| LOG NO:                                              | NOV 2 5                                                                       | 1993                                  | RD. |
|------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|-----|
| ACTION.                                              |                                                                               | ******                                |     |
|                                                      |                                                                               |                                       |     |
| يوانين ال<br>الم الم الم الم الم الم الم الم الم الم | ي يې د مالم<br>د او د د د مالمانه د مالم<br>دو درو مهمانو دو د دو مساوله ماله | · · · · · · · · · · · · · · · · · · · |     |
| FILE NO:                                             |                                                                               |                                       |     |

م بر موجود موجود

# **GEOLOGICAL AND GEOCHEMICAL**

REPORT

#### **ON THE**

**RED BLUFF PROPERTY** 

FILMED

NORANDA EXPLORATION COMPANY, LIMITED (No Personal Liability)

**REPORT BY: RICK KEMP** 

7

**NOVEMBER, 1993** 

GEOLOGICAL BRANCH ASSESSMENT REPORT



# TABLE OF CONTENTS

| 1.0 | PROGRAM   | OBJECTIVES                        | 3  |
|-----|-----------|-----------------------------------|----|
| 2.0 | INTRODUC  | TION                              | 4  |
|     | 2.1       | Location, Access and Physiography | 4  |
|     | 2.2       | Previous Work                     | 4  |
|     | 2.3       | Owner - Operator                  | 5  |
|     | 2.4       | Claim Data                        | 5  |
| 3.0 | GEOLOGY   |                                   | 6  |
|     | 3.1       | Regional Geology                  | 6  |
|     | 3.2       | Property Geology                  | 6  |
| 4.0 | GEOCHEMI  | STRY                              | 8  |
|     | 4.1       | Soil Geochemistry                 | 8  |
|     | 4.2       | Rock Geochemistry                 | 9  |
| 5.0 | CONCLUSI  | ONS                               | 10 |
| 6.0 | RECOMME   | NDATIONS                          | 11 |
| 7.0 | REFERENCI | ES                                | 12 |

# APPENDICES

~-

| APPENDIX I   | Statement of Qualifications     |
|--------------|---------------------------------|
| APPENDIX II  | Statement of Costs              |
| APPENDIX III | Analytical Procedure            |
| APPENDIX IV  | Certificate of Analysis         |
| APPENDIX V   | <b>Rock Sample Descriptions</b> |

## FIGURES

2.0

| Figure 1 | Location Map (1:8,000,000)                              |
|----------|---------------------------------------------------------|
| Figure 2 | Claim Map (1:50,000)                                    |
| Figure 3 | Geology and Rock Sample Locations (pocket 1) (1:10,000) |
| Figure 4 | Cu Geochemistry - soils (pocket 2)<br>(1:10,000)        |
| Figure 5 | Au Geochemistry - soils (pocket 2)<br>(1:10,000)        |

# **1.0 PROGRAM OBJECTIVES**

--

- -

Between July 24, 1993 and August 1, 1993 mapping and soil geochemical surveys were completed on the Dak 11 and MB 2 claims. The purpose of the work was to characterize and delineate the style and extent of alteration/mineralization and associated copper-gold soil results related to an elongate north-south trending body of feldspar porphyry/microdiorite.

## 2.0 INTRODUCTION

#### 2.1 Location, Access and Physiography

The property is located 10 km northeast of the townsite of Kitsault in the Kitsault River Valley (Figure 1). Access is currently gained by helicopter with bases located at Stewart and Meziadin, B.C. A cat road, constructed in 1966, crosses the property along the Dak River and could be upgraded to provide access to tidewater at Alice Arm at reasonable costs. The property lies within the rugged Boundary ranges of the Coast Mountains. Elevations on the property range from 500 to 3500 feet and most of the property can be traversed fairly easily. Vegetation consists of mature hemlock and balsam with numerous windfalls and areas of thick coastal undergrowth.

#### 2.2 PREVIOUS WORK

The Alice Arm area has been actively prospected since the early 1900's with numerous occurrences located within a narrow north trending belt following the Kitsault River. Most of these deposits are structurally controlled silicified zones or quartz veins mineralized with one or more of silver, gold, copper, lead, zinc.

1916: Trenching, open adits, minimal drifting, 2 DDHs.

1948: Government geological mapping.

1966-1968: Northlodge Copper Mines Ltd. and Kennco Exploration Ltd. reconnaissance mapping, soil geochemistry, line cutting.

1980-1983: Amax Exploration Ltd. reconnaissance soil geochemistry and mapping.

1992: Noranda Exploration Company, Limited soil geochemistry, prospecting, mapping.



## 2.3 OWNER-OPERATOR

.

7

The Red Bluff property comprises 119 contiguous units of modified grid claims as shown in Figure 2 and listed below. The Hem claims were staked in 1992 for Hemlo Gold Mines Inc. and are not part of the Hemlo-Boyle option agreement. A Statement of Costs is provided in Appendix II.

## 2.4 CLAIM DATA

| NAME         | # UNITS | RECORD NO. | EXPIRY DATE          |
|--------------|---------|------------|----------------------|
| STAR 3       | 15      | 251519     | SEPTEMBER 26, 1994 * |
| STAR 4       | 10      | 251520     | SEPTEMBER 26, 1994 * |
| DAK 11       | 20      | 253639     | AUGUST 22, 1994 *    |
| DAK 13       | 10      | 253649     | MARCH 01, 1994       |
| MB 2         | 20      | 251516     | SEPTEMBER 26, 1994 * |
| DEVIL'S CLUI | B 1     | 251507     | SEPTEMBER 19, 1997   |
| RED BLUFF    | 1       | 251508     | SEPTEMBER 19, 1997   |
| ALBION       | 1       | 251509     | SEPTEMBER 19, 1997   |
| SUNBEAM      | 1       | 251510     | SEPTEMBER 19, 1997   |
| SUB-COLLEC   | TOR 1   | 253809     | MARCH 22, 1998       |
| HEM 1        | 20      | 310613     | JUNE 24, 1994        |
| HEM 2        | 15      | 310614     | JUNE 24, 1994        |
| STANDARD     | 1       | 251141     | JANUARY 20, 1994     |
| STANDARD N   | NO. 1 1 | 251142     | JANUARY 20, 1994     |
| STANDARD N   | NO. 2 1 | 251143     | JANUARY 20, 1994     |
| STANDARD N   | NO. 3 1 | 251144     | JANUARY 20, 1994     |

\* The expiry dates as listed will be in effect upon approval of this work.



# 3.0 GEOLOGY

## 3.1 Regional Geology

The property lies at the margin between the Intermontaine Belt and the Coast Plutonic Belt. The region is underlain by sedimentary and volcanic rocks of the Jurassic Hazelton Group and associated intrusive rocks presumed to be Jurassic.

## 3.2 Property Geology

The property was mapped at 1:10,000 scale using flagged grid lines 100 to 200 m apart with stations every 25 m for control. The mapping was an extension (to the south) of the work conducted in 1992 by M. Savell.

The property is underlain by an elongate hornblende-feldspar diorite intrusion in fault contact with sediments and minor volcanics of the Hazelton Group. Unit descriptions are as follows:

#### <u>Lithology</u>

- Unit 1: Argillites, wackes (1a) and conglomerates (1b) of unit 1 crop out in the west and east portions of the property as small cliff forming units. Conglomerates and pebbly sandstones overly black argillites and contain chips and pebbles of argillite.
- Unit 2: Massive andesitic fine-grained rocks (flows?) crop out in one location (1993 mapping) as a small inconspicuous knob. Contact relations with of unit 1 are unclear.
- Unit 3: Blocky to locally strongly fractured diorite (microdiorite, feldspar porphyry, hornblende-feldspar porphyry) underlies the central portion of the property as a north-south intrusive body 100 to 500 m wide. The outer portion of the composite(?) intrusion is dominated by fresh feldspar porphyry.
- Unit 4: Late dykes, believed to be Tertiary, occur as narrow steeply east dipping bodies. The dykes have a diabasic texture, are black and feldspar phyric.

## <u>Structure</u>

Structurally the microdiorite body is interpreted to be mainly in fault contact with the adjacent sediments and volcanics. North-northeast and north-northwest trending faults appear to control the distribution of the microdiorite. Later northwest trending faults appear to offset the microdiorite with sinstrial movement.

#### <u>Alteration</u>

.

Hydrothermal alteration was mainly observed within the microdiorite intrusive and the adjacent units near its contact. The core of the microdiorite intrusion is weakly to intensely altered to quartz-sericite-pyrite  $\pm$  carbonate assemblages and moderate to strong fracture densities (<1 fracture/10cm) whereas the outer margins are characterized by sericite-pyrite  $\pm$  quartz and weak to blocky fracture densities (>1 fracture/20cm).

#### **Mineralization**

The altered microdiorite body contains <1 to 8% disseminated pyrite in the rocks south of line 11300N (area mapped in 1993). Chalcopyrite was observed in one location (10100N; 11300E) where it occurs as fracture coating disseminations within a piece of angular float (sample 489-C a resample from 1992 sample 127-G). Savell (1992) provides descriptions of the Red Bluff, San Diego and Dak showings (north of the area investigated in 1993).

## 4.0 GEOCHEMISTRY

#### 4.1 Soil Geochemistry

A compass chain and flagged grid was established to the south of the 1992 geochemical grid to better define the limits of anomalous copper-gold geochemistry.

A base line was established at 115+50E on L.101+00N orientated at 180° Az. Wing lines were established on 400 m centres with sample sites every 50 m. In addition to the southern grid extension, intermediate grid lines were established at a spacing of 200 m in an area south of the Dak River where anomalous Cu-Au results were returned from the 1992 soil survey. Pre-existing soil lines were extended to close off open-ended Cu-Au anomalies.

Soil samples were collected from the lower B to upper C soil horizon to depths of 90 centimetres with a mattock and placed in kraft soil bags. Sample preparation and analysis was completed at the Noranda Delta Laboratory. Analytical procedures described under Appendix I.

A total of 8.75 km of new grid was established in 1993 over which one hundred and thirty-four (134) B horizon soil samples and 3 silt samples were collected. Coppergold soil results are plotted on Figures 4 and 5 with geochemical results attached under Appendix V.

Results of the 1993 geochemical survey, south of the Dak River, reflects a positive correlation between anomalous copper-gold results and the underlying altered and fault bounded microdiorite. The main Cu-Au zone measures 600 m wide and 1200 m long oriented in a north-south direction with best results reporting up to 3063 ppm Cu and 2200 ppb Au. Some down slope dispersion is suspected along the western edge of the main Cu-Au trend. Several multi-station, single line anomalies occur south of the main Cu-Au soil anomaly reflecting the southern extension of the main body of altered microdiorite.

#### 4.2 Rock Geochemistry

A total of thirty-two (32) rocks were collected over the grid area and submitted for 28 element ICP analysis (see appendix III for analytical procedures). The purpose of the rock sampling was to detect significant or elevated concentrations of copper and gold. The altered pyritic microdiorite unit accounted for seventy-five percent of the samples.

Rock geochem results include copper values ranging from 13 to 9429 ppm with most values < 500 ppm and gold values ranging from 5 to 1600 ppb with most values < 100 ppb (see appendix IV & V for rock descriptions and results respectively).

#### 5.0 CONCLUSIONS

Based on the work completed on the Red Bluff property south of the Dak river, the following conclusions can be made:

1) The "microdiorite" of unit 3a is highly altered at its core. Alteration consists of strong quartz-sericite-pyrite  $\pm$  carbonate zone flanked by a weaker sericite-pyrite  $\pm$  quartz zone.

2) The microdiorite intrusion is interpreted to be controlled and locallized by northnorthwest and north-northeast trending faults.

3) The alteration and mineralization within the microdiorite may be an expression of an outer pyritic shell - the upper portion of a deeper porphyry system.

4) Steep west-facing slopes (up to 55°) have enhanced the Cu and Au soil geochemical signatures south of the Dak River. It is believed concentrations have been elevated toward the base of the slope.

#### 6.0 **RECOMMENDATIONS**

.....

It is recommended a IP survey be carried out over the best mineralization and soil geochemistry. If warranted, two drill holes are proposed to test the near-surface potential of the property for a porphyry Cu-Au deposit.

# 7.0 REFERENCES

Savell, M., 1992. Geological and Geochemical Report on the Red Bluff Property. BC Assessment Report.

