	- DD
LOG NO: O	712 <u>RD</u>
ACTAUN	
FILE NO:	

Assessment Report

for the

RN CLAIM GROUP

LIARD MINING DIVISION

NTS: 1041/14E, 1151/15W Latitude 59° 00'N, Longitude 129° 15'W

For:

FILMED

Golden Marlin Resources Ltd. Suite 300, 133-3rd Ave. N. Saskatoon, Saskatchewan S7K-2H4

ЪУ

Submitted: July 5

T. Termuende P.Geo. of Toklat Resources Inc. 2720-17th st. s. Cranbrook, GEOLOGICAL BRANCH V1C-4H4 ASSESSMENT REPORT

199

TABLE OF CONTENTS

Summary 1
Introduction
Location, Access, Climate, and Physiography, 2
Title 2
History 3
Geology
Regional Geology 5
Property Geology 5
Mineralization 5
1992 Program
Discussion of Results
Conclusion and Recommendations 8
Proposed Budget
References 10
Certificate of Qualification 11

LIST OF FIGURES

Figure	1		Location Map) (1)		After	Page	2
Figure	2	-	Claim Map			After	Page	2
Figure	5	_	Geology and	Sample	Location	MapIn	Pocke	et

LIST OF APPENDICES

Appendix I - Statement of Expenditures Appendix II - Analytical Results - Appendix III - Program Related Documents

SUMMARY

The RN claims, owned by Golden Marlin Resources, are located in the Nizi Creek area of northern British Columbia. The property consists of 100 2-post and MGS claim units (6,300 acres) staked for the company in April of 1992 to cover ground thought prospective for gold and base metal mineralization following announcements by Gold Giant Minerals (VSE) of rich gold mineralization discovered in the area.

The claims were staked to tie on to the Nizi claims of Gold Giant, now under Option to Gold Fields Canadian Mining. Work in 1991 had outlined gold values in a vein system, and follow-up work returned values in grab samples of over one ounce per ton. Chip samples yielded values to over 1.0 oz/t and 2.742 oz/t Au over 1.6m and 2.3m, respectively. All samples returned appreciable silver assays The 1992 program on the Gold Giant property has included as well. drilling of several holes to test the zone. Hole #1 returned a value of .17 oz/t Au over 45.2 feet. Within that interval is a thickness of 30.2 feet grading .21 oz/t Au and an interval of 15.2 feet grading .26 oz/t Au. Subsequent drilling extended the zone to a possible strike length of 3000 feet.

Work carried out on Golden Marlins' RN claims consisted of reconnaissance mapping and prospecting, coupled with stream sediment sampling of all major water courses draining the property. Mapping consisted primarily of ground-checking and confirming the general geology as mapped by GSC geologists Rice and Gabrielese at 1:250,00 scale in the late 1940s-early 1950s.

This preliminary program resulted in the discovery of the "Gunsight Zone", a gold, silver, lead-mineralized quartz vein similar in most respects to Gold Giants' "G"-Zone, except that values recovered were of a lower grade, namely .030 oz/t Au (TRNR-24), being the highest value. The gold values are accompanied by high lead, zinc, and arsenic values. Numerous elevated geochemical values were also recovered from creeks draining the claims, particularly in samples MRNS-1 to MRNS-5, indicating a contained geochemically anomalous zone in that area.

Also as a result of work carried out during the 1992 program was the discovery of high-grade copper and silver mineralization in float near the camp area. Sample RRNR-3, taken from scree material, returned assays of 2.79% Cu. Other similar boulders were found, including one which weighs roughly one ton. An attempt was made to locate the bedrock source of the boulders, but the area was not accessible without technical climbing aids. This target also warrants follow-up.

1

INTRODUCTION

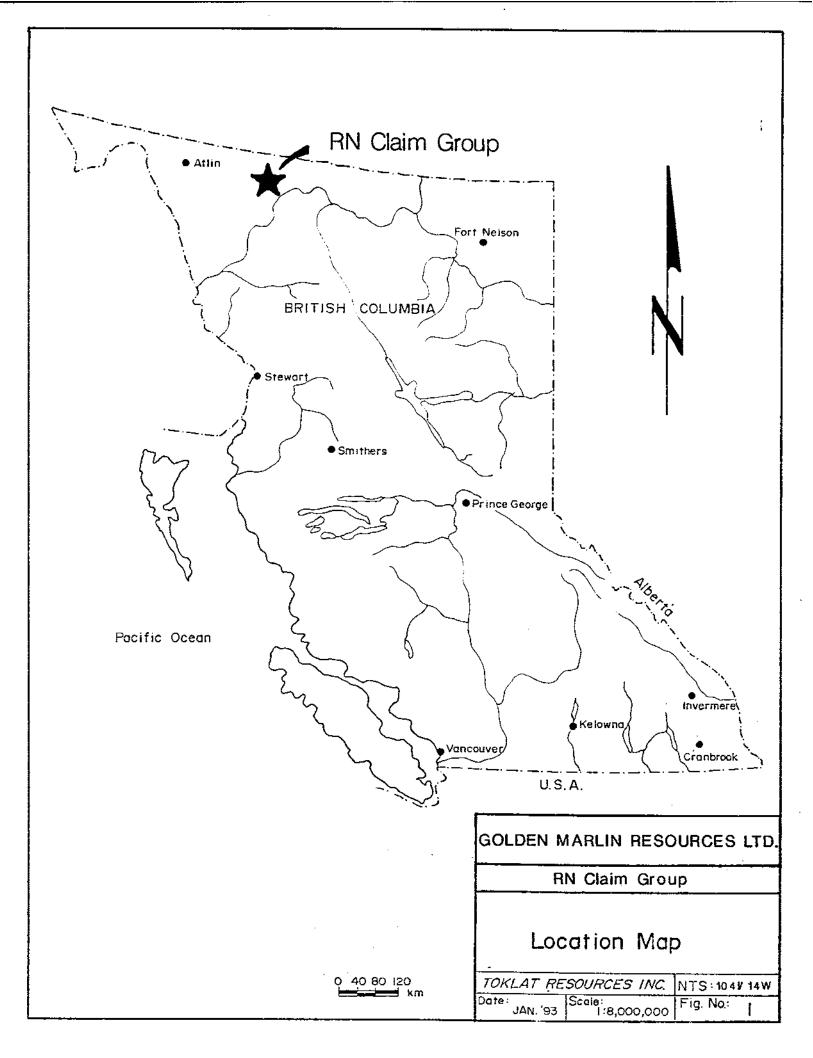
LOCATION, ACCESS, CLIMATE, AND PHYSIOGRAPHY

The RN Group mineral claims were acquired by the author in April, 1992 to cover ground which was considered prospective for gold and base-metal mineralization as a result of a local discovery by Gold Giant Minerals.

The claims are situated within the Liard Mining division, centered at Latitude 59° 00'N, Longitude 129°15'W. They are located 65 km southeast of the Town of Cassiar, BC. Access is provided by helicopter at this time, with the nearest staging point being the abandoned town of McDame, some 25 km north of the claims. Due to poor road conditions Good Hope Lake was chosen as staging point for the 1992 program, and is located 45 km north-northwest of the property.

The property lies within the Cassiar Mountains, and ranges in elevation from 1250m to 1890m ASL, with timberline at 1500m. The lower slopes are covered by a moderate overgrowth of mature spruce and fir, with bedrock poorly exposed, limited to stream cuts and infrequent escarpments. Above 1500m, exposure is excellent. The area is drained by numerous streams running northeasterly to southeasterly, with higher elevations dotted by small lakes.

The property is snow-free from late May to early October, with annual precipitation being moderate.


