#### TABLE OF CONTENTS

\_

- -

| 1   | INTRODUCTION.                 | 1  |
|-----|-------------------------------|----|
| 1.  |                               | -  |
| 2.  | SUMMARY                       | 2  |
| 3.  | LOCATION & ACCESS             | 3  |
| 4.  | CLAIM DATA                    | 4  |
| 5.  | HISTORY                       | 5  |
| 6.  | GEOLOGY                       | 6  |
| 7.  | SUBJECT PROGRAM               | 8  |
| 8.  | RESULTS                       | 9  |
| 9.  | CONCLUSIONS & RECOMMENDATIONS | 11 |
| 10. | PROPOSED BUDGET               | 12 |
| 11. | COST STATEMENT                | 13 |
| 12. | STATEMENT OF QUALIFICATIONS   | 14 |

### LIST OF MAPS

- FIG 1. LOCATION MAP
- FIG 2. CLAIM MAP
- FIG 3. SAMPLE LOCATION MAP

ATTACHMENTS

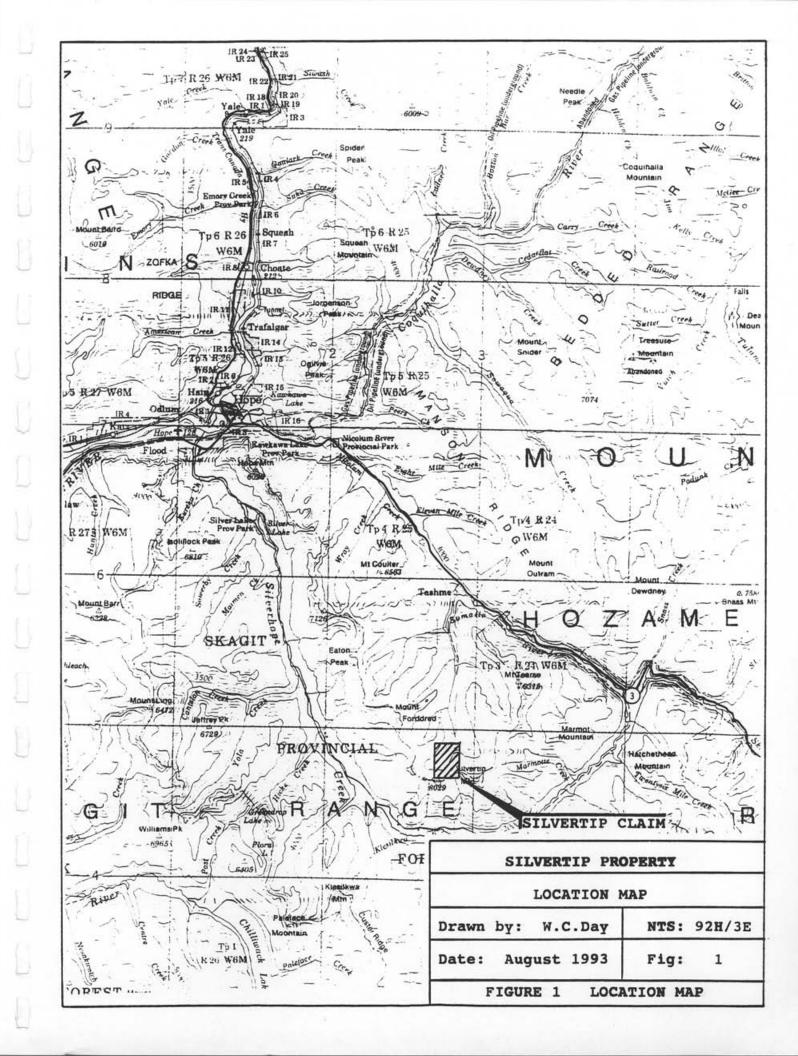
#### 1. ANALYTICAL RESULTS

GEOLOGICAL BRANCH ASSESSMENT REPORT

]26 N

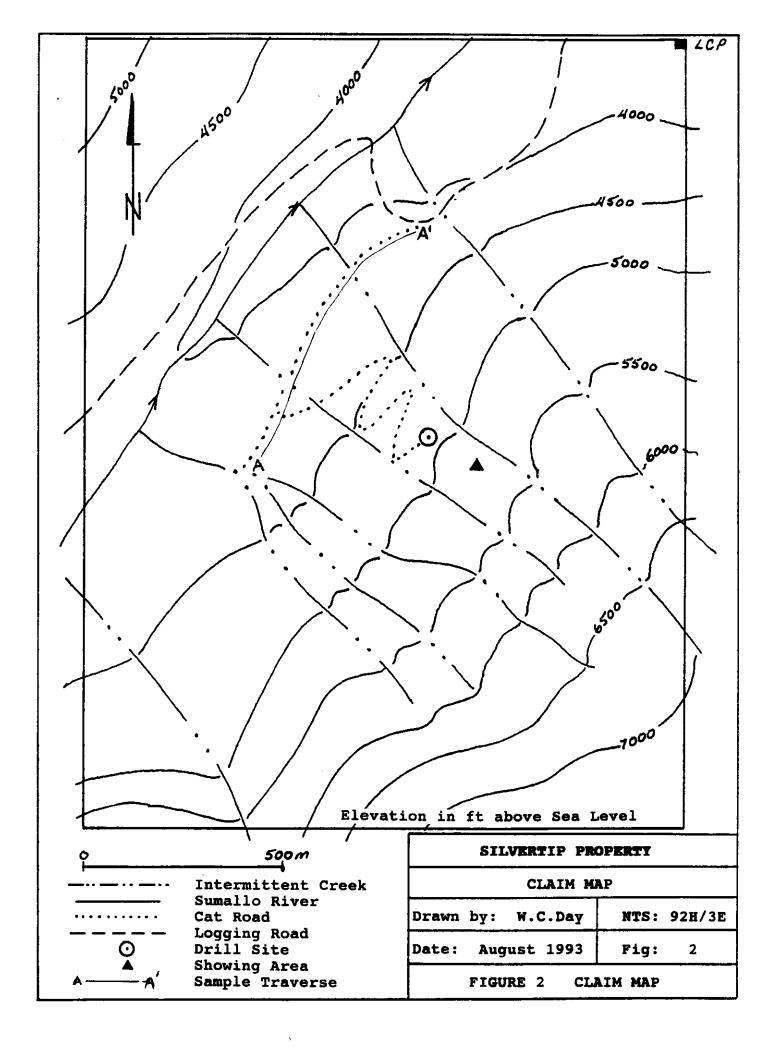
## 1. INTRODUCTION

•


- 1.1 This report has been prepared at the request of Mr. A.E. Angus who is the registered owner of the Silvertip Claim.
- 1.2 The Silvertip claim consists of 12 claim units which are located near the headwaters of the Sumallo River in Southwestern British Columbia.
- 1.3 At present the commodities of interest, in order of importance, are zinc, copper, lead, silver (gold).

#### 2. SUMMARY

- 2.1 A short property assessment was conducted on the Silvertip claim between July 4 and July 10, 1993. Geochemical sampling was conducted and general prospecting undertaken during the period.
- 2.2 The samples collected during the program were analyzed by Van Geochem Labs Ltd., of Vancouver B.C. The results of these analyses indicate the presence of significant zinc and subordinant copper and lead mineralization within the claim area. A phased program consisting of geological mapping, geochemical sampling and diamond drilling is recommended to further evaluate the property.


### 3. LOCATION & ACCESS

- 3.1 The Silvertip claim is located some 27 km southeast of Hope, B.C. near the headwaters of the Sumallo River on the northwest flank of Silvertip Mountain.
- 3.2 The claim area can be gained by utilizing a logging road from Sunshine Village (formerly Tashme) which is located on Highway 3 S.E. of Hope and then travelling 13 km south.
- 3.3 The claim is located in an area in which the terrane could be described as steep to precipitous. Evidence of avalanche and rockslide activity is widespread. The property rises from a low of 1125 meters to a high of 2300 meters above sea level.
- 3.4 Second growth consisting of alder and minor conifers cover the areas that were accessible to logging. Areas inaccessible to logging are largely barren outcrop or talus slopes. Mature fir stands are found in the balance of the inaccessible areas.
- 3.5 A historical drill station is located near the center of the claim and can be accessed on foot by using a washed out and rubble littered cat trail which was constructed during the mid '60's.



### 4. CLAIM DATA

- 4.1 The Silvertip claim consists of 12 claim units with the legal corner past located at the northeast corner. From this site the claim area extends three claim units west and four claim units south. Its record number is 311389 and the expiry date is July 11/96.
- 4.2 The registered owner of the claim is Mr. A.E. Angus of Surrey, B.C.
- 4.3 The claim is located in the New Westminster Mining District and is bounded within NTS 92H/3E and centered at approximately 49° 10'N latitude and 121° 15' W longitude.