-

# **APPENDIX I**

----

# **STATEMENT OF QUALIFICATIONS**

#### STATEMENT OF QUALIFICATIONS

I, Richard Kemp, of the City of Vancouver, Province of British Columbia, do hereby certify that:

- I am a geologist, residing at #111 2455 York Avenue, Vancouver, B.C.
- 2) I am a graduate of the Haileybury School of Mines (1974) Mining Technician Diploma and hold a B.Sc. Geology degree from Lakehead University (1981).
- 3) I have worked in mineral exploration in Canada and internationally since 1974 as a mining technician and since 1981 as a geologist.
- 4) The work described in this report was conducted under my supervision and I have prepared this report based on the field observations of those contracted by Noranda Exploration Company, Limited.
- 5) I have been continuously employed by Noranda Exploration Company, Limited since 1982.

6) I have no interest in the property nor do I expect to receive any. Richard Kemp

# **APPENDIX II**

. ~

# STATEMENT OF COSTS

| Salaries: | 7 days at \$375/day (R. Kemp)<br>7 days at \$325 (M.J. Gray)<br>(July 24th to August 1st) |             |             |
|-----------|-------------------------------------------------------------------------------------------|-------------|-------------|
|           | Total:                                                                                    |             | \$<br>4900  |
| Travel:   | From Vancouver                                                                            |             | \$<br>1400  |
|           | Helicopter                                                                                |             | \$<br>3000  |
| Food:     | Camp Food                                                                                 |             | \$<br>500   |
| Analysis: | Rocks- 32 at 13.50 ea                                                                     |             |             |
|           | Soils-132 at 13.50 ea<br>Total:                                                           |             | \$<br>2214  |
| Report:   | Writing- 2 days at \$375/day                                                              |             |             |
|           | Typing- 1 day at \$225/day                                                                |             |             |
|           | Total:                                                                                    |             | \$<br>1125  |
|           |                                                                                           | Grand Total | \$<br>13139 |

# APPENDIX III

# **ANALYTICAL PROCEDURES**

، الحين

يعين ا

#### ANALYTICAL PROCEDURE

#### Soils, Silts, Rocks

Samples are dried and screened to -80 mesh. Rock samples are pulverized to -120 mesh. A 0.2 gram sample is digested with 3 ml of  $HCIO_4/HNO_3$  (4 to 1 ratio) at 203°C for four hours, and diluted to 11 ml with water. A Leeman PS 3000 is used to determine elemental contents by I.C.P. Note that the major oxide elements and Ba, Be, Ce, Ga, La and Li are rarely dissolved completely from geological materials with this acid dissolution method.

For Au analyses, a 10.0 gram sample of -80 mesh material is digested with aqua regia and determination made by A.A.

#### Heavy Mineral Concentrates

The entire concentrate is digested in aqua regia solution, and elemental concentrations of Au, Ag, Cu, Pb, and Zn are determined by A.A.

**APPENDIX IV** 

**CERTIFICATES OF ANALYSIS** 

# NORANDA DELTA LABORATORY

Geochemical Analysis

.

| Proje<br>Matei      | ct Nan<br>rial: | nc & l  | No.:        | 1        | RED B<br>3 Silts , 1 | LUFF<br>146 <b>S</b> o | - 181<br>ils & 4 | l<br>41 Rx | ĩ         |           | 1         | Geol.<br>Sheet      | R.K.<br>1 of | 5        |             |            | Date<br>Date | receiv<br>comp | ed:<br>eted: | AUG.<br>AUG. | 06<br>25   |                  | LAB (    | CODE         | <u>.</u> | 9308 | -01      | 0            |
|---------------------|-----------------|---------|-------------|----------|----------------------|------------------------|------------------|------------|-----------|-----------|-----------|---------------------|--------------|----------|-------------|------------|--------------|----------------|--------------|--------------|------------|------------------|----------|--------------|----------|------|----------|--------------|
| Rema                | rks:            |         | •           | Sample   | screene              | d@                     | 35 MES           | SH (0.     | 5 m m )   |           |           |                     |              |          |             |            |              |                |              |              |            |                  |          |              |          |      |          |              |
|                     |                 |         | ¤           | Organi   | c, ∆Hu               | mus, S                 | Sulfide          | 8          |           |           |           |                     | Au – 1       | 0.0 g sa | mple dige   | sted wil   | th aqua      | -regia         | and det      | ermine       | d by A.    | 4. (D.L.         | 5 PPB;   | )            |          |      |          |              |
| ICP = 0             | .2 g sar        | nple di | gested v    | vith 3 m | I НСЮ <sub>4</sub> / | HNO3                   | (4:1) at         | 203 °C     | for 4 ho  | ours dilu | ited to 1 | 0 ml w              | ith wate     | r. Leem  | an PS300    | 0 ICP d    | letermi      | ned ele        | mental o     | ontenti      |            |                  |          |              |          |      |          |              |
| N.B. TI             | ne majo         | r oxide | elemen      | ts and E | Ba, Be, C            | e, La, Li              | , Ga ar          | e rarel    | y dissolv | ed com    | pletely f | rom ge              | ological     | materi   | als with th | nis acid   | dissolu      | tion me        | thod.        |              |            |                  |          |              |          |      |          |              |
|                     |                 |         |             |          |                      |                        |                  |            |           |           |           |                     |              |          |             |            |              | N/-            | 16-          | N/-          |            | NC.              | D        | DL           |          |      |          | 7.           |
| SAMPLE              | Au              | Ag      |             | As       | Ba                   | Be                     | Bi               | Ca         | Cd        | Ce        | Co        | Cr                  |              | PC or    | K<br>ac     | La         |              | Mg             | MD           | MO           | rva<br>oz. | NI               | ମ<br>ଜୁନ | 10<br>00     | 10       | 96   | •<br>nnm | 2.44         |
| No.                 | ppb             | ppm     | <u>%</u>    | ppm      | ppm                  | ppm                    | ppm              | 70         | ppm       | ppm       | ppm       | ppm                 | ppm          | 70       | 70          | <u>ppm</u> | <u>ppm</u>   | 70             | 228          | <u>ррш</u>   | 0 03       | <u>ppm</u><br>14 | 0.00     | <u>, hhm</u> | 8        | 0.12 | 168      | 159          |
| 8100N-11500E BC     | 15              | 0.2     | 5.63        | 7        | 140                  | 0.9                    | 2                | 0.06       | U.2       | 2A        | 8         | 31                  | - 60         | 1.30     | 0.20        | 12         |              | 0.20           | 457          | 10           | 0.05       | 17               | 0.09     | š            | 10       | 0.12 | 177      | 58           |
| 11550 в             | 40              | 0.4     | 6.27        | 12       | 418                  | 0.4                    | 2                | 0.05       | 0.2       | 17        | 0         | 44                  | 19/          | 0.89     | 0.75        | 12         | 10           | 0.03           | 437          | 14           | 0.02       | 6                | 0.11     |              | 10       | 0.05 | 181      | 153          |
| 11600 B             | 10              | 1.6     | 8.28        | 83       | 946                  | 1.1                    | 5                | 0.04       | 0,2       | 33        | 18        | 2                   | 31           | 1.38     | 1.45        | 12         | 44           | 0.80           | 243          | <u></u>      | 0.03       | 10               | 0.14     | **           | 41       | 0.05 | 100      | 112          |
| 11650 в             | 5               | 0.4     | 4.30        | 19       | 416                  | 0.4                    | 5                | 0.71       | 0.2       | 35        | 6         | 71                  | 40           | 6.63     | 0.52        | 13         | 31           | 0.59           | 1071         | 4            | 0.05       | 19               | 0.03     | ر<br>۱۶      | - 41     | 0.15 | 122      | 172          |
| 8100N-11650E Dup? B | 5               | 0.2     | 3.28        | 18       | 543                  | 0.5                    | 5                | 1.98       | 0.6       | 43        | 12        | 15                  | 76           | 3.31     | 0.59        | 16         | 49.          | 0.63           | 18/1         |              | 0.04       | 11               | 0.14     | - 15         | 60       | 0.09 | 125      | 174          |
|                     |                 |         |             |          |                      |                        |                  |            |           |           |           |                     |              |          |             |            |              |                |              |              |            | 10               | 0.17     |              | - 26     | 0.20 | 157      | 154          |
| 8100N-11700E B      | 5               | 0.4     | 5.88        | 23       | 531                  | 1.1                    | 5                | 0.26       | 0,3       | 48        | 17        | 25                  |              | 4.99     | 0.29        | 26         | 8/           | 0.77           | 1048         | 1            | 0.04       | 10               | 0.17     | 14           | 16       | 0.20 | 240      | 101          |
| 8100N-11750Е в      | 5               | 0.2     | 4.25        | 36       | 305                  | 0.7                    | 5                | 0.28       | 0.4       | 35        | 22        | 14                  | 108          | 7.13     | 0.25        | 16         | 59           | 1.31           | 1648         | 0            | 0.04       | 8                | 0.12     | 13           | 10       | 0.17 | 240      | 101          |
| 8420N-11650E B      | 120             | 1.2     | 3.94        | - 38     | 1463                 | 0.3                    | - 5              | 0.09       | 0.2       | 40        | 5         | 2                   | 81           | 9.44     | 1.43        | 23         | 4            | 0.30           | 162          | 8            | 0.04       | 1                | 0.40     | 41           | 20       | 0.03 | 100      | 101          |
| 8500N-11500Е в      | 35              | 0.2     | 4.34        | 24       | 456                  | 0.8                    | 5                | 0.24       | 0.5       | 39        | 18        | 64                  | 177          | 4.47     | 0.75        | 20         | 43           | 1.05           | 739          | 1            | 0.03       | 48               | 0.10     |              | 23       | 0.09 | 120      | 150          |
| 8500N-11550Е в      | 140             | 0.4     | 5.19        | 30       | 1061                 | 0.7                    | 5                | 1.02       | 0.2       | 49        | 19        | 19                  | 2922         | 6.69     | 1.29        | 27         | 32           | 0.81           | 880          | 27           | 0.04       | 17               | 0.15     | 12           | 52       | 0.06 | 1/2      | 108          |
|                     |                 |         |             |          |                      |                        | -                |            |           | -         | ~         | ,                   | -            | 0.41     | 1 17        | 10         |              | D 40           | 207          |              | 0.02       | 3                | 0 12     | 11           | 7        | 0.05 | 206      | 57           |
| 8500N-11600E B      | 310             | 0.8     | 5.68        | 62 :     | 819                  | 0.3                    | 5                | 0.08       | 0.2       | 20        | ~         | 2                   | 209          | 9.41     | 1.17        | 12         | 11           | 0.48           | 201          | 11           | 0.02       | 3                | 0.12     | 57           | 5        | 0.05 | 200      | 110          |
| 11650 B             | 700             | 3.6     | 6.60        | 99       | 743                  | 0.6                    | 5                | 0.05       | 0.3       | 25        | 24        | 1                   | 1903         | 9.98     | 1.02        | 13         | 39           | 0.70           | /48          | 11           | 0.02       | 4                | 0.20     | 17           | · .      | 0.05 | 100      | 101          |
| 11700 в             | 70              | 1.2     | 9.16        | 42       | 1057                 | 1.0                    | 10               | 0.02       | 0.5       | 33        | 18        | 11                  | 306          | 13.51    | 1.35        | 12         | <i>3</i> 0   | 0.40           | 502          | 0            | 0.05       | 9                | 0.20     | 14           | 10       | 0.05 | 241      | 171          |
| 11750 в             | 5               | 0.8     | 9.87        | 69       | 1364                 | 0.8                    | 5                | 0.04       | 03        | 28        | 14        | 7                   | 49           | 8.28     | 1.43        | 12         | <u></u>      | 0.39           | 0/0          | 1            | 0.05       | 10               | 0.17     | 10           | 10       | 0.07 | 190      | 160          |
| 8500N-11800Е в      | 35              | 1.6     | 6.76        | 738      | 103                  | 0.9                    | 40               | 0.02       | 1.1       | - 24      | 15        | 52                  | <u></u>      | 15.31    | 0.14        | 13         | - 21         | 0.19           | 549          | •            | 0.01       | 10               | 0.15     | ्रा          | 4        | 0.07 | 100      | 100          |
|                     |                 |         | <b>-</b> 00 |          | e0.4                 |                        | ,                | 0.10       |           | - 24      | 10        | 10                  | 100          | 7 4 1    | 0.51        | 14         | 71           | 1 20           | 596          | 1            | 0.03       | Q                | 0.11     | ς.           | 0        | 0 14 | 347      | 120          |
| 8500N-11850E B      | 5               | 0,2     | 7.00        | 11       | 581                  | 0.6                    | Ş                | 0.10       | 0.2       | 20        | 12        | 19                  | 149          | 1.01     | 0.51        | 14         | 17           | 1.20           | 164          | 5            | 0.03       | 18               | 0.11     | š            | 17       | 0.17 | 218      | 82           |
| 8900N-11350E B      | 25              | 0.2     | 4.40        | 26       | 2A3                  | 0.3                    | 2                | 0.07       | 0.4       | 29        | 2         | 09                  | 107          | 0.20     | 0.51        | 15         |              | 0.40           | 275          | - <b>-</b>   | 0.03       | 40               | 0.11     | 14           | 14       | 0.13 | 166      | 153          |
| 11400 в             | 15              | 1.4     | 6.40        | 29       | 254                  | 0.8                    | 2                | 0.06       | 0.4       |           | 10        | /0                  | 13/          | 7.09     | 0.31        | 13         |              | 0.75           | 213          | <u></u>      | 0.05       | 40               | 0.15     |              | 6        | 0.15 | 288      | 82           |
| 11450 в             | 5               | 0.6     | 3.87        | 13       | 128                  | 0.4                    | 2                | 0.05       | 0.2       | 18        | y<br>r    | 45                  | 100          | 1.45     | 0.43        | 9          | 20           | 0.00           | 202          |              | 0.02       | 12               | 0.03     | 6            | 12       | 0.10 | 150      | 85           |
| 8900N-11500E B      | 35              | 0.2     | 6.75        | 12       | 308                  | 0.4                    | 5                | 0.05       | 0,2       | 1/        | 2         | 41                  | 131          | 0.04     | 0.43        | 9          | သ            | 0.40           | 443          | •            | 0.02       | 15               | 0.14     | v            | 12       | 0.11 | 1.50     | , <b>Q</b> , |
|                     | •               |         |             | ~        |                      |                        | ~                | 0.05       |           | 42        | 20        | 24                  | 105          | 1.00     | 1.60        | 17         | 40           | 0.96           | 1947         | •            | 0.04       | 22               | 0.14     | Q            | 48       | 0.08 | 152      | 180          |
| 8900N-11530E        | - 30            | 0.2     | 5.27        | 21       | 653                  | 0.7                    | 2                | 0.85       | 0.5       | 42        | 20        | - <u>- 30</u><br>10 | 195          | 4.00     | 1.59        | 17         | 4V<br>2      | 0.00           | 1047         | - <b>†</b>   | 0.04       | 35               | 0.17     | 4            | 10       | 0.05 | 20       | 20           |
| 11550 *A            | 10              | 1.0     | 1.95        | 6        | 100                  | 0.2                    | 2                | 0.07       | 0.2       | 14        | 1         | 12                  | 20           | 1.55     | 0.14        |            |              | 0.05           | 120          | 1            | 0.01       |                  | 0.12     | 7            | 11       | 0.05 | 245      | 70           |
| 11600 в             | 5               | 0.8     | 4.11        | 17       | 148                  | 0.3                    | 5                | 0.05       | 0,2       | 22        | 4         | 54                  | 39           | 0.10     | 0.27        | 11         |              | 0.25           | (20          | 1            | 0.02       | 2                | 0.00     | 6            |          | 0.10 | 172      | A1           |
| 11650 в             | 80.             | 1.0     | 6.32        | 42       | 1088                 | 0.4                    | 5                | 0.05       | 0.2       | 21        | 2         | 4                   | 260          | 9.70     | 0.96        | 14         | , y          | 0.40           | 0.00         | 4/           | 0.03       | 2                | 0.29     | 15           | 21       | 0.04 | 170      | 62           |
| 8900N-11700Е в      | 160             | 2.2     | 5.95        | 60       | 734                  | 0.4                    | 5                | 0.02       | 0.2       | 26        | 4         | 15                  | 125          | 11.67    | 0.99        | 14         | 8            | 0.26           | 242          | , TO         | 0.00       | 5                | 0.20     | 10           |          | 0.00 | 140      | 03           |
|                     |                 |         |             |          |                      |                        |                  |            |           |           |           |                     |              |          |             |            |              | 0.00           | 1000         |              |            | 22               | 0.14     |              | 24       | 0.12 | 107      | 1.54         |
| 8900N-11850Е в      | 5               | 0.4     | 5.41        | 23       | 389                  | 0.7                    | 5                | 0.32       | 0.7       | 39        | 20        | 45                  | 108          | 5.91     | 0.79        | 15         | 65           | 0.76           | 1090         | 3            | 0.04       | 22               | 0.14     | 11           | 24       | 0.13 | 127      | 124          |
| 11900 B             | 5               | 0.6     | 5.00        | 28       | 516                  | 0.4                    | 5                | 0.05       | 0.2       | 25        | 6         | 52                  | 59           | 7.91     | 0.77        | 11         | 48           | 0.22           | 214          | 2            | 0.04       | 11               | 0.12     | 21           | 10       | 0.10 | 134      | 108          |
| 11950 в             | 5               | 0.6     | 5.65        | 17       | 298                  | 0.5                    | 5                | 0.03       | 0.2       | 25        | 7         | 62                  | 69           | 6.50     | 0.52        | 12         | 44           | 0.44           | 157          | 2            | 0.03       | 15               | 0.08     | 7            | 8        | 0.14 | 220      | 88           |
| 12000 B             | 5               | 0.6     | 4.17        | 13       | 93                   | 0.2                    | 5                | 0.03       | 0.2       | 14        | 6         | 10                  | 83           | 5.44     | 0.20        | 9          | 11           | 0.27           | 123          | · : 1.       | 0.02       | 1                | 0.08     | 2            | 7        | 0.10 | 314      | 46           |
| 8900N-12050Е в      | 5               | 0.4     | 7.02        | 9        | 247                  | 0.9                    | 5                | 0.06       | 0,2       | 19        | 15        | 14                  | 187          | 9.70     | 0.41        | 13         | 94           | 0.56           | 976          | 1            | 0.02       | 3                | 0.16     | 3            | 9        | 0.09 | 379      | 120          |
|                     |                 |         |             | :        |                      | -                      |                  |            |           |           |           |                     |              |          |             |            |              |                |              |              |            |                  |          |              |          | 0.00 |          | 102          |
| 9165N-11550E silt   | 15              | 0.2     | 5.56        | 25       | 674                  | 0.7                    | 5                | 0.77       | 0.5       | 41        | 20        | 25                  | 217          | 4.84     | 1.63        | 17         | 43           | 0.96           | 1665         | 1            | 0.05       | 29               | 0.14     | 9            | 48       | 0.09 | 167      | 186          |
| 9300N-11550Е в      | 10              | 0.8     | 5.52        | 27       | 267                  | 0.5                    | 5                | 0.05       | 0.2       | 29        | 7         | 90                  | 81           | 8.54     | 0.50        | 14         | 27           | 0.50           | 304          | 3            | 0.03       | 18               | 0.15     | 8            | 14       | 0.15 | 214      | 102          |
| 11600 B             | 15              | 0.2     | 7.77        | 14       | 249                  | 0.7                    | 5                | 0.09       | 0,2       | 27        | 8         | 47                  | 134          | 7.23     | 0.43        | 13         | 38           | 0.43           | 261          | 1            | 0.03       | 21               | 0.14     | 9            | 11       | 0.12 | 123      | 118          |
| 11650 в             | 5               | 0.4     | 4.98        | 17       | 317                  | 0.3                    | 5                | 0.06       | 0.2       | 26        | 5         | 69                  | -40          | 6.80     | 0.60        | 14         | 9            | 0.39           | 159          | 3            | 0.03       | 9                | 0.16     | _6           | 14       | 0.25 | 259      | 68           |
| 9300N-11675Е в      | 185             | 4.4     | 7.23        | 224      | 528                  | 0.6                    | 5                | 0.06       | 0.2       | 25        | 6         | 27                  | 109          | 8.24     | 0.67        | 13         | 31           | 0.35           | 321          | 4            | 0.03       | 6                | 0.19     | - 22         | 11       | 0.09 | 195      | 127          |

