BHP MINERALS CANADA LTD. ASSESSMENT REPORT Rupert-93 Group

JULY 1993

64688

•	LOG NO:	/AUC 0 3 1993	RD.
TABLE OF CONTENTS	ACTION.		
	FILE NO:		

 Page

 1. Introduction
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

APPENDICES

Appendix

I. Laboratory Procedures

II. Drill Logs, and Assay, RQD and Mag Susceptibility and Core Orientation Results (Back Pockets 1 & 2).

TABLE OF FIGURES

<u>Figure</u>			<u> FO11</u>	Pac	_
1.	Index Map Scale 1:250 000				
2.	Claim Map Scale 1:50 000				1
3.	Drill Hole Location Map Scale 1:12 000				
4.	East End Drilling - Location Map Scale	1:2	400		1
5.	Section Along D-181 Scale 1:2 400				2

LIST OF TABLES

<u>Table</u> <u>Page</u>

1. F.Y. 1993 Current Development GnB Oxplor@ioc AL BRANCH Drilling; (December 1992) · · ASSESSMENT REPORT

22,949

Province of British Columbia Attraction of Freedy Mines and Paumisum Resources RECEIVED GOVERNMENT AGENT PORT HARDY

JUL 29 1993

OFFICIAL RECEIPT

TRANS #

DIAMOND DRILLING

\$22,593.00

							
,¥UT	HCR'S: J.A. Fleming, P.Geo.	ROMATURE S		1-47			٠
. . .	· · · · · · · · · · · · · · · · · · ·		April:	30, 1993	7		199
⊕A.i	S STATEMENT OF EXPLORATION AND DEVSLOPMENT FI	1150			* \$ 4 × 1 ×	A CREE	
CR°	PERTY NAME(S) RUPERT-93 GROUP						
СОМ	MODITIES PRESENT COPPER, MOLYBDENUM, GOL	,D					
3.C.	MINERAL INVENTORY NUMBER(S), IF KNOWN			921	/11E		
MINI	NG DIVISION		NTS	• • • • • • • • • • • • • • • • • • • •			
LAT	TUDE50° 36'	OMO!TUDE		127° 31′			
NAM (12 o	ES and NUMBERS of all mineral tenures in good standing (when worlds), PHOENIX (Lot 1706); Mineral Lease M 123, Mining or Certifit	work was done ad Mining Last	that form to ML 12 follow	the property ()	Examples 7	AX 1-4, F(F	RE 2
	ROAD 1**, BEACH 1 (16 UNITS), ART #4, DA RUPERT #11 - #13, RUPERT #15, RUPERT #16 DOG #1, DOG #2, M.L. 250, M.L. 254, M.L.	M FR., RU 8, EXPO #	IPERT #9 29 - #3	, RUPERT 2, EXPO #	#1 - #5, 51, EXPO	# 53 —	≢ 56
	RUPERT #6, KEY FR.	. 255, EX	PO I FR	·, CAR II	, SNAFU	(12 011	TS)
	RUPERT #6, KEY FR.	. 255, EX	PO I FR	,, CAR II	, SNAFU	(12 041	(TS)
_	RUPERT #6, KEY FR.					(12 0,41	(TS)
0WN	RUPERT #6, KEY FR.			MILBOURN			(TS)
_	RUPERT #6, KEY FR.						(TS)
(1)	RUPERT #6, KEY FR.						(TS)
(1)	RUPERT #6, KEY FR. ER(S) BHP MINERALS CANADA LTD (2	2!	GORDON C/O LAI 1200-70	MILBOURN DNER DOWN OO WEST G	E S, EORGIA S	ST.	
(t) Man	RUPERT #6, KEY FR. ER(S) BHP MINERALS CANADA LTD (2) ING ADDRESS BOX 370, PORT HARDY, B.C.	2!	GORDON C/O LAI 1200-70	MILBOURN DNER DOWN OO WEST G	E S, EORGIA S	ST.	
(t) Man	RUPERT #6, KEY FR. ER(S) BHP MINERALS CANADA LTD (2) ING ADDRESS BOX 370, PORT HARDY, B.C. VON 2P0	2!	C/O LAI 1200-70 VANCOU	MILBOURN DNER DOWN OO WEST G	E S, EORGIA S V7Y 11	5T. A8	
(1) MAII OPEF	RUPERT #6, KEY FR. ER(S) BHP MINERALS CANADA LTD (2) ING ADDRESS BOX 370, PORT HARDY, B.C. VON 2P0 ATOR(S) (that is, Company paying for the work)	2!	C/O LAI 1200-70 VANCOU	MILBOURN DNER DOWN DO WEST G VER, B.C.	E S, EORGIA S V7Y 11	5T. A8	
(1) MAII OPEF	RUPERT #6, KEY FR. ER(S) BHP MINERALS CANADA LTD (2) ING ADDRESS BOX 370, PORT HARDY, B.C. VON 2P0 ATOR(S) (that is, Company paying for the work)	2!	C/O LAI 1200-70 VANCOU	MILBOURN DNER DOWN DO WEST G VER, B.C.	E S, EORGIA S V7Y 11	5T. A8	
(1) MAII OPEF	RUPERT #6, KEY FR. ER(S) BHP MINERALS CANADA LTD (2) ING ADDRESS BOX 370, PORT HARDY, B.C. VON 2P0 ATOR(S) (that is, Company paying for the work) BHP MINERALS CANADA LTD. (2) ING ADDRESS BOX 370, PORT HARDY, B.C.	2!	C/O LAI 1200-70 VANCOU	MILBOURN DNER DOWN DO WEST G VER, B.C.	E S, EORGIA S V7Y 11	5T. A8	
(1) MAII OPEF	RUPERT #6, KEY FR. ER(S) BHP MINERALS CANADA LTD (2) ING ADDRESS BOX 370, PORT HARDY, B.C. VON 2PO ATOR(S! (that is, Company paving for the work) BHP MINERALS CANADA LTD. (2) ING ADDRESS BOX 370,	2!	C/O LAI 1200-70 VANCOU	MILBOURN DNER DOWN DO WEST G VER, B.C.	E S, EORGIA S V7Y 11	5T. A8	

The area north of Rupert and Holberg Inlets is underlain by the Upper Triassic (Vancouver Group) to Lower Jurassic (Bonanza Group) volcanic and sedimentary succession. Jurassic quartz-diorite to porphyritic granodiorite stocks with minor quartz-feldspar porphyry dykes of the Island Plutonic Suite cut the gently southwestward dipping succession. These units are overlain by Cretaceous (Kyuquot and Queen Charlotte groups) sediments. The work area is on the east wall of the Island Copper porphyry copper-gold-molybdenum deposit. The target was an extension of the north limb of the deposit to the east of the proposed ultimate pit wall.

ASSESSMENT REPORT # 22006

TEREFEROES TO PREVIOUS WORK ...

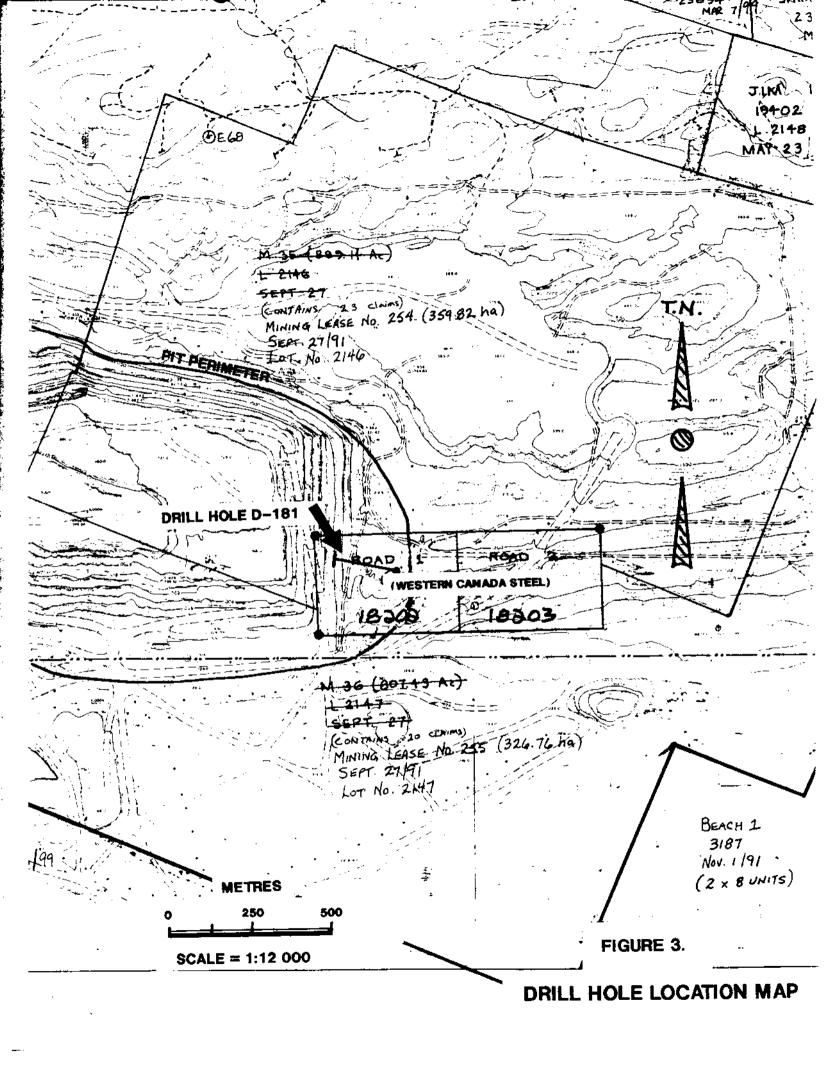
1. INTRODUCTION

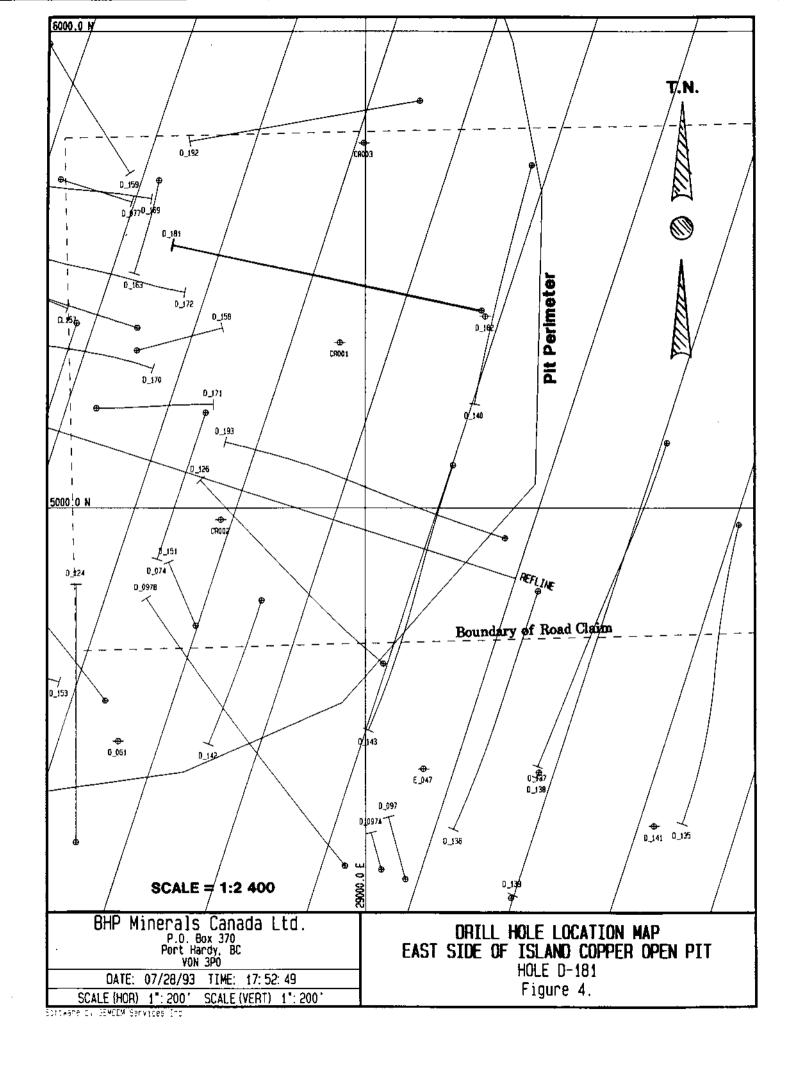
Between the 11th and the 20th of December, 1992, one diamond drill hole (Table 1) totalling 356.0 metres (1168 feet) was drilled immediately to the east of the Island Copper pit. The program was designed to test for ≥0.20% Cu grade porphyry copper type mineralization in an extension of the north limb of the deposit to the east past the ultimate pit wall. The hole was also used for geotechnical purposes and the core was oriented for a total 243.8 metres (800 feet) from 61.0 to 243.8 metres (200 to 1000 feet).