#### 5. HISTORY

- 5.1 Though undocumented, mineralization was apparently located within the Silvertip claim area prior to 1965 as a diamond drill program was conducted between the period Nov 10/65 to March 25/66. Two holes were drilled with the 1st drilled at N  $63^{\circ}$ E dipping at  $-14^{\circ}$  for a hole length of 1329'. The 2nd was drilled at N  $76^{\circ}$ E and dipping at  $-10^{\circ}$  to a hole length of 562'. A steep tractor trail was also constructed to the drill site but apparently was unused.
- 5.2 The drill was supplied by helicopter and water was hoisted to the site by cable and sled from the valley floor. The drill site was at 4900' (1494m) above sea level. The property at this time was owned by Allison Pass Mining Ltd. of Vancouver.

5.3 A report for Allison Pass Mining Ltd. cites the presence of significant mineralized zones being encountered in both holes drilled. For example: HOLE 1A Sample # Length Cut ₽b% Znt Aq opt 8 ' 21 .05 1.18 .93 .6 HOLE 2A Sample # Length Cu% Pb% Znt Ag opt 100' 13 .07 .28 .07 N/A

Apparently a spectrographic analytical technique was used. Surface showings are apparently also present, though not witnessed during the current program. These showings are said to have been traced for 600 feet along surface and to be open at both ends. The width is said to be not fully exposed, however, a 16' width sampled (#17) is said to average 3.42% zinc, .1% lead and .08% copper. No drill logs or full analytical results were

...5

attached to this report.

5.4 The only subsequent evaluation of the claim area was conducted by Suecon Development Corp. The claim area was visited by a representative of this company on July 18/83 and on August 27, 1984.

#### 6. GEOLOGY

- 6.1 The Silvertip claim is underlain by rocks of the Hozameen Group (Monger 1970 and McTaggart & Thompson 1967). This Group consists of four divisions: ribbon chert, basic lavas (greenstone), limestone and argillite.
- 6.2 During late Palaeozoic or Triassic time these rocks were metamorphosed to form the Custer Gneiss. A layered high grade migmatitic complex of gneiss and schist. Later high grade metamorphism during late Cretaceous time is associated with the injection of the Spuzzum Intrusions followed by the foliated granodiorite Yale Intrusions and deposition of Eocene conglomerate and sandstone and the Intrusion of the Chilliwack batholithic rocks. The Custer Gneiss is separated from the overlying Hozameen rocks by a fault zone and the Hozameen fault separates the Hozameen beds from Mesozoic formations to the east.
- Plutonism of Miocene to Oligocene age was accompanied by 6.3 extensive vulcanism and mineralization in the Cascade A number of important base and precious metal Range. deposits in B.C. and Washington State are associated with this activity. One of these, the Canam deposit, lies 16 km to the east and occurs in а breccia pipe. Mineralization in this deposit is copper with lesser amounts of gold, silver, tungsten and uranium.

subject in this report consist of dominantly greenstone, lesser chert, tuff and minor argillite. Significant mineralization consisted dominantly of zinc with lesser copper and lead and, as indicated in the analytical results, silver and very minor gold.

6.5 The mineralization occurs in three modes - layered (bedded?), fracture filling (breccia healing), and disseminated. these modes are typified by the rock samples numbered 48653, 48655 and 48656. A description of each of these samples follows.

Sample No. Description 48653 Tuff with 2% magnetite as disseminations, fracture fillings and blebs, minor chalcopyrite and pyrite.

- 48655 Layered cherty argillite with pyrrhotite, sphalerite, chalcopyrite and minor magnetite along bedding? planes.
- 48656 Brecciated tuff healed with pyrrhotite, magnetite and minor chalcopyrite

### 7. SUBJECT PROGRAM

- 7.1 The program was conducted during the period July 4 and July 10 1993 and was initially to include geological mapping, geochemical sampling (rock, soil and silt) and prospecting. The extreme terrane conditions however, precluded any attempt at geological mapping at this time. Several attempts were made to gain access to the mineral showing cited to be present some 100 m above the drill station but each was unsuccessful.
- 7.2 It was decided that, due to the short duration of the program, selective sampling of rocks in the talus and a soil sample traverse below the suspected zone of mineralization would assist in the preliminary assessment of the claim. To this end a soil sample traverse was conducted. Soil samples (51) were collected at 20 meter intervals from above the cut of the lower cat track. Selected rock samples (14) from talus were collected and tied into this traverse. Ten silt samples were also collected during the period.

#### 8. RESULTS

- 8.1 Analyses of the samples collected (14 rock, 51 soils and 10 silts) was conducted by Van Geochem Labs of Vancouver, B.C. The soil and silt samples were subjected to multielement analyses by ICP. Rock samples were subjected to multi-element analyses by ICP and fire assayed with a atomic absorption finish to assess gold content.
- 8.2 Five rock samples exceeded the detection limit for zinc (2%) and one exceeded the limit for lead (2%). All rock samples were found to have anomalous copper values, three were anomalous in lead and all were anomalous to highly anomalous in zinc. Each of the soil and silt samples were anomalous to highly anomalous in zinc. 39 of the 51 soil samples was anomalous in lead and all but one anomalous in copper. Anomalous values are considered to be those in excess of 100 ppm in each case. The fire assay results show one rock sample (48654) to be highly anomalous in gold (200 ppb) and several others to be elevated in that element (20 - 40 ppb). Several of the rock samples were also anomalous in silver (plus 1 ppm) with one sample (48660) having a very significant value of greater than 50 ppm.
- 8.3 There has been no horizonal development of the soil which is essentially rock dust resulting from pulverization of the up slope rocks during landslide/avalanche activity. As a result the base metal content of these soils is considered to be directly associated with a mineralized zone present up slope of the traverse line. The width/thickness of this zone is unknown, however its length is indicated to be potentially substantial as the entire traverse (1000 m) is enriched in zinc, and particularly that area between samples ST 15 and ST 47

...9

(640 m). This same area shows the greatest enrichment of copper, lead and silver.

.

#### 9. CONCLUSIONS AND RECOMMENDATIONS

- 9.1 The results of the program indicate that a zone of base metal enrichment of unknown dimensions is present on the Silvertip claim. Zinc appears to be the principal commodity present with subordinate copper and lead.
- 9.2 The terrane in the claim area is very rugged and limits accessibility by foot. As a result a helicopter assisted program is recommended to explore the claim more fully. Geological mapping and rock chip sampling could be accomplished by having a helicopter lift personnel into specific areas for mapping and sampling. It should also remain available to move personnel when conditions dictate. Interpersonal and helicopter communication by walkie talkie would be a great asset and the use of ropes both for safety reasons and for greater mobility in some areas would assist the program.
- 9.3 A two stage program is recommended. Stage one would incorporate a program as lined out in 9.2. To conduct the program, two experienced field personnel should be used. A time period of two weeks should be allotted and scheduled when weather conditions would be most favourable for flying (summer, early fall). Stage two would entail diamond drilling.

...11

10. PROPOSED BUDGET STAGE I

```
Personnel
2 @ $400.00/day 14 days
                                                       $11,200
     (2 days mob/demob, 3 days down due to weather,
     9 days field)
Vehicle
                                                       $ 1,200
                                                       $ 2,100
Room & Board
                                                       $ 2,500
Analyses
Disposables
                                                       $ 1,000
Report
                                                       $ 1,200
Helicopter 2 hrs/day, 9 days @ $600/hr
                                                      $ 10,800
     Total
                                                      $ 30,000
```

The stage 2 program would undoubtedly constitute a drill program. No budget is forwarded at this time however, as site locations, footage etc. are fully contingent upon the results of stage I. Any drill program envisioned would require full helicopter support.



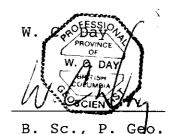
...12

# 11. STATEMENT OF COSTS - JULY 93 PROGRAM

| Personnel                     |                       |
|-------------------------------|-----------------------|
| Geologist                     | \$1,200.00            |
| Prospector                    | 9 <b>00.</b> 00       |
|                               |                       |
| Food                          | 21 <b>9.4</b> 2       |
| Gas                           | 102.95                |
| Camp @ \$25/day/man           | 3 <b>00.</b> 00       |
| Vehicle 4x4 pickup @ \$60/day | 3 <b>60.</b> 00       |
| Trail Bike \$50/day           | 3 <b>00.</b> 00       |
| Report & Preparation          | 7 <b>00.</b> 00       |
| Assaying                      | <u>7<b>44.</b></u> 14 |

Total

\$4,826.51




#### STATEMENT OF QUALIFICATIONS

I, William Colin Day, residing @ 2409 Western Ave, North Vancouver, B.C. hereby certify that:

- I was a member of the crew which conducted the program of subject in this report.
- I am a graduate of the University of British Columbia (B.Sc. Geology 1976).
- 3. I have been practising my profession as an exploration geologist since 1976.
- 4. I am a member in good standing of the Association of Professional Engineers and Geoscientists of B.C.
- 5. I hold no interest in the Silvertip claims, nor do I expect to receive any.

