GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

AFTOM GROUP CLAIMS

SKEENA MINING DIVISION,

SKEENA MINING DIVISION,

BRITISH COLUMBIA

NTS: 104 B/9

REC 14 198

Gold Comming
VANCOUVER, B.C.

FILE NO:

PREPARED BY: PERRY GRUNENBERG, P. GEO.

DECEMBER, 1993

Location: 56°37' North Latitude; 130°25' West Longitude

Operator: Canamera Geological Ltd.

Owner: Tagish Resources Ltd. and Alex Briden

Approval #: SMI-93-0100850-219

SUMMARY

The Aftom claim group is located over the Unuk River in northwestern British Columbia, immediately adjacent to the Au - Ag rich Eskay Creek deposits.

The claims overlay geologically favourable terrains for potentially hosting Eskay Creek type or related deposits.

In September of 1993, Canamera Geological Ltd. completed a geological, geochemical and geophysical assessment of the Aftom Group claims. Geologic mapping indicates that mineralized horizons are present in areas on the property. Soil and silt sampling was inconclusive, with no anomalous values for base or precious metals being returned from assays.

VLF-EM survey produced no significant anomalies.

Magnetic survey detected a 400 nT magnetic high on the most northerly line 1500S which may be due to basic intrusive rocks. Minor level changes were also noted suggesting subtle changes in magnetic susceptibility of the rocks within the grid. A weak northeast magnetic trend on the southern three lines may reflect a narrow basic dyke.

TABLE OF CONTENTS

SUM	MARY	i
TABI	LE OF CONTENTS	ii /
1.0	INTRODUCTION 1.1 LOCATION AND ACCESS 1.2 TOPOGRAPHY, CLIMATE AND PHYSIOGRAPHY 1.3 PROPERTY STATUS 1.4 HISTORY AND PREVIOUS EXPLORATION 1.5 WORK COMPLETED ON THE CLAIM GROUP, 1993	1, 1, 1, 2, 2, 3,
2.0	GEOLOGY 2.1 REGIONAL GEOLOGY 2.2 PROPERTY GEOLOGY	4 / 4 / 5 /
3.0	GEOCHEMISTRY 3.1 SAMPLING PROCEDURE 3.2 SAMPLE RESULTS	6, 6, 6,
4.0	GEOPHYSICS 4.1 PROCEDURE AND INSTRUMENTATION 4.2 VLF-EM SURVEY RESULTS 4.3 MAGNETOMETER RESULTS	7 / 7 / 8 / 8 /
5.0	REFERENCES	9 /
6.0	COST STATEMENT	11 /
7.0	STATEMENT OF QUALIFICATIONS	12,
APPE	ENDIX I - CHEMEX LABS CERTIFICATES OF ANALYSIS	
APPE	ENDIX II - EQUIPMENT SPECIFICATIONS	
APPE	ENDIX III - DATA LISTING	

FIGURES AND TABLES

FIGURE 1 -	LOCATION MAP	after page 1	
FIGURE 2 -	CLAIM MAP	after page 2	,

FIGURE 3 - GEOLOGY AND SAMPLE LOCATION MAP AFTOM 16	after page 5
FIGURE 4 - SAMPLE LOCATION AND GEOLOGY MAP AFTOM 18 AND AFTOM 19	after page 5
FIGURE 5 GRID LOCATION MAP	after page 6
FIGURE 6 - GEOPHYSICAL MAPS GRID LOCATION MAP 6 - 1 CUTLER VLF-EM PROFILES 6 - 2 ANNAPOLIS VLF-EM PROFILES 6 - 3 TOTAL FIELD MAGNETIC PROFILES	Map pocket / Map Pocket / Map Pocket /
TABLE 1 LIST OF CLAIMS	after page 2

1.0 INTRODUCTION

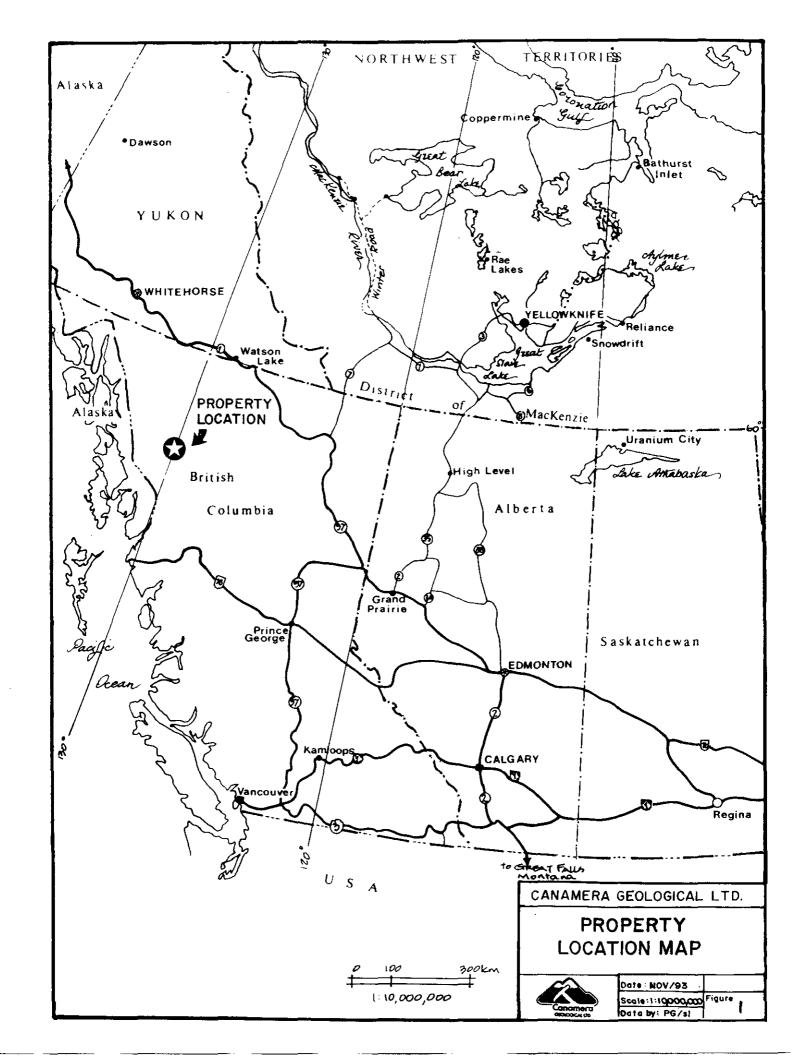
The Aftom Group claims are located adjacent to the mineral rich Eskay Creek ore deposit. This close proximity, together with favourable geology, makes these claims highly prospective for exploration.

In the fall of 1993, Canamera Geological Ltd. carried out geological, geochemical, and geophysical surveys of the Aftom Group claims. The following report summarizes these surveys.

1.1 LOCATION AND ACCESS

The property is located in western British Columbia near the Unuk and Iskut rivers, centered at 56°37′ N, and 130°25′ W (NTS 104B/9), approximately 950 kilometers northwest of Vancouver and 80 kilometres northwest of the town of Stewart (Fig. 1).

Scheduled flights from Vancouver to Smithers and Terrace are provided by Central Mountain Air and Canadian Regional airlines. A well maintained gravel airstrip is located near the town of Bob Quinn on the Stewart-Cassiar Highway (#37). Local fixed wing charters are available providing flights to this strip.


The property is most easily accessed by helicopter from the Stewart-Cassiar Highway which runs north-south roughly 25 km. east of the property. Northern Mountain Helicopters provide service from Bell II, and Vancouver Island Helicopters provide service from Bob Quinn, both situated along the highway east of the property.

Road construction is currently in progress to provide access to the Eskay Creek mine from the Stewart-Cassiar Highway near the town of Bob Quinn. When completed, this road will run down the west side of the Iskut River to Volcanoe Creek, up Volcanoe Creek past the foot of Mount Shirley to the north end of Tom Mackay Lake, then east into Eskay Creek. This road should be completed by the spring of 1994.

1.2 TOPOGRAPHY, PHYSIOGRAPHY AND CLIMATE

The property is situated on the western margin of the Coast Ranges of British Columbia. Climate is moderate, with cool wet summers and mild winters. Annual precipitation averages 250 cm., much of which falls as snow between the months of October and April. Temperature extremes range from -40 to 30 degrees centigrade, with mean average monthly temperatures ranging from 12 degrees in August, to -10 degrees centigrade in December.

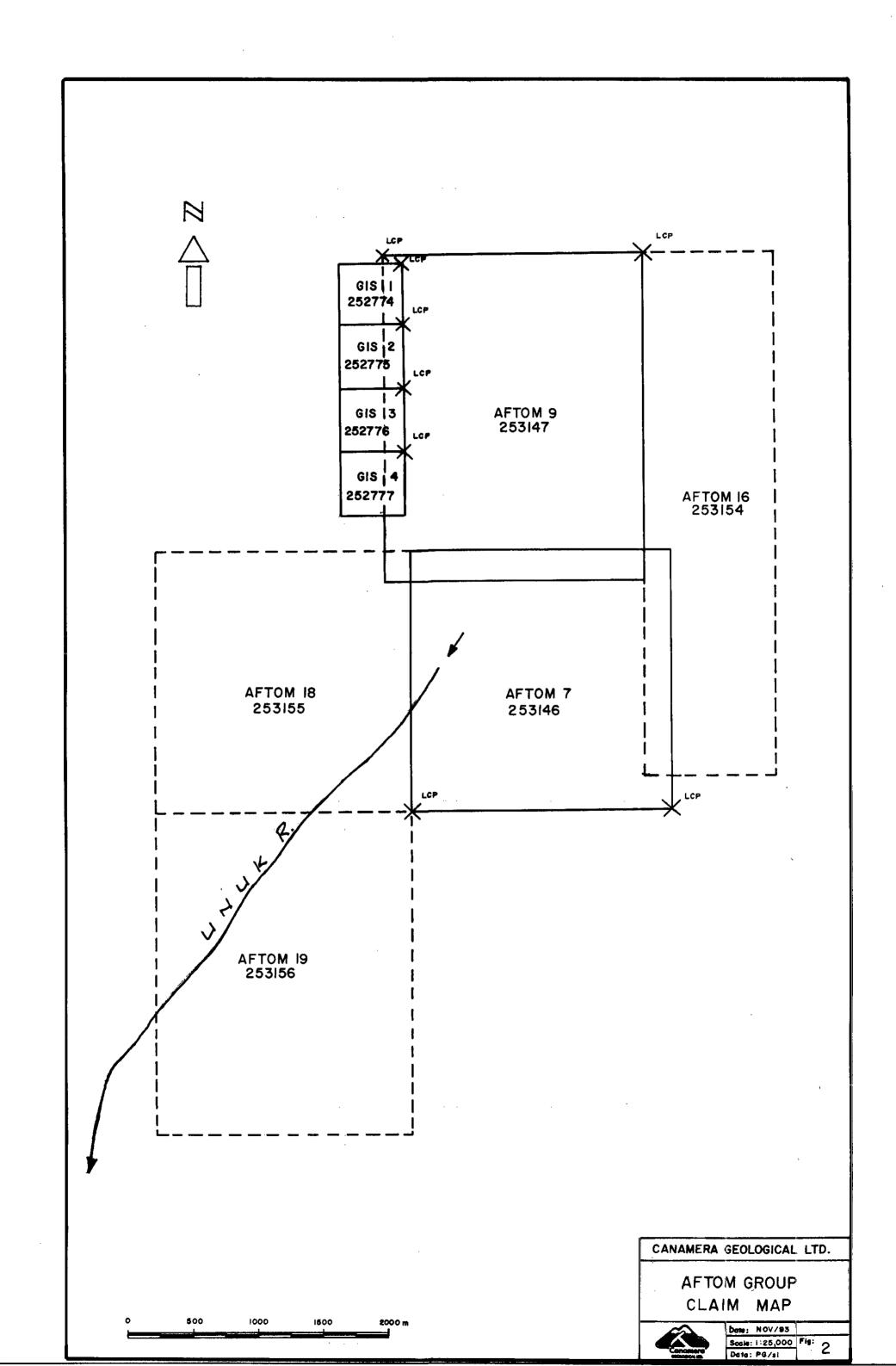
The area has been glaciated and elevations on the property vary from 400 metres above sea level in the Unuk River valley, to 1800 metres above sea level on Mount Shirley. The area is deeply incised by rivers and steep sided river and stream canyons are common. Tree line is at approximately 1000 metres above sea level.

Vegetation in the area is variable. Coastal Western Hemlock forests extend along the Unuk River basin up to Storie Creek, changing to predominantly Mountain Hemlock forests that extend midway up Eskay and Ketchum Creeks. Steeper and less stable slopes host slide alder, devil's club, and wild raspberry. Remaining areas of Eskay, lower Argillite and mid Tom Mackay Creeks exhibit Englemann Spruce-Subalpine Fir zone characteristics. Upper sections of Argillite and Tom Mackay Creeks and the Mackay Lakes are alpine tundra and are essentially treeless with the exception of minor stunted growth. Vegetation consists mainly of lichen, mosses, sedges and alpine flowers.

