LOG NO: NOV O 2 1945 RD.

ACTION.

ASSESSMENT REPORTE NO:

on the

1992 DIAMOND DRILLING PROGRAM

WOLF 92 GROUP

OMINECA MINING DIVISION

NTS: 93F/3W

Lat.: 50°25'N Long.: 124°53'W

Owner and Operator

Minnova Inc. 3-311 Water Street. Vancouver, B.C. V6B 1B8

GEOLOGICAL BRANCH ASSESSMENT REPORT

23,076

Dave Heberlein March, 1993

TABLE OF CONTENTS

1. INTRODUCTION	l
1.1 General:	1
1.2 Property Location and Access:	
1.3 Topography and Vegetation:	
1.4 Property and Ownership:	
1.5 Exploration History:	
1.6 Geology:	
2. DIAMOND DRILLING	1
2.1General:	5
2.2 Results:	
DDH WF-92-07	6
DDH WK-92-08	
DDH WF-92-09	
DDH WF-92-10	
DDH WF-92-11	
DDH WF-92-12	
DDH WF-92-13	
DDH WF-92-14	
DDH WF-92-15	
DDH WF-92-16	12
DDH WF-92-17	
DDH WF-92-18	
DDH WF-92-19	
DDH WF-92-20	
DDH WF-92-21	
3. CONCLUSIONS AND RECOMMENDATIONS	17
4. REFERENCES	17
APPENDIX A: DRILL LOGS AND ANALYTICAL RESULTS	. 18
APPENDIX B: STATEMENT OF COSTS	. 19
APPENDIX C: STATEMENT OF QUALIFICATIONS	. 21

LIST OF FIGURES	After Page
FIGURE 1 LOCATION MAP	. 2
FIGURE 2 DRILL HOLE LOCATION MAP	In Pocket
LIST OF TABLES	
TABLE 1: LIST OF CLAIMS	2
TABLE 2: DRILL HOLE INFORMATION	5

1. INTRODUCTION

1.1 General:

This report documents the results of a 15 hole, 2,002m diamond drilling program carried out on the Wolf property between August 12 and September 23, 1992. The program was designed to test zones of strong silicification and epithermal-style gold mineralization exposed in trenches at the Ridge Zone and areas of anomalously high resistivity located about 1,000m west of the Ridge Zone.

1.2 Property Location and Access:

The Wolf claims are located on the Nechako Plateau at latitude 53° 12' N and longitude 125° 27' W (Fig.1). Closest towns are Vanderhoof, approximately 130km northeast and Prince George, 230km east northeast.

The claims are accessable by road for about seven months of the year via the Kluskas-Malaput and Kluskas Forest Service Roads. Travel time from Vanderhoof averages about 2½ depending on logging traffic. In winter months the only access is by helicopter from Prince George or Vanderhoof. Flying time which are approximately one hour flying time away.

1.3 Topography and Vegetation:

The claims cover part of the Entiako Spur; a westerly trending branch of the Fawnie Range. This feature consists of gently rolling hills with locally, moderately steep slopes. In the claim area, the range of hills consists of a series of resistant knobs or topographic domes separated by swampy lowlands. Relief is approximately 250m in the claim area with valley floors at an elevation of 1,040m and hill tops at just under 1,300m

With the exception of the swampy valley floors, the claim area is heavily forested. Lodge Pole pine is the dominant species, but stands of white spruce and balsam occur locally. Much of the forest is immature, growing over a 30 to 40 year old burn.

Outcrop is sparse over much of the property. Most occurs on the tops of the hills and on south facing slopes. Overburden consists of basal till in the east and south east claim area, which is overlain by poorly stratified outwash deposits. Fluvial deposits consisting of sands and gravels occur in the northwest part of the property towards the Entiako drainage.

1.4 Property and Ownership:

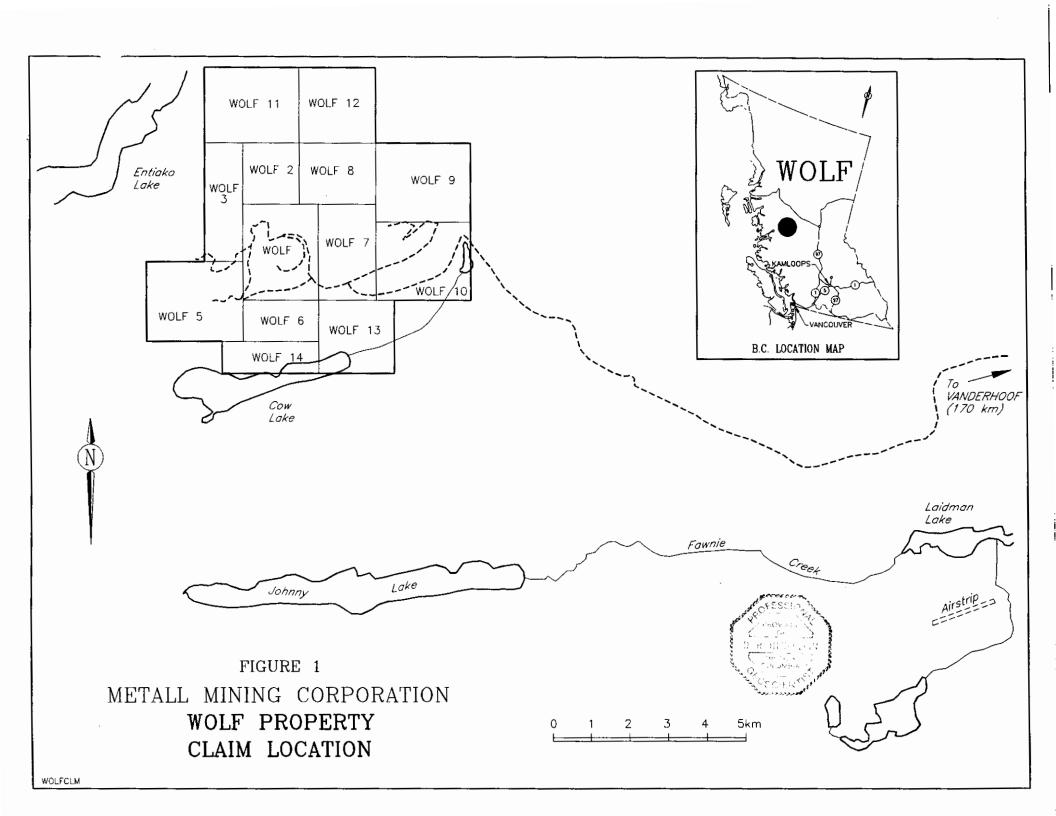

The Wolf property consists of thirteen MGS mineral claims, totalling 198 units. They are owned and operated by Minnova Inc.

TABLE 1. LIST OF CLAIMS

CLAIM	RECORD NO.	UNITS	EXPIRY DATE
WOLF	238648	20	07/18/2002
WOLF 2	238649	9	07/18/2002
WOLF 3	238650	12	07/18/2001
WOLF 5	238895	20	09/26/1995
WOLF 6	238896	8	09/26/1995
WOLF 7	238897	15	09/26/1995
WOLF 8	238898	12	09/26/1995
WOLF 9	238899	20	09/26/1994
WOLF 10	238900	20	09/26/1995
WOLF 11	312994	20	09/07/2000
WOLF 12	312995	16	09/07/2000
WOLF 13	312996	16	09/04/1999
WOLF 14	312997	10	09/05/1999
		198 units	

1.5 Exploration History:

- 1982 Epithermal mineralization discovered by Rio Algom by prospecting around a regional lake sediment anomaly. Epithermal style mineralization identified at the Ridge Zone
- 1982 to 1984 Rio Algom explored the property with a program of geological mapping, hand trenching, soil sampling, rock sampling, VLF-EM and magnetometer surveys.

- They identified several more zones of epithermal alteration, two of which (the Pond and Ridge Zones), contained encouraging gold values.
- 1985 Rio Algom carried out a six hole, 593.5m drilling program to test the Ridge and Pond zones. No significant gold mineralization was intersected by the drill holes.
- 1985 to 1988 Wolf epithermal system was studied by Kathryn Andrew as part of a M.Sc. thesis at UBC.
- 1986 Lucero Resource Corp. optioned the property from Rio Algom and carried out an extensive programs of trenching, road building, soil sampling and geological mapping between 1986 and 1988.
- 1989 Lucero Resource Corp. purchased 100% of the property from Rio Algom.
- 1991 Minnova Inc. optioned the property and flew an airborne magnetic and EM survey over the claim area.
- 1992 Minnova carried out an extensive program of trenching, gradient array IP, geological mapping and biogeochemical sampling over the Ridge and Pond Zones. This culminated in a fifteen hole, 2,002m diamond drilling program that resulted in the discovery of a shallow dipping mineralized zone.

1.6 Geology:

The Wolf property is underlain by volcanic rocks and sediments of Eocene and Upper Jurassic age. The older rocks comprise the basement in the area. They consist of augite porphyritic andesite flows with locally abundant epiclastic sediments. Best exposures are in road cuts along the eastern property boundary and in a trench in the south-central claim area.

Eocene rocks lie unconformably on the Jurassic volcanics and form the prominent hills of the Entiako Spur. The sequence consists of a lower assemblage of heterolithic breccias and conglomerates containing clasts of basement rock (andesite and monzonite). This grades up into a mixed package of coarse heterolithic sandstones, wackes and rhyolitic tuffs. Rhyolite flows, breccias and pyroclastics (some welded) form the upper part of the sequence. The rhyolites are strongly quartz phyric and exhibit flow banding and devitrification textures. Potassium-argon age dates of the rhyolites place them between 47 and 49 Ma. (Andrew, 1988) which makes them part of the Ootsa Lake Group as defined by Tipper (1963).

Extensive block faulting occurs throughout the property area. Dominant faults sets strike north and northeast and have offsets of generally less than 50m. Bedding in the Eocene units dips

shallowly to moderately (20 to 40°) to the west. Steeper dips, also to the west (60 to 90°) are seen in the basement rocks.

Mineralization is hosted exclusively in the Eocene rocks. Favorable hosts are rhyolite fragmentals and tuffaceous sediments that occur in the sequence. It is characterized by complex zones of hydrothermal brecciation, banded veins and chalcedonic stockworking. The zones lie in a broader envelope of strong silicification Gold values occur primarily in the banded veins and hydrothermal breccias where grades up to 78g/t have been recorded over narrow intervals. Average grades are much lower. At the Ridge Zone the mineralized zone averages about 2 g/T Au.

2. DIAMOND DRILLING

2.1General:

Fifteen diamond drill holes totaling 2,002m were drilled on the Wolf property between August 14 and September 14, 1992. Drilling was carried out by Atlas Drilling Ltd. of Kamloops B.C., using a skid-mounted, Longyear Super 38 drill and NQ rods. Core was logged by Cam Clayton and Dave Heberlein at Minnova's camp located at the eastern property boundary. The core was routinely split and sampled at two metre intervals, or less if dictated by the geology. Samples were shipped to Minen Labs of North Vancouver where they were pulverized and digested using aqua regia. Silver, As, Ba, Cu, Pb, Sb and Zn were determined by ICP. Gold was analyzed by fire assay with an AA finish and Hg was analyzed by cold vapor AAS. The results of the geochemical analyses and drill logs are presented in Appendix A. Drill hole information is summarized in Table 2.

TABLE 2. DRILL HOLE INFORMATION

HOLE	NORTHING	EASTING	ELEVATION	AZM	DIP	DEPTH
				•		
WF92-07	97414N	36327E	1,255m	095°	-49°	97.2m
WF92-08	97400N	36185E	1,258m	090°	-55°	160.3m
WF92-09	97300N	36185E	1,274m	090°	-50°	155.45m
WF92-10	97400N	36200E	1,262m	090°	-55°	1 0 5.5m
WF92-11	97900N	36150E	1,194m	270°	-50°	135.6m
WF92-12	98100N	36025E	1,190m	090°	-60°	132.9m
WF92-13	97300N	36110E	1,260m	090°	-60°	190.5m
WF92-14	98200N	35250E	1,159m	090°	-45°	139.0m
WF92-15	97900N	35235E	1,181m	090°	-60°	124.4m
WF92-16	97700N	35300E	1,183m	090°	-45°	125.0m
WF92-17	97600N	35330E	1,160m	090°	-45°	124.1m
WF92-18	97400N	36085E	1,270m	090°	-60°	148.1m
WF92-19	97500N	36220E	1,271m	090°	-55°	125.0m
WF92-20	97600N	36150E	1,248m	090°	-50°	100.0m
WF92-21	96900N	36400E	1,293m	090°	-60°	149.4m

2.2 Results:

A brief description of the results of each drill hole is presented below.

DDH WF-92-07

This hole was drilled to test a zone of gold mineralized hydrothermal breccia exposed in trenches at the Ridge Zone. It collared in a purple quartz feldspar porphyry intrusion that persists to a depth of 12.2m. From 12.2 to 22.6m the hole penetrated a section of flow banded, quartz, feldspar porphyritic rhyolite containing zones of quartz stockworking and hydrothermal breccia (17.8 to 21.4m). A more intense silicified and brecciated zone occurs below the flow banded rhyolite between 22.6 and 25.0m.

The hydrothermal breccia is characterized by angular to rounded clasts of flow banded rhyolite and epiclastic sediment in a matrix of translucent, banded chalcedony. Clasts of vein material, some showing blading textures are also present.

A second interval of flow banded rhyolite occurs from 25.0 to 38.1m. The rock changes from fairly massive rhyolite to autoclastic breccia with depth. Numerous quartz veinlets with 1 to 2cm envelopes of pervasive silicification cut the rhyolite. Some of the veinlets show delicate banding textures. The rhyolite is argillically altered below 36.3m. and silicification diminishes gradually to the bottom of the interval.

Volcaniclastic sediments consisting of laminated siltstones and mudstones occur between 38.1 and 44.4m. This interval is bounded by faults at its upper and lower contact. Grain size generally coarsens down section. The finer grained beds near the top are pervasively silicified stockworked with quartz veinlets.

A fine grained quartz phyric rhyolite occurs below the sediments from 44.4 to the end of the hole at 86.5m. Moderate to strong silicification consisting of quartz stockworking and jigsaw brecciation (hydrofracturing) occur in the top 20m of the unit. Lower down, silicification gives way to moderate to strong pervasive argillic alteration that coincides with an increasing pyrite content (to 2%).

Anomalous gold values occur at several levels in the hole, but no ore grades were encountered over significant widths. Highest values (5.05 g/t, 2.10 g/t) correspond with most intense zones of silicification. Anomalous values (> 100 ppb) occur throughout the hole.

DDH WK-92-08

This hole, collared 115m due west of WF-92-07, was drilled to test the zone of anomalous gold values intersected in that hole. For the top 80.3m, it intersected a homogeneous section of quartz feldspar porphyry rhyolite intrusive. This unit is variably silicified throughout with zones of quartz stockworking and pervasive silicification present at several levels. The overall intensity of silicification increases to the lower contact where it is massive and texturally destructive and grades into a complex zone of hydrothermal breccia and stockworking.

The breccia and stockwork zone occurs between 80.3 and 95.2m. It is highly variable in texture, ranging from massive to bladed (carbonate replacement) veins, banded chalcedony stockworks to hydrothermal breccia. The host rock, although strongly altered, is identifiable as a quartz phyric rhyolite. Fragments of silicified epiclastic sedimentary rock occur lower in the zone. From 95.2 to 98.0m, the hole intersects a moderately silicified and stockworked quartz phyric rhyolite.

Epiclastic sediments occur below the rhyolite from 98.0 to 110.8m. They consist of finely interbedded pyritic siltstones, and feldspathic sandstones. Weak zones of quartz microveining cut the sediments. These contain narrow pyritic stringers. At 110.8m there is a sharp contact with a densely microcrystalline quartz phyric rhyolite. This unit is weakly clay altered.

A second epiclastic sedimentary unit underlies the rhyolite between 126.0 and 128.5m. It consists of a medium to coarse grained lithic sandstones containing angular to sub-rounded clasts of sandstone, mudstone and rare andesite in a silty matrix. The unit coarsens down hole and grades into an interlayered sequence of heterolithic breccias and crystal tuffs that persist to the end of the hole at 160.3m.

Gold mineralization occurs from 87.6m to 98.0m. Here, values exceed 1 g/t and reach a maximum of 7.28 g/t. Maximum concentrations correspond with bladed quartz veins.

DDH WF-92-09

Drill hole WF-92-09 was collared 100m south of WF-92-08 to test the same mineralized zone. It collared in a purple coloured quartz feldspar porphyry containing variable zones of silicification and quartz stockworking. Significant silicified zones occur from 33.0 to 37.7m and 93.8 to111.0m. These zones consist of stockworks of bladed quartz stringers with narrow cross cutting breccia veins up to 40cm wide. The veins have well developed silicified envelopes that overlap in places to produce zones of massive silicification.

At 134.0m the quartz feldspar porphyry is disrupted by a complex hydrothermal breccia zone consisting of silicified porphyry, rhyolite and siltstone fragments in a banded silica (+adularia ?) matrix. This zone is truncated by a fault from 136.0m to 139.1m.

Epiclastic sediments occur below the fault from 151.2 to the end of the hole at 155.45m. In the upper part of the interval they consist of laminated siltstones with clasts of rhyolite and sandstone. Lower in the section they grade into lithic sandstones and heterolithic conglomerates. The latter unit consists of a poorly sorted, matrix supported breccia with sub-rounded fragments of rhyolite, siltstone, andesite and rare monzonite clasts.

Gold values are weak throughout the hole with the exception of the hydrothermal breccia unit between 134.0 and 136.0m. This interval returned an assay of 1.3g/t Au. Above the hydrothermal breccia, values are weakly anomalous ranging between 26 and 298 ppb.

DDH WF-92-10

Collared between holes WF-92-7 and WF-92-8, this hole was drilled to test the continuity of the of the anomalous gold zone intersected in those holes. It collared in variably silicified quartz feldspar porphyry that extends to a depth of 27.9m. Rhyolite occurs below the porphyry from 27.9 to 30.3m. This unit consists mostly of flow material characterized by strong flow banding textures. Fragmental sections of the

interval (e.g. from 30.3 to 39.6m) may represent autoclastic breccias or lapilli tuff interbeds.

Tuffaceous rocks underlie the rhyolite. They are present from 39.6 to 53.4m. Lapilli tuffs and bedded rhyolite breccias characterize this unit. The tuffs are composed mainly of angular spherulitic and flow banded rhyolite lapilli (up to 20mm in diameter) in a fine grained crystal and vitric ash matrix. The tuffs grade downwards into an autoclastic rhyolite breccia composed of block size clasts of spherulitic, flow banded rhyolite. Interbedded lapilli tuffs and rhyolite breccias persist to a depth of 70.2m. In this interval they become progressively more silicified towards the base and quartz stockworking with bladed and breccia veins become abundant. At 70.2m the hole penetrates a strongly silicified and stockworked zone containing numerous banded (quartz-adularia) and bladed veins with zones of hydrothermal breccia. This continues to a depth of 88.0m.

From 88.0m to 95.9m more quartz phyric rhyolite occurs. This unit is faulted against a heterolithic breccia consisting of monzonite, andesite, siltstone and rhyolite fragments, at a depth of 98.3m.

Highly anomalous gold values occur in the hydrothermal breccia zone between 83.8 and 94.6m. Here values range from 0.58 g/t to 12.7 g/t Au with an average of 2.12 g/t. Again the highest concentrations correlate with bladed veins and hydrothermal breccia intervals.

DDH WF-92-11

DDH WF-92-11 was drilled to test a coincident chargeability and resistivity anomaly located 600m north of the Ridge Zone. It collared in a quartz crystal ash tuff that extends to a depth of 13.5m. At 13.5m it is in sharp contact with a heterolithic breccia. The breccia consists of angular to sub-rounded clasts of andesite, rhyolite and mudstone in a lithic, feldspathic tuffaceous matrix. Patchy silicification consisting of quartz stockworking with banded, bladed and breccia veinlets occurs sporadically in the breccia.

At 25.5m the hole enters and remains in a thick sequence of rhyolite lapilli tuffs. They are characterized by lapilli size clasts of glassy, flow banded rhyolite and

pumice in a vitric matrix composed of glassy shards, crystal and pumice fragments. Fiammé are abundant throughout the unit. Near the bottom of the hole at 135.6m incipient welding textures also occur.

No significant alteration or gold mineralization is present in this hole.

DDH WF-92-12

This hole was drilled to test a coincident chargeability and resistivity anomaly 200m north of WF-92-11. Crystal and crystal lithic tuffs, similar to those present in WF-92-11 occur to a depth of 54.2m. The tuffs consist of broken feldspar crystals and lithic lapilli in a dark grey vitric ash matrix. Interbedded tuffs and volcaniclastic sediments continue to 76.8m.

Below 76.8m, the hole penetrates a welded ash flow tuff to a depth of 132.9m. This unit contains abundant crystal fragments, lithic lapilli and pumice clasts in a variably welded vitric matrix. Densely welded intervals display excellent eutaxitic textures.

Alteration throughout the hole is weak, consisting mainly of pervasive sericitization and patchy silicification defined by sparse quartz veinlets. Intervals of clay veining (kaolinite?) are also present, indicating weak argillic alteration. No gold mineralization occurs in this hole.

DDH WF-92-13

This hole was drilled at the Ridge Zone, 100m south of WF-92-08. The principal target was the zone of gold-bearing hydrothermal brecciation found in holes WK-92-7, 8, 9 and 10.

It collared in a massive quartz, feldspar porphyry intrusion which persists to a depth of 80.2m. This unit is variably altered throughout, with silicification increasing towards the lower contact.

Rhyolite lapilli tuff occurs from 98.2 to 101.0m. It is truncated by a fault zone from 101.2 to 102.4m. Heterolithic breccia consisting of sub-angular clasts up to block

size in a medium grained sandy or tuffaceous matrix occurs to 135.4m. Clasts consist of epiclastic sediment (siltstone and mudstone), quartz feldspar porphyry and andesite. Silicification persists throughout this unit with banded and bladed quartz stockworks present from 141.0 to 151.4m. At 151.4m stockworking gives way to a zone of intense silicification and hydrothermal brecciation. This zone contains abundant banded veins and clasts of banded vein material. Open spaces in the strongly silicified parts of the interval are filled with bladed silica. Bladed veins vary from about 1cm to over 30cm.

The strongly altered zone is separated from less altered tuffaceous sandstones by a gougy fault between 160.3 and 161.3m. These sediments occur at the top of a downwards coarsening sequence of interbedded crystal and vitric tuffs that grade into graded sequence of lithic lapilli tuffs and sandstones. At the base of the tuff sequence at 183.1m, there is a second heterolithic breccia unit. This one persists to the end of the hole at 190.5m. It is characterized by abundant rounded monzonite clasts.

Gold mineralization occurs over a 17.1m interval in this hole from 142.7 to 159.8m. In this interval values range from 0.66 g/t to 6.51 g/t with an average (weighted) grade of 1.53 g/t Au. Mineralization occurs in the zone of intense silicification, hydrothermal brecciation and stockworking at the base of the upper heterolithic breccia.

DDH WF-92-14

This hole was drilled to test a coincident resistivity and chargeability north of the Chopper Pad Zone (Fig. 2). It penetrated a thick section of spherulitic, flow banded, quartz feldspar porphyritic rhyolite that extends to the end of the hole at 139.0m. Three basic dykes occur near the top of the hole from 6.1 to 8.3m, 25.0 to 27.m and 30.9 to 31.7m.

Weak alteration occurs throughout the hole. It is characterized by patchy clay alteration, silicification and quartz stockworking. No significant gold values occur in these zones.

DDH WF-92-15

A similar sequence of flow banded rhyolites to that in WF-92-14 was intersected in hole WF-92-15. This hole tested the same resistivity anomaly 300m to the south.

From 1.5 to 13.9m, the hole cored a rhyolite lapilli tuff containing abundant rounded quartz feldspar porphyry rhyolite lapilli in a fine grained ashy matrix. Quartz veins and jigsaw breccias occur throughout this interval. Flow banded rhyolites and autoclastic rhyolite breccias occur from 13.9 to 81.9m. Variable silicification is present in the rhyolites. It occurs as banded and bladed quartz stockworks and pervasive replacement of the groundmass. Strongest silicification occurs between 42.1 and 52.6m.

Lapilli tuffs consisting of rounded rhyolite lapilli in a vitric ash matrix underlie the flow banded rhyolite from 81.8 to 109.0. Welded and incipiently welded sections are noted. Silicification continues through the lapilli tuff, with intense quartz stockworking noted from 91.8 to 92.1 and less intense stockworking from 92.1 to 97.8m.

More flow banded rhyolite occurs below the lapilli tuff from 109.0 to 124.4m. This unit is extremely spherulitic compared to the rhyolite higher in the hole. No significant alteration occurs in this unit.

Anomalous gold values (> 100 ppb) occur sporadically throughout the hole. Best values occur from 9.4 to 10.0m (392 -ppb), 19.2 to 19.9m (369 ppb), 24.9 to 25.2m (404 ppb) and 68.1 to 77.0m (109 to 719 ppb).

DDH WF-92-16

WF-92-16 was drilled 200m south of WF-92-15 on the Black Fly Zone. Flow banded rhyolite and rhyolite breccias were intersected from 0.0 to 87.9m. Alteration is variable throughout this interval. Moderate silicification and quartz stockworking occurs between 32.0 to 50.1m and 55.2 to 69.9m.

A crystal ash tuff from 69.9 to 102.7m separates the rhyolite from a lower rhyolite unit. The tuff consists of a well banded vitric ash with abundant fiammé and rare crystal fragments. It is strongly clay altered throughout with traces of chlorite.

The lower rhyolite consists mainly of autoclastic breccia mixed with spherulitic flow banded rhyolite. Unlike the upper unit this rhyolite is only slightly altered.

Anomalous gold values (>100 ppb) occur throughout the hole. The best mineralization occurs from 14.3 to 43.6m and 63.3 to 79.4m. These intervals correspond to the most silicified zones.

DDH WF-92-17

This hole was drilled 100m south of WF-92-16 on a coincident resistivity and chargeability anomaly on the Black Fly Zone Trend.

From 9.3m (bottom of casing) to the end of the hole at 124.1m, the hole cut a sequence of massive, flow banded, spherulitic and autobrecciated rhyolite. As in WF-92-16, stockworks of quartz occur sporadically throughout the hole, however in this hole pyrite stringers accompany the silicification. Strong alteration is present from 71.9 to 75.8m, 92.9 to 101.6m and 105.0 to 124.1m. These intervals consist of quartz stockworked and pervasively silicified and locally argillized rhyolite. Stockwork veins are frequently banded and bladed. Pyrite stringers occur in the more clay altered zones.

Anomalous gold values (>100ppb) occur throughout much of the hole with highly anomalous values (>300 ppb) occurring from 38.3 to 59.6 (305 to 1426 ppb). This interval also contains the highest pyrite concentrations noted in the hole (>2%).

In addition to anomalous gold values, elevated As, Hg and Sb concentrations were detected. These correlate well with the zone of highest gold concentrations. A lower zone of elevated Hg values (> 200 ppb) occurs from 96.4 to 110.9m. In this interval gold values are only weakly anomalous.

DDH WF-92-18

Hole WF-92-18 was drilled on the Ridge Zone 65m west of WF-92-08. It was drilled to determine the down dip extent of the mineralization intersected by holes WF-92-07, 08, 09, 10 and 13.

As with the other Ridge Zone holes, WF-92-18 collared in a quartz feldspar porphyry intrusion. This unit continues to a depth of 83.6m where there is a sharp contact with a heterolithic breccia. Alteration within the intrusion is weaker than in the other holes in this area. It consists of narrow zones of patchy silicification and quartz stockworking separated by relatively wide areas of fresh rock.

Heterolithic breccia is a poorly sorted, matrix supported fragmental rock with sub-angular to rounded clasts of rhyolite, andesite and volcaniclastic sediment. This unit is chloritized with no obvious silicification. The breccia grades downwards into a sequence of vitric ashes and siltstones from 108.2 to 131.9. These are unaltered.

Epiclastic sediments, principally laminated siltstones occur below the tuffs. They coarsen downwards into a second heterolithic breccia that extends to the end of the hole at 148.1m.

Strong alteration occurs at several locations in the hole. A hydrothermal breccia and silicified zone occurs between 104.6 and 108.2m. This interval closely resembles the mineralized zones in holes Wf-92-08 and 10. It is characterized by massive, banded and bladed silica overprinted by a stockwork of clear drusy quartz veins. Clasts of wall rock occur in hydrothermal breccia zones within the silicified interval. These clasts are completely replaced by silica. Lower in the hole, a strong stockwork of banded and bladed veinlets occurs between 137.6 and 139.7m. Narrow hydrothermal breccia zones occur in this interval.

Gold mineralization occurs in and adjacent to the strong silicified zone between 104.6 and 108.2m. Values range from 235 ppb to 2260 ppb with a weighted average of 988 ppb over a width of 6.1m.

DDH WF-92-19

DDH WF-92-19 was drilled 100m north of WF-92-08 to test the northerly continuation of the Ridge Zone mineralization. From 3.4 to 34.7mthe hole penetrated the quartz feldspar porphyry intrusion. Zones of moderate silicification and argillic alteration occur at several places in this unit. Strongest alteration occurs from 9.6 to 24.3m. Here, the porphyry is strongly argillized with patchy silicification.

Rhyolite lapilli tuffs and ash tuffs underlie the porphyry intrusion to a depth of 75.2m. They are characterized by abundant broken quartz and feldspar crystals in a vitric ash matrix. Glass shards are conspicuous in some intervals. Lapilli-rich intervals contain primarily rhyolite porphyry lapilli ranging from 5 to 25mm. Alteration in the tuffs is weaker than in the overlying porphyry. It consists of patchy argillic alteration and chloitization. The latter is concentrated in the glassy ashes. Quartz stockworking occurs from 68.1 to 70.4m.

Hydrothermal brecciation and strong silicification occur between 70.4 and 73.1m. Massive silicification or quartz veining occurs in the core of this interval. This feature has excellent banded, bladed and breccia textures.

Beneath the tuffaceous rocks the hole cored a sequence of volcaniclastic sediments, principally tuffaceous sandstones and siltstones. These occur from 75.2 to 89.1m. In these rocks alteration is restricted to a weak stockwork of limonite stringers and sparse quartz veinlets.

Heterolithic breccia is the lowest unit cored in the hole. It occurs from 89.1 to 125.0m. The breccia closely resembles that at the bottom of WF-92-13. It is characterized by abundant rounded to sub-angular clasts of monzonite ranging in size from 10 to 100mm. Other clasts present include rhyolite, sandstone and pyroxene phyric andesite.

DDH WF-92-20

This hole was drilled 100m north of hole WF-92-19 to test the same mineralized zone. It collared in quartz feldspar porphyry intrusive that becomes progressively more silicified with depth. Strong quartz stockworking occurs from 43.1

to 59.2m. At 59.2m the mineralized zone was intersected. As in the other Ridge Zone holes it consists of a hydrothermal breccia containing angular fragments of strongly silicified mudstone and rhyolite. The matrix consists of massive white, sugary quartz with no banding or blading textures. Bladed stringers do, however, cut the hydrothermal breccia.

Mudstones and siltstones and tuffaceous sandstones underlie the hydrothermal breccia. These continue to 85.9m where they grade into a heterolithic breccia. Alteration of the sediments is very weak.

Heterolithic breccia occurs from 85.9 to the end of the hole at 100.0m. It consists of sub-angular to rounded clasts of monzonite, andesite rhyolite and mudstone in a sandy lithic-rich matrix. Clasts show a preferred orientation or alignment that resembles welding. A feldspar porphyry dyke cuts the heterolithic breccia between 88.4 and 99.6m. The dyke is characterized by 20 to 30% feldspar phenocrysts up to 15mm in diameter. Many of these phenocrysts are strongly zones and twinned. The groundmass is fine grained to aphanitic with about 1% 1mm quartz phenocrysts.

Anomalous gold values (>100 ppb) occur between 58.2 and 62.9m. In this interval values range from 120 to 333 ppb.

DDH WF-92-21

The final hole drilled in the 1992 program tested a 400m long zone of intense silicification called the Pond Zone.

Moderately to strongly silicified and stockworked quartz feldspar porphyry was intersected from 3.1 to 105.6m. Alteration intensity in this interval is very variable. Strong to intense alteration occurs from 48.8 to 59.4 and from 89.7 to 93.5m.

A fault zone at 105.6m separates the porphyry from a sequence of epiclastic sediments and heterolithic breccias that extend between 106.4 and 146.4m. These rocks are identical to those underlying the rhyolite sequence at the Ridge Zone.

A narrow basalt dyke from 143.3m to 146.4m separates the epiclastic sequence from a densely welded ash flow tuff. This rock is characterized by strong eutaxitic

textures defined by flattened pumice lapilli and glassy matrix material. Rhyolite clasts also flattened and crystal fragments are also abundant in this unit.

Sporadic anomalous gold values occur in the hole, however none occur over continuous intervals. The highest concentration, 1033 ppb occurs in a 20cm wide hydrothermal breccia vein from 65.2 to 65.4m.

3. CONCLUSIONS AND RECOMMENDATIONS

The 1992 diamond drilling program on the Wolf claims successfully identified a significant zone of epithermal style gold mineralization at the Ridge Zone. It consists of a shallow dipping zone of strong silicification, banded veins and hydrothermal breccias localized close to the lower contact of a rhyolite porphyry sill. Gold grades of approximately 2 g/T occur over an area of approximately 300 by 300m (in plan) with an average thickness of about 9m. Significant areas of silicification and anomalous gold values were also identified at the Blackfly Zone (holes WF92-16 and 17). Both areas are considered to be important targets that warrant additional drilling to assess their potential.

4. REFERENCES

- Andrew, K.P., 1986: Wolf Epithermal Precious Metal Vein Prospect; B.C.E.M.P.R Paper 1986-1, pp. 317-320.
- Andrew, K.P., 1988: Geology and Genesis of the Wolf Precious Metal Epithermal Prospect and the Capoose BAse and Preious Metal Porphyry-Style Prospect, Capoose Lake Area, Central British Columbia; Unpublished M.Sc. Thesis, The University of British Columbia.
- Tipper, H.W., 1963: Nechako River Map Area, British Columbia; G.S.C Memoir 324.

APPENDIX A:

DRILL LOGS AND ANALYTICAL RESULTS

HOLE NUMBER: WF-92-07

ALTERNATE COORDS GRID:

METRIC UNITS: X

PROJECT NAME: WOLF92 PROJECT NUMBER: 673

PLOTTING COORDS GRID: I.P. GRID NORTH: 97414.00N

NORTH: 974+14N

COLLAR DIP: -49° 0' 0" LENGTH OF THE HOLE: 87.20m

CLAIM NUMBER:

EAST: 36327.00E

EAST: 363+27E ELEV: 1255.00 START DEPTH: 0.00m

ELEV: 1255.00

FINAL DEPTH: 87.20m

LOCATION: RIDGE ZONE

COLLAR GRID AZIMUTH: 95° 0' 0"

COLLAR ASTRONOMIC AZIMUTH: 95° 0' 0"

DATE STARTED: DATE COMPLETED: August 15, 1992 August 16, 1992

COLLAR SURVEY: NO MULTISHOT SURVEY: NO PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ

CONTRACTOR: Atlas Drilling CASING: REAMED TO 9.75 m CORE STORAGE: WOLF CAMP

IMPERIAL UNITS:

DATE LOGGED:

August 16, 1992

RQD LOG: YES

PURPOSE: TEST RIDGE ZONE BRECCIA VEIN DOWN DIP TO WEST OF MAIN SHOWING.

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
16.76	-	-49° 01	ACID	OK			-	-	-	-	
49.10	-	-49° 01	ACID	OK		-	-	-	-	-	
64.31	-	-49° 0'	ACID	OK		-	•	-	-	•	
•	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	•	-	-	
-	-	-	-	-		-	•	•	•	-	
-	•	•	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
•	•	-	-	-		-	-	-	-	-	
-	•	-	-	-			-	-	-	-	
-	•	-	-	-			•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	•	-	-		•	-	-	-	-	
-	-	-	-	-		-	•	-	-	•	
•	-	-	-	-		-	-	-	-	•	
•	-	-	•	-		-	-	-	-	•	
•	-	-	-	-		1 -	•	-	-	-	
•	-	-	•	-		-	-	-	-	•	
-	-	-	-	-		-	•	•	-	-	
•	-	-	•	•		i -	-	-	-	•	
-	•	-	•	:		-	-	-	-	-	
-	-	-	-	•		-	•	-	•	•	
-		-	•	•		_	-	-	-		
-	-	-	-	:		_	-	•	-	•	
-	-	•	-	•	i	1 -	-	-			
_	-	-		-			-	_	-	_	
-	-	-	-	-		· -	-	-	-	-	

HOLE NUMBER: WF-92-07

FROM ROCK ANGLE ŦO TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS 0.00 «CASING» TO 3.10 «FQXT OR TI Colour: Brown to green. 3.10 43.1-12.24<m-chl, tr-w sil» Possibly still in overburden or exotic 10 LL» Grain size: Variable. Interval is pervasively chloritized. Weak limonite staining along fractures cobbles fell in hole when reaming cas-12.20 Description: Rubble composed of rounded (ground) and on outside surfaces of core. cobbles of the crystal tuff unit. Rounded diorite Recovery 15%. pebbles present from 7.9 to 10.7m. 10.7-12.2 Conglomerate rubble. Strong chlorite, m-ser 12.20 «FLOW BANDE Colour: Creamy-grey. 12.2-22.6 ww-s sil, w-hem, w-chl» 112.2-22.6 ktr v.f.gr Py» τo D RHYOLITE» Grain size: Fine. 22.60 Description: Flow banded to convolute flow banded rhyolite. Varies from aphyric to plag porphyritic to quartz eye. Spherulites noted at 16.9-17.0. Interval is variably fractured and brecciated. Jigsaw breccias and narrow quartz stockwork zones (5-15cm) occur throughout. 16.4-16.8 Veniform zones of quartz-hm-chl alter-16.4-16.8 «s.sil, m-chl, w-hem» 45 ation. Lower contact 17.8-17.9 «s. sil» 17.8-17.9 ≪Hyd. Breccia» Heterolithic hydro-17.8-17.9 ktr. vfg Py» thermal breccia with silica matrix. Clasts mostly of fine banded rhyolite, angular to rounded. Evidence of multi-stage brecciation i.e. truncated veins and breccia clasts. √18.75-19.5 wJigsaw bx/Qz stkwrk» Silicification increasing in intensity down hole. 19.9-20.1 Pervasive silicification and quartz 19.9-20.1 «s-sil» stockworking - gradational to jigsaw brecciation. \$21.2-21.4 "Hyd. Bx/jigsaw bx" 21.2-21.4 «s-sil» 22.60 «HYDROTHERM \$22.6-25.0 «i-sil» Colour: Grey-brown 22.6-25.0 «Tr vfg diss Py» ΤO AL BRECCIA» Grain Size: Variable Weak limonite staining. 25.00 Description: Heterolithic hydrothermal breccia unit. Clasts are angular to rounded and vary in size from <1mm to 30mm. Randomly oriented and matrix supported. Clasts mostly of flow banded rhyolite but episodically silicified clasts and vein (some bladed) are present. Interval contains sparse green cavities up to 25mm by 10 mm in dimension. Matrix completely replaced by grey translucent silica.

