       .002 1770       117       197       23       5       5.3       99.97         RX 051669       36.13       9.62 30.26 1.30       3.23       1.81       1.17       .45       .09       .07       .005       1729       367       101       14       5       15.4       99.92         RX 051670       81.60       6.17       4.39       .29       48       1.04       1.53       .19       .02       .01       .005       831       107       65       11       5       3.9       99.80         RX 051671       47.29       2.80       29.93       .13       .02       .06       1.02       .002       100       14       5       5       18.2       100.12         RX 051671       47.29       2.80       29.93       .13       .02       .06       .002       1002       116       19       .002       6146       244       69       13       5       12.0       99.36         RX 051672       66.72       8.48       1.83       3.11       .59       .11       .09       .002       6146       244       69       13 <th></th> <th>RX 051666</th> <th>64.18 15.47 6.15 2.08 3.87 4.21 2.14 .59 .13 .12 .002 680 364 112 18 5 .8 99.95</th> <th></th>		RX 051666	64.18 15.47 6.15 2.08 3.87 4.21 2.14 .59 .13 .12 .002 680 364 112 18 5 .8 99.95	
RX 051668       60.92 17.61 7.46 2.28       52       .77 3.83       .77 .11       .04       .002 1770       117       197       23       5       5.3       99.97         RX 051669       36.13       9.62 30.26 1.30       3.23       1.81       1.17       .45       .09       .07       .005       1729       367       101       14       5       15.4       99.92         RX 051670       81.60       6.17       4.39       .29       48       1.04       1.53       .19       .02       .01       .005       831       107       65       11       5       18.2       100.12         RX 051671       47.29       2.80       29.93       .13       .02       .06       1.02       .01       .002       807       10       45       5       18.2       100.12         RX 051672       39.69       11.01       25.80       2.08       1.94       1.83       3.11       .59       .01       .002       6146       244       69       13       5       12.0       99.36         RX 051672       66.72       8.48       1.81       1.46       1.46       1.64       1.03       .01       .003       889       96       <				
RX 051669       36.13       9.62       30.26       1.30       3.23       1.81       1.17       .45       .09       .07       .005       1729       367       101       14       5       15.4       99.92         RX 051670       81.60       6.17       4.39       .29       48       1.04       1.53       .19       .02       .01       .005       831       107       65       11       5       3.9       99.80         RX 051671       47.29       2.80       29.93       .13       .02       .06       1.23       .12       .02       .01       .002       1807       10       44       5       5       18.2       100.12         RX 051672       39.69       11.01       25.80       2.08       .94       1.83       3.11       .59       .11       .09       .002       6146       244       69       13       5       12.0       99.36         RX 051673       66.72       8.48       11.83       1.46       1.46       1.36       .34       .05       .03       .005       1174       207       72       7       5       6.0       99.63         RX 051675       56.66       3.10			50.84 17.13 11.76 6.11 1.69 3.09 1.94 .85 .20 .11 .005 665 177 82 15 5 6.1 99.99	
RX 051670       81.60       6.17       4.39       .29       48       1.04       1.53       .19       .02       .01       .005       831       107       65       11       5       3.9       99.80         RX 051671       47.29       2.80       29.93       .13       .02       .06       1.23       .12       .02       .01       .002       1807       10       44       5       5       18.2       100.12         RX 051672       39.69       11.01       25.80       2.08       1.94       1.83       3.11       .59       .11       .09       .002       6146       244       69       13       5       12.0       99.36         RX 051673       66.72       8.48       11.83       1.46       1.64       1.36       .34       .05       .03       .005       1174       207       72       7       5       6.0       99.63         RX 051675       56.66       3.10       23.81       .74       1.01       .30       .31       .12       .07       .02       .003       233       68       51       8       5       5.8.8       9       9.11       34       5       5       28.9       99				
RX       051671       47.29       2.80       29.93       .13       .02       .06       1.23       .12       .02       .01       .002       1807       10       44       5       5       18.2       100.12         RX       051672       39.69       11.01       25.80       2.08       1.94       1.83       3.11       .59       .11       .09       .002       6146       244       69       13       5       12.0       99.36         RX       051673       66.72       8.48       11.83       1.46       1.46       1.46       1.36       .34       .05       .03       .002       6146       244       69       13       5       12.0       99.36         RX       051673       66.72       8.48       11.83       1.46       1.46       1.36       .34       .05       .03       .003       889       96       51       6       5       9.9       9.62         RX       051675       56.66       3.10       23.81       .75       .78       .18       .02       .02       .002       2099       111       34       5       5       28.9       99.14         RX       051676				
RX 051672       39.69 11.01 25.80 2.08 1.94 1.83 3.11 .59 .11 .09 .002 6146 244 69 13 5 12.0 99.36         RX 051673       66.72 8.48 11.83 1.46 1.46 1.46 1.36 .34 .05 .03 .005 1174 207 72 65.60 99.63         RX 051674       63.79 4.42 18.36 .49 .96 .88 .44 .16 .03 .01 .003 889 96 51 65 9.9 99.62         RX 051675       56.66 3.10 23.81 .74 1.01 .30 .31 .12 .07 .02 .003 233 68 51 85 13.8 100.00         RX 051676       24.34 3.77 38.56 .63 .80 .75 .78 .18 .02 .02 2099 111 34 5 28.9 99.14         RX 051677       65.63 10.50 10.10 3.24 1.62 1.61 2.10 .44 .12 .00 .81 .10 16 .006 692 162 .95 21 5 3.8 99.94         RX 051678       63.98 11.48 10.32 2.93 3.07 1.12 2.00 .81 .10 16 .006 692 162 .95 21 5 3.8 99.94         RX 051679       60.10 13.65 9.34 4.82 2.00 2.02 3.54 .71 .13 11 .003 887 225 119 21 5 3.3 99.94				
RX 051673       66.72       8.48       11.83       1.46       1.46       1.36       .34       .05       .03       .005       1174       207       72       7       5       6.0       99.63         RX 051674       63.79       4.42       18.36       .49       .96       .88       .44       .16       .03       .01       .003       889       96       51       6       5       9.9       99.62         RX 051675       56.66       3.10       23.81       .74       1.01       .30       .31       .12       .07       .02       .003       233       68       5       13.8       100.00         RX 051676       24.34       3.77       38.56       .63       .80       .75       .78       .18       .02       .002       .002       2099       111       34       5       5       28.9       99.14         RX 051677       65.63       10.50       10.10       3.24       1.62       1.61       2.10       .44       .12       .04       .007       845       230       105       16       5       4.3       99.95         RX 051677       65.63       10.50       10.10       3.24       1		KA UD 10/1		
RX 051673       66.72       8.48       11.83       1.46       1.46       1.36       .34       .05       .03       .005       1174       207       72       7       5       6.0       99.63         RX 051674       63.79       4.42       18.36       .49       .96       .88       .44       .16       .03       .01       .003       889       96       51       6       5       9.9       99.62         RX 051675       56.66       3.10       23.81       .74       1.01       .30       .31       .12       .07       .02       .003       233       68       5       13.8       100.00         RX 051676       24.34       3.77       38.56       .63       .80       .75       .78       .18       .02       .002       .002       2099       111       34       5       5       28.9       99.14         RX 051677       65.63       10.50       10.10       3.24       1.62       1.61       2.10       .44       .12       .04       .007       845       230       105       16       5       4.3       99.95         RX 051677       65.63       10.50       10.10       3.24       1		RX 051672	39.69 11.01 25.80 2.08 1.94 1.83 3.11 .59 .11 .09 .002 6146 246 69 .13 5 12.0 99.36	
RX 051674       63.79       4.42       18.36       .49       .96       .88       .44       .16       .03       .01       .003       889       .96       51       .6       5       9.9       99.62         RX 051675       56.66       3.10       23.81       .74       1.01       .30       .31       .12       .07       .02       .003       233       .68       5       13.8       100.00         RX 051676       24.34       3.77       38.56       .63       .80       .75       .78       .18       .02       .002       .002       2099       111       34       5       5       28.9       99.14         RX 051677       65.63       10.50       10.10       3.24       .62       1.61       2.10       .44       .12       .04       .007       845       230       105       16       5       4.3       99.95         RX 051677       65.63       10.50       10.10       3.24       .62       1.61       2.10       .44       .12       .04       .007       845       230       105       16       5       4.3       99.95         RX 051677       63.98       11.48       10.32 <t< th=""><th></th><th></th><th>66.72 8.48 11.83 1.46 1.46 1.64 1.36 .34 .05 .03 .005 1174 207 72 7 5 6.0 99.63</th><th></th></t<>			66.72 8.48 11.83 1.46 1.46 1.64 1.36 .34 .05 .03 .005 1174 207 72 7 5 6.0 99.63	
RX 051675       56.66       3.10       23.81       .74       1.01       .30       .31       .12       .07       .02       .003       233       68       51       8       5       13.8       100.00         RX 051676       24.34       3.77       38.56       .63       .80       .75       .78       .18       .02       .002       2099       111       34       5       5       28.9       99.14         RX 051677       65.63       10.50       10.10       3.24       1.62       1.61       2.10       .44       .12       .04       .007       845       230       105       16       5       4.3       99.95         RX 051678       63.98       11.48       10.32       2.93       3.07       1.12       2.00       .81       .10       .16       .006       692       162       95       21       5       3.8       99.94         RX 051679       60.10       13.65       9.34       4.82       2.00       2.02       3.54       .71       .13       .11       .003       887       225       119       21       5       3.3       99.94         RX 051679       60.10       13.65 <td< th=""><th></th><th></th><th></th><th></th></td<>				
RX 051676       24.34       3.77       38.56       .63       .80       .75       .78       .18       .02       .02       .002       2099       111       34       5       5       28.9       99.14         RX 051677       65.63       10.50       10.10       3.24       1.62       1.61       2.10       .44       .12       .08       .007       845       230       105       16       5       4.3       99.95         RX 051678       63.98       11.48       10.32       2.93       3.07       1.12       2.00       .81       .10       .16       .006       692       162       95       21       5       3.8       99.94         RX 051679       60.10       13.65       9.34       4.82       2.00       2.02       3.54       .71       .13       .11       .003       887       225       19       21       5       3.3       99.94         RX 051679       60.10       13.65       9.34       4.82       2.00       2.02       3.54       .71       .13       .11       .003       887       225       19       21       5       3.3       99.94         051670       60.10       13		RX 051675	56.66 3.10 23.81 .74 1201 .30 .31 .12 .07 22 .003 233 68 51 8 8 5 13.8 100.00	
RX 051678 63.98 11.48 10.32 2.93 5.07 1.12 2.00 .81 .10 .16 .006 692 162 95 21 5 3.8 99.94 RX 051679 60.10 13.65 9.34 4.82 2.00 2.02 3.54 .71 .13 .11 .003 887 225 119 21 5 3.3 99.94 RX 051669 78 53 7.83 8.60 07 05 01 .13 .11 .003 887 225 119 21 5 3.3 99.94		RX 051676		
RX 051678 63.98 11.48 10.32 2.93 5.07 1.12 2.00 .81 .10 .16 .006 692 162 95 21 5 3.8 99.94 RX 051679 60.10 13.65 9.34 4.82 2.00 2.02 3.54 .71 .13 .11 .003 887 225 119 21 5 3.3 99.94 RX 051669 78 53 7.83 8.60 07 05 01 .13 .11 .003 887 225 119 21 5 3.3 99.94				
RX 051679 60.10 13.65 9.34 4.82 2.00 2.02 3.54 .71 .13 .11 .003 887 225 119 21 5 3.3 99.94			65.63 10.50 10.10 3.24 1.62 1.61 2.10 .44 .12 .08 .007 845 230 105 16 5 4.3 99.95	
NY 051400 70 57 7 93 8 40 07 1252 00 07 05 04 103 334 447 44 113 5 5 5 6 08 07				
RE RX 051671 48.13 2.85 28.81 .12 .02 .07 1.28 .12 .01 .01 .002 2246 147 14 7 5 5.1 98.97			60.10 15.65 9.34 4.82 2.00 2.02 3.54 .71 .13 .11 .003 887 225 119 21 5 3.3 99.94	
KE KA UJIOTI (40.13 2.02 20.01 .12 .02 .01 .2 .02 .01 .2 .01 .02 .02 .02 .01 .02 .00 .02 .00 .00 .00 .00 .00 .00 .00				
		KE KA UJ 10/1	40.13 2.07 20.01 .12 .02 .0/ 1,20 .12 .01 .01 .002 1047 10 5/ 20 7 10.4 100.13	-

San a t

-----

----

¢

.200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBO2 AND ARE DISSOLVED IN 100 MLS 5% HNO3. - SAMPLE TYPE: ROCK PULP <u>Samples beginning 'RE' are duplicate samples</u>.

DATE RECEIVED:

Activation Laboratories Ltd. Work Order: 4209 Report: 4183

e contra an an an an an an

Sample description	AU PPB	AG PPM	as PPM	BA PPM	BR PPM	CA 1	CO PPM	CR PPM	CS PPM	PB	HF PPM	HG PPM	IR PPB	MO NA PPN PPI		RB PPM	SB PPM	SC PPN	se PPM	5N	5R	TA PPM	TH PPM
	_																						
RX 051590	11	<5	4	350	<1	<1	27	<10	<2	8.73	2.1	<1	<5	1B 5910		<30		5.9		<0.01		<1	2.8
RX 051591	13	<5	5	190	2	<1	21	33	<2	7.94	2.3	<1	<5	16 2780		<30	<0.2	5.0		c0.01		<1	2.5
RX 051592	<5	<5	<2	840	<1	2	17	19	3	5.33	3.8	<1	<5	<5 27000		B6	<0.2	18		<b>(0.01</b> )		<1	2.7
RX 051593	<5	<5	<2	500	<1	2	22	25	2	5.80	1.9	<1	<5	<5 26100		39	<0.2	27		<0.01 ·		<1	1.5
RX 051594	<5	<5	<2	740	<1	<1	<5	<10	<2	0.63	2.8	<1	<5	<5 30600	<50	79	<0.2	1.6	<5 <	(0.01 ·	<0.05	<1	2.0
RX 051595	12	<5	<2	1700	<1	<1	5	29	<2	4.26	3.9	<1	<5	<5 6000	<50	33	<0.2	7.0	<5 <	(0.01 ·	<0.05	1	5.3
RX 051596	22	<5	3	610	<1	5	19	42	<2	6.26	2.8	<1	<5	<5 11700	<50	68	0.5	28	<5 <	(0.01 -	<0.05	<1	1.5
RX 051597	<5	<5	<2	450	<1	4	14	13	<2	5.82	2.4	<1	<5	<5 26700	<50	<30	<0.2	26	<5 <	.0.01	<0.05	2	1.3
RX 051598	19	<5	2	560	<1	1	29	16	<2	9.53	3.0	<1	<5	99 11500	<50	31	<0.2	9.4	13 <	0.01	<0.05	<1	2.5
RX 051599	16	<5	2	610	<1	<1	34	44	<2	9.12	2.B	<1	<5	120 10200	<50	51	<0.2	9.0	13 <	0.01	<0.05	<1	2.5
RX 051600	22	<5	8	780	<1	<1	14	<10	<2	6.20	1.7	<1	<5	41 7880	<50	<30	<0.2	3.7	6 <	.0.01	<0.05	<1	2.4
RX 051663	<5	<5	<2	<100	<1	6	44	13	<2	12.7	3.0	<1	<5	<5 19900	<50	<30	0.3	37	<5 <	0.02 .	<0.05	<1	<0.5
RX 051664	14	<5	<2	2100	<1	<1	17	<10	<2	5.19	2.2	<1	<5	84 11900	<50	<30	0.2	1.9	14 <	0.01 4	<0.05	<1	2.1
RX 051665	9	<5	<2	410	<1	1	9	30	<2	4.71	1.1	<1	<5	1800 15100	<50	<30	<0.2	0.9	<5 <	0.01 -	<0.05	<1	1.3
RX 051666	<5	<5	<2	470	<1	4	12	<10	<2	3.83	3.6	<1	<5	6 30700	<50	45	0.2	14	<5 <	0.01 4	<0.05	<1	7.0
RX 051667	<5	<5	<2	570	<1	<1	33	27	<2	7.65	2.8	<1	<5	5 23500	<50	33	<0.2	26	<5 <	0.01 <	<0.05	<1	2.3
RX 051668	<5	<5	<2	1200	<1	<1	15	<10	<2	4.68	6.1	<1	<5	8 5930	<50	36	<0.2	21	<5 <	0.01 -	<0.05	<1	5.3
RX 051669	<5	<5	<2	1200	<1	2	95	27	<2 3	20.5	3.0	<1	<5	130 12800	<50	44	<0.2	7.8	20 <	0.01 4	<0.05	<1	2.3
RK 051670	15	<5	<2	560	<1	<1	7	<10	<2	2.80	2.0	<1	<5	110 7810	<50	<30	<0.2	3.7	8 <	0.01 <	<0.05	<1	2.6
RX 051671	<5	<5	20	1300	<1	<1	26	<10	<2 3	22.3	1.3	<1	<5	30 500	<50	<30	<0.2	2.2	23 <	0.01 <	<0.05	<1	<0.5
RX 051672	<5	<5	3	4500	<1	2	41	15	<2	16.7	2.9	<1	<5	51 13900	<50	61	0.3	17	11 <	0.01 <	c0.05	<1	2.2
RX 051673	37	<5	2	960	<1	<1	14	35	<2	7.49	2.2	<1	<5	56 12800	<50	<30	<0.2	6.1	7 <	0.01 <	<0.05	<1	2.2
RX 051674	150	9	4	650	<1	<1	29	<10	<2	11.8	1.5	<1	<5	72 6900	<50	<30	<0.2	2.9	15 <	0.01 <	0.05	<1	1.7
RX 051675	17	<5	5	230	<1	<1	29	13	<2	16.3	0.9	<1	<5	59 2200	<50	<30	0.2	2.5	14 <	0.01 <	.0.05	<1	0.6
RX 051676	26	<5	5	1600	<1	<1	86	16	<2 2	26.1	1.2	1	<5	80 6430	<50	<30	<0.2	4.9	42 <	0.01 <	0.05	<1	1.4
RX 051677	<5	<5	<2	680	<1	1	24	39	<2	5.87	2.9	<1	<5	26 11600	<50	65	<0.2	8.5	6 <	0.01 <	:0.05	<1	2.9
RX 051678	8	<5	2	550	<1	3	18	26	<2	6.78	3.2	<1	<5	B 8990	<50	<30	<0.2	20	B <	0.01 <	0.05	<1	2.8
RX 051679	<5	5	2	740	<1	2	16	16	<2	5.92	3.2	<1	<5	8 14900	<50	68	<0.2	15	<5 <	0.01 <	0.05	<1	4.1
RX 051680	109	7	<2	1600	<1	<1	9	<10	<2	5.29	0.7	<1	<5	140 7300	<50	<30	0.9	0.7	11 <	0.01 <	0.05	<1	1.6

. . .