1.3 PROPERTY STATUS

The property is composed of 15 modified grid and 4 2-post claims totaling 92 units (Figure 2), covering an area of 23 square kilometres. The claim is owned by TAGISH RESOURCES LTD. and Alex Briden. The claim names, record number, size, anniversary dates and ownership's are listed in Table I.

1.4 HISTORY AND PREVIOUS EXPLORATION


The area has a long history of exploration since the discovery of mineralized gossanous bluffs along Eskay Creek, first staked in 1932 by T.S. Mackay and W.A. Prout. Exploration has concentrated on delineating high grade precious metal mineralization. Work completed by the Premier Gold Mining Company from 1935 to 1938 discovered more than 30 mineralized zones along the gossanous bluffs of Coulter and Eskay Creeks. These were numbered in sequence of discovery as zones (e.g. #20 Zone). In 1934, the 84 metre Mackay adit was driven on workings three kilometres southwest of the current 21 zone deposits.

Exploration continued through the decades, with further underground work on the Mackay adit, and development of the Emma adit closer to the 21 Zone, abundant surface trenching, and drilling of 84 diamond drill holes totaling 3,950 metres. This work involved 11 different exploration companies.

In November of 1988, Calpine Resources Inc. (now Prime Resources Ltd.) announced the discovery of high grade precious and base metal mineralization in the 21A Zone. Mineralization consisted of a combination of stockwork mineralization in rhyolite and massive sulfides at the contact of rhyolite with overlying andesite. Additional drilling resulted in the delineation of the 21A Zone and the discovery of the 21B and 21C Zones further to the north.

By the end of 1989, 205 diamond drill holes were completed on the Eskay property. Drilling has defined the 21B Zone as the principle target. This zone has recent published mining reserves of 1.08 million tons grading 65.6 g/t Au, and 2,930 g/t Ag. Substantial underground workings have been driven into this deposit, and exploration is continuing with the prospect of adding additional mining reserves.

		TABLE I		
CLAIM NAME	RECORD #	# OF UNITS	ANNIVERSARY	OWNERSHIP
			DATE	
AFTOM 7	253146	16	9-16-94	TAGISH
AFTOM 9	253147	20	9-15-94	TAGISH
AFTOM 16	253154	16	9-18-94	TAGISH
AFTOM 18	253155	16	9-17-94	TAGISH
AFTOM 19	253156	20	9-16-94	TAGISH
GIS 1	252774	1	4-28-95	ALEX BRIDEN
GIS 2	252775	1	4-28-95	ALEX BRIDEN
GIS 3	252776	1	4-28-95	ALEX BRIDEN
GIS 4	252777	1	4-28-95	ALEX BRIDEN

In October and November of 1990, Waterford Resources Ltd. carried out exploration work on the Aftom 9 claim. This included line cutting, UTEM geophysical surveys, and geologic mapping at a1;5,000 scale, with eight rock samples collected. Snow cover at the time limited areas which could be worked. UTEM surveys discovered a number of weak conductors attributed to shear/fault structures and lithologic contacts. No significant showings were found at that time.

In September of 1991, geologic mapping and prospecting was carried out over limited sections of the claim group by Cambria Geological Ltd. for Tagish Resources Ltd. This work suggested that further mapping was required to define Salmon River formational rocks where argillaceous sediments contain andesitic volcanics.

1.5 WORK COMPLETED ON THE GROUP DURING 1993

In the fall of 1993, Canamera Geological Ltd. was contracted to complete geological, geophysical and geochemical surveys on the property. This work was carried out from a five person camp located near the claim from September 7 to 12, 1993.

Geologic mapping at a scale of 1:20,00 was carried out on the Aftom 16, 18, and 19 claims. Coverage was constricted by the extreme steepness of terrain therefore work was concentrated near areas of visible surface gossans. A total of 14 reconnaissance style rock chip samples were collected during this mapping.

A soil and silt geochemical survey was conducted on the Aftom 19 claim, along the eastern side of a tributary creek east of Storie Creek. A total of four silt samples and eight soil samples were collected on this survey.

A VLF-EM and magnetometer survey was conducted on the northwest corner of the Aftom 18 claim. This survey was conducted along previous cut lines running down the steep slope towards Eskay Creek. A total of 3.425 km. of geophysical survey was completed at this location.

2.0 GEOLOGY

2.1 REGIONAL GEOLOGY

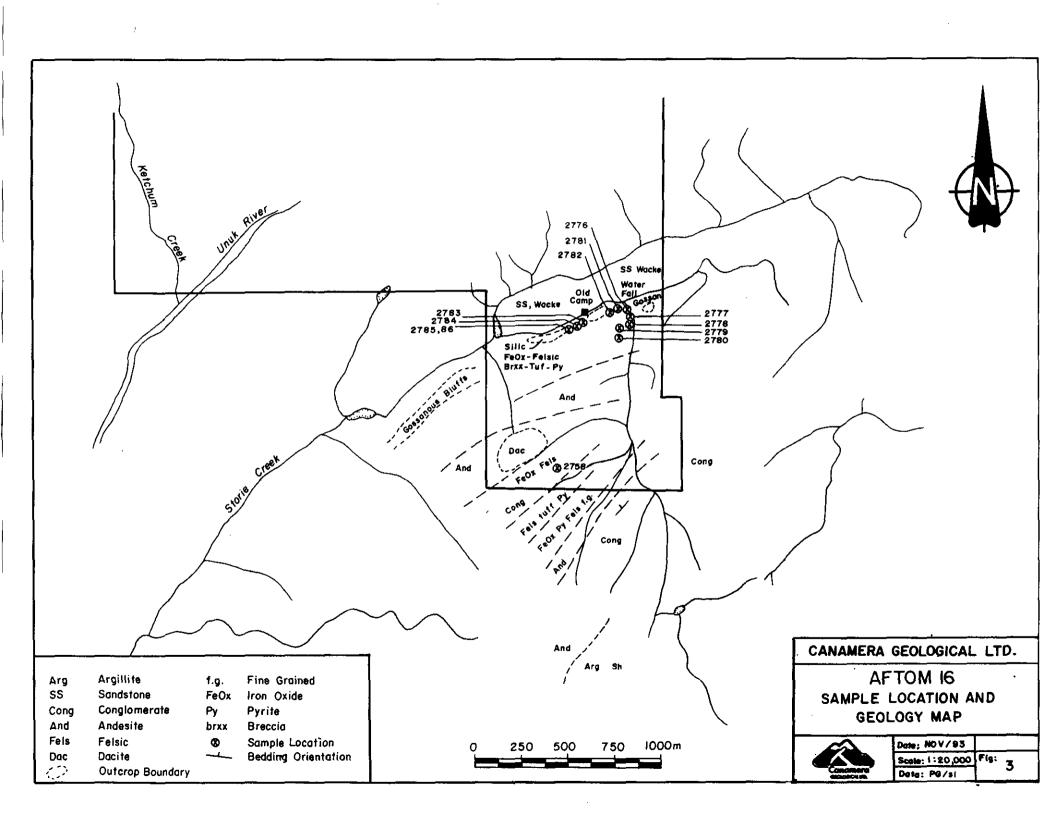
On a broad scale, the property sits in the middle of the Iskut-Sulphurets gold camp. This area consists of four major tectonic assemblages which are bounded by unconformities. These are the Paleozoic Stikine assemblage, the Triassic to Jurassic arc complex rocks, the Jurassic Bowser Group, and the Tertiary Coast Plutonic complex.

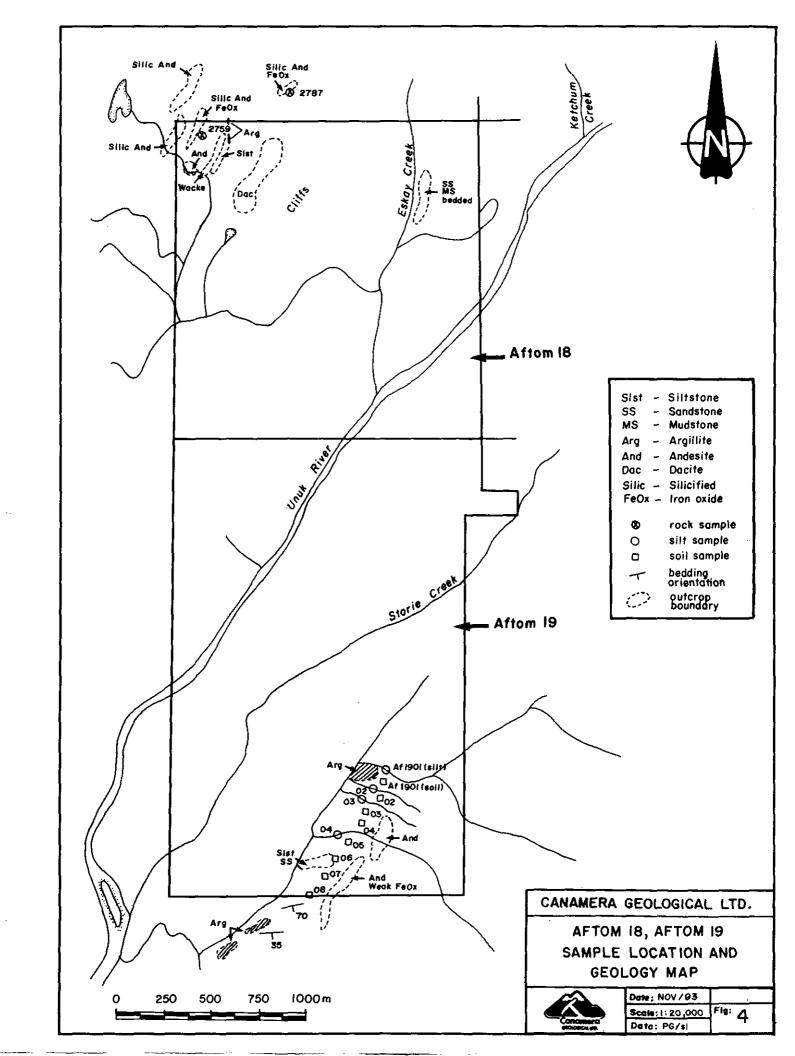
Paleozoic Stikine assemblage rocks consist of fine to coarse grained sediments with plagioclaise porphyry, felsic tuff, and basaltic lavas. These rocks crop out to the northwest of the property along the Iskut River. Triassic to Jurassic arc complex rocks consist of clastic sediments with volcaniclastic interbeds. These rocks are regionally extensive. Jurassic Bowser Group rocks cover much of the area north of the Prout Plateau and are comprised of thick sequences of thinly bedded siltstone, shale and sandstone with thin lenses of conglomerate. Coast Plutonic rocks are present in the area as a series of plutons, sills, and dikes that range in age from late Triassic to Oligocene. Stocks nearest to the property are the Melville and John Peaks diorites.

In closer proximity to the property within the upper Unuk River drainage, most of the area is underlain by rocks of the lower to middle Jurassic Hazelton Group. This group has been divided into four recognizable formations, the Unuk River formation, Betty Creek formation, Mount Dilworth formation, and the Salmon River formation.

The Unuk River formation is a thick sequence of fine grained andesitic pyroclatics and flows with tuffaceous turbidite, wacke, and conglomerate interbeds. The Betty Creek formation overlies the Unuk River formation and is a heterogeneous sequence of andesitic to dacitic tuffs and flows, interbedded with volcanic derived sedimentary rocks. Thick sequences of pillow lavas found on Mount Shirley have been correlated to the Betty Creek formation. The Betty Creek formation is overlain by the Mount Dilworth formation which consists of a sequence of felsic volcanic rocks. These are typically white weathering, or rusty where pyrite bearing, consisting of rhyolitic to dacitic ash and lapilli tuffs. This sequence of felsic volcanics appears to represent the terminal stages of volcanism in the area. This unit is important as a marker horizon for ore mineralization since it is host to many base and precious metal deposits, including the Eskay Creek deposit. The Salmon River formation is uppermost in the Hazelton Group strata, and consists of mainly turbiditic siltstones and fine sandstones with rare conglomerate, tuff, or volcanic interbeds. These rocks are gradational to the overlaying Bowser Lake Group sedimentary rocks.

2.2 PROPERTY GEOLOGY AFTOM 16 CLAIM


Results of mapping at 1:20,000 scale on the Aftom 16 claim is shown on Figure 3. The southeast area of the claim is underlain by coarse conglomerates and pyroclastic volcanic rocks belonging to the Betty Creek formation. Gossanous bluffs paralleling Storie Creek to the south, are composed of silicified andesitic tuff and breccia which are strongly pryritic in areas. This trend of bluffs has been interpreted as belonging to the Mount Dilworth formation in previous regional mapping. To the north of Storie Creek, the claims are underlain by Bowser Lake Group sedimentary rocks. Bedding strikes to the northeast, with moderate dips to the northwest. Resistive outcropping of dacitic composition is interpreted to be intrusive in origin, related to a small stock in the area.