TITLE

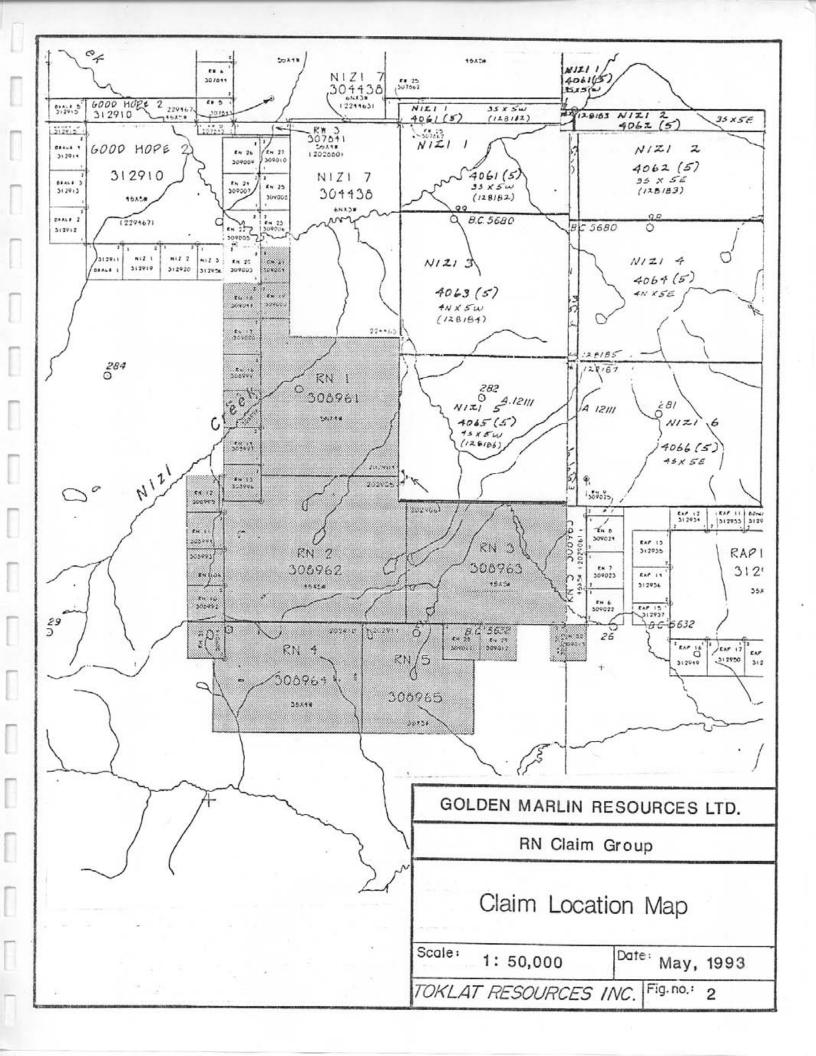

The RN Group consists of 100 unit comprised of both 2 two-post and Modified Grid System (MGS) claims, recorded in April, 1992 (see Table 1, below, and Claim Location Map, figure 2).

Table 1- Claim Tenure, RN Group

<u>Claim Name</u>	<u>Type</u>	<u>Record #</u>	<u>Units</u>	<u>Recording Date</u>	Expiry Date*
RN 1	MGS	308961	20	29/04/92	29/04/95
RN 2	MGS	308962	20	29/04/92	29/04/95
RN 3	MGS	308963	20	29/04/92	29/04/95
RN 4	MGS	308964	12	29/04/92	29/04/95
RN 5	MGS	308965	9	29/04/92	29/04/95
RN 6	2-P	309022	1	29/04/92	29/04/95
RN 7	2-P	309023	1	29/04/92	29/04/95
RN 8	2-P	309024	1	29/04/92	29/04/95
RN 9	2-P	309025	1	29/04/92	29/04/95
RN 10	2-P	308992	1	29/04/92	29/04/95
RN 10A	2-P	308993	1	29/04/92	29/04/95
RN 11	2-P	308994	· 1	29/04/92	29/04/95
RN 12	2-P	308995	1	29/04/92	29/04/95
RN 13	2-P	308996	1	28/04/92	28/04/95
RN 14	2-P	308997	1	28/04/92	28/04/95
			Continu		

-Continued-

<u>Claim Name</u>	<u>Type</u>	Record #	<u>Units</u>	Recording Date	Expiry Date*
RN 15	2-P	308998	1	28/04/92	28/04/95
RN 16	2-P	308999	1	28/04/92	28/04/95
RN 17	2-P	309000	1	28/04/92	28/04/95
RN 18	2-P	309044	1	28/04/92	28/04/95
RN 19	2-P	309002	1	28/04/92	28/04/95
RN 21	2-P	309004	1	28/04/92	28/04/95
RN 28	2-P	309011	1	28/04/92	28/04/95
RN 29	2-P	309012	1	28/04/92	28/04/95
RN 30	2-P	309013	1	28/04/92	28/04/95

Table 1- Claim Tenure, RN Group

Total: 100 Units

* After 1992 assessment filed.

HISTORY

Regional

The Cry Lake area of northwestern BC is an area that is currently being reevaluated by a number of companies for both base and precious metal occurrences. The area from Tulsequah to Stewart has been heavily staked and exploration is now moving easterly into areas previously overlooked.

The only deposit in the Cry Lake area which has seen extensive exploration is the Kutcho Creek massive sulphide deposit, located 90 km south of the RN property. This deposit, originally a joint venture between Esso Minerals and Sumitomo Metal Mining Co. (Sumac) was discovered in 1973 by Esso, whose geologists were following up a 1967 single stream sample geochemical anomaly of 1280 ppm copper and 22,750 ppm zinc. American Reserve Mining Corp. has recently reached an agreement to purchase 100% of Esso's interest, which in turn has been held by Homestake Canada who purchased all of Esso's mining interests in 1989.

The deposit consists of three massive sulphide zones which occur in the same stratigraphic horizon in the highest and thickest felsic volcanic cycle of the Kutcho Formation. The Kutcho zone contains 17,000,000 tons of open pit reserves of 1.62% copper, 2.32% zinc, 29.2 g/t silver and 0.3 g/t gold. The Sumac West zone contains 10,000,000 tonnes of 1.0% copper and 1.2% zinc but remains open. The Esso West zone contains 1-1.5 million tonnes with about twice the grade of the Kutcho zone. Other smaller massive sulphide bodies were intersected in drill holes along the trend of the main deposits. The McDame gold camp, located 20 km northwest of the property, has been an historic gold producer since placer gold was first discovered in 1874 in McDame Creek. Recorded placer production from 1874-1895 was 70,000 ounces, but limited small scale production has continued since then. Lode gold was discovered in 1934 on Troutline Creek and limited production commenced between 1937-1939. The gold occurs primarily in north trending quartz and guartz carbonate veins within Sylvester Group greenstones adjacent to the greenstone-sediment contact. Significant production has been from four mines, the Erickson, Taurus, Cusac and Plaza properties, but not until 1979-1987. Total recorded production in the camp has been 514,594 ounces of gold, 306,080 ounces of silver from 1,600,060 tons of rock milled, of which 3/4 of the processed ore was from the Erickson Mine. Present published reserves in the camp are 695,963 tons of 0.332 oz/ton gold at the Erickson mine; 113,458 tons of 0.912 oz/ton gold at the Cusac mine; 60,000 tons of 0.25 oz/ton gold at the Taurus and 80,137 tons of 0.44 oz/ton gold at the Plaza mine.

Exploration in the region dates back to the 1960's when porphyry copper-molybdenum deposits were the primary target. A number of major companies including Esso, Noranda, and Kennco carried out regional geochemical surveys. As mentioned above, the Esso survey was successful in discovering the Kutcho deposit. Information gained by other companies' surveys remains confidential.

GEOLOGY

Regional Geology

The most recent regional geological mapping available for this area has been done by H. Gabrielse for the Geological Survey of Canada which was published as Open File 610 (1978). It covers most of the property (the portion that lies within NTS 104I) but does not extend into 104P. The northernmost part of the property is covered by Gabrielse's mapping between 1957 and 1961, published as Memoir #319.

The two generations of regional geological maps generally agree. The property is in the overlap assemblages between the Intermontane and Omineca Tectonic Terranes (Gabrielse, 1990).

Property Geology

All outcrop seen during property examinations was of an intrusive nature, consisting of granodiorites and quartz monzonites of the Jurassic or Cretaceous-aged Cassiar Batholith, with the exception of a calcareous basaltic dyke noted near the "Gunsight Showing" (see Map, in pocket). This structure is oriented 110°/70NE, and is approximately 100m in width. Due to the scarcity of outcrop exposures in the lower reaches of the property, all geological investigations were confined to the alpine- and sub-alpine areas.

Mineralization

Prior to Golden Marlins' program, no mineralization was documented within the property area. As a result of the 1992 field program, two areas of significant mineralization were located (see Discussion of Results, page 7).

1992 PROGRAM

The focus of the \$20,000, 9-day 1992 program was to carry out reconnaissance sampling and prospecting, with a cursory geological examination in and around the property area. A total of 65 stream sediment, 44 rock, and three moss samples were collected. All major drainages within and around the property area were sampled, providing a comprehensive framework for future exploration.

A three-man crew carried out all work on the claims, based from a light fly-camp base. Helicopter use was limited to mob and demob operations. Poor weather hampered work during the program.

Samples were shipped to TSL laboratories in Saskatoon, Saskatchewan, where Au geochemistry and 30 element ICP analyses were completed. Samples were crushed to -80mesh, then dried and digested in aqua-regia solution. Samples which returned high grade geochemical values were subsequently fire assayed.

