FILMED

ASSESSMENT REPORT

GEOCHEMICAL and GEOLOGICAL SURVEYS

ON THE

RAM, TUT and TOT CLAIMS

ATLIN MINING DIVISION NTS: 104K/01W AND 104K/08W

50° 17'N 132° 21'W

Owned & Operated By:

North American Metals Corp. 1500-700 West Pender Street, Vancouver, B.C.

£ C

	jer - s		*	
Jane M. Howe, P.Ge				
Doug G. Reddy, P.G	LOG NO:	OCT 1 9 1993	81	1 1 1 1
September 1993	ACTION.		·····	
	· · · · · · · · · · · · · · · · · · ·			
•	FILE NO:		and and a second se	
GEOLOGICAL B ASSESSMENT R Notice of Work Approval #: SMI-S	R A N C E P 00 - 8 - 01 00 - 8	H T 6-57		
15.00	46)		

	TABLE	OF	CONT	ENTS

	OF FIG			ii
1.0		BLES DDUCT		ii 1
1.0			e of Report	1
		•	ion, Access and Physiography	1
			rty Definition	1
		•	ration History	1
		-	Completed During 1992	5
	1.0	VVUIK	Completed During 1992	5
2.0	REGIO	DNAL (GEOLOGY	6
3.0	PROP	ERTY	GEOLOGY	6
4.0			DISCUSSION OF MINERALIZED AREAS	
	4.1		BLUFFS ZONE	
			Geology and Mineralization	12 21
			Geochemistry	12 11 12
,			Recommendations	12
	4.2		NOW ZONE	
			Geology and Mineralization	12
			Geochemistry	12
		-	Recommendations	12
	4.3		-ZINC SHOWING	
			Geology and Mineralization	13 12
			Geochemistry	13 -12
			Recommendations	13
	4.4			10
			Geology and Mineralization	13
			Geochemistry	13
	4 5		Recommendations	15 74
	4.5			45
			Geology and Mineralization	15
			Geochemistry	15
		4.5.3	Recommendations	16,15
5.0	SUM	MARY .	AND CONCLUSIONS	17 18
6.0	BIBLI	OGRAP	HY AND SELECTED REFERENCES	18
APPE	NDIX	1	1992 GEOCHEMICAL ASSAY CERTIFICATES	19
APPE	INDIX	11	1992 ANALYTICAL METHODS	32
APPE	INDIX	HI	1992 TRAVERSE SUMMARY	34
APPE	INDIX	IV	STATEMENT OF QUALIFICATIONS	36
APPE	INDIX	V	STATEMENT OF EXPENDITURES	38

LIST OF FIGURES

FIGUF	RE	PAGE
1.	Property Location Map	2
2.	Ram, Tut, Tot, Ying Claim Map	3
3.	Regional Geology Map	7
4.	Ram-Tut-Tot Property Summary Geological Map	8
5.	Ram-Tut-Tot Property 1992 Geology Map	in pocket
6.	Ram-Tut-Tot Property 1992 Geochemistry Map	in pocket

LIST OF TABLES

TAB	SLE	PAGE
1.	Summary of Claim Status	4
2.	Summary of Work Performed on Each Claim	5
3.	Statement of Expenditures	36

1.0 INTRODUCTION

The RAM-TUT-TOT property consists of ten claims, staked between 1981 and 1989, which are 100% owned by North American Metals Corp. (NAMC). In 1992 NAMC was an 83% owned subsidiary of Homestake Canada Ltd. During 1992, Homestake Canada Ltd. was contracted by NAMC to conduct exploration work on the RAM-TUT-TOT property. Homestake's interest in NAMC was purchased by Wheaton River Minerals Ltd. in July 1993.

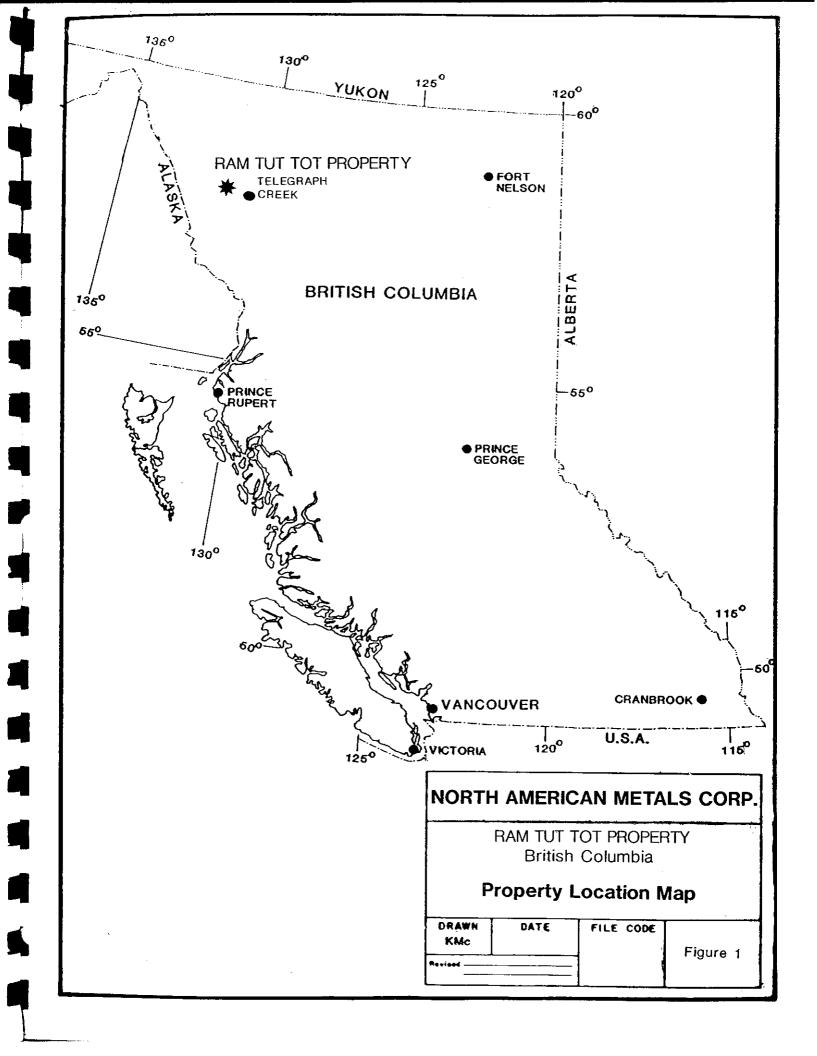
1.1 SCOPE OF REPORT

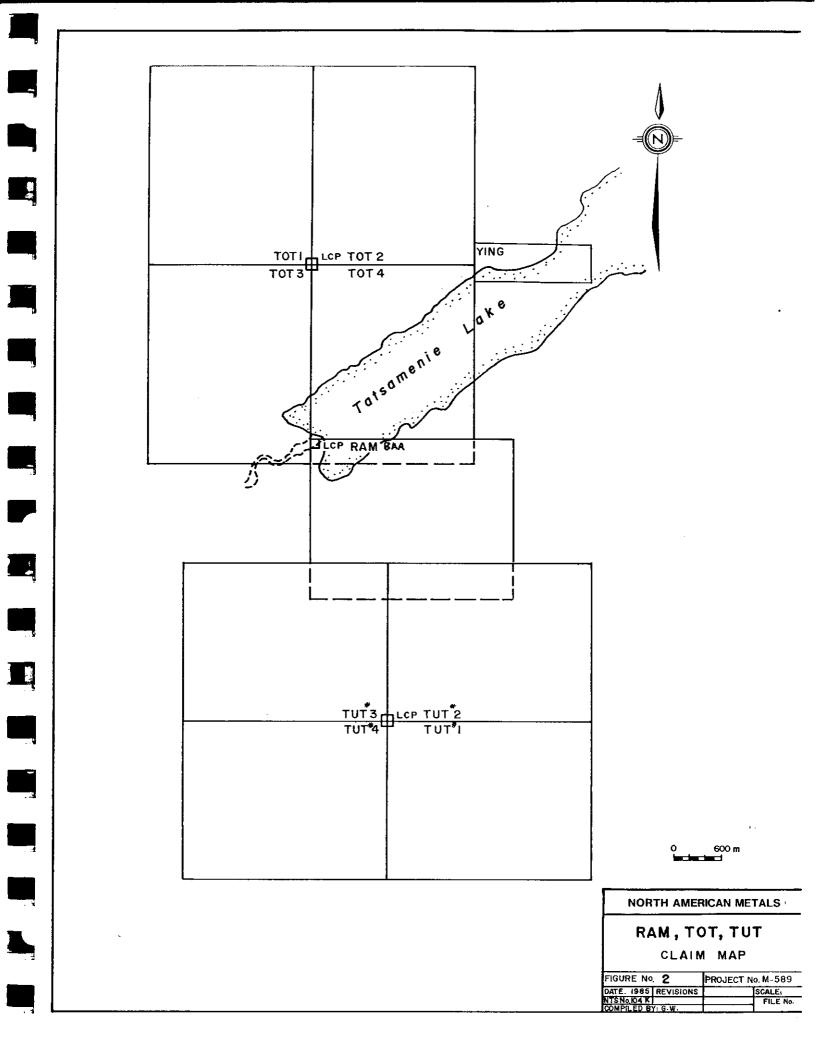
This report summarizes the exploration program conducted during 1992. Much of the introductory section of this report is summarized from previous authors. All known reports on the RAM-TUT-TOT property are listed in section 6.0 of this report.

1.2 LOCATION, ACCESS AND PHYSIOGRAPHY

The centre of the RAM-TUT-TOT property is located at 132° 21'W and 50° 17'N on NTS map sheet 104K/08W, approximately twelve kilometres north of the Golden Bear Mine and one hundred-thirty kilometres northwest of Telegraph Creek, B.C. (Figure 1). Although the two-wheel drive Golden Bear Mine road passes within ten kilometres of the southern edge of the property, access can be gained only by helicopter, usually from the Golden Bear Mine or Dease Lake.

The RAM-TUT-TOT property lies within moderately rugged terrain with elevations ranging from 900 meters at Tatsamenie Lake to over 2300 meters in the southeast corner of the Tut 1 claim. Tree line occurs at approximately 1100 metres elevation, slopes are primarily talus covered, but soil horizons are developed below tree line. Little or no vegetation other than grass occurs above tree-line; while dense spruce, pine and poplar forest occur on the lower slopes. Glaciers and permanent snow are not abundant and only account for approximately 5% of the total claim area. The climate is typical for a northern mountainous area, abundant snow and freezing temperatures occur for eight months of the year. Snow melts slowly on the western and northern slopes and surface exploration can only be conducted between July and mid-September.


1.3 PROPERTY DEFINITION


The property is comprised of ten claims totalling one hundred and seventy-eight units. All of the claims are located in the Atlin Mining Division and are recorded as listed in Table 1 and shown in Figure 2.

. .

1.4 EXPLORATION HISTORY

The TUT 1 to 4 claims were first staked in 1981 by Chevron Minerals Ltd. as a result of a reconnaissance exploration program in the southeastern Tulsequah

÷

map area (104K). The property was expanded with the addition of the Tot 1-4 claims in 1983. The Ram Baa claim was staked in 1989. The Ying claim was staked in 1987 to hold tenure in the area of the Chevron 1987 Tatsamenie Lake Base Camp.

CLAIM	RECORD	Units	RECORD DATE	EXPIRY DATE
Ram Baa	202950	15	Oct. 2,1989	Oct. 2,1993
Tut #1	201846	20	Mar. 5,1981	Mar. 5,1996
Tut #2	201847	20	Mar. 5,1981	Mar. 5,1996
Tut #3	201848	20	Mar. 5,1981	Mar. 5,1996
Tut #4	201849	20	Mar. 5,1981	Mar. 5,1996
Tot 1	202022	20	July 4,1983	July 4,1993
Tot 2	202023	20	July 4,1983	July 4,1993
Tot 3	202024	20	July 4,1983	July 4,1993
Tot 4	202025	20	July 4,1983	July 4,1993
Ying	202400	3	July 3,1987	July 3,1993

TABLE 1: Summary of Claim Status.

Chevron completed a program of mapping and rock sampling on the property in 1982 (Shannon, 1982; Brown and Shannon, 1982) and followed up with a more thorough program of detailed geological mapping, rock and soil sampling, and minor trenching in 1983 (Brown and Walton, 1983). Further trenching and sampling was completed during 1984 (Bruaset, 1984). During 1985, a student from the University of British Columbia completed a study of the albitized unit on the Tut claims (Hewgill, 1985a,b). In 1987, Chevron conducted a 674m diamond drill program to test the silicified limestone contact mineralization on the Tut claims, and a narrow shear zone on the Tot 4 claim.

During 1990 Chevron and Armeno Resources Inc. entered into an option agreement. Between July and September 1990, Armeno completed a VLF-EM survey and drilled 437 metres in four diamond drill holes to further evaluate the silicified limestone mineralization on the Tut claims. A geological compilation and a more thorough discussion of all previous work on the property can be found in the report by Armeno Resources (Allen, 1990).

÷.,

North American Metals Corp. acquired 100% interest in the property, as part of the Asset Sale Agreement between Chevron and NAMC, prior to the 1992 field season.

1.5 WORK COMPLETED DURING 1992

The field crew arrived in Dease Lake on June 26 and moved field gear and supplies to the Golden Bear Mine Camp between June 27 and 29. The crew mobilized to the RAM-TUT-TOT property on June 30. During the period July 1 to July 18, 1992 work was completed over several target areas on the RAM-TUT-TOT property.

Four known mineralized zones (silicified limestone contact zone, two antimony showings and the shear zone on the Tot claims) were briefly re-evaluated to determine size potential; the source of the Au, Ag, Sb, As talus/soil anomalies was explored. Several new showings were discovered and evaluated, and are discussed in section 4 of this report.

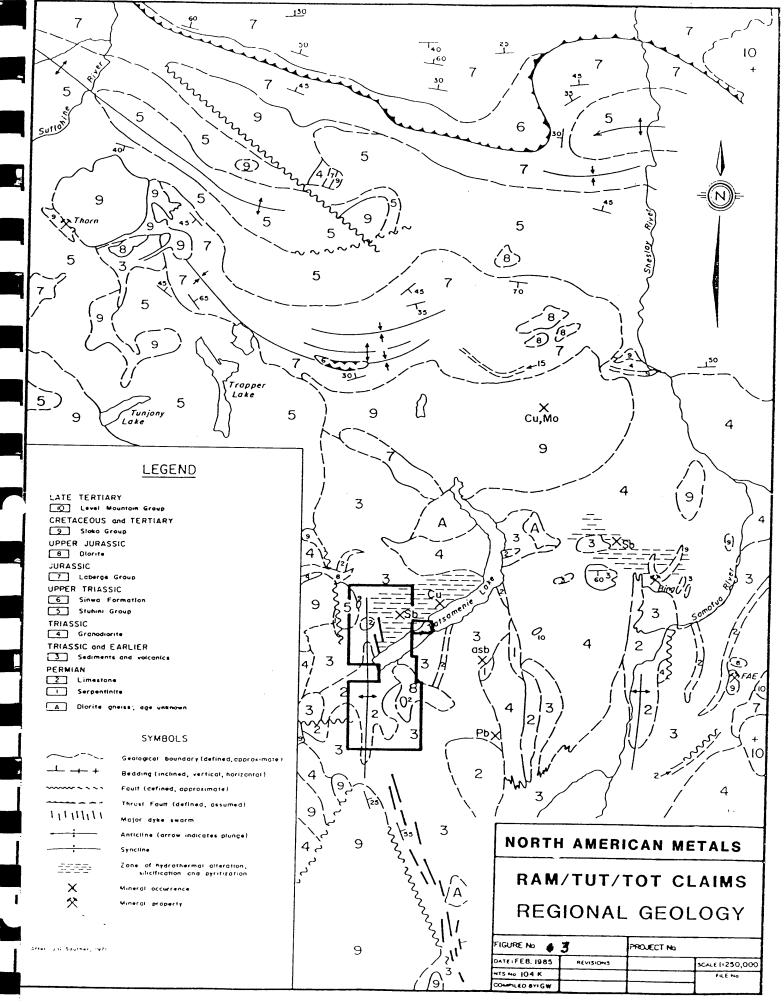
During the fieldwork a total of 14 soil samples, 171 talus fine and talus coarse samples, and 218 rock samples were collected from the various target areas on the RAM-TUT-TOT property (Table 2). Three hundred and sixty nine samples were analyzed (not all samples collected were analyzed; 17 samples were duplicates) at International Plasma Laboratories (IPL); 4 samples were analyzed at the Golden Bear Mine Assay Lab. The talus coarse samples were prepared by IPL in the same manner as rock samples due the coarse nature of the material. All assay results are listed in Appendix I; sample locations are plotted on the geochemistry map (Figure 6-in pocket).