August 3, 1993 North Vancouver, B.C.



14

## ANALYTICAL RESULTS

•

2030 Panuora asreet, vancouver, B.u. rul. 116 Ph:(604)251-5656 Fax:(604)254-5717

#### ICAP GEOCHEMICAL ANALYSIS

#### A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HMO<sub>3</sub> to H<sub>2</sub>O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, **Da**, Ca, Cr, Fe, K, Hg, Hn, Ha, P, Sn, Sr and W.

ANALYST: 21game

| <b>REPORT 8:</b> 930059 PA | BILL DAY          |           |                   |                   |                   | PROJEC    | T: NONE           | GIVEN             |           |           | DATE     | IN: JULI     | 14 1993   | DATE               | OUT: JU           | ILY 21 19 | 193 AT            | TENTION: | NR. BILI      |                   |                   |           |            | D<br>PAGE 1      | OF 2              |
|----------------------------|-------------------|-----------|-------------------|-------------------|-------------------|-----------|-------------------|-------------------|-----------|-----------|----------|--------------|-----------|--------------------|-------------------|-----------|-------------------|----------|---------------|-------------------|-------------------|-----------|------------|------------------|-------------------|
| Sample Name                | Ag<br>pp <b>a</b> | Al<br>X   | As<br>p <b>pa</b> | Ba<br>p <b>pa</b> | Bi<br>p <b>pn</b> | Ca<br>X   | Cd<br>p <b>pe</b> | Co<br>p <b>pa</b> | Cr<br>998 | Cu<br>ppe | Fe<br>I  | K<br>I       | Mg<br>X   | fin<br>p <b>pe</b> | No<br>p <b>pa</b> | Na<br>Z   | Ni<br>p <b>pa</b> | Р<br>1   | Pb<br>ppa     | Sb<br>p <b>ga</b> | Sn<br>p <b>pa</b> | Sr<br>998 | U<br>ppa   | ¥<br>pp <b>e</b> | Zn<br>p <b>pe</b> |
| ST-1                       | 0.5               | 4.53      | (3                | 45                | 3                 | 1.32      | 2.3               | 70                | 138       | 138       | 7.77     | <0.01        | 3.59      | 1797               | 3                 | 0.01      | 125               | 0.11     | 14            | (2                | (2                | 38        | (5         | <3               | 606               |
| \$1-2                      | 0.3               | 4.51      | <3                | 39                | (3                | 2.00      | (0.1              | 75                | 132       | 135       | 7.74     | <0.01        | 3.58      | 1758               | (1                | <0.01     | 126               | 0.12     | 19            | <2                | <2                | 43        | (5         | (3               | 550               |
| ST-3                       | 0.3               | 4.64      | (3                | 47                | (3                | 1.33      | 0.6               | 78                | 139       | 168       | 8.15     | <0.01        | 3.54      | 2082               | 1                 | 0.02      | 135               | 0.12     | 28            | <2                | (2                | 41        | (5         | <3               | 681               |
| ST-4                       | 0.2               | 4.94      | (3                | 43                | (3                | 1.31      | 0.5               | 74                | 142       | 144       | 8.18     | (0.01        | 3.76      | 1866               | (1                | 0.01      | 125               | 0.12     | 10            | (2                | (2                | 37        | (5         | (3               | 658               |
| \$1-5                      | 0.3               | 4.79      | <3                | 46                | (3                | 1.44      | 0.2               | 11                | 137       | 162       | 8.28     | <0.01        | 3.62      | 1883               | 4                 | 0.01      | 128               | 0.12     | 16            | <2                | <2                | 43        | (5         | <3               | 697               |
| ST-6                       | 0.6               | 5.02      | (3                | 49                | (3                | 1.53      | 0.1               | 84                | 138       | 164       | 8.43     | (0.01        | 3.78      | 2139               | (1                | 0.01      | 138               | 0.12     | 28            | (2                | (2                | 43        | (5         | (3               | 663               |
| ST-7                       | 0.3               | 5.05      | <3                | 49                | (3                | 1.45      | (0.1              | 90                | 133       | 186       | 8.56     | <0.01        | 3.68      | 2188               | (1                | 0.01      | 145               | 0.11     | 33            | <2                | (2                | 45        | (5         | (3               | 702               |
| ST-8                       | 0.3               | 4.44      | (3                | 49                | (3                | 1.50      | 0.9               | 79                | 134       | 164       | 8.18     | (0.01        | 3.42      | 2018               | 2                 | 0.01      | 132               | 0.13     | 31            | (2                | (2                | 44        | (5         | (3               | 686               |
| ST-9                       | 0.5               | 5.01      | <3                | 48                | <3                | 1.47      | 0.7               | 68                | 146       | 180       | 8.82     | <0.01        | 3.68      | 2116               | 2                 | 0.03      | 148               | 0.12     | 40            | (2                | (2                | 55        | (5         | (3               | 979               |
| ST-10                      | 0.1               | 5.03      | (3                | 44                | (3                | 1.30      | 1.5               | 78                | 143       | 164       | 8.21     | <0.01        | 3.77      | 2180               | (1                | 0.01      | 135               | 0.10     | 24            | <2                | <2                | 45        | <5         | (3               | 844               |
| ST-11<br>ST-12             | 0.5               | 4.79      | <b>(3</b>         | 49                | <b>(3</b>         | 1.44      | 2.7               | 88                | 145       | 207       | 8.60     | <0.01        | 3.58      | 2369               | 4                 | 0.02      | 162               | 0.12     | 51            | (2                | <2<br>(2          | 53        | (5<br>/5   | (3<br>, (3       | 991<br>978        |
|                            | 0.6               | 4.76      | (3                | 50                | (3                | 1.41      | 2.3               | 86<br>74          | 140       | 205       | 8.86     | (0.01        | 3.43      | 2255               | 1                 | 0.04      | 150               | 0.13     | 39            | <2                | <2                | 53<br>52  | (5         | (3               |                   |
| ST-13<br>ST-14             | 0.7               | 4.64      | (3<br>(3          | 50<br>48          | (3                | 1.41      | 2.8               | 74                | 133       | 188       | 8.44     | <0.01        | 3.41      | 2007               | 3                 | 0.04      | 137               | 0.14     | 95            | (2                | <2                | 34        | <5<br>/5   | (3               | 942<br>851        |
| ST-15                      | 1.0               | 4.33      | (3                | 70<br>56          | (3                | 1.15      | 3.0               | 69                | 146       | 161       | 7.83     | (0.01        | 3.59      | 2163               | 1                 | <0.01     | 142               | 0.14     | 252           | <2                | (2                | 66        | (5         |                  |                   |
| 21-17                      | 1.5               | 4.30      | (3                | 30                | (3                | 2.93      | 3.0               | 70                | 155       | 177       | 7.86     | <0.01        | 3.60      | 2183               | 2                 | <0.01     | 152               | 0.13     | 297           | <2                | <2                | 66        | <5         | <3               | 1252              |
| ST-16                      | 1.5               | 4.34      | <3                | 53                | <3                | 1.17      | 3.3               | 71                | 155       | 177       | 7.98     | (0.01        | 3.64      | 2247               | 1                 | <0.01     | 157               | 0.14     | 329           | <2                | <b>(2</b> ·       | 35        | (5         | <3               | 1184              |
| ST-17                      | 1.5               | 4.34      | <3                | 54                | <3                | 3.04      | 5.2               | 73                | 161       | 178       | 7.98     | (0.01        | 3.61      | 2219               | 2                 | <0.01     | 151               | 0.12     | 237           | <2                | <2                | 71        | <5         | <3               | 1440              |
| ST-18                      | 1.1               | 4.34      | (3                | 56                | (3                | 2.97      | 3.9               | 73                | 159       | 178       | 7.94     | <0.01        | 3.63      | 2175               | 1                 | <0.01     | 155               | 0.12     | 246           | <2                | <2                | 70        | (5         | <3               | 1330              |
| ST-19                      | 1.2               | 4.46      | <3                | 53                | (3                | 2.92      | 5.5               | 70                | 165       | 179       | 7.98     | <0.01        | 3.65      | 2214               | 1                 | <0.01     | 149               | 0.12     | 233           | <2                | (2                | 71        | (5         | (3               | 1593              |
