Geochemical Report on:

The Climax, Last Link, Gerald D, and Cracker Jack Fr Mining Claims (portion of the Holly Group)

Texada Island, British Columbia Nanaimo Mining District

Latitude: 49° 44' north Longitude: 124° 34' west NTS: 92F/10E

1.0G NO.	SEP 3 0 1993	1
ACTION.		, , ,
	al a transmission and the second s	-
FILE NO:		

By: Robert Perry August 1, 1993 Powell River, B.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

11/

Province of Ministry of ASSESSMENT REPORT British Columbia Energy, Mines and Petroleum Resources TITLE PAGE AND SUMMARY TYPE OF REPORT/SURVEY(S) TOTAL COST \$ 5,400.10 Geochemical AUTHORIS Robert A. Perry. SIGNATURE(S) DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FILED YEAR OF WORK 1993 PROPERTY NAME(S) Cracker Jack Fr., Gerald D., Last Link, Climax. all forming a portion of the "Holly Group" COMMODITIES PRESENT . C.U., Z.P., Pb, Ag., A.V. B.C. MINERAL INVENTORY NUMBER(S), IF KNOWN MINING DIVISION LATITUDE . 49°., 44 NAMES and NUMBERS of all mineral tenures in good standing (when work was done) that form the property [Examples: TAX 1-4, FIRE 2 (12 units); PHOENIX (Lot 1706); Mineral Lease M 123; Mining or Certified Mining Lease ML 12 (claims involved)]: Cracher Jack Fr #183 (Lot 445), Gerald D #110 (Lot 442) Last Link # 109 (Lot 51), Climax # 181 (Lot 49). ALL REVERTED CROWN GRANTED MINERAL CLAIMS OWNER(S) Robert A Perry (1) MAILING ADDRESS 6622 Cranberry St. Powell River, BC, V&A 321 OPERATOR(S) (that is, Company paying for the work) . Robert A. Perry. (1)MAILING ADDRESS 6622 Cranberry St. Powell River, BC, V8A 321 SUMMARY GEOLOGY (lithology, age, structure, alteration, mineralization, size, and attitude): Karmutsen basalt and andesite flows, both of Triassic Age, underlay the property. Extensive block foulting has created a host environment to a well developed system of diorite dytes and quartz, veining & breccia. Chalcopyrite, pyrite, sphalerite, .galena, and native gold occur . as fracture fillings and disseminations in coarse quartz veins, in and adjacent to, fault zones, REFERENCES TO PREVIOUS WORK ASSESSMENT Reports 7939, and 9511. Geological Mapping Report on the Holly Groop (1985) Garratt G.L.

(over)

Table of Contents

•

	Page
Introduction	1
Location and Access	1
History	1
Property Description	2
Regional Geology	2
Property Geology	3
Mineralization	3
Work Done	4
Geochemical	4
Enviromental Concerns	6
Conclusions	6
Proposals for Further Work	6
Statement of Costs	8
Certificate	9
Bibliography	10
Soil Collection Field Notes Assay Reports Histograms	Appendix A Appendix B Appendix C
Location Map Claim Map (1:50,000)	Fig 1 Fig 2 Fig 3 (in packat)
WORK AREA ACCESS MAP (1:4,000) Lead Geochemistry (1:4.000)	Fig 4 (in pocket)
Copper Geochemistry (1:4,000) Zinc Geochemistry (1:4,000)	Fig 5 (in pocket) Fig 6 (in pocket)

F/15E 38025 37938 523 L 516 توجي 136 135/L530 L1520 Ø) ADA 1334(3) 7*c*~ 609 18, **6**27 517 lew Yen Yen 4NX3E 7 Emily ĸ 6 Ż 5 37935 P CG 525 BAR y≣w 5 'e w Ł CG L 302 rya, Уe 7608 526 BROWNIE 3FR. 1147(4) 2/10 R 8 528 201 4 77 R OF Her (ta 6 ß ZELA CG FR TIGER [648 (1) CLIMA 14454 36(3) 37793M 181(10) A 175 IDEAL 110 LAST LINK X2W 62 HH 446 10363 1330) 9 C.B. 09(10) e_{HAL} 376 E đ わ GEN GERA AS AS 144 87/6 1286 (12) 376 63H 110(10) 52 ĊG. 176 IDEA TOFAL 5X 33(3) sx4e 8 40882 C 56 21 22 VO Z L 17936 HOLLY NDEN FR 174 YLINDEN IOI8(IO) 243 E C.G. 376614 13302 - G 15 7.97 146 87464) BASIC #19 B 40884 104 ∕⊽9 FR. c_{G} CA. INDEN ĊĠ 55 CG GOLDEN ROD 2 661(7) 106 1019(10) Ļ 37659H BASIC#K 63 245 CG. 13300 13300 13886 CG. 05 7 G /L 62 3 TREEM ĊG. 378,58 H 13306 BACIC 3765 20287 BASNE 15 44 ŠIČ CG. -13 246 C.G. 46 ca ן צב ¥ر 61 С, WELCOME - IR R. 299(1, 376 53 H QUICKTON 57787M (330 7G 18308 687 (4) 37655 BASIC 97(8, 37654H BASIC 65 IDEAL 4080B *B* _∧ 40889 SŰ BASIC#9 2N X 2 W 23/6 10 H 37631 H ப் 67 Μ 64 5%51 L 149 725 75 336(2) ιž SANDY L "137650H 315 18120 ζ*Ģ*. 28(9) B 41066 BASIC 593 594 597 Bay *6 DEC FR. CG ÇĞ CG 18065 150 EG 12 3351 LOGGER I 1062112 37649L 592 BROW-NIE I FR. IOTI 376484 4578 1595 Lcc 596 386 (5) 7286 5**9** BASIC#3 H 81 510 509 39*34* C.G L1/1E 20 #4 156880 Į. 14 700 (2) WAHB 19126 4586. 37647 13297 6 840878 4519 19298 L<u>1</u>48 4585P 13322 408 94 374360 357(4) 2764 1.1ME ASIC BASK 13933 M 1/11E Welcome -, **G** L117E 13 8 40879 14 #1 Bar 182 N L234 17284 14587 LIME 452 <u>ال</u> 264 265 H 17440 ITTE 18 **C**.G, CG. 15 L5 2 66 268 45887 5326 **S**G 6 يو 4 ο 15597 155965 Holly Group - Claim Location 16851 799 15601 15600 156 T FAL т АL 16850 Scale: 1:50,000 12 RON 17453 Nanaimo M.D. 92F/ 10E 15922 6604M IRON STAN I Auoust 1. 1993 Robert A Perry 734(11) 15097 Tri 10 Fig 2

Introduction

During the months of February through to July of 1993, a controlled geochemical survey was carried out in the Kirk Lake area of the Holly Group of mineral claims on Texada Island. The Survey objective was to locate buried, gold-bearing quartz veins by using more mobile pathfinder elements and tracing those elements back to their source. The survey found that Pb, Cu, and Zn were good elements for this purpose and three significant anomolies were identified. Some physical work is recommended although it will have to be of a limited size. The property surface title is privately owned and is within the Vananda town watershed. Concerns of residents and Land owners will have to be addressed.

Location and Access

The Holly Group is lacated at latitude 49[°] 44' north and longitude 124[°] 34' west in the Nanaimo Mining District of British Columbia. The property is located on Texada Island, some one hundred kilometers northwest of the City of Vancouver, in the Strait of Georgia. Access to the Island is by regularly scheduled air service from Vancouver to Gillies Bay, or by car ferry via B.C. Ferries from the town of Powell River. There is road access to the Property from the town of Vananda via two kilometers of paved road followed by two kilometers of private dirt road. A four-wheel drive vehicle is recommended. Hotel accomodations are available in Vananda and Gillies Bay.

History

Mining activity on Texada Island dates back to the turn of the century when several small mines were in operation in and around the town of Vananda near the north end of the Island. From these old producers, approximately 75,000 ounces of gold, 500,000 ounces of silver and 19,000,000 pounds of copper were recovered. The largest of these mines being the Marble Bay Mine. Texada Mines Ltd. operated a large underground and open pit mine at Welcome Bay between 1952 and 1977. Over 20 million tons of ore was mined yielding iron and copper concentrates and approximately 25,000 ounces of gold. At present there are three open pit limestone quarries in operation at the north end of the Island. Rhyolite Resources Inc. has a 100 ton per day gravity mill on It's nearby Bolivar gold property on Crescent Bay Road. The mill is not presently operational but I understand that with a limited amount of work it could be.

The claims of the Holly Group have been host to several small, but very rich, "Bonanza Type" vein gold deposits. First discovered in 1894, they have been worked and explored intermittently to the present day. A mine site and amalgamating mill were erected on The Gem mineral claim in the 1920's. The operation lasted only only one year and the results were disappointing. Northair Mines Ltd. completed 464.8 meters of diamond drilling on the Holly mineral claim in 1985, and some additional diamond drilling on the Yew #7 Coim in 1986. These programs by Northair outlined

History cont.

several favourable structures, however, overall grades remained generally low.

Several operators have undertaken gold geochemical surveys in the area with inconclusive results. Even areas of known bedrock gold occurrences yielded poor values in soils. With the exception of a localized base metal soil survey on the Gem mineral claim in 1977 by A. H. Manifold, P. Eng., no other base metal soil geochemistry is known to have been done on the property.

Property Description

The Holly Group presently consists of 1 Crown Granted claim, 10 reverted Crown Granted claims, 12 Two-Post claims, and 7 Fractional claims for a total of 30 units. The Property has been grouped for assessment purposes since June, 1985. Most of the surface Titles are held by private landowners. Crown land accounts for approximately 18% of the surface. Rhyolite Resource Inc. presently owns twenty of the mineral claims and the remaining ten claims are held by several private individuals. The present work program took place on the Climax MC, Last Link MC, Gerald D MC, and Cracker Jack Fr. (all being reverted Crown Granted mineral claims). These claims are all 100% owned by myself, Robert Perry.

The work area is wholy within the Vananda watershed. Elevations range from 100 to 140 meters above sea level. Drainage from the area is into Kirk Lake via several small creeks. The outflow from Kirk Lake feeds Priest Lake from whence the town of Vananda draws it's water supply. The area is forested with second growth Douglas fir, Red cedar, Hemlock, Pine and Coastal alder at varying stages of growth. Logging has been carried out intermittently over the past ninety years. There is presently logging happening at this time.

Soil development is inconsistant with numerous outcrops of bare rock and poor soil development, interspursed with areas of complete soil horizon development in areas of low relief. Despite this, it was felt that the majority of the work area was suitable for a base metal geochemical survey.

Regional Geology

Texada Island hosts the same geological units as central Vancouver Island. Karmutsen volcanics, consisting of flows of porphyrytic to amygdaloidal basalt and andesite, and Quatsino limestone, all of Triassic Age, underlay most of the Island. Highly altered andesite, tuff, limestone, and pyroclastics of the Sicker Group outcrop at the southern end of the Island. These rocks, of Permian Age, are

Regional Geology cont.

the oldest on the Island. The volcanic and sedimentary units at the north end of the Island have been intruded by a number of diofite and quartz diorite stocks and dykes. It is in the area of these intrusions that economical mineral deposits have been located and mined in the past.

Regional faulting is strongly developed on the Island. Northwesterly trending faults dominate the structural setting. These large faults (some being traced for 10 to 15 kilometers) parallel the Island's axis, Malaspina Strait, and Georgia Strait. Lesser east-west trending faults cross-cut the predominate northwesterly faults in all regions of the Island.

Property Geology

The Claim Group is underlain by Karmutsen basalt and andesite flows. East, northeast and north of the Property is a large body of Quatsino limestone, extending from Gillies Bay twelve kilometers northwest to Blubber Bay. The contact between these units is mostly away from the Claim Group to the northeast with the exception of two exposures, one on the Holly C.G. and the other on the Yew #2 Fr.

The Karmutsen volcanics have undergone extensive horst-graben style block faulting. This has resulted in the formation of a series of linear swamps and hog-back ridges favoring the predominant northwesterly and east-west fault trends.

Interbedded within the Karmutsen flows is a band of dark grey limestone, fine grained and visibly different from the Quatsino variety which occurrs nearby. Being predominately a horizontal unit, it is poorly exposed. When observed, usually along the edges of faults where vertical expression is more pronounced, it occurrs as a layer(up to 3 meters thick) and also as discontinuous lenticular blocks (Holly, Gem, and Climax mineral claims).

Numerous intrusions occur on the property in the form of diorite dykes. These dykes occur almost without exception, within or adjacent to fault zones. Dykes range in size up to 30 meters in width. The larger variety being associated with the larger northwesterly trending faults.

Mineralization

Chalcopyrite, pyrite, sphalerite, galena and native gold occurr as fracture fillings and disseminations in coarse quartz veins. These Quartz veins occurr as splays within and adjacent to fault zones. Low laying grabens, especially those which have undergone multi-directional fracturing and faulting, appear to be a perticularly good host to quartz vein emplacement.

Mineralization cont.

A second type of mineralization exists in the form of sphalerite and galena(carrying gold values) in a Quartz/andesite breccia in contact with, and most surely associated with, an interbedded layer of fine grained dark grey limestone.

Work Done

A baseline 1.6 Km in length was established on a true bearing of 300° . The zero point is located on the west side of an old logging road near the west corner of the Gerald D mineral claim. From that point the baseline extends 1.0 Km to the northwest and 0.6 Km to the southeast. Crosslines were established at 50 meter intervals and stations located along the crosslines at 25 meter intervals. All lines were flagged with "pink-glo" ribbon. All stations were flagged with a combination of blue and pink ribbon marked with black felt marker. All lines were run with a belt-chain and compass.

Geochemical

Geochemical soil sampling was done on an intermittent basis between March 11, 1993 and May 12, 1993. Wheather during this time is best described as wetter than normal with above average rainfall. Soil development was inconsistent and in some areas poorly developed. The program strived to sample B horizon soil at a depth of 10 centemeters below the A - B boundry. In the majority samples this was possible. A small number of samples were of A horizon soil, taken because of an absence of B horizon or, because B horizon was unreachable due to coarse rock and wood in the soil. These samples are documented in Appendix A. A 4cm diameter by 1.5 meter long soil auger and a 0.5 meter long hand spade were used to gather the samples. Auger was the tool of choice however, the spade was often used because of poor augerable soil. Average depth for the majority of samples was 25-30cm.

Field notes were made at every station where a sample was taken. The following observations were recorded:

soil color
 horizon
 slope of land & direction
 grain size(coarse, medium, fine)
 estimated depth to bedrock
 tool used
 soil type(residual, transported)
 sample depth

Samples were collected unsieved, bagged in the field in kraft sample bags, and shipped via Maverick Bus Lines to Acme Analytical Laboratories in Vancouver, British Columbia. At the laboratory

Geochemical cont.

the samples were sieved, dried, and subjected to I.C.P. analysis for 30 elements. Only copper, lead and zinc were found to produce useful dispersion patterns in the soil. Field notes are included in this report as Appendix A. Geochemical results have been plotted and contoured on figures 4,5,& 6 (in pocket). The samples were not concentrated in any way and the results have not been filtered, averaged or smoothed.

