ARIS SUMMARY SHEET

District Geologist, Nelson

Off Confidential: 94.10.13

ASSESSMENT REPORT 23165

MINING DIVISION: Fort Steele

PROPERTY:

Erin

LOCATION:

LAT 49 05 00 LONG

115 45 00

UTM

5437253 591277 11

Purcell Belt (Sullivan)

NTS 001

082G04W

CAMP:

Erin 5-10

OPERATOR(S):

AUTHOR(S):

CLAIM(S):

Stephenson, L.G. Stephenson, L.G.

REPORT YEAR:

1993, 16 Pages

COMMODITIES

SEARCHED FOR: Silver, Lead, Zinc

KEYWORDS:

Helikian, Creston Formation, Argillites, Siltstones, Quartzites

WORK

DONE:

Geological, Geochemical

GEOL

150.0 ha

SOIL

58 sample(s);ME

SUB-RECORDER RECEIVED

NOV 29 1993

LOG NO:	DEC 2	3 1993	
ACTION.			
*			
FILE NO:			

Report on a Geochemical Orientation Survey

and

Geological Prospecting Program

ERIN PROPERTY

ERIN 5 -10 CLAIMS

FORT STEELE MINING DIVISION

CRANBROOK AREA

N.T.S. 82G/4W, 4E & 5W

<u>LAT:</u> 49ol5'N

LONG: 115045'W

OWNER

L.G. STEPHENSON

11744 River Rd. Surrey, British Columbia V3V 2V7 FILMED

Work Performed from May 15, 1993 through September 30, 1993

Report By L. Stephenson EPORT
Submitted: Specember 1998 EPORT

23,165

TABLE OF CONTENTS

	•	
		Page
1.00	Introduction	1
2.00	Location and Access	1
3.00	Geochemical Surveying	. 1
4.00	Geological Prospecting	2
5.00	Conclusions	2
	Exhibit "A" - Statement of Expenditure	3
	Affidavit	4
	Author's Qualifications	5
	Appendix 1	6
	MAPS Figure 1 - Location Map Figure 2 - Property Index Map Figure 3 - Geochem Compilation Map - Ag Pb Figure 4 - Geochem Compilation Map - Cu Zn Figure 5 - Geological Map	9 (in Pocket) (in Pocket) (in Pocket) (in Pocket)

Report on a Geochemical Orientation Survey and Geological Prospecting Program

ERIN 5 -10 CLAIMS

FORT STEELE MINING DIVISION

L. Stephenson

December, 1993

1.00 <u>Introduction</u>

Mr. L. Stephenson staked the Erin Claims in 1992 and under took to evaluate and locate the projected trend of the "Pipeline Showing" on the adjacent claims to the east. As well the St. Eugene Mine trend is projected to cross the property.

A geochemical orientation survey and geological prospecting was completed to establish the response in the newly disturbed pipeline soils and to evaluate the trend of the "Pipeline Showing." The geological structure was investigated especially where it was revealed in the new (1993) pipline construction.

2.00 Location and Access

The Erin Claims are located east southeast of the town of Moyie, British Columbia. Access is provided to the claims via the natural gas pipeline/B.C. Tel maintenance road.

3.00 Geochemical Surveying

Well spaced lines of geochemical soil samples were taken across the projected strike of the "Pipeline Showing" and along the newly exposed ground of the pipeline construction. A total of 58 soil samples were taken and plotted on Figures 3 and 4. The current program was an attempt to re-establish the previous assessment work efforts to allow for a compilation of that data for use in guiding further exploration.

Samples were taken from the B horizon which was well developed in most areas, along a east west baseline, with north south cross lines. Numbering was sequential and was directly plotted on the field map. This data was then transformed to Figures 3 and 4.

The data shows a weak continuation of the east west striking zone outlined around the "Pipeline Showing" on to the Erin Claims. However no identifiable relationship between the soil results and the presence of a mineralized zone was discovered.

4.00 Geological Prospecting and Mapping

Geological prospecting traverses were conducted across the claims to confirm the previously mapped geology. It was focussed on the newly disturbed area of pipeline construction to discover any new exposures of the "Pipline Showing" on the Erin Claims. The Index map (Figure 2) shows the traverses and the geology map (Figure 5) shows the author's geological mapping after previous assessment reports.

