DRILLING: SG ZONE - HOLE 93-417

NORTH BRUCE GROUP Sulphurets Project

Skeena Mining Division

Latitude: 56°20'N Longitude: 130°10'W NTS: 104B/8

Newhawk Gold Mines Ltd. and Granduc Mines Limited

OPERATOR:

OWNER:

.

Newhawk Gold Mines Ltd. 860 - 625 Howe St. Vancouver, B.C. V6C 2T6

REPORT BY:

David A. Visagie, B.Sc., P.Geo.

November 15, 1993

GEOLOGICAL BRANCH ASSESSMENT REPORT

Distribution: 2 - Government 2 - Newhawk

SU93-430.30

25

¥.

TABLE OF CONTENTS

•

.

•

1.0		INTRODUCTION	3
2.0		LOCATION AND ACCESS	3
3.0		PROPERTY DESCRIPTION	3
4.0		PHYSIOGRAPHY AND VEGETATION	7
5.0		PROPERTY HISTORY	7
6.0		REGIONAL GEOLOGY	8
7.0		PROPERTY GEOLOGY	8
8.0	8.1 8.2	1993 WORK PROGRAM Drilling Geochemistry	11 11 12
9.0		DRILL RESUTLS AND INTERPRETATION	12
10.0		SUMMARY AND CONCLUSIONS	12
11.0		RECOMMENDATIONS	13
12.0		STATEMENT OF COSTS	14
13.0		STATEMENT OF QUALIFICATIONS	15

LIST OF FIGURES

Figure 1	Location Map	4
Figure 2	Property Location	5
Figure 3	Claim Map	6
Figure 4	Regional Geology	9
Figure 5	Property Geology	10
Figure 6	Geology SG Area/Drill Hole Location	In folder
Figure 7	Drill Section 93-417	In folder

APPENDICES

Appendix 1	Drill Log Hole 93-417	16
Appendix 2	Assay Results	23

1.0 INTRODUCTION

The North Bruce claim group is situated within the "Golden Triangle" of northwestern British Columbia. The group is part of Newhawk Gold Mines Ltd. and Granduc Mines Limited's Bruceside property, commonly referred to as Sulphurets. It occurs immediately to the north of the Newhawk/Granduc Mines' South Bruce Group to the south of Newhawk Gold Mines' Snowfield property. The North Bruce group is underlain by Lower Jurassic Hazelton Group rocks consisting of andesitic flows and tuffs along with intercalated sediments that have been intruded by quartz diorite-granodiorite plugs. Previous exploration programs on the North Bruce group, located several zones of quartz vein hosted gold-silver mineralization that occur in association with quartz-sericite-pyrite altered Hazelton Group rocks. The most noteworthy of these zones is the SG. In 1993 the SG zone was drill tested by 7 holes totalling 874.4 metres. Of these holes, hole 93-417 totalling 188.4 metres in length drilled between July 31 and August 1, 1993 is hereby being filed for assessment purposes. The hole including drilling, core logging, splitting and surveying required 22 mandays of labour. As a result 41 samples were taken from the hole and sent for assay.

2.0 LOCATION AND ACCESS (Figures 1 & 2)

The property is located within the Coast Range Mountains of northwestern B.C., some 65 kilometres northwest of the village of Stewart approximately 920 kilometres northwest of Vancouver, B.C. It is centred at 130°10'W, 56°20'N occurring on NTS sheet 104B/8.

For access purposes supplies were mobilized from Stewart to the Tide Lake airstrip, 35 kilometres to the south then ferried to the property by helicopter. During the summer, a Huges 500D helicopter operated under contract from Vancouver Island Helicopter was used for all crew and drill moves.

3.0 PROPERTY DESCRIPTION (Figure 3)

The North Bruce Group is comprised of the following claims:

<u>Claim Name</u>	Record #	Units	Expiry Date
Red River 7	250986	4	June 30, 2003
Tedray No. 12	250388	15	Aug 26, 2003
Tedray 21	250990	2	June 30, 2003
Tedray 22	251066	8	Oct 6, 2003
OK# 5	251284	8	Dec 10, 2003
Red River 50	254205	2	June 29, 2003
Red River 53	254208	14	July 4, 2003
Malone	313089	6	Sept 9, 2003
Malone 2	313090	4	Sept 5, 2003
Malone Fr.	313087	1	Sept 10, 2003
Tedray Fr.	313084	1	Sept 9, 2003
Goldwedge #3	251512	6	Sept 3, 2003

The claims occur within the Skeena Mining Division and are 60% owned by Newhawk Gold Mines with the remaining 40% being held by Granduc Mines. Newhawk is the project operator.

4.0 PHYSIOGRAPHY AND VEGETATION

The topography of the Sulphurets property is typical of the Coast Range Mountains with steep glaciated U-shaped valleys being the norm. Elevations range from 1070 metres at Sulphurets Glacier to in excess of 1830 metres on some of the mountain ranges. Extensive ice-fields are common throughout the property.

Winters tend to be severe with extensive snowfall and winds while summers tend to be cool and wet. Most of the snowfall occurs between mid-February and mid-April.

Vegetation throughout the property is varied with spruce and fir trees occurring at the lower elevations while lichens, mosses and scrub timber dominate the uplands.

