· · .	DEC 2 3 1993	
FILE NO:		

*

DRILLING OF THE

GALENA HILL ZONE

HOLE 93-422

SOUTH BRUCE GROUP Sulphurets Project

Skeena Mining Division

Latitude: 56°20'N Longitude: 130°10'W NTS: 104B/8

Newhawk Gold Mines Ltd. and Granduc Mines Limited

OPERATOR: Newhawk Gold Mines Ltd. 860 - 625 Howe St. Vancouver, B.C. V6C 2T6

REPORT BY:

OWNER:

David A. Visagie, B.Sc., P.Geo.

November 15, 1993

GEOLOGICAL BRANCH ASSESSMENT REPORT

Distribution: 2 - Government 2 - Newhawk

SU93-430.40

Appendix 1 Appendix 2		Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8		13.0	12.0	11.0	10.0	9.0	8.0 8.1 8.2	7.0	6.0	5.0	4.0	3.0	2.0	1.0
Drill Log: Hole 93-422 Assay Results	APPENDICES	Location Map Property Location Claim Map Regional Geology Property Geology Drill Hole Location: Hole 93-422 Drill Section 480 SE: Hole 93-422 Drill Section 500 SE: Hole 93-422	LIST OF FIGURES	STATEMENT OF QUALIFICATIONS	COST STATEMENT	RECOMMENDATIONS	SUMMARY AND CONCLUSIONS	DRILL RESULTS & INTERPRETATION	1993 WORK PROGRAM Drilling Geochemistry	PROPERTY GEOLOGY	REGIONAL GEOLOGY	PROPERTY HISTORY	PHYSIOGRAPHY AND VEGETATION	PROPERTY DESCRIPTION	LOCATION AND ACCESS	INTRODUCTION
16 29		4 5 7 11 11 11 11 11 11 11 11 11 11 11 11 1		15	14	13	13	13	12 12 12	10	8	6	6	ω	ω	ы

•

TABLE OF CONTENTS

:

1.0 INTRODUCTION

The South Bruce claim group is situated within the "Golden Triangle" of northwestern British Columbia. The group is part of Newhawk Gold Mines Ltd. and Granduc Mines Limited's Bruceside property, commonly referred to as Sulphurets. The South Bruce claim group occurs immediately to the south of the Newhawk Gold Mines/Granduc Mines' North Bruce claim group and to the east of Placer Dome's Kerr property. It is underlain by quartz-sericite-pyrite altered Lower Jurassic Hazelton Group rocks locally consisting of andesitic tuffs and flows along with intercalated sediments that have been intruded by quartz-diorite to granodiorite. Previous exploration programs have shown the South Bruce area to host several zones of gold-silver bearing quartz veins and stockwork. Included among these zones are the West, Galena and Gossan Hills, Shore, Bridge and Quartz Hill. In 1993 an exploration program that included drilling was completed on several zones. As a result 11 BQ sized drill holes, totalling 1,626 metres in length, were completed at Galena Hill. For assessment purposes hole 93-422 is being filed. Hole 93-422, 208.8 metres in length, was drilled between August 11 and August 13, 1993. A total of 21 man-days were spent drilling, core logging splitting and surveying the drill hole. From it 139 samples were split and sent for assay.

2.0 LOCATION AND ACCESS (Figures 1 & 2)

The property is located within the Coast Range Mountains of northwestern B.C., some 65 kilometres northwest of the village of Stewart approximately 920 kilometres northwest of Vancouver, B.C. It is centred at 130°10'W, 56°20'N occurring on NTS sheet 104B/8.

For access purposes supplies were mobilized from Stewart to the Tide Lake airstrip, 35 kilometres to the south then ferried to the property by helicopter. For the 1993 season a Hughes 500D helicopter was chartered from Vancouver Island Helicopters and based at the Newhawk campsite located on Brucejack Lake.

3.0 PROPERTY DESCRIPTION (Figure 3)

The South Bruce Group is comprised of the following claims:

<u>Claim Name</u>	Record #	Units	Expiry Date
Red River 3	250899	2	Sept 2, 2003
Red River 4	250939	12	Nov 3, 2003
Red River 5	250940	2	Nov 3, 2003
Red River 6	250985	12	June 30, 2003
Red River 8	251022	2	Sept 29, 2003
Red River 9	251023	2	Sept 29, 2003
Red River 10	251058	12	July 12, 2003
Red River 11	251059	6	July 12, 2003
OK# 6	251285	4	Dec 10, 2003
OK# 7	251286	.2	Dec 10, 2003
OK# 8	251287	2	Dec 10, 2003

<u>Claim Name</u>	Record #	Units	<u> </u>
Red River 51	254206	2	June 28, 2003
Red River 52	254207	2	June 30, 2003
Red River 54	254209	1	June 29, 2003
OK Fr.	313086	1	Sept 9, 2003
Red River Fr.	313085	1	Sept 9, 2003

The claims occur within the Skeena Mining Division and are 60% owned by Newhawk Gold Mines with the remaining 40% being held by Granduc Mines. Newhawk is the project operator.

4.0 PHYSIOGRAPHY AND VEGETATION

The topography of the Sulphurets property is typical of the Coast Range Mountains with steep glaciated U-shaped valleys being the norm. Elevations range from 1070 metres at Sulphurets Glacier to in excess of 1830 metres on some of the mountain ranges. Extensive ice-fields are common throughout the property.

Winters tend to be severe with extensive snowfall and winds while summers tend to be cool and wet. Most of the snowfall occurs between mid-February and mid-April.

Vegetation throughout the property is varied with spruce and fir trees occurring at the lower elevations while lichens, mosses and scrub timber dominate the uplands.

5.0 PROPERTY HISTORY

Exploration in the area dates back to the 1880's when placer gold was located in Sulphurets Creek. In 1935, copper-molybdenum mineralization was located in the vicinity of the Main Copper showing. Until 1959 the property was intermittently evaluated. In 1959, gold and silver values were located in the Brucejack Lake area. Granduc Mines, as a result of this work, staked the main claim area in 1960. Follow-up work included an airborne magnetometer survey, a few ground follow-up magnetometer lines and reconnaissance geology. As a result, copper mineralization was located along the Mitchell-Sulphurets Ridge while gold and silver values were discovered at the base of the Iron Cap area.

In 1961, Granduc drilled 224 metres of packsack core in 32 holes at four locations to test the extent of the known copper showings. Additional prospecting resulted in the discovery of gold/silver mineralization in the Hanging Glacier area and molybdenite on the south side of Mitchell Glacier. In 1962, two diamond drill holes, totalling 611 metres in length, tested molybdenum mineralization in the Quartz Stockwork Zone. In 1968, Granduc drilled 1016 metres in six holes on the Main Copper Zone and mapped the area below the Hanging Glacier.

In 1970, plane table mapping was carried out from the Hanging Glacier to the south edge of the Mitchell Glacier. Granduc in 1974/75 carried out bedrock geochemical sampling and geological reconnaissance and prospecting throughout much of the property.

In 1980, Esso Minerals optioned the property from Granduc and subsequently completed between then and 1985, an extensive program consisting of mapping, trenching, geochemical sampling that resulted in the discovery of several showings including Snowfield, Shore, West and Galena. Esso surrendered its interest in 1985.

In 1985, Newhawk Gold Mines optioned the property from Granduc. Since then it has completed work on several other zones including the Bridge and Quartz Hill. Grab samples, taken in 1991, returned values of up to .114 opt Au for the Bridge and .122 opt for the Quartz Hill Zones.

6.0 REGIONAL GEOLOGY (Figure 4)

The Bruceside property occurs within Stikine Terrane. It is underlain by Upper Triassic and Lower to Middle Jurassic Hazelton Group volcanic, volcaniclastic and sedimentary rocks. The lithostratigraphic assemblage as compiled by Kirkham (1963), Britton and Alldrick (1988), Alldrick and Britton (1991) and Kirkham et al (in preparation) consists (from oldest to youngest) of alternating siltstones and conglomerates (Lower Unuk Formation); alternating intermediate volcanic rocks and siltstones (Upper Unuk Formation); alternating conglomerates, sandstones, intermediate and mafic volcanic rocks (Betty Creek Formation); felsic pyroclastic rocks and flows, including tuffaceous rocks ranging from dust tuff to tuff breccias and localized welded ash tuffs (Mount Dilworth Formation); and finally alternating siltstones and sandstones (Salmon River and Bowser Formations).

At least three intrusive episodes occur in the area: intermediate to felsic plutons that are probably coeval with volcanic and volcaniclastic supracrustal rocks; small stocks related to Cretaceous Coast Plutonic Complex rocks and minor Tertiary dykes and sills. Stikine Terrane rocks are thought to be part of an island arc sequence that extends from south of Stewart near Anyox, north to the Iskut River for a distance of 150 km.