Rock types identified as Lower and Upper Creston Formation underlay the Erin Claims. Previous assessment reports identified this Formation to be intruded by gabbro (Moyie?) in the vicinity of the claims. Although float boulders of gabbro were identified in the area no outcrops were encountered in the prospecting traverses. The Creston rocks are mainly argillite-argillaceous quartzites with a few thick quartzite units. Most of the observed outcrops consisted of thin 3 - 5 cm thick beds The units were striking northsouth with a gentle easterly dip (15-20 degrees).

A minor anticlinal warp to the Creston formation centred on the pipeline is observed on the property. The "Pipeline Showing"appears to parallel this anticlinal axis with an east west strike. This trend parallels the main east west trend found at the main workings of the St. Eugene Mine.

Some faulting with minor offset has been noted by previous workers however no distinct evidence of this faulting was encountered in the prospecting traverses. The location of the intersection of these faults and the trend of the "Pipeline Showing" is an important exploration target. No samples of gossan have been located on the Erin Claims to date.

5.00 Conclusions

The Erin Claims have the extention of the adjacent "Pipeline Showing" located in its boundaries. This showing is part of the projected trend associated with the St. Eugene Mine where it cuts the Creston rocks. The Creston rocks stratigraphically overlay the Aldridge rocks which host the main St. Eugene deposit. The mineralogy and setting is not unlike that of the upper part of the St Eugene mine area, where thicker quartzite units host the thicker ore shoots. As well, the thicker ore shoots at the St Eugene Mine were associated with cross (north south) faults.

Further exploration is required to further evaluate these claims.

LAURENCE STEPHENSON, B.Sc., M.B.A.

EXHIBIT "A"

STATEMENT OF EXPENDITURES

GEOCHEMICAL SURVEYING AND GEOLOGICAL PROSPECTING

ON ERIN 5 - 10 CLAIMS FORT STEELE M.D.

Covering the period of May 15th to October 18th, 1993

SALARIES:

L. Stephenson - Geologist, P. Eng. Sampling 4 days
Geological Mapping 2 days
Report writing &
Interpretation 2 Days
Map Preparation 2 Days
Travelling - 4 days

14 days @ \$400/ day

\$2,400

TRANSPORTATION:

1 - 4x4 Pickup; 10 days @ \$65/day

\$ 100

ASSAYS: 52 ICP + sample prep. \$10+/ sample

\$ 300

TOTAL

<u>\$2,800</u>

LAURENCE STERMENBON, B.Sc.,

B.Sc., M.B.A

IN THE MATTER OF THE B.C. MINERAL ACT AND

IN THE MATTER OF A GEOCHEMICAL AND GEOLOGICAL PROSPECTING PROGRAM

CARRIED OUT ON THE ERIN PROPERTY
MOYIE AREA

in the Fort Steele Mining Division of the province of British Columbia More Particularily N.T.S. 82G/5W,4W & 4E

AFFIDAVIT

- I, L. Stephenson, of the City of Surrey, in the Province of British Columbia, make an oath and say:
- 1. That I am employed as a geologist by GeoFin Inc. and as such have a personal knowledge of the facts to which I hereinafter depose:
- That annexed hereto and marked as Exhibit "A" to this my Affidavit is a true copy of expenditures incurred on a geochemical surveying and geological prospecting program, on the Erin mineral claims;
- 3. That the said expenditures were incurred between the 15th day of May, 1993 and the 15th day of October, 1993 for the purpose of mineral exploration.

LAURENCE STEPHENSON, B.Sc., M.B.A.

AUTHOR'S QUALIFICATIONS

- I, Laurence Stephenson, of the City of Surrey, in the Province of British Columbia, do hereby certify that:
- I graduated from Carleton University in 1975 with a Bachelor of Science degree in Geology then, in 1985, graduated from York University with a Masters of Business Administration;
- I am registered as a Professional Engineer for the Province of Ontario (1981) and currently a member in good standing;

3. I have had over 24 years experience in the field of mining exploration.

LAURENCE STEPHENSON, B.Sc., M.B.A.

