LOG0:	OCT 1 9 1993	RD.
ACTION.		
<u> </u>		
FILE NO:		

ASSESSMENT REPORT DOROTHY MINERAL GROUP

VANCOUVER MINING DIVISION

Latitude: 51° 23' N Longitude: 125° 36' W

NTS 92N/05E

FILMED

GEOLOGICAL BRANCH ASSESSMENT REPORT

TOR BRULAND, M.Sc, P.Geo. Contract Geologist TECK EXPLORATION LTD. #600-200 BURRARD STREET VANCOUVER, B.C. V6C 3L9

-

October 6, 1993

TABLE OF CONTENTS

SUMMARY	. i-
	17
LOCATION, ACCESS, PHYSIOGRAPHY	1/
CLAIM DATA	2
HISTORY	2
REGIONAL GEOLOGY	3,
LOCAL GEOLOGY	3
MINERALIZATION	6
THE 1992 EXPLORATION PROGRAM	7
STREAM SEDIMENT & TALUS FINES SURVEYS	7 /
PROSPECTING/ROCK SAMPLES	8
WHOLE ROCK SAMPLES	9 /
TI, Ga & Ge ROCK ANALYSIS	10/
MAGNETOMETER SURVEY	112
THIN SECTION DESCRIPTIONS	11.
SUMMARY OF FLUID INCLUSION PETROGRAPHY AND	
MICROTHERMOMETRY DOROTHY CLAIM GROUP	12
ELECTRON PROBE MICROANALYSES	12
CONCLUSIONS AND RECOMMENDATIONS	12
REFERENCES	14
CERTIFICATE	15

TABLE

TABLE 1: CLAIM DATA	· · · · · · · · · · · · · · · · · · ·	2
---------------------	---------------------------------------	---

ILLUSTRATIONS

Figure	1: LOCATION MAP	After page 1 /
Figure	2: CLAIM MAP	. In pocket
Figure	3: TECTONIC BELTS	After page 3 /
Figure	4: REGIONAL METAMORPHIC REGIONS OF COASTAL	
-	MOUNTAINS	After page 3
Figure	5: GEOLOGY	After page 3 /
Figure	6: SAMPLE LOCATIONS	In pocket
Figure	7. MAGNETIC SURVEY	In nookot

APPENDICES

- APPENDIX 1: STATEMENT OF COSTS
- APPENDIX 2: ASSAY CERTIFICATES; STREAM SEDIMENTS & TALUS FINES SAMPLES
- APPENDIX 3: ASSAY CERTIFICATES; ROCK SAMPLES
- APPENDIX 4: ASSAY CERTIFICATES; WHOLE ROCK SAMPLES
- APPENDIX 5: ASSAY CERTIFICATES; TI, Ga & Ge ROCK ANALYSIS
- APPENDIX 6: THIN SECTIONS DESCRIPTION
- APPENDIX 7: SUMMARY OF FLUID INCLUSION PETROGRAPHY AND MICROTHERMOMETRY DOROTHY CLAIM GROUP
- APPENDIX 8: ELECTRON PROBE MICROANALYSES 🕠

SUMMARY

The DOROTHY, GLACIER and SNOW mineral claims were located in 1992 to cover an area with anomalous stream sediment samples from the July 7, 1992 RGS release. The anomalous samples are located in southern tributaries to Dorothy Creek and in Hoodoo Creek on NTS 92N/05. The claims are grouped to form the DOROTHY claim group.

The claim group covers about 900 hectares on the southern slope of Dorothy Creek.

Thirty four stream sediment samples were collected from the creeks on the claim group. The samples were analyzed for gold by fire assay with atomic absorption finish and determinations for 32 elements by ICP. The samples returned up to 345 ppb Au, 6 ppm Ag, 1,328 ppm Zn, 248 ppm Cu and 156 ppm Pb.

Ninety three soil/talus fine samples were collected from grid and contour lines on the claim group. The samples were analyzed for gold by fire assay with atomic absorption finish and determinations for 32 elements by ICP. The samples returned up to 1,920 ppb Au, 25 ppm Ag, 7,054 ppm As, 5,596 ppm Zn, 1,020 ppm Cu, 4,090 ppm Pb and 70 ppm Cd.

Prospecting located boulders of semi-massive to massive sphaleritepyrite±chalcopyrite in Glacier Cirque and quartz-pyrite±sphalerite veins in Glacier Creek. The semi-massive to massive sphaleritepyrite±chalcopyrite boulders in Glacier Cirque can be traced along the moraine to the toe of the cirgue glacier. One hundred and twenty seven rock samples were collected from the claim group. They were analyzed for gold by fire with atomic absorption finish and determinations for assay 32 elements by ICP. Samples which returned values above the upper ICP detection limits (Cd, Cu, Pb & Zn) were analyzed for individual elements. The samples returned up to 2,143 ppb Au, 1,029 ppm Ag, 2,450 ppm As, 17.0% Zn. 1.28% Cu. .45% Pb and .088% Cd.

Magnetometer survey was completed on 12.275 km of grid lines in Glacier Cirque, Glacier Creek, Glacier Saddle and along the South Ridge. The survey located intrusions in the Coast Plutonic Complex gneiss and younger (Miocene) intrusion complexes.

Whole rock analytical results cover a wide value range for both oxides and additional elements indicating an allochemical alteration in connection with the metamorphism.

TI, Ga & Ge rock analysis, thin sections description, fluid inclusion study and electron probe microanalysis identified the semi-massive and massive sphalerite-pyrite±chalcopyrite±garnet±epidote as high temperature and medium pressure regional and contact metamorphic retrograde zinc skarn.

Additional geological and geophysical work is recommended to locate the source of the retrograde zinc skarn boulders in Glacier Cirque.

INTRODUCTION

The DOROTHY claim group is located in the Coast Range Mountains of B.C. (Figure 1) within the Vancouver Mining Division. It is composed of three modified grid claims, contains 36 units and covers about 900 hectares (Figure 2).

The claims were located July 8, 1992 to cover an area with anomalous Au, Cu and Zn values from RGS stream samples.

Previous exploration, in this extensively glaciated area, was immediately to the south, in Hoodoo Creek, where Kennco, Amax and Utah Mines Ltd. explored for Porphyry Cu-Mo, Mo or Cu between 1965 and 1980. Although they succeeded in locating porphyry mineralization, the area has been idle for over a decade and most of the claims have since lapsed.

The Geological Branch of the Ministry of Energy, Mines and Petroleum Resources completed a stream sediment survey in the Mount Waddington area (NTS 92N), and the results were released on July 7, 1992. The survey located anomalous values of Au, Cu and Zn in southern tributaries to Dorothy Creek and in Hoodoo Creek, NTS 92N/05.

This report summarises geochemical rock, stream sediment and soil/talus fine surveys, prospecting; geology and magnetometer survey on the claim group, and whole rock analysis, TI, Ga & Ge rock analysis, thin section descriptions, fluid inclusion study and electron probe microanalysis study in 1992.

LOCATION, ACCESS, PHYSIOGRAPHY

The DOROTHY property is located south of Dorothy Creek, an eastern tributary of the Klinaklini River, which drains the Mt. Waddington Range of the Coast Range Mountains. The property is located approximately 330 km north of Vancouver and 34 km north of the head of Knight Inlet, at latitude 51°23' N and longitude 125°36' W.

Access to the property is by helicopter from Campbell River (Canadian Helicopter etc.) or from Bluff Lake, Chilcotin (White Saddle Helicopter).

The property lies in rugged terrain near the heart of the Coast Range Mountains. Relief is 792 m (2,600 feet) with elevation ranging from 1,372 m (4,500 feet) in Glacier Creek to 2150 m (7000 feet) in Glacier Saddle at the southeastern corner of the property (Figure 2). The creeks are separated by ridges with steep, inaccessible slopes and cliffs.

Tree line is at about 1700 m elevation with mature stands of fir and spruce at lower elevations. On north-facing slopes, permanent snow and ice fields extend down as far as 1,400 m elevation.

Total precipitation has been estimated at 150 cm per year rain equivalent. Snowfall has been estimated at 500 cm per year above the 1,000 m elevation, making snow avalanches a major hazard at higher elevations.

CLAIM DATA

The DOROTHY mineral claim group consists of three modified grid claims (Table 1). The group which has 36 units and covers about 900 hectares, is located in the Vancouver Mining Division, NTS 92 N/05E (Figure 2).

			TABLE 1		
			Staked/	Current	Assessment
<u>Claim</u>	Units	Record No.	Recorded	Expiry	Pending
SNOW	4	311047	7/08/92	7/08/93	7/08/95
DOROTHY	20	311048	7/08/92	7/08/93	7/08/95
GLACIER	12	311049	7/08/92	7/08/93	7/08/95

HISTORY

Kennco Explorations staked the Hoodoo North prospect in Hoodoo Creek, to the immediate south of the Dorothy Property, in 1966 on the strength of a prominent oxidized zone enhanced by anomalous silt geochemistry. Geological and geochemical assessment work demonstrated the presence of several porphyry plugs and pyritic breccias and coincident Mo-Cu-Pb-Zn-Ag soil anomalies.

Part of the Hoodoo South showing was examined for Amax in 1965, but no work was recommended and the claims subsequently lapsed.

Since 1968, the Hoodoo North prospect has been held by several other individuals, but no assessment work was applied between 1968 and 1977.

Amax Potash Limited staked the property in July, 1977 during a regional reconnaissance program. In 1978 Amax carried out a preliminary mapping (scale 1:5000) and sampling program both to the north and south of Hoodoo Creek.

In 1979 Utah Mines Ltd. optioned the Hoodoo Creek property from Amax Potash Limited. Additional mapping and sampling, mainly to the east and south of Amax's mapping, was done during June to August of 1979.

The 1978 and 1979 mapping and sampling program confirmed the presence of several mineralizing events which could indicate the presence of porphyry Cu-Mo, Mo or Cu mineralization associated with the high level, young (Miocene) intrusive complexes in Hoodoo Creek.

Two NQ diamond drill holes were completed from August to October, 1979. The first hole was designed to test a highly altered and pyritized quartz porphyry with minor molybdenite mineralization. This hole failed to test the target because it intersected a post-mineral dyke at the estimated target depth, and it followed this dyke for the duration of the hole. The second hole which was designed to intersect the fringe of a large breccia unit, intersected the breccia unit but had to be abandoned due to drilling difficulties. The breccia contained mineralized (molybdenite) fragments.

REGIONAL GEOLOGY

The property lies near the centre of the Coast Plutonic Complex (Coast Crystalline Belt), a tectonic belt of gneisses, schists and granitoid rocks emplaced during the Mesozoic and Early Tertiary (Figure 3). The metamorphic grade of these rocks are mostly greenschists with smaller areas of either unmetamorphosed or amphibolite grade rocks (Figure 4).

At Hoodoo Creek an intrusive/extrusive complex of Miocene age is superimposed on the older Coast Plutonic Complex. This complex lies within a 70 km long northwesterly trending belt of Miocene-Pliocene rocks which extends from Franklin Glacier (in the southeast) to Mt. Silverthrone (in the northwest). At Franklin Glacier, 20 km southeast of the Dorothy Property, a quartz monzonite stock (6.9 m.y.) and younger porphyry dykes (3.2 m.y.) intrude co-magmatic rhyolitic and feldspar porphyry tuffs, agglomerates and flows. Between Franklin Glacier and Hoodoo Creek, pyritic Miocene stocks with traces of molybdenite are largely buried by ice fields. In the Mt. Silverthrone area, 50 km northwest of Hoodoo Creek, undated but obviously pre-glacial columnar basalt and ash flows occur over an area of 300 sq. km and attain a maximum thickness of 1000 m. Small basalt plugs and minor quartz porphyry dykes were noted near the toe of the Klinaklini Glacier between Hoodoo Creek and Mt. Silverthrone.

LOCAL GEOLOGY

The local geology of the claim area is known from the GSC O.F. 1163 and from extensive mapping (scale 1:5,000) by Amax Potash Limited in 1978, and Utah Mines Ltd. in 1979, in Hoodoo Creek to the immediate south of the Dorothy Property(Figure 5).

Several stocks, dykes and breccias of Tertiary age intrude the Coast Plutonic Complex (CPC) of gneisses, diorites and granodiorites. Fifteen units have been identified in the area, and they are described below in order of apparent age.

LEGEND (Figure 4)

METAMORPHIC FACIES AND ZONES

- um Unmetamorphosed
- gn Undivided Greenschist facies
- am Undivided Amphibolite facies
- **pm** Post metamorphic intrusions or intrusions with no signs of metamorphism although of pre- or syn-metamorphic age

(Extracts from legend of the GSC map 1714A, Metamorphic Map of the Canadian Cordillera, 1991)

Coarse grained garnet-quartz-feldspar-biotite gneiss (GQFBG) of the CPC of Mesozoic or earlier age occur in restricted areas including the ridge to the south and west of the Glacier Cirgue.

Hornblende diorite and quartz diorite (HD/QD) of the CPC of Mesozoic or earlier age which occur in the south slope of the South Ridge, is coarse grained, equigranular and unfoliated to gneissic.

Quartz monzonite (breccia) (QMB) is coarse grained, leucocratic brecciated with a light grey matrix and small white quartz veins (widely spaced). A QMB stock of unknown dimensions appears to be the first intrusion into the CPC. This intrusion appears to be brecciated on a large scale with individual fragments being one meter of greater in size. The matrix or the breccia is fragmented quartz monzonite or smokey white quartz veins.

After the emplacement of the QMB, the relationships among several of the other intrusive events become unclear. Crosscutting evidence between different units are not conclusive as they are seen to cut one another.

Intrusive breccia (IB), may be the next large intrusive phase. Subangular fragments (3 mm to 1 meter) of diorite, gneiss, felsic volcanics, rare quartz porphyry and purple volcanics in a grey to grey-green clastic matrix is found as a circular shaped body suggesting that it was intruded as a pipe. Near its margins the IB is commonly intensely pyritized. Pyrite tends to surround fragments, suggesting that the rock was largely unconsolidated at the time of pyritization. The breccia forms an east-west elongate oval in the north slope of Hoodoo Creek. Gradational contacts exists between the IB and the andesitic pyroclastics and flows and at the contacts with the lahar breccia. It is suggested that both these later units may be extrusive equivalents of the QMB. The andesitic pyroclastics and flows are made up largely of the QMB matrix, while the lahar breccia is made up mainly of the blown off capping rock that the IB pipe now occupies.

Quartz-feldspar-biotite porphyry (quartz monzonite) (QFBP) consists of prominent quartz, feldspar and biotite phenocrysts in a fine grained, pale green groundmass. The QFBP forms an east-west elongate stock for 1000 meters on the southeast margin on the IB in the north slope of Hoodoo Creek. This intrusion is highly fractured. Age relationships between IB and QFBP are unclear. Fragments which may be quartz monzonite of QFBP are found within the breccia, while a sharp contact relationship between IB and QFBP intrudes the IB.

Dacite dykes (DD) occur as prominent swarms, and they are characteristically dark bluegrey, with feldspar and rare quartz phenocrysts in a flinty, siliceous matrix. The dykes cut several rock units on the north side of Hoodoo Creek. A small stock or large dyke occurs southeast of the Dorothy Property. Dacite breccia (DB) is characterized by the presence of angular diorite fragments in a blue dacite groundmass. Five small bodies of DB are found along or near the southern margin of the QFBP, and they all intrude diorites of the CPC.

Sericite quartz porphyry (QP) contains 5% 2-3 mm quartz eyes and 5% disseminated pyrite in a fine grained sericitic groundmass. It also contains minor disseminated molybdenite as well as molybdenite in small narrow quartz veins. A stock of pyritized QP to the south of the Dorothy Property is generally highly pervasively altered with matrix of feldspars altered to sericite and/or kaolin.

Age relationships between the QP and the IB are uncertain as the IB may contain fragments of QP, but QP dykes are mapped as cutting the IB along its northern boundary.

"Bughole" quartz porphyry (BQP) consists of large, prominent quartz phenocrysts and blebs of leached kaolinite after feldspar in a creamy rhyolitic matric. It contains up to 1% disseminated pyrite. Dykes of the BQP form a northwest trending swarm from Hoodoo Creek.

Feldspar-hornblende-(quartz) porphyry dykes (FHQP) postdates the BQP and form a dense swarm. The dykes are variable in composition and texture. Most consist of feldspar±hornblende±quartz phenocrysts in a feldspathic groundmass. Clay alteration of the feldspar and chlorite alteration of mafic minerals are usually present. There appear to be two or more ages of the FHQP (one pre and one post QP). The dykes form a northwest-southeast dyke swarm on the north side of Hoodoo Creek

The lahar breccia (LB) consists of subrounded cobble to boulder sized fragments of mainly quartz diorite and gneiss of the CPC and minor amounts of granite and white silicious rocks cemented by a sandy clastic matrix. It may be the exhalative equivalent to the IB that has been laid down on a pre-existing surface, and it may grade downwards and laterally into the IB. The LB outcrops in the southern cliff face of Glacier Creek and along the western part of the South Ridge.

Andesite and basaltic dykes (A&BD) cut all the rock units in the area except for the feldspar porphyry stock. The dykes which are similar to the DD, are unmineralized. They have an almost north-south strike and vertical dips.

Rhyolite breccia (RB) contains fragments with an average grain size of less than 1 cm. The fragments may be of any rock type from acidic to diorite gneiss. It occurs in the eastern part of Hoodoo Creek where it forms a northeast-southwest series of small breccia pipes (maximum 100 by 200 meters). They are believed to be fault controlled, with carbonate alteration of veinlets found within fault zones close to the breccias.

Andesitic pyroclastics and flows (AP&F) consists of massive flows and pyroclastics of andesitic composition, and they contain <1% disseminated pyrite.

LEGEND (Figure 5)

QUATERNARY (Pleistocene and Recent)

- **Q** Till, gravel, sand and alluvium
- IC Ice field/glacier

TERTIARY (Upper Miocene, Pliocene, and (?) Younger)

uTvb Volcanic breccia

COAST PLUTONIC COMPLEX

- gap Aplitic granodiorite
- tqd Tonalite and quartz diorite
- qd Quartz diorite
- dqd Diorite and quartz diorite

CENTRAL GNEISS COMPLEX

- xn Granitoid gneiss
- xns Siliceous granitoid gneiss
- xnd Dioritic granitoid gneiss and/or dioritic complex

sk Skarn

<u>SYMBOLS</u>

- ep Epidote
- sp Sphene

(Extract from legend of the GSC O.F. 1163, Mount Waddington 92N, 1985)

Feldspar porphyry (FP) appears to be the last intrusive event in the area. It consists of feldspar and minor biotite phenocrysts in a grey-green fine grained groundmass. A large stock of FP is located in the southwest corner of the property. It forms a >1000 meters long and 600 meters wide elongated north-south stock bordering LB both to the east and west.

MINERALIZATION

Previous work in the area established the presence of Porphyry Cu-Mo, Mo or Cu mineralization in Hoodoo Creek. The intrusions are anomalous in copper, molybdenum, gold, zinc, and silver, and can be separated into five different mineralized intrusive phases.

 Molybdenum and/or copper in the IB. Disseminated pyrite, minor chalcopyrite, sphalerite and rare malachite within the IB matrix indicate that the breccia and/or its intrusive stock equivalent at the base of the breccia pipe may contain a copper and/or molybdenum deposit.

Fragments of white siliceous rock with disseminated molybdenite and molybdenite veinlets within the IB indicate that the breccia has broken through a mineralized body containing molybdenum.

- Copper and Molybdenum in the main QFBP body. Pyrite, chalcopyrite and molybdenite are fracture filling and to a lesser extent accessories in quartz veinlets. Pyrite is the main sulphide with minor molybdenite and chalcopyrite.
- 3) Copper in the DB.

DB contains minor amounts of sulphides, mainly pyrite with minor chalcopyrite as disseminations and fracture fillings. A possible porphyry copper deposit may be associated with this intrusive phase.

- Molybdenum and gold in the QP.
 Anomalous rock geochemical values of molybdenum and gold are believed to be related to a possible porphyry molybdenum deposit.
- 5) Possible "Henderson" type molybdenum mineralization associated with the BQP. The BQP resembles the "Bughole" quartz porphyry at the Henderson Mine in Colorado where it is associated with the mineralizing stock.

Minor amount of disseminated pyrite is found in the matrix of the RB.

Some highly oxidized base metal veins occur in the area. These veins, up to 20 cm wide, contain pyrite, chalcopyrite, sphalerite, and quartz with or without gold and silver values. The veins are found within faults and shears and are characteristic of fault controlled mineralization in that they pinch and swell. They are important since similar veins occur around economic porphyry deposits.

The newly discovered retrograde zinc skarn mineralization (see below) identified in CPC gneiss boulders from Glacier Cirque are believed to be of pre-Miocene age, and unrelated to the Miocene Porphyry Cu-Mo, Mo or Cu mineralization in Hoodoo Creek.

THE 1992 EXPLORATION PROGRAM

The objective of the exploration program was to locate the source of the Au, Cu and Zn anomalous RGS samples from the southern tributaries of Dorothy Creek and Hoodoo Creek.

Stream sediments and soil/talus fine were collected on the property to locate the source of the RGS anomalies.

The few outcrops on the claim group were mapped and prospected for bedrock mineralization, and the moraines were prospected for mineralization.

Magnetometer survey was completed to locate intrusives or magnetic mineral concentrations on the property.

Whole rock analysis, TI, Ga & Ge rock analysis, thin section descriptions, fluid inclusion study and electron probe microanalysis study were completed to identify the original lithology, mineralizing events and environment and the metamorphic grade of the geology and mineralization.

STREAM SEDIMENT, SOIL AND TALUS FINE SURVEYS

Stream sediment samples were collected from all the creeks on the property and, if possible, on regular intervals in the creeks. The sample locations are plotted on Figure 6.

7

Thirty four stream sediment were collected from the property. All samples were sent to Chemex Labs Ltd. in North Vancouver for analysis. Each sample was dried and sieved to -80 mesh. The samples were analyzed for gold by aqua-regia digestion and atomic absorption (AA) finish. Determinations for 32 additional elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sc, Sr, Ti, Tl, U, V, W, and Zn) were done by nitric-aqua-regia digestion and analysis by inductively coupled plasma (ICP) spectroscopy (Appendix 2).

The survey returned up to 345 ppb Au, 6 ppm Ag, 1,328 ppm Zn, 248 ppm Cu and 156 ppm Pb. All the samples in Glacier Cirque are anomalous (>200 ppm) in Zn (the highest value, 1,328 ppm, is located at the toe of the ice field at the head of the cirque) with or without anomalous Cu (>100 ppm) and/or Au (>50 ppb). The samples from the Main Cirque are anomalous in Zn (>100 ppm) especially towards the Glacier Cirque. The samples from Glacier Creek are anomalous (>200 ppm) in Zn (the highest value, 1,092 ppm, is located at the head of the valley) with or without anomalous Cu (>100 ppm) and/or Au (>50 ppm) in Zn (the highest value, 1,092 ppm, is located at the head of the valley) with or without anomalous Cu (>100 ppm) and/or Au (>50 ppb).

Soil or talus fine samples were collected from seven grid lines in Glacier Cirque and from two contour lines from Glacier Saddle to the South Ridge. The sample locations are plotted on Figure 6.

Ninety three soil/talus fine samples were collected from the property. All samples were sent to Chemex Labs Ltd. in North Vancouver for analysis. Each sample was dried and sieved to -80 mesh. The samples were analyzed for gold by aqua-regia digestion and atomic absorption (AA) finish. Determinations for 32 additional elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sc, Sr, Ti, Tl, U, V, W, and Zn) were done by nitric-aqua-regia digestion and analysis by inductively coupled plasma (ICP) spectroscopy (Appendix 2).

The samples returned up to 1,920 ppb Au, 25 ppm Ag, 7,054 ppm As, 5,596 ppm Zn, 1,020 ppm Cu, 4,090 ppm Pb and 70 ppm Cd. The results outlined a large multi-element Zn-Cu-Pb±Au anomaly from Glacier Saddle to the South Ridge, and an extensive Zn±Au anomaly in Glacier Cirque.

PROSPECTING/ROCK SAMPLES

The prospecting/mapping was completed in Glacier Cirque, Glacier Creek and from Glacier Saddle to the South Ridge. The rough terrain constrain easy access to other parts of the property.

The prospecting located semi-massive and massive sulphide (sphalerite-pyrite ±chalcopyrite)-chlorite±garnet±epidote boulders in Glacier Cirque. These boulders could be traced along the moraine to the toe of the glacier at the head of the cirque.

Polymictic volcanic breccia and quartz±pyrite±sphalerite veins boulders were located in Glacier Creek.

Intense foliated schists with garnet and minor disseminated pyrite and/or magnetite were located in Glacier Saddle.

Large exposures of Miocene LB and FP were located along the South Ridge.

One hundred and twenty five rock samples were collected from these areas. Sample locations are plotted on Figure 6. The samples were sent to Chemex Labs Ltd. in North Vancouver, where they were crushed, split and pulverized to -150 mesh (>90%). They were analyzed for gold by standard fire assay and atomic absorption finish. Determinations for an additional 32 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sc, Sr, Ti, Tl, U, V, W, and Zn) were done by a nitric-aqua-regia digestion and analysis by inductively coupled plasma (ICP) spectroscopy (Appendix 2).

The results located Zn±Cu±Pb±Au±Ag mineralized moraine boulders in Glacier Cirque, Glacier Creek and on Glacier Saddle which returned up to 2,143 ppb Au, 1,029 ppm Ag, 2,450 ppm As, 17.0% Zn, 1.28% Cu, 0.45% Pb and 0.088% Cd.

WHOLE ROCK SAMPLES

Eight samples were collected for whole rock analysis in an attempt to establish the original lithology of these metamorphic rocks. The samples were sent to Chemex Labs Ltd. in North Vancouver for analysis. They were crushed, split and pulverized to minus 150 mesh (>90%). A prepared sample (0.100 g) is added to a lithium metaborate flux (0.70 g), mixed and fused at 1,050° C. The resulting melt is then cooled and dissolved in 100 ml of 4% nitric acid. This solution is then analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) for Al₂O₃, CaO, Cr₂O₃, Fe₂O₃, K₂O, MgO, MnO, Na₂O, P₂O₅, SiO₂, TiO₂, Ba, Nb, Sr, Y and Zr. The results are corrected for spectral interelement interferences. For Rb analysis an ionization suppressant is added to an aliquot of the solution and analyzed by AA.

For loss on ignition (LOI) a porcelain crucible is dried in an oven at 105° C, cooled and weighted. A prepared sample (1.00 g) is added to the crucible and then ashed at 1,000° C for one hour. The sample is then cooled in a desiccator, weighed and the LOI is calculated.

A prepared sample (1.00 g) is digested with concentrated nitric and aqua regia acids at medium heat for two hours. The acid solution is diluted to 25 ml with demineralized water, mixed and analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) for Co, Cu, Mo, Ni, Pb, and Zn. The results are corrected for spectral interelement interferences. The whole rock analysis are enclosed in Appendix 4 and the sample locations are plotted on Figure 6.

The analytical results cover a wide value range for most oxides and the additional elements. An allochemical alteration in connection with the metamorphism has masked the original composition, and no useful information could be extracted from these results.

TI, Ga & Ge ROCK ANALYSIS

Thallium is a promising guide to VMS and gold mineralization. Kuroko-type mineralization, especially pyrite-containing ore, has high TI content (up to 800 ppm). In addition to Kuroko-type deposits, some Au-Ag veins, Pb-Zn veins and Besshi-type deposits also contain a certain amount of TI, but they are not as enriched as in Kuroko-type deposits. Epithermal, xenothermal and skarn deposits usually have less than 10 ppm TI. Both Ga and Ge can further define ore type.

The five highest grade zinc samples were analyzed for TI, Ga and Ge by Chemex Labs Ltd. in North Vancouver. A prepared sample (1.00 g) is weighted into a teflon beaker and digested with hydrofluoric, nitric and perchloric acid to dryness. The residue is taken up with 25 ml of 10% hydrochloric acid and the elements are determined by standard atomic absorbtion spectroscopy for Ge.

A prepared sample (2.00 g) is digested with hydrofluoric, nitric and perchloric acid to dryness. A potassium iodide solution is added and the resulting complexes of gallium and thallium are extracted with trioctylphosphine oxide (TOPO) into methylisobutylketone (MIBK). The elements are then determined by atomic absorption spectroscopy with background correction for TI and Ga. All the analysis are enclosed in Appendix 5 and the sample locations are plotted on Figure 6.

All the five samples analyses returned background values for the three elements (<1 ppm TI, <10 ppm Ga & <50 ppm Ge) eliminating any possible connection with VMS or gold mineralization.

MAGNETOMETER SURVEY

Total Field Magnetometer survey were carried out on 12.275 km of grid and contour lines in Glacier Cirque, Glacier Creek and one a line from Glacier Saddle to the South Ridge. Magnetic measurements were collected on 25 m station spacing along the grid lines (Figures 7).

A Scintrex Integrated Portable Geophysical System (IGS-2) was used for the surveys. This is a combined total field magnetics and a VLF-EM (IGS-2/MP4/VLF-4) system. A Scintrex MP-3 unit was used as base station magnetometer for diurnal correction of the magnetic data. Base station readings were taken at a set location on the grid, and diurnal corrections of the data were performed daily.

The magnetic data has a range of 1,291 gammas, with recorded values between 57,466.5 and 56,175.5 gammas (Figures 7). However, most data are in the 56,300 to 56,900 gamma range. The survey located elevated magnetic values along the South Ridge, which is believed to reflect the Miocene LB and FP intrusions underlying the ridge. The small magnetic anomalies in Glacier Cirque or Glacier Creek are believed to reflect intrusions within the gneiss or pyrrhotite skarn.

THIN SECTION DESCRIPTIONS

Four rock samples were submitted for preparation and microscopic examination. All were prepared as polished thin sections.

The rocks of the suite were identified as skarns. Two samples are crudely banded with actinolite and epidote as major minerals (epidote predominates over actinolite) and diopside, sphene and ilmenite as accessories minerals. They contain traces of pyrrhotite, sphalerite an chalcopyrite.

The other two samples contain significant amounts of marmatitic sphalerite and pyrrhotite. The first sample is a typical skarn (garnet, carbonate and actinolite) with sulphides as irregular impregnations. The other sample consists predominantly of carbonate and quartz with sulphides as irregular pockets in a zone. This sample may be a skarnified metasediment, or possibly has exhalative affinities.

The complete descriptions are included as Appendix 6.

SUMMARY OF FLUID INCLUSION PETROGRAPHY AND MICROTHERMOMETRY DOROTHY CLAIM GROUP

A fluid inclusion study of four mineralized samples were completed to determine if the samples represent one or more mineralizing events, and to establish the mineralizing environment. Plotting of Homogenization Temperature vs. Salinity indicate a clustering of measurements between 150 and 450° C and less than 15 equiv. wt.% NaCl with the majority of measurements in the retrograde skarn field. The study is included as Appendix 7.

ELECTRON PROBE MICROANALYSES

The chemical compositions of individual garnet, pyroxene, amphibole and epidote grains from four thin sections were determined by electron probe microanalysis. Each grain was classified according to conventional mineralogical criteria. One sample contains two distinct garnet populations (andradites and grossular) while the other three samples contained only andradite. The garnet indicate amphibolite grade metamorphism for these samples. The pyroxene were all diopside indicating contact metamorphic origin of the samples. The amphiboles were identified as ferro-actinolite and ferro-pargasite indicating greenschist to amphibolite grade metamorphism. The study also identified clinozoisite and epidote indicating greenschist to amphibolite grade metamorphism. The study also identified clinozoisite and epidote indicating greenschist to amphibolite grade metamorphism.

Formation of anhydrous minerals like pyroxene and garnets would require very high temperatures (700-900° C) and medium to high pressure (3-5 kb), these conditions can not be reached during regional metamorphism. The presence of ferro-pargasite suggests regional metamorphism, a fact that is supported by the presence of grossular. The mineral assemblage from these rocks are believed to represents retrograde regional and contact metamorphism of impure limestone. The study is included as Appendix 8.

CONCLUSIONS AND RECOMMENDATIONS

The 1992 exploration program on the Dorothy Property identified retrograde zinc skarn mineralization in boulders on the south slope of the Dorothy Creek. This type of mineralization has previously not been described from this area. The source of the boulders are believed to be in the vicinity of the ice field in Glacier Cirque and the ridge between Glacier Cirque and Glacier Creek.

The medium to high grade regional and contact metamorphic retrograde zinc skarn mineralization of Mesozoic age is believed to pre date the Miocene Porphyry Cu-Mo, Mo or Cu mineralization previously identified in Hoodoo Creek.

Additional work in the Glacier Cirque and Glacier Creek area is recommended to locate the source of the zinc skarn mineralization. The gossans on both slopes of the ridge should be mapped. This needs to be done in late spring or early summer to reduce the rockfall hazard which in late summer becomes very active in the afternoon. Geophysical surveys (magnetic, SP and EM) over the ice field in Glacier Cirque and Glacier Creek. The target for the geophysical survey(s) would be pyrrhotite skarn mineralization.

REFERENCES

- Deighton, J.R.: (1980) 1979 Report on the Geology, Geochemistry and Diamond Drilling of the BZT claims, Hoodoo Creek. Ass. Rpt. 8218
- GSC O.F.1163 (1985) Mount Waddington 92N.

GSC Map 1714A (1991) Metamorphic Map of the Canadian Cordillera.

Hodgson, C.J. and Marton, A.S.: (1977) Hoodoo Creek Property. Ass. Rpt 6819.

Hodgson, C.J.: (1978) Hoodoo Creek Property. Ass. Rpt. 7415.

- Murao, S. and Itoh, S. (1992) High Thallium Content in Kuroko-type Ore. Journal of Geochemical Exploration, 43, pp.223-231.
- Ney, C.S.: (1968) Geological and Geochemical Report on the Van Claims. Ass. Rpt. 1868.

Winkler, H.G.F. (1976) Petrogenisis of Metamorphic Rocks.

CERTIFICATE

- I, Tor Bruland, of the city of White Rock, Province of British Columbia, do hereby certify:
- 1. I am a Consulting Geologist with Cascade Geological Services, 16126 12A Avenue, White Rock, B.C. V4A 6V9 on contract with Teck Exploration Ltd., 600-200 Burrard Street, Vancouver, B.C. V6C 3L9.
- 2. I am a graduate of the University of Bergen, Norway, with a Cand. Mag. (B.Sc.) degree in Geology (1977), and a Cand. Real. (M.Sc.) degree in Geology (1980).
- 3. I am a Professional Geoscientist with The Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. I have been practising my profession for 16 years, in Norway between 1977 and 1980, and since 1980 in British Columbia, Yukon and the western U.S.
- 5. This report is based on my own observations and the observations of people under my supervision on the DOROTHY Mineral Claim Group between June 10, 1992 and December 20, 1992.
- 6. I have no direct or indirect interest, nor do I expect to receive any interest, directly or indirectly, in the property or securities of Teck Corporation or Teck Exploration Ltd. or any of its affiliates.
- 7. I give my consent to the use of my name and this report for qualification requirements, but not for advertising purposes.

DATED at White Rock/British/Columbia this 6th day of October, 1993.

P.Geo.

APPENDIX 1

-

•

.

0

STATEMENT OF COSTS

STATEMENT OF COSTS

Salaries: F. Daley, District Manager, ½ day @300/day T. Bruland, Project geologist 20½ days @ \$210/day N. Gibson Geologist 8 days @ \$195/day G. Lovang, Geotechnician 9 days @ \$210/day K. Chubb, Geotechnician 13 days @ \$190/day	\$ 150.00 4,305.00 1,560.00 1,890.00 <u>2,470.00</u> \$10,375.00	\$10,375.00
Room and board 38 mandays @ \$60/manday		2,280.00
Transportation 4 days @ \$55/day		220.00
Aircraft charter (helicopter 12.75 hours @ \$849.93/hour)		10,836.61
Drafting, maps and prints		750.00
Field equipment		105.39
Communication, freight, postage etc.		165.00
Computer rental 20 days @ \$20/day		400.00
Computer and office supplies		53.46
Equipment rental		1,489.17
Petrography study		588.23
Fluid inclusion study		1,045.65
Electron microscope study		921.20
Analytical cost: 127 stream samples @ \$11.16/sample 125 rock samples @ \$14.65/sample 25 Cu, Zn, Pb or Cd @ \$10.19/sample 2 rush rock samples w/Zn or Cd analysis @ \$14.54/sample 8 whole rock analysis @ \$30.33/sample 5 samples for TI, Ga & Ge analysis @ \$15.19/sample	\$ 1,417.32 1,831.25 254.75 67.82 242.64 <u>75.95</u> \$ 3,889.73 SUB TOTAL 7% GST TOTAL	<u>3,889.73</u> \$33,119.44 <u>2,318.36</u> \$35,437.80

APPENDIX 2

.