2. LOCATION AND ACCESS

The survey area (Figures 1 & 2) is located on the north shore of Rupert Inlet in the Nanaimo Mining Division. It falls on NTS map sheet 92L/12W with co-ordinates 50° 36° and 127° 31°.

Access to the area is by way of paved road from Port Hardy located some 18 km to the north, and by logging roads and dozer trails to the drill sites.

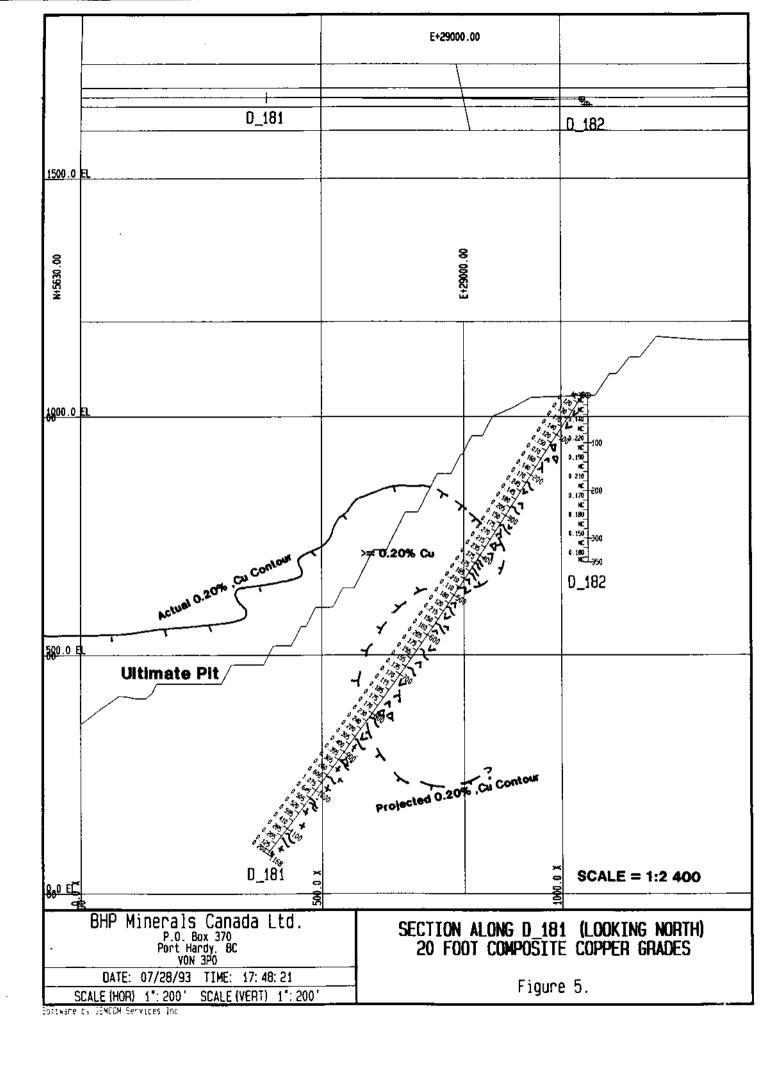

3. PHYSIOGRAPHY


The area is in the Nahwitti lowlands of the Coastal Trough physiographic subdivision that divides the Insular Mountains of Vancouver Island from the Coast Mountains on the mainland. The area is characterized by rounded, gently-rolling hills with a maximum relief of about 125 metres. The drill area lies on the east side of the Island Copper open pit on the Road 1 claim, owned by Western Canada Steel (Figure 3).

4. EXPLORATION HISTORY

The Island Copper porphyry copper-molybdenum-gold deposit was discovered in 1967 and exploitation of the deposit by open-pit mining has taken place since late 1971. The deposit occurs mainly in hydrothermally altered, crackled and brecciated basalt tuffs of the lower Jurassic Bonanza Formation where intruded by ≈180 million year old rhyodacite porphyry dykes of the Island Plutonic Suite.

Exploration activity in 1966 through 1969 in the area that led to the discovery of the deposit also delineated mineralization in the other zones of mineralization around the deposit. Results of drill testing these targets have been reported in various papers, assessment reports and internal company reports.


5. OBJECTIVES

The north limb of the Island Copper deposit was projected on the basis of drill hole and bench blast hole copper assays to swing sharply to the south at the east end of the pit. Blast hole data from lower benches showed that the north limb of the deposit in fact continued along strike to the east and that the diamond drill holes on the east end of the pit but within the pit were not representative of the zone. The waste intersected in the drill holes was in isolated pockets with more ≥ 0.20 per cent copper grade material present than of lower (waste) grade. The hole was designed to better test the extension of the zone past the pit wall so as to provide data to evaluate the potential for a pit extension. The slope stability requirements of the east wall in that area dictated that the hole should be oriented so as to obtain as much geotechnical information about the wall as possible.

6. WORK PERFORMED

The drill program was designed and supervised by the author and A.T. Reeves, P.Geo., staff geologists at Island Copper Mine. The core was logged by D.J. Pawliuk, P.Geo., of Vancouver, B.C.. Graphic logs at scales of 1:120 and 1:2 400 are included in Appendix II (Back Pocket 1). The drill hole collar data are summarized in Table 1.

The core was measured for 1) magnetic susceptibility using a KDA Instruments Model K2 susceptibility meter, 2) rock quality designator (RQD) and 3) recovery. The core was oriented from 61.0 to 243.8 metres (200 to 1000 feet) and faults, shears, joints and significant vein orientations were measured using a goniometer box. The method used for orienting the core was the clay imprint method (Pincock, Allen & Holt, Inc.). Every second 1.5 metre (5 foot) interval was sampled where mineralization was estimated at greater than 0.15 per cent copper and on a less frequent basis where the grade was estimated at less than 0.15 per cent copper. The samples were assayed for copper, molybdenum, gold, silver, lead and zinc at the Island Copper assay laboratory. A summary of laboratory methods is included in Appendix I. Assays, magnetic susceptibility, RQD, recovery and core orientation data are included in Appendix II (Back Pocket 2). The drilling results have been plotted on a 1:2 400 scale cross-section (Figure 5).

TABLE 1

Diamond Drilling -- December 11 to 20, 1992

HOLE	CO-ORDS1	$ELEV^2$	AZIM	DIP	LENGTH ³	SECT ⁴	START	FINISH
D_181	E 29243.3 N 5414.6	1045.6	282	-56	355.9 (1167.5		12/11/93	12/20/93

- BHP mine grid system in feet

- Elevation in feet with Sea Level = 1000 feet
 Metres / Feet
 Section numbers = feet in 100's increasing to west.

7. DRILLING RESULTS

The drilling (Figure 5) confirmed continuity of the ≥0.20 Cu zone to the east of the proposed ultimate pit wall.

A summary of the justification and results of the hole is provided below.

D-181

TD: 355.9 m (1167.5')

TARGET: eastward extension of north limb of Island Copper deposit.

RESULTS: Casing: 3.7 m (12') 3.7 - 123.5 m (12 - 405'): mineralized (0.10 - 0.29 per cent copper) weakly chlorite-magnetite-quartz altered green-grey to black Bonanza basalt; 123.5 - 128.5 m (405 -421.7'): fault breccia with fragments of volcanic and quartz in soft, clay-rich matrix; 128.5 - 261.7 , (421.7 - 858.6'): mineralized (as above) "hybrid" basalt with dykes of quartzfeldspar porphyry; 261.7 - 355.9 m (858.6 - 1167.5'): well mineralized (to 1.08 per cent copper) quartz-feldspar porphyry (rhyodacite porphyry) with silica increasing with depth.

SIGNIFICANT INTERCEPTS: 266.7 - 338.3 m (875 - 1110') @ 0.50% Cu

8. INTERPRETATION OF RESULTS

The hole was collared in chlorite-magnetite altered Bonanza volcanics and continued in volcanics through to 261.7 m (858.6') intersecting a significant fault zone at 128.5 m. The hole intersected QFP at 261.7 m and continued through to the end of the hole in this unit.

The copper mineralization consists of chalcopyrite occurring as fine disseminations and veinlets in the chlorite-magnetite-quartz altered basaltic volcanic and in the rhyodacite porphyry. Gold is associated with the copper mineralization having the highest 1.5 m (5'0) gold assay at 0.92 ppm gold occurring with the highest copper and molybdenum grades (1.08% cu and 0.095% Mo) at 300.2 m (985'). The porphyry is classified as the "Main" or "Early" mineralizing porphyry of the Island Copper deposit due to the extensive coppermolybdenum-gold mineralization in the unit. The copper, molybdenum and gold are of lower concentrations in the volcanics.

9. RECOMMENDATIONS

Further drilling would be contingent on establishing the economic feasibility of mining a zone based on the mineralization encountered in this hole.

10. COST STATEMENT

10.1 Rupert-93 Group

Contractor's Costs:

<u>Hole #</u>	<u>Lengths</u>	Drilling* Cos	<u>st</u>
D-181	355.9 m	\$17,209.61	\$17,209.61

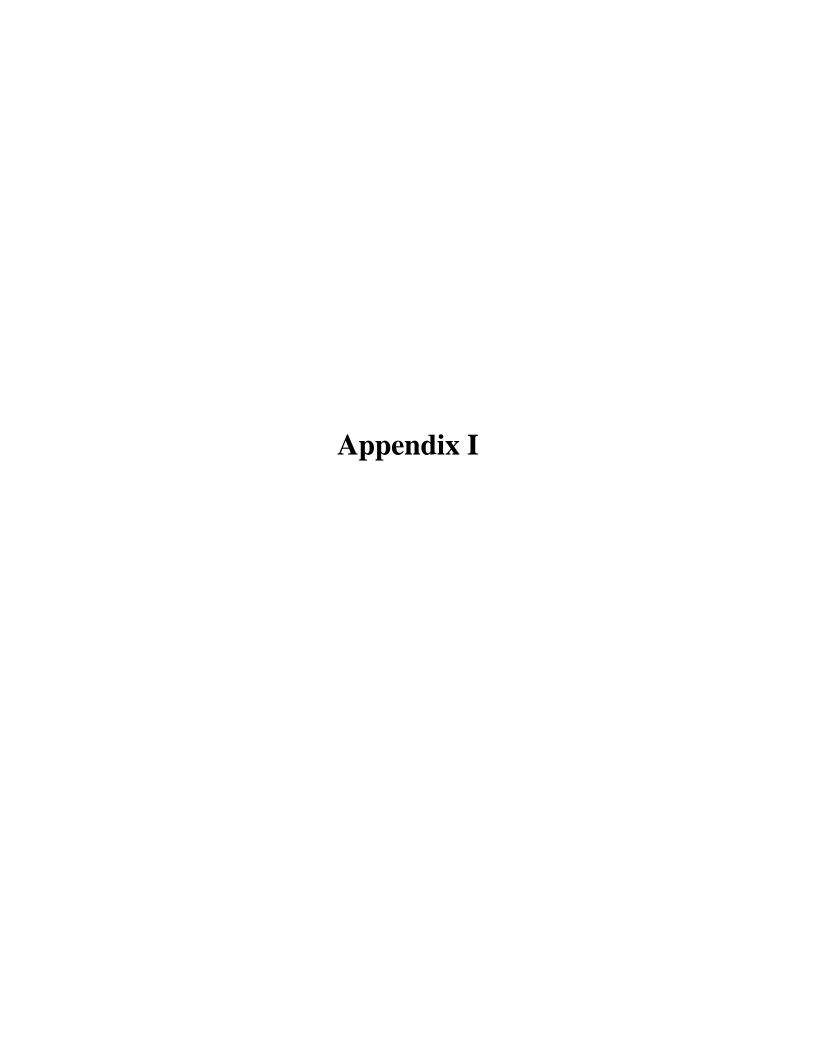
BHP Minerals Canada Ltd's. Costs:

Core Logging:	
1 geologist x 5 days x \$200/day	\$ 1,000.00
Core Shack Labour	
1 labourer @ \$140/day x 6 days	840.00
Supervision:	
1 supervisor x 6 days x 25% x \$200/day	300.00
Overhead:	
20% (max) of Supervision & Labour	383.00
Assays:	
106 samples x \$30/sample :apportioned =	1,890.00
Vehicle:	
1 truck @ \$41/day x 5 days	205.00
Core Storage:	
355.9 m @ \$1.48/m	525 . 39
Report Preparation:	240.00
TOTAL:	\$22,593.00

Total Drilling = 355.9 metres (1167.5 feet)
Unit Cost = \$630.46 per metre (\$19.35 per foot)

^{*} Drilling Contractor: Olympic Drilling and Consulting

11. STATEMENT OF QUALIFICATIONS


J.A. Fleming, P.Geo. Chief Geologist Island Copper Mine, BHP Minerals Canada Ltd., Port Hardy,

- 1) Professional Geoscientist, (1992) A.P.E.G. of B.Ç.
- 2) Fellow of the Geological Association of Canada
- 3) B.Sc. (Major Geology) 1971, McGill University
- 4) Employed as a geologist since 1968 and as Chief Geologist at Island Copper since 1982.