•

## Activation Laboratories Ltd. Work Order: 4209 Report: 4183

and the second s

;-

Sample description	U PPM	W PPM	ZN PPM	LA PPM	CE PPM	ND PPM	sh Ppm	eu PPM	tb PPM	YB PPM	LU PPM	Мава 9
RX 051590	1.7	<4	289	8	18	10	1.8	<0.2	<0.5	1.57	0.30	30.00
RX 051591	1.1	<4	201	9	20	10	2.5	0.4	<0.5	1.97	0.32	30.00
RX 051592	<0.5	<4	<50	13	28	14	3.5	0.9	<0.5	2.71	0.49	30.00
RX 051593	1.6	<4	118	8	19	8	2.5	1.0	<0.5	2.51	0.43	30.00
RX 051594	3.6	<4	<50	5	8	<5	1.0	<0.2	<0.5	1.54	0.28	30.00
RX 051595	2.9	4	2520	21	38	15	3.7	0.9	<0.5	2.58	0.44	30.00
RX 051596	<0.5	<4	721	11	25	10	3.9	1.3	0.9	2.62	0.38	30.00
RX 051597	<0.5	<4	77	10	22	11	3.3	1.3	0.8	3.00	0.45	30.00
RX 051598	2.5	.<4	382	12	25	12	2.6	0.8	<0.5	1.33	0.25	30.00
RX 051599	1.7	<4	430	12	22	15	2.5	0.8	<0.5	1.43	0.27	30.00
RX 051600	1.2	<4	317	6	13	7	1.5	0.3	<0.5	1.41	0.16	30.00
RX 051663	<0.5	<4	187	7	19	12	4.4	1.4	0.8	3.96	0.57	30.00
RX 051664	1.4	<4	<50	6	11	<5	1.3	0.5	<0.5	1.54	0.25	30.00
RX 051665	<0.5	<4	93	5	7	19	0.9	<0.2	<0.5	0.50	0.11	30.00
RX 051666	3.9	<4	<50	22	39	11	3.4	0.9	<0.5	2.58	0.47	30.00
RX 051667	<0.5	6	<50	11	24	15	2.6	0.7	<0.5	2.29	0.41	30.00
RX 051668	<0.5	<4	<50	16	35	15	3.9	0.9	<0.5	3.98	0.60	30.00
RX 051669	5.6	<4	1130	13	25	13	2.5	0.9	<0.5	1.73	0.22	30.00
RX 051670	2.2	<4	<50	10	17	9	1.8	0.5	<0.5	1.39	0.20	30.00
RX 051671	<0.5	8	58	<1	<3	<5	0.1	<0.2	<0.5	0.83	0.09	30.00
RX 051672	5.6	<4	4330	13	21	12	2.4	0.7	<0.5	1.69	0.32	30.00
RX 051673	<0.5	<4	474	5	7	6	1.1	<0.2	<0.5	1.29	0.18	30.00
RX 051674	2.5	6	1010	3	3	6	0.5	<0.2	<0.5	0.98	0.17	30.00
RX 051675	1.8	<4	262	5	8	<5	1.2	0.4	<0.5	0.87	0.14	30.00
RX 051676	5.7	<4	9520	8	11	<5	1.3	0.6	<0.5	D.69	<0.05	30.00
RX 051677	1.3	<4	200	10	20	11	2.4	0.4	0.5	2.06	0.38	30.00
RX 051678	1.8	<4	245	11	25	9	3.3	0.9	<0.5	3.05	0.56	30.00
RX 051679	2.2	<4	181	12	26	10	2.7	0.7	1.1	2.99	0.48	30.00
RX 051680	1.4	<4	820	4	B	<5	0.8	0.2	<0.5	1.09	0.19	30.00

ME ANALYTI	CAL L	ABO	RAT	ORI	ES	LT	D.		85	52 1	Е.	HA	STI	NGS	ST.	VA	NCO	UVE	RВ	.C.	Ve	5A ]	. <b>R6</b>		PHO	)NE (	(604	)25	3-3	:158		Fax	(60	)4):	253	-17
										G	EO	CH	EM.	ICA	G A	NAI	YS	<b>18</b>	CE	<b>RTI</b>	FIC	CAT	E													
144			Tn	~~	F.	7n 1		C.	Te	۰h	g	٨r	vi	CAS	PR	OTE	CT	60	)52	<u>2</u> ]	Fi]	le	# q	12-2	278	0	Pa	aqe	1						-	19
						- 44			2690	- 6	66 E	lurr	ard	St.,	Vance	ouver	BC	V6C	2X8	Subr	nitt	ed b	y: C.	BEL	[]]]		1.									Ê,
				<u></u>			<u> </u>		<u></u>			<u>1993</u> 22	<u></u>	Th S	<u></u>				C e	<u></u>		Cr	Mg	Be	T1	<u>م</u>	Ne			Zr	Sn	<u> </u>	Nb	Be	Sc	Au*
SAMPLE#	Mo ppm	Cu ppm			n A m pp	-	Ni C pm pp		Mn opm					ppm pr								n ppm		ppm	*	*				ppm						
							_					-		5 13		2 6	; 2	25	1 36	.026		1 24	29	240	18	6.99	4.41	1.08	10	11	3	5	4	1	4.7	2
RX 121588	1	9			-	363			68 1 91 2		4		ND ND	-	395.					.025										11			1	1	7.1	1
RX 121589	-	74		24	э. 020.						8		ND							.201										11	7	26	1	6	11.7	77
RX 121590					0 20. 2 67.								ND	2 24	A 20.	4 51	92	908	4.71	1.110	28	1 1 4 9	.70	238	. 20	3.65	.20	.70	31	23	10	76	3	3	10.2	370
RX 121591					7 37.								ND	4 16	3 27.	8 21	59	697	2.64	. 332	17	129	.58	333	. 17	3.95	. 25	1.24	, 7	16	12	59	3	1	8.6	195
RX 121592	03	3302	4343	340	, 3/.	~ .					20	-						•••																		
RX 121593	62	5045	4263	323	0 36.	1 6	54 3	0 3	33 !	5.73	4	5	ND	1 14	13 28.	5 26	50	950	2.36	. 373	20	188	.48	304	. 17	3.07	.23	3.74	48	17	10	45	1	2	8.4	201
RX 121595					2 43.								ND							. 173										7				1	3.2	109
RX 121595	-				4 5.							5								. 113								3 1.54		28	2	19	2	1	8.8	33
RX 121595			-		3 31.							5		2 19	5 32.	2 17	38	626	4.43	. 383	18	132	.93	166	. 22	4.42	.17	. 40	2	20	11	40	1	1	9.B	204
RX 121597					2 2.						4			4 22	4 17.	6 5	2	615	1.59	.102	19	109	.63	217	. 17	4.19	.69	2.21	2	19	1	27	1	1	8.3	7
RA 161007																																				
RX 121598	3	89	47	20	51.	0 1	14 1	7 11	05 5	5.58	4	5	ND	6 32	5.	9 2	2	269	4.03	.117	19	34	1.92	1730	. 67	8.38	1.45	i 1.70		-	-	25				
RX 121599	27	19	33	3	9.	3	7	1 23	99	.76	4	5	ND	1 16	i9 .	3 2	: 3	10	. 58	.011	2	4	.05	461	. 02	7.27	2.61	5.35		10						
RX 121600	- 6	93		10		2 1	17 1	67	87 4	. 52	4	5	ND	5 44	. 8	2 2	2	210	3.20	.066	13	52	1.46	1792	. 40	9.16	2.44	1.40	2	17						
RX 121687	9	22	15			3	з	1 2	96 2	2.12	4	5	ND	11 45	i2 .	2 2	2	184	1.99	.042	27	21	1.03	3956	. 23	8,36	1.65	1.57	6	20	1	4				
RX 121688	15	59	16		5.	2 4	46 1	77	87 3	1.03	4	5	ND	12 38	17.	9 2	2 2	220	4.13	.135	32	: 35	1.41	328	.23	7.87	1.51	.81	2	16	1	17	1	1	15.3	1
RX 121689	1	45	4	10	7.	з 2	24 1	8 12	90 5	5.05	6	5	ND	11 63	17 .	4 6	2	194	5.06	. 101	20	26	1.67	1905	. 4B	9.24	1.66	1.01	2	16	1	17	1	-	20.8	
RX 121690	7	40	13	11	5.	4 2	25 1	4 7	10 3	8.13	4	5	ND	5 40	6.	B 2	2	194	2.57	.039	12	58	.93	621	. 24	7.68	2.14	1.44		14	-		7		14.7	
RX 121691	14	56	5	11	6.	2 4	46 1	6 9	88 4	1.00	4	5	ND	7 41	.5.	7 É	; 3	212	5.70	.077	25	i 42	1.35	1171						11	1				19.4	
RX 121692	1	3	14	3	ο.	2	1	3 2	76 1	.10	4	5	ND	2 72	8.	25	2	14	1.58	.014				4071				2.71					2	1	.9	
RX 121693	1	124	4	10	з.	5	1 1	0 15	92 !	5.35	4	5	ND	2 42	. 5	2 2	6	253	8.30	.093	6	; 1	1.54	1396	. 54	10.01	2.77	.55	2	9	1	17	1	1 :	25.2	2
												_									_		~~		10	a 07				10	1	10		,	2.6	1
RX 121694	7	14	18	- 41		-		-	00 1		4		ND	4 67		2 2			2.23					1150								7	-	-		
RE RX 121690	7	37	12	10					70 3			5		5 39		82				.036										15						
RX 121695	1	79	4	8					82 5			5		1 53						.154				353				.69				32				
RX 121696	17	104	10	15:		-			24 2			5			1 1.					.142								1.30		40					11.9	
RX 121697	91	76	4	1173	7.	2 27	3 1	0 2	88 3	1.07	4	5	ND	5 27	6 13.	52	2	1394	2.27	.093	27	71	1./3	500	. 30	4.42	•13	1.21	2	40	•	24	-	•	11.3	-
RX 121698	14	31		24	a	3 5	21 1	2 1	08	. 90	4	5	ND	37	4	37	3	112	. 53	.018	5	75	. 30	327	. 02	1.19	.07	.21	2	5	1	2	1	1	2.6	2
RX 121698 RX 121699	67	89		158	-	817			94 1		4		ND							.058										26	1	18	1	1	9.7	2
	40	60		798					06 2			5			3 9.					.064									2	16	1	24	2	1	10.4	2
RX 121700 RX 121701	40	175		2340		2 19		53		. 52	15		ND		3 28.			1515						133					2	20	1	32	1	1	10.0	2
	4			130					69 1					14 16		3 2				.005	19	30	.02	1669	.10	6.69	2.66	3.81	2	13	1	45	14	4	2.3	1
RX 121702	•		13	1.30	5.	e	,				-																									
RX 121703	19	185	5	1240	0 2.	2 19	91	4 13	86 3	. 16	8	5	ND	8 15	3 13.	ο ε	2	813	8.51	.039	19	50	6.77	334	. 11	5.37	.24	.28	2	22	1	25	1	1	8.9	3
RX 121703 RX 121704					2 .									4 12	5 15.	0 9	2	1024	1.53	.043	14	64	1.00	648	. 20	3.02	.13	.64	3	24	1	8	1	1	7.4	1
RX 121705	12	65		170	в.	6 5	50	7 5	11 3	.05	4	5	ND	3 46	7 1.	9 2	2	264	2.91	. 125	15	i 40	.81	189	. 34	5.90	.86	: 1.01	3	8	1	36	1	1	15.0	1
RX 121706	3	52		117	7.	4 2	26 2	4 14	48 5	.76	12	5	ND	10 82	1.	3 2	3	247	6.14	.130	36	59	3.17	435	. 49	9.25	2.90	1.01	3	6	1	21	1	1	38.0	1
RX 121707	1054	51		29	9.	2 1	10	61	60 1	.01	4	5	ND	3 20	3.	2 Z	2	22	1.40	. 131	5	i 11	.22	1667	.05	3.86	.85	2.46	4	4	1	4	1	3	1.8	1
					_	_						-					-		* **					1075	1 44		1 20		. =	20	,	33	11	1	32 P	•
RX 121708		43		15	1.	8 5	54 3	7 12	90 9	.61	14	5	ND	2 44		8 5	2	319	7.88	.219	18	54	3.14	12/5	1.44	0.12	1.20	UE. 1		10	4	33 AC	1	1	13 7	1
RX 121709	3	107	4	123	2.	4 10	0 1	55	31 4	. 10	4	5	ND	6 24	5.	32	2	395	3.51	.277	26	153	1.48	/30	. 39	9.21	50.		2	10	10	40 7	1	•	5 7	L C
STANDARD HFC/AU-	R 21	63	40	13	37.	3 9	3 4	5 12	40 4	. 45	37	17	7	36 6	1 20.	5 16	21	76	. 57	.119	39	64	. 98	244	.08	2.13	.09	.18	9	4	10		-	<u> </u>	3.7	+00

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 10ML HCL04-HN03-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM. AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCLO4 FUMING.

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLES Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: P1 TO P2 ROCK P3 MOSS MAT

.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY DATE RECEIVED. AND 25 1992 DATE REPORT MAILED H1.0/ 2010



Inco Expl. & Tech. Services PROJECT 60522 FILE # 92-2780

ACHE ANALYTICAL						-			<u></u>																									/	-	LTTICA
SAMPLE	Ma	Cu	Pb	Zn	Ag	j N1	C٥	Mn	Fe	As	U	Au	Th Si	~ Ca	Sb	Bí	۷	Ca	P	La	Cr	Mg	Ba	T1	TA.	Na	ĸ	W	Zr	Sn	Y	NЬ	Be	Sc	Au*	
	ppm	ppm	ppm	ppm	ppn	n ppm	ppm	ppm	%	• ppm	ppm	ppm	ppm ppm	п ррп	ppm	ppm	ppm	%	x	ppm	ppm	7.	ppm	%	7	%	%	рртя	ppm	p pon	рра	ppm	ppm	ppm	ppb	3
RX 121710	2	33	8	109	. 2	2 6	19	1573	5.52	4	5	ND	4 823	3.2	2	2	166	5.15	.084	12	15	1.86	335	. 40	9.68	2.85	1.90	2	7	1	22	8	1	19.7	3	3
RE RX 121714	33	3611	5928	1741	127.2	2 101	43	788	9.70	252	5	4	2 203	3 19.2	240	105	584	6.26	. 577	17	77	1.98	281	. 16	5.23	.18	. 79	2	27	15	35	1	1	10.9	5200	)
RX 121711	6	489	39	116	. 5	55	5	422	5.07	4	5	ND	5 31	.9	2	3	20	.09	.015	15	4	1.00	199	. 14	6.99	.21	4.68	3	54	3	4	8	1	6.6	9	,
RX 121712	11	141	33	556	. 9	81	9	370	4.58	4	5	ND	2 307	6.8	2	2	562	2.64	. 345	26	119	.73	685	. 17	3.75	.19	1.05	2	14	1	59	1	1	12.1	5	j
RX 121713	18	110	20	396	1.0	84	6	271	4.09	4	5	ND	3 223	3 5.0	2	2	765	2.15	. 369	24	149	.78	220	.15	3.88	.19	1.39	2	19	1	62	1	1	13.7	2	ł
RX 121714	29	3646	5584	1723	108.3	99	39	769	9.42	,293	5	3	3 199	18.2	230	102	573	6.03	. 559	18	80	1.90	299	. 16	5.29	.17	.77	2	26	16	35	1	1	11.1	4980	)
RX 121715	42	5306	4361	4990	45.3	119	110	875	11.22	25	5	ND	3 337	47.8	57	34	753	5.38	.057	10	56	1.76	622	. 17	4.95	.04	.23	2	23	22	32	1	1	11.4	230	)
RX 121716	11	145	47	408	1.0	1 70	13	348	3.42	4	5	ND	1 261	4.8	2	2	557	2.50	.257	18	99	1.10	180	. 17	4.70	.23	1.30	2	18	1	33	1	1	19.4	9	j.
RX 121717	19	2862	4688	13077	25.0	138	60	750	22.42	4	5	ND	3 45	69.7	10	28	238	.94	.082	5	63	.70	281	.05	1.90	. 10	. 47	2	14	8	12	1	1	3.2	124	i
RX 121718	14	134	65	515	.8	41	16	808	4.54	4	5	ND	7 379	4.3	2	2	344	4.15	. 107	21	41	1.17	497	. 32	7.13	1.71	1.76	2	5	1	26	1	1	19.2	12	:
RX 121719	14	153	41	493	.9	50	7	845	3.35	4	5	ND	2 225	6.8	3	2	688	3.88	.050	7	82	3.24	244	.51	5.87	. 49	. 55	2	9	1	22	1	1	28.7	1	
RX 121720	10	60	21	145	.2	: 33	15	674	4.14	7	5	ND	8 483	.5	2	4	198	3.05	.084	22	38	1.25	880	. 27	7.82	2.08	1.66	2	34	1	13	1	1	19.8	1	
RX 121721	1	47	29	220	.2	110	49	1937	8.00	7	5	ND	1 294	2.7	2	2	254	6.87	.045	2	79	4.46	384	.71	8.13	.51	. 45	2	3	1	23	1	1	45.4	1	
RX 121722	124	14822	9554	6631	70.0	92	24	558	17.11	9	6	ND	4 221	42.3	47	85	787	4.91	1.351	37	285	. 30	147	. 14	2.69	.07	. 05	27	22	31	107	1	7	12.1	687	
RX 121723	26	201	100	895	1.3	81	7	380	3.11	6	5	ND	2 182	11.1	5	2	677	2.40	.247	16	86	.72	437	. 19	4.05	. 31	1.69	4	18	1	33	1	1	14.3	7	
RX 121724	23	257	27	771	1.3	77	6	341	3.64	4	5	ND	4 195	10.6	2	2	657	1.94	. 231	19	126	. 59	263	. 19	3.70	. 37	1.31	2	22	1	46	1	1	12.0	6	J
RX 121725	24	123	56	343	.5	35	6	393	3.05	4	5	ND	3 226	3.8	2	6	481	1.73	. 127	13	75	.73	240	.25	4.80	.89	1.40	2	23	1	30	1	1	19.2	1	
RX 121726	29	554	1321	1097	10.7	91	9	340	3.83	8	6	ND	2 246	12.5	14	8	712	2.44	. 221	13	84	.64	453	. 20	4.07	.29	1.43	2	15	1	31	1	1	13.5	80	,
STANDARD HFC/AU-	R 20	64	41	150	6.6	100	50	1294	4.43	41	19	7	36 58																		8	1			522	

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

____

.....