The survey outlined three separate soil anomolies. The Climax anomoly. the Last Link anomoly and the Gerald D anomoly. All named after the mineral claim on which they were found. Baseline anomolous values were arrived at by histogram determination at Cu (60 ppm), Zn (70 ppm), Pb (10 ppm).

The Climax anomoly is anomolous for lead, zinc and copper. Gold was not tested for at trace level amounts in soil. The anomoly is centered on the base line at station 650NW. The anomoly measures 450 meters by 300 meters on a northwest axis. The area southwest of the baseline is relatively flat however, the area northeast of the baseline drops off steeply towards the shore of Kirk Lake. The best area for exploration of this anomoly appears to be at 575NW, 25NE. In this vacinity lead and zinc values in the soil peaked at 185ppm and 886ppm respectively. Although no economical grades of mineral were observed in bedrock (exposure is poor), a 100Kg float boulder was observed on the baseline at 570NW. A 3Kg composite sample of this boulder yielded the following results. Sample # K-93-03 : Cu 201ppm, Pb 14,120ppm, Zn 38,566ppm, Ag 17.4ppm, Au .041 oz/t.

The Last Link anomoly is anomolous for copper and zinc. Gold was not tested for at trace level amounts in soil. The anomoly is centered 200NW, 75SW and measures 200meters long by 75 meters wide, striking 80° True. Zinc dispursion is broader here than copper. The area is of low relief with a swamp-like appearance. Several rock knolls do outcrop however, and one such knoll located at 88SW, 193NW hosts an old pit measuring 1.5 meters by 3 meters by 2 meters deep. Exposed in the pit is a quartz vein measuring 18 cm in width, containing pyrite, chalcopyrite and minor sphalerite, and striking true east-west. A 3kg composite sample of mineralized vein and wall rock yielded the following results. Sample # K-93-04; Cu 2,262ppm, Pb 198ppm, Zn 391ppm, Ag 23.0ppm, Au .32 oz/t.

The Gerald D anomoly is anomolous for copper and zinc. Gold was not tasted for at trace level amounts in soil. The Gerald D anomoly is centered at 350SE,25SW and measures 450 meters long by 100 meters wide, and striking 295° True. The base line in this area follows a major fault extending from the southeast end of the work area and striking northwest into Kirk Lake. Along this fault are a series of swamps and small creeks, hence, the general drainage pattern is northeast and southwest towards the baseline then along the baseline towards Kirk Lake. The origin of the anomoly is believed to be a

Geochemical cont.

system of mineralized east-west trending Quartz veins, occurring as splays comming off of the main fault. This is supported by the presence of abundant quartz float found within the anomoly, and also by the presence of a heavily mineralized quartz vein found exposed in an old pit located at 450SE, 20SW. A 3kg composite sample of the 15cm wide quartz vein and wall rock yielded the following results. Sample # K-93-01 : Cu 9,719ppm, Pb 2ppm, Zn 90ppm, Ag 6.7ppm, Au .048 oz/t.

Enviromental Concerns

The work area is in a sensitive environmental setting. The area surrounding Kirk Lake is all privately owned and used for summer recreation by the owners. The Kirk Lake drainage system flows into Priest Lake and makes up part of the water supply for the town of Vananda. Although the Regional and Provincial Governments have not moved to enact legislation to restrict mineral exploration and development in this area, that will always be a very real possibility.

Conclusions

The principal mineral to be sought on this property is gold. The geochemical survey was successful in outlining three base metal anomolies where subsequent rock sampling yielded significant gold values. It is unlikely that a major base metal deposit could be successfully mined , or even exists on the property. However, based on the history of "Bonanza" gold occurrences on the surrounding mineral claims(Holly, Gem, Lorindale), there is a very good likelihood that similar high grade gold can be found on this property too. The structural setting and mineral deposition enviroment are identical to these other claims.

Proposals for Further Work

- 1. It is recommended that the Climax anomoly be investigated by hand trenching, or perhaps with a packsack diamond drill in the area of 575NW, 25NE. It is further recommended that prior to commencment of any physical work on this anomoly, the Provincial Health Department be requested to sample Kirk Lake at its inlet and outlet for heavy metals content. Such a precaution is in the best interest of the operator and those other agencies or persons who might later challenge the quality of the lake water in respect to physical work having been carried out.
- 2. It is recommended that the Last Link and Gerald D anomolies be investigated by excavating a series of trenches. The area is easily accessable with a backhoe. The Gerald D claim is presently being logged by the owner. Environmental disruption would be minimal.

Proposals for Further Work cont.

.

3. It is felt that E.M. work in the area of the Last Link and Gerald D anomolies could prove useful in those locations where moderately deep soil cover hindered the soil survey. In perticular, the northeastern half of the Gerald D mineral claim. An EM-16 is recommended for this work. This instrument was used on the Gem and Holly claims in 1985 and produced very useful results.

Statment of Costs

Field Crew :	Robert Perry	John Craven
<u> </u>	6622 Cranberry St	4858 Fernwood Ave.
	Powell River, BC	Powell River, BC
	V8A 3Z1	V8A 3L8

.

Feb 4 to Mar 9	Establishing control grid.	ll Man/days	
Mar 11 to May 12	Soil sample survey	8 Man/days	
July 18	Rock sampling	l Man/day	
Aug 1 to Aug 3	Map and Report Preparation	3 Man/days	
	Man/days @ \$120.00 per Man/day	23 Man/days	2,760.00

Assays :	320 soil samples / ICP Analysis	1,968.00	
	4 rock samples / ICP,Au by fire	74.69	
	Total assay charges	2,042.69	2,042.69

Other Costs :	Data Plots	16.05	
	Freight	30.16	
	Ferry Fares	195.00	
	Field Supplies	125.00	
	Vehicle: 680Km @ 34¢/Km	231.20	
	(1982 Ford Bronco 4WD)	597.41	597.41

Total Cost of Program = \$ 5,400.10

CERTIFICATE

I Robert A Perry do certify that:

- 1. I have been actively prospecting for mineral ores in the Province of British Columbia since 1975.
- I am experienced in the technics of geochemical silt and soil sampling and the interpretation of such data as a tool for prospecting.
- 3. All of the work included in this feport was done by me, or under my direction.

1

- 4. I have a 100% interest in this property.
- 5. I assume full responsibility for the quality of all fieldwork done, and the accuracy of this report and the data contained in it.

Bibliography

- Mc CONNELL R. G., 1914: Geological Survey of Canada, Memoir No. 58
- BALICKI E.M., 1972: British Columbia Deptartment of Mines and Petroleum Resources, Mineral Deposit/Land use map, 92F Alberni.
- MANIFOLD A. H., 1977: Geochemical Report on the Gem mineral claim, B.C. Assessment report # 6414.
- BEALE S. L., 1979: Geochemical Survey for Gold on the Last Link Group, B.C. Assessment report # 7939.
- BEALE S. L., 1980: Geochemical Report, Last Link Group B.C. Assessment Report # 9511.
- GARRATT G. L. 1985: Geological Mapping Report on the Holly Group of Claims for Northair Mines Ltd.
- GARRATT G. L. 1985: Diamond Drilling Report on the Holly Crown Grant, Lot 56, for Northair Mines Ltd.

APPENDIX A

.

•

SOIL COLLECTION FIELD NOTES

Soil Collection Field Notes

Holly Group, Kirk Lk. Area

.

Symbols:Color- R (red)Slope- S (slight)Tool- A (auger)B (brown)M (moderate)S (shovel)G (grey)X (extreme)S (shovel)O (orange)BL (black)S

Soil Type- R (residual)Grain- C (coarse)T (transported, glacial)M (medium)F (fine)

Sample		Color	Hor.	S] &	.ope Dir. G	rain	Depth to Bedrock	Tool	Soil Type	Sample Depth
L950NW L950NW	50SW 25SW B1	0 R Peat	B B bog	no	S/N M /N	M M taker	250cm 250	S S	R R	20cm 30
L950NW L950NW	25NE 50NE	0	B B	110	M /S M /S	M M	125 250	S S	R R	20 25
L900NW L900NW L900NW	50SW 25SW BL 25NF	G O Peat Post	B B bog,	no	M /N S /N sample	M M taker	350cm 350	S S	R T	20cm 36
L900NW	50NE	0 0	B	по	M /S	M	125	S	R	30
L850NW L850NW L850NW L850NW L850NW	100SW 75SW 50SW 25SW BL	O O B B B	B B B B		M /W M /NW M /NW X /N M /N	M C C C	60cm 90 90 120 180	N N N N	R R R R	20cm 24 24 30 30
L850NW L850NW L800NW L800NW L800NW	25NE 50NE 100SW 75SW 50SW	BL 0 0 0 0	A B B B B	SI	wamp M /S M /SW S /NW S /NE	F C M M C	300cm 90 60 120 60	A S S S S	T R R R R	90cm 35 20 30 36
L800NW L800NW L800NW L800NW L800NW L750NW	25SW BL 25NE 50NE 125SW	O BL G B	B B B B B	SI	M /NE X /NE X /NE wamp S /W	C C C F C	60cm 60 90 450 120	S S S A S	R R T R	30cm 25 30 75 20
L750NW L750NW L750NW L750NW L750NW L750NW	100SW 75SW 50SW 25SW BL	G B O BL	B B B B		M /NW M /NW S /N M /NE X /NE	C C M C C	120cm 90 60 60 60	N N N N N	R R R R	25cm 35 25 25 35
L750NW L750NW L750NW L750NW L750NW L700NW	25NE 50NE 75NE 100NE 150SW	BL B O BL G	A B B B B	SI	X /NE M /NE M /S X /S wamp	C M C M	90cm 240 450 300 240	N N N N	R R T R R	30cm 30 25 40 30

Appendix "A"

Sample		Color	Hor.	Slope <u>& Dir.</u>	Grain	Depth to Bedrock	Tool	Soil Type	Sample Depth
L700NW L700NW L700NW L700NW	125SW 100SW 75SW 50SW	B G G B	B B B B	S/SW none none S/NE	C C C C	90cm 60 60 90	S S S	R R R R	20cm 30 30 30
L700NW L700NW L700NW L700NW L700NW L700NW	25SW BL 25NE 50NE 75NE 100NE	B R BL O G	B B B B B B	M/NE M/NE X/NE X/NE S/NE swamp	C C C M M	90 120cm 90 120 300 450	5 5 5 5 8 8 8	R R R R T	35 30 40 25 25 60
L700NW L700NW L650NW L650NW L650NW	125NE 150NE 175SW 150SW 125SW	B G R O G	B B B B B	M/S M/S M/NE S/SW S/SW	M M C C C	300cm 240 90 180 90	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	T R R R R	30cm 50 25 25 30
L650NW L650NW L650NW L650NW L650NW	100SW 75SW 50SW 25SW BL	B R B B	B B B B B	M/SW M/NE M/NE M/NE M/NE	C M C M	30cm 60 120 60 20	20 20 20 20	R R R R	25cm 30 30 15 15
L650NW L650NW L650NW L650NW L650NW	25NE 50NE 75NE 100NE 125NE	B Coar G O	B rse tal B B	X/NE X/NE us slope swamp swamp	C C F F F	30cm 30 sample take 450 450	s s A s	R R T T	15cm 15 70 30
L650NW L650NW L600NW L600NW L600NW	1 50NE 175NE 200SW 175SW 150SW	B B B B	B B B B B	S/S M/S M/NE M/NE swamp	M C M M	450cm 450 120 90 240	S S S S A	Τ Τ R R R	35cm 30 30 30 45
L600NW L600NW L600NW L600NW L600NW	125SW 100SW 75SW 50SW 25SW	B O B R	B B B B B	M/SW S/SE S/NE S/NE S/NE	M C C C	60cm 60 45 90 30	2 2 2 2 2	R R R R R	30cm 30 25 25 20
L600NW L600NW L600NW L600NW L550NW	BL 25NE 50NE 75NE 150SW	R G B B	B B B B B	S/NE M/NE M/NE S/S	C C C C C C C C	60cm 60 30 30 210	202020	R R R R R	15cm 15 20 20 25
L550NW L550NW	125SW 100SW	B BL	B B	S/SW M/S	C C	180cm 60	ន	R R	25cm 20

·····

Soil Collection Field Notes(cont.)

.

Sample		Color	Hor.	Slope & Dir.	Grain	Depth to Bedrock	Tool	Soil Type	Sample Depth
L 550NW L 550NW L 550NW L 550NW L 550NW	75SW 50SW 25SW BL 25NE	G BL G B B	B B B B B	S/SE S/SE M/NE M/NE X/NE	C M M C M	60cm 90 60 120 30	202020	R R R R R	25cm 20 25 25 25
L 550NW L 550NW L 500NW L 500NW L 500NW	50NE 75NE 100SW 75SW 50SW	B R B O B	B B B B B	M/NE X/NE S/S S/S S/E	C C M C	60cm 30 180 180 180	202020	R R R R R	20cm 25 25 25 25
L 500NW L 500NW L 500NW L 500NW L 500NW	25SW BL 25NE 50NE 7 <i>5</i> NE	B BL B B O	B B B B B	S/SE X/E X/E M/E M/E	C C M C C	60cm 30 30 90 90	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	R R R R R	30cm 15 15 30 25
L450NW L450NW L450NW L450NW L450NW	1005W 755W 505W 255W BL	G G B BL BL	B B B B B	S/SE M/E M/E M/E M/E	C C C C C C C	240cm 240 240 240 90	N N N N	T T R R R	30cm 30 30 25 30
L450NW L450NW L400NW L400NW L400NW	25NE 50NE 100SW 75SW 50SW	BL O G G G	B B B B B	M/E M/E M/E M/E M/E	C C C C C C	180cm 180 150 150 150	5 5 5 5 5	R R R T	30cm 30 25 25 30
L400NW L400NW L400NW L400NW L350NW	25SW BL 25NE 50NE 100SW	G B B B B	B B B B	M/E S/E S/E S/E S/E	C M M M	150cm 240 150 60 120	S A S S S	R R R R	30cm 50 20 20 30
L350NW L350NW L350NW L350NW L350NW	75SW 50SW 25SW BL 25NE	B O B B	B B B B	S/E S/E S/E S/E S/E	M M M M	120cm 120 120 180 240	S S S A S	R R R R R	25cm 25 20 30 30
L350NW L300NW L300NW L300NW L300NW	50NE 100SW 75SW 50SW 25SW	B G B R	B B B B	S/E S/NE swamp none S/N	M F F M	240cm 180 180 180 90	S A A S	R R T R R	30 50cm 35 55 15
L300NW L300NW L300NW	BL 25NE 50NE	B B B	B B B	S/N S/N S/N	M F F	180cm 180 150	A A A	R R R	30 30 40

Soil Collection Field Notes (cont.)

٠

.