A.T. Reeves, P.Geo. Geologist

Island Copper Mine, BHP Minerals Canada Ltd., Port Hardy, B.C.

- 1) Professional Geoscientist, (1991) A.P.E.G. of B.C.
- 2) B.Sc. (1989) University of Waterloo
 3) Dipl. T., Mining, (1979) B.C. Institute of Technology
- 4) Employed as a geologist at Island Copper since 1990 and as a geotechnician from 1979 - 1990.

Island Copper Mine Drill Core Assaying Procedures

Sample Preparation:

Split cores are received in the laboratory and the whole sample received is crushed to 95% less than 2 cm using a jaw crusher. A one quarter fraction of this material is obtained using a Jones riffle splitter (2 passes). This fraction is then dried for 2 hours at 150 °C and crushed to 95 % less tham .5 cm using a cone crusher and split again to 1/16 of the original sample using a Jones riffle splitter (2 more passes). This fraction is then pulverized to 95% less than 150 mesh using a Bico plate pulverizer and placed in a tin top sample bag for assay.

Base Metals:

Drill core samples are analysed for Copper, Molybdenum, Iron, Lead and Zinc as follows.

- 1) 2.5 g of sample is weighed into a 250 ml digesting flask, pulp standards of similar matrix are carried along with the samples.
- 2) Samples are digested with 10 ml Nitric acid, 10 ml Hydrochloric acid and 7 ml Perchloric acid on a bare (300 °C) hotplate until they cease to evolve NO₂ fumes (5 minutes) then 20 ml of a solution of 2 % AlCl₃ in 50 % Hydrochloric acid is added and the samples are digested a further 5 minutes.
- 3) Samples are cooled, bulked to 250 ml with deionized water and shaken then allowed to settle.
- 4) Base metal levels are measured using flame Atomic Absorption Spectometry (A.A.S.).

Precious Metals;

Drill cores are analysed for Gold and Silver using the following method.

- 1) 5.0 grams of sample is weighed into 250 ml digesting flasks. Pulp standards are carried along with samples.
- 2) 20 ml of Nitric acid is added to the samples and they are allowed to stand at room temperature for 30 minutes. Then 80 ml of Hydrochloric acid is added and the samples are allowed to stand at room temperature for a further 30 minutes. Samples are then boiled on a padded hotplate (150 °C) for 30 minutes.
- 3) Samples are cooled and bulked to 250 ml with deionized water then shaken and allowed to settle.
- 4) This solution is analysed for silver using heated graphite atomization A.A.S..

- 5) 50 ml of the digest is measured in a 250 ml flask containing 20 ml of Methyl Isobutyl Ketone (MIBK). These flasks are stoppered and shaken mechanically for 3 minutes. The samples are then bulked till the MIBK is near the top of the flask with 10 % Hydrochloric acid and shaken manually for 15 seconds to back extract iron from the MIBK.
 - 6) The MIBK layer is then analysed for gold using heated graphite atomization A.A.S.

PROJECT Island Copper CONTRACTOR Olympic Prilling & Consulting Ltd. DATE STARTED COMPLETED Dec. 1992 LOGGED BY D. Pawlink A. Reeves	T.D. 1167.5 FT COLLAR ELEVATION 1045 INCLINATION -57 BEARING 28Z COORDINATES 39343.3 F 5414.5 N SURVEY REFERENCES
Footage Core Blothe Blothe Chlorice Carb-Zeo Garnat Antarbole Frac Inhan Frac	LOG SCALE COC LITHOLOGIC BASIC GEOLOGY: BASIC GEOLOGY: Fock types, metallization, structures alterations, one column system LITHOLOGIC BOCK UNIT
12-200 HW 200-1000 NQ3	1000 - 1167.5 NQ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The pilli-ash tuffs QV 10 black dies 1/7 Proporties does facility The proporties does does facility The proporties does does does does does does does do

	ноі	E N	O	D	-11	31			_									D	RII	LL	LC	G				Pac	ge of _	ZO
	PRO CON DAT LOG	ITR/	ACTO	OA .	0	lym	pic	6 3	diar 350	ÇO!	d MPL Me	-Dr LETI	ED Da	De	zc.	Pa	w7/	199 iu k	72.		•	COC	LIN	TA AIC		OLLAR EL	EVATION 104	
Footage	Core Recovery Oxide	Quertz	Sericite	Blothe	K-spar	LTE	RA Z	TIOI	Pyroxene	Amphibole			┪	STI Vens	Frac Inten	Est. Cu. No	T	UAL S	ES	lkos,		Sample No.			LOG SCALE / = 10 BASIC GEOLOGY: rock types, metallization, structures afterations, one column system	I NO	LITHOLOGIC DESCRIPTIONS. ITES & SKETCHES	ROCK
0		i i	+				2					1					2 -	20	Ŏ -		HV	12	Į.	· ·		0-12	CHAINE - NO CO	244
- 20					1										/	.4	1		•			20 _		X X	rubble, cone clay gonge; rold frogs	flow who chi-ma	Boulanza volusioned green beat spotty alth and some of lubite guarts re	ins
30 -					:		,							1		٥٠			. 1/1.			.30		X	lopilli-ash tuffs	Pale p	ink to white zeoli alcite veins are m rong (F=X-4C	
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	7	į.				Ý									52	1					-		را الا	ys" grey av as/ser halo			
10							1						:		1	2						40 <u> </u>		12/11/2	Leol/clay with pyr, cpy, e 40°CA Y2" QV w blk dies space Q 50°CA (mly)			
50		••				• ,	``						_			•	1-2	2				50 <u> </u>			arron store, gizz ward	AQ-19.5 Had pree gla eyes impc su	Tatrusive? Bra en chlorifisal baca wil in matrix; ne well as brang \$13 fings	4
	,					1	1 1 4									p	 	1	The state of the s			ło	イイバル	× + + : ×	Micro short of social story all flow have my all flow cold flow cold flow (alighed faps)	Mer Bry	df?) epidale althory alth	-

	HOL	ΕN	O	\mathcal{D}	<u>-18</u>	l									D	RIL	L L	OG				Page3of20	
•	PROJECT Island Copper CONTRACTOR COMPLE DATE STARTED COMPLE LOGGED BY							MPLE	TEC	<u> </u>				- -		COC	INAT	IIC7.5		ARING			
Footage	Pecovery	Ouertz	Sericite	Biotte	AI	TE	Carb Zeo	T	Pyroxene	ALB		Stri Veins	Est Cu. Mo	هر ا	UAL	EST		Sample No.	Т	LOG SCALE 1°-10' BASIC GEOLOGY: rock types, metallization, sirc alterations, one column syste	uctores	LITHOLOGIC DESCRIPTIONS. NOTES & SKETCHES	ROCK
140							\ / \ \ /			7			.3	2	3			40 —	1 1	cfy cfy cfy cfy		Mixed tuffs and flows, generally with a moderate chlorite alt, a weat to mod. magnetite (local) atteration and occasional quarts veins	
150					1 L. C. S. C		1 * 1						,15		-3	****		- 150	XX X X / 1/2X	may enit as oth? halo	•	magnetite (local) guarty veins and occasional guarty veins white to pale pink zeolite white to pale pink zeolite calcite veins are common. The flows are nod-strong mag alto, very dark of dense looking. Cpy tends to be v.f. grained and sevens strongistions parties. Local narrow magicalians to amphibite schoops	-
160					The second second		,						.15	1-	z			170 -	ジュー・人と	et 6" crom white " Flow Frontier by a (for CPY, PY 2-3" Col @ 40° CA	bleached nte gen and	hard siliceous core - "rings" when structs	-
						The state of the s	\ \ \ \						.15		-2			180	人ないなどかは人	may alth flow may anits w/am	uby-ellys		· -
						3			,										- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Q-P-S veh e 60°C	ת 47 W.		

	HOL	ΕN	Ю.		<u> 18</u>	1												DF	IIL	LL	0.	G								Pag	ge _	5		_ of	_20	>	-
. ·	CON DAT	ROJECT Island Copper ONTRACTOR COMPL DGGED BY &						COMPLETED														INA'	TIO NA	N _ TES		<u> </u>											
Footage	Core Recovery Oxide	Quartz	Serroite *	Blotte		Chlorita	Τ.	n	Ругонепе	Amphibote			-	TR		T	Π	T	EST o	Т		Sample No. & Interval		BA rock	ASIC k types	GE(meta	LOC = 1 0 / OLOG allization column :	Y:			DES	CRIP	OGIO PTION KETO		3		ROCK UNIT
-250		からから ちゅうしょうしゅう				2000年まではないなったとう	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								.15		1-2		* * * * * * * * * * * * * * * * * * *			180-	マスクスパスス アインスピックス サインスカッシュ へいか こ	10 mm	113 113 115 115 115 115 115 115 115 115	A Calle	Floods Governo Jane J	yr. Gy GGG	5	Mixed lapilli chlori sverpri comp dist Tincre	floored sur	orner porter	and with alter	to asis	cpy ssem. e of		
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\													,15		2.3					-	- L	. 9	7 22	." 	roped all	4 QV@6	o°								•

and a commence of the state of

HOLE NO	DRILL LOG Page 6 of 20	<u> </u>
PROJECT Island Copper CONTRACTORCOMPLE LOGGED BY R 350	T.D. 1167.5 COLLAR ELEVATION INCLINATION BEARING COORDINATES Then David Pauliuk SURVEY REFERENCES	
Footage Core Recovery Ouartz Sarrcite Clay/Pyrop Ebridote Carb.Zeo	STR. VISUAL EST. LOG SCALE	ROCI
320	11 1-2 Chlomes min's 12 - BONANZA VOLCANCE 11 1-2 POVS X and E GG CA 2 POVS X and E GG CA	
330	2" light gray QV @ 60 321 - Start at Black to dark green may do! At suph. Our to Ch w pint modify onto that some have a ond chlorite sport in white albitic look. Some when the areas	
340	from making sub-may Rock also has of s front Note 2 200 grey ish brown cast of short @ 336'	
350————————————————————————————————————	To go of one of the state of th	
-3-0	subject of the set by and crosscut under grey	
	mag-ch/ masses to 18 t copy; copy as irreg. n dies. masses to 12 n copy of dies + vit 10 2 75% ven gtz over 2 as irreg. vns + bands to 4" well	k 250°

HOLE NO. D 181	DRILL LOG	Page
PROJECT Island Copper CONTRACTORCOMPLETED LOGGED BY COMPLETED	INCLINATION	COLLAR ELEVATION BEARING
Footage Core Recovery Oxide Quartz Sericite Charite Chorine Epidorie Epidorie Epidorie Chronie Fyroxene Arrythbols Wolkestories	STR. VISUAL EST. SCALE BASIC GEOLOGY: rock types, metalization, structum afterations, one column system	LITHOLOGIC ROCI DESCRIPTIONS. UNIT NOTES & SKETCHES
380	2 1-2 2 1-2 2 2 2 0 0 0 50 2 2 2 0 1 0 65 cp vs. diss + wispy rate 32 " QV 0 45 V bleached; the chl- V spots in silicitied which for clay (?) Viete V lapilli 370 2 QV 0 55 V qu o 60° V qu of 60° V qu of 60° V qu irreg. masses to be 3 in sooty py + clay matrix along upper to 10 1 20° 10 20° 1	clay oringed (Kaslinik?) alt'n approaching upper margin afformand of fault breccia at 105.1'. Silicitied zones often have milky albitic appearance as above. Rank retrograde?) ap specks within watery grey gtz with Volcanic loss silicitied than above 360'. **BRECCIA Light green to light brownish grey to grained with zubangular to angular clasts of volcanic rock and vein quarte in a soft clay-rich, appointic or very sine grained matrix. Motive say 45%, clasts 55%. Clasts to 2" across. Clasts have emdergine weak to locathy litterse glay mient alt'n especially adjoined to fault slips. Some ground cope at 421.7; cannot obtain orientally of lower fault breccia contact.