Folding is commonly exhibited throughout the Hazelton Group rocks with the andesitic tuffs and flows south east of Brucejack Lake being gently warped while Salmon and Bowser Formation rocks tend to be tightly folded. Faulting is common throughout the area with north striking steep normal faults (e.g. Brucejack) and west dipping thrusts (e.g. Sulphurets, Mitchell).

7.0 PROPERTY GEOLOGY (Figure 5)

The Bruceside property is comprised of both the North and South Bruce claim groups. Mapping has shown the Bruceside property to be underlain by a thick sequence of Lower to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group that have been intruded by plutons of sub-alkaline composition. This complex has been folded and faulted and is now elongated in a northerly direction. It is bounded to the west by the Coast Crystalline complex and to the east by Bowser Basin sediments.

The oldest rocks on the property are Lower Sediments, reported to have a minimum thickness of 1500 metres, consisting mainly of argillites, siltstone and cherts along with minor amounts of wackes, arenites, tuffs and trachytes. Younger pyroclastic rocks, that range from fine tuff to breccias, are evidence of a major volcanic event in the area. These sometimes contain blocks greater than one metre in size and occur in a northerly trending elongate zone through the central part of the area.

Most of the pyroclastics are of andesitic composition and have been subjected to varying degrees of alteration. These altered tuffs and breccias are host for most of the vein deposits in the Stewart area and are the most favourable host rocks on the Sulphurets property.

The Upper Sediments consist of an extensive sequence of black shales and argillites that are similar in character to the Lower Sediments.

The volcanic-sedimentary sequence is cut by numerous elongated, sub-parallel northerly trending, late stage intrusive plutons that are probably of Mid-Jurassic age. These intrusives range from diorite to granite in composition and appear to be sub-alkaline.

The emplacement of these plutons appears to be related to faulting and associated intense alteration, silicification and mineralization. Sericite and pyrite are the most abundant alteration minerals with other assemblages locally dominated by-feldspar, chlorite and propyllitic minerals. Some clay alteration minerals have also been recognized in the Brucejack Lake Zones. Porphyry copper-gold mineralization occurs in the northern and central parts of the property and is often associated with K-spar and sericitic alteration.

Structurally controlled gold/silver bearing veins occur mainly in volcanic rocks within one kilometre wide zones of intense predominantly sericitic alteration. The veins consist of quartz, minor calcite, and trace to 20% sulphide minerals. These range from simple single veins to complex vein zones and stockworks. Sulphides within these veins consist of pyrite, sphalerite, galena, tetrahedrite, electrum and chalcopyrite along with argentite, pyragerite and polybasite.

Previous mapping and drilling at Galena Hill has identified 8 zones G1-8 of quartz veining, stockwork and breccia in which anomalous gold \pm silver values occur. Individual zones are up to 285 metres long with widths variable to 4 metres trend easterly and have dip steeply.

8.0 1993 WORK PROGRAM

The purpose of the 1993 program was to evaluate portions of Galena Hill by drilling. As a result 11 BQ sized drill holes totalling 1,627 metres in length were drilled of which only one hole 93-422, 208.8 metres in length, is being filed for assessment purposes. All drilling was completed by F. Boisvenu Drilling of Delta, B.C. using a JKS 300 drill. Newhawk's camp at Brucejack Lake was used for the housing of the crew. The mobilization of the crew and drill to sites of interest was completed using a helicopter chartered from Vancouver Island Helicopters. All core was logged on site while the core samples were assayed at Westmin Mine's Premier Mine located near Stewart, B.C. A total of 136 samples were sent to Westmin for analysis. In addition, limited check sampling by Vangeochem was completed after the drill hole was filed for assessment. The check assays are included in the report but no cost has been assigned to them. The Newhawk crew employed for the evaluation of hole 93-422 were:

- D. Visagie, Project Geologist
- B. Kinney, Labourer
- T. Kirby, Geological Technician

8.1 Drilling

Daily drilling on the South Bruce Group was completed using two ten hour shifts. Prior to drilling, the site for 93-422 was prepared by Boisvenu personnel. Upon completion of the drilling the collar was surveyed by Newhawk personnel.

The core was flown daily to the Brucejack campsite to be logged and split. All core is presently stored on site at the Newhawk core library, located above the Newhawk campsite.

8.2 Geochemistry

A) Field Procedure

Selected drill core was split into measured lengths, generally between 0.50 and 1.50 metres using a core splitter. All samples were stored in plastic bags, identified, dried when necessary then sent for analysis at Westmin Mines' Premier Mine site.

B) Assay Procedure

All of the samples were prepped to a pulp stage and assayed for gold and silver at Westmin's Premier Mine site assay lab located near Stewart. The following is an outline of the preparation and assay procedure.

i) Preparation

The sample is dried then crushed to 1/4" or finer and riffled to a 250 gram size. This sub-sample is then ring pulverized to approximately -100 mesh.

ii) Assaying

All samples were fire assayed for gold and silver with a gravimetric finish on a 1/2 assay ton sample being completed.

9.0 DRILL RESULTS AND INTERPRETATION

The purpose of the drilling of hole 93-422 was to test the G7 & 8 Zones located on Galena Hill. The location of the drill hole is plotted on Figure 6 while Figures 7 & 8 are drill sections that each contain a portion of the drill hole. Only the assay results from the Westmin Lab are plotted and averaged.

Hole 93-422 intersected several zones of quartz veining that appear to correspond with those at surface. These zones are hosted by variably quartz-sericite pyrite altered andesitic flows and tuffs. Gold and silver values vary thoughout the veins. Due to the distance between intersections it is, in part, difficult to precisely establish the continuity of the zones to surface. Significant sections of mineralization and the interpreted zone from which they are believed to have come from are listed below.

Fron	1 To	Interval	Au	Ag	Zone
<u>(m)</u>	(m)	(m)	<u>opt</u>	opt	
7.6	9.1	1.5	0.103	0.18	OY
16.7	19.6	2.9	0.039	13.33	ajicaje:
45.0	47.9	2.9	0.181	11.11	**
71.4	72.4	1.0	0.395	25.67	G-8
114.5	115.5	1.0	0.184	4.32	**
157.1	158.1	1.0	0.104	0.40	G-7
206.1	207.6	1.5	1.504	0.17	***

** Unnamed

In general, significant gold-silver values occur in veins in which appreciable sphalerite, galena and tetrahedirte occur. The intersection at 206.1 metres is associated with narrow quartz veins in which up to 10% pyrite occurs.

10.0 SUMMARY AND CONCLUSIONS

Eleven holes totalling 1,626.9 metres were drilled at Galena Hill to test the various structures. As part of this program 1 hole, 93-422, totalling 208.8 metres in length was drilled to test two structures: G-7 & 8. The drill hole intersected in other drill holes and that are outlined at surface. The G-8 Zone and an unnamed zone located at 206.1 metres are the most significant zones respectively assaying 0.395 opt Au with 25.67 opt Ag over 1 metre and 1.504 opt Au with 0.17 opt Ag over 1.5m. respectively. In the case of the G-8 intersection the gold and silver values are related to narrow quartz veins in which sphalerite, galena and pyrite occur. In the second intersection the gold values occur in andesitic tuffs in which narrow pyritic quartz veins occur. These intersections are open along strike and down-dip and warrant further exploration.

11.0 RECOMMENDATIONS

It is recommended that further drilling be completed along strike to determine the continuity of the zones intersected in hole 93-422. Due to the complexity of the vein structures the step-outs should be less than 50 metres.

12.0 COST STATEMENT

i) Labour Costs

-1

Total: \$1,630.00

D. Vi B. Kin T. Kin	sagie, Geologist nney, Labourer by, Technician	Aug. 11-13 Aug. 11-13 Aug. 13	3 days @ \$315 3 days @ \$165 1 day @ \$190	/day /day /day	
ii)	Room & Board			Total:	\$2,200.00
	22 man-days @ includes: M. Boi	\$100/day Chandler, Pilot svenue Drill crew	3 days 12 days		
ііі)	Helicopter Supp	Hours		Total:	\$3,430.00
	August 11 August 12 August 13 Total	2.1 hours 1.0 hours 1.8 hours 4.9 hours @ \$700)/hour		
iv)	Drill Cost			Total:	\$10,552.50
	152.4 m @ \$ 49 56.4 m @ \$ 54.]	.2/m ./m			
V)	Assaying			Total:	\$1,863.00
	138 samples @	\$13.50/sample			
vi)	Supplies			Total:	\$400.00
	includes core bo tape etc.	xes, sample bags,			
vii)	Communication	S		Total:	\$600.00
	Spacetel Rental	Pro-rated @ \$200/d	ay		
viii)	Report			Total:	<u>\$ 2,000.00</u>
	includes writing	, drafting, xeroxing,	supplies etc.		
			SUR TO	ТАТ.	\$99 675 FA
•`		00/1	500 10		\$22,073.30
ıXJ	management (1	U70J		10181:	<u>3 2,267.55</u>
TOTA	NL				<u>\$24,943.05</u>

.