26/08 GP

T.T.

P Pb Sr Ti V Zn 9308-006 Mg Mn Mo Na Ni Ca Cd Ce Co Cr Cu Fe K La Li T.T. SAMPLE Aш Ag AI As Ba Be Bi % % ppm ppm % ppm ppm % ppm % ppm ppm % ppm ppm Pg. 2 of 5 % ppm ppm ppm ppm % ppm ppm ppm ppm ppm No. No. ppb ppm 69 5 0.03 6 0.13 17 0.14 202 5 0.14 53 8.03 0.43 12 11 0.25 141 6 28 279 0.3 0.2 23 4 41 38 9300N-11700E B 15 0.8 4.39 185 61 1 0.35 31 0.17 18 4.60 0.15 7 10 0.14 139 1 0.03 4 39 11800 B 0.2 8.43 23 127 0.6 5 0.21 0.3 21 3 6 5 2 25 0.13 219 37 1 0.13 5 3 33 5.35 1.29 8 6 0.35 139 1 0.07 69 867 5 0.03 0.2 16 40 11850 B 5 0.2 7.43 0.3 9 0.07 175 54 6 0.14 5 0.03 0.2 16 8 16 474 7.50 0.98 10 23 0.56 639 21 0.04 8 11900 B 220 0.2 5.52 35 746 0.5 41 12 23 0.09 236 72 1 0.05 7 0.09 0.2 18 35 39 6.10 0.54 10 8 0.23 114 9300N-11950E B 5 0.04 4 42 5 0.4 5.30 112 361 0.3 6 0.07 16 0.09 139 34 4 0.20 -95 1 0.04 4 5 0.04 0.2 33 24 2.41 0.75 8 1.2 3.59 11 453 0.2 19 3 43 9300N-12000E \*8 5 130 2 0.03 24 0.18 10 11 0.13 144 5 1.2 5.10 20 280 0.6 5 0.07 0.2 37 15 65 58 5.83 0.61 15 31 0.67 628 44 9300N-12050Е в 326 5 0.03 4 0.12 6 16 0.06 192 64 122 6.27 1.28 12 19 0.64 42 1012 5 0.10 0.2 23 8 5 9700N-11510E B 55 0.8 7.08 0.5 45 182 71 12 176 0.14 21 0.51 2741 3 0.03 3 0.22 75 47 600 5 0.88 0.2 41 11 5 139 5.76 0.48 15 11550 B 0.8 4.73 0.4 46 9 0.03 6 0.22 28 34 0.17 178 393 1.87 25 28 1.06 3444 63 30 380 7.63 47 9700N-11600E a 230 0.6 7.35 223 1035 0.9 8 0.34 1.6 4 7 0.11 7 18 0.19 230 73 131 5.07 0.82 10 20 0.47 210 1 0.05 517 5 0.07 0.2 22 9700N-11650E B 15 0.2 6.49 72 0.4 8 16 48 285 2 0.11 51 9 0.24 214 9 31 0.27 307 1 0.02 2.0 16 511 0.4 5 0.06 0.2 17 6 11 60 8.60 0.44 51 11700 B 5 5.86 5 0.23 125 1 0.03 2 0.07 3 10 0.36 194 39 5 0.08 0.2 4 15 20 1.41 0.32 6 0.2 3.21 4 290 0.2 14 52 11750 в 5 278 63 8 0.09 7 16 0.40 254 1 0.03 1 0.13 3 42 6.39 0.61 11800 в 1.2 5.53 2 586 0.3 5 0.02 0.2 13 4 5 53 10 40 2 16 0.08 261 2 21 4.12 1.83 7 3 0.23 151 1 0.06 1 0.15 5 0.01 0.2 13 3 0.8 7.48 2 1032 0.3 54 9700N-11850E B -5 14 0.25 234 41 0.58 6065 5 0.11 15 31 0.24 109 592 5 0.72 0.3 125 15 21 42 6.01 0.66 40 5.69 9700N-11900E A -5 0.6 4 1.5 55 0.32 1 0.02 10 0.07 2 6 0.15 158 41 22 28 1.96 0.65 10 5 89 5 0.08 0.2 4 114 3.64 342 0.2 56 11950 \*C -5 0.2 4 6 0.15 179 63 1 0.02 11 0.11 9 40 10.34 8 14 0.33 191 0.2 3.79 14 119 0.2 5 0.02 0.2 17 3 67 0.26 57 12000 B 5 253 11 0.24 196 1 0.02 2 0.13 3 7 0.13 43 0.2 20 3 29 33 5.00 0.23 10 5 0.06 58 12050 8 5 0.4 2.89 5 114 0.3 1 0.03 15 0.11 9 7 0.14 165 80 0.39 12 32 0.34 154 5 0.05 0.2 24 74 53 6.58 59 9700N-12100E B 5 0.4 5.04 12 166 0.5 6 15 0.16 6 0.16 159 81 71 5.90 0.35 24 0.41 520 1 0.03 11 58 16 5 0.05 0.2 -36 13 60 9700N-12150E B 5 0.6 4.53 12 147 0.5 1 0.02 14 0.11 2 10 0.14 176 63 0.51 364 4.22 7 192 0.3 5 0.04 0.2 17 4 59 47 8.32 0.44 12 21 61 12200 B 5 0.2 58 3 0.22 -52 1 0.02 5 0.07 2 9 0.11 109 59 1.03 0.56 11 2.37 150 0.2 5 0.05 0.2 19 4 41 9700N-12250E \*B 10 04 6 62 20 0.16 177 142 43 0.54 254 2 0.03 22 0.11 2 78 6.20 0.36 13 0.8 5.00 6 285 0.6 5 0.12 0.2 25 7 85 63 9800N-11350 B 15 232 149 28 55 55 9.39 0.22 16 33 0.35 299 3 0.03 12 0.14 5 6 0.15 9800N-11400 B 5 0.2 5.18 7 103 0.5 5 0.04 0.2 6 64 17 0.15 143 60 0.2 5 57 85 5.98 0.44 11 21 0.54 196 1 0.03 14 0.07 0.2 4.80 213 5 0.07 25 9800N-11450 A 15 13 0.3 65 2 12 0.17 237 57 0.33 77 3 0.03 5 0.08 2 53 68 8.81 0.53 8 g 0.2 4.31 17 193 0.2 5 0.04 0.2 15 66 11500 \*B 20 53 0.08 139 263 24 0.74 1594 9 0.04 14 0.14 14 13 737 5.20 1.29 16 9800N-11550E 75 0.2 4.33 27 1129 0.5 5 1.11 1.1 40 16 67 2 0.03 25 0.08 5 12 0.12 121 79 48 6.48 0.36 29 0.62 293 19 80 11 0.2 4.20 11 197 0.3 5 0.04 0.2 6 68 10100N-11800E B 15 2 0.03 4 0.09 3 9 0.10 187 63 5 0.25 126 631 0.3 5 0.12 0.2 22 3 8 31 3.49 0.97 11 69 10100N-11850E B 5 0.8 5.91 6 77 20 0.22 272 4 0.02 3 0.21 5 4 0.16 299 0.23 15 0.2 5.97 124 0.4 5 0.02 0.2 24 5 21 44 11.33 70 10100N-11900E B -5 16 8 0.09 52 18 3 0.09 -51 1 0.02 1 0.03 2 23 2 21 9 0.71 0.19 16 3 88 5 0.02 0.2 11950 в 5 0.2 1.18 0.2 71 13 0.16 149 95 43 0.62 342 1 0.03 21 0.08 2 55 5.13 0.2 5.39 2 196 0.4 5 0.09 0.2 25 9 67 0.40 11 72 12000 B 5 199 156 160 6.64 0.38 60 1.31 935 1 0.03 27 0.10 4 5 0.06 80 42 45 36 190 5 0.03 0.2 73 12050 B 5 0.2 5.61 2 1.1 5 0.08 2 8 0.15 410 60 155 1 0.03 65 7.87 0.27 18 10 0.30 0.2 4.01 2 123 0.2 5 0.03 0.2 26 4 95 74 10100N-12100E B 5 2 7 0.19 212 51 2 0.03 6 0.08 0.2 48 7.98 0.23 9 10 0.24 103 10100N-12150E B 0.2 3.20 7 77 0.2 5 0.09 16 3 84 75 5 2 7 0.13 225 68 55 7.02 0.52 12 12 0.41 187 1 0.03 8 0.10 0.2 20 4 51 0.2 4.76 223 0.4 5 0.05 76 12200 B 5 5 44 0.12 135 97 21 0.10 7 31 0.72 669 1 0.03 283 5 0.95 0.2 35 49 73 5.18 0.58 12 77 12250 в 10 0.2 3.79 12 0.4 14 47 0.08 152 145 72 5.51 0.57 33 54 0.78 3623 2 0.03 28 0.26 13 0.8 4.95 357 1.3 5 0.95 0.3 103 33 70 12300 \*A 5 6 78 5 36 0.13 110 71 33 0.75 1329 2 0.03 29 0.10 13 107 41 3.36 0.42 12 0.2 36 79 10100N-12350E A 5 0.2 2.63 7 211 0.4 5 0.77 253 63 1 0.02 4 0.09 31 9 0.19 42 8.06 0.48 10 10 0.42 200 5 0.03 0.2 5 26 80 10500N-11750E B 20 1.4 5.25 39 302 0.2 18 1 0.02 6 0.08 2 13 0.22 193 65 23 136 0.4 5 0.04 0.2 14 4 58 45 7.59 0.25 9 0.24 164 11800 B 5 1.8 5.02 -5 81 59 5 0.28 112 1 0.02 2 0.06 7 5 0.06 156 2 -5 27 1.87 0.44 8 205 0.2 5 0.04 0.2 12 0.4 4.41 2 82 11850 в 5 2 51 0.09 198 134 15 50 0.39 516 2 0.03 6 0.07 9 28 62 5.38 0.36