DISCUSSION OF RESULTS

Results of the 1992 program were extremely encouraging. Two separate areas of significant mineralization, as well as a prominent geochemical anomaly were located as a result of fieldwork carried out.

The first mineralized zone, named the "Gunsight Showing" is located at elevation 1630m, 200m west of a 150m x 250m long lake. Mineralization consists of stringers of argentiferous galena with minor pyrite and sphalerite within a milky-white quartz vein of variable thickness from 20cm to 1.0m in width. Accessory minerals include calcite and orthoclase feldspar. Drusy textures are common throughout. Galena occurs as irregular boxwork veining and as fine disseminated euhedral crystals. The structure is hosted by an autobrecciated hornblende granodiorite related to the Cassiar Batholith, and is oriented 120/90. It is exposed for a distance of 50m, where it disappears beneath snow to the northwest and beneath talus cover to the southeast. The "Gunsight" title was applied to the showing in reference to its recessive-weathering nature and the near-perfect alignment of erosional remnants along the surface trace of the vein. Six samples were taken of vein material (TRNR24-26, TRNR28-30), all which returned high-grade silver and lead values, with significant associated gold, copper, and zinc concentrations indicated. The best samples recovered were TRNR24 (.03 o/t Au, 112 g/t Ag, 1.47% Pb (float)), and TRNR29 (.003 o/t Au, 110g/t Ag, 3059 ppm Cu, 8.36% Pb, and 3.09% Zn, over 20cm).

The second area of significant mineralization was located 400m upslope (south) of the camp area, and consisted of chalcopyrite-rich float boulders at the base of a 200-300m high escarpment. Numerous boulders were located, but the exact source was not determined. Technical-climbing geologists will likely be required to map the area above the float boulders. The best sample taken of this material (RRNR3) returned values of 27 g/t Ag and 2.79% Cu, with anomalous Au and Zn.

In an area downstream from the location of float boulders mentioned above, a prominent stream sediment geochemical anomaly was delineated. Elevated values of Au, Ag, As, Ba, Cu, Ni, Pb, Ti, and Zn were returned from samples MRNS 1-7, covering a downstream distance of some 900m. This trend also serves to suggest that significant polymetallic mineralization may exist in an area above the 1992 camp location.

CONCLUSION and RECOMMENDATIONS

The summer, 1992 program on the RN claims, owned by Golden Marlin Resources, was successful in locating mineralization in two separate locations on the property. The first, the "Gunsight Showing", consists of an intrusive-hosted gold, silver, copper, lead, and zinc- bearing quartz-vein structure. The second is an area of copper and silver-enriched boulders within a steep, contained glacial cirgue.

Due to the cursory nature of the 1992 program and poor weather during the course of work, no detailed mapping was carried out on either the showings areas, nor the property in general. It is evident, however, the property is primarily underlain by intermediate-to mafic material of the Cassiar Batholith.

The property clearly warrants further study. Detailed mapping and sampling should be carried out in the area of the "Gunsight Showing", as well as soil geochemical and geophysical (EM) surveys carried out to test the possibility of further mineralized structures located parallel to or as offshoots of the exposed structure. Further prospecting should be carried out in the area above the 1992 camp location, in order to locate the source of copper and silver- mineralized boulders discovered, and to pinpoint the source(s) of the stream sediment geochemical anomaly indicated. Property-scale mapping should be completed in order to more accurately define the boundaries of Cassiar Batholith intrusive material.

A thirty-day, helicopter-supported program is proposed to facilitate such work, with an approximate budget outlined below:

PROPOSED BUDGET-RN PROGRAM

Pre-Field	
	\$ 3,000.00
Personnel	
Geologist/Supervisor: 30 days x \$350.00/day	10,500.00
Assistant (1): 30 days x \$225.00/day	6,750.00
Assistant (2): 30 days x \$225.00/day	6,750.00
Equipment Rental	
4WD Vehicle: 1.0 Mo. x \$1500/Mo	1,500.00
Mileage:	800.00
Fuel:	500.00
EM-16 Rental: 30 days x \$30.00/day	900.00
Camp Equipment:	1,000.00
Miscellaneous:	500.00
Helicopter and Fuel	
15 Hours x \$800/Hr (including fuel):	12.000.00

Analytical	
Rock: 200 samples x \$25/sample:	
Soil: 300 samples x \$20/sample:	6,000.00
Meals and Accommodation	
• • • • • • • • • • • • • • • • • • • •	\$2,500.00
Supplies	
• • • • • • • • • • • • • • • • • • • •	2,500.00
Miscellaneous	
· · · · · · · · · · · · · · · · · · ·	2,000.00
Report and Reproduction	
• • • • • • • • • • • • • • • • • • • •	3,000.00
Sub-Total: \$	67 200 00
	02,200.00
10% Contingency:	6,200.00
	<u> </u>
Sub-Total: \$	68,400.00
Management Fees (10%):	6,800.00

Grand-Total: \$ 75,200.00

9

REFERENCES

- Cavey, G. and Chapman, J.(1991): Report on the Nizi Project for Gold Giant Minerals Inc.
- Gabrielese, H. (1963): GSC Memoir 319; McDame Map Area, Cassiar District, British Columbia.
- Newson, N.R. (1992): Internal Report on RN claims (Nizi Project), for Golden Marlin Resources Inc.
- BC MMPR Assessment Reports #2789, 3404, 4096, 7813, 11154, 12,181, 17334.

CERTIFICATE OF QUALIFICATION

I Timothy J. Termuende, of 2720 - 17th St. S., Cranbrook, British Columbia hereby certify that:

- I am a consulting geologist with Toklat Resources Inc. of Cranbrook, British Columbia,
- I am a member in good standing of the Association of Professional Engineers, Geoscientists and Geophysicists of British Columbia (#19201)
- I am a graduate of the University of British Columbia at Vancouver, BC, having received a B.Sc. in Geological Sciences in 1987,
- I have practised my profession continuously since 1987, and have had 15 years of geological fieldwork experience.
- 5) I presently own 3000 shares of Golden Marlin Resources. I do not expect to receive any further interest (direct, indirect, or contingent) in the property described herein, nor in the securities of Golden Marlin Resources Inc. in respect of services rendered in the preparation of this report.

Dated at Cranbrook, BC this 15th day of June, 1993.

T.J. Termaende, P.Geo.

APPENDIX I

Statement of Expenditures

STATEMENT OF EXPENDITURES

The following expenses were incurred on the RN Claim Group as defined in this report for the purposes of mineral exploration from August 4th to August 12th, 1992.

PERSONNEL
T. Termuende, P.Geo. 9.0 days x \$350.00 \$2,700.00
R. Newson P.Geol. 10.0 days x \$450.00 4,500.00
M. Betker, Assistant: 9.0 days x \$225.00 2,025.00
EQUIPMENT RENTAL
400.00 400.00
Mileage: (8414km x \$.20/km)
Camp Gear, Radio Equipment:
ANALYTICAL
HELICOPTER AND FUEL
(Vancouver Island Helicopter)
MEALS/ ACCOMMODATIONS
580.25
MISCELLANEOUS
Fuel
Field Supplies: 27.0 man-days x \$20.00/day 540.00
Photos
Grocery
Shipping
Miscellaneous 53.19
DRAFTING AND REPORT REPRODUCTION
T. Termuende, 4.0 days x \$350.00/day 1,400.00
Drafting Charges: 6.0 hours x \$25.00/hour 150.00
Materials
Reproduction
-

Total: \$20,697.35

APPENDIX II

Analytical Results

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Golden Marlin Resources #300 - 133 - 3rd Ave. North Saskatoon, Sask. S7K 2H4	REPORT No. S4774

INVOICE #: 20030 P.O.:

SAMPLE(S) OF Pulps

R. Newson Project: NIZI

	As १	Cu %	Pb ¥	Zn ¥
RRNR-1 RRNR-3	2.55	2.79	1 477	
TRNR-24 TRNR-25 TRNR-26	.78		1.47 1.16	
trnr-29 trnr-30			8.36 1.10	3.09

COPIES TO: R. Newson INVOICE TO: Golden Marlin - Saskatoon

Sep 09/92

SIGNED _____ Ren

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

Page 1 of 1

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 30(306) 931-1033 FAX: (306) 242-4717

i

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Golden Marlin Resources 300 - 133 - 3rd Ave. North Saskatoon, Sask. S7K 2H4	REPORT No. S4617

INVOICE #: 19881 P.O.:

SAMPLE(S) OF ROCK

R. Newson NIZI

	Au ppb
TRWR-11	<5
TRWR-13	<5
TRWR-19	<5
TRWR-20	<5
RRNR-1	75
RRNR-2	<5
RRNR-3	35
RRNR-4	<5
RRNR-5	15
TRNR-21	<5
TRNR-22	<5
TRNR-23	<5
TRNR-35	<5
TRNR-36	<5
TRNR-37	20
MRWR-013	<5
TRNR-31	15