.

13.0 STATEMENT OF QUALIFICATIONS

I, D.A. Visagie of 860 - 625 Howe Street, Vancouver, British Columbia, do hereby declare that:

- 1. I graduated from the University of British Columbia with a Bachelor of Science Degree, majoring in Geology, in 1976.
- 2. I am a registered member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 3. I have been steadily employed in the mining industry since 1976 and have been employed by International Northair Mines Ltd. as Senior Geologist since January 1990.
- 4. The work undertaken on the South Bruce group was under my supervision.

Dated at Vancouver, British Columbia, this 15th day of November, 1993

all come

APPENDIX 1

•4

DRILL LOG: HOLE 93-422

.

-

				DEPTH	BEARING	DIP	SUR	VEY T	YPE	z	ONE	G	In an		u. / I	,		LENC	STH:	2	08.	8		н	OLEI	NO.:	93	3-42	22		
	: vv m /		JOLD MINES LTD.	MINK 61.10	217.17 •	-29,6	3	com om Da	55	+a	LAIM	:						COR	E SIZE	: B	070			Sł	HEET	NO.	. /	of	1	2	
Di	amon	d Drill	Hole Record	-//78	- /FG	-30		1		1.	TITI		- 55	547	11			RECO	VFR	. ,	200	2	•		oGG	ED B	Y: '	~	1.		
- ·				-41.5		-30	- 144	e, L		1				273	.10	<u>, </u>	<u>,</u>	CTAR	750	• /	\mathcal{O}	<u>o</u>					<u> </u>	2.			-
SU	LPHI	JKEIS	PROPERTY	128.1		-28	-				EPAK	TURE	: 30	07;	7.04	40-1	5	SIAK		<u>`</u>	<u> </u>	4	111,1	2001	MPL		<u></u>				
				208.8	190	-27	110	pari	1	EL	EVAT	ION:		+45	. 0	42	m	COM	PLET	ED:	lugo:	+ 1.	3,192	7 Pl	URPC	DSE:	Tet	يح ک	3		
inte	rval									Terat	ION				rali	IZATH	on		Assa	y Dat	æ⁄		1	T	T • • • 1		— 7		Co	re Dat	a
(me	ters)	Rock]	ğ				~	.		•		Sample	From	То	Int	A.	Cu	Au	Cu	AR	Mo	RQD	Run	Reco
om	То	Туре	Geologic Description				From	То	3	Ð	SE	3		ñ	ĉ	Mag	Mo						opt	*	check	check	opt	%	%		×
0	15%	Csq_	Casing								-+			-+				ļ		·			ļ								
خ			-					I					-	_									 	 						ļ	
<u>ې</u>	16.7	ANTP	Andratic Flows /T.	H.	_				ļ				_	-+									<u> </u>	 						ļ	
			equipsente fine pa	week pale	peen e	a karast		<u> </u>	<u> </u>	$\left \right $		_	_	\rightarrow				ļ						_	 		┢╾┥				
			matrix is which	are prays	to . 1 c.	eren								-+									 	<u> </u>	 		\square			ļ	
			fronting comme	4 turbed	1 @ 70° .	to ce							-										<u> </u>	 							
		-	ad Q 60 Frants	res comm	ay 1.000	1 by		 	 	┞				-+	_			 						<u> </u>			<u>⊢</u>				
			limente Alter	ation is	Vai ably	e				┝─┤	-+			-+	\dashv			 					<u> </u>	╂			┝──┥			 	
			strang to work	OSP. F	inte gen	erelly	L		┣—	┝──┤			_										 				┝─┥				
			Jusen Ha. Vo.	n'ny ran	rably Jos	-1.			┣	$\left - \right $		-+	-+-	-+								<u> </u>	 	<u> </u>			┝─┤				
			ranging 15 to	toh/					<u> </u>	$\left \right $			+	-+									<u>} ·</u> −				\vdash				
_									+		_+		+	-+							-						$\left - \right $				
			0-12 & quartz vo	eining < 10	peed.		0	12.9	1	$\left \right $	3			5		-+			9701	6.1	7.6	1.5	.013	╂──	$\left - \right $.20				
	<u> </u>		Q 70 to Ca	<u>e 12.5</u>	1.5 cm qu	, e			<u>}</u>	$\left - \right $			+	+	\dashv				02	1.6	4 ./	1.5	103	┼			./8				
	+		30° to ca 10	~ py						┝╌┤			+	-+-	\neg				03	1.1	10.7	1.8	000	<u> </u>			12	-+			<u> </u>
	1		1						1			-+		5.				4	07	10.7	12.7	1.5	1000	Ή			24				$\left - \right $
	1		12. 5-13. 4 GV STR.	<u>L</u> , 0 <u>1</u>		<u>, 91</u>	12.8	13.4	13	$\left - \right $	3		ť	0	\neg			=/	- 55	· 2 · 4	13.4	1.0	1.012	+-			.61				
			My ITI & rections!	· / /3	<u></u>			<u> </u>	<u> </u>			-+	+	-+				ti					<u> </u>				+				
			13.4-15.2 .0.	nies (5)	 ?_		13 4	15.2	1		-+		+	-	+				.05	13.V	15.2	18	01	†	$\left - \right $		18				
					. 1		h = 1]										† · •	. 12							· • · ·					
-	1		152-117' 44-1-	1-14 1			15.2	11.7	2		~			5				tr	7-7	152	11-	/ \-	. 030				28				

-

Hole No. _______

....

_ of 12 2

	terval					_	ltera	ation	1		Mi	nera	lizat	ion		Assa	y Da	ta .								Co	re Dat	<u> </u>		į.
(r Fro	meters)	- Rock Type	Geologic Description	Erom	To	=	HOR				×	*	*	*		Sample	From	то	Int	Au	Cu	Au	Cu	A 8	Mo	RQD	Run	Reco		
16	7 19.6	64	QUARTE VEIN + STRWK		10	1-	۲	+	+-		17	9	Mag	Mo	1101		+	┿╾	+	-	1-				-	<u> </u>		*	•	
		ļ	large vein and stkuk = partstkuk 11ta	16.7	19.6	3	1,	3			5		-		1-5	9705	16.7	1,79	1.2	04		-	+	4.9	<u> </u>			$\left - \right $		
	-		as upto 52 tot observed yeins 11 3													9709	179	12.9	1.0			132	į —	5.6		<u> </u>				
			C 70 to can includes fragments of													9710	189	190	0.7	. 084		076	t	393	8	<u> </u>				
		<u> </u>	well rock . Best min are 18.9-																			1010			F					İ.
			19.6				Ŀ												<u> </u>				<u> </u>							
19	1 208	NETH									┣	-	-																	
۴		CU-S/K	QUARTE VEIN STOCKWORK	19.6	20.5	12	1	3		+	5				72	9711	196	201	1.2	.024		.021		2.71			·			
	+		Approx 60% questy versing vers 0 80	┣──		╂—	+			+	┣						_	 								_ <u>.</u>				
		[1 30 To ea cross cu Ti-; stkuk All	<u> </u>		┢	-			+	-											\vdash		\vdash						!
		1	a denje	<u> </u>						+	\vdash	-											\vdash	\vdash				_		
20.	8 24.0	ANTE	ANDESITIE TUFF	20.9	24.0	\uparrow		3			2					9712	200	173	15										. i	
			-similar to provers													97/3	20.0		17	<u>,013</u>				20					1	
	_		weak-mad stkkick 21,2-22.3														66.3	20.0		.077				22	-+					
			Heine are upto Ben gonally 120-																									-		
2	11 2/17	-																												
- 1	27.7	405/K	QUART 2 VEIN STOLKWORK	24.0	24.7	2		3			ع				Ŀ	97.14	24.0	247	0.7	,017				38					ĺ	1.
			approve 30% yearing lower contect foulded	 																										
			C 10 VEINS (30 - 266 + c+ w.L																											
			0EC V /0																										:	
24-	26.2	QU	QUARTZ VEIN ; STOCELIOPH.	207		2		,							4	7715	2.1.7	25.11	0.7				+						-	8
			Press are with which is in the of the	- "· ~	26	.					2				2	27//-	24	25.9	0.1	,013										
			n na gran terren grenn antilig banda de bade de bander de ser													1110	254	6.2	0."	.025		+		1.08						

ł

. . . .

Hole No. <u>93-422</u> Page <u>3</u> of <u>12</u>

3.