Soil	<u>Collection</u>	Field	<u>Notes</u>	(cont.)	
					-

Sample	C	olor	Hor.	Slope <u>& Dir. G</u>	rain_	Depth to Bedrock	Tool	Soil Type	Sample Depth
L250NW L250NW L250NW L250NW L250NW	100SW 75SW 50SW 25SW BL	B G B R R	B B B B	S/NE S/SE S/NE S/E S/E	F F M M	240cm 240 180 90 120	A A S A	R R R R R	55cm 70 50 20 3 0
L250NW L250NW L200NW L200NW L200NW	25NE 50NE 100SW 75SW 50SW	B B G O G	B B B B B	S/E S/NE none S/NE S/NE	M F C M	90cm 120 120 90 240	A A S A	R R T T	35 cm 45 25 25 50
L200NW L200NW L200NW L200NW L200NW	25SW BL 25NE 50NE 75NE	B B B G B	B B B B B	S/NE S/NW S/NE S/NE none	M M M F	150cm 150 150 120 240	A A A A	R R R R	35cm 35 35 35 60
L200NW L150NW L150NW L150NW L150NW	100NE 100SW 75SW 50SW 25SW	B B G G	B B B B B	none M/NE M/NE none S/NE	F C C M M	240cm 25 90 90 90	A S S A	R R R R	60cm 15 25 30 45
L1 50NW L1 50NW L1 50NW L1 50NW L1 50NW	BL 25NE 50NE 75NE 100NE	B B G R	B B B B B	none S/NE S/N S/N S/N	F M M M	35cm 30 150 120 120	A S A A	R R R R	30cm 20 50 35 50
L150NW L150NW L150NW L150NW L150NW	125NE 150NE 175NE 200NE 225NE	G R G B R	B B B B B	M/N S/N M/N X/N M/N	M C C	90cm 60 150 120 60	A S S S	R R R R	45cm 15 40 25 15
L150NW L100NW L100NW L100NW L100NW	250NE 100SW 75SW 50SW 25SW	R B BL R	B B B B	M/N S/NE S/NE none none	C M F M	60cm 150 45 90 240	S A A A	R R R R	1 5cm 50 25 70 60
L100NW L100NW L100NW L100NW L100NW	BL 25NE 50NE 75NE 100NE	G G B B	B B B B	swamp none S/SW S/NE M/SW	F M M C	240cm 180 180 90 45	A A A S	Ϋ́ R T R	65cm 50 50 3 5 20
L100NW L100NW L100NW L100NW L100NW	125NE 150NE 175NE 200NE 225NE	B G B BL O	B B B B	S/SW S/W S/NW S/SW none	M C C M	180cm 180 60 60 60	A S S S S S	R T R R R	30cm 20 20 25 15

Sc	<u>pil</u>	<u>Collecti</u>	on	<u>Field</u>	Not	es (<u>cont.</u>)	}
		•						

.

Sample	Color	Hor.	Slope & Dir.	Grain	Depth to Bedrock	Tool	Soil Tyne	Sample Depth
L100NW 250NE L50NW 50SW L50NW 25SW L50NW BL L50NW 25NE	R G B B B	B B B B B	M/N S/N S/N S/N swamp	C F M F	60cm 240 240 90 240	S A A A A	R T T R T	25cm 30 45 45 60
L50NW 50NE L50NW 75NE L50NW 100NE L50NW 125NE L50NW 150NE	G B B BL	B B B A	none S/W M/SW M/SW M/SW	F M M C	300cm 150 300 180 60	A A S S	T R T R R	30cm 50 15 20 20
L50NW 175NE L50NW 200NE L50NW 225NE L50NW 250NE L0SE 50SW	R R B B B	A B B B	none S/NE S/N M/W S/W	M M M M	25cm 60 120 120 60	2 2 2 2 2	R R R R	15cm 20 25 20 25
LOSE 25SW LOSE BL LOSE 25NE LOSE 50NE LOSE 75NE	B G B G G	B B B B	M/NE none swamp swamp M/SW	M F F M	30cm 180 90 90 300	S A A A A	R T T T	25cm 55 55 50 60
LOSE 100NE LOSE 125NE LOSE 150NE LOSE 175NE LOSE 200NE	B R G B B	A B B B	X/SW none M/W S/NW S/NE	M C C C C	15cm 12 60 60 60	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	R R R R	1 Ocm 25 25 25 20
LOSE 225NE LOSE 250NE L50SE 100SW L50SE 75SW L50SE 50SW	B B O G	B B B B B	M/W S/N S/NW S/NE none	C M M M	60cm 60 120 90 240	5 5 A 5 5	R R T R T	25cm 20 50 20 50
L50SE 25SW L50SE BL L50SE 25NE L50SE 50NE L50SE 75NE	G B G B G	B B B B B	S/NE swamp swamp M/SW M/SW	M F C M	60cm 300 300 20 60	S A S S	R T T R R	20cm 50 75 15 50
L50SE 100NE L50SE 125NE L50SE 150NE L50SE 175NE L50SE 200NE	G G B BL	B B B A	S/SW S/SW S/SW none M/SW	C M M M	60cm 150 90 120 60	N N N N N N N N	R R R R	20cm 20 25 25 25
L50SE 225NE L50SE 250NE L100SE 100SW L100SE 75SW L100SE 50SW	R B B B B	B B B B	none M/W S/NE S/NE S/NE	M C M C	60cm 60 150 150 90	S S A S S	R R T R R	20cm 25 50 45 50

Soil Collection Field Notes (cont.)

.

×.

Somole		Color	Hor	Slope	Grain	Depth to Bedrock	Т оо]	Soil	Sample Depth
	0 C CT-1	00101			di ain	Dediocr	C	T Nhe	
L100SE L100SE L100SE	25SW BL 25NE	R B B C	B B B B	S/NE none S/SW S/SW	M M M	90cm 60 300 240	а А А	R R T T	20cm 50 50
L100SE	75NE	G	B	S/SW	M	240	Ă	Ť	60
L100SE L100SE L100SE L100SE L100SE	100NE 125NE 150NE 175NE 200NE	G R R G	B B B B	M/SW M/SW none S/SW M/SW	C C M M M	120cm 60 90 90 90	S A A A	R R R R	15cm 20 30 30 45
L150SE L150SE L150SE L150SE L150SE L150SE	150SW 125SW 100SW 75SW 50SW	B G B R	B B A B	none swamp S/W S/SW S/NE	C F M C C	150cm 300 240 25 120	S A S S	R T T R R	15cm 60 60 15 60
L150SE L150SE L150SE L150SE L150SE L150SE	25SW BL 25NE 50NE 7 <i>5</i> NE	B R G B B	B B B B	S/NE S/W swamp M/SW M/SW	M C F M M	180cm 30 240 180 180	A S A A A	R R T R	50cm 25 60 50 30
L150SE L150SE L150SE L150SE L150SE L150SE	100NE 125NE 150NE 175NE 200NE	B G G B	B A B A	M/SW none none M/SW M/SW	M M M C	90cm 90 240 240 90	S A A S	R R T T R	20cm 30 35 35 20
L200SE L200SE L200SE L200SE L200SE L200SE	150 S W 125SW 100SW 75SW 50SW	G G B B B	B B A A	swamp S/W S/W none M/NE	F C C C	300cm 240 240 25 60	A A S S	T T R R R	60cm 60 60 20 20
L200SE L200SE L200SE L200SE L200SE	25SW BL 25NE 50NE 75NE	B G B B	B B B B B	N/NE swamp M/SW M/SW M/SW	C F C M	120cm 300 120 90 60	S A S S	R T R R T	20cm 60 60 60 20
L200SE L200SE L200SE L200SE L200SE L200SE	100NE 125NE 150NE 175NE 200NE	G B G G	B B B B B	none M/SW M/SW M/SW M/SW	F F M M	300cm 240 180 180 180	A A A A	T T T R	90cm 35 45 35 35
L250SE L250SE L250SE L250SE L250SE	200SW 175SW 150SW 125SW 100SW	B B G G B	B B B B	S/NE swamp none S/W S/SW	M F M C	300cm 300 240 180 180	A A A S	T T T R	60cm 60 50 50 50

Soil Collection Field Notes (cont.)

Sample	Color	Hor.	Slope & Dir.	Grain	Depth to Bedrock	Tool	Soil Type	Sample Depth
L250SE 75SW L250SE 50SW L250SE 25SW L250SE BL L250SE 25NE	B R G O	B B B B	none S/NE S/NE swamp M/SW	M M F C	60cm 60 60 300 240	A S A A A	R R T R	55cm 15 30 75 50
L250SE 50NE L250SE 75NE L250SE 100NE L250SE 125NE L250SE 150NE	Ե Ե Ե Ե Ե	B B B B	S/S M/SW M/SW M/SW M/SW	F M F F	240cm 240 300 240 180	A A S A A	T T T T	60cm 60 90 35 35
L250SE 175NE L250SE 200NE L300SE 200SW L300SE 175SW L300SE 150SW	G G B B	B B B B B	M/SW M/SW none M/W M/NW	M C F M M	180cm 180 450 180 30	A A A S	T T R R R	60cm 60 100 50 20
L300SE 125SW L300SE 100SW L300SE 75SW L300SE 50SW L300SE 25SW	G G B B B	B B B A	none none M/NE M/NE	M F M C	180cm 180 30 180 90	A A A S	R T R T R	60cm 50 25 45 20
L300SE BL L300SE 25NE L300SE 50NE L300SE 75NE L300SE 100NE	G B G R	B B B B B	none M/SW M/SW swamp M/SW	F F M F M	300cm 180 90 300 240	A A A A	T T T T	100cm 50 35 60 35
L300SE 125NE L300SE 150NE L300SE 175NE L300SE 200NE L350SE 200SW	G B G G	B B B B B	M/SW M/SW M/SW M/SW M/SW	M M M F	240cm 240 240 240 300	A S A A	T T T T	35cm 100 75 100 90
L350SE 175SW L350SE 150SW L350SE 125SW L350SE 100SW L350SE 75SW	G R R R	B B B B B	M/SW M/N M/NE M/SW M/N	M F F M	150cm 35 60 300 10	A S S	R R T R	60cm 25 30 90 8
L350SE 50SW L350SE 25SW L350SE BL L350SE 25NE L350SE 50NE	G O B B B	B A B B	M/NE S/NE none M/SW none	C F M M	15cm 180 15 180 180	S A S A A	R R R T	12cm 60 12 75 20
L350SE 75NE L350SE 100NE L350SE 125NE L350SE 150NE L350SE 175NE	G G G G G	B B B B B	swamp M/SW M/SW M/SW M/SW	F M M M M	300cm 300 300 300 300 300	A S A S	T T T T	75cm 90 35 25 30

Sample		Color	Hor.	Slope & Dir.	Grain	Depth to Bedrock	Tool	Soil Type	Sample Depth
L350SE L400SE L400SE L400SE L400SE L400SE	200NE 50SW 25SW BL 25NE	G R B G	B B B B	M/SW M/NE M/NE M/NW M/SW	M M C C	300cm 120 180 180 150	A A S S	T R R R	45cm 35 50 25 25
L400SE L400SE L400SE L400SE L400SE L400SE	50NE 75NE 100NE 125NE 150NE	0 0 B G	B B B B B	S/NE M/SW M/SW S/SW M/SW	F F M M	120cm 300 240 120 300	A S A A A	R T T T	30cm 25 90 30 60
L400SE L450SE L450SE L450SE L450SE L450SE	175NE 50SW 25SW BL 25NE	B R G B	B B B A	M/SW none M/NE M/NE S/SE	M C C M	300cm 30 60 45 15	A S S S S	T R R R R	60cm 15 25 30 7
L450SE L500SE L500SE L500SE L500SE	50NE 50SW 25SW BL 2 <i>5</i> NE	0 R Roc G B	B B ky kno B B B	S/S M/NE 11, no s M/NE M/NE	M C ample t C M	120cm 45 saken. 45 300	A A S A	R R R R	30cm 25 15 90
L500SE L550SE L550SE L550SE L600SE	50NE 25SW BL 25NE BL	G R B R R	B B B B	none M/NE M/NE M/NE M/NE	F C C C C	300cm 60 90 60 90	A S S	T R R R R	90cm 25 30 25 25

and the second second

Soil Collection Field Notes (cont.)

.

APPENDIX B

.