CLAIM	TALUS Samples Obtained	ROCK Samples Obtained	GEOCHEMICAL Sampling Man-Days	GEOLOGICAL Mapping Man-Days
Ram Baa	30	15	5	5.5
Tut 1	0	7	0	1
Tut 2	126	103	14.5	8
Tut 3	0	0	0	0
Tut 4	0	0	0.5	0.5
Tot 1	9	5	1	1
Tot 2	0	0	0	1
Tot 3	17	37	3	3
Tot 4	3	4	1	1
Ying	0	0	0	0

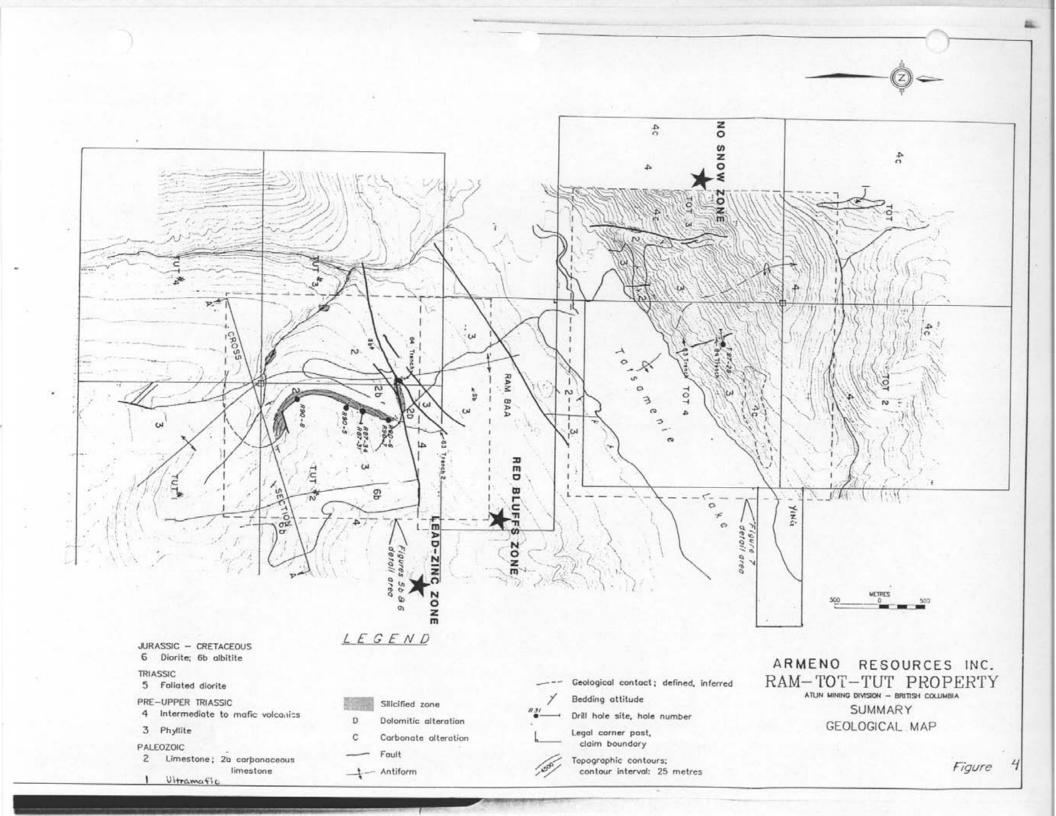
TABLE 2: Summary of work p	performed o	on each	claim.
----------------------------	-------------	---------	--------

Geological mapping was conducted at 1:10 000 scale over approximately 30 square kilometres in areas not previously mapped and at 1:5000 scale over approximately 15 square kilometres in several areas of mineral showings. A previously existing grid was re-established over a total of 2.5 line kilometres to facilitate mapping and geochemical sampling near the Limestone Contact Zone.

All 1993 mapping and sampling has been compiled at 1:10 000 scale for the purpose of this report (Figures 5 and 6). The sample number system utilized incorporates the sampler's initials (JH, DM, JR or DH), followed by the traverse number, then the actual sample number. Not all samples obtained were analyzed geochemically, many samples were taken for a representative rock suite.


2.0 REGIONAL GEOLOGY

The regional geology in this area has been documented by Souther (1970) and recently by Bradford and Brown (1993). An alteration, mineralization and structural study of the Tatsamenie - Golden Bear Area was completed by Oliver (1990). A geochronological study of the Tatsamenie Lake area was also completed by Oliver and Gabites (1993).


The RAM-TUT-TOT property lies within the Stikine terrane, a composite terrane comprised of Paleozoic, Triassic and Jurassic island arc rocks (Figure 4). Basement rocks of the Stikine terrane are known as the Stikine Assemblage and include Devonian to Permian limestones, argillites, cherts and a variety of volcanic and epiclastic rocks. These rocks are strongly deformed and stratigraphic relationships are not well understood. Rocks younger than Permian lack diagnostic fossils and as such can only be defined as pre-Upper Triassic in age. The Stikine Assemblage is overlain by Upper Triassic oceanic arc rocks of the Stuhini Group both of which are crosscut by Upper Triassic and Jurassic intrusive rocks of intermediate to felsic composition. Early Tertiary intermediate to felsic subaerial volcanics, intrusives and derived sediments of the Sloko Group unconformably overlie pre-Upper Triassic and Triassic rocks. The youngest rocks in the area are basaltic flows and pyroclastics of the late Tertiary Level Mountain Group and Hearts Peak Formation. These volcaniclastics overlie glacial till and are, in part, of Pleistocene age.

3.0 **PROPERTY GEOLOGY**

The RAM-TUT-TOT property is predominantly underlain by a tightly folded package of clastic, carbonate and volcanic rocks of the pre-Upper Triassic Stikine Terrane which is overlain by a thick succession of less deformed and weakly chloritic volcaniclastics of the Upper Triassic Stuhini Group. These lithologies are locally cut

• •

by diorites to quartz-diorite intrusions of Triassic age, and plagioclase \pm hornblende porphyritic dykes and fine-grained aphanitic rhyolite dykes of the Tertiary Sloko Group.

A detailed description of each lithology is given below. Lithologic descriptions correspond to stratigraphy documented in the legend for Figures 3, 4 and 5.

Unknown Age

Ultramafic (Unit 1)

The only outcrop of this unit on the property is a thin fault-bounded lozenge on the Tot 1 claim. This unit is seen in several other locations between Tatsamenie Lake and the Golden Bear Mine, usually at higher elevations. It is always fault-bounded and in thrust contact with younger Stikine Assemblage rocks. The ultramafic unit is strongly altered to serpentine \pm carbonate \pm talc, but small, isolated pods of remnant acicular actinolite needle-texture occur within the unit. Despite intense, pervasive alteration, this unit is strongly magnetic.

Permian

Limestone (Unit 2)

This unit has an estimated thickness of 1000m and consists of well bedded white and grey silicified limestone and dolomitic limestone. Bedding attitudes are typically shallow to moderate easterly dips. The limestone outcrops in several locations on the property, usually in topographically low areas, but is faulted higher into stratigraphy on the south side of the lake. The limestone contact zone mineralization occurs at the top of this unit. It is believed that mineralizing fluids migrated upwards through faults and fractures in the limestone, depositing gold, arsenic and antimony mineralization along bedding planes (manto-style) below the relatively impermeable pre-Upper Triassic unit. Several samples were obtained in 1992 for fossil identification by the BC Geological Survey Branch. These samples confirmed the Permian age of the limestones (Bradford & Brown, 1993).

Pre-Upper Triassic - Stikine Assemblage

Mafic to Intermediate Volcaniclastics and Siltstones (Unit 3)

The pre-Upper Triassic stratigraphic package is highly complex due to intense alteration and deformation. This package consists of 100-200 metres of well-bedded siltstone, overlain by approximately 800 metres of poorly-bedded volcaniclastics and minor interbedded clastic units. The overall package is estimated to be 1000 metres thick, however folding and faulting may have artificially increased the thickness. Bedding attitudes are typically moderate to steeply easterly dips. Alteration intensity varies with deformation intensity except along margins of intrusive bodies. Most of the rocks within this stratigraphic package typically exhibit a well-developed, penetrative fabric relative to either the Permian limestone or Triassic Stuhini volcanics. Most of this package has a phyllitic texture which consists of primarily sericite, chlorite and quartz mineral assemblage.

The volcanic rocks consist primarily of fine-grained mafic to intermediate ash tuffs with occasional coarser-grained fragmentals. These rocks are medium to pale green and are intensely chloritized and silicified. Very fine-grained euhedral pyrite and specular hematite are common and occur disseminated throughout these volcanics. Within the mafic volcaniclastic package there is a distinctive felsic volcaniclastic unit approximately 200 metres thick. This unit is mapped on the north shore of Tatsamenie Lake (Tot 4 claim) and on the western and northern sides of Misty Mtn (Tut 1,2 and Ram Baa claims). The felsic pyroclastics are poorly-bedded, poorly-sorted, interbedded calcareous sediments and have gradational contacts along strike and above and below the unit with the mafic pyroclastic unit.

The felsic unit on the north shore of Tatsamenie Lake was sampled in 1990 to obtain a geochronological age date (Oliver, 1993). The age of the felsic unit based on U-Pb isotopes in zircons is determined to be between 307 ± 2 Ma and 316.5 ± 5 Ma (Oliver, 1993). Oliver has stated that these volcanics can be correlated to the felsic volcaniclastics which underlie the Permian limestones regionally and therefore, were emplaced on top of the Permian section by a south verging thrust fault (Oliver, 1993). If this theory is true, then unit 3 (pre-Upper Triassic phyllites and volcaniclastics) is actually pre-Permian and thrust over the limestones. It would be this thrust fault that was the target of the 1987 drill program. Sufficient evidence does not exist to confirm or disprove this theory, however the relative positions of units, as seen in Plate 2, and the deformation intensity of phyllite-volcaniclastic package indicates this theory is quite probable.

Upper Triassic - Stuhini Group

Mafic to Intermediate Volcaniclastics (Unit 4)

The volcaniclastic rocks of the Stuhini Group appear to be andesitic in composition based on work by other authors (Bradford & Brown, 1993; Oliver 1990, 1993) and based on thin section analyses from other NAMC properties in the area. Textures vary from fine-grained ash tuff to coarse crystal-lithic tuff and coarse-grained, augite porphyritic flows. This unit is typically medium to dark green, unfoliated and weakly chloritized with primary textures and mineralogy well preserved. Trace amounts of fine-grained, euhedral pyrite are disseminated throughout the volcaniclastics. Iron carbonate alteration occurs locally as fracture

controlled veins or weak to moderate replacement of the pyroclastic matrix. Elsewhere in the Tatsamenie area, the Stuhini volcanics are intensely carbonate altered over areas as large as 14 square kilometres (Oliver 1990), forming impressive reddish-orange gossanous cliffs.

Bedding attitudes are usually shallow dipping towards the southeast. The contact with the underlying Stikine Assemblage phyllites is assumed to be unconformable and erosional, based on relative bedding angles in the underlying unit. Fine-grained mafic sills intrude the Stikine Assemblage and the Stuhini volcaniclastics on the Tut claims. These sills are weakly altered, undeformed and appear to be genetically and temporally related to the Stuhini volcanism.

Jurassic

Diorite (Unit 6a)

This unit outcrops in several locations on the RAM-TUT-TOT property and is typically coarse-grained hornblende \pm plagioclase porphyritic in a plagioclase matrix. The diorite is unaltered, unfoliated and postdates Stuhini volcaniclastic rocks. Narrow zones of intense, pervasive iron carbonate alteration are common near intrusive contacts.

Albitite (Unit 6b)

This unit only outcrops on the Tut 2 claim. It is considered to be the sodium-metasomatized equivalent of the adjacent Jurassic diorite (Hewgill, 1985a and b) and resulted from a degassing of volatiles during a late magmatic phase.

Tertiary - Cretaceous

Sloko Group Intermediate to Felsic Rocks (Unit 7)

This unit only outcrops in one location on the Tot claims. A Sloko dike intrudes along the faulted margin of the ultramafic unit and crosscuts the Stuhini volcanics along strike. They are light buff-grey, unfoliated, plagioclase and hornblende porphyritic.

Late Tertiary - Recent

Level Mountain Group; Basalt (Unit 8)

This unit is only seen in a topographic depression along a ridge between two mountains in the western portion of the Tot 1 claim. These basalts are red in colour due to extensive oxidation forming hematite, local pods of green epidote are common. The texture varies from vesicular to massive. The unit does not actually outcrop, only weathered talus and rubble remain.

4.0 DETAILED DISCUSSION OF MINERALIZED AREAS

The following section highlights new showings, or mineralized areas discovered on the property during 1992. The zones are either of very limited strike potential or contain weak or erratic gold values. The location of each area is indicated on Figure 5 and 1992 field data is shown on Figures 5 and 6.

4.1 RED BLUFFS ZONE

4.1.1 Geology and Mineralization

The Red Bluffs are located at the eastern edge of the property (Figure 5) and are comprised of alternating beds of fine-grained ash tuff and pyritic \pm hematitic tuffaceous units of Stuhini age. It is unknown whether these sulphides are syndepositional (related to a reducing environment during deposition of volcaniclastics) or a result of late-stage hydrothermal alteration related to the albite alteration of the nearby Jurassic diorite.

4.1.2 Geochemistry

Twenty-two talus coarse samples were obtained downslope from the Red Bluffs, all samples returned less than 20ppb gold. Six rock samples were obtained from different pyritic "beds" (JH11- 80,81,82,83; JH13- 91,93), gold was not detected in any of the samples.

4.1.3 Recommendations

No further work is recommended on this zone.

4.2 NO SNOW ZONE

4.2.1 Geology and Mineralization

The zone is hosted within Stikine Assemblage argillites and mafic volcanics on the Tot 3 claim (Figure 5). The rocks are strongly foliated and phyllitic with variable dips. The No Snow zone consists of five or six fracture controlled veins and silicified zones, 0.5 to 3m in width in a gully and exposed for 250-350 metres. Dusty and wispy grey to whitish pyrite is the only sulphide in a matrix of brecciated quartz veins and wallrock rehealed by light grey chalcedony. Wallrock alteration consists primarily of silicification and weak to moderate iron carbonate.

4.2.2 Geochemistry

Four samples (DM2-28,29,30,31) were collected from pyrite-rich zones; all samples were assayed at the Golden Bear Minesite Lab and failed to yield any significant gold. The results for gold were as follows: 0.24,0.38,0.07, 0.14 gpt.

4.2.3 Recommendations

No further work is recommended on this zone.

4.3 LEAD-ZINC SHOWING

4.3.1 Geology and Mineralization

The Lead-Zinc showing is located at the toe of a glacier below Misty Mountain on the Tut 2 claim. Two parallel 5-10cm wide massive sulphide veins which contain 2-8cm cores of 80% course-grained euhedral pyrite, chalcopyrite, galena and sphalerite. The sulphide veins are hosted within very fine-grained microcrystalline quartz veins in highly fractured and silicified limestones. Similar to the silicified limestone contact zone drilled in 1987 and 1990.

These veins are of limited strike extent and are extremely narrow; there is little potential for a deposit of significant size.

4.3.2 Geochemistry

Three samples were taken from this vicinity:

- DM8-77 Grab of 10cm wide massive sulphide core of quartz vein; contains: 533 ppb Au, 53.5 ppm Ag, 153 ppm Cu, 4752 ppm Pb, 2673 ppm Zn, 697 ppm As.
- DM8-78 Same as above, contains: 737 ppb Au, 45.5 ppm Ag, 291 ppm Cu, 7485 ppm Pb, 9401 ppm Zn, 1178 ppm As.
- DM8-79 Grab from a 50cm wide zone of intense silicification contains 10cm core of pyritic clay gouge, within silicified and brecciated limestone, and carries: 1190ppb Au, 13.5 ppm Ag, 125 ppm Cu, 1350 ppm Pb, 1294 ppm Zn, 1134 ppm As.

4.3.3 Recommendations

No further work is recommended on this zone.