APPENDIX I

Soil Sample Results

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VA OUVER B.C. V6A 1R6

PHONE (604) 253-3158 PAX (6)

253-1716

AA

GEOCHEMICAL ANALYSIS CERTIFICATE

GOLDEN CHIEF MINERALS File # 93-0627 Page 1

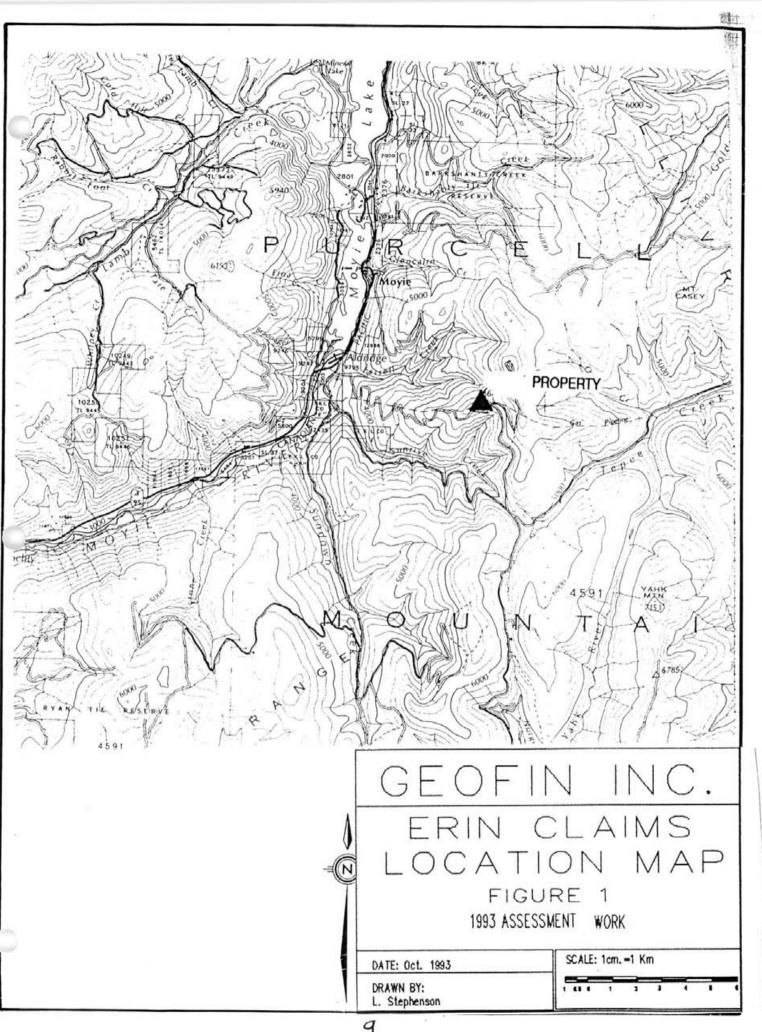
AA

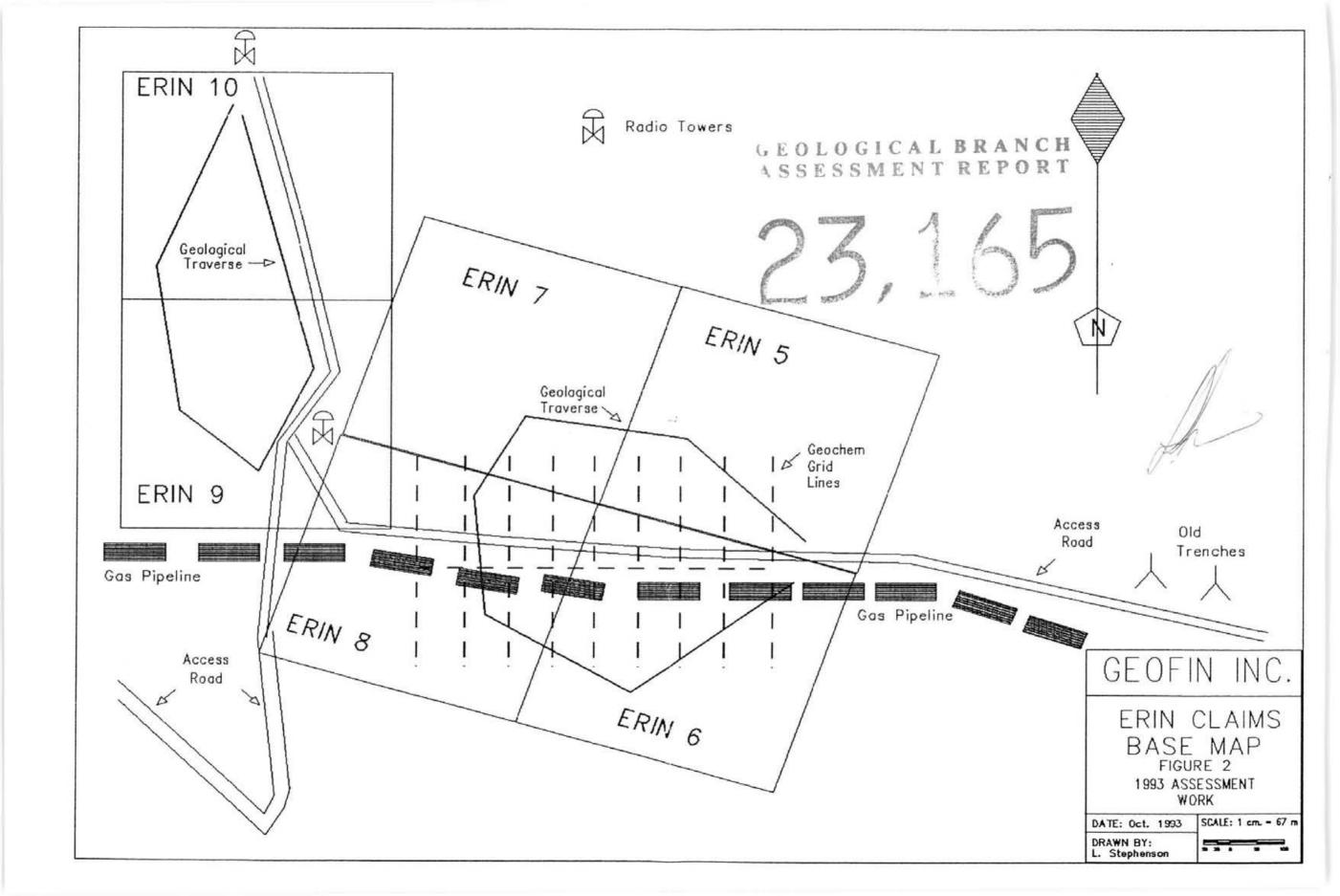
											55.	S SĮTI	E 15 E	OX 1	21, c	RANBRO	OK B.	C. V	С óн	3		ige	<u>.</u>	. :								
SAMPL	E#	Ppr	n pp	u Pp		Zn Ai om ppo	n pp	i Co om ppn	n ppo	i Fe	As		. Au	Th	50	Cd ppm	ch.	P.			. P	La	Cr					Αί	Na			
	1440 1430 1420 1410 1400	<1	1 30	5 1 5 1	7 9 7 7 5 6	31 79 79 78 79	2 1 2 1 2 1	7 8 7 8 6 8	502 455 422	3 3.26 2 3.45 3 3.62 2 3.39 3 3.65	3 3 2 2	<5 <5 <5	<2 <2 <2 <2	13 12 14 15 25	41 55 52 67	<.2 <.2 .2	<2 <2 <2	<2 <2 <2 <2	36 36 38 36	.53 .70 .91	.053 .058 .061 .061	30 38 41	26 26 25 24 24	.73 .84 .85	159 153 145	.10 .10 .11	8 2 8 2 8 2	.12 .00 .14	.02 .02	.58 .71 .68 .75	1 <1 <1 <1	
	1390 1380 1370 1360 1350	<1 <1 <1 <1	1 46 1 46 1 34	2 2 2 3 3 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	7 8 2 7 9 8 8 8		11.	0 8 3 8 1 12	416 417 589	3.66 3.72 3.64 4.71 4.81	2	<5 <5 <5 <5 <5	<2 <2 <2	28 15 35 32 24	55 47 46	<.2 <.2 <.2	<2 <2 <2 <2 <2	2 2 <2	39 32 51	.47 .67 .58	.076 .051 .094 .099	41 38 78 94 81	33 28 19 35	.69	120 142 123 154	.09	5 1 7 2 5 2 5 2	.51 .05 .42	.02	.74 .67	<1 <1 1	