Page 2

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (6.4) 253-1716

## WHOLE ROCK ICP ANALYSIS

	WHOLE ROCK ICP ANALYSIS	Å
AA Inco Ex	pl. & Tech. Services PROJECT 60522 File # 92-2780 Page 1	Î.
	2690 - 666 Burrard St., Vancouver BC V6C 2X8 Submitted by: C. BELL	
SAMPLE#	SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 Ba Sr Zr Y Nb LOI SUM % % % % % % % % % % % ppm ppm ppm ppm % %	
	73.45 14.71 1.29 .42 1.91 6.01 1.05 .25 .03 .03 .002 271 175 136 14 10 .7 99.94	
RX 121589	83.80 4.97 3.57 .23 .59 .98 1.04 .26 .03 .01 .006 3780 90 68 5 5 3.7 99.85	
RX 121590	52.48 6.24 22.49 2.12 3.83 .28 .55 .33 .44 .07 .013 1236 133 114 21 5 8.4 97.49 52.48 6.24 22.49 2.12 3.83 .28 .55 .33 .04 .016 2127 240 142 61 5 4.9 98.53	
RX 121591	68.39 5.96 8.25 .99 6.26 .22 .51 .25 2.33 .04 .016 2127 240 142 61 5 4.9 98.53 70.22 6.44 9.95 .83 3.33 .31 1.08 .23 .69 .03 .013 3753 197 127 46 5 4.7 98.51	
RX 121592		
RX 121593	74.66 5.18 7.63 .73 3.15 .23 .84 .21 .82 .04 .020 2429 148 112 37 5 4.4 98.36	
RX 121594	80.60 2.05 7.75 .34 1.47 .06 .17 .07 .37 .04 .002 357 45 47 12 11 4.7 97.70	
RX 121595	70.58 8.57 7.59 3.64 2.02 .29 1.28 .25 .24 .06 .005 1881 101 128 22 5 4.7 99.58 61 73 8 06 13 09 1 44 6.33 20 40 32 .87 05 .019 1147 201 139 35 5 5.3 98.05	
RX 121596		
RX 121597	77.17 8.06 3.59 1.01 2.18 .77 1.89 .26 .25 .04 .007 4850 232 144 25 5 3.4 99.50	
RX 121598	60.57 15.22 7.90 2.96 5.43 1.79 1.63 1.02 .25 .15 .006 1936 301 75 23 9 2.6 99.90	
RX 121599	75,44 13,75 .78 .01	
RX 121600	61.35 17.58 5.96 2.43 4.39 3.21 .95 .66 .15 .10 .005 2157 434 55 .16 18 2.7 99.91	
RX 121687	66.32 17.72 3.03 1.61 2.52 1.91 1.44 .58 .10 .03 .002 5302 408 73 17 22 3.7 99.93	
RX 121688	66.58 14.37 4.02 2.14 5.54 1.77 .55 .49 .31 .09 .002 2376 373 94 21 22 3.6 99.93	
RX 121689	59.38 17.25 7.26 2.57 6.90 2.03 .89 .78 .26 .16 .002 2200 596 80 16 22 2.0 99.94	
RX 121690	70.36 13.79 3.92 1.44 3.28 2.53 1.27 .45 .08 .08 .004 2587 375 40 .13 CY C.2 99.90	
RX 121691	68, 18, 12, 78, 4, 91, 1, 99, 7, 62, 48, 10, 49, 17, 41, 002, 1266, 380, 46, 18, 18, 2,8, 99, 90	
RX 121692	74.17 13.98 1.16 .14 2.16 3.64 2.82 .12 .04 .03 .002 4131 732 127 5 5 .9 99.97	
RX 121693	51.51 18.78 7.73 2.39 11.99 3.68 .41 .86 .21 .20 .002 1731 412 34 14 23 1.8 99.91	
RX 121694	73.14 14.84 1.24 .26 2.83 3.90 2.62 .14 .04 .08 .002 1184 634 120 9 7 .6 99.98	
RE RX 121690	70.84 13.55 3.96 1.44 3.22 2.50 1.19 .46 .08 .08 .002 2583 366 36 13 28 2.1 99.91	
RX 121695	155.25 18.45 7.80 2.35 6.79 6.06 .62 1.02 .37 16 .002 399 510 58 21 23 .9 99.91	
RX 121696		
RX 121697	77.15 7.91 3.96 2.66 3.07 .19 1.02 .54 .23 .03 .003 1354 243 120 22 5 2.4 99.44	
RX 121698	94.68 1.97 .87 .35 .70 .07 .05 .12 .05 .01 .005 217 65 10 5 5 1.2 100.07	
RX 121699	183.50 5.10 2.48 1.04 1.24 .43 .54 .36 .14 .02 .002 2732 76 112 20 5 4.0 99.34	
RX 121700	81.35 6.10 3.17 .75 2.53 .42 .47 .29 .16 .02 .002 2156 143 120 .21 5 4.0 99.00	
RX 121701	75.44 5.48 4.11 2.63 2.50 .11 .50 .31 .18 .04 .014 2170 127 132 30 5 7.4 99.12 75.01 13 30 5 7.4 99.94	
RX 121702	75.01 12.39 2.79 .01 .93 3.33 4.20 .16 .03 .06 .002 1671 152 216 47 8 .7 99.94	
RX 121703	55.73 9.16 4.05 14.36 11.33 .24 .05 .21 .11 .16 .003 653 135 123 25 5 4.0 99.55	
RX 121704	81.65 5.61 1.76 1.55 2.04 .12 .53 .32 .12 .02 .005 1053 111 111 16 5 5.4 99.33	
RX 121705	73.38 10.14 4.01 1.29 3.90 .97 .49 .48 .30 .06 .004 2923 441 75 .22 5 4.5 99.89	
RX 121706	52 16 17 77 8 25 5 10 8 74 3.91 .97 .84 .34 18 .010 541 768 71 20 26 1.4 99.87	
RX 121707	84.46 7.17 1.01 .24 1.86 .96 2.69 .06 .30 .02 .002 1562 175 5 5 .8 99.86	
RX 121708	45.38 16.16 13.76 5.02 11.75 1.55 .05 2.75 .53 .17 .008 1654 419 169 30 17 2.4 99.84	
PY 121700	75 15 7 48 5 12 2 27 34 83 72 .30 .54 .65 306 .014 1022 209 95 3040 5 2.3 99.85	
STANDARD SO-4	69.17 10.27 3.26 .90 1.53 1.29 2.08 .56 .21 .08 .006 799 202 309 23 14 10.4 99.96	
	200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBOZ AND ARE DISSOLVED IN 100 MLS 5% HNO3.	

- SAMPLE TYPE: P1 TO P2 ROCK P3 MOSS MAT Samples beginning 'RE' are duplicate samples.



£8. .....

Inco Expl. & Tech. Services PROJECT 60522 FILE # 92-2780

										_									ACHE	AMAL YT
SAMPLE#	1		Fe203	-							Cr203			Zr	r		LOI	SUM		
 	×	*	<u> </u>	%	*	*	<u>×</u>	<u>×</u>		*		ppn	ppm	ppm	ppn	ppn	*	<u> </u>		
RX 121710	58.72	16.90	7.48	2.84	6.80	3.67	1.70	.65	. 16	17	.006	303	719	87	18	27	.7	99.97		
RE RX 121714			13.04									1405		100	29		6.4	98.49		
RX 121711			5.91						.01			1126			26	11		99.87		
	77.58								.76	04	-009	2346			46		3.3	99.72		
			5.43												53		5.5	99.73		
														•••		-				
RX 121714	55.60	8.73	12.83	2.94	8.90	.33	.85	.27	1.34	.09	.011	1420	194	100	30	5	6.4	98.57		
	51.61	8.69	15.15	2.81	8.15	.16	.35	.28	.12			1368			28	-	10.1	97.81		
			5.18												41		6.1	99.72		
	44.35	3.54	34.83	1.11	1.38	.24	.55	.09	.22	80.	.014	983		48	12		9.9	96.49		
	61.78													83	24		3.1	99.69		
	i i															-				
RX 121719	64.03	10.56	5.26	5.65	5.88	.73	.58	.85	.12	.10	.053	628	213	57	20	9	5.7	99.66		
RX 121720	61.41	16.97	5.96	2.23	4.72	2.95	1.73	.66	. 19	.09	.006				21		2.4	99.83		
	44.74													177	25		1.8	99.84		
	45.66													78	96		6.3	96.23		
			3.98												32		2.7	99.57		
			•		****											-				
RX 121724	77.76	6.72	5.17	.92	2.71	.46	1.39	.30	.54	.04	.015	3098	192	77	37	5	3.0	99.59		
RX 121725	72.83	8.46	3.73	1.15	2.37	1.07	1.49	.47	.28	.04	.006				29		7.3	99.76		
	76.38			.96											27		3.5	99.40		
STANDARD SO-4	68.87	10.45		.91									195	315			10.4	99.92		
							_													

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.





Page 2

acme anai	lyti	CAL	LAB	ORAJ	CORI	es l	TD.		852	E.	HAS	TINC	s s	e. v	ANC	ouve	RB.	с.	V6A	1R(	6	PB	IONE	(604	)253	-31	.58	FAX	(604	) 25	3-17
AA										GE	)CH1	EMIC	CAL	AN2	ALY	SIS	CEF	RTI1	TCA	TE											A J
[10] A. C. S. Market, M. M. Market, Phys. Rev. Lett. 81, 1000 (1998).				T	nco	Ext	51.	& T	'ec]	1. 1	Ser	7ice	<b>≥s</b> ī	RO	IEC	r 6(	)522	<u>&gt;</u> 1	?ile	• #	92-	-278	80	Pa	qe	3				- L	
																V6C															
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Tí	В	Al	Na	ĸ	ÿ	Au*
	ppm	ррт	ppm	ppn		ppm	ppm	ppm	X	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppm	×	ppm	*	ppm	<u>×</u>	*	*	ppm	ppt
x 138803	13	11	4	42	.1	4	1	61	1.78	2	5	ND	1	23	.3	2	2	82	.17	.020	5	8	. 19	56	.06	3	.69	.02	.12	1	
x 138804	6	11	4	45	.2	5	1	79	1.95	3	5	ND	2		.2	2	3	69	.14	.018	8	8	.22	56	.06	2	.67	.02	.09	1	
x 138805	7	42	32	119	.6	11	13	1055 3	5.81	8	11	ND	5	29	1.0	4	2	65	.32	.040	12	9	.32	106	.05	2	1.20	.03	.11	1	
X 138806	1	21	4	34	<b>.</b> 1	5	6	266	1.90	2	5	ND	2	21	.2	4	2	38	.22	.017	4	5	.42	56	.12	2	.93	.03	.25	1	
x 138807	4	36	2	77	.1	18	7	166 3	5.10	2	5	ND	3	32	.5	2	2	71	.50	.076	8	24	.58	255	.12	2	1.45	.07	.24	1	
STANDARD C	19	63	37	470	7.4	79	74	1084			18	7	40	F/	18.8	14	20	61	.50	000	39	60	.91	187	.09	75	1 07	.08	47		

A DATE AND A DATE OF A DATE OF

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 TO P2 ROCK P3 MOSS MAT AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM S∳MPLE.

AEME ANA	L.	<b>ICA</b>	L I	ABOI	RAT	ORII	es 1	JTD.		8					igs			120		В.(					]	PHON	<b>e(</b> 60	94)2	53-	3158	3 1	PAX		4)2:	53-1	1716
<u>AA</u>								Inc			1.	5	Te	<u>ch</u>	. <b>B</b> e	rv	ice	8	Fi	CER 1e Subi	<b>#</b> 9	2-2	298	7		age	1							(	A	
SAMPLE#		Cu ppm			Ag ppm		Co ppm	Mn ppm		As ppm		Au ppm			Cd ppm					P X		Cr ppm	Mg X						W ppm	Zr ppm	Sn ppm	Y ppm		Be ppm	Sc ppm	
RX 121727	3	1	12	132	.2	5	1	538	2.81	4	5	ND	16	199	.2	2	2	1	. 88	.007	55	4	.03	1820	.16	6.86	2.80	3.38	2	7	2	99	3	2	3.0	2
RX 121728	39			1013			4		1.76	5000.000	5	ND			15.6	-	2			.019					- 300 - 30	2.94			2	14	1	13	1	1	8.9	3
RX 121729 RX 121730	97	69 183	9	535 2311	1000	295	8 13		2.74	- C. C. C. C.		ND ND	_		6.1 29.0	-	2			.040			1.14		2.572	3.28			_	23	1	13	1		8.2	3
RE RX 121729		68		536	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		7		2.68		••	ND	-		6.1	-	_			. 188 . 041			2.88			6.82 3.26		1.23		12 22	1	52 13	1	1.0	26.4 8.2	1
RX 121731	47	107	13	2019	.7	109	7	194	2.04	4	5	ND	2	147	33.7	6	2	952	1.37	.029	6	42	.63	290	.12	3.44	1.09	.78	2	15	1	8	1	1	9.8	8
RX 121732	31	36	6	379	.2	50	3	291	1.86	4	5	ND			5.6		2	416	2.19	,058	8	31	.56	1928	, 15	3.44	.62	.79	2	8	1	18	1	1 ŝ	6.1	2
RX 121733 Standard HFC		122 64		2376 129	2012/07/201		7 45		2.19 4.30	- COOL COOLG	-	ND 7			27.7 20.5		2 20	1483 77		.057			.82 .97	_	100000000	2.60 1.98				19 4	1 18	15 7	1	- 2	7.0 5.8	2 1

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 10ML HCL04-HN03-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM. AS, CR, SB SUBJECT TO THE LOST OF VOLATILIZATION DURING HCLO4 FUMING.

- SAMPLE TYPE: P1 ROCK P2 MOSS MAT AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE. Samples, beginning 'RE' are duplicate samples.

ACME ANALYTICAL LABORATORIES LI AA I	<u>nco Ex</u>	pl. &	WHO Tech.	GS ST. V LE ROCH Servic Vancouver	K ICP Ces F	ANALY	SIS 92-2	987	Par	re 1	4)253-315	58 FAX (604) 253-171 <b>Å</b> Å
SAMPLE#	SiO2 Al20 %	03 Fe2O3 X X	MgO CaO I X X	Na20 K20 T % %	i02 P205 % %	Mn0 Cr20 %	3 Ba % ppm	Sr ppm	Zr Y ppm ppm	Nb LOI	SUM X	<u></u>
RX 121728 RX 121729 RX 121730	85.54 4.8 80.32 5.3 60.58 11.9	10 2.51 7 3.26 1 6.81	.50 2.29 1.51 1.79 4.06 5.08	3.43 3.75 .44 .68 .30 .86 .42 1.43 .28 .84	.21 .06 .36 .14 .59 .46	.06 .00 .04 .00 .02 .01 .08 .02	2 2109 8 1581 1 1029 0 1626	178 89 76 374	488 85 43 13	5 .7 5 2.2 7 5.5 5 7.4 6 5.6		
RX 121732 RX 121733	83.43 6.1 84.03 4.0	5 2.50 4 2.65	.51 2.74	1.15 .86 .65 .94 .11 .89 .31 2.04	.18 .14	.03 .00	3 1734 9 2344	228 124	51 14 45 15 76 20 304 23	5 2.6 5 2.2 8 4.9 13 10.4	99.28 99.80 99.18 99.91	

-

.200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBO2 AND ARE DISSOLVED IN 100 MLS 5% HNO3. - SAMPLE TYPE: P1 ROCK P2 MOSS MAT <u>Samples beginning 'RE' are doplicate samples.</u>

DATE RECEIVED: SEP 8 1992 DATE REPORT MAILED: Sept 18/92 SIGNED BY.....D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ACHE ANALY	TICA	₩.	ABOR	ATO	RIES	LTI	).	8	152	e. I	(AST)	INGS	ST.	VAI	<b>ICOU</b>	VER	B.C	. V	6A	1R6		PHO	NE (6	04)	253-	-3158	3 F.	AX (6	04)253-	171
									(	JEOC	Chem	(IC)	l A	NAL	¥81	:8 C	ERT	'IFI	CAT	'E										Α
<b>TT</b>						II	100 2	<b>Exp</b> 690 •	1. 666	& 1 Burra	rd St	l <u>. E</u> ., Va	lerv ncouv	rice er BC	1 <u>9</u> V6C	Fil 2x8	.e # Subm	92 itted	-29 by:	)87 CAMER		age LL	: 2							
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppn	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppn	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %		La ppm	Cr ppm	Mg X	8a ppm	TI X	8 ppm	Al X	Na %	K W X ppm	· · ·
SX 138808	6	10	9	36	.2	6	1	131	1.81	2	5	ND	5	19	.2	2	2	65		.018	6	8	.23	52	.05		.73	.03	.09 1	2
SX 138813 SX 138814	4 1	12 1	16 4	51 16	.2 .1	4 2	3	133	1.99	3 2	5	ND ND	1	33 35	.2 .2	2	2	53 19	.22	.030	2	2	.28 .17 .20	65 30 45	.07 .06 .06	2	.07	.03	.05 1	3
SX 138815 RE SX 138814	1 1	1 1	2 4	16 15	.1 .1	1 1	2	126 124	1.10 .92	2 2	5	ND ND	1	46 33	.2	2	2	21 19		.031 .016	2	1	.17	28	.06	2	.42		.07 1	2
STANDARD C	19	61	38	133	7.3	75	31	1064	3.96	41	17	7	41	53	18.6	15	-21	59	.50	.087	41	61	.95	184	.09	35	2.02	.08	.16 11	-

•

.

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 MOSS MAT AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: SEP 8 1992 DATE REPORT MAILED:

المحصوب والمحصوب والم

1.

A . . . . .