HOLE NO	DRILL LOG	Page 8 of ZO
PROJECT COMPLET CONTRACTOR COMPLET LOGGED BY Pau /infc	T.D. 1/67.5 INCLINATION ED COORDINATES SURVEY REFERENCES	COLLAR ELEVATION BEARING
Footage Core Recovery Owde Outriz Sericite Clay/Prop Blants K-sper Chlorine Epidote Carb.Zeo Genet Pyroxene Aurghbote Aurghbote	STR. VISUAL EST. SCALE SCALE BASIC GEOLOG rock types, metallization, afterations, one column s	LITHOLOGIC ROCK Y: DESCRIPTIONS. UNIT
140 140 140 140	100 12 wide 200 21 wide 200 2	"across Dark grownish grey to black to light grey, aff. Magnefite at chlorise both very they disseminated to otherwise and as subround to irregular clots and masses, esp. within and along the margins of ytz veins Less abundant above fault breccia zone. Hard, mod. silicitied below 442

HOLE NO	DRILL LOG	Page
PROJECT Island Copper CONTRACTORCOMPLETE LOGGED BYPAW L / U K	T.D	COLLAR ELEVATION
Footage Core Recovery Oxide Outriz Sericite Clayripry Blicite K-spar Chiorite Epidote Carb.Zeo Carb.Zeo Carb.Zeo Carb.Zeo	STR. VISUAL EST. SCALE BASIC GEOLOG rock types, metallization, alterations, one column s	LITHOLOGIC ROCK Y: DESCRIPTIONS. UNIT
-500- -510- -520- -540- -540-	QV 1.3° 25° a QV 2" 2 +5° Toury 6/26/ina QV 1" 250 A fault at 70 Toury 250 Toury 6/26/ina A fault at 70 Toury 250 Toury 250	Jank greenish grey to light greenish grey to light greenish grey to light greenish grey to lapilli tuff. Hand, moderately silicified to \$15' much softer rock below \$15 can be easily scratched with steel. Magnetisk god shlorisk- steel. I be cally discrete boundaries, Clots most promingnt within intersely silicitied intervals. Silicitied intervals. Veralets below 507 depth. I dept

HOLE NO. $_\mathcal{D}$	/8/	DRILL LOG	Page //O of ZO
PROJECT	COMPLETE	T.D	COLLAR ELEVATION
Footage Core Recovery Oxide Ouerta Sericita Clayifymp	Carticore Carticore Carticore Arrelation Wolfassome Wolfassome	STR. VISUAL EST. LOC SCALE SCALE BASIC GEOLOG rock types, metallizations, one column is	LITHOLOGIC ROCK BY: DESCRIPTIONS. UNIT
570		Z 1-2 Sooty py ale chay /siling pole chay /siling py ale chay /siling py mass of control	int by seed black to watery greenish seed black to watery greenish sites bunded thouses to to 15. Generally hard, moderately silicitied rock. Silicitied rock. and lower chlorite. to 1000 that bled 5 watery lits.

. - .

. , , , , , , ,

DRILL LOG PROJECT __Island Copper COLLAR ELEVATION ____ CONTRACTOR INCLINATION _____ BEARING ... DATE STARTED COMPLETED ... COORDINATES ___ SURVEY REFERENCES **ALTERATION** VISUAL EST. STR. LOG SCALE _ LITHOLOGIC ROCK BASIC GEOLOGY: DESCRIPTIONS. UNIT rock types, metallization, structures NOTES & SKETCHES alterations, one column system BONANZA VOL CANICS QV0.5 " 2 70" Dark greenish grey to block to light greenish grey (motted intervals) medium grained lapill, talk u. minor than interbands. QV 0.3" D35". rein gte frags within pale green volc notrix.

VI to 0.05" peoples

Vi fantt a 12 ; parallel QV 0.7" wide 2 12 . 630-My pperos do Xo" 640 -Q10.6" 260° *د*ی. QV 0.4" 2 65 Pult slip at 25° to C.A. 31.0.12 08 faultes 40°, 10" f. bk.
core + clay on tracture etc. 660-668.0 - 674.5 FAULT ZONE. QV 3" 270° Findy Wen core throughouts say 40% volcamic rock, 60% watery grey vein pieces. Much sand-sized mater

HOLE NO. ______/8/ **DRILL LOG** PROJECT __Island Copper COLLAR ELEVATION _____ CONTRACTOR _ INCLINATION ___ BEARING _____ __ COMPLETED ___ DATE STARTED _____ COORDINATES _ LOGGED BY Pawlink SURVEY REFERENCES STR. **ALTERATION** VISUAL EST. LOG Sample No. & Interval SCALE ___ LITHOLOGIC **ROCK** Frac Inten BASIC GEOLOGY: DESCRIPTIONS. UNIT rock types, metallization, structures **NOTES & SKETCHES** alterations, one column system 421.7-Transfer to 0.15 " across BONANZA VOLCANICS .김 Dark greenish grey to black fine grained generally massive basalt flows (?). Increase in vein ofte cartent flows hairline atz-hem and bleadhed (clay-a Hered)
rock with increasing depth
- ep. finely diss A. .14 QV 1.6 260. QV 4 2420 - 10 9 PH 242. QV 2.5 230. 750 1. 10. - fact may vite soci py vit 4 اکن 18V 0.25" 210 2 ¥ feett 0.5 f ble one clayer gonge on fracture at 30 to c.o. 3 12 6 "rubble; mod bkn core Portentation of fault 780-QV 3" 225° QV 1.6" 020° abund dies cp : • 4 green of as irreg. disseminations and conting has rline watery grey vern quartz. ¥ JQY 0.7" 215°

HOLE NO	DRILL LOG	Page
PROJECT Island Copper CONTRACTOR COMPL DATE STARTED COMPL LOGGED BY		
Footage Core Recovery Outdatz Sericite Chlorite Epidote Carti Zeo Gernat Pyrovene Arrythore	STR. VISUAL EST. STR. VISUAL	DESCRIPTIONS. UNIT
170	QV 0.8" A 30" QV 0.8" A 30" Clay kine at 2" Prom froctore (f. at 50" to c.a. QV 1" 2150"	BONANZA VOLCANICS Medium to light green-grey with
810		film dykes and verns of light greenish to creamy grey to when the creamy grey to the medium grand QFP, 270%
820	Pleto to 1/0 e county and snear of sad and slip a zin avo. + a z z z z moly + ca v.f. diss	rubit From 803.4-858.6 say 36 rock water grey to, rarely, the coloured quarte veins. At 810 there
	2 / QV 0.8016. QV 0.25 0 28. QV 1.075°	266. In crosscutting relationship. OFF alykes up to 3' whole generally with discrete, somewhat irresults contacts with
840	# 2 fault ? 020° hem = 00.5" 020° QUO.5" 020°	Bonanza Volconic wallrock Dykes contain subhedral of a eyes av. ro. Z = 0.25° excess dykes also have py and sp(v. finely diss) as in
	QV 1.1" 020°. QV 0.7° Ø 15 QV 0.25° 075 Fault; 0,5° 4	803.4 - 805.3, 814.2(5457°) - 815.1 1817.8(70°) - 818.8 (821.8 - 823.7) 126-8273/ 1843.5 - 846-2 (63.5 - 60°).

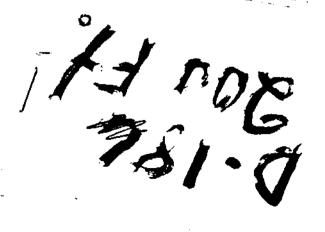
HOLE NO. _ > 181 **DRILL LOG** 1167.5 PROJECT __island Copper COLLAR ELEVATION _____ BEARING __ CONTRACTOR _ INCLINATION ___ COMPLETED COORDINATES _ DATE STARTED ___ PAWLIUK LOGGED BY _ SURVEY REFERENCES STR. **ALTERATION** LOG VISUAL EST. Sample No. & Interval SCALE _ LITHOLOGIC ROCK BASIC GEOLOGY: DESCRIPTIONS. UNIT ö rock types, metallization, structures **NOTES & SKETCHES** BONANZA VOLCANIC **** and QEP DYKE .3 Z As above. 8586-1/675 860 \mathbf{z} QV 0.3 235". 870-.3 bornite? speck sos Increased sericite - py - 4tz QV 1.6" 220. (chyllic) alta with depth; rock generally pake cream-grey colour below say 960' per colour Thank 0450; int. fractured, soft core. 890. ٠, fault slip is 40% souly QV 0.5" 030. real vits to 0.2"

Page 19 of 20 HOLE NO. 3 181 **DRILL LOG** PROJECT _island Copper COLLAR ELEVATION _____ CONTRACTOR INCLINATION ____ BEARING ___ DATE STARTED ___ __COMPLETED _____ COORDINATES _____ LOGGED BY Pawlink SURVEY REFERENCES ... LOG **ALTERATION** STR. VISUAL EST. SCALE _ LITHOLOGIC ROCK BASIC GEOLOGY: DESCRIPTIONS. UNIT rock types, metallization, structures **NOTES & SKETCHES** alterations, one column system A5B.6-QFP As above. patches up to 3' across.
Bkn, discontinuous matery
grey quarte reinless? 12 QV 0-8" 2 60° along fit slip. Foutt from 1108.8-1110.0'w. mod. bkn core between # cp # at 40° to c.a. fault; 1.1 "soft, loka coie hetween sleps 2 53°. · fatt, 0.05 "pyritic goinge a stop 2 45°. fautt, chargey gange on slip 2 35°. 1/30-16" sooty py on foutt slip 2 35". 2 cp specks us fine diss. 03 QV 0.5" 2350. 2" Xenolith rel fresh f.gr. volc w. mag, cp, py. 2 QV 0.7" 230" contains 0.1" ult of calcine, it zeol, py, cp and moly within centre. .08

HOLE NO. 7 181	DRILL LOG Page 20 of 20	_
PROJECT Island Copper CONTRACTORCON DATE STARTEDCON LOGGED BY Paw line	T.D COLLAR ELEVATION INCLINATION BEARING MPLETED COORDINATES SURVEY REFERENCES	
Footage Core Recovery Oxide Cale/Pinop Blothe Chlorine Epidote Carb.Zeo Carb.Zeo Carb.Zeo Carb.Zeo Carb.Zeo		ROCK UNIT
-//SO	Jest of Jest o	

PHOTOS

HOLE NUMBER: D_181


EASTING: 29243.32

NORTHING: 5414.45

ELEVATION: 104556

DEPTH	INCLINATION	PLUNGE	BEARING (mag)	AZIMUTH	CALC. BY:	CHECKED BY
collar		-561/2		282		AR
200	32_	-58	267 5N 5/ + 22	289	AR	7
397	33	-57	SW86 7 22	288	AR	
600	34	-56	273 NW 87 + 12	295	AGZ	
827	36	- 54	NN 80 - 3.	3¢ <u>2</u>	AR	
[00s	37	- 53	11W84 - 22	298	AR	

Spendi Sur Confisi -> Itom for report disregar

D.181 1000 Ft.

8HP MINERALS CANADA - Island Copper Mine

HOLE-ID	EAST	NORTH	ELEV
D_181	29243.3	5414.5	1045.5

DOWN-HOLE SURVEY INFORMATION:

FROM	TO	AZIMUTH	OIP
0.0	200.0	282.0	-56.5
200.0	397.0	282.0	-58.0
397.0	600.0	282.0	-57.0
600.0	827.0	282.0	-56.0
827.0	1000.0	282.0	-54.0
1000.0	1167.5	282.0	-53.0