•

ASSAY REPORTS

SAMPLE	ŧ	Mo	Cu	Pb	Zn	Ag	Nî	Co	Mn	Fe X	Ás DOM	U mara	Au moo	Th DOM	Sr Dom	Cd mag	Sb	Bi DDM	V	Ca %	P %	La DOM	Cr pom	Mg %	8a ppm	Ti X	B	AL X	Na %	K X	F
1.05.0.00	SOCU	<u></u> 1	2/			~ 1	13	<u> </u>	267	2 24	~2				15				51	23	014		22	26	36	. 10	3	1.50	. 02	.03	
1950NW	255¥	<1	127	6	59	<.1	118	31	424	5.96	2	<5	<2	<2	36	<.2	<2	<2	140	.45	.012	7	150	2.09	53	.54	4	4.60	.03	.01	
L950NW	25NE	2	20	6	43	<.1	16	6	209	2.58	2	<5	<2	<2	16	<.2	<2	3	55	.25	.010	5	27	.31	61	.13	4	2.10	.03	.04	
L950NW	50NE	1	14	7	53	<.1	16	6	275	2.59	<2	<5	<2	<2	14	<.2	<2	2	52	.21	.024	4	24	.22	57	.13	3	1.91	.02	.03	
RE L950	DNW 50NE	1	14	6	54	.1	16	6	281	2.65	<2	<5	<2	2	15	<.2	<2	<2	54	.22	.025	5	25	.23	59	.13	3	1.95	.02	.03	
L900NW	50SW	1	22	6	38	<.1	9	4	248	1.99	<2	<5	<2	<2	17	<.2	<2	<2	51	.27	.006	6	21	.25	28	.12	3	.98	.03	.02	
L900NW	25sw	1	26	3	45	<.1	22	7	229	3.00	2	<5	<2	<2	17	<.2	<2	<2	64	.31	.019	4	31	.44	35	.13	4	2.33	.02	.02	
L900NW	50NE	1	37	5	46	<.1	16	6	485	2.43	2	<5	<2	<2	18	<.2	<2	2	50	.25	.016	5	23	.34	58	.12	3	2.17	.02	- 04	
L850NW	100sW	<1	46	6	44	.3	25	9	388	3.11	<2	<5	<2	<2	20	<.2	<2	<2	68	.55	.019	2	40	-44	33	.10	2	2.18	.02	.05	
L850NW	75SW	<1	60	5	58	. 1	21	8	575	2.72	2	<>	<2	2	18	<.2	2	<2	22	.20	.055	2	21	. 30	60	. 13	3	2.74	.02	.05	
L850NW	50SW	<1	45	15	149	.7	61	32	3621	4.74	<2	<5	<2	<2	45	<.2	<2	<2	114	.77	.063	4	92 5 P	1.93	109	.28	3	2.94	.03	.03	
LOSONW	255W		55	5	145	.4	48 25	21	1468	4.25	<2	0	<2	<2	60	<.2	~2	~2	0) 75	.34	.020	0 /	סכ ג/	1.72	71	10)	2.02	.02	.04	
	BL 25NE	1 1	82	14	02	<.1 	20	11	503	1 03	2	<5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	51	<u>، د</u> ع	2	~2	50	2 27	020	12	52	.92	49	_10	-	2.07	.02	.03	
L850NW	50NE	<1	84	8	211	.1	34	17	757	5.28	6	<5	<2	<2	26	4	2	<2	128	.48	.031	5	52	.77	44	.22	4	2.85	.02	.03	
	10000	-1	447	- 2	01	1	05	77	470	E (1	-2	~E	~2	2	40	2	~2	~2	11/	64	007		155	1 04	61	27	7	7 08	02	· 03	
LOUUNW	1005W 75su	1	115	<2 7	77	2	27	11	1050	2.01	~2	5	<2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27	.2	~2	<2	73	. 36	040	4	39	.52	52	.22	נ ז	2.40	.02	.04	
180000	5050	<1	14	Å	03		31	18	1406	3.47	<2	<5	<2	<2	30	< 2	<2	<2	70	.41	036	5	62	.63	42	.34	ž	1.95	.02	.03	
L800NW	25SW	1	53	ŭ	155	.1	78	32	1424	5.99	<2	<5	<2	<2	21	< 2	<2	<2	128	.31	.047	6	96	1.89	57	.27	2	4 40	.03	.05	
L800NW	BL	<1	89	16	125	.2	74	29	3787	4.94	4	<5	<2	<2	121	_4	<2	<2	105	-85	.039	3	99	2.16	83	.32	4	3.18	.03	.03	
L800NW	25NE	<1	51	14	208	.3	61	27	1750	4.96	2	<5	<2	<2	70	.5	<2	<2	111	.85	.053	4	68	1.56	61	.30	3	2.76	.04	.04	
L800NW	50NE	<1	239	4	738	.3	21	6	198	1.52	4	<5	<2	<2	27	5.2	<2	<2	29	. 95	.026	19	60	.48	30	.10	3	2.03	.03	.02	
L750NW	125SW	<1	35	4	64	.3	29	9	339	3.21	<2	6	<2	2	19	<.2	2	<2	70	.26	.037	5	40	.58	33	.21	3	2.36	.02	.03	
L750NW	100SW	<1	20	8	54	.2	26	11	692	2.21	2	<5	<2	<2	20	<.2	3	2	66	.38	.022	3	53	.82	52	.57	3	1.47	.03	.03	
L7SUNW	75SW	<1	23	9	100	• 1	47	18	1260	4.15	<2	<>	<2	<2	24	.2	<2	<2	105	.47	.030	د	00	1.50	47	.21	د	2.27	.02	.05	
L750NW	50SW	1	71	11	67	<.1	24	8	404	3.26	<2	<5	<2	<2	14	<.2	<2	2	67	.20	.037	6	39	.37	41	.15	3	2.98	.02	.03	
L750NW	25SW	<1	46	8	128	<.1	84	31	1487	7.64	<2	<5	<2	<2	114	.2	<2	<2	171	.60	.066	3	89	1.61	110	.28	<2	3.57	.02	.05	
L75UNW	BL		- 69	24	110	<.1	39	12	1810	0.20	<2	<>>	<2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25	<.2	<2	~2	140	.50	052	4	20	-14	24	.40	4	1.00	.02	.02	
L750NW	SONE	1	14	20	74	<.1	15	8	528	2.70	<2	<5	<2	<2	22	 	<2	2	40 67	.36	.012	4	25	.42	33	.16	3	1.17	.02	.03	
	75.45			-		-		_			-	-	-				-	-									_				
	/ DNE 100N⊑		18 254	7	158	•1	14	6 10	191	2.29	<2 7	<>	~2	<2	12	.4	<2	<2	49	.19	.013	4 7	22	.2/	4U 77	.11 14	3	1.69	.02	.03	
175010	150NE	21	230	4) T	221	۰.4 ح1	40 17	17	175	4.14	د د>	~5	~2	~2	47	⊾ ∢ 2	2 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	64	.00 18	.077	י ק	10	20	55	- 19	2	6.47 1 57	.02 ^?	.04 07	
L700NH	150su		87	3	58	.2	25	10	237	2.50	3	<5	<2	2	25	< 2	<2	<2		.42	.015	8	38	.80	47	.13	4	2.81	.02	.03	
L700NW	125SW	<1	30	11	70	.2	54	16	1385	3.48	<2	<5	<2	<2	45	< 2	2	<2	80	.54	.026	ž	87	1.46	45	.29	5	2.22	.02	.03	
1.70000	10054	<1	28	٨	74	٨	51	20	1450	z cz	~2	Ę	.2	2	17			~2	Q1	7/	027	7	6 A	1 64	5/	27	7	2 44	02	05	
L700NW	75SW	<1	5	3	21	< 1	2	2	205	.55	<2	<5	<2	<2	6	<.2	<2	<2	11	.10	.009	10	4	.08	41	.02	2	.87	.02	.07	
STANDAR	RD C	18	57	37	125	7.1	69	29	1007	3.96	37	18	6	36	52	17.5	19	19	54	49	087	36	57	.90	182	.09	33	1.88	.07	.16	
																	•														

Page 2

SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B AL ppm %	Na X	. к Х	W ppm	
L700NW 50SW L700NW 25SW L700NW BL L700NW 25NE L700NW 25NE L700NW 50NE	2 1 3 1 <1	16 29 237 64 73	9 7 29 14 17	85 99 96 119 143	.2 <.1 .4 <.1 .1	5 21 80 40 42	10 16 30 19 25	1281 1018 635 3023 3362	3.54 5.61 6.75 8.07 5.88	<2 <2 <2 <2 <2 <2 <4	<5 <5 5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~~ ~~ ~~ ~~ ~~	20 29 78 37 62	<.2 <.2 .4 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 4 2 <2	47 153 122 184 119	.49 .35 .45 .64 1.12	.031 .034 .083 .111 .127	6 3 20 4 4	8 48 81 63 54	.36 .92 .60 .66 .91	74 28 56 78 69	.01 .30 .33 .33 .28	2 2.47 3 2.21 4 5.18 3 1.86 5 1.83	.02 .02 .03 .02 .02	.07 .03 .03 .02 .04	ব ব ব ব ব ব	
L700NW 75NE L700NW 100NE L700NW 125NE L650NW 175SW L650NW 150SW	1 1 <1 <1 1	18 55 74 21 48	15 7 13 10 7	60 146 105 76 37	<.1 .3 <.1 <.1 <.1	22 22 26 47 34	8 9 20 11	200 574 244 586 257	2.84 3.10 3.15 5.26 3.35	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ৎ ১ ১ ১ ১ ১ ১ ১	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2	14 22 25 29 18	<.2 4.7 .3 <.2 <.2	<2 <2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2	64 68 75 149 81	.21 .46 .27 1.02 .27	.014 .019 .024 .014 .012	4 9 4 3 4	27 45 34 70 50	.34 .48 .52 1.07 .62	31 31 78 60 24	.14 .14 .12 .56 .24	4 1.90 4 2.72 4 2.50 3 2.08 3 2.47	.02 .03 .02 .03 .02	.03 .02 .04 .02 .01	ণ ব ব ব ব	
L650NW 125SW L650NW 100SW L650NW 75SW L650NW 50SW L650NW 25SW	<1 <1 1 <1 <1	15 24 85 71 94	8 8 12 23	40 64 70 98 105	<.1 .1 <.1 <.1 <.1	12 34 27 27 64	4 14 13 20 28	857 926 338 1985 2596	.99 4.84 6.23 4.06 6.47	<2 <2 3 <2 <2	<5 <5 <5 <5 <5	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2	21 23 30 35 47	<.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 3 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	17 118 136 97 136	.27 .34 .31 .70 .49	.010 .035 .065 .033 .060	9 4 5 3 7	16 69 51 45 83	.26 1.11 .88 .90 .90	61 35 30 120 94	.02 .48 .34 .12 .29	<pre><2 1.49 3 1.97 4 3.47 5 3.04 3 3.63</pre>	.02 .02 .01 .02 .02	.04 .03 .04 .07 .04	বা বা বা বা	
L650NW BL L650NW 25NE L650NW 50NE L650NW 100NE L650NW 125NE	<1 <1 <1 1 1	37 86 112 53 19	16 18 17 5 4	149 185 66 279 39	<.1 .2 .1 .3 <.1	43 65 35 22 16	26 29 14 9 7	2685 2426 929 734 162	6.64 5.89 3.91 2.29 3.49	<2 <2 11 4 <2	<5 <5 <5 <5 <5	<> <> <> <> <> <> <> <> <> <> <> <> <> <	<2 <2 <2 <2 <2 <2 <2	41 54 21 29 16	<.2 .3 <.2 1.8 .2	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	149 129 82 46 86	.30 .63 .37 .73 .24	.068 .057 .025 .044 .010	5 6 4 10 5	84 91 45 39 32	.95 1.91 .66 .68 .32	52 106 35 42 30	.39 .16 .05 .11 .16	2 2.44 4 4.46 3 1.98 3 1.91 4 2.20	.02 .02 .02 .03 .02	,03 .06 .02 .03 .02	ব ব ব ব	
L650NW 150NE L650NW 175NE L600NW 200SW L600NW 175SW L600NW 150SW	1 <1 <1 1 1	35 13 34 44 50	8 4 19 5 4	58 44 137 48 36	<.1 <.1 <.1 <.1	23 16 59 34 38	10 7 28 14 14	505 240 3022 228 164	2.61 2.14 4.39 3.69 3.13	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	47 24 52 14 19	<.2 <.2 .2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	2 3 <2 2 2	72 46 122 84 77	.52 .27 1.09 .25 .49	.017 .007 .039 .016 .023	5 8 4 3 10	32 23 78 35 48	.69 .36 1.71 .54 .58	69 81 108 32 25	.09 .13 .42 .26 .16	4 1.63 3 1.58 5 2.71 3 3.48 3 3.33	.02 .02 .02 .02 .02	.03 .04 .04 .01 .01	<1 <1 <1 <1	
L600NW 125SW L600NW 100SW L600NW 75SW L600NW 50SW L600NW 25SW	<1 1 2 <1	20 69 53 53 33	6 12 11 13 25	89 94 43 58 103	.1 <.1 <.1 <.1 <.1	44 35 31 17 28	17 16 11 9 15	525 1035 489 975 3326	3.54 4.19 3.62 3.00 5.32	<2 <2 2 2 2 2 2	<5 <5 <5 <5 <5	\$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	13 21 21 28 21	<.2 <.2 <.2 <.2 .2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89 91 83 72 115	.24 .38 .37 .47 .42	.020 .051 .029 .029 .029	4 4 5 5	60 50 40 28 67	1.34 .99 .45 .48 .80	51 88 58 73 69	.14 .19 .23 .21 .47	2 2.83 3 3.04 4 3.38 2 2.02 3 1.63	.02 .02 .02 .02 .02	.04 .04 .04 .03 .02	<1 <1 <1 <1 <1	
L600NW BL L600NW 25NE L600NW 50NE RE L600NW 50NE L600NW 75NE	<1 <1 1 <1 <1	33 109 92 90 54	22 186 18 13 18	203 448 613 607 187	.2 .1 .1 .1	52 53 83 82 37	23 37 40 39 35	1698 2149 1283 1255 2267	5.96 6.50 7.08 7.00 4.65	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<5 <5 <5 <5 <5	~~~~ ~~~~~	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25 32 28 28 22	.3 1.3 1.7 1.7 .5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	142 157 192 190 119	.27 .55 .46 .45 .38	.053 .063 .038 .038 .038	3 6 4 3	81 89 103 104 61	1.75 1.53 2.98 2.96 1.53	45 45 31 31 36	.38 .15 .22 .22 .05	3 2.68 3 2.90 2 3.63 2 3.56 3 1.97	.01 .02 .02 .02 .02	.03 .03 .01 .02 .02	ব ব ব ব	
L550NW 150SW L550NW 125SW Standard C	1 1 18	23 35 61	10 6 38	68 56 127	<.1 <.1 7.6	15 22 71	8 7 31	780 381 1024	2.75 2.13 3.96	<2 <2 41	<5 <5 17	<2 <2 6	<2 <2 37	20 20 51	<.2 <.2 18.6	<2 <2 18	<2 <2 19	71 50 55	.42 .33 .52	.022 .016 .088	4 6 38	26 32 58	.40 .45 .92	38 65 183	.19 .14 .09	3 1.40 3 1.99 34 1.88	.02 .02 .07	.02 .05 .16	<1 <1 12	