0.02

1

1 0.04

2

9 0.10

159

34

83

84

11900 B

10500N-11950E B

0.2 4.40

0.2 3.82

5

5

12 362

2 208

0.5

0.2

5 1.24

5 0.03 0.2

0.2

46

14

3 11 16 2.08

0.45

9

3 0.21

| TT  | SAMPI F          | Au     | Ae         | Al   | As  | Ra   | Be  | Bi   | Ca       | Cd          | Ce   | Co       | Cr  | Cu      | Fe    | K    | La                                      | Li         | Mg       | Mn   | Мо              | Na     | Ni  | P    | РЪ                                     | Sr         | Ti   | V          | Zn 9308-006    |
|-----|------------------|--------|------------|------|-----|------|-----|------|----------|-------------|------|----------|-----|---------|-------|------|-----------------------------------------|------------|----------|------|-----------------|--------|-----|------|----------------------------------------|------------|------|------------|----------------|
| No  | No No            | nnh    | -75<br>000 | Ϋ́ς, | 00m | 000  | nnm | nnaa | <b>%</b> | 0000        | opm  | ppm      | opm | 000     | %     | %    | ppm                                     | ppm        | <b>%</b> | ppm  | ppm             | %      | ppm | %    | ppm                                    | ррт        | %    | ppm        | ppm Pg. 3 of 5 |
| 85  | 10500N-12000E B  | 5      | 02         | 5 47 | 13  | 295  | 0.7 | 5    | 0.11     | 0.2         | 25   | 12       | 74  | 120     | 5.79  | 0.52 | 13                                      | 41         | 0.81     | 405  | 1               | 0.03   | 36  | 0.07 | 5                                      | 18         | 0.14 | 156        | 151            |
| 86  | 12050 B          | Š      | 0.8        | 5.63 | 13  | 190  | 0.4 | 5    | 0.04     | 0.2         | 18   | 5        | 86  | 61      | 8.41  | 0.40 | 10                                      | - 34       | 0.53     | 201  | 1               | 0.02   | 15  | 0.08 | 7                                      | 13         | 0.13 | 178        | 103            |
| 87  | 12000 B          | 5      | 02         | 3.47 | 4   | 123  | 0.3 | 5    | 0.05     | 0.2         | 18   | 2        | 39  | 17      | 10.66 | 0.15 | 10                                      | 10         | 0.20     | 389  | 2               | 0.02   | 3   | 0.13 | 2                                      | 13         | 0.65 | 273        | 63             |
| 88  | 12100 B          | 5      | 0.2        | 3 17 | 2   | 153  | 0.2 | 5    | 0.24     | 0.2         | 27   | 4        | 32  | 33      | 3.53  | 0.27 | 13                                      | 12         | 0.32     | 424  | 1               | 0.04   | 4   | 0.11 | 2                                      | 16         | 0.18 | 179        | 62             |
| 80  | 10500N-12200E A  | Š      | 0.6        | 271  | 7   | 100  | 0.2 | 5    | 0.05     | 0.2         | 15   | 3        | 94  | 31      | 6.47  | 0.10 | 7                                       | 8          | 0.20     | 225  | 1               | 0.03   | 6   | 0.11 | 2                                      | 10         | 0.17 | 244        | 44             |
| 05  | 1050011-12200L A | 5      | 0.0        | 2.71 | ,   | 100  | 0.2 | 5    | 0.00     |             |      | -        |     |         |       |      |                                         |            |          |      |                 |        |     |      |                                        |            |      |            |                |
| 00  | 10700N-11100E p  | 5      | 10         | 6 15 | 13  | 227  | 0.8 | 5    | 1 10     | 03          | 56   | 14       | 31  | 154     | 4.28  | 0.45 | 15                                      | 42         | 0.67     | 477  | 2               | 0.04   | 50  | 0.14 | 5                                      | 78         | 0.13 | 107        | 159            |
| 90  | 11150 g          | 5      | 1.0        | 5 54 | 15  | 774  | 13  | Š    | 0.09     | 0.2         | 56   | 29       | 62  | 102     | 6.71  | 0.44 | 20                                      | 37         | 0.56     | 1473 | 2               | 0.03   | 36  | 0.26 | 10                                     | 9          | 0.20 | 153        | 211            |
| 191 | 11130 8          | ג<br>ב | 0.0        | 2.54 | 14  | 101  | 1.5 | 5    | 0.02     | 0.2         | 20   | Â        | 66  | 41      | 6.45  | 0.15 | 11                                      | 27         | 0.30     | 233  | 1               | 0.03   | 6   | 0.23 | 4                                      | 8          | 0.35 | 226        | 77             |
| 92  | 11200 8          | 2      | 0.2        | 3.43 | 14  | 500  | 0.0 | 5    | 0.20     | 0.2         | 46   | 20       | 53  | 130     | 5.08  | 1 26 | 24                                      | - 29       | 1.53     | 1070 | 1               | 0.03   | 80  | 0.16 | 14                                     | 21         | 0.16 | 139        | 145            |
| 93  | 11250 *          | 170    | 0.4        | 4.58 | 15  | 100  | 0.9 | 5    | 0.49     | 0.2         | 40   | .50      | 55  | 381     | 077   | 0.78 | 14                                      | 21         | 0.64     | 335  | 17              | 0.08   | 1   | 0.43 | 17                                     | 59         | 0.16 | 145        | 50             |
| 94  | 10/00N-11300E B  | 470    | 1.0        | 5.90 | 20  | 490  | 0.5 | 3    | 0.17     | 0.2         | 20   | 4        | 5   | 201     | 9.11  | 0.70 | 14                                      | <b>*</b> 1 | 0.04     | 555  |                 | . 0.00 | •   | 0110 |                                        |            |      |            |                |
|     |                  |        |            |      | 07  | ~ ~~ |     |      | 0.27     |             | 24   | 17       | 5   | 100     | 0.21  | 0.94 | 17                                      | 72         | 0.84     | 1211 | 45              | 0.06   | 1   | 0.48 | 23                                     | 58         | 0.17 | 141        | 74             |
| 95  | 10700N-11350E B  | 430    | 2.8        | 5.17 | 21  | 049  | 0.5 | 2    | 0.37     | 0.2         |      | 15       | 2   | 474     | 12.20 | 1.04 | 10                                      | 17         | 0.04     | 320  | 37              | 0.00   | 1   | 0.16 | 24                                     | 51         | 0.17 | 178        | 59             |
| 96  | 11400 в          | 2200   | 1.6        | 4.29 | 104 | 1010 | 0.3 | 2    | 0.21     | 0,2         | 34   | 2        | 0   | 201     | 14.49 | 1.04 | 10                                      | 20         | 1 10     | 121  | <i>4.4</i><br>Q | 0.00   | 2   | 0.20 |                                        | 54         | 0.17 | 170        | 62             |
| 97  | 10700N-11450Е в  | 670    | 1.0        | 6.00 | 60  | 457  | 0.5 | 2    | 0.19     | 0.2         | 44   | 14       | 4   | 100     | 11.70 | 1.55 | 12                                      | 12         | 1.10     | 215  | 10              | 0.05   | Ă   | 0.17 | ğ                                      | 15         | 0.15 | 85         | 119            |
| 98  | 10630N-11500E B  | 130    | 0.6        | 7.65 | 2   | 100  | 0.5 | 5    | 0.08     | 0.2         | 20   | 4        | 34  | 100     | 12.15 | 0.10 | 14                                      | 14         | 0.10     | 112  | 07              | 0.05   | 2   | 0.17 | 5                                      | 60         | 0.31 | 304        | 48             |
| 101 | 10630N-11550Е в  | 350    | 1.0        | 5.44 | 7   | 192  | 0.4 | 5    | 0.17     | 0.2         | 18   | 3        | 18  | 332     | 12.15 | 0.21 | 11                                      | 14         | 0.52     | 115  | ου              | 0.02   | 2   | 0.20 |                                        |            | 0.51 | 204        | •••            |
|     |                  |        |            |      |     |      |     | -    |          |             |      | ~        |     |         | 0.00  | 0.22 |                                         | 41         | 0.41     | 220  |                 | 0.02   | 17  | 0 44 | 7                                      | 13         | 0.13 | 189        | 126            |
| 102 | 10630N-11600Е в  | 35     | 0.2        | 6.51 | 22  | 198  | 0.6 | ້    | 0.05     | 0.2         | 10   | 25       | /1  | 121     | 9.90  | 1.00 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 41         | 1 40     | 1124 | 0               | 0.02   | 6   | 0.13 | 11                                     | 60         | 0.15 | 172        | 129            |
| 103 | 11650 в          | 710    | 0.8        | 5.13 | 73  | 3326 | 0.9 | 5    | 0.62     | 0.3         | 40   | 35       | 4   | 287     | 11.04 | 1.80 | 20                                      | 40         | 1.40     | 04   | 15              | 0.05   | 1   | 0.13 | <b>^</b>                               | 44         | 0.05 | 195        | 35             |
| 104 | 10630N-11700Е в  | 15     | 0.6        | 4.52 | 6   | 2981 | 0.2 | 5    | 0.26     | 0.2         | 23   | 3        | 8   | 34      | 5.98  | 0.39 |                                         | 10         | 0.33     | 222  | 14              | 0.03   | 1   | 0.00 | 6                                      | 21         | 0.24 | 190        | 58             |
| 105 | 10700N-11750E *B | 85     | 0.6        | 7.07 | 27  | 78   | 0.6 | 2    | 0.16     | 0.2         | 20   |          | 11  | 04      | 2.51  | 0.07 | 12                                      | 11         | 0.23     | 677  | ्रि             | 0.02   | Å   | 0.15 |                                        | 13         | 0.17 | 169        | 203            |
| 106 | 10700N-11800E B  | 10     | 0.4        | 6.71 | 13  | 243  | 0.7 | 5    | 0.07     | 0.2         | - 30 | 25       | 17  | 43      | 0.90  | 0.25 | 15                                      | ++U        | 0.27     | 0//  |                 | 0.02   | -   | 0.03 | 800                                    | 15         | 0.12 | 105        |                |
| -   |                  |        |            |      |     |      |     |      | 0.04     |             |      |          |     | <u></u> | 1.57  | 0.65 | 14                                      | •          | 0.25     | တ    |                 | 0.03   | 1   | 0.03 | 2                                      | 82         | 0.29 | 162        | 26             |