AFTOM 18 AND 19

Geologic mapping at 1:20,000 scale was restricted to the northwest corner of Aftom 18 and the southeast corner of Aftom 19, where previous regional mapping by the B.C. Geological Survey has shown that rocks of the important Mount Dilworth formation exist. Results of this mapping are shown on Figure 4.

The northwest corner of the Aftom 19 claim apparently covers the contact of the Betty Creek and Mount Dilworth formations. Betty Creek formation rocks are represented by silicified andesites with minor siltstone and wacke. These are commonly pyritiferous. A resistive erosional ridge east of these rocks is comprised of dacitic rocks possibly belonging to the Mount Dilworth formation.

The southeast corner of the Aftom 19 claim covers the change from Bowser Lake Group sediments to Betty Creek and Unuk River formation volcanics. Bowser Group sediments are represented by argillite, siltstone, and sandstone. Bedding at this location strikes east-northeasterly with dips of 35 to 70 degrees to the south. Volcanic rocks are represented by slightly gossanous andesites which form steep bluffs parallel to Storie Creek.

3.0 GEOCHEMISTRY

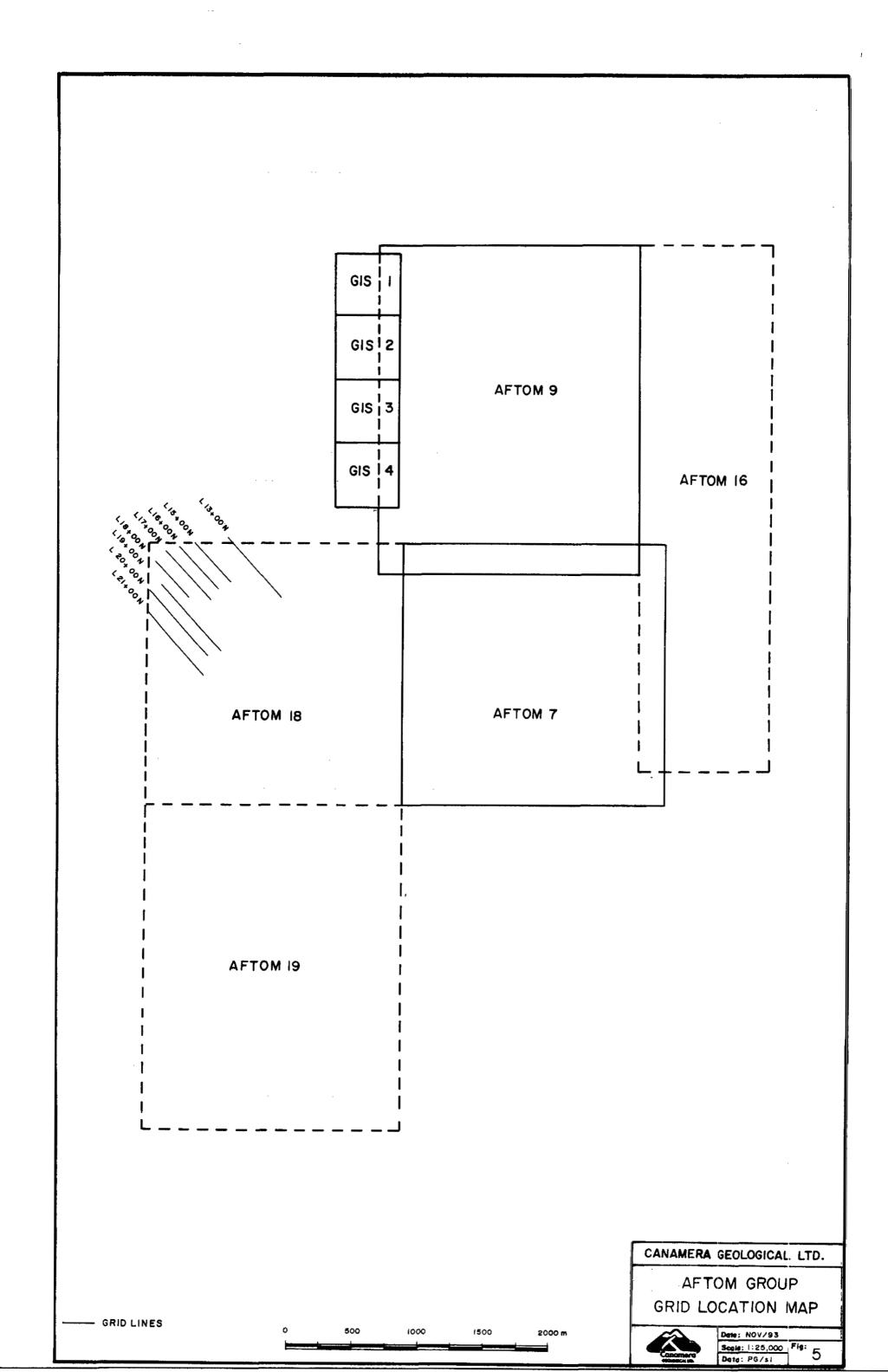
3.1 SAMPLING PROCEDURE

AFTOM 16

A total of 12 rock samples were taken from the Aftom 16 claim. Sample locations are shown on Figure 3. One sample (2758) was taken from a felsic component of the bedded Betty Creek volcanic rocks which is pyrite bearing. The rest of the samples were taken along Storie Creek where silicified, pyritiferous andesitic volcanic tuffs and breccias crop out.

AFTOM 18 & 19

A total of two rock samples, eight soil samples and four silt samples were taken from the Aftom 18 and Aftom 19 claims. Sample locations are shown on Figure 4. Rock samples were taken from pyrite bearing silicified andesite in the northwest corner of the Aftom 18 claim. Soil and silt samples were taken parallel to gossanous bluffs in the southeast corner of the Aftom 19 claim. Soil samples were taken at 100 metre spacings along a line parallel to the drainage east of Storie Creek. Silt samples were taken from tributaries crossing this line.


3.2 SAMPLE RESULTS

All samples were shipped to Chemex Labs Ltd. in North Vancouver for 32 element ICP analysis, and fire assayed for gold. Copies of certificates of analysis are available in the appendix.

Sampling of pyritiferous silicious rocks on the Aftom 16 claim returned assay values below or marginally above, the lower detection limits for silver and gold. Slightly elevated values for arsenic indicates the presence of arsenopyrite (#2783). High iron content (2784) reflects the concentrations of pyrite in samples.

Sample 2787, taken from the northwest corner of the Aftom 18 claim returned assay values of 25 ppb. Au and 1.2 ppm. Ag, the highest precious metal values returned from rocks sampled on the claim group. The relatively low iron content of 1.49% in this sample suggests that gold and silver content may have an inverse relationship to pyrite content.

Soil and silt samples taken from the Aftom 19 claim returned assay values below, or marginally above, the lower detection limits for silver and gold. Slightly elevated values of arsenic are noted in silt samples AF-19-02 and AF-19-03 taken from two small streams which drain from the gossanous bluffs above.

4.0 GEOPHYSICS

4.1 Procedure and Instrumentation

4.1.1 Survey Parameters

- survey line separation 100 meters.
- data station spacing 12.5 m.
- horizontal control survey was conducted along previously located cut lines, at azimuth 235 125
 - degrees, down the steep slope towards Eskay Creek.
- a total of 3.425 km. of VLF-EM data were accumulated.
- a total of 3.425 km. of magnetic data were accumulated.

4.1.2 Equipment Parameters

- EDA Omni Plus combined VLF-EM and magnetometer
- in-phase (dip angle) and quadrature (out-of-phase) measured in percent at each station
- field strength measured at each station
- transmitting stations
- NLK (24.8 kHz.) Seattle WA
- NSS (21.4 kHz.) Annapolis MD
- initialization direction easterly
- earth's total magnetic field measured in gammas (nanoteslas)
- magnetic variations controlled by automatic magnetic base station recording every 30 seconds
- instrument accuracy +/- 0.1 gamma
- station repeatability better than +/- 3 gammas in low gradients

4.1.3 Equipment Specifications - see Appendix I

4.1.4 Calculations

4.1.4.1 Total Field Magnetic Survey

Total field magnetic readings were individually corrected for variations in the earth's magnetic field using magnetic base station values. The formula used for magnetic corrections was; CTFR = TFR + (DBL - BSR) (gammas) where:

CTFR = Corrected Total Field Reading

TFR = Total Field Reading

DBL = Datum Base Level

BSR = Base Station Reading

A constant value of 57,200 nT was subtracted from all magnetic readings on line 1900S in order to compensate for a base level error or a calculation error.

4.1.4.2 VLF-EM Survey

No calculations were carried out on VLF-EM data.

4.1.5 Presentation

- Seattle VLF-EM in-phase, out-of-phase and field strength readings are presented in profile form on Figure #5-1 at a scale of 1:5000.
- Annapolis VLF-EM in-phase, out-of-phase and field strength readings are presented in profile form on Figure #5-2 at a scale of 1:5000.
- Total field magnetic data are presented in profile form on Figure #5-3 at a scale of 1:5000.

4.2 VLF-EM SURVEY RESULTS

VLF-EM profiles from both frequencies showed no significant VLF-EM anomalies. An active region on line 2100S at about 1300E to 1400E is believed to be due to instrument noise or atmospheric electrical noise.

4.3 MAGNETOMETER RESULTS

Magnetic survey showed one significant magnetic anomaly, of the order of 400 nT, on line 1500S at approximately 1400E. The anomaly suggests a near surface magnetic source with limited depth extent. An increase in magnetite content is suspected, possibly within more basic intrusive rocks. Additional survey to the north would be necessary in order to determine if the causative body was elongate and to establish a strike direction.

Magnetic profiles give some indication of a minor level change from west to east. This can be seen as a 40 to 50 nT shift from low to higher on lines 1500S to 1800S across an interpreted line at about 1400E and from higher to lower on lines 1900S to 2100S across a line at approximately 1750E on line 1900S to 1475 on line 2000S to 1400E on line 2100S. This suggests a subtle change in the magnetic susceptibility of the rocks across the interpreted lines. A dashed line joining three weak magnetic highs on survey lines 1900S through 2100S may indicate a narrow magnetic dyke trending northeast.

Minor short wavelength (mostly single station) magnetic highs at various locations probably represent near surface magnetic sources such as magnetic boulders.

5.0 REFERENCES

BARTSCH, R.D., ESKAY CREEK AREA, STRATIGRAPHY UPDATE (104B/9, 10), Mineral Deposit Research Unit, the University of British Columbia, in Ministry of Energy, Mines and Petroleum Resources geological fieldwork 1001, paper 1992-1.

BARTSCH, R.D., A RHYOLITE FLOW DOME IN THE UPPER HAZELTON GROUP, ESKAY CREEK AREA (104B/9, 10), Mineral Deposit Research Unit, the University of British Columbia, in the Ministry of Energy, Mines and Petroleum Resources geological fieldwork 1992, paper 1993-1.

BRITTON, J.M., BLACKWELL, J.D., AND SCHROETER, T.G., #21 ZONE DEPOSITS, ESKAY CREEK, NORTHWESTERN BRITISH COLUMBIA, British Columbia Geological Survey Branch of the Ministry of Energy, Mines and Petroleum Resources, Exploration in British Columbia summary 1989.

CHAPMAN, J., AND RAVEN, W., GEOLOGICAL, GEOPHYSICAL, AND GEOCHEMICAL COMPILATION CONSOLIDATED POWERGEM RESOURCE CORPORATION ALBINO LAKE PROJECT (ALPHA, BETA, GAMMA, EPSILON, OMEGA, RHO, PI, DELTA PHI CLAIMS), December 15, 1989 assessment report of Orequest Consultants Limited.

DAWSON, G.L., AND HARRISON, D.J., GEOLOGICAL REPORT ON THE AFTOM 9 CLAIM, Skeena Mining Division for Waterford Resources Ltd.

HICKS, K.E. AND METCALFE, P., GEOLOGICAL REPORT ON THE AFTOM 5, 6, 7, 10, 11, 13 AND 20 CLAIMS, for Tagish Resources Ltd., Dec. 04, 1991.

HOPPER, D.H., ASSESSMENT, PROSPECTING, ROCK SAMPLING REPORT ON THE FRED 16 AND DUP 8 CLAIMS, Nov. 17, 1989.

KILLIN, KEVIN, REPORT ON A COMBINED HELICOPTER BORNE MAGNETIC ELECTROMAGNETIC AND VLF-EM SURVEY, UNUK RIVER AREA, Unuk River Area, Northeastern British Columbia, for Swift Minerals Ltd., Oct. 20, 1989.

LEWIS, P.D., STRUCTURAL GEOLOGY OF THE PROUT PLATEAU REGION, ISKUT RIVER MAP AREA, BRITISH COLUMBIA (104 B/9), Mineral Deposit Research Unit, the University of British Columbia, in the Ministry of Energy, Mines and Petroleum Resources geological fieldwork 1001, paper 1992-1.