ACME ANAL	JYTI(	CAL	LAF	BORA	TOR	IES	LT	D.		852						1993		신간의	125.01						PHO	NE (	604	) 25	3-31	.58	FA)		4)2	53-1 _	L71 =
AA											GEC	CH	EMI	CA	l a	NAI	<b>. YS</b>	18	CE	RTI:	FIC	AT	2											A	Δ
AA							T۲		Ex	<b>pl</b> .	S	Те	ch.	6	erv	ice	<b>.</b> s	Fi	le	#	92-	.37:	32	P	aqe	1 I									Т
								<u></u>		<u></u>		2690	5 - 6	66 B	urrar	d St	., Vi			8C V6														_ <b>L</b> i	
LE#	Mo	Cu	Pb	Zn	Ag	N1	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	SÞ	Bi	٧					-		τι %	A1 %	Ne %	к %		Zr	Sn	Y	Nb ppm	Be ppm	Sc ppm
	ppm	ppm	ppm	ppm	ppm	p pm	ppm	ppm	*	ppm	ppm	p pm	ppm	ppm	ppm	ppm	ppm	ppm		%	ppm	ppm	76	ppm	76				ppm	ppm	ppm	ррт	թեա		
151901	8	57	11		. 9	76	7	387		4	5	ND	3		7.1	6			2.03	.057 .076	11 3				-	4.18		1.14		11 36	1	26 16	1	11	
51902	10	167	15			75		742		4	5	ND	1		7.4	2	2			.162	10			136		6.15		1.12		31	1	63	1	11	
051903		149	4	531		96		462		10	5	ND	1		9.7	2			2.01			213				5.47				36	1	43	1		1.3
051904	24	151		1250		153		292		25	5	ND	2		16.5		2			.023	6			2053		2.59			2	21	1	6	1	1	
051905	43	46	10	643	.2	20	2	115	1.08	4	5	ND	1	68	6.3	2	2	021	. 40	.023	ġ	30		2000		2.35	. 45		-		-	-			
051906	31	40	11	337	1.1	51		256		4	6	ND		178		3		568		.051	14		.25 1.01				1.10	.77 2.18	2 2	15 27	1 1	38 16	2 1	1	5.9
051907	39	108	5	1934	1.2	174		244		12	5	ND		453		2	2			. 137	7								-	23	1	9	1	1 1	
051908	12	69	6	57	.8	17		273		4	5	ND	2			2				.046							1.48		4	12	1	19	10	3	
0519 <b>09</b>	32	53	7	1355	. 9	46		610		4	5	ND	2		20.4	4				.023	8					3.25				12	2	126	21	4	
051910	2	3	17	195	. 2	3	1	673	3.01	4	5	ND	13	178	.6	2	3	10	1.13	.010	54	5	.02	1730	• 17	/.4/	£.03	3.06	2	14	2	120	- 1	-	
051911	3	72	8	114	.6	37	10	584	3.27	4	5	ND	3	148	1.4	2				.061	14			234			1.47			11	1	31	4	11	
051912	11	38	13	124	.7	54	4	125	2.23	4	5	ND	2	105	1.5	9	2			.026	7					2.91		.76		24	1	14	1	1	
051913	27	1225	1789	568	40.9	83	15	420	4.48	266	8	ND	4	155	8.7	96	42			. 470	24			1343		5.00		1.24	2	25	9	43	1	11	
051914	21	119	54	446	1.9	98	7	263	3.63	18	5	ND	4		5.8	2	2			. 406	26					3.66			2	22	1	57	1	1	
051915	44	78	6	1456	. 4	75	4	99	1.15	4	5	ND	1	56	21.4	5	2	739	. 41	.018	10	35	. 22	1158	.08	2.07	.51	. 79	2	22	1	6	T	1	0.4
051916	5	50	16	208	. 6	37	6	556	4.46	10	5	ND	4	170		2				.073				491		5.22			2	14	1	27	1	1 1 1	
051917	41	65	10	315	. 3	53	4	209	2.10	4	5	NÐ	2	148	4.7	2	2			.024	8			1368		3.41			2	24	1	22	5		
051918	137	5	13	106	. 2	3	1	592	2.82	4	5	ND	8	180	. 3	2	2			.010				1900			2.39		2	6	3	70	19	2	
051919	64	74	9	416	.8	212	6	224	2.37	4	5	ND	2	120	3.8	2	2	699	1.28	.038				242		3.27				21	1	28	3		8.4
RX 051915	42	80	8	1456	. 2	76	5	98	1.18	4	5	ND	1	63	22.2	Э	2	679	.44	.017	9	34	.23	1200	. 07	2.25	.51	.78	2	21	1	6	1	1	
051920	29	35	10	507	.6	17	2	135	.94	4	5	NĎ	2	73	8.5	з	2	537	. 60	.019	8	26	.26	2636	. 11	2.10	. 30	. 57	2	8	1	16	1	1	
051921	62	82		5294	2.1	167	6	460	1.94	4	5	ND	3	153	64.4	2	2	1113	2.78	. 168	15	155	1.25	384	.16	2.88	. 34	. 34	5	10	1	41	1		8.3
051922	2	14	17	43	. 2	6	Э	222	. 92	4	5	ND	1	747	.2	2	2	18	1.47	.006	4	6	. 09	6291	. 08	6.03	2.43	3.65	2	1	1	2	1	1	• •
051923	30	43		1144	. 2	56	3	659	2.04	4	5	ND	1	116	13.7	2	2	611	2.10	.019	7	26	.70	1599	. 10	3.29	. 62	.61	2	8	1	19	9		4.
051924		111	4			84		346		4	5	ND	2	158	7.9	2	2	487	2.13	. 096	12	67	. 98	198	. 17	4.80	1.06	.84	2	16	1	30	1	1 1	11.
051005	2	15	14	82	.2	3	з	365	1.14	4	5	ND	2	378	1.0	2	2	25	1.90	.023	6	5	. 19	1703	.06	6.78	2.78	2.57	2	18	1	7	1	1	1.9
051925	34	29		2447	.4	67		252		4	5	ND	1		37.8	2				. 020	7	33	. 51	1547	.09	1.86	.14	.25	2	6	1	14	2	1	4.5
051926		130		1949		215		163		4	5	ND	1		20.8	2		926		.028	11	81	. 28	153	. 10	2.39	. 40	. 56	2	15	1	11	1	1	7.1
051927		96		2197	.8	87		235		4	5	ND		105		15				.049	11		.25	295	. 13	3.08	. 21	. 69	2	10	1	22	3	1	7.1
05192B	36	90 48		956	. 2	31		524		4	5	ND		712		2				.054	12		. 55	1403	. 20	6.94	2.54	.72	2	14	1	18	2	1	5.7
051929	13	40	15	900	. 4	31	-	244	2.33	-	-		•			-	-	<b>.</b>		•											_				
51930				1159		95	•			16			1		12.5			631 1058		. 199		114 234		189 105			. 18	.46 1.14			1	45 44	1	1 1	
051931		138			3.4			352		50	5	ND			15.8	13				.223				637						23	1	26	1	1 1	
051932	5	65		181		45		432		4	5	ND	4		2.1	2				.006				143	.01			.01	-	1	1	1	1		. 3
051933	2			33			1		1.56	4	5	ND	1	5		2				. 220				182						16	1	48	2	1 3	
051934	7	232	1	835	5.0	134	27	951	/.45	4	5	ND	3	432	9.9	2	۲	133	. 3.10	. 220	23										-				
051935	16	52	5	700	. 9	29	Э	959	1.26	4	5	ND	1	142	10.2	3	3	436	4.41	.021	9	23		901						8	1	12	1	1	
051936	1	13		140		7		76		4	5	ND	1	228	1.7	2	3	24	.83	.005	4			2036							1	2	7	2	
NDARD HFC/AU-R	20	64			7.3	94		1247		41	17	7	36	65	20.3	16	19			.114	37	62	00	237	00	2 11		17	10	4	15	8	1	1	5.8

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 10ML HCLO4-HNO3-HCL-HF AT 200 DEG. C TO FUMING AND IS DILUTED TO 10 ML WITH DILUTED AQUA REGIA. THIS LEACH IS PARTIAL FOR MAGNETITE, CHROMITE, BARITE, OXIDES OF AL, ZR & MN AND MASSIVE SULFIDE SAMPLES. AU DETECTION LIMIT BY ICP IS 3 PPM.

AS, CR, SB SUBJECT TO LOSS BY VOLATILIZATION DURING HCLO4 FUMING. - SAMPLE TYPE: P1 TO P3 ROCK P4 MOSS MAT AU* ANALYSIS BY ACID LEACH/AA FROM 20 gm SAMPLE? Semples beginning 'RE' are duplicate samples.

بعيدية

Inco Expl. & Tech. Services FILE # 92-3732

----

SAMPLE#	Mo Cu Pb Zn Ag ppm ppm ppm ppm ppm		se U Au Th Sr Cd Sb Bi mippmippmippmippmippmippmippmippmippmi	V Ca P La Cr ppm X X ppm ppm		W Zr Sn Y Nb Be Sc Au* ppm ppm ppm ppm ppm ppm ppb
RX 051937 RX 051938 RX 051939 RX 051939 RX 051940 RX 051941	105 105 12 96 1.8 29 90 18 251 1.0 5 93 17 219 5 2 30 150 7798 9.4 22 176 27 874 2.7	0 85 12 506 3.89 9 46 17 1147 5.29 4 10 1 382 .62	4 5 ND 3 221 3.8 4 2 4 5 ND 4 391 1.9 3 2 8 5 ND 1 6 100.8 53 2	595         4.51         083         13         50           346         4.81         123         17         88           20         .08         002         2         16		2       50       1       24       11       1       7.0       6         3       20       1       42       3       1       16.5       2         2       4       1       31       2       1       19.6       2         2       1       1       1       1       4       100         2       12       1       28       1       1       5.2       12
RX 051942 RX 051943 RX 051944 RX 051945 RX 051946	1         8         15         22         .2           40         52         15         1070         .3           24         13         5         128         .2           35         7         4         21         .3           16         7         6         21         .2	3 38 2 180 1.39 2 14 1 57 .97 3 6 1 65 1.28	4 5 ND 1 14 1.6 2 2 4 5 ND 1 41 .2 7 2	698         1.04         021         7         42           223         .11         010         4         21           459         .20         010         4         67	2         .41         717         .13         2.45         .35         .55           .14         679         .04         .86         .10         .21           .15         1180         .06         1.58         .32         .52	2       15       1       15       12       2       2.5       1         2       7       1       13       1       1       6.4       1         2       14       1       2       1       1       3.2       1         2       17       2       3       1       1       4.2       1         2       9       2       4       1       1       2.5       1
RX 051947 RX 051948 RX 051949 RX 051950 RX 051951	30       80       6       865       .4         9       39       17       219       .2         10       17       11       12       .2         2       12       15       14       .2         -1       63       31       95       .3	2 12 2 64 .91 2 3 1 114 .49	4         5         ND         1         250         3.5         2         2           5         5         ND         1         5         -2         2         3           4         5         ND         1         333         -2         2         2	114 1.46 023 2 14 20 .03 001 2 91 6 1.48 002 2 5	.15       343       .05       6.18       1.40       2.80         .01       .31       .01       .10       .02       .02	2       13       1       32       2       1       12.4       1         2       26       1       7       3       1       2.9       1         2       2       2       1       1       1       4       1         2       10       1       2       6       1       .5       1         2       8       1       20       4       1       22.2       1
RX 051952 RX 051953 RX 051954 RE RX 051950 RX 051955	1 212 280 1129 2.1 6 13 7 17 .2 3 78 16 128 .7 1 9 12 16 .2 2 15 4 1 .2	2 8 2 193 .74 7 40 6 736 4.70 2 4 1 126 .51	4 5 ND 1 73 .2 2 2	10 .22 003 2 75 302 2.78 127 9 68 7 1.40 003 2 6		2       6       1       22       1       1       19.4       6         2       1       1       1       1       .9       1         2       9       1       32       2       1       11.0       3         2       8       1       2       6       1       .6       1         2       1       1       1       1       .2       1
RX 051956 RX 051957 RX 051958 RX 051959 RX 051959 RX 051960	1 748 17 171 .6 53 750 101 1870 2.8 34 150 8 2425 2.5 20 117 79 524 4.1 5 15 4 12 .2	8 183 7 376 2.88 5 144 5 338 2.61 1 91 4 152 3.57	4 5 ND 2 141 30.4 2 2	10432.28.133292448721.48.171152637671.30.22919139	.27 211 .08 3.06 .13 .91	2       21       1       4       3       1       4.4       32         2       19       1       53       2       1       9.2       3         2       11       1       61       1       1       7.5       1         4       24       1       37       1       1       7.8       18         2       2       1       1       1       1       1.3       1
RX 051961 RX 051962 RX 051963 RX 051964 RX 051965	19         94         5         304         .8           5         96         7         167         1.8           9         62         11         267         .5           69         64         12         352         1.3           76         120         30         1336         3.4	8     58     8     622     3.83       5     39     4     108     1.42       3     212     5     204     2.22	4 5 ND 3 131 1.5 2 2 4 5 ND 1 39 3.2 2 2 4 5 ND 4 107 3.8 2 2	315 3.15 .132 17 75 79 .37 .024 7 36	9.97       267       23       4.89       .17       .31         1.45       145       16       5.42       .41       .83         .14       191       .02       .93       .08       .11         .90       248       .17       3.13       .15       .73         2.20       413       .30       4.49       .15       .81	2       12       1       29       1       1       11.1       2         2       14       1       41       1       1       10.6       1         2       5       1       .7       1       1       1.1       1         2       5       1       .7       1       1       1.1       1         2       21       1       15       5       1       6.5       1         2       30       2       35       10       1       8.7       4
RX 051966 RX 051967 RX 051968 RX 051969 RX 051969 RX 051970	12         94         4         1774         .3           24         96         9         2386         1.7           11         153         19         510         7.4           28         132         18         748         1.4           72         82         10         1069         1.2	7 147 12 142 4.31 1 4 121 8 157 4.27 4 53 6 147 2.06	1 5 ND 3 42 30.0 4 2 8 7 ND 5 189 6.5 19 2 4 5 ND 5 145 11.3 2 2	597.37.01391069212.42.310212499111.44.0531596	.60       84       .11       5.47       .67       1.15         .70       358       .22       6.22       1.02       1.88	2       10       1       9       1       1       9.4       5         2       21       1       6       1       1       12.1       1         4       37       1       22       1       2       11.0       5         2       47       1       14       1       2       11.5       4         2       27       1       9       3       1       5.5       1
RX 051971 RX 051972 Standard HFC	1 3 10 46 .6 2 37 15 56 .5 20 62 40 133 7.2	5 9 12 1929 3.84	4 9 ND 6 341 .4 10 2 4 5 ND 2 142 .3 2 5 3 17 7 36 55 19.2 16 21	129 1.28 .056 14 8	.12       977       .09       7.37       2.89       3.45         3       .44       179       .31       7.94       1.50       3.43         2       .95       236       .08       2.12       .10       .17	6       8       1       7       7       1       1.3       1         2       18       1       16       3       1       12.6       11         11       4       15       8       1       1       5.8       500

Standard is STANDARD HFC/AU-R. Samples beginning 'RE' are duplicate samples.

Page 2

AL YTICA

•	AA
	ACHE MALYTICAL

																New Section																فعدر				
							II	100	Ex	<b>pl</b> .	. 6	T	ech	l•	8er	vic	es		FII	E #	92	2-3	732								Pag	le	3	il. Alim		
SAMPLE#	Mo	Cu	٩b	70	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	TI	AL	Na	K	W	Żr	Sn	Y	Nb	Be 💮	Sc Au'	*
-	pom					ppm		ppm		ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	*	ppm	ppm	*	ppm	8	*	*	*	ppm	ppm	ppm p	pbul l	bbw t	ypra p	pm ppt	<b>D</b>
	<u> </u>	<u> </u>					<u> </u>				_					_					_			FEA		3 /7	05	/0	2	7	4	45	10	4 88	.7 2	2
RX 051973	58	71	9	946		190	4		1.66		5	ND	1	73	8.8		4			.028					.20					2000-222		20	10	20040		1
RE RX 051975	64	63	12	556	1.0	217	-	172				ND		117		4	2			.039	15	81			.21					17	· -	45	7	1 10	6 <b>4</b> 6	ż
RX 051974	30	59	10	646	.2	75	7	1041	2.58		5	ND		246		Z	2		6.31				2.78							20		12	12	1 6	7 <b>7</b> 22	
RX 051975	66	59	10	573	.7	226	5	170			5	ND	3	•••			2			.041					.22					18		20	12			
RX 051976	27	138	17	924	2.1	114	6	217	2.73	4	5	ND	- 3	96	12.9	4	2	882	1.97	.558	21	201	.43	154	.12	5.21	.21	.92	0	16	1	34		1 27	.0 (	5
	}				- 333	ě							_			_	-							407		/ 02	77	<b>7</b> 43	2	25	2	7	7	2 9	÷,	2
RX 051977	14	55	16	461	S.S.	82	12		1.56		5	ND	-	53			2	484	.11			116						3.12	-		4	12	5	19	1.620	ŝ
RX 051978	42	137	14	1153	2.4	143	11	244	3.31	6	6	ND	- 4		- AL - E - A-A		2			.066								.72		26		14	4		6 45	á
STANDARD HFC/AU-R	20	61	40	134	7,2	91	46	1256	4.41	42	18	7	36	54	20.5	19	19	. 78	.57	,116	39	62	.93	236	.09	2.12	.10	.17	<u>y</u>		15	(		1 82	-0-43	