4.4 TUT CLAIMS

4.4.1 Geology and Mineralization

A small multi-element anomaly (Au>50ppb, Ag>1ppm, As>250ppm, Sb>25ppm) was outlined by talus fine and soil sampling on the 1982 and 1983 grids. Many of the targets which were later sampled and drilled between 1984 and 1990 were located topographically below anomalous samples. During 1992, prospecting and remapping in the areas of outcrop and talus immediately above the anomalous soil grid was completed in order to locate the possible source for gold.

The stratigraphy immediately above the silicified limestone consists of siltstone, phyllite and variably altered and deformed mafic volcanics of

the Stikine Assemblage. Trace amounts of disseminated pyrite occur throughout the claims within all rock types. Abundant quartz \pm carbonate \pm chlorite veins or sweats occur within the phyllitic unit, typically with only trace sulphides but occasional, semi-massive blebs of pyrite occur within the quartz veins.

Other areas of the Tut claims were evaluated and no significant mineralization was noted.

4.4.2 Geochemistry

Forty-three samples (from traverses JH9-, DM4-, DH9, JR11-) were taken while prospecting outcrop and boulders above the mineralized limestone and the soil anomaly. Only two samples returned > 20ppb gold; sample DM4-51 was a silicified and brecciated limestone boulder located 5m upslope from a silicified limestone outcrop which contained 431 ppb gold, while sample JH9-71 from an outcrop of similar material returned 142 ppb gold.

One hundred and twenty one talus fine samples were taken from ridges, above the soil anomaly in order to locate a source of mineralization. The sampling began at the albitized diorite and samples were taken every 50m along several ridges, until silicified limestone was encountered. Ten samples returned values > 50ppb gold. Eight samples returned between 50 and 100 ppb gold and were located within or immediately downslope from the albitized diorite. Two other samples were located within 100% phyllite \pm quartz vein talus and returned 222 and 635 ppb gold. The latter two samples correspond with a small, known, isolated gold-only anomaly.

Only five rock samples on the Tut claims returned any significant gold mineralization, the remainder typically contained <100 ppb gold, with a few samples >400 ppb gold. The following samples are the highlights of the Tut claims:

- JH2-019 1485 ppb gold, high grade material from 1m wide quartz stockwork zone within the albitized diorite with extremely limited strike potential, Tut 2 claim.
- JH5-40 2005 ppb gold, high grade sample from massive sulphide lens in a narrow Sloko dike containing fragments of albitized diorite. Also anomalous in Pb, Zn, As, Sb. Tut 2 claim.
- DM5-58 4330 ppb gold, from a 1.5m wide quartz stockwork ±

chlorite \pm sericite alteration zone within phyllite unit. Tut 2 Claim.

- DM7-67 2160 ppb gold, 1m chip across quartz stockwork and silicified breccia within limestone unit, Ram claim.
- DM8-79 1190 ppb gold, 50cm wide zone of intense silicification with 10cm core of pyritic clay gouge.

4.4.3 Recommendations

The only work that is recommended in this area consists of a few days to map and prospect along the albitized diorite/Stuhini volcanic contact in the glacial bowl on the north face of Misty Mtn (Plate 3). Erratic, gold mineralization occurs within silicified, sulphidized and albitized zones near the albitized diorite elsewhere on the Tut claims. Due to extreme topography in the bowl above the glacier, this area has only had a cursory evaluation. Late in the summer would probably be the best time to attempt this work.

4.5 TOT CLAIMS

4.5.1 Geology and Mineralization

The Tot claims are underlain by all rock types previously documented. Reconnaissance traverses across most of the claims did not locate any significant mineralization. Several areas with anomalous samples taken over the years were re-evaluated for their potential to host a large tonnage deposit. The shear zone trenched in 1983-84 and drilled in 1987 is of limited strike potential, at less than 100m. Other discrete areas of chalcopyrite or sphalerite mineralization are typically fracture coatings associated with quartz veining or silicification. Much of the pre-Upper Triassic rocks on the claims have very gossanous weathered surfaces this is due to intense, pervasive iron carbonate alteration.

4.5.2 Geochemistry

Numerous talus fine samples and rock samples were obtained over areas of intense carbonate alteration, so prevalent on the Tot claims. The only samples which contained significantly anomalous elements are as follows:

DM1-001 Talus fine sample from intense ankeritic altered Stuhini tuffs. Sample is from the ridge line, and is therefore locally derived. The sample contained 152 ppb Au. Several other talus samples along strike and down slope did not contain any detectable levels of gold.

- DM1-003 A chip sample across a 15cm bull-white quartz vein with azurite, malachite and chalcopyrite exposed in a 1984 trench along the ridge. Sample contained 591 ppb Au, 3886 ppm Cu.
- DM1-006 Grab sample of sulphide rich material within a strongly carbonatized shear zone. The sulphidization (2-5% sphalerite and tr-2% pyrite) occurs within two narrow, discrete zones with a 2m wide alteration halo. The sample contained no gold or silver, 15111 ppm Zn, 1803 ppm As, 339 ppm Sb, 405 ppm Hg and 38.1 ppm Cd.
- JH6-048 Grab samples of talus/float, quartz-carbonate vein within
 JH6-049 intensely carbonate-altered, chloritic schist. Less than 1% of the float is sulphidized (3% azurite & malachite). The samples contained 468 and 915 ppm Cu respectively. Talus fine samples downslope (DH6-083) and upslope (DH6-084,85) contained negligible amounts of either Cu or Au. Source for these float samples is probably the area of sample DM1-006.
- JH8-060 Sample -060 is a high-grade grab sample of quartz
- JH8-061 -carbonate vein within phyllite, sample -061 is a 2m wide chip through silicified phyllitic wallrock. The samples contain trace amounts of pyrite, arsenopyrite and returned 495 and 839 ppb As respectively.
- DH6-080 Talus fine sample just below top of ridge within carbonate altered Stuhini volcaniclastics. The sample contained 133 ppb Au and 132 ppm Cu.

4.5.3 Recommendations

No further work is recommended in this area.

5.0 SUMMARY AND CONCLUSIONS

The RAM-TUT-TOT property is located 100 kilometres northwest of Telegraph Creek and consists of one-hundred seventy eight units held by NAMC. Access to the property is by helicopter or fixed-wing float plane to Tatsamenie Lake. A restricted access two-wheel drive road passes within 10 kilometres of the south edge of the property at the Golden Bear Minesite. Four original claims were staked in 1981, following the discovery of anomalous gold values in talus fine samples along the slopes above Tatsamenie Lake. Six other claims were staked between 1983 and 1989. Following acceptance of this assessment report, this claims will be in good standing until July and October 1994, and March 1996.

Work during 1992 was designed to evaluate the size potential of known showings, to locate the source of the multi-element geochemical anomaly on the Tut claims, to evaluate several anomalous samples near the Tot LCP, and to locate any other potentially sizeable mineralization. Gold appears to be very erratic as seen in drill core and prospecting over eleven years. The best results from 7 diamond drill holes which tested the Silicified Limestone Contact "Manto" style mineralization (the best target with respect to size potential on the property) includes 1.1 gpt gold over 4.0m and 2.4 gpt gold over 1.6m from drill holes 90-7 and 87-34 respectively.

Several other showings were evaluated and show erratic and low grade (<1gpt gold) mineralization over very narrow widths.

The only work that is recommended on this property consists of mapping and prospecting the alteration, mineralization along the contact of the albitized diorite and the volcaniclastic units in the Misty Glacier Bowl area.

6.0 BIBLIOGRAPHY AND SELECTED REFERENCES

Allen, D.G. (1990) "Diamond Drilling, Geology, Geochemistry and Geophysical Assessment Report on the Ram Tut Tot property.", Armeno Resources Inc. internal report.

Bradford, J.A. and Brown, D.A. (1993) "Open File 1993-1; Bearskin and South Tatsamenie Lake Areas", 1:50,000 and 1:100,000 scale maps, NTS 104K1,8.

Bradford, J.A. and Brown, D.A. (1993) "Geology of Bearskin Lake and southern Tatsamenie Lake Map area, Northwestern British Columbia", *in* Geological Fieldwork 1992, British Columbia Geological Survey Branch, Paper 1993-1, pp159-176.

Brown, D. and Shannon, K. (1982) "Geological and Geochemical Survey, Ram Claim" British Columbia Assessment Report.

Brown, D. and Walton, G. (1983) "Geological and Geochemical Survey, Tot 1-4 Claims" British Columbia Assessment Report.

Bruaset, R.U. (1984) "Year End Report on the Ram-Tut-Tot Property", Chevron Minerals Ltd. internal report.

Hewgill, W. (1985a) "Sulphide Mineralogy of the Ram-Tut Property", Unpublished class report for UBC.

Hewgill, W. (1985b) "Geochronology and Rare Earth Elements of an Albitite Unit on the Ram-Tut Property", Unpublished B.Sc. Thesis, University of British Columbia.

Moffat, L. and Walton, G. (1987) "Diamond Drilling and Physical Work on the Ram-Tut-Tot Property." British Columbia Assessment Report

Oliver, J.L. and Gabites, J. (1993) "Geochronology of Rocks and Polyphase Deformation, Bearskin (Muddy) and Tatsamenie Lakes District. Northwestern British Columbia", *in* Geological Fieldwork 1992, British Columbia Geological Survey Branch, Paper 1993-1, pp177-184.

Shannon, K. (1982) "Geological and Geochemical Survey, Tut 1-4 Claims" British Columbia Assessment Report.

Souther, J.G. (1970) "Geology of Tulsequah and Juneau." Geological Survey of Canada, Map 1262A.

Thicke, M. and Shaw, D., (1983) "Structural, Geological and Geochemical Survey, Bandit Group." British Columbia Assessment Report 11824, 13p.

Walton, G. (1985) "Compilation Report, Geology and Geochemistry, Ram Tut Tot Claims." Chevron Minerals Ltd. internal report.

APPENDIX I

(1992 Geochemical Assay Certificates)

ι,

L Report: 92 Project: Ra	0051			estake	Canao	a Ltd	· · · · · ·						n: Ju t: Ju					55 Ro	 ck	p	age	T of	-4-	Cert			T o Assa			504) E	79.7 Z		Davi	id
mple Name		Au ppb	Ag ppm	Cu ppm	Pb ppm	.Zn ppm		Sb ppm	Hg ppm		T1 ppm p	Bi	Cd ppm	Co .ppm	N1 ppm	Ba ppm	W ppm	Cr ppm	V	Mn ppm	La ppm	Sr ppm		Sc	Ti Z	A1 X	Ca	Fé		9 7	K Z	Na %	P 7	
2-D 1-001 2-D 1-002 2-D 1-003 2-D 1-004A1 2-D 1-004A2	R R R R R	< < < < < <	< < < < < < <	164 90 76 79 66	12 9 4 6	79	39 201 119 107 78	24 35 20 34 30	5 < < < <	2 3 4 4 3	~~~~~	< < < < <	<	31 22 14 25 19	6 30 20 27 22	5 35 19 103 69	< < 8 <	23 61 65 51 45	129 81 119	476 678 635 768 688	×2222	37 53 52 29 27	< 2	9 (7 (10 (0.08 0.10 0.09	2,95 2,43 2,93	1.45 1.60 1.65 0.97 1.32	5.05 4.03 5.27	5 1.8 3 1.7 7 2.6	50. 30.0 80.2	12 0 06 0 22 0), 17), 13), 10	0.10 0.10 0.11	0 0 1
2-D 1-005 2-D 2-006 2-D 2-007 2-D 2-008 2-D 2-009	201201201201201	< 13 < 7 <	< < 0.1 <	42 105 24 33 18	< 12 10 18 19	56 62 68	35 21 38 34 28	8 < 5 <	~ ~ ~ ~ ~	2 3 1 3 1	~~~~	<	<pre> </pre> <pre> <pre> 0.3 0.2 </pre> </pre>	14 17 12 16 11	17 23 20 21 12	222 50 127 96 48	~ ~ ~ ~ ~	44 59 76 79 59	85 95 69 93 62	457	4 14 11 16 10	10 45 19 30 27	< 4 3 2 3	7 (3 (2 (0.11 0.07 0.19	0.99 1.13 1.20	0.73 2.49 0.53 0.79 0.91	3.43 2.85 3.06	3 1.1: 5 1.0: 5 1.2	2 0.3 2 0.3 0 0.4	30 0 22 0 47 0).10).07).12	0.17 0.10 0.15	7 0 5
2-D 2-010 2-D 2-011 2-D 2-011B 2-D 2-012 2-D 2-013		< < 7 6	< < < < < <	143 102 115 173 117	2 2 4 6 3	42 59 48	23 42	8 6 8 15 10	~ ~ ~ ~ ~	2 1 3 2 4	V V V V	~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~	19 18 24 30 25	20 15 26 22 17	80 64 55 61 53	5 ~ ~ 5 ~	52 64 43	197 194 214	283 264 385 430 318	44622	42 44 49 56 33	< < < < 2	5 (6 (9 (0.12 0.12 0.10	1.89 2.14 3.14	1.11 1.15 1.16 1.54 1.46	4.57 5.23 5.94	7 0.9 3 1.3 4 1.2	2 0.: 8 0. 3 0.:	21 (15 (24 (), 18), 12), 18	0.11 0.15 0.10	1 5 0
2-D 2-014 2-DH4-031 2-DH4-032 2-DH4-033 2-DH4-034	10 10 10 10 10 10 10 10 10 10 10 10 10 1	6 19 16 10 21	<pre></pre>	111 4 4 3 15	7 < 61 < 3	11 135 17	31 41 37	14 5 21	~ ~ ~ ~ ~	3 2 1 3 3	~ ~ ~ ~ ~	~ ~ ~ ~ ~	< 0.8 0.3	22 3 2 2 30	41 8 9 9 89	51 27 30 42 71	5 < < < <	80 81 45 44 55		391 190 358 275 1145	יין אי אי א	80 6 32 35 103	2 < < < <	6 (1 2 2 17	< < <	0,45 0,40 0,50	2.15 0.14 1.28 2.63 6.33	0.76	5 0.0 3 0.2 9 0.9	7 0.0 7 0.0 5 0.	08 0 08 0 10 0).03).06).04	0.03 0.04 0.03	3 4 3
2-DH4-035 2-DH4-036 2-DH4-037 2-DH4-038 2-DH4-039	20120120120120	49 8 3 5 9	0.2 (0.1 (0.3	23 4 2 1 3	9 < 10 < <	13 54 15	455) 13	13 < 5 < 5	~ ~ ~ ~ ~ ~	3 1 1 < 2	~~~~	~ ~ ~ ~ ~	0.2 < 0.2 < <	22 8 2 3 25	46 15 6 8 52		6 <	42 26 31 52 41	23	905 280 1127 157 2243	V V V M	83 33 38 59 57	< < <	13 2 1 3 11	< < <	0,62 0,48 0,42	5.08 2.01 1.38 1.11 3.83	1.19 0.87 1.63	50.4 70.0 30.1	6 0. 6 0. 7 0.	07 0 20 0 08 0).04).03).08	0.06 0.05 0.07	6 5 7
2-DH4-040 2-DH4-041 2-DH4-042 2-DH4-043 2-DH4-043 2-DH4-044	(X) X) X (X) X	10 5 8 9 24	< 0.1 0.1 0.2	< 8 23 15 2	2 < 2 11 2	64 70 412	11 78 77	8 5 12 8 6	< < < < <	3 4 22 3 2	~ ~ ~ ~ ~	~ ~ ~ ~ ~	< 、 0.2 、	33 4 10 23 1	64 6 20 18 3	243	~ ~ ~ ~ ~	42 46 56 56 106	134 10 17 49 2	356 473 1418	29	134 39 113 61 8	< 2 1 < <		0.01 < <	0.74 0.51 0.55	7.27 1.13 2.24 2.75 0.02	2.0	5 0.7 2 1.1 7 0.6	80. 00.	44 (27 (33 (0.02 0.02 0.03	0.02 0.04 0.15	2 4
2-DH4-045 2-DH4-046 2-DH4-047 2-DH4-048 2-DH4-049	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	8 8 6 7 13	0.1 < 0.2 0.2	3 11 4 50 40	11 < < 11 7	60 27	62 39 182	7 11 6 20 16	< < < < < < < < < < < < < < < < < < <	4 6 5 3 5	~ ~ ~ ~ ~	4 ^ ^ ^ ^	0.2 < 0.1 <	3 15 27 24 24	23 25 17		6 < < < <	76	81	220 613 779 932 771	811 -	18 68 20 12 8	< <	1 12 14 15 8	< < <	0.57 1.36 0.93	0.12 4.37 1.44 0.38 0.22	3.8	3 1.1 5 1.9 7 0.4	3 0. 3 0. 3 0.	25 (08 (15 (0.03 0.04 0.03	0.08	8 9 8
2-DH4-050 2-DH4-051 2-DH4-052 2-DH4-053	1212212212	5 ~ ~	~ ~ ~ ~ ~	51 5 4 6	3 2 6	56 50	26 31	13 6 6 7	< <	5 5 3 4	Y V V V		<pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	12 5 3 3	7	78 108 111 221	<	106 108	14 7	704 438 268 355	30 34	9 13 9 10	< 1 2 3	1	0.02 0.02	1.01	0.45 0.66 0.30 0.15	5 1.9 1.5	5 1.0 8 0.8	14 0. 18 0.	52 (42 (0.03	0.02	2