-	1340 1330 1320 1310 1300	<1 <1 <1 <1 <1	23 24 21 23	14 12 14 11	4 7 2 7 4 6 1 7	2 .2 7 .5 9 .1 8 .6	14 11 16	4 8 5 8 5 9 5 10	447 616 467 627	4.12 3.34 3.62 3.76 4.41	6 3 4 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	14 20 25 11 23	54 47 47	<.2 <.2	2 <2 <2 <2 <2	2 <2 <2 <2 <2	39 37 37	.65 .66 .48	.040 .078 .078 .055	33 38 66 33 35	24 23 22	.78 .77 .82 1.01	152 128 144	.09 .07 .12		.71 .14 .27 .43	.02 .02 .02	.68 .55 .56 .76	2 <1 2 <1 <1	
RE 7	1 1290 1280 1270 1260	<1 1 <1 <1	31 31 31	13 24 34 40	3 6 9 9 1 9 1 13	2 <.1 8 .5 4 .6	19 17	7 7 7 7 9	461 861	3.06 3.01 4.20 3.98 3.66	<2 <2 <5 <5	<5 <5 <5 <5	<2 <2 <2 <2	20 17 17 17 19	55 53 44 50 52	<.2 <.2 .2 .4 .5	<2 <2 2 3 2	2 <2 <2 <2 <2	33 40 41	.62 .60 .54 .55	.069 .079	42 40 37 32 44	21 34	.79 .75 .74 .80	135 115 149	.10 .10 .13	11 1. 8 1. 6 1. 8 2. 8 2.	.89 81 77 05	.02 .02 .02 .03	.58 .53 .64 .74	<1 <1 1 2	
	1250 1240 1230 1220 1210	1 <1 <1 <1 <1	23 28 18	10 19 15) 77 100 77	2 .2 .2 .2 .2	15 20 18	8 9 8	738 412 766 517 440	3.43 3.85 2.97	<2 <2 <2 <2	<5 <5 <5 <5	\$\$ \$\$ \$\$ \$\$	12 13 22 11 10	58 55 56 46 68	<.2 <.2 <.2 .2 .2	<s <<="" <s="" td=""><td><2 <2 <2 <2 <2</td><td>38 48 42</td><td>.53 .44 .58 .42 .83</td><td>.053 .068 .060</td><td>32 27 68 25 26</td><td>27 25 28</td><td>.88 .78 .91 .80</td><td>138 159 156</td><td>.12 .11</td><td>9 1. 8 1. 9 2. 7 1. 9 1.</td><td>93 88 40 78</td><td>.03 .02 .02</td><td>.81 .74 .86 .71</td><td>1 1 <1 1</td><td></td></s>	<2 <2 <2 <2 <2	38 48 42	.53 .44 .58 .42 .83	.053 .068 .060	32 27 68 25 26	27 25 28	.88 .78 .91 .80	138 159 156	.12 .11	9 1. 8 1. 9 2. 7 1. 9 1.	93 88 40 78	.03 .02 .02	.81 .74 .86 .71	1 1 <1 1	