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

$\sim$			
CME ANALYTICAL LA	BORATORIES L	TD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(-	1)253-1716
A A		WHOLE ROCK ICP ANALYSIS	AA
<b>AA</b>		Inco Expl. & Tech. Services File # 92-3732 Page 1	
	•	2690 - 666 Burrard St., Vancouver BC V6C 2X8	
	SAMPLE#	SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3 Ba Sr Zr Y Nb LOI SUM X X X X X X X X X X X ppm ppm ppm ppm X X	· .
	RX 051901	76.53       7.32       4.39       1.13       2.92       .29       1.46       .33       .13       .05       .012       13184       206       67       27       5       2.9       99.74         65.04       12.38       4.35       1.30       2.39       .97       2.74       .54       .18       .09       .009       32902       337       66       19       6       4.2       99.83	
	RX 051902 RX 051903	66.24 9.73 7.67 1.86 3.01 1.01 1.07 .46 .41 .05 .010 9234 185 76 65 7 6.6 99.73	
	RX 051904	66.94 8.68 7.04 1.86 2.75 .43 .87 .37 .37 .03 .025 5659 268 77 58 5 9.1 99.48	
	RX 051905	88.55 4.14 1.12 .25 .62 .63 .57 .20 .05 .01 .002 2123 69 54 11 5 3.2 99.72	
	DV 051004	82.15 6.77 2.50 .32 1.61 1.46 .70 .23 .12 .03 .007 1690 240 69 33 5 3.6 99.83	
	RX 051906 RX 051907	69.34 7.08 6.21 2.03 .95 .14 2.52 .35 .34 .03 .022 6208 924 80 52 5 9.1 99.29	
	RX 051907	75.99 8.68 3.43 1.95 1.86 1.95 .90 .42 .12 .03 .002 849 119 64 15 5 4.4 99.90	
	RX 051909	83.97 5.05 1.41 1.28 3.16 .34 .74 .17 .06 .07 .002 2136 145 33 14 5 2.9 99.54	
	RX 051910	72.86 12.71 3.89 .07 1.56 3.72 3.60 .23 .01 .08 .002 1907 200 336 115 15 .8 99.94	
	DV 051011	71.73 11.04 4.44 1.37 4.25 1.96 .57 .48 .17 .07 .003 2325 179 131 27 18 3.4 99.92	
	RX 051911 RX 051912	84.67 5.42 2.46 .24 1.20 .66 .69 .26 .09 .01 .012 6611 125 60 11 5 3.0 99.86	
	RX 051912	73.52 7.65 4.98 1.32 4.44 .28 1.31 .33 1.16 .05 .009 3326 171 75 34 5 3.8 99.45	
	RX 051914	80.04 5.69 4.76 1.16 2.96 .27 .80 .26 1.00 .03 .013 3044 201 62 46 5 2.2 99.74	
	RX 051915	88.51 4.01 1.33 .27 .59 .66 .73 .18 .05 .01 .003 1880 67 42 14 5 2.8 99.48	
	RX 051916	74.08 8.66 5.16 2.05 3.67 .32 .85 .36 .18 .07 .005 7330 195 80 23 5 3.2 99.89	
	RX 051917	84.65 5.87 2.73 .29 2.70 .29 .33 .35 .06 .02 .005 2077 164 65 19 5 2.1 99.78	
	RX 051918	73.66 12.30 3.59 .09 158 3.19 3.95 .27 .01 .07 .002 1932 219 306 80 15 .8 99.92	
	RX 051919	80.43 5.63 3.20 1.94 1.77 .24 .76 .40 .09 .03 .004 2975 141 89 22 5 4.7 99.73	
	RE RX 051915	88.39 4.02 1.32 .26 .58 .64 .78 .18 .05 .01 .002 1856 66 49 15 5 2.9 99.46	
	RX 051920	89.89 3.29 1.11 .29 .77 .38 .48 .14 .04 .01 .002 2581 75 23 12 5 2.9 99.75	
•	RX 051921	80.02 4.33 2.87 2.21 3,59 .38 .18 .21 .45 .05 .016 1581 155 59	
	RX 051922	72.13 14.53 1.27 .14 2.10 3.14 4.31 .11 .02 .04 .008 6247 889 40 5 6 1.0 99.97	
	RX 051923	83.57 5.02 2.65 1.28 2.80 .72 .56 .14 .04 .07 .002 1535 118 32 15 5 2.5 99.63	
	RX 051924	75.00 7.53 4.93 2.04 2.83 1.26 .67 .36 .24 .04 .008 3009 192 61 28 5 4.3 99.75	
	RX 051925	72.61 14.42 2.16 .26 2.65 3.49 2.81 .18 .07 .05 .002 1719 448 71 11 11 .9 99.96	
	RX 051926	89.01 2.89 1.50 1.03 1.92 .15 .12 .11 .04 .06 .002 1490 98 19 12 5 2.2 99.30	
	RX 051927	84.19 4.39 2.58 .37 .85 .47 .44 .24 .05 .02 .005 2710 99 29 18 5 5.2 99.28	
	RX 051928	84.40 4.98 2.61 .31 2.10 .23 .60 .19 .14 .03 .003 1778 114 26 18 5 3.4 99.31	
	RX 051929	72.68 12.53 3.63 1.19 3.53 3.23 .67 .42 .12 .07 .002 1374 807 83 18 9 1.3 99.71	
	RX 051930	78.34 3.59 6.56 .33 1.18 .19 .39 .17 .48 .03 .010 4116 135 60 51 5 7.5 99.50	
	RX 051930	61.35 9.30 9.34 2.00 2.27 .66 .97 .40 .54 .04 .032 4120 287 82 75 5 11.9 99.56	
	RX 051932	76.23 8.51 4.81 1.36 3.41 .36 1.04 .35 .19 .05 .007 4887 140 71 23 5 2.7 99.88	
	RX 051933	96.00 .22 2.51 .03 .05 .05 .02 .01 .01 .002 113 10 5 5 5 1.2 100.06	
	RX 051934	53.62 13.84 9.12 5.10 7.08 .90 1.31 .75 .52 .12 .033 4615 571 74 43 5 6.4 99.66	
	RX 051935	81.49 3.85 2.15 3.60 6.13 .17 .05 .15 .05 .11 .002 881 148 22 10 5 1.9 99.77	
	RX 051935	76.06 14.72 .89 .12 1.45 2.39 2.16 .07 .01 .01 .002 1960 342 29 8 11 1.7 99.95	
	STANDARD SO-4		

.200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBO2 AND ARE DISSOLVED IN 100 MLS 5% HNO3. - SAMPLE TYPE: P1 TO P3 ROCK P4 MOSS MAT <u>Samples beginning 'RE' are duplicate samples.</u>

t 30/92

Ċ

N

DATE RECEIVED: OCI 21 1992 DATE REPORT MAILED:

AAA

Inco Expl. & Tech. Services FILE # 92-3732

Page 2

CHE ANALYTICAL																	ACRE ARALTITCAL
SAMPLE#	SI02 AL203	Fe203	MgO	CaO Na2O	K20	T102	P205	MnO (	Cr203	Ba	Sr	Zr	Y	Nb	LOI	SUM	
	× >		Χ.	X X	*	*	%	*			ppm		ppm	ppm	*	X	
											470			•			
RX 051937	82.43 4.87			6665666666				.02	.002 3		130	96	28		1.7	99.85	
RX 051938	72.18 10.97	4.65		6.40 .52			.20	.06	.002 3	5113	289	81	38		2.0	99.82	
RX 051939	61.36 13.53	7.40	2.42	7.21 2.32	1.29	.57	.33	, 15	.005 2	2477	498	60	30	8	2.8	99.88	
RX 051940	96.41 .21	.69		.08 .05			.01	.04	.002	82	10	5	5	5	.8	98.34	
RX. 051941	83.38 3.96	4.92	29	2.65 .13			.78		.015		142	59	22	5	2.7	99.67	
RA: 031741	00100 0170					•••					•••			-			
RX 051942	66.88 19.04	.67	00	2.56 5.03	6 78	05	.01	<b>n</b> 4	.002 1	1265	272	35	21	13	.6	100.00	
				S0000000000000000000000000000000000000					.002 1		99	28			3.3	99.61	
RX 051943	85.90 3.98			1.37 .45				.02					6		2.0	99.89	
RX 051944	94.68 1.30			.14 .11					.002		15	21					
RX 051945	89.37 2.93	5 2.40	.21	.31 .42					.002 1		51	30	9		3.2	99.91	
RX 051946	94.24 1.37	<b>7 1.11</b>	.17	.60 .13	.14	.10	.01		.002	296	36	19	5	11	2.0	99.94	
RX 051947	75.33 7.86	3.38	1.00	4.22 1.16	.98	.39	1.18	.04	.002 3	5294	360	67	26	5	3.5	99.65	
RX 051948	74.03 12.08			2,11 1.92					.002 2	2825	312	37	10	15	3.1	99.89	
RX 051949	97.78 .15			.04 .05			.01		.002		10	5	5	5	.8	99.96	
RX 051950	74.93 14.27			2.06 4.10			.01		.002 1		436	27	5	8	.6	100.00	
	55.98 16.00		1 84	6.83 3.90	1 37	01					647	87	20	17	.8	99.92	
RX 051951	10.00	0.03	4.00	0.03 3.70	1.51	•71	.23		.016		047	01				//./6	
	E/ 30 40 70				/ 5/	03	- 20	0 00	002	420	476	65	26	5	3.8	99.59	
RX 051952	54.72 19.32						.20		.002		176			-			
RX 051953	96.13 1.28				.21				.002		76	5	5	5	.7	99.96	
RX 051954	71.92 7.73	6.55							.003 7		259	62	28		3.9	99.89	
RE RX 051950	74.84 14.44	.68		2.09 4.18					.002 1	433		25	5	6	.6	99.99	
RX 051955	98.55 .22	.48	.02	.05 .05	.12	.01	.01	.01	.002	7	10	26	5	5	.5	100.00	
RX 051956	73.13 9.81	5.96	3.62	.14 .19	2.22	.15	.05		.002 1	187	34	108	18	6	4.3	99.86	
RX 051957	75.72 6.93				.83		.35	.04	.025 1	018	175	86	45	5	5.7	99.25	
RX 051958	81.27 4.32				.75				.029 2		169	65	52	5	4.6	99.21	· ·
RX 051959	82.75 4.60					.21			.010 2		226	64	35		2.8	99.71	
RX 051959		1.43			.18				.002		10	10			1.0	100.01	
KX 031900	70.13 .4/	1.43	. 10		. 10	.04	.01		OVE	ILU	10						
	76.54 7.34	7 54	2 07	E 3/ 40	44	.32	.26	64	.012 2	537	280	57	26	R,	3.4	99.83	
RX 051961									-						4.9	99.88	
RX 051962	71.95 8.76				1.02		.33		.003 3		197	67	38	-			
RX 051963	92.64 1.35				.18	.08	2		.008		38	17	5		2.4	99.91	
RX 051964	81.69 5.14					.39			.002 1		124	88	19		5.0	99.71	
RX 051965	74.62 6.76	3.33	3.77	6.39 .16	.80	.42	.07	.04	.009 4	529	449	110	31	5	2.2	99.41	
	l																
RX 051966	57.60 3.24	3.32	13.45	19.23 .19	.07	.13	.07	.30	.002	133	143	28	8	5	1.8	99.45	
RX 051967	70.17 12.13			.53 .43				2020-20-20-2			76	88	29	7	8.1	99.26	
RX 051968	70.51 9.62	5 22							.028 2			106	64		6.0	99.66	
	73.37 12.63								.015 5		194	98	32		2.9	99.66	
RX 051969	13.31 12.03	2.41	1.30		E.U/	.47			.002 2		106	71	17		4.2	99.59	
RX 051970	84.92 3.62	2.20	1.02	.81 .12	.21	.27	•••	<b>.u</b>	.002 2	<b>647</b>	100	(1)			4.6	77627	
					<b>7</b> / A	40			000	0/4	121	20		44		99.97	
RX 051971	73.93 14.30			2.04 3.75		.12	.01	.UY	.002		424	68	2	11	.5		
RX 051972	66.14 15.98			1.89 1.87		.63	.11 🕴	.2	.002	088	186		20		3.5	99.94	
STANDARD SO-4	68.46 10.50	3.57	.96	1.62 1.32	2.01	.56	.20	.08	.005	844	199	318	24	15	10.4	99.90	

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

**AA** 

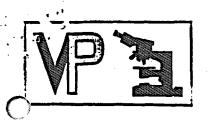
.....

Inco Expl. & Tech. Services FILE # 92-3732

Page 3

ACHE ANALYTICA

. ....


SAMPLE#	si02 X	A1203 %	Fe203		CeO X		K20 %	T102 %		MnO X			Sr ppm	Zr ppm	Y ppm		LOI X	SUM X	
RX 051973	82.52	3.84	2.21	1.99	1.67	.05	.79	.31	.12	.02	.004	1275	87	69	38	17	5.6	99.36	
RE RX 051975	81.90	4.57	2.49	1.76	1.56	.15	1.06	.37	.10	.02	.002	2115	138	81	20	5	5.2	99.57	
RX 051974	69.70	7.09	3.76	5.37	9.09	.62	.61	.32	.09	.12	.002	2890	276		19	5	2.5	99.81	
RX 051975	81.88	4.61	2.60	1.78	1.61	.14	.98	.37	.13	.02	.006	2107	137	88	19	5	5.1	99.61	
RX 051976	78.90	5.51	3.85	1.04	2.57	.22	1.41	.28	1.39	.02	.018	2027	118	78	33	5	4.0	99.58	
RX 051977	68.45	16.97	2.21	1.19	.23	.48	3.87	.76	.06	.02	.007	3513	83	113	27	6	4.9	99.77	
			4.54									1887	176	68	24	5	5.5	99.50	
STANDARD SO-4	68.28	10.63	3.55	.97	1.64	1.31	2.03	.56	.22	.08	.008	805	202	322	25	15	10.4	99.89	

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

	<u>)</u>																$\mathbb{C}$	)								•			<b>.</b> .					)			
								In	co	Ex	<b>p</b> 1.	. &	Te	ech	•	ßer	vi	ces	5	FI	LE	# !	92-:	373	2							Pε	age	4		AMALYTICAL	
SAMPLE#								Mn ppm		As ppm						Sb ppm				P %				Ba ppm	TI X	Al X	Na X			Zr			Nb ppm		Sc. ppm		
SX 134927	2	62	12	101	1.0	6	11	1105	5.61	4	5	ND	4	206	.8	2	2	296 2	2.98	.029	19	33	1.90	1008	.44	7.24	2.10	.75	2	11	1	24	3	1	29.7	4	

Sample type: MOSS MAT. AU* ANALYSIS BY ACID LEACH/AA FROM 20 gm SAMPLE.

# APPENDIX IV



# Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

Mark Slauenwhite, Inco Exploration & Technical Services, 2690 - 666 Burneral Structure	
2690 - 666 Burrard Street VANCOUVER, B.C., V6C 2X8	Job 43 July 1992

Samples: RX-Ø51189, Ø51190, Ø51191, Ø51192, Ø51193, Ø51194

Summary:

#### B: Suite RXØ51189-151194

These samples are from a highly metamorphosed terrain showing a complex metamorphic and deformation history. Relic sillimanite in two samples indicates an earlier, high-grade metamorphic event which produced very tight microscopic folds.

Some of the quartz-rich samples might be interpreted as siliceous deposits formed near the sea-water/rock interface. The sulfide-rich lenses in Samples RX-051192 and RX-051194 are the best evidence to suggest a stratabound sulfide-forming event. However, partly because of the high grade of metamorphism, and partly because of the scarcity of diagnostic features, evidence for a volcanogenic massive sulfide environment is suggestive at best. Sample RX-051189 is at the contact of a quartz-plagioclase-(muscovite) schist and a plagioclase-quartz-biotite schist. The former is dominated by quartz and less plagioclase and much less muscovite, and the latter by about equal amounts of plagioclase, quartz, and biotite. These layers could represent two distinct sedimentary or tuffaceous beds.

<u>Sample RX-051190</u> is a metamorphosed siliceous exhalite(?) containing porphyroblasts of plagioclase in a well foliated, slightly compositionally banded groundmass dominated by quartz, plagioclase, and muscovite with minor garnet and pyrite and trace zircon and sphene. Foliation is defined by compositional banding between the major minerals and elongation of muscovite and a few larger quartz grains. One surface on the hand sample shows a prominent lineation.

Sample RX-051191 is a metamorphosed pyritic siliceous exhalite(?) containing scattered porphyroblasts of plagioclase in a well foliated groundmass of quartz, pyrite, phlogopite, and sillimanite. Locally the foliation is warped moderately. Later deformation includes abundant fractures, some showing slight offset, and patches of cataclastic deformation.

Sample RX-Ø51192 is a metamorphosed pyritic siliceous exhalite dominated by quartz with moderately abundant lenses of pyrite and equant grains of plagioclase, and less abundant flakes of biotite and disseminated patches of one or more of chalcopyrite, galena, and sphalerite. A weak to moderate foliation is defined by elongation of pyrite lenses and orientation of biotite flakes.

Sample RX-051193 is a strongly contorted, recrystallized schist. Clusters of sillimanite are relics from an earlier period of highgrade metamorphism and deformation which produced very tight folds. These now are included in porphyroblasts of muscovite and lesser plagioclase. Intergrown with these are fine to medium grained biotite, chlorite, quartz, and less plagioclase, with minor opaque (pyrite) and apatite.

Sample RX-051194 is a banded schist containing abundant opaque (mainly pyrite), quartz, tremolite, and plagioclase, less abundant biotite and sphalerite, and minor barite, epidote and apatite. Minerals are segregated into compositional layers. Pyrite, sphalerite, tremolite, and barite(?) are concentrated in a broad band comprising much of the section. Biotite is concentrated in the remaining sulfide-poor band. The quartz-biotite rich layer is folded locally into a tight warp on the scale of 1.5-2 mm.

John G. Pavne (604) - 986 - 2928

#### Sample RX-Ø51189

# Contact: Quartz-Plagioclase-(Muscovite) Schist and Plagioclase-Quartz-Biotite Schist Limonite Veinlets

The sample contains two distinct bands, one dominated by quartz and less plagioclase and much less muscovite, and the other by about equal amounts of plagioclase, quartz, and biotite.

quartz-plagioclase-(muscovite) schist

porphyroblasts	
plagioclase	10-12%
groundmass	
quartz	65-70%
plagioclase	10-12
muscovite	12-15
pyrite	Ø.1
garnet	minor
limonite	Ø.1

Plagioclase forms equant to elongate porphyroblasts up to 2.5 mm in size. Some porphyroblasts and groundmass plagioclase contains abundant dusty hematite inclusions.

Quartz forms anhedral grains averaging  $\emptyset.1-\emptyset.2$  mm in size, with a few coarser grained lenses with grains averaging  $\emptyset.3-\emptyset.7$  mm in size.

Plagioclase forms equant, anhedral grains averaging  $\emptyset.1-\emptyset.3$  mm in size intergrown with quartz.

Muscovite and minor patches of sericite (after muscovite) are concentrated moderately to strongly in seams parallel to foliation. Muscovite grains average 0.1-0.5 mm in size, with a few up to 1.7 mm long. Foliation is warped around plagioclase porphyroblasts.

Pyrite forms a few lenses of grains up to 0.8 mm long; alteration is to deep orange-brown limonite.

Garnet forms an anhedral grain up to 0.5 mm across; it was fractured strongly.

Limonite forms wispy seams and a few patches up to 0.4 mm across; probably formed from iron derived by weathering of pyrite.

One seam up to 0.2 mm wide parallel to foliation was brecciated strongly to extremely fine grained, granular aggregates.

(continued)

# plagioclase-quartz-biotite schist

porphyroblasts	
plagioclase	20-25%
groundmass	
biotite	25-30
quartz	20-25
plagioclase	17-20
pyrite	5-7
opaque oxide(?)	Ø.3
apatite	Ø.1
epidote	trace
zircon	trace
limonite	minor

Plagioclase forms a few unusual, prismatic megacrysts up to 1.7 mm long. Alteration of these is strong; in one it is to sericite, a few patches of cryptocrystalline epidote, and minor chlorite. This one contains an inclusion 0.17 mm long of actinolite/hornblende with pleochroism from pale greenish yellow to medium green. In another, alteration is strong in the core to cryptocrystalline epidote(?) and abundant limonite, and absent in a thin rim.