COPIES TO: R. Newson, INVOICE TO: Golden Marlin - Saskatoon

Aug 21/92

SIGNED ____

Pernie

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

Page 2 of 2

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

i

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Golden Marlin Resources 300 - 133 - 3rd Ave. North Saskatoon, Sask. S7K 2H4	REPORT No. S4618
SAMPLE(S) OF	Soils	INVOICE #: 19888 P.O.:

R. Newson NIZI

	Au ppb
MRWS-10	<5
MRWS-11	<5
MRWS-12	<5
RRNS1	25
RRNS2	20
RRNS3	15
RRNS4	30
RRNS5	10
RRNS6	<5
RRNS7	<5
RRNS8	35
RRNS9	10
RRNS10	10
TRNS32	5
TRNS33	<5
TRNS34	<5
TRNS38	<5
MRNS-1	20
MRNS-2	15
MRNS-3	5
COPIES TO	R. Newson
INVOICE TO	: Golden Mar
Aug. 24/02	

Marlin - Saskatoon

Aug 24/92

SIGNED _

Bunie

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

Page 2 of 4

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 🙆 (306) 931-1033 FAX: (306) 242-4717

ł

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Golden Marlin Resources 300 - 133 - 3rd Ave. North Saskatoon, Sask. S7K 2H4	REPORT No. S4618]
SAMPLE(S) OF S	oils	INVOICE #: 19888 P.O.:	
	R. Newson NIZI		
	Au ppb		

MRNS-4		<5
MRNS-5		<5
MRNS-6		<5
MRNS-7		<5
MRNS-8		<5
MRNS-9		5
MRNS-10)	<5
MRNS-11	L	<5
MRNS-12	2	5
MRNS-13	3	<5
MRNS-14	1	<5
MRNS-15	5	<5
MRNS-1	5	<5
MRNS-1	7	<5
MRNS-18	3	<5
MRNS-19	9	5
MRNS-20)	5
MRNS-2	L	10
MRNS-22	2	5
MRNS-23	3	<5
COPIES	TO:	R.
INVOICE	TO:	Go

Newson lden Marlin - Saskatoon

Aug 24/92

SIGNED

Bennie For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

ŕ

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Golden Marlin Resources 300 - 133 - 3rd Ave. North Saskatoon, Sask. S7K 2H4	REPORT No. S4618
SAMPLE(S) OF	Soils	INVOICE #: 19888 P.O.:

SAMPLE(S) OF Soils

> R. Newson NIZI

Au ppb <5 MRNS-24 MRNS-25 <5

R. Newson COPIES TO: Golden Marlin - Saskatoon INVOICE TO:

Aug 24/92

SIGNED

Berne

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report,

4 of 4 Page

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

i

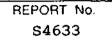
CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Golden Mari 300 - 133 Saskatoon, S7K 2H4	- 3rd Ave.				REPORT No. S4620
SAMPLE(S) OF RC	ock				NVOICE # .O.:	: 19877
	R. Newson NIZI					
	Au ozt	Au ozt	Au Ozt	Wt g	Wt g	Wt g
	+100	-100	Total	+100	-100	Total
TRNR-24	_	.041	.039	71	374	445
TRNR-25		.019	.017	83	452	535
TRNR-26		<.001	<.001	55	366	421
TRNR-27		<.001	<.001	55	588	643
TRNR-28		.012	.011	73	642	715
TRNR-29	.003	.009	.009	26	371	397
TRNR-30	.004	.005	.005	42	706	748

COPIES TO: R. Newson INVOICE TO: Golden Marlin - Saskatoon

Aug 21/92

SIGNED .


Berni

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report. Page 1 of 1

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

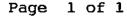
SAMPLE(S) FROM Golden Marlin Resources #300 - 133 - 3rd Ave. North Saskatoon, Sask. S7K 2H4

INVOICE #: 19889 P.O.: PN:Nizi

SAMPLE(S) OF Stream Sediment

R. Newson Project: Nizi

> Au ppb


TRNS-3915TRNS-4035TRNS-4110

COPIES TO: R. Newson INVOICE TO: Golden Marlin - Saskatoon

Aug 24/92

SIGNED _

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

Remie (

Laboratoires TSL/ASSAYERS Laboratories 780 AV. DU CUIVRE C.P. 665 ROUYN-NORANDA QUEBEC J9X 5C6

GOLDEN MARLIN RESOURCES

SASKATOON, SASK.

ATTN: R. NEWSON

S4617

PROJ:NIZI

PHONE #: 819-797-4653 FAR #: 819-797-4501 I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