ASSAY CERTIFICATES; STREAM SEDIMENTS, SOIL & TALUS FINE SAMPLES

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Number : 1-A Total Pages : 1 Certificate Date: 20-JUL-92 Invoice No. : 19217383 P.O. Number : Account HPQ

· •

۲

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

Project :	DOROTHY/SIVA	/
Comments:	ATTN: ANDY BETMANIS	CO: TOR BRULAND

1

					<u> </u>					CERTIFICATE OF ANALYSIS						1	A9217			
SAMPLE	PREP CODE	Au NAA ppb	Ag ppm	A1 9	λs ppm	Ba ppm	Be pp a	Bi ppm	Ca ¥	Cd ppm	Co ppa	Cr ppa	Cu ppm	Fe t	Ga ppa	Hg PPm	K ŧ	La ppm	Mg %	Mn ppu
489674 489675 489676 48967 <u>7</u>	201 203 201 203 201 203 201 203	24 22 < 1 39	0.8 0.2 2.4 1.6	2.75 0.97 2.01 2.83	16 < 2 8 < 2	100 70 240 130	< 0.5 < 0.5 1.0 < 0.5	< 2 < 2 < 2 < 2 < 2	0.47 0.59 0.56 0.78	< 0.5 < 0.5 0.5 1.0	9 8 13 10	25 14 18 22	33 33 120 72	2.27 1.91 3.36 3.11	< 10 < 10 < 10 10	1 < 1 1	0.17 0.10 0.19 0.19	< 10 < 10 10 10	0.93 0.68 0.86 0.79	460 355 1955 1245 -
							·													
			i			<u></u>	,									Hh	ai	AT	ha	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK E	EXPLORAT	IONS LTD
------------	----------	----------

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6 Page Nur. : 1-B Total Pages : 1 Certificate Date: 20-JUL-92 Invoice No. : 19217383 P.O. Number : Account : HPQ

,

,

.

A9217383

Project : DOROTHY/SIVA. Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS

					_					and states in the						
SAMPLE	PREP CODE	Mo ppm	Na %	Ni PPm	P ppm	Pb Ppm	Sb PPa	Sc ppm	Sr ppm	Ti t	Tl PPm	U Ppm	V ppn	pbu M	Zn ppa	
89674 89675 89676 89677	201 203 201 203 201 203 201 203 201 203	2 1 3 4	0.02 0.02 0.01 0.01	10 10 13 11	1520 1580 1380 1410	8 12 116 78	2 2 4 2	2 2 3 4	37 20 98 91	0.11 0.07 0.01 0.03	< 10 < 10 < 10 < 10 < 10	30 < 10 < 10 < 10 < 10	78 41 54 63	< 10 < 10 10 10	84 112 500 404	
																-
		- <u></u>														

CERTIFICATION:

a D'Ma

÷

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9 Page I er :1-A Total Payes :4 Certificate Date: 11-SEP-92 Invoice No. : I9220770 P.O. Number : Account :EO

¥.

٦

13

0

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Chemex Labs Ltd.

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

.

	_										CERTIFICATE OF ANALYSIS							A9220770				
SAMPLE	PRI CO	ep De	Au-AA ppb	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	
NWG101	201	229	15	0.8	0.96	< 2	80	< 0.5	2	0.85	1.5	12	12	87	1.63	10	< 1	0.08	< 10	0.43	425	
NWG102	201	229	15	1.6	1.30	28	130	< 0.5	2	1.43	1.5	16	24	68	2.57	10	< 1	0.14	< 10	0.80	1480	
NWG103	201	229	5	0.8	1.00	14	110	< 0.5	2	1.40	1.0	12	21	55	1.91	10	< 1	0.12	< 10	0.63	1060	
NWG104	201	229	5	0.2	0.80	4	120	< 0.5	< 2	0.95	< 0.5	8	12	27	1.58	10	< 1	0.17	< 10	0.58	590	
NWG105	201	229	< 5	< 0.2	0.63	< 2	40	< 0.5	2	0.63	< 0.5	6	9	24	1.30	10	< 1	0.07	< 10	0.39	260	
NWG106	201	229	25	< 0.2	0.98	8	70	< 0.5	2	0.73	< 0.5	11	16	34	2.10	10	< 1	0.12	< 10	0.66	405	
NWG107	201	229	50	0.8	0.93	12	100	< 0.5	2	0.89	0.5	10	15	38	1.96	10	< 1	0.16	< 10	0.58	815	
NWG108	201	229	45	1.4	0.96	22	100	< 0.5	2	1.44	1.5	13	20	60	1.98	10	< 1	0.11	< 10	0.59	1145	
NWG109	201	229	< 5	0.6	1.20	4	190	< 0.5	< 2	0.62	0.5	11	17	37	2.18	10	< 1	0.23	< 10	0.80	1225	
NWG110	201	229	< 5	1.2	1.45	18	230	< 0.5	< 2	0.70	2.0	14	21	73	2.52	10	< 1	0.19	< 10	0.79	1235	
NWG111	201	229	< 5	0.2	1.39	10	160	< 0.5	< 2	0.75	2.0	11	20	71	2.17	10	1	0.16	< 10	0.74	570	
NWG112	201	229	345	3.0	1.27	50	180	< 0.5	< 2	0.63	5.5	17	20	73	3.46	10	< 1	0.18	< 10	0.70	5380	
NWG113	201	229	15	5.0	1.29	36	330	< 0.5	< 2	0.62	4.5	19	23	76	3.75	10	1	0.18	< 10	0.74	7490	
NWG114 MW3115	201	220	∡⊃ 25	1.0	2.98	48 22	260	< 0.5	< 2	0.84	2.0	16	20	105	4.10	20	1	0.33	< 10	1,11	1355	
	201	~~>	4.7	0.0	2.03		200	× 0.5	× 4	0.75	4.9	10			3.33	10	4	0.33	< 10 	0.90	033	
NWG116	201	229	5	0.2	2.65	8	200	< 0.5	< 2	2.10	2.0	23	49	192	4.09	20	1	0.33	< 10	1.45	995	
NWG117	201	229	15	0.8	2.43	6	260	< 0.5	< 2	0.71	4.5	25	53	155	4.52	20	< 1	0.65	< 10	1.75	1040	
NWG118	201	229	25	0.8	1.11	2	110	< 0.5	< 2	0.86	2.0	11	16	90	1.88	10	1	0.11	< 10	0.56	525	
NWG119	201	229	170	0.2	0.93	< 2	170	< 0.5	< 2	0.77	1.5	10	16	59	1.65	10	< 1	0.09	< 10	0.45	385	
NWGIZU	201	447	170	V.2	2.10	T0	140	< 0.5	< <u>4</u>	0.64	3.0	30	40	190	4./1	20 	< 1	0.16	< 10	1.25	1275	
NWG121	201	229	35	0.2	2.33	< 2	110	< 0.5	< 2	0.70	2.5	24	53	140	4.44	20	< 1	0.19	< 10	1.33	1230	
NWG122	201	229	< 5	0.4	3.03	36	190	< 0.5	< 2	0.38	0.5	27	47	98	4.19	20	< 1	0.28	10	1.31	1440	
NWG123	201	229	15	1.0	3.59	18	200	< 0.5	< 2	0.39	< 0.5	24	49	136	3.72	20	2	0.37	< 10	1.38	710	
NWG124	201	229	5	0.4	3.25	10	170	< 0.5	< 2	0.35	< 0.5	29	39	115	3.38	10	< 1	0.23	< 10	1.25	800	
NWG125	201	229	15	0.4	3.13	< 2	120	< 0.5	< 2	0.32	0.5	16	38	98	3.21	10	< 1	0.22	< 10	1.12	695	
NWG126	201	229	< 5	< 0.2	2.84	16	160	< 0.5	< 2	0.31	< 0.5	24	25	90	3.64	10	1	0.24	< 10	1.07	1185	
NWG127	201	229	10	0.8	3.16	12	140	< 0.5	< 2	0.25	1.0	29	31	127	4.02	10	< 1	0.22	< 10	1.21	665	
NWG128	201	229	< 5	< 0.2	2.80	2	110	< 0.5	< 2	0.26	< 0.5	16	27	89	3.29	10	1	0.22	< 10	1.07	370	
NWG129	201	229	10	< 0.2	2.82	8	140	< 0.5	< 2	0.15	0.5	29	33	121	4.12	10	< 1	0.23	< 10	1.13	1110	
NWG130	201	229	5	< 0.2	4.45	14	130	< 0.5	< 2	0.16	1.0	22	41	97	5.72	10	< 1	0.13	< 10	1.13	1355	
NWG131	201	229	5	< 0.2	3.64	6	120	< 0.5	< 2	0.16	< 0.5	19	37	182	4.90	10	< 1	0.21	< 10	1.08	645	
NWG132	201	229	1920	25.4	2.31	7050	240	< 0.5	10	0.10	3.0	5	22	210	12.30	20	1	0.38	< 10	0.45	255	
NWG133	201	229	10	< 0.2	4.15	26	180	< 0.5	< 2	0.20	1.0	27	38	147	5.26	10	< 1	0.14	< 10	1.17	1400	
NWG134 NWG135	201	249	< 5	0.4	3.33	40	100	< 0.5	< 2	0.19	5.0	20	91	102	0.20 E 2E	<u>∡</u> ∪ 10	. 1	0.34	< 10	1.38	1540	
CC15M0	201	449	< 3 	U.8	3.00	D	190	× 0.5	< 4	0.48	5.0	47	44	103	5.35	10	< 1	0.13		1.38	1202	
NWG136	201	229	15	0.2	2.20	28	180	< 0.5	< 2	0.42	70.0	45	18	1020	7.10	20	1	0.20	10	1.09	6660	
NWG157	201	429	< 5	1.4	1.79	20	160	< 0.5	< 2	0.06	2.5	9		532	8.40	10	< 1	0.82	20	0.14	1660	
NWG135	201	220	/U	1.4	4.98	10	700	< U.D	< 4	0.10	< 0.5	±4 2	35	107	3.08	20 TU	< 1 2 1	0.33	10	0.95	000	
	201	220	15	× V.4	4.47) 95	30	120	< 0.5 2 0 5	~ 2	0.04	V.D 05	11	20	207	7,00 7 33	20	、 <u>1</u>	0.414	10	0.43	1190	
			13	V.4	4.03		TUV		• •		0.5	**	ΔŲ	i	1.23	TA	-	J.JI	14	9.13	1100	

CERTIFICATION:_

ai D'Ma

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page I ,er :1-B Total Payes :4 Certificate Date: 11-SEP-92 Invoice No. : 19220770 :19220770 P.O. Number ÷ Account EO

٩.

۲

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Chemex Labs Ltd.

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

÷

r											CE	RTIF	CATE	OF A	NAL	YSIS	A9220770
SAMPLE	PR CO	ep De	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	D D	V DDm	W ppm	Zn ppm	
NWG101	201	229	< 1	0.06	13	1110	12	< 2	3	29	0.09	< 10	< 10	43	< 10	338	
NWG102	201	229	< 1	0.03	23	1170	138	2	4	38	0.05	< 10	< 10	48	< 10	400	
NWG103	201	229	< 1	0.03	17	1260	40	< 2	4	35	0.05	< 10	< 10	39	< 10	258	
NWG104	201	229	< 1	0.03	7	1770	12	2	3	23	0.06	< 10	< 10	40	< 10	78	
NWG105	201	229	< 1	0.02	7	1520	4	< 2	2	22	0.06	< 10	< 10	31	< 10	50	
NWG106	201	229	< 1	0.03	11	1710	12	< 2	3	26	0.07	< 10	< 10	48	< 10	98	
NWG107	201	229	< 1	0.03	10	2160	30	< 2	4	23	0.06	< 10	< 10	43	< 10	150	
NWG108	201	229	< 1	0.03	17	1440	96	< 2	4	35	0.04	< 10	< 10	36	< 10	318	
NWG109	201	229	< 1	0.02	10	1580	36	2	3	21	0.07	< 10	< 10	46	< 10	156	
NWG110	201	229	< 1	0.03	17	1200	42	2	5	39	0.09	< 10	< 10	62	< 10	378	
NWG111	201	229	< 1	0.04	15	1270	24	4	4	50	0.10	< 10	< 10	59	< 10	436	
NWG112	201	229	< 1	0.01	17	1890	154	2	4	24	0.03	< 10	< 10	44	< 10	904	
NWGIIJ	201	229	1	0.02	43	1020	190	4		37	0.03	< 10	< 10	53	< 10	678	
NWG114 NWG115	201	229	< 1	0.05	20	1040	66	2	8	29	0.13	< 10	< 10	78	< 10 < 10	358 738	
NWG116	201	229	< 1	0.12	38	860	26	4	11	54	0.24	< 10	< 10	135	< 10	622	
NWG117	201	229	< 1	0.04	40	1510	88	2	7	32	0.23	< 10	< 10	105	< 10	1330	
WWG118	201	229	< 1	0.06	14	970	16	2	4	27	0.11	< 10	< 10	49	< 10	428	
NWG119	201	229	< 1	0.05	16	1030	6	2	3	29	0.08	< 10	< 10	56	< 10	268	
NWG120	201	229	< 1	0.05	51	1130	38	4	8	37	0.15	< 10	< 10	90	< 10	786	
NWG121	201	229	< 1	0.06	42	1100	36	< 2	9	38	0.14	< 10	< 10	101	< 10	488	
NWG122	201	229	< 1	0.01	36	920	46	4	9	17	0.08	< 10	< 10	102	< 10	404	
NWG123	201	229	1	0.02	32	1350	60	6	8	24	0.12	< 10	< 10	110	< 10	356	
NWG124	201	229	< T	0.02	38	1150	44	0	1	18	0.05	< 10	< 10	105	< 10	274	
NWG125	201	229		0.01	43	1000			5	19	0.11	< 10	< 10	91	< 10	538	
NWG126	201	229	< 1	0.01	31	1090	68	4	6	16	0.09	< 10	< 10	87	< 10	284	
WG127	201	229	< 1	0.01	37	1240	128	< 2	6	15	0.06	< 10	< 10	84	< 10	406	
WG128	201	229	1	0.01	23	1120	20	2	4	14	0.07	< 10	< 10	74	< 10	184	
NWG129	201	229	< 1	0.01	42	1000	122	< 2	6	10	0.05	< 10	< 10	76	< 10	420	
NWGIJU	201	229	< 1	0.01	26	1270	92	2	9	12	0.28	< 10	< 10	119	< 10	476	
WG131	201	229	1	0.01	26	1500	54	2	7	14	0.18	< 10	< 10	105	< 10	414	
WG132	201	229	< 1	0.08	7	1560	4090	8	9	172	0.01	< 10	< 10	69	< 10	600	
WG133	201	229	1	0.01	28	1600	72	4	7	17	0.14	< 10	< 10	113	< 10	640	
WG134	201	229	< 1	0.03	20	1230	64	8	9	16	0.01	< 10	< 10	95	< 10	920	
WG135	201	229	< 1	0.03	41	1500	82	2	8	36	0.18	< 10	< 10	109	< 10	1415	
WG136	201	229	< 1	0.01	41	2650	276	4	4	21 <	0.01	< 10	< 10	62	< 10	5600	····
WG137	201	229	< 1	0.02	6	1490	172	2	3	150 <	0.01	< 10	< 10	10	< 10	612	
WG138	201	229	3	0.02	17	1570	100	2	9	24	0.15	< 10	< 10	90	< 10	484	
WG139	201	229	< 1	0.02	4	1280	82	4	12	19 <	0.01	< 10	< 10	51	< 10	260	
WG140	201	229	8	0.01	15	1660	200	4	11	23	0.04	< 10	< 10	77	< 10	750	
									• • • •								· · · · · · · · · · · · · · · · · · ·
														<i>с</i>	EBTIEN		that Filla

CERTIFICATION:

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

¢.

Page f er :2-A Total Payes :4 Certificate Date: 11-SEP-92 Invoice No. :19220770 P.O. Number : Account :EO

7

ai O'Ma

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9220770

.

1

1

SAMPLE	PREP CODE	Au-AA ppb	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
NWG141	201 229	< 5	0.4	2.73	26	150	< 0.5	< 2	0.10	< 0.5	12	24	258	7.18	10	1	0.27	< 10	0.77	905
NWG142	201 229	< 5	< 0.2	2.68	18	110	< 0.5	< 2	0.08	< 0.5	12	35	265	7.37	10	< 1	0.20	< 10	0.85	990
NWG143	201 229	20	2.6	2.01	84	170	< 0.5	< 2	0.09	0.5	11	23	324	6.58	10	< 1	0.29	10	0.50	2080
NWG144	201 229	85	3.0	4.43	22	150	< 0.5	< 2	0.20	0.5	21	33	240	8.19	< 10	< 1	0.16	10	1.12	1095
NWG145	201 229	< 5	2.8	3.81	10	590	< 0.5	< 2	0.06	0.5	11	15	376	9.07	20	< 1	0.41	20	0.29	745
NWG146	201 229	10	3.2	2.23	42	250	< 0.5	2	0.14	2.0	21	20	636	8.37	10	1	0.35	10	0.54	2430
NWG147	201 229	55	1.6	2.70	20	220	< 0.5	< 2	0.09	1.0	26	23	548	10.05	20	< 1	0.38	10	0.63	3220
NWG148	201 229	5	< 0.2	4.77	22	110	< 0.5	< 2	0.20	0.5	16	34	129	7.02	< 10	1	0.16	10	0.85	1385
NWG149	201 229	5	0.4	2.60	< 2	100	< 0.5	< 2	0.07	< 0.5	6	22	136	6.10	10	< 1	0.18	< 10	0.54	500
NWG150	201 229	10	< 0.2	2.15	2	50	< 0.5	< 2	0.03	< 0.5	2	16	196	7.04	10	< 1	0.13	10	0.27	250
NWG151	201 229	35	< 0.2	1.28	22	100	< 0.5	< 2	< 0.01	< 0.5	1	2	74	8.07	10	< 1	0.15	< 10	0.05	210
NWG152	201 229	90	3.8	1.92	28	140	< 0.5	< 2	0.03	< 0.5	7	22	483	9.09	10	< 1	0.29	< 10	0.60	620
NWG153	201 229	30	0.6	2.35	14	450	< 0.5	< 2	0.27	3.5	18	17	155	5.26	10	2	0.17	20	0.68	4030
NWG154	201 229	65	1.2	0.48	18	150	< 0.5	< 2	0.17	3.5	10	2	168	3.55	< 10	1	0.16	< 10	0.15	3280
NWG155	201 229	20	1.4	0.44	12	130	< 0.5	< 2	1.02	1.5	8	4	43	1.89	10	< 1	0.10	< 10	0.25	1645
NWG156	201 229	10	1.6	1.41	32	140	< 0.5	< 2	0.48	6.0	19	23	127	3.55	10	< 1	0.13	< 10	0.77	1110
NWG157	201 229	10	0.6	1.58	18	110	< 0.5	< 2	0.43	2.0	19	25	248	4.20	20	< 1	0.24	< 10	0.86	955
NWG158	201 229	45	1.0	0.84	22	100	< 0.5	< 2	0.31	1.5	12	11	145	3.34	10	< 1	0.13	< 10	0.42	1465
NWG159	201 229	10	0.6	0.95	8	90	< 0.2	< 2	0.48	0.5	10	15	90	2.42	10	< 1	0.10	< 10	0.65	875
NWG160	201 229	30	1.8	2.03	16	290	< 0.5	< 2	0.70	2.0	16	19	155	3.34	20	< 1	0.21	10	0.81	2540
NWG161	201 229	10	0.6	3.07	8	190	< 0.5	< 2	0.26	1.0	17	25	103	4.08	20	< 1	0.17	10	0.99	1850
L6800 00+00W	201 229	< 5	< 0.2	3.92	10	170	< 0.5	< 2	0.41	< 0.5	22	37	88	5.03	20	< 1	0.30	< 10	1.55	2370
L6800 00+50W	201 229	< 5	< 0.2	4.46	12	110	< 0.5	< 2	0.12	< 0.5	25	31	102	4.53	20	< 1	0.13	< 10	1.07	1150
L6800 01+00W	201 229	< 5	< 0.2	3.55	10	270	< 0.5	< 2	0.40	0.5	22	40	106	4.90	20	< 1	0.24	< 10	1.42	3430
L6800 01+50W	201 229	< 5	2.2	3.52	4	210	< 0.5	< 2	0.44	2.0	19	46	323	5.60	20	< 1	0.40	< 10	1.69	1710
L6800 02+00W	201 229	< 5	< 0.2	3.53	< 2	140	< 0.5	< 2	0.20	0.5	19	46	113	5.17	20	< 1	0.27	< 10	1.33	2100
L6800 02+50W	201 229	10	0.8	3.63	18	120	< 0.5	< 2	0.12	0.5	19	34	107	4.61	10	< 1	0.14	< 10	0.93	1400
L6800 03+00W	201 229	15	1.6	2.70	62	80	< 0.5	6	0.11	1.5	32	25	169	4.91	10	< 1	0.13	< 10	0.77	1850
L6800 03+50W	201 229	15	1.8	2.69	38	130	< 0.5	4	0.17	7.5	30	28	234	5.36	20	< 1	0.11	10	0.92	2880
L6800 04+00W	201 229	< 5	0.6	4.23	24	100	< 0.5	< 2	0.31	1.0	40	52	298	5.88	20	< 1	0.15	10	1.62	1935
L6800 04+50W	201 229	< 5	3.4	3.23	68	210	< 0.5	52	0.19	6.0	17	22	693	9.42	30	< 1	0.37	10	0.75	3060
L6800 05+00W	201 229	< 5	2.4	2.15	58	110	< 0.5	8	0.03	3.0	23	15	344	5.99	10	< 1	0.27	10	0.48	3040
L6800 05+50W	201 229	50	2.2	2.65	38	310	< 0.5	4	0.26	3.5	20	32	257	6.35	20	< 1	0.22	10	1.00	1400
L6800 06+00W	201 229	5	0.4	2.11	36	300	< 0.5	6	0.30	1.0	8	24	179	5.57	20	< 1	0.24	10	0.71	490
L6800 06+50W	201 229	170	1.6	1.65	136	70	< 0.5	8	0.02	< 0.5	5	12	181	6.86	10	< 1	0.22	< 10	0.26	425
L6800 07+00W	201 229	5	< 0.2	2.71	80	90	< 0.5	2	0.04	< 0.5	12	32	236	8.23	20	1	0.18	< 10	0.67	660
L6800 07+50W	201 229	5	< 0.2	2.97	24	290	< 0.5	< 2	0.07	< 0.5	13	14	370	13.45	30	< 1	0.34	10	0.69	890
L6800 08+00W	201 229	< 5	0.4	3.38	28	200	< 0.5	< 2	0.16	0.5	26	60	265	6.90	20	< 1	0.17	10	1.28	1670
L6800 08+50W	201 229	< 5	4.4	6.13	18	120	< 0.5	< 2	0.16	0.5	20	47	211	8.69	< 10	< 1	0.15	10	1.33	1025
L6800 09+00W	201 229	10	2.0	1.94	42	310	< 0.5	6	0.21	1.5	16	22	377	6.44	20	< 1	0.26	10	0.59	2050

CERTIFICATION:_

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9 Page l Jer :2-B Total Payes :4 Certificate Date: 11-SEP-92 Invoice No. : 19220770 P.O. Number : Account :EO

٩

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9220770 PREP Ni Mo Na ₽ Pb Sb Sc Sr Ti т1 U v W Zn SAMPLE CODE % % ppm NWG141 201 229 170 2 0.04 11 1440 6 7 41 0.03 < 10 < 10 68 < 10 510 NWG142 201 229 1 0.02 14 1590 90 2 7 32 0.03 < 10 < 10 74 < 10 368 NWG143 201 229 2 0.02 19 1410 576 4 6 36 0.02 < 10 < 10 51 730 < 10 NWG144 201 229 25 < 1 0.03 1630 100 4 21 21 0.50 < 10 < 10 135 < 10 560 201 229 NWG145 < 1 0.02 19 2250 92 2 14 176 < 0.01 < 10 < 10 50 < 10 468 NWG146 201 229 0.02 15 1720 380 9 3 4 32 0.02 < 10 < 10 56 1020 < 10 NWG147 201 229 6 0.02 16 2140 186 6 9 22 0.03 < 10 < 10 59 < 10 712 NWG148 201 229 3 0.02 17 1770 74 8 11 16 0.40 < 10 < 10 133 476 < 10 NWG149 201 229 6 0.01 8 1410 124 < 2 4 18 0.08 252 < 10 < 10 74 < 10 NWG150 201 229 3 < 0.013 1270 72 < 2 2 7 0.07 < 10 < 10 56 156 < 10 NWG151 201 229 1 < 0.01 1 1390 222 2 12 < 0.01 1 < 10 < 10 13 < 10 126 201 229 NWG152 < 1 0.02 10 1540 226 4 9 14 0.24 < 10 < 10 252 96 < 10 NWG153 201 229 2 0.01 14 1200 64 4 10 32 0.10 < 10 < 10 57 < 10 1090 NWG154 201 229 3 0.01 5 800 108 < 2 1 14 < 0.01< 10 < 10 9 < 10 736 NWG155 201 229 < 1 0.01 6 1310 52 < 2 1 32 < 0.01< 10 < 10 16 < 10 400 NWG156 201 229 0.02 19 1280 78 2 5 < 1 21 0.04 < 10 < 10 57 < 10 932 NWG157 201 229 0.03 15 1320 32 2 1 5 20 0.10 < 10 < 10 65 < 10 564 NWG158 201 229 1 9 1170 58 < 2 0.02 3 15 0.03 < 10 < 10 35 < 10 380 NWG159 201 229 0.02 9 1270 26 15 < 1 < 2 4 < 10 0.08 < 10 48 < 10 206 201 229 NWG160 1 0.01 14 1570 154 < 2 100 4 0.01 < 10 < 10 50 < 10 618 NWG161 201 229 < 1 0.01 15 1610 156 4 6 56 0.04 < 10 < 10 66 < 10 548 L6800 00+00W 201 229 22 2240 26 < 10 < 1 0.01 4 10 15 0.16 106 < 10 < 10 290 L6800 00+50W 201 229 < 1 28 1170 28 7 < 10 0.01 6 7 0.16 < 10 < 10 103 226 L6800 01+00W 201 229 1 0.01 20 1990 44 5 < 10 2 31 0.08 < 10 < 10 117 310 201 229 L6800 01+50W < 1 0.01 19 1810 78 < 2 10 22 0.12 < 10 < 10 120 < 10 906 201 229 L6800 02+00W 1 0.01 18 1430 50 < 2 6 11 0.16 < 10 < 10 122 < 10 424 L6800 02+50W 201 229 < 1 0.01 20 1100 110 4 12 0.13 < 10 < 10 106 4 < 10 458 201 229 1220 L6800 03+00W 4 0.01 24 210 2 5 9 0.01 < 10 < 10 68 < 10 838 L6800 03+50W 201 229 1130 1 0.01 29 232 < 2 7 14 0.03 < 10 < 10 75 < 10 2050 L6800 04+00W 201 229 2530 1 0.04 68 98 6 7 32 0.17 < 10 < 10 123 < 10 1090 L6800 04+50W 201 229 < 1 0.01 13 1710 218 4 7 48 0.03 < 10 1610 < 10 65 < 10 L6800 05+00W 201 229 < 1 0.01 12 1240 236 4 6 21 0.01 < 10 < 10 < 10 1045 39 L6800 05+50W 201 229 < 1 0.02 31 1580 150 < 2 9 43 0.11 < 10 < 10 79 1320 < 10 L6800 06+00W 201 229 1 0.02 12 1180 120 < 2 8 39 0.03 < 10 < 10 738 60 < 10 L6800 06+50W 201 229 1 0.01 4 1130 368 4 8 12 < 0.01< 10 < 10 41 < 10 382 L6800 07+00W 201 229 3 0.02 15 1590 154 11 20 0.02 8 < 10 < 10 84 < 10 318 L6800 07+50W 201 229 < 1 0.07 8 3000 78 2 22 60 0.07 < 10 < 10 198 < 10 648 201 229 44 L6800 08+00W < 1 0.03 1660 96 4 11 31 0.20 < 10 < 10 130 < 10 582 L6800 08+50W 201 229 < 1 0.03 27 1800 72 2 26 18 0.79 < 10 193 400 < 10 < 10 L6800 09+00W 201 229 < 1 20 286 2 8 0.03 1540 52 0.03 < 10 < 10 53 < 10 810

CERTIFICATION:

phai OMa

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

1

Page i /er :3-A Total Payes :4 Certificate Date: 11-SEP-92 Invoice No. :19220770 P.O. Number : Account :EO

1

1

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Chemex Labs Ltd.

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9220770

1

1

٦

SAMPLE		PREP CODE		Au-AA ppb	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn. ppm
L6800 09+ L6800 10+ L6800 10+ L6800 11+ L6800 11+	50W 00W 50W 00W 50W	201 201 201 201 201 201	229 229 229 229 229 229	10 < 5 < 5 < 5 10	0.4 < 0.2 < 0.2 0.2 2.4	1.82 2.31 1.90 1.91 2.21	18 20 14 20 24	300 270 290 370 150	0.5 < 0.5 < 0.5 0.5 < 0.5	2 < 2 4 6	0.14 0.03 0.02 0.06 0.06	1.5 < 0.5 < 0.5 1.5 < 0.5	20 6 4 17 11	23 61 12 9 20	930 591 689 434 335	7.51 10.45 14.40 6.14 7.21	20 20 30 20 20	< 1 < 1 < 1 < 1 < 1	0.22 0.31 0.30 0.32 0.30	10 20 20 20 10	0.57 0.78 0.32 0.39 0.55	1675 370 365 2210 1245
L6800 12+ L6800 12+ L6800 13+ L6800 13+ L6800 13+	00W 50W 00W 50W 00W	201 201 201 201 201 201	229 229 229 229 229 229	30 55 210 65 105	1.4 2.0 3.8 12.0 12.2	2.12 3.33 3.10 2.52 2.36	24 18 22 18 42	170 200 260 120 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 6 2 10 < 2	0.11 0.08 0.09 0.10 0.21	0.5 2.0 3.0 < 0.5 14.5	11 16 16 9 22	18 25 24 26 24	289 420 479 290 644	6.71 7.99 7.67 5.95 7.01	20 20 20 20 20	< 1 < 1 < 1 < 1 < 1 1	0.29 0.22 0.34 0.18 0.27	10 10 10 10 20	0.49 0.69 0.76 0.65 0.73	1415 1415 3020 1540 8010
L9400E 099 L9400E 099 L9400E 099 L9400E 09 L9400E 09 L9400E 09	500N 550N 600N 650N 700N 750N	201 201 201 201 201 201	229 229 229 229 229 229 229	<pre>< 5 < 5 15 300 5 </pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 1.2	3.58 2.96 1.99 3.42 1.90 2.93	16 18 12 2 < 2 < 2	40 40 30 30 20 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.12 0.12 0.20 0.21 0.13 0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 7 6 8 2 10	40 38 40 32 17 29	61 46 55 60 21 51	7.72 7.80 5.58 4.00 1.59 3.42	20 20 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.05 0.04 0.04 0.04 0.02 0.02	< 10 < 10 < 10 < 10 < 10 < 10	0.82 0.46 0.49 0.48 0.18 0.59	860 465 255 530 110 700
L9400E 099 L9400E 099 L9400E 099 L9400E 099	800N 850N 900N 950N	201 201 201 201	229 229 229 229 229	<pre>< 5 10 < 5 80 15</pre>	1.4 0.6 0.6 < 0.2	4.01 3.30 3.37 2.81	4 6 18 8	30 90 50 30	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.17 0.57 0.33 0.23	< 0.5 < 0.5 < 0.5 < 0.5	8 10 8 4	34 30 25 23	77 65 48 31	3.63 2.88 3.19 3.58	10 10 10 10	< 1 < 1 1 < 1	0.03 0.10 0.04 0.03	< 10 < 10 < 10 < 10 < 10	0.54 0.80 0.48 0.32	285 435 375 250
L9500E 09 L9500E 09 L9500E 09 L9500E 09	500N 550N 500N 650N	201 201 201 201 201	229 229 229 229 229	<pre></pre>	5.6 4.6 0.2 1.8	3.22 3.11 3.53 3.76	6 2 8 8	40 60 20 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.13 0.23 0.10 0.14	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 24 4 6	25 29 32 27	29 66 82 48 53	4.24 3.44 7.02 4.76	< 10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 1	0.03 0.04 0.02 0.02	< 10 < 10 < 10 < 10 < 10 < 10	0.31 0.40 0.70 0.26 0.40	205 305 545 155 420
L9500E 097 L9500E 097 L9500E 094 L9500E 094 L9500E 094	700N 750N 800N 850N 900N	201 201 201 201 201	229 229 229 229 229 229	5 10 < 5 < 5 10	0.6 0.2 6.4 0.4 1.8	3.05 1.72 3.72 1.39 1.33	6 8 6 18 24	20 20 60 160 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.19 0.13 0.17 0.53 0.58	< 0.5 < 0.5 0.5 < 0.5 0.5	7 2 17 13 13	19 18 30 22 20	32 24 66 53 51	2.88 3.10 4.03 2.51 2.57	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.04 0.02 0.03 0.13 0.15	< 10 < 10 < 10 < 10 < 10 < 10	0.33 0.18 0.40 0.73 0.72	395 205 880 1260 1325
L9500E 099 L9500E 100 L9600E 099 L9600E 099 L9600E 096	950N 000N 500N 550N 500N	201 201 201 201 201 201	229 229 229 229 229 229	20 20 375 20 40	2.6 1.0 2.8 2.2 4.2	1.70 1.62 4.11 0.89 2.97	34 20 10 < 2 4	280 160 60 30 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.67 0.59 0.27 0.13 0.32	1.5 0.5 0.5 < 0.5 < 0.5	18 15 9 1 9	23 23 26 7 27	64 49 69 10 56	3.44 2.64 3.12 0.72 4.38	10 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.22 0.17 0.06 0.04 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.90 0.77 0.56 0.16 0.60	3140 1060 430 75 310
L9600E 096 L9600E 097 L9600E 097 L9600E 098 L9600E 098	550N 700N 750N 300N 350N	201 201 201 201 201	229 229 229 229 229 229	55 25 15 15 5	2.4 0.6 1.0 1.6 1.2	2.66 1.96 1.61 1.88 1.75	12 18 12 40 32	30 160 220 190 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.11 0.52 0.66 0.61 0.60	< 0.5 < 0.5 0.5 1.0 1.0	3 15 15 21 21	20 28 23 29 25	32 44 61 75 84	5.53 3.07 2.90 3.19 3.17	< 10 10 10 10 10	2 1 < 1 < 1 < 1 < 1	0.03 0.15 0.22 0.21 0.19	< 10 < 10 < 10 < 10 < 10 < 10	0.21 0.93 0.90 0.98 0.92	195 1170 1550 1685 1670

CERTIFICATION:_____

'YNa
600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9 Page Jer :3-B Total Payes :4 Certificate Date: 11-SEP-92 Invoice No. :19220770 P.O. Number : Account :EO