MACDONALD, J., LEWIS, P.D., ETTLINGER, A.D., BARTSCH, R.D., MILLER, B.D. AND LOGAN, J.M., BASALTIC ROCKS OF THE MIDDLE JURASSIC SALMON RIVER FORMATION, NORTHWESTERN BRITISH COLUMBIA, Mineral Deposit Research Unit, the University of British Columbia, in the Ministry of Energy, Mines and Petroleum Resources geological fieldwork 1992, paper 1993-1.

ROTH, T., SURFACE GEOLOGY OF THE 21A ZONE, ESKAY CREEK, BRITISH COLUMBIA, Mineral Deposit Research Unit, the University of British Columbia, in the Ministry of Energy, Mines and Petroleum Resources geological fieldwork, 1992, paper 1993-1.

VISSER, SYD, MAGNETOMETER AND VLF-EM SURVEY ON THE FRED 16 CLAIM for Silver Princess Resources Inc., Skeena MD, BC, October, 1989.

6.0 COST STATEMENT

SALARIES

2 Line Surveyor/Samplers X 5 Mandays X \$200/day 2,000.00 2 Geophysical Technicians X 5 Mandays X \$250/day 2,500.00 Perry Grunenberg, P. Geo. X 5 Mandays X \$350/day 1,750.00

TRAVEL COSTS

Vehicle Rentals (apportioned) & Airline Tickets (apportioned)

2,000.00

CAMP COSTS

Camp Rental: 5 days X \$250/day 1,250.00 Food & Supplies: 5 days X \$150/day 750.00

HELICOPTER COST

VIH Helicopter 10 hrs. X \$720/hr.

7,200.00

GEOPHYSICAL EQUIPMENT RENTAL

Computer & Radios: 5 days X \$800/day

4,000.00

ASSAY COSTS

26 Samples X \$30/sample

780.00

SUB TOTAL \$22,230.00

CONTINGENCIES

At 10%

2,223.00

(Shipping Costs, Communications, Fuels,

Office Supplies, etc.)

GRAND TOTAL \$24,453.00

7.0 STATEMENT OF QUALIFICATIONS

PERRY GRUNENBERG, B.Sc., F.G.A.C., P. Geo.

A	C.	A	\mathbf{D}	F	M	IC
4 B	٠.	2-3	_	ъ.		

1982 B. Sc. in Geology The University of British Columbia

1987 Fellowship Geological Association of Canada

1992 Membership Association of Professional Engineers and

Geoscientist of British Columbia

PROFESSIONAL

1989 TO PRESENT P AND L GEOLOGICAL SERVICES, SMITHERS, BC

Contract geologist working on mining and mining exploration throughout BC and the Northwest Territories

1984 to 1989 HUGHES-LANG EXPLORATIONS, VANCOUVER, BC

Project geologist employed to work on geological, geophysical, and geochemical surveys with follow-up drilling and trenching, in areas throughout BC and the

Yukon.

1983 STRATO GEOLOGICAL ENGINEERING LTD.

VANCOUVER, BC

Project geologist contracted to work in all aspects of mining exploration on properties in Nevada and Washington, USA, and in Pritish Columbia

Washington, USA, and in British Columbia.

1982 P AND L EXPLORATION, VANCOUVER, BC

Contract geologist involved in evaluating placer gold

prospects near Quesnel and Princeton, BC

1978 to 1981 RIO ALGOM, KENNECOTT CANADA, MARK

MANAGEMENT LTD.

Summer student involved in exploration projects in British

Columbia.

M

CERTIFICATE

- I, Edwin Ross Rockel, Geophysicist of Surrey, British Columbia, Canada, hereby certify that:
- 1. I received a B.Sc. degree in Geophysics from the University of British Columbia in 1966.
- 2. I am a Consulting Geophysicist contracted to Canamera Geological Ltd. located in the City of Vancouver, in the Province of British Columbia.
- 3. I currently reside at 13000 54A Ave, in the City of Surrey, in the Province of British Columbia.
- 4. I have been practising my profession since graduation.
- 5. I am a Professional Geophysicist registered in the Province of Alberta.
- 6. I am a Certified Professional Geological Scientist registered in the United States of America.
- 7. I am a Professional Geoscientist registered in the Province of British Columbia.

Date: Dec 14 93 Signed:

Surrey,

British Columbia

Edwin Ross Rockel

B.Sc., P.Geoph., P.G.S., P.Geo.

APPENDIX I

CHEMEX LABS CERTIFICATES OF ANALYSIS

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CANAMERA GEOLOGICAL LTD.

220 CAMBIE ST., SUITE 290 VANCOUVER, BC V6B 2M9

Project : AFTOM-ESKAY Comments: ATTN; P. GRUNENBERG

'umber :1-A Τo ages :1 Certificate Date: 07-OCT-9 Invoice No. : 19322190

P.O. Number : AFTOM Account :KBQ

SAMPLE	PREP CODE									CE	RTIFI	CATE	OF A	ANAL	YSIS		19322	190		-te =
		Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	₽₽m Ga	Hg ppm	к %	La ppm	Mg %	Mn ppm
2752//	205 274	< 5	0.4	0.31	26	130	< 0.5	< 2	0.03	< 0.5	2	191		2,61	< 10		0.18	10	0.08	30
2752/ 2752/ 2764 2766 2766	205 274	· 5	0.4	2.00	-6	10	< 0.5	₹ 2	0.71	0.5	13	48	28	8.10	< 10	< 1	0.02	< 10	1.39	880
E 167	205 274	< 5	0.4	1.51	< 2	60	< 0.5	₹ 2	0.28	0.5	3	59	10	5.89	10	₹ ī	0.08	10	0.94	565
2056	205 274	< 5	0.4	0.60	6	90	< 0.5	< 2	0.34	< 0.5	ĭ	86	15	4.89	< 10	₹ 1	0.03	< 10	0.22	100
2786	205 274	< 5	1.6	1.59	20	< 10	< 0.5	` 4	0.58	1.5	11	101	165	11.85	10	< 1	0.01	< 10	0.85	350
		` •	4.0	1.77		`	` 0.5	•	0.50	1.5	**	101	100	*****		` -	V.V.	` +•	0.05	330
2751	205 274	< 5	0.2	2.00	< 2	40	< 0.5	2	0.80	1.0	15	44	41	11.45	10	< 1	0.03	< 10	1.11	590
2758	205 274	< 5	< 0.2	1.00	22	200	< 0.5	< 2	0.17	< 0.5	3	40	7	6.14	< 10	11	0.35	< 10	0.19	150
2759	205 274	< 5	1.8	1.65	46	30	< 0.5	< 2	0.41	< 0.5	11	94	11	4.53	< 10	1	0.57	< 10	0.45	100
2776	205 274	< 5	< 0.2	2.41	< 2	40	< 0.5	< 2	1.19	0.5	27	24	10	9.60	10	1	0.12	< 10	1.09	550
2 7 77	205 274	< 5	< 0.2	0.36	24	40	< 0.5	< 2	0.16	< 0.5	1	198	3	1.36	< 10	< 1	0.03	20	0.03	65
2778	205 274	< 5	< 0.2	0.86	22	130	< 0.5	< 2	0.26	< 0.5	4	116	6	2.53	< 10	< 1	0.33	10	0.18	145
2779	205 274	< √5	< 0.2	3.04	< 2	330	< 0.5	< 2	0.06	0.5	1	33	2	5.08	10	< 1	0.23	< 10	1.82	585
2780	205 274	< 5	< 0.2	3.05	14	80	< 0.5	< 2	1.07	< 0.5	16	18	11	7.42	10	< 1	0.21	< 10	1.89	775
2781	205 274	< 5	< 0.2	0.39	38	90	< 0.5	< 2	8.56	0.5	20	24	4	4.05	< 10	< 1	0.09	< 10	0.31	1535
2782	205 274	< 5	< 0.2	2.02	< 2	140	< 0.5	< 2	6.86	0.5	21	26	5	6.15	10	< 1	0.01	< 10	1.31	1420
2783	205 274	5	< 0.2	0.34	120	60	< 0.5	< 2	11.10	0.5	17	25	5	4.96	< 10	2	0.08	< 10	0.20	2710
2784	205 274	10	< 0.2	0.50	86	40	< 0.5	< 2	7.85	0.5	13	50	10	13.35	< 10	< 1	0.13	< 10	0.24	1755
2785	205 274	< 5	< 0.2	0.46	44	30	< 0.5	< 2	1.64	0.5	21	103	10	6.98	10	< 1	0.04	< 10	0.21	645
2786	205 274	< 5	< 0.2	0.85	34	30	< 0.5	< 2	6.53	0.5	25	29	11	5.97	< 10	< 1	0.04	< 10	0.40	2000
2787	205 274	25	1.2	1.13	12	210	< 0.5	< 2	0.13	< 0.5	3	77	8	1.49	< 10	< 1	0.67	10	0.11	45

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

1 To: CANAMERA GEOLOGICAL LTD.

220 CAMBIE ST., SUITE 290 VANCOUVER, BC V6B 2M9

Project : AFTOM-ESKAY Comments: ATTN: P. GRUNENBERG

Paç mber :1-B Tota ages :1
Certificate Date: 07-OCT-90
Invoice No. :19322190
P.O. Number : AFTOM
Account :KBO

			CERTIFICATE OF ANALYSIS		'SIS	A9322190									
Sample	PREP CODE	Mo ppm	Na %	Ni ppm	DDm D	Pb ppm	Sb ppm	Sc ppm	Sr Ti	T1 ppm	U mqq	V ppm	M M	Zn ppm	
752 753 754 755 756	205 274 205 274 205 274 205 274 205 274	1 20 1 10	< 0.01 0.07 0.04 0.11 0.03	4 7 8 13 7	120 850 910 320 390	14 10 22 20 158	< 2 4 < 2 2 4	1 31 6 4 5	17 < 0.01 3 0.54 4 0.15 32 0.16 29 0.17	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	2 330 34 29 27	< 10 < 10 < 10 < 10 < 10	58 86 62 14 170	
757 758 759 776	205 274 205 274 205 274 205 274 205 274	4 < 1 3 7 1 7	0.10 0.04 0.06 0.04 0.25	15 < 1 3 < 1	650 1880 1910 1260	8 12 18 8	6 < 2 4 < 2	18 6 6 13	6 0.35 18 < 0.01 16 0.01 31 < 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	257 45 37 186	< 10 < 10 < 10 < 10	110 22 34 80	
778 779 780 781 782	205 274 205 274 205 274 205 274 205 274	2 4 < 1 4 1 4	0.14 0.01 0.01 0.09 0.03	3 < 1 2 < 1 1	170 470 140 1470 1180 910	18 2 8 2	< 2 < 2 < 2 < 4 2	2 4 10 13 18	18 < 0.01 27 < 0.01 9 < 0.01 36 < 0.01 184 < 0.01 126 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	5 30 67 87 226	< 10 < 10 < 10 < 10 < 10 < 10	40 86 92 108 60	
783 78 4 785 786 787	205 274 205 274 205 274 205 274 205 274	22 3 4 < 1	0.06 0.03 0.15 0.05 0.04	< 1 < 1 1 < 1	780 640 1220 1250 710	4 14 8 12 14	10 12 8 6 12	14 8 10 20 2	191 < 0.01 182 < 0.01 43 0.01 112 < 0.01 6 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	53 46 134 207 21	< 10 < 10 < 10 < 10 < 10	32 62 42 176	
															

CERTIFICATION:	. 'k	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CANAMERA GEOLOGICAL LTD.

220 CAMBIE ST., SUITE 290 VANCOUVER, BC V6B 2M9

AFTOM-ESKAY Project:

Comments: ATTN: P. GRUNENBERG

CERTIFICATE OF ANALYSIS

imber :1-A Tot. ages :1 Certificate Date: 06-OCT-9 Invoice No. :19322185

A9322185

P.O. Number : AFTOM :KBO Account

Sample	PRE	- 1	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cq Cq	Co ppm	Cr ppm	Cu ppm	Pe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn mqq
AF19-01	201	229	< 5	0.4	2.52	58	140	< 0.5	< 2	0.15	4.0	23	34	72	8.46	10	< 1	0.06	20	0.74	1570
AF19-02	201	229	< 5	< 0.2	2.18	2	80	< 0.5	< 2	0.22	1.0	14	37	23	6.73	10	< 1	0.02	< 10	0.32	340
AF19-03	201	229	< 5	0.2	0.49	12	20	< 0.5	< 2	0.13	0.5	9	13	13	2.31	10	< 1	0.02	< 10	0.06	90
AF19-04	201	229	10	0.2	2.91	26	170	< 0.5	< 2	0.20	1.0	18	43	44	5.06	10	< 1	0.06	10	0.90	840
AF19~05	201	229	< 5	0.4	2.08	16	60	< 0.5	< 2	0.05	< 0.5	7	20	20	6.56	30	< 1	0.02	10	0.22	240
AF19~06	201	229		< 0.2	2.47	6	100	< 0.5	< 2	0.05	1.0	17	96	42	8.99	10	< 1	0.02	< 10	0.51	340
AF19-07	201	229	< 5	0.4	0.73	< 2	20	< 0.5	< 2	0.23	0.5	12	11	16	2.85	< 10	< 1	0.03	< 10	0.33	160
AF19-08	201	229	< 5	1.6	2.23	12	20	< 0.5	< 2	0.05	0.5	9	24	23	7.78	30	< 1	0.02	< 10	0.12	105
SILT-AF19-01	201	229	< 5	< 0.2	2.59	36	230	< 0.5	< 2	0.86	2.0	26	98	35	6.31	< 10	< 1	0.05	< 10	1.92	1375
SILT-AF19-02	201	229	< 5	< 0.2	2.33	180	190	< 0.5	< 2	1.16	1.5	35	197	43	7.65	< 10	< 1	0.02	< 10	2.20	1805
SILT-AF19-03	201	229	< 5	< 0.2	2.91	116	170	< 0.5	< 2	1.06	0.5	28	210	36	6.34	< 10	< 1	0.03	< 10	3.00	1380
SILT-AF19-04	201	229	< 5	< 0.2	2.89	26	510	< 0.5	< 2	0.79	2.0	26	124	51	6.72	< 10	< 1	0.07	< 10	1.77	1595

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: CANAMERA GEOLOGICAL LTD.