	1200 1190 1180 1150 1140	<1 <1 2 4	35 26 47 117	17 19 11 15	98 98 92 73	.2	18 19 19 16 13	9 9 10	472 674 620 802 736	3.34 3.35 4.51	<2 <2 <2 <3	<5 <5 <5 <5	\$\$ \$\$ \$\$	11 17 22 13 22	49	<.2 <.2 <.3 <.2	<2 <2 <2 2 3	<2 <2 <2 <2	44 43 40	.40 .50 .46 .47	.069 .062	28 42 38 39 51	27 30 29 29	.81 .87 1.03 .91	130 161 143 185	.11 .11 .12	7 1.6 6 2.0 8 1.9 7 1.9 7 2.0	97 . 98 . 98 .	.02 .02 .02 .02	.71 .65 .74 .93	<1 <1 1 2 2	
	1130 1120: 1110: 1100: 1090	1 1 4 3 2	99 36 32	13 19 14	154 142 110 88	1.7	14 17 18 17 19	10 11 11 11	581 877 743 873 531	5.28 4.49 3.51 3.61	5 5 5 5 5	<5 <5 <5 <5	\$ \$ \$ \$	13 19 15 13 14	60	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2	2 <2 <2 <2 <2	36 36 34 1	.40 . .60 . .56 . .35 .	.055 .070 .073	52 38 37	21 24 1 24 17	.76 .15 .84 .96	151 243 156 165	-11 -18 -12	7 2.5 7 2.5 9 2.1 10 1.8	05 . 50 . 14 .	.02 .03 1. .02	.68	1 <1 1 1	
STANDA	108C 107C RD C/.	10 19	60		207 128	.7 7.3	23 20 72	15 31		5.32 3.96	4 <2 41		<2 7			.5		<2 <2 19	48	.49 . .43 .	097	. 30	26	.89 .69 .89	17ደ	10	8 2.1 6 1.4 34 1.8	5.	02 .	.77	3	
E#	. Мо гроп	Cu ppm	26 Ppm	Zn ppat	Ag ppm	N i ppm	Co	Mn pon	Fe	As	U COM	Au	Th	Sr.	Cq	Sb	Bí	_=_	_		La											
106G 1050 (105 ARD C/ _	; 2 ; 3	18 24	10 13 13	72 74 74	<.1 <.1	13 13	8	595 3 421 3.		3 4	<5 6.	<2 <2 <2	75 19	com (46 48 <	2 < .2	<2 <2 <2	рт р <2 <2	33 . 36 .	43 .0 42 .0	% ; 95 <i>7</i> 958	орт р 29 33	20 . 24 .	93 1	30 .	72 12	9 1. 6 1.	AL N % .0 86 .0	% ۱ .۶	52	1		
							30 1		.96	41	16	7	37	51 17	7.1	16	19	56	51 .0	87	36	24 .3 58 .9	32 1 90 1	35 . 86 .	13	0 1.	86 .01 88 .06	ہ۔ ا	2	1		