ţ,

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

							-				CE	RTIF	ICATE	OF A	ANAL'	YSIS	A9220770
SAMPLE	PRI COI	SP DE	Mo ppm	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D mđđ	V ppm	W	Zn ppm	
L6800 09+50W	201	229	6	0.03	17	1760	214	4	7	44	0.04	< 10	< 10	53	< 10	578	•••••••••••••••••••••••••••••••••••••••
L6800 10+00W	201	229	2	0.12	18	2280	100	4	9	71	0.01	< 10	< 10	59	< 10	270	
L6800 10+50W	201	229	1	0.24	7	3330	166	4	6	132	0.08	< 10	< 10	46	< 10	320	
L6800 11+00W	201	229	2	0.09	10	1540	140	< 2	4	48 -	< 0.01	< 10	< 10	28	< 10	472	
L6800 11+50W	201	229	14	0.02	10	1830	266	4	5	24	0.04	< 10	< 10	56	< 10	392	
L6800 12+00W	201	229	4	0.01	9	1600	216	2	5	26	0.04	< 10	< 10	52	< 10	548	
L6800 12+50W	201	229	< 1	0.02	14	1630	182	2	12	22	0.31	< 10	< 10	101	< 10	800	
L6800 13+00W	201	229	3	0.02	14	2060	162	2	10	34	0.22	< 10	< 10	88	< 10	1170	
L6800 13+50W	201	229	5	0.01	16	1280	204	6	5	20	0.06	< 10	< 10	75	< 10	492	
70900 T#+00W	201	447	3	0.01	10	2300	514	4	/	<u> </u>	0.14	< 10	< 10	70	< 10	2400	
L9400E 09500N	201	229	< 1	0.01	12	2080	54	4	4	13	0.11	< 10	< 10	133	< 10	326	
L9400E 09550N	201	229	< 1	0.01	10	1230	42	2	4	16	0.30	< 10	< 10	188	< 10	138	
LY400E UY600N	201	229	< 1	0.02	13	920	22	< 2	3	16	0.19	< 10	< 10	121	< 10	96	
1.9400E 09050N	201	220		0.04	11	200	10	~ ~ ~	-	10	0.13	< 10	< 10	83	< 10	104	
		227	· •					` *	-	14	0.10		< 10		× 10		
L9400B 09750N	201	229	< 1	0.02	12	2310	12	< 2	3	18	0.10	< 10	< 10	68	< 10	92	
L9400E 09800N	201	229	< 1	0.01	14	1070	14	4	4	14	0.10	< 10	< 10	68	< 10	110	
L9400E 09850N	201	229	< 1	0.05	17	880	12	4	7	14	0.16	< 10	< 10	73	< 10	154	
194005 09900N	201	220	< 1 < 1	0.03	11	/30 510	10	4	-	12	0.15	< 10	< 10	69	< 10	140	
	201	643	· · ·	0.02	,	510	0	4		14	0.15	× 10	< 10	04	< 10	12	
L9400E 10000N	201	229	< 1	0.01	6	410	24	2	3	10	0.13	< 10	< 10	104	< 10	96	
L9500E 09500N	201	229	3	0.01	12	660	86	4	3	8	0.19	< 10	< 10	76	< 10	172	
L9500K 09550N	201	229	5	0.02	20	510	40	< 2	4	11	0.15	< 10	< 10	74	< 10	370	
19500E 09600N	201	229	/ 1	0.01	0	740	3∡ 20	4	4	2	0.17	< 10	< 10	129	< 10	98	
295005 09050N	201	223	· · ·	0.01	,	000	40	•	-	0	····	× 10	(10	70	< 10	120	
L9500E 09700N	201	229	1	0.01	5	1030	18	2	2	9	0.13	< 10	< 10	63	< 10	54	
L9500E 09750N	201	229	9	0.01	4	550	20	< 2	2	14	0.16	< 10	< 10	96	< 10	48	
L9500E 09800N	201	229	7	0.01	14	980	30	4	3	20	0.08	< 10	< 10	63	< 10	192	
L9500E 09850N	201	229	< 1	0.03	16	1100	42	< 2	4	23	0.07	< 10	< 10	52	< 10	180	
NUDEE0 2000	201	229	< 1	0.05	19	1290	80	< 4	4	22	0.06	< 10	< 10	49	< 10	218	
L9500E 09950N	201	229	< 1	0.03	21	1290	70	< 2	6	27	0.08	< 10	< 10	63	< 10	336	
L9500E 10000N	201	229	< 1	0.03	18	1170	50	< 2	4	24	0.05	< 10	< 10	55	< 10	200	
L9600E 09500N	201	229	< 1	0.01	12	1110	78	2	4	8	0.08	< 10	< 10	52	< 10	248	
L9600E 09550N	201	229	3	0.01	3	210	22	< 2	1	7	0.20	< 10	< 10	49	< 10	30	
TAGOOR DAGOON	201	22Y	13	0.02	13	220	34	4	5	12	0.23	< 10	< 10	108	< 10	262	
L9600E 09650N	201	229	10	0.01	6	360	24	4	3	8	0.33	< 10	< 10	166	< 10	80	
LYBUUE 09700N	201	229	< 1	0.03	16	1170	44	2	5	22	0.11	< 10	< 10	74	< 10	160	
1.9600E 09750N	201	44¥ 220	< 1	0.03	17	1220	52	2	5	30	0.10	< 10	< 10	61	< 10	234	
L9600E 09850N	201	220	\	0.03	23	1230	106	2	5	23	0.06	< 10	< 10	52	< 10	322	
			• •				700	-	-		V. VV	~ 40	. 10		. 10	344	

CERTIFICATION: thai & Ma

1

,

1

•

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page i /er : 4-A Total Payes :4 Certificate Date: 11-SEP-92 Invoice No. : 19220770 P.O. Number : Account :EO

1

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

,

·	-										CE	RTIF	CATE	OF A	NAL	YSIS		49220	770		
SAMPLE	PR CO	ep De	Au-AA ppb	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
L9600E 09900N L9600E 09950N L9600E 10000N	201 201 201	229 229 229	40 650 10	0.4 0.8 0.4	0.99 1.15 0.95	2 10 8	100 160 140	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.69 0.72 0.71	1.0 0.5 < 0.5	11 14 11	16 19 16	74 73 43	1.77 2.13 2.01	< 10 < 10 10	< 1 < 1 < 1	0.10 0.15 0.19	< 10 < 10 < 10	0.51 0.64 0.69	505 615 580
																					-

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

٦

1

r

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page Jer :4-B Total Pages :4 Certificate Date: 11-SEP-92 Invoice No. : 19220770 P.O. Number ; Account EO

Ŧ

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

1725-DOROTHY Project : Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

.

۲

										CE	RTIF	CATE	OF A	NALY	'SIS	A9220770
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W PPM	Zn ppm	
L9600E 09900N L9600E 09950N L9600E 10000N	201 229 201 229 201 229	< 1 < 1 < 1	0.05 0.05 0.03	14 17 11	1120 1190 1700	14 32 26	< 2 < 2 < 2	3 4 3	25 25 22	0.09 0.09 0.08	< 10 < 10 < 10	< 10 < 10 < 10	45 52 44	< 10 < 10 < 10	274 276 114	
													с	ERTIFIC	ATION:	Thai DMa

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6 Page Nur :1-A Total Pag、 :1 Certificate Date: 14-JUL-92 Invoice No. :19217380 P.O. Number : Account :HPQ

7

Project : DOROTHY/SIVA Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9217380

Sample	PR CO	EP	у п-уу bbpp	λg ppm	л1 %	λs ppm	Ba ppa	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
489680	205	274	< 5	0.2	0.88	2	170	< 0.5	< 2	1.04	3.5	11	184	162	2.73	< 10	< 1	0.22	< 10	0.37	180
489682	205	274	20	6.8	0.22	36	80	< 0.5	< 2	1.40	0.5	7	117	15	5.49	< 10	< 1	0.09	< 10	0.63	>10000
489684	205	274	160	10.0	0.19	38 144	110	< 0.5	< 2 < 2	0.30	3.5 15.5	8	93 123	33 78	7.88	< 10 < 10	< 1 < 1	0.09	< 10 < 10	0.44	>10000 >10000
489685	205	274	285	75.4	0.33	300	20	< 0.5	814	0.02	1.0	3	145	1065	10.65	< 10	< 1	0.05	< 10	0.05	235
489687	205	274	60	13.2	0.65	68	60	< 0.5	< 2	0.09	19.0	14	132	140	5.13	< 10	< 1	0.35	< 10	0.20	>10000
4 <i>89688</i> 489689	205	274	1300 1750	>200 94.2	0.18 0.52	2510 350	10 30	< 0.5 < 0.5	< 2 < 2	0.14 1.04	76.5 >100.0	16 13	168 141	1290 1240	14.25 9.81	< 10 < 10	< 1 < 1	0.08 0.11	< 10 < 10	0.10	>10000 >10000
489690	205	274	5	3.6	2.98	14	10	< 0.5	< 2	0.12	< 0.5	35	118	1385	>15.00	10	1	0.26	< 10	1.03	1855

CERTIFICATION:

tart Sichler

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6

Page Nu :1-B Total Pag. :1 Certificate Date: 14-JUL-92 Invoice No. 19217380 P.O. Number : HPO Account

.

tant sichler

الأراطية المتعلي

\$

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

0

Chemex Labs Ltd.

Project : DOROTHY/SIVA Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

ч

										CE	RTIF	CATE	OF A	NAL	YSIS	A9217380
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl. ppm	D Dave D	V mqq	W Ppm	Zn ppm	
489680 489681 489682 489683 489683 489684	205 274 205 274 205 274 205 274 205 274 205 274	29 1 < 3 < 2 < 2 <	0.09 0.01 0.01 0.01 0.01	75 6 8 7 13	2070 160 140 190 300	4 60 102 44 308	2 4 4 2 < 2	2 1 4 3	14 176 < 17 < 7 < 16 <	0.13 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 50 100 140 30	147 16 17 21 9	< 10 50 30 30 20	150 314 366 636 2320	
489685 489686 489687 489688 489688 489688	205 274 205 274 205 274 205 274 205 274 205 274	14 < 2 2 < 4 < 3 <	0.01 0.04 0.01 0.01 0.01	4 12 14 32 46	320 440 200 160 180	36 14 212 3470 840	4 8 < 2 < 2 < 2 < 2	1 11 3 4 8	1 < 9 4 < 2 < 16 <	0.01 0.12 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 80 70 130	9 204 18 16 26	< 10 10 30 70 130	422 104 3300 >10000 >10000	
489690	205 274	14 <	0.01	27	530	102	10	7	5 <	0.01	< 10	< 10	74	< 50	710	
	1 1 1															

٠

Г

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: TECK EXPLORATIONS LTD.

350 - 272 VICTORIA ST. KAMLOOPS, BC V2C 1Z6 Page Nur: :1 Total Page :1 Certificate Date: 24-JUL-92 Invoice No. :19217661 P.O. Number : Account :HPQ

Project : DOROTHY/SIVA Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9217661 PREP Au oz/T Ag FA Cu Mo Pb Zn % CODE ٩. 96 SAMPLE $F\lambda + \lambda\lambda$ oz/T ٩. 0.0015 489681 244 --------------____ --------244 --0.0005 489682 _ _ _ _ _ _ _ _ _ _ _____ ____ ----244 0.0020 489683 -----____ ____ -------------489684 244 ---0.0070 4.25 0.26 _ _ _ ____ ----489685 244 ----0.0135 2.35 0.11 _ _ _ _ _ ____ ----489687 244 ---0.0035 ____ 0.36 _____ --------489688 244 0.0525 30.00 0.13 0.42 1.53 ---_____ 244 489689 0.0625 3.00 0.13 7.34 ----_____ 489690 244 _ _ 0.14 ____ ------------

CERTIFICATION:_

that Vinh

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page N. 3r : 1-A Total Pages :3 Certificate Date: 11-SEP-92 Invoice No. : 19220772 P.O. Number ; Account :EO

۰ ·

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9220772

٦

SAMPLE	PREP CODE		Au-AA ppb	Ag ppm Aqua R	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
128521	205 2	74	5	0.4	0.32	< 2	20	< 0.5	< 2	0.15	1.5	2	109	49	1,14	< 10	< 1	0.06	< 10	0.19	70
128522	205 21	74	5	0.7	0.51	2	10	< 0.5	< 2	0.39	< 0.5	6	53	141	1.05	< 10	< 1	0.10	< 10	0.06	75
128523	205 2	74	400	10.5	0.23	46	20	< 0.5	32	0.04	1.0	2	164	80	3.16	< 10	< 1	0.07	< 10	0.02	50
128524	205 27	74	10	< 0.2	0.31	< 2	60	< 0.5	< 2	0.08	< 0.5	1	107	7	0.51	< 10	< 1	0.09	< 10	0.09	130
128525	205 2	74	5	< 0.2	0.23	4	50	< 0.5	< 2	0.09	< 0.5	6	141	32	0.36	< 10	< 1	0.18	< 10	0.03	45
128526	205 27	74	< 5	< 0.2	0.96	< 2	10	< 0.5	< 2	1.29	21.5	4	123	17	1.86	< 10	< 1	0.01	< 10	0.68	1325
128527	205 27	74	5	1.4	1.18	< 2	10	< 0.5	2	2.10	0.5	16	110	642	3.64	< 10	< 1	0.09	< 10	0.33	860
128528	205 27	74	< 5	< 0.2	1.49	< 2	30	< 0.5	< 2	0.87	1.5	11	35	14	2.29	< 10	< 1	0.10	10	1.25	740
128529	205 27	74	325	27.0	1.27	260	10	< 0.5	24	0.11	>100.0	66	182	883	>15.00	< 10	< 1	< 0.01	< 10	0.76	1505
128530	205 27	74	5	1.3	1.47	< 2	20	< 0.5	2	1.43	< 0.5	71	57	367	5.31	< 10	1	0.05	< 10	0.78	725
128531	205 27	74	5	2.0	1.59	6	20	< 0.5	< 2	1.15	0.5	74	83	336	5.31	< 10	< 1	0.04	< 10	1.05	635
128532	205 27	74	165	0.3	0.27	< 2	< 10	< 0.5	8	11.35	< 0.5	12	23	41	3.52	< 10	< 1	0.02	< 10	0.11	6430
128533	205 27	74	5	0.3	1.69	< 2	70	< 0.5	< 2	0.11	< 0.5	50	61	317	5.61	< 10	< 1	0.89	< 10	1.33	355
128534	205 27	74	45	20.0	0.27	344	20	< 0.5	44	0.38	>100.0	31	98	153	12.40	< 10	8	0.03	10	0,52	>10000
128535	205 27	74	10	1.3	0.55	30	60	< 0.5	2	>15.00	3.0	8	28	14	4.09	< 10	1	0.14	< 10	2.27	>10000
128536	205 27	74	15	9.8	1.98	86	20	< 0.5	16	1.03	27.5	44	51	191	7.42	< 10	3	0.33	< 10	1.12	>10000
128537	205 27	74	10	14.0	0.23	258	40	< 0.5	26	0.29	0.5	22	85	21	9.31	< 10	5	0.08	10	0.24	>10000
128538	205 27	74	20	12,8	0.58	24	10	< 0.5	60	10.50	< 0.5	16	47	16	5.72	< 10	7	0.04	< 10	0.93	>10000
128539	205 27	74	< 5	< 0.2	1.68	< 2	90	< 0.5	4	2.23	< 0.5	13	69	158	2.51	< 10	< 1	0.09	< 10	0.71	830
128540	205 27	74	15	15.0	0.26	50	200	< 0.5	8	0.13	27.0	14	117	115	1.82	< 10	< 1	0.14	< 10	0.06 :	>10000
128541	205 27	74	145	2.8	0.31	24	< 10	< 0.5	< 2	12.95	>100.0	27	56	255	6.32	< 10	< 1	0.01	< 10	0.33	>10000
128542	205 27	74	< 5	0.4	1.85	< 2	20	< 0.5	2	1.90	< 0.5	17	58	133	3.04	< 10	< 1	0.08	< 10	0.79	510
128543	205 27	74	< 5	1.0	0.41	< 2	< 10	< 0.5	2	0.99	7.0	6	140	104	0.82	< 10	< 1 •	< 0.01	< 10	0.15	355
128544	205 27	74	< 5	< 0.2	0.57	< 2	10	< 0.5	< 2	3.92	5.0	7	46	25	1.07	< 10	< 1	0.03	< 10	0.26	815
128545	205 27	74	< 5	0.7	1.34	2	20	< 0.5	4	1,41	< 0.5	45	27	326	4.70	10	1	0.08	< 10	0.74	500
128546	205 27	74	< 5	0.8	1.24	< 2	20	< 0.5	4	1.73	< 0.5	28	46	419	3.97	10	< 1	0.09	< 10	0.68	480
128547	205 27	74	< 5	0.7	1.04	< 2	20	< 0.5	4	1.48	< 0.5	5	100	180	2.39	< 10	< 1	0.06	< 10	0.45	460
128548	205 27	74	< 5	0.8	1.77	< 2	10	< 0.5	2	1.92	< 0.5	27	71	411	2.95	< 10	< 1	0.07	< 10	0.82	415
128549	205 27	74	< 5	0.5	1.21	< 2	10	< 0.5	2	1.41	< 0.5	35	34	195	3.64	< 10	< 1	0.04	< 10	0.73	580
128550	205 27	74	< 5	0.6	6.21	8	230	< 0.5	2	2.89	< 0.5	21	110	309	5.41	20	< 1	1.79	< 10	1.67	780
474451	205 27	74	55	17.4	0.21	108	60	< 0.5	32	0.10	< 0.5	12	168	11	5.25	< 10	2	0.06	< 10	0.05 >	>10000
474452	205 27	74	< 5	1.0	1.21	< 2	20	< 0.5	4	1.82	< 0.5	35	58	335	4.34	10	< 1	0.07	< 10	0.69	595
474453	205 27	74	10	0.6	2.25	2	30	< 0.5	2	2.52	< 0.5	22	42	208	2.94	< 10	< 1	0.11	< 10	1.01	520
544001	205 27	74	50	< 0.2	2.72	2	90	< 0.5	4	1.59	< 0.5	6	41	49	1.94	< 10	< 1	0.29	< 10	0.70	465
544002	205 27	74	< 5	0.3	1.84	< 2	70	< 0.5	< 2	0.42	< 0.5	37	107	396	4.22	< 10	< 1	0.95	< 10	1.63	385
544003	205 27	74	1080	8.7	0.17	4	< 10	< 0.5	110	7.29	>100.0	38	19	71	5.61	< 10	< 1	0.01	< 10	0.04	3640
544003 NO TAG	205 27	74	760	2.4	0.13	< 2	< 10	< 0.5	36	6.80	>100.0	22	4	47	3.14	< 10	< 1	0.03	< 10	0.04	3060
544004	205 27	74	10	3.0	2.01	< 2	40	< 0.5	4	2.79	2.0	48	51	803	3.94	< 10	< 1	0.13	< 10	0.44	385
544005	205 27	4	< 5	< 0.2	2.68	< 2	40	< 0.5	2	3.04	1.5	21	63	8	5.30	10	< 1	0.10	< 10	1.93	3740
544006	205 27	4	5	6.2	0.51	< 2	< 10	< 0.5	12	3.28	1.0	83	79	5300	5.91	< 10	< 1 <	0.01	< 10	0.14	485
~	L		••			· · · ·								. <u>.</u> .			.				<u> </u>
																	Not	Ă	ノナル	Ma	
														(CERTIFIC	CATION	- U.		\bigcirc (110	

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9 Page N, ar :1-B Total Pages :3 Certificate Date: 11-SEP-92 Invoice No. :19220772 P.O. Number : Account :EO

+Tha_

.

.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

0

Chemex Labs Ltd.

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9220772

	PREP	Mo	Na	Ni	σ	₽h	Sh	Sc	Sr 7	: m]	π	v	ឃ	7.0	
SAMPLE	CODE		%	מממ	מממ	maa	שט	ກກຫ		1 11 % nnm	ווזיכוכו ו	1 1000	ת תכולו	200	
			· · · ·							· Phu	- Nhor			b .hm	
128521	205 274	< 1	0.06	3	90	4	< 2	1	9 0.0	4 < 10	< 10	12	< 10	364	
128522	205 274	1	0.10	7	450	4	< 2	< 1	26 < 0.0	1 < 10	< 10	3	< 10	94	
128523	205 274	60	< 0.01	4	60	76	< 2	< 1	4 < 0.0	1 < 10	< 10	10	< 10	468	
128524	205 274	< 1	0.05	3	30	< 2	< 2	< 1	8 < 0.0	1 < 10	< 10	5	< 10	56	
128525	205 274	< 1	0.04	2	30	4	< 2	< 1	12 < 0.0	1 < 10	20	2	< 10	30	
128526	205 274	< 1	0.02	9	250	2	< 2	6	16 0.1	1 < 10	< 10	31	< 10	1470	
128527	205 274	< 1	0.07	2	2270	2	2	5	35 0.1	5 < 10	< 10	18	< 10	88	
128528	205 274	< 1	0.08	9	1270	6	< 2	2	91 0.1	6 < 10	< 10	41	< 10	440	
128529	205 274	< 1	< 0.01	17	430	672	< 2	2	2 0.0	1 < 10	10	42	< 50	>10000	
128530	205 274	< 1	0.15	118	800	2	< 2	9	24 0.2	2 < 10	< 10	343	10	126	
128531	205 274	< 1	0.10	101	720	56	< 2	7	17 0.2	7 < 10	< 10	400	< 10	166	· · · · · · · · · · · · · · · · · · ·
128532	205 274	< 1	0.01	12	710	8	< 2	< 1	49 0.0	1 < 10	10	14	10	72	
128533	205 274	< 1	0.08	13	70	< 2	< 2	12	11 0.1	0 < 10	< 10	109	< 10	92	
128534	205 274	< 1	< 0.01	12	260	488	< 2	4	5 < 0.0	1 < 10	10	< 1	60	>10000	
128535	205 274	< 1	< 0.01	7	110	58	< 2	1	187 < 0.0	1 < 10	< 10	5	20	598	
128536	205 274	< 1	< 0.01	56	730	370	< 2	18	17 < 0.0	1 < 10	< 10	. 87	20	5250	
128537	205 274	< 1	< 0.01	11	300	110	< 2	2	17 < 0.0	1 < 10	10	< 1	< 10	478	
128538	205 274	< 1	< 0.01	10	160	146	< 2	3	177 < 0.0	1 < 10	20	3	40	368	
128539	205 274	< 1	0.22	20	700	2	2	9	42 0.3	4 < 10	< 10	104	10	42	
128540	205 274	3 -	< 0.01	10	230	178	< 2	4	7 < 0.0	1 < 10	< 10	6	< 10	2350	
128541	205 274	. < 1 .	< 0.01	5	400	198	< 2	1	88 < 0.0	1 < 10	< 10	8	80	>10000	· · · · · · · · · · · · · · · · · · ·
128542	205 274	< 1	0.20	36	890	6	2	9	42 0.2	4 < 10	< 10	208	10	112	
128543	205 274	< 1 -	< 0.01	8	160	8	< 2	1	16 0.0	2 < 10	< 10	15	< 10	1005	
128544	205 274	< 1	0.01	11	530	8	2	2	27 0.1	2 < 10	< 10	20	< 10	1015	
128545	205 274	< 1	0.11	68	580	12	< 2	9	16 0.4	5 < 10	< 10	296	10	76	
128546	205 274	< 1	0.15	7	1390	4	2	12	10 0.3	3 < 10	< 10	103	10	50	the second se
128547	205 274	< 1	0.10	3	840	2	< 2	8	12 0.3	5 < 10	< 10	78	< 10	100	
128548	205 274	< 1	0.18	45	930	4	2	9	36 0.2	2 < 10	< 10	104	< 10	56	
128549	205 274	< 1	0.13	43	910	4	2	10	19 0.2	4 < 10	< 10	188	10	48	
128550	205 274	< 1	0.38	20	760	140	4	21	66 0.3	0 < 10	< 10	177	20	276	
474451	205 274	1 -	< 0.01	11	160	196	< 2	2	46 < 0.0	L < 10	10	3	< 10	128	
474452	205 274	< 1	0.15	20	1000	2	2	11	18 0.4	L < 10	< 10	131	10	54	
474453	205 274	< 1	0.28	51	660	< 2	4	11	118 0.2) < 10	< 10	101	10	76	
544001	205 274	< 1	0.27	2	10	4	4	< 1	53 < 0.0	l < 10	< 10	14	< 10	98	
544002	205 274	< 1	0.12	27	780	< 2	< 2	11	22 0.1	5 < 10	< 10	139	< 10	70	
544003	205 274	< 1	0.01	3	440	66	< 2	< 1	11 < 0.0	l < 10	< 10	4	290	>10000	
544003 NO TAG	205 274	< 1	0.01	3	400	22	< 2	< 1	16 < 0.0	l < 10	< 10	2	120	>10000	
544004	205 274	< 1	0.18	23	4540	8	2	7	62 0.1	5 < 10	< 10	38	10	498	
544005	205 274	< 1 <	< 0.01	23	530	8	< 2	11	18 0.0	ί < 10	< 10	124	20	456	
544006	205 274	< 1	0.01	30	460	8	< 2	1	45 0.0	< 10	< 10	16	20	198	

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

ć

Page N. ar :2-A Total Pages :3 Certificate Date: 11-SEP-92 Invoice No. :19220772 P.O. Number : Account :EO

.

•

.

0

Chemex Labs Ltd. Analytical Chemists ' Geochemists ' Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

		_									CE	RTIFI	CAT	EOF		YSIS		A9220	0772		
SAMPLE	PREP CODE	Au	-AA ppb	Ag ppm Aqua R	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
544007	205 27	14	20	29.0	0.27	72	190	< 0.5	36	1.55	>100.0	14	241	136	5.95	< 10	6	0.09	< 10	0.19	>10000
544008	205 27	4	325	196.0	0.07	230	160	< 0.5	2	0.01	< 0.5	1	325	160	1.79	< 10	< 1	< 0.01	< 10	< 0.01	185
544009	205 27	74 ·	< 5	5.1	1.59	32	110	< 0.5	4	0.07	4.0	16	122	247	3.58	< 10	< 1	0.57	10	0.24	2990
544010	205 27	74 ·	< 5	4.0	1.05	< 2	150	< 0.5	2	0.70	< 0.5	44	205	649	1.42	< 10	< 1	0.08	< 10	0.67	390
544011	205 27	4	95	12.0	1.26	24	120	< 0.5	8	1.03	1.0	16	174	1175	5.53	< 10	< 1	0.41	< 10	0.40	9160
544012	205 27	4	40	38.0	1.01	44	80	< 0.5	24	0.19	3.0	13	161	1020	7.35	< 10	2	0.35	< 10	0.25	420
544015	205 27	4 2	500	23.0	1.71	2450	1020	< 0.5	16	0.31	< 0.5	8	129	151	7.57	10	< 1	0.38	< 10	0.59	1310
544016	205 27	4	10	0.8	1.94	6	10	< 0.5	10	2.82	1.0	< 1	182	20	1.79	10	< 1	< 0.01	< 10	0.01	320
544051	205 27	4	10	3.1	0.38	10	170	< 0.5	2	0.04	< 0.5	2	176	455	2.02	< 10	< 1	0.17	< 10	0.03	75
544052	205 27	4	580	1.0	0.42	< 2	< 10	< 0.5	18	6.45	18.0	5	29	23	1.85	< 10	< 1	0.06	< 10	0.09	2480
544053	205 27	·4	< 5	0.5	1.96	2	30	< 0.5	< 2	2.07	< 0.5	40	64	180	4.93	10	1	0.12	< 10	0.92	480
544054	205 27		< 5 	1.0	1.40	< 2	10	< 0.5	< 2	1.94	0.5	44	36	285	4.09	< 10	1	0.06	< 10	0.80	585
344033 544056	205 27		() 	14.0	2.07	12	20	< 0.5	6	2.58	2.0	116	91	1155	14.50	10	< 1	0.08	< 10	0.93	2370
544050	205 27			2.5	1.37	~ 4	40	< 0.5	4	1.38	< 0.5	40	102	226	5.59	< 10	< 1	0.07	< 10	0.87	580
	205 27			4.0	0.50	40	40	< 0.5	14	0.36		16	193	19	2.65	< 10	1	0.20	10	0.16	>10000
544058	205 27	4	10	0.4	1.69	< 2	30	< 0.5	2	2.07	< 0.5	25	75	138	2.87	< 10	< 1	0.10	< 10	0.92	605
544059	205 27	4	< 5	1.8	2.28	< 2	110	< 0.5	2	0.27	1.0	54	74	961	7.90	10	< 1	1.09	< 10	1.44	870
544050	205 27	4	< 5	5.4	0.74	32	10	< 0.5	12	0.06	93.0	20	275	581	4.81	< 10	< 1	< 0.01	< 10	0.40	985
544U61 544062	205 27	4 1	120	2.9	0.49	< 2	120	< 0.5	340	13.80	63.5	21	91	543	12.65	< 10	< 1	0.02	< 10	0.13	9080
	205 27		< 5 	0.8	1.77	< 2	20	< 0.5	2	2.28	< 0.5	38	88	329	4.38	10	< 1	0.11	< 10	0.97	840
544063	205 27	4 -	: 5	1.6	2.33	< 2	40	< 0.5	4	2.04	1.5	65	81	433	6.98	10	1	0.16	< 10	1.12	855
544064	205 27	4	5	1.2	1.54	< 2	40	< 0.5	4	2.01	< 0.5	48	109	471	4.32	10	< 1	0.10	< 10	0.84	760
544065	205 27	4	: 5	1.1	2.15	< 2	50	< 0.5	4	2.07	< 0.5	59	72	572	5.38	10	< 1	0.24	< 10	0.88	465
544066	205 27	4	75	52.0	0.28	644	20	< 0.5	8	0.12	70.5	10	204	154	2.67	< 10	1	0.12	< 10	0.09	>10000
544067	205 27	4	10	11.0	0.84	42	60	< 0.5	2	0.07	5.0	8	207	99	1.98	< 10	< 1	0.19	< 10	0.27	2640
544068	205 27	4	25	8.0	0.47	54	670	< 0.5	12	0.02	6.0	9	169	105	4.21	< 10	< 1	0.24	< 10	0.02	>10000
544069	205 27	4	75	10.0	0.70	8	90	< 0.5	10	0.02	< 0.5	3	57	21	2.66	< 10	< 1	0.51	< 10	0.06	95
544070	205 27	4	55	33.0	0.95	< 2	110	< 0.5	12	0.73	0.5	9	50	4330	3.59	< 10	< 1	0.61	10	0.16	750
544071	205 27	4	5	7.2	2.38	< 2	10	< 0.5	4	2.95	4.5	12	68	1080	3.29	10	< 1	0.01	< 10	1.05	1555
5440/2	205 27	•	10	66.0	2.04	< 2	40	< 0.5	12	1.24	3.0	16	65	>10000	3.72	10	< 1	0.06	< 10	1.29	955
544073	205 27	4	25	18.0	0.90	20	50	< 0.5	14	7.42	92.0	24	31	452	8.51	< 10	< 1	0.01	< 10	0.88	4060
544074	205 27	4 3	25	83.0	0.51	48	20	< 0.5	108	0.12	80.0	39	187	3650	14.00	< 10	< 1	0.09	< 10	0.19	1175
544075	205 27	4 4	40	29,0	1,38	126	20	< 0.5	36	1.32	37.0	11	154	1635	8.28	10	< 1	0.28	< 10	0.63	2640
544076	205 27	4	10	3.1	1.64	< 2	60	< 0.5	8	0.32	0.5	11	120	105	7.54	10	< 1	0.48	< 10	0.90	705
544105	205 27	4 <	: 5	2.8	2.54	< 2	40	< 0.5	8	1.20	15.5	39	124	1635	6.20	10	< 1	0.52	< 10	0.69	335
544106	205 27	4 <	5	0.3	2.40	< 2	180	< 0.5	2	0.79	< 0.5	21	126	152	4.20	10	< 1	1.00	< 10	0.94	505
044107 544100	205 27	4	10	5.1	0.15	30	30	< 0.5	< 2	0.14	0.5	3	274	18	0.88	< 10	< 1	0.06	< 10	0.01	660
144100	205 27	1 1		20.2	1.79	< 2	310	< 0.5	4	2.07	< 0.5	24	68	263	3.85	20	< 1	0.18	< 10	0.94	465
544110	205 27			< U, Z	1.00	< 2 54	200	< 0.5	< 2 30	1.95	< 0.5	24	57	307	3.74	10	< 1	0.17	< 10	0.99	425
/==++/		"		4.4	0.40	24	30	< U.5	30	A. 14	< 0.5	14	T00	13	5.62	< 10	2	0.18	< 10	0.06	>10000

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK EXPLORATIONS LIMITED

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page N∟ ⇒r :2-B Total Pages :3 Certificate Date: 11-SEP-92 Invoice No. P.O. Number : 19220772 • Account :EO

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9220772 -----

SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm P	Pb ppm	Sb ppm	Sc ppm	Sr T: ppm ^S	i Tl % ppm	U ppm	V ppm	W PDW	Zn ppm	
544007 544008 544009 544010 544011	205 274 205 274 205 274 205 274 205 274 205 274	4 < 1 1 1 4 < 1 4 < 1 4 < 1 12	< 0.01 < 0.01 0.01 0.10 0.01	12 4 13 22 13	230 20 570 90 450	4790 9300 256 36 106	< 2 8 < 2 2 < 2	2 < 1 6 1 3	47 < 0.03 4 < 0.03 13 < 0.03 92 0.04 74 < 0.03	1 < 10 1 < 10 1 < 10 4 < 10 4 < 10 1 < 10	10 < 10 < 10 < 10 < 10	< 1 25 29 26	70 < 10 10 < 10 20	>10000 326 1085 46 322	
544012 544015 544016 544051 544052	205 274 205 274 205 274 205 274 205 274 205 274	50 8 < 1 2 < 1	0.03 < 0.01 0.01 0.07 0.03	11 7 2 3 7	530 530 40 20 390	370 3760 18 20 16	< 2 14 2 < 2 < 2 < 2	2 5 2 < 1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	L < 10 L < 10 9 < 10 L < 10 8 < 10	< 10 < 10 < 10 < 10 < 10 < 10	33 59 27 4 8	30 30 < 10 < 10 20	662 506 60 36 3340	
544053 544054 544055 544056 544057	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 1 < 1</pre>	0.19 0.17 < 0.01 0.11 < 0.01	91 65 18 61 16	660 700 1120 670 320	10 4 158 8 84	4 4 < 2 < 2 < 2 < 2	12 11 6 8 6	41 0.3 19 0.3 20 0.04 12 0.20 17 < 0.0	5 < 10 L < 10 L < 10 5 < 10 L 10	< 10 < 10 10 < 10 < 10 < 10	490 285 58 246 12	30 20 90 30 < 10	68 158 354 70 1395	
544058 544059 544060 544061 544062	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 1 9 < 1 < 1 < 1 < 1 < 1</pre>	0.29 0.06 < 0.01 < 0.01 0.21	53 26 7 13 21	1330 230 160 100 950	6 6 20 20 6	4 < 2 < 2 < 2 < 2 2	9 20 2 3 16	70 0.17 5 0.31 1 < 0.01 50 0.01 24 0.37	<pre>/ < 10 / < 10</pre>	< 10 < 10 < 10 < 10 < 10	91 172 24 12 228	10 30 30 180 20	64 162 >10000 9950 94	
544063 544064 544065 544066 544066	205 274 205 274 205 274 205 274 205 274	< 1 < 1 < 1 < 1 < 1 < 1	0.18 0.20 0.16 < 0.01 < 0.01	108 21 12 12 12	680 1290 1240 250 290	18 2 6 324 1175	< 2 2 2 < 2 < 2 < 2	12 15 13 1 3	31 0.36 15 0.30 37 0.44 2 < 0.01 2 < 0.01	5 < 10	< 10 < 10 < 10 < 10 < 10 < 10	662 173 134 4 20	40 30 40 30 < 10	422 74 62 >10000 1020	
544068 544069 544070 544071 544072	205 274 205 274 205 274 205 274 205 274 205 274	4 < 1 < 1 < 1 3	< 0.01 0.01 0.02 0.04 0.09	7 3 8 18 21	230 310 2240 1150 1110	64 20 42 12 22	< 2 < 2 2 2 < 2	2 < 1 1 3 7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	6 4 12 40 54	20 10 20 30 60	702 20 96 916 474	
544073 544074 544075 544076 544105	205 274 205 274 205 274 205 274 205 274 205 274	<pre>< 1 < 1 < 1 3 8 < 1</pre>	0.01 < 0.01 < 0.01 0.03 0.19	10 28 33 10 20	160 140 700 720 430	48 184 950 60 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 2 6 8	$\begin{array}{cccc} 104 & 0.01 \\ 3 < 0.01 \\ 57 < 0.01 \\ 15 & 0.06 \\ 54 & 0.16 \end{array}$	<pre>< 10 < 10</pre>	< 10 30 10 < 10 < 10	21 24 69 73 77	110 100 80 40 40	>10000 >10000 6810 278 1835	
544106 544107 544108 544109 544110	205 274 205 274 205 274 205 274 205 274 205 274	< 1 < 1 < 1 < 1 < 1 < 1	0.19 < 0.01 0.23 0.22 0.01	15 8 21 28 12	460 30 980 1060 240	4 38 6 < 2 40	4 < 2 < 2 2 < 2 < 2	25 < 1 13 12 3	17 0.30 3 < 0.01 53 0.44 34 0.38 13 < 0.01	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 10	216 2 154 153 11	20 < 10 30 20 30	142 108 36 48 246	
]						<u>.</u>					EBTIEL		Thai DMa