PL Report:		18 T	Home	estake	Canad	a Ltd.	<u></u>			<u></u>		n: Ju								age	2 of	4-		Sec	tion	-1 01	Fa×	. (6) (04) 879	3-7898 7	•	
Project:	Ram-T	ut	····				_	··			0.	it: Ju	1 22,	199	2		55 Ro	ck					Cer	tifie	d BC	Assa	/er	-É	<u> \$17</u>	<u> </u>	Dav	id
ample Name		Au ppb	Ag ppm	Cu ppm	РЬ ppm	Zn ppm	As ppm	Sb ppm p		Mo T1 ppm ppm		DC PDu	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm (Ti 7	۲۵ ۲	Ca X	Fe 7	Mg 7				р Х
92-DH4-054 92-DH4-055 92-DH4-056 92-DH4-057 92-DH4-057 92-DH5-058	30.2012t 2012t	34	< 3.4 0.4 4.9	6 7 12 14 21	12 23 199 80 204	109 125 291 253 411	247 202 454 364 295	10 13 (40) 21 27	~ ~ ~ ~ ~	2	< < < < <		6 6 8 3	8 6 13	109 143 147 347 184	< <	130 135 125 136 91	14 10	343 576 806 1216 613	37 39	10 8 7 11 12	2 1 1 1 <	2	0.01 0.01 0.01	0.91 0.81 0.97	0.12 0.07 0.10	2.25 2.29 2.85	0.57 0.43 0.41	0.38 0.39 0.35 0.44 0.20	0.03 5 0.03 1 0.03	0.0 0.0 0.0)2)2)3
92-DH5-059 92-DH5-060 92-DH5-061 92-DH5-062 92-DH5-063	` R `R R`R R		0.1 < 4.7 0.8 <	3 2 22 5 3	10 6 325 56 7	50 27 790 138 23	85 98 406 204 64	< 6 56 12 6	~ ~ ~ ~ ~	2 × <	< <	< 7.9	2 3 2 4 6		116	5 < < < <	88 62 77 88 85	6	284 637 4896 1774 464	N N N N	20 12 23 14 17	~ ~ ~ ~ ~	2 2 1 1	< < <	0.77 0.51 0.65	0.43 0.72 0.24	1.08 0.92 1.17	0.13	5 0.13 3 0.18 9 0.22 2 0.20 5 0.11	3 0.04 2 0.03 2 0.04	0.0 0.0 0.0)5)4)4
92-DH5-064 92-DH5-065 92-DH5-066 92-DH5-067 92-DH5-068	R (R (R (R (R)	(158) 17 (69)	0.2	16 38 19 22 44	148 1 <u>621</u> 15 132 28	247 139 46 279 344	776 694 261 305 1085	29 184 9 31 25	~ ~ ~ ~ ~	3 < 7 < 3 < 2 <	< < <		14 5 10 6 30	10 8 11	57	< < < 5 <	52 121 38 60 49	6 4 9	3281 793 260 2291 1585	N N N N	22 34 36 29 37	< <	-	< < <	0.55 0.63 0.70	0.23 0.23 1.83	2.41 1.24 1.58	0.06	3 0.27 5 0.22 5 0.19 2 0.18 2 0.38	2 0.05 9 0.07 3 0.06	5 0.0 7 0.0 5 0.0	05 05 05
92-DH5-069 92-DH5-070 92-DH5-071 92-DH5-072 92-DH5-073	(R)	14 21 10 (222) (635)	< < < < <	42 11 6 12 3	32 14 3 2 2	226 117 66 72 59	325 106 34 91 58	16 8 7 <	~ ~ ~ ~ ~	3 < 4 < 5 < 6 <	<	< <	20 7 5 5 4		the state of a state of a state	<	73 89 111 61 116		1442 650 382 265 190	20 36 46	38 35 55 15 12	< 1 3 3 1	3 2	× 0.01 0.01	0.79 0.77 0.85	1.70 1.50 0.10	2.04 2.10 2.35	0.85	0.48 0.29 0.39 0.39 0.39 0.32	9 0.04 9 0.03 9 0.03	1 0.0 3 0.0 3 0.0)5)3)2
92-DH5-074 92-JH2-019 92-JH2-020 92-JH2-022 92-JH1-001	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	13 (485) 113 <	<pre></pre>	2 9 7 3 29	<pre></pre>	69 528	25 133 1209 11 36	< 45 40 < 14	~ ~ ~ ~ ~	2 < 4 < 1 < 3 <	~ ~ ~ ~ ~	0.8 7.4 <	11 2 2 2 2	8	13 372 38	<	196	21 2 3 9 3	212 617 817 95 64	V V V	13 3 14 21 13	1 < < < < <	3 < 1 2 <	< < <	0.28 0.41 0.41	0.26 1.95 1.60	1.04 0.82 0.73	0.09	9 0.55 9 0.17 9 0.22 4 0.07 2 0.19	7 0.02 2 0.02 7 0.1	2 0.0 2 0.0 1 0.0	01 04
92-JH1-003 92-JH1-004 92-JH1-010 92-JH1-011 92-JH1-012	Ŕ	< < < 17	< < < < <	112 9 9 10 23	4 < 8 3 5	60 127	20 125 273 2214	8 9 18 16 29	< < < < <	2 1 2 2 2	~ ~ ~ ~ ~	< < <	37	6 18 38	56 91 67	<	264 38 54	233 6 170 216 118	292 526 739	73	40 26 61 48 90	< < <	1 11 13	< 0.39 0.27	0.11 2.59 2.63	2.06 2.69 2.25	0.79 5.54 7.23	0.97 3.26 3.19	4 0.34 7 0.05 5 0.58 9 0.31 0 0.06	5 0.0 3 0.0 1 0.0	2 5 0.1 6 0.1	< 16 16
92–JH1–013 92–JH2–015 92–JH2–016 92–JH2–021 92–JH2–029 92–JH4–029	ŔĸŔ	< < 75 <	< < < < <	134 552 3 49 6	6 3 < 8 5	46	26 135 1334	14 9 < 58 9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2 1 2 3 1	ě <	< < <	26 3 34	90 12 89	× 28 34	< 5 < 6 <		154 64 7 87 15	646 312 914 1251 112	V V V V	116 24 19 84 17	V	9 · 3 1 16 1	0.16 0.10 < <	3.86 2.32 0.39 0.75 0.28	2.08 1.05 1.57 8.46 1.18	5.07 2.76 1.02 6.70 1.63	1.3 3.38 0.3) 3.7 3 0.4	1 0.00 8 0.03 1 0.13 2 0.00 2 0.05	5 0.4 3 0.0 3 0.0 3 0.0 5 0.1	0.0 0.0 0.0 0.0 2 0.0)8)7)4)4)3
92-JH4-030 92-JH4-031 92-JH4-033 92-JH4-035	Ŕ	34 ~ ~ ~	< < < <	1 1 1 4	2 ~ ~ ~	direct desired	15	12 < 7	4 < < <	3 1 6 5	~ ~ ~ ~	< <	41 2 7 2	150 11 7 4	70 13 19 395	< 5 <	195 53 61 213	142 19 5 3	965 289 113 335	¥ 2 10	128 34 15 67	< 1	20 3 1 <	< <	0.37 0.29	2.61 0.81	1.00	0 1.2 7 0.2	7 0.1 5 0.0 7 0.0 0 0.14	3 0.1 7 0.0	1 0.0 7	

INTERN/	TIONAL	PLASMA	LABORATORY LTD.	

Vancouver, B Canada V5Y 3⊾. Phone (604) 879-7878 Fax (604) 879-7898

.....

mao bermanja Streat

iPL_Report: Project:		Home	stake	Canad	a Ltd.					·			20, 22,				55 Roc	ck	Рас	je :	3 of		Cer			1 o Assa		13	sta	7	David	Chiu
Sample Name	Au ppb	Ag ppm	Cu ppm	РЬ ppm	Zn ppm		Sb ppm p		Mo ppm p	TI E			Co ppm (Cr ppm p		Mn L ppm pp					Ti Z	A1 X	Ca X	Fe X	Mg	K Z			
R92-JH4-036 R92-JH4-037 R92-JH5-038 R92-JH5-039 R92-JH5-040	R 21 R 152 R 329		9 .	195	6 48 10550 493 (251)	1187	27	~ ~ ~ ~ ~	3 1 5 2 4	۲ ۲	< < 0 < 5 < 11	.3	54 1 2 3 2	65 3 9 8 8	44 101 79 13 16	7 10 5	54 117 167 214 150	3 4 4	200 37 1 456 379 7045	4 V V	41 3 7 5 12	< <	1	< < <	0.21 0.33 0.32	0.02 0.52 0.22	2.00 1.32 1.44	0.02 0.24 0.10	0.11 0.17 0.17	0.23 0.08 0.02 0.03 0.03	< 0.02 0.01	
R92-JH5-041 R92-JH5-042 R92-JH5-043 R92-JH5-044 R92-JH5-044 R92-JH5-045	R 5 R <	0.4 < < <	2 3 2 5	33 15 3 2 5	24 31 19 37 22	178 139 16 41 7	19 17 8 9 6	< 5 < 4 <	< 5 1 3 5	<	< 0 < 0 < <).1 .6 < < <	3 3 1 8 2	7 5 8	110 3 27 246 786]	<	100 11 180 111 210]	6 3 17	192	v v 3 5 3	13 79 19 62 32	<	1 5 < 1 <	< < <	0.14 0.41 0.35	201 1.30 8.28	2.58 0.53 3.35	(14 0.60 4.41	x) < 0.20 0.19	0.04 0.02 0.03 0.03 0.02	0.01 0.02 0.03	
R92-JH5-046 R92-R 1-001 R92-R 1-002 R92-R 1-003 R92-R 1-004	R 5 R < R 11	< < < 0.9	2 209 190 116 352	5 5 14 14 21	17 44 44 85 43	22 74 194 333 69	5 17 12 46 28	< < 3 7 <	2 3 5 2 2	~~~~	< < < 0 < < 0	< < <).1 <	29 40 52 20	81	596] 42 ~ 129 23	< < <	221] 46 81 108 179	175 281 218	543 767	9 V V 4 V	39 50 18 81 41	< <	14 13	D.15 D.17 D.25	2.30 2.67 5.06	1.09 0.82 1.44	5.34 9.73 7.65	1.33 2.05 4.26	0.07	0.04 0.28 0.11 0.09 0.17	0.10 0.08 0.12	
R92-R 1-005 R92-R 1-006 R92-R 1-007 R92-R 1-008 R92-R 1-009	R 8 5	< < < < <	4 112 30 42 38	12 24 15 7 8	16 119 87 56 52	10 125 38 38 154	6 39 13 24 34	~ ~ ~ ~ ~	1 6 3 2 2	× ×	< < < < <	~ ~ ~ ~	1 28 12 17 35	3 39 11 19 25	125 49 195 85 5	5 < 5 6 <	72 35	99	249 918 1091 675 783	6	10 83 30 33 30	23 1 2 3 <	6 8	0.14 0.02 0.21	3.62 2.48 2.24	1.93 2.64 1.56	4.94 3.27 4.42	2.29	0.17	0,08 0.07 0.03 0.17 0.11	0.10 0.07 0.12	
R92-R 1-010 R92-R 2-011 R92-R 2-012 R92-R 2-012 R92-R 2-012 R92-R 2-013	Ř 9 2A Ř < 2B Ř 5	< < <	23 40 30 43 33	7 10 14 21 7	70 78 61 57 51	129 142 59 27 16	15 14 9 8 6	~ ~ ~ ~ ~	4 2 3 2 3	S	< < 0 < 0 < 0 <).1	31 15 18 19 17	14 30 23 25 22	82 192 59 37 89	<	39 134 93 111 91	80 104 128	339 749 361 271 233	16 16	43 23 39 44 49	< < 2 1	6 3 4	0.06 0.12 0.17	1.62 1.59 1.38	0.55 0.86 1.15	3.69 3.32 3.48	1.24 1.15 1.27	0.19	0.14 0.07 0.11 0.11 0.16 0.22	0.05 0.13 0.18	
R92-R 2-014 R92-R 2-015 R92-R 2-015 R92-R 2-016 R92-R 2-016 R92-R 2-017	5A Ř 9 58 Ř 8 5 Ř 5	< < < < < <	75 288 97 102 506	12 10 9 7 4	60 39 52 32 34	64 29 37 30 41	10 10 9 11 12	* * * * *	1 4 2 1 4	V V V V	< () < < <).1 < < <	21 27 23 24 39	24 11 28 18 36	57 59 103 61 50	7 6 < <	55 66	192 164	339 292 334 266 274	6 3	180 37 91 54 111	<	5 7 5	0.22 0.17 0.15	1.32 2.31 2.62	1.08 1.45 1.73	6.55 4.97 4.14	0.63	0.20	3 0.18) 0.16 1 0.16 7 0.27 7 0.70	0.13 0.14 0.09	
R92-R 2-017 R92-R 2-018 R92-R 2-019 R92-R 4-035 R92-R 4-036	8 Ř 20 8 Ř 8 5 Ř 7	< < < < <	148 417 125 32 2	7 6 20 5 <	51 28 75 72 11	46 68 115 82 11	11 12 15 14 6	< < < < <	2 4 3 4 <	~ ~ ~ ~	< < < < < < <	~ ~ ~ ~ ~	35 41 27 21 2	23 13 36 45 8	64 28 37 69 12	< < 6 6 <	51	277	328 323 501 724 166	42354 V	43 27 109 15 20	< 7	6 6 8	0.17 0.23 0.07	1.13 2.88 2.14	0.87 3.07 0.46	6.80 4.42 4.14	0.85 1.75 1.96	5 0.16 5 0.22 5 0.16	0.16 5 0.15 2 0.13 5 0.06 4 0.03	0.12 0.11 0.09	
R92-R 4-037 R92-R 4-038 R92-R 4-039 R92-R 4-040	3 Ř 5 9 Ř <	< < < <	90 < 12 121	< < 3 <	52 49 46 45	24 77	45 9 13 8	< < 5 <		v v	<	< 0.3 <	37 26	136 75	136 34 77 23	5	236	139	980 715 1197 560	2.	88 52 158 40	<	14 13	0.07 0.01	4.16	2.49 17	5.44 % 5.92	5.91	0.07	0.02 7 0.02 7 0.02 1 0.11	0.07 0.03	
Min Limit Max Reporte Method =No Test Internation	ed* 9999 FAAA ins=Insuf	ICP ficien	ICP . t Samp	ICP	ICP S=Soil	ICP R=Roc	9999 ICP k C=C	ICP ore	9999 ICP L=Sil	ICP I t P=P	99 99 CP : ulp l	9.9 9 ICP U=Unk	9999 ICP defir	ICP ned	ICP (m ⇒ Es	ICP tima	ICP te/10	999 ICP 000	9999 9 ICP 1 %=Esti	CP	999 ICP	999 (ICP	999 ICP	1.00 ICP	9.99 ICP	9,99	9.99	9.99	9.99		5.00	