5.0 PROPERTY HISTORY

Exploration in the area dates back to the 1880's when placer gold was located in Sulphurets Creek. In 1935, copper-molybdenum mineralization was located in the vicinity of the Main Copper showing. Until 1959 the property was intermittently evaluated. In 1959, gold and silver values were located in the Brucejack Lake area. Granduc Mines, as a result of this work, staked the main claim area in 1960. Follow-up work included an airborne magnetometer survey, a few ground follow-up magnetometer lines and reconnaissance geology. As a result, copper mineralization was located along the Mitchell-Sulphurets Ridge while gold and silver values were discovered at the base of the Iron Cap area.

In 1961, Granduc drilled 224 metres of packsack core in 32 holes at four locations to test the extent of the known copper showings. Additional prospecting resulted in the discovery of gold/silver mineralization in the Hanging Glacier area and molybdenite on the south side of Mitchell Glacier. In 1962, two diamond drill holes, totalling 611 metres in length, tested molybdenum mineralization in the Quartz Stockwork Zone. In 1968, Granduc drilled 1016 metres in six holes on the Main Copper Zone and mapped the area below the Hanging Glacier. In 1970, plane table mapping was carried out from the Hanging Glacier to the south edge of the Mitchell Glacier. Granduc in 1974/75 carried out bedrock geochemical sampling and geological reconnaissance and prospecting throughout much of the property.

In 1980, Esso Minerals optioned the property from Granduc and subsequently completed between then and 1985, an extensive program consisting of mapping, trenching, geochemical sampling that resulted in the discovery of several showings including Snowfields, Shore, West and Galena. Esso surrendered its interest in 1985.

In 1985, Newhawk Gold Mines optioned the property from Granduc. Since then it has completed several evaluation programs mainly on the West Zone.

6.0 **REGIONAL GEOLOGY** (Figure 4)

The Bruceside property occurs within Stikine Terrane. It is underlain by Upper Triassic and Lower to Middle Jurassic Hazelton Group volcanic, volcaniclastic and sedimentary rocks. The lithostratigraphic assemblage as compiled by Kirkham (1963), Britton and Alldrick (1988), Alldrick and Britton (1991) and Kirkham et al (in preparation) consists (from oldest to youngest) of alternating siltstones and conglomerates (Lower Unuk Formation); alternating intermediate volcanic rocks and siltstones (Upper Unuk Formation); alternating conglomerates, sandstones, intermediate and mafic volcanic rocks (Betty Creek Formation); felsic pyroclastic rocks and flows, including tuffaceous rocks ranging from dust tuff to tuff breccias and localized welded ash tuffs (Mount Dilworth Formation); and finally alternating siltstones and sandstones (Salmon River and Bowser Formations).

At least three intrusive episodes occur in the area: intermediate to felsic plutons that are probably coeval with volcanic and volcaniclastic supracrustal rocks; small stocks related to Cretaceous Coast Plutonic Complex rocks and minor Tertiary dykes and sills. Stikine Terrane rocks are thought to be part of an island arc sequence that extends from south of Stewart near Anyox, north to the Iskut River for a distance of 150 km.

Folding is commonly exhibited throughout the Hazelton Group rocks with the andesitic tuffs and flows south east of Brucejack Lake being gently warped while Salmon and Bowser Formation rocks tend to be tightly folded. Faulting is common throughout the area with north striking steep normal faults (eg. Brucejack) and west dipping thrusts (eg. Sulphurets, Mitchell).

7.0 PROPERTY GEOLOGY (Figure 5)

The Bruceside property is comprised of both the North and South Bruce claim groups. Mapping has shown the Bruceside property to be underlain by a thick sequence of Lower to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group that have been intruded by plutons of sub-alkaline composition. This complex has been folded and faulted and is now elongated in a northerly direction. It is bounded to the west by the Coast Crystalline complex and to the east by Bowser Basin sediments.

The oldest rocks on the property are Lower Sediments, reported to have a minimum thickness of 1500 metres, consisting mainly of argillites, siltstone and cherts along with minor amounts of wackes, arenites, tuffs and trachytes. Younger pyroclastic rocks, that range from fine tuff to breccias, are evidence of a major volcanic event in the area. These sometimes contain blocks greater than one metre in size and occur in a northerly trending elongate zone through the central part of the area. Most of the pyro-clastics are of andesitic composition and have been subjected to varying degrees of alteration. These altered tuffs and breccias are host for most of the vein deposits in the Stewart area and are the most favourable host rocks on the Sulphurets property.

The Upper Sediments consist of an extensive sequence of black shales and argillites that are similar in character to the Lower Sediments.

The volcanic-sedimentary sequence is cut by numerous elongated, sub-parallel northerly trending, late stage intrusive plutons that are probably of Mid-Jurassic age. These intrusives range from diorite to granite in composition and appear to be sub-alkaline. The emplacement of these plutons appears to be related to faulting and associated intense alteration, silicification and mineralization. Sericite and pyrite are the most abundant alteration minerals with other assemblages locally dominated by-feldspar, chlorite and propyllitic minerals. Some clay alteration minerals have also been recognized in the Brucejack Lake Zones. Porphyry copper-gold mineralization occurs in the northern and central parts of the property and is often associated with K-spar and sericitic alteration. Structurally controlled gold/silver bearing veins occur mainly in volcanic rocks within a one kilometre wide zone of intense predominantly sericitic alteration. The veins consist of quartz, minor calcite, and trace to 20% sulphide minerals. These range from simple single veins to complex vein zones and stockworks. Sulphides within these veins consist of pyrite, sphalerite, galena, tetrahedrite, electrum and chalcopyrite along with argentite, pyragerite and polybasite.