1.1.1

Inte	nat					A	terat	tion			Mir	eral	izati	on		Assa	y Da	ta								Co	re Dat	à	J
(me	ters)	Rock					ğ	~	2		36	×	×	*		Sample	From	То	Int	A.	Cu	Au	Cu	As	Mo	RQD	Run	Reco	
From	То	Туре	Geologic Description	From	To	12	9	SE	3		Py	Ĝ	Mag	Mo		 			<u> </u>	opt	×	check	check	opt	*	*	 	**	ŗ
262	31.4	ANTE	ANDERTIC TUFFS / FLOWS	26.2	21.4	1,		3			5					87/7	26.1	29.3	1.5	.019	,			.32	$\left - \right $				
			- similar to provious													18	227	9.2	2.0	.011	1			.12		[
			work - mod gu upte 15th													19	29.7	3.4	120	. 016				.09		[
L			serve generally @ 70' to ca																										
314	41.8	DUSTAN				2		2									2/1	2.0	10	1141					┝──┨				
0.4		4407700	GUMATE VETN STOREWORK			ŕ		2			2				t-	20	3/.4	2.7	1.3	006		.086		. 88 .0	$ \neg $		<u>├</u> ───┤		
<u> </u>			Catheride Bace of quarty record of Startwork	<u> </u>	1											27	32.7	34.3	1.7	.026	1			.18					
<u> </u>			the the sec for the second second	<u> </u>		\square		-								- 10	343	53.7	1.3	.020	<u> </u>			-26			┟───┤		
			is said and fast to tot all																										
			within theme say southers better														1				1								
			Seveloned then other 32.6-34.3 and		<u> </u>											23	35.9	324	1.5	~	<u>†</u>			24			[]		1 -
			stkuk 35.9-36.5	1												24	37. 1	38.9	1.5	N				26					,
			C40,5 = 40.9 7 19. fot													25	38.9	40.4	1.5	020				.26					
			40.9 1/2 cm band or @ 80													26	40.	41.5	1.1	.017				50					
			41.0 Icm band py @ 80													9727	41.5	420	15	.016				.51					
			from 41.5 - 41.8 total sil 5% pr																							.			
			12 clots																										1
		· .	from 41.8-																										
				_	ļ																								
						ļ													L		L								
						 																							
				 															ļ		ļ								
• • •	·				ļ																		·						
· ·				1	1	1				1								1						- 1		1		1	

()

Hole No. _____ 93-422 Page $\frac{4}{12}$ of 12

1990 - Barris Alteration Mineralization Assay Data Core Data Interval CHLOR SER (meters) *ح*ک مح tal CARB To Au Cu Ag Mo check check opt % RQD Run Reco very % Sample From Int × × ry G An opt Cu % % Mar Rock 3 **Geologic Description** From To Туре From То 41.4 56.4 PMF 41.8 3 5 RINDESITIE TUFF **4**4 4 -similar to previous # 20% verns 9728 42+ 43.5 1.5 .013 45 sens generally @ 70° to a 29 43.5 45.0 1.5 ,018 6Z from 44.6-45.1 mod attack 10% py 446 45. 30 450 466 1.6 263 8.58 N 208 occ Jevelaged 31 466 47.2 0.6 .023 016 0.23 C45.7 5em gave in go of 2070 pg 5% black sulphides 45.8 105man from 45.9 - 46.6 weak struck work prole 45.7 46.6 Ł mind with for black sulphiles 47.3 20 cm gono w. Th 5 Dosp 47.3 47.5 32 47.2 47.9 0.7 .130 5 5 306 14.41 57. ton 47.9. 49.6 A- 10 cm or's with 33 47.9 49.6 2.1 .016 51 5% py t- tet @ 51.1 15 cm g - @ 70° 34 496 51 1.5 020 .64 35 51.1 52.1 1.0 .010 between - - 52, 4 - 53, 2 4 veins @ 5-100 .29 36 52. 1 53.3 2.2 .020 +- tot .23 37 53.3 54.8 1.5 .015 .: .23 38 54.8 56.4 1.6 .067 030 .35 51.4 60.0 OUSTA QUARTE VE'N STOCKWORK 56.4 6003 3556.4 57.9 1.5 .049 3 5 tr .38 11 57.9 58.9 0.9 .031 1. 1. 1. 57.9 = 40% gts reining 5% py to tet from 57.9 - 60 good .44 9741 58.9 60.0 1.1 .065 99 St KwK.

し

Hole No. **93 - 4/2 Z** Page <u>5</u> of <u>12</u>

etan kana car

....

te est te d'alternations lineado

22

						A	terat	tion		Міп	neral	izati	ion		Assa	y Dat	ta								Cor	re Dat	a
Inte (me	rval ters)	Rock				ŀ	ğ		3		~				Sample	From	То	Int	A.		A.	C		A40	ROD	Run	Rec
From	To	Туре	Geologic Description	From	To	SIL	5	SER	3	Py I	Ĝ	Mag	Mo	1.4					opt	*	check	check	opt	%	%		
60.0	61.5	PUTF	ANDESITIE TUFF			,		3		 5					9742	60.0	61.5	1.5	. 034				.70				
			-similar to piqueus																								
		1	= 10% verning																								
		ļ			L																						
61.5	62.5	QUSTK	QUARTE VEIN STOLT WORK			3		1		5				t-	1143	61.5	625	1.0	.015				.61				
			- fla asthere to tot verse 70.80																								
			h ca																								
																				[
12.5	635	RUTE	ANDESITIE TUEP												9744	625	45	1.0	.014				.29				
			- complet to provides																								
		•	Sinth record										i,												\square		
53.5	80.1	ANTE	ANDESITIC TUFFS WITH SHEETED VEINS												9745	63.5	4.6	1.1	.015				.76				<u> </u>
			- similar ANTE vering 23-20%												46	646	65.6	1.0	.036				.35				
			protorred orientation Q 70° to ca							_					47	656	67.0	1.4	.022				.29				
			- Jan 135-64. 6 and itkut C												118	67.0	68.0	1.0	.021								_
			\$ 64.3 -10 cm or some 102 my 102 Ha												49	61.0	690	1.0	023				.70				
			black sulphides of seman within												50	190	700	1.0	016				.29				
			Veint												51	74.0	71.4	1.4	02.1				.55				
			Q 68 2cm ver will 1070 PBS Trat & 25												52	71.4	72.4	1.0	395		228		7517				
			Ply. 8 2 cm . an Q 70 tr - 5 7. Lat					·							13	72 v	77.V	1.0	.021		624		.41				
			C69.4 10- a. t. 865							 						-					UFI						
		1	C.T. 2 10cm 307. Zas Jon Pbs in					-																			
			ar																								
			73.1 30cm av struit prode 60°												51	73.4	747	13	.017				38				
			100 - 100 -		1					 					1 22	2.2	-	1 2					10				• •

and the second

Hole No. 93-422 Page _____ of 12

÷.,

TING AND AND A

()

Inte		Τ		Τ	Altera			tion			Mir	nera	lizat	ion		Assa	y Da	ta								Co	re Da	a	354 () (5 4
(me	ters)	Rock	Geologic Description	Erom	То	1	CHLOR	ä	CARB		*	*	*	%	Lat	Semple	From	То	int	Au	Cu %	Au	Cu	Ag copt	Mo %	RQD %	Run	Reco very	
										1	11				1	0750	7/0	77 1	14	28	1	1	+	50	i t.		1.	+	
				1	1									†	†	57	77 4	79.5	1.1	.012	1-		1	23				+ +	
			from 78.5. 79.8 and min ale trunch	29.5	79.9	1.		2			5				2	SI	78.5	295	1.0	017			1	26					
				1										1		.59	79.5	10.1	0.6	.015			1	32	1		1	1-1	
80.1	82.6	OUSTE	DUNETE VEW STREETWORK	1		3									1	60	801	6/4	1.3	.012			1	26				1-1	
			- 202		1	F								<u> </u>	1	61	C14	57.4	A. 7	012			1				1		
-			star and the wide Re	1	1	\mathbf{T}			•	1					<u> </u>		01.7			1-010	+	1	+	1	-		<u>+</u>	$\left[- \right]$	
		1	June the to 2 & a they want	1	1												1	t i					1					\square	
		1	the start of a sufficient of a									 		<u> </u>	\square		1			1	\mathbf{t}	1	+	1			<u>†</u>		
	1	1	for the grant of the co	<u> </u>	1							İ		1	1		1				1	1	+	<u></u>	1		†		
			TALFFIN, C. JU. TO EC.		1									<u> </u>	<u>†</u>		<u> </u>		4			\uparrow	+	-			<u> </u>	$\left - \right $	
82.6	83.3	ANTE	ANDESSTIL TUFF	82.6	\$33	2		,			*				1	12	82.6	133	0.7	.010	-	1	1	15			1		
			-scorilar to section from 63.5-20.1						,												1								
			C 82. B 3cm or 52 tet along												1	1					1			1			1		
			Ansture Are stin sted buss																			\mathbf{T}		1			1		
			colored support																		1	\square					1	\square	
																					1	1							
83.3	84.6	CV XX	J QUARTE VEIN STOCKWORS												1	9%:	633	846	1.3	.or	1		1	.35			1		
			prod sein with min wall rock hagnest											1							1								la pla
			minier pymager. To Gredish tage on black																			1					[
			sulphiele CB3.9 to - 2%. Phs Tr Zas	Ι	Τ																	1							
																					1	1		1					N
			3																										10
																							[5		
																					Γ								
]	1		1	1	r		1		

• :

•

1.