HOLE NUMBER: WF-92-07

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		24.1-24.7 Colour: Pale grey. Description: Similar hydrothermal breccia to main interval but completely overprinted by translucent grey silica. Some banding and blading textures noted.		d24.1-24.7⊨≪extreme sil»	24.1-24.7 Py trw Fine grained brilliant red mineral noted in the silica matrix - possibly realgar or ruby silver. Mineral occurs in patches or dustings throughout this section.	Should kick!! Ag?
25.00 TO 37.00	«FLOW BANDE D RHYOLITE»	Colour: Tan. Grain size: Fine. Description: Porphyritic variety of the rhyolite. Rock contains approx. 5% 1-5mm rounded quartz phenocrysts and about 1% rectangular plat laths. Flow banding not as well developed - possibly washed out by the alteration. Limonite staining of the matrix suggests that the rock has been pyritized. This is overprinted by quartz stock- working.		125.0-37.0 cm-s sil, m-ser» Silicification occurs as <1-2mm envelopes around quartz stringers. Stockwork intensity varies through interval. Rhyolite groundmass is moderately sericitized (or illitized). Individual quartz stringers are banded. Comb textures are present.	125.0-37.0 wIr Py> Black mineral notes as envelopes around some micro-fractures (pyrolusite or pyrobitumen?). Good examples at 33.8m. Rhyolite fairly oxidized. Rock is permeated by fine patchy limonite, perhaps hypogene in origin. Could also represent supergene oxidation.	Beginning of argillic zone.
37.00 TO	«FB RHYL BR	Colour: Purple brown.		35.8-36.5 ≪s-sil» 37.0-38.8 ≪w-m sil, m-arg»	∜37.0-38.8∤≪m-lim≫ as patches.	Notable pyrolusite.
38.10						
70 38.80	ECCIA»	Grain size: Variable. Description: Flow banded rholite breccia - auto-		Pervasive clay alteration and stringers of pale green and white clay. Silici-	Black mineral persists through this section. Occurs as late fracture	
		clastic. Fine grained pheno's of plagioclase and quartz (0.5mm) and spherulitic zones characterize the unit. Upper contact is a sharp fault zone about 2cm wide. Fault occupied by clay gouge. Lower contact (fault), silicified.	60	fication patchy, decreasing down interval.	fillings. It is amorphous and earthy - relatively hard (approx. 4) with a brownish black streak.	
38.10 TO 44.40	«VOLCANICLA STIC SEDS»	Colour: Grey. Grain size: Variable. Description: A fault bounded sequence of volcaniclastic sediments ranging from finely laminated siltstones near the top of the interval to coarse bedded wackes (+30cm) near base. The coarser units		«w-m sil» patchy over entire interval. Most alteration occurs in the finer sediments near the top. Contacts are also silicified. Open fractures-partly filled with limonite prevalent below 41.2m. Weak quartz stockworking through	Py-tr	Relatively unaltered.

HOLE NUMBER: WF-92-07

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		contain abundant rip-up clasts to 35mm. Bedding and lamination shows signs of soft sediment dis- ruption/contortion.		out. 39.1-39.6 «m-sil»		
44.40 10 52.30	«QXAT»	Colour: Pale grey. Grain size: Fine. Description: Fine grained unit made up of small rounded qz xtls set in a 'glassy' matrix. There are no measurable laminations or bedding features, suggesting perhaps a sturry deposit (subaqueous). Rounded qz xtls up to 2mm in diameter make up about 1-3% of the unit. Vitric shards noted in less altered sections. Upper contact is silicified bx 2cm wide. 44.4-45.0 «Jigsaw Breccia» Brown colour; shattered and healed rock exhibiting at least 4 stages of silicification (by cross-cutting relationships). Youngest event is unhealed leaving a 'rice crispy' square textured breccia. These cavities are lined with limonite. Host rocks are completely silicified. 45.9-48.5 «Oz stkwk. Tan-grey; intense multistage Qz stkwk. Some veins are well banded. Up to 4 bands are noted. 48.5-48.7 «Jigsaw Breccia» Gradational into true breccia. 49.3-49.4 «Hyd Bx»	25	<pre>«mod-s sil» bleaching</pre>	No sulphides noted. Abundant limonite as staining in altered fragments and in uncemented bx veins. «M-S lim»	No chalcedony.
52.30 TO 55.50	«QVAT»	Colour: Med grey/beige. Grain size: fine. Description: Homogeneous textured crystal vitric ash tuff. Rock shows no obvious layering. Upper contact sharp Lower contact -silicified breccia. Rock is moderately stockworked with qz stringers.	50 45	«M Sil,W Arg» Silicification and stock- working abruptly decreases at upper contact. Clay-most likely kaolinite- appears at 55.0m. Clay alteration prob- ably responsible for bleached colour.	«M-S limo Limonite coats all fractures and fills cavities in open veins.	Argillic alteration line at 55.0m. Possible welding at 56.0m.
55.50 TO 61.00	«QXAT»	Colour: Orange/white. Similar to the silicified unit between 45 and 53m but altered in a different way. Increasing argillic alteration through interval gives rock a sandy txture. The groundmass is also quite heavily limonite stained compared to previus unit.		«M-arg,W-sil» Pervasive kaolinite alter ation overprinted by a wide spaced stockwork of Qz stringers with silici- fied envelopes.	«S-lim»	Argillic zone increasing with depth.

DATE: 14-October-1993

HOLE NUMBER: WF-92-07

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
61.00 TO 73.20	«QVAT»	Colour: Cream. Grain size: Fine.		Clay alteration increasing down hole. Silicification variable in matrix,very few qz stringers. Some 1-3mm kaolinite veinlets noted. «M-S-Arg,W-M Sil»	«W-M lim» Limonite weaker than last in- terval,mostly restricted to facture coatings. Fractures most abundant in more silicified zones.	
73.20 TO 86.50	«QXAT»	Colour: Brown/cream. Grain size: Fine. Same as previous QXAT units but with considerably stronger clay alteration. End of hole.		«S-Arg,W-sil-W-AA» Pervasive kaolinite alteration of glassy ash matrix gives rock a sandy texture. Discrete veinlets of kaolinite and possible pale green pyrophyllite increase in abundance down interval.	«Tr-1% D.Py» Py is present in last 6m of hole as microscopic disseminations. Sharp transition from limonite to py at 83.8m. Coincides with onset of pyrophyllite veining. ↑75.3-83.8	Base of oxidation at 83.8m. Recovery 40% 73.9-75.0m. Recovery 95% 75.0-79.8m. Advanced argillic at 83.8m.

HOLE NUMBER: WF-92-07

ASSAY SHEET

C1 r		T-	1	ASSAYS		n-	6.	F -		OCHEMIC			·		
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Ppm Ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	\$ %	Aug/t g/t
10977 10978	12.40 13.80	13.80 15.30	1.40 1.50	0.9	31 27	50 14	12 7	1.4	11 18	1	53 25	430 30	75 55	0.03 0.01	
10979 10980	15.30 16.80	16.80 18.30	1.50	1.3	29 18	16 21	6	0.7 0.69	27 63	1	31 37	14 28	60 50	0.02	
10981 10982	18.30 19.80	19.80 21.30	1.50	1	19	12	5 5	0.71	58 61	1	34 34	32	45	0.02	
10983 10984	21.30	22.60	1.30	2.4 2.2 0.7	23 25 23	12 11 11	6	0.87	48 30	1 1 1	42 42	25 24 10	70 40 45	0.01	
10985 10986	23.10 24.10	24.10 24.40	1.00	16.8 44.1	20 15	21	8	0.45	14 7	i 1	19	1440 1700	35 70	0.01	1.65 1.77
10987	24.40	25.00	0.60	6.4	59	32	8	0.7	9	1	48	710	25	0.02	0.84
10988 10989 10990	25.00 26.30 28.00	26.30 28.00 29.50	1.30 1.70 1.50	3.1 3.6 1.8	127 114 107	57 113 43	6 6 6	0.65 0.73 0.67	14 19 13	1 1 1	40 43 38	320 382 104	35 25 35	0.01 0.01 0.01	
10991	29.50	31.00	1.50	2.4	84	32	5	0.61	14	1	44	390	45	0.01	
10992 10993	31.00 32.50	32.50 34.00	1.50 1.50	1.9 1.3	90 82	23 29	5 5	0.67 0.63	14 18	1 1	40 41	830 236	30 40	0.01 0.02	0.98
10994 10995	34.00 35.50	35.50 37.00 37.30	1.50	1.9	61 65	13 55	5 5 4	0.55 0.67 0.43	15 16 50	1 1	33 37	486 163	40 35	0.01	
10996 10997	37.00 37.30	38.10	0.30	1.7 4.4	26 40	30 85	6	0.43	35	1	25 50	62 152	30 65	0.01	
10998 10999	38.10 39.10	39.10 39.60	1.00 0.50	3.8 5.8	77 117	79 26	25 33	1.15	25 18	1 2	97 81	306 5020	60 45	0.01	5.05
11000 10951	39.60 40.70	40.70 42.20	1.10 1.50	2.9 0.5	42 28	37 36	39 16	0.62 1.16	13 8	1 1	59 98	505 7 6	40 45	0.01 0.01	0.52
10952 10953	42.20 43.40	43.40 44.40	1.20 1.00	0.8 4.2	16 31	55 38	25 44	1.83 0.66	19 26	1	129 73	111 243	30 65	0.01	
10954 10955	44.40 45.00	45.00 45.70	0.60	3.3	26 30	33 18	26 13	0.75	8 14	i 1	36 34	660 839	70 55	0.02	
10956	45.70	47.20	1.50	6.7	16	9	5	0.52	7	1	35	1865	85		
10957 10958	47.20 48.50	48.50 50.00	1.30	1.4	31 11	32 36	6 4	0.71 0.54	25 8	1	49 34	146 370	55 60		
10959 10960 10961	50.00 51.50 52.30	51.50 52.30 53.80	1.50 0.80 1.50	2.1 2.1 0.5	33 51 12	17 23 15	5 7 3	0.55 0.84 0.36	15 13 3	1 1 1	29 44 27	1200 414 34	60 75 5 0		
10962	53.80	55.50	1.70	0.5	16	24	3	0.45	8	1	30	14	55	0.01	1
10963 10964	55.50 57.00	57.00 58.50	1.50 1.50	0.9 2.2	41 23	15 18	5 5	0.83 0.84	8 17	1 1	42 49	85 39	55 85	0.01	

HOLE NUMBER: WF-92-07

ASSAY SHEET

Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb		Aug/t g/t	
10965	58.50	60.00	1.50	2.3	31	16	4	0.79	6	1	47	293	70	0.01		

HOLE NUMBER: WF-92-07 From (m)

0.00

Length (m)

0.00

(m) 0.00 GEOCHEM. SHEET

HOLE NUMBER: WF-92-07

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
			S>= 0.00cm							
12.40	13.80	1.40	0.00	0.0	17	12.14	11	7.86	0	
13.80	15.30	1.50	48.70	****	22	14.67	10	6.67	0	
15.30	16.80	1.50	28.70	****	16	10.67	26	17.33	0	
16.80	18.30	1.50	0.00	0.0	30	20.00	20	13.33	0	
18.30	19.80	1.50	42.30	****	23	15.33	46	30.67	Ü	
19.80	21. 3 0 22.60	1.50 1.30	14.00 43.70	933.3 ****	14 20	9.33	35	23.33	U	
21.30 22.60	23.10		73.00	****	20	15.38	26	20.00	0	
23.10	24.10	0.50 1.00	66.50	****	3	6.00 6.00	12	24.00 5.00	0	
24.10	24.40	0.30	100.00	****	ñ	0.00	3	10.00	ő	
24.40	25.00	0.60	0.00	0.0	14	23.33	15	25.00	ŏ	
25.00	25.60	0.60	0.00	0.0	0	0.00	Ö	0.00	ā	
34.00	35.50	1.50	16.00	****	32	21.33	22	14.67	ō	
35.50	37.00	1.50	16.00	****	27	18.00	22	14.67	0	
37.00	37.30	0.30	0.00	0.0	5	16.67	5	16.67	0	
37.30	38.10	0.80	0.00	0.0	41	51.25	6	7.50	0	
38.10	39.10	1.00	42.00	****	10	10.00	6	6.00	0	
39.10	39.60	0.50	0.00	0.0	4	8.00	12	24.00	0	
39.60	40.70	1.10	19.50	****	10	9.09	10	9.09	0	
40.70	42.20	1.50	32.00	****	12	8.00	23	15.33	0	
42.20	43.40	1.20	23.30	****	17	14.17	23	19.17	0	
43.40	44.40	1.00	26.00	****	17	17.00	12	12.00	0	
44.40	45.00	0.60	60.00	****	5	8.33	24	40.00	Ü	
45.00 45.70	45.70 47.20	0.70 1.50	68.60 0.00	0.0	8 22	11.43 14.67	34 77	48.57 24.67	0	
47.20	48.50	1.30	20.40	****	17	13.08	37 27	20.77	ň	
48.50	50.00	1.50	18.70	****	20	13.33	34	22.67	n	
50.00	51.50	1.50	0.00	0.0	30	20.00	39	26.00	ň	
51.50	52.30	0.80	0.00	0.0	20	25.00	10	12.50	ñ	
52.30	53.80	1.50	0.00	0.0	100	66.67	4	2.67	ō	
53.80	55.50	1.70	0.00	0.0	42	24.71	11	6.47	ō	
55.50	57.00	1.50	0.00	0.0	32	21.33	16	10.67	0	
57.00	58.50	1.50	14.70	980.0	37	24.67	7	4.67	0	
58.50	60.00	1.50	13.30	886.7	25	16.67	6	4.00	0	

MINNOVA INC.

HOLE NUMBER: WF-92-08 DRILL HOLE RECORD METRIC UNITS: X IMPERIAL UNITS:

PROJECT NAME: WOLF92 PLOTTING COORDS GRID: I.P. GRID ALTERNATE COORDS GRID: 1.P. GRID COLLAR DIP: -55° 0' 0" PROJECT NUMBER: 673 NORTH: 97400.00N NORTH: 974+ ON LENGTH OF THE HOLE: 160.30m CLAIM NUMBER: EAST: 36185.00E EAST: 361+85E START DEPTH: 0.00m LOCATION: LOOKOUT ZONE ELEV: 1258.00 ELEV: 1258.00 FINAL DEPTH: 160.30m

COLLAR GRID AZIMUTH: 90° 0' 0" COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

DATE STARTED: COLLAR SURVEY: NO PULSE EM SURVEY: NO CONTRACTOR: ATLAS DRILLING LTD. August 17, 1992 DATE COMPLETED: August 18, 1992 MULTISHOT SURVEY: NO PLUGGED: NO CASING: REAMED 0.6m

DATE LOGGED: August 19, 1992 ROD LOG: YES HOLE SIZE: NO CORE STORAGE: CAMP

PURPOSE: TO TEST GEOPHYSICAL ANOMALY NORTH OF LOOKOUT ZONE WEST OF RIDGE ZONE.

DIRECTIONAL DATA:

(m)	Astronomic Azimuth	Dip degrees		FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
111.56 160.30	-	-54° 0'	ACID ACID	ok OK		-	•	-	•	-	
100.30	_	-51. 0.	ACIU	- UK			-	_		-	
_	_	_					_	-	_	_	
_		-		-		1 .	_	-	_	_	
-	-	-	_	-			-	_	-	_	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-		-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	•	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	•	-	-	-	
•	-	-	-	•		-	-	-	-	-	
•	•	-	-	-		-	-	-	-	-	
-	-	-	•	-		-	+	-	-	-	
-	-	-	-	•		1 -	-	-	-	-	
-	-	-	-	•		-	•	-	-	-	
-	•	-	•	•		-	-	-	-	-	
-	•	-	•	•		1 -	•	-	-	-	
-	•	-	-	-			•	•	-	-	
-	-	-	•	•			•	-	-	-	
-	-	-				1 .	-	-	-	-	
-	-	-	-				-	-	_	-	
-	-	-		_		1 .	-		_	_	
_	-	-	-	_			-		-	-	
_	-	_	-	-		-		-	-	-	
-	-	-	_			_	-	-	-	-	

HOLE NUMBER: WF-92-08

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 0.60	«CASING»					From 0.6 to 3.4 core is rubbly.
0.60 TO 80.30	«B PORPHYRY »	Colour:Maroon grey to dark grey to grey green Grain size: m.g c.g. Description: Medium to coarse grained felspar porphyritic tuff. Feldspars range from mm scale to 1 cm locally. crystals are amhedral, broken to euhedral. Quartz crystals are fine grained (1-3mm) and < 1% of rock. Occasional lapilli size lithic fragments are seen. Matrix is aphanitic black to brown glassy with minor welding. 1 - 2cm wide "injections" of coarse feldspar porphyritic dykelets are seen randomly throughout. These have an aphanitic matrix that is weakly to moderately magnetic and contains euhedral feldspars. 3.4-5.8 Minor hydrothermal veinlets and breccias. 5.8-6.2 16.2-18.6 Fracture surfaces tend to be oxidized 23.0-25.3 Minor bladed quartz and open vugs, veinlets are banded, light and dark. 27.6-27.9 whydrothermal vein» blading and open cavities. 28.4-80.3 29.5-30.6	90	<pre>""""""""""""""""""""""""""""""""""""</pre>	Black fine grained mineral, metallic in areas, forming along fractures and extending into wallrock-possibly psilomelane.	
		30.6-35.7 Weakly altered (sil) rock, with minor Mt, limonitic veining, bladed quartz veinlets. 455.7-36.3 «Hydrothermal Breccia Vein» Rice Krispie" Hydrothermal breccia consisting of rounded, completely silicified fragments cemented by silica 35.7-36.3 «stockwork sil» 37.2-37.3 Small zone of stockwork veining and brecciation, minor blading 37.8-39.1 439.1-39.8 «Hydrothermal bx vein» consisting of angular fragments in banded and bladed quartz. Alternating white, brown, red brown banded silica at 41.0 small 5 cm wide white banded qtz vein oriented	60	<pre>«W sil» «i sil» «i sil» «s sil, W sil» «i-x sil, W pyroph» Pyrophyllite occurs as bright lime green greasy mineral in open cavities</pre>	<pre>«psilo» Black fine grained mineral, metallic in areas, forming along fractures and ex- tending into wallrock - possibly psilo- melane «psilo» «w-m Mt» Pyrolusite or psilomelane in trace amts «psilo? -tr»</pre>	60% Recovery

HOLE NUMBER: WF-92-08

HOLE NUMBER: WF-92-08

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERAL 1ZATION	REMARKS
				ALTERATION "W sil stkwrk" "M sil stkwrk" "W sil" "S sil, w-m chl" "S sil, w-m chl" "I sil" "I sil s pervasive with minor open cavities. "I sil" "I sil" "I sil s pervasive with minor open cavities. "I sil" "I sil" "I sil s pervasive with minor open cavities. "I sil, m chl, w lim" "I sil s pervasive with minor open cavities. "I sil, m sil, w lim" "I sil s pervasive with minor open cavities. "I sil, m sil sil s pervasive with minor open cavities. "I sil, m chl, w lim" "I sil s pervasive with minor open cavities. "I sil, m chl, w lim" "I sil s pervasive with minor open cavities. "I sil, m chl, w lim" "I sil s pervasive with minor open cavities. "I sil s pervasive with minor open cavities.	Minor psilomelane or pyrolusite «tr f.g. Py» Occurs along fractures «<1% f.g. Py» «tr Py» «1% v.f.g. Py» «m-s lim» minor Mt «tr v.f.g. diss Py» «tr Py»	REMARKS
		and veins to 10 cm, generally overprinted by silica. Minor banded silica.				

HOLE NUMBER: WF-92-08

HOLE NUMBER: WF-92-08

FROM ROCK ANGLE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS TO TYPE 80.30 «BX/STWK» Colour: Grey to white to variable ΤO Grain size: Variable 95.20 Description: The interval consists or varying degrees of hydrothermal stockworking, brecciation and veining. Veining is banded chalcedonic and banded silicic, alternating light and dark bands, with at least 20-30 bands in some areas. Quite often the central portion of these veins is bladed quartz overprinted by silica. Darker bands may contain metallics, pyrite and possible electrum. Brecciated fragments are generally rimmed by silica banding. Open bladed quartz veining is also common. Locally, rebrecciation and silicification is noted by broken and resilicified banded fragments. Drusy quartz lined vugs and open veins are seen locally. 480.3-82.1 ww-m jigsaw bx≫ Fairly tight jigsaw bx «s sil, m lim» «tr Py, electrum?» Dark mineral formstwk with minor 10 cm wide m-s stockwork bx with ing bands. blading, banded silica. «s sil, m lim» «tr Py» in veinlets 482.1-84.0 www jigsaw bx» Again contains small in -tervals of 10cm that are strongly brecciated and healed by bladed quartz and banded quartz chalcedo ny. One veinlet oriented «s-i sil» 484.0-85.9 «hyd bx» More open brecci-«tr pyrolusite/psilomelane?» Dark ated textures generally heated by bladed silica. black metallic mineral as small vein-Common open drusy quartz lined vugs. lets along fractures. «s-i sil» 485.9-87.8 «s hydrothermal bx» Strongly brecciat «tr pyrolusite/psilomelane?» As veined, variable fragment size, shape and orientation. lets along fractures Fragments rimmed by banded silica. Some banded silica frags truncated by later brecciation. Bottom contact approx. «x sil» 487.8-88.6 «bladed vein» Bladed sil vein reheal «tr Py» As f.g. dissem. ed by sil. Minor convoluted banding. Common open drusy quartz lined cavities. 488.6-91.0 | «s stwk/hyd bx» As for 85.9-87.8. Multi-episodic silica healed - 30-40 events of sil deposition. Bottom contact knife sharp. 191.0-91.9 «heterolithic hyd bx» This inter «n sil» «tr pyrolusite/psilomelane» val is grey in colour, composed of moderately silicified fragments of volcanic and sedimentary origin. Fragments range from several centimetres in size to very fine grained mm scale. These are cut by late silica veinlets as well as containing truncated veinlets. Some fragments rimmed by silica. Minor blading is seen. Bx is fragment supported, moderately silicified. Cut by minor

HOLE NUMBER: WF-92-08

FROM TO	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		bladed veins. ¶91.9-95.2	50	«x sil»	«tr pyrolusite/psilomelane?» Occurs as spotty patches on fractures surfaces. Possible ruby silver	Mislatch of 95.1, 5' of core missing 50% Recovery 93.0-95.1 17% Recovery
95.20 TO 98.00	«QZ PHYRIC RHYOLITE»	Colour: Variable grey to buff grey Grain size: fine-grained Description: Buff grey quartz eye rhyolite intrusion or possibly ash tuff. < 1% 1-3mm quartz eyes in fine grained matriz. The interval is generally argillicly altered and silicified. Minor hydrothermal breccias cross cut the interval characterized by banded and bladed silica. 495.2-95.7 whrm stwky Minor stockwork. Hydrothermal breccia veins cut interval. Some blading. 496.3-97.1 ww stwky Brecciated stockwork veins 497.1-97.8 wm-s jigsaw bxy Jigsaw brecciated fragments in silicified matrix. Banded quartz lined vugs.	12	<pre><m arg,="" lim="" m="" sil,=""> Fe oxidation of matrix. Some dark hem- atitic bands seen. <m sil=""> <m-s lim="" sil,="" w=""></m-s></m></m></pre>	«tr Py»	
8.00 TO 0.80	«INTERBEDDE D SLIS/SAND »	Colour: Dark grey to black Grain Size: Fine-grained Description: Dark grey to black fine grained in- terbedded argillaceous, pyritic siltstones and sandstones. Bedding is on mm scale to metre scale generally as thin fine grained laminations. Very minor zones (<10cm) of quartz-pyrite stockworking are seem. Minor hydrothermal breccias are present Occasional areas of slump faults and sed. breccias are present; tops are indicated to be hole up. 98.0-98.3 «w uz stwk» At 98.7 small bx 100.2-100.3 Minor open qtz Py stockwork veinlets. 101.4-101.5 Minor qtz Py stockwork 102.0 Bedding 1106.1-107.6 «Jigsaw Bx» White drusy quartz lined cavities as well as weak- ly banded hydrothermal bx veins, fragments rimmed. 1108.6 H'drothermal vein 110.2 Bedding 100.8 Lower contact Bedding immediately before contact shows fining upward sequence indicating tops are up. However,	26 54 60	<pre>«w arg» minor talc of pyrophyllite?? «wk sil» wk hematite selvage «s sil»</pre>	«1-2% v.f.g. Py» Finely disseminated throughout matrix. «tr Py»	

HOLE NUMBER: WF-92-08

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		contact is angular unconformity with overlying beds truncated. This may be an intrusive contact. Margin appears chilled, brecciated.				
110.80 TO 123.70	«QP RHYOLIT E»	Colour: Grey Grain size: Fine-grained Description: 1-3% euhedral feldspars (1mm) and <1% quartz eyes in fine grained feldspar matrix. Occasional flow banded textures seen. Relatively fresh unit. Minor bladed veinlets and intrusive jigsaw breccias seen throughout. Occasional drusy quartz lined cavities. 117.7-120.6 a120.8 Small Fe oxide alteration. Bottom contact is brecciated (intrusive contact) 121.4-123.7 «Autoclastic Breccia»		«w arg» «mod sil» Pervasive		
123.70 TO 126.00	«CRYSTAL CI TRIC ASH TU FF»	Colour: Maroon to green grey Grain Size: Fine-grained Description: Consists of rounded quartz and feld- spar crystals in banded fine-grained matrix. Min- or fiamme are present. 123.7-124.4 Tuff is maroon coloured 124.4-125.0 Tuff is grey green colour 125.0-126.0 Tuff is maroon colour Banding oriented 125.5-125.6 Fault gouge Bottom contact may be faulted.	70	«w arg, w pyrophyllite» Pyrophyllite occurs along fractures «w-m hem» «w-m hem»		
126.00 TO 128.50	«INTERBEDDE D CGL/SST»	Colour: Grey green Grain size: Medium-grained to coarse-grained Description: Sequence of grey green heterolithic unsorted coarse angular conglomerate and grey muddy medium grained to fine grained sandstone/ siltstone with clayrich matrix. Minor quartz stringers. Fragments are angular, argillaceous sediments, arenites and minor volcanics.				
128.50 TO 130.80	«HETEROLITH IC BRECCIA 2»	Colour: Grey Grain Size: Coarse grained Description: Matrix supported, sub-angular poorly sorted heterolithic fragments in coarse sandy mat- rix. Fragments are argillite, arenite, volcanic in origin. Matrix poorly consolidated. Fragments to 10 cm in dimension.				

HOLE NUMBER: WF-92-08

FROM ROCK ANGLE TYPE TEXTURE AND STRUCTURE TO CA ALTERATION TO MINERALIZATION REMARKS 130.80 «FELDSPAR C Colour: Grey RYSTAL TUFF TO Grain Size: Coarse grained 136.40 Description: Coarse arenite, feldspar rich. Bot-«tr f.g. Py» tom contact is intrusive. 90 Chilled margin. 132.5-133.3 Felsic intrusive (see 110.8-123.7) 134.5 Bedding 44 Bottom contact silicified (2 cm wide bladed vein) Fault contact 90 132.6-132.9 «Stony Rhyolite 132.9-136.4 «Crystal Tuff» 136.40 «FAULT GOUG 90 Fabric oriented Clay altered TO E» 136.80 136.80 «HETEROLITH Colour: Grey TO IC BRECCIA Grain Size: Coarse grained 139.90 Description: Poorly consolidated or strongly clay 1,5 «m arg» «tr Py» altered cobble breccia. Fragments are subrounded to rounded, primarily granitic composition cut by numerous zones of clay gougy material most likely faults. Matrix supported. 138.6 Fault 141.2 Fault 141.8-142.0 Fault 139.90 «FAULT» Colour: Green Grain size: Variable TO 148.10 90 Description: Clay altered gougy material. 146.2-146.7 «Andesite Dyke» 146.7-147.3 «St Rhyl Bx - fault?» «chl» «sil, w arg» Silicified, argillicly altered bx. 148.10 «MONOMICTIC Colour: Grey green TO BRECCIA» Grain Size: Variable 157.90 Description: Clast supported, angular to sub-«s chl, m arg» angular fragments. Looks like a hydrobreccia. Des-Minor pyrophyllite pite complete fragmentation primary layering is still visible. Clasts consists of brown to green aphyric rhyolite. Matrix is rock flour. Mislatch @ 151.8 lost 2.5 m. Clasts are moderately silicified. 155.3 Fault

HOLE NUM	BER: WF-92-08			DRILL HOLE RECORD		DATE: 14-October-1993
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
157.90 TO 160.30	«HETEROLITH IC BRECCIA 1»	Colour: Grey green Grain Size: Variable Description: Subrounded to subangular moderately sorted heterolithic clasts in sandy matrix. Frag- ments are intrusive, granitic, sedimentary, jasp- eroidal. EOH				

HOLE NUMBER: WF-92-08 DRILL HOLE RECORD PAGE: 8 LOGGED BY: CJC

ASSAY SHEET

				ASSAYS					GE	OCHEMIC	AL					COMMENTS
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	₿a ppm	PPM Cu	Fe %	Pb ppm	Sb mqq	Zn ppm	Au ppb	Hg ppb	s %	Aug/t g/t	
39887 39886 39885 39884 39883	22.90 24.60 26.10 27.60 28.30	24.60 26.10 27.60 28.30 29.80	1.70 1.50 1.50 0.70 1.50	0.8 1.2 1.5 0.7 1.3	29 25 44 29 37	19 17 18 15	3 3 2 2 2 3	0.73 0.9 0.97 1.01 0.87	6 9 5 5 6	1 1 1 1	94 90 94 91 71	7 32 75 2 42	60 50 50 60 55	0.03 0.01 0.01 0.09 0.01		
39882 39881 39880 39879 39878	29.80 31.20 32.70 34.20 35.70	31.20 32.70 34.20 35.70 36.70	1.40 1.50 1.50 1.50 1.00	0.6 0.6 0.7 1 9.3	30 21 39 45 20	22 14 16 19 46	3 3 2 3 4	1.7 1.06 1.16 1.03 1.14	6 4 6 8 12	1 1 1 1	93 84 77 81 93	34 1 18 136 554	45 55 35 50 65	0.12 0.07 0.2 0.17 0.03	0.54	
39877 39876 39875 39874 39873	36.70 38.20 39.70 40.30 41.80	38.20 39.70 40.30 41.80 43.20	1.50 1.50 0.60 1.50 1.40	0.9 5.1 3.4 1.4	32 20 29 34 43	25 25 18 28 16	2 5 5 4 4	1.39 1.08 1.23 1.42 1.05	8 7 16 9 6	1 1 1 1	99 94 68 84 88	65 173 202 38 17	55 60 70 65 50	0.13 0.09 0.12 0.12 0.19		
39872 39871 39870 39869 39868	43.20 44.30 45.00 46.50 48.00	44.30 45.00 46.50 48.00 49.50	1.10 0.70 1.50 1.50 1.50	1.3 5.6 0.4 0.2 0.1	32 28 22 35 27	17 22 15 19 28	14 3 2 2 4	1.24 0.96 0.91 1.65 1.72	7 7 8 7 9	1 1 1 1	95 77 75 72 87	79 817 4 19 24	55 75 60 55 65	0.2 0.11 0.18 0.21 0.45	0.79	
39867 39866 39865 39864 39863	49.50 50.90 52.40 53.90 55.40	50.90 52.40 53.90 55.40 56.70	1.40 1.50 1.50 1.50 1.30	0.2 0.5 0.6 1.1 1.6	22 28 34 23 33	27 43 53 48 45	2 3 3 3 3	1.78 1.94 2.12 1.95 2.22	10 8 6 7 7	1 1 1 1	84 89 94 88 86	14 29 17 35 52	45 70 45 50 35	0.37 0.39 0.61 0.59 0.75		
39862 39861 9860 9859 9858	56.70 57.70 59.10 60.50 61.80	57.70 59.10 60.50 61.80 63.30	1.00 1.40 1.40 1.30 1.50	1.5 0.7 1.3 2.4 1.9	33 38 29 36 68	56 41 42 53 38	3 2 2 3 3	2.19 1.76 1.68 1.43 2.05	6 3 6 3 4	1 1 1 1	103 100 111 67 79	17 18 50 175 86	70 60 65 60 60	0.67 0.43 0.44 0.53 0.9		
39857 39856 39855 39854 39853	63.30 64.80 66.40 67.90 69.40	64.80 66.40 67.90 69.40 70.90	1.50 1.60 1.50 1.50	0.7 0.7 1 0.8 1.2	61 39 30 33 32	32 39 41 42 36	2 3 2 3 3	2 2.09 1.76 1.58 1.51	6 12 9 7 9	1 1 1 1	85 94 87 86 88	29 20 15 11 24	65 35 50 60 50	0.79 0.83 0.67 0.45 0.37		
39852 39851 39850	70.90 72.40 73.90	72.40 73.90 75.40	1.50 1.50 1.50	2.2 1.5 2.6	39 34 60	27 26 33	3 4 5	1.26 1.14 1.29	8 18 9	1 1 1	74 77 86	25 44 41	55 80 50	0.46 0.43 0.47		

HOLE	NUMBER:	WF-92-08
HULE	NUMBER:	WF-92-00

ASSAY SHEET

Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	ppm Cu	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s % (Aug/t g/t					
39849 39848	75.40 76.20	76.20 77.70	0.80 1.50	2.4 1.2	50 25	14 22	4 3	0.84 1.43	8 5	2 1	46 88	98 67	45 65	0.39 0.04					· · · ·	
39847 39846 39826 39827 39828	77.70 78.90 79.40 80.70 81.30	78.90 79.40 80.70 81.30 82.00	1.20 0.50 1.30 0.60 0.70	3.2 3.9 5 7.1 29.5	32 38 43 34 33	16 15 23 26 16	3 3 12 6 5	0.8 0.96 1.02 0.83 0.6	5 9 3 6 4	1 1 1 1	56 58 70 61 32	236 329 139 125 1550	65 70 90 75 80	0.19 0.29 0.26 0.11 0.09	1.58					
39829 39830 39831 39832 39833	82.00 82.80 83.40 83.80 85.30	82.80 83.40 83.80 85.30 86.30	0.80 0.60 0.40 1.50	4.1 9.5 2.6 3.4 14.9	37 48 11 11	13 17 33 27 11	3 8 4 13 3	0.66 1.2 0.58 0.78 0.5	3 6 2 6 6	1 1 1 1	48 56 56 63 30	167 569 131 108 1625	55 70 45 70 45	0.27 0.4 0.04 0.03 0.04	0.64					
39834 39835 39836 39837 39838	86.30 87.30 87.80 88.60 89.60	87.30 87.80 88.60 89.60 91.00	1.00 0.50 0.80 1.00 1.40	5.2 5.1 6.2 8.3 29.3	17 13 16 15 16	14 11 15 29 71	4 3 3 3 5	0.47 0.4 0.3 0.44 0.53	6 2 6 6 7	1 1 1 1	26 22 14 29 31	121 170 870 812 3200	60 55 80 75 55	0.02 0.03 0.03 0.04 0.03	0.76 0.79 3.35					
39839 39840 39841 39842 39843	91.00 91.80 93.00 95.10 95.70	91.80 93.00 95.10 95.70 96.30	0.80 1.20 2.10 0.60 0.60	13.8 15.3 23.8 47.5 10.4	18 15 19 80 71	31 24 23 15 5	8 6 11 30 12	0.84 0.27 0.35 0.65 0.48	7 4 6 7 8	1 1 1 1	78 12 14 36 22	701 749 2000 10000 1000	85 45 65 80 65	0.02 0.02 0.03 0.17 0.14	0.82 0.78 1.52 7.28 1.02					
39844 39845 39888 39889 39890		97.10 98.00 99.50 101.00 107.60	0.80 0.90 1.50 1.50	12 6.6 8.9 3.4 5.4	60 30 20 18 13	8 10 19 19 13	8 5 10 17 5	0.84 0.54 0.99 0.98 0.73	15 11 19 21 14	1 1 1 1	39 31 104 172 85	2250 1770 915 459 857	50 65 55 65 70	0.11 0.06 0.12 0.17 0.07	2.1 1.89 0.81					
39891 39892 39893 39894 39895	112.00 113.50 115.20 115.70 119.20	115.20 115.70 117.40	1.50 1.70 0.50 1.70	1.7 2.6 1.3 1.9	114 58 55 85 65	7 7 10 9 7	3 2 4 3 2	0.76 0.74 0.64 0.63 0.9	18 23 22 14 16	2 1 1 1	121 138 119 95 113	137 351 344 271 172	55 65 60 50 70	0.36 0.26 0.21 0.34 0.29						
39896 39897	149.00 151.80	151.80 153.90	2.80 2.10	0.1 0.1	10 1	15 29	7 10	0.76 1.84	54 65	4 1	70 144	2 3	65 80	0.12						