The SG Zone consists of a dominant west trending sinoidal shaped zone of quartz veining, stockwork and breccia (Genevieve) and at least two southeast trending splays (Spiff and Bart). The Genevieve Zone has been traced along strike for 260 metres with widths variable to 12.60 metres. It is cut-off to the east by the Brucejack Fault while to the west it is open along strike. Channel cuts located across the zone identified a 155 metre long section that averages 0.280 opt Au with 0.95 opt Ag over an anverage width of 3.00 metres.

8.0 1993 WORK PROGRAM

The purpose of the 1993 program was to drill test an 80 metre segment of a channel sampled section of the SG Zone at down-dip depths ranging from 25-120 metres. To complete this program 7 drill holes, totalling 874 metres in length were drilled of which only hole, 93-417, is being filed for assessment. Hole 93-417, 188.4 metres in length, was located to intersect 90 metres down-dip the projection of a drill intercept averaging 0.205 opt Au, 0.22 opt Ag over 5.0 metres. The drilling was completed by F. Boisvenu Drilling of Delta, B.C. using a JKS 300 drill. Newhawk's camp at Brucejack Lake was used for the housing of the crew during the program. The mobilization of the crew and drill to the drill site was completed using a Hughes 500 D helicopter chartered from Vancouver Island Helicopters. All core was logged on site while the core samples were assayed at Westmin's Premier Mine located near Stewart, B.C.

Newhawk personnel involved in the work program inculded:

- D. Visagie, Geologist
- B. Kinney, Labourer
- T. Kirby, Geological Technician

8.1 Drilling

Drilling on the North Bruce Group was completed using two ten hour shifts. Prior to drilling, the site for 93-417 was prepared by Boisvenu personnel. Upon completion the drill collar was surveyed by Newhawk personnel. The core was flown daily to the Brucejack campsite to be logged and split. It is presently stored on site at the Newhawk core library located above the camp.

8.2 Geochemistry

A) Field Procedure

Selected drill core was split into measured lengths, generally between 0.50 and 1.50 metres using a core splitter. All samples were stored in plastic bags, identified, dried when necessary then sent for analysis at Westmin Mines' Premier Mine site.

B) Assay Procedure

All of the samples were prepped to a pulp stage and assayed for gold and silver at Westmin's Premier Mine site assay lab located near Stewart. The following is an outline of the preparation and assay procedure.

i) Preparation

The sample is dried then crused to 1/4" or finer and riffled to a 250 gram size. This sub-sample is then ring pulverized to approximately -100 mesh.

ii) Assaying

All samples were fire assayed for gold and silver with a gravimetric finish on a 1/2 assay ton sample being completed.

9.0 DRILL RESULTS AND INTERPRETATION

The purpose of drilling hole 93-417 was to test the SG Zone approximately 90 metres below a drill intercept, that assayed 0.205 opt Au, 0.22 opt Ag over 5.0 metres, located at the 1500m elevation level. Hole 93-417 showed variably quartz-sericite-pyrite altered andesitic tuffs and flows to occur in fault contact with argillite. Within both rock types narrow zones of quartz veining and stockwork occur. The projection of the SG Zone to depth co-incides with a 9.1 metre section of weak (15-20%) quartz vein stockwork that assayed 0.058 opt Au, 0.10 opt Ag over 7.5 metres. In general anomalous, >0.010 opt Au, values occur in association with weakly veined sections throughout the hole. The drill log for hole 93-417 is located in Appendix 1 while the assay results are located in Appendix 2. The drill hole location is plotted on Figure 6 while Figure 7 is the drill section.

10.0 SUMMARY AND CONCLUSIONS

Hole 93-417, 188.4 m in length, was drilled to test, 90 down dip, the possible extension of a 5 metre section averaging 0.205 opt Au with 0.22 opt Ag located previously by drilling. While intersecting similar lithology the hole failed to locate any significant sections of gold mineralization. A 9.1 metre section of weakly developed quartz vein stockwork co-inciding with the projection of the SG Zone includes a 7.5 metre section averaging 0.058 opt Au with 0.10 opt Ag. This section is sub-economic. It appears that in the area drilled by hole 93-417 the SG Zone is poorly developed. If the zone occurs at depth it is to the west where there has been no testing by drilling.

11.0 RECOMMENDATIONS

- 4

It is recommend that no drilling be completed down-dip from hole 93-417. If drilling is to be completed it should be undertaken to the west where the zone has not been tested to determine whether the SG Zone plunges in this direction.

.