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9 Page N. ir :3-A Total Pages :3 Certificate Date: 11-SEP-92 Invoice No. : I9220772 P.O. Number : Account :EO

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9220772 PREP AI Au-AA Ag pom As Ba Be Bi Ca Cđ Co \mathbf{Cr} Сu Fe Ga Hg ĸ La Mg Mn SAMPLE CODE ppb Aqua R % % ppm % % ppm DDW ppm ppm ppm ppm ppm % ppm ppm ppm ppm 544111 205 274 < 5 10.5 0.34 28 30 < 0.5 64 0.51 11.0 24 48 9.69 7 < 10 0.14 10 0.16 >10000 6 544112 205 274 < 5 0.5 0.09 < 2 < 10 < 0.5 2 0.01 < 0.5 141 1.76 < 10 < 1 86 < 1 0.01 < 10 0.01 185 544117 205 274 < 5 0.3 1.91 260 14 4 < 0.5 2 1.18 < 0.5 41 68 3.45 10 < 1 0.43 1.19 < 10 1180 544120 205 274 < 5 0.2 1.49 < 0.5 108 < 2 60 2 0.15 < 0.5 8 55 2.15 < 10 < 1 0.18 < 10 0.56 365 544121 205 274 < 5 < 0.2 1.33 100 < 0.5 2 2 1.47 1.5 5 39 9 1.77 10 < 1 0.28 10 0.51 1125 544122 205 274 < 5 1.4 1.25 2 60 < 0.5 4 0.07 < 0.5 3 121 35 2.86 < 10 0.62 < 1 10 0.13 130 544123 205 274 5 0.9 2.31 4 70 < 0.5 6 0.42 2.0 14 59 85 4.17 10 < 1 0.33 10 1.22 1860 544124 205 274 < 5 < 0.2 0.30 4 30 < 0.5 < 2 0.05 < 0.5 < 1 147 0.19 4 0.34 < 10 < 1 < 10 0.01 70 544125 205 274 < 5 < 0.2 1.79 < 2 40 < 0.5 2 < 0.5 88 1.18 14 36 3.06 10 < 1 0.11 < 10 1.36 595 544126 205 274 50 1.0 0.86 < 2 40 < 0.5 2 < 0.01< 0.5 122 6 15 2.41 < 10 < 1 0.54 20 0.04 15 544127 205 274 30 3.9 0.75 < 2 100 < 0.5 6 1.51 4.5 8 49 210 3.14 < 10 < 1 0.56 < 10 0.37 5720 544128 205 274 5 0.7 0.87 2 170 < 0.5 6 0.29 < 1 < 10 2.0 7 58 58 3.00 < 10 0.59 0.13 7740 544129 205 274 < 5 < 0.2 1.10 < 2 110 < 0.5 2 3.03 < 0.5 < 10 8 44 12 2.15 < 10 < 1 0.47 0.57 715 544130 205 274 30 12.0 0.40 < 2 10 < 0.5 4 0.01 2.5 264 165 20 >15.00 < 10 < 1 0.27 < 10 0.03 40 544131 205 274 15 1.8 0.69 < 2 40 < 0.5 4 0.15 1.0 3 56 125 2.47 < 10 < 1 0.51 < 10 0.06 530 544132 205 274 2.31 < 5 < 0.2 < 2 < 0.5 2 40 1.33 < 0.5 12 94 з 3.61 10 < 1 0.15 < 10 2.05 785 544133 205 274 6 < 5 1.2 2.30 < 2 120 < 0.5 0.51 3.5 12 105 169 4.55 10 < 1 0.83 < 10 1.32 1195 544134 205 274 155 4.8 0.90 < 2 150 < 0.5 0.36 >100.0 6 4 146 132 3.31 < 10 1 0.51 < 10 0.19 2670 544135 205 274 1.13 -5 5.1 < 2 10 < 0.5 4 1.45 1.0 26 404 1125 3.02 < 10 < 1 < 0.01 < 10 0.09 1695 544136 205 274 10 4.6 1.74 < 2 < 0.5 60 8 1.42 90.5 23 208 680 5.23 < 10 < 1 0.14 < 10 0.62 985 544137 205 274 165 30.0 1.10 448 10 < 0.5 16 3.62 69.0 82 105 1500 >15.00 < 10 < 1 0.11 0.29 2320 < 10 544138 205 274 270 33.0 0.71 2.5 60 30 < 0.5 56 0.35 4 166 1665 2.67 < 10 < 1 0.44 < 10 0.06 2110 544139 205 274 5 1.9 0.75 < 2 80 < 0.5 16 0.10 < 0.5 8 248 53 7.18 < 10 0.25 < 1 0.46 < 10 145 544140 205 274 < 5 2.5 2.40 < 2 70 < 0.5 12 0.25 79.0 22 158 154 5.28 < 10 0.88 1710 < 1 0.59 < 10 544141 205 274 < 5 0.2 0.54 < 2 80 < 0.5 < 2 0.01 < 0.5 1 199 11 0.94 < 10 0.42 0.03 < 1 < 10 55 544142 205 274 125 9.3 1.19 6 10 < 0.5 46 0.05 20 1.0 192 1210 >15.00 10 < 1 0.15 < 10 0.80 385 544143 205 274 < 5 4.8 1.35 6 50 < 0.5 0.12 28.5 25 8 213 1420 6.37 10 < 1 0.45 10 0.46 375 544144 205 274 < 5 0.3 0.82 < 2 50 < 0.5 2 0.11 0.5 5 232 52 1.65 < 10 < 1 0.34 < 10 0.35 195 544145 205 274 < 5 0.5 3.57 < 2 140 < 0.5 < 2 3.74 0.5 19 39 173 5.27 10 < 1 0.38 < 10 2.20 780 544146 205 274 15 1.40 < 2 1.6 90 < 0.5 2 0.04 < 0.5 2 171 176 3.18 < 10 < 1 0.84 10 0.10 55 544147 205 274 10 1.2 0.62 22 80 < 0.5 2 0.11 0.5 4 94 128 2.16 < 10 < 1 0.49 10 0.03 955 544148 205 274 < 5 1.49 < 2 0.2 60 < 0.5 2 1.20 < 0.5 14 58 30 3.92 10 < 1 0.10 20 1.23 955 544149 205 274 < 5 3.07 40 60 < 0.5 3.2 26 0.44 55.0 29 57 48 11.40 10 1 0.70 10 1.29 >10000 544150 205 274 < 5 0.3 3.59 2 270 19 < 0.5 < 2 4.16 < 0.5 64 139 3.08 < 10 < 1 0.26 < 10 1.32 910

CERTIFICATION:_

thai J'Ma

O

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK EXPLORATIONS LIMITED

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page N ar :3-B Total Pages :3 Certificate Date: 11-SEP-92 Invoice No. :] P.O. Number : :19220772 Account :EO

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9220772

SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	Tl ppm	U mqq	V ppm	W mqq	Zn ppm	
544111 544112 544117 544120 544121	205 274 205 274 205 274 205 274 205 274 205 274	6 < 28 < < 1 < 1 < 1	< 0.01 < 0.01 0.07 0.03 0.10	22 4 6 10 4	260 40 950 570 650	370 2 14 8 4	< 2 < 2 < 2 < 2 2 2	6 < 1 8 5 2	43 < < 1 < 50 18 46 <	0.01 0.01 0.06 0.02 0.01	20 < 10 < 10 < 10 < 10	30 < 10 < 10 < 10 < 10	< 1 6 88 47 21	70 < 10 20 < 10 10	1850 4 108 50 170	
544122 544123 544124 544125 544125 544126	205 274 205 274 205 274 205 274 205 274 205 274	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.08 0.11 0.12 0.01	2 11 2 19 2	580 1300 20 770 30	20 18 4 < 2 20	< 2 < 2 < 2 2 < 2	1 5 1 8 < 1	10 < 32 8 32 1 <	0.01 0.03 0.01 0.23 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	7 111 2 96 3	10 20 < 10 20 < 10	348 680 4 84 30	
544127 544128 544129 544130 544131	205 274 205 274 205 274 205 274 205 274 205 274	< 1 < 1 < 1 84 < < 1	0.03 0.04 0.06 0.01 0.02	4 3 4 7 1	650 760 810 < 10 170	78 60 8 244 42	< 2 < 2 < 2 < 2 < 2 < 2	1 1 3 1 < 1	31 < 18 < 220 < 3 < 3 <	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 10 < 10	7 4 25 6 4	20 10 10 < 50 10	1020 382 54 398 110	
544132 544133 544134 544135 544135 544136	205 274 205 274 205 274 205 274 205 274 205 274	< 1 < 1 < 1 13 < 9	0.05 0.11 0.01 0.01 0.07	31 17 4 23 24	2390 830 380 280 760	8 24 354 6 46	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 8 < 1 1 4	115 32 12 < 16 35	0.23 0.19 0.01 0.06 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	58 103 4 39 90	20 30 50 < 10 60	100 784 >10000 324 >10000	
544137 544138 544139 544140 544141	205 274 205 274 205 274 205 274 205 274 205 274	< 1 < 2 < < 1 < 1 1	<pre>< 0.01 < 0.01 0.03 0.01 0.02</pre>	33 4 9 16 3	120 470 520 770 30	3310 1355 38 14 14	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 1 6 9 < 1	75 < 10 < 8 4 < 7 <	0.01 0.01 0.04 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	25 5 74 81 4	100 10 20 50 < 10	>10000 504 110 >10000 84	
544142 544143 544144 544145 544145 544146	205 274 205 274 205 274 205 274 205 274 205 274	< 1 2 < 1 < 1 < 1 < 1	0.01 0.01 0.04 0.42 0.02	13 18 6 22 4	160 580 50 510 320	25 12 4 10 30	< 2 < 2 < 2 2 2 < 2	2 3 1 28 1	3 5 8 29 3 <	0.01 0.02 0.01 0.46 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	35 48 26 350 9	50 30 < 10 40 < 10	344 5240 150 136 92	
544147 544148 544149 544150	205 274 205 274 205 274 205 274 205 274	2 < 1 < 1 < < 1	0.01 0.20 0.01 0.39	2 16 53 40	540 1560 410 430	48 14 150 14	< 2 < 2 < 2 4	1 6 26 14	9 < 101 13 < 129	0.01 0.16 0.01 0.30	< 10 < 10 < 10 < 10	< 10 < 10 10 < 10	6 93 127 118	< 10 20 100 20	146 302 >10000 134	

thai I'Ma

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page N er :1-A Total Pages :1 Certificate Date: 09-SEP-92 Invoice No. : 19220773 P.O. Number : Account :EO

,

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9220773

.

SAMPLE	PREP CODE	Au oz/T	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
544013 544014	208 274 208 274	0.014	7.4 4.2	0.14 0.93	12 < 2	< 10 10	< 0.5 < 0.5	94 26	10.20 2.46	>100.0 >100.0	34 88	43 60	88 1355	10.75 14.35	< 10 < 10	2 < 2	0.01	< 10 < 10	0.03 0.47	5440 2670
				, ,				<u>.</u>					<u></u>				0		1/14 .	
																H	-21	J.	INA	

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page N ∋r :1-B Total Pages :1 Certificate Date: 09-SEP-92 Invoice No. : 19220773 P.O. Number : EO Account

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9220773 **T**1 v W P Pb Sb Ti υ Zn PREP Mo Na Ni Sc Sr CODE * * SAMPLE ppm ppm ppm ppm ppm ppm ppm ppm ррш ppm DDM ppm 260 >10000 544013 208 274 < 1 < 0.01 10 280 38 < 2 1 23 < 0.01< 10 < 10 12 120 >10000 544014 208 274 1 < 0.018 360 46 < 2 3 33 0.01 < 10 < 10 24 Whai D'Ma

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: TECK EXPLORATIONS LIMITED

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

Page N 3r :1 Total Pages :1 Certificate Date: 11-SEP-92 Invoice No. : I 9220984 P.O. Number : Account :EO

.

,

					CERTIFIC	ATE OF A	NALYSIS	A92	20984	
SAMPLE	PREP CODE	Zn %	Cđ %							
544013 544014	244 244	7.02 17.00	0.033 0.088							
						-				
·						- 				
					2					

Altrate

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: TECK EXPLORATIONS LIMITED

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page N 3r :1 Total Pages :1 Certificate Date: 21-SEP-92 P.O. Number Account :EO

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9221437

()	PREP	Cu	Zn	Cđ						
SAMPLE	CODE	*	*	*	 					
128529 128534 128541 544003 544003 NO TAG	244 244 244 244 244		6.80 4.16 2.59 7.42 4.32	0.036 0.023 0.015 0.036 0.021						
544007 544060 544066 544072 544073	244 244 244 244 244	 1.28	2.19 1.79 1.44 1.89	0.020						
544074 544134 544136 544137 544140	244 244 244 244 244 244		1.77 2.29 1.63 1.57 1.39	0.013						
544149	244		1.33						4	
						c	ERTIFICATION	, Ø10	hnytie	,

<u>APPENDIX 4</u>

ASSAY CERTIFICATES; WHOLE ROCK SAMPLES

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

TO: TECK EXPLORATIONS LIMITE

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9 Page I. Jer: 1-A Total Pages :1 Certificate Date: 15-SEP-92 Invoice No. : 19220771 P.O. Number : Account :EO

5'lha

Project : 1725-DOROTHY Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

				1	·		· · · · · · · · · · · · · · · · · · ·		CERTI	FICATE	OF AN	ALYSIS	<u> </u>	492207	71	
SAMPLE	P) C(REP ODE	A1203 %	CaO %	Cr203 %	Fe203 %	K20 %	MgO %	MnO %	Na20	P205 %	sio2 %	Ti02 %	LOI %	TOTAL %	Ba ppm
474454 544077 544113 544114 544115	208 208 208 208 208 208	274 274 274 274 274	15.94 15.61 17.35 18.36 18.85	0.16 1.93 5.50 2.16 0.82	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	2.37 3.13 6.84 8.36 7.85	3.96 2.30 2.22 4.13 3.76	0.52 0.94 3.93 1.81 1.85	0.02 0.12 0.20 0.30 0.16	2.42 3.99 4.00 0.33 0.37	0.11 0.18 0.36 0.14 0.09	71.90 67.85 50.17 58.42 61.07	0.25 0.41 0.95 0.96 0.96	2.84 3.62 7.72 5.36 3.59	100.50 100.10 99.26 100.35 99.39	300 1100 1420 800 1070
544116 544118 544119	208 208 208	274 274 274	17.14 21.80 18.84	4.79 1.57 1.91	< 0.01 0.02 0.02	6.45 9.34 10.32	1.21 2.52 0.55	2.48 2.08 2.16	0.23 0.19 0.25	3.97 1.35 1.14	0.21 0.12 0.12	57.73 54.74 61.84	0.62 1.31 1.02	4.65 4.01 0.81	99.49 99.05 98.97	550 1120 430
															-	
										4						

Г

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page 1 /er : 1-B Total Pages : 1 Certificate Date: 15-SEP-92 Invoice No. :19220771 P.O. Number Account :EO

.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Chemex Labs Ltd.

1725-DOROTHY Project : Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS

A9220771

.

	<u> </u>		¶	Ι		-	Γ			1	,	1	l			
	P	REP	Nb	Rb	Sr	Y	Zr	Co	Cu	Mo	Ni	Pb	Zn			
			P.Par	P.Per	7.7.ar	7.Put	P.Perr	P.Per	P.Pur			h h h ar				
474454 544077	208 208	274 274	< 10 10	99 54	50 420	< 10 10	80 150	< 1 6	19 8	2 < 1	3 5	70	86 158			
544113 544114	208 208	274 274	< 10 < 10	54 76	630 60	50 20	110 90	20 16	28 30	<1 <1	36 20	12 26	284 528			
544115	208	274	< 10	82	60	20	110	17	13	< 1	17	6	104			
544116 544118	208 208	274	< 10 10	44	480 170	50 80	60 140	19 11	72 43	1	10 5	34	126 100			
544119	208	274	< 10	33	230	100	110	20	64	1	24	< 2	32			
							i									
												ĺ				
											:					
				i												
L		i	J		I	I	[L			<u> </u>			
											CEB	TIFICATIO	N: M	u d	ナリれの	

APPENDIX 5

ASSAY CERTIFICATES; TI, Ga & Ge ROCK ANALYSIS

.

600 - 200 BURRARD ST. VANCOUVER, BC V6C 3L9

Page Nu 7 :1 Total Pages :1 Certificate Date: 21-DEC-92 Invoice No. : 19224803 P.O. Number Account :EO

3

:

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

1725-DOROTHY Project : Comments: ATTN: ANDY BETMANIS CC: TOR BRULAND

CERTIFICATE OF ANALYSIS A9224803 PREP Ga Tl. Ge SAMPLE CODE ppm ppm ppm 544013 208 --10 < 1.0 < 50 544014 208 < 10 < 1.0 < 50 _ _ 128529 208 --< 10 < 1.0 < 50 208 544003 -----< 10 < 1.0 < 50 544003 NO TAG 208 --< 10 < 1.0 < 50 Jant Brokler

APPENDIX 6

THIN SECTIONS DESCRIPTION

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX. (604) 888-3642

Report for: Tor Bruland, Teck Exploration Ltd., 600 - 200 Burrard St., Vancouver, B.C. V6C 3L9

Job 67

September 17th, 1992

SAMPLES:

4 rock samples were submitted for preparation and microscopic examination.

Samples are numbered 128544, , 54013, 54014 and 544145. All were prepared as polished thin sections.

SUMMARY:

The rocks of the suite fall into a distinct group : skarns.

b) Skarns:

Samples 128544 and 544145 are crudely banded rocks in which the major constituents are actinolite and epidote. Epidote predominates in the first, and actinolite in the second. Diopside and Ti minerals (sphene and ilmenite) are accessories. These rocks have the mineralogy of greenstones (meta-basic igneous rocks or derived pyroclastics?). They contain traces of pyrrhotite, sphalerite and chalcopyrite.

Samples 54013 and 54014 are mineralogically dissimilar, but alike in being significantly mineralized with marmatitic sphalerite and pyrrhotite. The first sample is composed predominantly of garnet, carbonate and actinolite, and has the features of a typical skarn; sulfides form irregular impregnations, cement clusters of garnet grains, and intimately replace fibrous actinolite. The other sample consists predominantly of carbonate and quartz; sulfides form irregular pockets in a zone characterized by abundant accessory chlorite. Elsewhere in the slide strings of feldspar and various calc silicates delineate a delicate laminar structure. This rock may be a skarnified metasediment, or possibly has exhalative affinities.

Individual petrographic descriptions are attached, together with a set of illustrative photomicrographs.

PHOTOMICROGRAPHS

All photos are of typical fields, at a scale of lcm = 170 microns. Illumination is by cross-polarized transmitted light, except were otherwise stated.

SAMPLE 128544

Neg. 265-16: Skarn. Area at lower right is actinolite (grey-green prismatic) and carbonate (pastel pink/green). Bulk of area shown consists of epidote (yellow, brown grey) and zoisite (blue). Note zoisite apparently altering to epidote at bottom left. Carbonate (right) shows apparent replacement of the calc silicates. Small pink grains at lower right are sphene.

Neg. 265-17: Plane-polarized transmitted light. Shows strings of tiny euhedra of sphene (brown, high relief; bottom left to top right) in granular aggregate of predominant actinolite (greenish). Colourless grains are epidote and/or carbonate.

SAMPLE 54013

Neg. 265-21: Plane-polarized light. Mineralized skarn, showing mode of occurrence of marmatitic sphalerite (dark red-brown, sub-opaque), as pockety segregations and intimate impregnations of fibrous actinolite (green; left), and as a cement (or replacement of the carbonate matrix) to garnet (yellowish, equant grains; right). The white phase forming a matrix to the garnet (bottom right) is carbonate.

Neg. 265-23: Reflected light. Shows sulfide/silicate relationships. In this case the sulfides form a matrix incorporating more or less abundant silicate inclusions. Light grey is sphalerite; buff colour is pyrrhotite. Brownish grey (equant grains) is garnet. Slightly darker grey (often as fine-grained wisps) is actinolite.

SAMPLE 54014

Neg. 265-25: Typical field in the sulfide-rich portion of the slide. Various greys (sometimes elongate/prismatic) are quartz. Pastel-coloured pockets (centre) are calcite. Dark blue-black (felted/fibrous/radiate) is chlorite. Black (opaque) at bottom left is sulfides.

Neg. 265-24: Reflected light. Battleship grey (left) is sphalerite. Buff-coloured is pyrrhotite. Whiter areas within pyrrhotite (right, bottom right) are pyrite. Note mutually well-segregated occurrence of the two major sulfides (except for micron-sized exsolved inclusions of pyrrhotite and minor chalcopyrite in the sphalerite). Silicates (low reflectivity; brownish greys) are quartz (prismatic forms; higher relief), carbonate (striated) and chlorite (bottom left).

SAMPLE 54014

Neg. 266-0: Granoblastic fabric in laminated portion, showing trains of calc silicates (diopside: yellow-orange; zoisite: blue) and feldspars (K-spar: greys, sometimes with twinning; sericitized plagioclase: speckled buff colours) in matrix of carbonate (pastels) and accessory quartz (greys).

SAMPLE 544145

Neg. 266-1: Granoblastic aggregate of sub-oriented prismatic actinolite (yellow tones) with segregation of zoisite (blues). Trains of semi-coalescent grains of sphene (greyish brown: bottom left to upper right) have cores of ilmenite (black, opaque: e.g. left centre).

Neg. 266-2: Segregation of diopside (strong colours; higher relief: right) in matrix of actinolite (upper left).

Neg. 266-3: Reflected light. Shows trains of ilmenite (grey) in granular actinolite matrix (greenish). Rims of sphene (darker grey) visible on some ilmenite grains. Tiny yellow flecks (lower centre; left centre) are chalcopyrite.

Neg. 266-4: Shows alteration of actinolite to chlorite (grey, striated; centre) marginal to limonite-stained fracture. Fresh actinolite seen at top left. Blue is zoisite, locally modified to epidote (yellow).

÷

Estimated mode

Carbonate 24 Quartz 5 Actinolite 15 Diopside 1 40 Garnet Pyrrhotite 5 Sphalerite 10 Pyrite trace

The feldspar-free composition and patchy, speckled/poikilitic texture apparent in the off-cut of this sample clearly distinguishes it as a variant of the skarnic lithotype.

Thin section examination indicates that the predominant constituents are brown (probably andradite-grossularite) garnet and carbonate. The latter shows effervescence with dilute acid, and is apparently (at least in major part) of calcitic composition.

The textural relationships are distinctive, the garnet occurring as individual euhedra, 0.05 - 0 .5mm in size, throughout a matrix of calcite or the other constituents. In part the garnet grains form loosely coalescent masses and, in part, occur as discrete individuals scattered polkilitically through coarse, sparry carbonate. The garnet is fresh, unzoned and free of optical anisotropy.

The principal silicate accessories are actinolitic amphibole, as fibrous/prismatic-textured segregations (commonly showing partial pseudomorphic alteration to carbonate) and quartz. Occasional equant granules of diopside are also seen.

The sectioned portion includes diffuse, reticulate, dark-coloured zones and patches which represent concentrations of red-brown (Fe-rich) sphalerite and lesser pyrrhotite.

The sphalerite occurs as intimate, fine-grained impregnations of actinolite, and as a matrix/cementing phase to areas of garnet granules. Sphalerite/silicate intergrowths range in scale from <0.01mm to 1mm or more, and look predominantly co-genetic.

The pyrrhotite shows similar relationships, though the strongest association is with garnet rather than actinolite. For the most part the pyrrhotite appears well segregated from the sphalerite, though some areas of more intimate intergrowth of the two sulfides (and silicates) are seen on the thin section scale. Estimated mode

48 Ouartz K-feldspar 4 Sericite 4 Diopside 2 Epidote 4 1 Actinolite Chlorite 9 Sphene trace Carbonate 21 5 Sphalerite Pyrrhotite 2 Pyrite trace Chalcopyrite trace

This sample shows a banded to finely laminated structure.

Approximately one half of the sectioned portion (the dark grey area of the off-cut) consists of an intergrowth of quartz, carbonate and chlorite, with a few thin, sub-parallel streaks of sulfides.

The quartz in this zone occurs as a mosaic-textured matrix, of grain size 0.4 - 0.4mm, with local coarser streaks. The carbonate forms intergrown pockets, locally segregated in crudely banded fashion. Some of the coarser carbonate-rich lenses are host to small euhedral crystals of quartz.

The chlorite is a distinctive, minutely felted/fibrous variety, occurring as irregular pockets and elongate segregations throughout the quartz-carbonate aggregate - sometimes, but not exclusively, associated with the sulfides.

The latter consist of Fe-rich sphalerite and lesser pyrrhotite. The two minerals are mainly well-segregated (as areas 0.2 - 2.0mm in size), but a proportion of fine-grained pyrrhotite (ranging down to micron-sized, exsolution type specks) occurs within the sphalerite. A minor component of secondary-type pyrite is developed in the pyrrhotite clumps, and rare traces of chalcopyrite are seen as minute specks and threads marginal to a few of them.

The other half of the slide differs in containing no chlorite or sulfides. It consists predominantly of a granoblastic mosaic of quartz and calcite, of grain size 0.1 - 0.5mm, with intercalated laminae and lenses of coarser, segregated quartz or carbonate.

It is distinctive on the macroscopic scale (see off-cut) for the presence of thin laminar concentrations of K-feldspar (yellow stained) and plagioclase (white etched). Thin section examination shows that it also contains accessory epidote, diopside, actinolite, and a component now almost totally replaced by felted sericite. The latter may represent original plagioclase or, possibly, and alusite.

Sample 54014 cont.

The k-feldspar is, by contrast, totally fresh.

The accessories tend to concentrate as parallel strings of anhedral grains.

The origin of this rock is somewhat uncertain. In part it has the texture and mineralogy of a metamorphically recrystallized (skarnified?) sediment - perhaps an impure, calcareous/arkosic siltstone. The quartz-carbonate chlorite-sulfide portion, however, could have originated as an intercalation of chemical sediment (chert or exhalite).

Estimated mode

Amphibole 20 Epidote) 62 Zoisite) Diopside 9 7 Carbonate Sphene 1 Quartz 1 Pyrrhotite trace Chalcopyrite trace Sphalerite trace

This is a fine-grained, crudely banded, greenish, feldspar-free rock. Thin section examination shows that it consists predominantly of a granular aggregate of epidote, with accessory amphibole, diopside and minor carbonate. It is texturally and compositionally consistent with a skarn.

The central band in the sectioned portion is made up largely of epidote, as a varigranular, partly rather coarse-grained, anhedral aggregate, of grain size 1 - 5mm. Much of it shows the anomalous, deep blue polarization colours characteristic of the variety zoisite. Discrete grains showing normal polarization colours occur sporadically intergrown, and the possible zoisite locally shows patches and networks of normal polarization which appear to represent a superimposed, cleavage-controlled modification.

The compositional zones flanking the central band consist of equigranular, sub-prismatic, pale green amphibole (probably actinolite) with individual grains and patchy/lenticular segregations of colourless pyroxene (diopside). Pyroxene is also seen as poikilitically included granules within the epidote grains.

Carbonate occurs sporadically as an interstitial phase to the aggregates of actinolite or epidote, and as a partial, pseudomorphic alteration of actinolite.

Quartz is a minor accessory, as scattered anhedra, intergranular to, or poikilitically enclosed within, the calc silicates.

Strings of tiny euhedral sphene crystals, concordant to the crude compositional banding, are developed within the aggregate of calc silicates.

Pyrrhotite, sphalerite and traces of chalcopyrite occur as sporadic interstitial pockets and cleavage-controlled impregnations, particularly in actinolite-rich areas.

ACTINOLITE SKARN

Estimated mode

Actinolite 73 Zoisite 12 Diopside 3 3 Chlorite Sphene 3 Ilmenite 5 Chalcopyrite trace Pyrrhotite trace Limonite 1

This sample is another variant of the skarnic lithotype.

It shows a crude foliation, somewhat similar to that of Sample 128544. It also resembles that sample in terms of mineralogy, though the mineral proportions are different - actinolite being strongly dominant over epidote, and carbonate apparently absent. Sphene is a prominent accessory, as in the aforementioned sample, but, in the present case, occurs closely associated with ilmenite.

The rock consists mainly of a compact, equigranular, non-oriented aggregate of subhedral prismatic grains of fresh actinolite, 0.1 - 1.0mm in size.

This matrix includes an accessory epidote-type mineral, as sporadic grains and concordant lenticular segregations. This largely shows the dark blue, anomalous anisotropism of zoisite - occasionally with alteration-like networks and patches of normal anisotropism.

Other, less abundant, accessories are diopside (as scattered clusters of equant grains), ilmenite and sphene.

The ilmenite occurs as grains 20 - 200 microns in size, intergranular to the actinolite aggregate. It commonly coalesces as small patches and semi-continuous strings which defines a weak, wispy foliation.

The sphene occurs in like manner, as small granular clumps sometimes independent of the ilmenite, but often clearly in rimming (secondary?) relationship to the latter.

Rare traces of pyrrhotite and chalcopyrite, as individual specks, 10 - 100 microns in size, occur in similar intergranular mode. Sphalerite is not seen.

The sectioned area includes a limonite-stained hairline microfracture, adjacent to which the actinolite, in a zone 2 - 3mm in thickness, is strongly altered to chlorite.

SAMPLE 128544 (Neg. 265-16)

Γ

Π

SAMPLE 128544 (Neg. 265-17)

SAMPLE 54013 (Neg. 265-21)

Γ

T

Π

SAMPLE 54013 (Neg. 265-23)

SAMPLE 54014 (Neg. 265-25)

Γ

Π

Π

Π

SAMPLE 54014 (Neg. 265-24)

SAMPLE 54014 (Neg. 266-0)

[

[

[]

[]

Π

E

Γ

Π

SAMPLE 544145 (Neg. 266-1)

SAMPLE 544145 (Neg. 266-2)

[]

[

ſ

[]

Π

Π

F

Π

SAMPLE 544145 (Neg. 266-3)

SAMPLE 544145 (Neg. 266-4)
APPENDIX 7

SUMMARY OF FLUID INCLUSION PETROGRAPHY AND MICROTHERMOMETRY DOROTHY CLAIM GROUP

SUMMARY OF FLUID INCLUSION PETROGRAPHY AND MICROTHERMOMETRY DOROTHY CLAIM GROUP

by Kathryn P.E. Dunne, P. Geo.

Mineral Deposit Research Unit Department of Geological Sciences The University of British Columbia 6339 Stores Road Vancouver, B.C. V6T 1Z4

1

SUMMARY:

Four samples from the Dorothy Claim Group were used in this fluid inclusion study. These may be divided into two groups: banded calc-silicate rocks and brecciated quartz-sulphide veins. Garnet, quartz and carbonate (calcite) were used for fluid inclusion petrography and microthermometry. No fluid inclusions were noted in sphalerite. The fluid inclusions were compositionally of three types: 1) two-phase liquid-rich (NaCl-MgCl-H2O mixture); 2) three-phase liquid-rich with a solid rhombic calcite or dolomite daugher crystal (NaCl-MgCl-H2O mixture); and rarely 3) three-phase CO2-rich. Generally the inclusions were trapped in microfractures syn-crystal growth (pseudosecondary) or post crystal growth (secondary). The only primary inclusions noted were in late quartz veins crosscutting mineralization in the Quartz Vein sample. Microthermometric data plotted on a Homogenisation Temperature vs. Salinity diagram indicate a clustering of measurements between 150 and 450°C and less than 15 equiv. wt.% NaCl (Fig 1). With fields for skarn, sedex and VMS are superimposed on the data the majority of measurements fall in the retrograde skarn field (Fig. 2). The presence of hydrous retrograde phases such as actinolite, epidote and chlorite in the first group suggest that the fluids may be late H2O-rich fluids which dominate through the retrograde stages of skarn formation. The absence of open space filling textures and primary fluid inclusions also implies an environment of deposition deeper than high-level near surface (deeper than VMS equivalent). Early formed euhedral quartz associated with garnet and sphalerite in the brecciated vein sample also falls within the retrograde skarn field. Brecciation and late quartz veining in this sample may have occurred post-skarn formation.

RECOMMENDATIONS FOR ADDITIONAL WORK:

1) Estimate of maximum fluid pressure due to force exerted by overlying rocks: lithostatic pressure (requires knowledge of depth from surface)

There are a variety of methods for calculating fluid pressures from fluid inclusion data; however, these are dependent on satisfying various compositional criteria. For the NaCl-MgCl-H2O system apparent in these samples, the only available approximation is an estimation of the vapour pressure of the fluid at the homogenization temperature. This method estimates absolute pressure minimum modelled on the pure NaCl-H2O system and may only be used for homogenisation temperatures up to 300°C. As such it is an approximation for the Dorothy Claim Group data. Minimum absolute pressures are between 50 to 110 bars for these data. To determine the maximum fluid pressure (assuming lithostatic conditions), stratigraphic depth of each sample must be known. Given in-situ samples this maximum pressure could be estimated.

2) Microthermometric work on garnet in the Quartz Vein sample to confirm the relationship of this sample to the others.

3) Additional microthermometric work on garnet (or sphalerite, if possible) in other related samples. This work may confirm prograde skarn temperatures and salinities.

Kathryn P.E. Dunne P.Geo

FLUID INCLUSION REPORT

Project: Dorothy Sample: 128544

LOCATION: Coast Belt

HAND SAMPLE/THIN SECTION DESCRIPTION: (after Harris, 1992)

Banded epidote-rich skarn. Granular aggregate of epidote ($\sim 60\%$), amphibole ($\sim 20\%$), diopside ($\sim 10\%$), carbonate ($\sim 7\%$), quartz ($\sim 1-2\%$), sphene ($\sim 1\%$) and trace pyrrhotite, chalcopyrite and sphalerite.

FLUID INCLUSION SECTION DESCRIPTION:

Usable minerals for fluid inclusion studies are:

1) carbonate (probably calcite) which occurs interstitial to actinolite and epidote aggregates and seems to partially pseudomorph actinolite.

2) anhedral quartz which occurs enclosed within epidote, actinolite, diopside and carbonate

FLUID INCLUSION PETROGRAPHY:

Host Mineral: carbonate

table:

textures	paragenesis	%FI's	FI origin	FI shape	# of phases
interstitial	1	few	pseudo-	smooth and	3
			secondary	irregular	

Host Mineral: quartz

table:

textures	paragenesis	%FI's	FI origin	FI shape	# of phases
anhedral	1	several	pseudo- secondary	smooth and negative crystal	2, 3

GEOTHERMOMETRIC DATA:

Freezing Data:

Paragenesis	Temperature eutectic (^o C)	Temperature last melt (⁰ C)	Salinity eq. wt. % NaCl (^o C)
carbonate	-29.1 -29.9	-1.8 -1.9	3.0 3.1
		-4.7	7.4
quartz	-27	0.0	0
		-0.1	0.17
		-2.2	3.6
		-3.2	5.2
		-4.6	7.3

by Kathryn P.E. Dunne

Date: Dec 2, 1992 Date received: Nov 19, 1992

Heating Data:

Paragenesis	H2O Temperature homogenization (^o C)	Temperature decrepititation (^o C)
carbonate	234.2	487
	320,5	
	390	
quartz	357.0	
*	357.8	
	364.0	
	382.8	
	393.0	
	399.9	
	403.2	
	406.1	
	428.8	
	443.4	
	447.4	1

<u>GRAPHS:</u> see Figures 1, 2 and 3

SUMMARY:

Fluid inclusions were observed in quartz and carbonate (calcite) which occur interstitial to actinolite, epidote and diopside within sample 128544. Carbonate fluid inclusions form large, three phase, irregular to smooth shaped pseudo-secondary fluid inclusions. The inclusions are liquid-rich with distinctive rhombic daughter crystals that are highly birefringent in polarised light (Plate 1). These rhombic inclusions are either calcite or dolomite. Fluid inclusions in anhedral quartz are generally less than 3-5 microns (Plate 9), pseudo-secondary to secondary, smooth to negative crystal shaped with two or three phases. The three phase inclusions include rhombic daughter minerals, as in calcite (Plates 7 and 8), as well as rare CO2-rich inclusions (Plate 10).