GEOCHEM. SHEET

RQD ASSAY

From	To	Length	Sum	RQD		Fracturs	Number	Veins	Angle	Comments
(m)	(m)	(L)	Of Length	S/LX100	Of Fracturs	Per	Of Veins	Per Metres		
			S>= 0.00cm		rracturs	metres	verns	Metres		
22.90	24.60	1.70	0.00	0.0	36	21.18	25	14.71	0	
24.60 26.10	26.10 27.60	1.50 1.50	36.70 44.70	****	33	22.00 17. 3 3	21 18	14.00 12.00	0	
27.60	28.30	0.70	0.00	0.0	26 9	12.86	18	25.71	0	
28.30	29.80	1.50	29.30	****	15	10.00	9	6.00	ñ	
29.80	31.20	1.40	33.20	****	16	11.43	12	8.57	ő	
31.20	32.70	1.50	38.00	****	11	7.33	8	5.33	ō	
32.70	34.20	1.50	31.00	****	22	14.67	17	11.33	0	
34.20	35.70	1.50	0.00	0.0	11	7.33	16	10.67	0	
35.70	36.70	1.00	32.50	****	23	23.00	18	18.00	0	
36.70	38.20	1.50	50.70	****	12	8.00	18	12.00	0	
38.20	39.70	1.50	60.70	****	9	6.00	24	16.00	0	
39.70	40.30 41.80	0.60	37.50 14.70		4 9	6.67 6.00	3 16	5.00	0	
40.30 41.80	43.20	1.50 1.40	31.40	980.0 ****	12	8.57	19	10.67 13.57	0	
43.20	44.30	1.10	55.50	****	8	7.27	26	23.64	n	
43.20 44.30	45.00	0.70	41.40	****	4	5.71	10	14.29	Ď	
45.00	46.50	1.50	13.30	886.7	20	13.33	9	6.00	ŏ	
46.50	48.00	1.50	48.70	****	11	7.33	20	13.33	0	
48.00	49.50	1.50	17.30	****	16	10.67	14	9.33	0	
49.50	50.00	0.50	0.00	0.0	27	54.00	16	32.00	0	
50.90	52.40	1.50	0.00	0.0	23	15.33	14	9.33	0	
52.40	53.90	1.50	36.70	****	14	9.33	14	9.33	0	
53.90 55.40	55.40 56.70	1.50	33.30 24.60	****	15 10	10.00 7.69	22 12	14.67 9.23	0	
56.70	57.70	1.00	0.00	0.0	11	11.00	19	19.00	n	
57.70	59.10	1.40	14.30	****	17	12.14	17	12.14	ő	
59.10	60.50	1.40	39.30	****	8	5.71	14	10.00	ŏ	
60.50	61.80	1.30	0.00	0.0	15	11.54	16	12.31	Ō	
61.80	63.30	1.50	0.00	0.0	23	15.33	31	20.67	0	
63.30	64.80	1.50	67.00	****	7	4.67	24	16.00	0	
64.80	66.40	1.60	31.00	****	15	9.38	18	11.25	0	
66.40	67.90	1.50	38.30	****	13	8.67	17	11.33	0	
67.90 69.40	69.40 70.90	1.50	39.30	****	18	12.00	18	12.00	0	
70.90	72.40	1.50	22.00 55.70	****	12 12	8.00 8.00	22 24	14.67 16.00	0	
72.40	73.90	1.50	73.30	****	13	8.67	30	20.00	0	
73.90	75.40	1.50	0.00	0.0	27	18.00	27	18.00	0	
75.40	76.20	0.80	0.00	0.0	13	16.25	10	12.50	ŏ	
76.20	77.70	1.50	0.00	0.0	24	16.00	20	13.33	Ō	
77.70	78.90	1.20	16.70	****	16	13.33	24	20.00	0	
78.90	79.40	0.50	0.00	0.0	8	16.00	18	36.00	0	
79.40	80.70	1.30	20.00	****	21	16.15	40	30.77	0	
80.70	81.30	0.60	33.30	****	5	8.33	18	30.00	0	

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length S>= 0.00cm	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
81.30	82.00	0.70	28.60	****	8	11.43	16	22.86	0	
82.00	82.80	0.80	67.50	****	4	5.00	13	16.25	0	
82.80	83.40	0.60	33.30	****	10	16.67	18	30.00	0	
83.40	83.80	0.40	0.00	0.0	4	10.00	10	25.00	0	
83.80	85.30	1.50	16.70	****	15	10.00	27	18.00	0	
85.30	86.30	1.00	29.00	****	15	15.00	18	18.00	0	
86.30	87.30	1.00	0.00	0.0	14	14.00	22	22.00	0	
87.30	87.80	0.50	0.00	0.0	13	26.00	19	38.00	G	
87.80	88.60	0.80	0.00	0.0	11	13.75	10	12.50	0	
88.60	89.60	1.00	42.50	****	15	15.00	26	26.00	U	
89.60	91.00	1.40	0.00	0.0 ****	24	17.14	23	16.43	Ü	
91.00	91.80 93.00	0.80 1.20	607.00 0.00		8	10.00 20.00	22	27.50	0	
91.80 93.00	95.10	2.10	0.00	0.0 0.0	24	5.71	21	17.50 3.81	0	
95.10	95.70	0.60	41.70	****	12 13	21.67	24	40.00	n	
95.70	96.30	0.60	0.00	0.0	10	16.67	13	21.67	Ö	
96.30	97.10	0.80	25.00	****	13	16.25	20	25.00	n	
97.10	98.00	0.90	22.20	****	31	34.44	20	22.22	ň	
98.00	99.50	1.50	15.30	****	27	18.00	18	12.00	ŏ	
99.50		1.50	0.00	0.0	35	23.33	16	10.67	Ŏ	
102.50		1.50	0.00	0.0	Ō	0.00	Ō	0.00	Ö	
106.10		1.50	0.00	0.0	44	29.33	21	14.00	0	
112.00		1.50	73.30	****	8	5. 3 3	12	8.00	0	
113.50	115.20	1.70	23.50	****	18	10.59	21	12.35	0	
115.20		0.50	42.00	****	3	6.00	9	18.00	0	
115.70		1.70	0.00	0.0	19	11.18	28	16.47	0	
119.20		1.00	83.00	****	4	4.00	6	6.00	0	
149.00		2.80	0.00	0.0	9	3.21	1	0.36	0	
151.80	153.90	2.10	26.70	****	38	18.10	4	1.90	0	

MINNOVA INC. HOLE NUMBER: WF-92-09 DRILL HOLE RECORD IMPERIAL UNITS: METRIC UNITS: X

PLOTTING COORDS GRID: I.P. GRID NORTH: 97300.00N PROJECT NAME: WOLF92 ALTERNATE COORDS GRID: I.P. GRID COLLAR DIP: -50° 0' 0" LENGTH OF THE HOLE: 155,45m PROJECT NUMBER: 673 NORTH: 973+ ON CLAIM NUMBER: EAST: 36185.00E EAST: 361+85E START DEPTH: 0.00m ELEV: 1274.00 LOCATION: LOOKOUT ZONE ELEV: 1274.00 FINAL DEPTH: 155.45m

COLLAR GRID AZIMUTH: 90° 0' 0" COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

August 19, 1992 August 21, 1992 August 21, 1992 DATE STARTED: COLLAR SURVEY: NO PULSE EM SURVEY: NO CONTRACTOR: ATLAS DRILLING LTD.

CASING: REAMED 1.5 DATE COMPLETED: MULTISHOT SURVEY: NO PLUGGED: NO

DATE LOGGED: RQD LOG: YES HOLE SIZE: NO CORE STORAGE: CAMP

PURPOSE: TO TEST LOOKOUT ZONE ANOMALY

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
6.10	-	-48° 01	ACID	ok		-	-	-	-	-	
90.20	-	-47° 0'	ACID	OK		-	-	-	-	-	
154.20	-	-46° 0'	ACID	OK		-	-	•	-	-	
-	-	-	•	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	•	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•			-	-	-	-	
-	•	-	-	-			-	-	-	-	
-	-	-	•	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	•	-	-		-	-	-	-	•	
-	-	-	•	-		-	-	-	-	•	
-	-	•	-	-		1 -	-	-	-	-	
-	-	-	-	-		-	-	•	-	•	
-	-	-	-	-		-	•	-	-	-	
-	-	•	-	-		1 -	-	-		-	

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 1.50	«CASING»					
1.50 TO 134.00	«B PORPHYRY »	Colour: Purple, Maroon Grey. Grain Size: M.gc.g. Description: As for hole WF-92-08 The interval consists of purple/maroon medium to coarse grained quartz feldspar porphyritic tuff or intrusive. Feldspars are euhedral to anhedral, commonly broken, less commonly zoned. Angular lapilli sized fragments are seen locally. Quartz xtals are generally 1mm or less, subhedral, smokey grey to black, 1-2%. Small (20-40cm) zones of coarse grained feldspar porphyry in dark black aphanitic matrix. These are often weakly to moderately magnetic. Other small (10-20cm) zones of bladed quartz veining are also seen. Metre scale pervasive silicification is present locally. Vuggy quartz cavities present thoughout. 1.5-4.5 4.5-5.4 5.0 Fault gouge 5.4-6.4 6.4-7.0 7.0-7.8 Limonite bx veinlets Core is rubbly and broken with pyritic/limonitic coatings along fractures. 9.1-9.6 From 9.1-9.15 is brecciated banded vein 9.6-9.8 «Fault Gouge» 10.5-10.7 10.9-11.3 Coarse feldspar porph 12.2-12.8 Coarse feldspar porph 12.8-15.2 15.2-17.4 a17.9 Gas phase bx a18.2 3cm wide bladed quartz vein 18.7-2.1.6 «coarse fspar porph» Dark purple to black	90	<pre> «m chl, w sil» «m-s sil» «w sil» «m r sil» «m-m lim» «m-s sil» «stkwrk sil» «w Mt, tr grn pyroph?» «w sil, w chl» Minor qtz veinlets cross-cut interval «w-m sil» «hem, Mt, w sil» Interval cut by small (<10cm) bladed hydrothermal veins and silica stockwork wk to mod discrete zones of alt seen </pre>	<pre>«tr pyrolusite/psilomelane?» «pyrolusite/psilomelane» «tr pyro/psilomelane» Occurs with quartz veinlets as acicular minerals extending into wallrock</pre>	
		21.6-22.9 {21.6-25.4} 22.9-23.2		«m sil» «m-s sil»	«tr-1% pyro/psilo»	

HOLE NUMBER: WF-92-09

ROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS			
		23.2-25.4		«w-m sil»					
- 1		Minor open fractures lined with silica. Occasional		«m-s sil»	«tr pyro/psilo»				
		banded veins.		Will S STU	with pyropsitos				
		25.4-26.4		«s sil, m lim»					
1		25.4 26.4		Banded veinlets, minor bladed textures					
		a30.3 Flt gouge		Banded Verificets, million braded textures					
		a33.3 Fit gouge							
- 1		26.4-34.0 Within 33.3-33.4 bladed quartz + pyro/		«m-s sil, m-s lim»	«tr Py, pyro/psilo»				
		psilo vein		QII 9 31 C, III 3 CIIID	wei ry, pyro/partos				
		34.0-34.5		«s-i sil»					
		34.5-35.1	1 1	«s sil, w-m lim»	«tr-1% Py, pyro/psilo»				
ĺ		35.1-37.1		«w-m sil»	«tr Py»				
		37.1-37.3 434.0-37.3		«s sil»	«tr pyro/psilo»				
1		31,1231.3 434.0-31.34	1	45 51(1)	along fractures				
- 1		177 0.70 / 1		«bladed sil»	atong fractures				
Ī		37.8-38.4 39.2-40.4	70	«s-i sil, blading»					
		434.2-40.4	''	Riaded					
- 1		40.4-41.9 «s stockwork»	1 1	ws sil»	«tr pyro/psilo»				
		Bottom contact is sharp	60	stockwork banded silicification	«tr pyro/psito»				
		41.9-43.0	60	on-s sil»					
		43.0-43.8		«s sit»					
		43.8-44.1 441.9-44.1 «m stwk»	1 1	«ssit» «m-ssit»	«pyro/psilo»				
1		43.0-44.1 941.9-44.1		«on chl, w-m sil»	unta f a Disc				
		44.1-45.3 45.3-48.5		«mrcht, w-misit» «m-s lim, w-misit»	«tr f.g. Py»				
						l	«m-s tim, w-m sit» «m-s sit»	«pyro/psilo»	
		50.1-51.7 \$50.1-65.5				«qii-s si t»	abundant dendritic manganiferous oxide		
		51.7-54.6		«m-s sil, m lim»	coatings				
				«qn-s sit, iii tim»	1				
		54.6-54.8 Minor vein		ma all milim					
		54.8-55.8		≪m-s sil, m lim≫					
		55.8-56.0 Minor banded veinlets							
		56.0-57.4	1 1	«m-s sil, m lim»					
		57.4-57.6 Minor jigsaw breccia		«s sil»	«m pyro/psilo»				
		57.6-58.3		«m sil, w-m liπ»					
		58.3-62.8		«m-s sil, w-m chl»	«tr f.g. Py»				
		462.8-63.7 «coarse feldspar porph»		«w-m chl. Mt, sil»					
- 1		63.7-65.5		«m-s sil, w-m chl»	«tr Py»				
- 1				Minor quartz stockwork					
- 1		65.5-71.1	1	«m-s sit, m lim»	«tr pyro/psilo»				
				Minor banded veinlets					
		71.1-72.8 {71.1-74.3}		«s-i sil, w-m chl»	«tr Py, pyro/psilo»				
1				Chlorite occurs as veinlets	Occurs disseminated with chl veinlets				
		72.8-74.3		«s sil, m chl»	«tr Py»				
		74.3-74.5 «Chl Py vein»	60	«s chl»	«10% f.g. Py»				
- 1		74.5-76.2							
	•	76.2-77.8		«π sil, m liπ»	«tr pyro/psilo»				

DATE: 14-October-1993

HOLE NUMBER: WF-92-09

	1				T	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
				<pre><m-s chl,="" m="" mt="" sil,="" w-m=""> <m-s lim=""></m-s></m-s></pre>	«tr Py» «tr pyro/psilo» «tr Py»	
134.00 TO 136.00	«HYD BX»	Consists of fragments grey, cream and brown silica (vein material?) in a cream silica matrix. Bottom contact is faulted	50	«i-x sil, w hem»	Minor black manganese coatings on fract ures.	Core badly broken.
136.00 TO 139.10	«FAULT BX»	Grey Green. Brecciated, angular to sub rounded, fine grained sediments clasts ina grey gougy matrix.				
139.10 TO 151.20	«SILTSTONE»	Grey-maroon. Interbedded grey and reddish siltston es and fine grained black mudstone. Mudstones are finely laminated. Soft sediment structures noted. Bedding orientations highly variable - folding? Bedding @ 174.5m	34			
151.20 TO 152.70	«SST/CONG.»	Interbedded coarse matrix supported conglomerates and sandstones. Fragments of rhyolite, argillite granite and snadstone noted. Clasts vary from a few mm to tens of cm.				
152.70 TO 154.50	«TUFFACEOUS SST»	Grey Green. A fine grained volcaniclastic sand- stone. Feldspar crystals and possible vitric shards noted.		«W-m ser» Apple green sericite alteration of glassy material.	«tr Py»	
154.50 TO 155.45	«HETEROLITH IC BRECCIA 2»	Grey green. Heterolithic, angular to sub rounded clasts varying in size from a few mm to several cm . It is clast supported.		«W-m ser»		

HOLE NUMBER: WF-92-09 DRILL HOLE RECORD LOGGED BY: CJC PAGE: 4

ASSAY SHEET

				ASSAYS					GE	OCHEMIC	CAL					COMMENTS
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s %	Aug/t g/t	
39898 39899 39900 39901 39902	4.50 6.40 7.00 8.60 10.20	5.40 7.00 7.80 9.60 11.30	0.90 0.60 0.80 1.00 1.10	0.9 0.2 0.1 0.8 0.6	39 30 16 12 26	21 19 45 37 29	1 3 5 3 4	0.74 0.78 1.43 1.07 1.28	9 11 14 12 11	1 1 1 1	48 72 102 105 116	12 10 32 110 38	60 50 55 40 35	0.07 0.02 0.04 0.01 0.01		
39903 39904 39905 39906 39907	15.20 16.70 19.10 25.40 27.50	16.70 18.20 20.10 27.00 27.90	1.50 1.50 1.00 1.60 0.40	0.5 0.1 0.1 0.1 0.1	29 11 33 23 17	52 19 59 16 14	4 2 3 3 2	1.59 1.15 2.05 1.22 1.36	12 10 9 10 10	1 1 1 1	102 90 144 79 99	25 14 23 32 19	55 50 45 40 35	0.02 0.03 0.01 0.02 0.07		
36618 39908 39909 39955 36619	27.90 31.50 33.00 33.50 35.00	31.50 33.00 33.50 35.00 37.70	3.60 1.50 0.50 1.50 2.70	0.1 0.5 0.2	12 20 20	21 19 23	2 3 6	1.44 1.96 1.16	9 7 7	1 1 1	115 94 97	54 459 18	40 35 65	0.08 0.03 0.07		
39910 39911 39912 39913 39914	37.70 39.20 40.40 41.90 43.00	39.20 40.40 41.90 43.00 43.80	1.50 1.20 1.50 1.10 0.80	2.2 1.2 0.2 0.5 0.1	22 24 21 30 25	17 14 20 12 15	9 3 5 2 2	1.26 0.67 1.15 0.93 1.75	10 5 9 8 10	1 1 1 1	134 42 90 100 92	125 180 122 74 29	40 30 45 25 35	0.04 0.01 0.02 0.15 0.05	i	
39915 36620 36621 39916 36622	43.80 44.10 47.10 51.70 53.20	44.10 47.10 51.70 53.20 56.70	0.30 3.00 4.60 1.50 3.50	0.1	14 9	14 26		1.54	8 5	1	63 127	307 14	35 45	0.04		
39917 39918 39920 39919 39920	56.70 60.10 61.90 65.30 66.80	57.60 61.00 62.80 66.80 67.70	0.90 0.90 0.90 1.50 0.90	0.1 0.1 0.2 0.3 0.2	9 9 19 27 19	33 13 15 22 15	5 2 2 4 2	1.56 1.44 0.94 1.17 0.94	9 13 7 9 7	1 1 1 1	113 85 69 94 69	26 7 17 24 17	40 25 35 40 35	0.06 0.09 0.03 0.02	,	
39921 39922 39923 39924 39925	67.70 69.60 71.10 72.80 74.30	68.20 71.10 72.80 74.30 74.60	0.50 1.50 1.70 1.50 0.30	0.1 0.1 0.1 0.1 0.2	28 9 21 22 51	22 18 19 20 18	3 4 4 3 4	1.6 0.96 1.43 1.08 2.79	11 11 5 10 9	1 1 1 1	97 89 64 99 113	16 14 14 10 35	30 20 25 30 35	0.04 0.02 0.46 0.35 1.32		
39926 39927 39928	76.20 90.40 91.90	77.80 91.90 93.40	1.60 1.50 1.50	0.1 0.3 0.1	11 12 9	21 17 22	3 2 3	2 0.95 1.26	11 5 6	1 1 1	104 61 89	13 8 12	30 50 70	0.04 0.02 0.02		

HOLE	NUMBER:	WF-92-09

92	YA:	CHE	=1

Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Ppm Ppm	Fe %	Pb ppm	ppm	Zn ppm	Au ppb	Hg ppb	S %	Aug/t g/t	
39929 39930	93.40 94.90		1.50 0.40	0.1 0.7	7 29	24 16	2	0.95 0.91	9 6	1	71 62	5 19	55 35	0.04		
39931 39932 39933 39934 39935	96.80 101.30 103.20 106.40 110.00	102.80 105.20	0.30 1.50 2.00 1.80 1.40	0.4 0.2 32.8 0.1 1.5	27 13 21 5 15	26 14 21 27 24	2 2 2 3 3	1.84 0.72 1.15 1.73 0.84	11 6 8 8 7	1 1 1 1	65 30 70 136 66	49 8 1070 41 3 2	55 55 35 40 40	0.09 0.05 0.02 0.02 0.02	1.33	
39936 39937 39938 39939 39940	112.90 116.10 117.70	112.90 114.40 116.80 118.40 122.50	1.50 1.50 0.70 0.70 1.50	1.7 0.6 0.6 1.7 3.6	18 13 15 21	19 21 17 19 52	2 1 1 6 9	1.05 0.92 1.19 1.73 1.36	6 5 5 2 7	1 1 1 1	66 47 76 63 145	82 26 298 31 74	45 20 45 35 55	0.04 0.01 0.08 0.04 0.03		
39941 39942 39943 39944 39945	122.90 124.60 125.00	122.90 124.60 125.00 125.40 125.70	0.40 1.70 0.40 0.40 0.30	2.7 1.2 0.5 1 0.7	26 20 27 23 68	25 23 20 19 16	4 2 2 1 2	1.51 1.42 1.04 0.57 2.4	7 3 3 5 5	1 1 1 1	105 111 71 57 88	49 31 58 95 109	45 35 25 35 30	0.07 0.04 0.02 0.03 0.02		
39946 39947 39948 39949 39950	126.40 127.10 128.60	126.40 127.10 128.60 129.90 130.80	0.70 0.70 1.50 1.30 0.90	1.1 2 1.6 2.9 7.4	24 35 32 36 1	19 19 20 30 94	2 3 2 4 10	0.65 0.88 0.7 1.28 1.18	6 5 7 10 17	1 1 1 1	66 44 69 95 149	26 29 39 196 186	45 65 55 65 75	0.06 0.01 0.03 0.04 0.01		
39951 39952 39953 39954	132.20 132.50	132.20 132.50 134.00 136.00	1.40 0.30 1.50 2.00	2.9 27.8 3.7 10.3	23 1 20 17	24 216 26 76	4 13 4 6	0.88 1.08 0.81 1.16	6 33 5 5	1 1 1 1	103 183 89 42	106 243 107 1130	70 60 55 55	0.01 0.02 0.02 0.04	1.13	

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	RQD S/LX100	Number Of	Fracturs Per	Number Of	Veins Per	Angle	Comments
(1117	(111)	(1)	Of Length	3/1/100	Fracturs		Veins	Metres		
			S>= 0.00cm							
4.50	5.40	0.90	0.00	0.0	30	33.33	4	4.44	0	
6.40	7.00	0.60	0.00	0.0	8	13.33	7	11.67	0	
7.00	7.80	0.80	0.00	0.0	22	27.50	2	2.50	0	
8.60 10.20	9.60 11.30	1.00	0.00 0.00	0.0	13	13.00	11	11.00	0	
15.20	16.70	1.50	0.00	0.0 0.0	18 39	16.36 26.00	21 19	19.09 12.67	0	
16.70	18.20	1.50	0.00	0.0	33	22.00	7	4.67	0	
19.10	20.10	1.00	0.00	0.0	14	14.00	16	16.00	ň	
19.10 25.40	27.00	1.60	18.10	****	24	15.00	19	11.87	õ	
31.50	33.00	1.50	0.00	0.0	28	18.67	10	6.67	ŏ	
33.00	33.50	0.50	0.00	0.0	8	16.00	5	10.00	0	
33.50	35.00	1.50	13.30	886.7	20	13.33	11	7.33	0	
37.70	39.20	1.50	0.00	0.0	31	20.67	16	10.67	0	
39.20	40.40	1.20	25.00	****	9	7.50	2	1.67	0	
	41.90 43.00	1.50	18.00	****	23	15.33	34	22.67	0	
	43.80	1.10 0.80	0.00 25.00	0.0 ****	22 10	20.00 12.50	3 18	2.73 22.50	0	
	53.20	1.50	0.00	0.0	24	16.00	19	12.67	n	
56.70	57.60	0.90	22.20	****	1	1.11	16	17.78	ő	
60.10	61.00	0.90	26.70	****	11	12.22	11	12.22	ŏ	
65.30	66.80	1.50	0.00	0.0	26	17.33	37	24.67	Ō	
	67.70	0.90	0.00	0.0	18	20.00	11	12.22	0	
	68.20	0.50	0.00	0.0	6	12.00	9	18.00	0	
	71.10	1.50	27.30	****	21	14.00	34	22.67	0	
	72.80	1.70	45.30	****	17	10.00	6	3.53	0	
	74. 3 0 74.60	1.50 0.30	0.00 0.00	0.0	21 5	14.00	0 7	0.00	0	
76.20	77.80	1.60	0.00	0.0 0.0	35	16.67 21.87	38	23.33 23.75	0	
	91.90	1.50	0.00	0.0	39	26.00	29	19.33	0	
	93.40	1.50	0.00	0.0	61	40.67	- 8	5.33	Ö	
93.40	94.90	1.50	14.70	980.0	28	18.67	11	7.33	Ŏ	
	95.30	0.40	47.50	****	3	7.50	10	25.00	0	
	97.10	0.30	0.00	0.0	2	6.67	5	16.67	0	
101.30	102.80	1.50	0.00	0.0	23	15.33	18	12.00	0	
103.20		2.00	25.80	****	41	20.50	15	7.50	0	
106.40 1 110.00 1	108.20	1.80	14.10	783.3	26	14.44	32	17.78	0	
111.40 1		1.40	0.00 71.00	0.0	74	52.86	11	7.86	Ü	
112.90 1		1.50	45.30	****	18 17	12.00 11.33	25 32	16.67 21.33	U	
116.10 1		0.70	0.00	0.0	10	14.29	16	22.86	n	
117.70 1		0.70	0.00	0.0	11	15.71	24	34.29	Ö	
121.00 1	122.50	1.50	0.00	0.0	48	32.00	25	16.67	ŏ	
122.50 1	122.90	0.40	0.00	0.0	7	17.50	7	17.50	Ō	
122.90 1	124.60	1.70	28.20	****	30	17.65	13	7.65	0	

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	RQD S/LX100	Number Of	Fracturs Per	Number Of	Veins Per	Angle	Comments
		(2)	S>= 0.00cm		Fracturs		Veins	Metres		
124.60	125.00	0.40	0.00	0.0	5	12.50	5	12.50	0	
125.00	125.40	0.40	0.00	0.0	12	30.00	16	40.00	0	
125.40	125.70	0.30	0.00	0.0	10	33.33	4	13.33	0	
	126.40	0.70	65.70	****	30	42.86	6	8.57	0	
	127.10	0.70	0.00	0.0	22	31.43	5	7.14	0	
	128.60	1.50	0.00	0.0	62	41.33	21	14.00	0	
128.60	129.90	1.30	15.40	****	28	21.54	16	12.31	0	
129.90	130.80	0.90	0.00	0.0	53	58.89	19	21.11	0	
	132.20	1.40	0.00	0.0	42	30.00	34	24.29	0	
132.20		0.30	0.00	0.0	16	53.33	2	6.67	0	
	134.00	1.50	0.00	0.0	100	66.67	33	22.00	0	
	136.00	2.00	0.00	0.0	100	50.00	13	6.50	0	
138.00	140.00	2.00	0.00	0.0	0	0.00	0	0.00	0	

MINNOVA INC.

HOLE NUMBER: WF-92-10

DRILL HOLE RECORD

PLOTTING COORDS GRID: I.P. GRID

NORTH: 97400.00N

ALTERNATE COORDS GRID: I.P. GRID

COLLAR DIP: -55° 0' 0"

PROJECT NAME: WOLF92 PROJECT NUMBER: 673 CLAIM NUMBER:

EAST: 36250.00E

NORTH: 974+ ON EAST: 362+50E

LENGTH OF THE HOLE: 105.50m

LOCATION: LOOKOUT ZONE

ELEV: 1262.00

ELEV: 1262.00

START DEPTH: 0.00m

METRIC UNITS: X

COLLAR GRID AZIMUTH: 90° 0' 0"

COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

FINAL DEPTH: 105.50m

COLLAR SURVEY: NO

PULSE EM SURVEY: NO PLUGGED: NO

CONTRACTOR: ATLAS DRILLING LTD

IMPERIAL UNITS:

DATE STARTED: DATE COMPLETED:

August 21, 1992 August 22, 1992

MULTISHOT SURVEY: NO

CASING: REAMED 2.1 METRES
CORE STORAGE: CAMP

DATE LOGGED:

August 24, 1992

RQD LOG: YES

HOLE SIZE: NQ

PURPOSE: To test hydrothermal breccia intersected in holes WF-92-07 and WF-92-08.

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
42.70	-	-54° 0'	ACID	ok			-	-		-	
62.80	-	-54° 0'	ACID	OK		-	-	-	-	-	
105.50	-	ە° 00-	ACID	OK		-	-	-	-	-	
•		-	-	-		-	-	-	-	-	
-	•	•	-	-		-	-	-	-	-	
	-	•	-	-		-	-	-	-	•	
_	-	-	-	•		-	•	•	-	-	
-		-	-	-			-	-	•	•	
-	_	_	-			1 -	•	-	•	-	
-	-	-		-		[-	-	•	
-	-	-	_	-		_		_	_	-	
-	-	-	-	-		1 -	_	-	-	-	
-	-	-	-	-		-	-	_	-		
-	-	-	•	-			•	-	-	-	
-	-	-	•	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	•	-	-	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	•	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
_		-	-	-		-	•	-	-	-	
-	-			-		-	•	•	-	-	
-	-	-	-	-		_	-	-	-	•	
			=			-	•	-	-	-	

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 2.10	«CASING»					
2.10 TO 27.90	«B PORPHYRY	Colour: purple to grey				,
TO 29.40	»	Grain Size: m.gr. As for holes WF9207,-08, -9 Medium grained purple to grey qtz feldspar crystal porphyry. Consists of rare euhedral commonly broken feldspar crystals to 1 cm (ave. 3-5 mm) in fine grained purple fsp rich matrix. <1%, 1-2 mm smokey qtz grains.				
		Lithic fragments (rhyolite and fsp intrusive) are subangular up to 2 cm dimension. These are rare.				
7		Core is variably silicified, oxidized, pyritized throughout. Zones of hydrothermal veining and brecciation up to .5 m are seen locally.				
					{2.1-7.92} «tr v.f.gr. diss py»	
		¶7.92-8.5∦ «med-str stockwork»		∤ 7.92-8.5∦ «medstr. sil»	¶7.92-8.5∯ «tr-1% f.gr. py»	
		8.5-10.3 -colour: grey-reddish brown -very weak stockwork veinlets		8.5-10.3 ≪medstr. lim»	8.5-10.3 «tr-1% u.f.gr. py» -occurs as fine interstitial dusting throughout	
İ		10.3-11.1 -pervasive silica flooding		d 10.3-11.1	10.3-11.1 «2-3% f.gr. py»	
		11.1-12.2 -minor stockwork veinlets		վ11.1-12.2⊭ «medstr. lim»		
		12.2-13.1 «med. stockwork» -small banded silica veinlets from 12.9-13.1 bladed quartz vein		∮ 12.2-13.1 ∤ «med sil»		
		13.1-15.9 -from 15.2-15.3 small creamy white/brown qtz vein	64	∮ 13.1-15.9∳ «wkmed. sił»		

HOLE NUMBER: WF-92-10

HOLE NUMBER: WF-92-10

ANGLE FROM ROCK REMARKS TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION TO 15.9-17.1 15.9-17.1 ← «med.-str. lim» 15.9-17.1 ktr. py» -broken, fractured core 17.1-17.5 wwk. stockwork» -banded silica veins 17.5-17.6 -quartz vein breccia 60 √17.8 «flt. gouge» 26 ∤18.8⊭ «flt. gouge» **117.8-21.4 wk. sil** wk. sil w 121.4-23.3 «med. stwrk» d21.4-23.3 ww-m sil, w-arg, w-lim> -sil does not pervade wall fsp clay -stockwork atz veins 121.4-23.3 k «tr py» 54 a 22.4 small vein bx fragments heal by creamy white silicilication altered. Fe-oxidation occurs along @ 23.2 3 cm baded ?? overprinted by silica fractures. Soft pinkish mineral lines some stockwork fractures, possibly rhodocrosite or aluminite -minor stockwork, core is fractured throughout. Limonite alteration is generally associated with 123.3-25.4} «m-s lim» fractures pervading wallrock √25.4-26.2 wm alunite?» 25.4-26.2 -soft pink clay mineral associated -possible fault gouge @ 25.4 and 26.2 with fracturing and as veinlets d26.2-27.7 ww-lim, tr-alunite, w-sil» 26.2-27.7 -minor stockworking. Unit contains large lapilli fragments of rhyolite. Soft greenish creamy mineral, possibly alunite forms veinlets from 27.3-27.4 ₹27.7-29.4 km-s sil» {27.7-29.4} «tr-2% f.gr. py» -minor clay and limonite 27.90 «QFP RHYOLI «w-lim, w-sil» Colour: buff grey to pinkish «tr py» Grain Size: f.gr. and m.gr. τo 30.30 Buff grey with pinkish tint afp rhyolite in -also, minor f.gr. black mineral f.gr. to v.f.gr. groundmass. Two types of qtz locally grains, smokey qtz and clear white qtz forming subhedral grains. Soft greasy apple green mineral occurs in some cavities, possibly celadonite? -bottom contact a 30.3m 30

HOLE NUMBER: WF-92-10

HOLE NUMBER: WF-92-10

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
30.30 TO 30.60	«RHY TUFF B X»	Colour: grey Grain Size: var. Large, quartz eye rhyolite fragments in f.gr. glassy pyritic matrix. Welding fabric moderate to strong. Preferred orientation to fragments. Occasional armoured lapilli sized fragments	30		<pre>«2-3% v.f.gr. py» -occurs as light dusting through matrix</pre>	
30.60 TO 31.30	«FLOW BANDE D RHYOLITE»	Colour: brown-grey Grain Size: f.gr. Convoluted contorted flow banded rhyolite. Alternating light and dark bands. Contains 3-5%, 2-3 mm euhedral qtz grains, subhedral fsp grains. Bottom 10 cm contains spalled fragments of rhyolite with alteration rims, possibly devitri- fication textures -contact a	44		«tr. f.gr. py»	
31.30 TO 39.60	«AUTOCLASTI C RHYOLITE BRECCIA»	Colour: grey black Grain Size: var. Angular to subrounded lapilli size fragments in black pyritic glassy matrix. Millimeter scale welded pumice fragments abundant throughout with a common orientation to c.a. Many fragments are rimmed by pyritic halos. Variation in size from mm scale to tens of centimeters. Fragments are predominantly flow banded rhyolite with minor sedimentary clasts	30	31.3-32.7 «⊌-lim» 32.7-33.1 «s-lim»	∮31.3-32.7≱ «3-5% v.f.gr. py»	
		34.1-34.5 <pre></pre>		34.1-34.5 «H-sil» 34.9-37.7 «tr fluorite/amethyst»		
39.60 TO 41.30	«XTAL LITHI C ASH TUFF»	Colour: grey Grain Size: Heterolithic crystal lithic ash tuff. Fragments are subangular to subrounded argillites, flow banded rhyolite, qtz eye rhyolite in grey to dark grey welded matrix. Some fiamme are present		Minor limonite alteration		

HOLE NUMBER: WF-92-10

FROM ROCK ANGLE TO CA TO TYPE TEXTURE AND STRUCTURE ALTERATION MINERALIZATION REMARKS 440.8-41.3 «s-sil» 40.8-41.3 «tr-2% f.gr. py» 41.30 Colour: grey to grey green «RHYL LAPIL TO LI TUFFS AN Grain Size: m.gr. to f.gr. 52.10 D BX» A complex interval of spherulitic rhyl breccias an Alteration is mostly weak with narrow d bedded lapilli tuff. Some of the wider rhyolite zones of bladed and banded quartz intervals may be large blocks. Clasts of a pre-exi veining. sting rhyolite fragmental occur at the bottom of the interval. These could be rip-ups. qtz veining 42.4-42.7 «bladed vein» 42.7-43.3 «w-m stkwrk» 43.9-45.5 «stkwrk chl» -very black stockwork veinlets, possibly chl or f.gr. pyrite 45.5-45.8 «tuff Bx» 45.8-46.5 -m-lim 46.5-47.7 ≪w-m stkwrk» -banded blade veins 46.5-47.7 «m-sil» 47.7-48.2 «s-chl» 47.7-48.2 | «tr-1% py» 48.2-49.0 -tuff bx 49.0-51.9 «s-lim» «RHYL LAPIL 52.10 Colour: grey TO LI BX» Grain Size: var. 53.40 Composed of QFP rhyolite fragments. They are ang-Minor silicification ular to sub-angular and average 1-2cm in diameter. This is likely a continuation of the previous unit 53.40 «SPHERULITI Colour: grey to grey green ΤO C RHYL/RHYL Grain Size: f.gr. and m.gr. 58.40 BX» As for 41.3-52.1 -subhedral to anhedral qtz and fsp crystals in ashy matrix 453.4-54.2 ← «m-stockwork» ∮53.4-54.2} «w-arg, w-lim, m-s sil» -banded qtz vein stockwork \$54.2-54.9 «m-s sil» 454.2-54.9 ktr py»

HOLE NUMBER: WF-92-10

FROM ROCK ANGLE TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION TO REMARKS 54.9-56.5 \$54.9-56.5 | «m-sil, m-chl» √54.9-56.5 ktr py» -minor blades 57.7-57.8 -chlorite/pyrite vein 58.40 «RHYOLITE L Colour: grey to black «tr-1% f.gr. py» APILLI TUFF TO Grain Size: var. 59.60 Interbedded black, glassy matrix tuff Minor stockwork silification, breccia and heterolithic tuff. See interval occasional limonitic fractures 52.1-53.4 59.60 «QFP RHYOLI «m-sil, w-chl» Colour: grey «tr py» TO 66.50 TO TE» As for 41.3-52.1 -pervasive silicification, minor -associated with chlorite 61.10 chloritic fractures «QFP RHYOLI 66.50 Colour: buff grey TE/RYBX» ΤO Grain Size: f.gr. 69.00 Coarse grained plag porphyry similar to the B porp hyry but without the dark phase. Contact with the overlying rhyolite is sharp, possibly intrusive. It is also strongly silificied. Porphyry consists of 30-40%, 5-10mm feldspar phenocrysts in a red groundmass. d61.1-62.6 | «Qz stockwork» with minor rice crispie breccias. 463.0-65.8 «s-stockwork» 463.0-64.1 ktr py, electrum??» -bladed and banded stockwork veins to 2 cm width «m-s sil, w-m lim» 64.1-65.8 464.1-65.8 ⋅ «w-m sil» -minor stockwork, occasional banded, bladed qtz veins 466.1-66.8 «i-sil, w-m lim» 66.1-66.8 466.1-66.8 ≪tr py» «-brecciated, silicified» 466.8-70.2 «s-stockwork» 466.8-68.3 «s-sil» 466.8-68.3 «w-pyro/psilo» -stockwork silicified and brecciated, bladed silica healed breccia 68.3-70.2 468.3-70.2 «m-sil» 68.3-70.2 «tr py»

HOLE NUMBER: WF-92-10

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-w-stockwork, minor bladed veins				
70.20 TO 88.00	«STWK+H.BX»			70.2-71.5 «s-sil» 71.5-71.8 «s-i sil»	√70.2-71.5 k «tr py»	
		71.8-73.0 «-w-m stockwork»		ሻ71.8-73.0β «m-perv. sil, green ser?»		
		73.0-73.3 bladed, banded qtz vein		¶73.0-73.3⊩ «i-x sil»	73.0-73.3 «pyro/psilo»	
		73.3-75.0 m-s stockwork		∦73.3-75.0} «m-s sil»	-black mineral following blading	
		75.0-75.3 bladed-banded vein -blading is overprinted by silicification		√75.0-75.3∳ «s-i-x sil»		
		₹75.3-77.0 «s-i banded stockwork» -stockwork banded and brecciated vein		∜75.3-77.0	√75.3-77.0 wtr pyrol/psilo»	
			54	∦77.0-77.8		
		77.8-78.3 m-s banded stockwork -blue grey banded silica stockwork		∜77.8-78.3∳ ≪m-s sil, s-lim»		
		78.3-84.7 «x-stockwork bx» -mm to cm scale banded veins and "rice krispie" breccias. Some bladed textures -fragments are locally rimmed by alternating light and dark, very fine silica or chalcedonic bands. Estimate at least 80-100 fine bands, truncated by later multiperiodic bladed and banded veins. Darker bands are similar to those seen in surface trenching		∜78.3-84.7⊫ «s-i sil, adularia» -possible bands of adularia	178.3-84.7 «tr py?»	
į		∥84.7-85.8⊭ «massive, bladed vein bx» Micro brecciated, bladed resilicified white vein, banded locally, blading possibly after barite rather than calcite	50	∜84.7-85.8⊮ «x-sil, adularia»		
		85.8-86.8 «banded sil» -dark and light coloured banded qtz veins		85.8-86.8 «x-sil»		
		√86.8-88.0∤ «balded vein stockwork»		∮86.8-87.3∮ «x-sil, adularia»	{86.8-87.3} «tr electrum»	

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		-massive bladded veining blades for several cm -lower contact a	40		-at lower contact is dark metallica mineral within banding	
		87.3-88.0 s-stockwork bx -stockwork brecciated and resilicified -lower contact @	60			
88.00 TO 95.90	«QZ EYE RHY OLITE»	Colour: buff grey Grain Size: f.gr. Similar to qtz eye rhyolite intrusive mapped in trenches Consists of 1-2%, 1 mm euhedral to subhedral qtz eyes in grey buff, f.gr. matrix. Has local pseudo-bx textures defined by fe-oxidation. Minor areas of flow banding are observed Minor to moderate stockwork veinlets and bx's are seen throughout the interval				
		88.0-95.3 w-m stockwork -similar to QXAT in areas		∜88.0-95.3⊫ «s-lim, s-arg, w-sil»		
		92.9-93.4 m-s stockwork	İ	∮92.9-93.4⊫ «m-sil»		
		94.0-94.6 jigsaw bx -weak hydrothermal breccia				
		-bottom contact @	60			
95.90 TO 98.30	«FAULT»	Colour: black to grey Grain Size: var. Strongly clay altered fault breccia 95.9-96.7 -angular fragments of f.gr. argillaceous seds in black gougy matrix 96.7-97.6 -brecciated fragments appear to be sandy tuffaceous units				
	,	97.6-98.0 hydrothermal breccia -contained within fault zone		∮97.6-98.0∳ «s-sil»		
	,	gouge fabric a	74			

DATE: 14-October-1993

HOLE NUMBER: WF-92-10

FROM ROCK ANGLE TEXTURE AND STRUCTURE TO TYPE TO CA ALTERATION MINERALIZATION REMARKS 98.0-98.3 -brecciated sediments 98.30 TO «HETEROLITH Colour: grey green «s-chl, clay pyrophyllite» IC BRECCIA Grain Size: var. Matrix supported consists of large rounded granitic frags up to tens of centimeters in 105.50 dimension as well as volcanic fragments in finer grained matrix E.O.H.