| ST-20                      | 1.0               | 4.18      | <3                | 47                | (3                | 3.91      | 4.7               | 62                | 153       | 149       | 7.43     | <b>{0.01</b> | 3.52      | 2023               | 1                 | (0.01     | 133               | 0.11     | 245           | <2                | <2                | 84        | <5         | <3               | 1226              |
| ST-21                      | 1.1               | 4.40      | (3                | 50                | <3                | 4.14      | 5.9               | 68                | 163       | 181       | 7.94     | <0.01        | 3.64      | 2151               | 2                 | (0.01     | 145               | 0.12     | 218           | <2                | (2                | 93        | <5         | (3               | 1534              |
| ST-22                      | 1.1               | 4.54      | (3                | 54                | (3                | 4.15      | 5.2               | 67                | 160       | 176       | 7.90     | (0.01        | 3.68      | 2125               | (1                | (0.01     | 145               | 0.12     | 218           | (2                | <2                | 94        | <5         | (3               | 1523              |
| SI-23                      | 0.8               | 4.76      | (3                | 39                | (3                | 1.37      | 3.5               | 69                | 160       | 157       | 7.92     | (0.01        | 3.66      | 2202               | 1                 | (0.01     | 145               | 0.12     | 109           | (2                | <2                | 37        | <5         | (3               | 991               |
| ST-24                      | 1.2               | 4.29      | (3                | 55                | (3                | 1.00      | 2.9               | 75                | 170       | 163       | 8.19     | (0.01        | 3.57      | 2663               | 6                 | (0.01     | 164               | 0.14     | 135           | <2                | (2                | 23        | (5         | <3               | 1512              |
| ST-25                      | 1.2               | 4.65      | (3                | 48                | (3                | 1.21      | 5.1               | 72                | 179       | 167       | 8.33     | <0.01        | 3.74      | 2491               | 4                 | <0.01     | 169               | 0.12     | 173           | <2                | (2                | 38        | <5         | (3               | 1269              |
| ST-26                      | 1.1               | 4.55      | <3                | 52                | <3                | 1.14      | 3.2               | 68                | 176       | 149       | 7.87     | <0.01        | 3.83      | 2317               | i                 | (0.01     | 163               | 0.13     | 214           | {2                | <2                | 30        | ۲۵         | <3               | 1291              |
| SI-27                      | 1.5               | 4.35      | (3                | 57                | <3                | 1.66      | 2.3               | 65                | 167       | 157       | 7.79     | (0.01        | 3.70      | 2265               | 2                 | (0.01     | 161               | 0.13     | 381           | <2                | <2                | 41        | <5         | (3               | 1085              |
| SI-28                      | 0.8               | 4.59      | (3                | 59                | (3                | 1.13      | 3.5               | 74                | 174       | 175       | 8.33     | (0.01        | 3.79      | 2448               | 1                 | (0.01     | 162               | 0.13     | 177           | <2                | (2                | 29        | <5         | (3               | 1312              |
| ST-29                      | 1.0               | 3.98      | (3                | 53                | (3                | 1.34      | 2.5               | 62                | 157       | 142       | 7.29     | (0.01        | 3.47      | 2234               | 2                 | (0.01     | 150               | 0.13     | 300           | (2                | (2                | 35        | (5         | (3               | 1043              |
| ST-30                      | 0.6               | 3.98      | (3                | 39                | <3                | 1.01      | 1.2               | 55                | 155       | 85        | 7.40     | (0.01        | 3.15      | 2315               | 3                 | (0.01     | 118               | 0.12     | 111           | <2                | <2                | 25        | <b>(</b> 5 | {3               | 947               |
| SI-31                      | 0.5               | 4.32      | ٢3                | 58                | (3                | 1.06      | 7.7               | 70                | 175       | 168       | 8.35     | (0.Ů1        | 3.67      | 2494               | 2                 | <0.01     | 168               | 0.12     | 124           | (2                | <2                | 27        | <5         | <3               | 2068              |
| SI-32                      | 1.0               | 4.51      | (3                | 62                | (3                | 1.22      | 8.3               | 72                | 182       | 170       | 8.54     | <0.01        | 3.78      | 2560               | 2                 | (0.01     | 175               | 0.13     | 131           | (2                | <2                | 31        | <5         | <3               | 1980              |
| ST-33                      | 0.9               | 4.60      | (3                | 55                | (3                | 1.01      | 1.1               | 71                | 172       | 168       | 8.45     | (0.01        | 3.79      | 2486               | <1                | (0.01     | 167               | 0.12     | 126           | <2                | <2                | 26        | <5         | <3               | 1913              |
| ST-34                      | 1.1               | 4.48      | (3                | 67                | (3                | 1.34      | 1.1               | 71                | 177       | 167       | 8.54     | (0.01        | 3.80      | 2524               | 4                 | (0.01     | 170               | 0.13     | 123           | <2                | (2                | 33        | <5         | (3               | 1930              |
| ST-35                      | ů. 4              | 2.32      | <i>4</i> 3        | 45                | (3                | 1.69      | 7.3               | 58                | 152       | 134       | 6.63     | (C.01        | 2.91      | 2095               | \$                | (0.01     | 133               | 0.10     | 125           | (2                | (2                | 42        | ~S         | <b>3</b>         | 1471              |
| ST-36                      | ŋ.7               | 4.26      | (3                | E4                | <3                | 2.51      | ٤.5               | ££                | :69       | 148       | 8.11     | (0.01        | 3.67      | 2307               | 3                 | (0.01     | 158               | 0.12     | 126           | (2                | ٢2                | 56        | (5         | <3               | 1617              |
| <b>SI-</b> 37              | Ù. 9              | 4.18      | <3                | 57                | (3                | 1.37      | 6.9               | 66                | 162       | 129       | 7.93     | (0.01        | 2.51      | 2925               | 3                 | (0.01     | 150               | 0.14     | 141           | <2                | <2                | 32        | <5         | ₹3               | 1605              |
| ST-38                      | 0.9               | 4.45      | <3                | 53                | (3                | ú.95      | 5.4               | 70                | 170       | 130       | 8.49     | (0.01        | 3.71      | 2665               | 3                 | (0.01     | 155               | 0.13     | 142           | (2                | (2                | 21        | <5         | ₹3               | 1540              |
| 51-39                      | 0,8               | 4.32      | <3                | 60                | (3                | 1.31      | 13.7              | 75                | 15E       | 150       | 8.04     | (0.01        | 3.57      | 2751               | 4                 | (0.01     | 165               | 0.13     | 126           | <2                | <2                | 31        | <5         | <3               | 2512              |
| Minique Detection          | <u>0.1</u>        | 6.01      | 3                 | 1                 | 3                 | 0.01      | 0.1               | 1                 | 1         | 1         | ė.0:     | 0.0i         | 0.6;      | 1                  | I                 | 0.01      | 1                 | 0.01     | 2             | 2                 | 2                 | :         | 5          | 3                | 1                 |
| Maxioum Detection          | 50.0              | 10,00     | 2000              | 1000              | 1000              |           | 1690.0            | 20060             | 1060      | 20000     | 10.0ù    | 10.00        | 10.0¢     | 20000              | 1000              | 10.00     | 20000             | 10.00    | 2000 <b>0</b> | 2000              | 1000              | 10000     | 100        | 1000             | 20000             |
| C - Less Than Minimum      | ) - Greater       | Than Maxi | <b>B</b> UA       | is - Ins          | sufficies         | it Sample | ê As              | - No S3a          | ple       | ANOMALO   | IS RESUL | TS - Fui     | ther Anal | VSES B             | Alteine           | ta Metho  | ds Succe          | sted.    |               |                   |                   |           |            |                  |                   |

#### 1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

\_\_\_\_

-----

. . . . .