Homogenisation temperatures and salinities were obtained from both the calcite and quartz described above. Quartz homogenisation temperatures are high (357-447°C) and form a distinct range (Fig 4). Fluid inclusions in calcite span a larger but lower temperature range (234-390°C; Fig.4). First melting temperatures for calcite are around -29°C and quartz at -27°C. This suggests a MgCl2 component in the fluid. Pure NaCl-H2O solutions first melt at -20.8°C and pure MgCl2-H2O solutions first melt at -33.6°C. Since the MgCl-H2O-NaCl system is not well defined, salinities for quartz are calculated on the pure NaCl-H2O system. Salinities for quartz and calcite range from 3 to 7 equivalent weight percent (eq. wt. %) NaCl.

Although temperatures of fluid inclusions in anhedral quartz homogenise between 350 and 450°C, salinities are less than 10 eq. wt.% NaCl and these inclusions plot in the retrograde rather than prograde skarn field on Fig. 2. The microthermometric data is inconsistant with either VMS or Sedex environments of deposition (too hot or too low salinity). The most satisfactory deposit type, from a fluid inclusion standpoint, would be a skarn; probably in the retrograde stages of formation. The fluid inclusion microthermometry and absence of primary fluid inclusions as well as textural evidence of calc-silicate mineral assemblages suggest an environment of deposition consistant with skarn formation.

FLUID INCLUSION REPORT

by Kathryn P.E. Dunne

Project: Dorothy Sample: 54013 Date: Dec 2, 1992 Date received: Nov 19, 1992

LOCATION: Coast Belt

HAND SAMPLE/THIN SECTION DESCRIPTION: (after Harris, 1992)

Pyrrhotite-sphalerite-garnet rich skarn. Irregularly banded and patchy aggregate of mainly garnet (~40%), carbonate (~24%), actinolite (~15%), sphalerite (~10%), pyrrhotite (~5%) and quartz (~5%).

FLUID INCLUSION SECTION DESCRIPTION:

Usable minerals for fluid inclusion studies are:

carbonate (probably calcite) which occurs predominantly as disseminated "matrix" and
garnet which occurs as euhedral to anhedral individual crystals or loose aggregates assoCiated with carbonate throughout the section.

FLUID INCLUSION PETROGRAPHY:

Host Mineral: carbonate

table:

textures	paragenesis	%FI's	FI origin	FI shape	# of phases
syn-garnet	1	several	pseudo-	negative	2, 3
and sulphides			secondary	crystal	

Host Mineral: garnet

table:

textures	paragenesis	%FI's	FI origin	FI shape	# of phases
euhedral	1	rare	pseudo- secondary	irregular to negative crystal	2
anhedral	2	rare	secondary	negative crystal	2

GEOTHERMOMETRIC DATA:

Freezing Data:

Paragenesis	Temperature eutectic (^O C)	Temperature last melt (⁰ C)	Salinity eq. wt. % NaCl
carbonate	-26.0	-0.6	1.0
	-28.4	-1.4	2.3
	-29.6	-1.4	2.3
	-31.1	-1.7	2.8
	-31.5	-2.5	4.1
		-2.8	4.5
		-2.8	4.5
		-3.9	6.2
		-4.1	6.5
		-4.7	7.4
		-6.0	9.2
		-7.0	10.5
garnet - 1		-7.5	11.1

Heating Data:

Paragenesis	CO2 Temperature	H2O Temperature	Temperature
Ũ	homogenization (^o C)	homogenization (^O C)	decrepititation (^o C)
carbonate	39.0	190.0	
		190.2	
		190.4	
		195.8	
		197.8	
		199.0	
		204.3	
		205.4	
		207.0	
		216.3	
		216.8	
		226.6	
		230.5	
garnet - 1		314	
Ŭ		349	
		355	
garnet - 2		174	

GRAPHS: see Figures 1, 2 and 4

SUMMARY:

Fluid inclusions were observed in patchy aggregates of garnet, carbonate and quartz within sample 54013. Two types of texturally distinct garnet are recognised in this section. These are: 1) euhedral garnet with no visible fluid inclusion defined growth zones (Plate 14) and 2) anhedral garnet characterised by growth zones defined by sub-microscopic fluid inclusions and abundant tiny secondary inclusion microfracture planes (Plate 12). Fluid inclusions in anhedral quartz are generally less than 5 microns (Plate 11), pseudo-secondary to secondary, smooth shaped and, where consisitant liquid-to-vapour ratios observed, temperatures of formation are predicted to be 230-275°C (by petrography only). Carbonate which seems to form a 'matrix' to some of the garnet has distinct rhombic to smooth shaped pseudo-secondary fluid inclusions (Plates 13 and 15). The rhombic fluid inclusions form

parallel to cleavage traces (plate 15). All inclusions are two-phase liquid-rich. No CO2-rich inclusions were noted during petrography.

Homogenisation temperatures and salinities were only obtained from the garnet and carbonate(calcite) described above. Garnet type 1 homogenisation temperatures are high (314-355°C). A single homogenisation temperature from garnet type 2 was recorded at 174°C. Fluid inclusions in calcite form a defined lower temperature range (190-230.5°C; Fig. 4). First melting temperatures for calcite range from -26 to -31.5°C which suggests a MgCl2 component in the fluid. Pure NaCl-H2O solutions first melt at -20.8°C and pure MgCl2-H2O solutions first melt at -33.6°C. Since the MgCl-H2O-NaCl system is not well defined, salinities for quartz are calculated on the pure NaCl-H2O system. Salinities for calcite range from 1 to 10.5 equivalent weight percent (eq. wt. %) NaCl; only one garnet salinity was obtained (11.1 eq. wt. %NaCl).

Garnet type 1 plots in the prograde skarn field (Fig. 2). This garnet is distinct from secondary inclusions in garnet type 2 and pseudo-secondary inclusions in calcite which plot in the retrograde skarn field (Fig.1). Fluid inclusion microthermometry, absence of primary fluid inclusions and textural evidence of calc-silicate mineral assemblages confirm an environment of deposition consistant with skarn formation.

FLUID INCLUSION REPORT

Project: Dorothy Sample: 54014

LOCATION: Coast Belt

HAND SAMPLE/THIN SECTION DESCRIPTION: (after Harris, 1992)

Banded calc-silicate rock comprising an intergrowth of quartz, carbonate, chlorite and sub-parallel sulphide streaks separated by a granoblastic intergrowth of quartz and carbonate with laminar concentrations of feldspar and other minor constituents. Proportions of mineral present are: quartz (~48%), carbonate (~21%), chlorite (~9%), sphalerite (~5%), epidote (~4%), potassium feldspar (~4%), sericite (~4%), pyrrhotite (~2%) and actinolite (~1%).

FLUID INCLUSION SECTION DESCRIPTION:

Usable minerals for fluid inclusion studies are: 1) anhedral quartz and 2) carbonate (probably calcite) both occur as a granoblastic intergrowth

FLUID INCLUSION PETROGRAPHY:

Host Mineral: quartz

table:

textures	paragenesis	%FI's	FI origin	FI shape	# of phases
anhedral	1	abundant	pseudo-	smooth	2
			secondary		

Host Mineral: carbonate

table:

textures	paragenesis	%FI's	FI origin	FI shape	# of phases
anhedral	1	several	secondary	smooth,	2
				negative	
				crystal	

by Kathryn P.E. Dunne

Date: Dec 2,1992 Date received: Nov 19.1992

GEOTHERMOMETRIC DATA:

Freezing Data:

Paragenesis	Temperature eutectic (⁰ C)	Temperature last melt (⁰ C)	Salinity eq. wt. % NaCl (⁰ C)
quartz	-24.0	-3.3	5.3
•	-24.5	-3.3	5.3
	-32,2	-3.9	6.2
	-34.0	-4.3	6.8
	-34.1	-4.5	7.1
	-36.8	-4.5	7.1
		-4.8	7.5
		-4.8	7.5
		-6.5	9.8
		-7.6	11.2
		-9.4	13.3
		-9.8	13.7
		-14.0	17.7
		-14.5	18.2
calcite	-20	-3.9	6.2
	-27	-4.1	
		-5.9	
		-6.5	

Heating Data:

Paragenesis	H2O Temperature	Temperature
_	homogenization (°C)	decrepititation (^o C)
quartz	262.5	349
	285.0	
•	290.0	
	305.3	
	308.7	
	309.1	
	312.6	
	317.6	
	321.6	
	336.9	
carbonate	199.7	
	273.0	
	356.0	
	403.0	

<u>GRAPHS</u>: see Figures 1, 2 and 5

SUMMARY:

Fluid inclusion work concentrated on the 3-4 mm granoblastic intergrowth of quartz and carbonate in this sample. The quartz is anhedral characterised by many large, smooth, two-phase liquid-rich pseudo-secondary fluid inclusions (Plate 16). These pseudo-secondary inclusions form in quartz crystal microfractures that are interpreted to be syn-crystal growth. Fluid inclusions in carbonate (probably calcite) are tubular in shape, two-phase and typically form secondary trails that crosscut cleavage planes (Plate 17).

Homogenisation temperatures and salinities were only obtained from the quartz and calcite described above. Quartz homogenisation temperatures fall in a defined range (262.5-336.9°C) whereas calcite spans a large temperature range (199.7-403°C; Fig. 5). First melting temperatures for quartz range from -24 to -36.8°C which suggests a MgCl2 component in the fluid. Pure NaCl-H2O solutions first melt at -20.8°C, pure MgCl2-H2O solutions first melt at -33.6°C and MgCl2-NaCl-H2O solutions first melt at -35°C. Since the MgCl-H2O-NaCl system is not well defined, salinities for quartz are calculated on the pure NaCl-H2O system. First melt temperatures for calcite range from -20 to -27°C. Salinities for both quartz and calcite exceed 5 equivalent weight percent (eq. wt. %) NaCl; quartz salinities reach 18.2 eq. wt. %NaCl.

Overall quartz and calcite from 5401⁴ plot in the range of retrograde skarns, VMS and some samples even plot in the sedex deposit field (Fig. 2). The presence of hydrous retrograde phases such as actinolite, epidote and chlorite in the section suggest that the fluids may be late H2O-rich fluids which dominate through the retrograde stages of skarn formation. Also, the absence of open space filling textures and primary fluid inclusions suggests an environment of deposition deeper than high-level near surface (VMS equivalent).

FLUID INCLUSION REPORT

Project: Dorothy Sample: Quartz Vein

LOCATION: Coast Belt

HAND SAMPLE/THIN SECTION DESCRIPTION:

Brecciated pyrite-sphalerite-quartz vein cut by hairline veinlets of quartz and potassium feldspar. Mineral percentages include quartz (~75%), pyrite (~15%), sphalerite (~5%), potassium feldspar (~3%) and garnet (~2%)

FLUID INCLUSION SECTION DESCRIPTION:

Usable minerals for fluid inclusion studies are:

1) quartz which occurs in at least four distinct paragenetic vein stages: euhedral with no growth zones, anhedral with microfractures, euhedral with growth zones and overgrowths and

2) garnet occurs intergrown with sphalerite. (Although rare non-decrepitated inclusions in garnet were photographed, microthermometry on this garnet was not possible.)

FLUID INCLUSION PETROGRAPHY:

Host Mineral: quartz

table:

textures	paragenesis	%FI's	FI origin	FI shape	# of phases
euhedral intergrown with sulphides; no growth zones	1	several	pseudo- secondary and secondary	smooth and negative crystal	2, 3
anhedral	2	abundant	secondary	smooth	2
euhedral with growth zones	3	several	primary	smooth, negative crystal	2
overgrowths	4	virtually none	primary	-	-

Host Mineral: garnet

table:

textures	paragenesis	%FI's	FI origin	FI shape	# of phases
anhedral	1	rare	pseudo-	smooth,	2
			secondary	irregular	

GEOTHERMOMETRIC DATA:

Freezing Data:

Paragenesis	Temperature eutectic (^O C)	Temperature last melt (^O C)	Salinity eq. wt. % NaCl (^o C)
quartz - 1	-26.8	-2.5	4.1
quartz - 3		0.0	0

by Kathryn P.E. Dunne

Date: Dec 2, 1992 Date received: Nov 19, 1992

Heating Data:		
Paragenesis	H2O Temperature	
	homogenization (^O C)	
quartz - 1	227.1	
1	232.6	

quartz - 1	227.1	
-	232.6	
	243.0	
	254.6	
	259.3	
	260.7	
	263.1	
	281.6	
quartz - 3	122.2	
-	133.3	
	144.7	
	151.3	
	177.0	

GRAPHS: See Figures 1, 2 and 6

SUMMARY:

This sample is distinct from 128544, 54013 and 54014 by being a brecciated quartz-garnet-sulphide vein (?) cut by fine quartz and potassium feldspar veinlets. Four types of texturally distinct quartz are recognised in this section. From oldest to youngest these are: 1) euhedral quartz with no visible fluid inclusion defined growth zones associated with garnet and sulphides (Plate 20); 2) anhedral quartz characterised by abundant secondary inclusion microfracture planes (Plates 21 and 22); 3) euhedral quartz in late crosscutting veinlets with distinct growth zones defined by small primary fluid inclusions (Plate 23) and 4) quartz overgrowths with a paucity of fluid inclusions on type 3 euhedral quartz (Plate 24). Most inclusions were two-phase liquid-rich except rare 3-phase (liquid, vapour, unknown solid daughter crystal) inclusions of type 1 quartz. No CO2-rich inclusions were noted during petrography. CO2-rich inclusions (ie 3-phase H2O-CO2 bearing inclusions) are not observed in the VMS and sedex environments and only occasionally described from the skarn environment.

Temperature

decrepititation (⁰C)

Rare two-phase, irregular to smooth shaped inclusions were noted in garnet associated with sphalerite (Plate 19). Unfortunately, microthermometry was not undertaken on these inclusions.

Homogenisation temperatures and salinities were only obtained from quartz types 1 and 3. Early quartz (type 1) has a distinctly higher homogenisation temperature range (227-281°C) than late quartz (122.2-177°C; Fig. 6). A first melting temperatures for early quartz is -26.8°C which suggests a MgCl2 component in the fluid. Pure NaCl-H2O solutions first melt at -20.8°C and pure MgCl2-H2O solutions first melt at -33.6°C. Since the MgCl-H2O-NaCl system is not well defined, salinities are calculated on the pure NaCl-H2O system. Salinities for both quartz types do not exceed 8.1 equivalent weight percent NaCl.

Quartz vein samples plot within the range of retrograde skarns and VMS deposits (Fig. 2). Petrographically, the absence of open space filling textures and primary fluid inclusions in early quartz associated with sphalerite favours the skarn environment of deposition. The brecciation event and late quartz veining probably occurred at a higher, near surface environment.

Figure 4

Figure 5

LIST OF PLATES:

1. Sample 128544: Large, three-phase, smooth-shaped pseudo-secondary (PS) inclusion in calcite. Note distinctive highly birefringent rhombic-shaped daughter crystal of calcite or dolomite in centre of photograph (Field of view = 0.22 mm, crossed polars)

2. Sample 128544: Same fluid inclusion as above taken at first melting temperature of -29.1°C. Note frozen vapour bubble. Ice + MgCl2.12H2O or NaCl.2H2O are also present (Field of view = 0.22mm, plane polarised light)

3. Sample 128544: Same fluid inclusion as above taken with last ice and hydrohalite/hydromagnesium - chloride crystals visible (four rounded spheres) at temperature of -4.9°C. Note frozen vapour bubble. Ice + MgCl2.12H2O or NaCl.2H2O are also present (Field of view = 0.22mm, plane polarised light)

4. Sample 128544: Same fluid inclusion as above taken at last melting temperature of -2.5° C. Note rounded vapour bubble. Ice + MgCl2.12H2O or NaCl.2H2O are no longer present (Field of view = 0.22mm, plane polarised light)

5. Sample 128544: Same fluid inclusion as above taken on heating at 196.3°C. Note vapour bubble has reduced in size. (Field of view = 0.22mm, plane polarised light)

6. Sample 128544: Same fluid inclusion as above taken at homogenisation temperature of 234.0° C. Note vapour bubble has disappeared since the inclusion has homogenised to a two phase liquid + solid. (Field of view = 0.22mm, plane polarised light)

7. Sample 128544: Two and three-phase negative crystal shaped PS inclusions in quartz. (Field of view = 0.22mm, plane polarised light)

8. Sample 128544: Same inclusion as #7 except in polarised light birefringent carbonate daughter crystals are evident. (Field of view = 0.22mm, crossed polars)

9. Sample 128544: Two-phase, irregular PS inclusions with consistant liquid to vapour ratios implying estimated temperatures of homogenization of 200-230oC in quartz (Field of view = 0.22mm, plane polarised light)

10. Sample 128544: Two and three phase (apparently CO2-rich), smooth PS in quartz (Field of view = 0.22mm, plane polarised light).

11. Sample 54013: Two-phase, smooth PS inclusions with consistant liquid to vapour ratios in quartz. Petrographically this would suggest homogenization temperatures greater than 250oC. (Field of view = 0.16 mm, plane polarised light).

12. Sample 54013: Primary growth zones in garnet outlined by sub-microscopic fluid inclusions. Note trails of secondary inclusions (S) in garnet are only slightly larger (still < 1 micron and unusable from a fluid inclusion standpoint). (Field of view = 0.22 mm, plane polarised light).

13. Sample 54013: Two-phase, smooth PS/S inclusions in calcite. Note presence of both liquid and vapour-rich inclusions in the same microfractures. (Field of view = 0.22 mm, plane polarised light)

14. Sample 54013: Decrepitated PS inclusions in garnet ar obviously unusable. (Field of view = 0.22 mm, plane polarised light)

15. Sample 54013: Planes of two-phase, negative crystal shaped PS inclusions in calcite (Field of view = 0.22 mm, plane polarised light).

16. Sample 54014: Two-phase negative crystal shaped PS inclusions in quartz suggests temperatures of homogenisation greater than 2750C (Field of view = 0.22 mm, plane polarised light).

17. Sample 54014: Planes of two-phase, tubular, smooth PS inclusions in calcite (Field of view = 0.22 mm, plane polarised light).

18. Sample Quartz Vein: Two-phase, irregularly shaped PS inclusions trapped in early quartz have consistant liquid to vapour ratios (Field of view = 0.22 mm, plane polarised light)

19. Sample Quartz Vein: Two-phase, smooth to irregular shaped PS in garnet. Unfortunately, these inclusions were not tested by microthermometry (Field of view = 0.22 mm, plane polarised light).

20. Sample Quartz Vein: Early formed euhedral shaped quartz with no apparent growth zones defined by fluid inclusions (Field of view = 1.6 mm, plane polarised light).

21. Sample Quartz Vein: Anhedral quartz (Field of view = 1.6 mm, plane polarised light).

22. Sample Quartz Vein: Millions of healed microfractures defined by secondary fluid inclusions in anhedral quartz (Field of view = 0.22 mm, plane polarised light).

23. Sample Quartz Vein: Late quartz veinlet cuts anhedral quartz. This late quartz is defined by euhedral shape and presence of growth zones defined by primary fluid inclusions. (Field of view = 1.6 mm, plane polarised light).

24. Sample Quartz Vein: Magnified view of #23 showing primary fluid inclusions in growth zone and barren quartz overgrowth (Field of view = 0.63 mm, plane polarised light).

25. Sample Quartz Vein: Detail of two phase primary fluid inclusions in growth zone of #24 (Field of view = 0.16 mm, plane polarised light).

26. Sample Quartz Vein: Solid rhombic inclusions (probably calcite) in quartz (Field of view = 0.22 mm, plane polarised light).

27. Sample Quartz Vein: Two phase, negative crystal shaped PS inclusions in early formed quartz (Field of view = 0.16 mm, plane polarised light).

PLATE 1 (Dunne, 1992)

[

1

Π

[]

Π

1

[]

PLATE 2 (Dunne, 1992)

PLATE 3 (Dunne, 1992)

[]

 $\left[\right]$

[

1

Î

D

Π

0

D

R

D

PLATE 4 (Dunne, 1992)

PLATE 5 (Dunne, 1992)

PLATE 6 (Dunne, 1992)

PLATE 7 (Dunne, 1992)

PLATE 8 (Dunne, 1992)

PLATE 9 (Dunne, 1992)

PLATE 10 (Dunne, 1992)

PLATE 11 (Dunne, 1992)

Π

[]

PLATE 12 (Dunne, 1992)

PLATE 13 (Dunne, 1992)

0

Ę

[

0

Π

 \Box

 $\left[\right]$

Π

0

Π

Π

F

P

PLATE 14 (Dunne, 1992)

PLATE 16 (Dunne, 1992)

Ď

1

0

[]

0

0

T

П

PLATE 17 (Dunne, 1992)

[

[]

PLATE 18 (Dunne, 1992)

PLATE 19 (Dunne, 1992)

0

Ę

1

D

0

0

0

1

[

D

PLATE 20 (Dunne, 1992)

PLATE 21 (Dunne, 1992)

 \square

0

0

[

F

[]

0

Ð

P

Π

Π

PLATE 22 (Dunne, 1992)

PLATE 23 (Dunne, 1992)

0

1

Π

0

1

1

ſ

1

P

PLATE 24 (Dunne, 1992)

PLATE 25 (Dunne, 1992)

0

[]

[

[

Γ

[]

[]

0

0

1

[-

Γ

PLATE 26 (Dunne, 1992)

PLATE 27 (Dunne, 1992)

APPENDIX 8

ELECTRON PROBE MICROANALYSES
ELECTRON PROBE MICROANALYSES

Tor Bruland, Project Geologist TECK MINING GROUP LIMITED Suite 600, 200 Burrard Street Vancouver, B.C. V6C 3L9

Mati Randsupp

Mati Raudsepp, Ph.D. October 30, 1992.

EXPERIMENTAL METHOD

The chemical compositions of individual garnet, pyroxene, amphibole and epidote grains from four thin sections were determined by electron probe microanalysis. Each grain was classified according to conventional mineralogical criteria (outlined below). Electron probe microanalyses were done on a fully-automated CAMECA SX-50 microprobe, operating in the wavelength-dispersive mode with the following operating conditions: excitation voltage, 15 *KV*; beam current, 20 *nA*; peak count time, 20 s; background count time, 10 s; beam diameter, 2 μ m. The following standards and crystals were used for $K\alpha$ X-ray lines: Si, Mg, diopside, TAP; Ca, diopside, PET; Al, grossular, TAP; Fe, aegirine-augite, LIF; Na, aegirine-augite, TAP; Mn, pyroxmangite, LIF; potassium, orthoclase, PET; Ti, rutile, PET; Cr, chromite, LIF; F, phlogopite, TAP. Vanadium was checked for, but not detected. Analysis spots were recorded on photographs of backscattered electron images. Data reduction was done with the 'PAP' $\phi(\rho Z)$ method. Results are given in Tables 1-4 (mineral names), and the Appendix (instrument hard-copy; structural formula calculations; disk in LOTUS 1-2-3 format, element weight percent and atomic percent; photographs of backscattered electron images with analysis spot locations).

MINERAL CLASSIFICATION CRITERIA

Amphiboles

The general amphibole formula is : $A_{0-1}B_2C_5T_8O_{22}(OH,F,Cl)_2$, where A = K, Na; B = Na, Ca, Mg, Fe²⁺, Mn; C = Mg, Fe²⁺, Fe³⁺, Mn, Al, Cr, Ti; T = Si, Al. For a summary of site assignments and classification, see Hawthorne (1983). Electron probe microanalyses are incapable of distinguishing between Fe²⁺ and Fe³⁺, and mineral analyses must be recast into structural formulae based on what is known about site occupancies from crystallographic studies. As oxygen and hydrogen are not analyzed, such recalculations are tenuous at best for amphiboles. Additional complications result from possible vacancies in the amphibole A-site. Amphiboles were named according to the classification of Leake (1978) (summarized in Hawthorne, 1983). Note that in some cases, the amphibole name depends on the method of Fe²⁺ and Fe³⁺ calculation. Amphibole names are summarize in Table 1.

Pyroxenes

The general pyroxene formula is XYZ_2O_6 , where X = Ca, Mn, Fe²⁺, Mg, Na; Y = Mn, Fe²⁺, Mg, Fe³⁺, Al, Cr, Ti; Z = Si, Al. Pyroxene structural formulae were calculated on the basis of 4 cations and 6 oxygens. As the analyses must total 100%, the calculation of Fe³⁺ may be done from charge balance. Pyroxenes were named according to the classification of Morimoto *et al.* (1988), and are listed in Table 2. All pyroxenes analyzed in this study are typical quadrilateral (calcic) pyroxenes, namely diopside, with Fe/(Fe + Mg) ratios varying between about 0.1 and 0.4 atoms per formula unit.

Garnets

The general garnet formula is $X_3Y_2Z_3O_{12}$ where X = Ca, Mg. Fe²⁺, Mn; Y = Al, Fe³⁺, Cr, Ti; Z = Si, Al. Note that the analysis totals are low (about 96%), but this is the result of using all Fe as Fe²⁺ for the reduction of the microprobe data (oxygen is underestimated). Recalculating the oxygen for Fe as Fe³⁺ brings the totals to over 99%. Structural formula calculations were done based on 8 cations and assuming that all Fe is Fe³⁺. All analyses (Table 3) except one (B4-2) are andradites (Y = 2Fe³⁺). Sample B4-2 is grossular (Y = 1.88 Al). This sample is noteworthy, as it contains two distinct populations of garnets.

Epidote-group Minerals

The general formulae are $Ca_2Al_3Si_3O_{12}(OH)$ and $Ca_2Fe^{3+}Al_2Si_3O_{12}(OH)$ for clinozoisite and epidote, respectively. Structural formulae were calculated on the basis of 8 cations and assuming that all Fe is Fe³⁺. Epidote-group mineral names are listed in Table 4. Clinozoisite was distinguished from epidote on the basis of containing less than 0.5 Fe atoms per formula unit.

REFERENCES

Hawthorne, F.C. (1983). The crystal chemistry of the amphiboles. *Canadian Mineralogist*, **21**, 173-480

Leake, B.E. (1978). Nomenclature of amphiboles. Canadian Mineralogist, 16, 501-520.

Morimoto, N. et al. (1988). Nomenclature of pyroxenes. American Mineralogist, 73, 1123-1133.

Analysis No.	Name
Section 54013	
B2-1 ACT	Ferro-actinolite
B2-2 ACT	Ferro-actinolite
B2-3 ACT	Ferro-actinolite
B2-4 ACT	Ferro-actinolite
B3-1 ACT	Ferro-actinolite
B3-2 ACT	Ferro-actinolite
Section 544145	
T1-1 ACT	Ferroan-pargasite
T1-2 ACT	Ferroan-pargasite
T1-3 ACT	Ferroan-pargasite
T2-1 ACT	Ferroan-pargasite
T2-2 ACT	Ferroan-pargasite
T2-3 ACT	Ferroan-pargasite
T3-1 ACT	Ferroan-pargasite
T3-2 ACT	Ferroan-pargasite
Section 128544	
A1-1 AMP	Ferro-actinolite
A1-2 AMP	Ferro-actinolite
A1-3 AMP	Ferro-actinolite
A3-1 AMP	Ferro-actinolite
A3-2 AMP	Ferro-actinolite
Section 54014	
C2-2 AMP	Ferroan pargasitic hornblende

 Table 1: Amphibole names.

		· · · · · · · · · · · · · · · ·
Analysis No.	Name	
Section 54013		
B4-1 DIOP	Diopside	Fe/(Fe + Mg) ≈ 0.1
B4-3 DIOP	Diopside	
B4-4 DIOP	Diopside	
B4-5 DIOP	Diopside	
Section 544145		
T5-1 DIOP	Diopside	Fe/(Fe + Mg) ≈ 0.3
T5-2 DIOP	Diopside	
T5-3 DIOP	Diopside	
T5-4 DIOP	Diopside	
Section 128544		
A2-1 DIOP	Diopside	Fe/(Fe + Mg) ≈ 0.4
A2-2 DIOP	Diopside	
A2-3 DIOP	Diopside	
A2-4 DIOP	Diopside	
Section 54014		
C1-1 DIOP?	Diopside	Fe/(Fe + Mg) ≈ 0.4
C1-2 DIOP?	Diopside	
C1-3 DIOP?	Diopside	
C1-4 DIOP?	Diopside	
C2-1 DIOP	Diopside	
C5-1 DIOP	Diopside	
C5-2 DIOP	Diopside	
C2-3 AMP	Diopside	
C3-1 AMP	Diopside	
C3-2 AMP	Diopside	

Table 2: Pyroxene names.

		······································
Analysis No.	Name	
Section 54013		
B1-1 GAR	Andradite	
B1-2 GAR	Andradite	
B1-3 GAR	Andradite	
B1-4 GAR	Andradite	
B2-5 GAR	Andradite	
B2-6 GAR	Andradite	
82-7 GAR	Andradite	
B3-3 DIOP?	Andradite	
B3-4 DIOP?	Andradite	
B4-2 DIOP	Grossular	
B4-6 GAR	Andradite	
84-7 GAR	Andradite	
B4-8 GAR	Andradite	

Table 3: Garnet names.

Analysis No.	Name	
Section 128544		
A1-4 UNK	Epidote	
A2-5 EPID	Clinozoisite	
A3-3 EPI?	Epidote	
Section 54014	· · · · · · · · · · · · · · · · · · ·	· · · · ·
C4-1 EPI	Clinozoisite	

APPENDIX

- 1. Amphibole formula calculations.
- 2. Pyroxene formula calculations.
- 3. Garnet formula calculations.

- 4. Epidote formula calculations.
- 5. Hard-copy of analyses from microprobe.
- 6. Disk with element weight percent and atomic percent (envelope).
- 7. Backscattered electron images with analysis spot locations (envelope).
- 8. Photocopy of thin sections with general analysis areas marked.

AMPHIBOLES

Sampl	e B2-1						
-			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
SiO2	48.5	7 TSi	7.784	7.764	7.739	7.733	7.749
rio2	0.0	5 TAl	0.216	0.236	0.261	0.267	0.251
103	1.4	6 TFe3+	0.000	0.000	0.000	0.000	0.000
C⊥203	0.0	1 TTi	0.000	0.000	0.000	0.000	0.000
FeO	26.6	6 SUM IN T	8.000	8.000	8.000	8.000	8.000
InO	2.8	3 CAl	0.060	0.040	0.013	0.007	0.024
MgO	4.4	4 CCr	0.001	0.001	0.001	0.001	0.001
CaO	11.3	7 CFe3+	0.000	0.112	0.264	0.297	0.205
1a20	0.1	6 CTi	0.006	0,006	0.006	0.006	0.006
K20	0.1	0 CMg	1.060	1.058	1.054	1.054	1.056
Cl	0.0	0 CFe2+	3.573	3.452	3.289	3.253	3.353
F	0.0	1 CMn	0.300	0.331	0.373	0.382	0.356
Fotal	95.6	6 CCa	0.000	0.000	0.000	0.000	0.000
-0=C1	,F 0.0	O SUM IN C	5.000	5.000	5.000	5.000	5.000
Fotal	95.6	6 BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.000	0.000	0.000	0.000	0.000
		BMn	0.085	0.052	0.009	0.000	0.026
		BCa	1.915	1.948	1.941	1.940	1.944
		BNa	0.000	0.000	0.049	0.049	0.025
		SUM IN E	3 2.000	2.000	2.000	1.989	1.995
		ACa	0.037	0.000	0.000	0.000	0.000
		ANa	0.050	0.050	0.000	0.000	0.025
		AK	0.020	0.020	0.020	0.020	0.020
		SUM IN A	0.107	0.070	0.020	0.020	0.045
		CCl	0.000	0.000	0.000	0.000	0.000
		CF	0.005	0.005	0.005	0.005	0.005
		SUM CATS	5 15.107	15.070	15.020	15.009	15.040
		SUM OXY	23.000	23.000	23.000	23.000	23.000
METHO	D	GROUP	NAME				
Fe2+		Calcic	Ferro-	-Actinoli	te		
15-NK		Calcic	Ferro-	-Actinoli	te		
15-K		Calcic	Ferro-	-Actinoli	te		
13-CN	K	Calcic	Ferro-	-Actinoli	te		
AV. 1	5-NK & 13-	CNK Calcic	Ferro-	-Actinoli	te		

	1						
·							
ampie	B2-2		Fe2+	15-NK	15-K	13-CNK	AV(2-4)
SiO2	47.32	TSi	7.639	7.561	7.540	7.546	7.554
 	0.01	TAL	0.343	0.339	0.338	0.339	0.339
1203	1.80	TFe3+	0.000	0.099	0.122	0.116	0.108
Cr203	0.00	TTi	0.001	0.000	0.000	0.000	0.000
FeO	27.30	SUM IN T	7.983	8.000	8.000	8.000	8.000
InO	2.82	CAl	0.000	0.000	0.000	0.000	0.000
_iq0	4.60	CCr	0.000	0.000	0.000	0.000	0.000
CaO	11.52	CFe3+	0.000	0.368	0.477	0.448	0.408
la20	0.14	CTI	0.000	0.001	0.001	0.001	0.001
:20	0.12	CMg	1.107	1.095	1.092	1.093	1.094
Cl	0.00	CFe2+	3.686	3.181	3.039	3.077	3.129
ч	0.00	CMn	0.207	0.354	0.381	0.381	0.368
lotal	95.63	CCa	0.000	0.000	0.010	0.000	0.000
-O=Cl,F	0.00	SUM IN C	5.000	5.000	5.000	5.000	5.000
Total	95.63	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.000	0.000	0.000	0.000	0.000
		BMn	0.178	0.028	0.000	0.000	0.014
		BCa	1.822	1.972	1.957	1.968	1.970
		BNa	0.000	0.000	0.043	0.032	0.016
		SUM IN B	2.000	2.000	2.000	2.000	2.000
		ACa	0.171	0.000	0.000	0.000	0.000
		ANa	0.044	0.043	0.000	0.012	0.027
		AK	0.025	0.024	0.024	0.024	0.024
		SUM IN A	0.240	0.068	0.024	0.036	0.052
		CC1	0.000	0.000	0.000	0.000	0.000
		CF	0.000	0.000	0.000	0.000	0.000
		SUM CATS	15.223	15.068	15.024	15.036	15.052
		SUM OXY	23.000	23.000	23.000	23.000	23.000
ETHOD		GROUP	NAME				
Fe2+		Calcic	Ferro-	Actinoli	te		
5-NK		Calcic	Ferro-	Actinoli	te		
_5 - K		Calcic	Ferro-	Actinoli	te		
13-CNK		Calcic	Ferro-	Actinoli	te		
.V. 15-N	K & 13-CNK	Calcic	Ferro-	Actinoli	te		