REPORT No.	:	T1901
Page No.	:	1 of 2
File No.	:	DD
Date	:	SEP-01-1992

SAMPLE #	Ag Al As		Be Bi Ca	cđ	co Cr	Cu Po	Mg Mn	Mo Na	Ni P	Pb S	b Sc	Sn	Sr Ti	v V	Y Żn	Zr
	рра Х рры		ppm ppm %		ppm ppm	ppm %		ppm %	nee aee	ppm p	:		ppm ppm	ppm ppm	ppm ppm	ppm 🦉
							· · · · · · · · · · · · · · · · · · ·							72 4 50	4 71	.
RRWR-1	······································	< 10 110			23 22	59 2.7			38:1500	50 <		< 10	26 790	72 (10	8 / 57	3 3
RRWR-2	107 102 1 M C M C M C M C M C M C M C M C M C M	< 10 120	<1 < 5 0.8		16 110	59 2.6			56 1100			< 10	27 1000	110 (10		- A 1221
RRWR-3		< 10 120	< 1 < 5 0.1	••	11 72	28 7.9		< 20.03	21 200			< 10	22 1200	48 < 10	4 🔬 64	5
RRWR-4	<1 0.91 € 5		< 1 < 5 0.4	- MAR 1	9 82	49 1.7		< 2 0.02	38 730	22 4		< 10	11 630	39 (10	3 43	1
RRWR-5	······································	< 10 16	< 1 (1) (5 0.2		2 61	39*~275 84876	0.58 630	< 2<0.01	5 940	130 〈	5 (1	4 10	5.0 63	34 < 10	2 × 57.	2
RRWR-6	₹ 1 0.77 € 5	< 10 120	<1 < 5 0.0	5 < 1	10 56	31 1.6	0.35 1100	< 240.01	22 190	8 <	5 < 1	< 10	3 8	12 (10	9 35	< 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RRWR-7	< 1 0.14 260	< 10 8	< 1 . 5 0.0	1 4 1	3 57	66 2.7	0.02 110	< 2<0.01	14 200	19	45 1	< 10	5 6	12 < 10	2 32	2 🦿
RRWR-8	c 1 0.76 🤅 5	(10 27	(1 × 5 0.3	6 🔆 K 1	11 100	89 2.5	0.60 230	< 2 0.03	46 1000	15 c	5 2	< 10	7 520	62 < 10	8 33	3
RRWR-9	< 1 0.39 < 5	< 10 ³⁷	< 1 < 5 0.0	7 1 2	3 65	38 1.8	0.18 180	8 0.02	7 430	31 🔇	5 2	< 10	9 550	27 < 10	3_ 15	6
RRWR-10	< 1 0.29 25	< 10 10	< 1 < 5 0.4	9 < 1	14 75	130 3.1	0.19 140	10 0.02	41 1700	19 (5 2	10	5 130	71 < 10	7 34	6
RRWR-11	× 1 1.6 × 5	< 10 16	<1 < 5 1.	3 . 4 . 5	14 160	50 3.1	0.88 590	< 2 0.02	40 1200	6 (5 4	< 10	19 420	66 < 10	6 48	4
RRWR-12	2.220 D.7		< 1 < 5 0.0		4 77		0.15 150	< 2<0.01	7 210			< 10	3 19	8 < 10	1 8	400 8
TRWR-1	AND AND THE PARTY AND		(1)(50.1		4 55		0.13 47	< 2 0.03	4 430	9 (< 10	12 140	13 < 10	2 7	2
TRWR-2	2007 C 100 C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<1 < 5 1.		21 12		17. j	< 2 0.12	15 3000			10	62 840	83 < 10	10 50	3
TRWR-3	a frank a start general start st	· · · · · · · · · · · · · · · · · · ·	< 1 < 5 0.7		50 36			< 2 0.02	23 330	46 <		< 10	6 520	21 4 10	2 59 	3
TRWR-4	61 2.6 5	(10 27	< 1 < 5 0.8	3` ₹1	47 260	170 4.5	1.2 570	< 2 0.06	150 580	8 (5 4	< 10	18 820	78 4 10	2 94	5
TRWR-5	€ 1 1.9 × 5	<u>//</u>	<1.<51.		12 89		0.45 170		28 610	6 (× 10	7 680	55 (10	2 54	5
TRWR-6	A3346175 765 12 1	· · · · ·	(1 (50.4		Z4 73		0.33 120		32 390			10	20 640	20 < 10	1 21	1
TRWR-7		1 100.00	(1 (50.4				0.48 150		53 1200	8 (< 10	19 670	83 ¢ 10	3 130	4
TRUR-8	< 1 0.15 < 5	1 1 1 1 1 M	< 1 < 5 0.0		2 82	11 0.44	1	< 2 0.01	6 26	6 6		< 10	Z 150	3 (10	1 8	< 1
		21 - 24 - 2 7 - 2	n Alto Antij	4				£.								
TRWR-11	< 1 0.98 (5		(1 (50.5		6 110	10 1.6			29 180	22 (i.¢10	7 1000	33 × 10	4 32	2
TRWR-13	₹ 1 1.5 < S	< 10 5	(1ેુર્5્ડ1,	4/ <u>}</u> 1	44 54	590 4.7	0.42 320	< 2 0.02	86 1300	6 (54	< 10	40 670	51 < 10	7.36	10
TRWR-19	_ X 1 1 1 		< 1 ² < 5 1.	0 < 1	35 18	60 3.6		< 2 0.06	39 1300			< 10	58 850	64 < 10	5 27	3.74
rwr-20	C1 0.41 (5		<1 [.] 10 1	- · · · · · · · · · · · · · · · · · · ·	4 14	7 1.1		<i>i</i> .	11 290			i < 10	100 63	< 1 < 10	6 13	1
RENR-1	12 0.092999	< 10 25	<1 <5 5.	1 📢 1	6 27	11 5.1	0.77 3900	< 2<0.01	5 22	130 4	10 (1	< 10	85 8	2 < 10	5 930	5
RNR-2	< 1 0.34 120	< 10 71	(1 10 1	58	5 16	4 3.5	0.87 2000	(2(0.01	14 2	40	10 3	< 10	110 7	12 < 10	11 350	3
RRNR-3	27 1.6 10	< 10 15	(1 (50.5	1 < 1	36 44>	9999 5.3	0.64 930	(2.0.05	24 610	5.0	5 6	< 10	11 2000	68 < 10	7 660	8
RRNR-4	4 1 0.22 40	< 10 45	(1 10 9.	3 < 1	6 16	140 4.1	1.3 1500	¢ 2×0.01	6 140	6		C 10	73 4	18 (10	10 19	7
RRNR-5		< 10 85	(1 (5 7.	7 <u>m</u>	10 24		0.47 2200		25 200	-		1.4.10	36 4	23 < 10	10 750	8
TRNR-21	2		(1 (5 1.		22 35		1.3 1900	N (25 710			× 10	66 550	220 < 10	16 88	17
FRNR-22	× 1 1.4 45	< 10 ⁷⁸	(1)(5 1.	3 < 1	7 27	11 2.9	0.59 640	< 2 0-03	5 410	2 <	5 5	10	31 39	38,31 10	10 53	5
CRNR-23	<1 1.7 C5	AMA 177. 673	<1 < 5 0.8	·	14 190		1.1 390		32 410	2 (e 10	14 760	69 < 10	7 40	6
FRNR-35	W · · · · · · · · · · · · · · · · · · ·	(10 6	< 1 < 5 0.8	- 1 - VI	3 46	160 3.5	0.29 200	< 2 0 ₄ 01	6 680	< 1 <		10	4 590	14 (10	2 8	11
TRNR-36	(1 0.47 K 5	W	<1 < 5 0.2		6 57	· · ·	0.18 61	171.XA #1	17 420			< 10	15 300	26 < 10	2 6	2 1
CRNR-37	1 0.12 110	9877 VL+2/2/	(1 (50.9		4 4 41		0.03 500	2(0.01	4 130	5 0	-	¢ 10	12 9	8 < 10	5 26	2
	ive the second	A	82 ° X2	1.17				÷							÷. – –	

N .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 it 95 C for 90 min and diluted to 10 ml with DI H20 This method is partial for many oxide materials

SIGNED : Bernie Cum

m1001 780 AV. DU CUIVRE C.P. 665 ROUYN-NORANDA QUEBEC J9X 5C6 GOLDEN MARLIN RESOURCES PHONE #: 819-797-4653 FAX #: 819-797-4501 SASKATOON, SASK. ATTN: R. NEWSON

\$4617

PROJ:NIZI

.

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

REPORT NO.	:	T1901
Page No.	:	2 of 2
File No.	:	DD
Date	:	SEP-01-1992

SAMPLE #	Ag ppa	Al As X pp	B R Př	Ba m ppm	Be ppm	Bi ppm	Ca %	Cđ PPm	Co ppm	Cr ppm	Cu ppm	Fe X	Mg X	Mn ppm	Mo Na ppm %	N P	e ti Para age	Pb ppm	Sb ppm	Sc PP ^m	Sn ppm	Sr ppm	T1 ppa	V ppm	₩ ₩	Y In PPD PPS	Zr ppm	
SAMPLE #	ppa c 1	Al As 3 pp 1.7 < 0.11 33	· O そうしょう しょうしょう うちなましい さい。 外通 時間時間に開始の影響者を開始した。 シー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				D. 63		93.		17	Pe 2.3 1.6			Mo Na Ppm X (2 0.0 (2 0.0 (2 0.0) (2 0.0)) (2 0.0))) (2 0.0)) (2 0.0)) (2 0.0)) (2 0.0))) (2 0.0))) (2 0.0))) (2 0.0))) (2	- 611年の人間、小学校教育の登録を招きたい。 パー・ロート アイ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ii P pm ppm 26 610 5 150 	4- 870	Sb ppm		Sn ppm (10 (10 (10 (10)) (10)) (10) (10) (10)			364 (2000) 35 (2000) 36 (2000)		Y 2n ppm pp 9 54 5 1200	2r ppm 2 2	- そうない かいかい アイ・ディー・アイ・ステム・アイス 1993年 - アイ・アイ・アイ・アイ・アイ・アイ・アイス ないない ほうかい かいかい アイ・アイ・アイ・アイ・アイ
				(1) A set of the se					and the second				and a second			and the first set set.			1. *	:						7.		

\ .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 ht 95 C for 90 min and diluted to 10 ml with DI H20 this method is partial for many oxide materials

Renne SIGNED :

GOLDEN MARLIN RESOURCES	780 AV. DU CUIVRE C.P. 665 ROUYN-NORANDA QUEBEC J9X 5C6	REPORT NO. : T1902
SASKATOON SASK	PHONE #: 819-797-4653 FAX #: 819-797-4501	Page No. : 1 of 2
ATTN: R. NEWSON		File No. : AT28MB
S4618	I.C.A.P. PLASMA SCAN	Date : AUG-29-1992