·----

-----

. 1

Uzan

ANALYST:

t

1

1

#### ICAP GEOCHEMICAL ANALYSIS

#### A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HMOs to HgO at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

| REPORT 8: 930059 PA   | BILL DAY           |              |           |                  |                                                                                                                                                                                                      | PROJE    | CT: NONE   | GIVEN     |            |            | DATE         | IN: JUL      | 14 199: | 3 DATE       | E OUT: JU         | RLY 21 19      | 993 . A1  | TENTION: | NR. BILI  | DAY               |                   |           |          | PAGE 2                  | OF 2      |
|-----------------------|--------------------|--------------|-----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|------------|------------|--------------|--------------|---------|--------------|-------------------|----------------|-----------|----------|-----------|-------------------|-------------------|-----------|----------|-------------------------|-----------|
| Sample Name           | Ag                 | AL           | As        | Ba               | Bi<br>ppa                                                                                                                                                                                            | Ca       | Cd         | Co<br>ppa | Cr         | Cu         | fe           | ĸ            | Hg      | Xn<br>ppo    | No<br>p <b>pe</b> | Na<br>7        | Ni<br>ppa | P        | Pb<br>ppa | Sb<br>p <b>pe</b> | Sa<br>p <b>pa</b> | Sr<br>ppa | U<br>ppa | <b>Н</b><br>рр <b>п</b> | Zn<br>ppe |
| ST-40                 | рр <b>е</b><br>1.2 | 4.06         | рра<br>(3 | <b>ppa</b><br>56 | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | 1.17     | ppe<br>8.2 | 69        | рра<br>149 | рра<br>156 | 7.87         | <0.01        | 3.41    | 2506         | 4                 | <0.01          | 152       | 0.12     | 146       | <2                | <2                | 33        | (5       | (3                      | 1680      |
| ST-41                 | 1.0                | 4.24         | (3        | 56               | (3                                                                                                                                                                                                   | 1.15     | 7.7        | 69        | 168        | 158        | 8.36         | (0.01        | 3.71    | 2475         | 1                 | (0.01          | 160       | 0.12     | 138       | <2                | (2                | 28        | (5       | (3                      | 1710      |
| 51-42                 | 2.7                | 4.32         | (3        | 55               | (3                                                                                                                                                                                                   | 1.10     | 7.1        | 70        | 165        | 151        | 8.47         | <0.01        | 3.74    | 2667         | 3                 | (0.0)          | 157       | 0.14     | 130       | (2                | (2                | 27        | (5       | (3                      | 1650      |
| ST-43                 |                    |              |           |                  |                                                                                                                                                                                                      |          | 6.5        |           |            |            |              |              | 3.72    |              |                   |                | 149       | 0.13     | 126       | (2                | (2                | 25        | (5       | (3                      | 1592      |
| 81-13<br>ST-44        | 1.0<br>1.0         | 4.29<br>4.01 | <3<br><3  | 52<br>55         | (3<br>(3                                                                                                                                                                                             | 1.04     | 6.9        | 68<br>66  | 168<br>153 | 152<br>150 | 8.26<br>7.82 | <b>(0.01</b> | 3.45    | 2526<br>2436 |                   | <0.01<br><0.01 | 145       | 0.12     | 134       | (2                | (2                | 27        | (5       | (3                      | 1574      |
| 31-14                 | 1.0                | 4.01         | (3        | 23               | (3                                                                                                                                                                                                   | 1.12     | 8.7        | 00        | 133        | 130        | 1.62         | <0.01        | 3.43    | 2930         | 1                 | (0.01          | 143       | V. 12    | 134       | 12                | 14                |           | 13       | (3                      | 13/4      |
| ST-45                 | 1.2                | 4.15         | (3        | 53               | (3                                                                                                                                                                                                   | 1.10     | 7.1        | 70        | 161        | 158        | 8.24         | (0.01        | 3.63    | 2564         | 3                 | <0.01          | 151       | 0.12     | 133       | <2                | <2                | 27        | <5       | (3                      | 1739      |
| SI-46                 | 1.0                | 3.98         | (3        | 54               | (3                                                                                                                                                                                                   | 1.24     | 5.7        | 64        | 148        | 141        | 7.53         | <0.01        | 3.43    | 2415         | (1                | (0.01          | 146       | 0.13     | 131       | <2                | <2                | 33        | <5       | <3                      | 1588      |
| ST-47                 | 1.5                | 4.02         | (3        | 81               | (3                                                                                                                                                                                                   | 1.02     | 4.6        | 76        | 145        | 168        | 8.22         | <0.01        | 3.37    | 2975         | 6                 | (0.01          | 155       | 0.13     | 185       | <2                | (2                | 30        | (5       | <3                      | 1518      |
| ST-48                 | 1.5                | 3.37         | (3        | 11               | (3                                                                                                                                                                                                   | 0.81     | 3.2        | 65        | 92         | 150        | 7.43         | (0.01        | 2.47    | 3290         | 6                 | (0.01          | 114       | 0.15     | 312       | <2                | <2                | 25        | (5       | (3                      | 816       |
| ST-49                 | 1.9                | 3.52         | (3        | 70               | <3                                                                                                                                                                                                   | 0.60     | (0.1       | 63        | 95         | 159        | 7.68         | <0.01        | 2.50    | 2953         | 6                 | <0.01          | 111       | 0.15     | 307       | <2                | <2                | 19        | <5       | (3                      | 745       |
| ST-50                 | 1.8                | 3.45         | <3        | 83               | <3                                                                                                                                                                                                   | 0.65     | (0.1       | 69        | 91         | 163        | 7.86         | <0.01        | 2.44    | 3591         | 8                 | <0.01          | 120       | 0.15     | 342       | <2                | <2                | 21        | <5       | ⟨3                      | 799       |
| ST-51                 | 2.1                | 3.49         | (3        | 87               | (3                                                                                                                                                                                                   | 0.57     | (0.1       | 72        | 90         | 180        | 8.04         | (6.01        | 2.48    | 3641         | 9                 | (0.01          | 126       | 0.14     | 339       | (2                | (2                | 21        | (5       | (3                      | 821       |
| STC-1                 | 0.6                | 2.59         | (3        | 72               | (3                                                                                                                                                                                                   | 0.80     | (0.1       | 38        | 83         | 87         | 5.42         | (0.01        | 2.13    | 1497         | 1                 | (0.01          | 78        | 0.12     | 12        | (2                | (2                | 25        | (5       | <3                      | 227       |
| STC-2                 | 0.6                | 2.43         | (3        | 47               | (3                                                                                                                                                                                                   | 0.77     | (0.1       | 35        | 82         | 68         | 5.62         | (0.01        | 2.07    | 1246         | i                 | (0.01          | 75        | 0.11     | 13        | (2                | (2                | 22        | (5       | (3                      | 212       |
| S1C-3                 | 0.2                | 2.86         | <3        | 141              | (3                                                                                                                                                                                                   | 0.99     | (0.1       | 33        | 83         | 73         | 5.03         | <0.01        | 1.41    | 1496         | 1                 | (0.01          | 79        | 0.11     | (2        | <2                | <2                | 32        | <5       | <3                      | 164       |
| STC-4                 | 0.1                | 2.77         | (3        | 134              | (3                                                                                                                                                                                                   | 0.84     | (0.1       | 31        | 83         | 64         | 4.99         | <0.01        | 1.48    | 1326         | <b>'</b> 1        | <0.01          | 81        | 0.09     | (2        | <2                | (2                | 27        | <5       | (3                      | 143       |
| STC-5                 | 0.1                | 2.33         | (3        | 187              | (3                                                                                                                                                                                                   | 0.72     | (0.1       | 29        | 60         | 98         | 4.53         | (0.01        | 1.16    | 1472         | 1                 | (0.01          | 70        | 0.11     | <2        | <2                | <2                | 27        | (5       | <3                      | 170       |
| STC-6                 | 0.1                | 2.18         | (3        | 161              | (3                                                                                                                                                                                                   | 0.73     | (0.1       | 24        | 56         | 74         | 4.05         | (0.01        | 1.14    | 1258         | i                 | (0.01          | 56        | 0.09     | <2        | (2                | (2                | 26        | (5       | (3                      | 174       |
| STC-7                 | 0.1                | 2.30         | (3        | 201              | (3                                                                                                                                                                                                   | 0.49     | (0.1       | 40        | 65         | 100        | 5.30         | (0.01        | 1.51    | 1756         | i                 | (0.01          | 94        | 0.10     | 4         | (2                | (2                | 20        | (5       | (3                      | 237       |
| SIC-B                 | 0.1                | 2.28         | <3        | 211              | (3                                                                                                                                                                                                   | 0.52     | (0.1       | 40        | 65         | 102        | 5.25         | <0.01        | 1.47    | 1785         | i                 | (0.01          | 101       | 0.10     | 8         | (2                | (2                | 21        | (5       | (3                      | 234       |
| S1C-9                 | 0.2                | 3.07         | <3        | 72               | (3                                                                                                                                                                                                   | 0.95     | (0.1       | 40        | 104        | 76         | 5.91         | (0.01        | 2.74    | 1211         | (1                | <0.01          | 90        | 0.09     | <2        | <2                | (2                | 20        | <5       | <3                      | 145       |
| SIC-10                | 0.2                | 3.11         | <3        | 112              | (3                                                                                                                                                                                                   | 1.00     | (0.1       | 46        | 107        | 86         | 6.34         | (0.01        | 2.70    | 1413         | 1                 | (0.01          | 97        | 0.10     | <2        | <2<br><2          | (2                | 27        | (5       | <3                      | 171       |
| Minimum Detection     | 0.1                | 0.01         | 3         | 1                | 3                                                                                                                                                                                                    | 0.01     | 0.1        | 1         | 1          | 1          | 0.01         | 0.01         | 0.01    | 1            | 1                 | 0.01           | 1         | 0.01     | 2         | 2                 | 2                 | 1         | 5        | 3                       | 1         |
| Naxious Detection     | 50.0               | 10.00        | 2000      | 1000             | 1000                                                                                                                                                                                                 | 10.00    | 1000.0     | 20000     | 1000       | 20000      | 10.00        | 10.00        | 10.00   | 20000        | 1000              | 10.00          | 20000     | 10.00    | 20000     | 2000              | 1000              | 10000     | 100      | 1000                    | 20000     |
| < - Less Than Minisum | > - Greater        |              |           |                  | sufficien                                                                                                                                                                                            |          |            | - No Sam  |            |            |              |              |         | lyses By     |                   |                |           |          |           |                   |                   |           |          | ••••                    |           |
|                       | / 0160761          |              |           |                  |                                                                                                                                                                                                      | ·· Acahi | - 43       | NU 388    | 4.2        | - AUIMLU   | SA NEADE     | 10 101       |         | 1353 61      |                   | e nesuu        | as andde  | #*EU:    |           |                   |                   |           |          |                         |           |