•

ample	b2-3 🗸						
			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
Si02	47.96	TSi	7.671	7.610	7.588	7.586	7.598
'i02	0.04	TAl	0.329	0.337	0.336	0.336	0.336
`O3	1.80	TFe3+	0.000	0.053	0.076	0.078	0.066
L-203	0.00	TTI	0.000	0.000	0.000	0.000	0.000
'e0	27.30	SUM IN T	8.000	8.000	8.000	8.000	8.000
. InO	2.82	CAl	0.011	0.000	0.000	0.000	0.000
MgO	4.60	CCr	0.000	0.000	0.000	0.000	0.000
Ta0	11.52	CFe3+	0.000	0.313	0.421	0.433	0.373
[a20	0.14	CTI	0.005	0.005	0.005	0.005	0.005
К2О	0.12	CMg	1.097	1.088	1.085	1.084	1.086
. Cl	0.00	CFe2+	3.652	3.257	3.116	3.101	3.179
١	0.00	CMn	0.236	0.338	0.374	0.378	0.358
.'otal	96.30	CCa	0.000	0.000	0.000	0.000	0.000
-0=Cl,F	0.00	SUM IN C	5.000	5.000	5.000	5.000	5.000
'otal	96.30	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.000	0.000	0.000	0.000	0.000
		BMn	0.146	0.041	0.004	0.000	0.021
		BCa	1.854	1.959	1.953	1.952	1.956
		BNa	0.000	0.000	0.043	0.043	0.021
		SUM IN B	2.000	2.000	2.000	1.995	1.998
		ACa	0.121	0.000	0.000	0.000	0.000
		ANa	0.043	0.043	0.000	0.000	0.022
		AK	0.024	0.024	0.024	0.024	0.024
		SUM IN A	0.188	0.067	0.024	0.024	0.046
		CCl	0.000	0.000	0.000	0.000	0.000
		CF	0.000	0.000	0.000	0.000	0.000
		SUM CATS	15.188	15.067	15.024	15.020	15.043
		SUM OXY	23.000	23.000	23.000	23.000	23.000
METHOD		GROUP	NAME				
'e2+		Calcic	Ferro-	Actinoli	te		
.5-NK		Calcic	Ferro-	Actinoli	te		
15-K		Calcic	Ferro-	Actinoli	te		
3-CNK		Calcic	Ferro-	Actinoli	te		
.V. 15-N	K & 13-CNK	Calcic	Ferro-	Actinoli	te		

Samplo	B2=4	\checkmark							
ompre	DZ 4				Fo2+	15-NK	15-K	13-CNK	$\Delta V(2-4)$
	48.9	1	TSi		7 734	7 670	7 646	7 924	7 797
Ti02	0.0	10	ואד		0 218	0 216	0 216	0 076	0 146
1203	1.1	7	 ጥፑρ3+		0 000	0.113	0 139	0.070	0.057
r203	0.0	12	TT		0.000	0 000	0.000	0.000	0.000
FeO	24 0	3	SUM TN	τ Γ	7 952	8 000	8 000	8 000	8 000
100 ¥n0	2 - 0	5		*	0 000	0.000	0.000	0.148	0.074
α0	4.6	1	CCr		0.003	0.000	0.000	0.140	0.074
caO	14.3	8	CFe3+		0.000	0 264	0.002	0.000	0.005
Na2O	0.1	6	CTi		0.000	0.000	0.000	0.000	0.152
20	0.0	7	CMa		1 086	1 077	1 074	1 113	1 095
1	0.0	ю.	CFe2+		3 178	2 774	2617	3 256	3 015
F	0.0	9	CMn		0.469	0.465	0 463	0 480	0 473
otal	96.9	4	CCa		0.264	0.416	0.457	0.000	0 208
0=Cl.F	0.0	4	SUM TN	С	5.000	5.000	5.000	5,000	5 000
Total	96.9	0	BMa	•	0.000	0.000	0.000	0.000	0.000
	2002	•	BFe2+		0.000	0.000	0.000	0.000	0.000
			BMn		0.000	0.000	0.000	0.000	0.000
			BCa		2,000	2,000	1.952	2,000	2.000
			BNa		0.000	0.000	0.048	0.000	0.000
			SUM IN	в	2,000	2,000	2.000	2,000	2,000
			ACa	-	0.172	0.000	0.000	0.496	0.248
			ANa		0.049	0.049	0.000	0.050	0.049
			AK		0.014	0.014	0.014	0.014	0.014
			SUM IN	Α	0.235	0.063	0.014	0.561	0.312
			CCl		0.000	0.000	0.000	0.000	0.000
			CF		0.045	0.045	0.044	0.046	0.045
			SUM CA	TS	15.187	15.063	15.014	15.561	15.312
			SUM OX	Y	23.000	23.000	23.000	23.566	23.283
ETHOD			GROUP		NAME				
Fe2+			Calcic		Ferro-	Actinoli	te		
15-NK			Calcic		Ferro-	Actinoli	te		
5 - K			Calcic		Ferro-	Actinoli	te		
13-CNK			Calcic		Ferro-	Actinoli	te		
AV. 15-NH	K & 13-	CNK	Calcic		Ferro-	Actinoli	te		

Sample	B3−1 √						
			Fe2+	15-NK	15 - K	13-CNK	AV(2-4)
i02	49.45	TSi	7.751	7.737	7.703	7.659	7.698
TiO2	0.04	TAl	0.249	0.263	0.297	0.341	0.302
A1203	1.89	TFe3+	0.000	0.000	0.000	0.000	0.000
r203	0.00	TTI	0.000	0.000	0.000	0.000	0.000
_'e0	24.63	SUM IN T	8.000	8.000	8.000	8.000	8.000
MnO	3.45	CAl	0.100	0.086	0.050	0.004	0.045
ig0	5.84	CCr	0.000	0.000	0.000	0.000	0.000
a0	11.14	CFe3+	0.000	0.081	0.284	0.544	0.313
Na2O	0.22	CTI	0.005	0.005	0.005	0.005	0.005
<u>×</u> 20	0.10	CMg	1.364	1.362	1.356	1.348	1.355
'1	0.00	CFe2+	3.229	3.142	2.924	2.646	2.894
r '	0.08	CMn	0.302	0.325	0.381	0.453	0.389
Total	96.84	CCa	0.000	0.000	0.000	0.000	0.000
O=Cl,F	0.03	SUM IN C	5.000	5.000	5.000	5.000	5,000
'otal	96.81	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.000	0.000	0.000	0.000	0.000
		BMn	0.156	0.132	0.074	0.000	0.066
		BCa	1.844	1.868	1.859	1.849	1.858
		BNa	0.000	0.000	0.066	0.066	0.033
		SUM IN B	2.000	2.000	2.000	1.915	1.957
		ACa	0.027	0.000	0.000	0.000	0.000
		ANa	0.067	0.067	0.000	0.000	0.033
		AK	0.020	0.020	0.020	0.020	0.020
		SUM IN A	0.114	0.087	0.020	0.020	0.053
		CCl	0.000	0.000	0.000	0.000	0.000
		CF	0.040	0.040	0.039	0.039	0.039
		SUM CATS	15.114	15.087	15.020	14.935	15.011
		SUM OXY	23.000	23.000	23.000	23.000	23.000
METHOD		GROUP	NAME				
_'e2+		Calcic	Ferro-	Actinoli	te		
15-NK		Calcic	Ferro-	Actinoli	te		
.5-K		Calcic	Ferro-	Actinoli	te		
.3-CNK	•	Calcic	Ferro-	Actinoli	te		
F 15-N	K & 13-CNK	Calcic	Ferro-	Actinoli	te		

Jample	B3−2 ✓						
			Fe2+	15-NK	15 - K	13-CNK	AV(2-4)
3102	49.01	TSi	7.715	7.696	7.661	7.603	7.649
CiO2	0.05	TAl	0.285	0.304	0.339	0.371	0.338
A1203	2.03	TFe3+	0.000	0.000	0.000	0.025	0.013
Cr203	0.00	TTi	0.000	0.000	0.000	0.000	0.000
]e0	24.67	SUM IN T	8.000	8.000	8.000	8.000	8.000
мnО	3.74	CAl	0.092	0.071	0.036	0.000	0.036
MgO	5.74	CCr	0.000	0.000	0.000	0.000	0.000
CaO	10.95	CFe3+	0.000	0.118	0.322	0.643	0.380
Ja20	0.22	CTi	0.006	0.006	0.006	0.006	0.006
K2O	0.18	CMg	1.347	1.343	1.337	1.327	1.335
21	0.00	CFe2+	3.248	3.122	2.903	2.533	2.827
£	0.00	CMn	0.307	0.340	0.396	0.491	0.416
Total	96.59	CCa	0.000	0.000	0.000	0.000	0.000
-0=Cl,F	0.00	SUM IN C	5.000	5.000	5.000	5.000	5.000
[otal	96.59 [·]	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.000	0.000	0.000	0.000	0.000
		BMn	0.192	0.158	0.099	0.000	0.079
		BCa	1.808	1.842	1.834	1.820	1.831
		BNa	0.000	0.000	0.067	0.066	0.033
		SUM IN B	2.000	2.000	2.000	1.886	1.943
		ACa	0.039	0.000	0.000	0.000	0.000
		ANa	0.067	0.067	0.000	0.000	0.033
		AK	0.036	0.036	0.036	0.036	0.036
		SUM IN A	0.142	0.103	0.036	0.036	0.069
		CC1	0.000	0.000	0.000	0.000	0.000
		CF	0.000	0.000	0.000	0.000	0.000
		SUM CATS	15.142	15.103	15.036	14.922	15.013
		SUM OXY	23.000	23.000	23.000	23.000	23.000
"HOD		GROUP	NAME				
Fe2+		Calcic	Ferro-	Actinoli	te		
15-NK		Calcic	Ferro-	Actinoli	te		
15-K		Calcic	Ferro-	Actinoli	te		

_3-CNK AV. 15-NK & 13-CNK Calcic Calcic

Ferro-Actinolite Ferro-Actinolite

Sample	T1-1	\checkmark								
-				Fe2+	:	15-NK	-	15-K	13-CNK	AV(2-4)
SiO2	38.3	8	TSi	5.828	1	5.821	5	5.631	5.798	5.810
ſiO2	1.0	0	TAl	2.172	:	2.179	-	2.369	2.202	2.190
-1203	18.2	6	TFe3+	0.000	(0.000	(0.000	0.000	0.000
Cr203	0.0	0	TTI	0.000	(0.000	(0.000	0.000	0.000
]eO	12.6	3	SUM IN T	8.000	· 8	B.000	8	3.000	8.000	8.000
1n0	0.2	5	CAl	1.099		1.088	().791	1.052	1.070
MgO	9.8	0	CCr	0.000	(0.000	. (0.000	0.000	0.000
CaO	11.9	9	CFe3+	0.000	(0.051		L.550	0.232	0.142
la20	1.7	2	CTi	0.114	(0.114	. ().110	0.114	0.114
K20	1.5	8	CMg	2.218		2.215		2.143	2.206	2.211
Cl	0.0	0	CFe2+	1.569		1.532		0.000	1.364	1.448
<u>.</u>	0.1	2	CMn	0.000	(0.000		0.031	0.032	0.016
lotal	95.7	3	CCa	0.000	(0.000	. (0.374	0.000	0.000
-0=Cl,F	0.0	5	SUM IN C	5.000	1	5.000		5.000	5.000	5.000
Total	95.6	8	BMg	0.000	(0.000	(000.0	0.000	0.000
			BFe2+	0.035	(0.019	. (0.000	0.000	0.010
			BMn	0.032	(0.032	(0.000	0.000	0.016
			BCa	1.933		1.949		1.511	1.941	1.945
			BNa	0.000	(0.000).489	0.059	0.030
			SUM IN B	2.000	2	2.000	2	2.000	2.000	2.000
			ACa	0.018	(0.000	(000.0	0.000	0.000
			ANa	0.506	(0.506	(0.000	0.445	0.475
			AK	0.306	(0.306	(0.296	0.305	0.305

TSi		5.828	5.821	5.631	5.798	5.810
TAl		2.172	2.179	2.369	2.202	2.190
TFe3+		0.000	0.000	0.000	0.000	0.000
TTi		0.000	0.000	0.000	0.000	0.000
SUM IN	T	8.000	8.000	8.000	8.000	8.000
CAl		1.099	1.088	0.791	1.052	1.070
CCr		0.000	0.000	0.000	0.000	0.000
CFe3+		0.000	0.051	1.550	0.232	0.142
CTi		0.114	0.114	0.110	0.114	0.114
CMg		2.218	2.215	2.143	2.206	2.211
CFe2+		1.569	1.532	0.000	1.364	1.448
CMn		0.000	0.000	0.031	0.032	0.016
CCa		0.000	0.000	0.374	0.000	0.000
SUM IN	1 C	5.000	5.000	5.000	5.000	5.000
BMg		0.000	0.000	0.000	0.000	0.000
BFe2+		0.035	0.019	0.000	0.000	0.010
BMn		0.032	0.032	0.000	0.000	0.016
BCa		1.933	1.949	1.511	1.941	1.945
BNa		0.000	0.000	0.489	0.059	0.030
SUM IN	N B	2.000	2.000	2.000	2.000	2.000
ACa		0.018	0.000	0.000	0.000	0.000
ANa		0.506	0.506	0.000	0.445	0.475
AK		0.306	0.306	0.296	0.305	0.305
SUM IN	A A	0.831	0.812	0.296	0.749	0.780
CCl		0.000	0.000	0.000	0.000	0.000
CF		0.058	0.058	0.056	0.057	0.057
SUM CA	ATS	15.831	15.812	15.296	15.749	15.780
SUM OX	ΧY	23.002	23.000	23.000	23.000	23.000

METHOD	GROUP	NAME
e2+	Calcic	Ferroan Pargasite
C NK	Calcic	Ferroan Pargasite
1. K	Calcic	
3-CNK	Calcic	Ferroan Pargasite
V. 15-NK & 13-CNK	Calcic	Ferroan Pargasite

.

Sample	T1-2 🗸						
			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
SiO2	39.56	TSi	5.915	5.909	5.708	5.870	5.890
ті02	0.80	TAl	2.085	2.091	2.292	2.130	2.110
1203	18.07	TFe3+	0.000	0.000	0.000	0.000	0.000
Jr203	0.02	TTi	0.000	0.000	0.000	0.000	0.000
FeO	12.46	SUM IN T	8.000	8.000	8.000	8.000	8.000
[nO	0.20	CAl	1.102	1.093	0.783	1.033	1.063
[g0	10.42	CCr	0.002	0.002	0.002	0.002	0.002
CaO	11.95	CFe3+	0.000	0.041	1.504	0.348	0.194
*la20	1.83	CTI	0.090	0.090	0.087	0.089	0.090
(20	1.28	CMg	2.322	2.320	2.241	2.304	2.312
Cl	0.00	CFe2+	1.483	1.454	0.000	1.199	1.326
F	0.13	CMn	0.000	0.000	0.024	0.025	0.013
'otal	96.72	CCa	0.000	0.000	0.359	0.000	0.000
·O=Cl,F	0.05	SUM IN C	5.000	5.000	5.000	5.000	5.000
Total	96.67	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.075	0.062	0.000	0.000	0.031
		BMn	0.025	0.025	0.000	0.000	0.013
		BCa	1.900	1.913	1.488	1.900	1.906
		BNa	0.000	0.000	0.512	0.100	0.050
		SUM IN B	2.000	2.000	2.000	2.000	2.000
		ACa	0.015	0.000	0.000	0.000	0.000
		ANa	0.531	0.530	0.000	0.427	0.478

	AK	0.244	0.244	0.236	0.242	0.243
	SUM IN A	0.790	0.774	0.236	0.669	0.721
	CCl	0.000	0.000	0.000	0.000	0.000
	CF	0.061	0.061	0.059	0.061	0.061
	SUM CATS	15.790	15.774	15.236	15.669	15.721
	SUM OXY	23.002	23.000	22.947	23.000	23.000
ETHOD	GROUP	NAME				
e2+	Calcic	Ferroa	n Pargas	site		
5 - NK	Calcic	Ferroa	in Pargas	site		
15-K	Calcic					
13-CNK	Calcic	Ferroa	in Pargas	site		
V. 15-NK & 13-CNK	Calcic	Ferroa	in Pargas	site		

•

Sample	T1-3 V						
			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
3i02	38.68	TSi	5.847	5.836	5.648	5.807	5.821
TiO2	0.82	TAl	2.153	2.164	2.352	2.193	2.179
\1203	18.40	TFe3+	0.000	0.000	0.000	0.000	0.000
lr203	0.00	TTI	0.000	0.000	0.000	0.000	0.000
fe0	12.62	SUM IN T	8.000	8.000	8.000	8.000	8.000
MnO	0.16	CAl	1.127	1.110	0.816	1.065	1.088
fg0	10.00	CCr	0.000	0.000	0.000	0.000	0.000
JaO	11.97	CFe3+	0.000	0.081	1.541	0.309	0.195
Na2O	1.71	CTI	0.093	0.093	0.090	0.093	0.093
(20	1.49	CMg	2.253	2.249	2.176	2.237	2.243
21	0.00	CFe2+	1.527	1.467	0.000	1.276	1.372
F	0.15	CMn	0.000	0.000	0.020	0.020	0.010
' Lal	96.00	CCa	0.000	0.000	0.357	0.000	0.000
·O=Cl,F	0.06	SUM IN C	5.000	5.000	5.000	5.000	5.000
fotal	95.94	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.069	0.044	0.000	0.000	0.022

	BMn	0.020	0.020	0.000	0.000	0.010
	BCa	1.911	1.935	1.516	1.926	1.930
	BNa	0.000	0.000	0.484	0.074	0.037
	SUM IN B	2.000	2.000	2.000	2.000	2.000
	ACa	0.028	0.000	0.000	0.000	0.000
	ANa	0.501	0.500	0.000	0.423	0.462
	AK	0.287	0.287	0.278	0.285	0.286
	SUM IN A	0.816	0.787	0.278	0.709	0.748
	CCl	0.000	0.000	0.000	0.000	0.000
·	CF	0.072	0.072	0.069	0.071	0.071
	SUM CATS	15.816	15.787	15.278	15.709	15.748
	SUM OXY	23.002	23.000	22.989	23.000	23.000
IETHOD	GROUP	NAME				
Fe2+	Calcic	Ferroa	n Pargas	ite		
.5-NK	Calcic	Ferroa	n Pargas	ite		
15-K	Calcic		-			
13-CNK	Calcic	Ferroa	n Pargas	ite		
NV. 15-NK & 13-CNK	Calcic	Ferroa	n Pargas	ite		

-

Sample	T2-1 🗸						
			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
3i02	39.89	TSI	6.033	6.030	5.842	6.007	6.018
Гі02	0.91	TAl	1.967	1.970	2.158	1.993	1.982
A1203	16.57	TFe3+	0.000	0.000	0.000	0.000	0.000
Cr203	0.00	TTI	0.000	0.000	0.000	0.000	0.000
re0	13.83	SUM IN T	8.000	8.000	8.000	8.000	8.000
ריי	0.24	CAl	0,989	0.984	0.704	0.950	0.967
الارية	9.69	CCr	0.000	0.000	0.000	0.000	0.000
CaO	12.04	CFe3+	0.000	0.021	1.458	0.197	0.109
.√a20	1.65	CTI	0.104	0.103	0.100	0.103	0.103
K2O	1.42	CMg	2.184	2.183	2.115	2.175	2.179

_1	0.00	CFe2+	1.723	1.708	0.236	1.545	1.626
F	0.19	CMn	0.000	0.000	0.030	0.031	0.015
Total	96.43	CCa	0.000	0.000	0.358	0.000	0.000
O=Cl,F	0.08	SUM IN C	5.000	5.000	5.000	5.000	5.000
5 al	96.35	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.026	0.019	0.000	0.000	0.010
		BMn	0.031	0.031	0.000	0.000	0.015
		BCa	1.943	1.950	1.531	1.943	1.946
		BNa	0.000	0.000	0.469	0.057	0.029
		SUM IN B	2.000	2.000	2.000	2.000	2.000
		ACa	0.008	0.000	0.000	0.000	0.000
		ANa	0.484	0.484	0.000	0.424	0.454
		АК	0.274	0.274	0.265	0.273	0.273
		SUM IN A	0.766	0.757	0.265	0.697	0.727
		CCl	0.000	0.000	0.000	0.000	0.000
		CF	0.091	0.091	0.088	0.090	0.091
		SUM CATS	15.766	15.757	15.265	15.697	15.727
		SUM OXY	23.002	23.000	23.000	23.000	23.000
`1ETHOD		GROUP	NAME				
Fe2+		Calcic	Ferroa	n Pargas	ite		
15-NK		Calcic	Ferroa	n Pargas	site		
.5 - K		Calcic	Tscher	makite			
-3-CNK		Calcic	Ferroa	n Pargas	site		
AV. 15-NK	K & 13-CNK	Calcic	Ferroa	n Pargas	ite		

 \checkmark Sample T2-2 15-NK 13-CNK AV(2-4) 6.102 Fe2+ 15-K 40.64 J2__J TSi 6.128 6.126 5.932 6.078 TiO2 0.76 1.898 1.872 1,874 2.068 1.922 TAl 16.00 0.000 A12O3 TFe3+ 0.000 0.000 0.000 0.000 0.00 0.000 0.000 Cr203 TTi 0.000 0.000 0.000

_'e0	13.65	SUM IN T	8.000	8.000	8.000	8.000	8.000
MnO	0.22	CAl	0.973	0.970	0.687	0.901	0.936
∵*iq0	10.22	CCr	0.000	0.000	0.000	0.000	0.000
'a0	11.76	CFe3+	0.000	0.011	1.461	0.365	0.188
, O	1.67	CTi	0.086	0.086	0.083	0.085	0.086
ಗ್ರವ	1.21	CMq	2.297	2.296	2.223	2.278	2.287
:1	0.00	CFe2+	1.644	1.637	0.206	1.343	1.490
<u>_</u> }	0.23	CMn	0.000	0.000	0.027	0.028	0.014
Total	96.36	CCa	0.000	0.000	0.312	0.000	0.000
·O=Cl,F	0.10	SUM IN C	5.000	5.000	5.000	5.000	5.000
'otal	96.26	BMq	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.077	0.073	0.000	0.000	0.036
		BMn	0.028	0.028	0.000	0.000	0.014
		BCa	1.895	1.899	1.527	1.885	1.892
		BNa	0.000	0.000	0.473	0.115	0.058
		SUM IN B	2.000	2.000	2.000	2.000	2.000
		ACa	0.005	0.000	0.000	0.000	0.000
		ANa	0.488	0.488	0.000	0.369	0.429
		AK	0.233	0.233	0.225	0.231	0.232
		SUM IN A	0.726	0.721	0.225	0.600	0.660
		CCl	0.000	0.000	0.000	0.000	0.000
		CF	0.110	0.110	0.106	0.109	0.109
		SUM CATS	15.726	15.721	15.225	15.600	15.660
		SUM OXY	23.002	23.000	23.000	23.000	23.000
METHOD		GROUP	NAME				
`e2+		Calcic	Ferroa	n Pargas	ite		
15-NK		Calcic	Ferroa	n Pargas	ite		
15 - K		Calcic	Tscher	makité			
L3-CNK		Calcic	Ferroa	n Pargas	ite		
AV. 15-NK	& 13-CNK	Calcic	Ferroa	n Pargas	ite		
				2			

_ample	T2-3 🗸						
-			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
~i02	40.27	TSi	6.091	6.099	5.905	6.058	6.079
i02	0.76	TAl	1.909	1.901	2.095	1.942	1.921
1 33	16.65	TFe3+	0.000	0.000	0.000	0.000	0.000
Ст 503	0.00	TTi	0.000	0.000	0.000	0.000	0.000
eO	13.60	SUM IN T	8.000	8.000	8.000	8.000	8.000
n0	0.24	CAl	1.062	1.073	0.784	1.013	1.043
MgO	9.63	CCr	0.000	0.000	0.000	0.000	0.000
'a0	11.79	CFe3+	0.000	0.000	1.406	0.244	0.122
a20	1.68	CTI	0.086	0.087	0.084	0.086	0.086
K2O	1.15	CMg	2.171	2.174	2.104	2.159	2.166
C1	0.00	CFe2+	1.681	1.667	0.262	1.467	1.567
4	0.21	CMn	0.000	0.000	0.030	0.031	0.015
Total	95.98	CCa	0.000	0.000	0.330	0.000	0.000
-0=Cl,F	0.09	SUM IN C	5.000	5.000	5.000	5.000	5.000
otal	95.89	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.040	0.056	0.000	0.000	0.028
		BMn	0.031	0.031	0.000	0.000	0.015
		BCa	1.911	1.913	1.522	1.901	1.907
		BNa	0.018	0.000	0.478	0.099	0.050
		SUM IN B	2.000	2.000	2.000	2.000	2.000
		ACa	0.000	0.000	0.000	0.000	0.000
		ANa	0.474	0.493	0.000	0.391	0.442
		AK	0.222	0.222	0.215	0.221	0.221
		SUM IN A	0.696	0.716	0.215	0.611	0.663
		CCl	0.000	0.000	0.000	0.000	0.000
		CF	0.100	0.101	0.097	0.100	0.100
		SUM CATS	15.696	15.716	15.215	15.611	15.663
		SUM OXY	23.002	23.030	23.000	23.000	23.015
METHOD		GROUP	NAME				
'e2+		Calcic	Ferroa	n Pargas	ite		
_5-NK		Calcic	Ferroa	n Pargas	ite		
15 - K	-	Calcic	Tscher	makite			
3-CNK		Calcic	Ferroa	n Pargas	ite		
IV. 15-N	K & 13-CNK	Calcic	Ferroa	n Pargas	ite		

ample	тз-1 √						
			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
S102	40.30	TSi	6.081	6.065	5.879	6.037	6.051
102	0.84	TAL	1.919	1.935	2.121	1.963	1.949
.1203	15.88	TFe3+	0.000	0.000	0.000	0.000	0.000
Cr203	0.02	TTi	0.000	0.000	0.000	0.000	0.000
FeO	13.33	SUM IN T	8.000	8.000	8.000	8.000	8.000
ſnO	0.21	CAL	0.907	0.884	0.611	0.842	0.863
мgO	10.59	CCr	0.002	0.002	0.002	0.002	0.002
CaO	12.02	CFe3+	0.000	0.114	1.524	0.330	0.222
1a20	1.63	CTI	0.095	0.095	0.092	0.095	0.095
(20	1.40	CMg	2.381	2.375	2.302	2.364	2.370
Cl	0.00	CFe2+	1.614	1.529	0.102	1.340	1.435
रं	0.10	CMn	0.000	0.000	0.026	0.027	0.013
lotal	96.32	CCa	0.000	0.000	0.340	0.000	0.000
-0=C1,F	0.04	SUM IN C	5.000	5.000	5.000	5.000	5.000
Total	96.28	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.068	0.035	0.000	0.000	0.017
		BMn	0.027	0.027	0.000	0.000	0.013
		BCa	1.905	1.938	1.539	1.929	1.934
		BNa	0.000	0.000	0.461	0.071	0.035
		SUM IN B	2.000	2.000	2.000	2.000	2.000
		ACa	0.038	0.000	0.000	0.000	0.000
		ANa	0.477	0.476	0.000	0.403	0.439
		AK	0.270	0.269	0.261	0.268	0.268
		SUM IN A	0.785	0.744	0.261	0.670	0.707
		CCl	0.000	0.000	0.000	0.000	0.000
		CF	0.048	0.048	0.046	0.047	0.047
		SUM CATS	15.785	15.744	15.261	15.670	15.707
		SUM OXY	23.002	23.000	23.000	23.000	23.000
METHOD		GROUP	NAME				
Fe2+		Calcic	Ferroa	n Pargas	ite		
15-NK		Calcic	Ferroa	in Pargas	ite		
15 - K		Calcic	Tscher	makite			
13-CNK		Calcic	Ferroa	in Pargas	ite		
AV. 15-N	K & 13-CNK	Calcic	Ferroa	in Pargas	ite		

•

	/								
Sample	тз-2				F - A ·	1		10 0002	
1:00	41 05		mał		Fe2+	10-NK	15-K	13-CNK	AV(2-4)
S102	41.05		TSI		6.148	6.143	5.950	6.121	6.132
T102	0.89		TAL		1.852	1.857	2.050	1.879	1.868
11203	15.52		TFe3+		0.000	0.000	0.000	0.000	0.000
Jr203	0.04		TT1		0.000	0.000	0.000	0.000	0.000
reo	13.12		SUM IN T		8.000	8.000	8.000	8.000	8.000
VinO	0.24		CAI		0.890	0.883	0.603	0.851	0.867
1g0	10.70		CCr		0.005	0.005	0.005	0.005	0.005
CaO	12.18		Cre3+		0.000	0.033	1.480	0.198	0.115
Nazo	1.68		CT1		0.100	0.100	0.097	0.100	0.100
(20	1.30		CMg		2.388	2.386	2.311	2.378	2.382
<u>.</u>	0.00		CFe2+		1.61/	1.593	0.111	1.438	1.515
F Dote D	0.22		CMn		0.000	0.000	0.029	0.030	0.015
	96.94		cca		0.000	0.000	0.364	0.000	0.000
-O=C1,F	0.09		SUM IN C		5.000	5.000	5.000	5.000	5.000
Total	96.85		BMG		0.000	0.000	0.000	0.000	0.000
			Brez+		0.027	0.016	0.000	0.000	0.008
			BMn		0.030	0.030	0.000	0.000	0.015
			BCa		1.943	1.953	1.528	1.946	1.950
			BNa		0.000	0.000	0.472	0.054	0.027
			SUM IN B		2.000	2.000	2.000	2.000	2.000
			ACa		0.012	0.000	0.000	0.000	0.000
			ANa		0.488	0.488	0.000	0.432	0.460
			AK		0.248	0.248	0.240	0.247	0.248
			SUM IN A	•	0.748	0.736	0.240	0.679	0.707
			CC1		0.000	0.000	0.000	0.000	0.000
			CF		0.104	0.104	0.101	0.104	0.104
			SUM CATS	I.	15.748	15.736	15.240	15.679	15.707
			SUM OXY		23.002	23.000	23.000	23.000	23.000
METHOD			GROUP		NAME				
Fe2+			Calcic		Ferroa	ın Pargas	site		
15-NK			Calcic		Ferroa	ın Pargas	site		
15 - K			Calcic		Tscher	makite			
13-CNK			Calcic		Ferroa	n Pargas	site		
AV. 15-NK	C & 13-CN	ĸ	Calcic		Ferroa	in Pargas	site		
	-								

-

Sample	A1-1 🗸						
-			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
i02	49.77	TSi	7.744	7.736	7.711	7.697	7.716
TiO2	0.12	TAl	0.256	0.264	0.289	0.303	0.284
A1203	2.08	TFe3+	0.000	0.000	0.000	0.000	0.000
'r203	0.01	TTi	0.000	0.000	0.000	0.000	0.000
.e0	22.95	SUM IN T	8.000	8.000	8.000	8.000	8.000
MnO	1.47	CAl	0.126	0.117	0.091	0.077	0.097
'g0	7.58	CCr	0.001	0.001	0.001	0.001	0.001
aO	11.62	CFe3+	0.000	0.050	0.197	0.278	0.164
Na2O	0.16	СТі	0.014	0.014	0.014	0.014	0.014
<u>×20</u>	0.10	CMg	1,758	1.756	1.750	1.747	1.751
יו	0.00	CFe2+	2.987	2.933	2.776	2.690	2.812
.	0.15	CMn	0.115	0.129	0.170	0.193	0.161
Total	96.01	CCa	0.000	0.000	0.000	0.000	0.000
O=Cl,F	0.06	SUM IN C	5.000	5.000	5.000	5.000	5.000
_otal	95.95	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.000	0.000	0.000	0.000	0.000
		BMn	0.079	0.065	0.023	0.000	0.032
		BCa	1.921	1.935	1.929	1.926	1.930
		BNa	0.000	0.000	0.048	0.048	0.024
		SUM IN B	2.000	2.000	2.000	1.974	1.987
		ACa	0.017	0.000	0.000	0.000	0.000
		ANa	0.048	0.048	0.000	0.000	0.024
		AK	0.020	0.020	0.020	0.020	0.020
		SUM IN A	0.085	0.068	0.020	0.020	0.044
		CCl	0.000	0.000	0.000	0.000	0.000
		CF	0.074	0.074	0.073	0.073	0.074
		SUM CATS	15.085	15.068	15.020	14.993	15.031
		SUM OXY	23.000	23.000	23.000	23.000	23.000
METHOD		GROUP	NAME				
_'e2+		Calcic	Ferro-	Actinoli	te		
15-NK		Calcic	Ferro-	Actinoli	te		
∑.5 − K		Calcic	Ferro-	Actinoli	te		
3-CNK		Calcic	Ferro-	Actinoli	te		
/ 15-N	K & 13-CN	K Calcic	Ferro-	Actinoli	te		

.

-

~

Jample	A1-2 V						
			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
i02	50.27	TSi	7.802	7.799	7.779	7.749	7.774
'i02	0.08	TAl	0.198	0.201	0.221	0.251	0.226
Al2O3	1.71	TFe3+	0.000	0.000	0.000	0.000	0.000
Cr203	0.00	TTi	0.000	0.000	0.000	0.000	0.000
'e0	22.80	SUM IN T	8.000	8.000	8.000	8.000	8.000
MnO	1.48	CAl	0.115	0.112	0.091	0.060	0.086
MgO	7.83	CCr	0.000	0.000	0.000	0.000	0.000
'aO	11.52	CFe3+	0.000	0.013	0.132	0.311	0.162
_ía20	0.13	CTI	0.009	0.009	0.009	0.009	0.009
K20	0.09	CMg	1.811	1.810	1.806	1.799	1.805
21	0.00	CFe2+	2.959	2.945	2.818	2.628	2.787
•	0.04	CMn	0.106	0.110	0.143	0.193	0.151
Total	95.95	CCa	0.000	0.000	0.000	0.000	0.000
-0=Cl,F	0.02	SUM IN C	5.000	5.000	5.000	5.000	5.000
'otal	95.93	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.000	0.000	0.000	0.000	0.000
		BMn	0.089	0.085	0.051	0.000	0.042
		BCa	1.911	1.915	1.910	1.903	1.909
		BNa	0.000	0.000	0.039	0.039	0.019
		SUM IN B	2.000	2.000	2.000	1.942	1.971
		ACa	0.004	0.000	0.000	0.000	0.000
		ANa	0.039	0.039	0.000	0.000	0.020
		AK	0.018	0.018	0.018	0.018	0.018
		SUM IN A	0.061	0.057	0.018	0.018	0.037
		CCl	0.000	0.000	0.000	0.000	0.000
		CF	0.020	0.020	0.020	0.019	0.020
		SUM CATS	15.061	15.057	15.018	14.959	15.008
		SUM OXY	23.000	23.000	23.000	23.000	23.000
' 'HOD		GROUP	NAME				
'e2+		Calcic	Ferro-	Actinoli	te		
15 - NK		Calcic	Ferro-	Actinoli	te		
15-K		Calcic	Ferro-	Actinoli	te		

⊥3−CNK AV. 15-NK & 13-CNK

.