Aqua-Regia Digestion

ъ	 Rea	i a	Die	rest	- 3	or

Page No.	I	1 of 2
File No.	:	AT28MB
Date	:	AUG-29-199

TI v ... **W** Y Zn Zr SAMPLE # Åα Al As 8 Ca Cđ. Co Cr Cu Fe Mg Mn Mo Хa Ni P Pb Sb Sc Sn Sr Ba 8e Bi * ppm ppm ppm ppm ppm ppm ppm ррв · ppa pp≡ ppæ ppm ppm ж ppn PPE ppm *6 ₽₽¤ ppm ppm ppm 3 8 ppm ppm ppm **PPB ppm** 77 970 44 < 10 9 5 26 22 4 < 10 18 RRWS-1 < 1 1.2 10 < 10 71 < 5 0.58 < 1 8 76 26 2.2 0.49 430 (2.0.04) 480 · < 5 < 1 · 29 470 36 < 5 4 < 10 Z4 730 43 < 10 12 84 4 90 63 28 2.4 0.48 530 < 2 0.03 RRWS-2 < 1 1.3 180 < 10 93 < 1 < 5 0.60 < 1 120 (10 22 170 11 660 RRWS-3 < 18 < 5 30 130 97 -5.1 1.2 1200 < 2.0.02 69 880 21 < 5 10 < 10 30 ² < 1 3.0³ < 5 < 10 110 1.0 < 1 7 23 420 12 < 5 3 (10 16 850 40 č 10 8 71 5 TRWS-9 ¢ 1 1.2 35 < 10 61 (1) 6 5 0.52 < 1 68 24 2.0 0.46 420 < 210.04 95 18 360 29 € 10 10 3 1.9 0.39 16 20 × 5 2 < 10 TRWS-10 < 1 0.90 ··· 10 < 10. 88 < 1 C 5 0.34 < 1 6 46 17 430 < 2 0.03 340 52 < 10 15 140 34 960 TRWS-12 1.9 10 (10 180 < 1 K 5 0.74 11 ... 69 29 2.8 0.60 730 < 2 0.03 32 530 20 × 5 4 . < 10 4 < 1 62 < 1Ö 12 98 6 540 14 ₹ 5 5 < 10 29-1300 TRWS-14 1 1.8 15 (10 70 < 14 < 5 0.79 < 1 15 95 44 2.8 0.67 580 < 2:0.05 39 21 10 3 < 10 14 750 34 < 10 7 58 4 TRWS-15 15 < 10 47 C 5 0.41 6 45 20 1.7 0.41 350 < 2 0.02 350 < 5 (1 0.98 < 1. ·< 1 . 9. 130 z 2.2 0.38 18 500 39 (10 12 TRWS-16 15 < 10 79 (S 0.46 9 68 74 830 < 2 0.03 22 420 22 € 5 3 < 10 1.1 1.3 2 < 1 77 25 420 < 2 0.04 28 480 11 < 5 4 < 10 20 . 990 46 (10 9 70 5 TRWS-17 <1 1.3 ିC 5 € 10 60 < 1 × 5 0.58 < 1 8 2.2 0.49 9 97 3 < 5 3 < 10 17 660 34 (10 TRWS-18 <1 1.0 10 30 66 <1 < 5 0.48 < 1 6 93 22 1.9 0.39 490 < 2 0.04 22 380 15 520 73 € 10 16 180 5 MRWS-1 5 < 10 < 5 21 190 47 3.7 1.0 2300 < 2 0.02 120 770 10 < 5 4 (10 56 <.1 1.8 300 < 1 1.5 1 rinws-2 23 80 890 5 5 4 < 10 25 810 62 < 10 8 130 5 €1 1.9 15 ¢ 10 160 < 1 3 < 5 0.73 < 1 21 110 3.5 1.2 1600 < 2 0.02 HRWS-3 ¢1 1.7 5 < 10 160 < 1 < 5 0.66 20 120 27 3.5 1.0 1700 < 2 0.02 73 750 9 < 5 4 < 10 25., 650 60 < 10 7 120 4 < 1 1.0 1400 27 720 67 (10 9 130 MRWS-4 1 1.9 < 5 < 10 150 19 130 30 3.4 (2 0.03 70 730 9 < 5 5 C 10 4 < 1⁹ < 50.69 < 1 MRWS-5 < 1 1.7 < 10 180 18 130 26 3.3 0.87 1500 < 2 0.03 70 630 7 < 5 4 < 10 21 710 63 < 10 7 120 10 < 5 0.53 < 1 e 1 450 52 (10 190 78 970 < 5 3 < 10 51 14 4 HRWS-6 <1 1.8 10 10 230 < 1. < 5 1.6 < 1 16 120 56 2.8 0.83 900 < 2 0.02 11 19 860 < 2 0.02 73 620 12 5 < 10 35 830 68 < 10 10 120 5 MRWS-7 C 1 2.0 5 20 160 < 5 0.79 < 1 170 53 / 3.3 1.0 < 5 ¢ 1 8 100 HRWS-8 🥂 C 1 1.8 150 3.1 0.89 890 < 2 0.02 64 580 6 े< 5 5 6 10 26 800 66 < 10 6 10 20 130 < 5 0.72 4 1 16 43 < 1 770 69 < 10 10 1 90 5 MRWS-9 < 1 1.9 15 20 150 < 1 < 5 0.78 < 1 17 .150 51 3.2 0.89 920 < 2 0.02 70 670 9 · < 5 5 < 10 30 5 < 10 28 67 < 10 8. 120 6 < 2.0.03 880 MRWS-10 < 1 1.8. i (5 10 120 < 1 (\$ 0.84 <.1 16 140 38 3.0 0.86 880 59 640 6 < 5 120 39 3.0 0.85 900 (2 0:03 55 650 5 ° (5 5 < 1Q 24 790 65 < 10 8 83 6 MRWS-11 1.1 1.7 4 5 20 120 < 1 < 5 0.77 12 14 (2 0.01 12 110 MRWS-12 < 5 1.0 26 43 3.2 1.1 920 50 1300 <1. < 5 4 < 10 24 940 54 < 10 4 1.7% < 5 < 10 110 < 1 < I 46 1.1 44 < 20 23 270 6 RRNS1 : 1 1.6 1700 < 10 280 1 (\$ 0.53 < 1 16 27 33 4.3 0.45 1800 < 2:0.01 12 800 46. 25 9.<.10 16 130 1.1 1200 81 14 < 10 33 280 91 < 10 17 170 10 RRNS2 85 < 10 190 < 1 ... (5 < 1 23. 130 5Z 4.0 < 2 0.02 620 33 < 5 1.2 2.9 1.1 9 RRNS3 1 1 40 < 10 180 1 18 110 4.2 0.84 940 (2 0.02 44 810 12. (5 12 < 10 42 360 110 < 10 17 110 3.0 <1 < 5 0.91 39 4.1 0.86 950 < 2 0.02 70 690 8 < 5 10 <: 10 41 700 110 < 10 18 95 10 K 1 25 (10 200 18 120 45 RRNS4 2.9 3 0.83 1 < 1 ⁰ 26 23 9 39. 77: < 10 100 2RNS5 ¢ 1 2.2 35 < 10 200 < 1 C 5 0.96 \$ 1 15 100 49 3.7 0.80 730 < 2°0.03 64 730 14 10 12 (10 540 25 76 < 10 7 59 4 10 110 3.0 0.81 410 < 2 0.03 55 490 11 - 4 5 5 < 10 ·850 RENS6 ê 1 2.0 35 < 10 150 < 1 < 5 0.52 < 118 62 9 < 2 0,03 62 730 3 K 5 10 < 10 23 1000 110 < 10 14 RRNS7 (1 2.4 Č5. < 10 120 < 1 K 5 0.79 1.1 17 110 42 3.5 1.0 640 42 31 120 11 55 1000 12 < 5 9 < 10 490 130 1 10 RRNS8 ¢ 1 3.6 45 < 10 290 5 0.95 3 19 88 63 4.1 0.70 2500 < 2 0.02 < 1 ÷. RRNS9 25 (10 210 20 0.45 (1 36 670 33 4:6 1.3 1300 < 2 0.02 49 410 4 < 5 21 < 10 14 220 140 × 10 13 75 16 4 1 2.6 1. ٠ 99 10 3.8 0.82 1200 < 2 0.02 38 790 10 < 5 9 < 10 32 670 99 < 10 15 25 < 10 330 41 17 88 50 RNS10 < 1 3.2 1 < 5 0.67 ۲, 130 6 IRNS32 <1 2.2 ZO (10 150 < 1 < 5 0.94 × 1 13 120 21 2.7 0.82 590 < 2 0.06 31 550 2 < 5 7 < 10 30 890 64 < 10 8 2 < 5 6 < 10 28 1300 71 < 10 11 74 7 35 2.9 0.83 540 < 2 0.05 38 430 rrns33 2,5 45 < 10 120 < 1 < 5 0.89 1 1 13 87 C 1

N.5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H20 this method is partial for many oxide materials

Bernie Vi

PROJ:NIZI

SIGNED :