Hole No	93-422
---------	--------

Page _____ of 1/2

Inter	n a l					^	ltera	tion		M	inera	alizat	ion		Assa	iy Da	ta								Core D	Jat
(met	ters)	Rock			1		ğ		ş	*		*	*	44	Sample	From	То	int	Au	Cu	Au	Cu	A 8	Mo RQ	D Rur	in
From	To	Туре		From	To	<u> </u>		2	U		<u> </u>	Mag	Mo		<u> </u>				opt	~	CHECK	CHECK	opr	~ ~	_	
84.6	81.7	ANTE	ANDESITIE TUFF	\$4.6	56.3	μ	1	Z		_ <u>+</u>	+			+	976	84.6	86.1	1.5	.005		ļ		.15		<u> </u>	
			similar to provides & 20% serving	ļ		┢	he.	-			_	_	 	ļ	65	86.1	87.4	1.5	.01				15		_	
			forming work to mudante statwork	ļ	ļ		ļ				_	_	 		66	87.6	883	0.7	.023				,26		_	
			trace black sulphides vera geomally	L																						
			C 70° py to veras and hast rets				-				\perp			<u> </u>		ļ	ļ					\square			-	
81,3	91.4	QUSTE	AWARTE WEIN JTOLE WORK EWE	81.3	91.4	5	1	2		- 5	+		-	T	67	893	893	1.0	-0#6			$\left - \right $	204		+	
			2 502 stain with ANTE that X-und			Γ	1							1	6	01	003	1.0	0.04				22	_		-
			with sector D 89.10 87.4 La		1						1			†	6	000	0.	11					• 2			
			esson trally compiled at 1 vom . I													1	11.4	/./					47			-
			scation 87.1-87.6 are 1 % tot. with																							_
]	pyche = 52, are to sphel									<u> </u>	-	<u> </u>	 		 					\square			_	_
91.4		ANTE	ANDESTIC TUTE			 ,				3.	+				76	914	000	28	MC			┢╼╼╉	-1			-
			as before work voice as 2		1	1-	ŕ	Ή.		1		1-	<u> </u>		7/	949	4.00	1.3	100%		<u> </u>	ľ				
			Here really this with an sen		1	\mathbf{t}			-1	-†-	+			<u> </u>	77	955	07,0	17	1000			ť	4/			_
			to some		1.	1			-					1	7	1007	1087	1.0	.007			†	<u>, 22</u> , y		-	
			from 94.2-95.3 wt stlest 10200		1							1			74	1037	ADT.	13	MA				15			
			@ 102. * 100 he a 0 70°		1							1		1	75	1000	1020	20	~~~			1	14		+	
			103.6 Sea band 607 an		1		1				1	1		<u> </u>	.71	1A	109	2.0	.076				20		-1	
			104.5 50cm or 572 100		1						1	1		1	2	109	111	20	D17				21	_		
			weak at reining the but several		1						\uparrow	1			78	11	112	1.0	,007			+	26			
			of the vent contain Pbs/Zns		1	1					1	-		1	7'	113	114	51.5	,009			F	26			
			114.5- 114.9 AK stKwk		1								ŀ		127	114:	1100	- 1.1	. 184				32			•••
			1153 1500 0 100 302 0001 202	91		1	1					+	† · · · ·	†	1	102	11122						eren		-+	

23

Stop and a

Bune

44.7

110

stortwork 15.

5

Hole No. <u>93-4/22</u> Page 8_____ of <u>12</u>____

Malalan et he 📲 falal en el o Longo de la constante de la

Inter							tera	tion			Mir	eral	izati	ion		Assay	/ Dat	a								Con	e Data	a
(met	To	Rock	Geologic Description	From	То	H	CHLOR	a di	CARB		*	*	*	*		Sample	From	То	int	Au opt	Ca %	Au check	Cu check	Ag A opt 7	Mo F	RQD %	Run	Reco very
		1/10-	from 115.5- 120, 4 version is		10	<u> </u>					17	4		Mie		9781	M	117.4	1.9	NS				INS!	+			-
			0/19 6 Ser and 10 min An												1	82	1/7.4	118.9	1.5	2005				20	-			
												*				83	118.9	120#	1.5	.006			[29	+			
			from 120 11 - 122. 8 overthick 10% aug							1						84	10.4	121.8	1.4	.043				.31				
			E 12 205 4-12 Black Subah													85-	21.8	/21.0	1.0	.054				20	+			
			and the last of the second second													16			22	ALL ALL			†	10	+			
_			R 40-70 % 4 C=												<u> </u>	87	1205	00.1	1.1	.007 A06		008		24	+	-+		
			from 125.B = 1242 that and a set		1											81	126.2	17.4	1.4	041	-	.032		a	+			
			52											-		89	m	/	2.3	012			-	20	-			<u> </u>
			Rizka and an 2-2		1					1						90		A17	1.3	00			-+	20	-			<u> </u>
_			2/20 9 1500 41 (20 Kg 1 / 151	/												91	12/ 2	131.6	1.5					12	-			
-			120.2 5 6 7 6 20 6 7 4 6 7 4 4 4			\vdash										57	3.6	<u>/ 24,</u>	1.5				*	2	+	-+		<u> </u>
			a latitation and the													9,	<u>157.7</u>	134.2	10				*	A2	+	- +	<u> </u>	<u> </u>
			130.7 15 and 107													91	D7.2	232.7	20	.001		\vdash		12	+			<u> </u>
-																95	122.7	79 .7	3.0				*		-	+		·
			198.5 5													2/	11.7	1992	1.5	-001				D7				
-			may / M. A. C. / for													97	1946	1712	2.0	-000-	_			06				-
			14131.1 flow Danking contact (260 me		1											98	141.8	1414.7	2.5	,000			+	202				
-			131 L IS LON QU C Fo stopy													an	1443	145.3	1.0	.001				12	-+-	-		
			1.113 30 En WEEK 913 STRUCK Erigs						·		_					77	1 <u>453</u>	·146 3	1.2	001			🛉	20	+	+		
-			143.3- 176.2 STRWE LITT DIA TREAS 3/6													7200	146-1	1477	1.0	.000				4				
			py cone in messive len bade		<u> </u>																							
••••		• • • • • • •	145.5																									
			-100 176-5- 6017 2 and 11 and 12 ceases																									
			2) 2pproviensialy 2000 prote stationer																									

Conservation of the second s

Hole No. <u>93-4/22</u>

Alteration Mineralization Assay Data Core Data Interval (meters) CHLOR 3 ample From To Int Rock % Pv % % Ca Mar An Ce An Cu % check check Ag Mo opt % RQD Run Reco very % % 뗈 **Geologic Description** IJ From To Туре opt From To 3cmgr@ 80 20% PY 148.7 9801 477 448.7 1,0 .010 15 149.3 SOCMALSTE 02 4487 150 1.6 .003 .09 10 cm sil shart, box zors filled 151.4 03 503 51.4 11 .003 4 1 far 4 04 51.4 1528 1.4 .067 05 40 cm struk in gast be 151.5 05 132.8 153.6 0.8 .015 12 sece qu stkat 5% 24 163 4 Pro α 153.6 155.2 1.6 12 , 020 155.5 10 cm qu ce 40° to py 07 155.2 562 1.0 .0/0 .38 10 cm gr @ 70 20% pyrite 08 1562 157.1 0.9 563 ,012 12 20 cmquette 8% 7. 5 2% P. :51.1 09/157. 158 \$ 1.0 .104 tree to -17. FBS .40 SCARARO. 20 cm gone lange 2.3cm vons 157.7 9810 158.1 159.1 1.0 .013 <u>20 en gene 1000</u> <u>C 157. 9 VB 10% py</u> 35 11 159/160.1 1.0 .00 .12 12 160.1 163 0.8 increasing reining 007 06 57.9-159.0 py common as stringersad within vers 2 20% 1600 167.4 DUSTRUK QUARTZ VEIN BUD STOCKWORK 160.8 167.4 - and esitie fift hast in which both small and lance sens accor mether 1 30-50% of wait 10 (2 20° / 60° / 00 000 a milthe Proverse de mand the second and the en alle e automatical guilt and server the

i

St. 1842 A.