13.0 STATEMENT OF COSTS

i) Labour Costs

```
Total: $1,630.00
```

D. Visagie, Geologist	July 30 - Aug. 1	3 days @ \$315/day
B. Kinney, Labourer	July 30 - Aug. 1	3 days @ \$165/day
T. Kirby, Technician	Aug. 1	1 day @ \$190/day

ii) Room & Board Total: \$2,200.00 22 man-days @ \$100/day M. Chandler, Pilot 3 days includes: Boisvenue Drill crew 12 days iii) **Helicopter Support** Total: \$3,920.00 Date Hours July 30 4.0 hours July 31 0.6 hours 1.0 hours August 1 5.6 hours @ \$700/hour Total iv) **Drill Cost** Total: \$19,447.00 152.4 m @ \$ 49.2/m 36.0 m @ \$ 54.1/m **v**) Assaying Total: \$553.50 41 samples @ \$13.50/sample vi) Supplies Total: \$500.00 includes core boxes, sample bags, tape etc. Communications vii) Total: \$600.00 Spacetel Rental Pro-rated @ \$200/day viii) Report Total: <u>\$2,000.00</u> includes writing, drafting, xeroxing, supplies etc. SUB TOTAL \$20,850.50 ix) Management (10%) Total: <u>\$2,085.05</u>

TOTAL

14.0 STATEMENT OF QUALIFICATIONS

I, D.A. Visagie of 860 - 625 Howe Street, Vancouver, British Columbia, do hereby declare that:

- 1. I graduated from the University of British Columbia with a Bachelor of Science Degree, majoring in Geology, in 1976.
- 2. I am a registered member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. I have been steadily employed in the mining industry since 1976 and have been employed by International Northair Mines Ltd. as Senior Geologist since January 1990.
- 4. The work undertaken on the North Bruce group was under my supervision.

Dated at Vancouver, British Columbia, this 15th day of November, 1993.

Of Une De

APPENDIX 1 SAMPLE DESCRIPTIONS

•

4

SUF.				DEPTH	BEARING	DIP	SUR		YPE	z	ONE	: 3	6					LEN	STH:	188	4			н	JLE I	NO.:	93	3-4	17		
NE	: VV FI/		JOLD MINES LTD.	COLLAR	190	- 60	Ca	mpt	, 5	С	LAIM	: R	d	Ri	ver	53		COR	E SIZE	: "B	PTK	-		S⊦	IEET	NO.	1	of	۷		
Dia	amon	d Drill	Hole Record	·61.00	_	- 61	A	فنعل		U	ATITL	JDE:		37	716	N		RECO	OVER	1: 79	5%			LC	ວວດ	ED B	Y: 2	D. VI	Sagi	e	
SU	LPH	URETS	S PROPERTY	_ 130.5	-	-60	A	. 1		D	EPAR		E:	34	200	*		STAF	RTED:	J.4	30	. 19	93	SA	MPL	ED E	3Y: 7	3.,	Kinn	, e 4	
				-188.4	200°	-59	7,	opar	·,:	EL	EVA	TION	:					CON	APLET	ED: /	Zug	1, 19	23	, PL	JRPC	DSE:	Tes	7 s	6		
Inte	nval								A	tera	tion			Mir	nera	lizat	ion		Assa	y Dat	a			-					Co	re Dat	a
(me	ters)									ð									Samole	From	То	Int			A 11				800	Pue	Reco
From	То	Rock Type	Geologic Description				From	To	E	GHL	SER	ž		% Py	K Cp	% Mag	Mo						opt	%	check	diack.	opt	%	%	Kuii	very %
0	1.5		Casing													ļ		ļ						ļ		ļ'	\square		<u> </u>	ļ	
																								-			┝──┥		<u> </u>		
1.5	4. <u>2</u>	RNAT	PADESITIC LAPILLI	TUFT																							┟──┤		<u> </u>		
			Fine - most graine	t - greer	<u>cororo</u>	~									<u> </u>	-	\uparrow		····												
	1		Part in White	Marker yr	en abron												<u> </u>														<u> </u>
			weak outline of D	hav-stals	1/0 Fr	· · · · ·										1	1—	1													<u>†</u>
			tend to be was	thy - mod	enately p	yodia																									
	ļ		Fractures Ore Iring.	In a so	to en a	m										<u> </u>		ļ				L									ļ
	ļ		are chlorite hard	on occase	n. Vr.1	bream.	_								ļ		_							 .				ļ		ļ	ļ
			less fragmental tro	m 3.9.4.2													 										-				
49		AUTE	AUDITA TOT														<u> </u>									<u></u>					
	7.9		Ene mensid and		en antres	/									1			1			•		 	<u>†</u> -							-
			matery minor for	sorrigio	e sette																							·			
			frequents being	then the	- Acm	~																									
	ļ	<u> </u>	they source as	· har so	Pessible											ļ	 	ļ		L			ļ	ļ						Ļ	<u> </u>
• • • • • • • • • • • • • • • • • • • •			algoment of	printe C	50" 1	o ra										-	–									<u>├</u> !					
	·															+	 			<u> </u>						┝┤					<u> </u>
		<u> </u>		· · · · · · · · · · · · · · · · · · ·												1	†	1													
		†															1	1											[<u> </u>

· \$

.