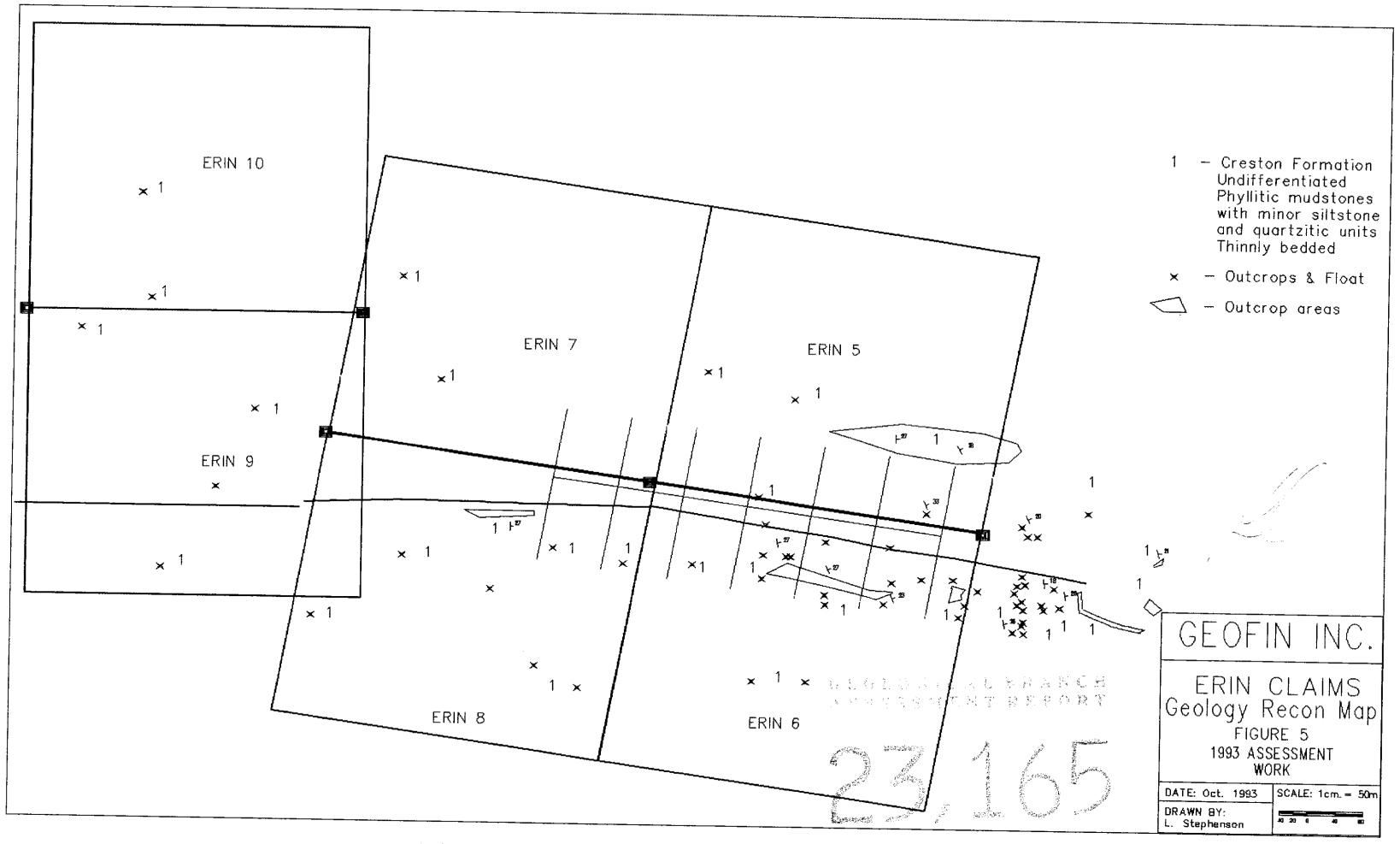
ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