| 107 | 10700N-11850E C  | 30     | 0.2        | 4.32 | 2   | 507  | 0.2 | 2    | 0.20     | 0.2         | 21   | 1        | 40  | 36      | 5.21  | 0.05 | 14                                      | 12         | 0.25     | 120  | 284             | 0.05   | 2   | 0.03 | <u> </u>                               | 34         | 0.19 | 203        | 57             |
| 108 | 11900 в          | 5      | 0.2        | 3.68 | 11  | 160  | 0.2 | 2    | 0.15     | 0.2         | 20   | 3        | 40  | 33      | 5.21  | 0.27 | 17                                      | 15         | 0.20     | 070  | •<br>•          | 0.03   | 6   | 0.29 | 29                                     | 9          | 0.20 | 207        | 248            |
| 109 | 11950 B          | 5      | 0.4        | 5.71 | 18  | 212  | 0.9 | Ş    | 0.16     | 0.3         |      | 14       | 18  |         | 0.47  | 0.35 | - 1/                                    |            | 0.29     | 50   | 1               | 0.03   | 1   | 0.05 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 12         | 0.03 | 12         | 50             |
| 110 | 12050 *A         | 5      | 0.2        | 0.27 | 2   | 65   | 0.2 | 2    | 0.34     | 0.2         | 10   | I C      | 5   | 14      | 0.55  | 0.05 | <u>د</u>                                | 4          | 0.04     |      |                 | 0.02   | 7   | 0.05 | ៍                                      | 11         | 0.17 | 263        | 48             |
| 111 | 10700N-12100E *C | 5      | 0.2        | 3.52 | 5   | 140  | 0.3 | 5    | 0.08     | <b>U.</b> 2 | 13   | 0        | 54  | 31      | 3.93  | 0.45 | 0                                       |            | 0.20     | 20   |                 | 0.02   | ,   | 0.00 |                                        | ••         | 0.11 | 200        |                |
| 1   |                  | -      |            |      |     |      | 0.5 | -    | A 40     |             | 24   | 22       | £1  | 51      | 0.27  | 0.20 | 11                                      | 10         | 0.67     | 1027 | ,               | 0.03   | 14  | 0.10 | 2                                      | 20         | 0.16 | 254        | 123            |
| 112 | 10700N-12150Е в  | 2      | 0.2        | 4.04 | 14  | 215  | 0.5 | 2    | 0.49     | 0.4         | 20   | 20<br>20 | 01  | 24      | 7.61  | 0.27 | 20                                      | 74         | 0.07     | 702  | ਼ੋ              | 0.05   | 14  | 0.11 | 11                                     | 10         | 0.19 | 198        | 181            |
| 113 | 10700N-12200E A  | 5      | 0.2        | 4.94 | 2   | 209  | 1.4 | 2    | 0.30     | 0.2         | 04   | 29       | 92  |         | 7.00  | 0.15 | 27                                      | 17         | 154      | 156  |                 | 0.02   | 27  | 0.15 | ૽૽ૼ૱                                   | 30         | 0.43 | 150        | 149            |
| 114 | 10840N-11700E B  | 35     | 0.2        | 6.26 | 1   | 08   | 0.6 | 2    | 0.49     | 0.4         | 28   | 1/       |     | 149     | 0.64  | 0.00 | 11                                      |            | 1.54     | 220  | <u>,</u>        | 0.11   | 20  | 0.10 | ៍                                      | 21         | 0.17 | 169        | 95             |
| 115 | 11750 в          | 10     | 1.2        | 8.44 | 4   | 263  | 0.5 | 2    | 0.09     | U.2         | 21   | 0        | 3/  | 4.50    | 7.42  | 0.34 | 17                                      | 22         | 0.39     | 200  | 2               | 0.05   | 20  | 0.10 | 16                                     | 86         | 0.61 | 201        | 03             |
| 116 | 10840N-11800Е в  | 90     | 0.6        | 4.98 | 8   | 242  | 0.4 | 5    | 0.57     | 0.2         | 41   | 1        | 43  | - 52    | 7.80  | 0.16 | 17                                      | 20         | 0.28     | 210  | ి               | 0.00   | 2.  | 0.14 | 10                                     |            | 0.01 | 271        |                |
|     |                  | _      |            |      | _   |      |     | -    |          |             |      |          |     |         | e m   | 0.27 | •                                       |            | 0.20     | 114  | 4               | 0.02   | 1   | 0.07 | 1                                      | 21         | 0.09 | 256        | 50             |
| 117 | 10840N-11900Е в  | 5      | 3.0        | 4.18 | 5   | 254  | 0.2 | 2    | 0.07     | 0.2         | 18   | 2        | 0   |         | 5.02  | 0.37 | 10                                      | 11         | 0.30     | 110  | 1               | 0.03   | 1   | 0.07 | ્રં                                    | 70         | 0.07 | 222        | 34             |
| 118 | 11950 c          | 5      | 0.2        | 5.92 | 2   | 622  | 0.2 | 5    | 0.24     | 0.2         | 27   | 3        | 11  | 41      | 4.40  | 0.89 | 13                                      | 0          | 0.33     | 100  |                 | 0.03   | 14  | 0.09 | 5                                      | 10         | 0.10 | 166        | 86             |
| 119 | 12000 B          | 5      | 0.4        | 4.09 | 11  | 222  | 0.4 | 5    | 0.08     | 0.2         | 27   | 6        | 49  | 88      | 5.52  | 0.46 | 11                                      | 25         | 0.60     | 204  | 1               | 0.03   | 14  | 0.07 | 2                                      | <u>1</u> 9 | 0.13 | 210        |                |
| 120 | 12050 B          | 5      | 0.8        | 4.02 | 8   | 123  | 0.5 | 5    | 0.06     | 0.2         | 32   | 3        | 23  |         | 5.70  | 0.17 | 16                                      | 44         | 0.22     | 2.51 |                 | 0.03   | 2   | 0.17 | 4                                      | 46         | 0.15 | 213        | 120            |
| 121 | 10840N-12100E    | 5      | 0.2        | 5.40 | 5   | 335  | 0.8 | 5    | 0.33     | 0.2         | 42   | 21       | 67  | 115     | 6.48  | 0.79 | 20                                      | 33         | 1.44     | 644  | 1               | 0.04   | .30 | 0.13 | 3                                      | : 40       | 0.22 | 445        | 120            |
|     |                  |        |            | ý.   |     | r    |     |      |          |             |      |          |     |         |       |      | ~ ~ ~                                   |            | ~ ~~     | 1/00 |                 |        | 10  | 0.00 |                                        | 75         | 0.17 | 194        | 150            |
| 122 | 10840N-12150E *  | 5      | 0.6        | 3.89 | 29  | 291  | 1.1 | 5    | 2.66     | 0.2         | 62   | 23       | 75  | 83      | 6.64  | 0.18 | 27                                      | 4/         | 0.57     | 1622 | 4               | 0.04   | 19  | 0.44 |                                        | 73         | 0.12 | 210        | 105            |
| 123 | 10840N-12200E    | 5      | 0.2        | 4.31 | 10  | 175  | 0.7 | 5    | 0.49     | 0.2         | 52   | 9        | 69  | 42      | 7.57  | 0.21 | 15                                      | 29         | 0.51     | 591  | 3               | 0.05   | 11  | 0.10 | 2                                      | 41         | 0.39 | 210        | 105            |
| 124 | 11100N-11200Е в  | 10     | 0.8        | 5.48 | 25  | 449  | 0.7 | 5    | 0.65     | 0.4         | 45   | 22       | 59  | 236     | 5.81  | 0.73 | 16                                      | 53         | 0.98     | 1298 | ు               | 0.04   | 48  | 0.10 | 1                                      |            | 0.10 | 102        | 213            |
| 125 | 11250 в          | 30     | 1.0        | 4.78 | 17  | 345  | 0.7 | 5    | 0.13     | 0,2         | 32   | 14       | 44  | 311     | 5.85  | 0.53 | 15                                      | 35         | 0.73     | 990  | 27              | 0.04   | 22  | 0.13 | 8                                      | 21         | 0.16 | 176        | 131            |
| 126 | 11100N-11300Е в  | 5      | 0.4        | 4.70 | 9   | 364  | 0.6 | 5    | 0.27     | 0.2         | 31   | 15       | 47  | 275     | 5.48  | 0.51 | 15                                      | 25         | 0.87     | 666  | 20              | 0.04   | 24  | 0.09 | 6                                      | 22         | 0.14 | 168        | 120            |
| 1   | 200 B 1          |        |            |      |     |      |     |      |          |             |      |          |     |         | 2     |      |                                         |            |          |      |                 | (      |     |      |                                        |            |      |            |                |
| 127 | 11100N-11350Е в  | 20     | 0.6        | 3.92 | 32  | 541  | 0.7 | 5    | 0.76     | 0.5         | 46   | 21       | 44  | 220     | 5.58  | 1.00 | 20                                      | 25         | 1.16     | 1624 | 45              | 0.06   | 40  | 0.15 | 11                                     | 47         | 0.15 | 165        | 139            |
| 128 | 11400 в          | 25     | 0.6        | 5.09 | 25  | 355  | 0.8 | 5    | 0.76     | 0.2         | 55   | 22       | 44  | 602     | 5.30  | 0.52 | 17                                      | 52         | 0.64     | 296  | 32              | 0.04   | 28  | 0.08 | 13                                     | 43         | 0.18 | 176        | 1//            |
| 129 | 11450 в          | 350    | 0.4        | 7.13 | 2   | 218  | 1.2 | 5    | 0.31     | 0.2         | 64   | 39       | 20  | 3063    | 7.01  | 0.33 | 27                                      | 25         | 0.38     | 1169 | 35              | 0.03   | 11  | 0.23 | 4                                      | 45         | 0.16 | 131        | 101            |
| 130 | 11500 в          | 330    | 0.8        | 5.89 | 2   | 395  | 0.6 | 5    | 0.54     | 0.2         | 39   | 13       | 6   | 700     | 7.07  | 0.47 | 16                                      | 25         | 0.52     | 605  | 1               | 0.03   | 1   | 0.19 | 3                                      | 124        | 0.22 | 728        | 20             |
| 131 | 11100N-11550E B  | 580    | 0.6        | 3.49 | 9   | 158  | 0.4 | 5    | 0.38     | 0.2         | 30   | 8        | 8   | 299     | 7.97  | 0.21 | 16                                      |            | 0.37     | 182  | 6               | 0.03   | 1   | 0.18 |                                        | 116        | 0.31 | <u>3Z1</u> | 40             |