ACHE ANALTTICAL														<u></u>											+ 1	0 41	N.		÷U	-
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	BI	~~~~	Ca Y	۲ ۲	La	UT DOM	ng Y	88 000	11 X	DOM X	na X	· x	DOM	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppn	ppiii	ppm	ppin	ppia	ppm	~	~	Phil	Phil		Man.		ppm <i>n</i>				
1550NW 100SW	<1	22	12	115	<.1	51	19	5077	2.94	<2	<5	<2	<2	44	<.2	<2	<2	75	.86	.074	2	104	1.48	205	.28	5 1.99	.02	.03	<1	
1550NW 755W	<1	5	4	36	<.1	3	2	1158	.63	<2	<5	<2	<2	12	<.2	2	<2	12	.26	.013	6	7	.13	78	.01	2 1.21	.02	.05	1	
1550NW 50SW	<1	313	25	123	.1	23	19	4895	4.74	<2	<5	<2	<2	37	.5	<2	<2	91	.73	.132	5	43	.54	151	.26	6 1.99	.02	.04	<1	
1550NU 255U	3	8	12	92	.1	2	1	143	1.15	3	<5	<2	<2	4	<.2	<2	<2	12	.07	.011	22	3	.06	25	.01	<2 1.43	.01	.04	<1	
I SSONU BI	2	116	58	689	.6	36	18	1340	4.61	13	<5	<2	<2	32	3.7	<2	2	99	.29	.038	14	66	1.51	43	.26	4 2.51	.02	.02	<1	
ESSONA DE	-			,							-	-	_																	
1550NU 25NE	<1	47	125	520	.2	27	19	1842	4.27	4	<5	<2	<2	66	2.0	<2	<2	113	.70	.060	3	50	.72	63	.21	6 1.81	.02	.06	<1	
ISSONU SONE	1	66	24	886	3	42	20	709	6.44	<2	<5	<2	3	17	3.0	<2	<2	126	.30	.063	5	72	1.31	36	.36	4 2.81	.02	.04	<1	
1550NU 75NE	<1	358	ō	209	<.1	81	35	833	6.56	<2	<5	<2	<2	30	1.6	<2	<2	154	.45	.031	2	132	2.13	32	.05	3 3.61	.02	.02	<1	
1500NU 100SU	- 21	18	7	48	< 1	12	5	956	1.55	<2	<5	<2	<2	16	<.2	<2	<2	34	.35	.021	4	20	.26	60	.10	3 1.23	.02	.03	1	
1500NU 759U		28	ż	68	< 1	10	ó	415	2.33	2	<5	~	<2	16	<.2	<2	2	47	.27	.021	6	27	.31	84	.14	3 2.20	.02	.05	<1	
CJOONN 7JSW	•	20			•••	.,	,	415								-	-													
1500NU 50SU	-1	28	8	65	2	17	8	895	2.10	<2	<5	<2	<2	27	<.2	<2	<2	44	.49	.024	5	25	.36	103	.13	4 1.64	.02	.05	<1	
1500NU 255U		66	ŏ	200	< 1	76	37	2243	6 55	~	<5	ō	<2	20	1.0	<2	<2	147	.34	.116	4	132	2.75	93	.21	4 3.99	.01	.03	<1	
LSOONU B		35	7A	246	1	28	18	3472	4 56	3	<5	2	<2	42	1.3	<2	<2	107	.97	.065	3	53	.99	87	.19	6 1.96	.02	.04	<1	
		143	22	526	्रं	40	24	4057	4.75	2	<5	õ	ō	41	7.7	~2	<2	94	1.30	.073	6	62	.85	87	.29	6 2.75	.02	.06	<1	
L SOONU SONE		103	13	380	< 1	54	26	1847	5 11	ō	<5	2	<2	53	2.9	<2	<2	104	.72	.073	5	74	1.41	77	.29	6 2.77	.02	.03	<1	
LJOONW JONE	`'	105		509			20	1047	2.11	-					/						-									
1500NW 75NE	<1	161	10	325	- 1	88	37	1526	6.29	3	<5	<2	<2	26	1.5	<2	<2	152	.49	.044	4	144	2.36	73	.05	5 4.18	.02	.05	<1	
145000 10050	1	18	5	53	_1	17	7	579	1.91	<2	<5	<2	<2	18	<.2	2	<2	40	.27	.011	6	24	.44	49	.12	4 1.31	.02	.04	<1	
1450NW 755W	<1		5	38	<.1	6	4	236	1.33	<2	<5	<2	<2	13	<.2	<2	4	32	.27	.007	- 4	15	.21	32	. 15	3.71	.02	.04	1	
		54	10	50	<.1	21	8	752	2.39	<2	<Ś	<2	<2	26	<.2	<2	<2	54	.44	.024	5	27	.46	85	.16	5 1.71	.02	.05	1	
145000 2550		20	12	86	<.1	ō	10	1562	2.71	<2	<5	<2	2	36	.3	<2	<2	58	.64	.034	4	13	.45	124	.23	4 1.10	.03	-08	<1	
LADONA EDON										_	-	-	-			_														
L450NW BL	<1	58	7	165	.3	51	25	2761	4.26	<2	<5	<2	<2	78	.9	<2	<2	93	.86	.083	4	63	1.39	189	.29	5 2.34	.02	.04	<1	
L450NW 25NE	<1	30	16	90	.2	37	14	1509	2.84	<2	<5	<2	<2	38	.5	<2	<2	87	1.41	.033	2	55	1.02	51	.42	10 1.23	.02	.03	<1	
L450NW 50NE	<1	21	8	93	<.1	39	15	813	3.70	<2	<5	<2	<2	25	.4	<2	<2	- 99	1.18	.023	2	42	.72	48	.44	6 1.78	.02	.03	<1	
100sw	1	19	6	50	<.1	19	7	389	2.31	<2	<5	<2	<2	20	<.2	<2	3	48	.27	.008	8	27	.50	56	. 15	4 1.71	.02	.04	1	
L400NW 75SW	<1	22	5	51	.3	21	7	388	2.33	<2	6	<2	2	20	<.2	<2	<2	54	.36	.011	7	25	.48	52	.17	4 1.57	.02	.04	<1	
RE L400NW 75SW	<1	23	- 4	51	.1	22	7	400	2.33	<2	<5	<2	<2	21	<.2	<2	<2	54	.37	.011	7	26	.48	52	.18	4 1.59	.02	.04	<1	
L400NW 50SW	<1	33	6	59	.3	23	8	556	2.54	<2	11	<2	- 3	20	<.2	<2	- 3	54	.34	-013	8	32	.66	61	.15	4 1.90	.02	.05	<1	
L400NW 25SW	<1	50	7	- 47	<.1	15	6	491	2.04	<2	<5	<2	<2	24	<.2	<2	<2	47	.39	.023	6	22	.39	52	. 14	4 1.35	.02	.04	1	
L400NW BL	1	40	5	41	.3	20	7	219	2.10	3	5	<2	2	17	<.2	- 3	<2	51	.25	.019	6	24	.43	46	. 14	5 1.66	.02	-04	1	
L400NW 25NE	<1	23	- 3	43	<.1	- 14	5	256	1.84	<2	<5	<2	<2	17	<.2	<2	<2	41	.24	.011	5	17	.33	39	.12	4 1.43	.02	.03	<1	
			_		_					_	_	_	_											404		1 2 12		07	.4	
L400NW 50NE	<1	118	8	141	.3	61	- 24	3033	4.85	<2	<5	<2	<2	27	<.2	<2	<2	94	.90	.113	4	52	1.50	121	.4/	0 2.43	.02	.05	51	
L350NW 100SW	<1	64	16	244	-4	32	13	639	3.68	3	6	<2	3	36	.5	2	<2	- 77	.94	.020	12	- 47	.70	62	.16	(2.9/	.05	.04	<1 4	
L350NW 75SW	<1	26	- 3	50	.3	20	7	222	2.47	2	<5	<2	2	19	<.2	<2	4	61	.40	.011	6	26	.46	- 32	.15	4 1.61	.02	.05	1	
L350NW 50SW	1	24	5	71	<.1	18	8	394	3.39	<2	<\$	<2	<2	19	<.2	<2	2	91	.36	.013	3	30	.57	32	.25	5 1.58	.02	-03	<1	
L350NW 25SW	1	31	6	61	<.1	26	9	402	2.79	<2	<5	<2	<2	16	<.2	<2	<2	59	.31	.015	4	29	.41	47	. 16	4 2.23	.02	.03	<1	
175084 51		77	7	74		74	4.4	277	2 02	-2	- F		-0	42		-2	~?	5/	17	015	E	72	22	51	19	5 2 / 0	02	04	1	
LODUNW BL		32	,	41	5.1	30		223	2.02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5) .F	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	24	.43	.012	7	22	20.		12	6 1 21	.02	.05	<1	
LOOUNW ZONE	<1	29	- 4		.2	14	20	1010	2.09	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<>	~~~	2	19	10 2	<2 10	10	43	.20	.012	- 27	22	30	44	.12	3/ 1 99	.02	14	12	
STANUARU C	18	- 27	- 57	127	1.2	70	50	1013	2.90	40	18	Ó	- 30	26	10.2	18	19	22	.49	.00/	- 37	- 27	*21	103	.07		.07	. 10	16	_

44

Perry Prospecting PROJECT KIRK 93-01 FILE # 93-1040

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Nn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	8a ppm	Ti X	B ppM	Al X	Na X	• К Х	W ppm
L350NW 50NE L300NW 100SW L300NW 75SW L300NW 50SW L300NW 50SW L300NW 25SW	1 <1 <1 1 <1	15 47 50 90 28	6 5 4 6 7	31 71 38 79 108	<.1 .1 <.1 .5 .2	11 20 15 24 29	4 9 6 10 12	203 286 220 1391 766	1.98 4.33 2.15 2.79 3.79	<2 <2 3 3 <2	<5 <5 <5 6 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	15 17 30 32 16	<.2 .4 <.2 1.1 .2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	. 40 104 46 55 82	.22 .35 .45 .65 .71	.012 .020 .008 .019 .097	5 6 7 20 5	18 37 32 43 45	.21 .42 .43 .34 .43	39 36 61 85 115	.09 .18 .12 .13 .26	4 1 6 2 6 2 6 2	1.59 2.03 1.69 3.17 2.03	.01 .02 .03 .03 .01	.03 .01 .03 .03 .03	1 <1 <1 <1 <1
L300NW BL L300NW 25NE L300NW 50NE L250NW 100SW L250NW 75SW	<1 <1 1 1 <1	81 46 57 144 45	<2 3 4 7 5	104 33 43 157 40	<.1 .2 <.1 .4 .1	151 33 22 28 24	47 9 8 12 9	795 217 407 861 219	7.84 2.40 2.66 3.62 3.10	<2 <2 2 4 2	<5 <5 <5 <5	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	18 17 25 26 17	.4 <.2 <.2 6.1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	< < 2 3 2 2 2 2	166 53 54 75 66	1.90 .36 .35 .65 .26	.018 .008 .013 .023 .015	2 6 9 29 6	158 35 34 60 33	4.36 .70 .44 .50 .44	31 31 61 69 47	.52 .17 .15 .19 .14	5 5 4 7 5 2 5 2	5.10 1.91 2.13 3.42 2.58	.01 .02 .03 .03 .02	.05 .03 .06 .03 .04	<1 1 <1 <1
L250NW 50SW L250NW 25SW L250NW BL L250NW 25NE L250NW 50NE	<1 <1 <1 <1 <1	12 26 66 24 24	6 6 7 4 4	43 99 77 27 44	<.1 .1 .2 <.1 <.1	15 19 30 13 18	6 8 13 5 6	240 885 548 188 419	2.20 3.92 3.27 1.82 2.31	2 ~2 2 2 2 2	<5 <5 <5 <5	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	17 14 17 17 17	<.2 <.2 <.2 <.2 <.2 <.2	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	<2 <2 3 3 3 2	44 68 63 38 47	.22 .29 .38 .24 .29	.023 .164 .086 .021 .036	6 7 5 5	18 38 34 17 21	.28 .22 .48 .25 .35	67 104 62 43 82	.10 .22 .20 .10 .13	5 / 5 / 3 / 5 /	1.88 2.11 2.60 1.69 1.86	.02 .02 .01 .01 .02	.03 .03 .03 .03 .03	1 <1 <1 1 1
L200NW 100SW L200NW 75SW L200NW 50SW L200NW 25SW L200NW BL	<1 <1 <1 <1 <1	56 170 16 40 25	5 4 5 5 5	35 144 43 37 63	<.1 <.1 .1 .1	12 79 15 18 18	6 26 6 7 6	326 559 198 212 735	1.99 6.78 2.45 2.48 2.41	2 4 2 2 4	ৎ ৎ ও ও ও ও	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24 20 18 17 16	<.2 .2 <.2 <.2 <.2 <.2	<2 4 2 2 2 2 2 2	<2 3 2 2 2 2 2	44 179 52 53 49	.32 .43 .25 .24 .22	.009 .023 .009 .021 .088	8 8 7 6 7	22 107 21 24 23	.43 1.56 .38 .30 .33	76 53 42 67 81	. 13 .05 . 13 . 12 . 12	3 ⁶ 5 4 3 4	1.74 3.97 2.19 2.27 1.87	.02 .02 .02 .02 .02	.04 .04 .03 .04 .04	<1 <1 <1 <1 <1
L200NW 25NE L200NW 50NE L200NW 75NE L200NW 100NE L150NW 100SW	<1 <1 <1 <1 <1	16 27 66 67 25	4 6 4 7	29 44 32 33 111	<.1 .2 <.1 .2 .1	14 18 20 30 24	5 6 7 8 12	277 230 294 218 3932	1.83 2.38 2.69 2.80 3.38	<2 2 7 10 2	<5 <5 <5 <5 <5	~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~	14 16 34 23 24	<.2 <.2 <.2 <.2 <.2 <.2	<2 2 2 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2 <2	39 53 55 61 67	.19 .23 .41 .62 .37	.022 .012 .025 .029 .086	5 7 14 13 7	17 23 34 43 36	.25 .40 .39 .41 .48	58 45 56 28 109	.11 .13 .10 .13 .27	3 · 4 · 5 : 6 : 5 ·	1.74 1.85 2.40 3.42 1.83	.01 .02 .02 .02 .02	.03 .04 .03 .02 .03	<1 1 <1 <1
L150NW 75SW L150NW 50SW L150NW 25SW L150NW BL L150NW 25NE	<1 <1 <1 <1 <1	193 76 47 112 73	12 4 6 8	152 37 42 89 48	.3 .1 .1 .3 .2	42 21 22 25 19	14 7 9 7	772 598 222 1975 484	4.17 2.10 2.49 2.76 2.34	3 <2 2 4 3	<5 <5 <5 <5	~ ~ ~ ~ ~ ~ ~ ~	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25 23 22 33 37	<.2 .3 <.2 2.2 .9	<2 <2 <2 <2 <2 <2	<2 <2 3 <2 2	92 48 53 52 43	.47 .36 .30 .82 1.18	.024 .010 .011 .023 .017	6 8 7 19 13	51 31 29 36 30	.89 .49 .50 .36 .34	60 47 64 75 56	.15 .12 .13 .12 .11	6 2 3 2 5 2 8 2 6 2	2.72 2.09 2.35 2.76 2.20	.02 .02 .02 .03 .03	.04 .03 .05 .04 .04	<1 <1 1 <1
L150NW 50NE L150NW 75NE L150NW 100NE L150NW 125NE L150NW 150NE	<1 <1 <1 <1 <1	18 21 16 14 33	5 5 4 7 6	43 37 30 31 52	<.1 <.1 <.1 <.1 <.1	14 15 12 13 32	6 5 5 10	254 221 180 189 384	2.23 2.33 2.23 1.71 3.05	<2 <2 <2 <2 <2 <2 <2	ৎ ৎ ৎ ৎ ৎ ৎ	8 8 8 8 8 8 8 8 8 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	21 18 16 17 20	<.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 4 2 2 2 2 2 2 2	46 48 47 37 59	.27 .25 .25 .24 .39	.014 .013 .014 .010 .025	6 7 6 6	19 21 21 17 32	.27 .34 .17 .29 .45	69 78 37 57 65	.11 .11 .12 .11 .16	4 ⁻ 5 - 3 - 4 - 5 -	1.93 1.81 2.12 1.68 2.56	.02 .02 .02 .01 .02	.04 .04 .03 .04 .03	1 1 <1 <1
RE L150NW 150NE L150NW 175NE Standard C	<1 <1 18	33 7 58	7 4 38	51 22 127	<.1 <.1 7.0	32 9 70	10 4 30	384 197 1019	3.03 1.67 3.96	<2 <2 38	<5 <5 18	<2 <2 6	<2 <2 36	19 14 52	<.2 <.2 17.9	<2 <2 18	<2 <2 19	58 41 55	.39 .24 .50	.025 .012 .083	6 4 37	32 14 57	.45 .18 .93	64 26 183	.16 .09 .09	5 2 3 ² 34 ²	2.52 1.07 1.88	.02 .01 .07	.04 .02 .16	<1 <1 12