.		ERNATIONAL	V					e é		<u>inna</u>	2		í	<u></u>	ł		ا ئ ر				3		ä	<u>terre</u>	1				Var Car Pho	couve ada \ ne (60	/5Y :3τ)4) β7	: 1 9-7878		
iP	L Re	port: (92005	18 T		estake	Canac	a Ltd.	<u> </u>					n: Ju t: Ju					55 Ro	ck	- <u>-</u> -p	age	4 of	4	Cert			-1 o Assa	f	()(6)	14)/87	9-7898 2	•	id Chiu
Sa	лрје	Name		Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb Hy ppm ppr	-	Mo T1 pm ppm (Bi opm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm	V ppm	Mn øpm		Sr ppm	Zr ppm ;	-	Ti Z	A1 X	Ca Z		Mg Z				
R9 R9 R9	2-R 2-R 2-R	4-041 4-042 4-043 4-044 4-045		92 5 9 < 5	0.6 < < <	57 22 63 5 3	127 2 2 < 2	369 47 10 8 12	1088 31 45 7 102	12 · 9 ·	< < < < <	2 < 2 < 9 < 2 < 1 <	~ ~ ~ ~ ~	2.1 < < < <		123 115 40 9 24	29 5 23 16 35	~ ~ ~ ~ ~	125 193 88 46 61	86	7383 532 1237 88 282	2 4 4 2	61 19 22 9 46	< < 2 < <		.16 < <	2.76 0.79 0.66	1.46 4.10 0.30	5.30 3.78 3.23 0.70 1.83	4.61 0.38 0.59	0.02	0.08 0.06 0.13	0.0	5 7 5
R9 R9 R9	2-R 2-R 2-R	4-046 4-047 4-048 4-049 4-050	RRRR	15 < 13 5 5	< < < < < <	58 2 5 13 2	8 < 4 2 5	20 16 41 73 175	96 22 322 17 32	8 7 5	4 < < <	6 < 1 < 3 < 11 < 3 <	< < < < < < < < < < < < < < < < < < <	< < 0.1 <	13 3 3 4 23	18 5 3 9 21		6 < 7 <	55 128 67 84 63	52 10 3 8 86	851 187 556 240 802	38	159 38 17 10 21	× 2 2 2 ×	< 1 0	.02 、 .01	1.12 0.76 1.07	0.57 0.50 0.11	4.09 1.51 1.25 1.85 4.06	1.49 0.79 0.95	0.48	3 0.04 3 0.02 0.02	0.0	
R9 R9 R9	2-R 2-R 2-R	4-051 4-052 4-053 4-054 5-055	R R R R R	14 13 11 18 9	0.3 、 0.1 、	104 26 7 6 87	102 17 5 32 8	264 130 91 83 75	249 168 334 277 82	13 7 6	< <	17 < 3 < 2 < 3 < 3 <	< <	0.5 0.4 0.1 0.3 <	36 13 4 3 36	12 9 9	136 269	< < < 5	71 84 90	39 13 8	1116 758 476 467 1000	10 31 28	109 36 12 8 31	< < <	60 2 1	.02 < <	1.02 0.57 0.47	2.43 0.50 0.07	5.06 3.30 2.04 1.71 6.59	0.83	0.34 0.25 0.21	0.03 0.03 0.03	0.0 0.0 0.0	5 1 1
RS RS RS)2-R)2-R)2-R	5–056 5–057A 5–057B 5–058A 5–058B	Ŕ	<pre> < 12 6 11 </pre>	< < < < <	2 22 6 46 29	< 9 4 2 <	18 19 13 44 25	13 93 13 26 13	< < 18	< < 3 < <	4 < 15 < 3 < 2 < 3 <	~ ~ ~ ~ ~	0.1 < < < <	14 89 86 31 17	45 48 42 139 76	30 6 206	5 5 6 5	61 253	70 137 202 94 61	1430 488 174 793 504	4 2 18 12	100 12 30 139 117	< < 1	12 5 4 18 10	ہ ج 0.02	1.52 1.95	1.60 3.00 4.45	x3.78 12 8.02 4.27 2.65	0.70 0.70 4.13	0.08	3 0.06 0.08 2 0.03	0.0	3
RS RS RS	12-R 12-R 12-R	5-059A 5-059B 5-060A 5-060B 5-060C	ŔŔŔ	10 < 5 8 <	0.7 2.3	2 46 51 1163 28	< 4 73 18 13	25 42 225 84 138	72 13 27 7 15	17 8	<	2 < 4 < 13 < 53 < 16 <	~ ~ ~ ~ ~	< < 1.8 0.2 0.4	3 23 9 16 11	4 86 7 11 12	357 106 77	< < 6 5 5	59	3 99 12 53 54	3089 430 941	24 11 20 7 12	36 200 55 132 70	2 5 4 6	1 0 3 0	0.06 0.01	1,66 0.76 0,93	4.14 2.23 7.31	1.28 3.54 1.92 1.91 2.81	4.20 1.49 1.91	0.40 0.42 0.74	0.02	0.0 0.0 0.0	222
R)2-R)2-R)2-R	5-060D 5-061 5-062 5-062B 5-063	Ŕ	< 12 10 < 18	0.1 、 0.1	18 12 13 8 15	< 6 3 < 23	34 96 353 28 91	< 214 68 19 194	9 16 5	< < < < < < < < < < < < < < < < < < <	7 < 4 < 3 < 9 < 3 <	< < < < <	< < < 0.1	2 6 27 4 9	10	310 225	6 < 5 < <	57 304	111 17	230 619 1136 180 599	15 <	30 25 47 6 32	<	1 0	< 0.03 0.01	0.61 1.22 0.21	1.07 2.78 0.37	1.12 2.37 4.99 1.02 2.62	0.53 1.26 0.31	0.28	3 0.02 7 0.02 7 0.02	2 0.0 3 0.1 2 0.0	2 1 2
RS RS RS	92-R 92-R 92-R	5-064 5-065 5-066 5-067 5-068	12121212	7 21 5	0.2 0.1 0.2 0.1 0.1	17 7 11 14 23	17 16 9 14 21	169 98 55 88 160	185	8 8 13	< < < < < <	4 < < < 2 < < < 4 < < < 5 <	< < <	0.4 0.4 0.2 0.5 0.9	10 6 3 4 10	14 6 9	226 227 250 186 249	< < <	102 122 108	18 6 11	959 522 384 510 983	25 36 28	10 9 6 10 11	< < < < <	2 1 2	< < <	0,67 0,47 0,54	0.14	3.03 2.13 1.77 1.90 2.97	0.31	0.2	5 0.0. 2 0.0.	3 0.0 3 0.0 3 0.0	2 1 2
R	92-R	5-069 5-070 5-071	ŔŔŔ	34 29 30	< 0.2 0.5	24 28 34	20 40 35	214	252 250 422	· · · · ·	< < <	3 < 3 < 5 <	< < <	1.3 1.2 0.9	8	13	216 320 247	5 < 5	105 79 96	37 26 30	973 834 881	20 25 21	19 33 11	< < <	3	<	0.78	1.49	3.22 2.98 3.36	0.43	0.2	3 0.02	2 0.0	3
Mi Mi	athod	ported		9999 FAAA	ICP	ICP	ICP	20000 ICP	9999 ICP	9999 99 ICP IC	99 99 2P 1	1 10 999 999 CP ICP -Silt P=	999 ICP	99.9 ICP	9999 ICP	ICP	9999 ICP	999 ICP	9999 ICP	999 ICP	9999 ICP	999 ICP	9999 ICP	999 ICP	999 1 ICP	ICP	9.99 ICP	9,99	0.01 9.99 ICP	9.99	9.99	9 5.00	5.0)

--=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Cojumbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

Ŀ	INTERNA	RED TIONAL PLASM	A LABORA	TORY LTD.					2 222		172000	i					1.14						أحج	ېن س	 فىنتىك		Va Ca Ph		er, t /5Y 31 04) 87	<u></u>		
	iPL Repor Projec	t: 9200 t: 3134			estake t	Canada	a Ltd.								1, 199 3, 199		· · · ·	70 Ro	ck	Pag	e To	of 2	Ce		ction ed BC			Þ	\$<	<u> </u>	Davi	d Chiu
ſ	Sample Na	ne	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb 1 ppm p	-	Mo T1 ppm ppm		Cd ppm	Co ppm			W ppm	Cr ppm p		Min La prin ppri		Zr ppm		Ti X	۸1 ۲	Ca Z	Fe %	Mg X	к х	Na Z	Р Х	
	R92-DH6-0 R92-DH6-0 R92-DH6-0 R92-DH6-0 R92-DH6-0 R92-DH6-0	81 Š 82 S 83 Š	5	0.6 0.1 0.3 0.1 0.2	132 80 96 37 <	9 5 2 <	165 103 55 67 42	52 24 168 322 11	7 8 23 18 7	< < 3 4 4	8 < 5 < 3 < 2 <	< < < < < <	< < <	31	46 117 80	422 309 590 195 110	< < < < < < < <	54 69	19 31 89 17 71 14 86 8 90 5	34 👘	16 27	2 2 2	9 10 16	0.01 0.02 0.02	1.45 0.95 1.18	0.71 3.70 3.05	8.62 6.02 4.77 4.15 2.93	0.99 2.86 3.15	0.12 0.22 0.28	0.02 0.02 0.02	0.15 0.10 0.09	
J	R92-DH6-0 [R92-DH7-0 R92-DH7-0 R92-DH7-0 R92-DH7-0 R92-DH7-0	86 Š 87 Š 88 Š	< < <	0.1 0.2 0.3 0.3 0.3	18 117 149 168 132	3 3 4 5	72 118 112 161 91	299 17 9 40 8	14 < 10 < 7	< < 4 < <	3 < 2 < 3 < 4 < 3 <	~ ~ ~ ~ ~	< <	24 31 41 36 44	70 7 84 13 142	466 18 46 292 97	< < < < <	3 173 1 4	79 19 99 24 16 27 89 28 33 14	53 9 11 4 26 9	19 25 7	2 4 2	15 12	× 0.07 ×	2.42 3.20 1.45	0.92 0.72 0.46	4.81 6.18 6.36 107 6.57	1.09 4.27 0.72	0.08 0.02 0.06	0.02 0.02 0.02	0.11 0.11 0.13	
	R92-DH7-0 R92-DH7-0 R92-DH7-0 R92-DH7-0 R92-DH7-0 R92-DH7-0	91 Š 92 Š 93 Š	< < 6 <	< < <	11 4 23 11 111	5 3 4 5 3	47 49 28 88 35	7 237 78 16 63	6 11 16 8 26	9 4 4 5	3 × 4 × 2 × 4 × 3 ×	< < < < <	0.5 0.4 < 0.6 <	95 56 120	634 618 392 750 614	75 43 73 40 90	< <		58 9 18 25	31 08	34 6	1 1 1	11 10 4	> م 0.01	1.36 0.74 0.48	1.67 1.52 0.17	3.28 3.93 4.13 3.60 6.18	137 3.75 177	0.01 0.06 0.02	0.01	0.05 0.06 0.03	
	R92-DH7-0 R92-DH7-0 R92-DH8-0 R92-DH8-0 R92-DH8-0	96 Š 97 Š 98 Š	6 < 5 <	< <	100 127 127 119 83	2 3 4 5	59 76 73 57 47	87 21 38 8 183	16 21 12 9 15	4 3 < 3 <	2 < 3 < 16 < 6 < 4 <	< < < < <	< < <	49 58 40		152	< < <	211 1 100 1 122 1 235 1 235	45 14 06 11 14 8	04 32 00	59 80 54	1 1 1	29 32	> ~ 0.01	0.69 0.62 2.36	7.08 4.18 3.19	5.29 6.07 7.28 4.66 6.72	2.15 2.58 4.60	0.06 0.08 0.09	0.01 0.02 0.02	0.12 0.08 0.09	
	R92-DH8-1 R92-DH8-1 R92-DH1-0 R92-DM1-0 R92-DM1-0	01 Š 01 Š 05 Š	152 (582) 19	< 0.1 0.4	60 128 111 142 106	< 3 5 9 4	40 80 98 69 81	6 7 21 91 213	11 < 7 37 17	3 4 4 4	5 < 4 < 3 < 11 < 3 <	~ ~ ~ ~ ~	< < < < <	33 28 28	50 31 56	55 104 761 263 296	<	· 41 1 26	41 12 14 15 72 21	.78 25 10	54 11 30	1 4	23 15 7	< < <	0.55 2.38 0.66	2.82 0.41 4.94	5.11 7.33 6.25 5.60 6.62	2.20 1.67 2.63	0.13 0.05 0.06	0.02 0.02 0.01	0.12 0.09 0.11	
	R92-DM1-0 R92-DM1-0 R92-DM1-0 R92-DM1-0 R92-DM1-0	14 <u>Š</u> 02 Ř 03 Ř		0.1	67 106 68 <u>3886</u> 107	4 6 < 13 4	76 99 40 70 97	67 311 < <	13 13 9 6 6	~ ~ ~ ~ ~	3 < 4 < 3 < 4 < 4 <	~ ~ ~ ~ ~	<	36 24	42 166 30	288 103 65 33 323		19 39 1 310 1 161 1 78 1	86 14 21 16 46 8 17 8 57 18		5 8 32 55 82	22	12 14 13	> 0.06 0.01	1.45 3.61 1.78	0.05 2.53 5.27	7.73 8.89 4.97 3.43 6.16	0.50 5.52 2.12	0.05 0.06 0.04	0.02 0.04 0.04	0.10 0.08 0.06	
j	R92-DM1-0 R92-DM1-0 R92-DM1-0 R92-DM1-0 R92-DM1-0	07 Ř 08 Ř 09 Ř	6 <	<pre></pre>	20 24 115 37 59			20 25 4627	339 4 15 18 17 10	105 5 4 9 4	5 < 4 < 3 < 5 <	< < <	0.1 <	12 24 31	24	7 14	7 < < < <	18 13 17 1 15 1 15	36 13 42 21 34 11 47 9 73 12	871 23 111 215 200	74 68 53 33 68	2 2 2		< < <	0.21 0.32 0.60 0.55 0.50	13 11 6.91	X4.94 X5.50 X5.68 7.55 X5.28	6.43 5.09 3.00	0.07 0.05 0.12	0.02 0.02 0.02	0.02 0.06 0.08	
	R92-DM1-0 2 R92-DM1-0 R92-DM2-0 R92-DM2-0	15 R 16 R	< <	0.1 0.1 、 0.1	113 126 17 69	< < 12 <	70 24	< < 16 <	< < 9	~ ~ ~ ~	2 < 3 < 2 < 2 <	< < < <	< 0.1	24 6	11 17 23 92	197 106	< < < < <	31 21 1 74 209 1	94 6 166 11 15 4 108 8	578 102 140 2 390	65 50 10 72	1 3	22 3	0.01 >	1.14 0.59	5.45 0.44	3.18 6.26 1.41 3.68	3.16 0.25	0.09 0.14	0.02	0.06 0.01	
	Min Limit Max Repor Method =No Tes Internat	ted* st ins=	9999 FAAA Insuf	ICP ficien	ICP it Samp	ICP le S	ICP =Soil	ICP R=Roc	9999 9 ICP 1 :k C=Cc	ICP ore	1 10 9999 999 ICP ICP L=Silt P BC V5Y	999 ICP =Pulp	99.9 ICP 0 U=Ui	999 ICP ndef	999 ICP ined	9999 ICP m=E	999 ICP stim	ICP I ate/10	999999 (CPJ)	(CP IC (= Esti	9999 1CP	999 ICP	99 ICP	1.00 ICP	9.99 ICP	9.99	9.99	9.99	9.99	5.00	5.00	