ASSAY SHEET

Sample	From	To	Length	ASSAYS Ag	As	Ba	Cu	Fe	GE Pb	OCHEMIC Sb	AL Zn	Au	Нg	s	Aug/t		со
	(m)	(m)	(m)	ppm	ppm	ppm	ppm	%	ррп	ppm	ppm	ppb	ppb	%	g/t		
39956	7.90	8.50	0.60	0.3	46	48	12	1.64	11	1	64	24	40	0.26			
59957 59958	8.80 10.30	10.30 11.10	1.50 0.80	0.2	43 65	30 30	7 18	1.19 1.05	11 12	1	68 119	22 14	40 50	0.08 0.51			
39959	12.20	13.11	0.91	3.0	33	23	6	0.86	7	i	63	230	25	0.03			
9960	14.90	15.30	0.40	0.1	63	42	6	1.31	5	1	80	33	40	0.04			
9961	17.10	17.50	0.40	0.9	27	21	7	0.64	5	1	63	124	30	0.04		1	
9962	17.50	18.50	1.00	0.1	20	68	6	1.15	7	1	86	24	50	0.08			
59963 59964	21.40 25.40	23.30 26.20	1.90 0.80	0.1	20 52	42 44	6	1.37 1.20	10 8	1 1	88 61	30 37	45 40	0.03			
9965		29.70	2.00	0.8	24	15	6	1.00	8	1	59	61	35	0.52			
39966	34.10	34.50	0.40	0.2	21	27	5	1.45	12	1	56	20	30	0.1	ĺ	l l	
9967	34.50	36.00	1.50	0.2	21 21	25	4	1.19	10	1	47	31	25	0.07			
9968	36.00	37.00	1.00	0.1	9	20	3	1.18	7	1	75	12	35	0.03			
9969 9970	40.80 42.40	41.30 42.70	0.50 0.30	2.9 10.9	22 12	19 15	4 5	0.74 1.09	20 20	1 1	42 41	290 3000	3 5 55	0.16			
			0.50		12	1,5	,		20	'	4,		,,,		I	Į.	
9986	42.70	43.30	0.60	6.0	14	26	5	0.88	17	1	81	1260	75	0.2			
9987 9988	43.30	43.90 45.40	0.60 1.50	6.6	29	12	3	0.85 0.75	21	1	84	356 364	70	0.56			
9989	43.90 45.40	46.00	0.60	1.3 0.7	15 20	15 18	3 3	0.75	13 14	i	69 55	85	90 60	0.4	ĺ		
9990	46.00	46.50	0.50	0.4	24	13	2	1.05	11	1	33	50	40	0.2		1	
971	46.50	47.70	1.20	1.2	11	23	4	0.98	17	1	58	62	3 5	0.18	1		
9972	47.70	48.00	0.30	0.9	22	12	5	1.55	19	1	114	257	3 5	0.7			
9973	53.40	54.20	0.80	1.5	18	17	4	0.76	140	1	42 80	24 26	25	0.02			
9974 9975	54.20 54.90	54.90 56.50	0.70 1.60	2.8 1.8	6 14	34 13	5 3	1.47 0.77	309 122	i	41	12	40 25	0.23	ĺ		
							_							,		1	
9976 9977	59.60 61.10	61.10 62.60	1.50 1.50	1.9 1.8	12 11	12 20	4 3	0.73 0.70	44 16	1	46 41	124 105	20 3 0	0.3	İ		
9978	62.60	63.00	0.40	1.0	11	14	3	0.62	16	1	31	134	25	0.03			
9979	63.00	64.10	1.10	1.5	13	12	3	0.60	11	1	33	38	35	0.03			
9980	64.10	66.10	2.00	1.0	12	17	6	0.67	3 0	1	47	79	35	0.05	i		
9981	66.10	66.80	0.70	4.7	25	23	9	0.88	32	1	44	88	50	0.11	1		
9982	66.80	68.30	1.50	5.6	1	104	6	0.74	17	1	67	89	60	0.07			
9983 9984	68.30 69.80	69.80 70.20	1.50 0.40	2.2 2.3	1	55 3 6	5 4	0.70 0.77	7 9	1 1	66 68	60 78	60 7 5	0.04	ł		
9985	70.20	71.80	1.60	4.2	9	36 41	4	0.77	10	1	61	510	50	0.06	Ī		
										4		703			,	1	
9991 9992	71.80 73.00	73.00 73.30	1.20 0.30	10.8 7.9	5 11	61 63	5 8	1.22 1.29	13 12	1	95 90	703 370	75 45	0.06	ļ		
9993		75.00	1.70	5.3	11	47	4	0.72	4	i	54	473	75	0.03			

ASSAY SHEET

Sample	from (m)	To (m)	Length (m)	Ag	As ppm	Ba ppm	Cu ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	S %	Aug/t g/t
39994 39995	75.00 75.50	75.50 77.00	0.50 1.50	6.3 5.5	8 9	19 41	4	0.40 0.51	5 7	1	23 36	966 635	40 55	0.04 0.05	
39996 39997 39998 39999 40000	77.00 77.80 78.30 79.80 81.30	77.80 78.30 79.80 81.30 82.70	0.80 0.50 1.50 1.50 1.40	4.0 75.7 6.6 4.9 2.7	14 106 14 15 11	41 56 29 58 46	5 23 5 5 4	0.39 1.88 0.46 0.58 0.66	5 65 6 2 6	1 1 1 1	21 89 37 32 44	722 930 585 344 142	75 45 40 50 55	0.03 0.19 0.04 0.02 0.03	
40501 40502 40503 40504 40505	82.70 83.10 83.80 84.20 84.70	83.10 83.80 84.20 84.70 85.80	0.40 0.70 0.40 0.50 1.10	6.7 5.8 7.2 19.8 11.9	21 24 18 18 14	51 35 29 46 17	1 1 1 1	0.64 0.59 0.46 0.56 0.25	12 10 6 11 5	1 1 1 1	32 38 24 38 6	373 375 910 1865 1680	80 75 70 70 65	0.01 0.01 0.01 0.03 0.02	1.00 1.89 1.82
40506 40507 40508 40509 40510	85.80 86.60 87.20 87.30 88.00	86.60 87.20 87.30 88.00 89.50	0.80 0.60 0.10 0.70 1.50	15.9 32.4 63 25.8 10.6	10 12 16 15 52	38 12 16 21 40	1 1 1 1	0.26 0.26 0.48 0.41 0.61	7 4 5 8 18	1 1 1 1	10 9 13 17 41	3360 5210 10000 5148 805	50 70 40 45 60	0.03 0.01 0.01 0.03 0.01	4.07 6.52 12.70 6.79 0.99
40511 40512 40513 40514 40515	89.50 91.00 92.90 93.40 94.00	91.00 92.90 93.40 94.00 94.60	1.50 1.90 0.50 0.60 0.60	4.9 3.5 1.9 1.7 3.5	76 83 50 60 40	52 44 29 21 38	1 1 1 1	0.63 0.68 0.57 0.64 0.45	18 10 18 14 10	1 1 1 1	44 44 35 41 33	505 1340 301 78 902	45 40 160 115 110	0.04 0.03 0.01 0.02 0.01	0.58 1.15 1.02
40516 40517 40518 40519 40520	94.60 95.40 95.90 97.60 98.10	95.40 95.90 97.60 98.10 98.30	0.80 0.50 1.70 0.50 0.20	2 4.4 1.7 3.1 1.7	57 48 47 26 20	39 297 62 30 49	1 1 14 1	0.49 1.24 1.26 0.9 2.39	14 29 35 9 17	2 2 1 1	29 73 139 38 59	151 231 54 371 296	65 75 85 55 110	0.03 0.03 0.03 0.03 0.06	
40521	98.30	99.80	1.50	0.5	11	45	16	2	30	1	195	11	85	0.21	

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length S>= 0.00cm	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
7.90	8.50	0.60	11.00	****	14	23.33	0	0.00	0	
8.50	10.30	1.80	68.00	****	15	8.33	10	5.56	Ō	
10.30	11.10	0.80	80.00	****	1	1.25	3	3.75	0	
12.20	13.10	0.90	31.00	****	5	5.56	26	28.89	0	
14.90	15.30	0.40	26.00	****	4	10.00	10	25.00	0	
17.10	17.50	0.40	15.00	****	4	10.00	10	25.00	0	
17.50	18.50	1.00	38.00	****	7	7.00	7	7.00	0	
21.40	23.30	1.90	85.00	****	22	11.58	27	14.21	0	
25.40	26.20	0.80	38.00	****	8	10.00	10	12.50	0	
27.70	29.70	2.00	92.00	****	16	8.00	7	3.50	0	
34.10	34.50	0.40	27.00	****	.6	15.00	5	12.50	0	
34.50	36.00	1.50	60.00	****	14	9.33	7	4.67	0	
36.00	37.00	1.00	120.00	****	12	12.00	7	7.00	0	
40.80	41.30	0.50	25.00	****	4	8.00	2 1	4.00	0	
42.40 42.70	42.70 43.30.	0.30 0.60	13.00 33.00	****	į E	3.33 8.33	21	3.33 35.00	0	
43.30	43.90	0.60	81.00	****	5 2	3.33	23	38.33	0	
43.90	45.40	1.50	53.00	****	9	6.00	20	13.33	0	
45.40	46.00	0.60	0.00	0.0	7	11.67	16	26.67	ő	
46.00	46.50	0.50	0.00	0.0	19	38.00	11	22.00	Ö	
46.50	47.70	1.20	77.00	****	10	8.33	23	19.17	Õ	
47.70	48.00	0.30	30.00	****	1	3.33	6	20.00	ő	
53.40	54.20	0.80	57.00	****	3	3.75	10	12.50	ŏ	
54.20	54.90	0.70	23.00	****	6	8.57	7	10.00	Ö	
54.90	56.50	1.60	155.00	****	10	6.25	17	10.62	0	
59.60	61.10	1.50	64.70	****	7	4.67	11	7.33	0	
61.10	62.60	1.50	17.30	****	14	9.33	14	9.33	0	
62.60	63.00	0.40	0.00	0.0	5	12.50	2	5.00	0	
63.00	64.10	1.10	45.00	****	8	7.27	19	17.27	0	
64.10	66.10	2.00	33.00	****	21	10.50	21	10.50	0	
66.10	66.80	0.70	30.00	****	5	7.14	2	2.86	0	
66.80	68.30	1.50	31.00	****	16	10.67	10	6.67	0	
68.30	69.80 70.20	1.50	17.00	****	12	8.00	9	6.00	0	
69.80 70.20	71.80	1.60	0.00 13.00	0.0	3	7.50	3	7.50	0	
71.80	73.00	1.20	17.00	812.5 ****	23	14.37	19 37	11.87 30.83	0	
73.00	73.30	0.30	0.00		25 5	20.83 16.67	10	33.33	0	
73.30	75.00	1.70	0.00	0.0	73	42.94	50	29.41	0	
75.00	75.50	0.50	0.00	0.0 0.0	73 3	6.00	4	8.00	Ö	
75.50	77.00	1.50	0.00	0.0	56	37.33	78	52.00	0	
77.00	77.80	0.80	0.00	0.0	6	7.50	25	31.25	0	
77.80	78.30	0.50	0.00	0.0	15	30.00	7	14.00	0	
78.30	79.80	1.50	15.00	****	25	16.67	25	16.67	Õ	
79.80		1.50	13.00	866.7	22	14.67	26	17.33	ŏ	

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length S>= 0.00cm	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
81.30	82.70	1.40	0.00	0.0	34	24.29	29	20.71	0	
82.70	83.10	0.40	0.00	0.0	9	22.50	4	10.00	ŏ	
83.10	83.80	0.70	0.00	0.0	19	27.14	15	21.43	ŏ	
83.80	84.20	0.40	58.00	****	6	15.00	5	12.50	Ō	
84.20	84.70	0.50	44.00	****	7	14.00	7	14.00	Ó	
84.70	85.80	1.10	53.00	****	13	11.82	9	8.18	0	
85.80	86.60	0.80	0.00	0.0	19	23.75	36	45.00	0	
86. 6 0	87.20	0.60	46.00	****	19	31.67	13	21.67	0	
87.20	87.30	0.10	0.00	0.0	2	20.00	2	20.00	0	
87.30	88.00	0.70	0.00	0.0	10	14.29	15	21.43	0	
88.00	89.50	1.50	67.00	****	13	8.67	46	30.67	0	
89.50	91.00	1.50	13.00	866.7	29	19.33	18	12.00	0	
91.00	92.90	1.90	37.00	****	41	21.58	18	9.47	0	
92.90	93.40	0.50	44.00	****	7	14.00	15	30.00	0	
93.40	94.00	0.60	53.00	****	3	5.00	10	16.67	0	
94.00	94.60	0.60	67.00	****	6	10.00	2	3.33	0	
94.60	95.40	0.80	28.00	****	15	18.75	5	6.25	0	
95.40	95.90	0.50	40.00	****	5	10.00	5	10.00	0	
95.90	97.60	1.70	0.00	0.0	100	58.82	4	2.35	0	
97.60	98.10	0.50	0.00	0.0	11	22.00	5	10.00	0	
98.10	98.30	0.20	0.00	0.0	10	50.00	7	35.00	0	
98.30	99.80	1.50	0.00	0.0	57	38.00	2	1.33	0	

MINNOVA INC.

HOLE NUMBER: WF-92-11 DRILL HOLE RECORD IMPERIAL UNITS: METRIC UNITS: X

PROJECT NAME: WOLF92 PLOTTING COORDS GRID: 1.P. GRID ALTERNATE COORDS GRID: I.P. GRID COLLAR DIP: -50° 0' 0" PROJECT NUMBER: 673 NORTH: 97900.00N NORTH: 979+ ON LENGTH OF THE HOLE: 135.60m CLAIM NUMBER: EAST: 36150.00E EAST: 361+50E START DEPTH: 0.00m LOCATION: GATE ZONE ELEV: 1194.00 ELEV: 1194.00 FINAL DEPTH: 135.60m

> COLLAR GRID AZIMUTH: 270° 0' 0" COLLAR ASTRONOMIC AZIMUTH: 270° 0' 0"

DATE STARTED: August 22, 1992 COLLAR SURVEY: NO PULSE EM SURVEY: NO CONTRACTOR: ATLAS DRILLING LTD DATE COMPLETED: MULTISHOT SURVEY: NO PLUGGED: NO CASING: REAMED TO 3.0M

August 24, 1992 August 27, 1992 DATE LOGGED: HOLE SIZE: NO CORE STORAGE: CAMP RQD LOG: YES

DIRECTIONAL DATA:

PURPOSE:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
3.10	-	-50° 0'	ACID		NO ETCH	-		-	-	-	
67.40	-	-49° 01	ACID	OK		-	-	-	-	-	
130.76	-	-46° 0'	ACID	OK			-	•	•	-	
177.70	-	-58° 0'	ACID	OK		-	-	-	-	-	
-	-	-	•	-		-	•	-	-	•	
-	-	-	-	-		-	-	-	•	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	•	-		-	•	-	-	-	
-	•	•	•	-		•	-	•	-	•	
-	-	•	-	•		-	•	-	-		
	-	-	-	•		1 -	•	•	-	•	
-	-	-	_	-			-	-	-	-	
_	_		_	-		-	_	-		-	
-	-	-	-	-			_	-	-	-	
-		_	-	_		_	_	-	_		
-	_	_		-		_		-	_		
-	-	-		_		_	_	_	-		
-	-		-	-		_		-	-		
-	-		•	-		-		-	-	-	
-	-	-	-	-		_	-	-	-		
-	-	-	-	-		-		-	-	-	
•	-	•	-	-		i -		-	-		
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	•	
•	-	-	-	-		-	-	-	•	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	

ANGLE

HOLE NUMBER: WF-92-11

ROCK

FROM

TO TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS 0.00 «CASING» 3.00 3.00 «QXAT» Colour: light buff grey ΤO Grain Size: v.f.gr. 13.50 Less than 1% subhedral qtz grains in f.gr. ashy -w-lim «tr py» matrix. Minor depositional breccia. Rather nondescript. 40 Bottom contact is silicified @ 13.50 **«HETEROLITH** Colour: grey green TO IC BRECCIA Grain Size: var. 16.80 Subrounded to rounded granitic frags from mm 1» «m-chl» scale to several cm in moderately sorted, mod. consolidated chloritic matrix Bottom contact may be faulted 16.80 «HETEROLITH Colour; grey green black «m-chl» TO IC CONGLOME Grain Size: var. 27.20 RATE» Heterolithic epiclastic debris flow. Poorly sorted subrounded to angular heterolithic frags in dark grey to black to green argillaceous and chloritic matrix. Fragment composition varies from black pyritic argillite to grey sandstone and tuffaceous sediments Size ranges from mm scale to tens of centimeters. No granitic fragments. Minor qtz stringers throughout 16.8-17.9 «s-arg» 18.9-19.0 «m-s sil» 18.9-19.0 -small hydrothermal bx 19.8-20.3 h'thermal vein 19.8-20.3 «s-sil» -bladed veining and silicification of matrix 21.2-21.4 bladed vein {21.2-21.4} «m-sil» -2 cm wide vein subparallel to core axis 10 21.6-22.9 «w-m sil» 21.6-22.9 w-stockwork interval of moderately to well sorted material

24.3-24.6 h'thermal bx

24.3-24.6 «w-sil»

424.6-25.2 | «10-15% v.f.gr. py»

HOLF NUMBER: WF-92-11

FROM ROCK ANGLE TYPE TO CA TO TEXTURE AND STRUCTURE ALTERATION MINERALIZATION REMARKS -finely disseminated 25.2-25.5 fault {25.2-25.5} «clay, graphite» -graphitic 40 lower contact bedded a 27.20 «RHY LITHIC Colour: grey pink TO LAPILLI TU Grain Size: var. 45.10 FF» Heterolithic lapilli size fragments in weakly Welding texture increases downhole welded, glassy matrix. Welding texture approx. a Fragments are generally rimmed by glass. Clast 50 compostion of strongly welded tuff, pyritic argillaceous sandstones/siltstones, pumic frags generally flattened bottom contact a 58 45.10 «FELDSPAR Q Colour: dark grey maroon «w-chl» **43% f.gr. py**≫ TO 135.60 UARTZ CRYST Grain Size: var. -disseminated throughout, occasional «w-pyroph m-ser» Welding becomes less apparent downhole AL LITHIC T 5-10% broken fsp crystals to 5 mm in dark grey -at small fracture linings py stringers Little texture variation downhole UFF» blassy matrix. Weakly welded. Minor armoured crystals, occasional lapilli size welded fragments Fragments are sediments, welded tuffs <1% qtz crystals and various volcaniclastics 60.1-60.5 fault 97.0 fault 105.9-110 -core is very broken, rubbly 117.1 fault gouge

E.O.H.

ASSAY SHEET

				ASSAYS					GE	OCHEMIC	AL					COMMENTS
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ва ррп	Ppm Ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	S %	Aug/t g/t	
40522	13.40	13,60	0.20	0.6	20	28	1	0.83	11	1	56	10	65	0.09		
40523	16.80	17.90	1.10	0.1	13	44	3	2.2	- 28	1	204	6	65	0.21		
40524	18.90	19.00	0.10	0.7	24	45	1	1.34	11	1	88	27	40	0.16		
40525	19.80	20.30	0.50	0.5	7	53	19	1.63	8	1	160	85	50	0.19		
40526	21.20	21.40	0.20	0.5	10	52	10	2.15	13	1	156	15	35	0.24		
40527	21.60	22.90	1.30	0.1	5	30	9	1.61	13	1	136	16	45	0.1		
40528	24.30	25.20	0.90	3.1	42	35	9	2.7	19	1	122	44	50	1.8		
40529	50.10	51.60	1.50	0.1	21	12	4	1.41	11	1	95	20	35	0.78		
40530	114.60	115.90	1.30	0.1	1	19	4	1.55	15	1	104	11	45	0.14		
40531	115.90	117.20	1.30	0.1	1	12	4	1.36	13	1	136	12	30	0.11		

GEOCHEM. SHEET

Sample	From (m)			AL203 %					T102 %					ZN PPM	AU PPB
	0.00	0.00	0.00			 									

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	RQD S/LX100	Of	Fracturs Per	Number Of	Per	Angle	Comments
			S>= 0.00cm		Fracturs	Metres	Veins	Metres		
13.40	13.60	0.20	0.00	0.0	5	25.00	1	5.00	0	
16.80	17.90	1.10	0.00	0.0	35	31.82	0	0.00	0	
18.90	19.00	0.10	0.00	0.0	3	30.00	3	30.00	0	
19.80	20.30	0.50	42.00	****	3	6.00	3	6.00	0	
21.20	21.40	0.20	0.00	0.0	6	30.00	3	15.00	0	
21.60	22.90	1.30	37.00	****	15	11.54	18	13.85	0	
24.30	25.20	0.90	0.00	0.0	12	13.33	5	5.56	0	
50.10	51.60	1.50	45.00	****	21	14.00	7	4.67	0	
114.60		1.30	32.00	****	22	16.92	0	0.00	0	

IMPERIAL UNITS:

METRIC UNITS: X

PROJECT NAME: WOLF92 PROJECT NUMBER: 673

PLOTTING COORDS GRID: I.P. GRID

COLLAR GRID AZIMUTH: 90° 0' 0"

ALTERNATE COORDS GRID: I.P. GRID NORTH: 981+ 0N

COLLAR DIP: -60° 0' 0" LENGTH OF THE HOLE: 132.90m

CLAIM NUMBER:

HOLE NUMBER: WF-92-12

NORTH: 98100.00N EAST: 36025.00E

EAST: 360+25E ELEV: 1190.00 START DEPTH: 0.00m

LOCATION: GATE ZONE

ELEV: 1190.00

FINAL DEPTH: 132.90m

COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

DATE STARTED: DATE COMPLETED:

August 24, 1992 August 26, 1992 August 27, 1992 COLLAR SURVEY: NO

MULTISHOT SURVEY: NO

PULSE EM SURVEY: NO

MINNOVA INC.

DRILL HOLE RECORD

CONTRACTOR: ATLAS DRILLING LTD

DATE LOGGED:

RQD LOG: YES

PLUGGED: NO HOLE SIZE: NO

CASING: REAMED TO 4.9M

CORE STORAGE: CAMP

PURPOSE:

DIRECTIONAL DATA:

pth m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
6.10	-	-61° 0'	ACID	OK		-	-	-		-	
56.69	-	-61° 0'	ACID	OK		<u>-</u>	-	-	-	-	
35.60	-	-61° 01	ACID	OK				-	-	-	
-	-	-	-	•		-	•	-	-	-	
-	-	•	-	-		-	-	-	•	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	•	-	-	-	
-	-	-	•	-		-	•	-	-	-	
-	-	-	•	-		-	•	-	-	-	
-	•	-	-	-		-	-	-	-	-	
•	-	•	-	-		•	•	•	-	-	
-	-	-	-	-		-	•	-	-	*	
-	-	-	-	-		•	•	-	-	•	
•	-	•	•	-		-	•	-	-	-	
-	-	-	-	-			-	-		-	
-	_	-	-	-			-	_		-	
_		-	-	-				_	_		
-	-		-			_		_	-		
_	_		-	_		_		_	-		
_	-	-		_		_			_	-	
-	-		_	_			-	-	_	-	
_	_	_		_		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-		
-	-	-	-	-		-	-	-	-	-	
-	-	-	-			-	•	-	-	-	
_	-	-	-	-		-	-	_	-	-	

HOLE NUMBER: WF-92-12

HOLE NUMBER: WF-92-12

FROM ROCK ANGLE ALTERATION MINERALIZATION REMARKS TO TYPE TEXTURE AND STRUCTURE TO CA 0.00 «CASING» TO 4.90 Colour: grey Grain Size: var. 4.90 «FSPAR-QTZ XTAL LITHIC TO 54.20 TUFF» See hole WF-92-11 Occasional graphitic fractures 45.1-135.6 $\{45.1\text{-}135.6\}$ «w-pyroph, m-ser, w-m chl» along fractures 445.1-135.6 «3-5% py» -5-10% broken fsp crystals to 5 mm in dark grey tuffaceous matrix. Various lapilli size sub--disseminated throughout rounded lithic fragments - rhyolite, minor argillite, tuffaceous sediments 6.0 Flt gouge 7.0 Flt gouge 4.9-12.2 -broken rubbly core -some fragments rimmed by chlorite -very weak welding @ forms cleavage on fractures fractures oriented 40 deg perpendicular to welding fabric \$37.5-38.1 «s-chl, s-ser» 44.5-45.0 flt gouge 444.5-45.0 «i-chl» 47.6 flt gouge 49.2 flt 50.9 flt gouge **4**50.9-54.2} ∢m-s ser, pyroph» -slight increase in alteration 54.20 «QTZ TUFFAC Colour: tan «s-arg» ΤO EOUS SST» Grain Size: f.gr. 67.50 5% rounded qtz grains in tan coloured, fine fsp, -fsp altered to clays rich, sandy matrix 24 Bedding a 67.50 «WELDED XTA Colour: grey L LITHIC TU TO Grain Size: f.gr. and m.gr. 74.40 FF» Strongly welded qtz fsp crystal lithic tuff. 22 «w-m chl, w-ser, w-arg» Typical convoluted/contorted discontinuous -generally in chloritic cavities banding. Lithic fragments appear to be sediments (argillite, sandstone), coarse angular

LOGGED BY: CJC

HOLE NUMBER: WF-92-12

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		71.9 Flt				
74.40 TO 76.80	«SILTSTONE»	Colour: green Grain Size: f.gr.				
76.00		74.4-74.5 flt -fine grained, dark green, mafic siltstone, extremely chloritized. Contains darker chlorite spots throughout		¶74.4-74.5∦ «x-chl»		
		76.7-76.8 flt				
76.80 TO 132.90	«WELDED XTA L LITHIC TU FF»	Colour: grey green Grain Size: Strongly welded qtz fsp crystal lithic tuff. Crystals are subrounded. Lithic fragments are generally volcanically derived, with minor argillite and other sedimentary units. Occasional coarse fsp porphyritic fragments with black, weakly magnetic matrix are seen. These are identical to those noted in purple crystal lithic tuff of surface near Ridge zone				
		Welding texture a	40			
		104.9 FLT 111.2-111.5 FLT 114.5 FLT				
		124.6-125.2 H'thermal Bx -very weak, sericitlly altered		1 124.6-125.2∳ «s-ser, m-sil»		
		128.7-129.2 FLT				
		129.5-131.2 Bx -possibly hydrothermal with chl, pyroph stockwork		129.5-131.2 «m-chl, m-pyroph, w-sil»		
	E.O.H.					

ASSAY SHEET

			_	ASSAYS					GE	OCHEMIC	CAL		*				COMME
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s %	Aug/t g/t		
40531	12.20	13.70	1.50	0.1	1	12	4	1.36	13	1	136	12	30	0.11			
40532	35.70	38.10	2.40	0.1	1	10	3	1.41	7	i	128	5	45	0.12			
40533	71.90	73.40	1.50	0.1	16	15	3	1.29	10	1	126	17	35	0.30			
40534	80.70	82.20	1.50	0.1	12	17	3	1.52	14	1	110	13	40	0.26			
40535	124.60	125.20	0.60	0.1	1	8	5	8.65	94	1	78	6	30	0.19		İ	
40536	129.50	132.20	2.70	0.1	1	9	5	1.61	15	1	91	9	35	0.35			

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length S>= 0.00cm	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
12.20	13.70	1.50	0.00	0.0	86	57.33	1	0.67	0	***************************************
37.50	38.10	0.60	48.00	****	6	10.00	2	3.33	0	
71.90	73.40	1.50	0.00	0.0	94	62.67	2	1.33	0	
80.70	82.20	1.50	0.00	0.0	41	27.33	0	0.00	0	
124.60		0.60	0.00	0.0	13	21.67	2	3.33	0	
129.50		2.70	15.00	555.6	54	20.00	14	5.19	0	

HOLE NUMBER: WF-92-13

PROJECT NUMBER: 673

CLAIM NUMBER:

PROJECT NAME: WOLF92

LOCATION: LOOKOUT ZONE

PLOTTING COORDS GRID: I.P. GRID NORTH: 97300.00N EAST: 36110.00E ELEV: 1260.00

COLLAR GRID AZIMUTH: 90° 0' 0"

ALTERNATE COORDS GRID: 1.P. GRID NORTH: 973+ ON

COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

EAST: 361+10E ELEV: 1260.00 LENGTH OF THE HOLE: 190.50m START DEPTH: 0.00m

COLLAR DIP: -60° 0' 0"

METRIC UNITS: X

FINAL DEPTH: 190.50m

DATE STARTED: DATE COMPLETED:

DATE LOGGED:

August 26, 1992 August 29, 1992 August 31, 1992

COLLAR SURVEY: NO MULTISHOT SURVEY: NO

RQD LOG: YES

PULSE EM SURVEY: NO PLUGGED: NO

HOLE SIZE: NO

CONTRACTOR: ATLAS DRILLING LTD.

IMPERIAL UNITS:

CASING: REAMED TO 3.0M CORE STORAGE: CAMP

PURPOSE:

DIRECTIONAL DATA:

3.66 76.80 - - - - - - - - - - -		-59° 0' -60° 0'	ACID ACID	OK OK - - - - - - -		-	- - - - - - - - - - -	-		-	
76.80 - - - - - - - - - - -	•					-	- - - - - - - -	-	- - -		
				-		-	- - - - - - -	-	- - -		
	-	-	-	-		-	- - - - - -	-	- - -		
		-	-	-			- - - - - -	-	- - -		
-			: : :				- - - -	- - -	- - -		
-		- - - - -	: : :				: : :	•	- - -		
		-	-				- - -	- - -	-	•	
	:	-	-	-		-	- - -	- - -	-	:	
· · · · · · · · · · · · · · · · · · ·	-	-	-	-		-	-	-	-	•	
- - -				-		-	-	-			
-	-		-						-	-	
- -						-	•	-	-	•	
			-				-	-	-	-	
-	_	-	-	_		1]	-	-	-	•	
	_	-	_	-			-		•	-	
-	-	-	_	-		1 .	-	_	-	-	
-	-		-	_			_	_		-	
•	-	-	-	-				-		-	
•	-	-	_	-		1 -		_	_	_	
-	-	-	-	-					_	-	
-	-	-	-	•			-	_	_	-	
-	-	-	-	-		-	-	-	-		
-	-	-	-	-		-	-	-	-		
•	-	-	-	-		-	-	-	-	•	
•	-	-	-	-		-	•	-	-	-	
•	-	-	-	-		-	-	-	-	-	

HOLE NUMBER: WF-92-13

FROM ROCK ANGLE TO TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS 0.00 «CASING» ΤO 3.00 0.00 TO 93.60 3.00 «B PORPHYRY Colour: maroon to grey «w-sit, m-lim» «tr f.gr. py» TO Grain Size: m.gr. and c.gr. 80.20 As for holes 7,8,9,10 M.gr. to c.gr. euhedral to broken anhedral fsp Alteration consists of patchy, percrystals (50-60%) in maroon to grey, f.gr. groundvasive and stockwork silicification mass. Quartz crystals are <1 m - 2mm comprising throughout. Minor green pyrophyllite only 3-5%. These are generally anhedral to subveinlets along fractures are seen. Limonite staining of fracture surfaces hedral, smokey to clear quartz. Although this unit appears intrusive in general and selvages is common generally with (massive, unbedded) a weak orientation of crystals assoicated dendritic manganiferous is seen from 10.5-11.9. Xenoliths are present in oxide coatings either pyrolusite or several places int\ this interval. psilomelane 47.3-7.5 | «stockwork» **17.3-7.5** | ≪m-sil» 9.4-9.6 pyrophyllite 9.6-10.2 (m-lim) 49.6-10.2 «s-pyrol/psilo» 11.9-12.8 m-stockwork -minor banded quartz veinlets 13.9-14.1 «m-chl» «m-Mt, 1% py» -a coarse grained fsp porphyritic black matrix interval common to this unit. The matrix is weakly magnetic, chloritic, pyritic 116.7-17.8 | «w-m stockwork» «m-sil, s-lim» -veinlets are weakly banded, lacking complexity 120.7-20.9 ww-stockwork bx» «m-sil, w-pyroph» -brecciated, weakly banded 421.8-22.2} «s-lim» «m-pyrol/psilo» At 33.5 two large fragments of qtz eye rhyolite volcaniclastic 434.7-35.1 ww-m stockwork» 438.2-38.7 «w-m sit» «tr pyrol/psilo»

HOLE NUMBER: WF-92-13

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		440.7-41.0 w-h'thermal Bx»		«w-m sil»		
				«m-chl, w-sîl»		
		43.4-43.7 «m-stockwork» -incl 5 cm wide qtz vein with bladed selvages		«m-sil, s-lim»		
		43.7-44.9 w-stockwork 45.3-46.6 w-m stockwork				
				50.6-53.5 m-lim		
		52.0-53.3 m-s stockwork		- m-s sil, m-lim		
				53.3-55.2 m-chl	- tr-1% py	
		56.3-57.5 m-s stockwork		- m-sil, m-chl		
		65.5-72.0 w-stockwork -bleached core		- w-m sil, m-chl	- tr pyrol/psilo, 1% py - minor py veinlets	
80.20 TO 84.20	«B PORPHYRY »	Colour: green, grey Grain Size: f.gr., m.gr. Less than 1% subhedral qtz grains in v.f.gr. apple green matrix. Green colour is probably due to sericite Bedding @	90	80.2-80.6 -strong sericite		
		∥80.6-81.1⊩ s-stockwork -very fine stockwork silicification		«s-sil»	- tr py	
		81.1-82.3 gas phase bx 83.5-84.1 «F Porphyry Dyke»		83.6-84.2 s-sericite		
84.20 TO 85.10	«B PORPHYRY »					
85.10 TO 86.00	«ANDESITE DYKE»	Colour: Grey Green Grain Size: m.gr. A medium grained andesite dyke. Lower contact is flow banded.				

ALTERATION

ANGLE

TO CA

TEXTURE AND STRUCTURE

Medium euhedral to subhedral orthoclase crystals to 5mm and rounded quartz phenocrysts up to 3mm characterize this porphyry. No banding textures.

This interval is well banded with alternating dark magnetic and pink non magnetic phases.

Occasional qtz veinlets cut interval. In areas the core has a spotty "leopard skin" type pattern

-angular frags to 2 cm in grey tuffaceous matrix

Unusually textured porphyry phase. Unit is well

look like devitrification textures. Orthoclase phenocrysts up to 5mm in length occur sparsly

Strongly flow banded QFP, containing large phenocrysts of zoned plagioclase. Between 99.1 and 99.5m, there is a narrow section of hetero-

lithic breccia (HBRX 2). This unit suggests that the intrusive contact is highly irregular.

banded, with 1 to 3mm pink and white bands. These

Colour: buff/tan Grain Size: m.gr.

488.1-89.6

Grain Size:

Welding is a

Lower contact @

-small hydrothermal bx -occasional fsp to several cm

-core is strongly bleach

Colour: grey to maroon

496.3-96.8 «tuff bx»

throughout interval.

Colour: grey green

Grain Size: c.gr.