23

93-222 Hole No. _ of _____ 10

Inte	t					A	tera	ration Mineralization Assay Data								Cor	e Dat	a .										
(met	vai ers)	Rock					IOR		84		~	×	×	æ		Sample	From	То	int	Au	Cu	Au	Cu	A8	Mo	RQD	Run	Reco
om	То	Туре	Geologic Description	From	To	SII S	5	3	5		PY.	G	Mag	Mo	ļ			_		opt	*	check	check	opt	*	*		R.
		ļ	160.8- 20 cm intense st Kuk	160.8	170	3	1	2	<u> </u>		5				<u> </u>	98/3	160.1	1615	1.0	.003		.001			-03		L	
			180, 8 - 174.2 work st kuk													14	161.8	14.5	0.7	.006				-	.06			
			161.5 1742 - 1995. gr													ß	162.5	169.4	09	.002	<u></u>				.15			
		L	161.5-162.5 Sthat largely brace													16	K3.4	K	1.0	.063		,072			.10			
			162.5.163.2 gr t- py-													17	164.4	1659	1.0	020		034			.50			
			163.2-163.5 stk.w/c													18	145.9	14.7	0.4	.09/				-	5.54			
			1635-163.5 9-245"1070 pr. 570 Zn 270 Flos													19	166.7	127.4	0.7	.DI		1			4.55	r		
			1638-165.9 ON STRUK we pyrargerite																							\square		
			C 164.9 Good stan gil of dack																	1				\square	\square			
			sulphides to -19.2.5 57.0, 4.72	S						Τ										ŀ				Π				
			165.9-166.7 or 5th Pr. f. 30 free			Γ				Τ	Γ																	
			in part for				[Τ						Γ						ľ						\square
			166.7-167.4 as stilled																					\square				
																								\square				
7.9	10.6	ANTE	ANDES THE TUFF DUTH SHEETES VEINS			2	1	3		Τ	5			1		20	167.4	1184	1.0	.008					18			· · · ·
			Ile Dale ource estared silveren = 25 1/2 -35%							1	Γ					1	168.4	169.4	1.0	.008					.12			
			shoded yerning the scenerally @ 60-80"			Γ									1			1										
			to can a ligner in some from si to				Γ			T																		
			30cm Salation Rie connerts burd							T																		
			the wheness most So, an occur							Τ														\square				
			dia vers per sur al least							Τ															-1			
			10 11 10 CM							Τ	1			[[
.			Signifiers - por:								Ι		T															
_			167.6 - 10 0- 572 20 1000								"															l	.	
			1:50 - 1en 0 80 20% blat sold do 527								<u> </u>					 	† -			1					•			
		[1/9/ 500 500 200 200 200			1		[1		1		1	1	†											

 $\mathcal{F}_{\mathcal{F}} = \{ f \}$

()

93-422 Hole No. of 12

sing and see

47

11 Page

					Alt	erat	lion			Mir	nera	lizat	ion		Assa	y Da	ta		·						Co	re Data	a.
(meters)	Rock	Geologic Description	Erom	To	H	CHLOR	SER	CARB		*	*	*	%		Sample	From	То	int	Au opt	Cu %	Au check	Cu check	Ag	% ₩	RQD %	Run	Reco very %
	iype			10		-				17				†	ar 17	1.9		<u> </u>	- 020		+	\vdash	20				
	<u> </u>	Trom 164.0 = 110.0 + 3000 VPin, ch Mays	<u> </u>									1			12	1.340	1.22		0/4	-	+	+	10			<u>├</u> ──┤	<u> </u>
		reite up's 1° en in which up to 100	<u> </u>									+	1.	<u>†</u>	- 25		1/23		017	+			10	-			
		- sy to tet assur	<u> </u>								-	<u>†</u>	\vdash	<u> </u>	1 15	~	1727		0/3	+	<u>†</u>	+					
			<u> </u>									+-	 	<u> </u>		113.7	175.5	1.6	.017	+	+	+	-0				
		From FIZ.E-173.9 Oto veining / stock work	┣──						\vdash			╂──	┼──		26	175.5	1711	1.6	-01		+	┢──┤	.01			┝┦	i
		- F- F	╂───												27	<u>77.1</u>	178.	1.6	.010		–	+	.26			┝──┦	$\left - \right $
		0								┣──					27	178.7	129.7	1,2	POIL	+		┣──╵	15			┝───┤	
		from 177.1 - 177.7 eccatic quest wk your										_		 					+		<u> </u>	\vdash	\vdash			┝───┦	
		in which 20% py meurs	┣───											 					<u> </u>		 	\vdash	\vdash			├ ───┤	
			 									ļ	ļ	ļ		ļ			ļ	ļ	<u> </u>	 					
_		177.7-178.1 weak fracture zone										 	<u> </u>	<u> </u>	 	ļ	ļ	ļ		<u> </u>	_	\square	\square			i	
			<u> </u>			_				L		_	I	ļ	 	ļ				ļ	L	\square					
		178.4-178.1 weak reining		L											ļ	ļ	1			ļ							
		178.7-179.9 mod struck 10-15% on to																									
		tet @ 13.85 500 10000																									·
		70° 307																									
												1			29	1799	1801	0.7	.0/19				Nh				
2: 20.11	ANTE	ANDESITIC TUFF				1	1			5			1	1				10.7	1							· ·	
		in second the set of the second sectored	1							F-		1		1	20	1806	182 /	15	m		<u> </u>		15				
		genera filo pare green endere										1	1	1				1.0	we	1	<u> </u>	- 1					
	<u>+</u>	and the former and the self eltert	<u> </u>			-						+		<u> </u>		1021	100		012	┼──		╂┩	09				
		Don' 1/12 Juning recient		+	 					 	<u> </u>	†			1 <u>'</u> '	102.1	182.1	1.0	1.412	+	 	┝─┦	-04				
	+	2 EU C/2/0 FARMING CD 70 40 CD	1									1	<u> </u>	+	27		1.1	<u> </u>	0	1		++	03	}			
		the set of the set									<u> </u>	+				14.0	10:3	1.3	100	+			~ /				
	+	The second secon										+	+						-								
		2 18 4											<u> </u>						1								

• .

NEWHAWK GOLD MINES LTD. .

3.