FROM	TO	СП	мо	FE	AU	AG	РВ	ZN	TAG
25.0	30.0	0.12	0.010	3.8	0.06	0.80	0.007	0.056	16853
45.0	50.0	0.13	0.006	4.6	0.02	1.10	0.003	0.025	16854
65.0	70.0	0.17	0.006	4.8	0.04	0.90	0.003	0.014	16855
85.0	90.0	0.14	0.004	3.5	0.08	0.70	0.003	0.019	16856
105.0	110.0	0.12	0.004	3.1	0.03	0.50	0.004	0.011	16857
125.0	130.0	0.15	0.004	3.8	0.09	0.60	0.005	0.016	16858
145.0	150.0	0.07	0.004	3.3	0.03	0.20	0.001	0.006	16859
165.0	170.0	0.16	0.005	4.2	0.08	0.30	0.001	0.012	16860
185.0	190.0	0.14	0.005	3.9	0.10	0.30	0.001	0.009	16861
205.0	210.0	0.13	0.002	2.8	0.04	0.60	0.002	0.008	17005
215.0	220.0	0.21	0.002	5.8	0.39	0.50	0.002	0.004	17006
225.0	230.0	0.32	0.002	4.1	0.39	0.90	0.002	0.014	17007
235.0	240.0	0.17	0.004	8.5	0.12	1.40	0.002	0.013	17008
245.0	250.0	0.11	0.003	6.1	0.08	0.40	0.003	0.017	17009
255.0	260.0	0.18	0.001	4.1	0.18	1.30	0.002	0.021	17010
265.0	270.0	0.23	0.003	4.6	0.13	0.80	0.006	0.021	17011
275.0	280.0	0.13	0.001	3.0	0.11	0.50	0.002	0.009	17012
285.0	290.0	0.18	0.002	3.6	0.15	0.70	0.001	0.008	17013
295.0	300.0	0.23	0.003	3.7	0.42	0.20	0.003	0.012	17014
305.0	310.0	0.12	0.001	3.3	0.09	0.50	0.001	0.011	17015
315.0	320.0	0.18	0.003	4.5	0.19	0.80	0.002	0.015	17016
325.0	330.0	0.11	0.002	6.0	0.20	0.30	0.002	0.007	17017
335.0	340.0	0.24	0.004	4.8	0.29	0.60	0.002	0.006	17018
345.0	350.0	0.25	0.004	7.5	0.27	0.20	0.002	0.004	17019
355.0	360.0	0.29	0.003	6.8	0.38	0.80	0.003	0.010	17020
365.0	370.0	0.18	0.003	4.6	0.16	0.70	0.002	0.013	17021
375.0	380.0	0.25	0.003	4.1	0.18	0.90	0.001	0.006	17022
385.0	390.0	0.28	0.004	5.3	0.23	1.00	0.002	0.015	17023
395.0	400.0	0.19	0.003	6.3	0.10	0.90	0.002	0.017	17024
405.0	410.0	0.31	0.011	9.7	0.05	4.40	0.003	0.009	17025
415.0	420.0	0.44	0.006	7.1	0.20	1.00	0.002	0.008	17026
425.0	430.0	0.20	0.004	6.9	0.04	1.10	0.002	0.025	17027
435.0	440.0	0.15	0.002	5.1	0.02	0.80	0.002	0.023	17028
445.0	450.0	0.20	0.004	6.0	0.06	0.20	0.011	0.047	17029
455.0	460.0	0.13	0.002	4.2	0.07	0.40	0.002	0.011	17030
465.0	470.0	0.23	0.003	4.8	0.15	0.80	0.004	0.018	17031
475.0	480.0	0.19	0.005	6.1	0.10	0.40	0.005	0.021	17032
485.0	490.0	0.09	0.002	4.6	0.12	0.40	0.001	0.009	17033
495.0	500.0	0.13	0.003	3.6	0.16	0.60	0.002	0.009	17034
505.0	510.0	0.18	0.003	4.8	0.07	0.80	0.002	0.008	17035
515.0	520.0	0.18	0.005	5.7	0.04	1.20	0.003	0.023	17036
525.0	530.0	0.14	0.003	6.3	0.02	0.30	0.003	0.016	17037
535.0	540.0	0.10	0.003	4.9	0.05	0.50	0.002	0.008	17038
545.0	550.0	0.25	0.003	5.4	0.12	0.90	0.002	0.012	17039
FROM	TD	CU	MO	FE	AU	AG	PB	ZN	TAG

BHP MINERALS CANADA - Island Copper Mine

FROM	TO	CU	MO	FE	AU	AG	P8	ZN	TAG
555.0	560.0	0.18	0.003	5.2	0.07	1.30	0.003	0.023	17040
565.0	570.0	0.11	0.005	6.7	0.11	0.70	0.003	0.020	17041
575.0 585.0	580.0 590.0	0.19 0.17	0.003 0.004	8.8 8.3	0.08 0.04	1.10 1.50	0.003 0.003	0.008 0.017	17042 17043
595.0	600.0	0.17	0.004	8.1	0.03	1.10	0.003	0.028	17043
605.0	610.0	0.20	0.001	6.4	0.11	1.20	0.003	0.007	17045
615.0	620.0	0.33	0.004	6.7	0.10	2.20	0.004	0.052	17046
625.0	630.0	0.12	0.002	6.0	0.14	0.70	0.003	0.007	17047
635.0	640.0	0.23	0.004	5.2	0.45	0.80	0.003	0.007	17048
645.0	650.0	0.19	0.003	6.7	0.17	0.90	0.003	0.005	17049
655.0	660.0	0.12	0.009 0.005	6.7 6.0	0.13 0.13	0.90 0.60	0.002 0.003	0.006 0.012	17050 17051
665.0 675.0	670.0 680.0	0.15 0.16	0.003	4.7	0.13	0.80	0.003	0.012	17051
685.0	690.0	0.11	0.004	4.7	0.17	0.50	0.002	0.006	17053
695.0	700.0	0.16	0.005	5.2	0.16	0.60	0.002	0.007	17054
705.0	710.0	0.21	0.007	3.4	0.17	0.70	0.002	0.006	17055
715.0	720.0	0.13	0.005	5.9	0.14	0.70	0.002	0.013	17056
725.0	730.0	0.09	0.002	5.5	0.09	0.40	0.002	0.008	17057
735.0 745.0	740.0 750.0	0.14 0.22	0.005 0.007	6.0 8.0	0.13 0.15	0.70 1.10	0.003 0.006	0.012 0.016	17058 17059
755.0	760.0	0.22	0.005	9.9	0.20	0.70	0.004	0.010	17060
765.0	770.0	0.18	0.004	3.4	0.07	0.60	0.003	0.008	17061
775.0	780.0	0.17	0.007	6.5	0.11	0.70	0.002	0.004	17062
785.0	790.0	0.19	0.008	3.4	0.04	1.20	0.002	0.004	17063
795.0	800.0	0.15	0.004	10.2	0.11	0.60	0.002	0.008	17064
805.0	810.0	0.24	0.003	10.2	0.12	1.30	0.002	0.015	17065
815.0 825.0	820.0 830.0	0.22 0.29	0.006 0.006	6.4 8.2	0.15 0.17	0.80 1.20	0.002 0.003	0.009 0.013	17066 17067
835.0	840.0	0.19	0.007	5.9	0.15	0.60	0.003	0.004	17068
845.0	850.0	0.23	0.001	6.4	0.27	0.80	0.002	0.005	17069
855.0	860.0	0.21	0.001	6.3	0.20	0.70	0.001	0.007	17070
865.0	870.0	0.27	0.001	5.0	0.27	1.00	0.001	0.007	17071
875.0	880.0	0.34	0.002	4.6	0.21	1.40	0.001	0.006	17072
885.0	890.0 900.0	0.50 0.30	0.008 0.012	4.5 4.0	0.19 0.19	2.70 1.50	0.001 0.001	0.018 0.011	17073 17074
895.0 905.0	910.0	0.30	0.002	3.0	0.19	1.50	0.001	0.004	17074
915.0	920.0	0.36	0.011	3.6	0.32	1.20	0.001	0.004	17076
925.0	930.0	0.24	0.002	3.7	0.12	1.10	0.001	0.026	17077
935.0	940.0	0.37	0.005	4.3	0.31	1.40	0.001	0.005	17078
945.0	950.0	0.16	0.003	3.2	0.08	0.70	0.001	0.002	16846
955.0	960.0	0.36	0.011	3.3	0.20	1.00	0.001	0.002	16847
965.0	970.0	0.51	0.025 0.020	3.4 3.5	0.16 0.61	3.50 1.80	0.002 0.001	0.001 0.003	16848 16849
957.0 985.0	980.0 990.0	0.63 1.08	0.020	5.4	0.92	2.90	0.002	0.003	16850
995.0		1.07	0.086	4.3	0.57	5.60	0.001	0.003	16851
1000.0	1010.0	0.73	0.068	3.9	0.32	3.20	0.001	0.005	17079
1010.0	1020.0	0.56	0.031	2.9	0.18	2.40	0.001	0.008	17080
1020.0	1030.0	0.55	0.020	2.1	0.19	1.60	0.001	0.005	17081
1030.0	1040.0	0.45	0.020	2.2	0.25	1.50	0.001	0.004	17082
1040.0	1050.0 1060.0	0.64 0.40	0.020 0.031	2.6 1.8	0.35 0.23	2.20 1.40	0.001 0.001	0.00 6 0.005	17083 17084
1060.0	1070.0	0.63	0.018	2.1	0.24	1.80	0.001	0.005	17085
1070.0	1080.0	0.56	0.019	2.8	0.29	2.20	0.001	0.006	17086
1080.0	1090.0	0.36	0.015	3.4	0.23	1.60	0.001	0.005	17087
1090.0	1100.0	0.46	0.020	2.7	0.25	2.00	0.001	0.005	17088
1100.0	1110.0	0.35	0.021	2.0	0.16	1.60	0.001	0.005	17089
1110.0	1120.0	0.22	0.027	2.7	0.07	1.50	0.001	0.016	17090
1120.0 1130.0	1130.0 1140.0	0.18 0.23	0.025 0.014	2.6 3.6	0.04 0.04	1.40 1.60	0.001 0.001	0.008 0.012	17091 17092
1140.0	1150.0	0.23	0.014	3.4	0.04	1.10	0.001	0.009	17093
1150.0	1160.0	0.11	0.004	2.6	0.03	0.90	0.001	0.007	17094
1160.0	1167.0	0.20	0.001	2.4	0.03	1.00	0.001	0.006	17095
FROM	TO	CU	MO	FE	AU	AG	PB	ZN	TAG

ISLAND COPPER MINE ASSAY REQUISITION AND REPORT FORM

LAB SENT TO:

DATE SENT: Jan 5/93

SENT BY/DEPT: GECL

TYPE: CORE

<u> </u>	,			EPORTED:		REPO	RTED BY:		(co	re / perc / other)	Ł
HOLE #	FROM (ft/m)	то	Coffee % Cu	MOLY WID	IRON % Te	GOLD ppm Au	SILVER ppm Ag	70AD	ZINC % Zii	TAG #	
181	5	/ 6			HOLE	STARTS	@ 1/01			16852	1
D-181	25	30	1/2	010	38	0 \$		007	as 6	85343	?
	45	50	1/3	006	46	0.7	(1)	003	1025	85444	+
	65	70	∮ i/ ≯	1006	418	104	019	003	914	855 47	5
	851	90	//4	1004	318	08	0 7	1003	919	856 46	>
	105	110	/2	1004	311	03	05	004	10//	85747	'n
	125	130	/5	1004	38	09	06	oos	016	858 48	
	145	/50	127	004	33	03	0.2	001	006	859 49	1
	165	170	1/6	lads	42	108	03	00/	0/2	86050	
	185	190	14	005	319	110	013	001	009	86151	
						i]
			33			ė l					
			1.0			5 5					1
		170									1
	1 1	احاداداد									4

المال مطيع المهماء

ISLAND CUPPER MINE ASSAY REQUISITION AND REPORT FORM

ABSENT TO: 1/C DATE SENT: Jan 12/93 Mar. 10/93 SENT BY/DEPT: GEOL

TYPE: CORE

HOLE FROM TO COPPER MOLY SEC POPP MOLY RON SEC POPP MOLY RON POPP POPP MOLY RON POPP P	LAD OLIVI 10			DATER	EPORTED:		REPO	RTED BY:		(c	ore / perc / other)
2			то	COPPER	MOLY	IRON % Fe				ZINC	TAG
225 230 32 32 41 339 9 9 9 2 114 007 27 2351 240 117 44 85 112 114 22 12 12 008 28 2451 250 117 114 85 112 118 113 2 121 0103 20 28 25 25 260 172 11 411 118 118 113 2 121 0103 20 20 20 20 20 20 20 20 20 20 20 20 20	D-181	205	210	13		128	04		2	9	1700525
225 230 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 32 33 30 32 33 32 33 34 33 32 33 34 33 34 33 34 33 34 33 34 34 34 34		215	220		1 2	58	39	5	2		00626
246 250 1\ 3 61 108 14 3 17 0 08 29 25 260 1\ 27 27 3 4 6 1 3 8 6 21 0 10 3 10 10 10 10 10		225		32	2	Hill	39	19	2	III	00727
255 260 17		235	240	i 17	1 4	85	12	114	2	1/2	00828
265 270 723 1 3 46 1 13 8 6 21 0 11 1 1 1 2 1 2 2 2 1 9 0 1 2 7 2 2 1 9 0 1 2 7 2 2 1 9 0 1 2 7 2 2 1 9 0 1 2 7 2 2 1 9 0 1 2 7 2 2 1 9 0 1 2 7 2 2 1 9 0 1 3 3 3 2 9 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		2451	250			61	108	4	3	1117	00929
1 275 280 13 1 30 11 5 1 2 1 9 1 2 2 2 1 3 3 3 3 3 3 3 3 3		255	260	112			18	8 1 1 3	2	11121	01030
285 290 115 2 36 1/5 17 11 1 7 0 13 33 295 300 123 1 3 20 142 12 1 3 1 1 1 0 1 5 35 315 320 175 3 46 11 1 2 40 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		265	270	23	13		1 3	8	6	╃╃┷┸╇	01171
1 295 300 125 1 3 37 1 42 2 2 3 12 0 434 10 10 10 10 10 10 10 1		275	280	113	1		110		2	9	1 1 1114
305 310 17 17 18 10 10 17 10 15 35 35 315 320 17 17 18 17 32 46 31 32 32 330 31 31 31 32 32 330 32 34 34 34 34 34 34 34 34 34 34 34 34 34		285	290	118	2	136	1/5			1 1 7	01333
315 320 117 2 37 37 37 37 37 38 38 38 38 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38		295	300	123		37	142		<u> </u>	1 1 1 2	01434
325 330 11 2 2 40 20 3 3 3 3 5 3 40 11 3 3 4 4 48 3 4 5 3 4 5 3 5 3 6 6 7 7 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9		305	310	11 114		1331		 		<u> </u>	01535
335 340 24 H H H H		315	320	11/2	1 3	146	119			I IE	01636
3HS 3SO 120 14 75 127 2 1 2 1 2 1 4 019 39 39 35 360 170 170 180 170 120 130 020 40 39 39 30 30 370 180 180 180 170 120 130 021 41		325	330		1 1 2		120	3	2	1 7	01737
355 360 79 5 5 65 138 18 1 3 10 02040 365 370 16 3 46 116 116 7 1 2 13 02141		335	340	24	1 4		29	6	2	6	01838
365 370 116 3 416 116 17 112 113 02141		345	350	1 23	1 4	┋	27	2		1 1 4	01939
		355	360				3 8	18] 3	1111/0	
				118	1 1 3	H16	▊▄▗▎┈┋┈╏┈┝═ ╏	1 17		1111/3	
		1317S	380	1125		141	118	9			022 42