iPL Report: 9200535 Project: 3134 Ram	ORATORY LTD.										•			_				Ca Ph	ncouv nada ' one (6	er, B.(V5Y 31 (04) 87). E1 9•7878	
		take Canada	a Ltd.				In: Ju Wut: Ju			7	0 Rock	pag	e 2 o	F 2		Section fied BC			× /	104) 81 ZH	9-7898 <u>Z (</u>	B David Ch
ample Name A pp	-	Cu Pb opm ppm			-	1ο Tl Bi xn ppm ppπ			Ni Ba pm ppm p		Cr V pm ppm	Min La ppm ppm		Zr ppm p		i Al 7. 7.	Ca X	Fe %	Mg X	K Z	Na Z	
92-042-019 Ř 92-042-020 Ř 1 92-042-021 Ř	< 0.1 < 0.1 3 0.9 < 0.3 < 0.2	2 3 37 < 24 7 37 2 44 <	20 34 9 26 35	< 6 43 11 34 < 22 7 < 10	< 4 4	4 < 4 3 < 4 11 < 4 2 < 4 3 < 4	 	28 29 54	70 207 90 105 47 125 80 167 12 374	< 1 < < 1	81 100 53 82	1578 1023 165 472 1014	60 87 30 54 95	2 1	19 5 0.0	< 0.28 < 0.52 2 0.82 6 1.52 1 1.42	8.52 0.32 3.39	4.53 157 3.26	4.70 0.44 2.55	0.08 0.14 0.02	0.02 0.03 0.03	0.02 0.07
92-0M2-024 Ř 92-0M2-025 Ř 92-0M2-026 Ř		41 < 48 < 124 < 130 4 44 2	23 61 38 29 27	 < 13 8 19 < < 13 < 133 22 	4 < <	4 < 4 3 < 4 1 < 4 4 < 4 5 < 4	 	30 31		< 1 < <	28 96 01 135 61 111 36 100 39 65	1157 12 477 281	137 23 22 25 60	1 2 2 1	9 0.1		7.62 1.21 0.50	5.85 3.45 5.53	0.56 1.66 0.93	0.05	0.01 0.08 0.07	0.08
92-DM3-033 8 1 92-DM3-034 u, R 92-DM3-035 3 8	< < 17 < < < < 0.1 16 0.2	23 2 26 2 60 < 90 4 168 12	36 87	21 5 244 13 25 32 102 < 252 76	 	and the state of	: 0.1 : 0.1 : <	11 12 21	41 63 30 81 16 9 27 14 50 12	< < < < <	98 45 85 23 31 78 19 109 36 95	551 4 74 - 341 - 1798 2 876 2	4 7 3 7 6	1	2 16 19	< 0.29 < 0.38 < 0.50 < 0.52 < 0.66	0.05 0.08 0.58	1.19 3.95 7.62	0.03 0.09 0.57	0.03 0.15 0.15	0.02 0.02 0.04	0.02 0.06 0.07
92-DM3-038 🥇 🥅 92-DM3-039 🕅 🤻 92-DM3-040 🗇 🕅	5 0.2 <	183 11 51 < 60 2 49 < 55 <	34 34	62 87 < 7 563 46 813 325 159 38	< 6 145	8 < · 19 < ·	<pre>< < </pre> < 0.2 < <	35 1 19 12	83 9 73 18 55 7 21 16 56 86		36 153 20 121 71 39 50 85 32 31		3 7 44 12 30 41	2 1	24 10 11	< 0.62 < 0.55 < 0.55 < 0.49 < 0.31	4.06 0.42 2.14	117 3.00 4.63	2.35 0.17 0.84	0.13 0.08 0.02	0.02 0.02 0.02	0.05
92-JH6-048 R 92-JH6-049 R 92-JH7-052 R		73 <	45	 < 12 55 135 140 254 12 11 27 12 	11 16 3	5 < · 4 < ·	3 < 4 0.3 4 0.5 4 0.5 4 0.5 4 <	5 3 44 6	48 357 14 20 10 18 576 10 69 93	~ ~ ~ ~	349 5	786 1077	3 38 27 44 11 8 85	2 3 2 1 1	9 3 3	1 2.72 < 0.42 < 0.19 < 0.04 < 0.59	7.28 10 0.15	1.55 20,99 2.55	4.23 6.55 19	0.23 0.05 % <	0.03 0.02 0.02	0.04 0.01 <
892–JH8–060 Ř 892–JH8–061 Ř 892–JH8–062 Ř		57 4 139 2 134 < 38 < 36 3		 7 495 23 839 56 40 18 29 12 	4 4 4	2 < 3 < 4 <	< < < < < < < 0.1	22 19 9	78 212 40 10 32 21 36 7 12 39	< < 5 <	31 85 22 55 23 52	835	3 30 40 49 227 5 170	2 2 1 1 4	15	08 1.33 < 0.78 < 0.54 < 0.31 < 0.37	4.14 6.07 13	3.70 4.66 2.82	2.15 2.27 8.40	0.10 0.09 0.08	0.02 0.02 0.02	0.10
892- 89-073 <u>Ř</u>	< <	82 <	88	23 8	<	6 <	< <	25	34 11	<	22 116	3768	4 15	2	16	< 0.66	1.60	11	X 1.47	0.12	0.02	2 0.10

Telegrational Blacm Lab Ltd 2036 Columbia St. Vancouver BC VSY 3E1 Ph:604/879-7878 Fax: 604/879-7898

		200562 T Ho 34 Ram-Tut-T				d.					In: Ju Out: Au					144 Ro		Pa	ige	of	4 C		Sectio fied B		of saye	ר ר	X	\$Z		Davio	d Cł
nple Na	סוע		Au ppb	Ag ppm	Cu ppm	РЬ ррт	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo Ti ppm ppm		Cd ppm	Co ppm p		Ba ppm j	W (n La n ppm	Sr ppm	Zr ppm (Ti %	A1 X	Ca X	Fe 7)		a %
2-R 3- 2-R 3- 2-R 3- 2-R 3- 2-R 3- 2-R 3-	-021 -022 -023	0+00E 498 0+50E 444 1+00E 498 1+50E 498 2+00E 8 Ř	17 13 6 7 19	0.2 0.2 0.3 0.2 0.8	18 18 12 12 9	12 17 15 10 84	88 82 80 84 144	161 162 127 119 306	15 15 13 9 12	< < < < <	3 × × × × × × × × × × × × × × × × × × ×	~ ~ ~	0.2 0.2 0.2 0.2 0.7	9	11 9	315	< 10 < 1 < 1 < 1 < 1 < 1	73 34 25 24 90 24	0 74 5 64 1 57	1 13 1 23	14 12 15	1 1 1 1 1	30. 20. 20.	01 0. 01 0. 01 0.	79 84 69	0.72 0.37 0.84	2.53 2.39 2.09	0.71 0.65 0.61	0.22	3 0.03 2 0.02 3 0.03 2 0.02 2 0.02	2030
2-R 3- 2-R 3- 2-R 3- 2-R 3- 2-R 3- 2-R 3-	-026 -027 -028a	2+50E 502R 3+00E 502R 3+50E 520R 4+00E 550R 4+00E 550R	9 <	0.2	11 16 17 47 8	12 11 3 <	139 125 129 550 632	86 91 32 23 <	8 9 12 14 11	< < < < <	2 < 3 < 4 < 3 <	< <		10 10 37	14 35	173 168 124 480 152		77 4	2 509 5 854 1 1853	5 17 2 8	24 .50 117	1 1 1 1	30.	02 1 06 2 09 3	.16 .07 .16	1.07 3.13 6.96	2.60 2.79 5.48	1.28 2.84 5.08	0.3 C.5 0.6	9 0.02 7 0.02 9 0.02 3 0.02 3 0.02	2 0 2 0 2 0
	-032	4+50E 50R 5+00E 550R 5+50E 550R 6+00E 550R 6+50E 552R	76	<pre></pre>	42 17 64 102 21	 3 12 104 6 	27 129 74 188 84	 40 115 743 26 	<pre> </pre>	~ ~ ~ ~ ~	3 < 3 < 5 < 4 < 3 <	~ ~ ~ ~ ~	0.4	24	17 48 25	125 126 58 54 338		92 6		2 15 3 9 7 4	9 16	1 1 1 1 1	40. 60.	05 1. 01 1.	.88 .95 .84	0.98 0.62 1.07	3.16 3.89 4.89	2.50 2.60 1.98	0.48	9 0.02 5 0.02 1 0.02 5 0.02 4 0.00	2 0 3 0 2 0
2-R 3- fic Vol 2-D 3- 2-D 3- 2-D 3-	lcanic - 15 - 16	7+00E 59 Ř cs 474Ř Ř Ř	8		2 4 11 5 7	< < 13 6 8	11 21 79 48 69	246 18 196 72 116	6 19 14 7 9	< < < < <	2 < 3 < 3 < 3 < 3 <	< < < < <	< < 0.1 0.2	16	20 12 9	50 28 380 123 137	< < < < 1 <	43 2 98 2 01 1	272 525	5 3 5 14 6 11	12 7	< 1 1 < 1	1 2 0. 2 2 2	05 1 < 0 < 0	. 37 . 61 . 58	7.44 0.30 0.16	2.01 2.44 1.58	2.08 0.31 0.32	0.03	5 0.0 3 0.0 7 0.0 5 0.0 9 0.0	
2-0 3- 2-0 3- 2-0 3- 2-0 3- 2-0 3-	- 19 - 20 - 21	10.100 100 100 100 100 100 100 100 100 1	< < <	0.3 0.4 0.2 0.3 0.4	7 8 16 15	4 18 7 10 3	62 67 62 51 49	134 106 173 348 117	5 6 7 14 9	~ ~ ~ ~ ~	2 < 2 < 2 < 2 < 3 <	< <	0.2 0.1 0.1 0.2 <	4 5 6 15	8 8 9	140 127 230 163 222	< < < < 5	82 1 85 2	7 32 1 40 4 67	8 16 3 15 9 13	10 12	1 1 1 2 1	20. 30.	.01 0 .01 0 .01 0	.66 .67 .73	0.47 0.45 3.22	1.85 1.94 1.97	0.43 0.46 0.58	0.20	B 0.0 D 0.0 D 0.0 D 0.0 D 0.0	
92-0 3- 92-0 3- 92-0 3- 92-0 3- 92-0 3-	- 24 - 25 - 26	R R R R	< < <	0.2 0.2 0.1 0.1 0.2	11 30 44 4 12	3 < 2 2 <	73 141 34 50 345	88 < < < <	7 < < 5	~ ~ ~ ~ ~	3 < 3 < 1 < 2 < 3 <	< < < < <		8 30 4 4 24	10 31 5 25	123 17 56 50 40	< < <	72 1	77 221	2 10 9 3 2 3 3 22 8	8	1 1 4 2 1	80. 10. 10.	.10 2 .01 0 .01 0	.43 .86 .89	1.29 0.17 0.28	4.82 1.33 1.30	3.04 0.97 1.03	0.1	5 0.04 1 0.0 0 0.0 5 0.0 9 0.0	06 C 02 C 02 C
92-D 3- 92-D 3- 92-D 3- 92-DM 4- 92-DM 4-	- 29 - 30 - 42		6		1 < 9 9	4 4 20 4	219 10 18 62 23	< < 166 891	5 5 9 36	3 < < < <	9 < 1 < 8 <	-	<	5 5	9	15 5 38 21 89	< < < 1 < 2	23 2 66 1 49 2	3 160 1 14 2 19	2 6 1 2 4	137 57 10	2 < 1		< 0 < 0 < 0	.60 .96 .36	212 1.86 0.31	%1.86 1.25 4.10	0.64	5 0.0 1 0.04 7 0.1	3 0.0 1 0.0 8 0.0 6 0.0 6 0.0	02 0 06 0 04 0
92-DM 4- 92-DM 4- 92-DM 4- 92-DM 4-	- 45 - 46	R R R	24 8 < 17	<	3 9 1 2	8 < 2 8	43	140	5 6 < 7	< <	2 < 1 <	<	<		2	474 117 89 25	< < < <	88 77	< 15 < 7	42 72 21 3	87 6			< 0 < 0	.25 .17	1.69	1.54	0.15	5 0.1 3 0.1	6 0.0 6 0.0 2 0.0 7 0.0)4)6

Report: 9200562 Project: 3134 Rar				td.		<u></u>	· · · · ·		In: Ju Out: Aud					44 Ro		Pag	e Z	of			ectio ied B		of	Fax	A	12		0	
ple Name	Λυ ρρb	Ag	Cu ppm	РЬ	Zn ppm	As ppm	Sb ppm p		Mo T1 ppm ppm j	Bi	Cd	Co	Ni	Ba	W Cr pm ppm				Sr	Zr	Sc		A1 7	Ca Z	Fe 7	Mg		David K Na	 3
-0M 4- 48 -0M 4- 49 -0M 4- 50 -0M 4- 51 -0M 4- 52	R 14 Ř 13 R 20 Ř 431 R 9	< 0.1 1.0	2 1 28 3 4	7 < 9 6	29 12 73 19 26	238 28 143 68 16	5 5 16 8 11		1 < 1 < 2 < 4 < 4 <	< 3 <	< 0.4	1 1 1 1 1		94 70 119 19 14	< 124 < 76 < 74 < 185 < 214	< 2	44 37 18	10 14 22 3 <	8 8 3 8 7	1 1 1 2 <	<	< 0 < 0	.16 .23 .08	0.07 0.01	1.44 1.04 1.03 0.42	 0.03 0.01 0.01 	0.10	3 0.06 0 0.07 2 0.05 5 0.01	7 5 1 0.1
-DM 5- 56 -DM 5- 57 -DM 5- 58 -DM 5- 59 -DM 5- 60	R < Ř 6 R 4330 Ř 8 R 18	< 0.6 <	2 3 6 2 2	< 5 < 17	15 25 13 51 25	 70 284 63 27 	6 < 6 7	< < < < <	2 < < 2 < < 4 < < 5 <	< < < 3	0.1 0.1 < <	1 1 1 1 1			< 263 < 209 < 136 < 208 < 95	< < 2	50 11 94	83 15 5 19 13	4 5 3 3 67	1 1 1 1 9	< 0. < < <	< 0 < 0 < 0	. 19 . 20 . 18	0.01 0.10	1.10 0.96 1.65	0.01 0.01 0.01	0.13	9 0.03 3 0.02 4 0.01 1 0.02 2 0.02	2 1 2
2-DM 5- 61 2-DM 6- 62 2-DM 6- 63 2-DM 6- 64 2-DM 6- 65	Ř 🗸	0.8 0.2	1 556 118 2 127	2 ~ ~ ~	18 27 8 7 40	88 332 228 7 36	< 15 97 6 13	< < < < <	1 × 2 × 4 × 1 ×	~ ~ ~ ~ ~	< <	21 1	2 99 68 6 16	15 3 21	< 89 < 146 < 121 < 76 < 29	88 91 4	498 315 135	্ব		1 1 1 < 1	60. 1	03 2 07 1 < 0	.28 .30 .23	4.24 4.81 2.43	5.21 3.31 0.57	2.61 1.46 0.38	0.00 5 0.00 3 0.01	9 0.01 5 0.04 8 0.05 7 0.07 6 0.38	40 50 70
2-134 7- 66 2-134 7- 67 2-134 7- 68 2-134 7- 69 2-134 7- 72	R 36 Ř 2160 Ř 28 Ř 17 R 20	0.7	16 26 < 3	12 5 3 560	21 21 52	2403 757 422 815 8481	59 74 36 19 973	< 4 < < <	3 × 5 × 7 3 2 ×	< < < < < < < < < 48		6 3	10 5 14	156 22 54 11 41	< 24 < 144 < 30 < 133 < 117	4 14 20	2282 836 1281 626 30	4	50	1 1 1 1	13 1 3 5 1	< 0 < 0 < 0	.10 .32 .33	3.73 157 5.98	1.26 4.11 3.64	2.44	0.02 0.14 0.03	9 0.01 2 0.01 4 0.01 3 0.01 8 0.01	1 0 1 0 1 0
2-DM 8- 73 2-DM 8- 74 2-DM 8- 75 2-DM 8- 76 2-DM 8- 77	Ř 82 Ř 11 Ř -	0.3 2.3.1 0.4 2.0.3 3.53.5	191 3754 22 16 153	3 11 10 15 4752	12 202 30 29 2673	172 20 55	18 2238 21 15 123	× 23 × ×	2 < 4 < 3 < 12 <	< <	4.2 <	14 4 20	9 7 24	7 16 32 3 3	< 72 < 13 < 71 < 47 < 43	32 24 51	271 3187 1069 519 9683	2 8 3	23 105 30 38 59	6 1 < 1 1	6	< 0 < 0 < 0	.50 .43 .74	167 5.03 4.80	2.07 1.91 2.61	9.19 2.31 1.23) 1 0.14 3 0.0	4 0.07 < 0.01 4 0.01 3 0.01 1 0.01	1 0 1 0 1 0
2-04 8- 78 2-04 8- 79 2-04 8- 80 2-04 8- 81 2-04 9-102	Ř 1190 R 59 Ř 19	7 45.5 13.5 7.8 41.0 0.2	291 125 6863 60 34	7483 1350 59 1336 4	9401 1294 188 3533 107	1134	254 122 2032 193 15	< 44 <	20 < 24 < 5 < 7 < 2 <	5 <	0.1m 12.5 4.4 36.8 <	23 12 3	19 [°] 12	<pre> </pre> 7 36 5 18	< 46 < 36 6 12 < 24 < 39	13 16 7	9335 2.12 2070 9454 763	⊼ ≺ ≺	80 40	< 2 ×	1	< 0 < 0 < 0	.24	10 10 15	(8.25 (1.51 (2.02	5.81 6.68 8.86	1 0.0 3 0.14 5 0.0	1 0.0 7 0.0 4 0.0 1 0.0 2 0.0	10 10 10
2-DH 9-103 2-DH 9-104 2-DH 9-105 2-DH 9-106 2-DH 9-107	R 1 R 0 R	 0.1 0.2 0.2 0.2 < < < < < < 		< 7 9 3 <	48 369 46 19 26	10 77 129 20 8	5 9 10 <	< < < < <	2 < 2 < 3 < 2 < 1 <	· < <	< 1.3 0.2	2 36 2 2 1	31 6 5	278 102 26 246 291	< 111 < 22 < 64 < 132 < 139	2 130 3 2 2		5 3 40	121 147 17			.03 2 < 0 < 0	.54 .23 .17	4.13 15 0.36	5.72 0.93 1.43	2 3.17 3 0.82 3 0.03	7 0.1 2 0.0 3 0.1	0 0.09 5 0.0 9 0.0 3 0.0 5 0.0	30 10 4
2-04 9-108 2-04 9-109 2-04 9-110 2-04 9-111	Ŕ Ŗ	6 < < < < <	1	14 < 2 <	60	269 < 16 9	5 < < <		1 < 3 < 1 < 4 <	< < < <	< <	1 1 1 1	2 2	88 393 147 243	< 11 < 89 < 102 < 123		99	25	13 4	1	<	02 0 0 >).16).25	0.06	1.12	2 0.02	2 0.0 8 0.1	1 0.0 9 0.0 2 0.0 2 0.0	7 4