Hole No. 93422

· • • •

of <u>12</u> 12 Page

	[Γ		Alte	erati	on		M	linera	aliza	tion		Assa	y Da	ta								Co	re Dat	a .		na de la de se
	(me	ters)	Rock		 	1.		HOH	*	S	×	. *	%	. %		Sample	From	То	Int	A4	Ca	Au	Cu	Ag	Mo	RQD	Run	Raco very		225
	From	То	Туре		From	To	3	믹		9	_ <u> </u> b	49	Ma	E Mo			 	179.9	ļ	opt	 	Check	Check	opt	*	<u> </u>		*	•	1
				From 193. 9 - 134.3 well gspatt	1930	1943	13		3	_	5	7				<u> </u>	1930	19	1.4	1.016	·			.15						1
		ļ		werk erratic verning	_		┞╌┼	_		_			\bot	_		-	 	ļ	<u> </u>	ļ		ļ	ļ			L				l i
	L	<u> </u>	<u> </u>		I	ļ								-		_	ļ	ļ		<u> </u>		L								
```	231.1	2012	Q+STR.	QUARTE VEIN STOCKLORK	20.1	2012	Z		34			٢				9834	201	201.	1.16	.018	<u> </u>		<b>.</b>	.12						
			ļ	andesition toff host similar to												7835	24.1	207.1	1.0	-011				.06						
	[			above but wankly altered												9836	203.1	204	1.5	.008				.06						
				vens ne serenally & Ican wide									1			9837	20%1	200	1.4	.009		010		.de						
				and are a of - carbonate musture	ļ			Τ		Т		Τ	Τ			9838	206.1	267.0	15	1.50	4	114			.18					
				I recard solo recover tr-52											·	9835	207.6	205.5	12	.02		N		No						
				Bu the exception is 2011-2013				$\top$					1	1	1	1/22/	1		1.2		†									
		<u> </u>		when 20% and a second a share the			$\mathbf{t}$	+	+	+			+	1		1	<u> </u>	1	<u> </u>		<u> </u>									· .
		<u> </u>		Braz fors by Becker group wird			++	+		+		-	1	1	+		1	<u>†</u>	<u>†</u>		+									
	<u> </u>		1	A to En 2 in assessing in with the a	<u> </u>		┠╌┼	-		+	+	+	+	+	+-	+		<del>†</del>	<u> </u>		+									
	<u> </u>	-		20 Fr 22 West v	<del>  .</del>		+	-+-			+	+	+-	+	+			╂	-		+									
				-gradations! Towar contact	<del> </del>		┢╌┼	+		+			+		+						<u> </u>								1	
``	0		0	A11. Th	<u> </u>		┢╌┼			+		+	+	+	+	+		╂	<u> </u>											
1	2062	205.2	HNTE	Andesit ic 1-tt	+		┠─┼			+	-+-		+	+	+			╂───			<u> </u>									
	<b> </b>			simila to 2011 140.6 - 201.1				-+-		-+-			+	+				<b> </b>	ļ										i	
			<u> </u>	Minor quantz Veining 1/0			┠─┼						+	-							<b> </b>								ľ	Tak seria
			+	208.8 6 6 4			┠─┼						+				<b> </b>	<u> </u>	ļ											filing of the stand
					<u> </u>	<u> </u>				_					_		ļ	<b> </b>	ļ		<b> </b>									2
		+		·			ļ							_		-					ļ								3	30
•													<b></b>					<u> </u>	L		L									
							-							_			ļ				ļ									
			<b>_</b>											. <b> </b>	ļ				L	<b>_</b>								•		
							<b> </b>							. <b> </b>	ļ			ļ												
	L	;	1																		İ									

1.3

# APPENDIX 2

# ASSAY RESULTS

"JJ

30

# WESTMIN RESOURCES LIMITED PREMIER GOLD PROJECT ASSAY LABORATORY

# CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK --- GOLD

	DATE:	08-17-93
ASSAY LAB	FILE:	A081793.ALA
TRANSFER TEXT	FILE:	NG081793.0TA
	PAGE:	2
SAMPLE	TYPE:	ORIGINALS

SAMPLE	
IDENTITY	
89067	

== == == == == == == ==

Au	Au
Oz/t	g/ton
0.021	0.720

	<ul> <li>A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec second second sec</li></ul>	
9701	0.013	0 446
9702	0.103	3.531
9703	0.008	0.774
9704	0.033	1.131
9705	0.012	0.411
9706	0.011	0.377
9707	0.030	1.029
9708	0.019	0.651
9709	0.031	1.063
9710	0.086	2.949
9711	0.024	0.823
971Z	0.015	0.514

PREMIER GOLD PROJECT ASSAY LABORATORY.

zer certified by ....

Dupincut #55

# CERTIFICATE OF ASSAY

TO: NEWHAWK

9721

PROJECT >>> NEWHAWK -- GOLD

		ASSAY LAB FI TRANSFER TEXT FI PA	ATE: 08-17-93 LE: A081793.ALA LE: NG081793.DTA AGE: 3	
		SAMPLE TY	PE: ORIGINALS	
			: II # II II II II # II II II II II II II	
SAMPLE	Au	Au		
IDENTITY	Oz/t	g/ton		
9713	0.017	0.583		
9714	0.017	0.583		
9715	0.013	0.446		
9716	0.025 <	0.857		
9717	0.019	0.651		
9718	0.011	0.377		
9719	0.016	0.549		
9720	0.086	2,949		

0.891

0.026

PREMIER GOLD PROJECT ASSAY LABORATORY.

Shipment #55

# CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK -- GOLD

ASSAY LAB TRANSFER TEXT F	DATE: FILE: FILE: PAGE:	08-17-93 A081793.ALE NG081793.DTE 1
SAMPLE	TYPE:	ORIGINALS

SAMPLE	Au	Au
IDENTITY	Oz/t	g/ton
9722	0.020	0.686
9723	0.060	2.057
9724	0.014	0.480
9725	0.020	0.686
9726	0.017	0.583
9727	0.016	0.549
9728	0.013	0.446
9729	0.018	Ó.617
9730	0.263	9.017
9731	0.023	0.789
9732	0.130	4.457
9733	0.016	0.549
9734	0.020	0.686
9735	0.010	0.343
9736	0.020	0.686
9737	0.015	0.514
9738	0.067	2.297
9739	0.049	1.680
9740	0.031	1.063
9741	0.065	2.229
9742	0.034	1.166
9743	0.015	0.514
9744	0.014	0.480
9745	0.015	0.514
9746	0.036	1.234
9747	0.022	0.754
9748	0.021	0.720
9749	0.023	0.789
9750	0.016	0.549
9751	0.021	0.720

PREMIER GOLD PROJECT ASSAY LABORATORY.

certified by ..

# CERTIFICATE OF ASSAY

TO: NEWHAWK

9768

9769

9770

1 PULPA

2 PULP B

PROJECT >>> NEWHAWK -- GOLD

		ASSAY LAB TRANSFER TEXT SAMPLE	DATE: FILE: FILE: PAGE: TYPE:	08-17-93 A081793.ALE NG081793.DTE 2 ORIGINALS
SAMPLE	<b>A</b>			
	AU 0-7+	Au		
9752	027t 0.005	g/ton		
9753	0.395	13.043		
9754	0.024	0.823		
9755	0.017	0.383		
9756	0.022	0.754		
9757	0.033			
9758	0.012	0.411		
9759	0.017			
9760	0.013	0.514		
9761	0.012	0.411		
9762	0.012	0.411		
9763	0.010	0.343		
9764	0.019	0.651		
9765	0.008	0.274		
9766	0.011	0.3//		
9767	0.023	0./89		
	V. V <del>.</del> V	1.3/1	•	

0.006

0.007

0.007

0.068

0.347

0.206

0.240

0.240

2.331

11.897

PREMIER GOLD PROJECT ASSAY LABORATORY.

### CERTIFICATE OF ASSAY

PROJECT >>> NEWHAWK -- GOLD

TO:

NEWHAWK

		ASSAY LAB TRANSFER TEXT SAMPLE	DATE: FILE: FILE: PAGE: TYPE:	08-20-93 A081993.ALB NG081993.OTB 1 ORIGINALS
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n na ha na 12 ha na 22 na 16 ha na 28 ha na 28 ha 22 na 58			
SAMPLE	Au	Au		
IDENTITY	Oz/t	g/ton		
9771	0.007	0.240		
9772	0.006	0.206		
0770	0.000	A 945		

= 65 samples 35

### CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK --- GOLD

DATE ASSAY LAB FILE TRANSFER TEXT FILE PAGE SAMPLE TYPE	08-19-93 A081993.ALE NG081993.DTE 1 ORIGINALS
	<b></b>

SAMPLE	Au	Au
IDENTITY	Oz/t	g/ton
9774	0.009	0.309
9775	0.006	0.206
9776	0.026	0.891
9777	0.012	0.411
9778	0.007	0.240
9779	0.009	0.309
9780	0.184	6.309
9781	0.015	0.514
9782	0.008	0.274
9783	0.006	0.206
9784	0.043	1.474.
9785	0.054	1.851
9786	0.004	0.137
9787	0.006	0.206
9788	0.061	2.091
9789	0.012	0.411
9790	0.010	0,343
9791	0.005	0.171
9792	0.011	0.377
9793	0.009	0.309
9794	0.008	0.274
9795	0.007	0.240
9796	0.006	0.206
9797	0.008	0.274
9798	0.009	0.309