Hole No. 593-417

- 22

Page _____ of ____

Inter	leve					A	tera	tion			Mine	raliz	ation		Assa	y Da	ta						,		Cor	e Dat	ta
(met	vai ers) To	Rock Type	Geologic Description	From	То	SIL	CHLOR	SER	CARB		% 9 Py C	6 . 4	% % 1ag M		Sample	From	То	Int	Au opt	Cu %	Au check	Cu check	Ag /	Mo %	RQD %	Run	Reve
4.6	5.0	RNTF	ANDESITIC TUFF												T			1									T
			DARK GREEN Fine to modium grained													Γ											T
			Leppa contact @ 15 lower Q 70, Appen																								T
			compositionally similar to lapilli linga	-/s						_		_										_		_			1
5.0	26.9	ANLT	PNDESITIE LABLE, TUEF	<u> </u>		1.2		1-2	,	-	-3												-+	-			╀
	~		pale may colored fire around making		1	<u> </u>			-	-f				-	1	<u> </u>	<u> </u>			<u> </u>							t
			in which = 30% pragments occur											1	11512	14	113	1.5	025				18				T
			frequents are pale green colored											-	13	13.3	14.4	1.5	027			T.	24				T
			and are up to 10cm (rare) in size			Γ								1	14	14.8	15.6	0.8	,029				18				t
		·	facturing @ 80° to ca												15	15.6	12.1	1.5	.017			ļ	20				t
			From 11.8 - 15.6 weak - mod at stkule												14	17.1	18.2	1.1	,028				32				Γ
			2to atkusk starts @ 11.7 with @																								Γ
			contact @ 45° vein 5 urequia C 45° to																								Γ
			ca verning # 15% has to - 2% py as																								
	_		dissen																								
			Py common within fragments upto s?																								
			18.1-25.3 Verning 13 almost non-																								
			austrant < 2 %		ļ									_													
			25.3-26.9 weaksthick with access	1											11517	253	26.8	1.5	024				15				
			veining to Jissen Py	ļ	ļ	L							2.														
			· · · · · · · · · · · · · · · · · · ·		l	.								-		ļ											
					 	 										ļ		L									ļ
						 	├																				ļ
					ļ											L											

Hole No. <u>593-417</u> Page _______ of _____

and an ora

and the third and the

later	un l					A	terat	tion		Mi	nera	lizat	tion		Assa	y Dat	a								Cor	re Dat	a
(met	ers)	Rock			,		1LOR	~	KB	%	*	%	4		Sample	From	То	Int	Au	Cu	Au	Cu	Ag	мо	RQD	Run	Ren
From	То	Туре	Geologic Description	From	To	2	Ċ	2	3	 Py.	Cp	Mag	Mo	L					opt	%	check	check	opt	%	%		*
6.9	27.8	DIN	QUARTE VEIN	26.9	27.4	3				2					11518	268	27.8	1.0	.016				.06			1	
			- contacts inregular lowa @ 10° to ca																								
			has minor wall cock hearen's to																			1					
			disser on the											1													1
			0																								1
7.8	30.8	ANIT	ANDESITIC LAPPILLI TUFP	27.8	30.8	,		2	,	2.5					1					-							+
			- Sim then the 5.0-26.9		[-		e	1		1		1				<u> </u>								t
																											t
													1								<u> </u>						\uparrow
0,8	687	ANET	RODESITIC LAPILLI TURT	30.8	68.7					1			†												<u>├</u> ──-┦		┢
			· has majert dark over estard	Γ																							t
			Inacture occasional short sections																[T
			are pale oney weakly situitied																								Γ
			(35.0-36.3)																								Γ
			at 35.7 10 cm your @ 200 to ca												Ι												
			ore weak can's record in last																								
			3.0 m the sector has redded											1													F
			time																								
			0										1														-
87	98 1	ANIT	ANDESTIC LAPILLI TUFF	30.8	68.7					<1																	
			fly maker with Drans voto 30-																								-
_			trans are remable colored red i non																								†
			ash to meeting is and																				•+				h
	• •		Beneral the west is present							 													5				1
		·····	and non-resolver liter blacker							 											·						<u> </u>
			Land i - and i							 			+			н <u>к</u>											† ··