 GOLDEN MARLIN RESOURCES
 780 AV. DU CUIVRE C.P. 665 ROUYN-NORANDA QUEBEC J9X 5C6
 REPORT No. :
 T1902

 SASKATOON SASK
 PHONE #: 819-797-4653
 FAX #: 819-797-4501
 Page No. :
 2 of 2

 ATTN: R. NEWSON
 I.C.A.P. PLASMA SCAN
 File No. :
 AT28MB

 S4618
 I.C.A.P. PLASMA SCAN
 Date :
 AUG-29-1992

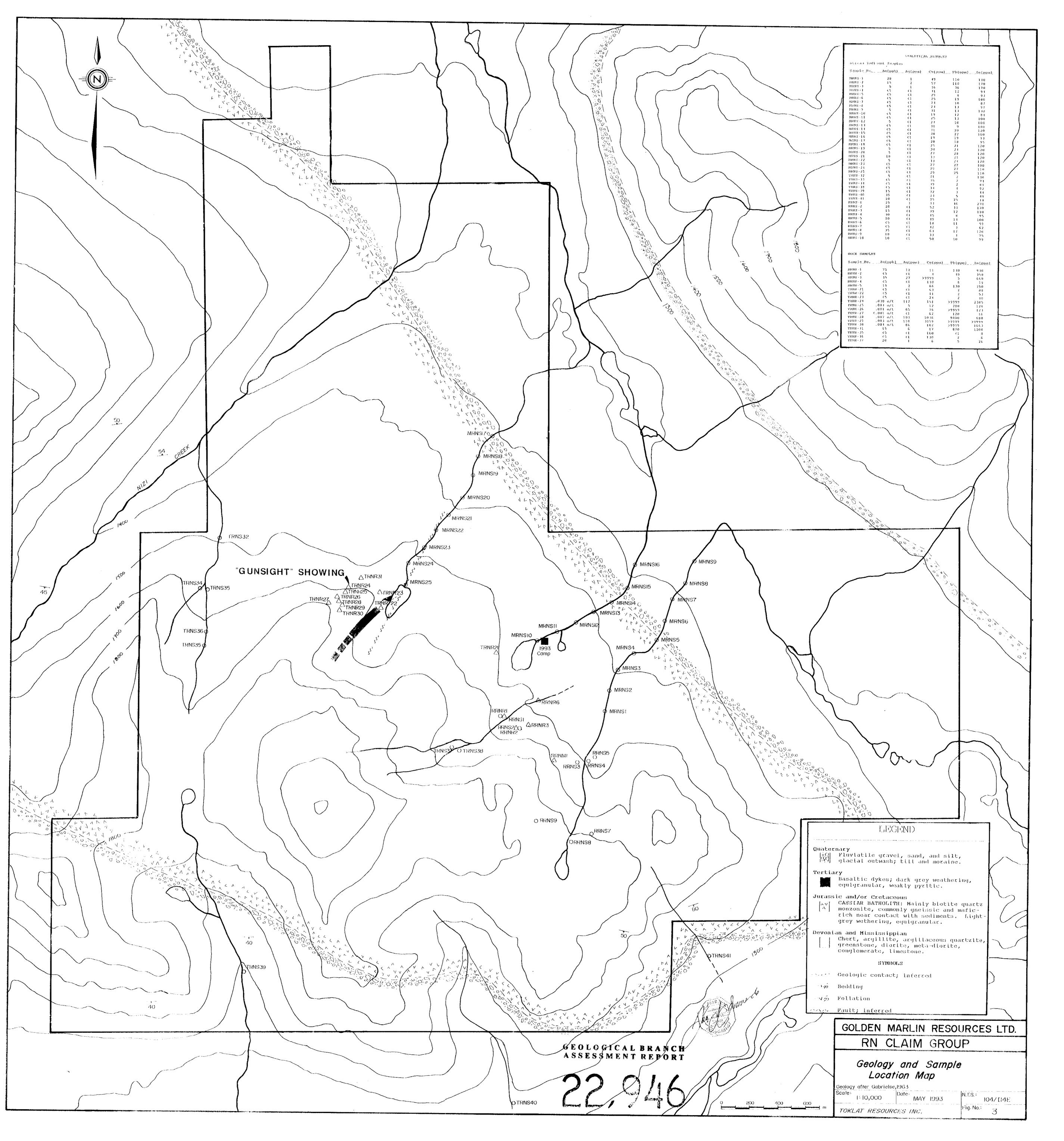
 PROJ:NIZI
 Aqua-Regia Digestion
 Date :
 AUG-29-1992

SAMPLE #	Åg.	Al S		B Ba	Be	B1 -	ca 🗄 cd	Co	Cr	Cีน่₀	Fe :	Mg	Mn	 Mo Na	NI	 P	РЪ	Sb	Sc	Ŝn	Sr [:] 7:	v	w.	Y	Zn	Zr est
+	ppa	* 🔇	PPR	ppm ppm	ppm	ppm	* 200		ppm			¥.	ppn	ppm X	ppm	ppm	ppm	ppm	#99m	ppæ	pp# Pi	n pp	ш ррш	ppm	bbw	ppm
224034				7)									740				•		-		<u>े</u> ं २२ ं २२	~ ~		14	. 89	8 2 C
TRNS34 TRNS38	- <u>8</u>)* (1	2.8	1.1	< 10 130 < 10 270	< 1		0.85 < 1	15 16	91 91		3.2 C 3.8 C		740 890	< 2 0.03 < 2 0.03	38 38	470 790	4	< 5		< 10 < 10	32 130 35 130		2 (10 8 (10	21	92	11
MRNS-1	ំរាំ	717	N. NY 114	< 10 2/0 < 10 360	-	-	1.1 (1	16	110	· · · ·	1.1).60 3		(2 0.03		890	110	रें5		< 10	42 47		3 6 10		140	7
MRNS-2		21.1.4		< 10 ³⁶⁰ 260			1.5 < 1	13	210	1.4	7 i ").47		< 2 0.02		1700	110	< 5		< 10	54 32	-	2 < 10		. 170	10
MRNS-3	1			10 310	_		1.5. < 1	13	140			.49		< 2:0.02		1200	36	< 5		< 10	51 32		8 4 10		170	5
	Ē	.			••	`?		±.,											-		J. J.		•••••	-	83.A	
MRNS-4	in (1	Z.5	300	< 10 ²⁰⁰	< 1	< 5	1.0 < 1	19	170	31	3.3	1.1 :	1100	< 2 0.03	120	780	12	5	7.	< 10	33 8	Q 7	9 < 10	16	94	6
MRNS-5	(1	2.3	200	< 10 190	< 1	5	0.97 < 1	17	140	29	3.2	1.2	800	(20.03	130	650	8	5	7	k 10	34 110	0 7	5 < 10	13	93	5
MRNS-6	<u> </u>	2.0	45	< 10 ²⁰⁰	< 1	< 5	0.83 (1	19	130	25	3:2 0).87 3	1400	< 2_0,04	71	660	19	(< 5	7	< 10	33 104	07	9 < 10	11	100	5
MRNS-7	€_1	1.9	45	< 10 170	< 1	< 5	0.77 < 1	19	120	24	3.1 0	.84 🔅	1400	< 2 0.04	67	620	10	्⊀्5	7	< 10	29 110	0 7	5 < 10	9	87	5 200 -
MRNS-8	4 1	2.1	50	< 10; 190	(1)	< 5	0.78 < 1	Z1	130	24 j	3.3 0	.88	1700	< 2 0.04	78	620	13	,5	୍ ର	< 10	30 9	80	1 < 10	11	97	5
HRNS-9	4 1	2.5	5 65	< 10 240	· 1	7. Se	0.94 < 1	15	120	31	3 5 0	.83 :	1000	< 2 0.03	85	730	13	5	e.	č 10	38 78	~ ^ a	4 4 10	17	130	5 - 4-1 6
MRNS-10		2.0	•	< 10 160			0.72 (1	18	130).85		< 2 0.05	62	560	12	· < 5		< 10	30 10		6 (10	- 10	84	5
MRNS-11	2 I	2.3	· · .	< 10 180			0.75 (1		120		•			< 2 0.04	72	600	13	5		¢ 10	31 80		1 2 10	13	100	6
MRNS-12	< 1	2.1	1 A A	< 10 210			0.79 201		120			.85		< 2:0,03	84	630	10	λ.5		< 10	31 7	•	6 4 10	13	100	5
MRNS-13	ં તેવે	2.Z		· . · · ·		5. C	0.85 (1		100). 81 ^{°°}		< 2 0.03		730		¢ 5	· · · ·	č 10	33 90		ο (10	16	100	6
	in a chuireann an tha chuir	×4. 8					at av	×.				÷.				1 14	×**		Ŷ			4				
MRNS-14	ें < 1	2.2	20	(10 190	< 1	< 5	1.0 1	13	91	31	3.2 0	. 78	620	* 2 0.03	38	600	20	< 5	*	< 10	36 80	0 7	7 4 10	15	120	6
MRNS-15	< 1	2.2	50	< 10 220	< 1	< 5	1.1 1	14	73	38	3.1 0	. 69	840	< 2 0.03	40	610	22	< 5	7	< 10	36 89	0 7	6 (10	17	160	6
WRNS-16	×.1	1.9	50	< 10 <u>1</u> 70	< 1	< 5	0.73 < 1	14	110	19	3.1 0	.78	960	< 2 0.04	31	520	19	< 5	7	< 10	29 8	0 7	2 < 10	9	93	5
MRNS-17	e (1	1.8		< 10 180	_	·	0.75 4 1	14	73).69]		< 2 0.03	29	540	18	(5		¢ 10	Z8 70	-	9 < 10	9	95	4 <u>1</u>
MRNS-18		2.3	70	< 10 260	् 1े	< 5	0.86 < 1	16		25 (3,5 0	.81	1100	< 2 0.03	38 ្	640	21	₹5	9 :.	< 1Q	35 84	0 8	0 < 10	14	120	6
HRNS-19	. 1	2.3	90	c 10. 240	্র বিদ্যাল	× 5	0.88 (1	16	86	30	3.7 0	.81	1 100	< 2 0.03	40	650	24	€ 5	9 .	< 10	35 65	о а	5 ¢ 10	15	120	7
4RNS-20	1	2.5	Xel Lei eve		< 1			19	110		•	.85 1		< 2 0.03	45	610	28	< 5		(10	33 79		2 < 10	13	120	7
MRNS-21	< 1	2.6	60	10 260			1.0 < 1		120			.85 1		(2.0.04	44	690	21	< 5		< 10	44 8		4 < 10	15	120	7 -000 (1996) (1996)
HRNS-22	14 4 1	2.5	75	10 240	< 1	c 5	0.93 (1	17	130	33	3.7 0	.85 1	1200	< 2.0.04	43	660	24	(5		< 10	39 80	0 9	5 < 10	15	120	8
MRNS-23	4 2	2.4	55	(10) 200	¢ 1	< 5	0.85 < 1	16	120	27	3.6 0	.85	1400	< 2 0.05	39	640	22	5	10	< 10	36 8	0 8	4 < 10	12	100	7
			÷			:	# X M		<i>9,93</i>			1		84 W									20			
1RNS-24	(1	2.5 👌	. N. 142	(10 210	-		0.83 (1	19	120			.85,1		< 2 0.03	52	670	27	10		< 10	35 73		9 < 10	15	110	7
MRNS-25		2.3	80	10 230	< 1	< 5	0.80 (1	18	120	29	3,6 0	.82:3	1700	< 2 0.03	61	650	25	10	10	< 10	33 7	0 8	4 < 10	14	110	7
				1 1 2	à	Se A			11.1													1	-			
	18. W		×		Ä	88- 3 .								χ							11 11 11 11 11 11 11 11 11 11 11 11 11					11.0462#
	¥4.4				2		· · · · ·			÷.	. :	4) 				3						::. 				Vozista
	2X		***	W	•	1912				÷	i di la			A. 7.							217.2					
					2				· ·	1													•			
		÷	3				1. X		2014 - 10	14						•										X V VI
	1777 194 Alian 21	11 12 1	, <u>.</u> , .,					1				ų,	5. (Å.)	devis te											· .	
	##/ <u>*</u> *		\$\$\$		1				÷ ;	***	1597	÷.							0	• •		÷				
	<u>999</u> . X (<u>2</u>		<u></u>	-	57£7					:		• • •	1.1.1.1												