----

| T.T. | SAMPLE           | Ац     | Ag         | AI           | As     | Ba                                            | Bc         | Bi  | Ca   | Cd  | Ce        | Со  | Cr         | Cu         | Fe           | K    | La  | Li         | Mg   | Mn   | Мо        | Na   | Ni  | P    | РЬ             | Sr  | Ti   | V   | Zn 9308-006    |
|------|------------------|--------|------------|--------------|--------|-----------------------------------------------|------------|-----|------|-----|-----------|-----|------------|------------|--------------|------|-----|------------|------|------|-----------|------|-----|------|----------------|-----|------|-----|----------------|
| No.  | No.              | ppb    | ppm        | %            | ppm    | ppm                                           | ppm        | ppm | %    | ppm | ppm       | ppm | ррт        | ррт        | %            | %    | ppm | ppm        | %    | ppm  | ppm       | %    | ppm | %    | ppm            | ppm | %    | ppm | ppm Pg. 4 of 5 |
| 132  | 11100N-11600E B  | 340    | 1.2        | 5.09         | 11     | 406                                           | 0.3        | 5   | 0.17 | 0.2 | 18        | 3   | 5          | 371        | 6.12         | 0.53 | 9   | 20         | 0.29 | 128  | 18        | 0.02 | 1   | 0.27 | 2              | 49  | 0.12 | 266 | 49             |
| 133  | 11650 B          | 580    | 10         | 4 12         | 15     | 477                                           | 0.5        | 5   | 0.35 | 0.2 | 27        | 18  | 13         | 1320       | 9.40         | 0.46 | 12  | 24         | 0.52 | 751  | - 38      | 0.03 | 2   | 0.38 | 2              | 73  | 0.15 | 245 | 53             |
| 124  | 11700 p          | 140    | 0.6        | 5.02         | 14     | 657                                           | 0.4        | Š   | 0.49 | 0.2 | 31        | 15  | 12         | 300        | 6 4 1        | 0.56 | 12  | 31         | 0 37 | 1196 | 8         | 0.03 | 9   | 0.28 | 2              | 85  | 0.09 | 217 | 67             |
| 1.24 | 11700 B          | 210    | 2.0        | J.02<br>A 10 | 45     | 620                                           | 0.4        | 5   | 0.75 | 65  | 26        | 10  | 7          | 101        | 6 49         | 0.30 | -11 | 18         | 0.39 | 005  | 6         | 0.03 | 2   | 0.24 | 2              | 56  | 0.07 | 220 | 59             |
| 133  | 111001 110005 -  | 210    | 2,4<br>1.0 | 4.10         | 4.5    | 407                                           | 0.4        | 5   | 0.20 | 0.4 | 20        | 22  | 22         | 2101       | 0.40         | 0.59 | 14  | 20         | 0.50 | 120  | <u></u>   | 0.03 | 0   | 0.15 | 12             | ័   | 0.13 | 207 | 181            |
| 136  | 11100N-11800E B  | 160    | 1.0        | 7.14         | 107    | 407                                           | 0.8        | 2   | 0.09 | 0.2 | .30       | 23  | 23         | 313        | 9.89         | 0.51 | 14  | - 20       | 0.51 | 4.50 | <b>41</b> | 0.04 | 9   | 0.15 | 15             |     | 0.15 | 201 | 101            |
|      |                  |        |            |              |        |                                               |            | -   |      |     |           |     | 60         |            | <b>7 5</b> 1 | 0.02 | 14  |            | 0.45 | 241  |           | 0.00 | 24  | 0.11 | - 20           | 10  | 0.12 | 177 | 166            |
| 137  | 11100N-11850E B  | 90     | 3.6        | 5.97         | 2/6    | 390                                           | 0.6        | 5   | 0.04 | 0.2 | 32        | п   | 53         | 135        | 7.51         | 0.63 | 10  | 41         | 0.45 | 341  | 3         | 0.03 | 24  | 0.11 | 49             | 10  | 0.15 | 1/4 | 100            |
| 138  | 11900 в          | 5      | 0,4        | 5.13         | 6      | 95                                            | 0.5        | 5   | 0.30 | 0.2 | 29        | 6   | 40         | 28         | 6.97         | 0.10 | 11  | - 43       | 0.57 | 231  | 1         | 0.07 | 10  | 0.09 | 4              | 20  | 0.31 | 10/ | 100            |
| 139  | 11950 в          | 5      | 0.4        | 7.41         | 2      | 639                                           | 0.6        | 5   | 0.11 | 0.2 | 22        | 11  | 5          | 146        | 9.34         | 0.77 | 10  | 37         | 0.77 | 674  | 1         | 0.02 | 1   | 0.11 | 189            | 8   | 0.07 | 294 | 296            |
| 140  | 11100N-12000Е в  | 5 :    | 0.6        | 6.16         | 21     | 1162                                          | 1.5        | 5   | 1.25 | 0.5 | 61        | 25  | 29         | 193        | 5.51         | 1.95 | 28  | 33         | 1.23 | 1104 | 2         | 0.04 | 56  | 0.17 | 67             | 96  | 0.07 | 167 | 274            |
| 141  | 11300N-11750E B  | 5      | 1.0        | 4.16         | 17     | 234                                           | 0.4        | 5   | 0.06 | 0.2 | 19        | 6   | 56         | 64         | 6.29         | 0.46 | 12  | 23         | 0.40 | 183  | 2         | 0.03 | 11  | 0.05 | 6              | 15  | 0.14 | 185 | 167            |
|      |                  |        |            |              |        |                                               |            |     |      |     |           |     |            |            |              |      |     |            |      |      |           |      |     |      |                |     |      |     |                |
| 142  | 11300N-11800E B  | 5      | 0.2        | 5.33         | 5      | 161                                           | 1.1        | 5   | 0.06 | 0.2 | 28        | 16  | 74         | 54         | 6.57         | 0.28 | 9   | 54         | 0.42 | 404  | 1         | 0.02 | 20  | 0.08 | 2              | 6   | 0.09 | 130 | 122            |
| 143  | 11300N-11850E B  | 15     | 0.2        | 2.55         | 5      | 91                                            | 0.2        | 5   | 0.08 | 0.2 | 18        | 1   | 77         | 23         | 5.35         | 0.16 | 10  | 11         | 0.20 | 212  | 2         | 0.03 | 3   | 0.05 | 2              | 13  | 0.47 | 321 | 55             |
| 144  | MT THEO - 000 A  | 5      | 0.2        | 6.95         | 2      | 520                                           | 0.3        | 5   | 0.02 | 0.2 | 15        | 4   | 5          | 28         | 2.58         | 1.79 | 10  | 8          | 0.43 | 174  | 1         | 0.02 | 2   | 0.16 | 2              | 7   | 0.12 | 187 | 37             |
| 145  | 100              | 10     | 0.2        | 6.67         | 34     | 1184                                          | 0.8        | 5   | 0.04 | 0.2 | 38        | 20  | 7          | 128        | 6.13         | 2.04 | 22  | 44         | 0.78 | 2351 | 1         | 0.04 | 7   | 0.22 | 12             | 8   | 0.06 | 271 | 117            |
| 146  | NT THEO 160      | 5      | 02         | 6.89         | 19     | 1035                                          | 07         | 5   | 0.08 | 02  | 31        | 19  | 8          | 155        | 5.52         | 2.24 | 14  | 30         | 0.93 | 1260 | 1         | 0.04 | 8   | 0.19 | 10             | 9   | 0.08 | 230 | 95             |
| 170  |                  | 5      |            | 0.07         |        | 1000                                          | 0.7        | 5   | 0.00 |     | ~1        |     |            |            |              |      |     | 055        |      |      |           |      | -   |      |                |     |      |     |                |
| 147  | NT THEO - 200    | 5      | 0.2        | 7 44         | 5      | 663                                           | 0.8        | 5   | 0.31 | 02  | 38        | 17  | 9          | 127        | 5.98         | 2.44 | 20  | 36         | 1.08 | 1312 | 1         | 0.04 | 11  | 0.19 | 5              | 20  | 0.09 | 258 | 135            |
| 140  | 200              | 5.5    | 0.2        | 5 27         | ŏ      | 374                                           | 0.6        | Š   | 0.07 | 0.2 | 32        | 7   | 17         | 61         | 5 17         | 0.87 | 14  | 78         | 0.51 | 676  | 20 P      | 0.04 | 4   | 0.16 | 2              | 8   | 0.16 | 169 | 74             |
| 151  |                  | ₹ 8 5  | 02         | 5 52         | 2      | 590                                           | 0.0        | 5   | 0.34 | 02  | 31        | 12  | 11         | 82         | 4 96         | 1.67 | 17  | 31         | 0.71 | 532  | ៍         | 0.03 | 7   | 0.16 | 2              | 27  | 0.06 | 213 | 88             |
| 151  | 400              | 5 5    | 0.2        | 7.55         | 17     | 551                                           | 0.7        | 5   | 0.04 | 0.2 | 41        | 28  | 12         | 105        | 5.60         | 1 70 | 21  | 41         | 1 01 | 2488 | î.        | 0.04 | 7   | 0.24 | 2              | 11  | 0.08 | 239 | 109            |
| 152  |                  | 5      | 0.2        | 7.45         | - 1/   | 304                                           | 0.7        | 5   | 0.11 | 0.2 | 21        | 20  | 22         | 01         | 6 50         | 1.67 | 17  | 40         | 1 20 | 1705 | ે         | 0.03 | 17  | 0.24 | $\tilde{\tau}$ | . ĝ | 0.11 | 243 | 137            |
| 153  | MTTHEO - 000     | 3      | U.2        | 7.07         | 4      | 404                                           | 0.0        | 5   | 0.00 | V.2 | 51        | 40  | 22         | . 01       | 0.50         | 1.07 | 17  | · •        | 1.27 | 1775 | <b>.</b>  | 0.05 | 17  | 0.24 |                | U   | V.11 | 210 |                |
| 154  | MT TUFO 700      | 5      | 0.2        | 6.61         |        | 612                                           | 07         | 5   | 0.20 | 0.2 | 20        | o   | 24         | 51         | 5 30         | 1 48 | 15  | 40         | 0.77 | 731  | 1         | 0.05 | 10  | 0.25 | 2              | 29  | 0.16 | 210 | 100            |
| 104  | MT THEO 700      | 2      | 0.2        | 0.01         | 9<br>c | 6093                                          | 0.7        | 5   | 0.20 | 0.2 | 24        | 22  | 10         | 134        | 607          | 2 27 | 10  | 42         | 0.77 | 1702 | 1         | 0.05 | 0   | 0.21 | 5              | 24  | 0.10 | 301 | 115            |
| 100  | 800              | 2      | 0.2        | 0.89         | 2      | 070                                           | 0.7        | 5   | 0.42 | 0.2 |           | 16  | 10         | 124        | 7 17         | 1.01 | 10  | 44         | 0.07 | 2064 | <b>1</b>  | 0.04 | 6   | 0.20 | 5              | 15  | 0.14 | 282 | 135            |
| 156  | 930 8            | 2      | 0.2        | 7.50         | 51     | 800                                           | 0.0        | 2   | 0.08 | 0.2 | 43        | 10  | 13         | - 00       | 1.17         | 1.91 | 10  | 40         | 0.03 | 1010 |           | 0.04 | 4   | 0.30 | 5              | 10  | 0.13 | 246 | 62             |
| 157  | MT THEO - 1000 B | ຸ່     | 0.2        | 7.88         | 10     | /89                                           | 0.6        | 2   | 0.07 | 0.4 | 28        | 14  |            | 111        | 4.02         | 2.20 | 14  | 49         | 0.07 | 1210 |           | 0.04 | 10  | 0.23 | 4              | 10  | 0.15 | 177 | 76             |
| 158  | 489 – Arx        | 5      | 0.2        | 2.54         | 17     | 87                                            | 0.5        | 5   | 5.86 | 0.2 | 78        | 13  | 37         | - 20       | 4.55         | 0.24 | 10  | .43        | 1.93 | 939  | 3         | 0.09 | 15  | 0.10 |                |     | 0.21 | 1// | 10             |
|      |                  |        |            |              |        |                                               |            | ~   |      | • • |           | 10  | <b>6</b> 0 | 00         | 6 77         | 1.04 | 16  | ۳ň         | 1 20 | 200  |           | 0.07 | 45  | 0 12 |                | 57  | 0.16 | 101 | 60             |
| 159  | В                | 5      | 0.2        | 4.38         | 15     | 162                                           | 0.7        | 5   | 2.79 | 0.2 | 22        | 18  | - 28       | 88         | 5.73         | 1.04 | 12  | <u>э</u> у | 4.49 | 098  | 4         | 0.07 | 45  | 0.13 | ÷              | 100 | 0.10 | 191 |                |
| 160  | C                | 1600   | 2,8        | 4.09         | 29     | 1091                                          | 0.5        | 15  | 2.52 | 0.2 | 98        | 16  | 21         | 9429       | 2.71         | 1.24 | 43  | - 54       | 1.98 | 283  | 1         | 0.09 | 10  | 0.79 |                | 188 | 0.14 | 194 | 01             |
| 161  | D                | 5      | 0.2        | 2.52         | 49     | 119                                           | 0.4        | 5   | 1.87 | 0.3 | 57        | 15  | 32         | 68         | 4.47         | 0.21 | 18  | - 33       | 1.81 | 1009 | 4         | 0.14 | 10  | 0.13 | 0              | 45  | 0.25 | 164 | 81             |
| 162  | E                | 5      | 0.2        | 6.14         | 18     | 1319                                          | 0.6        | 5   | 5.96 | 0.2 | 96        | 12  | 6          | 19         | 4.19         | 2.13 | 26  | 21         | 0.99 | 1498 | 2         | 0.10 | 5   | 0.15 | 3              | 132 | 0.09 | 162 | /8             |
| 163  | F                | 5      | 0.2        | 6.34         | 17     | 1112                                          | 0.5        | 5   | 0.85 | 0.4 | 51        | 6   | 8          | 13         | 5.02         | 1.86 | 21  | 25         | 1.99 | 1136 | 2         | 0.07 | 7   | 0.15 | 6              | 86  | 0.17 | 189 | -88            |
|      |                  |        |            |              | ģ      |                                               |            |     |      |     |           |     |            |            |              |      |     |            |      |      |           |      |     |      |                | :   |      |     |                |
| 164  | G                | 20     | 0.2        | 3.72         | 73     | 2420                                          | 0.6        | 10  | 4.38 | 0.7 | 83        | 7   | 22         | 23         | 2.64         | 1.09 | 19  | 26         | 1.22 | 919  | 5         | 0.11 | 7   | 0.15 | 10             | 120 | 0.20 | 141 | 115            |
| 165  | Н                | 5      | 0.2        | 4.06         | 46     | 332                                           | 0.6        | 5   | 0.33 | 0.2 | 35        | 12  | 38         | 58         | 4.91         | 1.26 | 16  | 26         | 1.17 | 317  | 5         | 0.06 | 23  | 0.14 | 12             | 15  | 0.11 | 170 | 92             |
| 166  | Ť                | 20     | 0.2        | 6.34         | 20     | 2056                                          | 0.5        | 5   | 0.16 | 0.2 | 23        | 10  | 7          | 188        | 4.63         | 2.41 | 9   | 15         | 1.43 | 311  | 3         | 0.08 | 4   | 0.14 | 4              | 16  | 0.09 | 161 | 36             |
| 167  | i                | 5      | 0.2        | 375          | 30     | 148                                           | 0.6        | 5   | 1.93 | 0.3 | 71        | 28  | 23         | 40         | 8.70         | 0.12 | 21  | 45         | 2.35 | 1059 | 3         | 0.07 | 8   | 0.17 | 4              | 33  | 1.02 | 320 | 161            |
| 169  | ĸ                | 20     | 0.2        | 5 10         | 17     | 1273                                          | 0.5        | 5   | 0.40 | 0.2 | 28        | 11  | 10         | 81         | 5.46         | 2.04 | 11  | 13         | 1.17 | 276  | 6         | 0.08 | 3   | 0.13 | 2              | 18  | 0.10 | 137 | 32             |
| 100  | n                |        | v          | 5.10         | • • •  |                                               | 0.5        | 5   | 0.40 |     | ~         | ••  |            |            | 2110         |      |     |            |      |      |           |      |     |      |                |     |      |     |                |
| 160  | t                | 270    | 20         | 2 70         | 526    | 121                                           | 03         | 5   | 0.20 | 07  | 30        | 8   | 22         | 28         | 4 34         | 0.67 | 12  | 27         | 0.97 | 390  | 2         | 0.13 | 4   | 0.11 | 21             | 13  | 0.07 | 138 | 90             |
| 170  |                  | 2/0    | 0.2        | 2.10         | 20     | 1/12                                          | 0.5        | 5   | 0.57 | 0.1 | 40        | 11  | 18         | 66         | 4 26         | 0.34 | 16  | - 57       | 1 19 | 839  | - T       | 0.12 | 4   | 0.12 | 2              | 32  | 0.06 | 151 | 96             |
| 170  | M                | )<br>• | 0.2        | 2.00         | 37     | 140                                           | 0.5        | 5   | 1.00 | 0.4 | -40<br>61 | 22  | 10         | 22         | 7.07         | 0.09 | 10  | 10         | 2 00 | 1062 | <b>,</b>  | 0.07 | 2   | 0.11 | 5              | 68  | 0.25 | 284 | 127            |
| 1/1  | N                | 5      | 0.2        | 3.17         | 21     | 101                                           | 0.7        | 3   | 1.00 | 0.2 | 12        | 34  | 19         | - 34<br>70 | 1.71         | 2.06 | 10  | 17         | 1 21 | 1002 | 1         | 0.07 | 1   | 0.14 | 5              | 12  | 0.02 | 172 | 26             |
| 172  | Ō                | 100    | 0.2        | /.21         | 2      | 1/11                                          | 0./        | 2   | 0.10 | 0.2 | 13        | 3   | 0          | 00         | 3.89         | 2.50 | 10  | 10         | 1.21 | 170  |           | 0.09 | 1   | 0.13 | 4              | 111 | 0.00 | 120 | 127            |
| 173  | Р                | 30     | 0.2        | 6.05         | 17     | 1534                                          | 0.6        | 5   | 2.87 | 0.8 | 57        | 10  | 8          | LL         | 3.86         | 2.60 | 13  | 11         | 1.29 | 401  | 2         | 0.09 | 4   | 0.13 | 0              | 111 | 0.07 | 139 | 131            |
|      | _                |        |            |              |        | <u>, , , , , , , , , , , , , , , , , , , </u> | ~ <b>-</b> | -   |      |     |           |     |            |            |              | 0.00 |     |            | 2.00 | 007  |           | 0.10 | 2   | 0.12 |                | 63  | 0.12 | 707 | 67             |
| 174  | Q                | 5      | 0.2        | 3.89         | 18     | 249                                           | 0.5        | 5   | 3.23 | 0.2 | 62        | 16  | 19         | 115        | 5.70         | 0.82 | 15  | 44         | 2.06 | 987  | 3         | 0.10 | 0   | 0.12 | 4              | 0.3 | 0.13 | 40/ | 0/             |
| 175  | R                | 420    | 3.6        | 6.63         | 39     | 1342                                          | 0.6        | 5   | 3.27 | 0.2 | 62        | 15  | 12         | 2700       | 5.84         | 2.51 | 16  | 23         | 1.27 | 737  | <u>у</u>  | 0.06 | 4   | 0.13 | <u></u>        |     | 0.13 | 193 | 6)<br>()       |
| 176  | S                | 80     | 0.8        | 6.68         | 32     | 1390                                          | 0.7        | 5   | 4.87 | 0.2 | 77        | 21  | 9          | 1416       | 6.36         | 2.66 | 19  | 27         | 1.36 | 990  | 12        | 0.07 | 4   | 0.13 | ్రే            | 92  | 0.14 | 212 | 92             |
| 177  | Т                | 130    | 0.2        | 6.07         | 19     | 1729                                          | 0.7        | 5   | 2.30 | 0.2 | 67        | 20  | 11         | 1630       | 5.39         | 2.26 | 25  | 25         | 2.12 | 580  | 17        | 0.10 | 5   | 0.16 | 2              | 72  | 0.13 | 223 | 64             |
| 178  | 489 — Urx        | 30     | 0.2        | 6.49         | 45     | 753                                           | 0.8        | 5   | 2.62 | 0.2 | 65        | 19  | 12         | 261        | 6.50         | 2.16 | 19  | - 35       | 2.01 | 851  | 2         | 0.11 | 5   | 0.13 | 2              | 36  | 0.12 | 225 | 67             |