an iner das the

2

1						A	tera	tion			Min	nera	izati	ion		Assa	y Da	ta							_	Co	re Dat	a		R. Strag
Inte (me	rval iers)	Rock					ğ	~	KB			~	*		3/4.et	Sample	From	То	Int	Au	Cu	Au	Cu	Ag	Mo	RQD	Run	Reco		
From	To	Туре	Geologic Description	From	To	2	5	SEI	5		Py	C.	Mag	Mo	Sulph					opt	%	checl	check	opt	%	%		%	•	
			fracturing @ 50° Vernang & 5%			_			_																					
L		ļ	accasional escansa sections																											
			gradational lowa contact over 1m			<u> </u>											L		ļ		ļ			ļ			ļ			4:00 Mar. 10
																			ļ				<u> </u>	 						
98.1	162.4	ANL7	ANDESTIC LAPILL. TUFF			<u> </u>											ļ	ļ	 	ļ		<u> </u>					ļ			1
		ļ	fine para pale groon - green maters in		ļ	1-2	1	2	1			L				ļ											ļ			
		 	which bimodal fragments up to 2cm			_									ļ	1/579	105.5	107.8	2.3	,006	·	ļ	<u> </u>	.20						
}			ocur . Fragment carge from being augobe			<u> </u>									ļ								ļ							
			to subranded			\bot									L															
			101.4- 104.6 the unities moderately fractional																											
			possible fault zone																											
			from 105.5- pyr, le content nurses																											
			to 3-5% found as dessen and otrangers																											
l			within both Lost adgu							·																		Ì.		
			from 107,6 - 109.2 = 5-10 7. gv's	107.6	109.2	12					1-5				t-	11520	107.5	101.2	1.4	.004				,23						
			@107.7 qu @ 45° for Zas													11521	109.2	110.7	1.5	.015				.18						1
		L	109.2 - 110.7 20% as stkyk	109.2	110.7	2		1			5-10				4	11522	110.7	112.4	1.7	.045		[.18						
			110.7- 112.4 po veres			1		3			10																			
L			112.4- 1131 10% stkat veins 11 to ca	112.4	113.1	1		5			5					11523	112.4	1/3 4	1.0	.008				.15						(here of the
		L	and @ 70°																		Τ									
			113,14-115.3 wear 14752	113.4	115.1	,		3			10					11524	113.4	115.	1.7	,013				.26						8
			possible forther 112 4- 1123 Current-	115.1	1:9.3	3. 1		3			1					11525	115.1	117.3	2.2	T1				. :7						-
			to produce of fraction - 60° in ca													11526	1173	119.3	2.0	.001				وړي.						
			119 3 - 120.2 work as py comments loved	1.2.3	1208			3			10					11527	11 9.3	1.05	1.5	,50/]			.29				-		
į	ļ		as clos																	1				1. T. A.						
				1															1	1		1								

.

Hole No. <u>393-417</u> 4 of _____ Page

urras de pap

. \$

Lante

.

4 3

Hole No. _ 417 5

<u> </u>							tera	tion			Min	eral	izati	ion		Assa	y Dat	a								Cor	e Dat	 a
Inter (met	val ers)	Rock					N N		82				*	-		Sample	From	То	Int	Au	Cu	Au	Cu	Ag	Mo	RQD	Run	Reco
From	То	Туре	Geologic Description	From	То	SIL	Ð	SER	3	;	ry I	Ĝ	Mag	Mo						opt	%	chack	check	opt	%	%		very .
			from 1208-124.6 or's absent	120 8	1210	1-2		3			5-10					11528	1208	1223	1.5	.013				. 18				
			#													29	22.3	1246	2.3	.002				,09				
			124.6- 125.9 5% records veros @ co to an	1246	125.7	1.2		3			5.10					30	124.6	1259	1.3	.004				./2				
			1259 - 127. " " mica													31	25.9	127.4	1.5	,009				,12				
			127.4 130.4 130.4			1-2		3			5					32	127.4	130.4	3.0	.008				.15				
			130.4 - 200- • Stt K @ 20: 1.00													33	120.4	139 4	1.					.12				
			132.7 10 20° 1020-													24	122 4	125-2	3.2	.033				.07				
			139. 7- Wa well had weed and the Pault							1						25	13.00	131.7	45	.042				18				
			grad from proster proster personal pers							1						2/	121.7	131 7	10	100				19				
			En sun me 147.4 males and 11 marchine	1 4.00	155.7	1.9					10					27	1947	107	• •	.617				/-				
			Quild 7	740		12		~		+						24		1 <u>[</u>]	1.0	2101				12				<u> </u>
			alton quarts Printing increases to 1043							+						20	1			NIK				ie ie	·]			
			of un: T I wo preteried directations							+						- 21	411	144.2	1.1	,040				11				
			ENO S CO FO EN VEINS germally (20-							-						40	144.2	145.7	<u>^)</u>	,052					;			
			no not for the the the					-		+							/43.7	141.3	1.6	,065				102	\mathbf{h}			
			142.7- qu furming with straining with							+						47	147.3	148.8	1.5	1051	-			203	+			
			Dest Jevelaperment 145.7- 196.8							+						43	1488	1503	1.5	,06,7				<u>, 15</u>				<u> </u>
	·		from 151. 4 -162.4 973 raining relatively													44	1543	1:7.8	1.5	,027				•15				<u> </u>
			minor 1570 occ forms small													45	151.8	15 2 8	1.5	1029				15				
			Struks a 157.6 - 1530, 159.6-1598							+						40	1513	154.9	1.6	. 039				15				<u> </u>
			wank gu stkut 182.0 - 162.3							+						47	1549	157.9	3.0	.016				18				
6.3	156.7	ANO,	APOILLIC													48	157.9	1610	2.9	.001				2				
			+g, black , bedael @ 70° to cc												<u> </u>	49	161.2	143	1.9	. 21				, 22				
·····			upper i toure served, and Py																									
	l 		as fue bands graphitic																		+							
			-		: 																							
			•		:									i													i	1

1

Sec. 1

- 2

.....