entream entry

ISLAND CUTPER MINE ASSAY REQUISITION AND REPORT FORM

LAB SENT TO: DATE SENT: Max 10/93. GEOL TYPE: CORE SENT BY/DEPT: DATE REPORTED: REPORTED BY: (core / perc / other) MOLY GOLD SILVER **LEAD** ZINC TAG **COPPER IRON** HOLE FROM TO % Ph % Zn % Fe (ft/m)% Cu % Mo ppm Au ppm Ag 10 7023 43 D -11811 390 44 19 024 1400 105 025 45 405 02646 47 027 104 028 029 d 459 49 030 45 460 50 93 11 480 032 12 **1**033 53 034 54 500 932 18 15/bj 51 0 15051 036 56 520 037 57 038 535 اه ا 15 ld3191 550 **b**|4|a ऽ।ऽऽ 560

ISLAND CUPER MINE ASSAY REQUISITION AND REPORT FORM

				ASSAT KE	- MOIDINON	IIION AND REPORT FORIVI				`•		
LAB SENT TO): <u> </u>		DATES	ENT:		SENT	BY/DEPT:_	'type: <u>Cor</u> e				
	, , , , , , , , , , , , , , , , , , ,		DATE REPORTED:			REPORTED BY:			(co	(core / perc / other)		
HOLE	FROM (ft/m)	то	COPPER % Cu	MOLY % Mo	IRON % Fe	GOLD ppm Au	SILVER ppm Ag	LEAD % Pb	ZINC % Zn	TAG		
D-181	565	570		1005	67	.111	7	003	12	17041		
	575	580	119	idd3	ୃଷ୍ଟ 📗	e 02		003	Idaq	042		
	585	590	117	004	83	04	1.5	da	1:1008	p H 3		
	595	600	1/3	E0 03	611	003	1.1	003	1017	044		
	605	610	120	001	64	0 []	1.2	1003	idas	045		
	615	620	33	004	67	010	2.2	1004	1007	046		
	625	630	1/2	ligga	60	1 4	07	003	०इ३	047		
	635	640	123	004	132	045	DB	003	1007	048		
	645	650	1/9	003	67	1,117	0.9	003	007	PHO		
	655	660	1/2	009	6.7	.13	09	002	006	050		
	665	670	1/15	005	60	10 / Bi	0.6	1003	1006	osı		
	6751	680	116	204	47	. 26	0.2	003	0/2	052		
	685	690		004	47	017	05	loda	008	053		
	695	7 00	1/6	loas	52	16	06	002	006	054		
	705	7/6	121	1007	34	0 17	0.7	002	- lac7	055		
	715	720	13	das	39		0.7	002	1006	056		
	725	730	109	ooá	58	o OP	04	002	0/8	057		
	735	740	14	igos	60	0 12	0 4	lad		0.58		
										Occupa-		

ISLAND CUIPER MINE ASSAY REQUISITION AND REPORT FORM

				<u>ASSAY R</u>	EQUISITION	AND REPORT	FORM				
LAB SENT TO	o: 1/c	-	DATES	ENT:	······································		BY/DEPT: _		77	rpe: Corce	٤
			DATER	EPORTED:		REPO	RTED BY:		(c	ore / perc / otl	her)
HOLE #	FROM (ft/m)	то	COPPER % Cu	MOLY % Mo	IRON % Fe	GOLD ppm Au	SILVER ppm Ag	LEAD % Pb	ZINC % Zn	TAG #	
D-181	745	750	122	iac 7	8 a	115	H	006	1016	17059	
	755	760	115	1005	99	20	1 17	004	1010	060	· /
	765	770	1/18	004	34	07		1003	lads	061	
	775	780	17	1007	65	111	1 17	1000	1004	062	
	785	700	119	lode	314	04	12	l log-	1004	063	-
	7951	800	115	904	102	111	116	des	1 1008		
	805	810	24	003	102	112	113	009	0/5	୦ ୪	
	815	820	1/22	1006		15	18	1000	1 009	િદહ	
	825	830	129	lade	82	! 17	112	l lad3	1 0/3	067	
	835	840	119	007	199			1003	004	୦ ୧୫	
									<u> </u>		
			1000	8							
			300								
[t tation to all all	! ! ! ! ! .	10	<u> </u>	<u>1. (</u>	<u> </u>	<u> </u>				

ISLAND C. PER MINE ASSAY REQUISITION AND REPORT FORM

LAB SENT TO	~ 1/C		D 4 70 70 61	ent: <u>Jan</u>	14/93	CENT	BY/DEPT:	TYPE: CORE			
LAB SENT I	۰: ۱۱	_		EPORTED:	<u>« 141</u> 0		RTED BY:	(core / perc / other)			
HOLE	FROM (ft/m)	то	COPPER % Cu	MOLY % Mo	IRON % Fe	GOLD ppm Au	SILVER ppm Ag	LEAD % Pb	ZINC % Zn	TAG #	
181-0	845	850	23	1001	64	272	SH	002	005	17069	25
	855	860	121		6 3	120120	77		1 7		26
	865	870	议升		510	-2709	106		3 j 7	0712	17
	875	880	131 4		46	1-21:41	147	i	6	672.	28
	885	890	50	8	45	19104	2719		ioug	073.	٦9
	895	900	30	1012	40	I. I PILLS	1.5/4		011	074	30
	905	910	43	1007	3,0	.2012	11512		4	075 3	31
	915	920	36	011	3 6	- 3248	112/18	001	1 4	076	32
	925	930	1/4	2	37	. 12/7	111/2		1026	Q77 ;	33
	935	940	137	6	43	J. 311/15	14 167		1405	978	34
	1000	1010	73	068	39	. 3727	32/8		5	0793	35
	1010	1020	56	193/	29	. 3820	24 7			0803	36
	1020	1030	55	0X0	21	。1327	116/10		5	0813	37
	/03 0	1040	46	020	スス	2521	1514		4	082	38
	1040	1050	164	0,20	126	-35	2:2			083	39
	1050	1060	4d	03/	118	.23	14		1 5	084	40
	1060	1070	63	018	21	1.2H	18	1	i s		41
	1070	1080	516	1019	28	1.29	22		6	086	42
	<u> </u>	1 1 1 .		i . i							

ANDI JANIS

ISLAND COPPER MINE LAB SENT TO: **ASSAY REQUISITION AND REPORT FORM** DATE SENT: Dec 17/92 SENT BY/DEPT: G &C TYPE: CORE DATE REPORTED: REPORTED BY: (core / perc / other) HOLE FROM TO COPPER MOLY **IRON** GOLD SILVER LEAD ZINC TAG (ft/m)% Cu % Mo % Fe ppm Au ppm Ag % Pb % Zn # 950

ISLAND C PER MINE LABSENT TO: 1/C **ASSAY REQUISITION AND REPORT FORM** SENT BY/DEPT: GEOL TYPE: CORE DATE SENT: (core / perc / other) REPORTED BY: DATE REPORTED: **GOLD** SILVER **LEAD** ZINC TAG HOLE FROM TO COPPER MOLY **IRON** % Pb % Zn % Fe ppm Ag (ft/m) % Cu % Mo ppm Au 136 7687 088 089 ioli babl 100 S 01 PA12 48 009 b 9 3 49 094 50 d755 ANDI

ANDI JANISMS

DRILL HOLE: D-181

MAGNETIC SUSCEPTIBILITY DATA

UNITS = 10^3 CGS units

FROM	то	MAG-SUSC
10.00	20.00	0.78
20.00	30.00	0.30
30.00	40.00	0.04
40.00	50.00	0.03
50.00	60.00	0.24
60.00	70.00	1.80
70.00	80.00	0.43
80.00	90.00	1.00
90.00	100.00	1.10
100.00	110.00	1.60
110.00	120.00	0.22
120.00	130.00	1.70
130.00	140.00	0.96
140.00	150.00	2.70
150.00	160.00	1.90
160.00	170.00	1.80
170.00	180.00	1.80
180.00	190.00	2.50
190.00	200.00	2.30
200.00	210.00	0.56
210.00	220.00	2.60
220.00	230.00	1.60
230.00	240.00	1.40
240.00	250.00	1.10
250.00	260.00	2.50
260.00	270.00	0.43
270.00	280.00	0.61
280.00	290.00	0.27
290.00	300.00	1.30
300.00	310.00	1.20
310.00	320.00	0.76
320.00	330.00	7.10
330.00 340.00	340.00	4.50 4.60
	350.00 360.00	3.20
350.00 360.00	370.00	1.10
370.00	380.00	0.14
380.00	390.00	2.80
390.00	400.00	1.30
400.00	410.00	2.20
410.00	420.00	0.04
420.00	430.00	0.09
430.00	440.00	1.20
440.00	450.00	3.80
	.50.00	2.00

FROM	то	MAG-SUSC
450.00	460.00	7.80
460.00	470.00	3.60
470.00	480.00	2.50
480.00	490.00	8.10
490.00	500.00	4.50
500.00	510.00	1.80
510.00	520.00	1.70
520.00	530.00	0.10
530.00	540.00	2.70
540.00	550.00	2.90
550.00	560.00	4.80
560.00	570.00	1.10
570.00	580.00	4.40
580.00	590.00	4.90
590.00	600.00	3.90
600.00	610.00	4.20
610.00	620.00	0.21
620.00	630.00	2.80
630.00	640.00	4.20
640.00	650.00	5.60
650.00	660.00	5.30
660.00	670.00	6.30
670.00	680.00	3.00
680.00	690.00	6.70
690.00	700.00	7.40
700.00	710.00	3.30
710.00	720.00	9.80
720.00	730.00	5.30
730.00	740.00	6.40 7.30
740.00 750.00	750.00 760.00	7.60
760.00	770.00	0.47
770.00	780.00	4.40
780.00	790.00	1.00
790.00	800.00	0.90
800.00	810.00	0.74
810.00	820.00	3.20
820.00	830.00	7.40
830.00	840.00	2.80
840.00	850.00	4.30
850.00	860.00	8.50
860.00	870.00	0.11
870.00	880.00	0.09
880.00	890.00	0.02
890.00	900.00	0.41
900.00	910.00	1.30
910.00	920.00	2.00
920.00	930.00	2.00
930.00	940.00	3.90
940.00	950.00	0.62
950.00	960.00	0.79
960.00	970.00	0.09

FROM	то	MAG-SUSC
970.00	980.00	1.10
980.00	990.00	1.40
990.00	1000.00	0.52
1000.00	1010.00	1.10
1010.00	1020.00	0.05
1020.00	1030.00	0.10
1030.00	1040.00	2.40
1040.00	1050.00	1.20
1050.00	1060.00	0.29
1060.00	1070.00	0.71
1070.00	1080.00	1.40
1080.00	1090.00	3.30
1090.00	1100.00	0.65
1100.00	1110.00	0.89
1110.00	1120.00	1.80
1120.00	1130.00	1.10
1130.00	1140.00	1.90
1140.00	1150.00	1.60
1150.00	1160.00	1.30
1160.00	1167.50	1.20

B 1.54

MAGNETIC SUSCEPTIBILITY

LE NO. <u>D181</u>

DATE Jan 4/93

INTERVAL:

VALUE:

INTERV	AL:	VALUE:				
FOOTAGE	STARTING POINT VALUE	+2'	+4'	+6'	+8 ₋ 1	INTERVAL AVERAGE
10-20						.78
20 - 30						3=4 -30
30-40						€6 ·04
40-50					•	⊭ .03
50-60						扫 : ·24
60-70						25 1-8
70 - 80						.43
80-90						1.0
90-100						1.1
100-110			•			1.6
110 - 120						.22
120-130						1.7
130-140	·		-			.96
140-150			•			2.7
150-160						1.9
160-170	•					1.8
170-180						1.8
180 - 190						2.5
190-200						2.3
200-210						.56
210-220			<u>.</u>			2.6
22 0 0-230						1.6
230-240						1.4
240-250						1-1
250-260						2.5
260 - 270						. 43
270 - 280						-61
280-290			<u> </u>			.27
290-300						1.3
300-310						1.2
310-320						.76
320 - 330			'. <u></u> .'			7.1
330-340			Α.	***	The state of the state of	件.5
340-350	ļ					4.6

MAGNETIC SUSCEPTIBILITY

Pg 2 of 4

DATE Jan. 4/93

INTERVAL:

INTERV	AL:	VALUE:				
FOOTAGE	STARTING POINT VALUE	+2•	+4 '	+6'	+8'	INTERVAL AVERAGE
350-360						3.2
360-370						1-1
370-380						-14
380-310					<u> </u>	2-8
390-400			·•			1.3
400-410						2.2
410-420						.04
420-430						109
430-440						1.2
440-450						
450-460			······································			7.8
460-470						3.6
470-480						2.5
480-490			···			8.1
490-500			· ·		·	4.5
	•					1.8
510-520						1.7
520 -530						.10
530-540						2.7
540-550						2.9
550-560						4.8
560-570						1.1
570-580						4.4
580-590						4.9
590-600						3.9
600-610						4.2
610-620						.21
620-630						2.8
630-640		·····	·			4.2
640-650				_		5.6
650-660						5.3
660-670				A CONTRACTOR		6-3
670-680	2 2 2		and the last of th			-3°0
680-690						6-7

MAGNETIC SUSCEPTIBILITY

19 3 9 T

LE NO. D181 ..