l .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H2O This method is partial for many oxide materials

GOLDEN MA SASKATOON SASK ATTN:R.NEWSON S4620 PROJ.:NIZI	780 AV. DU CUIVRE C.P. 665 ROUYN-NORANDA QUEBEC J9X 5C6 PHONE #: 819-797-4653 FAX #: 819-797-4501 I.C.A.P. PLASMA SCAN Aqua-Regia Digestion														Pa Fi	REPORT No. : T1903 Page No. : 1 of 1 File No. : AT28MB Date : SEP-01-1992									
SAMPLE #	A1 \$	Fe Ca X X	Mg Na % %	Ti Mn ppm ppm	P B ppm p	a Cr	Źr w ppz	Cu ppa	Ni PPM	Pb Z ppm p		V Sr PPm PPm	Co Ppa	No No	Ag ppm	Cd ppm	Be ppm	B PPB	Sb ppm	Y Ppm	Sc ppm	w PPa	As ppm	bi PP®	Sn Pp n
TRNR-24	0.23	4.00 1.0	4 0.28(0.01	15 871	146	26 9	97 5. 5 ¹² 5. 5	151	11	9999 23	85	9 24	; 7	34	112	22	< 1	10	120	- 11 - 4	Z	< 10	2965	< 5	< 10
TRNR-25	0.20	3.00 5.39	9 1.25 (0.01	6 1310	32	73 12	6 9	12	10	200 * 1	28	19 104	9		5	<1	< 1	c 10	60	7	13	(10	7615	< 5	< 10
TRNR-26	0.15	1.46 2.30	0.35(0.01	6 4962	58 1	33 10	7 . 🦪 3	76	7>	9999 1.	23	12 50	4	ं र 2	65	< 1	٢ ١	< 10	105.:	. 3	6	(10	290	€ 5	< 10
TRNR-27			0.38 0.05	2	2358 1	98 16	1 5	62	18	120	16	91 18	5	4	< 1	< 1	< 1	< 10	< 5 ৢ	19	5 .	< 10	50	< 5	< 10 j
TRNR-28	0.45	3.13 3.19	5 0.42(0.01	19 4724	150	29 20	3 11	1036	20 9	9800 6	80	40 31	16	< 2	103	10	< 1	10	510	7	17 -	(10	1085	< 5	< 10
						4								2 2 2		4			 		• •			· · · · ·	, .
TRNR-29 TRNR-30			5 0.89(0.01	7>9999 6 1678		54 7	1.2.4	3059	- i	999999999		22 99		< 2	110			< 10		12			. A	ge a de	< 10
1 KNK-3Q	0.19	1.08 1.10	5 0.19(0.01	0 1018	62 1	11 11	7 2 2	102	. ap :	9999 16	53	11 35		< 2	86	19	< 1	< 10	80	° 14. 	4	< 10	4420	9 9	< 10 (
	2014 2014						1											· `\							
				197								Alto Vi Avista	:						:			·.	1		
				2 1 P				.,	:											4		. :			
		2. Q.N.						Ż				yi ya w	-	÷				: :				:			:
	÷.							· ·	2 - 4 - 5									. ¹ 1 .					s.	a kak	
				: /							•	· · ·						·		in u invje Nerude			6		<i>r</i>
	1 1			· 	• • •	:"-			•					.'					4 2						, i
	<u>.</u>			2	• 1	х				•	:			.*		•			 				2		4 2
						: :				ेंद्र २								s. 1997						1	
		si 3∢.;													-			t, İş	.* :.	34 - 14 14 - 14 14 - 14		·· :			'n.
		2 <u>1</u> 2			і. С. р	÷													,		: 	. :			
		244	Antisky Linix	× :	¥.,	1.		6 											:	til V		÷.			
								7				. 2		2							2		• •		
						. Z		Ż		• . •						1.1.2					į.	and Alaman		·	
				1997) 1911 - 41 A. A.			1 (A. 7)					27 11 32 21										in di Artic			
	· • ·							:			•	• •									.y., : .				
								•	공품은		•		ć										:, 		
	· · · · · · · · · · · · · · · · · · ·			1 - 1.1. 1 - 1.1.,								- ¹ (*											
		· · · : :						:												·.			4	en iv Na	:
	•		s estat											:										· · `	

N .5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H20 This method is partial for many oxide materials


rsl/92

GOLDEN MARLIN RESOURCES	780 AV. DU CUIVRE C.P. 665 ROUYN-NORANDA QUEBEC J9X 5C6	REPORT No. : T1904
SASKATOON SASK	PHONE #: 819-797-4653 FAX #: 819-797-4501	Page No. : 1 of 1
ATTN: R. NEWSON		File No. : AT28MB
s4633	I.C.A.P. PLASMA SCAN	Date : AUG-29-1992
PROJ:NIZI	Aqua-Regia Digestion	

Sample #	λg ppm	Al As \$ pp	B S Ba B ppm pp C S	Be Bi M PPM PPM	Ca Cd % ppm	Co Cr ppm ppm	Cu Pe ppm %	Mg Mn % ppm	Mo Na ppa %	NI P PPm PPm	Pb Sb ppm ppm	Sc Sn ppm ppm	Sr Ti ppm ppm	V W ppm ppm	Y Zn ppm ppm	Zr ppm
TRNS-39	(<u>1</u>	1.12.27	5 < 10 8	8 < 1 < 5	0.82 < 1	12 73	32 2.5	0.84 400	< 2 0.04	37 560	3 < 5	5 < 10	31 550	59 < 10	5 44	6
fRNS-40	۲ ۲		5 < 10 10		0.54 (1	12 72	33 2.5 (ia fiai	< 2 0.02	38 550	55	5 < 10	16 640	66 < 10	6 49	4 1.0
f rns-41 					0.47 1		35 2.4	0.86 410	< 2.0.05	86 470		4 < 10	15 680	67 < 10		4
									Align Align							
														14 14 14 14 14 14 14 14 14 14 14 14 14 14 1		

1.5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 it 95 C for 90 min and diluted to 10 ml with DI H20 this method is partial for many oxide materials

SIGNED : _ Beine Vunn