220 CAMBIE ST., SUITE 290 VANCOUVER, BC V6B 2M9

Project: AFTOM-ESKAY

Comments: ATTN: P. GRUNENBERG

mber :1-8 Tota .ges :1 Certificate Date: 06-OCT-90

Invoice No. : 19322185 P.O. Number : AFTOM Account :KBO

										CE	RTIF	CATE	OF A	NALY	'SIS	A9322185
Sample	PREP CODE	Mo mqq	Na %	Ni ppm	ppm P	Pb ppm	Sb mqq	Sc ppm	Sr ppm	Ti %	Tl ppm	mqq U	mada A	Dbm M	Zn ppm	
AF19-01 AF19-02 AF19-03 AF19-04 AF19-05	201 229 201 229 201 229 201 229 201 229 201 229	31 2 4 2	0.01 0.03 0.01 0.01 0.01	53 9 5 20 8	890 670 140 650 290	48 18 18 26 34	10 2 6 4 2	17 8 1 9	6 18 12 12	0.06 0.29 0.41 0.07 0.25	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	80 155 152 88 107	30 20 < 10 10	446 48 40 100 52	
AF19-06 AF19-07 AF19-08 SILT-AF19-01 SILT-AF19-02	201 229 201 229 201 229 201 229 201 229 201 229	2 4 4 10 8	0.01 0.07 0.01 0.03 0.03	26 9 8 35 46	230 250 200 560 590	26 12 30 22 22	2 6 8 4 2	8 2 3 10 14	7 28 6 53 51	0.15 0.35 0.49 0.07 0.25	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	121 117 158 85 124	20 10 20 30 20	56 54 104 122 72	
SILT-AF19-03 SILT-AF19-04	201 229	2 3	0.07	46 43	610 870	22 20	4 2	15 14	43 38	0.26	< 10 < 10	< 10 < 10	127	20 20	72 122	

OFFICION	2	,	4	
CERTIFICATION:_		 		

APPENDIX II

EQUIPMENT SPECIFICATIONS

Spec	ific	ati	ons	*
		~ •	~	

Frequency Tuning Range......15 to 30 kHz, with bandwidth of 150 Hz; tuning

range accommodates new Puerto Rico station

at 28.5 kHz

Transmitting Stations Measured . . Up to 3 stations can be automatically measured

at any given grid location within frequency

tuning range

Recorded VLF Magnetic

Parameters Total field strength, total dip, vertical

quadrature (or alternately, horizontal

amplitude)

Standard Memory Capacity 800 combined VLF magnetic and VLF electric

measurements as well as gradiometer and

magnetometer readings

DisplayCustom designed, ruggedized liquid crystal

display with built-in heater and an operating temperature range from -40°C to +55°C. The display contains six numeric digits, decimal

point, battery status monitor, signal strength status monitor and function descriptors.

RS232C Serial I/O Interface 2400 baud rate, 8 data bits, 2 stop bits, no parity

memory

B. Self Test (hardware)

Sensor Head Contains 3 orthogonally mounted coils with

automatic tilt compensation

Operating Environmental

perating Environmental Range –40°C to +55°C;

0 - 100% relative humidity;

Weatherproof

Power SupplyNon-magnetic rechargeable sealed lead-acid 18V

DC battery cartridge or beit; 18V DC disposable battery belt; 12V DC external power source for

base station operation only.

Weights and Dimensions

Instrument Console 2.8 kg, 128 x 150 x 250 mm

*Preliminary

EDA Instruments Inc. 4 Thorncliffe Park Drive, Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR, Cables: Instruments Toronti (416) 425-7800

IN USA, FDA Instruments Inc. 5151 Ward Road, Wheat Ridge, Colorado USA BOOSS (303) 422-9112

Printed in Canada

o)WW (A

Specifications

Gradient Sensor

Gradient Sensor

Dynamic Range	18,000 to 110,000 gammas, Roll-over display feature suppresses first significant digit upon exceeding 100,000 gammas.
	Tuning value is calculated accurately utilizing a specially developed tuning algorithm
Automatic Fine Tuning	 ± 15% relative to ambient field strength of last stored value
Display Resolution	0.1 gamma
Processing Sensitivity	
Statistical Error Resolution	0.01 gamma
Absolute Accuracy	
Standard Memory Capacity	
Total Field or Cradient	1,200 data blocks or sets of readings
Tie-Line Points Base Station	TUU GRUD DISCHE OF STEEL OF FRANCISCO CONTRACT OF STEEL OF CAST OF
Dieniav	
остры у	operating temperature range from -40°C to +55°C. The display contains six numeric digits, decimal point, battery status monitor, signal decay rate and signal amplitude monitor and function descriptors.
RS 232 Serial I/O Interface	2400 baud, 8 data bits, 2 stop bits, no parity
Gradient Tolerance	
Test Mode	A. Diagnostic testing (data and programmable memory) B. Self Test (hardware)
Sensor	Optimized miniature design, Magnetic cleanliness is consistent with the specified absolute accuracy.
Gradient Sensors	0.5 meter sensor separation (standard), normalized to gammas/meter. Optional 1.0 meter sensor separation available. Horizontal sensors optional.
	Remains flexible in temperature range specified, includes strain-relief connector
Į.	Programmable from 5 seconds up to 60 minutes in 1 second increments
	40°C to +55°C; 0-100% relative humidity; weatherproof
Power Supply	Non-magnetic rechargeable sealed lead-acid battery cartridge or belt; rechargeable NiCad or Disposable battery cartridge or belt; or 12V DC power source option for base station operation.
Battery Cartridge/Belt Life	2,000 to 5,000 readings, for sealed lead acid power supply, depending upon ambient temperature and rate of readings
Weights and Dimensions	-
Instrument Console Only	2.8 kg, 238 x 150 x 250mm
NiCad or Alkaline Battery Cartridge	1.2 kg, 235 x 105 x 90mm
NiCad or Alkaline Battery Belt	1.2 kg, 540 x 100 x 40mm
Lond Acid Datton (Contrides	4.0 km 975 + 405 + 900 - m

Lead-Acid Battery Cartridge1.8 kg, 235 x 105 x 90mmLead-Acid Battery Belt1.8 kg, 540 x 100 x 40mmSensor1.2 kg, 56mm diameter x 200mm

(0.5 m separation - standard) 2.1 kg, 56mm diameter x 790mm

(1.0 m separation - optional) , 2.2 kg, 56mm diameter x 1300mm

Base Station Option Standard system plus 30 meter cable Gradiometer Option Standard system plus 0.5 meter sensor

operations manual.

sectional sensor staff, power supply, harness assembly,

E D A Instruments Inc. 4 Thorncliffe Park Drive Toronto, Ontario Canada M4H 1H1 Telex: 05 23222 EDA TOR Cable: Instruments Toronto (416) 425 7800

In U.S.A. E D A Instruments inc. 5151 Ward Road Wheat Ridge, Colorado U.S.A. 80033 (303) 422 9112

Printed in Canada

APPENDIX III

DATA LISTING

CANAMERA GEOLOGICAL LTD. Data Listing

Area: ESKAY CREEK, B.C. Current File Name: AFDATA.GPH
Grid: AFTOM GROUP CLAIMS From File Name: AZZ.XYZ

Date: December, 1993

INSTRUMENT TYPE: EDA Omni Plus VLF-EM/Magnetometer System

(Line & Station += Northings and Eastings, -= Southings and Westings)

DATA TYPE(S):

DATA DETAILS:

#2. Total Field Magnetic Values Corrected total magnetic field
#3. VLF-EM In-Phase Values Seattle Transmitter - facing north
#4. VLF-EM Quadrature Seattle Transmitter - facing north

#5. VLF-EM Field Strength Seattle total field strength

#6. VLF-EM In-Phase Values Annapolis Transmitter - facing north #7. VLF-EM Quadrature Annapolis Transmitter - facing north

#8. VLF-EM Field Strength Annapolis total field strength

Easting	Northing	# 1.	# 2.	#3.	#4.	# 5.	# 6 .	# 7 .	# 8 .
		Station							
line -1800									
1100	-1800	1100	57112	-0.8	-1.3	33.8	-19.5	-3.2	7.4
1112.5	-1800	1112.5	57105	1.1	0.3	34.1	-18.7	-2.8	7.5
1125	-1800	1125	57104	1.7	1.0	33.8	-17.6	-2.1	7.4
1137.5	-1800	1137.5	57109	2.2	0.9	33.5	-17.9	-2.6	7.5
1150	-1800	1150	57106	2.7	0.9	33.3	-20.6	-3.2	7.3
1162.5	-1800	1162.5	57105	1.7	0.8	33.0	-20.2	-3.3	7.3
1175	-1800	1175	57105	1.4	0.9	32.9	-20.9	-2.9	7.2
1187.5	-1800	1187.5	57106	2.4	1.2	32.9	-21.6	-2.7	7.3

Easting	Northing	# 1. Station	# 2.	#3.	# 4 .	# 5.	# 6.	#7.	# 8.
1200	-1800	1200	57104	3.1	1.3	32.6	-22.5	-3.5	7.5
1212.5	-1800	1212.5	57105	2.7	1.1	32.4	-24.4	-3.7	7.5
1225	-1800	1225	57106	4.1	1.8	32.2	-24.5	-4.0	7.5
1237.5	-1800	1237.5	57107	3.6	1.5	32.2	-23.6	-3.1	7.4
1250	-1800	1250	57108	1.8	1.3	32.3	-25.9	-2.5	7.3
1262.5	-1800	1262.5	57113	0.6	0.1	32.7	-24.9	-2.4	7.4
1275	-1800	1275	57101	-3.2	-0.5	33.1	-26.7	-3.5	7.3
1287.5	-1800	1287.5	57111	-2.6	-2.3	32.9	-24.3	-2.9	7.2
1300	-1800	1300	57104	-2.9	-3.3	33.0	-23.4	-3.0	7.0
1312.5	-1800	1312.5	57095	-3.7	- 4.9	32.8	-24.8	-3.3	7.1
1325	-1800	1325	57099	-5.1	-6.3	32.5	-22.7	- 3.5	7.0
1337.5	-1800	1337.5	57102	-3.6	-6.8	32.8	-21.7	-3.2	7.0
1350	-1800	1350	57094	-4.0	-8.2	33.0	-21.5	-3.5	6.9
1362.5	-1800	1362.5	57091	-4.0	-8.7	32.9	-21.7	-3.3	6.9
1375	-1800	1375	57083	-6.2	-10.4	32.5	-21.2	-3.0	6.9
1387.5	-1800	1387.5	57088	-6.2	-12.3	33.0	-20.7	-2.6	6.9
1400	-1800	1400	57100	-6.3	-13.3	33.2	-21.0	-4.3	6.9
1412.5	-1800	1412.5	57096	- 5.3	-14.5	33.9	-19.7	-4.6	6.9
1425	-1800	1425	57097	-4.3	-15.6	34.4	-18.9	-5.2	6.9
1437.5	-1800	1437.5	57098	-4.4	-16.6	34.7	-19.5	-6.7	6.8
1450	-1800	1450	57171	-2.7	-17.5	35.0	-17.4	-5.6	6.9
1462.5	-1800	1462.5	57208	-1.4	-17.0	35.0	-16.8	-5.5	7.0
line -1700									
1100	-1700	1100	57106	8.2	- 0.1	34.9	-11.8	-2.4	7.9
1112.5	-1700	1112.5	57109	9.0	0.0	34.8	-11.6	-1.9	8.0
1125	-1700	1125	57111	9,5	-0.3	34.8	-11.1	-1.9	7.9
1137.5	-1700	1137.5	57107	9.6	0.0	35.2	-11.1	-2 .1	8.0
1150	-1700	1150	57111	9.6	0.1	35.1	-11.4	-1.2	8.1
1162.5	-1700	1162.5	57106	10.5	0.7	35.2	-12.4	-2.2	8.2
1175	-1700	1175	57104	10.3	0.7	35.1	-12.6	-2.2	8.1