#### ------ -----== 4 **- -** -1630 Pandora Bitreet, Vancouver, B.L. VSL 1L6 Ph:(604)251-5656 Fax:(604)254-5717

#### ICAP GEOCHEMICAL ANALYSIS

.....

# A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO<sub>2</sub> to H<sub>2</sub>O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and N.

|                                                                 |                      |                          |                        | Α.         | 5 grae s              | ample is               |                          |                       | al of 3:<br>Sis parti  |                  |                        |                           |                                   |                           |                        |                      |                           | o 10 el            | with val      | ier .      |           | ANALY     | 'ST: _              | <u></u>  | am        | al                   |
|-----------------------------------------------------------------|----------------------|--------------------------|------------------------|------------|-----------------------|------------------------|--------------------------|-----------------------|------------------------|------------------|------------------------|---------------------------|-----------------------------------|---------------------------|------------------------|----------------------|---------------------------|--------------------|---------------|------------|-----------|-----------|---------------------|----------|-----------|----------------------|
| REPORT #: 930060 PA                                             | BIL                  | I, DAY                   |                        |            |                       |                        | PROJE                    | CT: NONE              | GIVEN                  |                  |                        | DATE                      | IN: JULY                          | 14 1993                   | DATE                   | OUT: JU              | LY 21 19                  | 1A E9              | TENTION       | : MR. BILI | L DAY     |           |                     |          | PAGE 1    | OF 1                 |
| Sample Name                                                     | Ag                   | A1                       | As                     | +Au        | Ba                    | Bi                     | Ca                       | Cd                    | Ĉo                     | Cr               | Cu                     | Fe                        | K                                 | Ħg                        | Mn                     | No                   | Na                        | Ni                 | P             | Pb         | Sb        | Sn        | Sr                  | U        | H         | In                   |
|                                                                 | pge                  | 1                        | ppe                    | ppb        | ppa                   | ppe                    | 1                        | pp                    | p p a                  | ppe              | ppe                    | Ĩ                         | 1                                 | 1                         | pon                    | ppe                  | I                         | ppn                | I             | ppe        | ppe       | ppe       | pps                 | ppe      | pps       | ppa                  |
| 48651                                                           | 0.7                  | 4.11                     | (3                     | 20         | 9                     | (3                     | 3.63                     | 71.2                  | 111                    | 125              | 552                    | )10                       | (0.01                             | 1.70                      | 1232                   | 16                   | 0.37                      | 64                 | 0.04          | (2         | (2        | <2<br><2  | 85                  | (5<br>(5 | (3<br>(3  | 9677<br>270          |
| 48632                                                           | 0.5                  | 3.99                     | (3                     | 10         | a                     | <3                     | 5.34                     | (0.1                  | 111                    | 148              | 553                    | >10                       | (0.01                             | 1.65                      | 1010                   | 15                   | 0.32                      | 11                 | 0.05          | (2         | (2        | -         | 120                 | -        |           |                      |
| 48653                                                           | រាទ                  | 05                       | NS.                    | ĥs         | ns                    | 15                     | 05                       | ns.                   | A\$                    | 85               | AS                     | 05                        | R5                                | NS                        | 85<br>3150             | 85                   | N5                        | NS                 | RS            | NS<br>(2   | 115<br>(2 | ns<br>(2  | ns<br>83            | ns<br>(5 | ns<br>(3  | ns<br>)200 <b>00</b> |
| 48654                                                           | 3.0                  | 3.31                     | (3                     | 200        | 17                    | 31                     | 3.80                     | 364.1                 | 128                    | 89               | 581<br>866             | >10                       | (0.01                             | 1.50<br>1.79              | 3159                   | 19                   | 1.24                      | 36<br>68           | 0.04<br>0.08  | (2<br>26   | <2<br><2  | (2        | 22                  | (5       | (3        | 18782                |
| 48655                                                           | 0.9                  | 2.06                     | (3                     | 10         | (1                    | (3                     | 1.98                     | 133.6                 | 198                    | 44               | 110D                   | >10                       | (0.01                             | 1.73                      | 1615                   | 18                   | 0.15                      | 00                 | Ų.VG          | 20         | 1         | 12        | 22                  | 13       | 14        | 10/02                |
| 48656                                                           | N.5                  | 65                       | ns                     | រាទ        | រាទ                   | NS                     | ns                       | AS                    | 65                     | ns               | пs                     | ns                        | 85                                | ns                        | រាទ                    | N 5                  | 85                        | ns                 | AS            | ñs         | กร        | AS        | ns                  | กร       | A 5       | ns                   |
| 48657                                                           | 1.2                  | 1.52                     | (3                     | 10         | (1                    | (3                     | 0.82                     | 317.4                 | 102                    | 42               | 546                    | >10                       | <0.01                             | 1.30                      | 1196                   | 12                   | 0.4B                      | 65                 | 0,05          | <2         | <2        | <2        | 9                   | <5       |           | )20000               |
| 48658                                                           | 1.9                  | 2.02                     | <3                     | 30         | (1                    | (3                     | 8.94                     | 253.2                 | 231                    | 47               | 644                    | >10                       | (0.01                             | 1.77                      | 8110                   | 16                   | 0.79                      | 38                 | 0.13          | - 14       | <2        | (2        | 39                  | <5       | (3        | >20000               |
| 48659                                                           | 0.5                  | 4.68                     | <3                     | 30         | (1                    | (3                     | 4.75                     | 1.4                   | 254                    | 98               | 501                    | >10                       | (0.01                             | 1.36                      | 1294                   | 19                   | 0.31                      | BO                 | Q. 19         | <2         | <2        | (2        | 170                 | <5       | (3        | 897                  |
| 48660                                                           | >50                  | 0.24                     | <3                     | 20         | 35                    | (3                     | 0.32                     | 92.1                  | 12                     | 61               | 355                    | 5.01                      | (0.01                             | 0.13                      | 492                    | 5                    | 0.10                      | 12                 | 0.04          | >20000     | 80        | (2        | 13                  | (5       | (3        | 18776                |
| 48661                                                           | 2.2                  | 0.59                     | (3                     | 30         | (1                    | ⟨3                     | 0.26                     | 241.2                 | 32                     | 50               | 338                    | >10                       | (0.01                             | 0.64                      | 1091                   | 12                   | 0.36                      | 15                 | 0.01          | 506        | <2        | <2        | 3                   | (5       | (3        | >20000               |
| 48662                                                           | 0.7                  | 2.84                     | <3                     | 40         | 4                     | 3                      | 2.74                     | 35.4                  | 62                     | 148              | 263                    | 8.78                      | (0.01                             | 1.18                      | 1035                   | 9                    | 0.21                      | 78                 | 0.04          | 194        | (2        | (2        | 81                  | <5       | , (3      | 4930                 |
| 48663                                                           | 1.1                  | 3.17                     | <3                     | 20         | ()                    | <3                     | 1.75                     | 238.0                 | 16                     | 59               | 462                    | >10                       | (0.01                             | 3.37                      | 2986                   | 8                    | 0.25                      | 33                 | 0.03          | 35         | <2        | <2        | 8                   | (5       | (3        | >20000               |
| 48664                                                           | 0.4                  | 1.10                     | <3                     | 10         | 15                    | (3                     | 1.17                     | 90.7                  | 12                     | 69               | 149                    | 5.64                      | (0.01                             | 1.09                      | 898                    | 12                   | 0.01                      | 32                 | 0.08          | 37         | <2        | <2        | 12                  | (5       | <3        | 13464                |
| Кіпзаца Detection<br>Махівца Detection<br>К — Less Than Kinibum | 0.1<br>50.0<br>> - 1 | 0.01<br>10.00<br>Greater | 3<br>2000<br>Than Naxi | 5<br>10000 | 1<br>1000<br>is - Ins | 3<br>1000<br>sufficier | 0.01<br>10.00<br>t Sampl | 0.1<br>1000.0<br>e ns | 1<br>20000<br>- No Sam | 1<br>1000<br>ple | 1<br>20000<br>4Au Anai | 0.61<br>10.00<br>Iysis Do | 0.01<br>1 <b>0.00</b><br>ne By Fi | 0.01<br>10.00<br>re Assay | 1<br>20000<br>Concentr | 5<br>1000<br>ation / | 0.01<br>10.00<br>AAS Fin: | 1<br>20000<br>ish. | 0.01<br>10.00 | 2<br>20000 | 2<br>2000 | 2<br>1000 | 1<br>1 <b>00</b> 00 | 5<br>100 | 1000<br>3 | 1<br>20000           |