		<u></u>	<u>kon si</u> kom		S <u><u><u>e</u>ranna</u></u>	آ لينينينا				<u> (447 - 1</u>		Canada Phone (6		378	
iPL Report: 9200562 1 Project: 3134 Ram-Tu	Homestake Ca ut-Tot Ship=0				In: Jul 3 Out: Aug 04		144 R		ge 3 of		Section T ified BC Ass		BAC	David	l Chiu
Sample Name	Λu Λg ppb ppm		Pb Zn As pm ppm ppr	-	Mo T1 Bi ppm ppm ppm			₩ Cr V ppm ppm ppm		Sr Zr ppm ppm		Al Ca	Fe Mg X X	K Na X X	
R92-DH 9-112 R92-DH 9-113 R92-DH 9-113 R92-DH 9-114 R92-DH 9-115 R92-DH10-116	R 23 < R 15 < R 23 0.2 R 8 0.5 R 11 0.2		 43 2 17 4 166 9 14 3 < 21 10 	574 21 <	5 < < 4 < < 5 < <	< 1 < 20 < 2	4 169 28 134 5 105	< 115 < < 147 3 < 40 197 < 109 3 < 37 103	107 13 729 4 111 20	9 1 65 2 10 2	< < 0. 25 0.06 2. < < 0.	18 0.04 1. 19 0.21 1. 35 3.57 7. 26 0.18 2. 17 4.92 4.	60 0.04 54 3.84 13 0.05	0.09 0.05 0.70 0.03 0.23 0.05	5 < 3 0.25
R92-DH10-117 R92-DH10-118 R92-DH10-119 R92-DH10-120 R92-DH10-121	R 5 0.3 R < R < 0.2 R 7 0.1 R 25 0.6	11 9 3	< 18 2 6 52 1 3 92 2 18 121 40 36 171 120	56< 1< 15<	4 < < 2 < 2	 < 5 < 7 0.4 4 	13 168 8 191	< 48 88 < 74 10 < 60 14 < 70 4 < 56 4	342 31 329 24 574 40	17 3 9 2	2 < 0. 2 0.01 0. 1 < 0.	42 5.12 3. 64 1.59 1. 76 0.35 2. 38 0.08 2. 55 0.01 3.	73 1.01 35 0.65 03 0.13	0.34 0.02 0.35 0.02 0.21 0.02	2 0.001
R92-DH10-122 R92-DH10-123 R92-DH10-124 R92-DH10-125 R92-DH10-126	R 40 1.3 R 6 0.3 R 20 0.8 R 12 0.9 R 8 0.8	1 28 9	47 137 37 11 52 8 18 121 39 40 153 34 31 116 31	3 < < 9 18 < 5 18 <	3 < < 6 < < 4 < <		4 640 12 350 5 173	< 68 10	203 32 1029 1	25 1 20 3	< < 0. 5 < 0. 2 0.01 0.	42 < 3. 40 0.04 1. 49 1.75 2. 82 0.73 2. 57 1.00 1.	89 0.02 91 0.54 19 0.63	0.21 0.02 0.37 0.02	2 0.05
R92-DH10-127 R92-DH11-128 R92-DH11-129 R92-DH11-130 R92-DH11-131	R 7 1.0 R 285 0.9 R 43 0.2 R 7 0.1 R 6 0.2	6 3 251	40 128 45 33 481 446 9 24 373 11 64 32 7 65 6	9 29 < 7 13 < 0 27 <	2 < < 3 < < 4 < 8	2.5 14 2.5 14 26 3 < 26 3 < 32	80 63 48 108	< 88 28 < 25 206	3143 368	23 1 65 <	5 < 0. 3 < 0. 13 0.11 2.	48 0.90 1. 50 0.53 4. 91 1.48 3. 47 0.32 18 2.15 4.	15 0.10 18 0.83 11 7 1.30	0.18 0.02 0.12 0.05 0.06 0.06	2 0.11 5 0.05 5 0.10
R92-DH12-132 R92-DH12-133 R92-DH12-134 R92-DH12-135 R92-DH12-135 R92-DH12-136	R 5 0.3 Ř < 0.1 Ř < 0.1 Ř < 0.1 Ř < 3 Ř < 0.3	67 72 60	10 67 8 < 40 6 2 40 2 2 26 1 12 74 11	3 17 < 9 15 < 3 17 <	3 < < 3 < < 3 < <	< < 25 < < 26 < < 26	91 77 91 87 116 58	< 70 78 < 215 141 < 193 143 < 240 148 < 95 70	189 3 229 3 188	80 2 264 2 93 2	6 0.14 2. 6 0.17 3 6 0.12 3	94 1.65 3. 92 1.41 4. 57 1.74 4. 83 1.83 4. 16 1.28 3.	22 2.48 29 2.80 41 2.95	0.27 0.27 0.32 0.30 0.18 0.37	7 0.08 0 0.07 7 0.06
R92-DH12-137 R92-DH12-138 R92-DH12-139 R92-DH12-130 R92-DH12-140 R92-DH12-141	R 13 0.2 R < 0.2 R 6 0.3 R 6 0.1 R < 0.2	41 38 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 18 < 7 21 < 8 10 <	3 < < 3 < < 2 < <	< < 14 < 0.1 21 < < 13	51 116	< 103 42	5 450 5 554 1 2 483 1	39 6 2 21 1 2 16 1	6 0.11 1 3 0.03 1 3 0.02 1	32 1.72 3. 79 1.35 3. 63 0.51 3. 26 0.49 2. 56 0.43 3.	42 1.54 37 1.60 64 1.21	0.11 0.10 0.15 0.00 0.14 0.09	0 0.10 6 0.04 5 0.03
R92-JH 9- 63 R92-JH 9- 64 R92-JH 9- 65 R92-JH 9- 66 R92-JH 9- 67a	R 10 4 Ř 5 4 Ř 9 4 Ř 9 4 R 10 0.3	: 3 : 1 : 3	 16 2 21 7 11 70 12 39 12 	36< 5< 35<	<pre></pre>	< < 1 < 0.1 1 < 0.2 1 < 0.2 1 < 3	6 34 2 97 3 70	< 207 2 < 70 - < 115 2	2 121 1 < 84 1 2 159 3	4 10 8 4 0 21	< < 0 < < 0	10 0.12 1. 12 0.34 1. 25 0.04 1. 18 0.90 1. 20 3.76 2.	17 0.06 53 0.09 71 0.05	0.09 0.03 0.11 0.08 0.11 0.09	3 < 6 < 5 <
R92-JH 9- 67Ь R92-JH 9- 68 R92-JH 9- 69 R92-JH 9- 70	R 10 Ř 35 0.9 Ř < 0. Ř < 0.	213 1 17	25 53 20 3 14 2	8 81 4	< 52 < 4 < 5 < 4	< < 1 4 < 9 < < 3 < < 3	8 6 27	< 176	< 74 1 4 88 2 375 1 2 107	4 5 ; 0 34	2 < < 0 1 < < 0	12 0.19 1. 23 0.03 9. 17 1.40 2. 19 0.59 2.	.59 0.01 .81 0.09	0.19 0.02	2 < 2 <
Min Limit Max Reported* Method =No Test ins=Insuff International Plasma (FAM_ IC	9 20000 20 9 ICP 9 S=Soil	ICP ICP IC R=Rock C=Cor	CP ICP ICP re L=Silt P	9999999999999999999999 P ICP ICP ICP P=Pulp U=Unde	9 99.9 999 P ICP ICP fined m=	999 9999 P ICP ICP =Estimate/	999 999 99 ICP ICP IC 1000 % =Est	9 9999 99 P ICP IC	9 999 99 9 ICP IC	PICPICP	.99 9.99 9.	.99 9.99	9.99 5.00	0 5.00

	t: 9200562 T t: 3134 Ram-Tu				nada Lt	d.					In: Jul Out: Aug					144 R	ock		Page	4 (57 2			ectionied B		1 of ssaye		Ŧ	A	?-	- Davi	d C
mple Na	τκ:		Λu ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	Λs ppm	Sb H ppm pp	-	Mo T1 ppm ppm p		Cd ppm p			Ba ppm						Sr opm p			T1 7	A1 7	Ca 7					la X
2-JH 9- 2-JH10- 2-JH10- 2-JH10- 2-JH10- 2-JH10-	73 74 75	R R R R R R		1.1 0.3 < 0.1 <	7 2 8 12 18	39 4 3 14 2	245 722 63 52 13	261 32 324 244 50	< 6 6	< < < < < <	8 < 3 < 2 < 3 < 3 < 4 < 3 <	3 <	2.6 0.4 0.1 0.2	7 2 1 2 3	2	35 207 77 118 33	< 1 < 1 < 1 < 1 < 1	12 94 04	2 < <	123	25 11		1 1 1 1 1	2 < 0, < < <	.01 < <	0.16 0.24 0.22	0.50 0.05 0.40	1.93 1.93 1.31 1.60 2.67	3 0.03 0.02) 0.10	3 0. ⁻ 2 0 2 0	0 0.0 4 0.0 6 0.0	05 03 02
12-JH11- 12-JH11- 12-JH11- 12-JH11- 12-JH11-	79 80 81	R R R R	< < < < < <		<pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	17 < 17 5 4	38 46 33 61 20	530 50 102 155 130		< < < < <	13 × 3 × 6 × 5 × 3 ×	~ ~ ~ ~ ~	< < < < <	14 51	34 10 57 66 25	31 31 50 53	< < < < 1 <	29 1 74 07 1	53 45 01	480 372 155 420 301	2 < 5 < 2	46 56 52 65 39	2 1 5 2 2	50. 70	.10 .14 .04	2.44 2.11 2.73	0.94 0.83 1.31	3.95 5.24 3.39 5.49 4.18	4 1.23 9 0.8 9 0.70	3 0.0 1 0.3 0 0.5	05 0.2 88 0. 52 0.	23 0 16 0 10 0
92 - JH11 - 92 - JH12 - 92 - JH12 - 92 - JH12 - 92 - JR10 -	84 85 87	R R R R	< < 14 <		191 22 11 9 11	18 9 10 51 <	65 42 83 35 13	<pre> 14 20 624 6 </pre>	29 41 67 39 7	~ ~ ~ ~ ~	3 × × × × × × × × × × × × × × × × × × ×	< < < 3 <	< <	32 10 9 12 2	8 13	21 64 47 20 121	<	06 81	59 30	395 268 190 117 147	2 4 4 2 5	27	1 1 1 1	70 30	.14 .07 .08	3.78 2.06 4.18	1.24 0.78 2.23	6.34 3.64 2.37 3.02 0.65	4 2.1 7 1.1 2 1.0	1 1. 9 0.4 7 0.4	18 0. 13 0. 17 0.	30 0 17 0 28 0
92-JR10- 92-JR10- 92-JR10- 92-JR10- 92-JR10-	- 776 - 77c - 78	RRRR	< < < < <	< < 0.7	6 3 4 1065 18	12 2 4 11	113 13 13 179 258	22 < < 63	6 < 5 5 8	~ ~ ~ ~ ~	5 V 3 V 1 V 5 V 3 V	~ ~ ~ ~ ~	< < < < <	7 2 3 25 25	5 25	269 1249 39 347 126	`< < 2 <	12 51 1	< 9 164	883 91 174 435 467	40 ~ ~	78 64 25 23 92	2	1 1 5 0	< , 23	0.17 0.12 2.28	0.43	2.11 0.61 0.73 4.13 5.50	1 0.2 3 0.4 3 2.5	1 0.(5 6 1.!	02 0.0 < 0.0	09 02 07 C
92-JR10- 92-JR10- 92-JR11- 92-JR11- 92-JR11-	- 80 - 81 - 82	R R R R R	< 6 18 <	، 0.2	5 48 51 54 288	2 3 < 2 <	29 113 13 26 11	15 < 354 139 102	<pre></pre>	~ ~ ~ ~ ~	4 < 3 < 8 < 5 < 4 <	~ ~ ~ ~ ~	 	14	172 53 17	402 916 40 3 10	< 1 < 1 < 1 < <	66	70 1	106 1041 462 453 328	19 4 2 3 3	9 116 29 33 80	1 2 1 1 1		.04 .01 <	1.95 1.09 0.74	4.07 4.64 2.13	5 1.21 4.26 2.86 3.98 3.98	5 4.3 6 1.0 8 0.9	0 0. 4 0. 7 0.	15 0. 04 0. 03 0.	03 0 07 0 07 0
92-JH13- 92-JH13-		R	6 <	。 0.2	208 101	< <	100000000000000000000000000000000000000	40 10	9 6	< <	5 < 2 <	< <		25 19	14 8	25 56	< <	49 1 32 1	154 175	252 119	23	28 16	2 1					3 5.19 2 4.57				
																														L		

L Report: 9200537 T Homestake Canada Ltd. Project: 3134 Ram-Tut-Tot	In: Jul 24, 1992 Out: Jul 28, 1992	Page 1 of 1 Pulp	1 Section 1 of 1 Certified BC Assayer	DALZ: David C
mpleName Zn X	······································	1 		0
2-DM1-006 P 1.90			······	

		CHARGE TO	DEPA	RTMEN		34 🔨	\mathbf{i}	
						PAGE _	OF _	
	F	NORTH AME Rock sample					T	
	SAMPLER:	HOMESTAKE - D. H. Hepp	. <u>m.</u>	AREA NAM DATE: SZ		92_ map	#:	
#	SAMPLE TAG NUMBER	SAMPLE DESCRIF AND AREA	PTION	SAMPLE WIDTH (m)	ROCK TYPE	AU G/T	AG G/T)SULPHUR %
1	R92-DM	2-029				0.24	0.6	
2	1	2-028				0.38	0,8	
3	R92- DN	2-030 No	Snow			0.07	0.4	
4	R92- DN		Zoni			0.14	0.8	
5)	<u>_</u>	-		-i		
6								
7	·							
8			<u></u>					
9								
10								
11								
12								
13	10012 10	·····						
14	ASSAY L	AB: PLEASE			I			
15		SAMPLES		NOTIFY	JENN	JIPER	SMIT	!
16 17		FOR PIC	K UP.				<u></u>	
18								
19			·····					
20		·					<u> </u>	
21		course the 120					<u></u>	
22		copy sent to RA	4 • · · ·				<u></u>	
23		<u> </u>					<u>.</u>	
24								
25								

APPENDIX II

(1992 Analytical Methods)

1.5

ANALYTICAL METHODS

INTERNATIONAL PLASMA LABORATORIES LTD. (1992)

<u>30 Element Induced Coupled Argon Plasma (ICP)</u>

A 0.500 gram sample is digested with 3 ml 3-1-2 HCl-HNO₃-H₂O at 95° Celsius for one hour and is diluted with 10 ml water. This leach is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Au detection limit by ICP is 3 ppm.

** Au analysis by Fire Assay/ICP from 10 gram sample.

APPENDIX III

(1992 Traverse Summary)

۰.