Calcic Calcic Ferro-Actinolite Ferro-Actinolite

Sample	A1-3 🗸						
L			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
SiO2	50.03	TSi	7.724	7.705	7.679	7.662	7.684
TiO2	0.08	TAl	0.276	0.295	0.321	0.338	0.316
A12O3	2.15	TFe3+	0.000	0.000	0.000	0.000	0.000
Cr203	0.03	TTI	0.000	0.000	0.000	0.000	0.000
FeO	23.61	SUM IN T	8.000	8.000	8.000	8.000	8.000
MnO	1.49	CAl	0.115	0.096	0.068	0.051	0.073
MgO	7.53	CCr	0.004	0.004	0.004	0.004	0.004
CaO	11.68	CFe3+	0.000	0.108	0.263	0.363	0.236
Na20	0.17	CTI	0.009	0.009	0.009	0.009	0.009
K20	0.09	CMg	1.732	1.728	1.723	1.719	1.724
C1	0.00	CFe2+	3.048	2.933	2.768	2.661	2.797
F	0.00	CMn	0.091	0.122	0.165	0.193	0.158
Fotal	96.86	CCa	0.000	0.000	0.000	0.000	0.000
-0=Cl,F	0.00	SUM IN C	5.000	5.000	5.000	5.000	5.000
Total	96.86	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.000	0.000	0.000	0.000	0.000
		BMn	0.104	0.073	0.028	0.000	0.036
		BCa	1.896	1.927	1.921	1.917	1.922
		BNa	0.000	0.000	0.051	0.050	0.025
		SUM IN B	2.000	2.000	2.000	1.967	1.984
		ACa	0.036	0.000	0.000	0.000	0.000
		ANa	0.051	0.051	0.000	0.000	0.025
		AK	0.018	0.018	0.018	0.018	0.018
		SUM IN A	0.104	0.068	0.018	0.018	0.043
		CCl	0.000	0.000	0.000	0.000	0.000
		CF	0.000	0.000	0.000	0.000	0.000
		SUM CATS	15.104	15.068	15.018	14.985	15.027
		SUM OXY	23.000	23.000	23.000	23.000	23.000

METHOD	GROUP	NAME
e2+ NK 1K 3-CNK V. 15-NK & 13-CNK	Calcic Calcic Calcic Calcic Calcic Calcic	Ferro-Actinolite Ferro-Actinolite Ferro-Actinolite Ferro-Actinolite Ferro-Actinolite

-

•

Cample	A3-1 🗸		Fo2±	15-NK	15 - K	13-CNK	AV(2-4)
sion	10 62	me i	7 702	1J-NK 7 695	7 650	7 620	7 657
5102	49.03	131	7.703	7.005	7.059	7.030	7.037
T102	0.07	TAL	0.297	0.315	0.341	0.370	0.343
1203	2.34	TFe3+	0.000	0.000	0.000	0.000	0.000
Jr203	0.00	TTI	0.000	0.000	0.000	0.000	0.000
FeO	24.36	SUM IN T	8.000	8.000	8.000	8.000	8.000
inO	1.71	CAl	0.132	0.112	0.085	0.054	0.083
(gO	6.91	CCr	0.000	0.000	0.000	0.000	0.000
CaO	11.49	CFe3+	0.000	0.110	0.266	0.438	0.274
Na20	0.17	CTI	0.008	0.008	0.008	0.008	0.008
(20	0.13	CMg	1.598	1.595	1.589	1.583	1.589
Cl	0.00	CFe2+	3.162	3.044	2.878	2.694	2.869
F	0.10	CMn	0.100	0.131	0.174	0.223	0.177
'otal	96.91	CCa	0.000	0.000	0.000	0.000	0.000
0=Cl,F	0.04	SUM IN C	5.000	5.000	5.000	5.000	5.000
Total	96.87	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.000	0.000	0.000	0.000	0.000
		BMn	0.125	0.094	0.049	0.000	0.047
		BCa	1.875	1.906	1.900	1.893	1.900
		BNa	0.000	0.000	0.051	0.051	0.025
		SUM IN B	2.000	2.000	2.000	1.943	1.972
		ACa	0.036	0.000	0.000	0.000	0.000
		ANa	0.051	0.051	0.000	0.000	0.026

	AK	0.026	0.026	0.026	0.025	0.026
	SUM IN A	0.113	0.077	0.026	0.025	0.051
	CC1	0.000	0.000	0.000	0.000	0.000
	CF	0.049	0.049	0.049	0.049	0.049
	SUM CATS	15.113	15.077	15.026	14.969	15.023
	SUM OXY	23.000	23.000	23.000	23.000	23.000
ETHOD	GROUP	NAME				
e2+	Calcic	Ferro-	Actinoli	.te		
5 - NK	Calcic	Ferro-	Actinoli	te		
15-K	Calcic	Ferro-	Actinoli	te		
13-CNK	Calcic	Ferro-	Actinoli	te		
V. 15-NK & 13-CNK	Calcic	Ferro-	Actinoli	te		

Sample A3-2

Dumpic	nj z						
-			Fe2+	15-NK	15-K	13-CNK	AV(2-4)
.iO2	49.63	TSi	7.763	7.754	7.729	7.705	7.729
TiO2	0.10	TAl	0.237	0.246	0.271	0.295	0.271
<u>~1203</u>	1.85	TFe3+	0.000	0.000	0.000	0.000	0.000
!r203	0.00	TTI	0.000	0.000	0.000	0.000	0.000
FeO	24.74	SUM IN T	8.000	8.000	8.000	8.000	8.000
MnO	1.90	CAl	0.105	0.095	0.069	0.043	0.069
[g0	6.41	CCr	0.000	0.000	0.000	0.000	0.000
Ja0	11.45	CFe3+	0.000	0.055	0.203	0.347	0.201
Na2O	0.16	CTI	0.012	0.012	0.012	0.012	0.012
:20	0.12	CMg	1.494	1.493	1.488	1.483	1.488
21	0.00	CFe2+	3.237	3.177	3.019	2.865	3.021
J	0.03	CMn	0.153	0.168	0.210	0.250	0.209
Cocal	96.39	CCa	0.000	0.000	0.000	0.000	0.000
•0=Cl,F	0.01	SUM IN C	5.000	5.000	5.000	5.000	5.000
Total	96.38	BMg	0.000	0.000	0.000	0.000	0.000
		BFe2+	0.000	0.000	0.000	0.000	0.000

	BMn BCa BNa SUM IN B ACa ANa AK SUM IN A CC1 CF SUM CATS SUM OVY	0.099 1.901 0.000 2.000 0.018 0.049 0.024 0.091 0.000 0.015 15.091	0.083 1.917 0.000 2.000 0.000 0.048 0.024 0.072 0.000 0.015 15.072	$\begin{array}{c} 0.041 \\ 1.911 \\ 0.048 \\ 2.000 \\ 0.000 \\ 0.000 \\ 0.024 \\ 0.024 \\ 0.024 \\ 0.000 \\ 0.015 \\ 15.024 \\ 23.000 \end{array}$	$\begin{array}{c} 0.000\\ 1.905\\ 0.048\\ 1.953\\ 0.000\\ 0.000\\ 0.024\\ 0.024\\ 0.024\\ 0.000\\ 0.015\\ 14.977\\ 23.000 \end{array}$	0.042 1.911 0.024 1.976 0.000 0.024 0.024 0.048 0.000 0.015 15.024 23.000
METHOD	GROUP	NAME				
Fe2+ 15-NK 15-K 13-CNK AV. 15-NK & 13-CNK	Calcic Calcic Calcic Calcic Calcic Calcic	Ferro-/ Ferro-/ Ferro-/ Ferro-/ Ferro-/	Actinoli Actinoli Actinoli Actinoli Actinoli	te te te te		

C2-2						
		Fe2+	15-NK	15-K	13-CNK	AV(2-4)
43.09	TSi	6.512	6.508	6.372	6.473	6.490
0.40	TAl	1.488	1.492	1.628	1.527	1.510
12.78	TFe3+	0.000	0.000	0.000	0.000	0.000
0.00	TTi	0.000	0.000	0.000	0.000	0.000
15.90	SUM IN T	8.000	8.000	8.000	8.000	8.000
0.47	CAl	0.790	0.785	0.602	0.737	0.761
9.65	CCr	0.000	0.000	0.000	0.000	0.000
11.92	CFe3+	0.000	0.023	0.981	0.273	0.148
1.09	CTI	0.045	0.045	0.044	0.045	0.045
1.42	CMg	2.173	2.172	2.127	2.160	2.166
	$\begin{array}{c} C2-2 \\ 43.09 \\ 0.40 \\ 12.78 \\ 0.00 \\ 15.90 \\ 0.47 \\ 9.65 \\ 11.92 \\ 1.09 \\ 1.42 \end{array}$	C2-2 43.09 TSi 0.40 TAl 12.78 TFe3+ 0.00 TTi 15.90 SUM IN T 0.47 CAl 9.65 CCr 11.92 CFe3+ 1.09 CTi 1.42 CMg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

:1	0.00	CFe2+	1.991	1.974	0.985	1.725	1.849	
F	0.29	CMn	0.000	0.000	0.0	0.000	0.000	0.059
0.060	0.030							
'otal	97.01	CCa	0.000	0.000	0.201	0.000	0.000	
Cl,F	0.12	SUM IN C	5.000	5.000	5.000	5.000	5,000	
local	96.89	BMg	0.000	0.000	0.000	0.000	0.000	
		BFe2+	0.018	0.011	0.000	0.000	0.005	
		BMn	0.060	0.060	0.000	0.000	0.030	
		BCa	1.921	1.929	1.687	1.919	1.924	
		BNa	0.000	0.000	0.313	0.081	0.041	
		SUM IN B	2.000	2.000	2.000	2.000	2.000	
		ACa	0.009	0.000	0.000	0.000	0.000	
		ANa	0.319	0.319	0.000	0.236	0.278	
		AK	0.274	0.274	0.268	0.272	0.273	
		SUM IN A	0.602	0.593	0.268	0.508	0.551	
		CCl	0.000	0.000	0.000	0.000	0.000	
		CF	0.139	0.139	0.136	0.138	0.138	
		SUM CATS	15.602	15.593	15.268	15.508	15.551	
		SUM OXY	23.002	23.000	23.000	23.000	23.000	
IETHOD		GROUP	NAME					
Fe2+		Calcic	Edenit	ic Hornb	lende			
15-NK		Calcic	Edenit	ic Hornb	lende			
⊥5 - К		Calcic	Tscher	makitic	Hornble	nde		
13-CNK		Calcic	Ferroa	n Pargas	itic Ho	rnblende		
\V. 15-NK	& 13-CNK	Calcic	Ferroan Pargasitic Hornblende					

" GSFONTS=C:\GSFONTS C.\HDIPCDOS\HDILOAD.EXE C:\WINDOWS\SMARTDRV.EXE SET PCPLUS=C:\PCPLUS C:\WINDOWS\mouse.COM /Y

JOB TITLE: PYROXENES Label: B4-1 DIOP

••

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.09	0.0000	Na	0.0086	0.0000
K	0.00	0.0000	K	0.0000	0.0000
Mg	8.62	0.0000	Mg	0.8030	0.0000
Fe	3.75	0.0000	Fe	0.1521	0.0000
Ca	17.63	0.0000	Ca	0.9958	0.0000
Al	0.18	0.0000	AL	0.0153	0.0000
Mn	1.18	0.0000	Mn	0.0486	0.0000
S1 #	24.51	0.0000	S1 Ti	1.9749	0.0000
T1 Cm	0.01	0.0000	11 Cr	0.0005	0.0000
Cr	0.03	0.0000	Cr	0.0013	0.0000
F	0.00	0.0000	F	0.0000	0.0000
	42.26	0.0000	0	5.9793	0.0000
Total	98.27			9.9/93	
	Fe(2+) Fe(3 Oct(2) Tet(2 Fixed catio	+) ratio 2) Oxy(6) on sum	adjusted		
		Cation			
	~ 1	Number		Error	
	S1	1.9749		0.0000	
	Al(IV)	0.0153	1 0000	0.0000	
		sum>	1.9902	0.0000	
	Ca	0.9958		0.0000	
	Mg	0.8030		0.0000	
	Fe	0.1107		0.0000	
	Al(VI)	0.0000		0.0000	
	Mn	0.0486		0.0000	
	Na	0.0086		0.0000	
	Cr	0.0013		0.0000	
	Ti	0.0005		0.0000	
	Fe3	0.0414		0.0000	
		Sum>	2.0098	0.0000	
	0	6.0000		0.0000	
	-	Sum>	6.0000	0.0000	

JOB TITLE: PYROXENES Label: B4-3 DIOP

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.08	0.0000	Na	0.0079	0.0000
К	0.00	0.0000	К	0.0001	0.0000
Mg	8.71	0.0000	Mg	0.8001	0.0000
Fe	3.73	0.0000	Fe	0.1491	0.0000
Ca	17.76	0.0000	Ca	0.9892	0.0000
Al	0.16	0.0000	Al	0.0132	0.0000
Mn	1.26	0.0000	Mn	0.0512	0.0000
Si	25.01	0.0000	Si	1.9876	0.0000
Ti	0.00	0.0000	Ti	0.0000	0.0000
Cr	0.04	0.0000	Cr	0.0017	0.0000
F	0.00	0.0000	F	0.0000	0.0000
0	42.94	0.0000	0	5.9909	0.0000
Total	99.70			9.9909	

Mineral: PYROXENE / Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum

	Cation		
	Number		Error
Si	1.9876		0.0000
Al(IV)	0.0124		0.0000
	Sum>	2.0000	0.0000
Са	0 9892		0 0000
Ma	0 8001		0.0000
Fig	0.0001		0.0000
ге	0.1309		0.0000
Al(VI)	0.0007		0.0000
Mn	0.0512		0.0000
Na	0.0079		0.0000
Cr	0.0017		0.0000
Ti	0.0000		0.0000
Fe3	0.0182		0.0000
	Sum>	1.9999	0.0000
0	6.0000		0.0000
	Sum>	6.0000	0.0000

JOB TITLE: PYROXENES Label: B4-4 DIOP

-

Elem	Elem	std	Top	Ton	std		
Name	Wt %	Error	Lahel	Number	Error		
Na	0.09	0.0000	Na	0.0088	0.0000		
ĸ	0.01	0,0000	ĸ	0.0004	0.0000		
Ma	8.61	0.0000	Ma	0.8119	0.0000		
Fe	3,82	0.0000	Fe	0.1566	0.0000		
Ca	17.82	0 0000	Ca	1 0190	0,0000		
21	0 16	0.0000	21	0 0134	0,0000		
Mn	1 35	0.0000	Mn	0.0154	0.0000		
Ci	23 60	0.0000	Ci	1 0334	0.0000		
51 mi	23.09	0.0000	51 m;	1.9554	0.0000		
11	0.00	0.0000	11	0.0000	0.0000		
	0.00	0.0000		0.0000	0.0000		
r O		0.0000	r	0.0081	0.0000		
0	41.45	0.0000	0	5.9353	0.0000		
TOTAL	97.06			9.9434			
Mineral:	Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum						
	rixeu Callo						
	Si Al(IV)	Cation Number 1.9334 0.0134 Sum>	1.9468	Error 0.0000 0.0000 0.0000			
	0-	4 0400					
	ca M	1.0190		0.0000			
	мg	0.8119		0.0000			
	re	0.0272		0.0000			
	AI(VI)	0.0000		0.0000			
	Mn	0.0565		0.0000			
	Na	0.0088		0.0000			
	Cr	0.0000		0.0000			
	Ti	0.0000		0.0000			
	Fe3	0.1294		0.0000			
		Sum>	2.0528	0.0000			
	0	6 0000		0 0000			
	0	Sum>	6.0000	0.0000			

JOB TITLE: PYROXENES Label: B4-5 DIOP

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.06	0.0000	 Na	0.0057	0.0000
К	0.01	0.0000	К	0.0008	0.0000
Mq	8.47	0.0000	Mg	0.7808	0.0000
Fe	4.24	0.0000	Fe	0.1702	0.0000
Ca	17.82	0.0000	Ca	0.9963	0.0000
Al	0.08	0.0000	Al	0.0064	0.0000
Mn	1.40	0.0000	Mn	0.0573	0.0000
Si	24.85	0.0000	Si	1.9822	0.0000
Ti	0.00	0.0000	Ti	0.0000	0.0000
Cr	0.01	0.0000	Cr	0.0004	0.0000
F	0.00	0.0000	F	0.0000	0.0000
0	42.72	0.0000	0	5.9823	0.0000
Total	99.67			9.9823	

Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum

Si Al(IV)	Cation Number 1.9822 0.0064 Sum>	1.9886	Error 0.0000 0.0000 0.0000
Ca	0.9963		0.0000
Mg	0.7808		0.0000
Fe	0.1347		0.0000
Al(VI)	0.0000		0.0000
Mn	0.0573		0.0000
Na	0.0057		0.0000
Cr	0.0004		0.0000
ті	0.0000		0.0000
Fe3	0.0355		0.0000
	Sum>	2.0106	0.0000
0	6.0000		0.0000
	Sum>	6.0000	0.0000

JOB TITLE: PYROXENES Label: T5-1 DIOP

-

Analysis Number: 6

======================================	======================================	 Std	Ion	Ion	std	
Name	Wt %	Error	Label	Number	Error	
Na	0.09	0.0000	Na	0.0088	0.0000	
K	0.00	0.0000	K	0.0002	0.0000	
Mg	8.18	0.0000	Mg	0.7537	0.0000	
Fe	6.01	0.0000	Fe	0.2411	0,0000	
Ca	17.33	0.0000	Ca	0.9685	0.0000	
Al	0.65	0.0000	Al	0.0537	0.0000	
Mn	0.22	0.0000	Mn	0.0092	0.0000	
Si	24.59	0.0000	Si	1.9610	0.0000	
T1	0.08	0.0000	Tı	0.0038	0.0000	
Cr	0.00	0.0000	Cr	0.0000	0.0000	
F	0.03	0.0000	F	0.0038	0.0000	
U Motal	42.78	0.0000	0	5.9870	0.0000	
TOLAT	99.90			9.9907		
Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum						
		Number		Error		
	Si	1.9610		0.0000		
	Al(IV)	0.0390		0.0000		
		Sum>	2.0000	0.0000		
	Ca	0.9685		0.0000		
	Mg	0.7537		0.0000		
	Fe	0.2150		0.0000		
	Al(VI)	0.0147		0.0000		
	Mn	0.0092		0.0000		
	Na	0.0088		0.0000		
	Cr m:	0.0000		0.0000		
	T1 Fo2	0.0038		0.0000		
	res	U.U201	1 0000	0.0000		
		Jum>	T.2230	0.0000		
	0	6.0000		0.0000		
		Sum>	6.0000	0.0000		

JOB TITLE: PYROXENES Label: T5-2 DIOP

Analysis Number: 7

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error		
Na	0.07	0.0000	Na	0.0072	0.0000		
К	0.00	0.0000	K	0.0000	0.0000		
Mg	8.46	0.0000	Mg	0.7810	0.0000		
Fe	5.21	0.0000	Fe	0.2095	0.0000		
Ca	17.42	0.0000	Ca	0.9756	0.0000		
Al	0.57	0.0000	Al	0.0472	0.0000		
Mn	0.21	0.0000	Mn	0.0085	0.0000		
Si	24.62	0.0000	Si	1.9679	0.0000		
Ti	0.06	0.0000	Ti	0.0030	0.0000		
Cr	0.00	0.0000	Cr	0.0001	0.0000		
F	0.05	0.0000	F	0.0058	0.0000		
0	42.72	0.0000	0	5.9907	0.0000		
Total	99.41			9.9965			
Mineral:	Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum						
		Cation					
		Number		Error			
	Si	1.9679		0.0000			
	Al(IV)	0.0321		0.0000			
		Sum>	2.0000	0.0000			
	Ca	0.9756		0.0000			
	Mg	0.7810		0.0000			
	Fe	0.1909		0.0000			
	Al(VI)	0.0150		0.0000			
	Mn	0.0085		0.0000			
	Na	0.0072		0.0000			
	Cr	0.0001		0.0000			
	Ti	0.0030		0.0000			
	Fe3	0.0186		0.0000			
		Sum>	2.0000	0.0000			
	0	6.0000		0.0000			
		Sum>	6.0000	0.0000			
JOB TITLE: PYROXENES Label: T5-3 DIOP

,

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.07	0.0000	Na	0.0075	0.0000
K	0.01	0.0000	К	0.0008	0.0000
Mg	8.27	0.0000	Mg	0.7865	0.0000
Fe	5.36	0.0000	Fe	0.2219	0.0000
Ca	16.65	0.0000	Ca	0.9607	0.0000
Al	0.60	0.0000	AL	0.0516	0.0000
Mn	0.24	0.0000	Mn	0.0099	0.0000
Si	23.74	0.0000	Si	1.9550	0.0000
T1	0.11	0.0000	T1	0.0055	0.0000
Cr	0.01	0.0000	Cr	0.0005	0.0000
F	0.00	0.0000	F	0.0000	0.0000
	41.39	0.0000	0	5.9822	0.0000
TOTAL	96.47			9.9822	
	Fixed catio	Cation			
	_	Number		Error	
	Si	1.9550		0.0000	
	Al(IV)	0.0450		0.0000	
		Sum>	2.0000	0.0000	
	Ca	0.9607		0.0000	
	Ca Mg	0.9607 0.7865		0.0000 0.0000	
	Ca Mg Fe	0.9607 0.7865 0.1864		0.0000 0.0000 0.0000	
	Ca Mg Fe Al(VI)	0.9607 0.7865 0.1864 0.0066		0.0000 0.0000 0.0000 0.0000	
	Ca Mg Fe Al(VI) Mn	0.9607 0.7865 0.1864 0.0066 0.0099		0.0000 0.0000 0.0000 0.0000 0.0000	
	Ca Mg Fe Al(VI) Mn Na	0.9607 0.7865 0.1864 0.0066 0.0099 0.0075		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	
	Ca Mg Fe Al(VI) Mn Na Cr	0.9607 0.7865 0.1864 0.0066 0.0099 0.0075 0.0005		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	
	Ca Mg Fe Al(VI) Mn Na Cr Ti	0.9607 0.7865 0.1864 0.0066 0.0099 0.0075 0.0005 0.0055		$\begin{array}{c} 0.0000\\ 0.000\\ 0.$	
	Ca Mg Fe Al(VI) Mn Na Cr Ti Fe3	0.9607 0.7865 0.1864 0.0066 0.0099 0.0075 0.0005 0.0055 0.0355		$\begin{array}{c} 0.0000\\ 0.000\\ 0.00$	
	Ca Mg Fe Al(VI) Mn Na Cr Ti Fe3	0.9607 0.7865 0.1864 0.0066 0.0099 0.0075 0.0005 0.0055 0.0355 Sum>	1.9992	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	

JOB TITLE: PYROXENES Label: T5-4 DIOP

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
 Na	0.04	0.0000	Na	0.0042	0.0000
K	0.01	0.0000	К	0.0005	0.0000
Mg	7.83	0.0000	Mg	0.7276	0.0000
Fe	6.83	0.0000	Fe	0.2762	0.0000
Ca	16.95	0.0000	Ca	0.9552	0.0000
Al	0.84	0.0000	Al	0.0702	0.0000
Mn	0.14	0.0000	Mn	0.0058	0.0000
Si	24.30	0.0000	Si	1.9548	0.0000
Ti	0.10	0.0000	Ti	0.0049	0.0000
Cr	0.01	0.0000	Cr	0.0005	0.0000
F	0.05	0.0000	F	0.0057	0.0000
0	42.46	0.0000	0	5.9924	0.0000
Total	99.57			9.9981	

Mineral: PYROXENE V Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum

Si Al(IV)	Cation Number 1.9548 0.0452 Sum>	2.0000	Error 0.0000 0.0000 0.0000
Ca	0.9552		0.0000
Mq	0.7276		0.0000
Fe	0.2611		0.0000
Al(VI)	0.0250		0.0000
Mn	0.0058		0.0000
Na	0.0042		0.0000
Cr	0.0005		0.0000
Ti	0.0049		0.0000
Fe3	0.0151		0.0000
	Sum>	1.9995	0.0000
0	6.0000		0.0000
	Sum>	6.0000	0.0000

JOB TITLE: PYROXENES Label: A2-1 DIOP

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.15	0.0000	Na	0.0155	0.0000
К	0.01	0.0000	K	0.0009	0.0000
Mq	5.75	0.0000	Mq	0.5497	0.0000
Fe	9.99	0.0000	Fe	0.4157	0.0000
Ca	16.77	0.0000	Ca	0.9722	0.0000
Al	0.33	0.0000	Al	0.0283	0.0000
Mn	0.50	0.0000	Mn	0.0213	0.0000
Si	24.11	0.0000	Si	1.9955	0.0000
Ti	0.02	0.0000	Ti	0.0008	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.04	0.0000	F	0.0048	0.0000
0	41.34	0.0000	Ō	6.0023	0.0000
Total	99.01		-	10.0071	

Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum

Si Al(IV)	Cation Number 1.9955 0.0045 Sum>	2.0000	Error 0.0000 0.0000 0.0000
Ca	0.9722		0.0000
Mg	0.5497		0.0000
Fe	0.4157		0.0000
Al(VI)	0.0239		0.0000
Mn	0.0213		0.0000
Na	0.0155		0.0000
Cr	0.0000		0.0000
Ti	0.0008		0.0000
Fe3	0.0000		0.0000
	Sum>	1.9991	0.0000
0	6.0023		0.0000
	Sum>	6.0023	0.0000

JOB TITLE: PYROXENES Label: A2-2 DIOP

.

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error		
Na K Mg Fe Ca Al Mn Si Ti Cr F	$\begin{array}{c} 0.15\\ 0.00\\ 6.27\\ 9.27\\ 16.75\\ 0.29\\ 0.52\\ 24.14\\ 0.01\\ 0.01\\ 0.00\\ 0.00\\ \end{array}$	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	======================================	0.0153 0.0000 0.5968 0.3843 0.9671 0.0248 0.0219 1.9889 0.0005 0.0004 0.0005	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		
0 Total	41.44 98.85	0.0000	Ō	5.9942 9.9947	0.0000		
Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum							

	~~~~~		
	Number		Error
Si	1.9889		0.0000
Al(IV)	0.0111		0.0000
	Sum>	2.0000	0.0000
Ca	0.9671		0.0000
Mg	0.5968		0.0000
Fe	0.3727		0.0000
Al(VI)	0.0137		0.0000
Mn	0.0219		0.0000
Na	0.0153		0.0000
Cr	0.0004		0.0000
Ti	0.0005		0.0000
Fe3	0.0115		0.0000
	Sum>	2.0000	0.0000
0	6.0000		0.0000
	Sum>	6.0000	0.0000

JOB TITLE: PYROXENES Label: A2-3 DIOP

.

•

Elem	Elem	std	Ton	Ton	Std		
Name	Wt %	Error	Labe]	Number	Error		
=======================================							
Na	0.18	0.0000	Na	0,0182	0.0000		
K	0.00	0.0000	ĸ	0.0002	0.0000		
Ma	6.31	0 0000	Ma	0.5981	0.0000		
E E E	8 81	0.0000	Fe	0 3635	0,0000		
re Ca	16.96	0.0000	re Ca	0.3033	0.0000		
	10.00	0.0000	כם	0.9090	0.0000		
A1 Mn	0.40	0.0000	Mn	0.0340	0.0000		
rin Ci	0+04	0.0000	rii Ci	1 00225	0.0000		
51	24.31	0.0000	51	1.9932	0.0000		
T1	0.00	0.0000	T1	0.0001	0.0000		
Cr	0.02	0.0000	cr	0.0011	0.0000		
F	0.00	0.0000	F	0.0000	0.0000		
0	41.69	0.0000	0	6.0016	0.0000		
Total	99.14			10.0016			
Mineral:	Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum						
		Cation					
		Number		Error			
	Si	1,9932		0.0000			
	A1(TV)	0.0068		0.0000			
		Sum>	2 0000	0.0000			
			2. DODOU	0.0000			
		0um >	2.0000	0.0000			
	Ca	0.9690	2.0000	0.0000			
	Ca	0.9690 0.5981	2.0000				
	Ca Mg Fe	0.9690 0.5981 0.3635	2.0000	0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI)	0.9690 0.5981 0.3635	2.0000	0.0000 0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI) Mn	0.9690 0.5981 0.3635 0.0272	2.0000	0.0000 0.0000 0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI) Mn Na	0.9690 0.5981 0.3635 0.0272 0.0225	2.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI) Mn Na	0.9690 0.5981 0.3635 0.0272 0.0225 0.0182	2.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI) Mn Na Cr	0.9690 0.5981 0.3635 0.0272 0.0225 0.0182 0.0011	2.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI) Mn Na Cr Ti	0.9690 0.5981 0.3635 0.0272 0.0225 0.0182 0.0011 0.0001	2.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI) Mn Na Cr Ti Fe3	0.9690 0.5981 0.3635 0.0272 0.0225 0.0182 0.0011 0.0001 0.0000	2.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI) Mn Na Cr Ti Fe3	0.9690 0.5981 0.3635 0.0272 0.0225 0.0182 0.0011 0.0001 0.0000 Sum>	1.9998	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI) Mn Na Cr Ti Fe3	0.9690 0.5981 0.3635 0.0272 0.0225 0.0182 0.0011 0.0001 0.0000 Sum>	1.9998	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI) Mn Na Cr Ti Fe3	0.9690 0.5981 0.3635 0.0272 0.0225 0.0182 0.0011 0.0001 0.0000 Sum> 6.0016	1.9998	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			

JOB TITLE: PYROXENES Label: A2-4 DIOP

.

## Analysis Number: 13

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.17	0.0000	Na	0.0172	0.0000
K	0.01	0.0000	K	0.0007	0.0000
Mg	5.64	0.0000	Mg	0.5403	0.0000
Fe	10.44	0.0000	Fe	0.4352	0.0000
Ca	16.72	0.0000	Ca	0.9709	0.0000
Al	0.23	0.0000	Al	0.0196	0.0000
Mn	0.51	0.0000	Mn	0.0218	0.0000
Si	24.07	0.0000	Si	1.9944	0.0000
Ti	0.00	0.0000	Ti	0.0000	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.00	0.0000	F	0.0000	0.0000
0	41.21	0.0000	0	5.9950	0.0000
Total	99.02			9.9950	

Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum

	Cation		
	Number		Error
Si	1.9944		0.0000
Al(IV)	0.0056		0.0000
	Sum>	2.0000	0.0000
Ca	0.9709		0.0000
Mg	0.5403		0.0000
Fe	0.4252		0.0000
Al(VI)	0.0139		0.0000
Mn	0.0218		0.0000
Na	0.0172		0.0000
Cr	0.0000		0.0000
Ti	0.0000		0.0000
Fe3	0.0100		0.0000
	Sum>	1.9993	0.0000
0	6.0000		0.0000
	Sum>	6.0000	0.0000

JOB TITLE: Label: C1-1 DIOP?

*

PYROXENES

Analysis Number: 14

Elem Name	==Elem Wt %	Std Error	Ion Label	Ion Number	Std Error			
Na	0.15	0.0000	Na	0.0149	0.0000			
К	0.01	0.0000	K	0.0007	0.0000			
Mg	5.97	0.0000	Mg	0.5769	0.0000			
Fe	9.68	0.0000	Fe	0.4073	0.0000			
Ca	16.73	0.0000	Ca	0.9813	0.0000			
Al	0.40	0.0000	Al	0.0352	0.0000			
Mn	0.50	0.0000	Mn	0.0212	0.0000			
Si	23.45	0.0000	Si	1.9624	0.0000			
Ti	0.00	0.0000	Ti	0.0000	0.0000			
Cr	0.00	0.0000	Cr	0.0000	0.0000			
F	0.00	0.0000	F	0.0000	0.0000			
0	40.65	0.0000	0	5.9721	0.0000			
Total	97.53			9.9721				
Mineral:	Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum							
	Si Al(IV)	Cation Number 1.9624 0.0352 Sum>	1.9976	Error 0.0000 0.0000 0.0000				
	Ca	0.9813		0.0000				

0.0000 0.0000 0.0000 0.0000 Fe3 0.0558 0.0000 0.0000 Sum --> 2.0017 6.0000 0.0000 0.0000 Sum --> 6.0000

0.0000

0.0000

0.0212

0.0149

Mn

Na

 $\operatorname{Cr}$ 

Ti

0

JOB TITLE: PYROXENES Label: C1-2 DIOP?

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error		
Name Na K Mg Fe Ca Al Mn Si Ti Cr F O Total	Wt % 0.15 0.01 5.99 9.74 16.51 0.43 0.60 23.90 0.02 0.00 0.11 41.22 98.69	Error 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Label Na K Mg Fe Ca Al Mn Si Ti Cr F O	Number 0.0149 0.0008 0.5738 0.4063 0.9594 0.0368 0.0256 1.9815 0.0009 0.0000 0.0000 0.0135 5.9929 10.0064	Error 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		
Mineral:	Mineral: PYROXENE / Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum						
	Si Al(IV)	Cation Number 1.9815 0.0185 Sum>	2.0000	Error 0.0000 0.0000 0.0000			
	Ca Mg Fe Al(VI) Mn Na Cr Ti Fe3	0.9594 0.5738 0.3921 0.0182 0.0256 0.0149 0.0000 0.0009 0.0142 Sum>	1.9992	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$			
	0	6.0000 Sum>	6.0000	0.0000 0.0000			

JOB TITLE: PYROXENES Label: C1-3 DIOP?

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na K Mg Fe Ca Al Mn Si Ti Cr F O Total	$\begin{array}{c} 0.11\\ 0.01\\ 6.03\\ 9.77\\ 16.67\\ 0.36\\ 0.47\\ 24.01\\ 0.02\\ 0.01\\ 0.03\\ 41.31\\ 98.81 \end{array}$	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Na K Mg Fe Ca Al Mn Si Ti Cr F O	0.0115 0.0005 0.5765 0.4063 0.9665 0.0312 0.0200 1.9863 0.0008 0.0008 0.0005 0.0043 5.9969 10.0012	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mineral:	PYROXENE Fe(2+) Fe(3 Oct(2) Tet(2 Fixed catio	+) ratio ) Oxy(6) n sum	adjusted	******	
	Si Al(IV) Ca Mg	Cation Number 1.9863 0.0137 Sum> 0.9665 0.5765	2.0000	Error 0.0000 0.0000 0.0000 0.0000	
	re Al(VI) Mn Na Cr Ti Fe3	0.4001 0.0175 0.0200 0.0115 0.0005 0.0008 0.0062 Sum>	1.9995	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	
	0	6.0000 Sum>	6.0000	0.0000 0.0000	

JOB TITLE: PYROXENES Label: C1-4 DIOP?

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na K Mg Fe Ca Al Mn Si Ti Cr F O Total	$\begin{array}{c} 0.14\\ 0.01\\ 5.98\\ 9.74\\ 16.74\\ 0.44\\ 0.53\\ 23.24\\ 0.02\\ 0.00\\ 0.10\\ 40.54\\ 97.50\end{array}$	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Na K Mg Fe Ca Al Mn Si Ti Cr F O	0.0142 0.0009 0.5793 0.4109 0.9835 0.0385 0.0229 1.9485 0.0012 0.0000 0.0121 5.9612 9.9733	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mineral:	PYROXENE Fe(2+) Fe(3 Oct(2) Tet(2 Fixed catio	+) ratio ) Oxy(6) on sum	adjusted		
	Si Al(IV)	Cation Number 1.9485 0.0385 Sum>	1.9870	Error 0.0000 0.0000 0.0000	
	Ca Mg Fe Al(VI) Mn Na Cr Ti Fe3	0.9835 0.5793 0.3333 0.0000 0.0229 0.0142 0.0000 0.0012 0.0776 Sum>	2.0121	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	
	0	6.0000 Sum>	6.0000	0.0000 0.0000	

JOB TITLE: PYROXENES Label: C2-1 DIOP

Analysis Number: 18

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.15	0.0000	Na	0.0156	0.0000
K	0.00	0.0000	K	0.0000	0.0000
Mg	5.65	0.0000	Mg	0.5442	0.0000
Fe	10.33	0.0000	Fe	0.4328	0.0000
Ca	16.62	0.0000	Ca	0.9709	0.0000
Al	0.56	0.0000	Al	0.0486	0.0000
Mn	0.50	0,0000	Mn	0.0214	0.0000
Si	23.57	0.0000	Si	1.9645	0.0000
Ti	0.04	0.0000	Ti	0.0019	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.01	0.0000	F	0.0015	0.0000
0	40.89	0.0000	0	5.9828	0.0000
Total	98.33			9.9843	
Total	98.33			9.9843	

Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum

Si Al(IV)	Cation Number 1.9645 0.0355 Sum>	2.0000	Error 0.0000 0.0000 0.0000
Ca	0.9709		0.0000
Mg	0.5442		0.0000
Fe	0.3984		0.0000
Al(VI)	0.0131		0.0000
Mn	0.0214		0.0000
Na	0.0156		0.0000
Cr	0.0000		0.0000
Ti	0.0019		0.0000
Fe3	0.0344		0.0000
	Sum>	2,0000	0.0000
0	6.0000		0.0000
	Sum>	6.0000	0.0000

JOB TITLE: PYROXENES Label: C5-1 DIOP

a.

·

.

Elem	Elem	std	Ton	Ion	std
Name	Wt %	Error	Label	Number	Error
Na	0.13	0.0000	Na	0.0125	0.0000
K	0.00	0.0000	К	0.0001	0.0000
Mg	6.54	0.0000	Mg	0.6196	0.0000
Fe	8.91	0.0000	Fe	0.3676	0.0000
Ca	16.80	0.0000	Ca	0.9652	0.000
Al	0.41	0.0000	Al	0.0347	0.0000
Mn	0.47	0.0000	Mn	0.0198	0.0000
Si	24.14	0.0000	Si	1.9795	0.0000
Ti	0.02	0.0000	Ti	0.0010	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.02	0.0000	F	0.0024	0.0000
0	41.62	0.0000	0	5.9912	0.0000
Total	99.06			9.9937	
					=
Mineral:	PYROXENE Fe(2+) Fe(3 Oct(2) Tet(2 Fixed catio	9+) ratio 2) Oxy(6) on sum	adjusted		
	Si Al(IV)	Cation Number 1.9795 0.0205 Sum>	2.0000	Error 0.0000 0.0000 0.0000	
	Ca Mg Fe Al(VI)	0.9652 0.6196 0.3500 0.0141		0.0000 0.0000 0.0000 0.0000	
	MIN N-	0.0198		0.0000	
	Na C~	0.0125		0.0000	
	Cr mi	0.0000		0.0000	
	'I'1 R= 0	0.0010		0.0000	
	res	0.0175	1 0000	0.0000	
		Sum>	1.9999	0.0000	
	0	6 0000		0 0000	
	0	5.0000 Sum>	6.0000	0.0000	

JOB TITLE: PYROXENES Label: C5-2 DIOP

*

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.15	0.0000	Na	0.0147	0.0000
K	0.01	0.0000	K	0.0005	0.0000
Mg	6.49	0.0000	Mg	0.6172	0.0000
Fe	8.85	0.0000	Fe	0.3664	0.0000
Ca	16.69	0.0000	Ca	0.9623	0.0000
Al	0.37	0.0000	Al	0.0317	0.0000
Mn	0.44	0.0000	Mn	0.0183	0.0000
Si	24.15	0.0000	Si	1.9872	0.0000
Ti	0.03	0.0000	Ti	0.0014	0.0000
Cr	0.01	0.0000	Cr	0.0004	0.0000
F	0.02	0.0000	F	0.0019	0.0000
0	41.53	0.0000	0	5.9970	0.0000
Total	98.73			9.9990	

Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum

	Cation		
	Number		Error
Si	1.9872		0.0000
Al(IV)	0.0128		0.0000
	Sum>	2.0000	0.0000
Ca	0.9623		0.0000
Mg	0.6172		0.0000
Fe	0.3604		0.0000
Al(VI)	0.0189		0.0000
Mn	0.0183		0.0000
Na	0.0147		0.0000
Cr	0.0004		0.0000
Ti	0.0014		0.0000
Fe3	0.0060		0.0000
	Sum>	1.9995	0.0000
0	6.0000		0.0000
	Sum>	6.0000	0.0000

JOB 3 Label: C2-3	AMP PY	ROXENES		Analy	ysis Number: 21
Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na K	0.15	0.0000	Na K	0.0152	0.0000
Ma	6.86	0.0000	Ma	0.6452	0.0000
Fe	8.35	0.0000	Fe	0.3418	0.0000
Ca	16.98	0.0000	Ca	0.9678	0.0000
Al	0.30	0.0000	Al	0.0253	0.0000
Mn	0.43	0.0000	Mn	0.0178	0.0000
Si	24.40	0.0000	Si	1.9851	0.0000
Ti	0.02	0.0000	Ti	0.0009	0.0000
Cr	0.02	0.0000	Cr	0.0010	0.0000
F	0.00	0.0000	F	0.0000	0.0000
0	41.95	0.0000	0	5.9914	0.0000
	PYROXENE V Fe(2+) Fe(3 Oct(2) Tet(2	+) ratio	adjusted		
	Fixed catic	on sum			
		Cation		<b>D</b>	
	c;			Error	
	51 81/TV)	1.9851		0.0000	
	AT(IV)	Sum>	2.0000	0.0000	
		Dum	2.0000	0.0000	
	Ca	0.9678		0.0000	
	Mg	0.6452		0.0000	
	Fe	0.3247		0.0000	
	Al(VI)	0.0104		0.0000	
	Mn	0.0178		0.0000	
	Na	0.0152		0.0000	
	Cr	0.0010		0.0000	
	Ti	0.0009		0.0000	
	Fe3	0.0172		0.0000	

~

.

8

Sum -->

6.0000

Sum -->

0

2.0000

6.0000

0.0000

0.0000

0.0000

JOB TITLE: PYROXENES Label: C3-1 AMP

.

-

Elem	Elem	Std	Ion	Ion	Std
Name	WC 8 	Error	Lapel	Numper	Error
Na	0.14	0,0000	Na	0.0148	0.0000
K	0.02	0.0000	ĸ	0.0014	0.0000
Ma	5.47	0.0000	Mq	0.5305	0.0000
Fe	10.73	0.0000	Fe	0.4528	0.0000
Ca	16.17	0.0000	Ca	0.9507	0.0000
Al	0.54	0.0000	Al	0.0472	0.0000
Mn	0.50	0.0000	Mn	0.0213	0.0000
Si	23.59	0.0000	Si	1.9799	0.0000
Ti	0.03	0.0000	Ti	0.0015	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.12	0.0000	F	0.0144	0.0000
0	40.75	0.0000	0	5.9966	0.0000
Total	98.06			10.0110	
Mineral:	<pre>PYROXENE Fe(2+) Fe(3 Oct(2) Tet(2 Fixed catio</pre>	(+) ratio () Oxy(6) on sum	adjusted		
		Cation		Frror	
	Si	1 0700		0 0000	
	Al(TV)	0.0201		0.0000	
	A1(1V)	Sum>	2.0000	0.0000	
	Ca	0.9507		0.0000	
	Mg	0.5305		0.0000	
	Fe	0.4460		0.0000	
	Al(VI)	0.0271		0.0000	
	Mn	0.0213		0.0000	
	Na	0.0148		0.0000	
	Cr	0.0000		0.0000	
	Ti	0.0015		0.0000	
	Fe3	0.0067		0.0000	
		Sum>	1.9986	0.0000	
	0	6 0000		0 0000	
	0	Sum>	6.0000	0.0000	

JOB TITLE: PYROXENES Label: C3-2 AMP

.

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.14	0.0000	Na	0.0139	0.0000
К	0.00	0.0000	К	0.0000	0.0000
Mq	5.78	0.0000	Mg	0.5532	0.0000
Fe	10.27	0.0000	Fe	0.4280	0.0000
Ca	16.57	0.0000	Ca	0.9623	0.0000
Al	0.40	0.0000	Al	0.0348	0.0000
Mn	0.61	0.0000	Mn	0.0260	0.0000
Si	23.89	0.0000	Si	1.9791	0.0000
Ti	0.04	0.0000	Ti	0.0019	0.0000
Cr	0.02	0.0000	Cr	0.0007	0.0000
F	0.03	0.0000	F	0.0043	0.0000
0	41.21	0.0000	0	5.9918	0.0000
Total	98.96			9.9961	

Mineral: PYROXENE Fe(2+) Fe(3+) ratio adjusted Oct(2) Tet(2) Oxy(6) Fixed cation sum

Si Al(IV)	Cation Number 1.9791 0.0209 Sum>	2.0000	Error 0.0000 0.0000 0.0000
Ca	0.9623		0.0000
Mg	0.5532		0.0000
Fe	0.4116		0.0000
Al(VI)	0.0140		0.0000
Mn	0.0260		0.0000
Na	0.0139		0.0000
Cr	0.0007		0.0000
Ti	0.0019		0.0000
Fe3	0.0164		0.0000
	Sum>	2.0000	0.0000
0	6.0000		0.0000
	Sum>	6.0000	0.0000

JOB TITLE: GARNETS Label: B1-1 GAR

Analysis Number: 1

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
======================================	0.00	0.0000	Na	0.0000	0.0000
К	0.00	0.0000	K	0.0007	0.0000
Mg	0.00	0.0000	Mg	0.0006	0.0000
Fe	22.05	0.0000	Fe	2.0410	0.0000
Ca	22.40	0.0000	Ca	2.8890	0.0000
Al	0.10	0.0000	Al	0.0197	0.0000
Mn	1.01	0.0000	Mn	0.0953	0.0000
Si	16.05	0.0000	Si	2.9534	0.0000
Ti	0.00	0.0000	Ti	0.0000	0.0000
Cr	0.00	0.0000	Cr	0.0003	0.0000
F	0.09	0.0000	F	0.0258	0.0000
0	33,98	0.0000	0	10.9627	0.0000
Total	95.70			18.9886	

Si Al(IV)	Cation Number 2.9534 0.0197 Sum>	2.9731	Error 0.0000 0.0000 0.0000
Al(VI)	0.0000		0.0000
Ti	0.0000		0.0000
Cr	0.0003		0.0000
	Sum>	0.0003	0.0000
Fe	2.0410		0.0000
Mg	0.0006		0.0000
Ca	2.8890		0.0000
Mn	0.0953		0.0000
	Sum>	5.0259	0.0000
0	10.9627		0.0000
	Sum>	10.9627	0.0000

JOB TITLE: GARNETS Label: B1-2 GAR

...

,

#### Analysis Number: 2

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.00	0.0000	Na	0.0011	0.0000
K	0.00	0.0000	K	0.0000	0.0000
Mg	0.00	0.0000	Mg	0.0000	0.0000
Fe	22.00	0.0000	Fe	2.0382	0.0000
Ca	22.09	0,0000	Ca	2.8509	0.0000
Al	0.16	0.0000	Al	0.0305	0.0000
Mn	1.14	0.0000	Mn	0.1077	0.0000
Si	16.12	0.0000	Si	2.9681	0.0000
Ti	0.02	0.0000	Ti	0.0025	0.0000
Cr	0.01	0.0000	Cr	0.0010	0.0000
F	0.04	0.0000	F	0.0120	0.0000
0	34.00	0.0000	0	10.9851	0.0000
Total	95.59			18.9971	

	Cation		
	Number		Error
Si	2.9681		0.0000
Al(IV)	0.0305		0.0000
	Sum>	2.9986	0.0000
A1 (VT)	0 0000		0 0000
	0.0000		0.0000
1 T	0.0025		0.0000
Cr	0.0010		0.0000
	Sum>	0.0035	0.0000
Fe	2.0382		0.0000
Mq	0.0000		0.0000
Ca	2.8509		0.0000
Mn	0.1077		0.0000
	Sum>	4.9968	0.0000
0	10 0051		0 0000
U U	10.9001		0.0000
	Sum>	10.9851	0.0000

JOB TITLE: GARNETS Label: B1-3 GAR

## Analysis Number: 3

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.00	0.0000	 Na	0.0000	0.0000
К	0.00	0.0000	K	0.0000	0.0000
Mq	0.00	0.0000	Mg	0.0011	0.0000
Fe	22.38	0.0000	Fe	2.0568	0.0000
Ca	22.39	0.0000	Ca	2.8674	0.0000
Al	0.14	0.0000	Al	0.0262	0.0000
Mn	1.18	0.0000	Mn	0.1105	0.0000
Si	16.07	0.0000	Si	2.9370	0.0000
Ti	0.00	0.0000	Ti	0.0000	0.0000
Cr	0.01	0.0000	Cr	0.0010	0.0000
F	0.13	0.0000	$\mathbf{F}$	0.0354	0.0000
0	34.19	0.0000	0	10.9504	0.0000
Total	96.51			18.9858	

	Cation		
	Number		Error
Si	2.9370		0.0000
Al(IV)	0.0262		0.0000
	Sum>	2.9633	0.0000
Al(VI)	0.0000		0.0000
Ti	0.0000		0.0000
Cr	0.0010		0.0000
	Sum>	0.0010	0.0000
Fe	2.0568		0.0000
Mg	0.0011		0.0000
Ca	2.8674		0.0000
Mn	0.1105		0.0000
	Sum>	5.0358	0.0000
0	10.9504		0.0000
_	Sum>	10.9504	0.0000

JOB TITLE: GARNETS Label: B1-4 GAR

.

*(**

_e

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.01	0.0000	Na	0.0018	0.0000
K	0.01	0.0000	K	0.0008	0.0000
Mq	0.00	0.0000	Mg	0.0004	0.0000
Fe	22.01	0.0000	Fe	2.0276	0.0000
Ca	22.29	0.0000	Ca	2.8604	0.0000
Al	0.13	0.0000	Al	0.0257	0.0000
Mn	1.15	0.0000	Mn	0.1076	0.0000
Si	16.25	0.0000	Si	2.9756	0.0000
Ti	0.00	0.0000	Ti	0.0001	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.04	0.0000	F	0.0119	0.0000
0	34.19	0.0000	0	10.9869	0.0000
Total	96.09			18.9988	

	Cation		
	Number		Error
Si	2.9756		0.0000
Al(IV)	0.0244		0.0000
	Sum>	3.0000	0.0000
AI (VT)	0.0013		0.0000
ті	0.0001		0.0000
Cr	0.0000		0.0000
	Sum>	0.0014	0.0000
Fe	2.0276		0.0000
Mg	0.0004		0.0000
Ca	2.8604		0.0000
Mn	0.1076		0.0000
	Sum>	4.9960	0.0000
0	10.9869		0.0000
	Sum>	10.9869	0.0000

JOB TITLE: GARNETS Label: B2-5 GAR

# Analysis Number: 5

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.00	0.0000	Na	0.0000	0.0000
К	0.01	0.0000	К	0.0009	0.0000
Mg	0.00	0.0000	Mg	0.0000	0.0000
Fe	21.92	0.0000	Fe	2.0474	0.0000
Ca	22.27	0.0000	Ca	2.8985	0.0000
Al	0.13	0.0000	Al	0.0253	0.0000
Mn	1.12	0.0000	Mn	0.1063	0.0000
Si	15.73	0.0000	Si	2.9213	0.0000
Ti	0.00	0.0000	Ti	0.0000	0.0000
Cr	0.00	0.0000	Cr	0.0001	0.0000
F	0.00	0.0000	F	0.0011	0.0000
0	33.54	0.0000	0	10.9337	0.0000
Total	94.74			18.9348	

Si Al(IV)	Cation Number 2.9213 0.0253 Sum>	2.9467	Error 0.0000 0.0000 0.0000
Al(VI) Ti Cr	0.0000 0.0000 0.0001 Sum>	0.0001	0.0000 0.0000 0.0000 0.0000
Fe Mg Ca Mn	2.0474 0.0000 2.8985 0.1063 Sum>	5.0523	0.0000 0.0000 0.0000 0.0000 0.0000
0	10.9337 Sum>	10.9337	0.0000 0.0000

JOB TITLE: GARNETS Label: B2-6 GAR

.

## Analysis Number: 6

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.01	0.0000	Na	0.0023	0.0000
K	0.00	0.0000	K	0.0000	0.0000
Mq	0.00	0.0000	Mg	0.0002	0.0000
Fe	21.57	0.0000	Fe	2.0347	0.0000
Ca	22.12	0,0000	Ca	2.9075	0.0000
Al	0.13	0.0000	Al	0.0258	0.0000
Mn	1.02	0.0000	Mn	0.0982	0.0000
Si	15.63	0.0000	Si	2.9314	0.0000
Ti	0.00	0.0000	Ti	0.0000	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.00	0.0000	F	0.0000	0.0000
Ō	33.23	0.0000	0	10.9427	0.0000
Total	93.72			18.9427	

	Cation		
	Number		Error
Si	2.9314		0.0000
Al(IV)	0.0258		0.0000
	Sum>	2.9572	0.0000
Al(VI)	0.0000		0.0000
Ti	0.0000		0.0000
Cr	0.0000		0.0000
	Sum>	0.0000	0.0000
<b>D</b> e	2 0247		0 0000
re	2.0347		0.0000
Mg	0.0002		0.0000
Ca	2.9075		0.0000
Mn	0.0982		0.0000
	Sum>	5.0405	0.0000
0	10 0407		0 0000
U	10.9427		0.0000
	Sum>	10.9427	0.0000

JOB TITLE: GARNETS Label: B2-7 GAR

,

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.00	0.0000	Na	0.0002	0.0000
K	0.01	0.0000	К	0.0008	0.0000
Mg	0.00	0.0000	Mg	0.0000	0.0000
Fe	21.93	0.0000	Fe	2.0543	0.0000
Ca	22.06	0.0000	Ca	2.8788	0.0000
Al	0.14	0.0000	Al	0.0264	0.0000
Mn	1.11	0.0000	Mn	0.1057	0.0000
Si	15.75	0.0000	Si	2.9335	0.0000
Ti	0.00	0.0000	Ti	0.0000	0.0000
Cr	0.00	0.0000	Cr	0.0003	0.0000
$\mathbf{F}$	0.00	0.0000	F	0.0000	0.0000
0	33.48	0.0000	0	10.9460	0.0000
Total	94.48			18.9460	

Mineral: GARNET STANDARD GARNET X(3) Y(2) Z(3) Oxy(12) Fixed cation sum

.

	Cation		
	Number		Error
Si	2.9335		0.0000
Al(IV)	0.0264		0.0000
	Sum>	2.9599	0.0000
Al(VI)	0.0000		0.0000
Ti	0.0000		0.0000
Cr	0.0003		0.0000
	Sum>	0.0003	0.0000
Fe	2.0543		0.0000
Mg	0.0000		0.0000
Ca	2.8788		0.0000
Mn	0.1057		0.0000
	Sum>	5.0388	0.0000
0	10.9460		0.0000
	Sum>	10.9460	0.0000

JOB TITLE: GARNETS Label: B3-3 DIOP?

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.00	0.0000	Na	0.0000	0.0000
K	0.00	0.0000	К	0.0007	0.0000
Mg	0.00	0.0000	Mg	0.0000	0.0000
Fe	21.36	0.0000	Fe	1.9633	0.0000
Ca	22.11	0.0000	Ca	2.8323	0.0000
Al	0.67	0.0000	Al	0.1269	0.0000
Mn	1.26	0.0000	Mn	0.1174	0.0000
Si	16.16	0.0000	Si	2.9537	0.0000
Ti	0.04	0.0000	Ti	0.0048	0.0000
Cr	0.01	0.0000	Cr	0.0010	0.0000
F	0.03	0.0000	F	0.0078	0.0000
0	34.36	0.0000	0	11.0219	0.0000
Total	96.01			19.0298	

	Cation		
	Number		Error
Si	2.9537		0.0000
Al(IV)	0.0463		0.0000
	Sum>	3.0000	0.0000
Al(VI)	0.0806		0.0000
Ti	0.0048		0.0000
Cr	0.0010		0.0000
	Sum>	0.0864	0.0000
Fe	1.9633		0.0000
Mg	0.0000		0.0000
Ca	2.8323		0.0000
Mn	0.1174		0.0000
	Sum>	4.9129	0.0000
0	11.0219		0.0000
	Sum>	11.0219	0.0000

JOB TITLE: GARNETS Label: B3-4 DIOP?

,.

....

## Analysis Number: 9

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.01	0.0000	Na	0.0027	0.0000
К	0.00	0.0000	K	0.0007	0.0000
Mg	0.00	0.0000	Mg	0.0000	0.0000
Fe	20.72	0.0000	Fe	1.9040	0.0000
Ca	22.29	0.0000	Ca	2.8539	0.0000
Al	0.80	0.0000	Al	0.1531	0.0000
Mn	1.28	0.0000	Mn	0.1192	0.0000
Si	16.17	0.0000	Si	2.9550	0.0000
Ti	0.11	0.0000	Ti	0.0116	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.13	0.0000	F	0.0359	0.0000
0	34.48	0.0000	0	11.0410	0.0000
Total	96.00			19.0769	

_________________

Mineral: GARNET

_____

STANDARD GARNET X(3) Y(2) Z(3) Oxy(12) Fixed cation sum

	Cation		
	Number		Error
Si	2.9550		0.0000
Al(IV)	0.0450		0.0000
	Sum>	3.0000	0.0000
Al(VI)	0.1081		0.0000
Ti	0.0116		0.0000
Cr	0.0000		0.0000
	Sum>	0.1196	0.0000
Fe	1.9040		0.0000
Mg	0.0000		0.0000
Ca	2.8539		0.0000
Mn	0.1192		0.0000
	Sum>	4.8770	0.0000
0	11.0410		0.0000
	Sum>	11.0410	0.0000

JOB TITLE: Label: B4-2 DIOP

.

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.01	0.0000	Na	0.0030	0.0000
К	0.00	0.0000	К	0.0000	0.0000
Mg	0.07	0.0000	Mg	0.0133	0.0000
Fe	2.11	0.0000	Fe	0.1746	0.0000
Ca	24.42	0.0000	Ca	2.8150	0.0000
Al	10.94	0.0000	Al	1.8728	0.0000
Mn	1.40	0.0000	Mn	0.1180	0.0000
Si	18.07	0.0000	Si	2.9736	0.0000
Ti	0.27	0.0000	Ti	0.0258	0.0000
Cr	0.04	0.0000	Cr	0.0040	0.0000
F	0.18	0.0000	F	0.0450	0.0000
0	41.41	0.0000	0	11.9359	0.0000
Total	98.93			19.9809	

Mineral: GARNET

STANDARD GARNET X(3) Y(2) Z(3) Oxy(12) Fixed cation sum

	Cation		
	Number		Error
Si	2.9736		0.0000
Al(IV)	0.0264		0.0000
	Sum>	3.0000	0.0000
Al(VI)	1.8464		0.0000
Ti	0.0258		0.0000
Cr	0.0040		0.0000
	Sum>	1.8761	0.0000
Fe	0.1746		0.0000
Mg	0.0133		0.0000
Ca	2.8150		0.0000
Mn	0.1180		0.0000
	Sum>	3.1209	0.0000
0	11.9359		0.0000
	Sum>	11.9359	0.0000

JOB TITLE: GARNETS Label: B4-6 GAR

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.01	0.0000	Na	0.0029	0.0000
K	0.01	0.0000	K	0.0011	0.0000
Mg	0.00	0.0000	Mg	0.0000	0.0000
Fe	21.90	0.0000	Fe	2.0180	0.0000
Ca	22.22	0.0000	Ca	2.8537	0.0000
Al	0.17	0.0000	Al	0.0322	0.0000
Mn	1.20	0.0000	Mn	0.1124	0.0000
Si	16.25	0.0000	Si	2.9769	0.0000
Ti	0.02	0.0000	Ti	0.0021	0.0000
Cr	0.01	0.0000	Cr	0.0007	0.0000
F	0.02	0.0000	F	0.0049	0.0000
0	34.18	0.0000	0	10.9931	0.0000
Total	95.99			18.9980	

Si Al(IV)	Cation Number 2.9769 0.0231 Sum>	3.0000	Error 0.0000 0.0000 0.0000
Al(VI) Ti Cr	0.0091 0.0021 0.0007 Sum>	0.0120	0.0000 0.0000 0.0000 0.0000
Fe Mg Ca Mn	2.0180 0.0000 2.8537 0.1124 Sum>	4.9840	0.0000 0.0000 0.0000 0.0000 0.0000
0	10.9931 Sum>	10.9931	0.0000 0.0000

JOB TITLE: GARNETS Label: B4-7 GAR

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.01	0.0000	Na	0.0016	0.0000
K	0.00	0.0000	К	0.0000	0,0000
Mg	0.01	0.0000	Mg	0.0017	0.0000
Fe	21.88	0.0000	Fe	2.0270	0.0000
Ca	22.11	0.0000	Ca	2.8539	0.0000
Al	0.17	0.0000	Al	0.0320	0.0000
Mn	1.14	0.0000	Mn	0.1071	0.0000
Si	16.16	0.0000	Si	2.9757	0.0000
Ti	0.00	0.0000	Ti	0.0004	0.0000
Cr	0.01	0.0000	Cr	0.0006	0.0000
F	0.01	0.0000	F	0.0030	0.0000
0	34.00	0.0000	0	10.9911	0.0000
Total	95.49			18.9941	

Si Al(IV)	Cation Number 2.9757 0.0243 Sum>	3.0000	Error 0.0000 0.0000 0.0000
Al(VI) Ti Cr	0.0078 0.0004 0.0006 Sum>	0.0088	0.0000 0.0000 0.0000 0.0000
Fe Mg Ca Mn	2.0270 0.0017 2.8539 0.1071 Sum>	4.9896	0.0000 0.0000 0.0000 0.0000 0.0000
0	10.9911 Sum>	10.9911	0.0000 0.0000

JOB TITLE: GARNETS Label: B4-8 GAR

#### Analysis Number: 12

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.00	0.0000	Na	0.0000	0.0000
К	0.01	0.0000	K	0.0011	0.0000
Mg	0.01	0.0000	Mg	0.0015	0.0000
Fe	21.97	0.0000	Fe	2.0292	0.0000
Ca	22.08	0.0000	Ca	2.8421	0.0000
Al	0.17	0.0000	Al	0.0331	0.0000
Mn	1.15	0.0000	Mn	0.1081	0.0000
Si	16.25	0.0000	Si	2.9835	0.0000
Ti	0.01	0.0000	Ti	0.0015	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.00	0.0000	F	0.0000	0.0000
0	34.12	0.0000	0	11.0009	0.0000
Total	95.78			19.0009	

Mineral: GARNET

STANDARD GARNET X(3) Y(2) Z(3) Oxy(12) Fixed cation sum

Si Al(IV)	Cation Number 2.9835 0.0165 Sum>	3.0000	Error 0.0000 0.0000 0.0000
Al(VI)	0.0166		0.0000
Ti	0.0015		0.0000
Cr	0.0000		0.0000
	Sum>	0.0181	0.0000
Fe	2.0292		0.0000
Mg	0.0015		0.0000
Ca	2.8421		0.0000
Mn	0.1081		0.0000
	Sum>	4.9808	0.0000
0	11.0009		0.0000
	Sum>	11.0009	0.0000

JOB TITLE: EPIDOTES Label: A1-4 UNK

.

## Analysis Number: 1

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
 Na	0.00	0.0000	Na	0.0010	0.0000
К	0.00	0.0000	К	0.0006	0.0000
Mq	0.00	0.0000	Mg	0.0000	0.0000
Fe	9.81	0.0000	Fe	0.8465	0.0000
Ca	16.50	0.0000	Ca	1.9835	0.0000
Al	12.17	0.0000	Al	2.1735	0.0000
Mn	0.05	0.0000	Mn	0.0047	0.0000
Si	17.40	0.0000	Si	2.9841	0.0000
Ti	0.06	0.0000	Ti	0.0059	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.01	0.0000	F	0.0030	0.0000
0	40.11	0.0000	0	12.0755	0.0000
Total	96.13			20.0786	

Si Al(IV)	Cation Number 2.9841 0.0159 Sum>	3.0000	Error 0.0000 0.0000 0.0000
Al(VI) Fe Ti	2.1576 0.8465 0.0059 Sum>	3.0101	0.0000 0.0000 0.0000 0.0000
Ca Mn	1.9835 0.0047 Sum>	1.9883	0.0000 0.0000 0.0000
O F	12.0755 0.0030 Sum>	12.0786	0.0000 0.0000 0.0000

JOB TITLE: EPIDOTES Label: A2-5 EPID

# Analysis Number: 2

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.01	0.0000	 Na	0.0022	0.0000
К	0.00	0.0000	K	0.0000	0.0000
Mq	0.03	0.0000	Mg	0.0052	0.0000
Fe	4.05	0.0000	Fe	0.3381	0.0000
Ca	17.08	0.0000	Ca	1.9879	0.0000
Al	15.43	0.0000	Al	2.6682	0.0000
Mn	0.05	0.0000	Mn	0.0042	0.0000
Si	17.96	0.0000	Si	2.9829	0.0000
Ti	0.12	0.0000	Ti	0.0114	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.07	0.0000	F	0.0162	0.0000
0	42.31	0.0000	0	12.3268	0.0000
Total	97.11			20.3430	

Si Al(IV)	Cation Number 2.9829 0.0171 Sum>	3.0000	Error 0.0000 0.0000 0.0000
Al(VI) Fe Ti	2.6511 0.3381 0.0114 Sum>	3.0006	0.0000 0.0000 0.0000 0.0000
Ca Mn	1.9879 0.0042 Sum>	1.9920	0.0000 0.0000 0.0000
O F	12.3268 0.0162 Sum>	12.3430	0.0000 0.0000 0.0000

JOB TITLE: EPIDOTES Label: A3-3 EPI?

×

## Analysis Number: 3

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.01	0.0000	 Na	0.0013	0.0000
K	0.00	0.0000	K	0.0000	0.0000
Mg	0.00	0.0000	Mg	0.0000	0.0000
Fe	9.66	0.0000	Fe	0.8356	0.0000
Ca	16.60	0.0000	Ca	2.0005	0.0000
Al	12.10	0.0000	Al	2.1666	0.0000
Mn	0.05	0.0000	Mn	0.0040	0.0000
Si	17.36	0.0000	Si	2.9863	0.0000
Ti	0.03	0.0000	Ti	0.0033	0.0000
Cr	0.03	0.0000	Cr	0.0024	0.0000
F	0.07	0.0000	F	0.0188	0.0000
0	40.02	0.0000	0	12.0733	0.0000
Total	95.94			20.0921	

Si Al(IV)	Cation Number 2.9863 0.0137 Sum>	3.0000	Error 0.0000 0.0000 0.0000
Al(VI) Fe Ti	2.1529 0.8356 0.0033 Sum>	2.9918	0.0000 0.0000 0.0000 0.0000
Ca Mn	2.0005 0.0040 Sum>	2.0045	0.0000 0.0000 0.0000
O F	12.0733 0.0188 Sum>	12.0921	0.0000 0.0000 0.0000

JOB TITLE: EPIDOTES Label: C4-1 EPI

Elem Name	Elem Wt %	Std Error	Ion Label	Ion Number	Std Error
Na	0.01	0.0000	Na	0.0014	0.0000
K	0.01	0.0000	K	0.0007	0.0000
Mq	0.02	0.0000	Mg	0.0046	0.0000
Fe	4.28	0.0000	Fe	0.3592	0.0000
Ca	16.88	0.0000	Ca	1.9739	0.0000
Al	15.24	0.0000	Al	2.6461	0.0000
Mn	0.11	0.0000	Mn	0.0093	0.0000
Si	17.93	0.0000	Si	2.9919	0.0000
Ti	0.13	0.0000	Ti	0.0128	0.0000
Cr	0.00	0.0000	Cr	0.0000	0.0000
F	0.02	0.0000	F	0.0062	0.0000
0	42.10	0.0000	0	12.3263	0.0000
Total	96.74			20.3324	

Si Al(IV)	Cation Number 2.9919 0.0081 Sum>	3.0000	Error 0.0000 0.0000 0.0000
Al(VI) Fe Ti	2.6380 0.3592 0.0128 Sum>	3.0101	0.0000 0.0000 0.0000 0.0000
Ca Mn	1.9739 0.0093 Sum>	1.9831	0.0000 0.0000 0.0000
O F	12.3263 0.0062 Sum>	12.3324	0.0000 0.0000 0.0000

Analysis areas











# **TECK EXPLORATION LTD**

Quito, Ecuador March 8, 1994

Talis Kalnins

Thalis Kalinis Geological Survey Branch Ministry of Energy, Mines and Petroleum Resources Sidney, B.C.

In response to your request for more detail information for the DOROTHY GROUP ASSESSMENT REPORT I have put together the following amendments to the report in corporation with Bruce Downing in Teck Exploration Ltd.'s Vancouver office.

#### DOROTHY ASSESSMENT AMENDMENTS

- 1: The silt location are all on the SAMPLE LOCATION MAP attached to the report submitted October 6, 1993.
- 2: <u>Silt sample procedure:</u> The silt samples were collected from the banks of the creek with a shovel and screened with a minus 40 mesh screen. The minus 40 mesh fractions were put in a standard gusset kraft bag and sent to Chemex Labs. for gold geochemical and ICP analysis.
- 3: <u>Soil sample procedure:</u> The samples were collected by shovel and stored in a standard gusset kraft bag. They were sent to Chemex Labs. for gold geochemical and ICP analysis. The soil samples were collected in two areas, Glacier Cirque and along the ridge from Glacier Saddle to the South Ridge.

The Glacier Cirque is covered by glacial moraine material. This material is coarse (up to >1 m), angular to subangular material with limited minus 40 mesh material in the southern  $\frac{1}{4}$  parts of the grid and poorly developed soil horizons in the northern  $\frac{1}{4}$  part of the grid. The moraine fines are considered to be identical to talus fines. All the samples in the western  $\frac{4}{4}$  part of the grid collected fines at a depth of 10 to 50 cm. The samples from the northern  $\frac{1}{4}$  part of the grid were a mix of fines and poorly developed B-horizon which were sampled at a depth of 10 to 30 cm.

The Glacier Saddle and the South Ridge area covered by coarse (5-50 cm), angular talus. All the soil samples from the two contour lines were of talus fines collected at a depth between 20 and 100 cm.

- 4: <u>Rock sample procedure:</u> Except for the samples of mica-garnet schist from the Glacier Saddle, all of the rock samples from the property were floats. However, both float and outcrop samples were grab samples.
- 5: <u>Rock sample description</u>: The collect rock samples from the property can be divided into groups depending on their location.

Glacier Cirque west: This is the area around the semi massive to massive sulphide boulder train. The samples are dark green and fine grained floats with pervasive chlorite with or without patchy, locally pervasive epidote and patchy and banded garnet, believed to be grossular. Mineralization is disseminated sphalerite, pyrite and pyrrhotite with minor chalcopyrite and galena. Mineralization varies from 1 to 3% to massive in bands up to 40 cm thick associated with garnet bands. The massive banded sulphides and garnet can be multilayered, and both band types are discontinuous with less than 50 cm's of continuation.

Glacier Cirque east: This area is dominated by manganese stained quartz vein floats which can contain galena and sphalerite mineralization. In addition, there are minor amounts of mineralized chlorite±epidote±garnet floats identical to the mineralized floats in the western part of the Cirque.

Glacier Creek: This valley is dominated by floats of quartz veins with up to 50% fine to medium grained pyrite in pyroclastics (coarse lapilli tuff).

Glacier Saddle: Grey, fine grained mica (muscovite) schist with up to 5% disseminated dark red, coarse garnet (grossular).

6: <u>Whole rock & thin section samples</u>: Eight samples of the micagarnet schist from the Glacier Saddle were collected for whole rock samples to possible identify the host rock of this intense metamorphosed roof pendant. These are different from the thin section sampled described below.

Four semi to massive mineralized samples from Glacier Cirque were submitted for thin section and mineralogical description. These same samples were also used in the fluid inclusion study and electron scanning microprobe analysis.

7: <u>Geochemical maps:</u> Gold and copper geochemical values have been plotted on the two enclosed maps.

Please let me know if you want a description of each rock samples individually, or if other additional data is required for this assessment report

Yours thuly Tor Bruland, M.Sc., P.Geo.

Project Geologist




	8800 E	9000 E	9200 E	9400 E	9600 E	9800 E	10000 E	10200 E	10400 E		
10000 N-				1175.5 1194.5 1248.5 1272.1	1334.8- 1298.5- 1286.5-					— 10000 N	
9800 N				1309.5 200 200 200 200 200 200 200 200 200 20	1265.3- 1265.3- 1262.2- 1262.2- 1289.4-					— 9800 N	
				1448.9 1420.3 1396.0 1503.7 1457.4 1444.6 1405.0 0 1444.6							
9600 N				1419.1 1555. 1468.3 1448.5 1448.5 1444.9 1444.9						— 9600 N	
9400 N-				1395.4 1373.9 1533.9 1485.5 1485.5 1485.5 1485.5 1485.5 1485.5 1488.4 1488.4 1488.4	1403.27 1407.2 1397.4 1397.4					— 9400 N	
9200 N—				1460.5 1388.0   1420.0 1401.2   1377.0 1445.5   1339.1 1325.5   1303.4 1325.5   1376.7 1344.5   1382.9 1352.0   1379.0 1354.8   1323.7 1323.6   1280.0 1343.4	1397.3 1362.4 1368.0 1362.4 1346.6 1346.6 1367.7 1387.3 1387.3 1387.3 1387.3 1387.3 1387.3 1387.3 1387.3 1388.0 1348.6 1348.6 1348.6 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0 1368.0					— 9200 N	
9000 N-				1278.6 1261.5 1282.3 1335.5 1272.2 1272.3 1272.3 1272.3 1272.3 1240.7 1240.7 1213.20 1369.6 1218.0	1352.6 1352.5 1352.5 1344.0 1344.0 1312.5 1316.9 1312.5 1308.9 1011.1 1287.7 1565.6 1965.6 1970.9					— 9000 N	
8800 N- 16	2.64 824.2.1 2011.1.1 1349.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1369.6 1100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 100.6 1000			1408.8 1396.4 1363.7 138.6 1388.5 1388.5 1369.8 1401.4 1378.6 1387.6 1387.4 1378.6 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1407.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1387.4 1407.0 1377.4 1407.0 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4 1377.4	1346.9	1376-6 1376-6 1397-5 120-7 120-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 130-7 100-7 130-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100-7 100	1340.0 1395.1 1340.0 1340.1 1301.8			— 8800 N	
1355.81	All				1291.6-	(CORD 95) 300					