HOLE NUMBER: WF-92-13

ROCK

TYPE

«F PORPHYRY

«B PORPHYRY

BRECCIA»

«F PORPHYRY

«CHILLED

«F PORPHYRY

MARGIN»

DYKE»

FROM

TO

86.00

90.80

90.80

93.60

93.60

95.60 95.60

TO

98.20

98.20

101.00

TO

TO

TO

- 3-5% f.gr. py

MINERALIZATION

DATE: 14-October-1993

REMARKS

HOLE NUMBER: WF-92-13

DRILL HOLE RECORD

LOGGED BY: CJC

PAGE: 4

∢m-s chl»

499.5-101.0 «w-m sil»

HOLE NUMBER: WF-92-13

FROM ROCK ANGLE TYPE TO CA TO TEXTURE AND STRUCTURE ALTERATION MINERALIZATION REMARKS Lower contact a 30 101.00 «FLT BX» Colour; black to buff/tan Grain Size: var. 102.40 Angular to subrounded silicified fragments in - «m-sil, w-m arg», w-m lim black to buff/tan f.gr. milled matrix 102.40 «FLOW BANDE Colour: pale green D QP/TUFF Grain Size: var. 107.80 BRECCIA» A highly convoluted interval consisting of flow - «s-chi» - «tr-1% py» banded or laminated QP (ash tuff?) and heterolithic breccia. The QP contains angular clasts of chloritized andesite porphyry, possibly derived from the breccia. Clasts are rounded with a maximum diameter of 20cm. The breccia is strongly chloritic with rounded to 30 angular clasts of volcaniclastic sediment (mainly fine sandstones and siltstones) and aphyric rhyolite). 106.6-107.8 «B Porphyry Dyke» The lower halfof the dyke is G porphyry with the typical glomeroporphyritic textures. 107.80 «HETEROLITH Colour: green. Heterolithic Breccia. ΤO IC BRECCIA Grain Size: var. 151.40 Subangular to subrounded fragments of various - «w-m chl, tr pyroph» - «tr-1% py» 2» composition from mm scale to tens of centimeters in f.gr. sandy matrix. Fragments of volcanic sandstone, argillite and aphyric rhyolite are present. The rock varies from matrix to clast supported. Clasts are randomly orientated and there is no obvious bedding or grading. 130.0 bedding a 20 4131.1-151.2} «s-chl» -banded gtz veins -chlorite alteration increases down-4141.0-151.2 «w-m stockwork» -stockwork veining increases slightly through this interval 143.3 flt gouge

HOLE NUMBER: WF-92-13

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		145.2-145.4 m-stockwork -banded qtz vein selvages are black, possibly pyritic, vein centres are bleached and overprinted by silica		«w-m sit»	tr py	
		147.8-150.1 banded veins «s stockwork» -black and white banded quartz		«m s sit»		
		148.1-148.5 s-stockwork 149.6-150.1 m-s stockwork and blading	50			
		150.1-150.9 m-stockwork				
		150.9-151.1 bladed vein		- w-m lim, i-sil		
				151.1-151.4 s-chl		
151.40 TO 160.10	«HYD BX»	Colour: black to white Grain Size var. Brecciated, silica healed. Consists generally of brecciated black silicified fragments cemented by white quartz. Locally fragments are banded black and white silica. Blading textures are seen throughout as are open voids. Black colour of silica may be due to pyrite or other sulphide minerals. Dominant fragments type is argillaceous sediment though some frags of overlying unit are seen		≪i-x sil, m-lim≫	«tr-1% py»	
		151.4-158.6 «i-x stockwork bx»		«s-i sil»		
		158.6-159.8 «Mass. Bladed Vein» -white, massive silicification, some blading seen overprinted by silica		- x-sil		
		√159.8-160.1		«s sil»		
160.10 TO 162.90	«SED BX» TUFF BX	Colour: green to black Grain Size: f.gr. Interbedded black argillaceous units and green silty to sandy tuffaceous unit. Finer grained argillites have abundance of subrounded to angular fragments of tuffaceous sediments Bedding is generally contorted, convoluted @	40	- «s-chl»		
		160.3-160.9 «flt gouge»	İ			

HOLE NUMBER: WF-92-13

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		161.1-161.3 «flt gouge» 162.0-162.3 «bladed vein»	40			
162.90 TO 163.90	«TUFFACEOUS SST»	Colour: green Grain Size: f.gr. Fine grained, granular tuffaceous sandstone or sandy tuff. Weakly brecciated in areas filled by chlorite Bottom contact a	50	- «s-chl»		
163.90 TO 169.40	«QXAT/FINE QZ SND ST»	Colour: buff, grey, green Grain Size: Convoluted, contorted, welded rhyolite qtz xtal ash tuff. Otz crystals <1% rounded. Probable rhyolite composition 164.2-164.8 granitic clasts Interbed of granite boulder conglomerate -contact a 164.8-165.2 «Laminated Ash Tuff» Lower contact a	40 68	- «w-chl, green ser»		
169.40 TO 183.10	«XVAT»	Colour: green. Crystal Vitric Ash Tuff. Grain Size: f.gr., m.gr. Subrounded lithic frags of varying composition in f.gr. tuffaceous matrix, weakly welded as defined by chloritic fiamme Probably rhyodacitic to dacitic in composition. Cut by minor white qtz veinlets., bladed Local areas are sandy textured 178.7 flt bx Bottom contact @ 183.1m	26 50 68	- «n-chl, grn ser»	- tr-1% py -v.f.gr. disseminated	
183.10 TO 190.50	«HETEROLITH IC BRECCIA 1»	Colour: green Heterolithic Breccia 1 Grain Size: var. Poorly sorted heterolithic breccia. Clasts vary in size from mm scale to tens of centimeters. They are generally rounded to sub-angular and clast supported. Dominant clasts are granitic intrusive particularly monzonite. Smaller lithic fragments		- «m-chl»	- tr py	

HOLE NUMBER: WF-92-13

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		and crystals in the matrix are derived from dis- aggregated granitic material. The top third of the interval is poorly bedded and finer grained	40			

HOLE NUMBER: WF-92-13

DRILL HOLE RECORD

LOGGED BY: CJC

PAGE: 8

ASSAY SHEET

ASSAYS GEOCHEMICAL COMMENTS Pb Aug/t Sample From Τo Length Αg As Ba Cu Fe Sb Zn Au Нg S % (m) (m) (m) ppm ppm ррп ppm % ppm ppm ppm ppb ppb g/t 40538 6.90 7.10 1.39 95 0.20 0.2 51 15 10 65 0.03 40539 9.60 10.20 0.60 0.1 22 20 11 1.49 12 101 16 45 0.02 11.90 40540 12.80 0.90 0.1 28 13 1.02 10 82 50 50 0.03 16 1 40541 13.90 14.10 0.20 0.5 8 33 6 1.67 5 413 10 50 0.1 16.70 40542 17.70 1.00 42 53 8 105 75 45 0.1 14 1.6 1 0.01 40543 20.70 20.90 0.20 0.3 31 26 14 0.92 77 35 40 0.02 0.40 13 13 22 40544 21.80 22.20 0.1 40 1.32 108 45 0.03 9 40545 34.70 35.10 0.40 0.7 34 89 43 40 0.17 61 8 0.7 6 38.20 38.70 0.50 18 90 16 60 40546 0.1 30 6 1.23 0.02 6 40547 40.70 41.00 0.30 0.1 40 64 16 1.77 15 112 93 65 0.03 40548 43.40 42.80 0.60 0.5 43 40 1.47 84 13 0.14 40549 43.40 43.70 0.30 25 43 7 10 116 24 55 0.1 2.09 0.13 43.70 40550 44.90 1.20 0.6 39 26 6 1.29 9 89 21 35 0.12 38801 44.90 45.30 39 35 17 44 106 60 55 0.40 0.1 1.25 0.03 38802 35 15 109 31 45.30 46.60 1.30 0.2 56 9 1.15 35 0.07 38803 52.00 53.30 1.30 0.1 39 13 1.13 11 127 155 45 44 0.04 36601 53.30 56.30 3.00 56.30 57.50 598 38804 1.20 1.8 29 16 6 1.14 14 1 83 40 0.14 0.66 57.50 36602 60.00 2.50 60.00 63.00 36603 3.00 36604 63.00 65.50 2.50 38805 65.50 67.00 0.3 1.50 33 20 1.36 16 97 20 35 0.04 1 38806 67.00 68.50 1.50 0.1 20 21 1.57 10 1 105 35 0.03 1 6 38807 68.50 70.00 1.50 0.2 18 24 1.08 10 1 137 5 25 1 0.05 38821 80.30 80.60 0.30 1.2 3 10 0.46 105 152 20 0.02 38808 80.60 81.10 0.50 17 2.2 12 2 0.44 38 264 30 0.01 38809 81.10 82.30 1.20 0.1 11 14 1 0.46 11 49 47 25 0.01 38810 86.70 0.93 45 86.20 0.50 0.1 38 112 108 1 5 6 0.01 38811 88.10 89.60 1.50 0.6 27 39 0.64 56 118 35 0.01 1 38812 92.10 92.30 33 15 25 0.20 0.5 46 11 1 0.62 0.01 38813 92.30 93.80 1.50 0.1 45 1.2 92 40 0.02 38814 93.80 95.30 1.50 0.1 28 72 0.71 5 65 3 35 0.01 38815 95.30 20 9 50 96.30 1.00 0.1 1.48 10 119 51 1 1 0.03 38816 96.30 96.80 0.50 0.1 32 36 1.53 13 87 5 45 0.04 38817 96.80 97.40 0.60 0.2 136 14 1.01 10 126 8 35 0.18 38818 97.40 98.20 0.80 0.1 94 10 0.83 9 125 40 0.27 1 38819 98.20 99.10 14 22 30 0.90 0.1 0.78 9 72 1 1 8 0.13 38822 99.10 99.50 0.40 0.3 1.17 15 129 75 25 0.09

Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	S %	Aug/t g/t
38820 38823	99.50 101.00	101.00 102.40	1.50 1.40	0.1 0.1	26 15	11 31	2	0.99 1.42	7 15	1	98 175	2 5	25 25	0.26 0.08	
38824 36605 36606 36607 36608	102.40 103.90 107.00 110.00 113.00	107.00 110.00 113.00	1.50 3.10 3.00 3.00 3.00	0.1	66	15	2	1.03	9	1	73	24	15	0.1	
36609 36610 36611 36612 38825	116.00 119.00 124.00 129.00 133.70	124.00 129.00 133.70	3.00 5.00 5.00 4.70 0.30	0.1	3	12	62	3.85	1	1	64	69	45	0.33	ĺ
36613 36614 36615 36616 38826	134.00 136.00 138.00 140.00 141.00	138.00 140.00 141.20	2.00 2.00 2.00 1.20 0.20	0.1	1	18	77	4.94	1	1	67	357	55	0.29	
38827 38828 38829 38830 38831	141.20 142.70 144.20 145.70 147.20	144.20 145.70 147.20	1.50 1.50 1.50 1.50 0.60	0.1 0.1 2.8 0.1 0.1	1 1 1 1	9 17 18 24 19	131 124 118 84 72	6.28 6.39 5.97 5.72 4.92	1 1 1 1	1 1 1 1	86 80 77 81 71	132 637 657 1604 768	30 30 25 60 40	0.26 0.25 0.22 0.17 0.21	0.95 0.71 1.9 0.75
38832 38833 38834 38835 38836	147.80 148.10 148.50 149.60 150.10	148.50 149.60 150.10	0.30 0.40 1.10 0.50 0.80	14.8 8.3 0.1 40.3 0.1	1 1 1 1	23 17 8 26 14	79 81 76 41 65	3.41 4.13 4.89 3.13 4.31	5 1 1 1	1 1 1 1	50 97 112 164 238	3720 6270 1560 3465 536	30 25 30 40 20	0.02 0.17 0.17 0.03 0.14	3.56 6.51 1.66 3.46 0.59
38837 38838 38839 38840 38841	150.90 151.10 151.40 152.90 154.40	151.40 152.90 154.40	0.20 0.30 1.50 1.50 1.50	3.9 7.2 5 5.7	1 1 1 5 10	23 13 27 32 28	24 81 43 15 12	2.67 3.36 1.75 1.02 0.71	6 1 1 4 5	1 1 1 1	143 344 193 103 58	1260 1105 1940 650 820	25 35 25 35 30	0.01 0.01 0.02 0.03 0.04	1.36 1.29 2.12 0.67 0.88
38842 38843 38844 38845 38846	155.90 157.40 158.60 159.80 160.10	158.60 159.80 160.10	1.50 1.20 1.20 0.30 1.90	11.7 19.9 7.6 9 0.1	14 16 17 16 1	35 63 13 35 29	12 16 5 14 65	0.58 0.77 0.38 1.52 3.25	7 6 6 14 13	1 1 1 1	45 45 12 63 372	1800 2150 715 358 150	30 35 45 40 30	0.01 0.02 0.01 0.01 0.22	1.85 2.3 0.66
38847	162.00	162.30	0.30	5.1	11	30	9	2.22	10	1	107	462	15	0.05	0.58

ASSAY SHEET

HOLE NUMBER: WF-92-13

ASSAY SHEET

Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ва ррп	Cu ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	S %	Aug/t g/t	
38848 38849 38850 36617	171.10	163.90 171.60	0.60 1.00 0.50 3.40	1.2 0.1 0.1	26 1 1	42 31 15	23 205 29	1.61 0.96 0.91	20 17 15	1 1 1	124 120 99	55 83 417	35 60 45	0.27 0.15 0.1		

HOLE	NUMBER:	WF-92-13

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	RQD S/LX100	Of	Fracturs Per	Number Of	Veins Per	Angle	Comments
	_		S>= 0.00cm		Fracturs	metres	Veins	Metres		
6.90	7.10	0.20	0.00	0.0	7	35.00	10	50.00	0	
9.60	10.20	0.60	0.00	0.0	18	30.00	-4	6.67	0	
11.90	12.80	0.90	24.00	****	11	12.22	31	34.44	0	
13.90 16.70	14.10 17.70	0.20	0.00	0.0 ****	11	5.00	7 29	35.00 29.00	0	
20.70	20.90	1.00 0.20	26.00 0.00	0.0	4	11.00 20.00	4	20.00	0	
21.80	22.20	0.40	0.00	0.0	11	27.50	1	2.50	Ö	
34.70	35.10	0.40	3.00	750.0	12	30.00	Ó	0.00	ŏ	
38.20	38.70	0.50	54.00	****	4	8.00	11	22.00	Ō	
40.70	41.00	0.30	0.00	0.0	6	20.00	6	20.00	0	
42.80	43.40	0.60	47.00	****	3	5.00	26	43.33	0	
43.40	43.70	0.30	0.00	0.0	2	6.67	.8	26.67	0	
43.70	44.90	1.20	18.00	****	13	10.83	13	10.83	0	
44.90 45. 3 0	45.30 46.60	0.40	52.00	****	9	22.50	18 24	45.00 18.46	0	
52.00	53.30	1.30 1.30	0.00 34.00	0.0 ****	19 26	14.62 20.00	20	15.38	0	
56.30	57.50,	1.20	21.30	****	14	11.67	13	10.83	0	
65.50	67.00	1.50	16.00	****	33	22.00	9	6.00	ő	
67.00	68.50	1.50	0.00	0.0	16	10.67	4	2.67	ō	
68.50	70.00	1.50	15.00	****	31	20.67	12	8.00	0	
80.30	80.60	0.30	0.00	0.0	7	23.33	3	10.00	0	
80.60	81.10	0.50	46.00	****	7	14.00	13	26.00	0	
81.10	82.30	1.20	0.00	0.0	28	23.33	18	15.00	0	
86.20 88.10	86.70 89.60	0.50 1.50	0.00	0.0	16	32.00	7 11	14.00	0	
92.10	92.30	0.20	0.00	0.0 0.0	69 7	46.00 35.00	4	7.33 20.00	0	
92.30	93.80	1.50	0.00	0.0	37	24.67	5	3.33	Ö	
93.80	95.30	1.50	0.00	0.0	46	30.67	7	4.67	ŏ	
95.30	96.30	1.00	0.00	0.0	36	36.00	6	6.00	Ō	
96.30	96.80	0.50	0.00	0.0	7	14.00	2	4.00	0	
96.80	97.40	0.60	0.00	0.0	22	36.67	1	1.67	0	
97.40	98.20	0.80	28.00	****	10	12.50	9	11.25	0	
98.20 99.10	99.10 99.50	0.90	0.00	0.0	18	20.00	12 2	13.33	0	
99.50		0.40 1.50	0.00	0.0 0.0	11 29	27.50 19.33	7	5.00 4.67	0	
101.00		1.40	0.00	0.0	42	30.00	4	2.86	n	
102.40		1.50	14.00	933.3	30	20.00	7	4.67	ő	
133.70		0.30	0.00	0.0	2	6.67	6	20.00	Ŏ	
141.00	141.20	0.20	0.00	0.0	7	35.00	5	25.00	0	
141.20	142.70	1.50	15.00	****	48	32.00	16	10.67	0	
142.70		1.50	0.00	0.0	75	50.00	16	10.67	0	
144.20	145.70	1.50	0.00	0.0	69	46.00	19	12.67	0	
145.70		1.50	13.00	866.7	29	19.33	16	10.67	0	
147.20	147.80	0.60	0.00	0.0	32	53.33	- /	11.67	0	

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
			S>= 0.00cm		Tracturs	me tres		ne cres		
147.80		0.30	0.00	0.0	14	46.67	4	13.33	0	
148.10		0.40	0.00	0.0	12	30.00	10	25.00	0	
148.50		1.10	0.00	0.0	20	18.18	26	23.64	0	
149.60		0.50	0.00	0.0	6	12.00	15	30.00	0	
150.10		0.80	29.00	****	6	7.50	23	28.75	0	
150.90		0.20	0.00	0.0	3	15.00	4	20.00	0	
151.10		0.30	0.00	0.0	100	333.33	5	16.67	0	
151.40		1.50	15.00	****	20	13.33	17	11.33	0	
152.90		1.20	0.00	0.0	61	50.83	28	23.33	0	
154.40		1.50	0.00	0.0	23	15.33	40	26.67	0	
155 .9 0		1.50	18.00	****	16	10.67	17	11.33	0	
157.40		1.20	0.00	0.0	22	18.33	6	5.00	0	
158.60		1.20	0.00	0.0	31	25.83	2	1.67	0	
159.80		0.30	0.00	0.0	4	13.33	5	16.67	0	
160.10		1.90	15.00	789.5	100	52.63	7	3.68	0	
162.00		0.30	0.00	0.0	3	10.00	4	13.33	0	
162.30		0.60	0.00	0.0	18	30.00	1	1.67	0	
162.90		1.00	0.00	0.0	28	28.00	3	3.00	0	
171.10	171.60	0.50	0.00	0.0	12	24.00	3	6.00	0	

MINNOVA INC. HOLE NUMBER: WF-92-14 DRILL HOLE RECORD

> PLOTTING COORDS GRID: I.P. GRID ALTERNATE COORDS GRID: I.P. GRID

IMPERIAL UNITS:

METRIC UNITS: X

PROJECT NAME: WOLF92 COLLAR DIP: -45° 0' 0" PROJECT NUMBER: 673 NORTH: 98200.00N NORTH: 982+ ON LENGTH OF THE HOLE: 139.00m CLAIM NUMBER: EAST: 35250.00E EAST: 352+50E START DEPTH: 0.00m LOCATION: CHOPPER PAD ZONE ELEV: 1159.00 ELEV: 1159.00 FINAL DEPTH: 139.00m

COLLAR GRID AZIMUTH: 90° 0' 0" COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

DATE STARTED: COLLAR SURVEY: NO August 29, 1992 PULSE EM SURVEY: NO CONTRACTOR: ATLAS DRILLING LTD. MULTISHOT SURVEY: NO

DATE COMPLETED: August 31, 1992 PLUGGED: NO CASING: REAMED TO 6.1M DATE LOGGED: September 1, 1992 RQD LOG: YES

HOLE SIZE: NO CORE STORAGE: CAMP

PURPOSE: To test a coincident IP and high resistivity anomaly along the east margin of the Chopper Pad

DIRECTIONAL DATA: Zone.

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
6.10		-43° 0'	ACID	OK		-	-	-	-	-	
93.90	-	-43° 0'	ACID	OK		-	-	-	-	-	
139.00	-	-42° 0'		OK		-	•	-	-	-	
-	-	•	-	-		-	-	-	-	•	
-	•	-	-	-		-	•	-	-	•	
-		-	-	-		-	•	-	-	-	
-	_	-	-	-			-	-	-	-	
-	-		-	-		_	-		-	-	
	_	_	_	_		_	_	_		_	
_	-	-	-			_	-	_		-	
_	-	_	_			_	•	_	-	-	
-	-	-	-	-	ĺ	-	-	_	-		
-	_	-	-			-	-	-	-		
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-	í	-	-	-	•	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		•	-	+	-	-	
-	•	-	-	•		-	-	-	-	-	
-	-	-	•	-		-	•	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	•	-	-	•		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	•	ĺ	-	-	•	-	•	
-	-	•	-	-		•	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	

OLE NUM	BER: WF-92-14			DATE: 14-October-1993		
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 6.10	«CASING»					
6.10 TO 8.30	«BASALT DYK E»	Colour: black Grain Size: v.f.gr. Massive interbedded v.f.gr. argillite. Bottom contact is faulted				
8.30 TO 25.00	«RHYOLITE»	Colour: grey green Grain Size: f.gr. Consists of f.gr., flow banded feldspar phyric rhy olite. Interval is strongly jigsaw brecciated and hydrofractured. Silica healed		Argillic alteration of fsp to clays is dominant and strong throughout. Silification is prominent through brecciated area. Fe oxidation of pyrite is common	Probable high py content but mostly oxidized. Within areas of silicification pyrolusite and/or psilomelane is common as veins. In areas these black bands appear metallic and may be v.f.gr. pyrite forming along wall rock associated with silicific'n	
		√8.3-21.5∤ «s-jigsaw breccia»		«m-s sil, s-arg, m-lim»	«tr-3% py, pyrol/psilo»	
		16.5 bedding a	22			
		16.8-21.5 «s-jigsaw bx»		«w-s sit, s-arg»	«tr-3% py, pyrol/psilo»	
		21.5-21.7 -qtz vein		-20% hem -occurs after py as spotted texture through matrix		
		25.0 lower contact a	22	վ21.7-25.0¦ «20% hem, m-arg» after py		
25.00 TO 27.60	«BASALT DYK E»	Colour: black Grain Size: v.f.gr. Massive, black, v.f.gr. basalt Lower contact a	46		«3-5% v.f.gr. py»	

HOLE NUMBER: WF-92-14

HOLE NUMBER: WF-92-14

FROM ROCK ANGLE TO TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS 27.60 «RHYOLITE» Colour: grey green Grain Size: f.gr. 30.90 As for interval 8.3-25.0. Flow banding minor «s-i arg» 18 lithics «tr py, pyrol/psilo»
-black mineral occuring as breccia «s-arg, m-sil» infillings «BASALT DYK 30.90 Colour: grey, black Grain Size: f.gr. TO E» 31.70 Interbeded black argillaceous sediments and f.gr. 70 grey siltstones 31.70 «SPERULITIC Colour: cream maroon RHYOLITE» Grain Size: f.gr. m.gr. TO 45.80 Strongly banded and welded spherulitic rhyl or vit ric tuff. Contains <1% qtz and fsp crystals. Rare lithic fragments are observed @ 38.0 banding/welding up to 50% spherulites 44 -strong alteration of fsp to clays; 62 pyrophyllite veinlets 41.7 banding@ 443.3-43.9 "-stockwork pyrophyllite» soft cream coloured mineral forming veins 45.80 «FLOW BANDE Colour: pale grey green to light maroon D RHYL» Grain Size: f.gr. ΤO 139.00 Similar compositionally to interval 8.3-25.0 but «w-hem, lim, w-arg, w-pyroph stwrk» «tr py» finer grained. Consists of alternating pale grey and pale green bands of ashy material with minor to 10% qtz and fsp crystals and occasional accidental fragments 47.0-47.2 «flt gouge» 49.7-50.0 «flt gouge» 50.8 bedding a 48 54.5 bedding a 40 \$56.6-56.9 «vuggy qtz vein» from 63.4-64.7 matrix is glassy, chloritic 48 faimme present 69.8-73.3

HOLE NUMBER: WF-92-14

ANGLE FROM ROCK TYPE TEXTURE AND STRUCTURE TO CA TO ALTERATION MINERALIZATION REMARKS -possible interbed of flowbanded rhyolite 10 72.0-72.2 -weak stockwork, black sil - w-sil -stockwork sil and pyrophyllite vein -may be interbedded of maroon grey flow banded rhyolite. Continuous convoluted contorted banding and higher proportion of euhedral fsp suggest this. However glassy shards broken crystals and occasional accidentals suggest this may still be a strongly banded tuff. 18 -Bedding a 484.3-93.9 a cream coloured ashy interval «m-arg» -onward the unit is weakly banded or welded again to spherulitic locally. Minor qtz and pyrophyllite stockwork cut the interval 1102.4-104.9 | «w-m stockwork, sil, ругорһ» 106.7 38 -banding a | 117.4-118.9 | «w-py, sil stockwork» | 123.3-124.6 | «fault zone» | 124.6-130.1 | «lapilli tuff» | 130.1-139.0 | «welded tuff & agglomerate» «i-arg» «i-arg»

E.O.H.

«tr-1% py»

«w-arg»

ASSAY SHEET

	F			ASSAYS		_	_	_		OCHEMI				- 1	
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Pb ppm	Sb	Zn ppm	Au ppb	ppb dqq	S %	Aug/t g/t
38851	8.30	9.80	1.50	0.1	13	8	7	0.61	15	1	90	12	30	0.04	
38852	9.80	11.50	1.70	0.1	15	6	5	0.57	18	1	136	10	30	0.08	
38853	11.50	12.40	0.90	0.1	19	4	8	0.77	18	1	120	15	35	0.09	
38854	12.40	13.90	1.50	0.1	7	5	4	0.59	20	1	107	11	35	0.06	
38855	13.90	15.40	1.50	0.1	7	4	5	0.48	17	1	111	7	20	0.03	i
38856	15.40	16.80	1.40	0.1	9	5	6	0.68	15	1	142	10	35	0.08	
38857	16.80	17.00	0.20	0.1	1	5	3	0.74	21	1	193	6	30	0.05	
38858	17.00	17.90	0.90	0.1	1	5	4	0.59	19	1	146	4	20	0.03	-
38859	17.90	18.50	0.60	0.5	10	4	4	0.69	19	1	119	7	25	0.09	
38860	18.50	18.90	0.40	1	9	3	3	0.59	18	1	109	6	30	0.08	
38861	18.90	20.40	1.50	0.1	13	6	2	0.77	17	1	115	14	35	0.11	1
38862	20.40	21.50	1.10	0.1	18	5	3	0.71	14	1	120	15	20	0.18	
38863	21.50	21.70	0.20	0.1	17	8	3	0.47	4	1	33	40	15	0.05	
38864	29.70	30.40	0.70	0.1	1	7	5	0.95	22	1	203	5	40	0.06	,
38865	31.70	33.30	1.60	0.1	15	9	4	0.48	19	1	134	21	35	0.23	
38866	33.30	34.20	0.90	0.1	29	4	3	0.5	20	1	142	17	3 5	0.16]
38867	34.20	34.70	0.50	0.1	28	4	4	0.62	19	1	112	31	25	0.15	1
38868	43.50	43.90	0.40	0.1	65	5	3	0.65	9	1	83	60	30	0.22	
38869	56.60	56.90	0.30	0.1	39	4	3	0.73	21	1	111	19	35	0.31	
38870	72.00	72.20	0.20	0.1	26	6	4	0.62	13	1	93	31	25	0.17	i
38871	72.70	73.30	0.60	1.1	37	4	3	0.58	47	1	111	570	20	0.18	}
38872		103.60	1.20	0.1	26	5	6	0.6	15	1	115	50	20	0.25	
38873		104.90	1.30	0.1	34	5	2	0.58	15	1	116	42	20	0.24	
38875	104.90		1.30	0.1	30	6	2	0.51	20	1	96	66	25	0.21	
38874	111.90	112.90	1.00	0.1	35	5	3	0.55	14	1	83	75	20	0.22	ı
38875		118.90	1.50	0.1	30	6	2	0.51	20	1	96	66	25	0.21	1
38876	132.30	133.80	1.50	0.1	73	7	3	0.64	14	1	61	37	35	0.32	ì

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length S>= 0.00cm	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
8.30	9.80	1.50	13.00	866.7	31	20.67	4	2.67	0	
9.80	11.50	1.70	69.00	****	15	8.82	3	1.76	0	
11.50	12.40	0.90	55.00	****	4	4.44	2	2.22	0	
12.40	13.90	1.50	48.00	****	11	7.33	1	0.67	0	
13.9 0	15.40	1.50	53.00	****	12	8.00	6	4.00	0	
15.40	16.80	1.40	61.00	****	26	18.57	11	7.86	0	
16.80	17.00	0.20	0.00	0.0	2	10.00	1	5.00	0	
17.00	17.90	0.90	32.00	****	9	10.00	6	6.67	0	
17.90	18.50	0.60	70.00	****	11	18.33	1	1.67	0	
18.50	18.90	0.40	0.00	0.0	4	10.00	5	12.50	0	
18.90	20.40	1.50	41.00	****	23	15.33	22	14.67	Ü	
20.40		1.10	24.00	****	14	12.73	2	4.55	Ü	
21.50		0.20	0.00	0.0	4	20.00	2	10.00	U	
29.70 31.70	30.40 33.30	0.70 1.60	0.00 0.00	0.0	7/	8.57	1	1.43 1.25	0	
33.30	34.20	0.90	0.00	0.0 0.0	34 29	21.25 32.22	1	1.11	0	
34.20	34.70	0.50	0.00	0.0	27	18.00	1	2.00	0	
43.50		0.40	0.00	0.0	12	30.00	15	37.50	ň	
56.60	56.90	0.30	0.00	0.0	8	26.67	.0	0.00	ñ	
72.00	72.20	0.20	0.00	0.0	5	25.00	ĭ	5.00	Õ	
72.70		0.60	0.00	0.0	17	28.33	12	20.00	ō	
102.40		1.20	0.00	0.0	30	25.00	11	9.17	Ó	
103.60		1.30	0.00	0.0	53	40.77	12	9.23	Ó	
111.90		1.00	0.00	0.0	19	19.00	17	17.00	0	
117.40		1.50	0.00	0.0	23	15.33	12	8.00	0	
132.30	133.80	1.50	17.00	****	52	34.67	3	2.00	0	

HOLE NUMBER: WF-92-15

PLOTTING COORDS GRID: I.P. GRID

PROJECT NAME: WOLF92 PROJECT NUMBER: 673

NORTH: 97900.00N

ALTERNATE COORDS GRID: 1.P.GRID NORTH: 979+ ON

COLLAR DIP: -60° 0' 0"

METRIC UNITS: X

CLAIM NUMBER:

EAST: 35200.00E

EAST: 352+ 0E

LENGTH OF THE HOLE: 124.40m

ELEV: 1181.00

ELEV: 1181.00

START DEPTH: 0.00m

LOCATION: CHOPPER PAD ZONE

COLLAR GRID AZIMUTH: 90° 0' 0"

COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

FINAL DEPTH: 124.40m

DATE STARTED: August 31, 1992

COLLAR SURVEY: NO MULTISHOT SURVEY: NO

PULSE EM SURVEY: NO PLUGGED: NO CONTRACTOR: ATLAS DRILLING LTD CASING: REAMED TO 1.5m

IMPERIAL UNITS:

DATE COMPLETED: September 1, 1992

DATE LOGGED: September 1, 1992

RQD LOG: YES

HOLE SIZE: NO

CORE STORAGE: CAMP

PURPOSE: Test coincident Ip and resistivity anomaly.

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
3.10	-	-60° 0'	ACID	OK		-			_		
75.00	•	-58° 0'	ACID	OK		-	-	_	_		
122.50	•	-60° 0'	ACID	OK		-	-	-	-		
•	-	•	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-		
-	•	-	-	•	İ	-	-	-	-	-	
•	-	-	-	•		-	-	-	-	-	
-	•	-	•	-	i	•	•	-	-	-	
-	-	-	•	-		-	-	-	-	-	
•	•	•	-	-		-		-		-	
-	-	-	-	-		-	-	-	-	•	
-	-	•	-	-		-	-	-	-	-	
•	-	-	-	-	İ	-	-	-	-	-	
_	•	-	-	-		-	-	-	-	-	
		-	-	•		-	-	-	-	-	
_	_		-	-		•	-	-	-	-	
	-	_	_	-		-	-	-	-	-	
_	_	_	_	-		-	-	-	•	-	
		_	-	-		-	•	-	•	-	
-	-	-	_		ſ	-	-	-	-	-	
-	-	-	-			-	-	-	-	•	
-	-	_	•	_	i	-	•	-	-	-	
-	-	-		_		-	-	-	-	-	
•		_	-	-	İ	_	_	-	-	•	
-		-		-		-	-	-	•	-	
•		-	-	-	1	_	-	-	_	-	
-	-	-	-	-		_		-	-	-	
					I				_	-	

HOLE NUMBER: WF-92-15

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 1.50	«CASING»					
	«LAPILLI TUFF»	Colour: grey green Grain Size: var. Strongly altered comprised of abundant variable size rounded to subrounded rhyolite lapillis. These appear to be primarily qtz-eye rhyolite intrusion and spherulitic tuffaceous lapilli. Common brecciated veins are seen with vuggy ?? quartz ?? cavities. Much of the interstitial material in these breccia is black silica the colour being imparted by the presence of v.f.gr. pyrite. Some selvages on thse black veins are visibly coarse pyritic. Weak banding a «s-stockwork, vn bx»	58	The interval is strongly to intensely silicified throughout as pervasive and ash stockwork silicification and veins Small intervals of limonitic alter'n are seen throughout.	Pyritic occurs as v.f.gr. within areas of stockwork silicification and veining «tr-3% py»	Possible spherulitic tuff - spherules to several cm
		1.5-2.4 - s-stockwork	60	- s-i sil 2.4-3.1 - w-m sil, s-lim	- 2% v.f.gr. py	
i		3.1-5.9 - occasional black silica veinlets cut interval		- m-sil	- tr py	
		5.9-7.1 - jigsaw brecciated black silica veinlets, minor open cavities		- s-sil, s-lim 7.1-7.8 - m-s sil, w-chl	- 2-3% v.f.gr. py	
		7.8-9.9 - s-stockwork, black and white silicification banded locally		- s-i sil	- tr-1% v.f.gr. py with stockwork veinlets as selvages	
		9.9-10.0 - vn bx -brecciated fragments in weak bladed silica veins	42	- x-sil		
		10.0-13.0 - s-stockwork - occasional cm scale veins, weakly bladed		-s-i sil, w-chl 13.0-13.9	- 2-3% v.f.gr. py	

HOLE NUMBER: WF-92-15

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		Bottom contact		- s-lim, m-sil		
13.90 TO 16.00	«RY TUFF BX	Colour: grey to black Grain Size: var. Variably sized angular to subrounded fragments of tuffaceous material in a black, f.gr. pyritic matrix. Poorly sorted		«m-sil»	«2-3% v.f.gr. py»	
16.00 TO 27.40	«SPHERULITI C RHYOLITE»	Colour: grey green Grain Size: var. As for interval 1.5-13.9 Fragments of variable size in grey green tuffaceous matrix. Spherules up to 1-2 cm showing good radiative textures Small interbeds of tuff breccia and crystal tuff, locally banded		∮ 16.0-21.4∳ «w-s sil»	∮16.0-21.4} «tr-3% py»	
	,			16.0-17.3 -w-sil, m-chl		
		17.3-18.1 -tuff bx		-m·s sil	-1-2% v.f.gr. py	
		18.1-19.2 «m-stockwork»	l i	«m-sil»	«tr-1% py»	
	5			19.2-19.9 s-arg 19.9-20.6 s-sil 20.6-21.4 m-s sil	-2-3% py	
		21.4-23.4 xtal tuff 23.4-24.0 tuff bx				
				«m-s sil»	«2-3% v.f.gr. py»	
				25.2-26.6 «m-sil» 26.6-27.4 «m-arg»		
		Bottom Contact	60			
27.40 TO 39.10	«SPHER RHYL »	Colour: green Grain Size: f.gr. 1-2% subhedral to rounded qtz crystals (<2 mm) in wispy, weakly banded chloritized groundmass. Could possibly be rhyodacite flow however some lapilli are noted locally				

LOGGED BY: CJC

HOLE NUMBER: WF-92-15

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		Minor black pyritic veinlets 34.1-35.1 «w-stockwork» 36.2-36.8 Bx 36.9-37.3 -flt gouge		- s-lim, s-sil	- 2-3% py	
		37.3-37.6 -black matrix bx			- 3-5% py	
					«tr-1% py»	
39.10 TO 52.60	«RHYOLITE BRECCIA»	Colour: green to black Grain Size: var. Fragments of grey green tuff in f.gr. black silicified matrix. Core is cut in areas by white and black silica veining. Silicification increases down hole		- s-sil 	- «2-3% v.f.gr. py»	
		45.9-46.0 - hydrothermal bx vein a 48.5 - bedding a 50.8-51.0 - banded qtz a - alternating brown black and white v.f.gr. bands several hundred bands	74 12 40			
52.60 TO 59.20	«FB RHYOLIT E»	Colour: grey green Grain Size: f.gr. Flow banded rhyolite. Very glassy groundmass with cream coloured and green bands. Some flattened pumice fragments seen. Less than 5% qtz crystals. Occasional accidental fragments.		«s-chl, w-ser»		
59.20 TO 81.90	«VITROPHYRI C RHYOLITE»	Colour: grey green Grain Size: v.f.gr. 1-2% rounded 2 mm qtz crystals, 2-3% rounded lithic fragments in f.gr. fsp rich vitric ground mass. No bedding observed - massive unit.		«s-chl, m-sil»		

HOLE NUMBER: WF-92-15

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		Narrow zones of qtz stockworking.				
		From 65.0 onward matrix is tuffaceous with weak welding textures a	40			
		68.1-68.2 -black banded silicification and white breccia vein				
				72.4-72.7 - x-lim		
	i	72.7-73.2 - w-stockwork, some black banded vein, minor bladed veins	44	- s-arg, pyroph?, greenish soft waxy mineral		
				«w-m sil»	«1-2% py»	
	•	¶74.6-75.8⊮ «stkwrk sil pyroph»		«perv. pyroph»		From 75.8 onward the unit becomes sandier and small interbeds of sandy silty argillaceous material become more frequent
81.90 TO 109.00	«LAPILLI TU FF»	Colour: black to grey Grain Size: var. Overlying unit grades into this one. This is a conglomerate unit, poorly sorted consisting of subrounded to subangular assorted fragments in a black, f. to v.f.gr. matrix. The unit is matrix supported though the degreee of support varies widely throughout. Occasional small clast supported interval are noted. Fragments range from welded tuffs to black bedded argillite to rhyolite and rhyodacitic fragments. Some fragments are completely clay altered. Others are chloritically altered and others are silicified. Weakly defined bedding â At around 102 m granitic clasts identical to those seen in basal conglomerate units in other holes are seen. Stockwork fracturing and silicification and breccia veining occur throughout varying in intensity from weak to intense. Some banded silicification is seen. Stockwork pysophyllite veins are seen as well	26			

HOLE NUMBER: WF-92-15

HOLE NUMBER: WF-92-15

ANGLE FROM ROCK TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS TO TYPE |82.7-97.8| «w-x stockwork» 82.7-84.2 w-stockwork «w-x sil» «up to 2% v.f.gr. py» - w-m sil, pyroph - m-sil 87.2 w-stockwork 88.7 bladed, white sil veinlets 88.7-90.4 s-stockwork - m-s sil 60 -lower contact @ 90.4-91.1 - s-i sil - 2% v.f.gr. py -clast supported conglomerate, s-i stockwork 91.1-91.5 w-stockwork - lower contact a 64 91.5-91.8 - clast supported, s-i stockwork - s-i sil - 2% v.f.gr. py 91.8-92.1 - i-x sil - 2-55 v.f.gr. py - i-x stockwork 92.1-93.6 - m-s stockwork - m-s sil 93.6-94.9 - w-stockwork - s-stockwork bx 95.3-97.8 - w-stockwork After 97.8 stockworking drops off dramatically to virtually now. This is accompanied by a change in matrix material from v.f.gr. silty matrix to f.gr. sandy matrix. Bottom contact unclear if stratigraphic or fault 109.00 «FLOW BANDE Colour: grey D SPHER RHY TO Grain Size; f.gr. 124.40 <m-lim, s-arg, poss. rhrodocrosite»</pre> L» Well defined bedding by microspherulitic textures. «tr py» Less than 1% rounded 1 mm qtz crystals in f.gr. -soft pink clay mineral -occurs as very f.gr. black veinlets matrix. Occasinal black matrix tuff breccia are seen.