TRAVERSE	DATE	AREA	TOTI	TOT2	TOT3	TOT4	ys per C TUT1		TUT3	TUT4	RAMBAA	YING	SAMPLE NUMBERS	ANALY
JH-1		Red Bluffs	1011	1012	1013	1014	1011	TUT2	1013	1014	0.5	TING		ANALT
JH-2	July 2,1992	Albite-Limestone						0.5			0.5		001-014	6
JH-4	July 3,1992												4	
JH-4 JH-5	July 6,1992	Albite-Limestone											028-037 038-046	9
	July 7,1992	Albite-Limestone		0 F		.		1						3
JH-6	July 9,1992	Tot Shear		0.5		0.5							047-049	1
JH-7	July 10,1992	NW Tot	1										050-057	1
JH-8	July 11,1992	Tot Drainage			1								058-062	5
JH-9	July 13,1992	Albite-Limestone						1					063-071	10
JH-10	July 14,1992	Albite-Limestone						1					072-076	4
JH-11	July 15,1992	Albite-Limestone									1		077-083	6
JH-12	July 16,1992	Ram Baa Claim									1		084-089	3
JH-13	July 17,1992	Red Bluffs						0.5			0.5		090-093	2
DH-1	July 3,1992	Red Bluffs						0.5			0.5		001-005	7
DH-2	July 4,1992	Red Bluffs						0.5			0.5		005-014	9
DH-3	July 5,1992	Albite-Limestone						1					015-030	1
DH-4	July 6,1992	Albite-Limestone						1					031-057	2
DH-5	July 7,1992	Albite-Limestone						1					058-079	2
DH-6	July 9,1992	Tot Shear		0.5		0.5							080-085	6
DH-7	July 10,1992	NW Tot	1										086-095	1
DH-8	July 11,1992	Tot Drainage			1								096-101	e
DH-9	July 13,1992	Albite-Limestone						1					102-115	1
DH-10	July 14,1992	Albite-Limestone						1					116-127	1
DH-11	July 15,1992	Albite-Limestone						1					128-131	4
	July 16,1992	Ram Baa Claim									1			
DH-12	July 17,1992	Red Bluffs						0.5			0.5		132-141	1
JR-1	July 3,1992	Red Bluffs						0,5			0.5		001-010	1
JR-2	July 4,1992	Red Bluffs						0.5			0.5		011-019	1
JR-3	July 5,1992	Albite-Limestone						1					020-034	1
JR-4	July 6,1992	Albite-Limestone						1					035-054	2
JR-5	July 7,1992	Albite-Limestone						1					055-071	2
JR-8	July 8,1992	Tot Ridge			1								072	
JR-9	July 10,1992	No Snow Zone			1								073	· ·
JR-10	July 11,1992	Albite-Limestone						1					074-080	
JR-11	July 13,1992	Albite-Limestone						1					081-083	
	July 14,1992	SW Tut					0.5			0.5				
	July 15,1992	Albite-Limestone									1			
	July 16,1992	Ram claim									1			
	July 17,1992	Lead-Zinc Showing						1						
DM-1	July 9,1992	Tot Ridge				1		·					001-015	1
DM-2	July 10,1992	No Snow Zone			1	•							016-031	i
DM-3	July 11,1992	No Snow Zone			1								032-041	1
DM-4	July 13,1992	Albite-Limestone			•			1					042-053	
DM-5	July 14,1992	SW Tut					0.5	•		0.5			054-061	
DM-6	July 15,1992	Albite-Limestone					0.0			0.0	1		062-065	
DM-0	July 16,1992	Ram claim									1		066-072	
DM-8	July 17,1992	Lead-Zinc Showing						1					073-081	
	July 17,1992	Leau-Line Showing	1					1					1010-001	1 3

:

APPENDIX IV

.

. Alexand

ι.,

(Statement of Qualifications)

STATEMENT OF QUALIFICATIONS

I, Jane M. Howe, with a residence address of 10356 Skagit Drive, Delta, B.C., V4C 2K9 do hereby certify that:

I am a member of the Association of Professional Engineers and Geoscientists of British Columbia.

I am a graduate of the University of Waterloo at Waterloo, Ontario with a Bachelor of Science Degree in Geology (1985).

I have practiced my profession as a Geologist in Ontario, Northwest Territories and British Columbia since 1985.

I am presently employed as a Contract Geologist by Homestake Canada Inc. of 1000-700 West Pender Street, Vancouver, B.C.

The work described in this report is based on fieldwork conducted during July 1992 in which I supervised. I am the co-author of this report.

I have no direct or indirect financial interest in any company known by me to have an interest in the mineral properties described in this report, nor do I expect to receive any such interest.

Dated at Vancouver, B.C. this <u>27</u> day of <u>September</u> 1993. **Bespectfull** Jane SCIEN

I, Douglas G. Reddy, with a residence address of 8330 Sheaves Road, Delta, B.C., V4C 3X1 do hereby certify that:

I am a member of the Association of Professional Engineers and Geoscientists of British Columbia.

I am a graduate of the University of British Columbia, Vancouver with a Bachelor of Science Degree in Geology (1986) and a Master of Science Degree in Geology (1989).

■ I have practiced my profession as a Geologist in British Columbia, Yukon Territory and Chile since 1986.

I am currently a Consulting Geologist to North American Metals Corp. at 1500-700 West Pender Street, Vancouver, B.C.

The work described in this report has been compiled by me, I am the co-author of this report.

I have no direct or indirect financial interest in any company known by me to have an interest in the mineral properties described in this report, nor do I expect to receive any such interest.

Dated at Vancouver, B.C. this day of finteune, 1993. Respectfully Submitted Douglas G. Reddy, P. . j

APPENDIX V

.

(Statement of Expenditures)

1.1

STATEMENT OF EXPENDITURES

Table 3. Statement of expenditures.

NORTH AMERICAN METALS CORP. July 3, 1992 to December 31, 1992.

RAM-TUT-TOT PROPERTY JULY 3, 1992 TO DECEMBER 31, 1992

DATE OF ISSUE:	June 18	8, 1993	
ACCOUNT DESCRIPTION	CODE	TOTAL	PERCENTAGE
LABOUR & SUPERVISION*	015	9580	38.27%
ASSAYING/GEOCHEMISTRY	105	4895	19.55%
CONSULTANTS	135	0	0.00%
TRAVEL	215	3412	13.63%
COMMUNICATION	225	595	2.38%
MAPS	235	59	0.24%
OTHER	295	71	0.28%
CLAIM COSTS	325	0	0.00%
FIELD MATERIALS	420	0	0.00%
CAMP COSTS	425	124	0.50%
AIR SUPPORT*	480	4896	19.56%
RENTAL EQUIPMENT*	525	1016	4.06%
DATA PROCESSING COSTS	910	385	1.54%
MANAGEMENT/ADMIN FEES	930	0	0.00%
FINAL TOTAL (actual)		\$25,033	100%

* THESE CATEGORIES ARE DETAILED ON THE TABLES ON THE SDE.

APPORTIONMENT OF COSTS

RAM-TUT GROUP

RAM-YING GROUP

LABOUR & SUPERVISION (015)

	FIELD	RATE	TOTAL
	DAYS	/DAY	
REGIONAL GEOLOGIST(July 3)	1	380.00	380.00
PROJECT GEOLOGIST(July 3-18)	16.0	200.00	3200.00
GEOLOGIST(July 9-18)	10	200.00	2000.00
2 ASSISTANTS(July 3-18)	32	100.00	3200.00
GEOLOGIST(REPORT PREP.)	4	200.00	800.00
			\$9,580.00

ASSAYING - GEOCHEMISTRY (105)

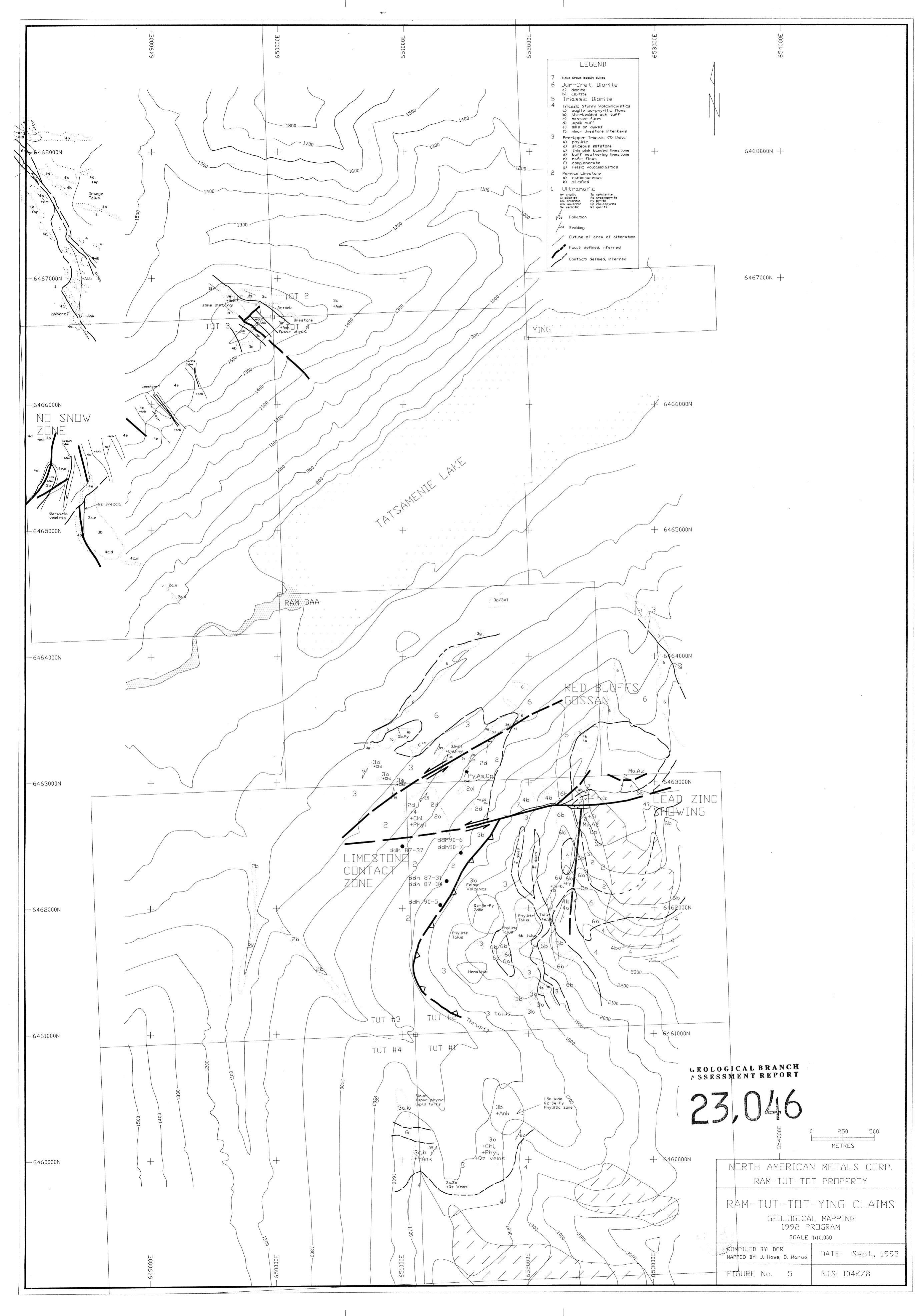
	#	RATE	TOTAL
	SAMPLE	/SAMPL	
ROCK/TALUS/SOIL PREP.	369	3.25	1199.25
Au Fire Assay (AAS 20g)	369	6.00	2214.00
30 element I.C.P. ANALYSES (AqR)	369	4.00	1476.00
special zinc analyses	1	5.85	5.85
(International Plasma Laboratories)			\$4,889.25

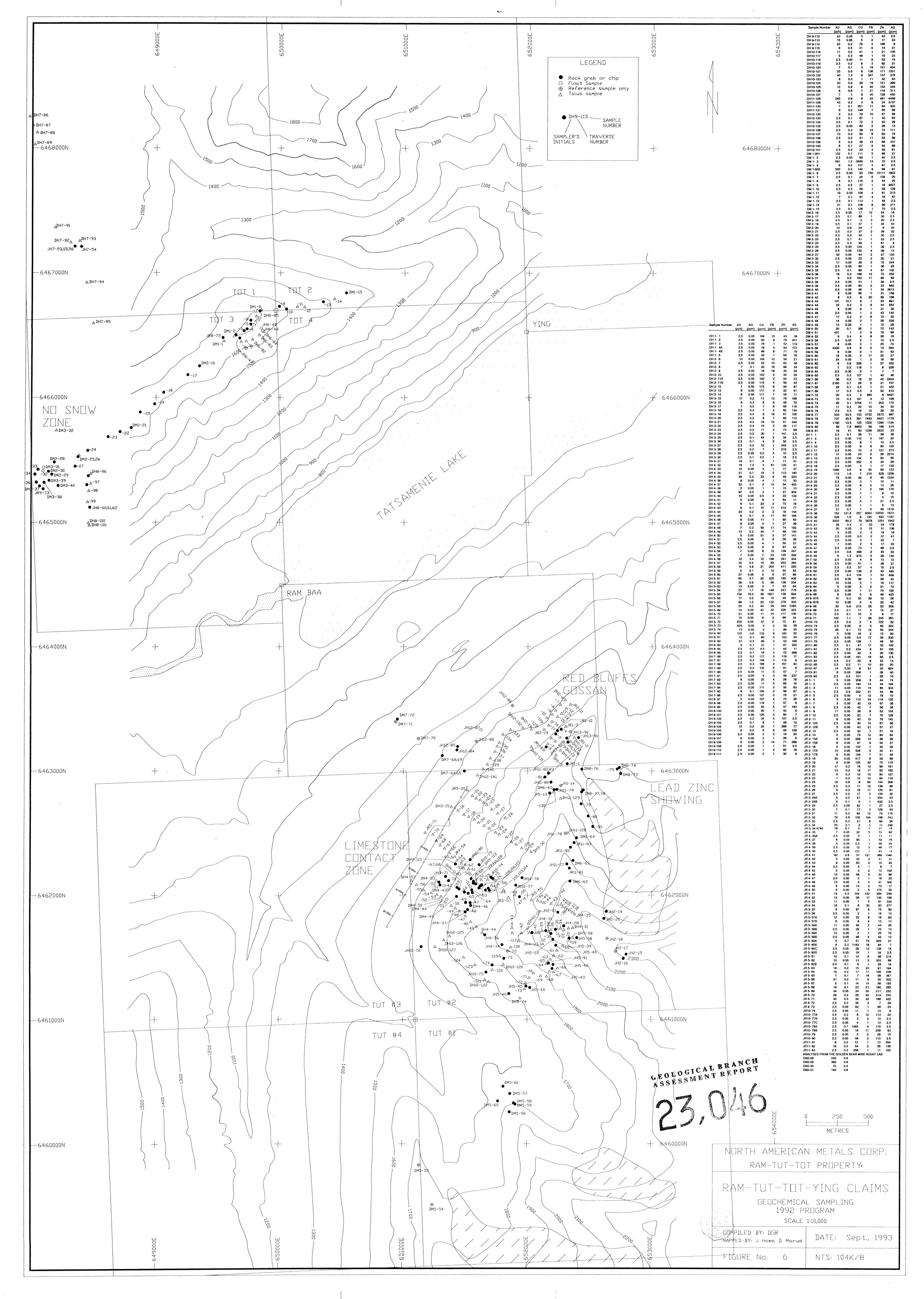
AIR SUPPORT (480)

	#	RATE	TOTAL
	HOURS	/HOUR	
HELICOPTER(July 3-18)	8.0	612.00	4896.00
(FUEL NOT INCLUDED)			
TRANS NORTH AIR			\$4,896.00

RENTAL EQUIPMENT (525)

	#	RATE	TOTAL
	MONTHS	/MONTH	
RADIOS & sbx11(July)	1	680.00	680.00
MIRCOSCOPE(July)	1	100.00	100.00
GENERATOR(July)	1	150.00	150.00
MISC. (July)			86.00
	-		\$1.016.00


DATA PROCESSING COST (910)


	#	RATE	TOTAL
	MONTHS	/MONTH	
REPORT PREP.	1	100.00	100.00
DATA REDUCTION(CONSULTANT)	1	285.00	285.00
			\$385.00

TOTAL REQUIRED	\$16,600
ASSESSMENT FILED	\$25,033
EXCESS TO PAC ACCOUNT	\$8,433

\$8,000

\$8,600