| T.T. | SAMPLE     | Au  | Ag  | AI    | As   | Ba    | Be  | Bi  | Ca   | Cd  | Ce  | Co  | Cr  | Cu   | Fe   | K    | La  | Li        | Mg   | Ma   | Mo        | Na   | Ni  | P    | Pb          | Sr   | Ti   | V   | Za 9308-006    |
|------|------------|-----|-----|-------|------|-------|-----|-----|------|-----|-----|-----|-----|------|------|------|-----|-----------|------|------|-----------|------|-----|------|-------------|------|------|-----|----------------|
| No.  | No.        | ppb | ppm | %     | ppm  | ppm   | ppm | ррт | %    | ppm | ppm | ppm | ррт | ррт  | %    | %    | ppm | ррт       | %    | ppm  | ppm       | %    | ppm | %    | ppm         | ppm  | %    | ppm | ppm Pg. 5 of 5 |
| 179  | 489 – V rx | 5   | 0.2 | 4.40  | 57 : | 862   | 0.6 | 5   | 4.84 | 0.3 | 79  | 13  | 25  | 202  | 4.59 | 0.90 | 18  | 20        | 1.16 | 645  | 7         | 0.12 | 4   | 0.13 | 4           | 108  | 0.24 | 202 | 144            |
| 180  | 489 – W    | 5   | 0.2 | 2.25  | 17   | 83    | 0.4 | 5   | 2.07 | 6-3 | 61  | 11  | 19  | 67   | 4.53 | 0.15 | 22  | 39        | 1.89 | 1100 | 2         | 0.15 | 3   | 0.13 | 2           | 32   | 0.09 | 165 | 78             |
| 181  | 490 – A    | 5   | 0.2 | 6.44  | 15   | 1072  | 0.8 | 5   | 3.33 | 3.6 | 66  | 15  | 59  | 23   | 5.19 | 1.91 | 21  | 39        | 1.39 | 1158 | 3         | 0.07 | 32  | 0.14 | 105         | 82   | 0.06 | 137 | 786            |
| 182  | В          | 40  | 0.2 | 6.13  | 30   | 949   | 0.5 | 5   | 0.57 | 0.2 | 24  | 10  | 14  | 29   | 6.27 | 2.07 | 9   | 23        | 1.83 | 436  | 3         | 0.10 | 2   | 0.15 | 2           | 28   | 0.21 | 189 | - 33           |
| 183  | С          | 490 | 1.6 | 5.22  | 27   | 973   | 0.4 | 5   | 0.93 | 0.2 | 49  | 12  | 12  | 690  | 6.61 | 1.70 | 24  | 22        | 1.56 | 581  | 1         | 0.07 | 2   | 0.13 | 2           | 33   | 0.17 | 180 | 66             |
|      |            |     |     |       |      |       |     |     |      |     |     |     |     |      |      |      |     |           |      |      |           |      |     |      |             |      |      |     |                |
| 184  | D          | 40  | 0.2 | 5.02  | 27   | 1148  | 0.5 | 5   | 2.39 | 0.2 | 60  | 22  | 17  | - 44 | 4.80 | 1.86 | 14  | 25        | 1.84 | 536  | 2         | 0.09 | 4   | 0.10 | 2           | 56   | 0.13 | 204 | 41             |
| 185  | E          | 100 | 0.2 | 4.07  | 24   | 616   | 0.5 | 5   | 1.41 | 0.2 | 50  | 11  | 13  | 218  | 4.59 | 1.49 | 15  | 20        | 1.35 | 367  | 3         | 0.10 | 3   | 0.12 | 2           | 37   | 0.12 | 191 | 31             |
| 186  | F          | 70  | 2.4 | 4.44  | 63   | 301   | 0.4 | 5   | 2.16 | 0.3 | 58  | 57  | 22  | 1112 | 6.43 | 0.58 | 17  | . 43      | 2.35 | 906  | 3         | 0.14 | 9   | 0.15 | 3           | 143  | 0.26 | 179 | 63             |
| 187  | G          | 5   | 0.2 | 4.81  | 49   | 177   | 0.5 | 5   | 2.50 | 0.2 | 68  | 28  | 22  | 37   | 9.50 | 0.06 | 20  | 33        | 3.25 | 1354 | 2         | 0.10 | 8   | 0.13 | 2           | 291  | 0.85 | 376 | 162            |
| 188  | ) Н        | 5   | 0.2 | 3.86  | 83   | 13000 | 0.5 | 5   | 0.10 | 0.2 | 23  | 7   | 38  | - 36 | 3.05 | 1.54 | 11  | 26        | 0.63 | 77   | 1         | 0.07 | 8   | 0.07 | 2           | 189  | 0.06 | 180 | 31             |
| 180  |            | 130 | 02  | 1.78  | 103  | 5280  | 0.2 | 5   | 0.08 | 0.2 | 16  | 6   | 114 | 28   | 2.80 | 0.51 | 5   | 15        | 0 49 | 186  | 3         | 0.08 | 6   | 0.08 | 2           | 48   | 0.07 | 122 | 35             |
| 102  |            | 50  | 0.2 | 1.20  | 250  | 1312  | 0.2 | š   | 0.12 | 0.2 | 16  | ŏ   | 83  | 136  | 415  | 0.77 | 7   | îĩ        | 0 44 | 106  | ্র        | 0.04 | 3   | 0.07 | 5           | 18   | 0.03 | 113 | 23             |
| 101  | ĸ          | 5   | 0.2 | 2.03  | 230  | 86    | 0.4 | š   | 0.41 | 0.2 | 32  | 14  | 30  | 81   | 4.01 | 0.11 | 15  | 34        | 1.73 | 435  | <u></u> 1 | 0.14 | 5   | 0.13 | $\tilde{2}$ | 17   | 0.06 | 178 | 59             |
| 192  |            | Š   | 0.2 | 2.64  | 47   | 135   | 0.5 | 5   | 3.72 | 0.2 | 68  | 21  | 14  | 140  | 6.07 | 0.30 | 17  | 30        | 1.60 | 1316 | ī         | 0.10 | 4   | 0.15 | 2           | 194  | 0.10 | 283 | 95             |
| 193  | С M        | 5   | 0.2 | 3.79  | 38   | 286   | 0.4 | 5   | 2.99 | 0.6 | 72  | 15  | 21  | 19   | 4.73 | 0.40 | 19  | 24        | 1.99 | 578  | 2         | 0.36 | 9   | 0.13 | 3           | 215  | 0.39 | 154 | 146            |
| 1    |            |     |     | 0.1.7 |      |       |     | -   |      |     |     |     |     |      |      |      |     |           |      |      |           |      |     |      |             |      |      |     |                |
| 194  | N          | 5   | 0.2 | 4.03  | 232  | 302   | 0.5 | 5   | 3.84 | 0.2 | 69  | 14  | 12  | 50   | 4.72 | 0.99 | 19  | 45        | 1.86 | 1231 | 1         | 0.13 | 5   | 0.14 | 6           | 58   | 0.14 | 189 | 96             |
| 195  | 0          | 5   | 0.2 | 3.19  | 43   | 153   | 0.4 | 5   | 1.53 | 0.2 | 53  | 17  | 12  | 73   | 6.03 | 0.33 | 19  | 67        | 2.24 | 1051 | 1         | 0.11 | 4   | 0.15 | 2           | - 36 | 0.11 | 239 | 100            |
| 196  | Р          | 5   | 0.2 | 3.11  | 53   | 568   | 0.4 | 5   | 0.29 | 0.2 | 31  | 13  | 30  | 119  | 5.33 | 0.61 | 14  | 57        | 1.92 | 343  | 1         | 0.08 | 5   | 0.15 | 2           | 13   | 0.11 | 261 | 79             |
| 197  | Q          | 5   | 0.4 | 1.45  | 80   | 8091  | 0.2 | 5   | 0.03 | 0.2 | 13  | 6   | 123 | 27   | 1.51 | 0.58 | 5   | 5         | 0.12 | 141  | 3         | 0.06 | 7   | 0.04 | 2           | 403  | 0.04 | 60  | 30             |
| 198  | 490 - R rx | 5   | 0.2 | 2.91  | 289  | 1481  | 0.3 | 5   | 0.13 | 0.2 | 20  | 10  | 77  | 25   | 6.06 | 1.14 | 9   | <b>11</b> | 0.41 | 136  | 5         | 0.03 | 1   | 0.10 | 2           | 12   | 0.26 | 221 | 130            |