LOGGED BY: CJC

HOLE NUMBER: WF-92-15

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		109.0-109.5 -bedding @	18	- s-lim		
		110.0-110.3 -tuff bx				
	E.O.H.				}	

ASSAY SHEET

				ASSAYS					GE	OCHEMIC	AL					COMMENTS
Sample	From (m)	To (m)	Length (用)	Ag ppm	As ppm	Ва ррт	Cu ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s %	Aug/t g/t	
38877 38878 38879 38880 38881	1.60 2.20 2.40 3.10 4.70	2.20 2.40 3.10 4.70 5.90	0.60 0.20 0.70 1.60 1.20	2.1 8.2 1.6 1.3	152 113 39 33 29	23 18 12 10 6	41 30 12 6 5	0.92 0.71 0.81 0.6 0.6	17 27 14 25 36	1 3 1 1	29 54 34 40 90	40 117 31 90 42	70 60 35 40 45	0.1 0.32 0.03 0.15 0.16		
38882 38883 38884 38885 38886	5.90 7.10 7.80 9.00 9.40	7.10 7.80 9.00 9.40 10.00	1.20 0.70 1.20 0.40 0.60	1.3 1.5 1.5 1.1 9.8	52 51 50 43 51	13 7 10 9 6	6 6 6 6	0.93 0.69 0.78 0.69 0.65	22 29 23 20 25	1 1 1 1 2	53 61 77 95 82	125 73 74 48 392	40 40 45 65 50	0.1 0.4 0.5 0.33 0.52		
38887 38888 38889 38890 38891	10.00 10.70 11.60 12.40 13.00	10.70 11.60 12.40 13.00 13.90	0.70 0.90 0.80 0.60 0.90	7.2 3.4 4.2 2.6 1.1	83 45 56 55 20	11 6 7 13 17	6 5 5 8 4	0.95 0.55 0.62 0.74 1.09	31 48 36 19 17	1 3 3 2 1	89 152 83 61 71	156 125 54 46 158	50 45 55 35 35	0.67 0.21 0.34 0.29 0.04		
38892 38893 38894 38895 38896	13.90 14.90 16.00 17.30 18.10	14.90 16.00 17.30 18.10 19.20	1.00 1.10 1.30 0.80 1.10	2.7 9.7 1.3 5.2 1.6	32 70 24 42 22	9 19 6 32 7	5 5 6 6	0.48 0.82 0.43 2.83 0.53	37 31 24 67 40	1 2 1 1	77 67 105 100 94	95 80 165 991 97	60 55 40 70 50	0.34 0.35 0.17 0.11 0.09	0.87	
38897 38898 38899 38900 38901	19.20 19.90 20.60 21.40 22.40	19.90 20.60 21.40 22.40 23.40	0.70 0.70 0.80 1.00	1.1 1.9 1.1 1.2 0.4	22 48 26 16 25	11 22 8 6 11	4 9 9 6 5	0.66 0.71 0.59 0.45 0.58	19 45 25 31 24	1 2 1 1	111 96 60 125 100	369 92 109 108 142	65 55 45 35 55	0.01 0.15 0.07 0.16 0.25		
38902 38903 38904 38905 38906	23.40 24.90 25.20 26.60 27.40	24.90 25.20 26.60 27.40 28.90	1.50 0.30 1.40 0.80 1.50	1 3.9 1.7 0.6 0.5	28 40 34 29 56	6 7 8 8	6 6 4 4	0.54 0.45 0.45 0.55 0.75	25 85 69 27 17	1 5 2 1 1	100 94 135 96 83	114 404 230 66 60	60 30 50 40 60	0.19 0.2 0.16 0.29 0.31		
38907 38908 38909 38910 38911	34.10 36.20 36.90 37.30 37.60	35.10 36.90 37.30 37.60 39.10	1.00 0.70 0.40 0.30 1.50	0.4 0.7 2.4 0.6 0.6	18 19 299 19 27	4 5 56 4 5	4 33 5 5	0.53 0.56 14.27 0.44 0.72	18 13 29 33 23	1 1 1 1	116 53 633 83 132	41 14 430 14 25	55 55 210 50 40	0.08 0.01 0.01 0.06 0.14		
38912 38913 38914	39.10 40.60 42.10	40.60 42.10 43.60	1.50 1.50 1.50	0.7 1.2 1.2	22 28 37	5 4 4	4 4 4	0.94 0.69 0.71	16 20 24	1 1 1	115 103 129	27 35 40	40 45 30	0.07 0.07 0.21		

HOLE	NUMBER:	WF-92-	15
------	---------	--------	----

HOLE NUMBER: WF-92-15 ASSAY SHEET										DATE: 14-October-1993						
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Çu	Fe %	Pb ppm	Sb	Zn ppm	Au	Hg ppb	\$ %	Aug/t g/t	
8915 8916	43.60 45.10	45.10 45.90	1.50 0.80	2.1 3.6	36 26	4 5	5 6	0.74 0.62	22 25	1 2	134 97	33 42	35 40	0.18 0.16		
58917 58918 58919 58920 58921	45.90 46.00 47.50 49.00 50.50	46.00 47.50 49.00 50.50 50.80	0.10 1.50 1.50 1.50 0.30	11.4 7.9 3.1 1.2 0.3	31 37 29 35 19	5 13 9 11 14	7 7 5 6 4	0.62 0.87 0.57 0.74 1.07	20 17 21 19 6	3 4 1 1	69 74 95 65 32	22 44 38 55 16	60 45 35 40 30	0.4 0.32 0.18 0.17 0.01		
8922 8923 8924 8925 8926	50.80 51.00 63.20 68.10 72.40	51.00 52.60 64.20 68.30 72.70	0.20 1.60 1.00 0.20 0.30	4.8 2.1 1.1 0.7 4.5	30 29 43 38 11	23 4 8 9 8	10 6 4 6 6	1.64 0.59 0.43 0.68 7.46	11 17 21 19 11	1 1 1 1	47 106 98 110 186	21 18 75 178 207	20 40 45 3 5 10	0.13 0.11 0.19 0.19 0.09		
8927 8928 8929 8930 8931	72.70 73.20 74.60 75.80 82.70	73.20 74.60 75.80 77.00 84.20	0.50 1.40 1.20 1.20 1.50	9.9 4.9 2.5 1.2 5	72 38 43 40 20	7 8 6 5 14	6 5 4 4 10	0.67 0.4 0.42 0.38 0.76	28 36 19 19 22	1 1 1 1	116 104 125 126 150	719 109 239 380 12	55 35 40 50 55	0.29 0.16 0.21 0.18 0.07	0.7	
8932 8933 8934 8935 8936	87.20 88.70 89.70 90.40 91.10	88.70 89.70 90.40 91.10 91.50	1.50 1.00 0.70 0.70 0.40	0.8 0.3 0.7 1.5 3.2	5 1 12 25 27	14 17 12 11	15 13 9 8 12	1.14 1.12 0.55 0.39 0.45	27 27 18 12 28	1 1 1 1	171 178 119 111 147	14 9 17 34 45	85 65 60 35 25	0.04 0.02 0.05 0.09 0.22		
8937 8938 8939 8940 8941	91.50 91.80 92.10 93.60 94.90	91.80 92.10 93.60 94.90 95.30	0.30 0.30 1.50 1.30 0.40	3.6 2.5 3.2 1.1 1.7	27 36 39 5 23	9 9 18 17 13	11 8 9 12 26	0.37 0.39 1.06 1.01 0.98	26 15 17 25 21	1 1 1 1	91 80 110 156 147	49 50 52 20 55	55 25 45 50 30	0.21 0.16 0.17 0.08 0.13		
8942 8943 8944 8945 8946	95.30 96.80 97.80 109.00 109.50	96.80 97.80 99.30 109.50 110.30	1.50 1.00 1.50 0.50 0.80	1.3 0.8 0.2 4.9 5.4	14 17 1 38 37	13 13 13 13 8	10 8 13 8 7	0.84 0.83 1 2.04 1.7	21 19 22 7 14	1 1 1 1	148 136 169 52 57	59 53 61 17 18	45 35 25 45 40	0.07 0.08 0.06 0.03 0.15	Apr. 19	
8947 8948 8949	110.30 111.70 122.90	111.90	1.40 0.20 1.50	8.3 22.6 0.8	44 61 14	11 8 8	6 63 6	1.09 0.82 0.26	17 20 9	1 1 1	34 20 18	24 39 4	70 40 60	0.03 0.43 0.01		

HOLE.	NUMBER:	WF-92-1	5

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length S>= 0.00cm	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
1.60	2.20	0.60	0.00	0.0	17	28.33	4	6.67	0	
2.20	2.40	0.20	20.00	****	32	160.00	30	150.00	0	
2.40	3.10	0.70	52.00	****	11	15.71	33	47.14	0	
3.10	4.70	1.60	76.00	****	17	10.63	47	29.38	0	
4.70	5.90	1.20	77.00	****	18	15.00	62	51.67	0	
5.90	7.10	1.20	74.00	****	10	8.33	44	36.67	0	
7.10	7.80	0.70	70.00	****	5	7.14	29	41.43	0	
7.80	9.00	1.20	120.00	****	7	5.83	28	23.33	0	
9.00	9.40	0.40	24.00	****	3	7.50	12	30.00	0	
9.40	10.00	0.60	44.00	****	4	6.67	32	53.33	0	
10.00 10.70	10.70 11.60	0.70	70.00	****	3	4.29	18	25.71	0	
11.60	12.40	0.90 0.80	80.00 70.00	****	4	4.44 5.00	27 13	30.00 16.25	0	
12.40	13.00	0.60	50.00	****	3	5.00	25	41.67	0	
13.00	13.90	0.90	65.00	****	6	6.67	23	25.56	0	
13.90	14.90	1.00	94.00	****	9	9.00	62	62.00	Õ	
14.90	16.00	1.10	79.00	****	10	9.09	17	15.45	ŏ	
16.00	17.30	1.30	113.00	****	Š	6.92	12	9.23	Õ	
17.30	18.10	0.80	48.00	****	10	12.50	8	10.00	ō	
18.10	19.20	1.10	96.00	****	5	4.55	23	20.91	0	
19.20	19.90	0.70	23.00	****	10	14.29	45	64.29	Ö	
19.90	20.60	0.70	0.00	0.0	17	24.29	28	40.00	0	
20.60	21.40	0.80	0.00	0.0	15	18.75	29	36.25	0	
21.40	22.40	1.00	23.00	****	12	12.00	17	17.00	0	
22.40	23.40	1.00	80.00	****	11	11.00	11	11.00	0	
23.40	24.90	1.50	89.00	****	12	8.00	38	25.33	0	
24.90	25.20	0.30	25.00	****	7	23.33	27	90.00	0	
25.20	26.60	1.40	81.00	****	19	13.57	32	22.86	0	
26.60	27.40 28.90	0.80	57.00	****	5	6.25	12	15.00	0	
27.40 34.10	35.10	1.50 1.00	124.00 63.00	****	11 9	7.33 9.00	31 8	20.67 8.00	0 0	
36.20	36.90	0.70	46.00	****	5	7.14	9	12.86	0	
37 .3 0	37.60	0.30	30.00	****	2	6.67	22	73.33	0	
37.60	39.10	1.50	127.00	****	15	10.00	42	28.00	0	
39.10	40.60	1.50	102.00	****	17	11.33	12	8.00	Ö	
40.60	42.10	1.50	139.00	****	18	12.00	24	16.00	0	
42.10	43.60	1.50	114.00	****	14	9.33	23	15.33	ŏ	
43.60	45.10	1.50	128.00	****	10	6.67	21	14.00	ŏ	
45.10	45.90	0.80	53.00	****	15	18.75	8	10.00	Ö	
45.90	46.00	0.10	10.00	****	0	0.00	2	20.00	Ö	
46.00	47.50	1.50	35.00	****	22	14.67	11	7.33	0	
47.50	49.00	1.50	100.00	****	18	12.00	8	5.33	0	
49.00	50.50	1.50	52.00	****	16	10.67	17	11.33	0	
50.50	50.80	0.30	13.00	****	3	10.00	1	3.33	0	

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	ROD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
			S>= 0.00cm					1100100		
50.80	51.00	0.20	0.00	0.0	3	15.00	2	10.00	0	
51.00	52.60	1.60	115.00	****	9	5.63	20	12.50	0	
63.20	64.20	1.00	64.00	****	14	14.00	11	11.00	0	
68.10	68.30	0.20	0.00	0.0	2	10.00	2	10.00	0	
72.40	72.70	0.30	0.00	0.0	3	10.00	0	0.00	0	
72.70	73.20	0.50	50.00	****	3	6.00	11	22.00	0	
73.20	74.60	1.40	129.00	****	10	7.14	8	5.71	0	
74.60	75.80	1.20	88.00	****	7	5.83	24	20.00	0	
75.80	77.00	1.20	84.00	****	9	7.50	43	35.83	0	
82.70	84.20	1.50	109.00	****	14	9.33	37	24.67	0	
87.20	88.70	1.50	131.00	****	9	6.00	22	14.67	0	
88.70	89.70	1.00	79.00	****	13	13.00	15	15.00	0	
89.70	90.40	0.70	34.00	****	5	7.14	22	31.43	0	
90.40	91.10	0.70	45.00	****	3	4.29	2	2.86	0	
91.10	91.50	0.40	40.00	****	7	2.50	13	32.50	0	
91.50	91.80	0.30	22.00	****	1	3.33	8	26.67	0	
91.80	92.10	0.30	21.00	****	4	13.33	19	63.33	0	
92.10	93.60	1.50	99.00	****	15	10.00	52	34.67	0	
93.60	94.90	1.30	98.00	****	11	8.46	42	32.31	0	
94.90	95.30	0.40	36.00	****	6	15.00	32	80.00	Ü	
95.30	96.80	1.50	57.00	****	15	10.00	34	22.67	Ü	
96.80	97.80	1.00	22.00	****	13	13.00	23	23.00	Ü	
97.80 109.00	99.30 109.50	1.50 0.50	101.00 26.00	****	12	8.00	22	14.67	U	
109.00		0.80	51.00	****	10	20.00	14	14.00	0	
110.30		1,40	79.00	****	6	7.50	16 10	20.00	0	
111.70		0.20	10.00	****	12 7	8.57	19 26	13.57	Ü	
122.90		1.50	49.00	****		35.00	12	130.00	0	
122.90	124.40	1.50	47.00		19	12.67	12	8.00	U	

MINNOVA INC.
DRILL HOLE RECORD IMPERIAL UNITS: METRIC UNITS: X

PROJECT NAME: WOLF92 PLOTTING COORDS GRID: I.P. GRID ALTERNATE COORDS GRID: I.P.GRID COLLAR DIP: -45° 0' 0" PROJECT NUMBER: 673 NORTH: 97700.00N NORTH: 977+ ON LENGTH OF THE HOLE: 125.00m CLAIM NUMBER: EAST: 35300.00E EAST: 353+ OE START DEPTH: 0.00m LOCATION: BLACK FLY ZONE ELEV: 1183.00 ELEV: 1183.00 FINAL DEPTH: 125.00m

COLLAR GRID AZIMUTH: 90° 0' 0" COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

DATE STARTED: September 1, 1992 COLLAR SURVEY: NO PULSE EM SURVEY: NO CONTRACTOR: ATLAS DRILLING LTD

DATE COMPLETED: September 4, 1992 MULTISHOT SURVEY: NO PLUGGED: NO CASING: REAMED TO 2.7m

DATE LOGGED: September 4, 1992 RQD LOG: YES HOLE SIZE: NG CORE STORAGE: CAMP

DIRECTIONAL DATA:

PURPOSE:

HOLE NUMBER: WF-92-16

epth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
27.40	-	-47° 0'	ACID	OK		-				-	
64.30	-	-46° 0'	ACID	OK			-	-	-		
125.00	•	-45° 0'	ACID	OK		-	-	-	-		
-	-	-	-			-	•	-	-	-	
-	-	-	-			-	•	-	-	-	
-	-	-	•	-		-	-	-	-		
-	-	-	-	-		-	-	-	-	-	
-	-		-	-			•	-	-	-	
-	-	-	-	-		•	•	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	•	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	•	
-	-	-	-	•			-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	•	-	-		-	-	-	-	-	
-	-	-	-	-			-	-	-	•	
-	-	•	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	•	-	-	-		1 -	-	-	•	-	
-	•	•	-	•			-	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	•	-	-	-			-	-	-	-	
-	•	-	-	-		1 -	-	-	-	-	

ANGLE

HOLE NUMBER: WF-92-16

ROCK

FROM

TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION TO REMARKS 0.00 «CASING» ŤΟ 2.70 2.70 «RUBBLE» TO 3.30 3.30 «QFP RHYL» Colour: grey-orange Grain Size: f.gr. 12.40 Consists of 2-3%, 1-2 mm rounded to euhedral qtz Limonitic and hematite staining are Presence of limonitic and hematite grains, 1-2% rounded fsp in poorly bedded grey to abundant throughout suggest pyrite present orange vitric matrix. Could possibly be QF «s-i lim, m-s hem, m-arg» «up to 3% pyrite» rhyolite intrusion. Weak preferred orientation of minerals is seen. Matrix is sandy textured Occasional qtz veinlets cut interval. Possible pyrophyllite veinlets. Soft cream coloured veinlets 8.2-9.1 «-weak pyritic stockwork» -2-3% py 11.7-12.4 «s-stockwork» - s-sil Bottom contact a 78 12.40 «FLOW BANDE Colour: grey, maroon, orange TO D RHYL» Grain Size: f.gr. 17.80 Minor rounded qtz fsp crystals in f.gr. banded «s-lim, hem, m-sil» matrix. Banding is convoluted, contorted and looks micro-spherulitic locally similar to flow banded rhyolite seen elsewhere and may be, however lamination do not appear continuous a 24 12.4-13.4 km-s stockwork» «m-s sil, m-lim» -minor banded, brecciated veins, generally white quartz «tr-3% py» 14.3-14.7 s-i sil - pervasive silification of matrix - tr py

14.7-15.3 - s-i stockwork

- s-sil 15.3-16.7

HOLE NUMBER: WF-92-16

FROM ROCK ANGLE TO TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS - s-i sil - 2-3% py 16.7-17.8 - m-s sil 17.80 «RHYL/RYBX» Colour: Grain size: TO 50.10 See descrip 3.3-12.4. Strongly limonitic hematitic «s-lim, hem» with minor qtz veinlets -minor pyrophyllite veinlets |20.5-21.3| - w-sil, s-lim «w-m stockwork» 29.7-29.9 -pyroph bx 29.9-30.7 -i-lim, i-hem 429.7-50.1 ww-s stkwrk, bladed veins» «w-i sil, loc lim, hem» 30.7-30.9 bladed qtz bx 50 - i-sil - pyritic selvages, 1-2% py 30.9-32.0 s-sil, s-lim 32.0-32.3 w stockwork - m sil, s-hem - i-lim, w-sil 34.0-34.3 w-stockwork 36.0-36.5 banded qtz veins 37.3-37.8 sil stockwork, bladed white veins over-- m-sil, m-arg printed by silica 37.8-41.6 - s-lim 41.6-43.1 w-stockwork 40 43.1-43.2 qtz vein 43.2-43.6 w-m stockwork - m-sil, s-lim 43.6-44.0 m-s stockwork - m-s sil, s-lim 44.0-45.4 w-stockwork - w-sil, s-lim 45.4-46.2 s-stockwork, minor bx - m-s sil, hem veinlets 46.2-47.7 m-s stockwork - m-sil, s-lim 48.6-50.1 m-stockwork - m-sil, s-lim 50.10 «FLOW BANDE Colour: maroon, orange TO D RHYL» Grain Size: f.gr., m.gr. 76.30 Intense to extreme limonite staining giving «w-sil, i-lim» spotted leopard skin look to core. Strong flow Mn02 staining along fractures banding textures seen preserved locally (contorted convoluted bands). Similar to f banded rhyolites described previously, but more continuous lamination. Banding subparallel to core axis

HOLE NUMBER: WF-92-16

ANGLE FROM ROCK ALTERATION TO TYPE TEXTURE AND STRUCTURE TO CA MINERALIZATION REMARKS 455.2-66.3 ww-m stockwork» «i-lim, w-m sil» 55.2-56.7 i-lim, w-sil 61.3-61.9 w-m stockwork - i-lim. m-sil 63.3-64.8 m-stockwork - i-lim, m-sil 64.8-66.3 m-stockwork - i-lim, m-sil «m-sil, lim» 466.3-71.91 «m-s stockwork» 66.3-67.8 w-stockwork - i-lim, w-sil 69.2-69.9 s-stockwork - m-s sil - silica is massive white cryptocrystalline 69.9-70.2 - s-i lim 70.2-71.9 m-s stockwork 70.2-71.9 m-sil. m-lim 72.3-74.0 -core is strongly broken 76.30 «STONY RHYL Colour: maroon grey Grain Size: f.gr.
Consists of 1-2%, 1-2 mm euhedral to anhedral TO 87.80 qtz grain in f.gr. tuffaceous matrix. Occasional accidental to 1 cm are seen. The core is cut by a number of jigsaw breccias, cryptocrystalline gtz vein and pyrophyllite veinlets 477.7-82.8 «jigsaw stockwork» «w-i sil, s-lim, w-hem» 77.7-78.5 jigsaw bx - m-sil, w-pyroph, s-lim unrotated fragments in siliceous matrix 79.1-79.4 jigsaw bx - w-sil, s-lim 79.4-79.8 vein bx - i-sil, w-hem 79.8-82.8 i-lim -Fe oxide staining disappears almost entirely 87.80 «ASH TUFF» Colour: grey 95.00 TO Grain Size: f.gr. 103.00 The first 50 cm of interval contains interbeds ≪m-s chl» of black chloritic argillaceous sediments. Contact is faulted a 58 [87.8-87.85] «Fault» The interval consists of f.gr. grey ??? tuffaceous

DATE: 14-October-1993

sandstone. The occasional cm scale lithic frag-

HOLE NUMBER: WF-92-16

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERAL 12ATION	REMARKS
		ment is seen. The matrix is quartz-rich from 87.8-94.6				
		94.6-94.8 «flt bx» 95.1-95.3 «flt gouge» 95.3-96.1 «xtal lithic tuff»	60	«s-chl»	1	
		Bottom contact is stratigraphic subparallel to core axis				
95.00 TO 125.00	«FLOW BANDE D RHYL/RYBX »	Colour: Grain Size: Rhyodacitic in composition, relatively unaltered well banded. Consists of anhedral qtz crystals and occasional lithic fragments in a chloritic tuffaceous matrix, having a spotted texture in areas.	28	<pre>«m-chl» A soft, waxy, creamy green mineral forms occasional veinlets, possibly pyrophyllite</pre>		
	•	The texture is similar to textures seen in the strongly oxidized intervals up hole. The unit is spherulitic locally				
				«w-hem, w-sl» «w-m sil, s-lim»	«н-ру stockwork» «tr pyrol/psilo»	
	E.O.H.					

ASSAY SHEET

Sample	From	То	Length	ASSAYS Ag	As	Ba	Cu	Fe	Pb	OCHEM1C	Zn	Au	Hg	s	Aug/t		COMMENTS
	(m)	(m)	(m)	ppm	ppm	ppm	рþm	%	ppm	ppm	Ьbш		ppb	%	g/t		
38950 38951	8.20 9.10	9.10 11.70	0.90 2.60	0.6	62 48	14 13	4	0.45 0.56	15 7	1	13 14	71 87	100 40	0.01 0.02			
38952 38953	11.70 12.40	12.40 13.40	0.70 1.00	0.7 1.9	37 81	27 21	3 3	0.41 0.57	13 6	1	13 13	63 46	3 5 65	0.01 0.01			
38954	14.30	14.70	0.40	2.7	57	12	3	0.6	10	1	17	170	45	0.31			
38955 38956	14.70 15.30	15.30 16.70	0.60 1.40	1.7 1.8	78 64	24 11	4 3	0.58 0.69	10 21	1 1	15 31	104 92	50 105	0.08			
38957 38958	16.70 20.50	17.80 21.30	1.10	3.6 5.2	102 132	10 18	5	0.71	27 21	1	21 15	155 333	75 180	0.24			
38959	29.70	29.90	0.20	0.4	79	4	2	1.89	1	i	47	202	25	0.01			
38960	29.90	30.70	0.80	0.7	121	7	2	1.04	21	1	14	134 357	45	0.01		1	
38961 38962	30.70 30.90	30.90 32.00	0.20 1.10	6.1 1.6	137 47	23 6	4 3	0.62	57 10	1	10 16	177	75 40	0.03		1	
38963 38964	32.00 34.00	32.30 34.50	0.30 0.50	1.1 0.4	105 60	11 7	2 2	0.87 0.56	22 29	1	11 9	157 202	50 40	0.03 0.01			
8965	36.00	36.50	0.50	0.7	21	5	1	0.29	3	1	9	91	55	0.01			
38966 38967	37. 3 0 41.60	37.80 43.20	0.50 1.60	0.8 0.9	56 78	6 4	2 2	0.63 1.08	1 4	1	13 22	260 456	40 45	0.01			
38968 38969	43.20 43.60	43.60 44.00	0.40 0.40	0.6 1.1	124 137	6 31	2 2	0.98 1.37	11 17	1 4	19 26	139 84	25 45	0.01			
8970	44.00	45.40	1.40	1.2	119	17	1	0.76	5	1	17	125	20	0.01 [
8971 8972	45.40 46.20	46.20 47.70	0.80 1.50	3.3 2	109 99	12 11	1	0.68	20 13	1	16 18	69 179	55 50	0.01			
8973 8974	49.60	50.10	0.50	1	45	9	5	0.54	4	i 1	27 33	207 73	50	0.01			
	55.20	56.70	1.50	1.5	36	26	4	0.57	14				45	0.01			
8975 8976	61.30 63.30	61.90 64.80	0.60 1.50	1.1 0.9	68 62	15 14	4	0.64 0.71	17 9	1	27 29	74 129	50 40	0.01			
8977 8978	64.80 66.30	66.30 67.80	1.50 1.50	1.2 0.8	67 60	17 13	7 4	0.8 0.74	6 5	1	32 36	144 139	65 75	0.01			
8979	69.20	69.90	0.70	1.2	92	18	4	0.86	7	1	34	341	85	0.01		i i	
8980 8981	69.90 70.20	70.20 71.90	0.30 1.70	0.7 0.9	59 71	10 12	3 4	0.78 0.86	1 8	1 1	37 35	97 413	40 55	0.01			
8982 8983	77.70	78.50	0.80	0.5	38	25	4	0.52	1	. 1	20	217	35	0.01			
8984	79.10 79.40	79.40 79.80	0.30 0.40	1.8 1.5	3 7 8 5	17 25	4	0.61 0.84	5 11	1	21 24	112 96	165 55	0.01	ĺ	ĺ	
8985	79.80	81.30	1.50	1.1	46	19	4	0.78	3	1	24	39	95	0.01	l	1	
8986 8987	81.30 82.80	82.80 84.30	1.50 1.50	1.8	118 81	17 7	5 4	2.66 0.78	10 12	1 1	60 28	99 70	650 120	0.01			

ASSAY SHEET

Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ва ррп	Cu ppm	Fe %	Pb Ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	\$ %	Aug/t g/t
38988 38989	120.10 121.70		1.60 0.50	1.2 1.4	143 173	5 4	4	0.73 0.64	13 12	1	65 76	47 22	45 3 5	0.41	
38990 38991	122.20 123.70		1.50 1.30	1.5 0.5	126 57	7 8	4	0.99 0.68	10 9	1	51 45	58 92		0.02 0.01	

RQD ASSAY

From (m)	n To (m)	Length (L)	Sum Of Length S>= 0.00cm	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
8.20	9.10	0.90	24.00	****	21	23.33	28	31.11	0	
9.10	11.70	2.60	110.00	****	33	12.69	54	20.77	0	
11.70		0.70	11.00	****	15	21.43	19	27.14	0	
12.40	13.40	1.00	97.00 40.00	****	5	5.00	43	43.00	0	
14.30 14.70		0.40 0.60	43.00	****	0 4	0.00 6.67	10 15	25.00 25.00	0	
15.30	16.70	1.40	124.00	****	10	7.14	22	15.71	n	
16.70		1.10	65.00	****	15	13.64	23	20.91	ě	
20.50		0.80	22.00	****	15	18.75	16	20.00	0	
29.70	29.90	0.20	20.00	****	0	0.00	5	25.00	0	
29.90	30.70	0.80	78.00	****	1	1.25	15	18.75	0	
30.70		0.20	15.00	****	2	10.00	10	50.00	0	
30.90		1.10	74.00 18.00	****	6	5.45	19	17.27	0	
32.00 34.00		0.30 0.50	43.00	****	3 2	10.00 4.00	12 9	40.00 18.00	0	
36.00		0.50	10.00	****	8	16.00	6	12.00	Ö	
37.30	37.80	0.50	21.00	****	10	20.00	12	24.00	ő	
41.60		1.60	101.00	****	28	17.50	27	16.87	Ô	
43.20		0.40	20.00	****	5	12.50	14	35.00	0	
43.60	44.00	0.40	21.00	****	3	7.50	11	27.50	0	
44.00		1.40	90.00	****	13	9.29	20	14.29	0	
45.40 46.20	46.20 47.70	0.80 1.50	32.00	****	13	16.25	34	42.50	0	
49.60		0.50	66.00 37.00	****	25 4	16.67 8.00	51 17	34.00 34.00	0	
55.20		1.50	57.00	****	22	14.67	10	6.67	0	
61.30		0.60	24.00	****	9	15.00	8	13.33	Ö	
63.30	64.80	1.50	61.00	****	22	14.67	33	22.00	Ö	
64.80	66.30	1.50	60.00	****	16	10.67	34	22.67	0	
66.30		1.50	95.00	****	15	10.00	18	12.00	0	
69.20		0.70	55.00	****	9	12.86	18	25.71	0	
69.30 70.20		0.90 1.70	30.00 35.00	****	0	0.00	3 8	3.33	0	
77.70		0.80	31.00	****	12 10	7.06 12.50	30	4.71 37.50	0	
79.10		0.30	12.00	****	4	13.33	11	36.67	0	
79.40		0.40	23.00	****	7	17.50	8	20.00	ŏ	
79.80	81.30	1.50	25.00	****	10	6.67	25	16.67	ŏ	
81.30	82.80	1.50	48.00	****	11	7.33	29	19.33	Ó	
82.80		1.50	62.00	****	12	8.00	31	20.67	0	
	121.70	1.60	99.00	****	19	11.88	22	13.75	0	
	122.20	0.50	0.00	0.0	8	16.00	6	12.00	0	
	123.70	1.50	62.00	****	22	14.67	33	22.00	0	
123.70	125.00	1.30	10.00	769.2	25	19.23	13	10.00	0	

MINNOVA INC.

HOLE NUMBER: WF-92-17

DRILL HOLE RECORD

PROJECT NAME: WOLF92 PROJECT NUMBER: 673

PLOTTING COORDS GRID: I.P. GRID

ALTERNATE COORDS GRID: I.P. GRID NORTH: 976+ ON

COLLAR DIP: -45° 0' 0"

CLAIM NUMBER:

NORTH: 97600.00N EAST: 35350.00E

EAST: 353+50E

LENGTH OF THE HOLE: 124.10m START DEPTH: 0.00m

LOCATION: BLACK FLY ZONE

METRIC UNITS: X

ELEV: 1168.00

ELEV: 1168.00

FINAL DEPTH: 124.10m

COLLAR GRID AZIMUTH: 90° 0' 0"

COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

DATE STARTED: September 4, 1992 DATE COMPLETED: September 6, 1992

COLLAR SURVEY: NO MULTISHOT SURVEY: NO

PULSE EM SURVEY: NO PLUGGED: NO

CONTRACTOR: ATLAS DRILLING LTD

IMPERIAL UNITS:

CASING: REAMED TO 9.1m CORE STORAGE: CAMP

DATE LOGGED: September 6, 1992

RQD LOG: YES

HOLE SIZE: NO

PURPOSE:

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
67.00	-	-47° 0'	ACID	ok		-	-	_	-	-	
124.10	-	-45° 0'	ACID	OK		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	-	-	-		
-	-	-	•	-		-	-	-	-	-	
-	•	•	-	-		-	-	-	-	-	
	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
		-	-	•		-	•	-	-	•	
-	_		-	-		-	-	-	•	-	
-		_		-		-	-	-	-	-	
-	_	_		_			•	-	-	-	
-	-	-		_			-	•	-	-	
-	-	_	-				-	-	-	•	
-	-	-	-					-	-	•	
-	-	-	-	-			_	_		-	
-	-	-	-	-		_	_	_			
-	-	-	•			_	_			_	
-	-	-	•	-		-	-	-	-		
•	-	-	-	-		-	•	-	_		
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	_	_	_	

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO	«CASING»					
9.10	·					
9.10 TO	«RUBBLE»					
9.30						
9.30 TO 38.30	«FLOW BANDE D RHYL»	Grain Size: var. Limonite and hematite alteration has almost completely obliterated original textures. 2-3% qtz crystals are still visible, as are occasional rounded fragments form mm scale to lapilli size. Matrix appears glassy and corroded. Minor qtz vein lets noted. Flow banding &	54	9.3-10.3 x-hem, clay 10.3-11.6 x-lim, clay 11.6-12.3 x-hem, clay 12.3-28.3 «x-lim, clay» 28.3-33.8 «x-hem, clay»		
				 35.6-38.3 «s-clay, chl»	-minor py	
70.70			l			
38.30 TO 41.10	«FLT GOUGE»	Generally clay gougy material with minor pyritic fragments		«x-clay»	«tr py»	
41.10 TO 42.80	«FLT BX»			«s-sil»		
42.80 TO 53.50	«QFP RHYL»	Colour: marroon, orange Grain Size: f.gr., m.gr. Fine to medium grained 3-5% euhedral to anhedral fsp, 3-5% anhedral qtz in aphanitic matrix. From 45.0-50.3 core is extremely broken, possibly faulted. Minor silica stockwork - bottom contact appears faulted		«s-lim» -possible rhodocrosite		

HOLE NUMBER: WF-92-17

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
53.50 TO 78.50	«FBRY/RYBX»	Colour: grey to mauve Grain Size: f.gr. Texturally these range from massive unbanded rhyolite to strongly banded rhyolite flows. The massive units contain 10-20% euhedral to anhedral fsp and anhedral qtz grains in an aphanitic grey matrix. Flow banded segments are grey to dark grey with 10-20% anhedral qtz grains in contorted convoluted bands. In some cases these look tuffaceous with possible occasional lithic fragments. Darker grey segments contain up to 30% euhedral fsp crystals aligned with banding. Locally the unit is strongly sphaleritic [353.5-68.1] «minor py stkwrk» 53.5-53.9 qtz-py veins -several limonitic weathered out qtz-py veins 55.8-56.4 w-py stockwork -stockwork, pyrite veinlets [156.9-57.7] «py stockwork bx»	90	«W-sil» 53.5-53.9 m-lim	«1-2% v.f.gr. py» -finely disseminated throughout «to 5% py» 53.5-53.9 5% py 55.8-56.4 2-3% py -as veinlets and as disseminations «5-10% py»	
		-brecciated fragments of rhyolite encapsulated in m.gr. and v.f.gr. pyrite		58.5-59.6 s-lim		
		66.6-68.1 -minor pyrite veinlets				
		71.9-73.8 «m-bladed stockwork» -stockwork bladed white qtz veins and veinlets generally oriented at common angle to c.a.	44	«w-sil» -not pervasive, just as veinlets		
		73.8-74.3 bladed banded hydrothermal vein	30	73.8-74.3 x-sil		
				d74.3-75.8} «w-lim, spyroph» -possible pyrophyllite veinlets		
				77.1-77.2 pyrophyllite vein at 40 deg. to c.a.		