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

Page 4

Page 5

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Nî ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	81 ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	BAL ppm %	Na X	- K X	W ppm	
L150NW 200NE L150NW 225NE L150NW 250NE L100NW 100SW L100NW 75SW	<1 <1 <1 1 <1	35 47 127 62 39	6 9 4 5	63 59 82 28 39	<.1 <.1 .1 .1 .2	64 24 25 24 18	24 9 15 8 7	1303 931 1341 226 325	4.18 3.40 6.31 2.72 2.37	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 2 2	55 24 17 16 24	<.2 <.2 <.2 <.2 <.2 <.2	2 2 2 2 2 2 2 2	<2 <2 <2 4 <2	102 72 163 55 54	.69 .50 .31 .19 .43	.016 .033 .048 .009 .010	4 4 6 8	74 31 54 27 29	1.89 .41 .76 .41 .36	88 64 60 61	.25 .19 .52 .14 .12	5 2.58 5 2.65 5 2.19 4 2.63 5 2.23	.02 .02 .02 .02 .03	.02 .03 .02 .04 .03	<1 <1 <1 1	
L100NW 50SW L100NW 25SW L100NW BL L100NW 25NE L100NW 50NE	3 2 <1 <1 <1	125 14 81 47 42	3 3 5 3	48 23 41 33 35	.3 <.1 .4 .1 .2	15 10 17 18 18	6 5 6 8 7	151 117 234 326 202	2.04 2.50 1.68 2.77 2.37	9 6 2 2 2 2	ৎ ৎ ১ ৩ ৩ ৩	< < < < < < < < < < < < < < < < < < <> <>	<2 <2 <2 2 2 2	39 17 33 23 15	.9 2.2 2.2 2.2 2.2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 3 2 3 2	57 63 36 55 51	1.32 .26 .51 .32 .19	.051 .009 .032 .015 .016	15 5 30 8 7	38 21 35 25 25	.34 .22 .37 .37 .45	46 28 68 71 57	.06 .10 .09 .13 .15	6 1.68 5 1.71 3 2.22 5 2.71 5 2.32	.03 .02 .03 .02 .02	.02 .02 .03 .05 .05	1 1 <1 1 1	
L100NW 75NE L100NW 100NE L100NW 125NE L100NW 150NE L100NW 175NE	<1 <1 <1 <1 <1	150 38 14 10 12	3 9 4 6 11	49 117 48 36 60	<.1 .4 .2 <.1 .3	20 39 15 8 14	7 15 6 5 11	325 1247 247 640 2273	2.69 3.74 2.08 1.57 2.92	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ৎ ১ ৩ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2 2	24 46 16 16 23	<.2 <.2 <.2 <.2 <.2	< < < < < < < < < < < < < < < < < <> </td <td>2 <2 <2 <2 <2 <2</td> <td>53 70 40 34 61</td> <td>.33 .67 .21 .23 .71</td> <td>.033 .082 .039 .030 .027</td> <td>8 6 5 4</td> <td>25 44 19 12 28</td> <td>.38 .64 .34 .17 .26</td> <td>79 116 55 69 113</td> <td>.12 .19 .10 .08 .35</td> <td>5 2.50 6 2.32 4 2.06 3 1.05 6 1.10</td> <td>.03 .02 .02 .02 .02</td> <td>.05 .04 .04 .02 .02</td> <td>1 <1 <1 <1</td> <td>:</td>	2 <2 <2 <2 <2 <2	53 70 40 34 61	.33 .67 .21 .23 .71	.033 .082 .039 .030 .027	8 6 5 4	25 44 19 12 28	.38 .64 .34 .17 .26	79 116 55 69 113	.12 .19 .10 .08 .35	5 2.50 6 2.32 4 2.06 3 1.05 6 1.10	.03 .02 .02 .02 .02	.05 .04 .04 .02 .02	1 <1 <1 <1	:
L100NW 200NE L100NW 225NE L100NW 250NE L50NW 50SW L50NW 25SW	ব ব ব ব	30 44 19 14 24	16 4 3 4 13	92 53 30 38 73	.1 .2 .1 .1 .2	32 23 13 15 15	21 9 6 10	2191 254 329 192 653	3.47 2.94 2.11 2.32 4.83	< < < < < < < < < < < < < < < < < <> </td <td>ও ও ও ও ও ও</td> <td><> <> <</td> <td><2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>30 14 25 17 22</td> <td><.2 <.2 <.2 <.2 <.2</td> <td><2 <2 <2 <2 <2 <2 <2 <2 <2</td> <td>~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>83 63 42 47 93</td> <td>.66 .22 .36 .23 .74</td> <td>.049 .049 .017 .011 .074</td> <td>3 5 8 5 3</td> <td>42 27 20 19 46</td> <td>.82 .41 .35 .36 .31</td> <td>113 67 59 69 40</td> <td>.12 .15 .10 .12 .50</td> <td>5 1.60 4 3.71 5 1.64 3 1.98 6 1.12</td> <td>.02 .01 .03 .02 .02</td> <td>.03 .04 .04 .05 .02</td> <td><1 <1 1 1 <1</td> <td></td>	ও ও ও ও ও ও	<> <> <> <> <> <> <> <> <> <> <> <> <> <	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30 14 25 17 22	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	83 63 42 47 93	.66 .22 .36 .23 .74	.049 .049 .017 .011 .074	3 5 8 5 3	42 27 20 19 46	.82 .41 .35 .36 .31	113 67 59 69 40	.12 .15 .10 .12 .50	5 1.60 4 3.71 5 1.64 3 1.98 6 1.12	.02 .01 .03 .02 .02	.03 .04 .04 .05 .02	<1 <1 1 1 <1	
L50NW BL L50NW 25NE RE L50NW 25NE L50NW 50NE L50NW 75NE	イ イ イ イ イ	100 132 132 16 21	4 3 4 3 4	40 69 71 25 37	.1 .7 .1 <.1	22 27 28 12 14	9 8 4 6	245 651 678 210 208	2.77 2.92 2.94 1.46 2.17	\$ \$ \$ \$ \$		<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<> <> <> <> <> <> <> <> <> <> <> <> <> <	26 39 40 21 14	<.2 .3 .3 <.2 <.2	< < < < < < < < < < < < < < < < < < <	<2 <2 <2 <2 <2 <2 <2	57 55 55 33 45	.41 .81 .82 .32 .21	.014 .056 .056 .009 .015	9 26 26 7 6	32 54 54 21 19	.31 .33 .33 .28 .23	67 111 111 62 51	.14 .10 .10 .11 .12	4 2.65 6 3.49 6 3.51 3 1.48 3 1.69	.02 .03 .03 .02 .02	.04 .04 .04 .03 .03	1 <1 <1 <1 1	
L50NW 100NE L50NW 125NE L50NW 150NE L50NW 175NE L50NW 200NE	ণ ণ ণ ণ	19 9 12 79 36	4 5 12 11 11	38 41 52 60 63	.3 <.1 <.1 .1 <.1	13 9 9 10 17	6 5 6 4 7	238 659 1913 274 827	1.90 2.09 1.89 3.27 5.51	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 <5 <5 <5 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18 20 53 15 17	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2	42 51 49 84 115	.26 .32 1.12 .43 .32	.021 .018 .047 .503 .070	7 4 3 7 5	16 14 15 49 40	.25 .22 .23 .15 .28	58 46 100 77 63	.09 .10 .22 .16 .40	3 1.91 4 .98 6 .87 4 2.54 4 2.03	.02 .02 .02 .02 .02	.03 .03 .04 .03 .03	1 1 <1 <1 <1	
L50NW 225NE L50NW 250NE L0SE 50SW L0SE 25SW L0SE BL	ব ব ব ব ব	46 82 42 16 25	4 4 7 14 3	56 51 67 92 26	<.1 <.1 .1 .1	20 27 27 13 11	10 12 11 9 4	403 605 989 2018 192	3.23 3.22 3.05 2.80 1.46	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<>> <> <> <> <> <> <> <> <> <> <> <> <>	18 18 16 23 21	<.2 <.2 <.2 <.2 <.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	74 77 66 54 31	.29 .34 .32 .48 .28	.039 .024 .055 .045 .007	4 4 5 6	25 32 37 37 18	.53 .60 .56 .21 .28	43 38 69 91 61	.25 .23 .13 .27 .09	4 2.02 5 2.03 4 1.82 4 1.00 2 1.38	.02 .02 .02 .02 .02	.02 .03 .03 .04 .03	ং ং ং ং ং	
LOSE 25NE LOSE 50NE STANDARD C	<1 <1 18	64 14 57	3 3 37	47 26 126	.3 <.1 6.9	22 8 70	6 4 29	589 155 1010	2.34 1.55 3.96	5 <2 37	5 <5 17	<2 <2 6	2 <2 36	25 22 52	.2 <.2 17.7	2 <2 19	<2 2 19	46 38 54	.45 .25 .50	.028 .007 .087	11 5 36	36 18 56	.38 .28 .91	66 42 182	.10 .10 .09	5 2.45 2 1.28 34 1.88	.03 .03 .08	.04 .02 .16	1 <1 12	

Page 6

ACHE PARLITICAL																														
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Nî ppm	Co ppm	Mr. ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppn	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ті Х	BAL ppm X	Na X	. К Х	W ppm	
LOSE 75NE LOSE 100NE LOSE 125NE LOSE 150NE RE LOSE 150NE	<1 <1 <1 <1 <1	41 31 26 11 11	<2 16 9 11 10	36 76 61 42 40	.2 .2 .2 .2 .2	20 23 17 8 8	8 10 7 5 5	188 3274 1232 764 754	2.99 4.21 3.03 1.65 1.61	2 <2 <2 <2 <2 <2	<5 5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2 <2 <2	27 31 18 26 26	<.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	67 84 61 41 40	.38 .71 .35 .46 .46	.021 .097 .062 .019 .019	8 5 3 3	32 31 26 12 11	.38 .42 .33 .33 .33	76 130 63 65 64	.15 .20 .18 .12 .12	5 3.00 5 2.25 4 2.04 3 _91 4 _89	.02 .02 .02 .02 .02	.05 .05 .03 .03 .03	1 <1 <1 1	
LOSE 175NE LOSE 200NE LOSE 225NE LOSE 250NE LSOSE 100SW	1 <1 1 <1	44 86 32 72 48	5 11 9 7 4	52 75 54 85 62	<.1 .3 .2 .2 <.1	19 39 22 43 20	7 15 12 19 8	527 1681 1588 1150 451	2.62 3.78 3.14 4.98 2.67	3 3 3 2 2	<5 5 <5 <5	< < < < < < < < < < < < < < < < < <> </td <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>14 25 41 23 16</td> <td><.2 <.2 <.2 .2 .2</td> <td>~2 ~ ~ ~ ~ ~ ~ ~ ~</td> <td>< < < < < < < < < < < < < < < < < <> <></td> <td>56 68 84 88 56</td> <td>.21 .52 .84 .73 .24</td> <td>.148 .094 .038 .062 .062</td> <td>5 7 3 11 6</td> <td>25 37 28 53 29</td> <td>.40 .43 .47 .89 .40</td> <td>77 87 55 63 65</td> <td>.13 .19 .43 .31 .15</td> <td>4 2.55 6 3.04 5 1.21 6 3.63 4 2.12</td> <td>.02 .02 .02 .03 .02</td> <td>.04 .04 .01 .04 .04</td> <td><1 <1 <1 1 <1</td> <td></td>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 25 41 23 16	<.2 <.2 <.2 .2 .2	~2 ~ ~ ~ ~ ~ ~ ~ ~	< < < < < < < < < < < < < < < < < <> <>	56 68 84 88 56	.21 .52 .84 .73 .24	.148 .094 .038 .062 .062	5 7 3 11 6	25 37 28 53 29	.40 .43 .47 .89 .40	77 87 55 63 65	.13 .19 .43 .31 .15	4 2.55 6 3.04 5 1.21 6 3.63 4 2.12	.02 .02 .02 .03 .02	.04 .04 .01 .04 .04	<1 <1 <1 1 <1	
L50SE 75SW L50SE 50SW L50SE 25SW L50SE BL L50SE 25NE	<1 <1 <1 1 1	61 102 110 51 63	3 2 5 3 3	57 37 72 38 49	.1 <.1 <.1 .3 .2	25 23 30 20 18	7 8 11 9 9	420 223 900 499 434	3.36 2.79 3.26 2.61 3.12	<2 <2 10 8	ৎ ৩ ৩ ৩ ৩	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 3 2	13 15 17 28 33	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	70 60 74 53 64	.22 .22 .32 .41 .58	.114 .021 .029 .010 .024	7 6 5 11 16	41 36 45 35 34	.28 .54 .80 .39 .47	78 41 71 94 81	.17 .16 .11 .14 .13	5 2.66 4 2.82 5 2.16 5 2.27 4 2.18	.02 .02 .02 .03 .04	.04 .05 .03 .04 .06	<1 1 1 1	
L50SE 50NE L50SE 75NE L50SE 100NE L50SE 125NE L50SE 150NE	<1 <1 1 1	37 38 23 24 39	14 5 5 5 4	114 41 43 36 37	.3 <.1 <.1 .1 <.1	20 16 12 13 19	10 6 6 7	959 300 349 203 215	3.20 2.28 1.89 2.15 2.55	< < < < < < < < < < < < < < < < < <> </td <td>6 <5 <5 <5</td> <td><>> <> <> <> <> <> <> <> <> <> <> <> <></td> <td>~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>26 21 16 16 15</td> <td><.2 <.2 <.2 <.2 <.2</td> <td><2 <2 <2 <2 <2 <2 <2 <2</td> <td><2 <2 <2 <2 <2 <2</td> <td>58 47 37 44 52</td> <td>.51 .29 .28 .24 .26</td> <td>.043 .018 .025 .011 .027</td> <td>8 7 6 7 4</td> <td>34 22 18 20 22</td> <td>.30 .36 .28 .38 .38</td> <td>111 69 38 48 44</td> <td>.16 .12 .10 .12 .16</td> <td>4 2.34 4 2.01 3 1.93 3 1.93 3 2.47</td> <td>.02 .02 .02 .02 .02</td> <td>.04 .05 .04 .04</td> <td><1 1 1 1</td> <td></td>	6 <5 <5 <5	<>> <> <> <> <> <> <> <> <> <> <> <> <>	~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	26 21 16 16 15	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	58 47 37 44 52	.51 .29 .28 .24 .26	.043 .018 .025 .011 .027	8 7 6 7 4	34 22 18 20 22	.30 .36 .28 .38 .38	111 69 38 48 44	.16 .12 .10 .12 .16	4 2.34 4 2.01 3 1.93 3 1.93 3 2.47	.02 .02 .02 .02 .02	.04 .05 .04 .04	<1 1 1 1	
L50SE 175NE L50SE 200NE L50SE 225NE L50SE 250NE L100SE 100SW	<1 <1 1 <1 1	98 26 88 204 25	6 11 47 10 3	89 35 163 132 32	<.1 .1 .3 .1	21 12 37 74 15	10 6 16 29 6	931 691 852 2649 99	3.78 2.27 8.05 6.22 2.89	<2 <2 2 4 2	<5 <5 <5 <5 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	29 24 28 321 15	.5 <.2 .4 .6 <.2	2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	75 62 159 145 59	.76 .59 .54 1.49 .21	.057 .021 .146 .084 .020	10 3 7 4 9	35 18 72 89 30	.57 .27 .76 1.81 .17	58 52 78 270 31	.16 .17 .33 .56 .16	5 2.87 4 1.07 4 4.10 6 4.27 4 2.48	.04 .02 .02 .03 .02	.03 .03 .06 .09 .02	<1 <1 <1 1	
L100SE 75SW L100SE 50SW L100SE 25SW L100SE BL L100SE BL L100SE 25NE	1 1 <1 <1 <1	30 40 251 135 69	6 7 5 2 3	40 50 108 63 40	<.1 <.1 <.1 .1 .1	16 25 57 41 17	6 9 21 13 6	234 722 1480 573 165	2.47 2.57 4.83 3.33 3.09	<2 3 2 2 2 2 2 2	<5 <5 <5 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	26 24 28 42 18	<.2 <.2 <.2 <.2 <.2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2	54 60 108 71 68	.67 .47 .66 .68 .21	.014 .023 .035 .023 .023	6 4 10 5	26 41 83 48 30	.35 .61 1.11 .60 .29	43 61 77 108 42	.12 .05 .01 .14 .12	5 2.15 5 1.60 5 2.79 5 3.61 4 2.51	.02 .02 .02 .03 .02	.06 .03 .04 .05 .04	1 1 <1 <1 1	
L100SE 50NE L100SE 75NE L100SE 100NE L100SE 125NE L100SE 150NE	<1 <1 <1 <1 1	19 22 17 60 52	5 4 7 6 2	35 30 50 82 49	<.1 .1 <.1 .2 <.1	11 10 10 22 20	6 5 5 10 8	324 195 782 528 187	1.87 1.73 1.79 3.35 3.42	<2 <2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<u> </u>	<> < < < < < < < < < < < < < < < < < <> </td <td>23 26 25 22 17</td> <td><.2 <.2 <.2 <.2 <.2</td> <td><> < < < < < < < < < < < < <</td> <td>2 <2 <2 <2 <2 <2</td> <td>38 38 37 64 75</td> <td>.33 .34 .40 .39 .22</td> <td>.016 .007 .026 .067 .064</td> <td>9 7 5 6 5</td> <td>20 18 17 29 32</td> <td>.39 .36 .30 .49 .47</td> <td>54 56 79 62 35</td> <td>.11 .13 .09 .19 .17</td> <td>4 1.64 4 1.62 4 1.23 4 2.62 4 3.31</td> <td>.03 .03 .02 .02 .02</td> <td>.05 .04 .04 .06 .03</td> <td>1 <1 1 <1</td> <td></td>	23 26 25 22 17	<.2 <.2 <.2 <.2 <.2	<> < < < < < < < < < < < < <	2 <2 <2 <2 <2 <2	38 38 37 64 75	.33 .34 .40 .39 .22	.016 .007 .026 .067 .064	9 7 5 6 5	20 18 17 29 32	.39 .36 .30 .49 .47	54 56 79 62 35	.11 .13 .09 .19 .17	4 1.64 4 1.62 4 1.23 4 2.62 4 3.31	.03 .03 .02 .02 .02	.05 .04 .04 .06 .03	1 <1 1 <1	
L100SE 175NE L100SE 200NE STANDARD C	1 <1 18	39 103 58	<2 4 37	41 134 125	<.1 .2 7.0	26 26 70	9 8 30	196 288 1008	3.06 2.57 3.96	2 2 37	<5 <5 17	<2 <2 6	<2 2 36	20 22 54	<.2 .2 17.8	<2 2 18	<2 <2 19	66 53 56	.22 .25 .49	.043 .025 .087	4 7 36	32 35 57	.40 .50 .91	82 62 191	.16 .15 .09	5 2.92 4 2.52 34 1.88	.02 .02 .07	.03 .06 .15	1 <1 11	