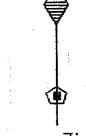

GEOCHEMICAL ANALYSIS CERTIFICATE


Geo Fin Inc. File # 93-2898 11744 River Road, Surrey BC V3V 2V7


	04401.5#				_	_		-		***********	200000000000000000000000000000000000000	000000000000000000000000000000000000000	2000000000	000000000000	000000000000000000000000000000000000000	300000000000000000000000000000000000000		100000000000		******	-		<u> </u>								
	SAMPLE#	Mo ppm	Cu: ppm	Pb ppm	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Βi	٧	Ca	P	Lа	Cr	Mg	Вa	Τi	В	Αl	Na	K	W
		PPII	РР	Phan	ppm	ppm	. ppm	ppm	bbu	<u> </u>	ppm	ppm	ppm	bbu	bbu	ррп.	bbw	ppm	ppm	- %	%	bbu	bbu	%	ppm	%	ррп	%	%	*	ppm
	1	1	18	17	122	.2	13	10	14D5	3.04	4	<5	<2	5	9	.3	<2	3	37	06	.085	16	14	.24	91	.15	i.	3.82	.02	.09	-1
	2	1	14	13	127	. 1	21		685		<2	<5	<2	5	9	.4	<2	3	28		.050	12	13	.23	88	.15		4.78	.02	.08	<1 <1
	3	1	29	11	73	. 1	9	5	588	3.02	4	<5	<2	4	8	.3	<2	<2	38		.076	11	13	.21	67	.17		4.40	.02	.06	<1
	4	1	21	16	81	< .1	12		2541		<2	<5	<2	<2	11	.3	<2	4	28		.095	39	11	.25	85	.09		2.88	.02	.08	<1
	5	2	16	9	36	. 1	8	3	161	2.40	<2	<5	<2	3	7	.2	<2	2	27	.05		8	9	.13	56	.15		4.91	.03	.04	<1
	,	_				_																							• • • •		•
	6	1	12	11	64	. 2	11		216		6	<5	<2	4	9	.2	<2	3	26	.06		14	11	.16	64	.12	4	3.30	.02	.06	≺1
	6	1	11	14	66	< 1	11		296		<2	<5	<2	4	8	<.2	<2	<2	34	.05		21	14	.31	61	.10	4	1.94	.01	.08	<1
	9	1	15	12	94	< 1	14	8			<2	. <5	<2	3	10		<2	<2		.07		. 9	12	.21	107	.18		5.11	.03	.08	<1
	10	<1	13 12	18 19	49 53	.2	7	٥	740 7		3	< 5	<2	2	11		<2	2	29	.09		13	9	.16	76	.12		1.86	.02	.07	, ≺ 1
	10	1	14	17	23	<.1	12	2	667 2	2.81	3	<5	<2	5	9	.2	<2	<2	29	.07	.035	23	15	.30	74	.09	3	1.89	.01	.07	<1
	11	1	20	11	56	.3	9	4	161 2	2.50	<2	<5	<2	5	8	.2	<2	<2	3 0	.05	120	12	11	10		17	,	- O/	٠.,	٠,	
		1	19	7	49	. 2	11	11	496		<2	< 5	<2	5	8	.2	<2	3	29	.05		12 13	11	.18 .13	55 56	.17 .16		5.94 5.98	.04	.04	<1
	12 13 14 15	1	14	15	74	< 1	13		1273 2		2	<5	<2	<2	11	.2	<2	3	27	.05		33	13	.17	86	.10		2.53	.03	.03 .07	<1 <1
	14	1	15	16	54	.2	10		210		3	< 5	<2	5	7	<.2	<2	<2	38	.05		19	15	.27	52	.13		2.28	.01	.06	< 1