DATE Jan 4 93

INTERVAL:

VALUE:

FOOTAGE	STARTING POINT VALUE	+21	+4'	+6'	+8 *	INTERVAL AVERAGE
690-700						7.4
700-710						3.3
710-720						9.8
720-730				{		5.3
730 - 740						6.4
740-750					· · · · · · · · · · · · · · · · · · ·	7.3
750-760						7.6
760 - 770						.47
770 - 780						4.4
780 -790						1.0
<u> 790 - 800</u>						-90
800-810						.74
810-820						3.2
820 -830						7.4
830 -840					· · · · · · · · · · · · · · · · · · ·	2.8
840-850	•					4.3
820.8%						8.5
860-870						-11
870-880						-09
880-890						.02
890-900						.41
900-910						1.3
910-920						2.0
920-930						2.0
930-940						3.9
940-950						-62
950-960						-79
960-970					·	-09
970980						1.1
980-990	·					1.4
990-1000						-52
1000-1010						1-1
1010-1020		<u> </u>			· .	···05
1020-1030						-10

Pg 4 of 4

DATE Jan 4/93

JE NO. D(8)

INTERVAL:

VALUE:

FOOTAGE	STARTING POINT VALUE	+2'	+4 *	+6'	+81	INTERVAL AVERAGE
1430-1040				_	<u> </u>	2.4
40-1050						1.2
50-1060		,				.29
060 - 1070						.71 .
070-1080						1.4
080-1090						3.3
90-1100						.65
100-1110	:					-89
110-1120						1.8
120-5130						1.1
30-1140				1	-	1.9
140-1150						1.6
150-1160						1.3
160-1168	•					1.2
EOH		*				
	٠					
		_				
d.						2 100

		-				
						•
7:						
~					,	
	**				*	
ļ					4	
Alexander 1	•					
	ч					
-						1
·, -	,	· · · · · · · · · · · · · · · · · · ·				
	2.68	A.C. Comments				
	J. 10 20					
		1				
A		× *	and the second	944		12X 1 - 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DATE: Dec 17/92

PAGE / OF/ LOGGED BY: 5 Oakley

	 -			TOTAL CUM.					
	FOOTAGE			ERVAL	RECOV		PIECES	RQD	FRACTURE
	FROM 12	/7	60	CUMULATIVE	INCHES 63	, % 	> 4" 	7	INTENSITY
	17	27	120		80		17		
	27	37	120		121	 	19	<u> </u>	
	37	47	120		122		27		
	47	57	120		117		32		
	57	67	120		118		ø		
	67	77	120	[120		Ø		
	77	87	120		122		23		
	87	96	108		90		.5		
	96	106	120		109		7	-	
	106	115	108		100		111	ļ	
	115	117	24		26		Ø		
	117	127	120		/22		33		
	127	137	120		120		26		
	137	142	60		54		ø		
	142	<i>15</i> Z	120		122		25		
	152	162	120		123		29		
	162	172	120		120		34		
	172	177	60		57		24		
	177	187	120		121		45		
	187	197	/20		118		38		
. <u></u>	197	200	36		33		Ø		
	<u> </u>	<u> </u>							
·- <u>-</u>		<u> </u>							<u> </u>
								_	
						_		<u> </u>	
	<u> </u>		<u> </u>					<u> </u>	
						<u> </u>	_	<u> </u>	
	 			<u> </u>					
	 							1	<u> </u>
	}				1				

HOLE NO .: D181

DATE: Dec 12/92

LOGGED BY: S.R. Oakley

						TOTAL		
FOOTAGE	(FT) :	INT	ERVAL	1 RECOVE	RY	CUM. PIECES	RQD	FRACTURE
FROM	то		CUMULATIVE	INCHES	%	≥ 4"	3,	INTENSITY
332	3335	18		18			Ø	
333.5	338	54		62	<u> </u>		12	
338	342	4-8		4-6			22	
342	347	60		59			3/	
347	352			58			25	
35 2	357			60			27	
357	362			59			30	
362	367			_38			32	
367	372			60			3/	
372	377			59			19	
377	378	12		ଥି			Ø	
378	382	48		59			5	
382	387	60		60			23	
387	392			59			3/	
392	397			60			41	
397	402			5-9			26	
402	407			59			3/	
407	4/2			6/			30	
1412	417			6/			25	
417	422			155			29	
4-22	427			6)			39	
4-2-7	427			60			2.8 42	
437 437 442 447	437			60			42_	
437	4-42			60			37	
1442	447			60			29	
447	452			60			39	
1452	- 457	7		60			12)	
457	467			59			39 2) 13 26	
467	462 467			58			26	
467	472	. [58 59			9	
4-72	- 477			59			30	
477	467 472 477 482	i		57	7		34-	

ROCK QUALITY DESIGNATION

HOLE NO .: D 181

DATE: Dec 14/92

LOGGED BY: 5. Oakley # D. Pawlink

IU	ł	ΑL
CU	N	

	FOOTAGE			ERVAL	RECOVE	RY	CUM. PIECES		FRACTURE
	FROM	TO I	INCHES	CUMULATIVE	INCHES	% .	≥ 4"	97	INTENSITY
	482	487			60		10		
	487	492		<u> </u>	59	· · · · · ·	33	<u> </u>	
	492	497			60		19		
	497	502			59		34		<u> </u>
	502	507			59		39		<u> </u>
	507	512			57		10		
	512	517			60		39		
	517	522			57		31	<u> </u>	
	522	527			60		14	<u> </u>	
	527	532			59		23		
	532	537			59		17		
	537	542			60		34		
	542	547			59		43		
_	547	552			60		8		
	552	557	<u> </u>		59		15		
	557	562			60		18		
	562	567			61		6	_	
	567	572	 		62		13		
	572	577			57	1	26		
	577	582	1		60		34		
	582	587			61		28	1	
	587	592			60	 -	14		
	592	597	 		61		26		
	597	602			58	1	35		
	602	607			59	1 -	39		
	607	612	-		60		9		
	612	617		<u> </u>	60		18		
	617	622			59		24		
	622	627			59	<u> </u>	15		
	627	632			59	-	20		
	632	637			59		22		
	637	642			59		8		
	001	014							

ROCK QUALITY DESIGNATION

DATE: Dec 14/92

PAGE 40F 6

LOGGED BY: D. Pawlink

\$ 5. Oakley

	ł	J	1	١	L,
(C	J١	4		

FOOTAGE (FT) TO		ERVAL CUMULATIVE_	RECOVER	CUM. Y PIECES % >> 4"	RQD	FRACTURE INTENSITY
		THURES	COMOCATITE		4	-	1,1,1,0,110,111
642	647			46	$\frac{7}{9}$		
647	652			61		 	
652	657			60	17	 	
657	662			58			
662	667		·	58	16	<u> </u>	
667	672			54	Ø	<u> </u>	
672	677			60	6	<u> </u>	
677	682			58	18		
682	687			59	16		
687	692			60	34		
692	697			61	15		
697	702			58	27		
702	707			60	28		
707	712			58	11		
喜712	717			57	36		
717	722			58	26		
722	727			59	22		
727	732			60	25		
732	737			55	4		
737	742			58	4		
742	747			60	9		
747	752			60	17		
752	757			59	19		
757	762			59	18		
762	767		7	64	25		
767	768		10.	/ 18	Ø		
768	772			46	Ø		
772	777			35	27		
771	782			61	37		
782	787			60	49		
787	792			57	11		
797	797			59	5		

DATE: Dec. 15/92

PAGE 5 OF 6

LOGGED BY: 5. Oakley

* D. Pawlick

					TOTAL		
FOOTAGE (FT) TO	ERVAL CUMULATIVE	RECOVE INCHES	RY	PIECES	RQD	FRACTURE INTENSITY
797	802		58		ø		
802	807		59		20		
807	812		62		9		
812	817		61		6		
817	822		60		13		
822	827		61		22		
827	832		56	<u> </u>	17		
832	837	 	61		4		
837	842		<i>-5</i> 8		38	<u> </u>	
842	847		60		43		<u> </u>
847	852		58		35		
852	857		60		39	<u> </u>	
857	862		62		42		
862	867		<u>58</u>		33		<u>.</u>
867	872		59		15	<u> </u>	
872	877		59		20	<u> </u>	
877	882		61		16		
882	887		62		40		
887	892		60		19		
892	897		62		28		
897			55		6		
902	9 02 907		61		26		
907			56		10		
912	912		60		16	_	
917	922		50				
922	927		61		39		
927	932		59		18		
932	937		44		4		
937	937 942 947		<u>55</u>		31		
942	947		61		35		
947	952		60		40		
9.57	957		61		<i>3</i> 3		

ROCK QUALITY DESIGNATION

HOLE 110.: <u>D181</u>

DATE: Dec 16/92

LOGGED BY: D. Pawlink 4 S. Oakley

TOTAL

						TOTAL CUM.		
FOOTAGE (FT)		RVAL CUMULATIVE	RECOVE INCHES,	ERY	PIECES	RQD	FRACTURE INTENSITY
957	962			60		29		
962	967			60		<i>3</i> 3		·
967	972			61		13		
972	977			62		19		
977	982			<i>5</i> 5		20		
982	987			61		11		-
987	992	_		60		21		
992	997	_		62		36		
997.	1000			39		27		
Hole	continues		RQD to	be c	mpk	ted.		
					<u>'</u>			
							11	
						1		
		ļ. <u> </u>				<u> </u>		
					ļ	<u> </u>		
						<u> </u>		
					ļ			
					ļ			
					ļ			
						<u> </u>	<u> </u>	
		ļ		<u> </u>	<u> </u>			
		<u></u>			<u> </u>			
		<u> </u>		<u> </u>	<u> </u>	- 	ļ	
		<u> </u>		<u> </u>		_		
	<u> </u>				<u> </u>		<u> </u>	
		ļ	ļ		-	ļ		
					_			
			1				,	
		<u> </u>						

HOLE NO .: ______ 181____

DATE: Jan. 5/93

LOGGED BY: 5-Oakley

CORE ORIENTATION

DATE: Jan way 11, 1993 ORIENTED BY: D. PAWL14K

HOLE: D181 (continued) (5)

This form assumes that the reference angle=top of core (ie ref=0)