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	р Х	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	8 ppm	Al X	Na X	• K X	W ppm	
L150SE 150SW L150SE 125SW L150SE 100SW L150SE 75SW L150SE 50SW	1 1 1 1 1 1 1	33 40 50 60 129	5 5 9 2	56 54 51 60 93	<.1 .1 <.1 <.1 .2	19 18 21 28 67	9 6 9 11 24	218 447 261 1647 1045	3.24 2.21 2.79 3.56 4.55	<2 ~2 ~2 ~2 ~2 ~2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	\$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14 26 27 27 32	<.2 <.2 <.2 <.2 <.2 <.2	< < < < < < < < < < < < < < <> <> <> <>> <>>> <>>> <>>><>>><>>><>>><>>><>>><>><	<2 <2 <2 <2 <2 <2	82 43 58 88 103	.27 .44 .27 .54 .45	.012 .013 .016 .044 .038	4 8 5 7	43 31 32 46 93	.53 .43 .47 .79 1.31	33 68 73 82 127	.13 .12 .14 .15 .07	4 1 4 1 4 2 4 1 4 3	.58 .61 .84 .92 .07	.03 .05 .03 .02 .03	.03 .06 .06 .03 .03	ব ব ব ব	
L150SE 25SW L150SE BL L150SE 25NE L150SE 50NE L150SE 75NE	<1 <1 <1 1 <1	61 49 73 17 21	2 5 2 3 4	33 111 36 25 39	.2 <.1 .3 <.1 <.1	18 49 22 11 13	7 22 8 5 6	191 813 303 165 483	3.09 4.56 3.54 1.71 2.11	<2 <2 4 <2 <2	<5 <5 <5 <5	~? ~? ~? ~?	2 <2 <2 <2 <2 <2	16 32 32 19 28	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	68 113 82 39 45	.28 .57 .43 .25 .34	.019 .034 .016 .011 .022	6 4 14 7 6	33 85 51 18 21	.46 .89 .44 .22 .33	33 69 72 59 76	.12 .04 .12 .09 .09	3 2 4 2 4 2 3 1 4 1	.37 .82 .69 .72 .86	.02 .02 .03 .02 .02	.02 .03 .04 .03 .05	<1 <1 1 <1 1	ļ
L150SE 100NE L150SE 125NE L150SE 150NE L150SE 175NE L150SE 200NE	<1 <1 <1 <1 <1	57 26 39 50 24	10 8 2 9	59 58 44 34 75	<.1 <.1 <.1 <.1 <.1	18 15 16 16 11	7 8 7 6 8	811 994 415 257 2470	2.55 3.77 3.54 2.90 2.25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<5 <5 <5 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	31 22 16 18 53	<.2 <.2 <.2 <.2 .2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	55 88 89 72 50	.42 .30 .25 .26 .89	.064 .105 .037 .039 .089	7 5 5 6	26 32 32 29 19	.37 .35 .42 .42 .37	94 63 37 48 160	.14 .22 .13 .13 .12	52 52 41 41 71	.08 .08 .78 .55 .34	.02 .02 .02 .02 .03	.05 .03 .02 .03 .08	<1 <1 1 1 <1	
L200SE 150SW L200SE 125SW L200SE 100SW L200SE 75SW L200SE 50SW	1 <1 1 <1 <1	56 35 53 27 132	<2 4 5 11 10	67 45 48 99 110	.2 <.1 .1 <.1 .2	29 19 20 24 76	11 8 9 14 30	420 242 265 2110 3393	3.54 2.79 2.77 3.33 5.67	<2 ~2 ~2 ~2 ~2 ~2	ও ও ও ও	< < < < < < < < < < < < < < < < <> </td <td>3 2 <2 <2</td> <td>30 23 19 17 28</td> <td>.2 <.2 <.2 <.2 <.3</td> <td><2 <2 <2 <2 <2 <2</td> <td><2 <2 <2 <2 <2 <2</td> <td>87 58 58 75 124</td> <td>.58 .30 .23 .34 .39</td> <td>.026 .014 .026 .051 .102</td> <td>12 8 11 6 5</td> <td>50 30 30 39 115</td> <td>.81 .51 .49 .57 2.19</td> <td>99 84 68 121 142</td> <td>.18 .14 .16 .21 .04</td> <td>4 2 5 2 5 2 4 2 5 3</td> <td>.18 .56 .88 .30 .46</td> <td>.04 .04 .03 .02 .02</td> <td>.02 .07 .06 .05 .03</td> <td><1 1 <1 <1 <1</td> <td></td>	3 2 <2 <2	30 23 19 17 28	.2 <.2 <.2 <.2 <.3	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	87 58 58 75 124	.58 .30 .23 .34 .39	.026 .014 .026 .051 .102	12 8 11 6 5	50 30 30 39 115	.81 .51 .49 .57 2.19	99 84 68 121 142	.18 .14 .16 .21 .04	4 2 5 2 5 2 4 2 5 3	.18 .56 .88 .30 .46	.04 .04 .03 .02 .02	.02 .07 .06 .05 .03	<1 1 <1 <1 <1	
L200SE 25SW L200SE BL L200SE 25NE L200SE 50NE L200SE 75NE	<1 <1 1 <1 <1	61 50 30 59 32	7 4 5 6 2	85 41 37 39 25	.1 .3 <.1 .1 .1	49 17 16 23 14	18 7 7 8 6	1330 299 192 496 156	3.98 2.04 2.60 2.53 2.35	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ও ও ও ও	~ ~ ~ ~ ~ ~	<2 2 2 2 2 3	15 28 19 28 16	<.2 .2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	< <> <> <> <> <> <> <> <> <> <> <> <> <> <	85 45 54 58 56	.25 .51 .22 .38 .19	.031 .024 .010 .029 .018	5 22 7 7 6	70 32 25 37 27	1.14 .34 .35 .57 .37	97 55 65 50 29	.06 .09 .14 .15 .09	32 42 42 41 51	.73 .27 .63 .97 .58	.02 .03 .03 .02 .02	.03 .03 .04 .04 .03	<1 <1 1 1	
L200SE 100NE L200SE 125NE L200SE 150NE L200SE 175NE L200SE 200NE	1 <1 <1 <1 <1	14 31 40 41 16	2 <2 <2 <2 <2 <4	16 39 59 42 58	<.1 <.1 .1 .1 <.1	8 15 20 20 15	3 7 8 7 6	106 260 246 343 381	1.29 4.02 3.17 3.10 1.88	<2 <2 <2 <2 <2 <2	ৎ ৩ ৩ ৩ ৩	< < < < < < < < < < < < < < < < < < <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	21 16 19 17 24	<.2 <.2 <.2 <.2 <.2 <.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2	34 102 80 77 44	.20 .23 .21 .24 .29	.004 .045 .052 .069 .037	4 4 5 6	15 32 30 29 19	.23 .35 .39 .38 .34	30 30 76 49 70	.10 .12 .14 .12 .12	3 1 5 1 4 2 5 1 4 1	.04 .53 .18 .49 .44	.03 .02 .02 .02 .03	.02 .02 .03 .02 .04	1 1 1 <1	
L250SE 200SW L250SE 175SW L250SE 150SW L250SE 125SW L250SE 125SW	1 1 1 <1	24 78 40 23 23	2 3 3 4 4	42 47 39 54 56	.2 .3 .2 .2 .1	15 21 15 18 19	8 9 7 8 8	218 934 248 352 369	2.68 3.68 1.92 2.38 2.45	<2 5 2 2 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 <2 3 2 2	14 28 24 17 18	<.2 .6 <.2 <.2 <.2	< < < < < < < < < < < < < < < < < <> <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	65 81 45 46 47	.30 .64 .35 .23 .24	.015 .041 .011 .029 .031	5 21 13 7 7	29 51 30 24 24	.29 .41 .34 .40 .42	32 58 52 83 86	.15 .11 .11 .11 .11	4 1 6 1 4 1 4 2 4 2	.61 .96 .82 .33 .42	.02 .03 .03 .03 .03	.02 .02 .03 .05 .05	1 1 1 <1	
L250SE 100SW L250SE 75SW STANDARD C	1 1 18	35 21 56	4 5 38	42 67 127	<.1 <.1 7.2	16 14 70	7 6 30	292 362 1031	2.14 2.39 3.96	<2 <2 39	<5 <5 20	<2 <2 6	2 <2 37	16 17 53	<.2 <.2 17.7	<2 <2 19	<2 <2 19	45 50 55	.19 .26 .50	.033 .051 .083	8 6 38	20 21 56	.38 .27 .92	67 76 183	.11 .12 .09	4 2 4 2 34 1	. 13 . 17 . 88	.02 .02 .08	.04 .04 .16	1 1 12	