	15	1	20	16	96	.3	13		1585 2		2	6	<2	<2	12	.3	<2	< <u>2</u>	37	.09		26	13	.30	94	.13		2.17	.02	.09	<1
																_	_	_		•••										.0,	**
Ø	16	1	22	17	104	< . 1	13		3124 2		2	<5	<2	<2	15	.6	<2	<2	27	.12	.143	36	12	.30	145	. 05	3	2.61	.02	.09	<1
	17]	16	15	65	.3	11	3	294 3		6	<5 <5	<2	6	8	.3	<2	<2	43	.05	.053	14	16	.26	56	.18	4	3.38		.08	<1
	RE 17]	16	17	66	.2	10	3	284 3		5	<5	<2	6	8	.2	<2	5	43	.05	.053	15	15	.26	55	. 18	5	3.39	.02	.09	<1
	18 19	1	15	17	73	< . 1	11	5	639 3		3	<5	<2	< <u>2</u>	11	.3		2	37		114	20	13	.29	69	.12	4	1.80	.01	.10	<1
	19	1	16	14	52	.4	9	3	265	2.79	3	11	<2	, 5	. 8	.2	<2	<2	35	.06	.062	13	12	.18	57	.14	4	3.48	.02	.07	<1
	20	1	17	17	62	.3	9	7	499 4	: 27	4	-5	-2	-			47		, -	٥.	405	47		20	- ,						
	STANDARD C	17	59	38	124	6.6	70		1023 3		6 3 9	<5 20	<2 7	36	52	<.2 17.7	<2	≺2	47	.05	.195	17	18	. 28	56	.18		2.37		.09	<1
		'					-, -		1023	.,,	39	20		30		17.7	14	17	28	.50	.086	40	58	.90	184	.09	34.	1.89	.09	.16	11

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: SOIL Samples beginning 'RE' are duplicate samples.

t 20/93 signed by...



GEOLOGICAL BRANCH ASSESSMENT PEPORT

23,100

Copper in p	l Zinc pm
25	75

20 /	79 2 68 2 69 2 72 18 8 17	78 66 62 98 94	0-1	99	5 154		4.4	29 73 14 127
			•			*	$\frac{1}{2}$	104

33 | 81

GEOFIN INC.

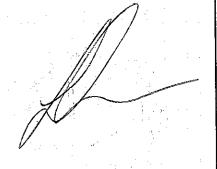
ERIN CLAIMS
Geochem Survey
FIGURE 4 - Copper & Zinc
1993 ASSESSMENT
WORK

DATE: Oct. 1993

SCALE: 1cm. = 25m

DRAWN BY: L. Stephenson

25 12 5 û 25 S



16

13

17

	•		the state of	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.3 12 .2 10 .2 19 .2 15 .3 16 - 15 .2 17	.6 16 1.7 18 .6 13 .8 19 .4 14	.2 11 - 14 - 12 .2 18 - 19	.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 4 19 6 11 -8 15	7 27 - 10 - 13	.2 7 - 15 .2 16 .3 16	. 3 17 -4 1. - 17 - 17

Silver Lead in ppm 0. 3 25

GEOFIN INC.

ERIN CLAIMS

Geochem Survey
FIGURE 3 - Lead & Silver
1993 ASSESSMENT
WORK

DATE:	Oct.	1993

SCALE: 1cm. =25m

DRAWN BY:
L. Stephenson