FOOTAGE	TYPE	T/B	ANGLE	DIP	THICK	INFILL	COMMENTS
2164	FL	. —	//5	. 43	0.25	K X. 4	part of healed fault zone
Z.	5 " This	K LOW	ainin a	Sunda.	,	dite ver	lets and fragments.
	4.	<u> </u>	7				
236.7	FL	7	190	37	0.02	×	smooth fracture ste.
240.1	FL	7	050	39	0,05	XX	R 11 , 11 " in
	stre a	mode	rately fro		zone	54	wide.
	11 A	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
240.8	FL	B	230	52	0.08	X	a smooth fracture ste-
241.6	FL	7	~3/0		0.7	X.P.K	~ orientation
- 11 A						77	
310.7	FL	B	070	Z4	0.03	X. 4	a irregular tracture ste
						,	
362.0	FL		000	50	0.0/	P	ireg. facture ste.
		,					
393.7	FL	7	115	36	0.03	X.K. 4	~5mooth 1, 11
						7-7-	
395.8	FL	7	/00	2.4	0.02	K, X, P	nirrea. 11 h
396.4	FL	7-	075	39	0.02	X. 4	2 ., 0 1. 1.
419.6.	FL	7	065	64	0.02	X,	irres " "
420.6	FL	В	225	3.4	0.6	4. f. 6 /2. X	5 mostly 11 at
in all	margh	- of -	ault zone	filled	beainly	by Fir	ely 6km core.
4201.6.	-429.6	mod	erately fro	durl d			
421,1	FL	7	1245	74	0.05	4.X	~ irreg. fracture ste.
424.2	FL	T	330	18	0.02		" "
4-26.0	FL	T	265	6/	0.0/	XX	~ " " " " " " " " " " " " " " " " " " "
426.8	FL	B	030	60	0.04	X'	~ smooth 11 "
430.5	FL	B	220	33	0.03	X,K	v 11 11 11
430.7	FL	7	305	30	0.15	F. LKn X, L	~ n n
485.6	FL	7	085	27	0.08	4 X	2 11 11
501.2	FL	8	030	25	0.1	12	2 // 0 -
507.7	FL	B	100	44	0.02	L X	~ " " "
5/5.9	FL	8	080	38	.0.53	KX.	rirea "
at b	offen e	1"	interval a	heale	Yen	4 'w. ab	andat real vitts tragmen
5/6.1	FL	8	070	30	0.06	K. X. F.6K	~ smooth fracture stt.
522.5	FL	В	155	28	3.00	fibter 5)	(- 4 " " "
centre	3	" wide	Fault 2	one o		mainly s	crushed finely broken rock
	0			i	1		1 / 1
524,	FL		165	59	0.10	HILL ()	rirregular tracture ste. a
1/0 p 0	modera	tile %	intensely	fracto	il 2	one 18	Y wide.
525.7	FL	1B	027	51.	0.03	4, X	irreg. Fracture Ste
525.2	= 4	7	700	144	0.02	XP	~ skooth # "

CORE ORIENTATION

DATE: Jan. 11/93

ORIENTED BY: David Pawlink
HOLE: D/8/ (continued)

This form assumes that the reference angle=top of core (ie ref=0) nb:

FOOTAGE	TYPE	T/B	ANGLE	DIP	THICK	INFILL	COMMENTS	•	
556.4	FL	7-	285	24	0.02	<u>د .</u>	nirregular	fracture	sylv
564.1	FL	B	040	37	0.15	flen X.L	a smooth	1,	.,
565.0	FL	7	120	09	0.08	•_4 .X	1- //	9	4
565.7	FL	7	105	2/	0.04	×	irreg.	h	1/4
568.2	FL	τ	000	15	0.02	X	5 mooth	6.5	l,
568.5	FL	7	3/0	4-6	0.0/	K	v 11	11	"
570.6	FL	7	30 5	4/_	0.07	K, X, L	N "	1.	11
571.2	FL	7	255	23	0.05	X.K	~ ,,		"
573.Z	FL	_B	025	/7	0.05	<u>کر`X</u>	~ irreq.	*	
centre	0/2	" wide		onl u	HK ff	ely bro	ten core.		-0
584.5			290		0.02	/ <u>/</u> , X	~ smooth	fracture	
585.8	FL	7	320	_27	0008		" irreg		
<u> 588.6</u>		7	330	27		f.bkn, L,X		<u> </u>	11 6
you	in ma	rgin	of fault	20ng	with	crushed	broken c	ore about	<u>3" 4</u>
			<u> </u>		 -	ļ		·	
54 To 1			2 7 6	72.7				1	-0-
600.4	1	7	220	<u>T/</u>		L, K		,	5/2.
645.1	11/2	18	265	13	0.02	 	~ smoth		<u> </u>
Sop of	interva	Aine			broke			" wide)
11Kely	TaulT	TONE	. Unsme		entation	- reas	ared is	1aut	-01
Tau/	zone	unde	lying the	cruse	*				 -
651.6	FL		080	20	0.02	4_	2 irreg.	fracture	510
652.7	FL	7-	085	22	1.02		2 ,,0	1 racing	<u>3.1₹</u>
655.0	FL	8	305	34		P.65. L.X	2 smooth	*	- Ir
656.0		حه		J - 7	J - 7	17. O'TI. ~. A	" //~0P/ N		
	EL	-	77.5	79				<u> </u>	le .
	FL	ナ	320	29 18	0.03	f. bkn K	~ irreg.	4	11
658.5	FL	1	220	18	0.06	f. bkn K	~ irreg.	4	
658.5	FL		320	18	0.06	f. bkn K	~ irreg. ~ "O ~ smooth	11	1,
658.5	FL	<i>T T T</i>	220 320 300	18	0.03	F. L. X F. L. X F. L. X	~ irreg. ~ 1.0 ~ smooth ~ irreg.	4	1,
658.5 694.5 -693.7 730.4	FL FL FL	1	320 300 000 280	18 13 31 14	0.03	F. bkn X F. bkn X, I F. bkn L, X F. bkn L, X	~ irreg. ~ smooth ~ irreg. ~ "	" " "	/s //
658.5 694.5 -693.7 730.4 743.8	FL	T T B	320 300 000 280	18	0.06 0.06 0.03 0.08 0.08	f. bkn X f. bkn X, 1 f. bkn L, X f. bkn L	~ irreg. ~ smooth ~ irreg. ~ "	11 11	1; 1; 1;
658.5 694.5 693.7 730.4 743.8 749.2	FL FL FL	T T B	220 320 300 000 280)/5	18 13 31 14 26 14	0.03	f. bkn X f. bkn X, I f. bkn L, X f. bkn L f. bkn K	~ irreg. ~ smooth ~ irreg. ~ smooth r smooth	11 11 11	1; 11 10 10 10
658.5 694.5 693.7 730.4 743.8 749.2 752.3	FL FL FL FL FL FL	TT B TB	220 320 300 000 280)/5	18 13 31 14 26 14 13	0.03 0.08 0.08 0.08 0.2 0.01	F. bkn X F. bkn X, I F. bkn L, X F. bkn L F. bkn K	~ irreg. ~ smooth ~ irreg. ~ smooth ~ smooth ~ smooth ~ smooth	11 11 11	1; 1; 1; 4
658.5 694.5 -693.7 730.4 743.8 749.2 752.3 755.7 763.6	FL FL FL FL FL FL	T T B B B	220 320 300 000 280)/5	18 13 31 14 26 14	0.03 0.06 0.03 0.08 0.08 0.2 0.01	F. bkn X F. bkn X, I F. bkn L, X F. bkn L K. X	~ irreg. ~ smooth ~ irreg. ~ smooth r smooth	" " " " " " " " " " " " " " " " " " "	1; 1; 1; 4
658.5 694.5 -693.7 730.4 743.8 749.2 752.3 755.7 763.6	FL FL FL FL FL FL	T T B T B T T	220 320 300 000 280)/5 //0 045	18 13 31 14 26 14 13	0.03 0.08 0.08 0.08 0.01 0.01 0.02 0.02	Flink Flinx, Flik, x, Flik, c, X Flik, c, X Flik, c, X Flik, C K, X X, K P, L	~ irreg. ~ smooth ~ irreg. ~ smooth ~ smooth ~ smooth ~ smooth ~ smooth ~ smooth	" " " " " " " " " " " " " " " " " " "	1, 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
658.5 694.5 -693.7 730.4 743.8 749.2 752.3 755.7 763.6 718.6 804.5	FL FL FL FL FL FL	T T B T B T T B	220 320 300 000 280)/5 //0 0/5 0/5 320	18 13 31 14 26 14 13 10 33	0.03 0.06 0.08 0.08 0.01 0.02 0.02 0.02	F. bkn X F. bkn X, F. bkn L,X F. bkn L K, X X, K P, L	~ irreg. ~ smooth ~ irreg. ~ smooth irreg. ~ smooth irreg. irreg.	" " " " " " " " " " " " " "	1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1
658.5 694.5 -693.7 730.4 743.8 749.2 752.3 755.7 763.6 718.6 804.5	FL FL FL FL FL FL FL FL	T T B T B T T	220 320 300 000 280)/5 //0 045	18 13 31 14 26 14 13 10 33	0.03 0.08 0.08 0.08 0.01 0.01 0.02 0.02	F. bkn K F. bkn X, F. bkn L,X F. bkn L K, X K, X P, L P, X	~ irreg. ~ smooth ~ irreg. ~ smooth irreg. ~ smooth irreg. ~ smooth irreg. ~ irreg. "	" " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11
658.5 694.5 693.7 730.4 743.8 749.2 752.3 755.7 763.6 718.6 804.5 823.6	FL FL FL FL FL FL FL FL	T T B B B T T B B T B T B B T B B T B B T B B T B B T B B B T B B B T B B B T B B B B T B B B B B T B	220 320 300 000 280 1/5 1/0 045 0/5 320 /35 /40	18 13 31 14 26 14 13 70 33 24 16 18	0.03 0.06 0.08 0.08 0.01 0.02 0.02 0.02 0.02 0.03 0.03	F. bkn K F. bkn X, F. bkn L,X F. bkn L K, X K, X P, L P, X	~ irreg. ~ smooth ~ irreg. ~ smooth irreg. ~ smooth irreg. ~ smooth irreg. ~ irreg. "	11	11 11 11 11 11 11 11 11 11 11 11 11 11
658.5 694.5 -693.7 730.4 743.8 749.2 752.3 755.7 763.6 718.6 804.5	FL FL FL FL FL FL FL FL	T T B T B T T B	220 320 300 000 280 1/5 1/0 045 0/5 320 /35 /40	18 13 31 14 26 14 13 70 33 24 16 18	0.03 0.06 0.08 0.08 0.01 0.02 0.02 0.02 0.02 0.02	F. bkn K F. bkn X, I F. bkn L, X F. bkn L K, X X, K P, L P, X A d	~ irreg. ~ smooth ~ irreg. ~ smooth irreg. ~ smooth irreg. ~ smooth	11	11 11 11 11 11 11 11 11 11 11 11 11 11

CORE ORIENTATION

DATE: Jan. 11/93

ORIENTED BY: <u>David Pawlink</u>
HOLE: <u>D181 (continued)</u>

This form assumes that the reference angle=top of core (ie ref=0)

···						· · · · · ·	
FOOTAGE	TYPE	т/в	ANGLE	DIP	THICK	INFILL	COMMENTS
856.Z	FL	В	250	/8	0./	P.X	~ smooth fracture ste.
393.4		B	/30,	49	0.03	PK	~ " "
near i	ween	mara	= a/ /c	sal Y	Emilt.	2018	over ~ 15 " core, kngt
Fault	France	Alled	by Erus	40	Fine 4	broken	core in a pyrite
chlorite	2001	iye ,	matrix	,			
894.0	FL		. 170	09	0.3	P. f. 6K	along lower morgin o
funt zo	2 710	led a	sove: 7	5 mo	0 HZ +	Fracture	ster
							01-0
894.5	FL	22	/35		0.0/	<u> </u>	rirreg. Fracture ste.
898,0	FL	7	485	,46	0.9"	PK, F. L.	1 11 11 11 11 11
alternat	ng py	te 6	ando wit	Mis,	by La	to or long	es of wallrock + chloris
***	U					ļ <u>.</u>	PIP
898.5	FL	B	3/5	54	0.03	P. L. K	virreg. Fracture Sta
	there !	negin	of /	" wid		zone "	with crushed core and
wisty	irreg		pyriq		ds.	0.,,	
903/6/	FLO	8_	/ /305	12		F, 6km, L, K	~ irreg fracture ste.
911.4	FL	7_	235	20	0.10	filka, K	
9/3.6	FL	7	275	24	0.15	F. bkn L	irreg. "
914.6	F-2	7_	255	37	0.20	f.bkn,X	~ "O "
940.5	FL	8	355	18		R Loken L, X	A
951. 9	FL	<u> </u>	/40	53	0./	17,X'	~ smooth "
992.2	F <u></u>	7	Z90	37	0.02	P, L	irreg. "
END	05 6	7 71110	AFTER	000	DING	5 at	1000 At depth:
	h	ients	METER.	one	belo	2 10	100 in D 181
no cor	- 01	rents	170n _a	Bux_	Mero.	75	00 12 121-
<u>.</u>	 	 	-		 	 	
END	OF	HOL	E at	1/68	feet	/-	
Erz	10,	///		17.50	100	 * 	
	 			 	 		. 49
··· -				 	†		
	 	 		 	 	<u> </u>	
						 	· · ·
	_	 	-		†	† 	
	1	†	<u> </u>			†	
	1		 		1	1	
	1						
	1			· · · · · · · · · · · · · · · · · · ·			
	1 -	 		1	Ţ		
		1	I				
	 	 • • • •					U/A