Easting	Northing	# 1. Station	# 2.	#3.	# 4.	# 5.	# 6.	# 7.	# 8.
1187.5	-1700	1187.5	57105	9.7	0.5	35.2	-11.7	-1.7	8.1
1200	-1700	1200	57105	9.5	0.3	35.3	-11.9	-0.3	8.2
1212.5	-1700	1212.5	57105	6.0	-0.4	35.3	-14.2	-1.2	8.4
1225	-1700	1225	57108	5.7	-0.8	35.7	-15.0	-1.8	8.4
1237.5	-1700	1237.5	57111	4.4	-0.9	35.8	-16.8	-0.6	8.4
1250	-1700	1250	57106	2.3	-2.3	36.3	-18.3	-0.6	8.4
1262.5	-1700	1262.5	57108	0.6	-3.2	36.2	-22.4	-1.8	8.4
1275	-1700	1275	57103	0.3	-3.4	36.8	-24.6	-2.0	8.3
1287.5	-1700	1287.5	57108	1.6	-3.5	36.5	-22.8	-1.3	8.1
1300	-1700	1300	57112	1.8	-3.9	36.7	-23.1	-2.3	8.1
1300	-1700	1300	57110	3.8	-4 .6	37.0	-25.0	-3.8	7.9
1312.5	-1700	1312.5	57102	4.8	-5.3	37.0	- 22.9	-2.0	7.8
1325	-1700	1325	57116	4.9	-5.3	37.1	-21.0	-2.0	7.9
1337.5	-1700	1337.5	57099	4.7	-6.5	37.1	-21.0	-1.7	7.8
1350	-1700	1350	57098	3.4	-7.8	36.8	-20.1	-1.6	7.8
1362.5	-1700	1362.5	57096	1.6	- 9.8	36.8	-20 .1	-1.0	7.8
1375	-1700	1375	57079	-3.6	-13.5	37.6	-18.6	-0.1	7.8
1387.5	-1700	1387.5	57090	0.8	-12.0	37.1	-14.9	2.6	7.8
1400	-1700	1400	57105	1.6	-11.8	36.9	-15.8	-0.2	7.8
1412.5	-1700	1412.5	57111	2.8	-13.0	36.9	-14.0	-0.1	7.7
1425	-1700	1425	57107	3.3	-13.6	37,3	-13.9	-0.5	7.9
1437.5	-1700	1437.5	57136	4.3	-13.8	37.0	-13.2	-1.3	7.8
1450	-1700	1450	57120	5.1	-13.3	36.5	-14.5	-3.3	7.7
1462.5	-1700	1462.5	57123	5.3	-11.1	36.0	-13.9	-3.7	7.5
1475	-1700	1475	57128	4.5	-9.9	35.6	-15.6	-4.4	7.5
1487.5	-1700	1487.5	57130	4.4	-9 .1	35.7	-15.3	-5.8	7.4
1500	-1700	1500	57128	4.2	- 9.5	35.2	-15.5	-6.0	7.4
1512.5	-1700	1512.5	57131	4.9	-7.1	35,5	-16.7	-8.2	7.3
1525	-1700	1525	57132	4.4	-7.0	35.4	-16.7	-8.5	7.3
1537.5	-1700	1537.5	57136	4.0	- 6.6	35.7	-17.9	-10.0	7.3

Easting	Northing	# 1. Station	# 2.	#3.	# 4 .	# 5.	# 6.	# 7.	# 8.
1550	-1700	1550	57133	4.7	-5.4	35.6	-17.5	-10.2	7.2
1562.5	-1700	1562.5	57142	4.9	-5.1	35.5	-16.5	-9.0	7.2
1562.5	-1700	1562.5	57137	3.8	- 5.9	35.7	-17.4	-10.2	7.2
line -1600									
1125	-1600	1125	57093	6.6	-2.1	35.2	-10.0	-5.3	8.0
1137.5	-1600	1137.5	57097	5.8	-2.2	35.5	-7.7	-3.2	8.0
1150	-1600	1150	57102	9.1	-0.6	35.4	-7.1	-1.7	8.1
1162.5	-1600	1162.5	57101	9.1	-0.4	35.3	-8.7	-2.2	8.0
1175	-1600	1175	57098	11.5	0.3	35.0	-8.5	-3.8	8.1
1187.5	-1600	1187.5	57095	11.1	0.4	34.8	-9.4	-3.6	7.9
1200	-1600	1200	57092	11.5	8.0	34.2	-7 .9	-2.4	7.7
1212.5	-1600	1212.5	57093	9.2	0.0	34.4	-10.2	-2.6	7.7
1225	-1600	1225	57089	7.5	-1.0	34.4	-8.2	-0.7	7.7
1237.5	-1600	1237.5	57090	8.0	-0.4	34.3	-9.0	1.3	7.9
1250	-1600	1250	57091	9.0	-0.3	34.5	-11.7	0.8	7.8
1262.5	-1600	1262.5	57088	9.5	-0.1	34.6	-12.3	0.9	7.8
1275	-1600	1275	57096	9.3	-1.4	34.5	-12.0	2.5	7.9
1287.5	-1600	1287.5	57083	7.8	-4.9	35.1	-15.3	0.0	7.8
1300	-1600	1300	57082	5.3	-6.4	35.3	-16.0	1.4	7.8
1312.5	-1600	1312.5	57077	6.0	-7.3	35.7	-12.2	2.7	7.7
1325	-1600	1325	57086	6.0	-7.9	36.0	-12.3	2.8	7.8
1337.5	-1600	1337.5	57089	6.5	-8.1	36.1	-10.8	2.6	7.8
1350	-1600	1350	57095	7.3	- 7.8	35.9	-9.9	3.8	7.7
1362.5	-1600	1362.5	57110	9.1	-7.4	36.2	-8.5	5,5	8.2
1375	-1600	1375	57106	9.1	-7.7	35.7	-7.6	5.5	7.7
1387.5	-1600	1387.5	57103	9.8	-7.8	35.2	-6.4	6.0	7.8
1400	-1600	1400	57120	7.5	-8.3	35.3	-8.9	5.1	7.7
1412.5	-1600	1412.5	57123	6.8	-8.7	34.7	-7.5	5.3	7.8
1425	-1600	1425	57126	7.0	-8.0	34.9	-8.1	4.5	7.8
1437.5	-1600	1437.5	57139	6.0	- 9.0	34.4	-10.0	2.0	7.8

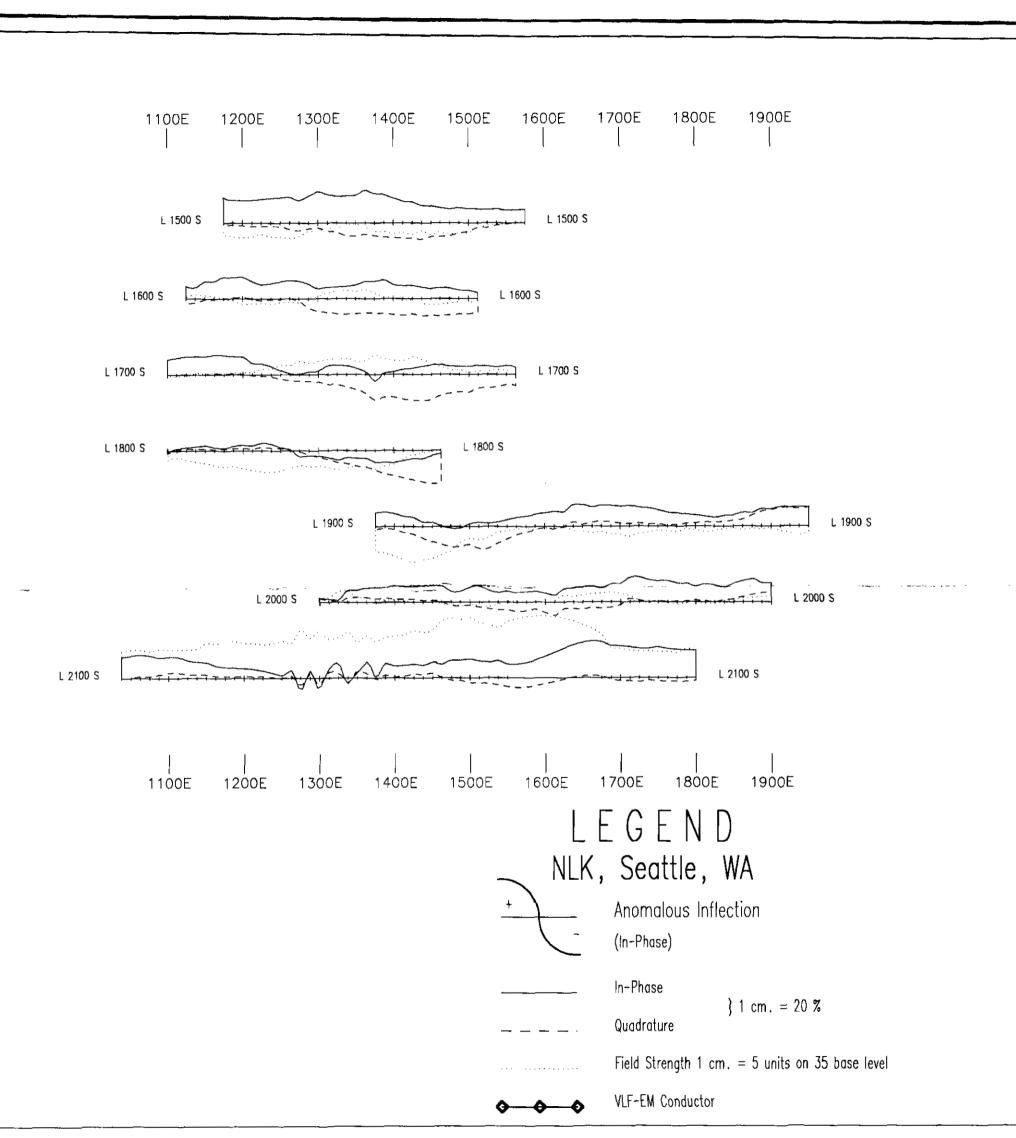
Easting	Northing	# 1.	# 2.	#3.	# 4.	# 5.	# 6.	# 7.	# 8.
	•	Station							
1450	1/00	1.450	57144	5.2	0.0	240	10.6	0.0	~ 0
1450	-1600	1450	57144	5.3	-8.8	34.2	-10.6	0.8	7.8
1462.5	-1600	1462.5	57144 57145	5.8	-8.9	34.3	-10.8	-0.3	7.9
1475	-1600	1475	57145	5.5	-8.5	34.4	-11.7	-0.6	8.0
1487.5	-1600	1487.5	57132	4.5	-8.1	34.6	-13.0	-2.4	8.0
1500	-1600	1500	57128	4.2	-7.9	34.5	-13.4	-4.4	7.9
1512.5	-1600	1512.5	57127	3.1	-7.4	34.6	-13.6	-5.8	7.9
line -1500	1,500	1175	£5004	10.0				•	
1175	-1500	1175	57094	13.3	-1.0	33.5	-9.8	-3.8	8.1
1187.5	-1500	1187.5	57098	11.9	-1.2	33.2	-10.3	-3.9	8.0
1200	-1500	1200	57088	11.8	-1.5	33.0	-10.5	-3.5	8.1
1212.5	-1500	1212.5	57087	11.8	-1.7	33.2	-11.0	-2.8	8.0
1225	-1500	1225	57087	12.4	-1.7	33.5	-11.0	-3.3	8.0
1237.5	-1500	1237.5	57084	12.9	- 1.7	33.2	-11.1	-1.5	8.0
1250	-1500	1250	57084	13.2	-2.0	33.2	-9.4	-1.0	8.1
1262.5	-1500	1262.5	57079	13.5	-3.3	32,9	-9.0	0.0	8.0
1275	-1500	1275	57076	11.7	-4 .1	33.2	-8.1	0.9	8.0
1287.5	-1500	1287.5	57080	13.9	-3.0	33.9	-6.7	1.6	8.1
1300	-1500	1300	57073	16.3	-2.6	34.0	-6.2	2.6	8.1
1312.5	-1500	1312.5	57076	14.9	-4.3	34.3	-8.1	1.8	8.2
1325	-1500	1325	57061	13.8	-5.0	34.4	- 7.6	1.8	8.2
1337.5	-1500	1337.5	57057	14.1	-6.8	34.6	-10.4	1.6	8.2
1350	-1500	1350	57045	14.3	-7 .0	34.9	-11.1	2.8	8.1
1362.5	-1500	1362.5	57003	17.2	-6.0	34.4	-7.5	3.0	8.3
1375	-1500	1375	56969	15.3	- 6.6	33.9	- 6.9	4.7	8.0
1387.5	-1500	1387.5	57005	14.7	-7.5	33.9	-6.8	4.0	8.0
1400	-1500	1400	57367	13.0	-7.7	33,6	-7.9	3.6	7.9
1412.5	-1500	1412.5	57530	11.3	-7.9	33.8	-7.6	3.7	7.9
1425	-1500	1425	57418	10.9	-8.0	33,5	-7.0	3.2	8.0
1437.5	-1500	1437.5	57199	9.0	-8.7	34.0	-7.5	3.1	8.0
1450	-1500	1450	57152	8.8	-7 .1	33.5	-8.2	3.2	7.9