9799	0.009	0.309
9800	0.008	0,274
9801	0.010	0.343
9802	0.003	0.103
9803	0.003	0.103

PREMIER GOLD PROJECT ASSAY LABORATORY.

certified by .... Evely

Shipment #2 36

# CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK -- GOLD

		ASSAY LAB TRANSFER TEXT SAMPLE	DATE: FILE: FILE: PAGE: TYPE:	08-19-93 A081993.AL NG081993.G 2 ORIGINALS
			i ii ii ii ii ii ii ii ii ii	=================
SAMPLE IDENTITY	Au Oz/t	Au a/ton		

IDENTITY	Oz/t	g/ton
9804	0.007	0.240
9805	0.015	0.514
9806	0.020	0.686
9807	0.010	0.343
9808	0.012	0.411
9810	0.013	0.446
9811	0.006	0.206

Certified by .....

unipmene 57

37

### WESTMIN RESOURCES LIMITED PREMIER GOLD PROJECT ASSAY LABORATORY

### CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK -- GOLD

	DATE:	08-20-93
ASSAY LAB	FILE:	A082093.ALC
TRANSFER TEXT	FILE:	NG082093.0TC
	PAGE:	1

SAMPLE TYPE: ORIGINALS

SAMPLE	Au	Au
IDENTITY	Oz/t	g/ton
9812	0.007	0.240
9813	0.003	0.103
9814	0.006	0.206
9815	0.002	0.069
9816	0.063	2.160
9817	0.020	0.686
9818	0.091	3.120
9819	0.011	0.377
9820	0.008	0.274
9821	0.008	0.274
9822	0.020	0,686
9823	0.014	0.480
9824	0.013	0.446
9825	0.013	0.446
9826	0.011	0.377
9827	0.010	0.343
9828	0.012	0.411
9829	0.009	0.309
9830	0.020	0.686
9831	0.013	0.446
9832	0.007	0.240
9833	0.016	0.549
9834	0.018	0.617
9835	0.011	0.377
9836	0.008	0.274
9837	0.009	0.309
9838	1.504	51.566
9839	0.020	0.686

Certified by ....

## CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK --- SILVER

DATE: 08-17-93 ASSAY LAB FILE: A081793.ALD TRANSFER TEXT FILE: NS081793.OTD PAGE: 2

SAMPLE TYPE: ORIGINALS

38

SAMPLE	Ag	Ag
IDENTITY	Ozlton	g∖ton
9701	0.204	7.0
9702	0.175	6.0
9703	0.146	5.0
9704	0.321	11.0
9705	0.292	10.0
9706	0.175	6.0
9707	0.379	13.0
9708	4.346	149.0
9709	5.892	202.0
9710	39.375	1350.0
9711	2.771	95.0
9712	0.467	16.0
0710	0.250	12 0
9/13	0.330	12.0
9714	0.379	13.0
9/15	1.604	33.0
9/16	1.079	37.0
9717	0.321	11.0
9718	0.117	4.0
9719	0.087	3.0
9720	0.583	20.0
9721	0.175	6.0

Shipment #55

39

### WESTMIN RESOURCES LIMITED PREMIER GOLD PROJECT ASSAY LABORATORY

### CERTIFICATE OF ASSAY

TO: NEWHAWK

9749

9750

9751

PROJECT >>> NEWHAWK -- SILVER

		ASSAY LAB I TRANSFER TEXT I	DATE: FILE: FILE: PAGE:	08–17–93 A081793.ALH NS081793.DTH 1
		SAMFLE	TYPE:	ORIGINALS
			= == == == == =	=======================================
	<b>A</b> -	<b>^</b> ~		
	ny Or\too	Hy Alter		
9722	021000	gyton		
9723	0.202	12.0		
9724	0.375	13.0		
9725	0.262	9.0		
9726	0.202	17.0		
9727	0.430	21.0		
9728	0.812	21.0		
9729	0.262	22.0		
9730	9 575	294 0		
9731	0.272	294.0		
9732	14 467	496 0		
9733	0 592	436.0		
9734	0.563	20.0		
9735	0.042	10.0		
9736	0.232	10.0		
9727	0.233	8.0		
9739	0.233	12.0		
9729	0.330	12.0		
9740	0.375	13.0		
9741	0.43/	13.0		
9742	0.334	34.0 34.0		
9743	0.700	24.0		
9744	0.012	10.0		
9745	0.252	26.0		
9746	0.350	12.0		
9747	0.292	10.0		
9748	1 242	46 0		
2770	1.042	40.0		

PREMIER GOLD PROJECT ASSAY LABORATORY.

0.700

0.292

0.554

24.0

10.0

19.0

certified by .

Shipment #.55

40

### WESTMIN RESOURCES LIMITED PREMIER GOLD PROJECT ASSAY LABORATORY

# CERTIFICATE OF ASSAY

TO: NEWHAWK

#### PROJECT >>> NEWHAWK -- SILVER

			DA	TE: 08-17-93
			ASSAY LAB FI	LE: A081793.ALH
			TRANSFER TEXT FI	LE: NS081793.0TH
			PA	GE: 2
			SAMPLE TY	PE: ORIGINALS
		====================		
	SAMPLE	Ag	Ag	
	IDENTITY	Ozlton	g\ton	
	9752	25.666	880.0	
•	9753	0.408	14.0	
	9754	0.379	13.0	
	9755	0.525	18.0	
	9756	0.496	17.0	
	9757	0.233	8.0	
	9758	0.262	9.0	
	9759	0.321	11.0	
	<b>976</b> 0	0.262	9.0	
	9761	0.467	16.0	
	9762	0.175	6.0	
	9763	0.350	12.0	
	9764	0.146	5.0	
	9765	0.146	5.0	
	9766	0.262	9.0	
	9767	2.042	70.0	
	9768	0.233	8.0	•
	9769	0.233	8.0	
	9770	0.058	2.0	
	1 PULPA	0.350	12.0	
	2 PULPB	1.283	44.0	

PREMIER GOLD PROJECT ASSAY LABORATORY. certified by ......

Shipment#55

### CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK -- SILVER

DATE: 08-19-93 ASSAY LAB FILE: A081993.ALH TRANSFER TEXT FILE: NS081993.OTH PAGE: 1 SAMPLE TYPE: ORIGINALS

SAMPLE	Ag	Ag
IDENTITY	Oz\ton	g∖ton
9771	0.408	14.0
9772	0.292	10.0
9773	0.175	6.0

42 Shipment # 57

# CERTIFICATE OF ASSAY

### TO: NEWHAWK

=

PROJECT >>> NEWHAWK -- SILVER

		DATE: ASSAY LAB FILE: TRANSFER TEXT FILE: PAGE: SAMPLE TYPE:	08-19-93 A081993.ALI NS081993.OTI 1 ORIGINALS
SAMPLE	Ag	Ag	
IDENTITY	Oz\ton	g∖ton	
9774	0.146	5.0	
9775	0.146	5.0	
9776	0.204	7.0	
9777	0.263	9.0	

9776	0.204	7.0
9777	0.263	9.0
9778	0.263	9.0
9779	0.263	9.0
9780	4.317	148.0
9781	1.079	37.0
9782	0.204	7.0
9783	0.292	10.0
9784	1.371	47.0
9785	0.204	7.0
9786	0.088	3.0
9787	0.263	9.0
9788	0.583	20.0
9789	0.117	4.0
9790	0.292	10.0
9791	0.117	4.0
9792	0.088 ·	3.0
9793	0.029	1.0
9794	0.117	4.0
9795	0.088	3.0
9796	0.058	2.0
9797	0.029	1.0
9798	0.117	4.0
9799	0.204	7.0
9800 🖉	0.233	8.0
9801	0.146	5.0
9802	0.088	З.О
9803	0.058	2.0

PREMIER GOLD PROJECT ASSAY LABORATORY.

certified by .....

43 Shipment# 57

### CERTIFICATE OF ASSAY

то: NEWHAWK

9807

9808

9810

9811

PROJECT >>> NEWHAWK -- SILVER

13.0

12.0

4.0

4.0

			1	DATE:	08-19-93
			ASSAY LAB	FILE:	A081993.ALI
			TRANSFER TEXT	FILE:	NS081993.OTI
				PAGE:	2
			SAMPLE	TYPE:	ORIGINALS
		=======================================			
	SAMPLE	<b>An</b>	<b>A</b> a		
	IDENTITY	Oz\ton	g\ton		
	9804	0.088	3.0		
`	9805	0.117	4.0		
	9806	0.117	4.0		

0.379

0.117

0.350

0.117

PREMIER GOLD PROJECT ASSAY LABORATORY.

certified by .....

Shypment 17 44

## CERTIFICATE OF ASSAY

TO: NEWHAWK

PROJECT >>> NEWHAWK -- SILVER

	DATE:	08-20-93
ASSAY LAB	FILE:	A082093.ALD
TRANSFER TEXT	FILE:	NS082093.0TD
	PAGE:	1
SAMPLE	TYPE:	ORIGINALS

SAMPLE	Ag	Ag
IDENTITY	Oz\ton	g\ton
9812	0.058	2.0
9813	0.029	1.0
9814	0.058	2.0
9815	0.146	5.0
9816	0.904	31.0
9817	0.496	17.0
9818	5.542	190.0
9819	0.554	19.0
9820	0.175	6.0
9821	0.117	4.0
9822	0.204	7.0
9823	0.175	6.0
9824	0.146	5.0
9825	0.088	3.0
9826	0.088	3.0
9827	0.263	9.0
9828	0.146	5.0
9829	0.058	2.0
9830	0.146	5.0
9831	0.088	3.0
9832	0.029	1.0
9833	0.146	5.0
9834	0.117	4.0
9835	0.058	2.0
9836	0.058	2.0
9837	0.058	2.0
9838	0.175	6.0
9839	0.058	2.0

Certified by .....







23,170 0 10 20 30 40 50 METRES SCALE 1:500 1. 1100m NEWHAWK GOLD MINES SULPHURETS PROPERTY BRUCESIDE PROJECT GALENA HILL SECTION 500SE LOOKING SE (MINE GRID) DRAWN BY: T.K. SHEET ND: GL500SE DATE: DCT. 1993 FIGURE ND: 8