Plagioclase forms abundant, unaltered to slightly altered megacrysts averaging 0.5-1.0 mm in size. Some of these are slightly compositionally zoned. Groundmass plagioclase averaging 0.1-0.2 mm in grain size is intergrown with patches of biotite-quartz.

Interstitial to plagioclase are patches of quartz and biotite averaging 0.05-0.15 mm in grain size. Biotite is pleochroic from pale to medium brown.

Pyrite forms subhedral to anhedral porphyroblasts averaging  $\emptyset.5-1.5$  mm in size and other grains averaging  $\emptyset.1-\theta.3$  mm across.

Apatite forms equant grains averaging 0.04-0.1 mm in size, and a few up to 0.4 mm across.

Opaque oxide forms disseminated equant to elongate grains averaging 0.02-0.05 mm in size.

Epidote forms minor grains up to 0.2 mm long.

Zircon forms a few euhedral grains up to 0.04 mm long, and one anhedral equant grain 0.07 mm across.

A very irregular veinlet averaging  $\emptyset.1-\emptyset.2$  mm wide is of orange limonite.

#### Sample RX-051190

# Metamorphosed Siliceous Exhalite(?); Plagioclase Porphyroblasts

Porphyroblasts of plagioclase are set in a well foliated, slightly compositionally banded groundmass dominated by quartz, plagioclase, and muscovite with minor garnet and pyrite and trace zircon and sphene. Foliation is defined by compositional banding between the major minerals and elongation of muscovite and a few larger quartz grains. One surface on the hand sample shows a prominent lineation.

porphyroblasts				
plagioclase	10-12%			
groundmass				
quartz	6Ø-65			
muscovite	12-15			
plagioclase	12-15			
garnet	Ø.2			
pyrite	minor	(includes	secondary	Fe-minerals)
zircon	trace		-	
sphene	trace			
limonite seams	minor			

Plagioclase forms anhedral porphyroblasts averaging 0.7-1.7 mm in size. Many are zoned slightly. The refractive index is less than that of quartz, suggesting an albite/oligoclase composition. Alteration is slight to patches of dusty brown hematite/limonite.

In the groundmass, quartz forms equant grains averaging 0.05-0.15 mm in size, and elongate grains averaging 0.3-0.5 mm long oriented parallel to foliation.

Muscovite forms grains averaging  $\emptyset.2-\emptyset.5$  mm in grain size, mainly elongated parallel to foliation. Most are free of inclusions, but a few are moderately to strongly poikilitic to skeletal, with inclusions of quartz and/or plagioclase.

Plagioclase is concentrated moderately in lenses parallel to foliation as equant grains averaging  $\emptyset.1-\emptyset.3$  mm in size in some bands and  $\emptyset.\emptyset5-\emptyset.1$  mm in size in others. Some patches contain minor to moderately abundant myrmekitic inclusions of quartz. Some finer grained lenses are intergrown with minor to moderately abundant very fine grained quartz. Alteration is slight in irregular patches to sericite and dusty hematite.

Pyrite(?) forms a few clusters of grains up to 0.8 mm long. Alteration is strong to medium reddish orange-brown, cryptocrystalline limonite/hematite, with relic cores up to 0.1 mm across of opaque hematite or pyrite.

Garnet forms a single grain and a few clusters up to 0.8 mm across of equant, slightly porphyritic to skeletal grains averaging 0.2-0.4 mm in size. It commonly is intergrown with quartz.

Zircon forms an anhedral grain 0.2 mm across.

Sphene forms an equant grain  $\emptyset.05$  mm in size in one plagioclase porphyroblast.

Limonite forms a few wispy seams, commonly parallel to foliation.

#### Sample RX-051191

#### Metamorphosed Pyritic Siliceous Exhalite (?) Quartz-Plagioclase-Pyrite-Sillimanite-Phlogopite

Scattered porphyroblasts of plagioclase are set in a well foliated groundmass of quartz, pyrite, phlogopite, and sillimanite. Locally the foliation is warped moderately. Later deformation includes abundant fractures, some showing slight offset, and patches of cataclastic deformation.

porphyroblasts			
plagioclase	4- 58		
groundmass			
quartz	65-70		
plagioclase	10-12	<b>Ti-oxide</b>	trace
pyrite	7-8	graphite	trace
phlogopite	4-5	chalcopyrite	trace
sillimanite	3-4		
apatite	0.3		
chlorite	Ø.2		
chlorite	Ø.2		

Plagioclase forms a few porphyroblasts up to 1.5 mm in size and aggregates of grains averaging  $\emptyset.1-\emptyset.5$  mm in size. Most porphyroblasts are equant, but a few are elongated strongly parallel to foliation. One of these is enclosed by lenses of sillimanite, which are warped around the plagioclase porphyroblast. Plagioclase is fresh.

Quartz forms aggregates of very fine to fine grains. Grains commonly are enclosed by seams of sillimanite and lesser biotite averaging  $\emptyset.\delta 5-\theta.15$  mm apart. Larger quartz grains are elongated parallel to foliation; these average  $\emptyset.3-\emptyset.7$  mm long, but a few are up to 5 mm long.

Pyrite forms grains and lenses averaging  $\emptyset.3-2 \text{ mm}$  long, mainly elongated strongly parallel to foliation. Adjacent to many of these, wispy trains up to  $\emptyset.1 \text{ mm}$  long of cryptocrystalline to extremely fine grains of pyrite extend perpendicular to the main pyrite lenses into quartz. A few equant pyrite grains are up to  $\emptyset.5 \text{ mm}$  across.

Phlogopite flakes and acicular sillimanite occur in wispy seams parallel to foliation, and separated by quartz aggregates. Phlogopite flakes average 0.2-0.5 mm in size, and are pleochroic from pale to light brown. Sillimanite grains average 0.3-0.5 mm long. Many sillimanite seams are one grain wide, but a few bands up to 0.2 mm wide contain aggregates of coarser sillimanite grains up to 1.5 mm long.

Mineral X forms a ragged equant grain  $\emptyset.35$  mm across and a few anhedral to subhedral grains averaging  $\emptyset.1-\emptyset.2$  mm in size. It is concentrated strongly in a few layers in the rock. It resembles idocrase in relief, habit, and birefringence, but is length-slow. Some grains have parallel extinction, but a few have inclined extinction.

Chlorite forms a few seams up to Ø.1 mm wide parallel to foliation.

Ti-oxide forms a few, disseminated grains up to 0.2 mm long elongate parallel to foliation.

Apatite forms an anhedral grain Ø.4 mm across.

Chalcopyrite forms a few interstitial grains from  $\emptyset.03-\emptyset.1$  mm in size in and near a few pyrite lenses, and a few grains up to  $\emptyset.02$  mm in size in quartz.

# Sample RX051191 (page 2)

Graphite forms a few flakes and clusters of flakes up to 0.15 mm long in a thin seam parallel to foliation, in which it is associated with sillimanite.

Zircon forms an oval-shaped grain Ø.Ø7 mm long.

The rock is cut by numerous fractures and offset up to Ø.2 mm along some of these. Adjacent to some are patches of cataclastically deformed and granulated to extremely fine grained aggregates.

#### Sample RX-Ø51192

#### Metamorphosed Pyritic Siliceous Exhalite with Minor Chalcopyrite, Galena, Sphalerite

The rock is dominated by quartz with moderately abundant lenses of pyrite and equant grains of plagioclase, and less abundant flakes of biotite and disseminated patches of one or more of chalcopyrite, galena, and sphalerite. A weak to moderate foliation is defined by elongation of pyrite lenses and orientation of biotite flakes.

quartz	80-85%	epidote	trace
pyrite	7-8	Mineral X	trace
plagioclase	5-7		
biotite	3-4		
chalcopyrite	1-2		
galena	Ø.3		
rutile	Ø.2		
sphalerite	minor		

Quartz forms anhedral grains averaging 0.2-0.5 mm in size, commonly with sutured grain borders suggesting recrystallization from coarser grained aggregates.

Plagioclase forms disseminated, equant grains averaging 0.2-0.3 mm in size. It also occurs in a few patches up to 1 mm in size of finer grained aggregates, in part intergrown with quartz, and locally with slightly myrmekitic textures.

Pyrite is concentrated strongly in lenses parallel to foliation, in which it forms grains averaging  $\emptyset.5-1.5$  mm in size. It also forms disseminated, subhedral grains averaging  $\emptyset.1-\theta.2$  mm in size.

Biotite forms flakes averaging  $\emptyset.2-\emptyset.5$  mm in size, and a few up to 1.0 mm long. Pleochroism is from pale to light or medium reddish brown.

Chalcopyrite forms equant to elongate grains averaging Ø.1-Ø.3 mm long, and a few up to Ø.6 mm long. A few chalcopyrite patches contain one or two bands up to Ø.Ø3 mm wide of pyrrhotite. Some are altered along their margins, and most of the the secondary minerals were leached from the sample. A few patches contain minor secondary covellite.

Galena forms a patch 0.7 mm long adjacent to a large lens of pyrite. It also forms a few disseminated patches averaging 0.1-0.15 mm in size in quartz. Alteration is slight along the grain margins to secondary, non-reflective Pb-minerals. One patch of galena is surrounded by cryptocrystalline, secondary Pb-minerals intergrown intimately with covellite.

Deep orange-brown rutile forms disseminated grains averaging Ø.Ø5-Ø.1 mm in size and a few lenses up to Ø.3 mm long in quartz.

Apatite forms a few subhedral grains up to  $\emptyset.2 \text{ mm}$  long. Many contain abundant inclusions of hematite(?) oriented parallel to the c-axis of apatite.

Red-brown sphalerite forms patches up to 0.2 mm in size, commonly associated with chalcopyrite.

Epidote forms a few grains up to Ø.12 mm in size. Mineral X (as in Sample 191) forms a few equant to stubby prismatic grains up to Ø.1 mm in size.

# Sample RX-051193 Strongly Contorted, Recrystallized Schist Biotite-Quartz-Muscovite-Chlorite-Sillimanite-Plagioclase

Clusters of sillimanite are relics from an earlier period of high grade metamorphism and deformation which produced very tight folds. These now are included in porphyroblasts of muscovite and lesser plagioclase. Intergrown with these are fine to medium grained biotite, chlorite, quartz, and less plagioclase, with minor opaque (pyrite) and apatite.

biotite	25-30%	apatite	Ø.5%
quartz	17-20	zircon	trace
chlorite	15-17		
muscovite	15-17		
plagioclase	12-15		
pyrite	3-4		
sillimanite	2-3		

Sillimanite forms clusters of acicular grains averaging 0.05-0.3 mm long. These show a very tightly folded structure on the scale of 0.5-2 mm formed during an early stage of deformation. Sillimanite occurs only within porphyroblasts of muscovite and less abundant ones of plagioclase.

Biotite and chlorite form fine to medium grained aggregates oriented moderately to strongly in the foliation plane. One chlorite porphyroblast cuts across the foliation of a clusters of biotite grains. One chlorite aggregate outlines a moderate kink warp on the scale of 1-2 mm. Biotite is pleochroic from pale to medium reddish brown. Chlorite is pleochroic from colorless to pale greyish green.

Quartz forms anhedral grains averaging  $\emptyset.2-\emptyset.5$  mm in size, and a few elongate grain up to 1.5 mm long oriented parallel to foliation and enclosed between seams of biotite, muscovite, and chlorite.

Muscovite is concentrated in a few patches up to a few mm across as fine to coarse grains intergrown coarsely with biotite, chlorite, and minor plagioclase porphyroblasts. Almost all muscovite grains contain sillimanite clusters (see above). Elsewhere it forms irregular to elongate porphyroblasts intergrown with biotite and chlorite.

Plagioclase forms equant to elongate porphyroblasts up to 2 mm in size. Some are zoned slightly. Several contain ragged clusters of acicular sillimanite grains up to 0.5 mm long (see above). Plagioclase also forms anhedral grains averaging 0.3-0.5 mm in size intergrown with quartz, biotite and chlorite; these are concentrated in a few patches in the sample, and generally do not contain sillimanite inclusions.

Pyrite forms patches and lenses averaging  $\emptyset.2-1$  mm in size, and locally up to a few mm long.

Apatite forms equant to anhedral prismatic grains averaging  $\emptyset.1-\emptyset.3$  mm in size.

At one end of the section is a weathered zone containing abundant limonite on fractures and grain boundaries. A few pyrite grains is this zone are replaced strongly by red-brown hematite.

#### Sample RX-Ø51194

#### Banded Schist: Pyrite-Quartz-Tremolite-Plagioclase-(Sphalerite-Barite(?)-Epidote-Apatite)

The rock is a very fine to medium grained schist containing abundant opaque (mainly pyrite), quartz, tremolite, and plagioclase, less abundant biotite and sphalerite, and minor barite, epidote and apatite. Minerals are segregated into compositional layers. Pyrite, sphalerite, tremolite, and barite(?) are concentrated in a broad band comprising much of the section. Biotite is concentrated in the remaining sulfide-poor band. The quartz-biotite rich layer is folded locally into a tight warp on the scale of 1.5-2 mm.

opaque (pyrite) quartz plagioclase	25-30% (possibly some chalcopyrite and galena) 20-25 17-20
tremolite	15-17
sphalerite	4-5
biotite	3-4
<pre>barite(?)</pre>	Ø.8
apatite	Ø.5
epidote	Ø.3
sphene	Ø.1

Quartz commonly forms aggregates of grains averaging  $\emptyset.05-0.15$  mm in size, and in a few patches and lenses forms coarser grains up to  $\emptyset.8$  mm across.

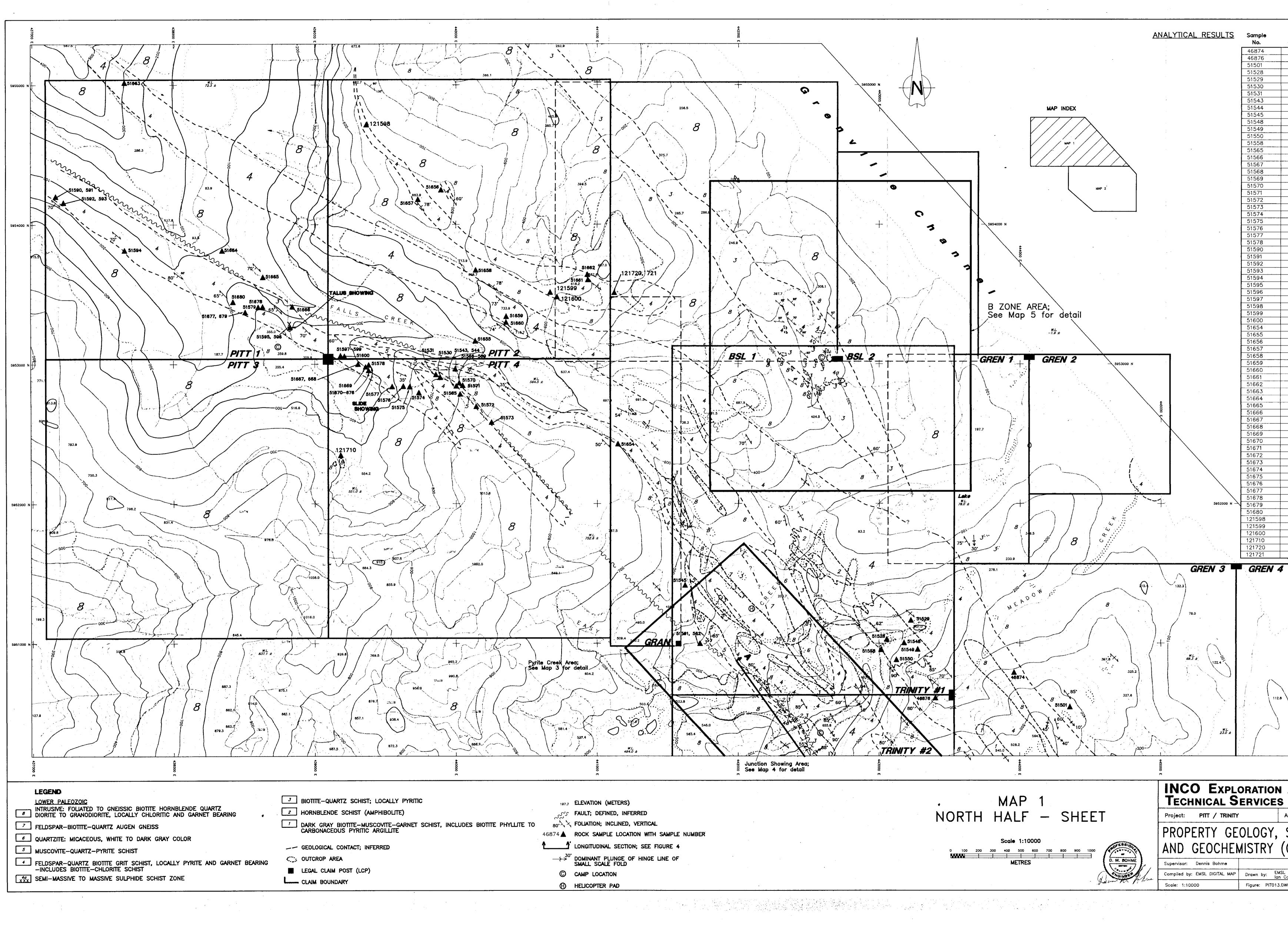
Pyrite forms lenses up to a few mm long parallel to foliation of grains averaging  $\emptyset.1-\emptyset.8$  mm in size.

Plagioclase forms anhedral grains averaging  $\emptyset.2-\emptyset.7$  mm in size. Many are zoned slightly. Coarser grains have a porphyroblastic appearance. It is concentrated in a few bands up to 2 mm wide of very fine to fine grained aggregates.