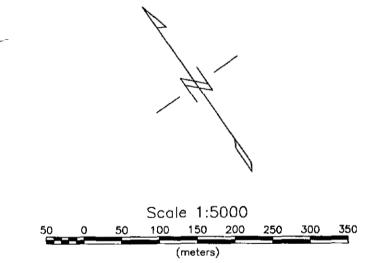
Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8.
1462.5	-1500	1462.5	57151	7 .9	-7.2	33.8	-6.5	4.1	8.0
1475	-1500	1475	57145	7.2	-6.8	33.5	-8.7	1.7	7.9
1487.5	-1500	1487.5	57134	7.9	-5.4	33.6	-8.7	1.3	7.9
1500	-1500	1500	57130	7.3	-4.8	33.6	-8.2	1.1	7.9
1512.5	-1500	1512.5	57133	7.1	-2.5	34.4	-10.1	-1.2	7.9
1525	-1500	1525	57132	6.8	-2.4	34.6	-11.8	-2.7	8.0
1537.5	-1500	1537.5	57130	7.3	-1.3	34.8	-11.2	-3.0	7.9
1550	-1500	1550	57128	6.5	-0.7	34.8	-11.7	-3.4	8.0
1562.5	-1500	1562.5	57130	6.7	0.0	35.0	-13.6	-4.7	8.0
1575	-1500	1575	57131	7.0	0.0	35.4	-14.9	-6.4	8.0
line -1900									
1375	-1900	1375	57144	7.2	-1.4	31.7	-27.2	-1.2	4.5
1387.5	-1900	1387.5	57137	7.4	-1.2	31.4	-26.3	-2.6	4.6
1400	-1900	1400	57143	6.7	-1.7	31.1	-27.5	-2.7	4.5
1412.5	-1900	1412.5	57136	5.3	-3.3	30.5	-26.8	-4.8	4.3
1425	-1900	1425	57138	4.7	-4.2	30.2	-25.6	-1.4	4.2
1437.5	-1900	1437.5	57172	2.3	-6.2	30.6	-25.0	-2.6	4.4
1450	-1900	1450	57139	2.2	-8.1	30.8	-25.0	-3.2	4.3
1462.5	-1900	1462.5	57122	0.3	- 9.4	31.2	-22.4	-1.5	4.2
1475	-1900	1475	57128	-1.0	-10.7	31.8	-23.1	-0.9	4.2
1487.5	-1900	1487.5	57139	-1.0	-10.7	32.9	-22.2	0.2	4.3
1500	-1900	1500	57117	1.3	-9.6	33.4	-22.1	-1.8	4.3
1512.5	-1900	1512.5	57117	2.1	-11.6	33.2	-21.5	-0.3	4.4
1525	-1900	1525	<i>57175</i>	1.7	-11.7	33.5	-22.7	-1.0	4.3
1537.5	-1900	1537.5	57182	2.3	- 9.0	34.2	-2 3.9	-3.7	4.3
1550	-1900	1550	57230	3.5	-6.7	34.4	-25.7	-5.2	4.3
1562.5	-1900	1562.5	57148	4.6	-4.5	34.6	-25.2	-5.4	4.2
1575	-1900	1575	57142	5.4	-3.2	34.7	-26.4	-5.3	4.3
1587.5	-1900	1587.5	57161	6.3	-1.8	34.5	-26.8	-6.6	4.3
1600	-1900	1600	57133	7.1	-0.9	34.8	-27.6	-7.6	4.2

)

Easting	Northing	# 1. Station	# 2.	#3.	# 4.	# 5.	# 6.	# 7 .	# 8.
1612.5	-1900	1612.5	57104	7.8	-1.4	34.7	-31.2	-9.4	4.2
1625	-1900	1625	57102	7.5	-0.3	34.9	-32.0	-8.1	4.0
1637.5	-1900	1637.5	57224	11.4	2.4	34.5	-31.0	-7 .9	4.0
1650	-1900	1650	57218	11.3	8.0	34.3	-30.2	-6.2	4.0
1662.5	-1900	1662.5	57224	10.0	1.9	34.1	-2 9.4	- 6.6	4.0
1675	-1900	1675	57222	11.0	2.6	34.3	-29.1	-4.1	4.0
1687.5	-1900	1687.5	57218	10.9	2.2	34.0	-28.4	-5.8	3.9
1700	-1900	1700	57102	10.5	1.6	34.0	-29.2	-4.6	3.9
1712.5	-1900	1712.5	57087	10.8	1.2	33.6	-28.7	-3.9	3.9
1725	-1900	1725	57189	9.9	1.6	34.0	-27.0	- 3.6	3.9
1737.5	-1900	1737.5	57200	9.6	1.1	34.2	-31.1	-6.0	3.9
1750	-1900	1750	57087	8.6	1.2	34.5	-3 1.5	-5.0	3.9
1762.5	-1900	1762.5	57105	7.3	0.5	34.3	-32.5	- 5.5	3.9
1775	-1900	1775	57113	7.0	0.9	34.3	-33.0	-6.8	3.8
1787.5	-1900	1787.5	57101	6.2	1.4	34.6	-33.0	-8.7	3.7
1800	-1900	1800	57104	5.9	1.7	34.5	-33.3	-8.2	3.7
1812.5	-1900	1812.5	57096	5.3	2.2	34.3	-34.2	-9.9	3.5
1825	-1900	1825	57071	4.6	2.0	34.4	-32.5	-8.4	3.6
1837.5	-1900	1837.5	57098	5.6	2.4	34.6	-30.9	-8.1	3.5
1850	-1900	1850	57093	5.9	3.2	34.8	-28.4	- 6.5	3.5
1862.5	-1900	1862.5	57120	7.3	3.6	34.5	-27.6	- 6.9	3.6
1875	-1900	1875	57118	7.1	5.8	34.7	-26.9	-6.2	3.5
1887.5	-1900	1887.5	57124	9.2	7.9	34.6	-23.8	-6.2	3.4
1900	-1900	1900	57103	9.0	8.7	34.8	-23.7	- 9.6	3.4
1912.5	-1900	1912.5	57046	10.3	9.7	34.4	-23.2	-7.7	3.4
1925	-1900	1925	57080	9.8	9.4	34.1	-22.3	-8.4	3.4
1937.5	-1900	1937.5	57098	10.1	9.3	33.9	-22.3	-6.5	3.4
1950	-1900	1950	57097	10.0	10.1	34.2	-21.6	-9.1	3.4
line -2100									
1037.5	-2100	1037.5	57088	11.2	0.0	38.5	-13.9	-3,3	9.1

Easting	Northing	# 1. Station	# 2.	#3,	# 4 .	# 5.	# 6.	# 7.	# 8.
1050	-2100	1050	57092	11.9	0.1	38.8	-13.4	- 2.7	9.1
1062.5	-2100	1062.5	57095	12.3	1.0	38.7	-13.5	-3.6	9.0
1075	-2100	1075	57095	11.9	1.0	38.5	-12.3	-2.9	9.0
1087.5	-2100	1087.5	57105	10.9	1.8	38.8	-12.0	-3.1	8.9
1100	-2100	1100	57099	11.3	2.8	38.8	-13.2	-3.5	8.8
1112.5	-2100	1112.5	57100	11.2	2.9	38.8	-12.7	-3.7	8.7
1125	-2100	1125	57109	9.4	1.9	38.7	-12.4	-4.3	8.7
1137.5	-2100	1137.5	57112	8.6	1.9	38.9	-13.6	-5.0	8.6
1150	-2100	1150	57113	8.2	1.8	39.6	-12.9	-4 .9	8.3
1162.5	-2100	1162.5	57110	6.4	1.1	39.5	-12.9	-4.8	8.3
1175	-2100	1175	57113	5.8	1.1	39.8	-13.3	-3.9	8.3
1187.5	-2100	1187.5	57125	5.5	0.9	39.9	-13.6	-4.3	8.2
1200	-2100	1200	57119	5.1	1.0	39.6	-14.3	-2.9	8.2
1212.5	-2100	1212.5	57127	4.7	0.9	39.6	-14.0	-3.5	8.2
1225	-2100	1225	57119	3.9	1.0	39.5	-12.4	-2.7	8.2
1250	-2100	1250	57122	1.5	-0.2	39.9	-14.4	-1.8	8.2
1262.5	-2100	1262.5	57130	4.1	1.2	39.5	-17.7	-3.0	8.2
1275	-2100	1275	57132	-6.4	-3.9	41.4	18.3	-3.6	8.0
1287.5	-2100	1287.5	57132	3.9	2.4	40.3	-20.1	-1.4	7.9
1300	-2100	1300	57135	-5.5	-3.4	41.2	20.7	- 2.3	7.9
1312.5	-2100	1312.5	57130	5.0	3.1	40.1	-20.7	-1.2	7.6
1325	-2100	1325	57122	7.8	2.6	40.3	-14.4	3.4	4.4
1337.5	-2100	1337.5	57131	-2.9	-2.5	41.2	21.1	-1.8	7.8
1350	-2100	1350	57126	2.8	3.5	39.7	-19.7	0.3	7.8
1362.5	-2100	1362.5	57120	8.4	2.4	40.6	-11.4	4.7	4.3
1375	-2100	1375	57126	0.2	-0.8	39.9	22.2	-0.7	7.9
1387.5	-2100	1387.5	57126	7.7	1.5	40.3	-7.9	5.4	4.4
1400	-2100	1400	57157	6.3	0.5	40.6	-7.2	6.8	4.4
1412.5	-2100	1412.5	57105	6.6	1.0	40.7	-10.5	6.1	4.5
1425	-2100	1425	57099	7.2	2.1	41.3	-13.9	5,3	4.6


Easting	Northing	# 1. Station	# 2.	#3.	# 4.	# 5.	# 6.	# 7.	# 8.
1437.5	-2100	1437.5	57097	6.6	1.5	41.0	-13.2	5.2	4.6
1450	-2100	1450	57094	8.3	2.5	41.3	-10.4	6.9	4.5
1462.5	-2100	1462.5	57087	7.2	0.1	42.5	-10.0	6.8	4.6
1475	-2100	1475	57102	9.2	-1.2	42.9	-5.5	9.0	4.8
1487.5	-2100	1487.5	57096	9.4	-1.4	42.6	-7.4	6.2	5.0
1500	-2100	1500	57085	9.9	-2.6	43.0	-8.9	4.1	5.2
1512.5	-2100	1512.5	57090	9.0	-2.6	42.3	-9.1	4.5	5.3
1525	-2100	1525	57086	8.3	-3.0	42.0	-11.3	3.0	5.5
1537.5	-2100	1537.5	57080	9.1	-3.7	41.7	-10.9	4.4	5.7
1550	-2100	1550	57084	7.2	-4.6	42.5	-12.2	3.7	5.7
1675	-2100	1675	57046	19.2	0.8	40.8	-21.4	-1.5	6.8
1687.5	-2100	1687.5	57172	17.0	-0.8	38.9	-17.2	1.1	6.8
1700	-2100	1700	57137	16.9	-1.5	38.9	-15.8	2.2	4.1
1712.5	-2100	1712.5	57130	16.4	-1.5	38.6	-13.6	2.3	3.4
1725	-2100	1725	57168	15.4	-2.1	38.5	-13.5	2.5	6.7
1737.5	-2100	1737.5	57132	15.6	-1.2	38.6	-13.0	2.3	6.6
1750	-2100	1750	<i>5</i> 7097	16.4	-1.6	38.5	-11.0	3.7	6.6
1750	-2100	1750	57115	16.1	-1.3	38.3	-11.6	2.4	6.7
1762.5	-2100	1762.5	57096	15.4	-1.9	38.5	-12.1	3.1	6.5
1775	-2100	1775	57119	15.0	-1.9	38.3	-10.9	3.5	6.6
1787.5	-2100	1787.5	57123	14.6	-2.0	38.9	-10.9	3.8	6.6
1800	-2100	1800	57124	14.5	-1.4	38.3	-9.3	4.4	6.9
line -2000									0.5
1300	-2000	1300	57130	1.9	1.6	35.7	-18.1	-1.1	7.4
1312.5	-2000	1312.5	57130	1.6	1.2	35.6	-18.4	-0.2	7.4
1325	-2000	1325	57130	0.8	-0.1	36.4	-18.6	0.2	7.5
1337.5	-2000	1337.5	57133	6.3	2.1	36.6	-15.7	1.2	7.4
1350	-2000	1350	57140	6.3	2.6	35.6	-16.3	1.2	7.3
1362.5	-2000	1362.5	57130	7.4	2.5	35.6	-14.6	1.9	7.2
1375	-2000	1375	57129	7.7	1.8	35.3	-13.9	1.3	7.3