. .

•

APPENDIX V

**ROCK SAMPLE DESCRIPTIONS** 

| LAB NORANDA - DELTA PROJECT NO. 181-E2 PROPERTY RED BLUFF & THEO<br>+ 127 MAN RECCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N.T.S. 104 P/<br>DATE 2 AUG 19        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| + 127 MIN RECCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DATE 2 AUG 19                         |
| CERT. NO GRID REFERENCE GRID - |                                       |
| SAMPLE REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| SAMPLE # DESCRIPTION TYPE WIDTH C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-ORDINATES                           |
| A Argillite with 20% carbonate visios 2% on faultzone GRAB GRAB GRAB [1115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DN 11986 E MJE                        |
| B Silicified (FeØ?), puritic 1-5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OON HADE /                            |
| c Silicified (FOB?), File ourite 1071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00N 11400 E/                          |
| D Silicified-seriestic (7007, 3-5% pyrile =5% chick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ON 11650E                             |
| E Silica-servite-calcite altered (for), 5-8% 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ON 11650E                             |
| E Silicified (Hbo?), 1-3/04, tr. melachite, calcateous 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68N 11700E                            |
| 6 Basalt (3), < 2% punite, weak chlorite V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40N 11800EV                           |
| H altered grey siliceous intrusive? 25% < kinthick ataleits Grab N/A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DIM / MJG                             |
| 1 Silvified FO porphyry() 5% for ou 1-2% py "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | u                                     |
| Silvified to obtohum (2) 5-8% for DN 2 10% Gtz kins "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \ч                                    |
| K FD-Hb octobury weekly sericitic groundness, 5%, 10, "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Fr-Hb por phyces, "fresh", 1% purite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JXMAP "                               |
| M E. Hb amply "fresh" 1-2% purite. ""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| N Ea-Hb arrepared "fresh" nil everite ""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , , , , , , , , , , , , , , , , , , , |
| 0 Tuff? hadded 2 similar weathering to the parahuril " calculated"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /                                     |
| P Es potenny - silicified (2) 3% for switcher "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | u u                                   |
| O E south stock work must win 21 that "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| P Oto veios with 10% servicitic Fe naterium 3-5:400 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |

Ø= porphyry Fp= Feldspar Hb = Klornblende

|           | ) NORANDA EXPLORATE                                    | 0, <b>Jom</b> p  | ANY, LIMIT | ر<br>ED        | 0489     | dow - Fie       | ice<br>ild    |
|-----------|--------------------------------------------------------|------------------|------------|----------------|----------|-----------------|---------------|
| LAB NO    | RANAA - DELTA PROJECT NO. 181-E                        | 2 <sub>PRO</sub> | PERTY      | RED BLUFF      | N        | т.s. <u> 04</u> | P/H           |
| CERT. NO. |                                                        | 1AIN (           | ARID 5     | OUTH OF DAK A  | LIVER DI | ATE <u>2 AU</u> | <u>G 1993</u> |
|           | SAMPLE                                                 | REPORT           |            | •••            |          |                 |               |
| SAMPLE #  | DESCRIPTION                                            | ТҮРЕ             | WIDTH      | ASSAYS         | CO-ORE   | DINATES         | SAMPLER       |
| А         | fire arained wacke, trace purite                       | GRAB             | GRAB       |                | 10108 N  | 2020E           | MJG           |
| в         | black sillstone, 2%, pyrite, 3% carbonate veins        |                  | [          |                | 10089 N  | 12068E          |               |
| С         | Silicified purific(3%) rock at 1992-5775 "Floriting    | 69 /             |            |                | 10100N   | 11575E          |               |
| n         | fire-gramed diorite I weakly sericitized and calcareau | 8                |            |                | 9693N    | 11950E          | _             |
| E         | FOITHE & sericitic, strongly culcareous, 1-2%, py      |                  |            |                | 9700 N   | 11830E          |               |
| F         | For weak sericite, trace pyrite                        |                  |            |                | 9690 N   | 11620E          |               |
| - G       | 5ilicitized (Fp p), calcareous, 1-2/ py                |                  |            |                | 9730 N   | 11610 E         |               |
| <u>н</u>  | shaley silfstone, 2-3% to pyrite                       |                  |            |                | 9165N    | 11555E          |               |
| <u> </u>  | Silicified (Fp Ø), 3-5% pyrite to bluck motor          | the last         |            |                | 8400N    | 11630E          |               |
| <u> </u>  | for diorite? calcareous groundmass, 1-2% py            |                  |            |                | 8917N    | 11662E          |               |
| К         | silicitied (FOP?), 3-5/.py, moderate sericite          | stagers          |            |                | - BREAN  | 1060 E          |               |
| L         | Silicitied (?) Fp\$, 3-5% pyrite, -5% calcite ver      | nlets            |            |                | 9500 N   | 116755          |               |
| M         | Fo t Hb(?) \$, 5% carbonate veinlets trace 14          |                  | /          |                | 8503N    | 11550E          |               |
| N         | frz. Ab diorite, calcureous groundmass, tr p           | g                | _/         |                | BIOUN    | 114705          |               |
| 00        | Silicitied rock, 5% black ventet, trace pyrite         |                  | /          |                | 04×0N    | 116305          |               |
| Р         | Dilicitied-servite-carbonate-pyrite (3-5%) rock        | /                | -{         |                | - 8720N  | 116552          |               |
| <u> </u>  | Dilicitied - calcureous grandmass, <1% pyrite          | 2% black         | ·····      |                | - 8 DON  | 110.755         |               |
| <u> </u>  | Silicitied - calcureous groundmass, "1. py, IT CO      | , heigle         | 5          |                | - 030/N  | 110130          |               |
| S         | Dilicitied - Calcareovi groundmass, 2-4%, py 3-5%      | HOLKMINE         | al f       |                |          | 110700          | <u>;</u>      |
| T         | Silicities weak-med carateos, 100. 31-04 Hout,         | ·sy.cp           |            |                | 0505N    | 112676          |               |
| U         | Dilicitiea-carcareous (TPP), 5-8%, py                  |                  |            |                | NUSON    | 11000-          | /             |
| V         | 1+6 - to alorite, 1-27. putte, trace cp                |                  |            |                | 10500    | 11000 =         |               |
| W         | 1Hb- Hp avorite p weak-moderate calculation            |                  | <u> </u>   | I              |          | 11100=1         |               |
|           | Ø = porphyry Fp = F                                    | Feldspar         | 4          | 6 = hornblende | ,        |                 | 23            |

## 6.0 RECOMMENDATIONS

It is recommended a IP survey be carried out over the best mineralization and soil geochemistry. If warranted, two drill holes are proposed to test the near-surface potential of the property for a porphyry Cu-Au deposit.

## **5.0 CONCLUSIONS**

Based on the work completed on the Red Bluff property south of the Dak river, the following conclusions can be made:

1) The "microdiorite" of unit 3a is highly altered at its core. Alteration consists of strong quartz-sericite-pyrite  $\pm$  carbonate zone flanked by a weaker sericite-pyrite  $\pm$  quartz zone.

2) The microdiorite intrusion is interpreted to be controlled and locallized by northnorthwest and north-northeast trending faults.

3) The alteration and mineralization within the microdiorite may be an expression of an outer pyritic shell - the upper portion of a deeper porphyry system.

4) Steep west-facing slopes (up to 55°) have enhanced the Cu and Au soil geochemical signatures south of the Dak River. It is believed concentrations have been elevated toward the base of the slope.