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
78.50 TO 92.40	«RHYOLITE»	Colour: grey orange Grain Size: f.gr. 79.8-79.9		«s-lim, s-pyroph, m-ar g »		
		1-2 mm dimension and 2-3% fsp crystals in a grey f.gr. granular tuffaceous matrix. Occasional fiamme are seen along a faint fabric. A number of small fault breccia cut across the interval				
				- w-lim		
İ		82.1-82.5 w-stockwork		- w-sil, lim	- tr py	
		85.2-85.6 «pyritic bx» -strongly weathered	44	«m-s lim»		
i		∮90.1-90.6} «m-s stockwork»		«m-sil»		
		91.9 -crossbedding	56			
		Bottom contact a	68			
92.40 10	«SPHER RHYL	Primarily sphaleritic rhyolite. Up to 90% mm scale		«m-lim»		
124.10		spherules locally with occasional cm size occurrences. Some flow banding is noted. Occasional bladed qtz veins cut interval	34	∮92.4-97.9 } «w-sil veining»		
		¶92.4-97.9↓ «w-sil veins» -primarily cm wide white bleached sil veinlets with minor black silicas				
į		96.4-97.9 w-sil veining				
				∜97.9-100.0} «m-arg, m-lim»		
				∦100.0-101.6} «m-s sil»		
				101.2-101.6 m-s sil, w-graph -graphitic fractures		

MINNOVA INC. DRILL HOLE RECORD

						DATE: 14 OCTOBET 1775
OM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		101.6-103.0 -very strongly convoluted banding		101.6-103.0 «s pyroph» -soft white greasy mineral pyrophyllite or talc?		
		103.3-105.0 -core is intense altered to white greasy mineral possibly pyrophyllite. Minor qtz veins are seen		103.3-105.0 «i-pyroph»		
		105.0-111.2 ws-stockwork bladed qz str.» 105.0-105.7 -bladed silicification overprinted by sil flooding		«s-x sil» 105.0-105.7 x-sil		
		105.7-106.9 s-stockwork		105.7-106.9 s-sil, m-pyroph		
		110.3 «fauit»		∮106.9-107.6∲ «s-i sil»		
		107.6-110.9 stockwork pyroph ∮111.4∲ «fault»	40	- s-î pyroph m-lim w-sil		
		110.9-111.2 s-stockwork sil		- s-sil		
		111.2-124.1 ww-m stockwork, occ. blading» -bladed qtz vein up to 10 cm and stockworks cut the core		«ы-m sil, arg»		
		112.2 -several large (3-5 cm) botryoidal textures which may be large spherulites. These have a radial texture and are strongly altered to clays and possibly rhodocrosite (soft pink mineral). Feldspars in matrix about these orient themselves to the spherical shape of these structures.				
		116.3-116.5 -sil vn				
_	0.11	118.0-118.2 -s-stockwork				
=	.O.H.			{		

ASSAY SHEET

				ASSAYS						OCHEMIC	CAL					
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	\$ %	Aug/t g/t	
3992 3993 3995 3994 3995	11.60 12.30 15.30 26.80 28.30	12.30 13.80 16.80 28.30 29.80	0.70 1.50 1.50 1.50 1.50	1.5 1.1 1 1.8 1.0	40 73 25 91 25	23 13 6 8 6	3 4 3 3 3	0.99 1.18 1.06 0.71 1.06	28 12 12 14 12	1 1 2 1 2	92 71 34 53 34	14 11 57 52 57	110 150 95 110 95	0.02 0.01 0.01 0.01 0.01		
88996 88997 88998 88999 89000	38.30 41.10 53.50 55.80 56.90	41.10 42.80 53.90 56.40 57.70	2.80 1.70 0.40 0.60 0.80	31.4 2.5 9 9.2 6.9	808 454 478 702 608	21 114 13 6 9	42 29 9 7 6	3.24 3.05 1.72 2.77 2.12	32 22 22 14 21	4 7 13 29 26	1588 263 63 70 124	1426 313 305 405 324	140 370 310 540 385	3.62 0.15 0.41 2.91 2.23	1.52	
28576 28577 28578 28579 28580	58.50 66.60 71.90 73.80 74.30	59.60 68.10 73.80 74.30 75.80	1.10 1.50 1.90 0.50 1.50	0.9 5.4 1.5 2.7 1.7	347 135 105 120 229	7 4 4 12 6	5 5 4 4 5	3.88 0.79 0.61 0.83 1.66	21 23 16 24 32	9 2 1 1 7	136 105 37 25 59	1278 280 104 66 107	115 265 80 215 845	0.08 0.65 0.34 0.14 0.29	2.32	
28581 28582 28583 28584 28585	82.10 85.20 90.10 92.40 96.40	82.50 85.60 90.60 93.30 97.90	0.40 0.40 0.50 0.90 1.50	8.1 4.8 1.7 1.7 2.5	276 583 142 146 114	5 16 7 10 7	5 5 4 4 3	1.28 2.88 0.73 0.67 0.67	10 21 12 42 18	5 19 1 1 1	30 194 34 117 52	174 95 104 151 113	1220 615 65 75 200	0.03 0.01 0.01 0.26 0.01		
28586 28587 28588 28589 28590	100.00 101.20 103.30 105.00 105.70	101.60 105.00 105.70	1.20 0.40 1.70 0.70 1.20	6.4 5.4 4.4 0.9 1.7	199 149 122 98 168	7 2 9 3 5	7 20 4 4 4	0.83 0.66 0.73 0.5 0.87	17 15 13 7 11	1 1 1 3 1	42 38 57 38 59	188 144 167 148 258	700 315 695 235 530	0.01 0.4 0.02 0.01 0.01		
28591 28592 28593 28594 28595	106.90 107.60 109.10 110.90 111.20	109.10 110.90 111.20	0.70 1.50 1.80 0.30 1.50	1.3 2 4.7 1.4 2.4	230 134 153 168 114	5 3 6 12 15	3 3 4 4 4	1.01 0.65 0.69 1.08 0.69	18 12 9 15 14	1 1 1 1	45 39 39 57 42	153 114 273 196 75	470 270 960 160 145	0.01 0.01 0.1 0.08 0.01		
28596 28597 28598 28599 28600	112.70 114.20 115.70 116.30 116.50	115.70 116.30 116.50	1.50 1.50 0.60 0.20 1.50	2.7 1.3 2.1 2.4 1.8	104 124 134 90 120	5 9 12 11 9	4 2 2 3 2	0.56 0.61 0.72 0.59 0.68	11 13 18 12 9	2 2 2 2 1	34 26 26 19 31	65 95 63 166 88	70 55 55 145 135	0.01 0.01 0.01 0.01 0.01		
36426 36427 36428	118.00 118.20 119.70	119.70	0.20 1.50 1.50	2.3 1.6 1.3	70 101 142	14 12 12	3 3 3	0.53 0.69 0.73	15 11 13	2 2 3	21 40 46	154 109 54	80 155 145	0.01 0.01 0.01		

ASSAY SHEET

Sample	From (m)	To (m)	Length (m)		Ba	Fe %	Pb ppm			S %	Aug/t g/t	
36429 364 3 0	121.20 122.70					0.67 0.71			125 170	0.01		

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	RQD S/LX100	Number Of	Fracturs Per	Number Of	Veins Per	Angle	Comments
(m)	(III)	(1)	Or Length	3/1/100	Fracturs		Veins	Metres		
			S>= 0.00cm							
11.60	12.30	0.70	21.00	****	12	17.14	0	0.00	0	
12.30	13.80	1.50	87.00	****	19	12.67	7	4.67	0	
26 .8 0	28.30	1.50	112.00	****	15	10.00	22	14.67	0	
38.30	41.10	2.80	110.00	****	15	5.36	15	5.36	0	
41.10	42.80	1.70	0.00	0.0	21	12 .3 5	47	27.65	0	
53.50	53.90	0.40	19.00	****	8	20.00	9	22.50	0	
55.80	56.40	0.60	33.00	****	10	16.67	12	20.00	0	
56.90	57.70	0.80	61.00	****	6	7.50	21	26.25	0	
58.50	59.60	1.10	73.00	****	12	10.91	18	16.36	0	
66.60	68.10	1.50	112.00	****	12	8.00	24	16.00	0	
71.90	73.80	1.90	121.00	****	18	9.47	29	15.26	0	
73.80	74.30	0.50	13.00	****	11	22.00	10	20.00	0	
74.30	75.80	1.50	81.00	****	21	14.00	38	25.33	Ü	
82.10	82.50	0.40	39.00	****	4	10.00	20	50.00	Ü	
85.20	85.60	0.40	0.00	0.0 ****	4	10.00	3	7.50	U	
90.10	90.60	0.50	31.00 89.00	****	5	10.00	11	22.00	Ü	
92.40	93.30	0.90		****	5	5.56	28	31.11	Ŭ	
96.40		1.50	96.00 81.00	****	16	10.67	18	12.00	0	
100.00 101.20		1.20 0.40	15.00	****	13	10.83	44	36.67	0	
103.30		1.70	52.00	****	4 24	10.00	15	37.50 12.35	0	
105.00		0.70	11.00	****	10	14.12	21 8		0	
105.70		1.20	93.00	****	10	14.29 8.33		11.43 18.33	0	
106.90		0.70	17.00	****	6	8.57	22 9	12.86	Ô	
107.60		1.50	96.00	****	15	10.00	13	8.67	ň	
109.10		1.80	53.00	****	21	11.67	33	18.33	n	
110.90		0.30	10.00	****	2	6.67	3	10.00	ņ	
111.20		1.50	118.00	****	11	7.33	21	14.00	ñ	
112.70		1.50	46.00	****	21	14.00	20	13.33	ŏ	
114.20		1.50	31.00	****	13	8.67	11	7.33	ō	
115.70		0.60	0.00	0.0	8	13.33	10	16.67	Õ	
116.30		0.20	13.00	****	2	10.00	11	55.00	Ö	
116.50		1.50	31.00	****	21	14.00	48	32.00	ō	
118.00		0.20	0.00	0.0	3	15.00	3	15.00	0	
118.20		1.50	47.00	****	18	12.00	12	8.00	Ó	
119.70		1.50	22.00	****	23	15.33	23	15.33	Ó	
121.20		1.50	0.00	0.0	26	17.33	28	18.67	Ó	
122.70		1.40	61.00	****	18	12.86	7	5.00	0	

MINNOVA INC. HOLE NUMBER: WF-92-18 DRILL HOLE RECORD METRIC UNITS: X IMPERIAL UNITS:

PROJECT NAME: WOLF92 PLOTTING COORDS GRID: I.P. GRID ALTERNATE COORDS GRID: I.P. GRID COLLAR DIP: -60° 0' 0" PROJECT NUMBER: 673 NORTH: 97400.00N NORTH: 974+ ON LENGTH OF THE HOLE: 148.10m CLAIM NUMBER: EAST: 36085.00E EAST: 360+85E START DEPTH: 0.00m LOCATION: LOOKOUT ZONE ELEV: 1258.00 ELEV: 1258.00 FINAL DEPTH: 148.10m

COLLAR GRID AZIMUTH: 90° 0' 0" COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

DATE STARTED: September 6, 1992 PULSE EM SURVEY: NO CONTRACTOR: ATLAS DRILLING LTD COLLAR SURVEY: NO DATE COMPLETED: September 8, 1992 DATE LOGGED: September 8, 1992 CASING: REAMED TO 3.0m
CORE STORAGE: CAMP MULTISHOT SURVEY: NO PLUGGED: NO

RQD LOG: YES HOLE SIZE: NO

PURPOSE:

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
28.00	-	-59° 0'	ACID	OK		_	-	-	-	-	
64.60	-	-59° 0'	ACID	OK		-	-	-	-	-	
140.20	-	-59° 0'	ACID	OK		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	•		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-		-	-	-		_	-	-	_	-	
-	-	-	-			_		-	-	_	
-	_	-	_	-		_		_	-	_	
	-	-	-	-		-	-	-	-	-	
-	-	-	-			-		-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	-	-	-	•	
-	•	-	-	-		-	-	-	-	-	
-	-	-	•	-		-	-	-	-	-	
-	-	-			İ	-	-	_	-	-	
	-	_		-		_	-	-	_		
_	-	_	-	-		-	-	-	-		
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	•	•	-	•	
•	-	-	-	-	İ	-	-	-	-	-	
•	-	-	-	-		-	•	-	-	-	
-	-	-	-	-	i	-	•	-	-	-	

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 3.00	«CASING»					
3.00 TO 62.60	«B PORPHYRY »	Colour: maroon to grey Grain Size: m.gr. & c.gr. As for holes 7,8,9,10,13 Consists of 10-20% euhedral to anhedral medium to coarse grained feldspar crystals and 5-10% f.gr. anhedral qtz crystals in a marroon to grey v.f.gr. g'mass. Feldspars are predominantly broken. Occasional rounded lithic frags are seen. Small interval of very coarse fsp rich, quartz deficient phases with black weakly magnetic matrix cut the interval. Weakly oriented crystals - flow banding?	20			
	,	8.9-11.8 -several strongly limonitically weathered & brecciated veins, possibly after pyrite cut the interval 11.4-11.8 -s-bx vein		3.0-8.9 «w-lim» 8.9-11.8 «s-lim»	«tr py»	
		20.8-21.0 -minor veining		11.8-20.8 «w-lim» 20.8-21.0 w-m sil 21.0-23.9 «w-lim» 23.9-24.3 m-sil -pervasive, minor pyrolasite/		
		26.2-26.4 qtz vein -brecciated and banded	52	psilomelane along fracture surfaces 26.2-26.4 s-sil 26.4-32.1 w-lim, w-sil	26.2-26.4 pyrol/psilomelane? -black bladed, acicular mineral in banded vein	
		∮32.1-34.4} «bx veins» -silicified Rice Krispie breccia vein		«s-i sil, s-lim»		
		32.9-34.4 -minor bx veins, banded veins	50	432.9-34.4		

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		∮45.9-48.9∯ «w-m stockwork»		39.3-40.8 «w-m sil, w-pyroph» 40.8-45.9 «w-lim» 45.9-48.9 «w-sil» -some banded silica 48.9-57.9 «s-arg, s-lim»		
		58.5 -matrix becomes black, aphanitic, pyritic. Crystals are larger in size and unit may be intrusive, however crystals are still broken and occasional accidentals are still seen			∮58.5∱ «w-m MT, 1-2% v.f.gr. py»	
62.60 TO 65.70	«B PORPHYRY BX»	Fragment rich (10-15%), moderately chloritized porphyry breccia. Clasts are subangular to subrounded commonly rimmed. Banding a Rather non-descript. Occasional white vuggy qtz veinlets cut the core.	50	«m-chl»	<pre>«2-3% v.f.gr. py» -pyrite is v.f.gr., disseminated throughout</pre>	
		173.4-73.5 «flt bx» 173.5-81.0 «w-py, chl, sil stockwork»		<pre>«m-s lim, m sil» -silicification is generally pervasive, also occurring as occasional bladed veinlets 81.0-81.1 s-sil 81.1-82.5 «w-m sil» -pervasive</pre>	«tr-1% py» 81.0-81.1 2-3% py «tr-3% py»	Beginning at 73.5-81.0 the core becomes strongly oxidized with most textures destroyed. Some lapilli remain but locally looks like qtz xtal tuff.
		82.5-83.1 -w-py stockwork			82.5-83.1 2% py	
		83.6 -lower contact is stratigraphic	50			

HOLE NUMBER: WF-92-18

FROM ROCK ANGLE TO TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS 65.70 «G PORPHYRY Glomero porphyritic intrusive. K-feldspar pheno's TO BX» form crystal aggregates up to 30mm in diameter. 73.50 They lie in a medium grained groundmass consisting of quartz, plagioclase and orthoclase. Larger phen -ocrysts are strongly zoned. Chlorite pseudomorphs after biotite noted. The porphyry is crudely flow banded and brecciated. Possibly a contact zone. 73.50 «STONY RHYL Massive to autobrecciated stony rhyolite contain TΩ QP» abundant micro-phenocrysts of quartz in an aphanit 83.60 -ic groundmass. Lower Contact a 50 «HETEROLITH 83.60 Colour: green to black «i-x chl» TO IC BRECCIA Grain Size: var 90.70 Matrix supported, poorly sorted heterolithic breccia. Fragment types are sedimentary volcanic, volcaniclastic. Minor interbeds of argillite. Not strongly consolidated Lower contact @ 64 90.70 «QFP/QFP BX Colour: grey pink. «w-m chl, w-sil» TO Grain Size: m.gr. 92.50 Medium grained to 1 cm fsp in a grey green to pink aphanitic matrix. Feldspars are generally broken occasionally euhedral. This unit is not the same as that described near top of hole. Approx. 30% fsp, 10% rounded qtz grains. 90 Bottom contact @ 92.50 **«BANDED** Colour: white «x-sil» ΤO QTZ VN» Grain Size: f.gr. 92.70 40 Massive, banded and white gtz vein 92.70 «QP RHYL BX Colour: grey, orange, green TO Grain Size: f.gr., m.gr. 105.20 -Variably altered qtz porphyritic rhyolite breccia 10% fine to medium grained qtz crystals Coarser grained pink QP intervals resemble B porph yry. 192.7-93.6 «i-stockwork» «s-sil, m-lim»

HOLE NUMBER: WF-92-18

FROM ROCK ANGLE TO TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS -intensely stockwork fractured and veins, veinlets brecciated -green sericite alteration pervasive throughout core ∮95.1-105.2 ← «m-s stockwork» <m-s lim, m-sil≫ «tr py, pyrol/psilo» -degree of stockworking and jigsaw breccia from -degree of silicification increase increases toward lower contact. Some bleaching toward lower contact textures are seen 105.20 «H'THERMAL Colour: white «x-sil» 88% recovery 108.20 TO VEIN BX» Grain Size: f.gr. 109.20 TO 108.20 109.20 Massive bladed and banded silicification overprinted by later stage silicification. Only minor healed breccias are seen. Fragment are completely re-silicified. Banding oriented a 60 108.2-108.8 -broken, rubbly core, primarily silicified sediments 108.8-109.2 -h'thermal breccia 108.20 «INTERBED Colour: grey, black «3-5% py» 114.30 TO SST/ASH Grain Size: f.gr. 114.30 **TUFFS**» Thinly bedded f.gr. black and grey argillaceous sediments and grey ash tuffs with 2-5%, < 1 mm qtz crystals in f.gr., matrix with chloritic fiamme 38 109.2-113.4 «m-x sil, m-lim» «hydrothermal bx and vein, bladed»

HOLE NUMBER: WF-92-18

ANGLE FROM ROCK TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS ΤO 111.2-112.1 m-stockwork -stockwork bladed veins 112.8-113.4 -hydrothermal vn & bx, bladed - i-x sil, m-lim ∦113.4-114.3∦ «sil flt bx» -heterolithic angular breccia «s-sil» 114.30 «VITRIC ASH Colour: grey green **TUFF»** TO Grain Size: f.gr. Fine grained to v.f.gr. bedded vitric ash tuff wit 131.90 conspicuous chloritic fiamme. 117.4-117.5 - small hydrothermal bladed vein 118.1-118.4 - weak hydrothermal stockwork 119.5-120.3 - interval of interbedded argillaceous siltstone 40 and sandstone 125.6-130.5 / «m-bladed vn bx» «m-sil» 125.6-125.7 - bladed hydrothermal bx 127.2-127.3 - bladed hydrothermal bx 127.6-128.5 -bladed hydrothermal bx - m-s sil 130.3-130.5 -bladed hydrothermal bx 131.90 «INTERBED. Colour: black/grey TO SILTSTONE/S Grain Size: f.gr. 135.80 ST» Fine grained black argillaceous siltstones with interbeds of grey sandstone Bedding @ 134.6-135.1 Grades into underlying unit - w-ser

HOLE NUME	BER: WF-92-18			DRILL HOLE RECORD		DATE: 14-October-1993
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
135.80 TO 148.10	«HETEROLITH IC BX 1»	Colour: grey Grain Size: c.gr. Alternating beds of very coarse grained sandstone and coarse matrix supported breccia. There is a fining upward sequence in the hole with the conglomerate becoming more abundant downhole \$\frac{1}{137.6-139.7} \times \text{docal bladed bx & stockwork}\times 137.6-137.8 -bladed hithermal bx 138.8-139.7 - bladed thermal stockwork, three bladed veins occur in interval up to 10 cm thick		<pre>«s-i sil, lim» - i-sil, s-lim -s-sil, s-lim</pre>		
		Conglomerate is heterolithic comprised of large (to 10 cm) rounded, granite fragments, smaller argillaceous sediment fragments, sandstones and volcaniclastic debris. Matrix is coarse grained				

ASSAY SHEET

				ASSAYS						- OCUENT	<u></u>				
ample	From (m)	To (m)	Length (m)	ASSATS Ag ppm	As ppm	Ba ppm	Cu	Fe %	Pb ppm	Sb Sb	Zn	Au	Hg	S	Aug/t
							Р		ppii	ppm	ppm	ppb	ppb	%	g/t
431 432	8.90 10.40	10.40 11.40	1.50 1.00	0.1	21 8	33	11	1.39	11	1	143	18	25	0.03	
33	11.40	11.80	0.40	0.1	138	54 781	10 14	1.42 9.1	13 41	1	175 533	87 110	25	0.01	
34	20.80	21.00	0.20	1.5	34	38	8	1.38	7	i	118	133	45 30	0.02	
35	22.40	23.90	1.50	0.1	16	44	6	1.36	10	1	128	20	35	0.01	
36	23.90	24.30	0.40	0.3	53	28	7	1.45	12	1	66	75	30	0.01	
37 38	26.20	26.40	0.20	0.1	_1	20	8	0.95	15	1	162	209	35	0.02	
		32.90 34.40	0.80 1.50	0.1	56	23	8	1.16	7	1	76	102	35	0.01	
		40.80	1.50	0.1	27 22	24 14	7 6	1.26 1.01	7 6	1	133 87	79 22	20 20	0.02	
									J	'	O,	22	20	0.01	
42	47.40	47.40 48.90	1.50 1.50	0.2	24	25	5	1.07	4	1	70	41	45	0.01	
43	70.00	71.50	1.50	0.1 0.1	29 29	31 22	5 5	1.21 1.83	5 7	1	90 116	47	35	0.01	
44	73.50	75.00	1.50	0.6	6	14	4	0.98	ģ	ì	60	21 16	40 30	1.25	
45	75.00	76.50	1.50	0.7	7	7	5	0.52	11	i	53	19	45	0.23	
46	76.50	78.00	1.50	4.3	1	17	5	0.74	10	1	67	53	E0.	0.04	
47	78.00	79.50	1.50	4.4	i	17	5	0.67	12	'n	64	52 218	50 25	0.01	
	79.50	81.00	1.50	2.3	4	23	5	0.69	21	1	56	18	20	0.02	
	81.00 81.10	81.10	0.10	1.8	16	5	11	0.71	32	1	36	68	15	0.14	
	61.10	82.50	1.40	0.6	14	6	5	0.69	22	1	49	30	25	0.38)
	82.50	83.10	0.60	0.6	20	6	5	0.72	17	1	76	58	45	0.47	ŀ
	92.50	92.70	0.20	26.2	12	103	8	0.86	5	1	35	373	40	0.03	- [
	92.70 93.60	93.60 95.10	0.90	2.9	22	22	7	0.91	6	1	38	38	20	0.01	1
	95.10		1.50	1.7 4.6	5 29	15 10	5 18	0.64 0.88	13 6	1	63 49	61 290	45	0.01	
							10	0.00	b	,	49	290	30	0.06	1
56 57	97.60 99.10	99.10	1.50	5.2	8	17	15	0.95	10	1	78	272	20	0.01	
	100.60		1.50	5.2 5.3	1	14 15	15 17	0.82 1.52	2	1	91	276		0.01	ĺ
	102.10		1.50	8.5	17	13	9	0.77	1 2	1	154 85	270 797	20 25	0.01	0.81
	103.60		1.60	16.5	11	32	10	0.71	5	i	59	890	35	0.01	1.02
51 1	105.20	106.70	1.50	24.3	13	54	11	0.44	6	1	20	940	30	0.01	
	106.70		1.50							1					0.53
63 1	108.20	108.80	0.60	13.9	6	58	19	0.89		į					0.55
				10.9	1	74	10	0.62	10	1	61	574		0.01	0.63
31 1	109.20	110.00	0.80	5.8	106	59	13	1.07	11	1	97	371	80	ļ	(
	10.00		1.20	3.8	78	36		1.86	17	1	123	428	3 5	1	1
								2.05	14	1	201	418		0.56	
~ 1	12.10	113.40	1.30	7.3	6	35	13	1.59	9	1	99	113	45	0.03	1
06.70 08.20 08.80 09.20 10.00 11.20		108.20 108.80 109.20 110.00	0.60 0.40 0.80	10.9 5.8	1 106	74 59	10 13 10 39	0.62 1.07 1.86	11 17	1	97 123	371 428	55 50 80 35 50	0.56	

ASSAY SHEET

Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Pb ppm	Sb ppm	2n ppm	Au ppb	Hg ppb	s %	Aug/t g/t	
92183 36467		112.80 114.30	0.70 0.90	2.4 11.0	17 20	41 29	50 10	1.01 1.06	24 21	1	214 87	43 2230	65 35	0.01	2.22	
92184 92185 92186 92187 92188	115.80 117.30 118.80		1.50 1.50 1.50 1.50 4.10	3.3 2.4 8.7 16.4 1.5	17 19 14 43 11	11 8 9 19 13	3 5 3 16 4	0.39 0.42 0.64 1.05 0.75	16 15 9 30 12	1 1 1 1	84 143 102 130 95	543 73 361 440 251	45 45 35 50 35			
92189 21810 36468 21811 36469	127.60 128.50	127.60 128.50	1.50 1.70 0.90 1.80 0.20	3.3 4.3 3.7 2.9 8.1	12 22 13 15	14 20 20 19 55	5 10 3 11 3	0.48 1.09 0.52 0.86 1.26	12 32 10 30 18	1 1 1 1	89 135 61 166 102	290 160 194 190 1330	40 35 30 30 35	0.01	1.44	
21812 21813 21814 21815 21816	132.00 133.50 135.00		1.50 1.50 1.50 1.50 1.10	3.3 3.9 2.0 1.6 1.3	11 58 49 23 17	21 37 29 53 61	5 44 41 55 35	0.77 1.29 1.76 1.87 1.64	12 68 52 64 46	1 1 1 1	100 392 354 341 231	499 57 19 67 29	25 45 55 45 50			
36470 21817 36471 21818 21819	137.60 137.80 138.80 139.70 141.20	138.80 139.70 141.20	0.20 1.00 0.90 1.50 1.50	0.2 3.6 1.3 2.3	1 27 6 21 16	26 52 35 57 52	19 72 66 75 68	3.55 1.46 2.18 1.84 1.75	18 68 41 66 52	1 1 1 1	147 256 201 261 261	47 25 57 71 36	25 50 45 40 45	0.04		
21820 21821 21822 21823	142.70 144.20 145.70 147.20	145.70 147.20	1.50 1.50 1.50 0.90	1.2 .6 0.7 0.1	13 8 9 6	55 49 42 42	48 62 30 62	2.24 2.11 2.00 2.25	97 46 29 26	1 1 1	326 360 201 189	53 18 474 16	50 60 45 40			

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
			S>= 0.00cm							
8.90	10.40	1.50	0.00	0.0	18	12.00	6	4.00	0	
10.40	11.40	1.00	21.00	****	15	15.00	7	7.00	ŏ	
11.40	11.80	0.40	0.00	0.0	5	12.50	i	2.50	ŏ	
20.80	21.00	0.20	18.00	****	1	5.00	3	15.00	Ö	
22.40	23.90	1.50	45.00	****	16	10.67	12	8.00	0	
23.90	24.30	0.40	13.00	****	5	12.50	10	25.00	0	
26.20	26.40	0.20	11.00	****	1	5.00	7	35.00	0	
32.10	32.90	0.80	54.00	****	10	12.50	21	26.25	0	
32.90	34.40	1.50	67.00	****	17	11.33	10	6.67	0	
39.90	40.80	0.90	78.00	****	21	23.33	13	14.44	0	
45.90	47.40	1.50	43.00	****	25	16.67	4	2.67	0	
47.40	48.90	1.50	22.00	****	25	16.67	14	9.33	U	
70.00 73.50	71.50 75.00	1.50 1.50	142.00 121.00	****	12	8.00	2	1.33 10.67	0	
75.00	76.50	1.50	68.00	****	17 14	11.33 9.33	16 14	9.33	0	
76.50	78.00	1.50	12.00	800.0	28	18.67	10	6.67	Ö	
78.00	79.50	1.50	27.00	****	20	13.33	11	7.33	n	
79.50	81.00	1.50	24.00	****	22	14.67	7	4.67	ñ	
	81.10	0.10	0.00	0.0	0	0.00	5	50.00	ŏ	
	82.50	1.40	62.00	****	12	8.57	11	7.86	Ö	
82.50	83.10	0.60	55.00	****	8	13.33	26	43.33	0	
92.50	92.70	0.20	0.00	0.0	2	10.00	19	95.00	0	
	93.60	0.90	0.00	0.0	22	24.44	61	67.78	0	
93.60	95.10	1.50	33.00	****	22	14.67	10	6.67	0	
	97.60	2.50	67.00	****	42	16.80	42	16.80	0	
	99.10	1.50	0.00	0.0	28	18.67	12	8.00	0	
	100.60	1.50	32.00	****	18	12.00	18	12.00	0	
100.60		1.50	0.00	0.0	22	14.67	21	14.00	0	
102.10 103.60		1.50	0.00 11.00	0.0 687.5	32	21.33	13	8.67	0	
105.20		1.50	23.00	****	32 27	20.00 18.00	32 43	20.00 28.67	0	
106.70		1.50	0.00	0.0	11	7.33	30	20.00	0	
108.20		0.60	0.00	0.0	15	25.00	10	16.67	ő	
108.80		0.40	0.00	0.0	, 5	12.50	.4	10.00	Ô	
111.20		0.90	89.00	****	4	4.44	44	48.89	ŏ	
112.80		0.60	26.00	****	ż	3.33	8	13.33	Ö	
113.40		0.90	47.00	****	5	5.56	8	8.89	Ö	
127.60		0.90	24.00	****	11	12.22	11	12.22	Ð	
130.30	130.50	0.20	11.00	****	1	5.00	10	50.00	0	
	137.80	0.20	20.00	****	0	0.00	2	10.00	0	
138.80	139.70	0.90	26.00	****	13	14.44	3	3.33	0	

HOLE NUMBER: WF-92-19

PROJECT NAME: WOLF92 PROJECT NUMBER: 673

CLAIM NUMBER:

LOCATION: RIDGE/LOOKOUT ZONE

DATE STARTED: September 8, 1992

DATE COMPLETED: September 9, 1992

DATE LOGGED: September 9, 1992

COLLAR SURVEY: NO MULTISHOT SURVEY: NO

ROD LOG: YES

PLOTTING COORDS GRID: I.P. GRID NORTH: 97500.00N

COLLAR GRID AZIMUTH: 90° 0' 0"

EAST: 36220.00E

ELEV: 1271.00

PULSE EM SURVEY: NO

HOLE SIZE: NO

ALTERNATE COORDS GRID: I.P. GRID

COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

NORTH: 975+ ON

EAST: 362+20E

ELEV: 1271.00

PLUGGED: NO

IMPERIAL UNITS:

METRIC UNITS: X

COLLAR DIP: -55° 0' 0" LENGTH OF THE HOLE: 125.00m

START DEPTH: 0.00m FINAL DEPTH: 125.00m

CONTRACTOR: ATLAS DRILLING LTD

CASING: REAMED 3.4m

CORE STORAGE: CAMP

PURPOSE:

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
-	•	-	-	-			-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	-	-	•	-		-	•	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-		-		-	-	-	-	-	
_	-		_	-		-	-	-	-	-	
-	-	_	-	-		-	-	-	-	-	
	-	-	-	-			-	-	-	-	
•	-	-	-	-		_		-	-	-	
•	-	-	•	-			_	-	-		
-	-	-	-	-		-	-	-	-	-	
•	-	-	•	-		-	-	-	-	-	
•	-	-	•	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		•	-	-	-	-	
-	_	-	-		i	•	•	-	-	-	
-	-	-	_			-	•	-	-	-	
•	-	-	-	-	i		-		-	-	
-	-	-	-	-		-	-	-		-	
•	-	-	-	-		-	-	-	-	_	
-	-	-	-	-			-	-	-		
-	•	-	-	-		•	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	•	•	-	•	ŀ	-	-	-	-	-	

HOLE NUMBER: WF-92-19

HOLE NUMBER: WF-92-19

DATE: 14-October-1993

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 3.40	«CASING»					
3.40 TO 34.70	«B PORPHYRY »	Colour: purple, maroon to grey Grain Size: f.gr., m.gr. This is a finer grained phase of the coarse grained QF porphyry described in previous holes. From 3.4-7.3 is the coarse phase. From 7.3 onward the unit consists of 10-15% anhedral fsp and <5% anhedral qtz grains in a dark purple to grey partially welded tuffaceous matrix Welding	44	«w-lim» -weak limonitic staining on fracture surfaces 9.6-10.1 s-arg -also presence of soft pink clay mineral	«tr-1% v.f.gr. py»	
	,	24.3-24.7 «fit gouge» 29.4-29.6 «fit gouge» Bottom contact @ 34.7 m	50	6.3-24.3 «s-arg, w-m sil» -strongly bleached, qtz rich, weak to moderate pervasive silicification 32.9-33.2 -m-s lim	<pre>«tr-1% py» -pyritic stockwork</pre>	
34.70 TO 36.40	«RHYL BX»	Colour: grey Grain Size: var. Consists of broken fsp crystals and subrounded lithic fragments in grey tuffaceous matrix				
36.40 10 38.40	«QXAT/QP RH YL»	Colour: grey Grain Size: f.gr. Angular to subrounded qtz grains to 1 mm in grey fine grained tuffaceous matrix		- w-lim		
38.40 TO 58.70	«QFP RHLY»	Colour: grey Grain Size: v.c.gr. This interval is similar to what has been called fsp qtz crystal tuff in other drill holes. This is however, massive with no bedded or welded textures. Very coarse fsp occupy 20-30% of unit. These are generally euhedral, from mm scale to several centimetres. Twinned fsp are common.		38.4-40.6 «m-lim»	-tr py	
		40.7 «flt gouge» 41.0 «flt gouge»				

LOGGED BY: CJC

HOLE NUMBER: WF-92-19

FROM ROCK ANGLE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS TYPE TO Quartz crystals are present to 20% generally smokey <1-2 mm 448.4-49.1 «-w. stockwork» - w-sil, m-s lim -some blading seen 51.4 small qtz vein «2-3% py» -the unit becomes finer grained with few euhedral fsp, more chloritic with weak banding which suggests it may be tuffaceous 56.4-58.3 «s-arg, s-lim» 58.3-58.7 «m-s sil» 58.70 «XTAL VITRI Colour: green C ASH TUFF» Grain Size: f.gr., m.gr. TO 67.30 Consists of 30% broken fsp fragments, 1-% qtz grains in strongly chloritic, weakly welded «s-chl» «3-5% v.f.gr. py» tuffaceous matrix Bottom contact is irregular, intrusive [60.5-67.3] «w-arg, w-chl» «tr-1% py» 67.30 «QXAT» Colour: grey to orange Grain Size: f.gr. Subrounded qtz crystals <1 mm comprising 1-2% of core in f.gr. fsp rich grey to limonitically «tr-1% v.f.gr. py»
-finely disseminated throughout 70.40 «π-s lim, m-sil» weathered matrix. At 67.6 a small, black matrix tuff breccia cuts core 68.1-68.3 -hydrothermal bx vein 69.7-70.4 -m-stockwork - m-sil, s-lim tr pyrol/psilo - black acicular mineral

HOLE NUMBER: WF-92-19

ANGLE FROM ROCK TO CA REMARKS ALTERATION MINERALIZATION TO TYPE TEXTURE AND STRUCTURE 70.40 «HYDROTHERM Colour: TO AL VEIN & B Grain Size: 73.10 «i-x sil, m-lim» Alternating hydrothermal breccia and hydrothermal -MnO2 coating on some fractures X» vein. Breccia consists of subangular to subrounded fragments in brown silicified matrix with occasional bladed textures seen. Hydrothermal vein is generally massive white and bladed 170.4-71.7 «Bx» 171.7-73.1 «bladed vn & bx» «i-sil, m-lim» «x-sil» 71.7-72.1 bladed vein - x-sil 72.1-73.1 bx, minor vn - i-sil 73.10 «STONY RHYL Colour: grey to orange TO Grain Size: f.gr. 75.20 As for interval 67.3-70.4 73.1-73.8 s-i stockwork, jigsaw bx - s-sil, m-lim «m-lim» 73.8-75.2 75.20 «TUFFACEOUS Colour: grey Grain Size: f.gr., m.gr. TO SST» 78.70 Grey tuffaceous sandstone consisting of sandy «w-lim, m-s pyrophyllite» matrix made up of minor broken fsp, argillaceous fragments, rhyolite fragments. Some accidentals up to several cm. Occassional interbed of argillaceous siltstones. Strongly fractured with pyrophyllite (?) veinlets 40 Bedding a Bottom contact a 60 78.70 **«SILTSTONE** Colour: black to grey **SANDSTONE**» TO Grain Size: f.gr. 89.10 Interbeded black argillaceous siltstone, tuffaceous siltstone, and sandstone. Unaltered other than small pyrophyllite(?) veinlets 78.7-80.4 78.7-80.4 -black argillaceous seds -5% v.f.gr. diss. py 48 -onward, interbedded

HOLE NUMBER: WF-92-19

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
89.10 TO 125.00	«HETEROLITH IC BX 1»	Colour: grey green Grain Size: c.gr. Coarse grained, heterolithic, poorly sorted, matrix supported conglomerate. The most dominant fragments are granitic ranging in size from mm scale to 10 cm. These are subrounded other fragment compositions are argillite and volcanic- clastics. In areas the core is completely dis- aggregated generally due to the weathering of granitic fragments. Minor sandstone interbeds are seen. 100.6-104.64 «Andesite Dyke» 122.2-125.0 Sandstone	«s-c	l ay»		

ASSAY SHEET

				ASSAYS					GE	OCHEMIC	CAL						COMMENTS
Sample	from (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	S %	Aug/t g/t		
36472	16.30	17.80	1.50	0.1	1	6	4	0.95	17	1	175	3	45	0.44			
36473	32.90	33.20	0.30	0.1	5	24	7	3.96	26	1	211	12	40	0.03		l l	1
36474	48.40	49.10	0.70	0.1	86	10	3	1.03	6	1	55	87	15	0.02		· ·	1
36475	49.10	50.60	1.50	0.5	144	12	4	0.81	15	1	73	23	55	0.47		1	1
36476	55.10	56.40	1.30	0.2	45	14	4	1.26	20	1	212	22	45	0.33	į	1	1
36477	56.40	57.90	1.50	1	35	22	4	3.09	6	1	175	75	3 0	0.15	}	1	1
36478	57.90	58.30	0.40	0.2	12	21	4	1.21	7	1	95	23	25	0.1	ļ		Í
36479	58.30	58.70	0.40	0.3	35 12 50	10	4	1.37	7	1	119	46	35	0.27			
36480	58.70	60.50	1.80	0.4	23	13	4	1.27	10	1	179	19	45	0.43		1	1
36481	60.50	62.00	1.50	0.9	113	26	4	1.76	5	1	198	59	35	0.96	ļ]	İ
36482	62.00	63.50	1.50	1	69	15	4	1.09	12	1	95	31	35	0.56	١	1	ı
36483	63.50	65.00	1.50	0.6	46	10	3	0.86	9	1	115	32	20	0.34			1
36484	65.00	66.50	1.50	0.3	20	14	3	1.29	11	1	180	22	30	0.22			Í
36485	66.50	67.30	0.80	0.4	9	14	3	1.15	9	1	139	37	30	0.16	ļ		I
36486	67.30	68.10	0.80	0.5	15	6	4	0.87	18	1	74	31	40	0.21	ŀ	†	i
36487	68.10	68.30	0.20	1.1	20	12	4	0.56	16	1	45	70	25	0.01	1	1	1
36488	68.30	69.70	1.40	2.5	20 22	24	4	0.95	11	i	71	145	15	0.01			ľ
36489	69.70	70.40	0.70	3.7	9	40	5	0.78	4	1	56	118	25	0.01	1		ľ
36490	70.40	71.70	1.30	18	15	66	4	0.48	7	1	37	988	30	0.01	0.97		i
36491	71.70	72.10	0.40	19.9	11	119	4	0.26	3	1	12	1535	25	0.01	1.51		i
36492	72.10	73.10	1.00	29	18	89	5	0.41	8	1	35	1610	35	0.01	1.61		1
36493	73.10	73.80	0.70	3.1	4	32	4	0.81	5	i	71	315	25	0.01			
36494	73.80	75.20	1.40	1.3	9	12	8	0.63	20	1	63	80	55	0.01	ŀ		
36495	75.20	76.70	1.50	0.8	14	9	9	0.71	33	1	95	215	45	0.02]		ı
36496	76.70	78.20	1.50	0.1	1	32	8	1.04	50	1	105	56	35	0.01	1		
36497	78.20	78.70	0.50	5.4	6	12	14	1.01	20	1	80	588	40	0.12	0.6	1	
36498	78.70		1.50	1.5	4	15	13	0.77	33	i	238	23	50	0.08	١.٠٠		

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
		_	s>= 0.00cm							
16.30	17.80	1.50	0.00	0.0	56	37.33	10	6.67	0	
32.90	33.20	0.30	15.00	****	2	6.67	1	3.33	0	
48.40	49.10	0.70	16.00	****	8	11.43	16	22.86	0	
49.10	50.60	1.50	78.00	****	15	10.00	3	2.00	0	
55.10	56.40	1.30	49.00	****	15	11.54	10	7.69	0	
56.40	57 .9 0	1.50	61.00	****	22	14.67	8	5.33	0	
57.90	58.30	0.40	11.00	****	18	45.00	9	22.50	0	
58.30	58.70	0.40	27.00	****	2	5.00	5	12.50	0	
58.70	60.50	1.80	85.00	****	22	12.22	9	5.00	0	
60.50	62.00	1.50	82.00	****	18	12.00	13	8.67	0	
62.00	63.50	1.50	112.00	****	14	9.33	11	7.33	0	
63.50	65.00	1.50	131.00	****	11	7.33	22	14.67	0	
65.00	66.50	1.50	136.00	****	14	9.33	4	2.67	0	
66.50	67.30	0.80	59.00	****	8	10.00	5	6.25	0	
67.30	68.10	0.80	41.00	****	4	5.00	11	13.75	0	
68.10	68.30	0.20	16.00	****	1	5.00	8	40.00	0	
68.30	69.70	1.40	73.00	****	14	10.00	12	8.57	0	
69.70	70.40	0.70	44.00	****	6	8.57	11	15.71	0	
70.40	71.70	1.30	33.00	****	22	16.92	10	7.69	0	
71.70	72.10	0.40	0.00	0.0	6	15.00	3	7.50	0	
72.10	73.10	1.00	15.00	****	25	25.00	25	25.00	0	
73.10	73.80	0.70	11.00	****	9	12.86	22	31.43	0	
73.80	75.20	1.40	23.00	****	13	9.29	15	10.71	0	
75.20	76.70	1.50	33.00	****	26	17.33	10	6.67	0	
76.70	78.20	1.50	0.00	0.0	38	25.33	14	9.33	0	
78.20	78.70	0.50	0.00	0.0	8	16.00	8	16.00	0	
78.70	80.20	1.50	31.00	****	31	20.67	17	11.33	0	

MINNOVA INC.