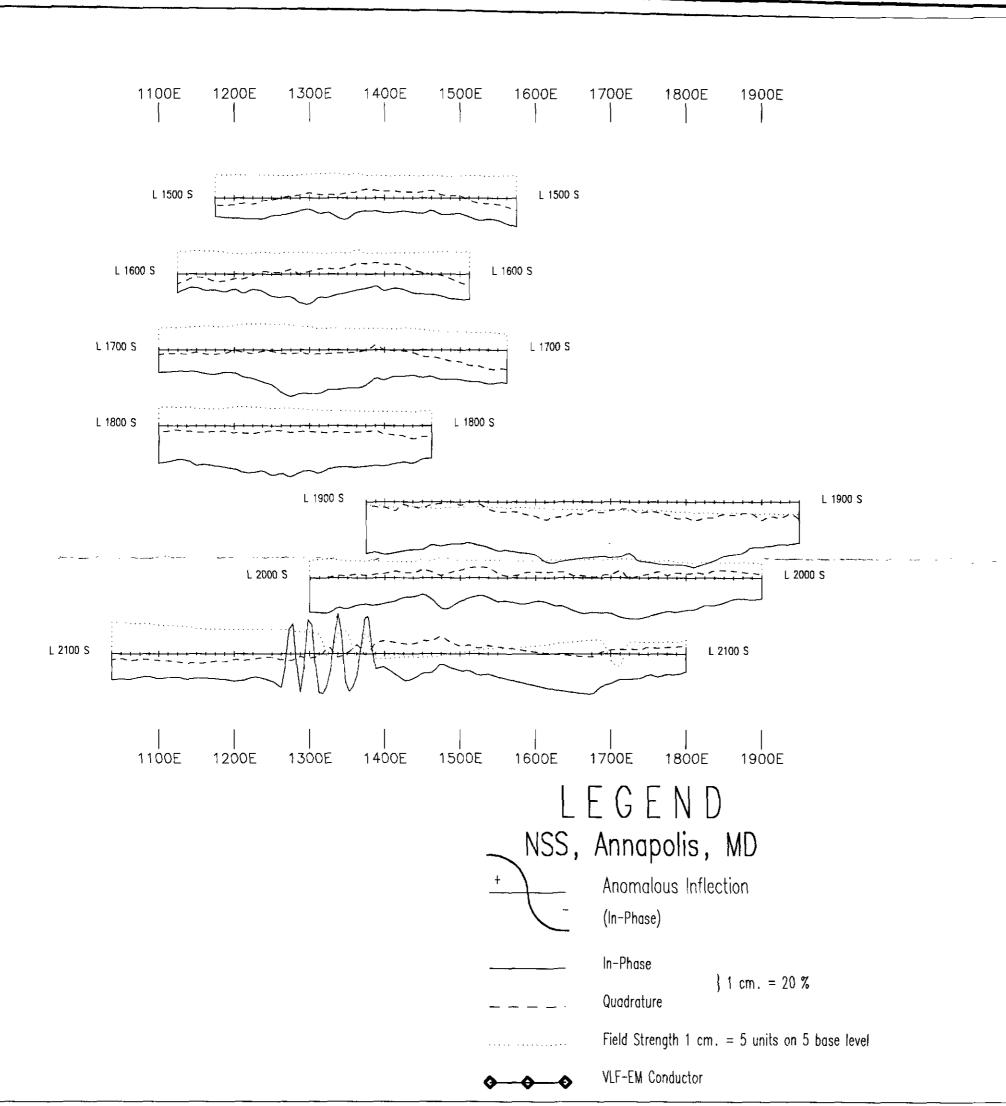

)

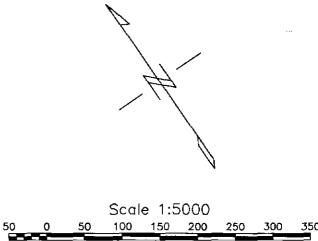
Easting	Northing	# 1. Station	# 2.	# 3.	# 4.	# 5.	# 6.	# 7.	# 8.
1387.5	-2000	1387.5	57126	7.6	2.1	35.2	-14.6	1.9	7.3
1400	-2000	1400	57124	8.5	1.6	35.2	-13.5	2.3	7.1
1412.5	-2000	1412.5	57126	8.2	1.5	35.1	-12,6	3.7	7.2
1425	-2000	1425	57125	7.9	1.5	34.9	-10.5	2.8	7.2
1437.5	-2000	1437.5	57119	8.5	0.7	35.2	-10.0	2.7	7.1
1450	-2000	1450	57132	8.7	0.8	35.2	-8 .9	4.2	7.5
1462.5	-2000	1462.5	57141	8.6	0.2	34.7	-11.2	3.3	7.3
1475	-2000	1475	57076	5.5	-1.9	34.8	-15.9	1.2	7.7
1487.5	-2000	1487.5	57093	5.6	-2.0	34.4	-15.6	2.9	7.5
1500	-2000	1500	57100	7.8	-1.8	34.7	-12.4	4.1	7.3
1512.5	-2000	1512.5	57099	8.5	- 2,5	34.5	-10,7	5.2	7.3
1525	-2000	1525	57098	6.2	-3.4	34.4	- 9.3	5.6	7.3
1537.5	-2000	1537.5	57106	5.1	-4.1	34.7	-10.3	5.5	7.3
1550	-2000	1550	57098	5.7	-4.1	35.1	-12.5	2.3	7.4
1562.5	-2000	1562.5	57093	4.9	-4 .9	35.0	-12.2	1.0	7.4
1575	-2000	1575	57090	5.4	-4.5	35.0	-13.4	1.4	7.3
1587.5	-2000	1587.5	57083	5.6	-3.7	35.0	-13.8	2.9	7.2
1600	-2000	1600	57081	4.7	-5.5	34.9	-12.4	3.2	7.3
1612.5	-2000	1612.5	57078	3.5	-7 .0	35.2	-12.6	3.0	7.3
1625	-2000	1625	57086	6.9	-3.5	35.9	-14,5	3.0	7.4
1637.5	-2000	1637.5	57092	7.2	-3.6	35.7	-15.0	3.1	7.4
1650	-2000	1650	57095	8.0	-3.8	35.9	-17.1	1.2	7.5
1662.5	-2000	1662.5	57099	8.4	-2 .9	36.0	-18.8	1.2	7.4
1675	-2000	1675	57088	7.3	-3.3	36.1	-18.1	0.2	7.5
1687.5	-2000	1687.5	57101	9.5	-2.8	36.3	-18.3	1.3	7.4
1700	-2000	1700	57109	9.7	-1.6	36.1	-18.7	1.7	7.4
1712.5	-2000	1712.5	57121	12.8	1.9	35.8	-20.6	3.8	7.5
1725	-2000	1725	57083	13.0	8.0	35.1	-21.4	-0.5	7.5
1737.5	-2000	1737.5	57094	11.6	0.0	34.8	-21.4	1.0	7.4
1750	-2000	1750	57097	11.0	0.8	35.1	-20.2	2.0	7.2

T

Easting	Northing	# 1. Station	# 2.	#3.	# 4.	# 5.	# 6.	# 7 .	# 8.
1762.5	-2000	1762.5	57091	11.2	0.1	34.9	-18.9	2.2	7.2
1775	-2000	1702.5	57101	9.9	0.1	34.9 34.7	-18.9 -17.6	3.2 1.2	7.2 7.3
1787.5	-2000	1787.5	57092	9.8	0.3	35.0	-17.0 -17.9	2.8	7.3 7.1
1800	-2000	1800	57095	8.3	1.0	35.0	-16.9	2.1	7.1
1812.5	-2000	1812.5	57108	9.6	0.6	34.8	-16.5	2.8	7.0
1825	-2000	1825	57100	9.0	-0.1	34.9	-14.5	2.3	7.0
1837.5	-2000	1837.5	57074	7.8	1.2	35.0	-14.5	3.8	7.1
1850	-2000	1850	57098	9.8	1.7	35.3	-13.1	3.8	7.0
1862.5	-2000	1862.5	57096	11.0	2.7	35.5	-11.2	3.7	7.0
1875	-2000	1875	57107	12.1	3.8	35.6	-11.0	2.9	7.1
1887.5	-2000	1887.5	57094	10.1	4.9	35.7	-11.5	2.4	7.0
1900	-2000	1900	57095	10.2	4.6	35.7	-10.9	1.9	7.0

Tagish Resources Ltd. and Alex Briden

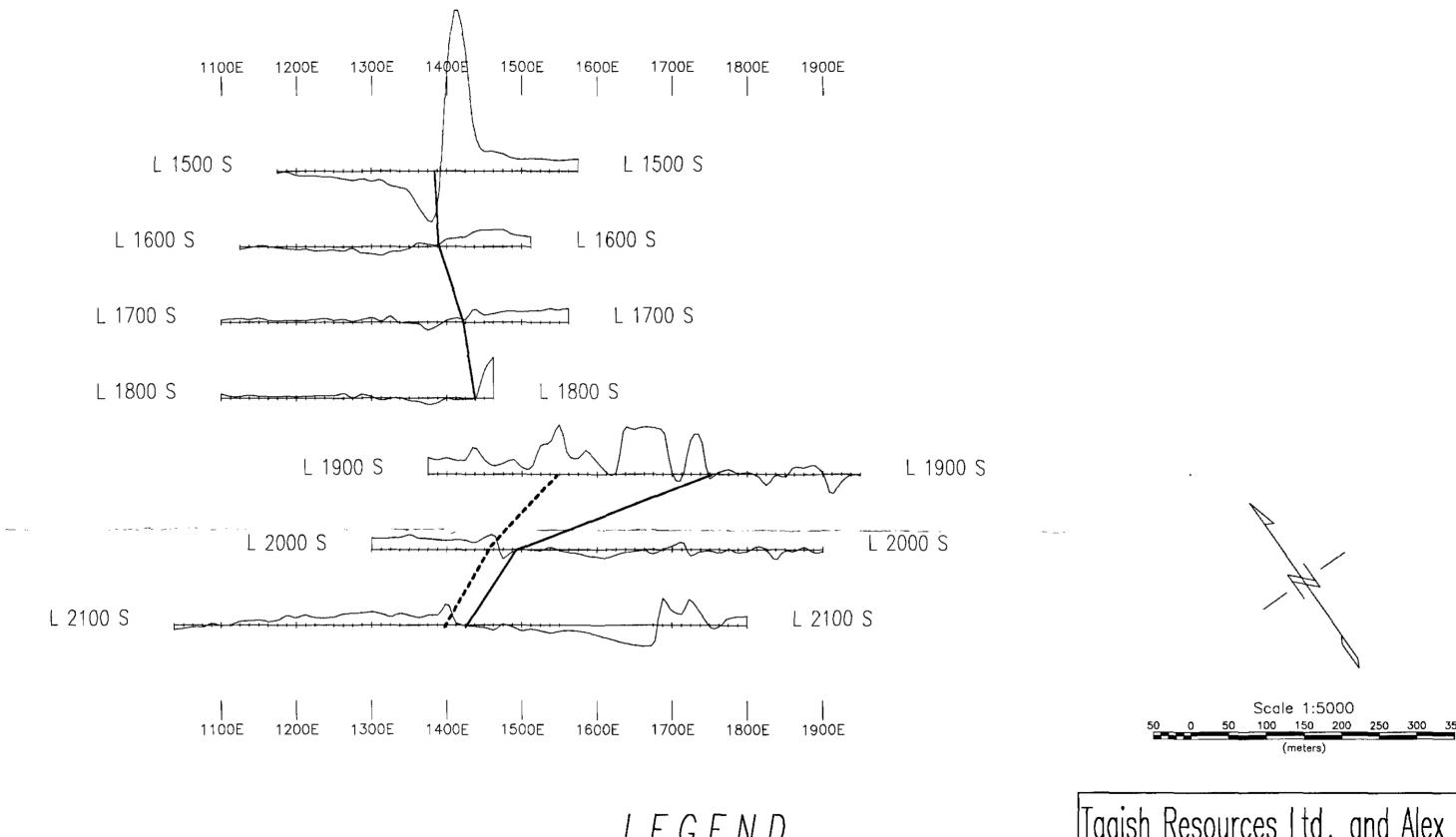

NLK, Seattle, WA VLF-EM PROFILES


AFTOM GROUP CLAIMS

104 B/9

Skeena Mining Division, British Columbia
Figure # 6-1 December 13, 1993

Canamera Geological Ltd.



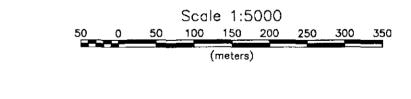
Tagish Resources Ltd. and Alex Briden

NSS, Annapolis, MD VLF-EM PROFILES

AFTOM GROUP CLAIMS
104 B/9
Skeena Mining Division, British Columbia Figure # 6-2 December 13, 1993

Canamera Geological Ltd.

LEGEND


Magnetic Field Strength

1 cm. = 100 nT

Magnetic Field Datum Level = 57100 nT

Possible Magnetic Boundary

Possible Narrow Basic Dyke

Tagish Resources Ltd. and Alex Briden

Total Field Magnetic Profiles

AFTOM GROUP CLAIMS

104 B/9

Skeena Mining Division, British Columbia
Figure # 5-3 December 13, 1993

Canamera Geological Ltd.