____ of <u>____</u>6 Page

e de la secte

1.22.48

1

N

{

Hole No. <u>93-417</u> Page <u>6</u>

٠,

of

Inte	val					A	tera	tion			Mir	nera	lizat	ion		Assa	y Dat	ta								Cor	re Dat	a	
(mel	ers)	Rock	Coologie Description		T		HLOR	ŝ	ARB		%	*	%	%		Sample	From	То	Int	Au	Cu	Au	Cu	Ag	мо	RQD	Run	Recovery	
riom	10	lype	Geologic Description	From	То	<u> </u>	U	2	0	┝─┙	Py_	Cp	Mag	Mo		<u> </u>	<u> </u>			opt	70	Check	Check	opt	~	701-	<u> </u>	*	
166.1	167.1	ANIT	ANDESITIC LAPPALI TOFA			+				┟──┤												+		\vdash			<u> </u>		
			- Similar to provous			+				$\left - \right $			+		+			<u> </u>				+		\vdash	-	j	'		
			-lower contact @ 20" to ca							┝─┤			ŀ									+		┝					
167.1	175.4	SIST	S. Itstone			-				$\left - \right $			-			-								┝──┤		 			İ
			fine opinied massive sale and										1							1	<u>†</u>								
			meen coloral relatively homogeness			1										<u> </u>					<u> </u>	+		-	+				
			treating @ 20' to ca												1						<u> </u>			i	-				
			minor verning												1.						-				-				
			from 169.9 - 172.0 Pault Zone	171.0	175.8	z					2				1	11550	171.0	172.1	1.0	,019				29					
			171. 0- 171,6 of the 502 gr variable	171.0	171.6						5					11601	172.1	173.2	1.0	.006	1			29					i
			priented 5% py												1	IILOZ	173.1	174.7	1.6	. 062				.32					
			173.1-17## mod stkuk													11603	174.7	175.9	1.5	.020				.23					
			174.7-175.7 verning absent																										
			175.7-175.9 20 cm good stkuk																										
			last 4 m fractioned																										
178:4					ļ																								
			1		ļ																								
110,0	1.6+3		42x05e		<u> </u>	<u> </u>																 							
			Pale grey with specified while							\vdash																			
			e,g Minor in closions at angillia	- • •• • • • •	 				_	·																			
			and St. yerning mine to										•									<u>∔</u>							
		F · - · · · · · -	to Man and plan all gold	<u> </u>						·																••••			
			and the first of the second																							· · · ·			
				h						 			L									<u></u> ∤			· · · ·	· - · · · ·			

18

APPENDIX 2 ASSAY RESULTS

= 39 samples 24 WESTMIN RESOURCES LIMITED FREMIER GOLD PROJECT ASSAY LABORATORY

Shipment #41

CERTIFICATE OF ASSAY

TO: NEWHAWK

====

PROJECT >>> NEWHAWK -- GOLD

		ASSAY LAB TRANSFER TEXT SAMPLE	DATE: FILE: FILE: PAGE: TYPE:	08-05-93 A080593.ALB NG080593.OTB 1 ORIGINALS
SAMPLE	Au	Au		
IDENTITY	Oz/t	g/ton		
11512	0.025	0.857		
11513	0.027	0.926		
11514	0.029	0.994		
11515	0.017	0.583		
11516	0.028	0.960		
11517	0.024	0.823		
11518	0.016	0.549		
11519	0.006	0.206		
11520	0.004	0.137		
11521	0.015	0.514		
11522	0.045	1.543		
11523	0.008	0.274		
11524	0.013	0.446		
11525	TRACE	TRACE		
11526	0.001	0.034		
11527	0.001	0.034		
11528	0.013	0.446		
11529	0.002	0.069		
11530	0.004	0.137		
11531	0.009	0.823		
. 11532	0.008	0.274		
11533	0.011	0.377		
11534	0.033	1.131		
11535	0.042	1.440		
11536	0.020	0.686		

PREMIER GOLD PROJECT ASSAY LABORATORY.

Suprant 41

WESTMIN RESOURCES LIMITED FREMIER GOLD FROJECT ASSAY LABORATORY

CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK -- GOLD

	DATE:	08-05-93
ASSAY LAB	FILE:	A080593.ALD
TRANSFER TEXT	FILE:	NG080593.0TD
	PAGE:	1
SAMPLE	TYPE:	ORIGINALS
	======	

SAMPLE	Au	Au
IDENTITY	Uz/t	g/ton
11537	0.012	0.411
11538	0.020	0.686
11539	0.048	1.646
11540	0.052	1.783
11541	0.065	2.223
11542	0.057	1.954
11604	0.024	0.823
12193	0.014	0.480
12194	0.665	22.800
12195	0.015	0.514
12196	0.006	0.206
18602	0.002	0.069
18603	0.063	2.160
18604	0.384	13.166

PREMIER GOLD	PROJECT	ASSAY	LABORATORY.
	\sum	1 ~	
certified by	h.h.h.	·	* * • * • • • •

(35 Samples)

26 WESTMIN RESOURCES LIMITED PREMIER GOLD PROJECT ASSAY LABORATORY

CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK -- GOLD

		ASSAY LAB TRANSFER TEXT SAMPLE	DATE: FILE: FILE: PAGE: TYPE:	08-07-93 A080793.ALF NG080793.OTF 1 ORIGINALS
SAMPLE	Au	Au		
IDENTITY	Oz/t	a/ton		
11543	0.067			
11544	0.027	0.926		
11545	0.029	0.920		
11546	0.039	1 227		
11547	0.016	0.549		
11548	0.008	0.274		
11549	0.011	0.277		
11550	0.019	0.51		
11601	0.006	0.206		
11602	0.062	2.126		
11603	0.020	0.686		
1 A POLP	0.060	2.057		
2A FULP	0.067	2.297		