SAMPLE#

L250SE 50SW

L250SE 25SW

L250SE 25NE

L250SE 50NE

L250SE 75NE

L250SE 100NE

L250SE 125NE

L250SE 150NE

L250SE 175NE

L250SE 200NE

L300SE 200SW

---- RE L300SE 200SW

L300SE 175SW

L300SE 150SW L300SE 125SW

L300SE 100SW

L300SE 75SW

L300SE 50SW L300SE 255W

L300SE BL

L300SE 25NE

1300SE 50NE

L300SE 75NE

L300SE 100NE

L300SE 125NE

L300SE 150NE

L300SE 175NE

L300SE 200NE

L350SE 200SW

L350SE 175SW

L350SE 150SW

L350SE 125SW

L350SE 100SW

L350SE 75SW

L350SE 50SW

L350SE 25SW

STANDARD C

L250SE BL

Mo Cu

ppm

<1 102

<1

<1

1 27

<1

1

<1

<1

<1

<1

<1

1 70 71

1

1 <1

> 1 44

<1

1 53

1 36

<1

<1 128

<1

1

1

1

1 27

<1

<1

<1

1

1

<1

<1

<1

<1

<1

<1

18

43

48

34

83

68

42

59

35

32

76

48

58

3

6

2 42 <.1

3 39

5

9 86

18 174

> 5 49

23 112

12

2 28

44

40 <.1

103

37 126 7.2

.4

.1

<.1

.2 23

.1

.2

.1

.2

62 <.1

15

24

20

25

19

31

25

32

63

20

70

6

9

6

433 2.52

483 2.86

249 3.07

11 174 3.61

8 321 2.79

12 782 7.63

27 6314 4.38

9 383 2.86

16 6307 4.42

30 4237 5.08

8 240 2.76

29 1010 3.96

<2

<2

2

<2

2 <5

4 <5

3 <5

<2

<2

<2

<2

37

9

<5

<5

<5

<5

<5

<5

<5

16

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

6

4 20 <.2

2 36 <.2

3 31

3

<2

<2

2 21

2

<2 55

<2

2

36

31 <.2

18 <.2

10 <.2

17

123

24 <.2

52 17.5

Perry Prospecting PROJECT KIRK 93-01 FILE # 93-1040

																											ACH	ANALYTICAL
Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррл	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B ppm	AL X	Na X	• К Х	W ppm
102	0	106	< 1	80	31	1813	6.21	<2	<5	<2	<2	21	. 4	<2	<2	164	.48	.057	4	108	2.42	62	.39	~2	3.25	.02	.03	<1
71	6	69	.2	38	14	494	4.18	<2	5	<2	2	26	.2	<2	<2	118	.40	.043	7	55	.65	67	.25	3	3.39	.02	.04	<1
87	3	48	.5	25	8	173	2.88	<2	<5	<2	3	30	.4	<2	<2	57	.42	.030	19	36	.45	60	.11	2	2.15	.03	.03	1
27	4	32	<.1	18	6	175	2.46	<2	<5	<2	2	22	.2	<2	<2	55	.27	.011	6	25	.31	34	.13	3	2.01	.02	-04	<1
52	3	29	<.1	13	6	177	2.06	<2	<5	<2	2	24	.2	<2	<2	47	.30	.008	7	25	.36	35	.12	2	1.94	-02	.04	<1
26	4	37	.1	16	7	150	2.22	<2	<5	<2	2	23	.3	<2	<2	48	.26	.010	6	25	.31	31	.13	6	1.99	.02	.04	1
39	2	32	<.1	15	6	173	2.40	<2	<5	<2	2	38	<.2	<2	<2	58	.25	.011	5	27	.39	62	.11	3	1.66	.02	.06	<1
16	2	24	<.1	15	5	151	1.97	<2	<5	<2	<2	22	<.2	<2	<2	49	.22	.009	3	23	.28	50	.10	<2	1.34	-02	.02	<1
48	3	39	<.1	17	6	334	2.63	<2	<5	<2	2	17	.2	<2	<2	66	.27	.043	- 4	25	.36	30	.11	- 3	1.48	.02	.03	1
70	3	30	<.1	24	7	241	2.48	<2	<5	<2	- 2	18	<.2	<2	<2	59	.26	.064	4	29	.40	77	.13	3	2.00	.02	.04	1
12	5	65	.1	13	7	793	1.80	<2	<5	<2	<2	24	<.2	<2	<2	42	.37	.039	6	19	.28	101	.13	3	1.29	.02	.04	<1
70	4	40	.4	28	11	287	2.87	7	5	<2	3	35	.3	4	<2	66	.56	.030	13	51	.51	93	.13	- 3	2.05	.03	.05	1
71	3	40	.4	28	12	287	2.89	6	6	<2	4	36	.2	<2	2	67	.57	.030	12	51	.52	93	.14	- 3	2.06	.03	.04	<1
93	5	64	.3	19	9	376	2.91	<2	<5	<2	3	17	<.2	<2	<2	56	.25	.032	10	26	.38	45	.14	2	2.58	.02	.04	<1
59	12	114	.1	33	13	1195	3.90	4	<5	<2	<2	28	<.2	<2	<2	79	.80	. 125	7	49	.54	102	.28	3	2.23	.02	.04	<1
44	6	37	.2	21	8	257	2.66	<2	<5	<2	2	25	<.2	<2	2	56	.30	.022	7	26	.54	70	.16	3	2.82	.02	.06	1
20	3	27	.1	14	5	203	1.45	<2	<5	<2	<2	24	<.2	<2	<2	36	.27	.008	6	20	.33	- 58	.10	- 4	1.55	.02	.02	<1
53	7	76	.2	25	8	341	4.09	<2	<5	<2	2	14	<.2	<2	<2	86	.21	.146	7	- 49	.46	49	.20	- 3	3.38	.01	.02	<1
36	4	47	.3	21	7	225	2.48	<2	9	<2	3	17	<.2	<2	<2	56	.21	.028	7	23	.36	62	- 14	3	2.26	.02	.03	<1
65	11	108	<.1	60	25	2773	5.30	<2	<5	<2	<2	30	<.2	<2	<2	133	.72	.062	5	98	1.50	108	.44	4	2.69	.02	.04	<1
128	<2	66	.6	38	14	554	3.75	<2	<5	<2	3	32	.2	<2	<2	79	.61	.042	17	60	.89	64	.17	3	3.41	.03	.02	<1
31	4	48	.1	22	8	196	2.72	<2	<5	<2	2	28	<.2	<2	<2	61	.37	.014	7	30	.40	46	.15	2	2.35	.02	.02	<1
49	6	161	.2	33	16	1426	3.60	<2	<5	<2	2	48	.8	<2	<2	73	.64	.031	- 14	51	.56	120	.14	3	4.11	.03	.04	<1
24	- 4	45	<.1	15	7	324	2.68	2	<5	<2	- 3	- 36	<.2	<2	<2	55	.40	.008	8	31	.47	79	.16	3	1.94	.03	.08	1
19	4	47	.2	16	7	339	2.51	<2	5	<2	2	30	<.2	<2	<2	63	.36	.020	4	26	.29	59	.14	3	1.96	.02	.03	1
27	4	49	<.1	16	7	323	2.54	<2	<5	<2	<2	28	<.2	<2	<2	56	.40	.065	3	25	.36	39	.12	3	1.76	.02	.04	<1

2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

19

<.2

.2

.2

.3

<.2

<2

<2

<2

<2

2 53

<2 125

<2

<2

<2

2

19

59

61

62

77

75

.24 .034

.38 .029

.26 .018

.29 .017

.24 .057

.50 .355

.56 .085

62 .30 .026

62 .29 .014

54 .50 .087

102 1.58 .088

<2 119 1.68 .067

5 25

7 32

9 38

10 45

8 26 .42

4 115

5

6

4 63 .55

4

8 31 .43

62 .15

31 .37

37 57 .91

67 1.90

.33

.48

.55

.38

.30

41 .11

96 .15

81 .16

97

65 .13

62 .44

113

267

189

69

183

.16

.42

.33

.37

.15

.09

57 .18

2 1.51

3 2.88

3 2.47

4 3.40

4 2.22

<2 2.29

5 1.32

4 2.44

3 1.87

3 2.82

4 2.74

.02

.02

.02

.02

.02

.01

.02

.02

.02

.02

.02

33 1.88 .07 .15

.02

.08

.06

.03

.04

.02

.04

.04

.03

.04

.05

1

1

<1

<1

<1

<1

<1

1

<1

<1

1

12

Page 8

AΔ	
LL	
ACHE ANALYTIC	AL.

Page 9

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppn	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	τi X	B ppm	Al X	Na %	K X	U ppm	
L350SE BL L350SE 25NE L350SE 50NE L350SE 75NE L350SE 100NE	<1 <1 <1 <1 <1 <1	110 113 31 66 35	8 8 8 <2 2	80 45 70 37 38	.8 .3 .4 .2 .1	37 19 17 25 17	14 7 6 9 7	3713 311 359 276 278	3.22 2.63 2.65 3.74 4.34	4 3 2 5 2	7 <5 5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 2 3 3 2	52 21 18 63 17	.8 <.2 <.2 <.2 <.2 <.2	4 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	69 55 54 78 107	1.84 .28 .30 .58 .25	.058 .023 .037 .036 .026	36 8 5 10 4	55 27 25 40 35	.51 .41 .27 .61 .34	104 52 57 104 31	. 16 . 13 . 12 . 14 . 13	8 4 4 4 4	3.58 2.30 2.14 3.02 1.58	.03 .02 .02 .03 .03	.04 .04 .03 .02 .02	1 1 <1 1 1	
L350SE 125NE L350SE 150NE L350SE 175NE L350SE 200NE L400SE 50SW	1 _ <1 _ <1 _ <1 _ <1	45 18 28 40 48	2 9 5 6	62 38 47 50 55	.2 <.1 .3 <.1 .2	20 12 23 24 25	10 5 9 8 9	348 639 372 254 452	3.61 1.96 2.58 2.48 3.22	4 ~2 ~2 ~2 ~2 ~2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	2 <2 3 2 2	19 22 24 19 23	<.2 <.2 <.2 <.2 <.2 <.2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2 2 2 2 2 2 2 2 2 2 2 2	84 48 53 52 81	.28 .40 .28 .28 .41	.043 .027 .015 .034 .026	4 3 8 6 4	35 17 31 29 36	.52 .29 .65 .52 .57	47 49 86 64 42	.22 .15 .14 .15 .19	4 3 3 3 3	2.68 1.07 2.06 2.28 2.44	.02 .02 .02 .02 .02	.03 .04 .05 .04 .02	<1 <1 1 <1 <1	
RE L400SE 50SW L400SE 25SW L400SE BL L400SE 25NE L400SE 50NE	<1 <1 <1 <1	47 114 63 39 48	7 2 7 9 4	53 76 77 65 44	.2 .3 <.1 <.1 <.1	24 59 55 28 23	9 20 21 12 10	447 1130 1588 685 274	3.21 4.80 5.08 2.99 3.12	<2 3 <2 <2 8	<5 <5 <5 <5	~? ~? ~? ~?	2 2 2 2 2 2 2 2 2	23 30 27 37 22	<.2 <.2 <.2 <.2 <.2 <.2	<2 2 2 2 2 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2	81 121 139 65 67	.40 .49 .64 .51 .27	.026 .041 .028 .021 .022	4 4 5 5 6	35 79 89 46 33	.56 1.34 1.53 .81 .47	40 52 66 75 66	.19 .36 .48 .11 .16	3 4 5 4	2.38 2.93 2.02 2.12 2.99	.02 .02 .02 .02 .02	.03 .03 .03 .04 .04	<1 <1 <1 <1 1	
L400SE 75NE L400SE 100NE L400SE 125NE L400SE 150NE L400SE 175NE	<1 <1 <1 <1 <1	35 87 41 29 31	3 4 3 5 6	203 67 37 50 42	<.1 .2 <.1 <.1 <.1	19 29 17 14 16	7 11 7 6 8	168 308 261 432 494	3.78 3.57 2.46 2.24 2.57	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	2 3 2 <2 2	15 19 24 21 31	.2 <.2 <.2 <.2 <.2	<> 2 <> 2 <> 2 <> 2 <> 2 <> 2 <> 2 <> 2	2 <2 <2 <2 <2 <2	87 70 55 51 48	.17 .24 .29 .28 .36	.017 .043 .030 .023 .027	4 7 5 4 7	33 39 26 20 26	.31 .57 .37 .31 .50	52 85 83 75 81	.17 .15 .12 .13 .12	4 3 5 4	2.60 4.42 2.13 1.69 2.06	.02 .02 .02 .02 .02	.03 .07 .06 .04 .09	<1 <1 <1 1 1	
L450SE 50SW L450SE 25SW L450SE BL L450SE 25NE L450SE 50NE	<1 <1 <1 <1 <1	77 115 29 24 44	14 5 16 13 2	106 169 113 82 71	<.1 <.1 .2 <.1 <.1	49 101 65 26 36	17 35 26 15 15	1068 1736 2803 2556 586	5.95 7.22 5.26 2.99 4.70	<2 <2 <2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	22 18 25 51 19	<.2 <.2 .2 .2 <.2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	140 183 118 75 95	.59 .45 .54 .92 .33	.052 .041 .037 .023 .058	4 4 3 3 4	74 121 88 37 56	.87 2.58 1.90 .60 .59	86 56 108 94 59	.31 .16 .04 .24 .17	4 <2 5 4	3.56 4.31 2.73 1.67 4.35	.02 .01 .02 .02 .02	.04 .03 .04 .03 .04	ব ব ব ব	
L500SE 50SW L500SE BL L500SE 25NE L500SE 50NE L550SE 25SW	<1 <1 <1 1 <1	92 31 185 42 61	2 7 <2 <2 5	68 63 43 32 84	<.1 .1 .2 .2 <.1	62 45 55 18 48	17 17 16 7 18	556 591 274 305 1346	6.73 4.14 4.49 2.94 5.99	<2 <2 <2 3 <2	<5 <5 <5 <5 <5	<> <> <> <> <> <> <> <> <> <> <> <> <> <	2 <2 2 3 <2	37 20 28 31 21	<.2 <.2 <.2 <.2 <.2	< < < < < < < < < < < < < < < < <> </td <td>< <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2</td> <td>165 107 89 72 164</td> <td>.89 .39 .48 .48 .54</td> <td>.087 .016 .020 .030 .047</td> <td>3 4 11 10 4</td> <td>118 64 93 35 89</td> <td>1.03 1.33 .78 .42 1.10</td> <td>55 46 81 82 48</td> <td>.42 .17 .15 .13 .32</td> <td>5 2 4 5 2</td> <td>5.43 2.32 4.96 1.85 2.79</td> <td>.02 .02 .02 .03 .02</td> <td>.03 .03 .05 .05 .03</td> <td><1 <1 <1 1 <1</td> <td></td>	< <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	165 107 89 72 164	.89 .39 .48 .48 .54	.087 .016 .020 .030 .047	3 4 11 10 4	118 64 93 35 89	1.03 1.33 .78 .42 1.10	55 46 81 82 48	.42 .17 .15 .13 .32	5 2 4 5 2	5.43 2.32 4.96 1.85 2.79	.02 .02 .02 .03 .02	.03 .03 .05 .05 .03	<1 <1 <1 1 <1	
L550SE BL L550SE 25NE L600SE BL STANDARD C	<1 <1 <1 18	40 31 76 57	16 12 8 39	65 64 105 125	.1 .1 .1 6.7	27 39 78 69	10 18 29 28	1832 4145 2533 1084	2.87 3.13 5.37 3.96	<2 <2 <2 39	<5 <5 <5 17	<2 <2 <2 6	<2 <2 <2 36	43 46 60 53	<.2 <.2 .2 16.7	<2 <2 <2 16	<2 <2 <2 19	72 78 129 56	.74 .73 1.23 .50	.030 .043 .042 .087	3 3 4 36	40 61 103 55	.62 .99 2.06 .90	79 98 117 183	.24 .29 .33 .09	4 5 5 35	1.52 1.59 3.36 1.88	.02 .02 .02 .07	.04 .04 .05 .16	<1 <1 <1 12	

ACME AN/ TICAL LABORATORIES LTD.

852 E. HASTINGS ST. V COUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(f ')253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

Perry Prospecting File # 93-1581

6622 Cramberry St., Powell River BC V8A 321 Submitted by: Robert Perry

16								
	SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Au** oz/t	 ······
	K-93-01 K-93-02 K-93-03 K-93-04 RE K-93-04	9719 20 201 2262 2151	<2 4 14120 198 182	90 12 38566 391 365	6.7 <.1 17.4 23.0 21.7	62 2 34 4 <2	.048 .004 .041 .320 .297	
·	STANDARD C/AU-1	59	34	127	7.3	39	.101	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: ROCK AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE'/are duplicate samples.

APPENDIX C

•

.

HISTOGRAMS

Perry Prospecting File #93-1040

٠

Pb Number of Samples 100 -80 60 - Background Anomoleus 40 -20

320 Samples

Maximum: 186 Minimum: 2 Mean: 8 Median: 5 Standard Deviation: 14

Appendix "C"

Perry Prospecting File #93-1040

4

320	Samples	Maxımum:	358	Mean:	- 54
	-	Minimum:	5	Median:	40
				Standard Deviation:	47

Perry Prospecting File #93-1040

.

Zn

.

Number of Samples

320	Samples	Maximum:	886	Mean:	85
	•	Minimum:	16	Median:	58
				Standard Deviation:	99

p....