#### : ==== = .. ..... ; ==== 1630 Pandora Street, Vancouver, J.C. VSL 1L6 Ph:(604)251-5656 Fax:(604)254-5717

i.

#### ICAP GEOCHEMICAL ANALYSIS

# A .S gram sample is digested with 5 ml of 3:1:2 HCL to HNO<sub>2</sub> to H<sub>2</sub>O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Wa, P, Sn, Sr and W.

|                                            |             |                  |                   | Α.            | ,) gram s        | ampie 15          |                   |                | a ni of a<br>h is part   |                      |                           |                   |                   |                   |                   |                 |                  | ið 1V <b>H</b> i | ALCU AS   | ier.      |       | ANAL | /ST: _ | Ľ.  | zam    | al    |
|--------------------------------------------|-------------|------------------|-------------------|---------------|------------------|-------------------|-------------------|----------------|--------------------------|----------------------|---------------------------|-------------------|-------------------|-------------------|-------------------|-----------------|------------------|------------------|-----------|-----------|-------|------|--------|-----|--------|-------|
| REPORT 1: 930063 PA                        | NR.         | BILL DA          | NY                |               |                  |                   | PROJE             | ct: NONE       | GIVEN                    |                      |                           | DATE              | IN: JUC           | ¥ 21 1993         | DATE              | . OUT: JU       | JLY 26 1         | 1A 20            | FTENT LON | : MR. BIL | L DAY |      |        |     | PAGE 1 | OF 1  |
| Sample Name                                | Ag          | AL               | As                | 4Au           | Ba               | Bi                | Ca                | Cđ             | Co                       | Cr                   | Cu                        | fe                | ĸ                 | Ng                | Mn                | No              | Ka               | Ni               | P         | РЪ        | Sb    | Sn   | Sr     | U   | W      | ln    |
|                                            | ppe         | 1                | ppe               | ppb           | pps              | ppe               | ĩ                 | pps            | ppa                      | ppm                  | ppa                       | 1                 | 1                 | 1                 | ppa               | ppe             | 1                | ppa              | 1         | ppe       | ppa   | opa  | ppe    | ppe | pp=    | pp=   |
| 48653                                      | 1.2         | 1.60             | (3                | 30            |                  | (3                | 0.48              | <0.L           | 258                      | 98                   | 852                       | >10               | (0.01             | 1.51              | 986               | 18              | 0.03             | 165              | 0.02      | 30        | (2    | <2   | 19     | (5  | <3     | 101   |
| 48656                                      | 1.3         | 1.05             | (3                | 30            | a                | (3                | 3.56              | <b>(0.1</b>    | 281                      | 102                  | 763                       | >10               | <b>(0.0</b> 1     | 1.00              | 886               | 20              | 0.05             | 171              | 0.03      | 37        | <2    | (2   | 47     | <5  | (3     | 182   |
| Minimum Detection                          | 0.1         | .0.01            | 3                 | 5             | 1                | 3                 | 0.01              | 0.1            | I.                       | 1                    | 1                         | 0.01              | 0.01              | 0.01              | 1                 | 1               | 0.01             | 1                | 0.01      | 2         | 2     | 2    | 1      | 5   | 3      | 1     |
| Naxioun Detection<br>( - Less Than Minioun | 50.0<br>>-( | 10.00<br>Greater | 2000<br>Than Maxi | 10000<br>inua | 1000<br>is - Ins | 1000<br>Sufficier | l0.00<br>ht Sampl | 1000.0<br>e ns | 2000 <b>0</b><br>- No Sa | 100 <b>0</b><br>mple | 2000 <b>0</b><br>#Au Anai | 10.00<br>Lysis Bo | 10.00<br>ne Dy Fi | 10.00<br>re Assay | 20000<br>Coaceatr | LOOQ<br>ation / | 10.00<br>MAS Fin | 20000<br>ish.    | 10.00     | 20000     | 2000  | 1000 | 10000  | [00 | 1000   | 20000 |

.

# VGC VANGEOCHEM LAB LIMITED

48664

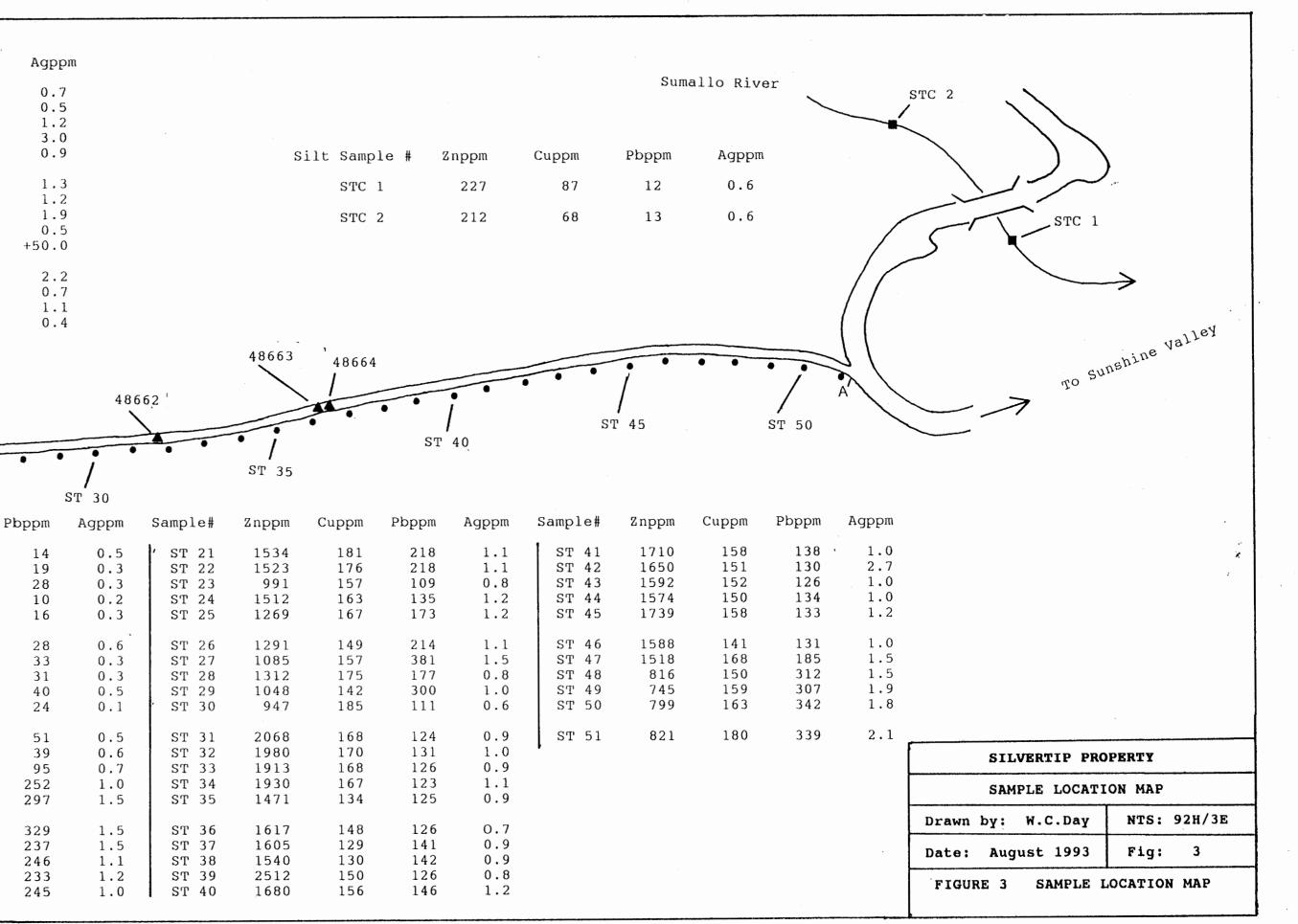
MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

#### BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

| REPORT NUMBER: \$30866 GA | JOB NUMBER: \$39060 | HR. BILL DAY | PAGE 1 OF 1 |
|---------------------------|---------------------|--------------|-------------|
| SAMPLE #                  | Au                  |              |             |
|                           | р <b>рb</b>         |              |             |
| 48651                     | 20                  |              |             |
| 48652                     | 10                  |              |             |
| 48653                     |                     |              |             |
| 48654                     | 200                 |              |             |
| 48655                     | 10                  |              |             |
| 48656                     | . <b></b>           |              |             |
| 48657                     | 10                  |              |             |
| 48658                     | 30                  |              |             |
| 48659                     | 30                  |              |             |
| 48660                     | 20                  |              |             |
| 48661                     | 30                  |              |             |
| 48662                     | 40                  |              |             |
| 48663                     | 20                  |              |             |

10

# VGC VANGEOCHEM LAB LIMITED


MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

| REPORT NUMBER: \$30063 GA | JOB NUNBER: \$30043 | WR. BILL DAY | PAGE 1 OF 1 |
|---------------------------|---------------------|--------------|-------------|
| SAMPLE #                  | Au<br>թ <b>թb</b>   |              |             |
| 48653                     | 30                  |              |             |
| 48656                     | 30                  |              |             |

|                                                          | Rock Sample #                               | Znppm                                     | Cuppm                                | Pbppm                           | Agppm                             | 1                               |                                             |                                      |                                 |                                 |                                   |                                           |                                      |                                 |                                   |                                 |                                              |          |          |
|----------------------------------------------------------|---------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|-----------------------------------|---------------------------------|----------------------------------------------|----------|----------|
|                                                          | 48651<br>48652<br>48653<br>-48654<br>-48655 | 9677<br>270<br>101<br>+20000<br>18782     | 552<br>553<br>852<br>581<br>866      | <2<br><2<br>30<br><2<br>26      | 0.7<br>0.5<br>1.2<br>3.0          |                                 |                                             | s                                    | ilt Sample                      | e # Zn                          | ppm                               | Сиррт                                     | Suma<br>Pbppm                        | allo Rive<br>Agppm              |                                   |                                 | STC 2                                        | $\sim$   |          |
| N/                                                       | 48656<br>48657<br>48658<br>48659<br>48660   | 182<br>+20000<br>+20000<br>897<br>18776   | 763<br>546<br>644<br>501<br>355      | 37<br><2<br>14<br><2<br>+20000  | 1.3<br>1.2<br>1.9<br>0.5<br>+50.0 |                                 |                                             |                                      | STC 1<br>STC 2                  |                                 | 227<br>212                        | 87<br>68                                  | 12<br>13                             | 0.6                             |                                   |                                 | 5                                            | STC 1    |          |
| 48651                                                    | 48661<br>48662<br>48663<br>48664            | +20000<br>4930<br>+20000<br>13464         | 338<br>263<br>462<br>149             | 506<br>194<br>35<br>37          | 2.2<br>0.7<br>1.1<br>0.4          |                                 |                                             |                                      |                                 |                                 |                                   |                                           |                                      |                                 |                                   |                                 |                                              |          | *        |
| 48652<br>48653 48654 48655<br>48657 48659<br>48657 48659 | 48660                                       | 48661                                     | • •                                  |                                 | • •                               | 486                             | 6,2 '                                       | 48663                                | 48664                           | ST 4                            | 10                                | •<br>ST                                   | F 45                                 | • •                             | ST 50                             |                                 |                                              | TO SUNST | 1jn      |
| ST 1<br>ST 5<br>ST 10<br>ST 15                           | ST 2                                        | 20<br>Sample#                             | ST<br>Znppm                          | 25<br>Cuppm                     |                                   | T 30<br>Agppm                   | Sample#                                     | Znppm                                | Cuppm                           | Pbppm                           | Agppm                             | Sample#                                   | Znppm                                | Cuppm                           | Pbppm                             | Agppm                           |                                              |          |          |
|                                                          | To Drill Sit                                | ST 1<br>ST 2<br>ST 3<br>ST 4<br>ST 5      | 606<br>550<br>681<br>658<br>697      | 138<br>135<br>168<br>144<br>162 | 14<br>19<br>28<br>10<br>16        | 0.5<br>0.3<br>0.2<br>0.3        | ' ST 21<br>ST 22<br>ST 23<br>ST 24<br>ST 25 | 1534<br>1523<br>991<br>1512<br>1269  | 181<br>176<br>157<br>163<br>167 | 218<br>218<br>109<br>135<br>173 | 1.1<br>1.1<br>0.8<br>1.2<br>1.2   | ST 41<br>ST 42<br>ST 43<br>ST 44<br>ST 45 | 1710<br>1650<br>1592<br>1574<br>1739 | 158<br>151<br>152<br>150<br>158 | 138 ·<br>130<br>126<br>134<br>133 | 1.0<br>2.7<br>1.0<br>1.0<br>1.2 |                                              |          |          |
| 0 20 40 60 80 100 m                                      | Sit.                                        | ST 6<br>ST 7<br>ST 8<br>ST 9<br>ST 10     | 663<br>702<br>686<br>979<br>844      | 164<br>186<br>164<br>180<br>164 | 28<br>33<br>31<br>40<br>24        | 0.6<br>0.3<br>0.3<br>0.5<br>0.1 | ST 26<br>ST 27<br>ST 28<br>ST 29<br>ST 30   | 1291<br>1085<br>1312<br>1048<br>947  | 149<br>157<br>175<br>142<br>185 | 214<br>381<br>177<br>300<br>111 | 1.1<br>1.5<br>0.8<br>1.0<br>0.6   | ST 46<br>ST 47<br>ST 48<br>ST 49<br>ST 50 | 1588<br>1518<br>816<br>745<br>799    | 141<br>168<br>150<br>159<br>163 | 131<br>185<br>312<br>307<br>342   | 1.0<br>1.5<br>1.5<br>1.9<br>1.8 |                                              |          |          |
|                                                          | -                                           | ST 11<br>ST 12<br>ST 13<br>ST 14          | 991<br>978<br>942<br>851             | 207<br>205<br>188<br>161        | 51<br>39<br>95<br>252             | 0.5<br>0.6<br>0.7<br>1.0        | ST 31<br>ST 32<br>ST 33<br>ST 34            | 2068<br>1980<br>1913<br>1930<br>1471 | 168<br>170<br>168<br>167<br>134 | 124<br>131<br>126<br>123<br>125 | $0.9 \\ 1.0 \\ 0.9 \\ 1.1 \\ 0.9$ | ST 51                                     | 821                                  | 180                             | 339                               | 2.1                             |                                              | IP PROPE |          |
|                                                          |                                             | ST 15<br>ST 16<br>ST 17<br>ST 18<br>ST 19 | 1252<br>1184<br>1440<br>1330<br>1593 | 177<br>177<br>178<br>178<br>179 | 297<br>329<br>237<br>246<br>233   | 1.5<br>1.5<br>1.1<br>1.2        | ST 35<br>ST 36<br>ST 37<br>ST 38<br>ST 39   | 1617<br>1605<br>1540<br>2512         | 148<br>129<br>130<br>150        | 126<br>141<br>142<br>126        | O.7<br>0.9<br>0.9<br>0.8          |                                           |                                      |                                 |                                   |                                 | Drawn by: W.C<br>Date: August<br>FIGURE 3 SA |          | NT<br>Fi |
|                                                          |                                             | ST 20                                     | 1226                                 | 149                             | 245                               | 1.0                             | ST 40                                       | 1680                                 | 156                             | 146                             | 1.2                               |                                           |                                      |                                 |                                   |                                 | FIGURE 3 SA                                  |          | AT.      |

.