PREMIER	GOLD	PROJECT ASSAY	LABORATORY.
certifie	ed by	Moan	

Shypment #41

WESTMIN RESOURCES LIMITED PREMIER GOLD PROJECT ASSAY LABORATORY

CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK -- SILVER

	DATE:	08-04-93
ASSAY LAB	FILE:	A080493.ALF
TRANSFER TEXT	FILE:	NS080493.0TF
	PAGE:	1
SAMPLE	TYPE:	ORIGINALS

SAMPLE	Ag	Ag
IDENTITY	Ozlton	g∖ton
11512	0.175	6.0
11513	0.263	9.0
11514	0.175	6.0
11515	0.204	7.0
11516	0.321	11.0
11517	0.146	5.0
11518	0.058	2.0
11519	0.204	7.0
11520	0.233	8.0
11521	0.175	6.0
11522	0.175	6.0
11523	0.146	5.0
11524	0.263	9.0
11525	0.117	4.0
11526	0.258	2.0
11527	0.088	3.0
11528	0.175	6.0
11529	0.088	3.0
11530	0.117	4.0
11531	0.117	4.0
11532	0.146	5.0
11533	0.117	4.0
11604	0.088	З.О

PREMIER GOLD PROJECT ASSAY LABORATORY.

28 upmen

WESTMIN RESOURCES LIMITED PREMIER GOLD PROJECT ASSAY LABORATORY

CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK -- SILVER

ASSAY LAB I TRANSFER TEXT I	DATE: FILE: FILE: PAGE:	08-05-93 A080593.ALF NS080593.OTF 1
SAMPLE	TYPE:	ORIGINALS
		=================

SAMPLE	Ag	Ag
IDENTITY	Oz\ton	g\ton
11534	0.175	6.0
11535	0.117	4.0
11536	0.117	4.0
11537	0.117	4.0
11538	0.146	5.0
11539	0.117	4.0
11540	0.058	2.0
11541	0.029	1.0
11542	0.029	1.0
12193	0.117	4.0
12194	2.683	92.0
12195	0.875	30.0
12196	0.408	14.0
18602	0.029	1.0
18603	0.058	2.0
18604	0.058	2.0

PREMIER GOLD PROJE ASSAY LABORATORY.

certified by

lona

WESTMIN RESOURCES LIMITED FREMIER GOLD PROJECT ASSAY LABORATORY

CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK -- SILVER

		ASSAY LAB TRANSFER TEXT SAMPLE	DATE: FILE: FILE: PAGE: TYPE:	08-07-93 A080793.ALI NS080793.DTI 1 ORIGINALS
SAMPLE	Ag (Iz\too	Ag a\too		
		3.V		

	9.0000
0 146	3.0
0.146	5.0
0.146	5.0
0.146	5.0
0.146	5.0
0.175	6.0
0.350	12.0
0.525	10 0
0.000	10.0
0.292	10.0
0.292	10.0
0.321	11.0
0,233	8.0
0 427	15 0
0.400	15.0
0.408	14.0
	0.146 0.146 0.146 0.146 0.175 0.350 0.525 0.292 0.292 0.292 0.321 0.233 0.437 0.408

. . 1250m GEOLOGICAL BRANCH ASSESSMENT REPORT 23,169 0 10 20 30 :40 50 -METRES LEGEND NEWHAWK GOLD MINES LTD. QTVN QUARTZ VEIN (QCVN - QTZ CARBONATE VEIN) ANXT ANDESITE CRYSTAL TUFF 22 ALTERED ROCKS FAULT ALBITIZATION BIOTIFEROUS CARBONATE ALTERATION CHLORITIZATION; CHLORITIC POTASSIC ALTERATION ALB BIO CB CHL KSP PROP QSP QP SER SIL QTSW QUARTZ VEIN STOCKWORK (QCSW - QTZ CARBONATE STWK) SULPHURETS PROPERTY O- O DRILL HOLE WITH PIERCE POINT HELT HETEROLITHIC TUFF .356 / 4.23 AU (oz/t) / AG (oz/t) BRUCESIDE PROJECT QTZN QUARTZ VEIN ZONE ANDK ANDESITE DYKE PROPHYLITIC ALTERATION QUARTZ-SERICITE; PYRITE SCHIST QUARTZ-PYRITE (KSPAR ALTERATION) SERICITIZATION; SERICITIC (QCZN - QTZ CARBONATE ZONE) QUARTZ VEIN ORIENTATION SG ZONE - SECTION 120NW QTBX QUARTZ BRECCIA QSP QUARTZ SERICITE PYRITE SILICIFICATION; SILICIFIED (-5.00) DISTANCE SOUTH OF SECTION (QCBX - QTZ CARBONATE BRECCIA) +/- 20m LOOKING NW (MINE GRID) WK - WEAK MOD - MODERATE STR - STRONG ANTE ANDESITE TUFFS/FLOWS (5.00) DISTANCE NORTH OF SECTION QP QUARTZ PYRITE DRAWN BY: T.K., D.V. SCALE: 1:500 ANLT ANDESITE LAPILLI TUFF DATE: OCT. 1993 FIGURE ND:7