HOLE NUMBER: WF-92-20

DRILL HOLE RECORD

PROJECT NAME: WOLF92 PROJECT NUMBER: 673

PLOTTING COORDS GRID: I.P. GRID NORTH: 97600.00N

ALTERNATE COORDS GRID: I.P. GRID NORTH: 976+ ON

COLLAR DIP: -50° 0' 0"

METRIC UNITS: X

CLAIM NUMBER:

EAST: 36150.00E ELEV: 1248.00

EAST: 361+50E

LENGTH OF THE HOLE: 100.00m

LOCATION: RIDGE/LOOKOUT ZONE

ELEV: 1248.00

START DEPTH: 0.00m FINAL DEPTH: 100.00m

COLLAR GRID AZIMUTH: 90° 0' 0"

COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

DATE STARTED: September 9, 1992

COLLAR SURVEY: NO MULTISHOT SURVEY: NO

PULSE EM SURVEY: NO

CONTRACTOR: ATLAS DRILLING LTD

IMPERIAL UNITS:

CASING: CORE STORAGE: CAMP

DATE COMPLETED: September 11, 1992 DATE LOGGED: September 12, 1992

RQD LOG: YES

PLUGGED: NO HOLE SIZE: NO

PURPOSE:

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
-	•	•	•	-		-		-		-	
-	-	-	-	-		-		-	-	_	
-	-	-	-	-		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	-	
-	•	-	-	•		-	-	-	-	•	
_		-	•	-		-	•	-	-	-	
		_	-	-		-	-	-	-	-	
-	-	-	_			_		•	-	-	
-	-	-	-			_	-	-	-	-	
-	-	-	-	-		_	-	-	-	-	
-	-	-	-	-		-	-	-	-	_	
•	-	-	-	-		-	-	-	-		
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	-	•	-	-	
•	-	-	-	-		-	•	-	-	-	
-	-	:	-	-		-	-	-	-	•	
_	-	-	-	-		-	-	-	-	-	
_		-		-		-	•	-	-	•	
-	-	-	-	-		-	•	-	-	•	
-	-		-			_	-	-	•	•	
-	-	-	-	-		_		-	-	•	
-	-	-	-				-	_	-		
-	-	•	-	-		-		-	-	-	
-	-	•	-	-		-	-		-		
-	-	-	•	-		-	-	-	-	_	
-	-		-	-			-	_	_	_	

HOLE NUMBER: WF-92-20

ANGLE FROM ROCK TO CA ALTERATION MINERALIZATION REMARKS TO TYPE TEXTURE AND STRUCTURE 0.00 «CASING» TO 3.10 3.10 «B PORPHYRY Colour: grey to massive TO Grain Size: f.gr. 59.20 Subrounded fine grained euhedral to anhedral «w-arg, w-lim» «tr v.f.gr. py» qtz and fsp crystals in very f.gr., very weakly locally banded fine grained groundmass. 40 -very non descript **₫3.1-18.0}** «w-m lim» 17.8-18.4 - weak stockwork - w-sil **{31.4-32.2 ∮** «gouge» «s-clay» ∜43.1-56.8 wjigsaw breccia/stwk» 48.9-49.2 - weak hydrothermal bx - 5-10% py, pyritic matrix from 49.2 open fracturing increases «w-m sil» √56.8-59.2} «min bx, stockwork» 56.8-57.3 -w-m bx and stockwork - w-m sil 58.2-59.2 - w-m sil - w-m stockwork and bx 50 Bottom contact @ 59.20 «HYDROTHERM Colour: white to black AL BX» TO Grain Size: var. 62.50 «s-i sil, w-ser» Good core recovery overall. Angular to rounded fragments of varying lithol-«tr py» ogies, primarily argillite with minor volcani-From 61.1-61.6: 60% recovery clastics in silicified matrix. Degree of brecciation and silicification not as intense as in other holes. No banded textures seen. 60.4-61.1 m-stockwork 61.1-62.5 minor blading

ALTERATION

ANGLE

TO CA

TEXTURE AND STRUCTURE

Black, massive, weakly bedded with minor sedimen-

tary breccia textures. Grades into underlying

From 72.7-75.8 the interval is fine to medium, grained tuffaceous sandstone. Unit becomes coarser downhole. No strong bedding orientations seen. At 75.8 fragments of varying lithology up to several centimetre in dimension increase in abundance. These are subangular to subrounded, argillaceous siltstones, sandstones and volcani-

Massive, very fine grained interval with

occasional accidental fragment to .5 cm

HOLE NUMBER: WF-92-20

ROCK

TYPE

«ARGILLACEO

US SILTSTON

«INTERBEDDE

D SST/CGL»

«TUFFACEOUS

SILTSTONES»

E»

Colour: black

contact

clastics

Grain Size: v.f.gr.

Colour; grey green

Colour: green grey

Grain Size: v.f.gr.

Grain Size: f.gr. to c.gr.

FROM

TO

71.90

72.70

72.70

82.90

82.90

85.90

ΤO

TO

TO

Fragments within matrix are not silicified 50 Bottom contact @ 62.50 «ARGILLACEO Colour: black TO US SILTSTON Grain Size: f.gr. 68.00 E/SST» Interbedded, black argillaceous siltstone and «2-3% v.f.gr. py» 63.3-68.3 argillaceous sandstone. Core is extremely -core recovery 56% rubbly 62.5-62.6 -sedimentary bx 62.5-62.9 - w-sil «TUFFACEOUS 68.00 Colour: green SILTSTONE» TO Grain Size: v.f.gr. 71.90 Massive to weakly bedded, very fine grained «w-m chl» chloritic tuffaceous siltstones

«m-chl, w-ser»

MINERALIZATION

DATE: 14-October-1993

REMARKS

MINNOVA INC. DRILL HOLE RECORD

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
85.90 TO 88.40	«HETEROLITH IC BX 1»	Colour: green, black Grain Size: var. Consists of subrounded to subangular heterolithic fragments in a black, argillaceous matrix. Large granitic fragments up to 10 cm are abundant and distinctive. A wispy, bedded, flowlike texture is seen with fragments aligning along a common orientation. Resembles a welding texture Bottom contact is brecciated and silicified	46			
88.40 TO 99.60	«FP DYKE»	Colour: grey Grain Size; c.gr., v.f.gr. Consists of 20-30% ewhedral fsp ranging from mm scale to 1 cm. Randomly oriented in a grey very fine grained groundmass. Feldspars are seen twinned and zoned. Some show perthitic textures		«พ-clay, chl» -feldspars are altered to clay chlorite	«tr py»	
99.60 TO 100.00	«HETEROLITH IC BX 2»	Colour: grey green Grain Size: var. Subrounded to subangular fragments in sandy matrix 99.6-99.9				
	E.O.H.	- m-bx		- m-sil		

ASSAY SHEET

				ASSAYS					GE	OCHEMIC	AL						COMMENTS
Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Pipm Pipm	Fe %	Pb ppm	Sb ppm	Zn ppm	Au ppb	Hg ppb	s %	Aug/t g/t		
36499	11.80	13.30	1.50	0.3	12	4	3	0.84	37	1	22	18	55	0.01			
36500	17.80	18.40	0.60	0.8	12	3	4	0.58	17	1	28	42	60	0.06			i
36501	35.40	36.40	1.00	0.7	16	3	3	0.61	28	1	172	18	95	0.42			
36502	43.10	43.30	0.20	0.7	21	8	3	0.69	28	1	169	30	45	0.54			1
36503	48.90	49.20	0.30	0.4	14	7	5	0.71	10	1	49	26	40	0.04			
36504	49.20	50.70	1.50	0.5	16	18	4	0.49	21	1	70	21	25	0.29	İ		I
36505	50.70	52.20	1.50	0.5	14	8	4	0.47	15	1	55	14	40	0.18			
36506	52.20	53.70	1.50	0.8	16	9	5	0.54	25	1	76	31	35	0.16			
36507	53.70	55.20	1.50	1.7	19	8	5	0.55	9	1	37	119	15	0.06			
36508	55.20	56.80	1.60	1.1	26	7	4	0.48	16	1	59	80	30	0.17	ļ		
36509	56.80	58.20	1.40	1	17	6	3	0.52	25	1	68	55	50	0.28		I	1
36510	58.20	59.20	1.00	1.7	17	7	4	0.53	17	1	63	130	60	0.37			
36511	59.20	60.40	1.20	3	31	11	6	0.52	11	1	29	120	30	0.09	ĺ		
36512	60.40	61.10	0.70	1.4	15	6	4	0.37	20	1	62	164	35	0.12	ì		
36513	61.10	62.50	1.40	1.3	13	12	4	0.26	14	1	20	333	25	0.03			
36514	62.50	62.90	0.40	2.8	38	19	10	0.53	31	1	172	265	50	0.44	1	1	1
36515	62.90	64.40	1.50	2.3	38 26	24	35	0.85	52	1	236	24	55	0.33			
36516	85.90	86.40	0.50	3	24	30	14	2.1	14	1	96	27	35	0.76			
36517	86.40	88.40	2.00	1	11	30	19	1.93	22	1	83	33	45	0.34			
36518	93.30	94.80	1.50	0.1	1	66	6	3.05	20	1	81	7	45	0.27			
36519	99.60	99.80	0.20	1	7	35	13	1.28	22	1	43	10	25	0.13	1		I

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length	RQD S/LX100	Number Of	Fracturs Per	Number Of	Veins Per	Angle	Comments
	(1117	(1)	S>= 0.00cm	3, [1, 100	Fracturs		Veins	Metres		
11.80	13.30	1.50	101.00	****	13	8.67	10	6.67	0	
17.80	18.40	0.60	28.00	****	6	10.00	9	15.00	0	
35.40	36.40	1.00	94.00	****	8	8.00	0	0.00	0	
43.10		0.20	10.00	****	1	5.00	14	70.00	0	
48.90	49.20	0.30	0.00	0.0	2	6.67	2	6.67	0	
49.20	50.70	1.50	44.00	****	15	10.00	5	3.33	0	
50.70	52.20	1.50	89.00	****	21	14.00	13	8.67	0	
52.20	53.70	1.50	96.00	****	7	4.67	14	9.33	0	
53.70	55.20	1.50	0.00	0.0	31	20.67	22	14.67	0	
55.20	56.80	1.60	62.00	****	16	10.00	23	14.37	0	
56.80	58.20	1.40	74.00	****	24	17.14	42	30.00	0	
58.20	59.20	1.00	38.00	****	6	6.00	28	28.00	0	
59.20	60.40	1.20	11.00	916.7	20	16.67	46	38.33	0	
60.40	61.10	0.70	31.00	****	8	11.43	15	21.43	0	
61.10	62.50	1.40	36.00	****	15	10.71	11	7.86	0	
62.50	62.90	0.40	0.00	0.0	4	10.00	4	10.00	0	
62.90	64.40	1.50	0.00	0.0	27	18.00	7	4.67	0	
85.90	86.40	0.50	47.00	****	2	4.00	0	0.00	0	
86.40	88.40	2.00	78.00	****	11	5.50	22	11.00	0	
90.40	92.40	2.00	0.00	0.0	0	0.00	0	0.00	0	
93.30	94.80	1.50	21.00	****	18	12.00	0	0.00	0	
99.60	99.80	0.20	11.00	****	1	5.00	5	25.00	0	

HOLE NUMBER: WF-92-21

ALTERNATE COORDS GRID: I.P. GRID

METRIC UNITS: X

PROJECT NAME: WOLF92 PROJECT NUMBER: 673

PLOTTING COORDS GRID: I.P. GRID NORTH: 96975.00N

COLLAR GRID AZIMUTH: 90° 0' 0"

NORTH: 969+75N

COLLAR DIP: -60° 0' 0" LENGTH OF THE HOLE: 149.40m

CLAIM NUMBER:

EAST: 36400.00E

EAST: 364+ 0E

START DEPTH: 0.00m

LOCATION: POND ZONE

FINAL DEPTH: 149.40m

ELEV: 1265.00

ELEV: 1265.00

COLLAR ASTRONOMIC AZIMUTH: 90° 0' 0"

DATE STARTED: September 11, 1992

COLLAR SURVEY: NO MULTISHOT SURVEY: NO PULSE EM SURVEY: NO

CONTRACTOR: ATLAS DRILLING LTD.

IMPERIAL UNITS:

DATE COMPLETED: September 14, 1992 DATE LOGGED: September 14, 1992

RQD LOG: YES

PLUGGED: NO HOLE SIZE: NO CASING:

CORE STORAGE: CAMP

PURPOSE: 100M WEST STEP OUT FROM HOLE 85-06

DIRECTIONAL DATA:

			Test		Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
-	-	•	-	-		-	-	-	-	-	
-	-	-	-	•		-	•	-	-	-	
•	-	-	-	-		-	-	-	-	•	
•	•	-	-	-		-	•	-	-	-	
•	•	•	-	-		-	•	-	-	-	
-		-	-	•		· -	-	-	-	•	
-		-		-		-	-	-	-	•	
_	-	-	-	-		-	-	-	-	-	
-		_				-	•	•	-	-	
	-					-	-	-	-	-	
-	-	_				_	-	-	-	-	
-	-	-	-	-			_	-	-	-	
		-	-			_	-	_			
-		_		-		_	-	-	-		
-		-	-	_		_	_	-	_		
-		_		-		_	_	-	-		
	-	-		-		_	-	-	_		
-		•	-			-		-	-	-	
-	-	-	-	-		-	-	-	-		
-	•	•	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-		-	•	-	-	-	
-	-	-	-	-	ľ	-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		-	•	-	•	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		•	•	-	-	-	

HOLF NUMBER: WE-92-21

ANGLE FROM ROCK TO TYPE TEXTURE AND STRUCTURE TO CA ALTERATION MINERALIZATION REMARKS 0.00 «CASING» TO 3.10 3.10 «B PORPHYRY Colour: grey green TO Grain Size: f.gr., c.gr. Alternating between oxidized and unoxidized weakly 105.60 Alteration varies between oxidation «1% v.f.gr. py» silicified intrvals this unit consists generally and weak silicification. Minor vuggy of 5-10%, v.c.gr. wuhedral fsp phenocrysts up to drusy banded atz lined cavities are 3 cm in dimension within a grey, f.gr. to seen and occasional gtz stringers cut aphanitic fsp-rich groundmass. Similar to fsp the interval gtz crystal tuff in areas. Manganese oxide minerals are seen on fracture surfaces 4.5-8.8 «s-lim» 8.8-11.8 «w-sil» 11.8-15.0 «W-sit» 15.0-25.6 «W-sit» 25.6-29.0 «W-lim» 29.0-30.5 «m-sit» 30.5-32.1 «W-sit» 32.1-37.8 «w-arg, w-lim» 45 At 34.8, bladed qtz vein 5 cm wide 40.5-40.8 - w-stockwork - fsp altered to green sericite, weakly throughout, m-sil 440.8-44.2 w-lim» 445.0-48.0} «w-stockwork» «m-arg, w-sil» 447.2-64.3 «s-arg» «m-arg, lim, m-sil» 448.8-49.6} «m-stockwork» «local i-x sil» «locally 5% py» From 47.2 onward unit strongly resembles FQXT and this may be an 59.1-59.4 interbed. - hydrothermal bx vn - i-x sil Matrix is purple to mauve. Feldspar - footwall selvage is banded white and dark silica are generally subhedral although some twinning is still seen. Matrix looks crystal rich, tuffaceous 64.4-65.2 58.1-59.2: 25% recovery - w-m stockwork - s-sil, s-lim, pervasive 65.2-65.4 - hydrothermal bx 40 - x-sîl - 5% v.f.gr. py - completely silicified, brecciated fragments.

MINNOVA INC. DRILL HOLE RECORD

ROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	2544040
	···-	-	-	ACTERATION	MINERALIZATION	REMARKS
		dark sil, bladed				
		65.4-68.4				
		- w-m stockwork, banded veinlets		- m-sil		
1		√71.6-77.6 «w-stockwork»	1	«w-m arg, w-lim»		
		-occasional banded veinlets		warm arg, w-chips		
		477.6-80.6 «w-m stockwork»	1	«w-sil, w-arg, w-lim»		
İ		-interval cut by occasional weakly banded and bladed veins to 3 cm wide		- feldspars altered to a clay green sericite		
				Scrience		
- 1		√80.6-83.5 wm-stockwork, bladed veins»		≪m-i sil, w-lim»	<pre>«tr pyrol/psilo»</pre>	
		80.6-81.1	1			
-		-m-stockwork, bladed veins		- m-sil, w-lim	- tr pyrol/psilo	
l		81.1-81.9 - w-stockwork		- w-sil		
		81.9-82.4		- W-S((
- 1		- m-stockwork, bladed veins 82.4-82.6				
		- bladed vein bx		- i-sil		
		82.6-83.5		1 310		
		- w-m stockwork, banded veins ର ୍ଷୟ3.5-84.2‡ «hydrothermal bn»	60			
		-white banded and bladed vein, resilicified,		«i-sil»		
		weakly brecciated				
		484.2-85.2} «w-stockwork»		«w-sil, w-lim»		
				85.2-86.1 s-i arg		
		486.1-89.3 «m stockwork and blading»	! !	«w-m sil, w-lim»		
		Too. 1 57.5 Will Stockwork and praditing"		-possible amethyst. Silicification		
		190 7 90 71 historia		is white to dark grey		
		89.3-89.7 whithermal vn» white semi-massive, weakly banded but overprinted		«x-sil»		
		by silica. Selvages are brecciated				
		{89.7-105.3} ≪m-s stockwork + vn»				
		89.7-90.6 m-s stockwork	l	«m-x sil, m-lim» - m-sil, w-m lim	1	
		90.6-93.3 m-s bladed stockwork		- m-sil, m-s arg		
		93.3-93.5 h'thermal vn, weakly banded overprinted	ĺ	- x-sil		
		by silica 93.5-94.6 m-s stockwork				
		94.6-95.8 m-stockwork	1	- m-sil, s-arg, m-lim - i-arg, w-m sil		
		95.8-105.3 m-s stockwork, local bladed sil veins		- m-s sil, w-lim		
	•	to 3 cm	i	,		

HOLE NUMBER: WF-92-21

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
·		105.3-105.6 «sil bx» -possibly fault bx		«x-sil»		
105.60 TO 106.40	«FAULT BX»	Colour: black Grain Size: var. Clay rich gougy material with subangular to subrounded fragments		«s-clay»		
106.40 TO 106.90	«TUFFACEOUS SILTSTONE»	Colour: green Grain Size: f.gr. Fine grained unbedded chloritic, pyritic tuffaceous siltstone		«s-chl»	«5-10% v.f.gr. py»	
106.90 TO 115.80	«LITHIC CRY STAL TUFF»	Colour: black Grain Size: var. Consists of angular volcanic (mainly rhyolite) fragments (up to 5 cm)in a tuffaceous matrix consisting of crystals and ash sized lithic clasts .Lower 5m of interval is rubbly (fault ?). Abundant vitric shards noted. Possible flattened pumice.		«w-chl»		106.9-108.4: 50% recovery
115.80 TO 143.30	«LAPILLI TU FF»»	Colour: grey Grain Size: var. Lapilli sized lithic fragments in a grey fine to medium grained tuffaceous matrix. Frags are subrounded to subangular and flattened in a number of places. Minor welding textures are seen as are eutaxitic and devitrification textures {135.6-135.7} «Hand sample» QFP rhyolite lapilli. 138.4 welding @	40	Minor pyrophyllite on some fracturs	«5% diss py»	Hand sample at 135.6m. QFP rhyolite lapilli are conspicuous. Could be a facies equivalent of the massive rhyolite unit.
143.30 TO 146.40	«MAFIC DYKE	Colour: green Grain Size: v.f.gr. Massive, dark green, v.f.gr. structureless unit that may be a mafic (microdioritic) dyke. Felty groundmass possibly made up of f.gr. feldspars, Occasional 1 mm euhedral feldspar phenocrysts Upper and lower contacts are faulted				
146.40 TO 149.40	«WELDED TUFF»	Colour: grey Grain Size: m.gr. Dark grey with occasional chloritic veinlets strongly, welded tuff showing good eutaxitic structure. Occasional lapilli size fragments				

DATE: 14-October-1993

HOLE NUMBER: WF-92-21

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
	E.O.H.	Welding fabric a 148.1m	25			

From

(m)

4.50 8.80 29.00

To

(m)

6.00 10.30

30.50

34.30 35.30

39.00 40.50

Length

1.50 1.50 1.50 1.00

1.50

(m)

Sample

36520 36521

36522

36523

36524

ASSAYS

Ag

ppm

0.3 0.1

0.6 0.6 0.3

As

ppm

10

23

17

5

22

Вa

ppm

21 10

14 15 13

Cu

ppm

Fe

1.39 1.07

0.87

0.83

%

ASSAY SHEET

Au

ppb

24

Нg

ppb

Aug/t

g/t

%

0.04 0.37

0.1

0.03

0.01

GEOCHEMICAL

Sb

ppm

Zn

ppm

101

87

63 60

105

Pb

ppm

14 10

13

9

DATE: 14-October-1993

COMMENTS

			1															
36525 36526	40.50 40.80	40.80 42.20	0.30 1.40	0.7 0.4	24 23	15 20	5 4	0.88 1.15	10 8	1	68 127	60 24	30 35	0.01				
36527 36528	45.00 46.50	46.50 48.00	1.50	0.7	21 27	11 26	4	0.74 1.08	9 16	1	102 113	166 31	30 25	0.01	ļ			
36529	48.80	49.60	0.80	10.9	22	26	5	0.63	20	1	74	349	35	0.01	1			
36530 36531	57.40 59.10	59.10 59.40	1.70 0.30	0.7 4.3	20 15	34 17	5 4	0.84 0.35	2 5	1 1	99 21	54 976	25 20	0.01	0.95			į
36532 36533	59.40 64.40	60.90 65.20	1.50	0.8 1.3	21 45	27 20	5 5	0.75 1.56	1 12	1	87 73	27 126	20 40	0.01				
36534	65.20	65.40	0.20	18.7	61	15	5	0.9	16	1	17	1033	25	0.24				
36535 36536	65.40 66.90	66.90 68.40	1.50	0.7 0.9	45 40	13 14	4	1.01 0.95	7 9	1 1	53 59	64 30	20 45	0.19				
36537 365 3 8	73.90 76.10	75.40 77.60	1.50 1.50	0.5 0.5	28	13	4	1	8	1	80 74	40	20 25	0.01	ĺ			
36539	77.60	79.10	1.50	1.5	22 29	24 10	5 4	1.16 0.88	10 10	1	56	36 26	20	0.02				
36540 36541	79.10 80.60	80.60 81.10	1.50	0.7	17 10	13	3	1.12 1.21	10	1	103 116	38 61	45	0.01]			
36542	81.10	81.90	0.50	0.9 1.3	19	21 50	6	1.12	10 126	ί	106	182	30 35	0.01	İ			
36543 36544	81.90 82.40	82.40 82.60	0.50	0.9 1.8	8 20	14 7	4	0.72 0.56	10 5	1	63 34	114 196	30 25	0.01				
36545	82.60	83.50	0.90	1.6	17	13	5	0.83	9	1	75	108	35	0.01 ('			
36546	83.50	84.20	0.70	0.9	13	9	4	0.52	5	į	36	149	20	0.01	ì			
36547 36548	84.20 85.20	85.20 86.10	0.90	0.7 0.6	18 30	28 27	4	1.32 0.74	6 7	1	138 62	52 47	35 30	0.01				
36549	86.10	87.60	1.50	0.9	30 22	19	5	1	6	i	115	76	25	0.01				1
36550 36551	87.60	89.30	1.70	1.7	38	19	5	0.89	2	1	99	135	15	0.01				ł
36552	89.30 89.70	89.70 90.60	0.40	7.4 2.6	19 53	10 26	4 5	0.4 1.98	2	1	29 146	54 88	20 15	0.01	İ			Į
36553	90.60	92.10	1.50	0.7	22	80	4	1.03	4	1	91	57	70	0.02	}			
36554	92.10	93.30	1.20	1.6	49	10	4	0.96	4	1	55	168	45	0.01				ı
36555 36556	93.30 93.50	93.50 94.60	0.20	2.7 1.5	40 84	9 7	5 5	1.13 1.57	3 4	1	50 110	150 107	35 10	0.01				
36557	94.60	95.80	1.20	1.7	50	11	4	0.79	8	1	25	107 7 4	15	0.02	1			i

ASSAY SHEET

Sample	From (m)	To (m)	Length (m)	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Pb ppm	Sb	Zn ppm	Au ppb	Hg ppb	S %	Aug/t g/t	
36558 36559	95.80 97.30	97.30 98.80	1.50 1.50	1.4 1.1	42 46	20 16	4	0.42 1.12	5 7	1	20 43	64 127	50 35	0.01		
36560 36561 36562 36563 36564	100.30 101.80	100.30 101.80 103.30 104.80 105.30	1.50 1.50 1.50 1.50 0.50	1.1 1.6 0.9 3.3 2.5	34 23 24 31 14	13 13 13 14 25	4 46 5 5	1.75 0.78 0.61 0.56 0.58	7 5 1 1 4	1 1 1 1	87 65 67 40 41	184 97 18 68 52	25 20 35 25 30	0.01 0.01 0.02 0.01 0.02		
36565 36566 36567 36568 36569	106.40 106.90	105.60 106.40 106.90 108.40 125.90	0.30 0.80 0.50 1.50	3.1 4.8 0.1 1.3 0.1	12 29 1 14 1	41 203 685 16 17	5 9 14 5 5	0.61 1.47 5.26 1.7 1.3	2 9 1 13 8	1 1 1 1	39 110 170 110 92	57 63 221 43 121	25 30 50 45 20	0.04 0.38 1.12 0.89 0.1		

HOLF.	NI IMRER -	WF-92-21

RQD ASSAY

From	To	Length	Sum	RQD S/LX100	Number Of	Fracturs	Number Of	Veins Per	Angle	Comments
(m)	(m)	(L)	Of Length	5/LX100	Fracturs	Per Metres	Veins	Metres		
			\$>= 0.00cm					,,,,,,,		
0.00	0.00	0.00	0.00	٥	0	0	0	0	0	
4.50	6.00	1.50	89.00	****	21	14.00	9	6.00	0	
8.80		1.50	132.00	****	10	6.67	5	3.33	0	
29.00	30.50	1.50	145.00	****	.9	6.00	19	12.67	0	
34.30		1.00	62.00	****	13	13.00	13	13.00	0	
39.00 40.50	40.50 40.80	1.50	101.00	****	19 2	12.67	6	4.00	Ü	
40.80		0.30 1.40	13.00 47.00	****	22	6.67 15.71	10 8	33.33 5.71	υ n	
45.00	46.50	1.50	29.00	****	20	13.33	14	9.33	ő	
46.50		1.50	81.00	****	18	12.00	16	10.67	ñ	
48.80	49.60	0.80	78.00	****	2	2.50	17	21.25	ŏ	
57.40		1.70	0.00	0.0	21	12.35	· · · · · · · · · · · · · · · · · · ·	2.94	ŏ	
59.10	59.40	0.30	12.00	****	2	6.67	32	106.67	0	
59.40	60.90	1.50	0.00	0.0	5	3.33	41	27.33	0	
64.40	65.20	0.80	68.00	****	4	5.00	27	33.75	0	
65.20	65.40	0.20	18.00	****	1	5.00	18	90.00	0	
65.40		1.50	141.00	****	8	5.33	20	13.33	0	
66.90	68.40	1.50	138.00	****	12	8.00	12	8.00	0	
73.90		1.50	59.00	****	18	12.00	11	7.33	0	
76.10	77.60	1.50	122.00	****	11	7.33	11	7.33	0	
77.60 79.10	79.10 80.60	1.50 1.50	93.00 104.00	****	13 12	8.67	16 5	10.67	0	
80.60	81.10	0.50	48.00	****	12	8.00 2.00	9	3.33 18.00	Ö	
81.10		0.80	73.00	****	4	5.00	11	13.75	Ö	
81.90	82.40	0.50	49.00	****	1	2.00	17	34.00	ñ	
82.40	82.60	0.20	0.00	0.0	i	5.00	8	40.00	ŏ	
82.60	83.50	0.90	3.00	333.3	18	20.00	29	32.22	ŏ	
83.50	84.20	0.70	22.00	****	4	5.71	21	30.00	0	
84.20	85.20	1.00	88.00	****	7	7.00	19	19.00	0	
85.20	86.10	0.90	51.00	****	8	8.89	36	40.00	0	
86.10	87.60	1.50	94.00	****	14	9.33	44	29.33	g	
87.60	89.30	1.70	12.00	705.9	30	17.65	52	30.59	0	
89.30		0.40	40.00	****	2	5.00	12	30.00	0	
89.70		0.90	72.00	****	8	8.89	48	53.33	0	
90.60	92.10	1.50	53.00	****	9	6.00	30	20.00	0	
92.10 93.30	93.30 93.50	1.20	84.00	****	13 3	10.83	86	71.67	0	
93.50		0.20 1.10	13.00 73.00	****	.5 14	15.00 12. <i>7</i> 3	22 43	110.00 39.09	0	
94.60		1.20	68.00	****	15	12.73	43 41	34.17	0	
95.80		1.50	105.00	****	11	7.33	31	20.67	Ö	
97.30	98.80	1.50	83.00	****	16	10.67	25	16.67	0	
	100.30	1.50	84.00	****	11	7.33	23	15.33	Õ	
	101.80	1.50	78.00	****	21	14.00	35	23.33	ŏ	
	103.30	1.50	112.00	****	12	8.00	50	33.33	ō	

RQD ASSAY

From (m)	To (m)	Length (L)	Sum Of Length S>= 0.00cm	RQD S/LX100	Number Of Fracturs	Fracturs Per Metres	Number Of Veins	Veins Per Metres	Angle	Comments
103.30 104.80 105.30 124.40	105.60	1.50 0.50 0.30 1.50	0.00 0.00 30.00 45.00	0.0 0.0 ****	21 8 1 26	14.00 16.00 3.33 17.33	34 18 10 5	22.67 36.00 33.33 3.33	0 0 0	

APPENDIX B:

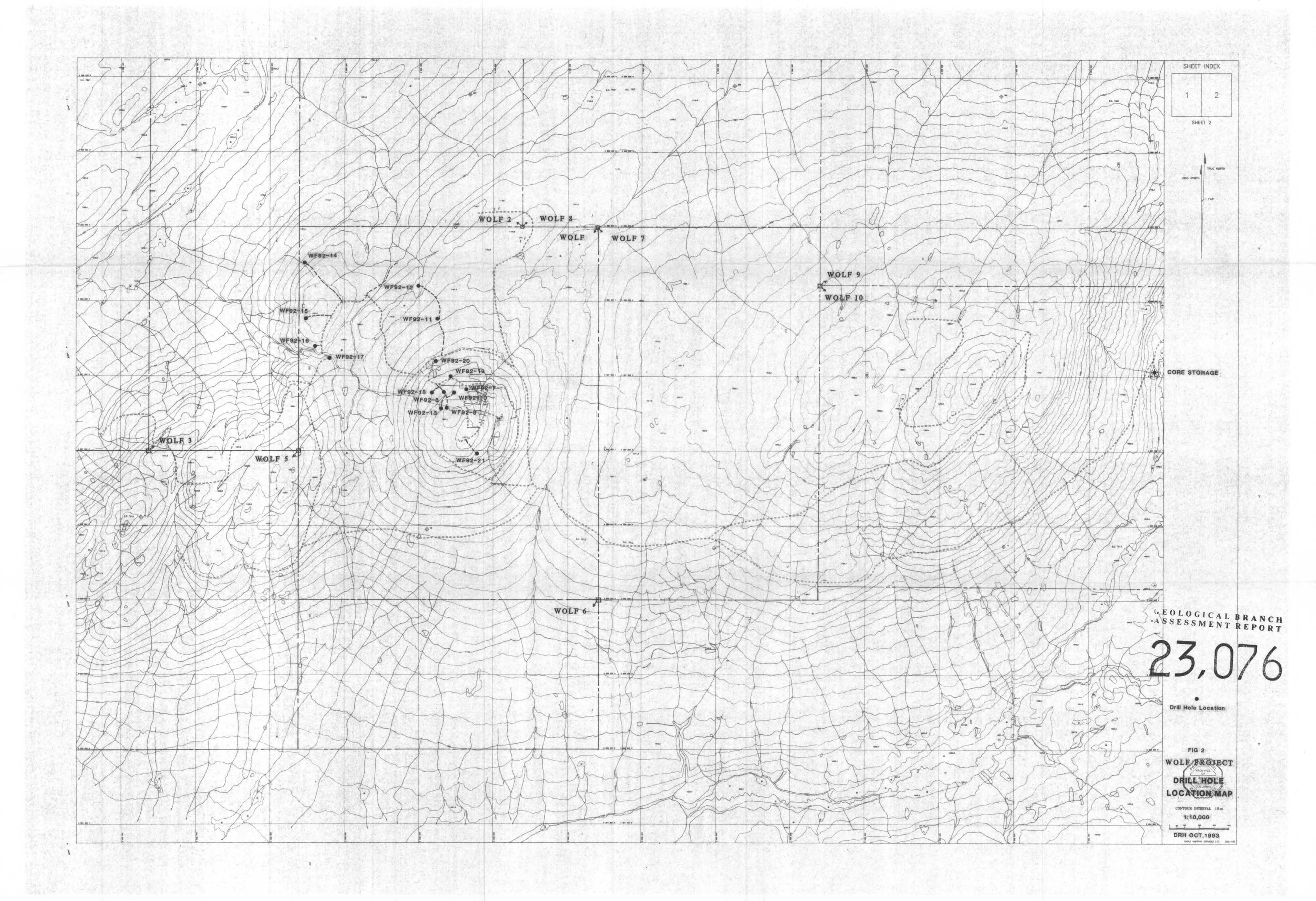
STATEMENT OF COSTS

STATEMENT OF COSTS

DIRECT DRILLING COSTS Atlas Drilling Ltd.: 2002m @ \$46.01/m		\$92,103
PERSONNEL		
Cam Clayton (Project Geologist): 43 days @ \$150/day Tara Case (Core Splitter):		\$6,450
9 days @ \$115/day Logan Kelly (Field Assistant):		\$2,185
4 days @ \$115/day		\$1,610
Jan Tindal (Cook): 43 days @ \$125/day		\$5,375
ANALYSES		
Minen Labs., North Vancouver: 709 samples (Ag, As, Ba, Cu, Pb, Sb, Zn, Au, Hg, S) @ \$32.00/sample		\$22,702
FIELD EXPENSES		
Meals and Accommodation: 119 mandays @ \$25 /day Vehicles:		\$2,975
2 4x4 vehicles - 43 days @ \$50/day each Travel Expenses:		4,300 \$233
SUPERVISION		
Dave Heberlein (Senior Project Geologist): 14 days @ \$250 /day		\$3,500
MISCELLANEOUS		\$ 250
Report Preparation: Drafting:		\$250 \$250
	TOTAL	\$141,933

APPENDIX C:

STATEMENT OF QUALIFICATIONS


STATEMENT OF QUALIFICATIONS

I, David Heberlein of 12221 Makinson Street, Maple Ridge, B.C. certify that:

- 1. I graduated from the University of Southampton, England with a B.Sc (Honours) Degree in Geology in 1980.
- 2. I graduated from the University of British Columbia with an M.Sc Degree in Geology in 1985.
- 3. I have practised my profession continuously since my graduation.
- 4. I am a Registered Professional Geoscientist of the Province of British Columbia
- 5. I am currently employed by Metall Mining Corporation. as a Senior Project Geologist.
- 6. When the work described in this report was carried out I was employed by Minniva Inc. as a Senior Project Geologist.
- Work described in this report was carried out under my direct supervision.

Date:

Signature:

