Off Confidential: 94.10.25 District Geologist, Vancouver ASSESSMENT REPORT 23074 MINING DIVISION: Nanaimo Marble River **PROPERTY:** 127 27 00 LAT 50 32 00 LONG LOCATION: 09 5598860 UTM 609851 NTS 092L11W CLAIM(S): Marble Arch 1-4OPERATOR(S): Kennecott Can. Heah, T.S.T. AUTHOR(S): **REPORT YEAR:** 1993, 45 Pages COMMODITIES SEARCHED FOR: Copper, Silver, Gold **KEYWORDS:** Triassic, Karmutsen formation, Basalts, Tuffs, Breccias, Chalcopyrite Bornite WORK DONE: Geological, Geochemical GEOL 1375.0 ha Map(s) - 3; Scale(s) - 1:100,1:250,1:5000 56 sample(s) ;ME ROCK Map(s) - 3; Scale(s) - 1:5000, 1:250, 1:100SOIL 244 sample(s) ;ME Map(s) - 3; Scale(s) - 1:5000MINFILE: 092L 111

SUB-RECORDER RECEIVED		مەربىيە بىر يېرىكى بىرىكى ب		
001 2 4 1993	Assessment Report	LOG NO:	NOV 0 2 1993	RD.
M.R. #		ACTION.		
VANCOUVER, B.C.		<u> </u>		
		FILE NO:		

GEOLOGICAL AND GEOCHEMICAL REPORT ON THE MARBLE RIVER PROPERTY

Nanaimo Mining Division NTS 92L/11W

GEOLOGICAL BRANCH ASSESSMENT REPORT

Kennecott Canada Inc. # 354 - 200 Granville Street Vancouver, B.C. V6C 1S4

Thomas S.T. Heah

October 24, 1993

SUMMARY

The Marble River property was staked in 1992 by Kennecott Canada Inc. after a reconnaissance program by Kennecott geologists confirmed the presence of bornite- and chalcopyrite-rich mineralization within basalt outcrops of the Karmutsen Formation along the south bank of Marble River. Elevated silver values were also found with the copper mineralization. Similar styles of mineralization and tectonic setting have been observed at such large copper occurrences as the White Pine deposits in Michigan. A 17-day field program, consisting of geological mapping, prospecting and rock, soil and stream sediment sampling, was carried out during the summer of 1993 to evaluate the potential of the property to host a large-tonnage, bulk mineable copper-silver deposit.

Mineralization at Marble River consists of chalcopyrite and bornite hosted by zeolite- to lower greenschist-metamorphosed Upper Triassic Karmutsen Formation, shallow marine, basaltic flows, tuffs and breccias. Bedding-conformable mineralization consists of chalcopyrite and bornite filling amygdules and rimmed by quartz. The more common secondary mineralization consists of chalcopyrite and bornite occurring as fracture fillings associated with ubiquitous quartz, epidote, chlorite and zeolite.

The present work indicates that the mineralization at Marble River, although locally of high grade, is limited in areal extent, being largely confined to the small discovery area along the south bank of Marble River. The potential to host a large-tonnage, bulk mineable copper-silver deposit is considered small, and further work on the property is not recommended.

TABLE OF CONTENTS

SUM	MARY	· · · · · · · · · · · · · · · · · · ·
TAB	E OF C	CONTENTS
LIST	OF AP	PENDICES
LIST	OF TA	BLES
LIST	OF FIG	GURES
LIST	OF PL#	ATES
1.0	INTRO 1.1 1.2 1.3 1.4	DUCTION1Location, Access and Physiography4Summary of Work Done4Claim Information5Previous Work6
2.0	GEOL 2.1 2.2	OGY7Regional Geological Setting7Property Geology92.2.1 Stratigraphy and Structure92.2.2 Metamorphism102.2.3 Mineralization10
3.0	GEOC 3.1 3.2 3.3	CHEMISTRY13Rock Geochemistry13Soil Geochemistry16Stream Sediment Geochemistry17
4.0	CONC	LUSIONS AND RECOMMENDATIONS
5.0	REFER	ENCES
6.0	STATE	EMENT OF EXPENDITURES
7.0	STATE	EMENT OF QUALIFICATIONS

LIST OF APPENDICES

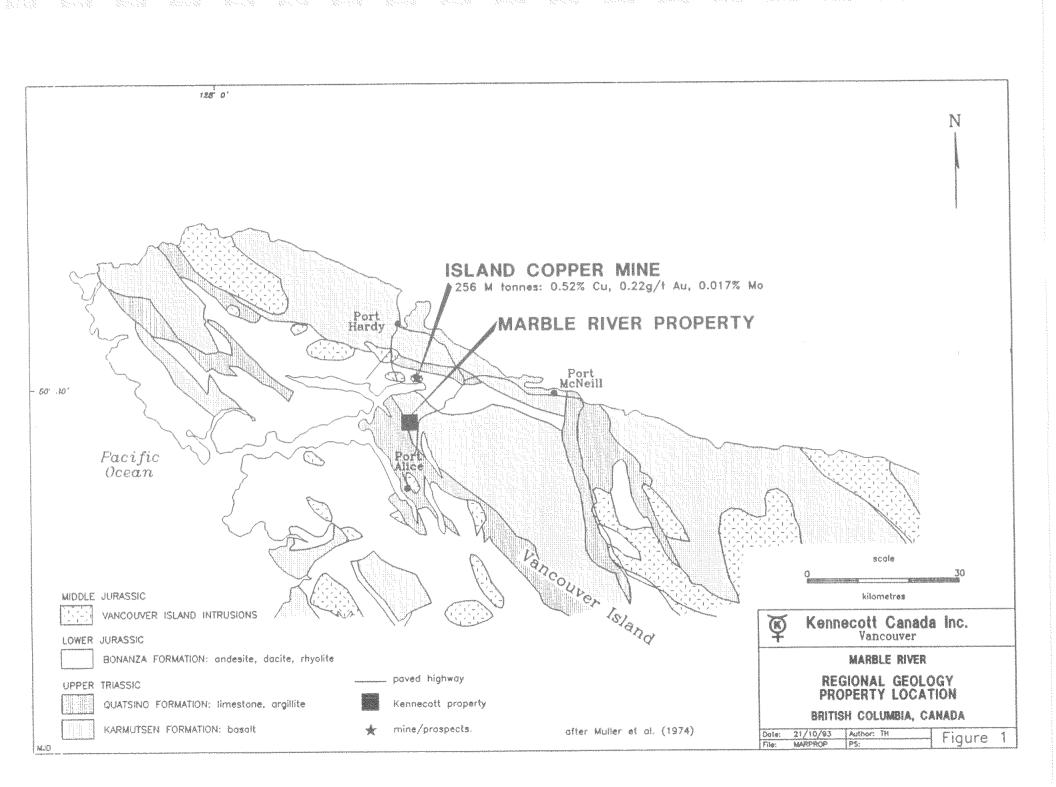
- **APPENDIX 1** Analytical procedures
- APPENDIX 2 Rock ICP and assay results
- **APPENDIX 3** Soil ICP results
- **APPENDIX 4** Stream sediment ICP results

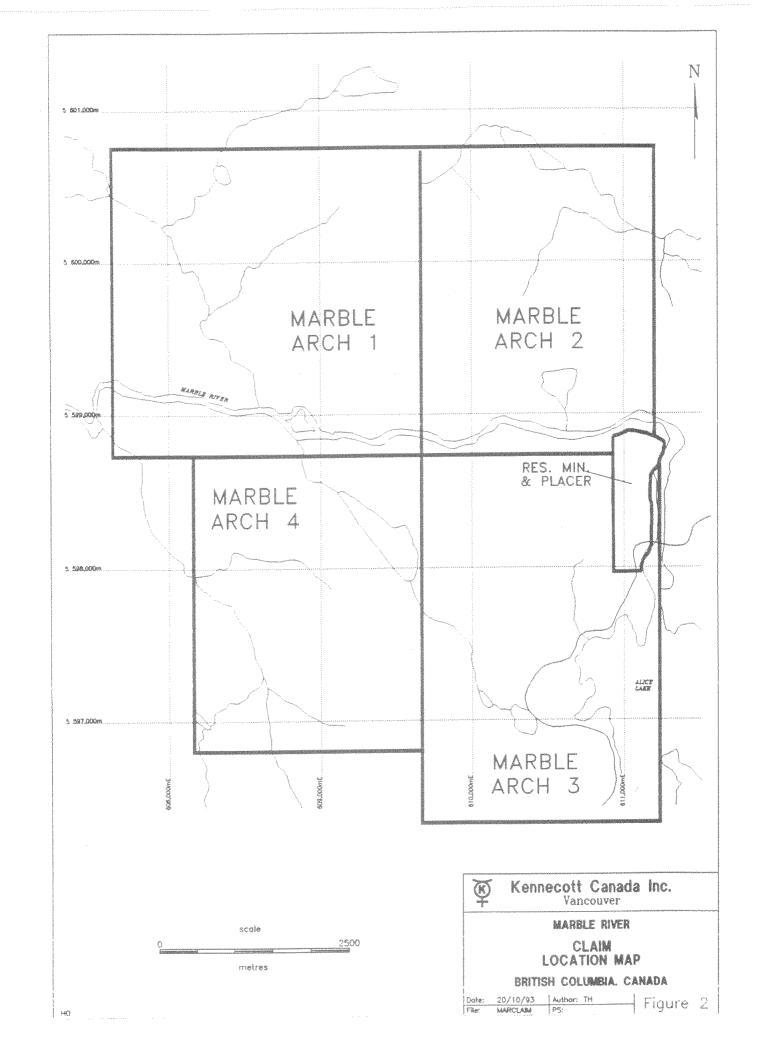
LIST OF TABLES

Table 1. Claim Information	
Table 2. Rock Chip Sampling resu	ts by Bothwell (1937) 6

LIST OF FIGURES

Figure 1. Property location map
Figure 2. Claim map
Figure 3. Regional stratigraphic column (from Muller et al., 1974) 8
Figure 4. Stereonet plot of poles to bedding and dominant joints 12
Figure 5. Scatterplots of Cu-Ni, Cu-Cr, Cu-Au and Cu-Ag in rock samples
Figure 6. Histograms of Cu, Au and Ag in soil samples
Figure 7. Scatterplots of Cu-Ni, Cu-Cr, Cr-Ni, and Cu-Au in soil samples . 19


LIST OF PLATES


Plate 1. 1:5,000 scale property geological map in pocket
Plate 2. 1:5,000 scale rock chip sample locations
and resultsin pocket
Plate 3. 1:5,000 scale soil and stream sediment
Cu and Ag results Cu and Ag results
Plate 4. 1:5,000 scale Cu and Au in soil sediments
bubble plotin pocket

1.0 INTRODUCTION

Although the tholeiitic basalts of the Upper Triassic Karmutsen Formation have not been mined for their copper mineralization to date, they have long been known to be highly cupriferous. In some places, the Karmutsen Formation is host to accumulations of native copper. Similar rocks are thought to be the source of copper in limestone at the sabhka deposits of the very productive Kennecott mine in Alaska. Tholeiitic basalts are also known to contain significant amounts of copper, such as at the White Pine copper deposits on the Keeweenaw Peninsula in Michigan.

Reconnaissance work by Kennecott Canada Inc. geologists in 1992 on the Marble River property confirmed the presence of extensive chalcopyrite and bornite mineralization in basaltic outcrops of the Karmutsen Formation along the south bank of Marble River. Elevated silver and gold values were also observed (Enns, 1992). This work resulted in the staking of the property in the fall of 1992. Further work on the property was recommended, and led to the 1993 program at Marble River, which was carried out in two phases, during July 1-11, and August 15-20, 1993. The objective of the present program was to evaluate the potential of the property to host a large copper - silver +/gold deposit amenable to bulk mining operations.

1.1 Location, Access and Physiography

The Marble River property is located on northern Vancouver Island, 20 km south-southeast of Port Hardy (Figs. 1 and 2). It is centered on latitude 50°32'N and longitude 127°27'W.

The property encompasses the Marble River Recreation Site maintained by Western Forest Products Limited. Access to the property is by twowheel drive vehicle along a public highway linking Port McNeill and Port Alice. An excellent foot path traverses the centre of the property.

Marble River flows from east to west through the centre of the property, and drains into an unnamed inlet southwest of Rupert Inlet. Elevations range from 40-300 m, and slopes are gentle to moderate. Vegetation is open forest and low brush in the central portions of the property. Logging slashes occupy the northern and southern parts of the property. Outcrop is scarce, and is found mostly along Marble River, at rock bluffs and along tributary creek bottoms.

1.2 Summary of Work Done

Fieldwork, consisting of 1:100, 1:250, and 1:5,000 scale geological mapping, prospecting and rock, soil and stream sediment sampling, was performed by R. Zawada, R. Dias and the author.

Tape and compass mapping was carried out using a digitised B.C. Government 1:20,000 topographic map enlarged to 1:2,500 scale. The field maps were compiled at 1:5,000 scale (Plates 1 and 2). A soil grid, laid using hip chain and compass, was established over and south of the two main showings along the south shore of Marble River. An east-west baseline was run at line 1,000 N, and soil samples were collected at 25 metre intervals along north-south lines spaced 100 metres apart. A control line was run at 800N to establish the central portion of the grid.

A total of 56 rock, 7 stream sediment and 237 soil samples were collected and submitted for 30-element ICP and fire assay Cu and Ag analysis to Acme Analytical Laboratories in Vancouver, B.C. Analytical techniques are described in Appendix 1.

1.3 Claim Information

The property is owned by Kennecott Canada Inc. The claims were staked in 1992, and claim information is provided in Table 1 below.

Record Num	ber Claim Name	No. Units	Expiry Date [*]
311970	Marble Arch 1	16	July 24, 1994
311971	Marble Arch 2	12	July 24, 1994
311972	Marble Arch 3	15	July 24, 1994
311973	Marble Arch 4	12	July 24, 1994

Table 1. Claim Information

Note: Expiry dates based on assessment filed in this report.

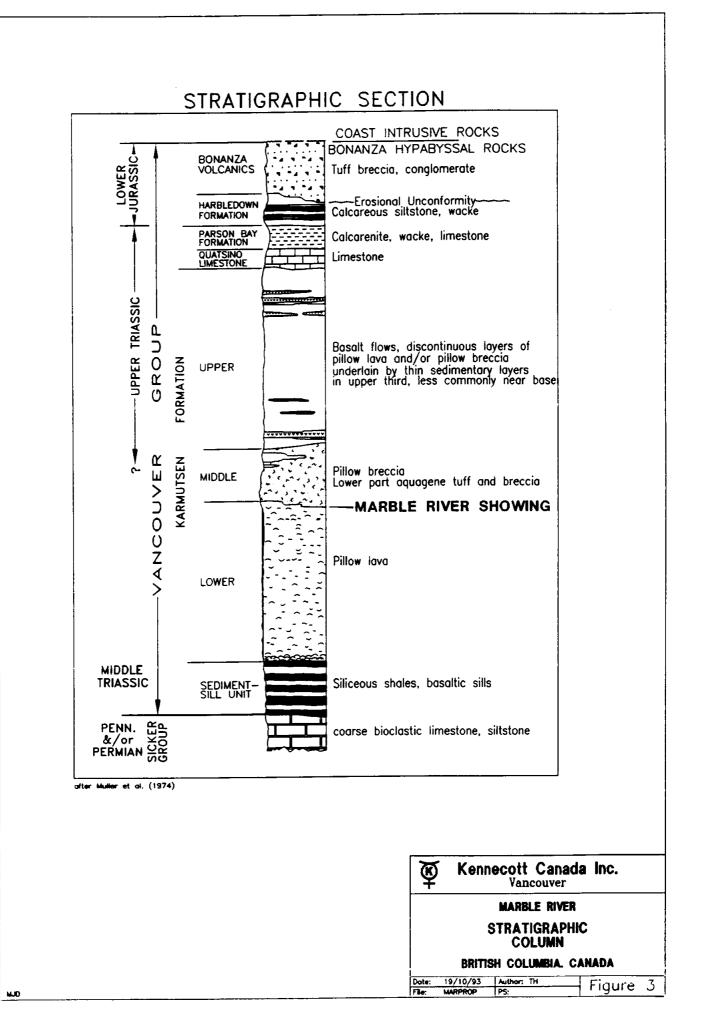
1.4 Previous Work

The only known work recorded on the property is that by Bothwell (1937), who discovered high grade bornite and chalcopyrite mineralization in basalts located along the south shore of the Marble River (the Bothwell showing, Plate 1). Mapping and chip sampling by Bothwell showed the copper mineralization to extend for 130 metres along the shoreline. In two separate 30 metre long chip sample lines, Bothwell obtained the following results:

Line	Width	Cu %	Au g/t	Ag g/t
Eastern	30 m	1.9	0.19	17.1
Western	30 m	0.97	0.2	3.7

 Table 2. Rock Chip Sampling Results by Bothwell (1937).

The Marble River claims were staked by Kennecott Canada Inc. in 1992 after reconnaissance chip sampling in the area by Enns (1992) returned encouraging Cu, Ag and Au assays from basalt at the Bothwell showing described above.


During the present program, some small diameter (AQ) drill core was discovered at the Bothwell showing. Attempts to locate records of this drilling were unsuccessful.

2.0 GEOLOGY

2.1 Regional Geological Setting

The Marble River property lies within the Upper Triassic Karmutsen Formation of the Vancouver Group (Massey and Melville, 1990; Muller et al., 1974; Fig. 1). The Karmutsen Formation is composed of a 200-300 m thick sequence of tholeiitic submarine pillow basalts at the base (Fig. 3). These are overlain by pillow breccias, aquagene tuff and breccia. The upper portion of the Karmutsen Formation is typified by basalt flows, pillow lava and/or pillow breccia and sedimentary rocks. West of the property boundary, Upper Triassic Quatsino Formation limestone overlies the Karmutsen Formation with a steep westerly dip. Regional bedding dips recorded by the B.C. Geological Survey in Karmutsen Formation are moderate to the southwest (Graham Nixon, pers. comm., 1993).

To the north, near Holberg Inlet, and to the east of the property, basalts and andesites of the mid-lower Jurassic Bonanza Group outcrop. These are intruded by co-magmatic Jurassic bodies of the Island Intrusions. North of Holberg Inlet, intrusion of a 180 Ma rhyodacite dyke resulted in the formation of the Island Copper porphyry Cu-Mo-Au deposit, which hosts 283 million tonnes grading 0.52% copper and 0.017% molybdenum.

2.2 Property Geology

Geological mapping was carried out over the central portions of the property, near the Bothwell showing. A new showing, referred to as the "Rodrigo showing", was discovered during the course of the present mapping, and is located east of the Bothwell showing south of the Marble River.

2.2.1 Stratigraphy and Structure

The property is underlain by basalt to andesite flows, tuffs, breccias and hyaloclastite of the Karmutsen Formation (Plate 1). Because of the scarcity of outcrop, marker horizons are difficult to discern in the area.

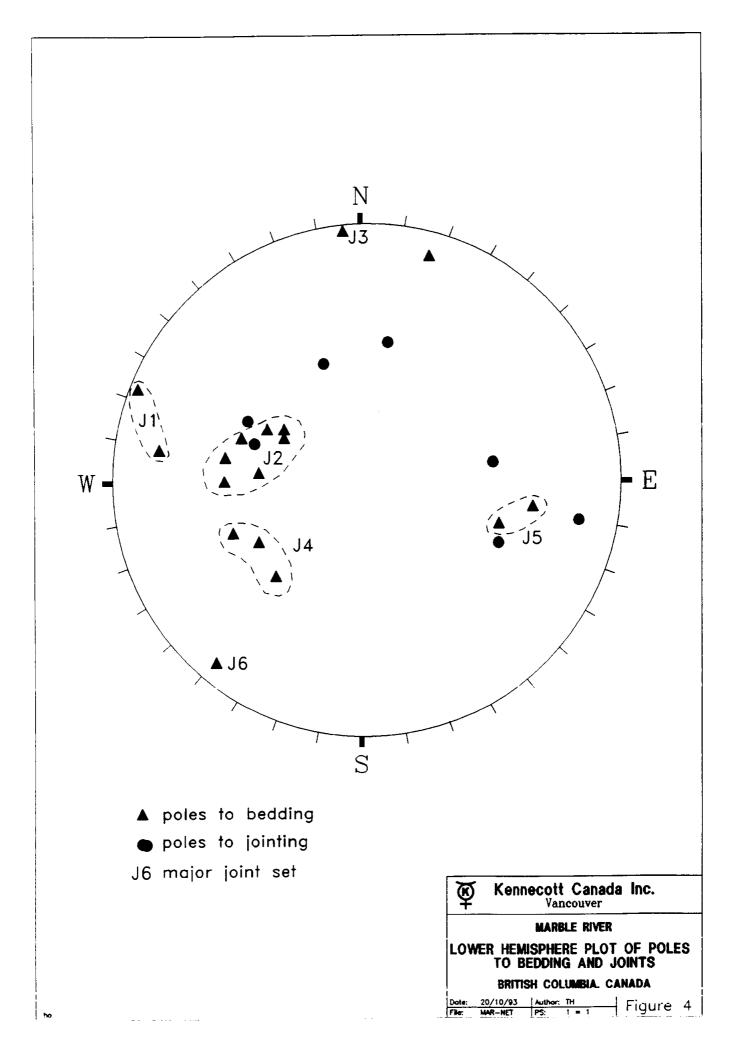
At the Bothwell showing, moderately to strongly silicified and chloritised amygdaloidal and porphyritic basalt flows, tuffs and tuff breccias outcrop. The rocks there are commonly malachite-stained, and commonly contain amygdules filled with bornite and chalcopyrite. The rocks are cut by numerous joints, many of which contain chalcopyrite and bornite. At the Rodrigo showing, interlayered tuffs, tuff-breccias and amygdaloidal flows outcrop. The rocks are less heavily fractured, and weakly mineralized with disseminations and veinlets of chalcopyrite.

Bedding was observed in only a few areas. Where measured, bedding strikes east-northeast to northeast, with moderate southeasterly dips in the central and eastern portions of the property. On the west side of the property, bedding attitudes change to the north-northwest with moderate to steep west dips, mimicking the contact with the overlying Quatsino Formation to the west. This change in structural orientation may reflect either rotation about a northerly striking fault, or folding about a steep, north- to northeast-trending axial plane and subhorizontal fold hinge.

The stratigraphy is disrupted by a series of brittle joints and faults. The dominant joint patterns are shown schematically in Fig. 4. A north-south trending, subvertical set of joints (J1) is thought to be parallel to the bulk extension plane, and appears to control the localization of the bulk of the copper mineralization at the Bothwell showing. A moderately east dipping set (J2) and an associated northeast dipping set (J4), are well developed in the west central portion of the property, and are interpreted to be conjugate to J3 and J6. The acute bisector of J2 and J3 may be the axis of bulk compression for the area. The relationship of joint set J5 to copper mineralization is less clear.

2.2.2 Metamorphism

The metamorphic grade at Marble River is upper zeolite to subgreenschist. Metamorphic minerals include pervasive quartz, epidote, calcite and chlorite +/- zeolite. Prehnite and pumpellyite, which has been reported at the regional scale (Graham. Nixon, pers. comm., 1993), may also be present but was not visible in field specimens.


2.2.3 Mineralization

Exposed sulphide mineralization is found mainly along the south bank of Marble River, and consists of pyrite and lesser pyrrhotite in the west, chalcopyrite and bornite in the centre, and pyrite and lesser chalcopyrite with no bornite in the east. Copper mineralization in the form of chalcopyrite and bornite is found as amygdule fillings; as disseminations and stringers in basaltic flow breccias; along fracture surfaces, and as blebs and veinlets within quartz, epidote and calcite veins. A common association of copper mineralization with quartz, calcite, epidote and zeolite suggests a close genetic relationship.

The Bothwell showing contains the bulk of the copper mineralization found to date on the property (Plate 1). There, copper mineralization outcrops sporadically along the south bank of the Marble River over a 130 metre distance, and consists of bornite and chalcopyrite found in amygdules and fracture fillings. The mineralization ends abruptly to the north, across Marble River, and to the west and east. The southern limits of copper mineralization are covered by overburden.

A new showing of chalcopyrite in basaltic flows and tuff was discovered during the 1993 program (Plate 1). At this showing, chalcopyrite occurs along fracture planes, in basalt flow tops and tuffs, and is commonly associated with calcite and quartz veins. No bornite was observed at this showing.

Rock chip sampling has been carried out over both showings on the property. Results of this sampling are shown in Plate 2 and Appendix 2 and discussed in detail in Chapter 3.

3.0 GEOCHEMISTRY

A program of rock, soil and stream sediment sampling was carried out on the property in 1993. In total, 56 rock, 244 soil and 7 stream sediment samples were collected and submitted for analysis at Acme Analytical laboratories in Vancouver, B.C. Analytical procedures are described in Appendix 1.

3.1 Rock Geochemistry

Rock chip sampling was concentrated at the two main showings - the Bothwell and the new showing discovered to the east of the Bothwell showing. Chip samples were collected across sample lines oriented north-south across the outcrops at the two showings, and submitted for ICP analysis. Sample locations are shown in Plate 2, and results are shown in Appendix 2.

The contents of Cu, Ag and Au obtained were generally low, except for eight samples, which returned Cu values greater than 0.25%. The same eight samples contained Ag values between 0.9 - 5.9 ppm, and five of these samples contained Au values between 7 - 60 ppb.

The highest copper values obtained were 2.8% and 2.5%, from samples VR00591A and VR00593A, respectively, collected at the Bothwell showing. These samples are rich in bornite and chalcopyrite, which occur as amygdule and fracture fillings. Both samples also contained elevated Ag values up to 5.9 and 4.6 ppm and Au values up to 11 and 8 ppb, respectively. The highest Au value obtained, 60 ppb, was found in a sample, VR00592A, containing 1.9% Cu and 3.4 ppm Ag.

Scatterplots of Cu-Ni, Cr-Ni, Cu-Cr, Cu-Au and Cu-Ag were plotted (Fig. 5) in order to study the metal ratios, and to ascertain the genetic links between the metal contents. While weak correlations exist between Cu and Ni and Cu and Cr, strong Cu - Au and Cu - Ag correlations exist. Because Ni and Cr are thought to originate from the original basaltic magma, these observations suggest that a large proportion of the Cu, Au and Ag mineralization is secondary, as observed in the field.

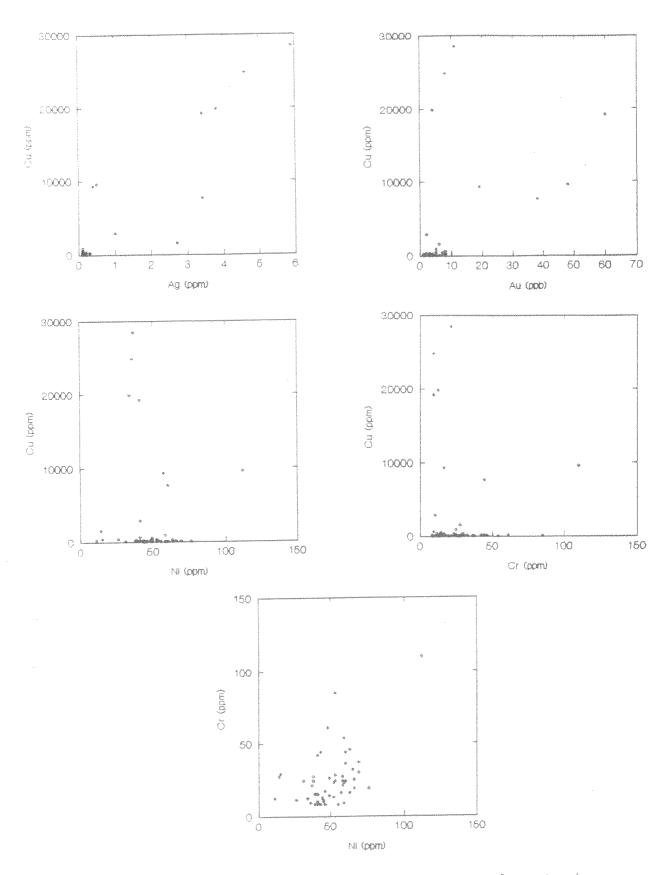


Figure 5 - Scatterplots of Cu-Ni, Cu-Cr, Cu-Au and Cu-Ag in rock samples.

3.2 Soil Geochemistry

Soil sampling was carried out along eleven north-south lines on a soil grid established south of the main showings along the Marble River (Plate 3). The soil samples were collected from the 'B' horizon with a hand auger. 'B' horizon soils on the property are brown to brownish black, and vary in depth from 10 cm to 1 metre below the surface. Thicknesses of the 'B' horizon vary from 20 cm to 1.5 metres, and contain from 10 to 60% organic material. Results from the soil survey are shown in Appendix 3.

Results obtained during the soil sampling program were generally low (Fig. 6). Thresholds based on a visual inspection of the histograms and ICP results for copper, silver and gold were selected as follows: Cu - 100 ppm; Ag - 0.4 ppm; Au - 10 ppb. (Fig. 6). South of the Bothwell showing, only sixteen samples, on lines 500E and 600E, exceeded 100 ppm Cu, while south of the new showing, fifteen samples on lines 1000-1300E exceeded 100 ppm Cu. A bubble plot of Cu in ppm (Plate 4) shows the location of a weak east-west trend to the copper in soil values on the property.

Silver values were similarly low, mostly below 0.1 ppm. The highest silver value, 0.6 ppm, was found at a single location, at 300E, 800N, and was not found to be associated with any copper or gold anomalies.

Gold values in soil exceeding 10 ppb are rare. Elevated gold values are associated with elevated copper and/or silver contents in soil samples collected, and exhibit a weak east-west trend.

Scatterplots with Cu, Au, Ag, Cr and Ni were made in order to study the behaviour of these elements (Fig. 7). Two weak trends towards increasing Au with Cu may be observed, although high Cu values are not

always associated with high Au values. Plots of Cu versus Cr and Cu versus Ni show two weak scatters of increasing Cr with Cu. The correlation between Cr and Ni is tighter, and shows a general correspondence between increasing values in both elements.

3.3 Stream Sediment Geochemistry

Seven stream sediment samples were collected and analysed by ICP (Plate 3 and Appendix 4). The Cu values obtained varied between 59 and 101 ppm, with Ag and Au values less than 0.15 ppm and 17 ppb.

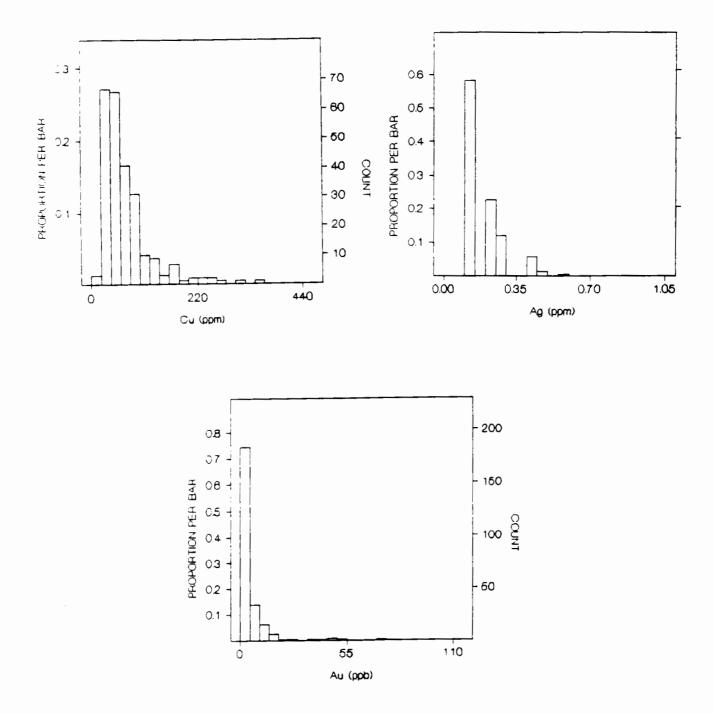


Figure 6 - Histograms of Cu, Au and Ag in soil samples.

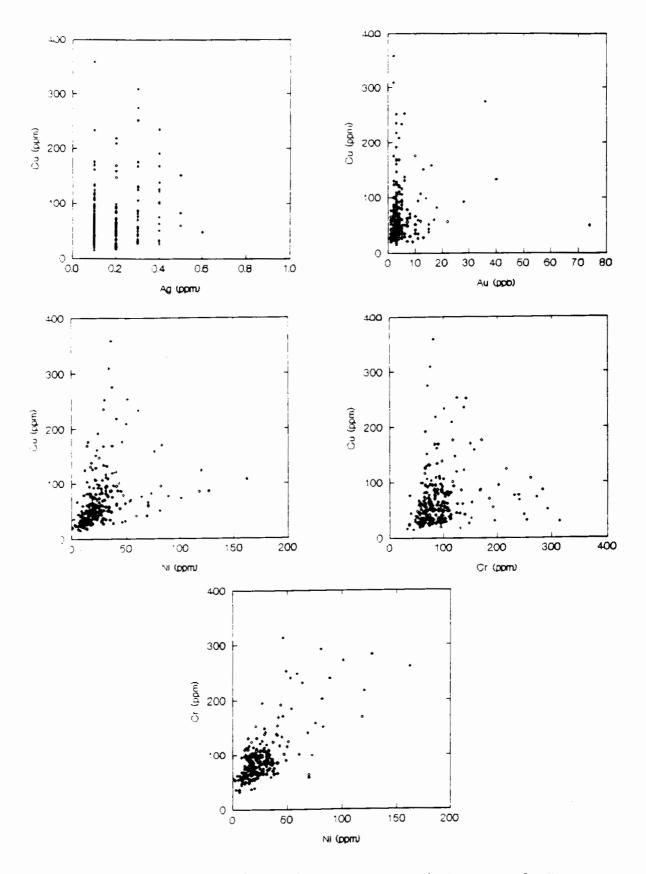


Figure 7 - Scatterplots of Cu-Ni, Cu-Cr, Cr-Ni, Cu-Ag and Cu-Au in soil samples.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The present field program has shown the Karmutsen Formation to be locally copper- and silver-rich. In places, primary accumulations of chalcopyrite and bornite fill amygdules and are surrounded by secondary quartz, suggesting a late-syn depositional formation of copper sulphides. In places, copper mineralization appears to be grossly conformable to bedding, being controlled by lithologic porosity. In other places, copper mineralization is observed to clearly cross-cut primary textures, and to be associated with later hydrothermal solutions coursing through the volcanic pile along brittle joints.

Results from the present mapping and geochemical sampling have shown that copper and silver mineralization, while strongly elevated in some places, is limited in areal extent. In view of the limited potential of the mineralization, further work is not recommended on the property.

20

5.0 **REFERENCES**

Bothwell, N.D. 1937: Marble Creek Claims, Vancouver Island; Report 569, Britannia Mining and Smelting Co. Ltd., 6 p.

Enns, S., 1992: 1992 North Vancouver Island reconnaissance; Kennecott Canada Inc., Internal Report, 43 p.

Massey, N.W.D. and Melville, D.M., 1991: Quatsino Sound Project (92L/5,6,11,12); Geological Fieldwork 1990, Paper 1991-1, British Columbia Geological Survey Branch, p. 85-88.

Muller, J.E., Northcote, K.E. and Carlisle, D., 1974: Geology and mineral deposits of Alert Bay- Cape Scott map-area, Vancouver Island, British Columbia; Geological Survey of Canada, Paper 74-8.

6.0 STATEMENT OF EXPENDITURES

Fieldwork Salaries

	*1 000 00	
T. Heah (7 days @ \$240/day)	\$1,680.00	
R. Zawada (22 days @ \$210/day)	4,620.00	
R. Dias (13 days @ \$240/day)	3,120.00	
	Total	\$9,420.00
Accommodation and Meals		
Hotel - 18 nights @\$55/night)	\$ 990.00	
Meals	1,000.00	
	Total	1,990.00
Analyses (Acme Analytical Laboratories, Vancouver)		
300 30-element ICP analyses @ \$4.90/sample	\$1,470.00	
244 Soil and stream sediment		
samples prep. @ \$1.02	249.65	
56 Rock samples prep. @ \$3.38	189.55)
5 Cu and Ag assays @ \$9.98	49.90)
	Tota	1,959.10
Transportation		
Truck rental - 26 days @ \$63.90	\$ 1,661.3	3
·	138.0	
Ferries - 4 trips @ \$34.50	100.0	
Gasoline	Tota	
	1012	1,000.00
Field supplies, miscellaneous expenses		500.00
Map reproduction		400.00
Drafting and report writing		2,000.00

7.0 STATEMENT OF QUALIFICATIONS

I, Thomas S.T. Heah of Vancouver, British Columbia, do hereby certify that:

- I have been employed since May, 1991 by Kennecott Canada Inc. with offices at 354-200 Granville Street, Vancouver, B.C., V6C 1S4.
- I am a graduate of the University of British Columbia (M.Sc. Geology, 1991; B.Sc. Geology, 1982).
- 3. I am a member in good standing of the Professional Engineers and Geoscientists of British Columbia (Registration No. 19755).
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I have practised as a geologist for eleven years.
- This report is a result of fieldwork and research performed by and overseen by me between August 14 and September 1, 1993.

Dated at Vancouver, B.C., this 24th day of October, 1993.

T AL

Thomas S.T. Heah, P. Geo.

APPENDIX 1 - Analytical procedures

The following analytical procedures were used for the ICP and Cu and Ag assays, and are supplied by Acme Analytical by Acme Analytical Laboratories of Vancouver, B.C.

Soil and silt preparation:

The sample is dried at 60 deg. C and sieved to -80 mesh.

Rock preparation:

Rocks are crushed to -3/16" and a 250 gm subsample is split out. This split is pulverized using a ring mill to 99% -100 mesh.

ICP analysis:

A 0.50 gm sample is digested with 3 ml 3:1:2 HCI-HNO3-H2O at 95 deg C for one hour and is diluted to 10 ml with water. This leach is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba,Ti, B, W and limited for Na, K, and Al.

Gold analysis (fire geochem.):

10 gm is ignited at 600 deg. C for 4 hours and fused with a F.A. flux. The dore bead is dissolved in Aqua Regia and analysed by ICP.

Detection limit for Au is 1 ppb.

Silver by fire assay:

1/2 assay-ton samples are mixed in dry reagent flux with 1 Ag inquart and fused at 1,000 deg. C for 45 to 60 mins. The resulting Ag bead from cupellation is dissolved in aqua-regia and analyzed by ICP. A wet acid leach for Ag is also run for confirmation.

Assay for Cu and Ag:

In a 250 ml volumetric flask, a 1 gm sample is digested in 50 ml 3:1:2 HCl-HNO3-H20 at 95 deg. C for one hour, diluted to 250 ml with demineralized water, and analyzed by ICP. APPENDIX 2 - Rock ICP and assay results

Kennecott Canada Inc. FILE # 93-1484

4	Å

ACHE ANAL TICAL			-																												
SAMPLE#	Mo	Cu	Pb	Zn	Ag ppm	Ni	CO pom	Min	Fe X	As	U ppm	Au	Th	Sr	Cd ppm	sb	8i ppm	V ppm	Ca X	P %	La	Сг ррт	Mg X	Ba ppm	Ti X	B	AL X	Na X	K X	W ppm	Au' ppl
		<u></u>				 -			·· · -	PP	pp								-						-	FF ^{***}	-	-	-		
/R00552A	<1	888	<2	74	. 1	58	32	987	5.27	7	<5	<2	<2	26	.3	<2	3	104	3.74	.032	3	24	2.28	8	.21	- 3	3.53	.02	.01	4	
R00553A	3	9597	3	12	.5	112	15	432	3.01	<2	<5	<2	<2	13	4.7	<2	4	- 38	7.25	.003	<2	110	.41	10	.07	20	3.67	.02 •	<.01	9	- 48
R00554A	<1	119	<2	58	<.1	46	30	580	6.32	4	<5	<2	<2	11	<.2	<2	<2	132	2.91	.041	4	17	1.82	5	.45	8	3.04	.03 •	<.01	3	
VR00555A	<1	84	<2	70	<.1	69	32	599	6.13	9	<5	<2	<2	14	<.2	<2	<2	133	3.21	.036	3	30	2.10	9	.47	2	3.45	.03 •	<.01	4	
VR00556A	<1	122	<2	67	<.1	65	33	574	5.90	5	<5	<2	<2	13	<.2	<2	3	135	3.15	.038	3	32	2.09	4	.49	15	3.33	.03	<.01	5	
/R00557A	<1	67	<2	67	<.1	59	32	567	6.08	10	<5	<2	<2	12	<.2	<2	<2	132	3.26	.037	3	23	1.96	4	.46	5	3.33	.03 ·	<.01	3	
VR00558A	<1	43	4	67	<.1	55	30	645	5.94	6	<5	<2	<2	16	<.2	<2	<2	121	2.95	.034	- 4	8	1.76	4	.44	6	3.19	.03	.01	5	
VR00559A	<1	35	<2	76	<.1	45	33	654	6.44	12	<5	<2	<2	15	.4	<2	<2	141	3.96	.043	4	11	2.06	7	.52	839	3.02	.02	.01	2	
VR00560A	<1	89	<2	63	<.1	63	32	543	6.04	7	<5	<2	<2	15	<.2	<2	<2	148	3.59	.036	3	46	1.90	7	.47	12	3.47	.03 •	<.01	4	
VR00561A	<1	56	<2	83	<.1	69	37	694	6.54	8	<5	<2	<2	14	<.2	<2	<2		2.76		3	37	2.66	7	.45	6	3.70	.02	.01	2	
VR00562A	<1	111	<2	62	<.1	53	30	499	6.20	7	<5	<2	<2	16	<.2	<2	3	137	3.83	.039	4	24	1.55	6	.46	10	3.38	.03	<.01	3	
VR00563A	<1	85	3	69	<.1	60	31	644	6.02	8	<5	<2	<2	21	<.2	<2	<2	122	3.83	.036	4	24	1.92	5	.45	435	3.45	.02	<.01	1	
VR00564A	<1	52	3	72	<.1	66	32	639	6.15	16	<5	<2	<2	23	<.2	<2	<2	125	3.82	.038	4	25	2.02	4	.48	16	3.64	.03	<.01	2	
VR00565A	<1	48	2	70	<.1	76	32	673	6.20	11	<5	<2	<2	20	.2	<2	<2	124	3.20	.037	4	19	2.01	10	.48	15	3.50	.03	<.01	2	
VR00566A	<1	28	<2	62	<.1	49	27	593	6.07	9	<5	<2	<2	13	<.2	<2	<2		3.26		4	26	1.67	10	.48	19	3.21	.03	<.01	3	
/R00567A	<1	50	3	70	.1	40	29	637	6.45	7	<5	<2	<2	13	<.2	<2	<2	135	3.24	.043	4	15	1.73	4	.51	8	3.29	.03	<.01	2	
r00568A	<1	66	<2	68	<.1	58	30	627	6.38	8	<5	<2	<2	16	<.2	<2	<2	142	3.56	.041	4	21	1.71	9	.51	18	3.43	.03	<.01	3	
R00569A	<1	57	3	74	<.1	60	36	598	6.63	14	<5	<2	<2	13	.6	<2	<2	149	3.90	.042	3	36	2.03	2	.49	125	3.74	.02	<.01	2	
VR00570A	<1	20	<2	65	<.1	59	31	626	6.31	14	<5	<2	<2	14	.6	<2	<2	126	3.15	.039	4	9	1.95	6	.43	8	3.39	.03	.01	2	
VR00571A	<1	415	4	106	<.1	49	39	893	7.89	29	<5	<2	<2	20	<.2	<2	9	212	3.12	.043	4	14	2.38	21	.65	11	3.68	.03	<.01	3	
VR00572A	1	531	<2	75	<.1	49	34	710	6.60	19	<5	<2	<2	19	.4	<2	6	162	3.42	.044	5	14	1.90	10	. 58	16	3.34	.03	.01	2	
VR00573A	<1	302	5	70	<.1	63	29	795	5.94	5	<5	<2	<2	19	<.2	<2	<2		2.48		4	16	1.88	8	.30	7	3.07	.03	.01	2	
VR00574A	<1	. –	3	71	<.1	66	30			11	<5	<2	<2		<.2		<2		2.73		4		1.73	18	.27		3.34	.03	.01	- 2	
VR00575A	1 1	48	8		. t	44	30			9	<5	<2	<2		<.2		<2		3.64		4		1.71	5	.35		3.39	.03	.01	3	
VR00576A	<1		2		<.1	58	37			ģ	<5	<2	<2	13	< 2	<2	<2		4.90		3		1.94	<2	.32		4.43	.01	.01	3	
VR00577A	<1	153	3	55	<.1	48	29	705	6.02	8	<5	<2	<2	16	<.2	<2	<2	162	4.27	.041	2	61	1.43	7	.40	7	3.46	.03	.01	3	
VR00578A	1		8	60	.1	26	21		5.59	5	<5	<2	<2	12	.4	<2	ž		7.84		ž		1.41	3		-	5.45	.01		3	
RE VR00578A	<1		5		<.1	27	22			7	<5	<2	<2	12	.5	<2	~2		7.86		4		1.39	2	.39		5.45	.01		4	
VR00579A	1		3		<.1					11	<5	<2	<2	10	.4	<2	_		2.84		3		1.94	6	.35		3.07	.03		2	
VR00580A	1		<2		.1	52		722		11	<5	<2	<2	10	<.2		<2		3.21		4		2.27	ž			3.67	.03	.01	1	
VR00581A	1	78	7	29	<.1	31	17	462	5.02	4	<5	<2	<2	20	<.2	<2	2	106	5.11	.033	2	24	1.01	4	.36	9	3.12	.01	<.01	2	
VR00582A	1	103	<2		<.1	44		686		5	<5	<2	<2	23	<.2		2		4.18		3		1.22	5	.34		2.78	.03	.01	2	
VR00583A	1		<2		<.1	45		1210		<2	<5	<2	<2		<.2		~2		3.38		4		1.61	10	.45		3.14	.03	.01	ž	
VR00584A	1		<2		<.1	46		1256		6	<5	<2	<2	16	.4	<2	-		2.92		4		1.59	14	.40		2.97	.03	.01	3	
VR00585A	i		18			41				4	<5	<2	<2	13	<.2		<2		2.77		3		1.47	11	.46		2.32	.04	.01	1	
/R00586A	<1	89	<2	42	<.1	38	24	524	5.19	12	<5	<2	<2	18	.4	<2	<2	122	5.80	.034	2	27	1.33	<2	.26	6	4.40	.01	<_01	3	
VR00587A	<1		<2		.1	41		833		4	<5	<2	<2		<.2		-		3.26		3		1.86	<2	.29		3.61		.01	ž	
STANDARD C/AU-R				127				1054		37	19	6	_		16.8		20		.49	-	37		.87	184	.09		1.88	.06		_	46

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

AL INE ANAL ETICAL

Kennecott Canada Inc. FILE # 93-1484

Page 6

AL ME ANAL TTICAL																				-		<u>.</u>							At.	HE ANALY	
SAMPLE#	Mo	Cu	Рb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	SÞ	Bi	v	Са	P	La	Cr	Mg	Ba	Τi	В	AL	Na	ĸ	¥	Au*
	<u>pbw</u>	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	X	X	ppm	ppm	X	bbw	%	ppm	7	%	~	ppm	ppb
VR00588A	<1	17	3	48	.2	59	27	557 3	.83	<2	<5	<2	<2	174	<.2	<2	<2	83	4.20	.028	2	54	2.20	<2	.47	32	.07	.02	<.01	1	3
VR00589A	<1	58	3	71	.2	39	30	664 6	.54	<2	<5	<2	<2	30	.3	<2	<2	144	3.25	.038	4	15	2.14	2	.41	53	. 16	.04	<.01	<1	5
VR00590A	4	9348	4	65	.4	57	32	574 5	.87	<2	<5	<2	<2	10	1.1	<2	4	133	3.93	.037	3	16	1.63	4	.39	93	.49	.04	<.01	<1	19
VR00591A	12	28458	4	86	5.9	37	21	560 6	.37	<2	<5	<2	<2	10	2.8	<2	6	118	4.98	.039	2	21	1.65	2	.33	11.4	. 12	.01	<.01	<1	11
VR00592A	3	19230	4	86	3.4	41	23	721 6	. 10	<2	<5	<2	<2	16	2.6	<2	<2			.042	4	9	1.58	9	.50	8 2	.43	.05	.02	<1	60
	•																														
VR00593A	2	24811	3	83	4.6	36	22	726 6	.47	2	<5	<2	<2	13	3.4	<2	<2	118	3.68	.046	3	9	1.54	7	.43	10 3	. 10	.04	.01	<1	8
VR00594A	4	19854	3	- 77	3.8	34	21	700 6	5.16	5	<5	<2	<2	20	3.6	5	<2	108	3.79	.040	3	12	1.46	12	.36	10 3	. 04	. 09	.04	<1	4
VR00595A	1	2903	2	70	1.0	41	26	656 5	5.77	5	<5	<2	<2	31	.5	<2	<2	137	2.89	.039	4	10	1.62	17	.58	13 2	.91	.28	.03	<1	2
RE VR00595A	1	2898	2	71	.9	42	27	663 5	.83	4	<5	<2	<2	32	.6	<2	<2	138	2.93	.039	4	10	1.65	18	.58	14 2	.93	.28	.04	<1	2
VR00601A	1	228	3	76	<.1	11	18	581 5	.30	<2	<5	<2	2	13	<.2	<2	<2	58	. 12	.008	8	12	.59	23	. 17	31	.79	.06	.05	<1	1
VR00602A],	398	6	90	2	15	10	661 5	5.78	<2	<5	<2	<2	126	3	<2	<2	25	2.63	.015	7	29	.47	35	.09	34	.40	.34	. 10	1	2
VR00603A	<1	166	2	91	<.1	41	26	836 5		<2	<5	<2	<2	17		<2	~2	135	-	.038	Ś		2.31	ő	.66	-	2.55	.08	.02	<1	
VR00604A	<1	250	2	46	<.1	53	22	-	.40	<2	<5	<2	<2	31		<2	<2				5	_	2.02	12	.38		2.57	.35	.02	1	2
VR00605A	<1	259	2	52	3	38	23	507 5		19	<5	<2	2	38		<2	<2			.032	4		2.00	11	.55		2.64	.05	.01	<1	2
VR00606A	<1	171	4	58		43	24		.35	<2	<5	<2	<2	33	.2	<2	~2				7		1.99	14	.59		5.23	.10	.01	<1	2
*R00000A		171	-	50	• •		24	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-2	.,	~2	~2		• 2	~2	12	10	4.20		4		1.77	14		10 -		. 10	.01	N	L
VR00607A	<1	163	3	60	.1	41	24	589 5	5.54	13	<5	<2	<2	32	.3	<2	<2	162	3.76	.038	4	42	2.15	17	.65	19 2	2.85	.12	.01	<1	2
STANDARD C/AU-R	18	58	39	126	7.2	70	30	998 3	.96	39	18	6	36	52	18.2	14	21	55	.49	.086	39	57	. 92	183	.09	35 1	.88	.09	. 16	12	490

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

										GI	OC	HEI	1IC	AL	/ A	SSA	Y (CER	TIF	ICA	TE												
							T a				00 0 -		े । र जार	Tw	~	- -	4.1.	o #	93	-20	178		Pac	10	1		:						
							354	- 2	00 Gr	anvi	<u>lle</u>	St.:	Van	COUN	er E	SC V6	C 19	54 54	Submi	tted	by:	Sanc	Ira Bi										
	1																										<u>.</u>	<u></u>			· · ·		
SAMPLE#	Mo		. –	-	•					As	-	Au						v	Ca		La		Mg		·	-	AL				Au**		Ag
	ppm	ppm	ppm p	pm	ppm	ppm	ppm	ppm	*	ppm	ppm	bbw	ppm	bbw	ppm	ppm	ppm	ppm	~ ~	~ ~	ppm	ppm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	X	ppm	7.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	76	ppm	ppb	7.	oz/t
VR01852A	<1	39	<2	57	<.1	43	24	578	5.80	<2	<5	<2	<2	12	.4	<2	<2	151	3.47	.038	6	8	1.62	4	.63	10	2.89	.07	.01	<1	1	.012	<.01
VR01853A			<2																6.39		3	44	1.73	5	.38	11	4.02	.03	.01	<1	38	.882	.11
VR01854A			<2						5.55	-	-		-		-				3.18		5	8	1.82	5	.52	19	3.37	.06	<.01	<1	2	.017	.01
		100	<2	35	<.1	53	20	424	5.00	<2	<5	<2	<2	22	.3	<2	<2	96	2.97	.029	2	85	.93	19	.21	15	2.22	.07	.05	1	<1	.011	.02
VR01858A	<1																							37									.07

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG.C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: P1 ROCK P2 TO P5 SOIL P6 SEDIMENT AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. CU & AG BY REGULAR ASSAY ICP.

Samples beginning 'RE' are duplicate samples.

APPENDIX 3 - Soil ICP results

Kennecott Canada Inc. FILE # 93-2078

Page 2

ACHE ANALTTICAL																													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HE ANALY	
SAMPLE#	No ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	ĩh. ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V popm	Ca %	P %	La ppm	Cr ppm	Mg X	ва ррт	Ti %	B ppm	Al %	Na %	K X	W ppm	Au* ppb
MR 100E 1125N MR 100E 1100N MR 100E 1075N MR 100E 1075N MR 100E 1050N MR 100E 1025N	<1 <1 <1 <1 <1	58 39 35 38 52	<2 <2 <2 <2 <2 <2	39 51 37 50 55	<.1 <.1 <.1 .1 .1	24 20 12 22 29	8 4 21	314 281 686	8.07 8.01 9.11 7.87 7.65	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	16 12 21	<.2 <.2 <.2 <.2 <.2 <.2	~? ~? ~? ~?	<2 <2 <2	217 204 223 201 183	.52 .39 .73	.026 .033 .030 .041 .038	5	95 97 113 111 108	.36 .26 .16 .36 .50	20 18 11 19 11	.69 .63 .67 .62 .61	54 53 64	.47 5.82 .09	.01	.01 .01 .01	1 1 <1 1 1	4 5 4 15 3
MR 100E 1000N MR 100E 975N MR 100E 950N MR 100E 925N MR 100E 920N	<1 <1 <1 <1 <1	49 36 27 49 44	< < < < < < < < < < < < < < < < < <> <>	53 66 54 54 95	.1 .2 .1 .2 .2	25 21 29 22 22	23 17 16	974 597 1119	7.54 9.91 11.04 7.41 11.43	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	9 12 13	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2	178 186 196 176 219	.63 .54 .71	.049 .079 .053 .050 .142	9 4 5	107 152 148 107 131	.45 .26 .37 .41 .39	15 15 12	.58 .48 .59 .58 .57	9 5 6	3.77 3.41	.02 .02 .02 .01 .02	<.01 .01 .01	<1 2 <1 <1 <1	3 2 2 3 2
MR 100E 875N MR 100E 850N MR 100E 800N MR 100E 775N MR 100E 725N	ব ব ব ব ব	38 35 17 22 64	<2 <2 3 <2 2 2 2 2	77 62 26 28 59	.1 .2 .2 .2	29 17 6 9 49	17 5 1	867 422 189	11.65 11.88 3.73 6.60 7.88	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2		8 14	<.2 .2 <.2 <.2 <.2	<2 <2 2 3 <2	<2 2 <2	243 268 94 161 183	1.15 .48 .47		6 2 3 3 2	32 56	.30 .37 .07 .16 .47	19 12 11	.66 .81 .44 .51 .57	6 1 4 5 1	2.27		.01 .03 .01 .01 .02	<1 <1 <1 1 <1	3 1 3 3 8
MR 100E 700N MR 100E 675N MR 100E 650N MR 100E 650N MR 100E 625N MR 100E 600N	<1 <1 <1 <1 <1	34 58 66 51 28	<2 <2 <2 <2 <2 <2	42 49 56 58 36	<.1 .1 .2 .1 .1	35 34 70 34 15	10 18 11	245 314 382	5.76 6.59 6.28 7.13 9.92	<2 <2 <2 <2 <2 <2	ৎ ২5 ২5 ২5 ২5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	17 14 16	<.2 <.2 <.2 <.2 <.2	2 <2 <2 <2 <2 <2	<2 <2 <2	139 143 129 172 272	.65 .44 .87	.028 .034 .026 .034 .029	2 2 2 2 2	75 63 75	.57 .53 .74 .60 .29	17	.44 .53 .36 .58 .81	4 5 6	2.09 3.57 3.35 2.35 1.68	.03 .02 .02 .02 .02	.03 .02 .02 .02 .02	1 <1 <1 <1 1	2 1 10 6 3
MR 100E 575N MR 100E 550N MR 100E 525N RE MR 100E 525N MR 200E 1100N	ব ব ব ব ব	87 75 49 49 62	<2 <2 <2 <2 <2 <2	58 64 35 35 46	.1 .4 .2 .1 .1	36 37 36 36 18	18 12 12	1102 216 205	7.65 5.42 9.00 9.01 6.59	<2 2 2 2 5	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2	29	<.2 .2 <.2 <.2 <.2	<2 3 <2 <2 3	<2 <2	193 152 235 235 158	.85 .39 .38	.028 .023 .032 .032 .032 .042	3 4 2 8	89 85 91 92 66	.62 .69 .44 .44 .30		.59 .47 .65 .65 .45	6 5 5	3.11 2.70 3.21 3.22 4.81	20. 22. 22. 20. 20.	.02 .02 .02 .01 .02	<1 1 1 2	5 2 2 3 2
MR 200E 1075N MR 200E 1050N MR 200E 1025N MR 200E 1000N MR 200E 1000N MR 200E 975N	ব ব ব ব ব	34 57 45 107 94	<2 <2 <2 <2 <2 <2	34	.2 <.1 <.1 .1 .2	13 16 15 21 16	7 20	592 446 6789	8.25 6.77 6.14 6.57 5.59	<2 <2 3 <2 <2	<5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2	15 17	<.2 <.2 .2 .2 .3	<2 <2 <2 <2 <2 <2	<2 <2 <2	214 182 134 151 165	.44 .48 .62	.030 .046 .045 .105 .085	4 4 19 21	58 64 56 93 66	.18 .27 .30 .29 .20	17 39	.60 .56 .47 .39 .36	6 6 5	2.98 3.10 3.21	.01		<1 1 5 <1 <1	3 3 12 11
MR 200E 950N MR 200E 800N MR 200E 775N MR 200E 750N MR 200E 750N MR 200E 725N	ব ব ব ব ব	95 36 44 60 26	<2 <2 <2 <2 <2 <2	51	.1 .2 <.1 .1 .1	41 14 20 28 14	8 10	1110 782 378		4 2 4 <2 <2	<5 <5 6 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2	21 19 21 20 18		<2 3 2 2 2 2 2 2 2	<2 <2	132 154	.60 .96 .66	.039	9 3 2 4 2		1.06 .19 .82 .56 .37	19 13	.37 .68 .43 .52 .78	6 7 6	3.51 1.71 1.67 3.43 1.79	.02 .02 .02 .02 .02	.02 .02 .02 .02 .02	1 <1 <1 <1 <1	5 2 5 11
STANDARD C/AU-S	17	60	38	128	7.0	70	31	1039	3.96	40	23	7	36	52	18.8	14	20	57	.51	.086	40	59	.91	184	.09	34	1.88	.09	.16	11	48

Sample type: SOIL. Samples beginning 'RE' are duplicate samples. AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. AA AME AMELYTIC

Kennecott Canada Inc. FILE # 93-2078

Page 3

ACHE AMAL ITICAL																													ACI	HE ANALTT	ICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B ppm	Al %	Na %	K %	-	Au* ppb
MR 200E 700N MR 200E 675N MR 200E 650N MR 200E 625N MR 200E 625N MR 200E 600N	<1 <1 <1 <1 <1 <1	28 45 46 35 28	2 <2 <2 <2 <2 <2	25 41 49 30 30	.2 .3 .2 .2 .2	9 16 20 13 11	1 13 6 3 2	188 372 227 211 190	5.16 7.57 6.06 6.38 8.77	3 2 2 2 2 2 2 2 2 2 2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	23 24 22 23 28	<.2 <.2 <.2 <.2 <.2 <.2	3 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	183 188 151 182 260	.64 .60 .64	.017 .038 .028 .024 .041	2 3 2 2 2	51 64 54 58 80	.28 .39 .44 .34 .21	9 20 17 14 13	.69 .68 .57 .61 .84	6 2 5 2 5 1	. 15 . 74 . 84	.03 <	.01 .01 .01 .01 .01	1 <1 <1 <1	13 3 2 5 3
MR 200E 575N MR 200E 550N MR 200E 525N MR 200E 520N MR 200E 500N MR 300E 1075N	ং ং ং ং ং ং	27 169 56 52 61	< 2 < 2 < 2 < 2 < 2 < 2 <> 2 <> <> <> <> <>> <>	48 59 58 56 38	.4 .2 .3 .2 .1	19 37 22 26 14	6 16 8 10 4	407	8.61 6.95 7.42 7.76 8.95	2 3 <2 2 <2	<5 <5 7 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	22 28 20 18 24	<.2 .2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2	221 158 170 185 230	.72 .53 .56	.035 .031 .036 .034 .022	2 3 3 4	86 84 77 83 74	.35 .85 .36 .43 .16	18 19 17 17 16	.77 .54 .58 .60 .65	6 3 5 3 5 3	2.39 5.96 5.39 2.92 5.25	.03 .02 .02 .02 .02 .02	<.01 .01 .01 .02 .01	1 <1 <1 <1	3 4 7 10 2
MR 300E 1050N MR 300E 1025N MR 300E 1000N MR 300E 975N MR 300E 950N	ব ব ব ব	30 74 116 69 111	2 <2 <2 <2 <2 <2	39 55 48 56 68	<.1 .1 .1 <.1 .1	15 21 31 28 31	2 16 15 13 21	634	9.82 10.33 5.81 6.12 8.48	<2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	23 19 21 18 18	<.2 .2 <.2 .2 .2	<2 <2 <2 2 2 2	<2 <2 <2 <2 <2 <2	337 229 145 155 197	.59 .87 .60	.034 .052 .031 .061 .068	2 4 5 9	90 103 65 74 92	.22 .28 .85 .58 .49	25 21 19 16 20	.85 .75 .48 .50 .63	5 4 6 1 6 4	1.59 4.08 3.25 4.68 5.19	.03 .02 .02 .02 .02	.01 .01 .02 .01 <.01	<1 <1 <1 1 <1	2 2 5 2 4
MR 300E 925N MR 300E 900N MR 300E 875N RE MR 300E 875N MR 300E 850N	ব ব ব ব ব	91 97 24 23 132	<2 <2 <2 <2 <2 <2	73 68 36 35 57	.1 .1 .2 .2	27 25 11 11 32	17 20 2 2 19	885 332 329	8.64 9.55 9.17 9.10 6.39	<2 <2 3 3 2	ৎ ৎ ৎ জ	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	19 14 16 15 23	<.2 .3 <.2 <.2 .2	<2 <2 2 3 <2	<2 <2 <2 <2 <2	207 234 283 282 171	.74 .62 .61		6 7 2 8	70 95 75 74 72	.48 .37 .19 .19 .76	18 23 14 14 16	.67 .73 .90 .89 .52	5 3 4 4	3.44 3.95 1.50 1.45 5.24	.02 .02 .03 .02 .04	.01 .01 .01 .02 .02	<1 <1 <1 1 <1	3 3 3 3 6
MR 300E 825N MR 300E 800N MR 300E 775N MR 300E 750N MR 300E 725N	<1 <1 <1 <1 <1	49 48 70 66 50	<2 <2 <2 <2 <2	46 41 52 58 52	.1 .6 .2 .2	17 15 23 25 19	10 9 13 11 13	391 409 331	7.02	2 7 <2 <2 <2	<5 <5 7 6 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2 <2 <2 <2 <2 <2 <2	14 12 19 15 22	.2 1.3 <.2 <.2 <.2	<2 5 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	111 181 179	.38 .47 .48	.036	8 5 7 4 4	81 51 66 74 67	.33 .25 .40 .41 .32	18 21 29 21 31	.75 .33 .51 .52 .56	6 4 4	2.93 2.07 3.65 5.18 3.31	.02 .01 .03 .02 .03	.01 .02 .02 .01 .01	1 2 <1 <1 <1	3 4 4 3 2
MR 300E 700N MR 300E 675N MR 300E 650N MR 300E 625N MR 300E 600N	<1 <1 <1 <1 <1	51 44 21 26 15	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <		.1 .2 .1 <.1	15 17 10 18 8	9	720 392 588	6.91 7.70 7.69	3	<5 <5 <5	<2 <2 <2 <2 <2 <2	~~ ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19 21 13 20 21	<.2 <.2 <.2 .2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2	168 192 208	.49 .20 .74	.041 .062 .049 .051 .031	3 3 4 2 3	81 62 61 79 44	.31 .33 .13 .42 .19	19 21 16 14 22	.76 .51 .55 .62 .57	4 4 4	3.10 2.76 2.53 2.33 1.24	.03 .03 .02 .02 .02	.01 .01 .01 .02 .01	1 <1 <1 <1	2 1 7 4 3
MR 300E 575N MR 300E 550N MR 300E 525N MR 300E 500N MR 400E 1025N	<1 <1 <1 <1 <1	45 42 27 41 95	<2 <2 <2 <2 <2 <2	44 37 36	<.1 .1 <.1	18 19 15 15 32	7 4 4		5.84 7.70 6.61	2 3 2	<5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2	20 18 17	<.2 .2	<2 <2 <2 <2 <2 <2	<2 <2	147 217 178	.51 .45 .44	.032 .031 .025	3 2 2 3 3	54 56 74 74 85	.49 .50 .28 .32 .54	17 18 15 15 13	.49 .52 .67 .52 .65	5 4 4	3.27 2.96 2.44 2.60 3.62	.02 .03 .02 .03 .02	.02 .01 .01 .01 .01	<1 <1 <1 <1	5 3 2 2 3
STANDARD C/AU-S	17	59	38	127	6.7	70	30	1044	3.96	39	14	7	34	52	18.3	14	20	57	.51	.086	39	58	.91	184	.09	34	1.88	.09	.16	11	52

Sample type: SOIL. Samples beginning 'RE' are duplicate samples. AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. **4**1

á

Kennecott Canada Inc. FILE # 93-2078

ACHE ANALYTICAL																					_		_						ACI	A AMALYT	TCAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	۶r	Cd	Sb	8 i	v	Ca	P	La	Çr	Mg	Ba	Ti	В	AL	Na	ĸ	W.	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	x	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	*	X	ppm	ppm	*	ppm	X		X	X	X		ppb
MR 400E 1000N MR 400E 975N MR 400E 950N MR 400E 925N MR 400E 925N MR 400E 900N	<1 <1 <1 <1 <1	82 42 70 58 33	<2 <2 3 <2 2	70 43 75 62 35	.3 .3 .3 .3 .4	73 69 30 31 8	23 10 20 15 1	435 376	8.58 7.63 9.60 8.90 6.36	<2 <2 <2 <2 <2 <2 <2	<5 <5 6 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	15 16 14 21 27	<.2 <.2 <.2 .2 .2	<2 <2 <2 2 2 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	162 184 188 226 220	.85 .54 .76 1.02 .67	.022 .040 .037	4 2 3 4 2	99 140 84 79 47	.97 .79 .42 .62 .19	14 16 11 18 20	.53 .44 .64 .73 .60	2 3 2 5 4 4	.95 .04 .53 .09 .11	.01 < .01 < .02 < .02 <	.01 .02 .01	<1 1 <1 1 <1	4 2 8 2 1
MR 400E 825N MR 400E 800N RE MR 400E 800N MR 400E 775N MR 400E 750N	<1 <1 <1 <1 <1	52 28 26 41 20	2 <2 <2 <2 <2	45 41 40 60 42	.1 .3 .2 .2 .2	17 18 17 24 12	6	335	6.84 9.55	2 2 2 2 2 2 2 2 2 2 2 2 2	<5 <5 <5 <5	< ? ? ? ? ? ? ?	<2 <2 <2 <2 <2 <2 <2 <2	10 13 13 11 13	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2	134 207 203 215 268	1.07	.039 .038 .070	9 2 3 4 2	74 54 54 86 95	.31 .53 .52 .52 .24	12 11 11 13 14	.41 .70 .69 .72 .83		.33	.02	.01 .01 .01	2 1 <1 <1 <1	1 1 2 2 1
MR 400E 725N MR 400E 700N MR 400E 675N MR 400E 650N MR 400E 625N	<1 <1 <1 <1 <1	77 103 54 49 50	<2 2 <2 2 2	53 45 42 46 37	.3 .4 .3 .1 .3	33 14 21 17 16	11 5 4 2	298 257 173	6.82 8.85 6.48 7.71 9.95	<2 <2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	16 22 19 14 16	.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	172 199 192 206 320	.47 .83 .53	.024 .036 .072 .038 .043	3 4 3 2 2	73 77 57 70 84	.60 .28 .57 .34 .30	17 14 19 11 13	.60 .68 .60 .65 .92	2 3 4 2 2 3		.02 .02 .02	.01 .01 .01 .01 .01	1 1 <1 <1	2 3 5 5
MR 400E 600N MR 400E 575N MR 400E 550N MR 400E 525N MR 400E 500N	<1 <1 <1 <1	26 35 49 56 35	<2 <2 <2 <2 <2	33 42 51 71 70	.1 .3 .1 .2 .2	9 18 24 34 31	9	312 577 942	6.89 7.28 6.90 7.67 7.44	<2 2 2 2 2 2 2 2 2 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	< < < < < < < < < < < < < < < < <> <> <>	21 25 26 37 24	<.2 <.2 <.2 .2 .2	<2 2 <2 <2 <2 <2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	305 205 201 213 166	-66 -85		3 3 3 4 3	60 78 79 101 103	.18 .36 .59 .70 .59	15 12 13 19 19	.97 .67 .65 .70 .64	4 2 2 2 3 3	.12 .43 .87 .36 .09	.02 .02 .02	.01 .01 .01 .01 .01	1 <1 <1 <1 <1	2 6 7 22 2
MR 500E 1000N MR 500E 975N MR 500E 950N MR 500E 950N MR 500E 925N MR 500E 900N	<1 <1 <1 <1 <1	359 73 83 209 106	2 3 2 2	47 50 40 49 53	.1 .2 .2 .2 .3	36 25 27 50 22	12	635 473	4.74 6.48 6.55 5.99 9.11	10 5 <2 <2 <2	<5 <5 <5 5 <5	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	24 17 12 18 18	.5 <.2 <.2 .2 <.2	<2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	२ २ २ २ २ २ २ २ २ २	120 160 160 149 336	.56 .32 .76	.041 .032 .031 .029 .034		81 64 96 115 100	1.21 .46 .34 .95 .30	22 18 14 14 15	.24 .44 .45 .46 .97	43 33 43	5.20 5.84 5.49 5.73 2.41	.03 .02 < .02 < .02 <	.01 .01	<1 1 <1 <1 <1	2 2 4 5
MR 500E 875N MR 500E 850N MR 500E 800N MR 500E 775N MR 500E 750N	<1 <1 <1 <1 <1	147 85 275 129 151	2 2 2 2 2 2 2 2	62 45 55 48 50	.2 .2 .3 .3 .5	25 118 37 22 22	6 18 16 8 10	357 278	11.80 6.45 6.59 7.00 8.21	<2 <2 <2 <2 <2 <2	<5 <5 <5 5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19 14 17 13 19	.4 <.2 <.2 <.3	<2 <2 <2 <2 <2 <2	~~~~ ~~~~~	327 125 185 159 258		.026 .023 .038	2 2 5 2 3	121 168 70 68 69	.56 1.56 .79 .40 .57	12 17 18 12 15	.96 .37 .51 .52 .74	4 3 4 3 4	5.98 5.32 5.62 5.03 2.90	.02 < .01	.01	<1 1 <1 1 1	3 3 36 3 13
MR 500E 725N MR 500E 700N MR 500E 675N MR 500E 650N MR 500E 625N	<1 <1 <1 <1 <1	192 52 50 35 96	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	51 37 50 40 61	.4 .2 .1 .1	24 13 22 12 38	7 1 8 7 20	196 332 464	7.31 12.33 10.49 8.09 7.42	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18 23 19 14 18	<.2 .4 .2 .2	< < < < < < < < < < < < < < < < < <> </th <th>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</th> <th>290</th> <th>.52 .76 1.03 .70 1.26</th> <th>.035 .046 .043</th> <th>3 2 2 3 4</th> <th>66 91 90 67 75</th> <th>.49 .26 .48 .20 1.04</th> <th>17 9 14 14 12</th> <th>.53 .98 .79 .70 .62</th> <th><2 2 <2 3 2</th> <th>2.48 2.48 3.32 1.73 5.61</th> <th>.02 .02 .02 .02 .02</th> <th>4.01 .01</th> <th><1 1 1 <1 <1</th> <th>3 15 74 5 3</th>	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	290	.52 .76 1.03 .70 1.26	.035 .046 .043	3 2 2 3 4	66 91 90 67 75	.49 .26 .48 .20 1.04	17 9 14 14 12	.53 .98 .79 .70 .62	<2 2 <2 3 2	2.48 2.48 3.32 1.73 5.61	.02 .02 .02 .02 .02	4.01 .01	<1 1 1 <1 <1	3 15 74 5 3
STANDARD C/AU-S	17	61	37	128	6.9	70	30	1038	3.96	41	17	7	37	53	18.5	15	22	57	.51	.086	40	59	.91	185	.09	34	88.1	. 10	. 16	11	47

Sample type: SOIL. Samples beginning 'RE' are duplicate samples. AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Page 4

ACHE ANALYTICAL

.

Kennecott Canada Inc. FILE # 93-2078

Page 5

ACHE ANALYTICAL

ACHE ANALYTICAL																														ACHE ANA	LTTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppin	Cr ppm	Mg %	8a ppm	Ti X	8 ppm	Al %	Na %	к %	W ppm	
MR 500E 600N	<1		<2	63	.3	27		1589	7 27	3	<5	<2	<2	18	.3	2	<2	101	1.00	047	16	83	.48	17	.62	2	3.61	.02	.01	1	3
MR 500E 575N		33	<2	35	.2	14		219 (<2	<5	~2	<2	16	<.2	<2	<2		.54		3	63	.24	12	.59		2.18	.02	.01	1	1
MR 500E 550N		28	<2	56	.1	38	16			2	<5	<2	~2	19	.4	~2	~2		1.62		ž	64	.76	17	.65		3.03	.02	.01	<1	5
RE MR 500E 550N	1	28	~2	56	.2	38	17			ź	<5	<2	<2	20	.2	2	<2		1.63		2	65	.76	16	.65		3.00	.02	.01	<1	ź
MR 500E 525N	1	32	~2	49	.2	14	7	281 9		2	<5	<2	~2	26	<.2	2	~2	253		.035	3	75	.23	14	.80	_	2.18	.02	.01	1	2
MR JUGE JZJN		52	<u>۲</u> ۲	47		14	'	201 :	7.01	2	~	14	~2	20	`. 2	2	٠٢	255	.70	.055							2.10			1	-
MR 500E 500N	<1	33	<2	42	<.1	12	4	168 (5.76	<2	<5	<2	<2	18	<.2	<2	<2	218	.67	.044	2	61	.24	19	.71	<2	2.10	.02	.01	<1	2
MR 600E 1050N	1	30	3	40	.1	11	3	137 8	8.35	7	<5	<2	<2	14	<.2	<2	3	180	.25	.033	3	47	.21	17	.43	<2 0	3.31	.02	<.01	<1	1
MR 600E 1025N	<1	23	4	27	.2	6	2	134	7.54	4	<5	<2	<2	12	<.2	2	3	176	.17	.030	3	36	.12	21	.46	<2	2.49	.02	.01	<1	<1
MR 600E 1000N	<1	55	<2	41	.2	19	6	217	9.10	<2	<5	<2	<2	24	<.2	<2	<2	208	.47	.032	2	68	.29	13	.60	<2	4.29	.02	<.01	1	1
MR 600E 975N	<1	65	<2	29	.1	19	6	146	5.29	<2	5	<2	<2	15	<.2	<2	<2	158	.34	.026	4	76	.29	9	.50	<2	3.88	.02	<.01	<1	1
MR 600E 950N	<1	92	<2	42	.2	24	10	363	5.66	<2	<5	<2	<2	29	<.2	<2	<2	169	.70	.041	9	98	.41	13	.52	3	4.33	.02	.01	1	28
MR 600E 925N	<1	44	<2	37	.2	27	7	288	5.73	2	<5	<2	<2	15	<.2	2	<2	146	.74	.031	3	67	.63	11	.52	2	2.85	.02	.01	1	15
MR 600E 900N	<1	65	<2	44	.2	19	7	316	9.35	<2	<5	<2	<2	16	<.2	<2	<2	237	.51	.043	3	99	.30	15	.72	<2	2.83	.02	.01	<1	2
MR 600E 875N	<1	86	<2	51	.3	45	16			<2	<5	<2	<2	16	.2	<2	ž	181		.070	4	133	.56	19	.56		5.02	.02	<.01	1	3
MR 600E 850N	<1	218	<2	68	.2	41	19			<2	6	<2	<2	15	.2	<2	<2	176		.041	3		.79	13	.59		5.26	.02		<1	3
			-		•••	•••	,,,				•		-			-	-			• • • •	-					-					-
MR 600E 825N	<1	49	<2	45	.1	27	6	241	8.98	<2	<5	<2	<2	16	<.2	2	<2	293	.48	.043	2	100	.35	14	.80	<2	2.32	.02	<.01	1	2
MR 600E 800N	<1	61	2	49	.2	41	10	257		2	<5	<2	<2	19	<.2	2	<2	229	.44	.021	2	136	.81	19	.60	<2	2.36	.02	.01	1	4
MR 600E 775N	<1	86	<2	34	.1	35	15			3	<5	<2	<2	21	.2	<2	<2	141	.71	.025	7	82	.64	18	.48	4	3.58	.02	<.01	1	3
MR 600E 750N	<1	35	<2	31	.2	23	4	178	7.23	<2	<5	<2	<2	14	<.2	<2	<2	222	.58	.024	<2	94	.44	11	.65	<2	1.62	.02	.01	<1	3
MR 600E 725N	<1	34	2	31	.2	28	5			<2	<5	<2	<2	13	<.2	<2	2	96	.49	.059	<2	72	.37	12	.25	3	3.65	.02	<.01	1	3
		•••	-	•			-			-	-	-	-			_	_														
MR 600E 700N	<1	253	<2	60	.3	51	12	317	9.19	<2	<5	<2	<2	16	.4	<2	<2	206	.62	.034	2	125	.94	13	.63	<2	4.27	.02	<.01	<1	6
MR 600E 675N	<1	59	<2	43	.2	24	6	182	6.09	<2	5	<2	<2	16	<.2	<2	<2	142	.35	.025	3	79	.35	13	.42	2	3.64	.02	.01	<1	2
MR 600E 650N	<1	47	2	34	.1	12	2	104	6.36	2	<5	<2	<2	15	<.2	2	<2	200	.36	.019	2	98	.20	9	.63	3	2.14	.02	.01	1	3
MR 600E 625N	<1	99	<2	47	.2	23	8			3	<5	<2	<2	17	<.2	2	<2	122	.38	.017	3	58	.50	16	.42	3	3.91	.02	.01	1	2
MR 600E 600N	<1	81	<2	44	.1	22	8			<2	<5	<2	<2	16	<.2	<2	<2	139		.020	4	64	.55	16	.46		4.50	.02	.01	1	4
			-	. •	- •		-	- · ·					-			-	-														
MR 600E 575N	<1	82	<2	38	.1	16	5	194	9.26	<2	<5	<2	<2	21	<.2	<2	<2	254	.55	.025	<2	85	.35	15	.72	<2	2.37	.02	.01	1	4
MR 600E 550N	<1	42	2	28	<.1	19	3	136	9.19	<2	<5	<2	<2	12	<.2	<2	<2	265	.32	.022	2	114	.29	16	.69	<2	2.68	.02	<.01	<1	10
MR 600E 500N	<1	106	3	56	<.1	28		1212		<2	<5	<2	<2	23	.2	<2	<2	122		.042	9	69	.67	30	.37	3	3.06	.02	<.01	<1	3
STANDARD C/AU-S	17		38	126	6.9	70		1042		39	17	7	36		18.2	14	20	55		.086	38	57	.91	183	.09	33	1.88	.09	. 16	11	48
0111101110 0770 0	1								3.70							17	<u> </u>								,	44				<u>_</u>	

Sample type: SOIL. Samples beginning 'RE' are duplicate samples. AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ACENS WALL LICHT THOUSAIOKIES TI	ACME	ANA TICAL	LABORATORIES	LTD.
----------------------------------	------	-----------	--------------	------

852 E. HASTINGS ST. V' COUVER B.C. V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

Kennecott Canada Inc. File # 93-1484 Page 1 354 - 200 Granville St., Vancouver BC V6C 154

AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb. ppm	Bi pprn	V ppm	Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al %	Na X	к %	W ppm	Au ppl
R 10E 1025N	1	125	8	43	.3	12	<1	295	15.30	<2	<5	<2	<2	11	.7	<2	<2	413	.64	.032	2	66	.37	13	1.31	3 2	.83	.02	.01	2	
R 10E 1000N	1	169	4	60	.4	14	3		13.75	<2	<5	<2	<2	10	.5	<2	<2	300		.034	2	90	.25		1.03		.74		<.01	<1	
R 10E 975N	1	101	3	76	.4	43	25		6.93	<2	<5	<2	<2	27	.3	<2		159	.81	.054		117	.63	31	.48	45	.77	.03	.01	<1	
R 10E 950N	<1	31	5	54	.3	27	4	-	8.86	4	<5	<2	<2	13	.2	<2		348		.030		195	.42	18	. 89		.92	.02	.02	1	i
R 10E 925N	<1	51	3	62	.4	81	19	428	9.34	<2	<5	<2	<2	16	.5	<2	<2	229	.95	.037	3	292	1.37	21	. 68	45	.12	.03	.01	1	4
R 10E 900N	<1	86	<2	68	.2				7.19	<2	<5	<2	<2	13	.4	<2		149	.87		-	283			.48		.46	.04	.01	2	
R 10E 875N	<1	18	6	• =	.2	14	<1		9.51	3	<5	<2	<2	15	<.2	3	<2	411	.32			131			1.20		. 89		<.01	1	
10E 850N 10E 825N	<1	63 35	4	62 39	.4 .1	16 11	4 <1		12.33	<2 2	<5 <5	<2	<2	19	.5	<2		334		.045		102	.27		1.08		. 33		.01	1	4
10E 800N		126	3		.4	19			9.29	ź	<5 <5	<2 <2	<2 <2	17 24	<.2 .4	2 <2	2 <2	480 265		.022	<2 2	61 65	.17 .45		1.51		.13		<.01 <.01	1	(
					. 4	17	10	422	7.20	2	••	14	14	24	.4	12	12	203	.03	.010	٤	60	.42	1.3	. 74		. 17	.02	V.UI	'	
10E 775N 10E 750N	<1 2	309 131	33		.3 .3	34 17	19 6		7.31 7.78	<2 <2	<5 <5	<2 <2	<2 <2	24 26	.2 .4	<2 <2		200 238		.050	4	75 74	.84 .53	13	.69		.53		<.01	<1	
10E 725N	<1	83	3		.5	28	-		10.07	<2	<5	<2	<2	23	.4 <.2	<2		258		.040		108	.33	12 17	.87 .82		.90		<.01 <.01	1	
10E 700N	<1	34	4	52	.3	12		184	9.54	<2	<5	<2	<2	23	<.2	~2		257		.029	2	78	.20	16	.84		.73		<.01	<1	
10E 675N	<1	32	6	39	.4	9	2	139	7.76	4	<5	<2	<2	21	<.2	3		311		.024	3		. 15		.92		. 19		.01	1	
10E 650N	<1	60	5		.5	15	4	191	9.09	3	<5	<2	<2	17	<.2	2	<2	246	.31	.034	5	75	. 19	18	.73	42	.76	.02	.01	1	
10E 625N	1	77	3	59	<.1	19	12	355	7.01	<2	<5	<2	<2	15	.3	<2	<2	163	.41	.030	5	83	.37	15	.52	44	.10	.02	<.01	<1	
10E 600N	1	41	6		.2	19			10.49	3	<5	<2	<2	20	.4	<2		273		.049	2		.33	18	.76		.46	.02	<.01	1	
10E 575N	<1	61	4	44	.1	27	8	-	7.94	<2	<5	<2	<2	15	.3	<2		194		.030		126	.49	12	.55		. 15		<.01	1	
10E 550N	<1	35	6	38	.1	11	2	203	10.39	2	<5	<2	<2	15	<.2	<2	<2	326	. 33	.032	3	97	. 15	11	.91	<2 1	.65	.01	<.01	1	
10E 525N	<1	29	5	44	.1	14			9.34	<2	<5	<2	<2		<.2	<2		263		.037	2	94	.21	10	.77		.86	.02	.01	1	
10E 500N	<1	87	4	71	.1	31	11	264	7.71	<2	<5	<2	<2	17		<2		187		.042	6	97		19	.59		.87		<.01	<1	
1050E 1075N 1050E 1050N	1 <1	76 168	4		.3 .3	17 29	23	263 933	5.12	8 3	<5 <5	<2 <2	<2 <2	16	<.2 <.2	<2 <2	2	92 182		.043	8	37 83	.52	32 19			.45	.03	.02	<1	
1050E 1025N		176	3		.3	46			9.37	<2	5	<2	<2	14	<.2	<2	<2	256		.034	6	171	.51		.53		.07	.02	.01 <.01	1 <1	
		-	-							_	-	_				_	_			.034	-	.,,		23	.,,		,	.02		~1	
11E 1050N MR 11E 1000N	<1 1	60 252	43	37 63	.1	10			7.02	<2	<5 5	<2	<2	11		<2		363		.025	2		.20		1.14		.11	.02		1	
11E 1025N	<1		2		.3	30 18			10.67	<2 6	> <5	<2 <2	<2 <2	12 14	<.2 <.2	<2 5	<2 <2	302 345		.045	19 2	142 97	.52 .33		.90	-	.00	_	<.01 <.01	<1 2	
11E 1000N	1	235	2		.4	29			10.02	2	6	<2	<2	11	<.2 <.2	<2	<2	284	-	.036	_	138	.33	17			.83		<.01	2 <1	
11E 975N	<1		2		.4	40			8.46	4	10	<2	<2	13	.2	<2	<2	211		.042		138	.73	15			.53		<.01	1	
11E 950N	<1	87	4	74	.3	42	27	1658	11 07	5	6	<2	<2	14	.2	3	-2	295	72	.055	£	140	27	18	75						
11E 925N	<1	70	2	75	.1	54	22		7.88	<2	<5	<2	<2	11	2. ۲.>	د 2>	<2	295		.055		169 185	.37 .70	18 13	.75		.05	.02	.01 .01	<1 1	
11E 900N	<1	51	2		.2	33			7.00	4	<5	<2	<2	20		2		188		.029		95	.58	18			.32	.02		1	
11E 875N	<1	30	3		.3	46	11	429	10.35	4	8	<2	<2	15	<.2	2	<2	262	.52			314	.55	18	.65	<2 2			<.01	1	
11E 850N	<1	33	3	59	.1	17	14	846	6.56	4	<5	<2	<2	18	<.2	3	<2	145	. 38	.042	4	81	.25	16	.44	54	.34	.02	<.01	2	
11E 825N	<1	55	<2	61		44			7.98	<2	<5	<2	<2	16	.2	<2		223				192		17			.20		<.01	1	
11E 800N	<1		3	-+	<.1	83			8.29	<2	<5	<2	<2	25	.3	<2	<2		1.04			150		42	.45		.90	.03	.01	<1	
ANDARD C/AU-S	18	60	38	126	1.5	71	51	1054	3.96	38	15	6	35	53	18.5	13	19	57	.49	.086	40	58	.92	184	.09	33 1	.88	.08	- 16	12	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000-PPB

- SAMPLE TYPE: P1 TO P3 SOIL P4 SEDIMENT P5 TO P6 ROCK AU* ANALYSIS BY ACID LEACH/AR FROM 10 GM SAMPLE.

Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: JUL 12 1993 DATE REPORT MAILED: (1/0/ SIGNED BY.......

ACHE ANALYTECA

MR 12E 500N

MR 13E 975N

MR 13E 950N

STANDARD C/AU-S

<1

<1

<1

18

63

52

67

56

Kennecott Canada Inc. FILE # 93-1484 VTICA v Ca Ρ Cr Mg 8a В AL Na ĸ ¥. Au* SAMPLE# Ρb Cd Sb Вi La Τi Мо Cu Zn U Au Th Sr Ag Ni Co Mn Fe As X X ppm X 7 X X x ppm X ppm ppm ppm ppm ррл ppm ppm ppm DDM. ppb ppm ppm ppm ppm ppm ngq ppm ppm ppm. ppm mag .33 12 .95 2 2.22 .01 .01 MR 11E 750N 7 8.92 .65 .060 2 62 <1 3 <1 47 58 <.1 10 252 <2 <5 <2 <2 22 .8 <2 5 264 1 3 68 .23 5 3.40 .01 .01 MR 11E 725N 64 10 395 9.09 <2 <5 <2 <2 17 <.2 <2 <2 209 .48 .058 16 .64 1 2 <1 40 6 .1 3 MR 11E 700N <1 95 3 80 31 374 7.06 <2 <5 <2 2 16 <.2 <2 <2 144 .62 .033 4 79 .72 19 .50 4 5.23 .01 .01 3 3 .1 11 4 4.41 .01 .01 2 MR 11E 675N <1 59 5 62 .1 20 11 417 6.61 <2 <5 <2 <2 14 <.2 <2 <2 143 .53 .043 4 78 .44 11 .46 1 2 .28 13 7 3.59 .01 .01 10 3 56 12 <2 <5 <2 <2 16 <.2 <2 <2 196 .60 .027 75 .65 1 MR 11E 650N <1 36 <.1 3 199 8.34 9 <2 249 2 .12 13 .79 6 1.46 .01 .01 0 MR 11E 625N <1 20 35 <1 <1 157 8.75 2 <5 <2 <2 14 <.2 <2 .33 .016 56 1 .1 MR 11E 600N <1 72 6 78 - 1 19 10 289 5.92 <2 <5 <2 <2 19 <.2 <2 <2 196 .61 .030 4 72 .46 13 .69 3 3.61 .01 .01 1 3 2 53 MR 11E 575M <1 36 7 44 <.1 2 2 153 6.19 2 <5 <2 <2 15 <.2 <2 <2 152 .38 .038 .21 11 .50 <2 2.28 .01 .01 1 1 56 .28 <2 4.14 .01 .01 3 3 MR 11E 550N <1 51 6 .1 9 5 220 6.32 <2 <5 <2 <2 13 <.2 <2 <2 141 .29 .042 4 58 10 .41 MR 11E 525N <1 39 37 12 3 171 6.33 2 <5 <2 <2 16 <.2 <2 <2 148 .44 .024 2 50 .29 16 .47 2 2.27 .01 .01 1 2 6 <.1 MR 11E 500N <2 62 20 .49 <2 3.11 .01 .01 2 <2 46 4 485 7.98 <2 <5 <2 <2 13 .2 <2 184 .27 .038 4 .27 1 1 45 . 1 6 7 52 3 <5 <2 <2 27 <2 181 .88 .033 3 54 .37 23.36 2 2.24 .01 01 1 MR 1150E 1025N 1 26 .2 8 8 486 7.82 <.2 <2 1 .01 MR 12E 1025N <1 25 5 32 <.1 3 <1 192 10.51 <2 <5 <2 <2 6 1.0 <2 15 454 .72 .033 <2 36 .16 6 1.45 2 1.14 .01 <1 1 MR 12E 1000N 21 <5 <2 5 .2 <2 7 327 117 .20 7.86 <2 4.11 .01 .01 <1 10 1 176 8 -58 15 7 381 12.58 2 .55 .034 4 .1 2 MR 12E 975N 192 2 5.52 .01 .02 <1 <1 68 3 66 <.1 53 11 402 9.18 <2 <5 <2 2 10 <.2 <2 <2 .55 .044 3 240 .56 15 .52 .25 2 MR 12E 950N 79 8 .92 .087 2 110 18 .95 2 2.41 .01 . 01 1 <1 55 .1 11 5 475 11.34 3 <5 <2 <2 16 <2 5 348 1.6 2 MR 12E 925N 1 73 6 54 <.1 101 19 455 7.14 9 <5 <2 <2 10 1.1 <2 <2 146 .63 .031 3 272 1.05 16 .34 5 5.80 .01 .01 3 14 .30 .02 107 <2 54 921 <2 <5 <2 <2 <2 <2 122 3 261 3.05 <2 5.88 .01 1 4 MR 12E 900N <1 <.1 162 31 6.14 10 .8 .66 .028 <5 <2 .73 31 3 2.17 .01 .02 1 2 MR 12E 875N 124 <2 61 120 20 1625 20 <2 12 .3 9 169 .50 .035 3 216 .16 <1 .1 8.05 6 2 MR 12E 850N <1 64 4 70 .2 41 19 6085 6.70 3 <5 <2 <2 21 .9 <2 <2 172 .94 .040 9 153 .53 39 .40 <2 3.61 .01 .01 2 .01 RE MR 12E 625N <1 42 9 35 .1 8 2 290 10.31 <2 <5 <2 <2 15 .9 <2 <2 279 .36 .063 2 68 .20 17 .73 <2 1.84 .01 1 3 28 .50 MR 12E 825N <1 62 735 <2 <5 <2 <2 19 .5 <2 <2 213 .77 .042 3 249 .81 <2 2.79 .01 .01 <1 42 4 .1 59 25 8.19 4 .47 .035 MR 12E 800N <1 32 2 39 <.1 49 13 445 8.08 <2 <5 <2 <2 9 <.2 <2 <2 198 3 254 .52 12 .47 2 4.18 .01 .01 1 2 77 56 21 1193 <5 <2 <2 .2 <2 <2 3 239 .97 17 .30 5 5.96 .01 .01 2 3 MR 12E 775N <1 <2 <.1 89 6.15 <2 9 124 .68 .054 MR 12E 750N <1 76 <2 54 64 19 800 6.86 <2 <5 0 <2 12 .3 <2 <2 153 .68 .052 3 231 .72 18 .36 3 5.28 .01 .01 2 2 <.1 21 .35 MR 12E 725N <1 95 10 52 22 993 6.30 3 <5 <2 <2 12 <2 <2 136 .63 .054 202 1.09 <2 5.39 .02 .01 1 3 <.1 82 <.2 4 MR 12E 700N 79 22 5247 6.40 <2 <5 <2 .79 .051 8 157 .97 27 .34 <2 4.69 .01 .01 1 <1 158 <2 .2 76 <2 16 <.2 <2 <2 144 16 .1 MR 12E 675N 1 161 <2 87 23 24 4698 6.73 <2 <5 <2 <2 16 .4 <2 <2 152 .45 .064 7 87 .21 22 .40 <2 4.19 .01 .02 1 3 3 <5 <2 <2 3 .35 13 3 4.09 .01 .01 3 MR 12E 650N 82 8 56 17 448 14 <2 <2 149 .40 .059 69 .40 4 <1 <.1 11 6.43 .6 MR 12E 625N <1 41 7 34 9 2 270 10.44 <2 <5 <2 <2 15 1.2 <2 <2 285 .37 .064 2 68 .20 14 .71 <2 1.86 .01 .01 1 2 <.1 MR 12E 600N <1 34 6 35 .1 9 3 191 6.41 <2 <5 <2 <2 16 <.2 <2 <2 159 .38 .027 3 60 .20 11 .43 2 2.66 .01 .01 2 1 MR 12E 575N <1 99 78 23 343 <2 <5 <2 <2 12 .5 <2 171 .41 .054 3 61 .35 12 .44 <2 4.69 .01 .01 14 4 <.1 12 7.80 <2 1 MR 12E 550N <1 23 14 33 4 <1 153 9.03 <2 <5 <2 <2 11 1.1 <2 <2 213 .19 .032 2 62 .10 10 .57 <2 2.21 .01 .01 <1 2 <.1 MR 12E 525N <1 30 7 43 .1 7 14 665 8.49 <2 <5 <2 <2 17 .3 <2 <2 205 .55 .039 6 56 .27 21 .58 <2 1.98 .01 .01 1 3

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

7 48

9

6 35 <.1

41

74

128 6.8

20

13

5

67

10 648

<.1

.1

<2

<2

15

37

6.63

7.62

11 430 11.68

29 1079 3.96

<1 179

<5

<5

<5

21

<2

<2

<2

6

<2

<2

<2

36

12

5

10 <.2

52 17.3

.6

.2

<2

<2

<2

13

<2 153

2

3 366

19

292

54

.59 .038

.72 .041

.32 .019

.50 .086

2 56 .47

3 74

<2

35

10 .44

10 .84

185

9

.86

.09

.29

.11

54

55 .88 <2 3.84

4 1.00

34 1.88

<2 3.13 .01

.01

.01

.05

.01

.01

.01

.14

2

1

2

12 50

2

2

3

Page 2

à.

Kennecott Canada Inc. FILE # 93-1484

ACHE ANALTTICAL														-											_				<u> </u>		
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe		U	Au		۶r	Cd		Bi	v	Ca	Ρ	La	Cr	Mg	Ba	Ti	В	AL	Na	K		Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	X	ppm	ppm	X	ppm	*	ppm	X	*	x	ppm	ppb
MR 13E 925N	<1	36	<2	52	<.1	14	7	347	8.34	<2	<5	<2	<2	19	<.2	<2	2	147	.47	.021	5	91	. 35	13	.52	<2	3.02	.01	.01	<1	2
MR 13E 900N	2	82	2	40	<.1	14	-		10.40	<2	<5	<2	<2		<.2	<2		203	.32			114	.22	10	.58	-	2.58	.01	.01	1	3
MR 13E 875N	<1	233 109	4	58	<.1	61 33	28		7.11	8 3	<5 <5	<2 <2	<2 <2		<.2 <.2	9 <2	-	145 126		.019 .028	3 3	101 86	.98 .66		.36 .42		2.96 3.29	.01 .01	.02	1 <1	3
MR 13E 850N MR 13E 825N	<1 <1		7		<.1 <.1	31			7.00	د 2>	<5	~2	<2		<.2	~2	_	288		.028		119	.59		.42		2.69	.01	.01	<1	5
										_		_			_	_	-											~ ~			
MR 13E 800N MR 13E 775N	<1 <1	49 62	69	58 65	<.1 <.1	14 22	20		11.63	<2 <2	<5 <5	<2 <2	<2 <2		<.2 <.2	<2 <2		237 245		.038 .058		110 107	.18		.69 .78		3.02 3.21	.01 .01	.01 .02	1 <1	3
MR 13E 750N	1	82	7			31			8.80	~2	5	<2	~2		<.2	<2		190		.045		106	.52	11	.60			.01	.01	1	18
MR 13E 725N	1	78	8	56		33			8.84	<2	<5	<2	<2		<.2	<2		217		.035		103	.47	14	.67			.01	.01	<1	7
MR 13E 700N	<1	40	5	45	<.1	15	8	268	8.93	<2	<5	<2	<2	13	<.2	<2	<2	217	.48	.026	2	99	.25	13	.65	<2	3.04	.01	.01	1	4
MR 13E 675N	<1	79	10	57	<.1	47	27	1662	6.87	<2	<5	<2	<2	18	<.2	<2	<2	156	1.17	.037	6	102	.97	16	.49	2	3.60	.01	.01	<1	5
MR 13E 650N	1	53	8	55	<.1	26			8.83	<2	<5	<2	<2		<.2	<2	-	229		.034	4	108	.46	19	.67	-	2.92		.01	1	3
MR 13E 625N	1	45 33	3		<.1 .1	17 12	8		11.90	<2 <2	<5 <5	<2 <2	<2 <2		<.2 <.2	<2 <2	-	285 385		.042	_	124 101	.27		.90		2.69	.01 .01	.01 .01	<1 <1	2
MR 13E 600N MR 13E 575N		76	4	57		33			8.57	<2	<5	<2	<2		<.2	<2	_	191		.043		109	.54	-	.59	_	2.87	.01	.01	1	3
		110		(0		77	15	700	11 03	-1	- د	-2	<2	-	<.2	<2		210	13	.045	2	124	.58	12	.49	~2	4.53	01	.02	<1	4
MR 13E 550N MR 13E 525N	<1 <1	119 47	8 6		<.1 <.1	37 25			11.02	<2 <2	<5 <5	<2 <2	<2		<.2	<2	_	284		.045		100	.56	20	.82	-	2.00	.01	.02	<1	2
MR 13E 500N	<1	30	6	53	.1	18	7	+	10.58	<2	<5	<2	<2	14	<.2	<2	2	287	.58	.022	<2	104	.33	14	.85	_	1.63	.01	.01	<1	8
RE MR 13E 500N	<1	29 64	7		<.1	18	-		10.57	2	<5 <5	<2 <2	<2 <2		<.2 <.2	<2 <2		285 163		.021	<2 8	100 73	.33 .32	12 19	.85 .43	_	1.63	.01 .01	.01 .01	<1 <1	6
MR 14E 975N	2	04	3	53	<.1	18	10	261	7.62	<2	\$	~2													_					-	-
MR 14E 950N MR 14E 925N	<1	39 59	5	53 56	<.1 <.1	15 20		321	5.79	<2 10	<5 <5	<2 <2	<2 <2	14 11	<.2	<2 <2	<2 2	100 86		.028 .048	57	48 54	.49 .45	21 12			3.83	.01 .01	.01 .01	2	3
MR 14E 923N	<1		3		<.1			507		<2	<5	<2	<2		<.2	<2	_	131		.044	5	88	.43	15	.42		4.37	.01	.01	<1	40
MR 14E 875N	<1	27	8		<.1	8	_		6.56	<2	<5	<2	<2		<.2	<2		270		.032	2	95	.26	8	.88		1.61	.01	.01	1	5
MR 14E 850N	<1	92	<2	44	<.1	20	23	4578	5.51	<2	<5	<2	<2	16	<.2	<2	<2	134	.51	.042	10	71	.28	32	.35	<2	2.68	.01	.01	1	4
MR 14E 825N	<1	59	<2	49	<.1			411	7.43	<2	<5	<2	<2	15	<.2	<2	_	179		.028	5	88	.37		.50		4.02	.01	.01	1	11
MR 14E 800N	1	80	2		<.1	32		393		<2	6	<2	<2		<.2	<2	_	130		.025	5		.57	12			4.68	.01	.01	1	5
MR 14E 775N MR 14E 750N	<1	62 37	6		<.1 <.1	21 12		1095	6.85	23	<5 <5	<2 <2	<2 <2		<.2 <.2	<2 <2		170 201		.039	63		.35	19 14	.46 .56		3.37	.01 .01	.01 .01	<1 1	3
MR 14E 725N	<1		7			13				<2	<5		<2			<2		158		.048	3		.18	19			1.77	.01	.01	1	10
ND 1/5 7001			F			20	15	104	7 00	-2	6	-2	<2	9	<.2	<2	-2	157	76	.039	,	104	.30	11	.46	.2	5.70	.01	.01	2	1
MR 14E 700N MR 14E 675N		55 35	5		<.1 <.1	20 16		406	7.88	<2 <2	<5	<2 <2	<2		<.2	<2	-	216		.039	3		.18	18		_	2.81	.01	.01	<1	11
MR 14E 650N	<1	57	6		<.1	22			7.02	10	6	<2	<2		<.2	<2	-	145		.022	3			13			4.22	.01	.01	1	12
MR 14E 625N	1	63	3			20		625	8.27	4	<5	<2	<2		<.2	<2				.042	6			18			2.92	.01	.01	1	4
MR 14E 600N	<1	49	3	40	.1	18	55	1314	7.12	<2	<5	<2	<2	25	<.2	<2	<2	206	. (4	.028	6	82	.36	45	.64	<2	1.69	.01	.01	I	4
MR 14E 575N	1	55	2			19		278		<2	<5	<2	<2		<.2	<2				.031	2			15			2.67	.01	.02	1	3
MR 14E 500N STANDARD C/AU-S	<1	82 59	8 38	68 132		26 65		1286	9.81	<2 41	<5 17	<2 7	<2 37		<.2 18.3	<2 14				.038	3 38			13 183			2.82	.01	.02	<1 12	4 47
STANDARD C/AU*S	1			1.52	0.1		J I	1032	5.90						10.3	14		0,		.000			. 7 1	105	,		1.00	.00		16	

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

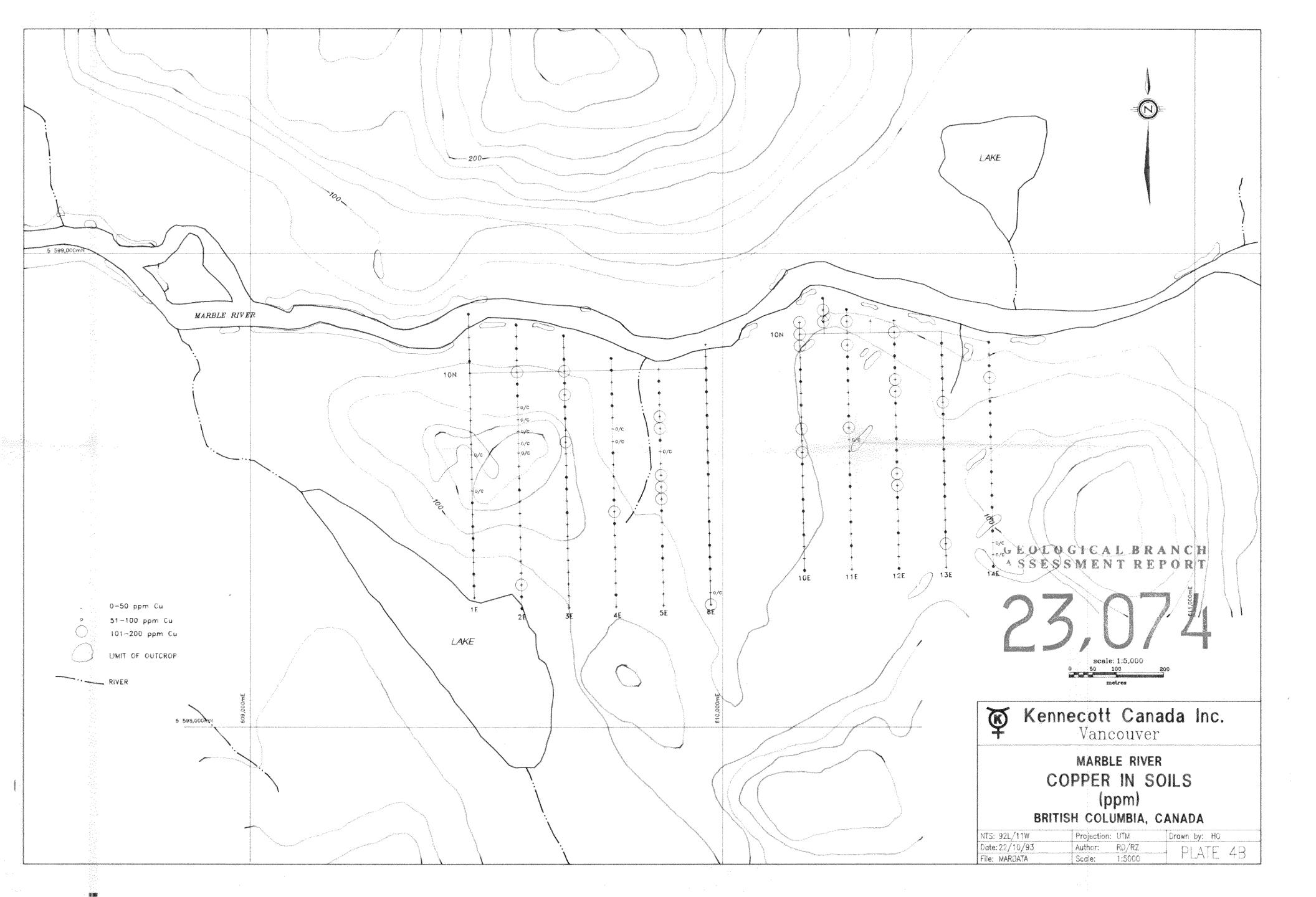
APPENDIX 4 - Stream sediment ICP results

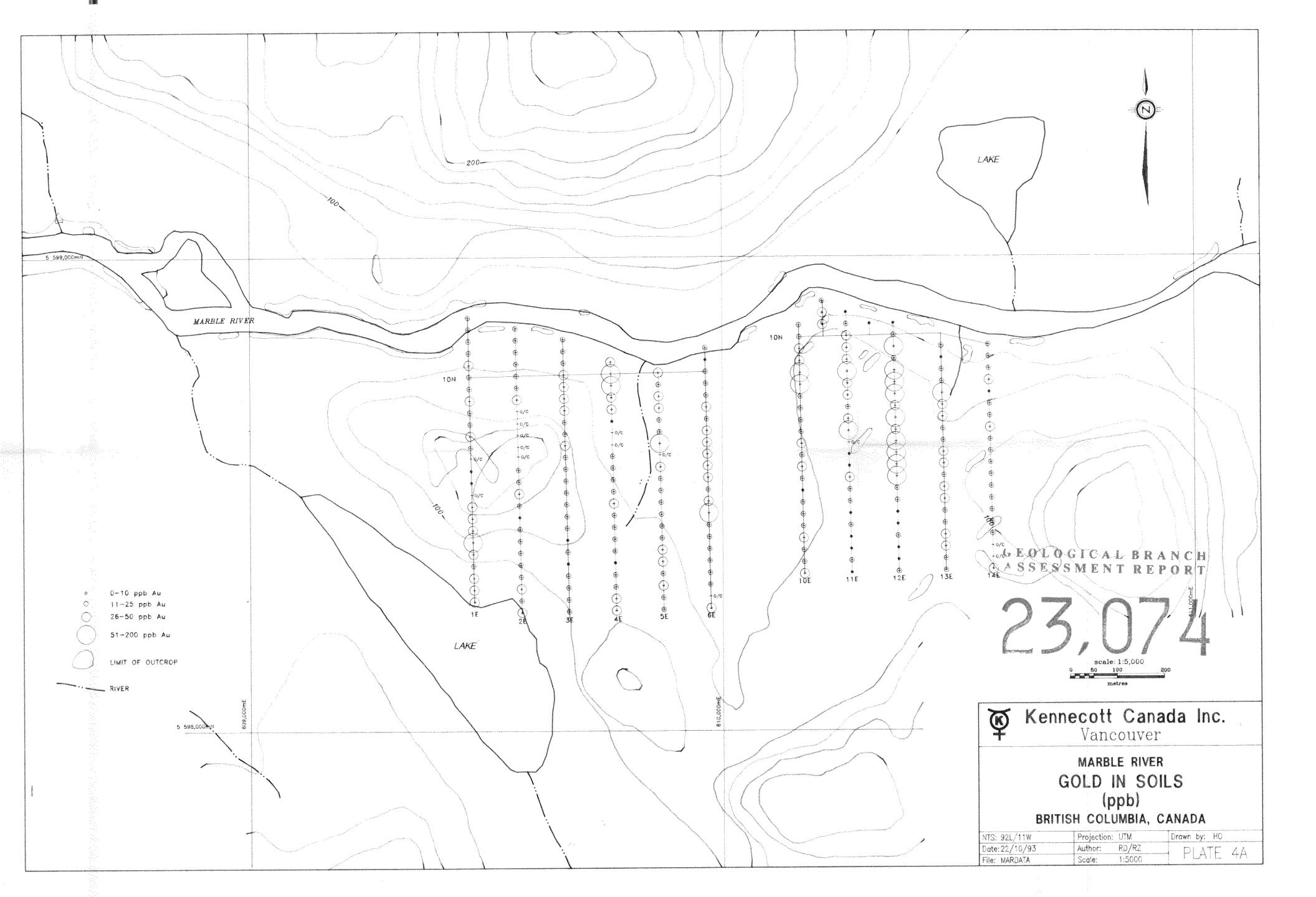
.

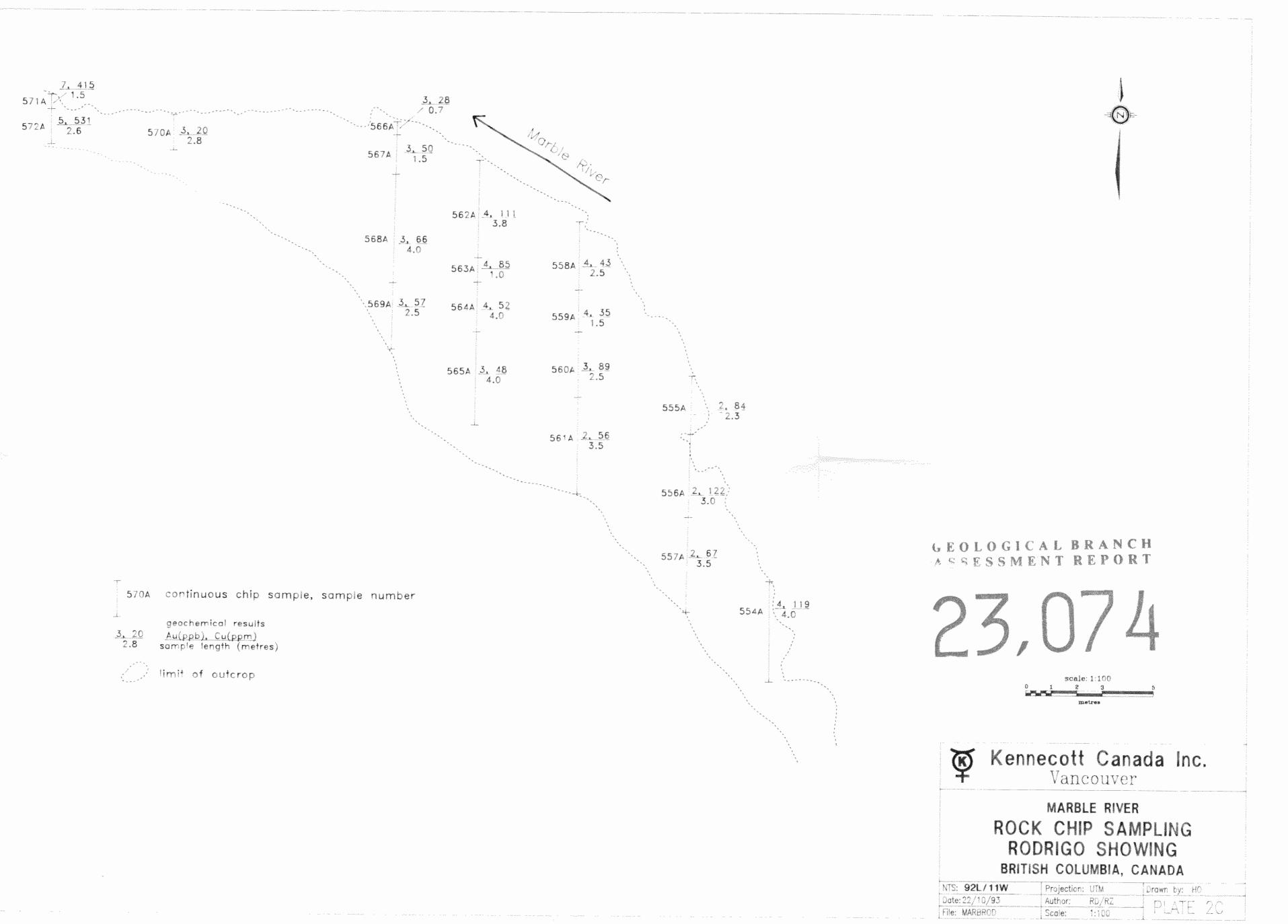
							R	enr	neco	tt	Car	ada	Ir	ic.	F	'I LE	: #	93-	-148	34							Pag	e 4			
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	8a ppm	Ti %	B ppm	Al %	Na %	K %		Au* ppb
SSMR93Z01	<1	61	<2	74	<.1	55	22	1770	5.61	8	<5	<2	<2	25	<.2	<2	<2	106	1.36	.042	4	37	1.60	30	.31	72	.89	.05	.04	3	3
SSMR93Z02	<1	71	<2	64	<.1	36	17	2093	4.70	13	<5	<2	<2	29	.2	<2	<2	100	1.26	.043	4	35	1.07	35	.31	32	.86	.03	.03	2	1
SSMR93Z03	1	88	2	71	<.1	43	15	1024	4.19	<2	<5	<2	<2	25	.5	<2	<2	100	.99	.056	6	61	.75	24	.25	33	.70	.01	.01	3	1
SSMR93Z04	<1	83	<2	55	<.1	44	13	554	2.26	3	<5	<2	<2	24	<.2	<2	<2	79	1.16	.044	8	59	.95	31	.25	32	.78	.01	.01	1	16
SSMR93205	<1	83	<2	58	.1	47	18	1175	4.13	7	<5	<2	<2	23	<.2	<2	<2	121	1.29	.058	10	110	1.06	16	.27	53	.18	.01	.01	1	<1

Sample type: SEDIMENT.