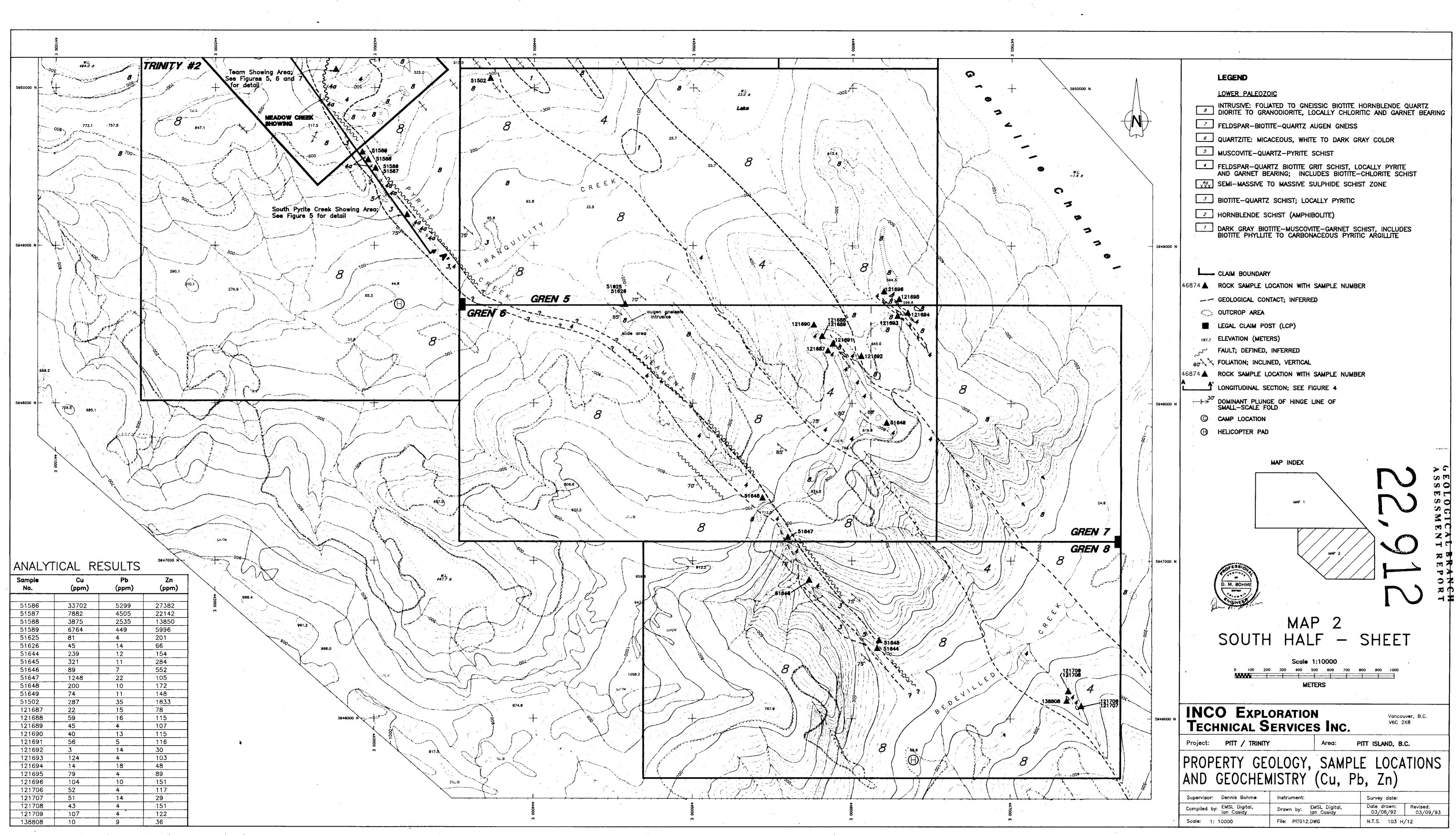
Tremolite/actinolite occurs in the pyrite-rich part of the section, where it forms annearal to subhedral, prismatic grains averaging  $\emptyset.3-\emptyset.8$  mm in size and locally up to 1.5 mm long. Pleochroism is from pale to light green.

Orange brown sphalerite forms anhedral patches averaging  $\emptyset.1-\emptyset.7$  mm in size intergrown with pyrite.

Biotite forms lenses parallel to foliation of flakes averaging  $\emptyset.2-\emptyset.7$  mm long. It is concentrated strongly in the parts of the sample containing little pyrite. Pleochroism is from pale to medium/light brown. In some lenses it is altered strongly to pale green chlorite.

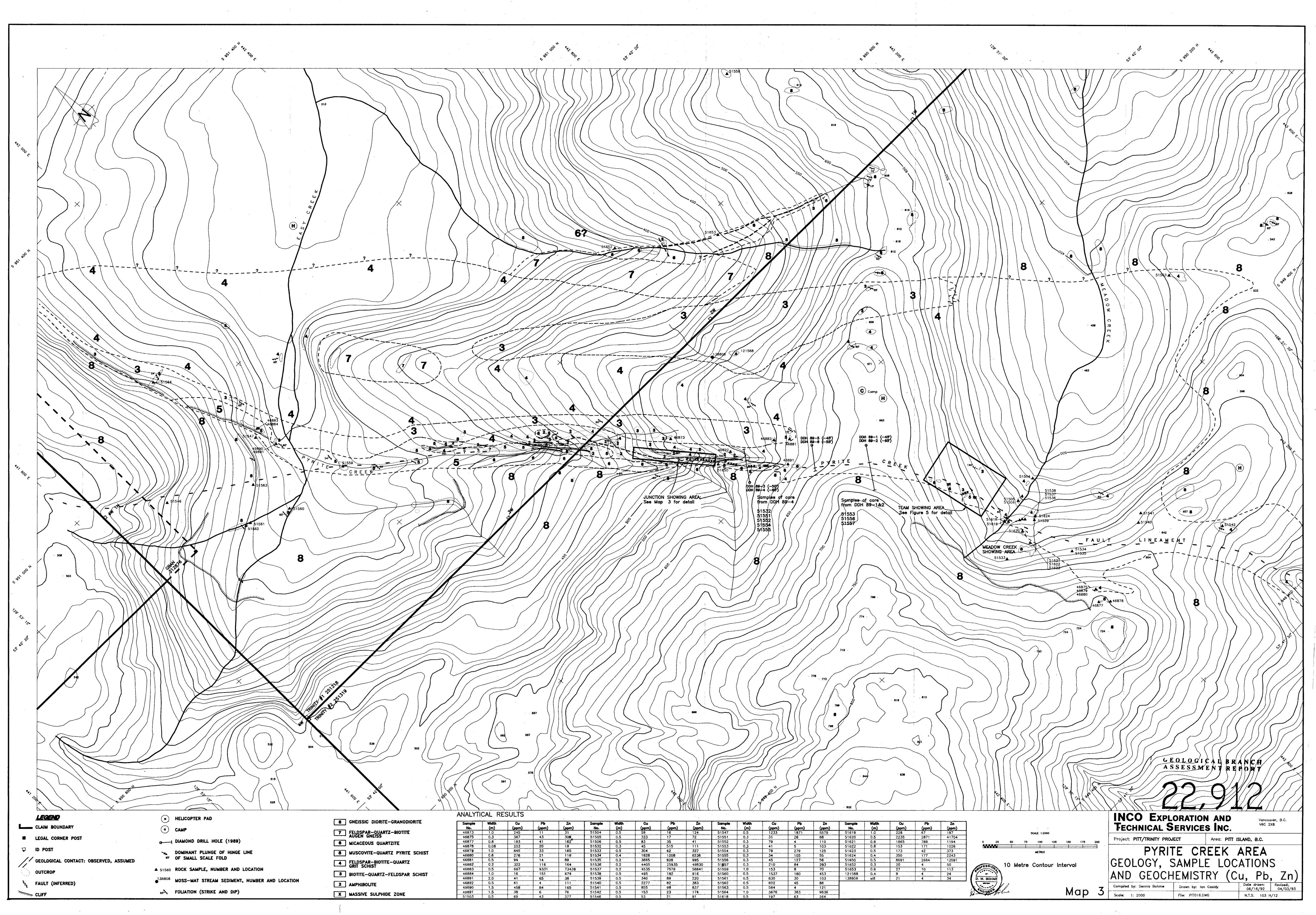

Epidote forms ragged patches up to Ø.3 mm in size, mainly associated with biotite.

Barite (?) forms anhedral grains averaging 0.1-0.3 mm in size bordering pyrite-sphalerite patches. Orthogonal cleavage is faint but present.

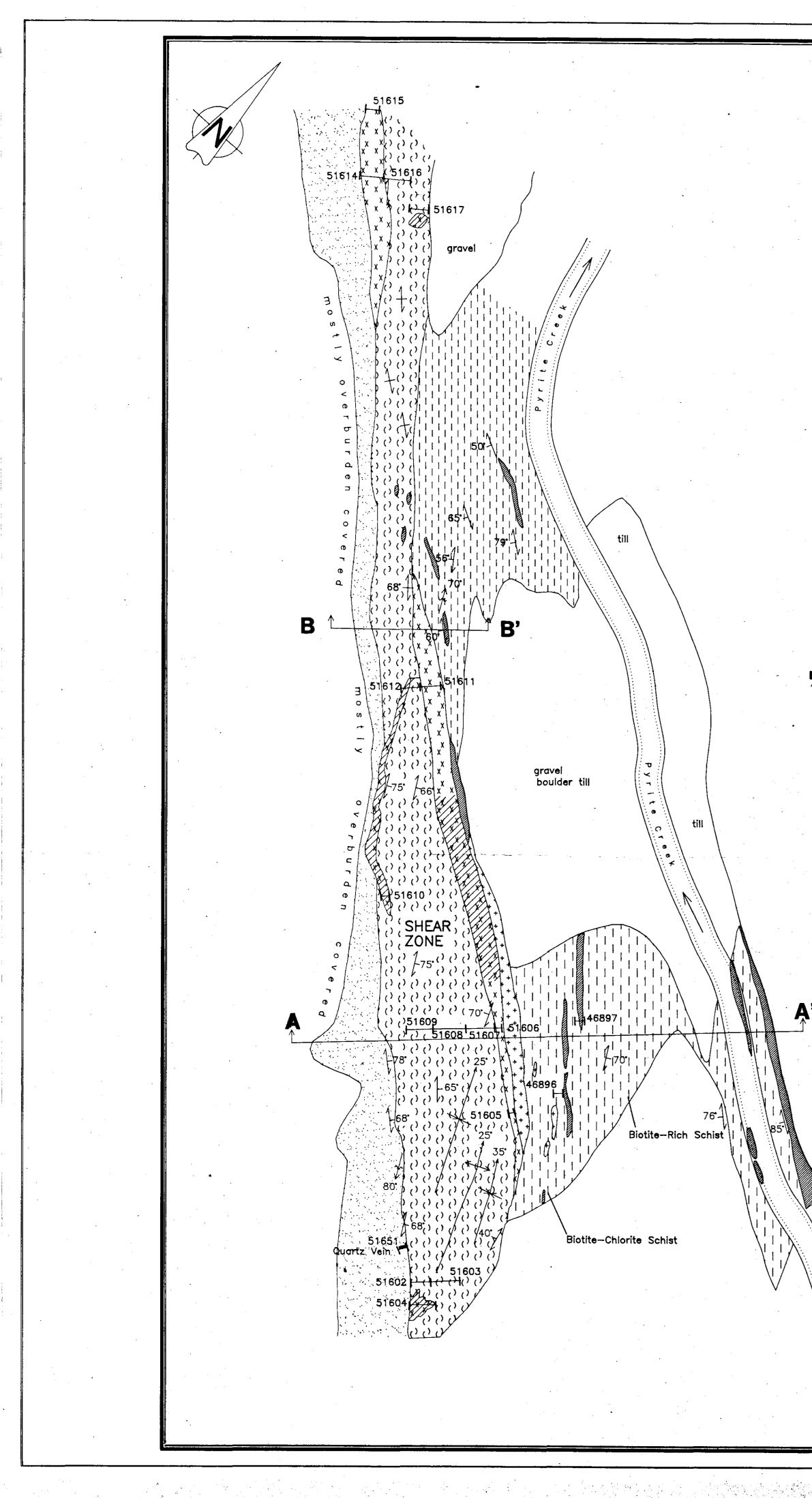

Apatite forms anhedral grains averaging Ø.07-0.15 mm long and a subhedral, prismatic grain 0.5 mm long.

Sphene forms disseminated, anhedral to subhedral grains averaging  $\emptyset. \\ 0.5 - 0.15$  mm in size.

A few late veinlets averaging  $\emptyset.\emptyset2-\emptyset.\emptyset5$  mm wide and formed during weathering are of limonite.

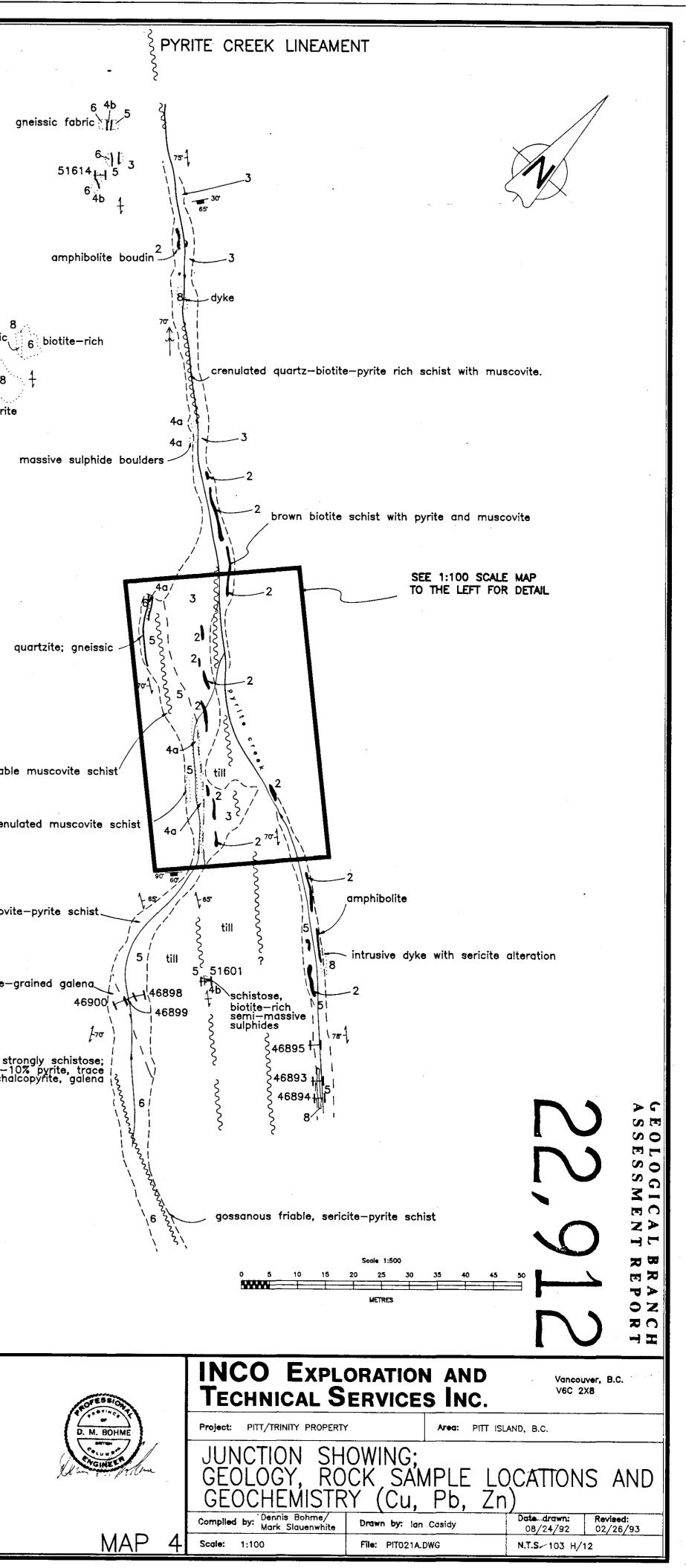


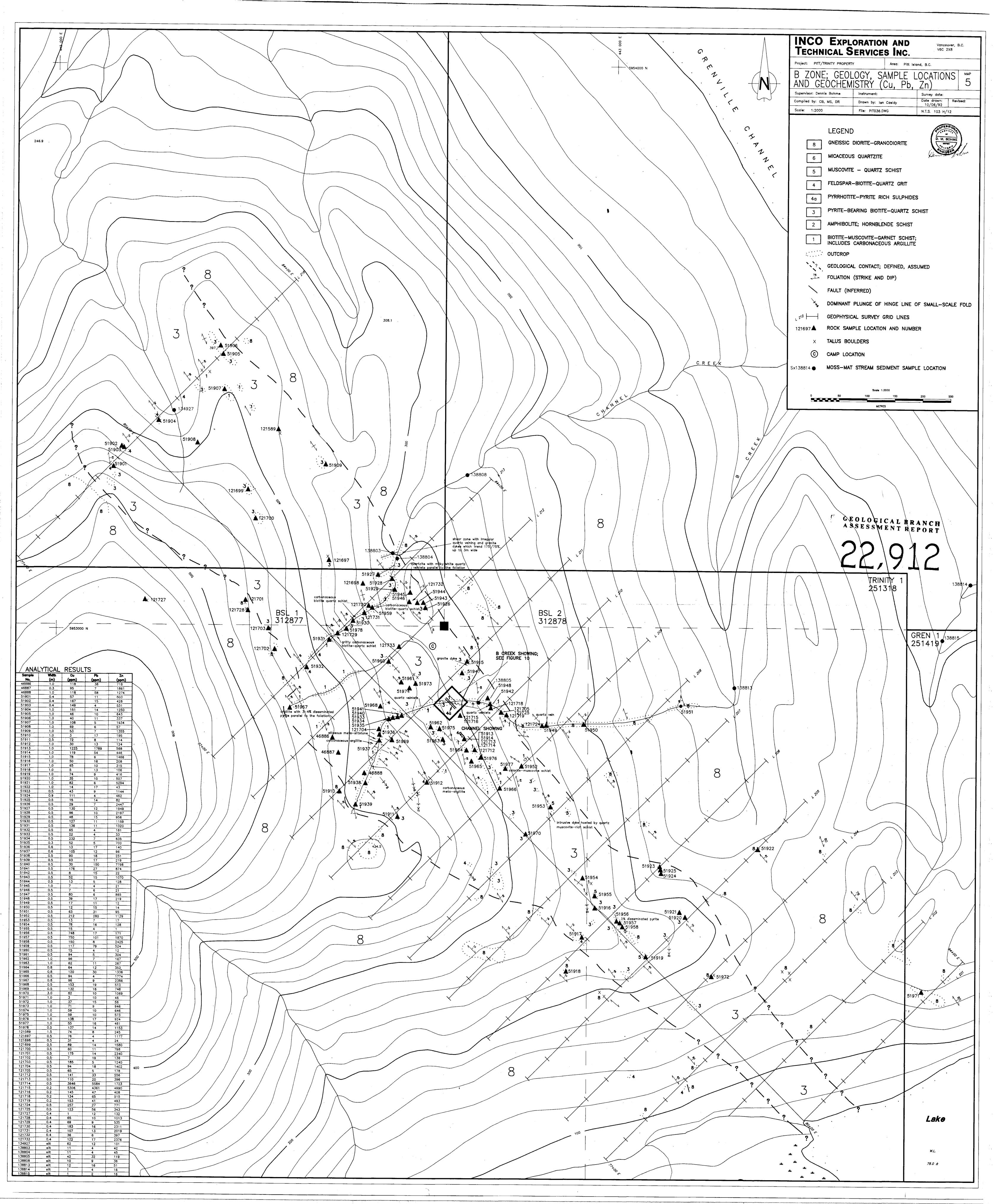

		······	]
Cu	РЬ	Zn	
(ppm)	(ppm)	(ppm)	4
<u>83</u> 112	7	189 692	
106 143	29 6	580 176	
80	27	68	
110 95	23 50	50 112	
483	46	2928	
346 17	33 16	194 53	ł
163	48	372	1
<u>88</u> 225	22 23	696 45	-
115 95	19 36	49 66	
1336	14	187	
<u>    607                                </u>	39 82	83	4 ·
34	5	40	
374 81	40 65	85	1
972	68	799	
96 69	48 19	87 103	
53 460	9 19	62 93	
101	19	71	
<u> </u>	46 124	920	
28	199	114	
<u> </u>	9 4	87 68	
4 678	20 80	30 1836	
722	182	716	
64 4616	15 67	81 414	
4261	69	425	
1534 288	51 81	356 351	
164	59 23	221	
110 99	23	192 181	
29 126	19 7	59 192	
25	18	91	
42 25	23 18	112 108	
58 6193	4 1103	148 50	
4147	77	83	
<u>94</u> 34 .	31 46	95 60	
41 3492	8	31 1049	
1890	209 42	64	
70 5523	<u>19</u> 100	33 4520	
2738 6717	973 234	451 1055	
2216	194	289	
4937 209	32 29	8915 174	
209	47	190	
200 15496	21 361	203 806	
89 19	47 33	205 39	
93	21	109	
33 60	<u> </u>	10 <del>9</del> 145	
47	29	220	
4480000 E			
+		- 5951100 N	•
	EOLOC	ICAL B	
	SSESS	MENT R	AANC EPOR
_001			
			1 1
112.0			1 /
<b></b>			
AND INC.	Vanco V6C 2		
-	· · · · ·		
		ATIONS	
(Cu, Pl	b. 7n)		
<b>`</b>	~, _!!/		
SL DIGITAL Casidy DWG	Date drawn: 03/06/92 N.T.S. 103 ⊦	Revised: 03/10/93 1/12	

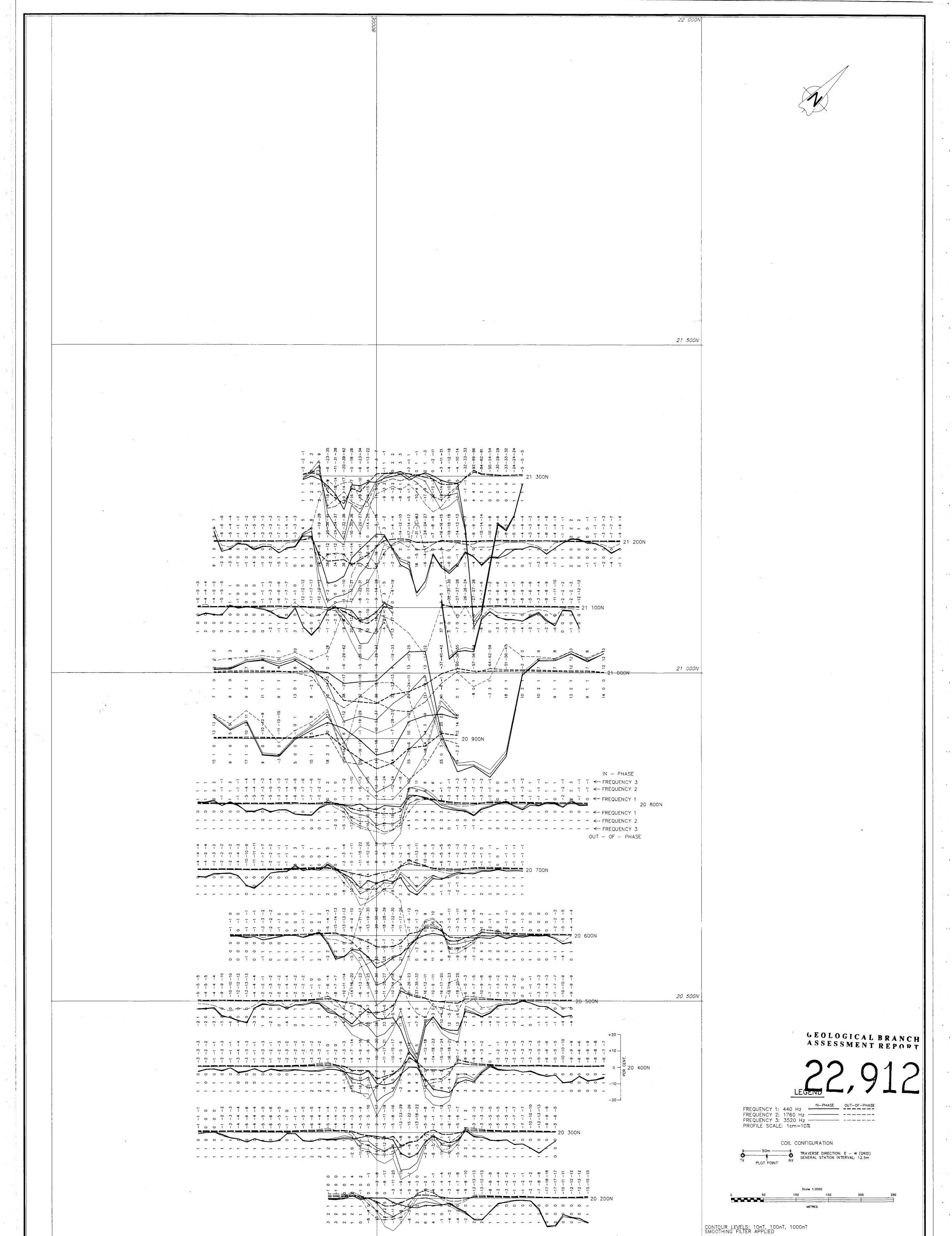



. The second second







1020		
373		
2243		
12091	•	
50	OFESSION 10	Metre
113	A AVIAN TA	
24		
34	D. M. BOHME	
· _	LUN	

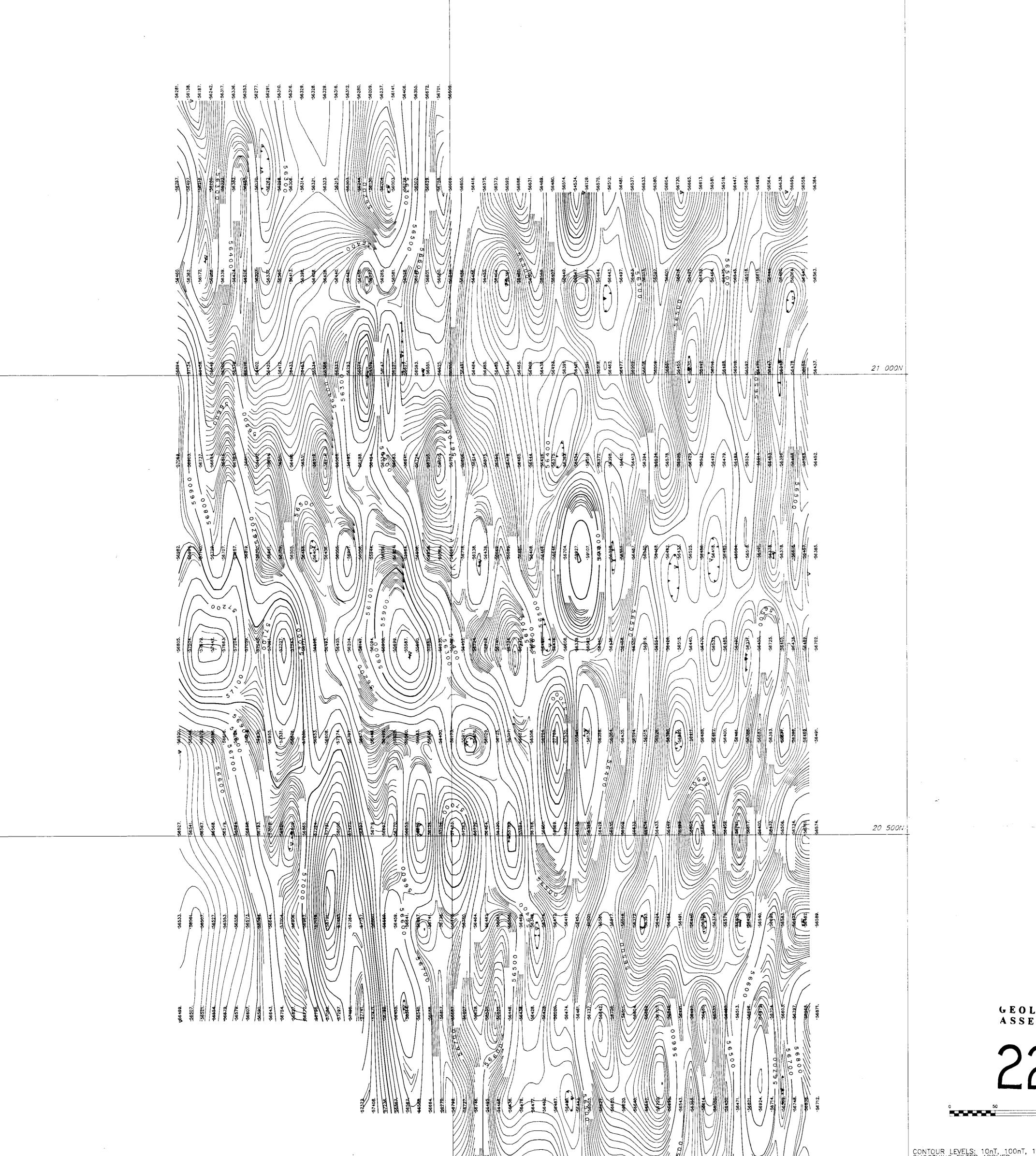



1 . .

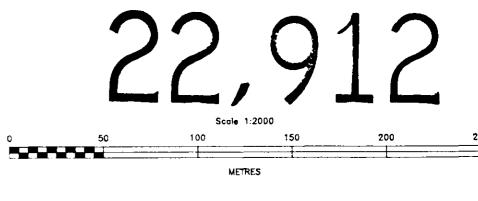
	LEGEND				
	AMPHIBOLITE		•		
31	BIOTITE-QUARTZ SCHIST; includes feldspathic biotite-muscovite	schist			
<b>44*</b> ×	MASSIVE SULPHIDES; 30-60% sulphides, in decreasing orde chalcopyrite, sphalerite, galena, covelli wide, includes siliceous granite, quartz	e and pyrrhotite.	Clasts, 1-	15cm	
; <b>5</b> ;;	SEMI-MASSIVE SULPHIDES (SHEAR ZON contains between 15-50% platy biotite MUSCOVITE-QUARTZ SCHIST; locally very pyritic and sheared, some				
	MICACEOUS QUARTZITE; with pyritic quartz-muscovite schist in	-			٤
• <b>*8</b> •*	GRANODIORITE / GRANITE INTRUSIVE; locally well-foliated to gneissic	terbands			gneissic fabric
$\mathcal{M}$	FAULT (INFERRED)				8 granodiorite
·	ROCK CHIP SAMPLE	ANALYTICAL RESULTS Sample Width Cu No. (m) (ppn	Pb Zr		<u> </u>
1ert	FOLIATION (INCLINED, VERTICAL)	51601 0.4 1060	09 4283 13 6 1688 21	pm) 3181 116	
eo-	FRACTURE	51604 0.9 1260	7 301 58 60 7738 33 99 4884 31 21 4501 17	34 384 1372 7723	
80	AXIAL TRACE OF SYNFORM (ARROW INDICATES PLUNGE)	51607         1.0         3707           51608         1.2         2105           51609         1.0         7164           51610         0.4         7575           51611         0.7         2585           51612         1.1         1155	7       387       53         5       250       33         4       3860       23         3       5390       62         58       5285       40         74       892       19	7723 37 54 573 261 0523 977 2888 294 3839 345	
× ***	AXIAL TRACE OF ANTIFORM (ARROW INDICATES PLUNGE)	51613       0.5       164         51614       0.7       8929         51615       0.5       412         51616       1.0       1519         51617       1.5       420         46893       0.4       83	74         892         19           79         3851         32           97         5942         31           77         4763         28           93         4394         68           71         5216         26           49         91	5094	
	DOMINANT PLUNGE OF HINGE LINE OF SMALL-SCALE FOLD	46895         0.2         14           46896         1.0         93           46897         1.0         108           46898         0.3         62	18 15 26 66 33 57 18 18		
	SECTION LINE	46899         2.0         81           46899         0.4         98           46900         1.0         155	648 13 147 42 1482 19	915 24 987	
	B ↓^ B'	- - -			friabl
	B B'	. •			
	and the second s				friable, crent
e a se					quartz-muscovi
			•		
					. fine-
				<b>A'</b>	
,					sti 3–1 cha
•	Prover the	1		,	
			•		
	$ \begin{array}{c} x \\ y \\$				
			1,1,1,1		
P X X				L	6
		Scole 1:100			
	° 4	4 5 6 7 8 METRES	9 10		
					· .
			· · ·		
					• 





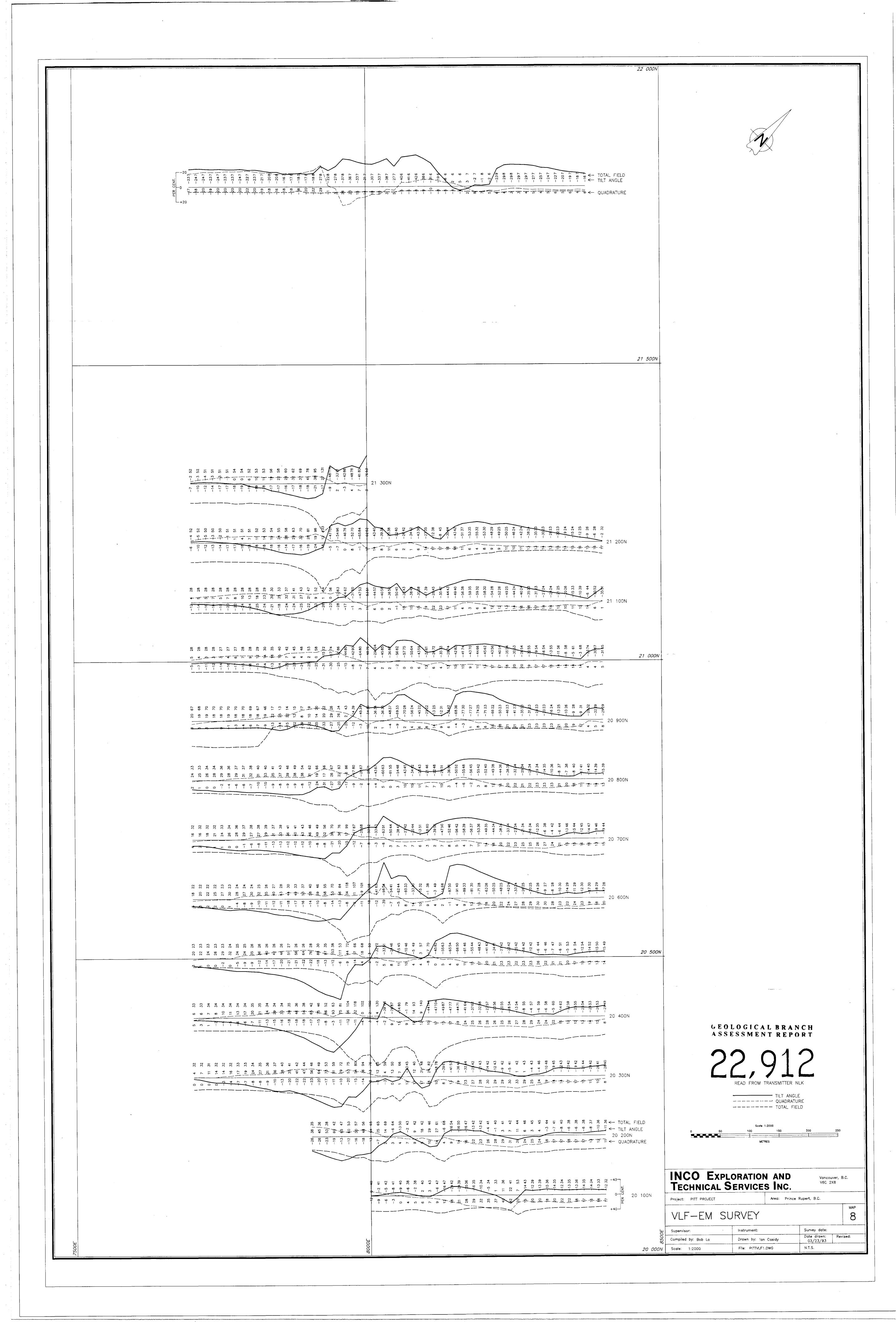



				INCO EX TECHNICAL	PLORATION AND SERVICES INC	Vancouver, B.C. V6C 2X8
				Project: PITT/TRINITY PR(	OJECT Area: Pri	nce Rupert, B.C.
				HLEM SURVEY		мар 6
			OE	Supervisor:	Instrument:	Survey date:
JOE JOE	<u> </u>	ν.	850	Compiled by: Bob Lo	Drawn by: Ian Casidy	Date drawn: Revised: 12/03/92
120	800		20 000N	Scale: 1:2000	File: PITTHLEM.DWG	N.T.S.


# 56240. 568408. 568408. 568408. 568408. 568408. 568408. 568456. 568456. 568456. 568456. 568456. 568456. 568456. 568456. 568456. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. 568464. <l

21 500N

22 000N




GEOLOGICAL BRANCH ASSESSMENT REPORT



CONTOUR LEVELS: 10nT, 100nT, 1000nT SMOOTHING FILTER APPLIED

				TECHNICAL SERVICES INC.			
				Project: PITT/TRINITY PRO	JECT Area: Prir	nce Rupert, B.C.	
							MA
				MAGNETIC	SURVET		
			i,	Supervisor:	Instrument:	Survey date:	
ΣE		OE	<i>850</i> (	Compiled by: Bob Lo	Drawn by: Ian Casidy	Date drawn: 12/03/92	Revised:
200	•	800	20 000N	Scale: 1:2000	File: PITTMAG.DWG	N.T.S.	