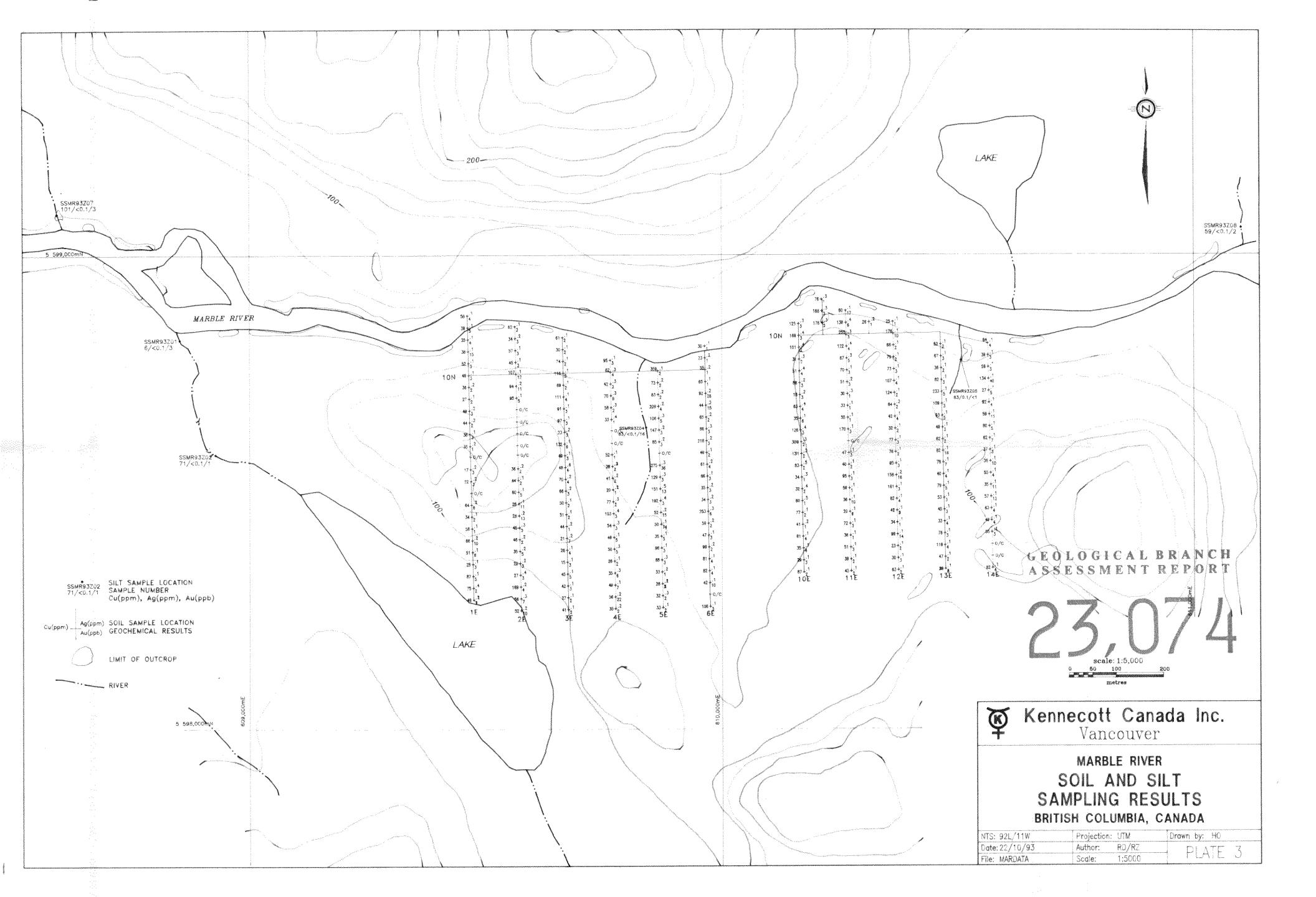
44
ACHE ANALYTICAL

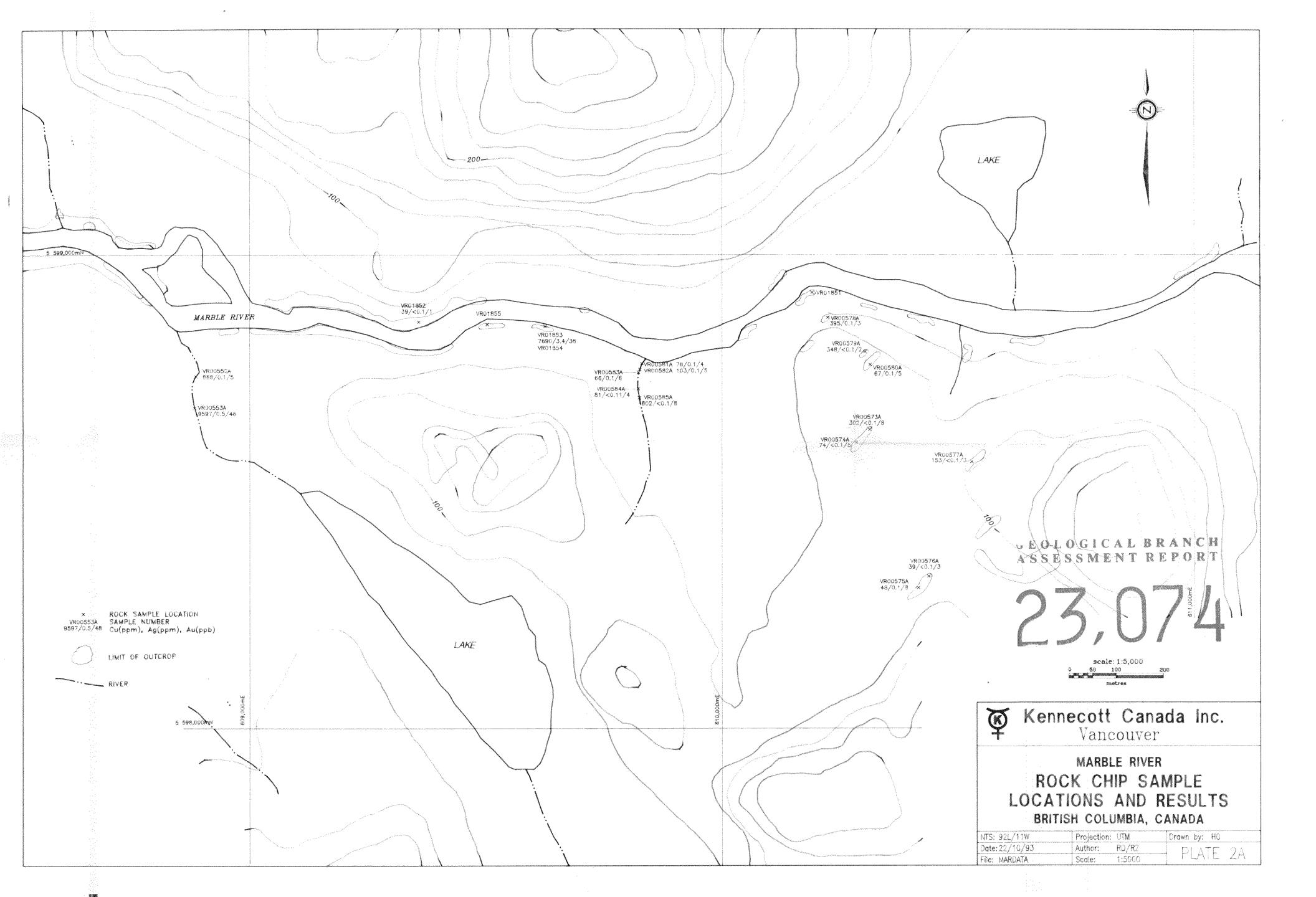

Kennecott Canada Inc. FILE # 93-2078

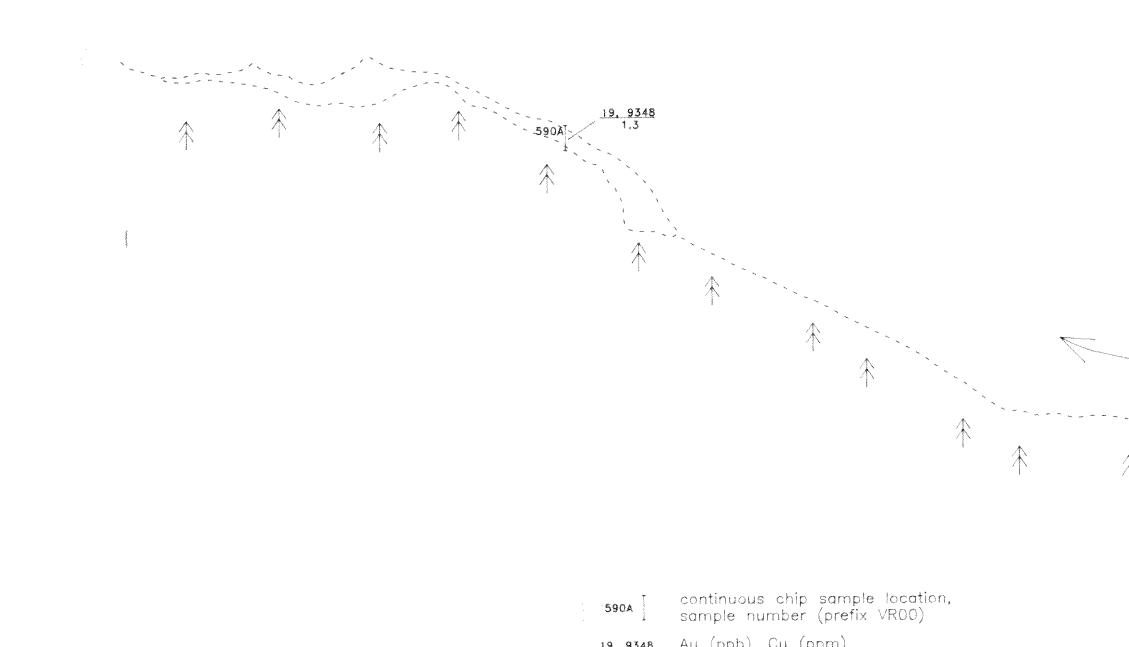



Page 6

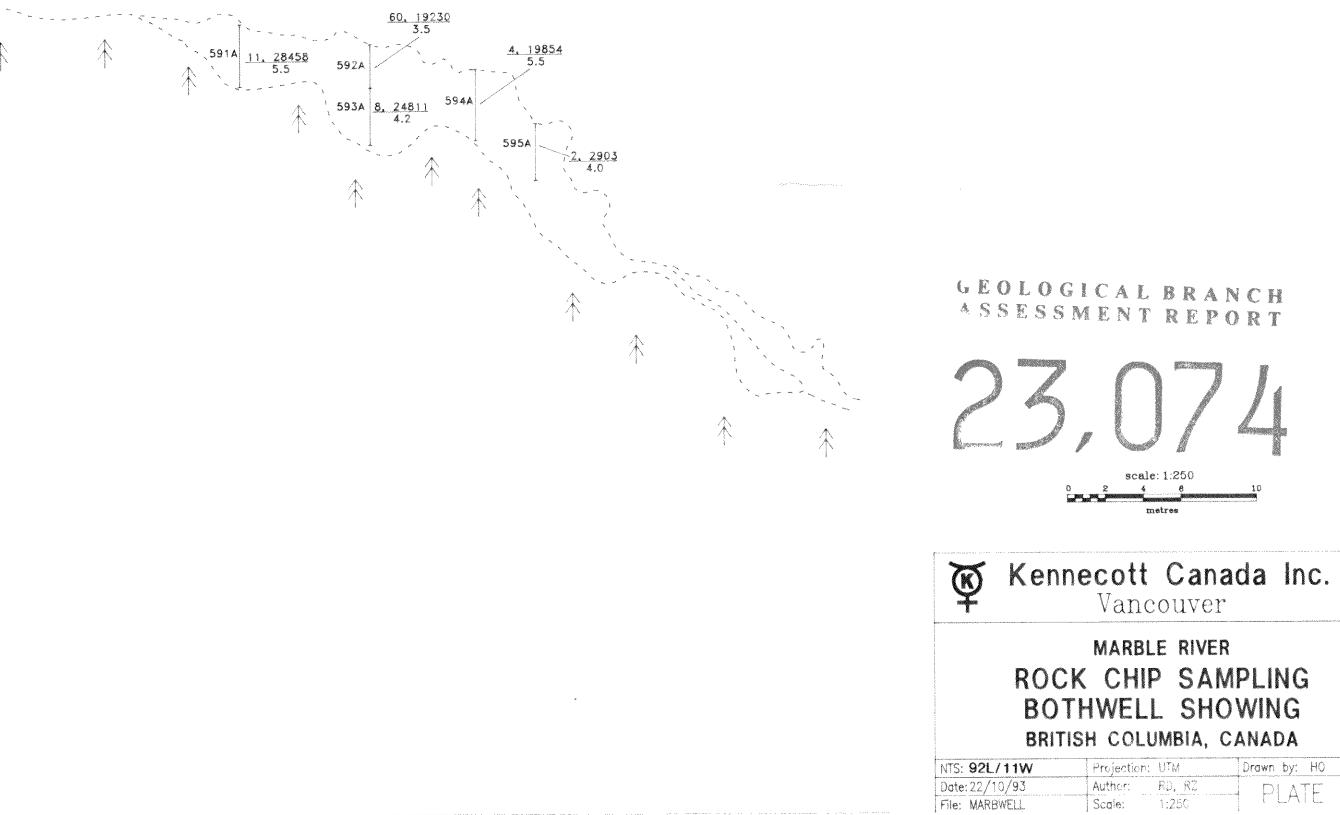
ACAR MARCHITCAL																															
SAMPLE#	Mo	Cu	РЬ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	۶r	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Τi	B	AL	Na	ĸ	W	Au*
	ppm	X	ppm	*	*	ppm	ppm	X	ppm	*	ppm	*	X	X	ppm	ppb															
SSMR93Z07	<1	101	<2	68	<.1	72	27	933 5	.07	11	<5	<2	<2	35	.3	<2	<2	116	2.07	.033	4	52	1.91	30	.40	43.	. 14	.06	.03	1	3
SSMR93Z08	<1	59	<2	72	<.1	41	22	1457 5	.11	10	<5	<2	<2	35	<.2	<2	<2	115	1.45	.039	4	46	1.55	35	.31	32	.78	.04	.03	<1	2
RE SSMR93208	1	61	<2	71	<.1	42	21	1494 5	1.18	7	<5	<2	<2	35	<.2	<2	<2	116	1.50	.040	4	47	1.57	30	.32	32	. 82	.04	.03	<1	1

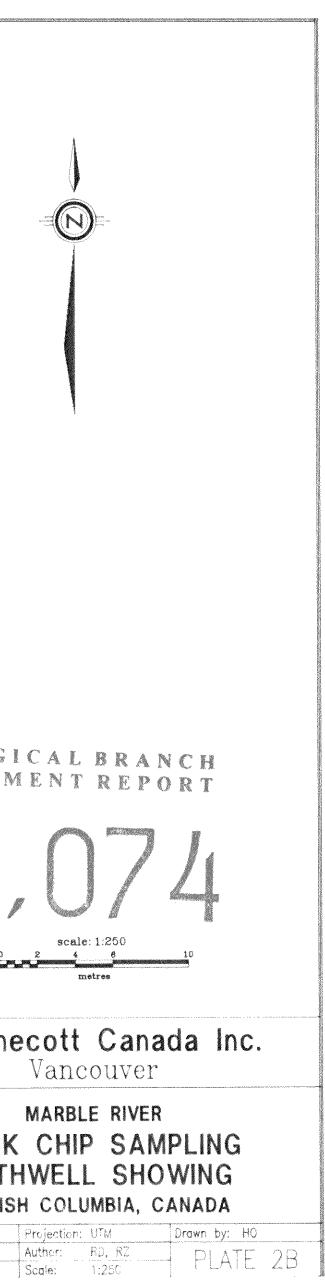

Sample type: SEDIMENT. Samples beginning 'RE' are duplicate samples. AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.



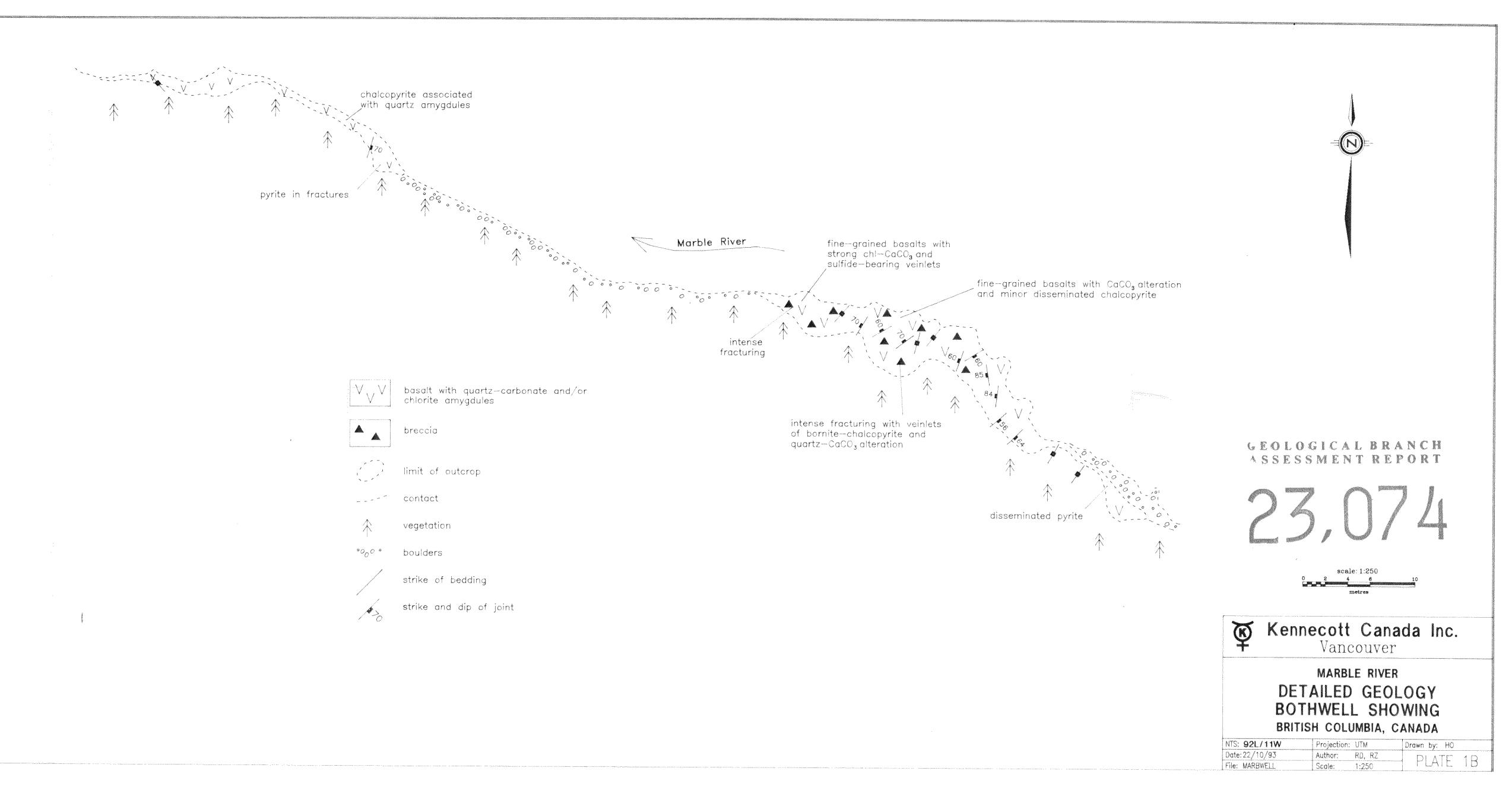


.





- <u>19. 9348</u> <u>Au (ppb), Cu (ppm)</u> 1.3 sample length (metres) * complete geochemical data in appendix


 - limit of outcrop
- ____ trend lines

